

Боб Уорд

Инновации

SQL Server 2019

SQL Server 2019

Revealed

Including Big Data Clusters and

Machine Learning

Bob Ward

Foreword by Rohan Kumar

Инновации
SQL Server 2019

Использование технологий больших
данных и машинного обучения

Боб Уорд
Предисловие от Рохана Кумара (Rohan Kumar)

Москва, 2020

УДК 004.655
ББК 32.973.26-018.2

У64

У64 Боб Уорд (Bob Ward)
Инновации SQL Server 2019. Использование технологий больших дан-
ных и машинного обучения / пер. с англ. Желновой Н. Б. – М.: ДМК
Пресс, 2020. – 408 с.: ил.

 ISBN 978-5-97060-595-0

В книге представлен исчерпывающий обзор SQL Server 2019 – инновацион-
ной версии популярной СУБД. Авторы рассказывают о производительности
и безопасности, об использовании контейнеров и технологии Kubernetes,
о работе с кластерами больших данных и средствах машинного обучения.
Подробное описание новых функций SQL Server 2019 позволит читателю
расширить свои навыки в области управления и извлечения информации из
больших данных.

Книгу можно использовать в качестве справочника – при желании ее главы
можно изучать по отдельности. Многочисленные примеры, рисунки и ссылки
помогают разобраться в технических подробностях.

Издание адресовано разработчикам и профессионалам, работающим с
данными и знакомым с базовыми функциями SQL Server.

 УДК 004.655
 ББК 32.973.26-018.2

Original English language edition published by Apress Media, LLC is a California
LLC. Russian language edition copyright © 2020 by DMK Press. All rights reserved.

Все права защищены. Любая часть этой книги не может быть воспроизведена в ка-
кой бы то ни было форме и какими бы то ни было средствами без письменного разрешения
владельцев авторских прав.

Материал, изложенный в данной книге, многократно проверен. Но, поскольку вероят-
ность технических ошибок все равно существует, издательство не может гарантировать
абсолютную точность и правильность приводимых сведений. В связи с этим издательство
не несет ответственности за возможные ошибки, связанные с использованием книги.

ISBN 978-1-48425-418-9 (англ.) Copyright © 2019 by Bob Ward
ISBN 978-5-97060-595-0 (рус.) © Оформление, перевод на русский язык,
 издание, ДМК Пресс, 2020

Эта книга посвящена сообществу SQL Server, #sqlfamily.
Без этого сообщества удивительный продукт SQL Server

не был бы тем, чем он является сегодня.

Оглавление

Предисловие от издательства ..9

Об авторе ...10

О техническом рецензенте ...11

Предисловие ..12

Благодарности ...13

Вступление ...16

Глава 1. Почему SQL Server 2019?..18

Проект «Сиэтл» ...19

Проект Aris ..20

«Сиэтл» становится SQL Server 2019 ...23

Модернизация базы данных с помощью SQL Server 2019 ...25

Начало работы с SQL Server 2019 ..32

Глава 2. Интеллектуальная настройка производительности34

Почему используется термин «интеллектуальная настройка
производительности»? ..34

Интеллектуальная обработка запросов ..35

Упрощенное профилирование запросов ..72

База данных в памяти ..85

Конфликт вставки на последней странице...94

Резюме ..96

Глава 3. Новые возможности безопасности ...97

Улучшение достигнутых показателей ..97

Стратегия постоянного шифрования с защищенными областями
(Always Encrypted with Secure Enclaves) ...98

Классификация данных ...103

Другие новые функции безопасности ..118

Резюме ..121

Глава 4. Непрерывная доступность, соответствующая требованиям
для систем, критичных к сбоям ... 123

Поддержка онлайн-индекса ..124

Улучшения в группе доступности Always On (Always On Availability Group)131

Ускоренное восстановление базы данных ...132

Использование ускоренного восстановления базы данных142

Ускорение восстановления базы данных. Основные моменты146

Резюме ..151

Глава 5. Современная платформа разработки .. 152
Языки, драйверы и платформы...153

Оглавление  7

Графовая база данных ..156

Поддержка UTF-8 ...161

Службы машинного обучения SQL Server ..163

Расширение языка T-SQL ..170

Резюме ..178

Глава 6. SQL Server 2019 для Linux ... 179

История SQL Server для Linux ..179

Что нового в SQL Server 2019 для Linux ..181

Улучшения платформы и процедуры развертывания...182

Поддержка постоянной памяти ..186

Репликация SQL Server в Linux ..187

Сбор данных об изменениях (Change Data Capture, CDC) в Linux187

DTC для Linux ...188

Active Directory и OpenLDAP ..190

Службы машинного обучения SQL Server и расширяемость в Linux191

Polybase в Linux ..196

Резюме ..197

Глава 7. SQL Server и контейнеры .. 198

Зачем нужны контейнеры в SQL Server? ..198

Как работают контейнеры с SQL Server ..202

Что нового для SQL Server 2019 ...210

Подготовительные шаги для использования примеров, иллюстрирующих
использование контейнеров с SQL Server ...213

Развертывание контейнера SQL Server ..215

Новый способ обновления SQL Server ..226

Развертывание контейнера как приложения ..230

Развертывание контейнеров SQL в промышленной среде236

Контейнеры SQL Server в Windows..243

Резюме ..246

Глава 8. SQL Server и Kubernetes ... 247

Что такое k8s? ...247

Варианты развертывания k8s ..250

Подготовительные шаги для использования примеров, иллюстрирующих
применение SQL Server и Kubernetes ...253

Развертывание SQL Server на k8s ..255

Советы по k8s ...268

Высокая доступность SQL Server на k8s ..275

Обновление SQL Server на k8s ...280

Использование Helm Charts ..284

Группы доступности SQL Server в k8s ...285

Резюме ..287

Глава 9. Виртуализация данных в SQL Server ... 289

Что такое Polybase? ..289

Как работает Polybase ..294

8  Оглавление

Подготовительные шаги для использования примеров, иллюстрирующих
применение Polybase и SQL Server ...302

Использование внешних таблиц ...306

Обсуждение внешних таблиц ..316

Резюме ..317

Глава 10. Кластеры больших данных в SQL Server .. 319

Зачем нужны кластеры больших данных, и почему они так называются?322

Что входит в состав кластеров больших данных? ..323

Подготовительные шаги для использования обучающих материалов326

Развертывание кластеров больших данных ...327

Архитектура кластера больших данных ...338

Использование кластеров больших данных...349

Развертывание и использование приложений ..357

Безопасность ..357

Высокая доступность ...358

Jupyter Books для кластеров больших данных SQL Server ...358

Машинное обучение и кластеры больших данных ..359

Резюме ..365

Глава 11. Голос клиента и миграция ... 367

Голос клиента ...367

А как насчет бизнес-аналитики?...376

Переход на SQL Server 2019 ...376

Резюме ..393

Предисловие от издательства

Отзывы и пожелания
Мы всегда рады отзывам наших читателей. Расскажите нам, что вы

думаете об этой книге – что понравилось или, может быть, не понрави-
лось. Отзывы важны для нас, чтобы выпускать книги, которые будут для вас
максимально полезны.

Вы можете написать отзыв на нашем сайте www.dmkpress.com, зайдя на
страницу книги и оставив комментарий в разделе «Отзывы и рецензии».
Также можно послать письмо главному редактору по адресу dmkpress@gmail.

com; при этом укажите название книги в теме письма.
Если вы являетесь экспертом в какой-либо области и заинтересованы в

написании новой книги, заполните форму на нашем сайте по адресу http://

dmkpress.com/authors/publish_book/ или напишите в издательство по адресу
dmkpress@gmail.com.

Скачивание исходного кода примеров
Скачать файлы с дополнительной информацией для книг издательства

«ДМК Пресс» можно на сайте www.dmkpress.com на странице с описанием
соот ветствующей книги.

Список опечаток
Хотя мы приняли все возможные меры для того, чтобы обеспечить высо-

кое качество наших текстов, ошибки все равно случаются. Если вы найдете
ошибку в одной из наших книг – возможно, ошибку в основном тексте или
программном коде, – мы будем очень благодарны, если вы сообщите нам о
ней. Сделав это, вы избавите других читателей от недопонимания и помо-
жете нам улучшить последующие издания этой книги.

Если вы найдете какие-либо ошибки в коде, пожалуйста, сообщите о них
главному редактору по адресу dmkpress@gmail.com, и мы исправим это в сле-
дующих тиражах.

Нарушение авторских прав
Пиратство в интернете по-прежнему остается насущной проблемой. Изда-

тельства «ДМК Пресс» и Apress Media очень серьезно относятся к вопросам
защиты авторских прав и лицензирования. Если вы столкнетесь в интернете
с незаконной публикацией какой-либо из наших книг, пожалуйста, пришли-
те нам ссылку на интернет-ресурс, чтобы мы могли применить санкции.

Ссылку на подозрительные материалы можно прислать по адресу элект-
ронной почты dmkpress@gmail.com.

Мы высоко ценим любую помощь по защите наших авторов, благодаря
которой мы можем предоставлять вам качественные материалы.

Об авторе
Боб Уорд (Bob Ward) – главный архитектор
технической группы Microsoft Azure Data SQL
Server, которая ведет разработку всех версий
SQL Server. Боб проработал в Microsoft более
26 лет; он участвовал в выпуске каждой версии
SQL Server, начиная с версии 1.1, поставляемой
с OS/2, и заканчивая SQL Server 2019, включая
Azure. Он популярный докладчик многих кон-
ференций; часто выступал с докладами о новых
версиях SQL Server, его внутреннем устройстве
и производительности на таких мероприятиях,
как PASS Summit, SQLBits, SQLIntersection, Red

Hat Summit, Microsoft Inspire и Microsoft Ignite. Вы можете подписаться на
него в соцсетях, ссылки на его профиль: @bobwardms или www.linkedin.com/

in/bobwardms.
Боб является автором книги Pro SQL Server on Linux («SQL Server на Linux

для профессионалов»), выпущенной Apress Media.

О техническом рецензенте
Аарон Бертран (Aaron Bertrand) – технический
специалист, обладающий более чем двадцати-
летним опытом работы с SQL Server. Он работал
непосредст венно с несколькими командами раз-
работчиков продуктов Micro soft и хорошо извес-
тен тем, что участвует в развитии технических
навыков и пере даче опыта для широкого сооб-
щества разработчиков. Он автор многих статей,
докладчик конференций и модератор форумов,
посвященных технологиям баз данных.

Предисловие

Время, в которое мы живем, – это уникальный переломный момент в исто-
рии технологий. Наступает золотой век для данных, аналитики и искус-
ственного интеллекта. Темпы роста данных превосходят все когда-либо
достигнутые показатели, и прорыв в области цифровых технологий, слу-
чившийся благодаря технологиям искусственного интеллекта и машин-
ного обучения, создал неограниченный потенциал для использования
данных с целью обеспечения конкурентного преимущества для бизнеса.
С резким ускорением процесса цифровизации основной вопрос, с которым
мы сейчас сталкиваемся, заключается в том, как воспользоваться преиму-
ществами этого огромного объема данных, чтобы помочь нашим компани-
ям и сообществам в их преобразованиях.

Мы видим огромный потенциал в области применения возможностей
интеллектуального облака и интернета вещей с элементами искусственно-
го интеллекта. SQL Server не имеет аналогов в отрасли по уровню стабиль-
ности и системности, который предоставляется разработчикам, инженерам
данных и администраторам в разнообразных вариантах: на периферии,
в локальной среде, частном облаке и общедоступном облаке. Наше сооб-
щество SQL Server сыграло очень важную роль в этой эволюции, и я не могу
в достаточной мере поблагодарить их за поддержку и отзывы за послед-
ние 25 с лишним лет.

Версия SQL Server 2019 – выдающаяся, особенная, и я горжусь тем, что
сделала наша команда. SQL Server 2019 основан на инновациях, которые
были заложены еще в SQL Server 2016 и SQL Server 2017. Несмотря на то что
есть несколько новых возможностей, которые улучшат пользовательский
опыт наших клиентов, как и ожидается от каждой новой версии SQL Server,
я больше всего рад удивительным инновациям, расширяющим навыки,
накопленные нашими клиентами на протяжении нескольких десятилетий,
в области управления и извлечения информации из больших данных. Это
нововведение сыграет решающую роль в поддержке цифровой трансфор-
мации у наших клиентов.

Боб Уорд работает в команде SQL Server с самого начала и оказал замет-
ное влияние на продукт. Очень немногие обладают такими широкими и
глубокими знаниями, и это объясняет, как ему удается сделать сложные
концепции простыми и понятными. Я надеюсь, вы прочитаете эту книгу
с удовольствием.

Рохан Кумар (Rohan Kumar),
корпоративный вице-президент Azure Data в Microsoft

Благодарности

В моей жизни есть множество вещей, за которые я испытываю благодар-
ность, и возможность написать эту книгу – одна из них. Я верю, что все мои
дарования приходят от Бога, и именно благодаря Его благодати я познал
Иисуса Христа. Прежде всего я должен поблагодарить мою очарователь-
ную и талантливую жену Джинджер. Она – мой партнер, моя родственная
душа. Она слышала все мои жалобы, видела, как я засиживаюсь допоздна за
работой над книгой, а иногда ей приходилось водить машину, чтобы я мог
работать над книгой на пассажирском сиденье. Я не знаю никого, кто имеет
более сильную веру, чем моя жена, и мне очень повезло, что рядом со мной
находится такой человек. В этом году мы отпраздновали 30-летие нашего
брака, и я до сих пор наслаждаюсь каждым моментом, проведенным с ней
вместе. Я также хочу поблагодарить моих сыновей Троя и Райана. Сейчас
Трой живет в Чарльстоне, штат Южная Каролина, где я написал последнюю
часть книги, когда приближался ураган Дориан. Трой – человек, которым
я восхищаюсь не только за его характер, но и за его неуклонное стремле-
ние сделать наш мир лучше. Райан учится на втором курсе юридического
факультета Бейлор (Go Bears!). Он продолжает удивлять меня своим интел-
лектом, целеустремленностью и способностью сохранять уверенность, но
все же находит время, чтобы совершенствоваться в игре в гольф. Я также
хочу поблагодарить мою маму Аннетт Гибо (Annette Gibaud), которая была
и остается для меня живым примером доброты к окружающим ее людям.

Множество людей помогали мне в работе и внесли свой вклад в эту кни-
гу. Я хочу поблагодарить Apress Media за предоставленную мне возмож-
ность написать книгу. Джонатан Дженник (Jonathan Gennick) и Джилл
Бальзано (Jill Balzano) поддерживали меня на каждом шагу, помогая мне
довести дело до конца. И эта книга не была бы написана вовремя, да и
вообще вряд ли появилась бы на свет без технического рецензента Аарона
Бертрана (Aaron Bertrand). Когда я еще только обдумывал идею этой книги,
Аарон был одним из первых, о ком я подумал как о возможном рецензенте,
поскольку он обладает глубочайшими знаниями по SQL Server и заслужен-
ной репутацией эксперта в сообществе. Аарон был сверхчеловеком, столь
быстро он давал рецензии для каждой главы книги.

В Microsoft прежде всего спасибо Рохану Кумару (Rohan Kumar), Гейлу
Шеппарду (Gayle Sheppard) и Асаду Хану (Asad Khan) за предоставленную
мне возможность распространять знания о SQL Server 2019, что помогло
мне в детальном изучении продукта для написания этой книги. Я также
хочу лично поблагодарить двух моих ближайших коллег, Бака Вуди (Buck
Woody) и Анну Хоффман (Томас) (Anna Hoffman (Thomas)). Я посетил мно-
го разных стран вместе с Баком и Анной в 2018 и 2019 годах, рассказывая
об SQL Server, кластерах больших данных и Azure. Они оба поработали над

14  Благодарности

улучшением моих навыков выступлений и преподавательского мастер-
ства и составили отличную компанию в дороге. Также я очень благодарен
прекрасному коллективу Microsoft SQL Server Engineering. Я в восторге от
работы с такими умными и профессиональными людьми, многие из кото-
рых помогли мне разобраться с техническими подробностями, которые вы
найдете в этой книге. Сначала я хочу поблагодарить Славу Окса (Slava Oks)
и Трэвиса Райта (Travis Wright), которые помогли мне рассказать историю
о проектах «Сиэтл» и «Aрис» и сыграли важную роль в продвижении этой
версии SQL Server, в том числе новых возможностей, связанных с кластера-
ми больших данных. Конор Каннингем (Conor Cunningham) не устает удив-
лять меня своими глубокими знаниями об этом продукте, внося весомый
вклад в его улучшение.

Настоящие герои этой книги – члены команды инженеров, создавшие эту
версию SQL Server и оказавшие мне помощь в работе над различными гла-
вами книги. Спасибо Педро Лопесу (Pedro Lopes), Пэм Лахуд (Pam Lahoud),
Амиту Банерджи (Amit Banerjee), Брайану Карригу (Brian Carrig), Теха-
су Шаху (Tejas Shah), Вин Ю (Vin Yu), Сурабху Агарвалу (Sourabh Agarwal),
Михаеле Блендеа (Mihaela Blendea), Нелли Густафссон (Nellie Gustafsson),
Абиоле Оке (Abiola Oke), Джеймсу Роуланду-Джонсу (James Rowland-Jones),
Скотту Конерсману (Scott Konersmann), Стюарту Пэдли (Stuart Padley),
Дэвиду Кризу (David Kryze), Роберту Дорру (Robert Dorr), Митчелл Стерн-
ке (Mitchell Sternke), Россу Монстеру (Ross Monster), Мадлен Макдональд
(Madeline MacDonald), Дилану Грею (Dylan Gray), Джо Сэку (Joe Sack), Шрее
Верма (Shreya Verma), Якубу Шимашеку (Jakub Szymaszek), Йоахиму Хамме-
ру (Joachim Hammer), Рагхаву Каушику (Raghav Kaushik), Парагу Полу (Parag
Paul), Панагиотису Антонопулосу (Panagiotis Antonopoulos), Майклу Нель-
сону (Michael Nelson), Пранджалу Гупте (Pranjal Gupta), Ярупату Джисарод-
жито (Jarupat Jisarojito), Вэйюн Хуангу (Weiyun Huang), Джорджу Рейнье
(George Reynya), Умачандару Джаячандрану (UC) (Umachandar Jayachandran
(UC)), Сахаю Сайни (Sahaj Saini), Майку Хаббену (Mike Habben), Вака-
ру Пирзаде (Vaqar Pirzada), Рони Чаттерджи (Rony Chatterjee), Вики Харп
(Vicky Harp), Алану Ю (Alan Yu), Джеку Ли (Jack Li), Алексею Эксаревскому
(Alexey Eksarevskiy), Джею Чо (Jay Choe), Ардженису Фернандесу (Argenis
Fernandez), Кевину Фарли (Kevin Farlee), Арье Библиовичу (Arieh Bibliowicz),
Алексу Умански (Alex Umansky), Маттео Таведжиа (Matteo Taveggia), Капи-
лу Такер (Kapil Thacker), Ли Чжан (Li Zhang) и Дону Цао (Dong Cao).

Я также хочу поблагодарить членов групп Microsoft Marketing и CSS за
их помощь: Аншула Рампала (Anshul Rampal), Мэтью Барроуза (Matthew
Burrows), Марко Хотти (Marko Hotti), Дебби Лайонс (Debbi Lyons), Суреша
Кандота (Suresh Kandoth) и Прадипа М. М. (Pradeep M. M.).

Эта книга и моя работа над ней были бы невозможны без таких партне-
ров, как HPE, DELL и Red Hat, которые позволили мне рассказать своим
клиентам о новой версии SQL Server 2019. Спасибо Венди Хармс (Wendy
Harms), Биллу Данмиру (Bill Dunmire), Урсу Ренггли (Urs Renggli), Робер-

Благодарности  15

ту Сондерсу (Robert Sonders), Луи Имершейну (Louis Imershein) и Стефану
Бюро (Stephane Bureau) (тому, кто помогает мне с видео). Особая благо-
дарность также Дэвиду ДеВитту за экскурс в историю Polybase, Брендану
Бернсу, совершенствовавшему мои знания в области Kubernetes, и Энтони
Ноцентино за глубокое знание Linux и контейнеров.

Наконец, спасибо всемирному сообществу SQL Server. Сейчас мы выпуск-
аем новые версии SQL Server чаще и быстрее, чем когда-либо прежде, но вы
все равно проявляете огромный энтузиазм каждый раз, когда я выступаю,
рассказывая про SQL Server.

Вступление

Как над моей первой книгой Pro SQL Server on Linux («SQL Server на Linux для
профессионалов»), так и над этой книгой я работал в разных местах. Я путе-
шествовал в 2019 году больше, чем когда-либо в своей жизни. Это означало,
что я должен был быть готов работать над своей книгой где угодно и когда
угодно: в самолетах, отелях, поездах, в поездках по городам. Я писал главы
этой книги в Сиэтле, Лондоне, Манчестере (Великобритания), Нэшвилле,
Лас-Вегасе (я побывал там несколько раз), Сан-Антонио, Остине, Хьюсто-
не, Орландо, Сент-Люсии (дело было в отпуске), Дженеси (Колорадо), Чарль-
стоне, Бостоне, Дубае, Йоханнесбурге (Южная Африка), Гринвилле (Южная
Каролина) и Индианаполисе. И конечно, я работал над книгой допоздна в
своем домашнем офисе, в Норт-Ричленд-Хиллз (штат Техас).

Я подумал, что после завершения своей первой книги я вряд ли возьмусь
еще за одну, однако я не мог удержаться от искушения поведать историю
SQL Server 2019. Эта книга действительно написана «для души». Я вложил
душу в обучение, преподавание, преодоление разнообразных препятствий,
документирование, тестирование и работу с SQL Server 2019. Книга объеди-
нила все это, а также многое другое.

Я написал эту книгу для разработчиков и профессионалов, работающих
с данными, которые обладают фундаментальными знаниями по SQL Server
и хотят получить исчерпывающий обзор SQL Server 2019 в одной книге. Эта
книга содержит множество примеров, рисунков и ссылок, которые помогут
вам разобраться в технических подробностях. Я написал ее, чтобы не толь-
ко дать своей аудитории полное понимание возможностей SQL Server 2019,
но также предоставить возможность использовать ее в качестве справоч-
ного материала, к которому можно вернуться в любое время.

Хотя каждую из глав этой книги можно читать отдельно и независимо
друг от друга, я настоятельно рекомендую вам начать с главы 1, так она
знакомит читателей с историей и предысторией выпуска данной версии.
Я также привел в ней обзор всех ключевых возможностей SQL Server 2019
и рассказал, почему я считаю его привлекательным продуктом. Начав с
первой главы, вы можете просмотреть все главы по порядку или пропус-
тить некоторые из них. Однако, чтобы извлечь максимальную пользу из
главы 10, посвященной кластерам больших данных, сначала необходимо
прочитать главы 6, 7, 8 и 9.

Книга разбита на следующие главы:

• глава 1, посвященная истории и обзору версии SQL Server 2019;
• главы 2, 3 и 4 – о производительности, безопасности и доступности.

В одних только этих главах есть много интересного об SQL Server
2019;

Вступление  17

• глава 5 написана для разработчиков;
• главы 6, 7 и 8 посвящены Linux, контейнерам и Kubernetes;
• глава 9 знакомит вас с виртуализацией данных с использованием

Polybase;
• глава 10 – большая глава, посвященная большой теме: кластеры

больших данных;
• глава 11 завершает книгу, в ней рассказывается о других новых функ-

циях и миграции.

Мне нравится «учиться на примерах», поэтому в этой книге содержит-
ся множество примеров. Вы найдете их почти в каждой главе (и в некото-
рых случаях я объясняю, как использовать уже пройденный материал). Вы
можете найти все примеры, приведенные в этой книге, на GitHub, по ссылке
на дополнительные материалы к книге на сайте www.apress.com/9781484254189,
или в моем репозитории GitHub по адресу https://aka.ms/bobsqldemos (https://

github.com/microsoft/bobsql).
Я также рекомендую вам ознакомиться с бесплатными учебными ресур-

сами, созданными нашей командой по адресу https://aka.ms/sqlworkshops. Они
предлагают бесплатное практическое обучение для SQL Server 2019.

В процессе работы над этой книгой я потратил много времени на раз-
мышления «чего хотел бы читатель». Я надеюсь, что вы увидите и почув-
ствуете это, когда будете читать книгу. Если у вас возникнут какие-либо
вопросы или замечания в процессе работы с книгой, мне хотелось бы услы-
шать о них. Пожалуйста, напишите мне напрямую на bobward@microsoft.com.

Боб Уорд (Bob Ward)
Норт Ричленд Хиллз, Техас

Сентябрь 2019

Глава 1
Почему SQL Server 2019?

В июле 2017 года я регулярно посещал Редмонд (штат Вашингтон) как член
команды разработчиков SQL Server. Я живу в Норт Ричленд Хиллз (в шта-
те Техас), и современные технологии позволяют мне выполнять большую
часть своей работы удаленно, вне стен офиса, где собрана основная часть
команды SQL Engineering. Но я все еще немного приверженец «старой шко-
лы» и считаю, что в определенных случаях ничто не сравнится с личным
присутствием, когда люди собираются вместе за работой. К июлю 2017 года
я проработал в команде SQL Engineering более года, уделяя основное внима-
ние SQL Server 2016 (пример моей работы над SQL Server 2016 можно найти
в интернете по ссылке: https://channel9.msdn.com/Events/Ignite/2016/BRK3043-TS).

До этого времени я был членом знаменитой команды Tiger, но в рамках
моего визита в 2017 году меня попросили взять на себя новые задачи, что-
бы сосредоточиться на предстоящем выпуске SQL Server 2017. В мои зада-
чи входил SQL Server на Linux, что в конечном итоге привело к написа нию
моей первой книги, Pro SQL Server on Linux («SQL Server на Linux для про-
фессионалов», www.apress.com/us/book/9781484241271). Поэтому во время моего
визита я начал встречаться и беседовать с различными членами коман-
ды об SQL Server 2017 – о повышении производительнос ти, общем наборе
новых функций и технических подробностях работы SQL Server в Linux и
о контейнерах. Одним из людей, с которыми я говорил на той неделе, был
Слава Окс (Slava Oks). Слава – ведущий менеджер по разработке SQL Server
и один из изобретателей SQL Server для Linux. Он написал предисловие для
книги Pro SQL Server on Linux («SQL Server на Linux для профессионалов»,
www.apress.com/us/book/9781484241271), и в первой главе этой книги рассказы-
вается об истории его участия в проекте. В то время Слава любил прихо-
дить в офис рано; когда я нахожусь в Редмонде, я тоже пытаюсь работать в
«техасское время» – а это значит, что я тоже прихожу очень рано.

Поэтому мы часто встречались за кофе тогда, когда большинство дру-
гих разработчиков еще не добирались до офиса, в здании 16 (хотя сейчас
наша команда работает в здании 43). Однажды утром, когда мы со Славой
говорили об SQL Server 2017, он спросил меня: «Я рассказывал вам о наших
планах относительно следующей версии SQL Server, которая выйдет после
SQL Server 2017?» Я, конечно, сделал вид, что помню об этом: «Да, Слава,

Проект «Сиэтл»  19

я слышал об этом, но не знаю подробностей». Затем он пригласил меня
прийти на встречу на следующий день, где он объяснил многим из нашей
команды инженеров план проекта. Я провел целый год, сосредоточившись
на SQL Server 2016, после чего мне поручили погрузиться в SQL Server 2017
и Linux, а теперь Слава хотел, чтобы я узнал о версии, следующей после
той, которая пока еще не была выпущена? Конечно, я не собирался отказы-
вать ему, потому что – ну, это Слава Окс. Это может прозвучать так, будто
Слава – какой-то страшный человек, однако он один из самых приятных
людей, которых я когда-либо знал в Microsoft.

Поэтому когда я начинал собирать информацию об SQL Server 2017, я
пошел по такому пути: я собирался узнать, что мы делаем для будущей вер-
сии SQL Server с кодовым названием Проект SQL Server Сиэтл.

Проект «Сиэтл»
На встрече со Славой на следующий день я быстро узнал, что за несколь-
ко часов мы приступили к одному из самых амбициозных усовершенство-
ваний SQL Server, которые я когда-либо наблюдал за всю свою карьеру.
Я говорю это, уже зная, что мы выводим на рынок SQL Server под Linux, что
ранее считалось невозможным.

Слава и команда проекта выбрали для проекта кодовое название «Си э-
тл», потому что в качестве кодового названия SQL Server 2017 использо-
валось «Хельсинки», и команда и искала новое наименование города для
кодового названия проекта. По иронии судьбы, никто в Microsoft раньше не
использовал название «Сиэтл», поэтому оно быстро прижилось. Я спросил
Славу, когда он впервые начал планировать проект «Сиэтл». Я был поражен,
услышав ответ: в январе 2017 года. Тот факт, что такие люди, как Слава,
Конор Каннингем (Conor Cunningham) и Трэвис Райт (Travis Wright), плани-
ровали проект «Сиэтл», работая над завершением SQL Server 2017 на Linux,
стал свидетельством их преданности команде, их стремления удерживать
SQL Server на позиции лидера инноваций в отрасли баз данных.

Трудно было поверить, что мы могли так быстро запланировать нечто
большее, после того как предоставили так много полезных и инновацион-
ных функций в SQL Server 2016 и SQL Server 2017.

В SQL Server 2016 мы добавили новые возможности диагностики про-
изводительности с помощью Query Store, а именно новые функции для
разработчиков, такие как временные таблицы и интеграция c JSON. Мы
повысили безопасность работы благодаря технологии Always Encrypted,
динамическому маскированию данных и защите на уровне строк. И мы
представили две новые инновационные возможности, выходящие за пре-
делы «обычных» функций для реляционной системы управления базами
данных. Одной из них была интеграция языка R для моделей машинно-
го обучения. Второй была интеграция с системами Hadoop при помощи
Polybase (что в итоге приведет к чему-то большему в 2019 году; однако я

20  Глава 1. Почему SQL Server 2019?

забегаю вперед). Создание возможностей для включения новых сценариев,
таких как машинное обучение и большие данные, привело меня и других
сотрудников Microsoft к мысли о том, что SQL Server – уже не просто меха-
низм управления реляционными базами данных, а платформа данных.

Однако, чтобы создать современную и полнофункциональную платфор-
му данных, нам нужно было расширять возможности приложений в систе-
мах, отличных от Windows Server. Это привело к появлению в SQL Server
2017 поддержки Linux и Docker-контейнеров. Запуск на Linux и использо-
вание контейнеров стали очень большим шагом вперед для Microsoft, но
SQL Server 2017 также включал другие возможности, такие как адаптивная
обработка запросов (Adaptive Query Processing), автоматическая настрой-
ка, графовая база данных, группы доступности вне кластеров и интегра-
ция с Python, в дополнение к поддержке языка R для служб машинного
обучения.

Учитывая все эти новые возможности, как мы можем за короткий пери-
од времени спланировать и создать что-то более новое, замечательное и
интересное, чем SQL Server 2016 и 2017? Я задал себе этот вопрос, внима-
тельно слушая коллег во время моей первой встречи с командой проек-
та «Сиэтл». В первые несколько минут меня познакомят с идеей, которая,
когда ее позже объявят общественности, будет считаться довольно ради-
кальной. И это новшество было «краеугольным камнем» проекта «Сиэтл»,
который имеет собственный код проекта: Aris.

Проект Aris
В январе 2017 года Рохан Кумар, корпоративный вице-президент Azure
Data, поставил перед Славой и руководством команды разработчиков
SQL Server задачу разобраться, как интегрировать SQL Server с большими
данными. Большие данные – это термин, широко используемый в отрас-
ли и относящийся к системе, которая может обрабатывать большие объ-
емы данных, обычно с использованием распределенной масштабируемой
вычислительной платформы. Мне лично нравится определение термина
«большие данные», сформулированное моим коллегой Баком Вуди (Buck
Woody): «любые данные, которые вы не можете обработать в нужное время
с помощью имеющихся у вас технологий». В течение многих лет в качестве
системы обработки больших данных наиболее часто выбиралась платфор-
ма Hadoop. Итак, в течение нескольких месяцев весной и летом 2017 года
команда обращалась к Трэвису Райту (Travis Wright) за консультациями
о том, как воплотить в жизнь идею интеграции больших данных. Летом
2017 года у нашей команды Azure Data было несколько проектов с кодо-
выми названиями «Polaris», «Socrates» (Сократ) и «Plato» (Платон). Я спро-
сил Славу: как ты выбрал кодовое название для проекта – Aris? И получил
ответ: Сократ был наставником известного греческого философа Платона,
а учеником Платона был Аристотель. Учитывая, что Aris – это часть име-

Проект Aris  21

ни «Аристотель», а также оно входит в состав кодового названия проекта
«Polaris», это новое название, Aris, нашло отклик у всех членов команды и
у нашего руководства.

Поскольку интеграция с большими данными подразумевает некоторое
отношение к Hadoop, Трэвис провел несколько встреч с командой, которая
представила решение Polybase для SQL Server 2016 и хранилища данных
Azure. Идея Polybase заключалась в том, чтобы позволить пользователям
SQL Server запрашивать (и принимать) данные из системы Hadoop, исполь-
зуя привычный язык запросов T-SQL, хорошо знакомый нашим пользова-
телям. Кроме того, вместо того чтобы строить простую систему извлечения
данных, Polybase могла бы использовать возможности распределенных
вычислений, которые существуют в Azure Data Warehouse и Analytics
Platform System (ранее известной как Parallel Data Warehouse), для сокра-
щения вычислений и распределенной обработки запросов, чтобы достиг-
нуть увеличения производительности за счет масштабирования при рабо-
те с большими наборами данных в целевой системе Hadoop. Я никогда не
видел, чтобы Polybase «взлетела» в SQL Server 2016 и 2017, поскольку инте-
грация систем Big Data Hadoop с реляционными системами, такими как SQL
Server, была непростой задачей. Polybase требует значительных усилий по
установке и настройке, а ее модель политики безопасности отличается от
подходов к защите данных, используемых в системах Hadoop и SQL Server.
Кроме того, реализация сокращенных («выталкивающих») вычислений
опиралась на концепцию MapReduce, для чего требовалось установить Java
на том же компьютере, на котором были размещены службы SQL Server и
Polybase. Тем не менее архитектура и концепции интегрированных систем
SQL Server и Big Data были пригодны для создания чего-то большего (вклю-
чая расширение T-SQL под названием EXTERNAL TABLE). Если бы нам уда-
лось упростить историю развертывания и настройки Polybase и добавить
больше поддерживаемых источников данных, то такое решение могло бы
стать более популярным в отрасли. Кроме того, Трэвис очень быстро понял,
что если вы хотите, чтобы вас серьезно воспринимали в мире обработки
больших данных, вам нужно рассмотреть другую технологию под названи-
ем Spark.

Вооружившись этими знаниями, Слава, Трэвис и основная группа чле-
нов команды, создавшей SQL Server для Linux, поставили перед собой
задачу создать прототип интеграции SQL Server с большими данными,
включая Spark. Они устроили многодневную встречу в большом конфе-
ренц-зале и назвали ее «Хакатон Aris». Членами команды хакатона были
Слава Окс (Slava Oks), Трэвис Райт (Travis Wright), Скотт Конерсманн (Scott
Konersmann), Стюарт Падли (Stuart Padley), Майкл Нельсон (Michael Nelson),
Пранджал Гупта (Pranjal Gupta), Джарупат Джисарохито (Jarupat Jisarojito),
Вейюн Хуан (Weiyun Huang), Джордж Рейня (George Reynya), Дэвид Крайз
(David Kryze), Умачандар Джаячандран (Umachandar Jayachandran) из Кали-
форнийского университета и Сахадж Сайни (Sahaj Saini). К моменту завер-

22  Глава 1. Почему SQL Server 2019?

шения хакатона у них был рабочий кластер, который объединил существу-
ющую в SQL Server функциональность Polybase с технологией Spark. На
рис. 1.1 показана примерная схема кластера, созданного этой командой.

Рис. 1.1. Первый кластер Aris

В своем прототипе они создали кластер Hadoop, включающий компонен-
ты для Apache Spark и HDFS, а также SQL Server Polybase. Они использовали
Spark для потоковой передачи данных в узлы данных, а затем примени-
ли Polybase для объединения данных на главном узле SQL Server с данны-
ми, поступающими со Spark в HDFS. Идея прототипа состояла в том, чтобы
доказать, что они могут интегрировать Spark, Hadoop и SQL Server.

Примерно в это же время Трэвис разговаривал с инженерами, которые
недавно присоединились к команде. Это были сотрудники из компании
Metanautix, которую приобрела Microsoft. Благодаря этому приобретению
у нашей команды была технология для подключения к ряду источников
данных, в том числе ORACLE, SQL Server, Teradata и MongoDB, через ODBC.
Команда подумала, что если мы сможем использовать эту технологию в
проекте Aris, то в результате получим довольно интересный пример вир-
туализации данных. SQL Server теперь может быть центром доступа к дан-
ным на разных платформах данных и в разных системах без необходимо-
сти перемещения данных на SQL Server (с помощью таких методов, как
извлечение, фильтрация и загрузка данных (Extract, Transform, and Load,
ETL)).

Прежде чем мы смогли предоставить программное обеспечение, кото-
рое пользователи могли бы попробовать и использовать, нам нужно было
выбрать платформу для запуска всех этих компонентов. Нам была нужна
платформа, которая позволила бы легко развернуть все программное обес-
печение, включая Polybase, Hadoop и Spark; обеспечить управляемость и
безопасность, гибкое масштабирование и высокую доступность. Казалось

Главный узел

Данные Данные Данные Данные

Кластер Spark

«Сиэтл» становится SQL Server 2019  23

логичным использовать контейнеры, учитывая простоту их развертыва-
ния, и в SQL Server 2017 мы реализовали поддержку SQL Server в контейне-
рах. Следующим шагом был выбор Kubernetes в качестве платформы для
создания кластера, в котором работают эти контейнеры. Kubernetes быстро
приобретал популярность как платформа, поддерживающая распределен-
ные вычисления и масштабируемую производительность. Мы знали, что
Linux является предпочтительной ОС для работы с системами Kubernetes и
Hadoop, и, поскольку SQL Server уже работает на Linux, он хорошо подходит
для создания такой платформы.

Итак, в конце 2017 года наша команда приступила к созданию кластера
Aris, который позволил бы реализовать концепцию виртуализации данных
и при этом интегрироваться с технологиями больших данных, такими как
Spark и HDFS. С самого начала наша команда решила, что все это нужно
поставлять как единое решение. Это означает, что если вы приобретаете
SQL Server, мы устанавливаем все эти компоненты как часть лицензии (не
знаю, будет ли это отдельным видом лицензии, но все это будет включено
в SQL Server). Конечный продукт, который вы видите сейчас, –SQL Server
2019 и то, что мы называем кластерами больших данных (Big Data Clusters,
BDC), – включает в себя гораздо больше, чем ранние прототипы Aris, но идея
и концепция, положенные в их основу, одинаковы: предоставить простую в
развертывании платформу виртуализации данных, обеспечивающую мас-
штабируемую производительность, безопасность и управляемость.

«Сиэтл» становится SQL Server 2019
В то время как концепция кластеров Aris и больших данных была масштаб-
ной, инновационной и, честно говоря, немного пугающей, каждая новая
версия SQL Server включала усовершенствования в нескольких областях.
Это производительность, безопасность и доступность, три области, кото-
рые Конор Каннингем (Conor Cunningham) часто называет «жизненно важ-
ными аспектами SQL Server». Наша команда также включила возможность
работы с SQL Server на Linux начиная с версии SQL Server 2017. Несмотря
на то что первая версия SQL Server для Linux была впечатляющей, оста-
валось еще несколько возможностей, имеющихся в версии SQL Server для
Windows, которые еще не были реализованы для Linux и которые также
было необходимо добавить в версию для Linux. Мы также знали, что у кон-
тейнеров большое будущее – в том смысле, что они являются перспек-
тивным направлением для развертывания и запуска приложений, и SQL
Server – не исключение из этого правила. Таким образом, в этом направ-
лении необходимо было проделать определенную работу, включая иссле-
дование новых сценариев с кластерами Kubernetes (а не только решение,
позволяющее создавать кластер больших данных).

В такой продукт, как SQL Server, вносят свой вклад множество команд
разработчиков. Наша команда Enterprise (также известная как Tiger Team)

24  Глава 1. Почему SQL Server 2019?

получила информацию о множестве новых возможностей, которые они
хотели видеть в новой версии и представляющих реальную ценность для
клиента (потому что именно это и является основой разработки новых
решений!). Наши друзья, которые изобретают новые возможности для
повышения производительности, доступности и безопасности Azure SQL
Database, хотели бы увидеть плоды своего труда в проекте «Сиэтл», посколь-
ку служба Azure и SQL Server используют одно и то же ядро баз данных. Уви-
дев все это в 2017 году, я смог угадать момент исторического релиза.

Когда закончился 2017 год, мы все были настроены на выпуск следующей
версии SQL Server, SQL Server 2018. Я видел в этом смысл. Мы выпустили
две версии SQL Server за последние годы, SQL Server 2016 и SQL Server 2017,
так почему бы не выпустить SQL Server 2018?

Конор Каннингем (Conor Cunningham), наш архитектор продукта, ска-
зал мне, что благодаря нашему гибкому подходу к разработке мы можем
выпус кать новую версию SQL Server хоть каждый месяц, если захотим. И мы
можем делать это, не снижая качества выпускаемого продукта. Конечно,
мы этого не делаем, потому что хотим выпускать новые версии SQL Server,
обеспечивающие должный уровень качества и имеющие гораздо большую
ценность для наших клиентов, чем предыдущие. Когда мы начали про-
двигаться вперед в работе над нашим проектом в наступившем 2018 году,
нам пришлось решить, хотим ли мы выпустить новую версию в этом году.
Посмотрев на те новые возможности, которые мы могли бы включить в
эту новую версию, включая кластеры больших данных, весной 2018 года
мы приняли решение о выпуске нашей первой предварительной версии
SQL Server vNext в 2018 году. (Когда мы не знаем точного названия, кото-
рое будет иметь следующая официальная версия, даже если у нас уже есть
название проекта, например «Сиэтл», мы называем эту будущую версию
«vNext».) И вы, возможно, заметили, что мы часто пытаемся делать объ-
явления о планируемых важных релизах на больших мероприятиях. Если
посмотреть на календарь, одним из крупнейших глобальных событий для
клиентов Microsoft была и остается конференция Microsoft Ignite (прово-
димая в 2018 году в Орландо и собравшая около 30 000 человек). Поэто-
му летом 2018 года наше руководство решило включить предваритель-
ную демонстрацию возможностей SQL Server vNext в программу Microsoft
Ignite и назвать эту версию SQL Server 2019. Это означает, что мы выпус-
тим версию GA (данная аббревиатура означает «в общем доступе», General
Availability) где-то в 2019 календарном году.

Подобный подход разделяли все члены нашей команды. Это дало нам
больше возможностей для внедрения кластеров больших данных, а также
больше возможностей для «традиционного» SQL Server, в основу которых
легли отзывы и опыт клиентов. Моя задача в этом проекте – евангелизация
и демонстрации SQL Server 2016 и 2017, чтобы показать нашим клиентам,
отрасли и сообществу, что мы действительно создали современную плат-
форму данных в SQL Server 2019.

Модернизация базы данных с помощью SQL Server 2019  25

Модернизация базы данных
с помощью SQL Server 2019
На рис. 1.2 показана основная иллюстрация, с которой я обычно начинаю
рассказ про SQL Server 2019. Созданная моей коллегой в Microsoft, марке-
тологом Дебби Лайонс (Debbi Lyons) (вы, возможно, видели, как мы с Деб-
би иногда появлялись вместе, рассказывая про SQL Server), она представ-
ляет собой полную картину новой современной платформы данных SQL
Server 2019.

Рис. 1.2. Модернизация средствами SQL Server 2019

Если вы когда-нибудь слышали мои выступления, посвященные SQL
Server 2016 или 2017, то, вероятно, заметили, что этот слайд немного похож
на слайды, демонстрирующие возможности прошлых версий. Однако в
нем имеется несколько ключевых отличий:

• интегрированное решение для виртуализации данных, объединя-
ющее Spark, HDFS и SQL Server новым и инновационным способом
(образно говоря, SQL Server «подружили с большими данными»);

• новые возможности использования платформы для наших клиен-
тов, включающие разнообразие вариантов для выбора: Windows,
Linux, контейнеры и Kubernetes.

SQL Server продолжает оставаться лидером в отрасли баз данных по про-
изводительности и является наименее уязвимой платформой данных за
последнее десятилетие. Лицензия SQL Server включает для наших клиен-
тов доступ к службам бизнес-аналитики, таким как Power BI Report Server.

Теперь включают в себя кластеры больших данных
Обновления в локальной среде: SQL Server 2019

Интеллектуальная
обработка любых

данных

Широкий выбор платформ
и поддерживаемых языков

программирования

Высочайшая
производительность

в индустрии

Наилучшая защищенность
в индустрии баз данных

за последние 8 лет

Аналитические
сведения и подробные
отчеты, доступные за

минуты времени

Вычисления в памяти для всех
рабочих нагрузок приложений

Платформа данных, обеспечивающая
наивысшую степень согласованности данных

1/10 от стоимости совокупного
владения для Oracle

Возможности анализа
структурированных и
неструктурированных

данных с помощью SQL
и Apache Spark

Частное облако Публичное облако

#1 Производительность для OLTP
#1 Производительность для
хранилищ данных при объемах
данных 1 Тб, 10 Тб и 30 Тб

Сочетание богатых
возможностей Power BI и служб

SQL Server Reporting Services
в новом Power BI Report Server

26  Глава 1. Почему SQL Server 2019?

Кроме того, благодаря новой службе Azure SQL Database Managed Instance
функциональность SQL Server практически не отличается при развертыва-
нии как в частном облаке, так и в публичном облаке Azure. Однако, достиг-
нув такого уровня согласованности, мы не останавливаемся на этом. Ваши
навыки в области T-SQL применимы как к SQL Server, так и к Azure, а наши
инструменты продолжают бесперебойно работать со службами SQL Server
и Azure Data.

Еще несколько возможностей, немного обойденных вниманием при
обсуждении новых функций, заключаются в том, что SQL Server (и Azure)
предоставляет возможность оптимизировать определенные функции для
обработки данных в оперативной памяти, что позволяет максимально
эффективно использовать вычислительные ресурсы. Эти новые возмож-
ности включают оперативную транзакционную обработку данных в опе-
ративной памяти (In-Memory OLTP) и столбцовые индексы (Columnstore
Indexes). Все эти функции входят в состав версии SQL Server 2019. На рис. 1.3
представлена более подробная схема основных новых функциональных
возможностей, впервые появившихся в SQL Server 2019.

Рис. 1.3. Основные возможности SQL Server 2019

Я буду использовать эту диаграмму (слева направо, начиная с верхнего
левого угла), чтобы выделить основные новые функции SQL Server 2019.
Опираясь на них, можно составить план для чтения глав этой книги. Читая
про эти новые возможности, имейте в виду, что SQL Server поддерживает
Azure SQL Database, а это означает, что многие функции, о которых вы
читаете в этой книге, работают точно так же в Azure SQL Database. Кроме
того, все примеры, которые вы видите в этой книге, можно выполнить в

SQL Server 2019
Отвечает самым современным потребностям

в обработке данных

Запрос

Интеллектуальная
обработка
запросов

Выделение
памяти

Обучение

Выполнение
запроса

Базы данных в памяти
Классификация данных

Защищенные области

Область памяти
(анклав)

Высокая доступность
Встроенная поддержка машинного обучения и расширяемость

Ускоренное восстановление
баз данных

Современная платформа с расширенными
возможностями совместимости

Модернизация базы данных с помощью SQL Server 2019  27

Azure, независимо от того, работаете ли вы с SQL Server на виртуальной
машине Azure или используете контейнеры и Kubernetes в облаке.

Виртуализация данных
Ранее в этой главе мы обсуждали идею виртуализации данных в проекте

Aris. SQL Server 2019 является реализацией этого подхода благодаря двум
возможностям:

• Polybase в SQL Server 2019.
 Я называю эту возможность Polybase ++, потому что мы расширили

функциональность Polybase, поставляемую с SQL Server 2016 (допол-
нительную информацию о Polybase см. по ссылке https://docs.microsoft.

com/en-us/sql/relational-databases/polybase/polybase-guide?view=sql-server-2017),
чтобы предоставить различные коннекторы к источникам данных,
включая Oracle, SQL Server, MongoDB (CosmosDB) и Teradata. Вы мо-
жете подключиться к этим источникам данных без установки како-
го-либо дополнительного клиентского программного обеспечения;
встроенные возможности подключения SQL Server к этим источни-
кам данных содержат все, что вам необходимо. Кроме того, вы може-
те подключиться к другим источникам, таким как SAP HANA, уста-
новив собственный драйвер ODBC. О новых возможностях Polybase
в SQL Server 2019 будет рассказываться в главе 9;

• кластеры больших данных.
 Как я уже упоминал, описывая наше видение проекта Aris ранее в

этой главе, мы решили создать законченное решение, которое раз-
вертывает SQL Server, включающий новые функциональные воз-
можности Polybase, HDFS, Spark, а также другие компоненты для
управления, безопасности и доступности. Их гораздо больше, чем я
могу описать в этой главе; больше о кластерах больших данных мож-
но узнать из главы 10.

Примечание. Изначально я планировал начать обсуждать эти темы во второй и треть-
ей главах книги. Однако позже я решил, что если вам понадобится дополнительная
информация о контейнерах и Kubernetes, вы можете прочитать специальную главу,
посвященную этой теме. Поэтому я посвящу отдельную часть книги именно этим ново-
введениям. Если вам нужна информация по данной теме, перейдите сразу к главе 9.

Производительность
Какую бы версию SQL Server мы ни выпускали, мы всегда работаем над

производительностью. Всегда. Однако недостаточно просто сделать так,
чтобы ваши запросы выполнялись быстро. Нам нужно продолжать совер-
шенствовать ядро SQL Server, делая его умнее и интеллектуальнее, предо-

28  Глава 1. Почему SQL Server 2019?

ставляя возможности адаптации к вашей рабочей нагрузке, оборудованию
и сложным шаблонам запросов. В главе 2 во всех подробностях рассматри-
ваются вопросы производительности SQL Server 2019, в том числе следую-
щие темы:

• интеллектуальная обработка запросов, которая является усовершен-
ствованной возможностью адаптивной обработки запросов, пред-
ставленной в SQL Server 2017;

• анализ плана запросов в любом месте и в любое время, когда вам это
нужно, с использованием облегченного профилирования запросов,
плана последнего исполнения и усовершенствованного хранилища
запросов;

• ряд усовершенствований для поддержки баз данных в памяти, вклю-
чая усовершенствованный ввод-вывод и гибридный буферный пул
для постоянной памяти, а также оптимизированную с точки зрения
памяти схему базы данных tempdb. Сочетание этих технологий с
такими поддерживаемыми функциями, как столбцовые индексы и
OLTP в памяти, делает SQL Server 2019 привлекательным решением
с точки зрения технологий баз данных в памяти.

Безопасность
SQL Server является не только наименее уязвимой системой управления

базами данных в отрасли за последнее десятилетие, но и включает в себя
широкий спектр инструментов, отвечающих современным требованиям
безопасности любого бизнеса. В SQL Server 2019 к ним относятся следую-
щие улучшения:

• стратегия шифрования, названная Always Encrypted with Secure
Enclaves (постоянным шифрованием с защищенными областями).

 В SQL Server 2016 впервые была представлена новая комплексная си-
стема безопасности для приложений данных под названием посто-
янное шифрование (Always Encrypted). Хотя эта система обеспечивает
шифрование в обычном режиме, в оперативной памяти и во всем
периметре сети, у нее существует несколько ограничений, наиболее
важное из которых – сложные вычисления. В главе 3 я расскажу о том,
как постоянное шифрование, использующее концепцию защищен-
ных областей (Secure Enclaves), поддерживает сложные вычисления,
а также приведу другие интересные сценарии из области безопас-
ности;

• классификация данных и встроенный аудит.
 Общий регламент по защите данных (General Data Protection Re-

gulation, GDPR) вступил в силу в Европейском союзе (ЕС) в мае
2018 года. С тех пор я общался со многими клиентами из ЕС, а также

Модернизация базы данных с помощью SQL Server 2019  29

с компаниями, которые работают с клиентами из ЕС. Наши новые
встроенные функции классификации и аудита данных в сочетании
с нашими инструментами могут быть очень полезны для сценариев,
обеспечивающих соответствие требованиям законодательных ак-
тов, как GDPR, так и других, которые могут иметь отношение к ва-
шему бизнесу.

Об этих новых функциях и о безопасности рассказывается в главе 3.

Непрерывная доступность, соответствующая
требованиям для систем, критичных к сбоям
Быстрота и безопасность – это еще не все, что требуется от современной

платформы данных. Клиентам, выбирающим SQL Server для ведения свое-
го бизнеса, нужна непрерывная доступность как данных, так и работающих
с ними приложений. SQL Server 2019 включает в себя новые возможности
для удовлетворения требований к доступности, в том числе:

• возобновляемое создание индексов онлайн (Resumable Online Create
Index) и кластеризованного онлайн-хранилища столбцовых индек-
сов (Clustered Columnstore Online Create Index). Создание индексов
поддерживается благодаря высокой доступности онлайн-индексов;

• улучшение нашей инновационной функции HADR в режиме непре-
рывной доступности. Поддержка групп, в том числе увеличение ко-
личества реплик и перенаправление основного соединения;

• представьте себе мир, в котором откат транзакции происходит не-
медленно, а время, необходимое для восстановления и сокращения
журнала, не зависит от длительных или медленных транзакций. Та-
кие невиданные доселе возможности обеспечивает ускоренное вос-
становление баз данных (Accelerated Database Recovery).

Подробнее об этих и других критически важных функциях, повышаю-
щих доступность приложений, рассказывается в главе 4.

Современная платформа разработки
Может показаться, что все те новые возможности SQL Server 2019, о кото-

рых я рассказывал до сих пор, предназначены только для администрато-
ров баз данных или ИТ-специалистов. Однако это не так. Мы считаем, что
разработчики – это ключевая аудитория, которой SQL Server обязан своим
успехом, поэтому мы также инвестировали в следующие новые функции:

• в SQL Server 2016 мы представили новую платформу для машинного
обуче ния в базе данных с использованием языка R. В SQL Server 2017 мы
усовершенствовали эту модель, добавив поддержку Python. Используя
эту же инфраструктуру, мы теперь позволяем разработчикам расши-

30  Глава 1. Почему SQL Server 2019?

рять язык T-SQL с помощью классов Java. Фактически мы создали SDK
расширяемости, чтобы другие языки могли быть частью SQL Server;

• мы расширили возможности графовой базы данных, которая впер-
вые была представлена в SQL Server 2017, и реализовали новые функ-
ции для обеспечения этой новой возможности, такие как ограниче-
ния ребер и поддержка MERGE;

• мы хотим, чтобы разработчики использовали типы данных Unicode,
поэтому добавили новые представления (т. е. правила для сравнения
символов в наборе) UTF-8, которые могут помочь разработчикам
управлять данными UTF-8, не увеличивая накладные расходы при
работе c типами данных Unicode.

Я подробнее расскажу о функциях, ориентированных на разработчиков,
в SQL Server 2019 в главе 5.

Инвестирование в выбранную вами платформу
Мы запустили SQL Server на Linux в версии SQL Server 2017, но у нас было

несколько функций ядра СУБД, которые не вошли в эту версию. Однако
мы стремимся к тому, чтобы наши пользователи выбирали операционную
систему для запуска SQL Server, не беспокоясь об отсутствии некоторых
возможностей в версии для Linux, и в совместимости версий SQL Server
для различных операционных систем. Мы расширили возможности версии
для Linux в SQL Server 2019, добавив репликацию, отслеживание измене-
ний в базе данных (Change Data Capture, CDC), распределенные транзакции
(Distributed Transactions, DTC), машинное обучение и группы Polybase.

Мы также потратили немало сил и средств, чтобы добавить в новую вер-
сию контейнеры, включая новый реестр контейнеров, поддержку Red Hat
Enterprise Linux (RHEL) и постоянную поддержку Kubernetes, в том числе
OpenShift. И хотя это выходит за рамки данной книги, стоит особо упомя-
нуть, что мы расширили список поддерживаемых аппаратных платформ
для SQL Server, когда в мае 2019 года объявили о выпуске предваритель-
ной версии с поддержкой процессоров Arm для Azure SQL Database Edge.
Дополнительную информацию об Azure SQL Database Edge вы найдете на
странице https://azure.microsoft.com/en-us/services/sql-database-edge/.

Остановитесь и рассмотрите все пиктограммы, иллюстрирующие под-
держиваемые платформой компоненты и технологии, потому что SQL Ser-
ver – это не просто выбранная вами платформа. Это платформа, обладаю-
щая широкими возможностями в плане совместимости. Вы можете создать
резервную копию базы данных на любой из этих платформ и восстановить
ее без изменений на любой из этих платформ.

В главах 6, 7 и 8 книги мы рассмотрим следующие возможности SQL Server:
улучшения для Linux, контейнеры в SQL Server и SQL Server в Kubernetes.

Однако, кроме этих основных точек приложения усилий и вложения
средств, в SQL Server 2019 существуют и другие новые возможности, кото-
рые стоит упомянуть.

Модернизация базы данных с помощью SQL Server 2019  31

Azure Data Studio
Основным инструментом – графическим интерфейсом пользователя

для работы с SQL Server – на протяжении многих лет остается SQL Server
Management Studio (SSMS). В прошлом году мы приступили к созданию
нового инструмента для исследования и расширенной обработки данных
под названием SQL Operations Studio. В сентябре 2018 года мы выпустили
его официальную версию и назвали ее Azure Data Studio (ADS).

Azure Data Studio имеет несколько инновационных технологий, вклю-
чая записные книжки, развертывание кластера больших данных, мастера
внешних данных, а также инструменты для поддержки SQL Server, HDFS и
других служб данных Azure.

Специальной главы, посвященной Azure Data Studio, в этой книге нет.
Вместо этого вы увидите, как я использую этот инструмент (наряду с SSMS
и другими) на протяжении всей этой книги.

Голос клиента
Имея опыт работы с клиентами, я всегда заинтересован в том, чтобы

наша команда инженеров включала в новые версии те функции, которые
можно привязать к прямой обратной связи клиентов или к проблемам, с
которыми сталкивается служба поддержки нашей команды CSS.

Эта версия, следуя традициям общего подхода к выпуску версий, вклю-
чает в себя ряд усовершенствований ядра базы данных. Ниже перечислены
некоторые из них (однако далеко не все):

• переработанное сообщение об ошибке, связанной с «обрезанием»
строк, включающее передачу контекста, который помогает устра-
нить ошибку. Это был № 1 в голосовании клиентов; данное улучше-
ние собрало 1000 голосов;

• новые динамические объекты управления, позволяющие получить
представление о внутренней структуре заголовков страниц базы
данных (да, вы тоже можете побыть Полом Рэндалом). Они могут
помочь в устранении проблем, связанных с блокировкой страниц;

• улучшения масштабируемости в ядре СУБД, включая параллельные
обновления PFS, параллельное массовое добавление данных и до-
полнительные контрольные точки.

Более подробно об этой серии улучшений будет рассказываться в гла-
ве 11.

Когда вы ознакомитесь с остальными главами этой книги, то замети-
те, что эти главы относительно независимы друг от друга. Тем не менее я
настоятельно рекомендую сначала прочитать главы 7 и 8 как закладываю-
щие основу, а затем перейти к главам 9 и 10, посвященным виртуализации
данных и кластерам больших данных.

32  Глава 1. Почему SQL Server 2019?

Начало работы с SQL Server 2019
Вот некоторые ресурсы, которые помогут вам развернуть и настроить SQL
Server 2019 в процессе подготовки к изучению новых функций и разбора
примеров, приведенных в последующих главах этой книги.

Загрузка SQL Server 2019
Чтобы загрузить и попробовать поработать с SQL Server 2019, перейдите

по ссылке www.microsoft.com/en-us/sql-server/sql-server-2019#Install.

Развертывание SQL Server 2019
Инструкции по развертыванию SQL Server 2019 для Windows см. по ссыл-

ке https://docs.microsoft.com/en-us/sql/database-engine/install-windows/installation-for-sql-

server?view=sql-server-ver15.
Инструкции по развертыванию SQL Server 2019 на Linux см. по ссылке

https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-overview?view=sql-server-ver15.
Чтобы узнать, как развернуть SQL Server в контейнере, перейдите по

ссылке https://docs.microsoft.com/en-us/sql/linux/quickstart-install-connect-docker?view=sql-
server-linux-ver15&pivots=cs1-bash.

Миграция на SQL Server 2019
В главе 11 будет обсуждаться миграция и инструменты для поддержки

миграции на SQL Server 2019 с предыдущих версий SQL Server и других баз
данных, разработанных сторонними компаниями-разработчиками ПО.

Что нового в SQL Server 2019
Обо всех новых возможностях SQL Server 2019 вы можете узнать, перей-

дя по ссылке https://docs.microsoft.com/en-us/sql/sql-server/what-s-new-in-sql-server-

ver15?view=sqlallproducts-allversions.

Исходный код и базы данных, используемые в книге
Чтобы иметь возможность работать со всеми примерами, приведенными

в этой книге, вам нужно будет клонировать репозиторий GitHub, создан-
ный специально для этой цели, как было упомянуто во введении.

Совет. Для пользователей Windows: обязательно используйте следующий синтаксис git
для клонирования репозитория, во избежание проблем со сценариями CRLF для Linux:
git clone --config core.autocrlf=false https://github.com/microsoft/
sqlworkshops.git

Кроме того, вам нужно загрузить копии баз данных WideWorldImporters
со страницы https://github.com/Microsoft/sql-server-samples/releases/tag/wide-world-

Начало работы с SQL Server 2019  33

importers-v1.0 и WideWorldImportersDW со страницы https://github.com/Microsoft/

sql-server-samples/releases/download/wide-world-importers-v1.0/WideWorldImportersDW-Full.
bak. Код, сопровождающий эту книгу, содержит примеры того, как восста-
новить резервную копию в Windows, Linux, Containers и Kubernetes.

SQL Server: материалы для изучения
В этой книге содержится много практических упражнений; однако на

сайте http://aka.ms/sqlworkshops вы найдете еще больше бесплатных обучаю-
щих курсов, связанных с SQL Server (этот сайт развивает и поддерживает
мой друг и коллега Бак Вуди (Buck Woody), один из лучших инструкторов,
которых я знаю).

Это SQL Server вашего дедушки?
Мне очень понравилось работать над этой книгой не только потому, что

мне нравится технология, о которой в ней рассказывается (я признаюсь в
слабости к SQL Server), но и потому, что наша команда инженеров внедряет
инновации со скоростью, невиданной ни для одного другого конкуриру-
ющего продукта или платформы данных в отрасли. И нужно признаться:
очень интересно изучать новые вещи.

Возможно, следующая цитата из журнала ITProToday лучше всего расска-
жет об этом: «Я никогда не ожидал, что буду обсуждать возможности новой
версии Microsoft SQL Server в том же контексте, что и Linux, Oracle и Apache
Spark, но это дивный новый мир. Разработка Microsoft SQL Server продви-
гается такими темпами, которых нет у конкурентов» (www.itprotoday.com/sql-

server/polybase-expansion-big-clusters-are-key-features-new-sql-server-2019).
Я помню, как мой коллега Трэвис Райт (Travis Wright) говорил о SQL

Server 2019: «Это не SQL Server вашего дедушки». Это было сказано к тому,
что продукт превратился из мощной системы управления реляционными
базами данных в современную платформу данных и в настоящее время
включает в себя такие технологии, как Spark, HDFS, Notebooks, Polybase, R,
Python, Java, Linux, контейнеры и Kubernetes.

Я помню, как разместил эту цитату в Твиттере. Мой коллега Педро Лопес
(Pedro Lopes) прочитал ее и сказал, что на самом деле SQL Server 2019 –
это «SQL Server вашего дедушки». Так кто же прав? Они оба правы. SQL
Server 2019 по-прежнему является системой управления базами данных,
которую вы хорошо знаете и любите, – СУБД, обладающей масштабиру-
емой производительностью, встроенными механизмами безопасности,
удовлетворяющими требованиям критически важных приложений и
систем, и высокой доступностью. В этой книге вы познакомитесь с новыми
возможностями SQL Server 2019 во всех этих областях. Но SQL Server 2019 –
это нечто намного большее. Это одна из самых популярных платформ баз
данных на планете и новейший продукт в своем семействе. Он может быть
и тем, и другим. Давайте начнем знакомиться с SQL Server 2019!

Глава 2
Интеллектуальная настройка

производительности

Производительность SQL Server имеет решающее значение для работы
платформы данных. В этой главе рассказывается о том, как SQL Server 2019
может помочь вам повысить производительность запросов, не меняя ниче-
го в приложении. Это одна из самых длинных глав в книге со множеством
примеров, так что наберитесь терпения и налейте свой любимый кофе.

Почему используется термин
«интеллектуальная настройка
производительности»?
Самое главное в этой книге – это ответ на вопрос, каким образом новые
возможности в SQL Server 2019 могут принести вам пользу или решить
определенную задачу либо проблему. Тема, касающаяся повышения про-
изводительности, включает способы, которые могут помочь вам повысить
производительность ваших рабочих приложений, часто без необходимости
каких-либо изменений в этих приложениях или связанных с ними запросах.

В сентябре 2018 года я готовился к презентации на конференции Microsoft
Ignite в Орландо (штат Флорида). До этого момента все знали о наших пла-
нах относительно SQL vNext только в общих чертах. У меня и моего коллеги
Амита Банерджи (Amit Banerjee) была задача продемонстрировать запуск
SQL Server 2019 Preview на Ignite. Когда мы работали над стендом для
демонстрации, мы знали, что нам предстоит продемонстрировать наше
новое достижение – улучшенную производительность. У Амита появилась
идея нового термина «Интеллектуальная база данных». Идея заключалась в
том, что SQL Server предоставляет новые, ранее недоступные возможности,
которые включают в себя интеллектуальные средства для поиска, адапта-
ции и представления обобщенных аналитических данных.

Я использовал тот же термин, перенеся акцент на производительность,
назвав это интеллектуальной настройкой производительности. Под этим
термином мы объединяем следующие улучшения в SQL Server 2019:

Интеллектуальная обработка запросов  35

• интеллектуальная обработка запросов;
• упрощенное профилирование запросов;
• база данных в памяти;
• конфликт вставки на последней странице.

Каждая из этих новых возможностей использует встроенный интеллек-
туальный механизм SQL Server, помогающий повысить производитель-
ность ваших систем, во многих случаях позволяя обойтись без каких-либо
изменений. В ряде случаев SQL Server дает вам представление о произво-
дительности запросов на таком уровне, который ранее был недоступен.
В других ситуациях SQL Server включает встроенные возможности для
автоматического использования преимуществ новых аппаратных средств.

Когда вы пишете книгу, то принимаете множество разных решений. Одно
из них – как разбить книгу на главы. Эта глава очень длинная, в основном
из-за примеров, которые содержат много визуальных элементов. Я чело-
век, восприимчивый к визуальной информации, поэтому я подумал, что
визуализация упростит задачу показать вам эти новые функции. Каждый
раздел этой главы сам по себе является отдельной главой, и вы можете рас-
сматривать эту главу как собрание мелких глав. Я решил объединить всю
информацию в одной главе, потому что хотел продемонстрировать все
возможности в полном объеме и показать интеллектуальную настройку
произ водительности в SQL Server 2019.

В каждом разделе главы перечислены предварительные условия для
запуска каждого из примеров. В самом общем случае вам понадобится:

• установленный экземпляр SQL Server 2019 в Windows или Linux;
• SQL Server Management Studio (SSMS) 18.0 или более поздняя версия;
• Azure Data Studio (на любой ОС; минимальная версия, с которой вы

сможете выполнить все примеры: 1.7.0).

Во многих приведенных примерах для просмотра планов выполнения
запросов используется SSMS; но, просматривая и выполняя эти примеры,
вы также можете использовать Azure Data Studio (вам просто нужно про-
смотреть XML-текст плана), используя новое расширение SentryOne Plan
Explorer. Подробную информацию об этом расширении вы найдете по
ссылке https://cloudblogs.microsoft.com/sqlserver/2019/07/11/the-july-release-of-azure-data-

studio-is-now-available.

Интеллектуальная обработка запросов
Готовясь к выпуску SQL Server 2014, наша команда инженеров приня-
ла смелое решение написать новый программный код для обработчика
запросов в ядре, который будет принимать решения при оценке карди-
нальности (cardinality estimation, CE). Новая «модель CE» вступит в силу,
если для базы данных будет использоваться значение уровня совместимо-

36  Глава 2. Интеллектуальная настройка производительности

сти (compatibility level) 120 или более высокое (120 является значением по
умолчанию для SQL Server 2014). Вы можете прочитать о том, как это рабо-
тает и почему мы внесли это изменение, в нашей документации, доступной
по ссылке https://docs.microsoft.com/en-us/sql/relational-databases/performance/cardinality-

estimation-sql-server.
Это решение породило множество споров о том, было ли оно правиль-

ным. Одна из проблем данного подхода заключается в том, что это было
масштабное, негибкое изменение. Когда команда заканчивала работу над
SQL Server 2016 и планировала SQL Server 2017, все согласились с тем, что
нужна новая функция обработки запросов. Как говорит Джо Сэк (Joe Sack),
один из ведущих менеджеров программ, работающий над Query Processor
(QP): «Команда поняла, что попытка отделаться локальными изменения-
ми, которые работали бы во всем многообразии встречающихся ситуа-
ций, – это не наш путь, если мы хотим продвигаться вперед. Скорее, нам
нужно тратить силы и время на функции, позволяющие адаптироваться
к широкому спектру рабочих нагрузок клиентов в экосистеме SQL Server
(высокие нагрузки, низкие нагрузки, OLTP, гибридные варианты, хранили-
ща данных...)».

Так родилось новое семейство функций в SQL Server 2017, которое назы-
вается адаптивной обработкой запросов (Adaptive Query Processing, AQP).
Идея заключалась в том, чтобы встроить в обработчик запросов способ-
ность самостоятельно адаптироваться после выполнения запроса (или до
его повторного выполнения), чтобы ускорить выполнение без какого-либо
вмешательства пользователя SQL Server или изменений приложения.

Примечание. Примеры AQP для SQL Server 2017 можно найти по адресу: https://

github.com/Microsoft/bobsql/tree/master/demos/sqlserver/aqp.

Когда мы готовились к выпуску SQL Server 2017 с поддержкой AQP, пла-
нировалось множество новых функций, которые команда хотела добавить
в AQP, однако на реализацию всех планов в полном объеме не хватило вре-
мени. Команда начала внедрять новые функции для улучшения AQP в базе
данных SQL Server Azure, планируя реализовать их в SQL Server 2019. Кроме
того, слово «адаптивный» на самом деле не отражало суть работы, которую
проделала команда. В течение многих лет обработчик запросов SQL Server
был достаточно умным – он использовал для принятия решений сложный
набор алгоритмов, в основе которых лежали вычисления затрат на выпол-
нение запроса. Но команда хотела большего; они хотели, чтобы обработ-
чик запросов стал еще более интеллектуальным. Таким образом, название
«интеллектуальная обработка запросов» (Intelligent Query Processing, IQP)
прижилось.

На рис. 2.1 показано «родословное древо» возможностей обработчика
запросов, где представлены и SQL Server 2017, и SQL Server 2019.

Интеллектуальная обработка запросов  37

Рис. 2.1. «Родословное древо» интеллектуальной обработки запросов

Давайте рассмотрим каждую из этих новых возможностей (новые воз-
можности выделены на рисунке серым цветом), приведя наглядные при-
меры того, как работает каждая из них. При чтении этого раздела очень
важно помнить, что мы создали эти возможности специально, чтобы вы
не думали о них. Если мы хорошо справились со своей работой, то со вре-
менем интеллектуальная обработка запросов станет «всего лишь» обра-
ботчиком запросов, а вы как разработчик приложений, администратор баз
данных или специалист по данным просто привыкнете к гибкому, интел-
лектуальному и адаптирующемуся к нагрузкам вашей системы механизму.
Вы можете ознакомиться со всеми возможностями адаптивной обработ-
ки запросов в новой документации по IQP по ссылке https://docs.microsoft.com/

en-us/sql/relational-databases/performance/intelligent-query-processing.

Примечание. Во всех сценариях, за исключением функции приблизительного под-

счета количества уникальных значений Approximate Count Distinct, можно включить
возможности интеллектуальной обработки запросов, установив значение уровня
совместимости базы данных, равное 150. Approximate Count Distinct – это новая
функция T-SQL для SQL Server 2019, для которой не требуется устанавливать уровень
совместимости базы данных, равный 150.

Подготовительные шаги для использования
примеров, иллюстрирующих интеллектуальную
обработку запросов
Хотя преимущества интеллектуальной обработки запросов (IQP) оче-

видны для многих стандартных случаев, выигрыш в производительно-
сти при использовании IQP становится заметным при работе с большими
наборами данных и базами данных, предназначенными для аналитичес-
ких запросов. Поэтому для примеров, приведенных в этой главе, вам нуж-
но использовать базу данных WideWorldImportersDW (более подробную

Адаптивная
обработка
запросов

Отложенная
компиляция
табличных

переменных

Пакетный режим
для хранилища

строк

Встраивание
скалярных

UDF

Приблизительные
подсчеты в обра-
ботке запросов

Обратная связь
по временно

предоставляемому
буферу памяти

Приблизитель-
ный подсчет чис-
ла уникальных

значений

Построчный
режим

Пакетный
режим

Пакетный
режим

Соединения с
использованием

адаптивной
обработки

Выполнение
с чередованием

SQL 2019

38  Глава 2. Интеллектуальная настройка производительности

информацию об этой базе данных и ее схеме можно получить по ссылке
https://docs.microsoft.com/en-us/sql/samples/wide-world-importers-dw-database-catalog).

Приведенные в данной главе примеры будут работать на SQL Server 2019,
установленном на Windows, Linux и в контейнерах. Учитывая большой объ-
ем данных, SQL Server потребуется как минимум 12 ГБ ОЗУ, чтобы различия
в производительности для приведенных примеров стали заметны. Кроме
того, в некоторых приведенных примерах запросов используется парал-
лельная обработка, поэтому для демонстрации всех возможностей в пол-
ном объеме лучше установить SQL Server в многопроцессорной системе.

Все сценарии, использованные в этой главе, можно найти в репозитории
GitHub в каталоге ch2_intelligent_performance\iqp.

Я благодарен моему коллеге из Microsoft Джо Саку (Joe Sack) за подго-
товленные примеры, в том числе за дополнения, внесенные в базу данных
WideWorldImportersDW. Эти примеры были созданы на основе материа-
лов, хранящихся в репозитории Джо на GitHub по ссылке https://github.com/

joesackmsft/Conferences/tree/master/IQPDemos.
Чтобы использовать на практике примеры из этой главы, выполните сле-

дующие действия:

1. Загрузите резервную копию базы данных WideWorldImportersDW с
сайта https://github.com/Microsoft/sql-server-samples/releases/download/wide-world-

importers-v1.0/WideWorldImportersDW-Full.bak.
2. Восстановите эту базу данных на вашем экземпляре SQL Server 2019.

Вы можете использовать для этого готовый сценарий restorewwidw.
sql. Возможно, вам придется изменить путь к каталогу, где находит-
ся ваша резервная копия, и путь к месту для восстановления файлов
базы данных.

3. Для запуска некоторых сценариев, приводимых в качестве приме-
ра, вам понадобятся таблицы большего размера, нежели те, кото-
рые добавлены по умолчанию в WideWorldImportersDW и которые
не используют столбцовые индексы. Поэтому запустите сценарий
extendwwidw.sql, чтобы создать две большие таблицы. Расширение
этой базы данных увеличит ее размер, включая журнал транзакций,
примерно до 8 Гб. Одна из этих таблиц называется Fact.OrderHistory.
Взяв за основу таблицу Orders, мы намного увеличим ее размер и
не будем использовать столбцовый индекс. Также мы создадим еще
одну таблицу с именем Fact.OrderHistoryExtended. В ее основе бу-
дет таблица Fact.OrderHistory, однако новая таблица будет содер-
жать большее количество строк.

Почти во всех примерах используются два метода:

• набор сценариев T-SQL, которые можно применять с любым инстру-
ментом для запуска сценариев, таким как SQL Server Management
Studio, Azure Data Studio или sqlcmd;

Интеллектуальная обработка запросов  39

• записная книжка T-SQL (T-SQL Notebook) в Azure Data Studio. Инфор-
мацию о том, как пользоваться записной книжкой T-SQL в Azure Data
Studio, вы найдете по ссылке https://docs.microsoft.com/en-us/sql/azure-data-

studio/sql-notebooks.

Для выполнения одного из примеров потребуется клиент Windows,
поскольку он использует известную утилиту нагрузочного тестирования
ostress.exe. Подробная информация о том, как установить и использовать
утилиту ostress.exe, приведена в разделе «Обратная связь по временно пре-
доставляемому буферу памяти» этой главы. Я собрал все сценарии, предпо-
лагая, что вы будете запускать их под учетной записью системного адми-
нистратора (я использовал учетную запись sa). В обычной практике вам
потребуется создать другие учетные записи для использования SQL Server,
но я хотел упростить примеры – поэтому просто используйте учетную
запись с разрешениями sysadmin.

Обратная связь по временно предоставляемому
буферу памяти (Memory Grant Feedback Row Mode)
До прихода в команду разработчиков SQL Server я долгое время рабо-

тал в технической поддержке Microsoft. Одна из самых сложных проблем,
с которыми я сталкиваюсь, когда имею дело с производительностью, – это
проблемы с предоставлением памяти (memory grant). Что же такое предо-
ставление памяти?

SQL Server выделяет память по разным причинам. Когда SQL Server
выполняет запрос, память может использоваться для кеширования буфе-
ров, связанных со страницами, принадлежащими индексам или таблицам
в запросе. В большинстве запущенных экземпляров SQL Server буферный
пул может уже находиться в выделенной памяти, поэтому для помещения
в нее страниц не потребуется дополнительная память.

Некоторые запросы интенсивно используют память, и для них требуется
определенный тип временной области для хранения данных. Двумя разно-
видностями таких запросов являются хеш-соединения (hash joins) (или даже
просто хеш-операторы) и сортировки (sorts) . Чтобы выполнить хеш-соеди-
нение, SQL Server фактически должен построить мини-таблицу в памяти.
Для любого типа сортировки данных может потребоваться создание масси-
ва или структуры определенного типа. В SQL Server должно иметься место
для выполнения этих операций, поэтому он выделяет память вне буферно-
го пула. Процесс выделения этой памяти механизмом выполнения запро-
сов называется предоставлением памяти.

Пока все выглядит достаточно просто. Однако существует пробле-
ма: предоставление памяти основано на том, что оптимизатору запроса
извес тен план выполнения запроса даже тогда, когда этот запрос выпол-
няется в первый раз. Решение такой задачи обычно сводится к оценке кар-

40  Глава 2. Интеллектуальная настройка производительности

динальности, или уникального количества строк, затрагиваемых выпол-
няемой операцией, для ее выполнения. Если SQL Server оценивает, что
операция сортировки данных как часть плана выполнения запроса будет
выполняться для столбцов данных, суммарный размер которых состав-
ляет 100 байт, и при этом число строк, на которых должен выполнять-
ся запрос, составит 1 миллиард, то он должен предоставить достаточно
памяти, чтобы выделить память для сортировки такого количества строк
данных указанного размера. Аналогичная концепция применяется для
хеш-опера тора.

Совет. Существует блог команды разработчиков SQL Server, в котором подробно
разъясняется функция предоставления памяти. Я рекомендую вам остановиться и
обратиться к данному блогу, чтобы погрузиться в эту тему. Блог размещен по адресу
https://blogs.msdn.microsoft.com/sqlqueryprocessing/2010/02/16/understanding-sql-

server-memory-grant/.

Во многих случаях описанный подход работает просто отлично, и ника-
ких заметных проблем не возникает. Однако что происходит, если предо-
ставление памяти основано на неточных оценках кардинальности?

Может возникнуть два вида проблем:

• объем предоставляемой памяти может оказаться слишком мал по
сравнению с действительно необходимым для выполнения опера-
ции объемом памяти, что может привести к печально известной
и болезненной проблеме «утечки данных в tempdb» (tempdb spill).
SQL Server не позволяет оператору хеш-соединения или сор тировки
получить необходимый объем памяти. Если запрошено очень мно-
го памяти (мы не указываем, какие конкретные цифры подразуме-
ваются под «очень много», потому что можем изменить объем
запраши ваемой памяти и не хотим, чтобы вы полагались на него
как на абсолютную цифру), текущая выделенная память должна
быть где-то сохранена. Но где? Вы наверняка догадались – в tempdb.
Думайте об этом как о системе подкачки страниц, как о том, ка-
ким образом операционная система распределяет память, когда
физичес кая память исчерпана;

• объем предоставляемой памяти может оказаться слишком велик по
сравнению с действительно необходимым для выполнения опера-
ции объемом памяти. Это может снизить нагрузку на память для
других элементов ядра SQL Server, однако более вероятна ситуация,
когда несколько пользователей запускают запросы с чрезмерным
объемом предоставляемой памяти, а SQL Server будет управлять
выполнением запросов. В результате для некоторых пользователей
«узким местом» окажется ожидание (wait_type) с именем RESOURCE_
SEMAPHORE.

Интеллектуальная обработка запросов  41

Обе эти ситуации могут привести к снижению производительности.
В SQL Server 2017 мы представили концепцию, называемую обратной
связь ю по временно предоставляемому буферу памяти для пакетного
режима. Эта функция является прекрасным примером адаптации. После
завершения выполнения запроса SQL Server обладает информацией о том,
сколько памяти было в действительности использовано по сравнению
с первоначально запрошенным объемом памяти. Если использованная
память была намного меньше предоставленной, зачем продолжать запра-
шивать слишком много памяти при следующем выполнении того же кеши-
рованного плана выполнения запроса? То же самое происходит, если объем
использованной памяти был намного больше, чем первоначально запро-
шенный объем памяти. Зачем продолжать сохранять текущую выделенную
память в базе данных tempdb для кешированных запросов раз за разом?

Обратная связь по временно предоставляемому буферу памяти решает эту
проблему путем сохранения в кешированном плане выполнения запросов
информации о том, каким должен быть корректный объем предоставля-
емой памяти для будущих выполнений запроса. Пользователю при этом
кажется, что SQL Server «исправился сам». Эта функция была очень полез-
ной для SQL Server 2017, однако она поддерживалась только для операций
в пакетном режиме, что означало, что она работала лишь для операций со
столбцовыми индексами. Как вы узнаете из одного из следующих разде-
лов этой главы под названием «Пакетный режим для хранилища строк»,
SQL Server поддерживает операции пакетного режима не только для столб-
цовых индексов. Однако почему бы не поддерживать обратную связь по
временно предоставляемому буферу памяти, даже если пакетный режим
не используется?

В результате появился адаптивный механизм SQL Server для сценари-
ев предоставления памяти независимо от используемых типов таблиц или
индексов.

Чтобы включить режим обратной связи по временно предоставляемому
буферу памяти, достаточно просто изменить параметр уровня совмести-
мости базы данных (dbcompat), установив для него значение, равное 150.

Если для параметра dbcompat установлено значение 150, вы можете так-
же отключить или включить режим обратной связи по временно предостав-
ляемому буферу памяти, не изменяя значение уровня совместимости базы
данных. Для этого вам нужно использовать команду ROW_MODE_MEMO-
RY_GRANT_FEEDBACK оператора ALTER DATABASE SCOPED CONFIGURA-
TION. Вы также можете отключить эту функцию на уровне запроса, исполь-
зуя параметр запроса DISABLE_ROW_MODE_MEMORY_GRANT_FEEDBACK.
Вы можете посмотреть примеры того, как нужно использовать эти воз-
можности включения и отключения режима обратной связи по временно
предоставляемому буферу памяти, по ссылке https://docs.microsoft.com/en-us/

sql/relational-databases/performance/intelligent-query-processing?#row-mode-memory-grant-
feedback.

42  Глава 2. Интеллектуальная настройка производительности

Выделение слишком малого объема памяти
Рассмотрим несколько примеров. Давайте сначала рассмотрим сцена-

рий, в котором SQL Server предоставляет слишком мало памяти по сравне-
нию с фактически используемой памятью, что приводит к «утечке данных
в tempdb». Все сценарии, используемые в этих примерах, можно найти в
каталоге ch2_intelligent_performance\iqp\rowmodemgf. Есть два способа
запустить примеры кода для этого сценария:

• использовать сценарий T-SQL iqp_rowmodemfg.sql;
• использовать записную книжку T-SQL в Azure Data Studio с именем

iqp_rowmodemfg.ipynb.

Давайте выполним сценарий T-SQL iqp_rowmodemfg.sql шаг за шагом.
Я буду применять для этого SQL Server Management Studio, попутно объяс-
няя различия в плане выполнения запросов, но вы можете воспользоваться
любым инструментом, отображающим план выполнения запроса. В при-
веденном в качестве примера сценарии T-SQL имеются комментарии для
каждого шага рассматриваемого примера.

1. На шаге 1 мы изменяем уровень совместимости базы данных, уста-
навливая для него значение 150, очищаем кеш процедур и заполняем
буферный пул страницами из таблицы с именем Fact.OrderHistory,
размещенной в базе данных WideWorldImportersDW, «разогревая»
буферный пул. Для того чтобы включить обратную связь по времен-
но предоставляемому буферу памяти для хранилища строк, необхо-
димо установить значение параметра dbcompat, равное 150. Очистка
кеша процедур – это всего лишь шаг, необходимый, чтобы убедиться,
что мы «начинаем чистить». (Обратите внимание на использование
опции ALTER DATABASE для очистки кеша процедур только для этой
базы данных. Это очень хороший вариант!) Выгрузка страниц с диска
для таблицы Fact.OrderHistory выполняется только для обеспечения
сравнения производительности запросов с и без предоставления об-
ратной связи по временно предоставляемому буферу памяти – это
«честный бой».

-- Шаг 1. Убедитесь, что для текущей базы данных установлено значение
-- уровня совместимости 150, и очистите кеш процедур для этой базы данных.
-- Также поместите таблицу в кеш, чтобы сравнить «теплые» запросы кеша
USE [WideWorldImportersDW]
GO

ALTER DATABASE [WideWorldImportersDW] SET COMPATIBILITY_LEVEL = 150
GO

ALTER DATABASE SCOPED CONFIGURATION CLEAR PROCEDURE_CACHE
GO

SELECT COUNT(*) FROM [Fact].[OrderHistory]
GO

Интеллектуальная обработка запросов  43

2. На шаге 2 создаются условия для предоставления недостаточного
объема памяти. Я покажу вам один прием, позволяющий смодели-
ровать такую ситуацию. Команда T-SQL UPDATE STATISTICS имеет
специальный необязательный параметр для принудительного зада-
ния указанного количества строк или страниц, которые хранятся в
статистике запроса. Вы вряд ли когда-либо будете использовать этот
параметр при обычной работе с SQL Server. В документации, опи-
сывающей команду UPDATE STATISTICS (см. https://docs.microsoft.com/en-

us/sql/t-sql/statements/update-statistics-transact-sql), об этом параметре гово-
рится следующее: «Используется только в ознакомительных целях.
Не поддерживается. Будущая совместимость не гарантируется». Так
что рассматриваемый здесь вариант предназначен только для этой
демонстрации. Для наших целей давайте принудительно увеличим
кардинальность, хранящуюся в статистике выполнения запроса, для
этой таблицы до 1000 строк:

-- Шаг 2. Имитация устаревшей статистики
UPDATE STATISTICS Fact.OrderHistory
WITH ROWCOUNT = 1000
GO

 На самом деле в этой таблице 3 702 592 строки; принудительно задан-
ный параметр статистики, предполагающий, что в таблице всего
1000 строк, воспроизводит сценарий, когда данные статистики не
синхронизированы с фактическими данными о количестве строк в
таблице.

3. Перейдем к шагу 3. Теперь выполним наш запрос, используя табли-
цу Fact.OrderHistory.

-- Шаг 3. Запустите запрос, чтобы получить данные о заказе и наличии товара
-- При выполнении запроса НЕ выделяйте эти комментарии!
SELECT fo.[Order Key], fo.Description, si.[Lead Time Days]
FROM Fact.OrderHistory AS fo
INNER HASH JOIN Dimension.[Stock Item] AS si
ON fo.[Stock Item Key] = si.[Stock Item Key]
WHERE fo.[Lineage Key] = 9
AND si.[Lead Time Days] > 19
GO

 При выполнении этого запроса SQL Server пытается получить дан-
ные заказа и позиции товара. Обратите внимание на использование
HASH JOIN в синтаксисе T-SQL – это необходимо, чтобы оптимизатор
применял хеш-соединение. Это простой способ принудительно ис-
пользовать хеш-соединение в запросе с недооцененным количест-
вом строк с целью продемонстрировать, что при этом произойдет.
Я сопроводил код запроса комментариями, однако предупреждаю

44  Глава 2. Интеллектуальная настройка производительности

вас: очень важно, чтобы при выполнении этого фрагмента кода
T-SQL вы не включали в код комментарии. Я обжегся на этом,
когда впервые начал создавать свои демоверсии. Комментарии учи-
тываются, когда речь идет об уникальной идентификации запроса,
для которого существует кешированный план. Если при следующем
выполнении запроса в нем не будет точно таких же комментариев,
запросы не будут использованы повторно. В SSMS включите флаг
Include Actual Execution Plan (Включить фактический план выпол-
нения) (вы можете использовать сочетание клавиш Ctrl+M для его
включения) перед выполнением запроса. О том, как включить этот
флаг, рассказывается на следующей странице документации: https://

docs.microsoft.com/en-us/sql/relational-databases/performance/display-an-actual-

execution-plan.

-- Шаг 3. Выполните запрос, чтобы получить данные о заказе и имеющемся
-- товаре на складе
-- При выполнении запроса НЕ выделяйте эти комментарии!
SELECT fo.[Order Key], fo.Description, si.[Lead Time Days]
FROM Fact.OrderHistory AS fo
INNER HASH JOIN Dimension.[Stock Item] AS si
ON fo.[Stock Item Key] = si.[Stock Item Key]
WHERE fo.[Lineage Key] = 9
AND si.[Lead Time Days] > 19
GO

 Этот запрос должен выполняться не менее чем за 30 секунд; он дол-
жен вернуть около 66 тыс. строк (ваши результаты могут отличать-
ся от тех, которые приводятся здесь). Используйте режим SSMS для
просмотра плана выполнения запроса. План выполнения запроса
должен выглядеть примерно так, как показано на рис. 2.2.

Рис. 2.2. План выполнения запроса при предоставлении
недостаточного объема памяти

Интеллектуальная обработка запросов  45

 В этом плане есть несколько мест, на которые нужно обратить внима-
ние. Если в SSMS вы наведете курсор мыши на оператор Table Scan
(Сканирование таблицы), он должен выглядеть примерно так, как
показано на рис. 2.3. Обратите внимание, что значение параметра
Estimated Number of Rows (Количество строк при оценке) сильно
отличается от фактического числа строк, считанных при сканирова-
нии (т. е. при последовательном просмотре строк) таблицы.

Рис. 2.3. Оценка и фактическое значение числа строк
при сканировании таблицы Fact.OrderHistory

 В рассмотренном нами случае таблица Fact.OrderHistory представ-
ляет собой входные данные сборки хеш-соединения. SQL Server будет
запрашивать предоставление памяти для хеш-соединения на осно-

46  Глава 2. Интеллектуальная настройка производительности

вании этих данных. В данном случае мы столкнемся с проблемой, по-
скольку предоставление памяти основано на оценке, составляющей
всего 1000 строк. Перемещайте курсор мыши по строчкам данных о
выполнении хеш-соединения, и вы обнаружите маленький значок
предупреждения; обратите внимание на предупреждение об «утечке
данных в tempdb», как показано на рис. 2.4.

Рис. 2.4. «Утечка данных в tempdb» в хеш-соединении

Интеллектуальная обработка запросов  47

 Обратите внимание на цифры, приведенные в предупреждении.
52 008 страниц (8 Кб на страницу) –это ~ 426 Мб данных, использу-
емых при выполнении операций ввода/вывода для файлов tempdb.
Размеры «утечки» действительно ужасны, поскольку это не те дан-
ные, которые размещаются на странице буферного пула, связанно-
го с tempdb. Файлы данных tempdb становятся «файлом подкачки»
при предоставлении памяти для хеш-соединений (это не страницы
tempdb для хранения временных таблиц, и потому я часто называю
tempdb «мусорной свалкой» SQL Server).

Совет. Хотите узнать, как работает хеш-соединение? Прочитайте эту старую, но
классическую статью в блоге от одного из наших ведущих инженеров группы Query
Processor, Крейга Фридмана (Craig Freedman): https://blogs.msdn.microsoft.com/

craigfr/2006/08/10/hash-join/.

 Перемещаясь в левую часть плана выполнения запроса, наведите
курсор на оператор SELECT. В этом операторе указаны сведения о
количестве выделенной памяти согласно плану. На рис. 2.5 показано,
что для выполнения этого запроса было запрошено ~ 1,4 Мб памяти.

Рис. 2.5. В разделе с информацией об операторе SELECT
показано запрошенное количество памяти

48  Глава 2. Интеллектуальная настройка производительности

 Запрашиваемого объема памяти 1,4 Мб недостаточно, чтобы размес-
тить там все необходимые данные (в соответствии с информацией
об «утечке данных в tempdb» необходимый объем памяти составляет
~ 400 Мб).

 Еще одни интересные данные, представленные в плане выполнения
запроса в виде XML-файла, находятся в разделе свойств плана. Чтобы
просмотреть их, щелкните правой кнопкой мыши оператор SELECT
и выберите Properties (Свойства). Раскройте раздел MemoryGrant,
который будет выглядеть, как показано на рис. 2.6.

Рис. 2.6. Данные о выделении памяти приводятся
в свойствах плана выполнения запроса

 Наиболее важная информация в обратной связи по времен-
но предоставляемому буферу памяти содержится в поле
IsMemoryGrantFeedbackAdjusted. Значение NoFirstExecution озна-
чает, что это только первое выполнение запроса, поэтому никакой
обратной связи не было получено.

 Список возможных значений в этом поле приведен в документа-
ции по SQL Server (см. https://docs.microsoft.com/en-us/sql/relational-databases/

Интеллектуальная обработка запросов  49

performance/intelligent-query-processing?view=sql-server-ver15#row-mode-memory-
grant-feedback).

 Поскольку обратная связь по временно предоставляемому буферу
памяти включена, если тот же самый кешируемый запрос будет вы-
полняться повторно, SQL Server адаптирует план выполнения запро-
са и изменит объем предоставляемой памяти с учетом недооценки,
имевшей место в прошлый раз.

4. Перейдем к шагу 4 нашего сценария и снова выполним тот же самый
запрос.

 ВАЖНО: не включайте комментарии в текст сценария при выпол-
нении запроса. Комментарии учитываются при сравнении повторно
выполняемого запроса с первоначальным запросом в кеше плана.
Обязательно сохраните включенным флаг Include Actual Execution
Plan (Включить фактический план выполнения) в SSMS.

-- Шаг 4. Давайте попробуем снова
-- При выполнении запроса НЕ выделяейте эти комментарии!
SELECT fo.[Order Key], fo.Description, si.[Lead Time Days]
FROM Fact.OrderHistory AS fo
INNER HASH JOIN Dimension.[Stock Item] AS si
ON fo.[Stock Item Key] = si.[Stock Item Key]
WHERE fo.[Lineage Key] = 9
AND si.[Lead Time Days] > 19
GO

 Если в прошлый раз выполнение запроса занимало 30 или более
секунд, то на этот раз запрос должен выполняться за 3 секунды или
менее. Помните, концепция заключается в том, что план не меня-
ется; поэтому, когда вы смотрите на фактический план выполнения
запроса, он должен выглядеть так же, как и в прошлый раз, за ис-
ключением того, что отсутствует значок предупреждения в разделе
Hash Match Join, а также нет предупреждения об «утечке данных
в tempdb» . Перемещая курсор в раздел оператора SELECT, вы уви-
дите, насколько в данном случае объем предоставленной памяти
(Memory Grant) отличается от предыдущего случая, как показано
на рис. 2.7.

 Как мы видим, для корректного выделения памяти для размещения
хеш-соединения на самом деле требуется ~ 625 Мб.

 Щелкните правой кнопкой мыши оператор SELECT и выберите
Properties (Свойства). Раскройте раздел MemoryGrantInfo, кото-
рый теперь будет выглядеть, как показано на рис. 2.8. В этом разделе
содержится обратная связь по временно предоставляемому буферу
памяти.

50  Глава 2. Интеллектуальная настройка производительности

Рис. 2.7. В разделе с информацией об операторе SELECT приведен
скорректированный показатель объема предоставляемой памяти

Рис. 2.8. Обратная связь по временно предоставляемому буферу памяти
после коррекции предоставляемого объема памяти

Интеллектуальная обработка запросов  51

5. Нам нужно убедиться, что данные статистики запроса вернулись в
исходное состояние. Для этого нужно запустить код T-SQL шага 5 в
сценарии T-SQL:

-- Шаг 5. Восстановление таблицы и кластеризованного индекса в
-- исходное состояние.
UPDATE STATISTICS Fact.OrderHistory
WITH ROWCOUNT = 3702592;
GO

ALTER TABLE [Fact].[OrderHistory] DROP CONSTRAINT [PK_Fact_OrderHistory]
GO

ALTER TABLE [Fact].[OrderHistory] ADD CONSTRAINT [PK_Fact_OrderHistory]
PRIMARY KEY NONCLUSTERED
(
 [Order Key] ASC,
 [Order Date Key] ASC
)
GO

Выделение слишком большого объема памяти
Давайте рассмотрим пример, где объем предоставленной памяти слиш-

ком велик, гораздо больше того, который требуется в действительности . Как
я уже упоминал ранее, если объем выделенной памяти чрезмерно велик,
то, возможно, это не приведет ни к каким отрицательным последствиям,
но в ряде случаев может привести к неожиданному дефициту памяти или
ухудшению производительности.

Пример, иллюстрирующий выделение слишком большого объема памя-
ти, немного сложнее; для него потребуется эмуляция одновременной рабо-
ты нескольких пользователей. Поэтому для выполнения практических
заданий этого примера вам понадобится бесплатная утилита для нагру-
зочного тестирования под названием ostress, которую можно загрузить,
перейдя по ссылке www.microsoft.com/en-us/download/details.aspx?id=4511. В настоя-
щее время для работы с этой утилитой требуется клиентский компьютер с
установленной ОС Windows.

Чтобы увидеть, как выделение слишком большого объема памяти может
привести к неожиданному ухудшению производительности и появлению
режима ожидания (wait_type) RESOURCE_SEMAPHORE, выполните опи-
санные ниже действия. Все используемые сценарии находятся в каталоге
ch2_intelligent_performance\iqp\rowmodemgf. Я создал сценарии, запус-
каемые из командной оболочки с использованием учетной записи адми-
нистратора sa.

1. Во-первых, нам необходимо настроить регулятор ресурсов (resource
governor), чтобы использовать максимальный объем выделенной
памяти для сервера, запустив исполняемый файл adjustrg.cmd (ко-

52  Глава 2. Интеллектуальная настройка производительности

торый запускает сценарий T-SQL adjustrg.sql). В этом сценарии
используются следующие допущения: имя сервера, для которого
выполняются настройки bwsql2019, поэтому вам будет нужно отре-
дактировать сценарий, указав вместо bwsql2019 имя своего сервера.
Я выполняю эту настройку, чтобы позволить SQL Server получить
очень большой объем избыточной памяти, необходимый для данно-
го примера.

ALTER WORKLOAD GROUP [default]
WITH (REQUEST_MAX_MEMORY_GRANT_PERCENT = 50)
GO

ALTER RESOURCE GOVERNOR RECONFIGURE
GO

2. Теперь запустите исполняемый файл turn_off_mgf.cmd (который
выполняет сценарий T-SQL turn_off_mgf.sql).

-- Отключаем обратную связь по временно предоставляемому буферу памяти
USE [WideWorldImportersDW]
GO

-- Шаг 2: Эмуляция устаревших данных статистики
UPDATE STATISTICS Fact.OrderHistory
WITH ROWCOUNT = 5000000000
GO

ALTER DATABASE SCOPED CONFIGURATION CLEAR PROCEDURE_CACHE;
GO

ALTER DATABASE SCOPED CONFIGURATION SET ROW_MODE_MEMORY_GRANT_
FEEDBACK = OFF
GO

ALTER DATABASE SCOPED CONFIGURATION SET BATCH_MODE_MEMORY_GRANT_
FEEDBACK = OFF
GO

В этом примере я буду использовать прием, аналогичный предыдущему
примеру с выделением слишком малого объема памяти, на этот раз изме-
няя данные статистики таким образом, чтобы число строк в статистике
запроса намного превышало число строк в таблице.

Примечание. За прошедшие годы я видел несколько примеров, когда оценка кар-

динальности оказалась выше, чем реальное значение. Один из примеров такой
ситуации – выполнение запросов к связанному серверу, когда отсутствует доступ к
статистике для удаленного источника данных. В этих случаях оценка кардинальности
может быть неточной и неоправданно завышенной.

3. Теперь запустите исполняемый файл rowmode_mgf.cmd, который
выполняет сценарий T-SQL rowmode_mgf.sql.

Интеллектуальная обработка запросов  53

SELECT fo.[Order Key], fo.Description, si.[Lead Time Days]
FROM Fact.OrderHistory AS fo
INNER JOIN Dimension.[Stock Item] AS si
ON fo.[Stock Item Key] = si.[Stock Item Key]
WHERE fo.[Lineage Key] = 9
AND si.[Lead Time Days] > 19
ORDER BY fo.[Order Key], fo.Description, si.[Lead Time Days]
OPTION (MAXDOP 1)
GO

 Этот запрос похож на пример для выделения слишком малого объ-
ема памяти, но он содержит дополнительный оператор ORDER BY
для добавления сортировки.

 Командный файл, запускаемый из командной оболочки, будет ис-
пользовать утилиту ostress для эмуляции выполнения этого запроса
T-SQL десятью пользователями одновременно; запрос будет повто-
ряться десять раз для каждого пользователя. Во время работы этого
сценария используйте другой сеанс SQL для запуска сценария dm_
exec_requests.sql, чтобы узнать, с какими типами ожидания (wait_
type) могут столкнуться выполняемые пользователями запросы. Вы
заметите значительное число элементов очереди ожидания освобо-
ждения ресурсов на RESOURCE_SEMAPHORE. Вы можете запускать
этот файл несколько раз, пока работает сценарий ostress. То, что сце-
нарий ostress выполняется долго, объясняется режимом ожидания
освобождения ресурсов.

 Общее время выполнения сценария ostress должно составлять более
40 секунд. Результат выполнения сценария (после его успешного за-
вершения) должен быть таким:

<datetime> [0x000046CC] OSTRESS exiting normally, elapsed
time: 00:00:43.833
<datetime> [0x000046CC] RsFx I/O completion thread ended.

4. Выполните один запрос, используя сценарий rowmode_mgf.sql, и
просмотрите данные обратной связи по временно предоставля-
емому буферу памяти в SQL Server Management Studio. Исполь-
зуйте те же приемы, что и в предыдущем разделе этой главы, чтобы
просмот реть свойства оператора SELECT в плане. Раскройте раздел
MemoryGrantInfo. Результаты должны выглядеть так, как показано
на рис. 2.9.

 Ниже приведено описание ключевых параметров обратной связи.
 DesiredMemory – это идеальный объем предоставляемой памяти,

основанный на оценке кардинальности. В данном случае это число
составляет около 56 Гб. Это сумасшедшее количество памяти!

54  Глава 2. Интеллектуальная настройка производительности

 GrantedMemory – мы не можем предоставить 56 Гб памяти для это-
го запроса, поэтому предоставляем только около 5 Гб. Это все еще
значительный объем предоставляемой памяти.

 MaxUsedMemory – этот объем памяти фактически используется для
предоставления памяти во время выполнения запроса. Как вы види-
те, он составляет всего 3 Мб. Это, безусловно, пример предоставле-
ния чрезмерно большого объема памяти по сравнению с необходи-
мым объемом.

Рис. 2.9. Обратная связь по временно предоставляемому буферу памяти
при чрезмерного большом объеме предоставляемой памяти

5. Теперь давайте включим обратную связь по временно предоставляе-
мому буферу памяти, запустив исполняемый файл turn_on_mgf.cmd
(который выполняет сценарий T-SQL turn_on_mgf.sql).

6. Давайте снова сэмулируем рабочую нагрузку, запустив исполняемый
файл rowmode_mgf.cmd. Работа этого файла должна завершиться
за время, вдвое меньшее предыдущего (обычно около 20 секунд).

Интеллектуальная обработка запросов  55

Если вы запустите сценарий dm_exec_requests.sql во время рабо-
ты сценария ostress, то увидите кратковременное увеличение числа
элементов очереди ожиданий RESOURCE_SEMAPHORE, а затем эта
очередь исчезнет, потому что сработала обратная связь по временно
предоставляемому буферу памяти, уменьшив размер предоставля-
емой памяти в соответствии с объемом памяти, необходимым для
выполнения запроса.

Совет. Попробуйте запустить исполняемый файл rowmode_mgf.cmd во второй раз. Бу-

дет ли он в этот раз работать быстрее? Да, сейчас он может работать немного быстрее.
Это связано с тем, что при первом запуске rowmode_mgf.cmd первые выполнения
запроса происходили очень быстро, и кешированный план не обновлялся при новом
предоставлении памяти. Но по мере выполнения дальнейших запусков командного
файла память каждый раз выделялась заново. Когда вы запустили rowmode_mgf.cmd
во второй раз, во всех запросах использовалось новое выделение памяти.

7. Если вы посмотрите на свойства оператора SELECT, относящиеся к
временно предоставляемому буферу памяти для rowmode_mgf.sql,
то увидите, что объемы предоставляемой памяти изменились, и их
обновленные значения гораздо ближе к значению объема памяти,
необходимого для выполнения запроса.

8. Восстановите состояние базы данных, данные статистики для таблиц
и регулятора ресурсов, запустив исполняемые файлы adjustrgback.
cmd и restore_orderhistory_state.cmd.

Примечание. Даже при использовании функции обратной связи в некоторых случа-

ях объем фактически необходимой памяти может быть очень большим. Достаточно
большим, чтобы пользователи, работающие одновременно, сталкивались с режи-

мом ожидания RESOURCE_SEMAPHORE, что, в свою очередь, приведет к ситуации
дефицита памяти в SQL Server. В этих случаях вы можете использовать регулятор
ресурсов (resource governor), чтобы ограничить объем выделяемой памяти. Докумен-

тация по данной теме находится по ссылке https://docs.microsoft.com/en-us/sql/t-sql/

statements/create-workload-group-transact-sql. В ней разъясняется, как изменить соот-
ветствующие параметры. В SQL Server 2019 это значение настраиваемого параметра
теперь может быть числом с плавающей запятой, поэтому допустимы значения < 1 %.
Это может быть важно для систем с большим объемом памяти. Кроме того, вы можете
установить эти значения на уровне отдельного запроса. См. документацию https://

docs.microsoft.com/en-us/sql/t-sql/queries/hints-transact-sql-query#arguments.

Эта функция хорошо продумана и может реально помочь вам сэконо-
мить время при настройке параметров SQL Server для рабочих нагрузок,
требующих выделения памяти.

56  Глава 2. Интеллектуальная настройка производительности

Существует несколько сценариев, когда обратная связь по временно пре-
доставляемому буферу памяти не должна использоваться или же будет бес-
полезна:

• не обнаружено «утечки данных в tempdb» или используется 50 % вы-
деленной памяти;

• имеют место флуктуации объема памяти, когда объем предоставляе-
мой памяти постоянно то уменьшается, то увеличивается.

Отложенная компиляция табличных переменных
Если вы работаете в Microsoft уже 26 лет, то за это время вы, несомнен-

но, встречались со многими людьми. Я видел очень много людей, кото-
рые умнее меня и, честно говоря, обладают лучшим характером, нежели я.
Один из таких людей – Джек Ли (Jack Li). Джек много лет проработал в
службе технической поддержки CSS в нашем офисе в Ирвинге (штат Техас).
Несколько лет назад у Джека появилась возможность поработать в коман-
де SQL Engineering – это случилось после того, как я присоединился к дан-
ной команде. Однажды он с присущей ему скромностью спросил меня,
считаю ли я, что он пригоден для работы в этой команде. Я не колебался.
Я сказал ему, что у него есть все необходимые навыки, чтобы стать перво-
классным разработчиком, и, кроме того, он обладает уникальным и обшир-
ным опытом по улучшению производительности SQL Server. Несмотря на
то что команда CSS потеряла одного из лучших ее членов, наша команда,
безуслов но, выиграла от того, что к ней присоединился Джек Ли.

Первым проектом, над которым Джек работал в своем новом статусе,
было решение известной проблемы оценки кардинальности для таблич-
ных переменных. Когда используются табличные переменные, у нас
наблюдается проблема, состоящая в том, что при оценке кардинальности
оптимизатор SQL Server всегда добавляет в оценку одну строку, независи-
мо от того, сколько строк заполняется в табличной переменной. Это про-
исходит потому, что оптимизатор не обладает информацией о том, сколь-
ко строк на самом деле содержится в табличной переменной, поскольку
они определяются и обычно заполняются как часть пакета или хранимой
процедуры. Когда Джек работал в техподдержке, он писал об этой пробле-
ме и предлагал решение с использованием флага трассировки. Описание
предложенного Джеком решения можно найти по ссылке https://blogs.msdn.

microsoft.com/psssql/2014/08/11/having-performance-issues-with-table-variables-sql-server-

2012-sp2-can-help/.
Таким образом, когда Джек присоединился к команде, он уже был глу-

боко погружен в эту проблему. У руководства группы Query Processor была
идея, которую они хотели реализовать в SQL Server 2019 в рамках интел-
лектуальной обработки запросов, называемой отложенной компиляцией
табличных переменных. Они прислушались к Джеку при реализации этой
возможности.

Интеллектуальная обработка запросов  57

Приведем цитату из документации по SQL Server по ссылке https://

docs.microsoft.com/en-us/sql/relational-databases/performance/intelligent-query-

processing?view=sql-server-ver15#table-variable-deferred-compilation: «Отложенная ком-
пиляция табличной переменной откладывает компиляцию оператора,
который ссылается на табличную переменную, до первого фактического
выполнения оператора. Отложенная компиляция в данном случае выпол-
няется так же, как для временных таблиц. Это изменение приводит к тому,
что используется фактическое количество строк, а не одна строка, как
предполагалось первоначально».

Вы можете прочитать и просмотреть примеры того, как включить и отклю-
чить отложенную компиляцию табличных переменных, а также параметры
базы данных и указания запросов, по ссылке https://docs.microsoft.com/en-us/sql/t-

sql/data-types/table-transact-sql?view=sql-server-ver15#table-variable-deferred-compilation.
Все примеры сценариев, приведенные в этом разделе, размещены в

каталоге ch2_intelligent_performance\iqp\tablevariable.
Давайте рассмотрим пример этой концепции, используя записную

книжку T-SQL (T-SQL Notebook) (вы также можете просмотреть этот сцена-
рий T-SQL, открыв файл iqp_tablevariable.sql).

1. Откройте в Azure Data Studio записную книжку T-SQL с названием
iqp_tablevariable.ipynb.

2. Выполните каждый шаг в записной книжке T-SQL, чтобы сравнить
производительность при использовании табличных переменных с
отложенной компиляцией и без нее.

3. Чтобы сравнить планы выполнения запросов для этих двух сце-
нариев, мы можем использовать функцию под названием Query
Store, которая впервые была представлена в SQL Server 2016. Воз-
можно, вы этого не знали, но при восстановлении резервной копии
WideWorldImportersDW в базе данных уже использовалось хранили-
ще запросов Query Store.

4. Вот как использовать Query Store для сравнения двух запросов: один
с использованием отложенной компиляции табличной переменной,
а другой – без нее.

5. Откройте SSMS, подключитесь к SQL Server, на котором вы запустили
примеры из записных книжек T-SQL, и найдите отчет Top Resource
Consuming Queries (Самые ресурсоемкие запросы), как показано на
рис. 2.10.

6. В отчете, приведенном на рис. 2.10, показаны данные Query Store
после выполнения предыдущего примера использования обратной
связи по временно предоставляемому буферу памяти в режиме строк
и примеры табличных переменных из этого раздела. Ваше окно про-
граммного интерфейса может немного отличаться от приведенного
на рисунке в зависимости от того, каким инструментом вы пользуе-

58  Глава 2. Интеллектуальная настройка производительности

тесь и на каких данных выполняется запущенный вами запрос. Каж-
дый столбец диаграммы представляет уникальный запрос, поэтому
вам нужно найти запрос, в котором используется табличная пере-
менная. Щелкните мышью каждую строку – ниже будет отображен
текст запроса. Если вы просмотрите запрос в хранимой процедуре
из этого примера в записной книжке T-SQL, то обнаружите, что этот
запрос содержит следующий код:

SELECT top 10 oh.[Order Key], oh.[Order Date Key],oh.[Unit Price],
o.Quantity
FROM Fact.OrderHistoryExtended AS oh
INNER JOIN @Order AS o
ON o.[Order Key] = oh.[Order Key]
WHERE oh.[Unit Price] > 0.10
ORDER BY oh.[Unit Price] DESC

Рис. 2.10. Отчет Top Resource Consuming Queries
(Самые ресурсоемкие запросы) в Query Store

7. Поочередно щелкайте мышью каждый столбец на диаграмме, пока
не увидите этот запрос. Обратите внимание на две точки справа,
которые представляют два плана выполнения для данного запроса.
Пос ле завершения выполнения отчет должен выглядеть примерно
так, как показано на рис. 2.11.

 Чем «выше» расположена точка на диаграмме, тем больше средний
период времени для данного плана выполнения запроса. Если щелк-
нуть каждую точку, вы увидите, как изменяется план выполнения
запроса в нижнем окне.

Интеллектуальная обработка запросов  59

Рис. 2.11. Планы выполнения запросов для использования
табличных переменных

8. Наведите курсор на верхнюю точку, чтобы увидеть данные статисти-
ки для плана выполнения запроса. Просмотрите данные статистики,
например среднюю продолжительность, как показано на рис. 2.12.

Рис. 2.12. Средний период времени для более медленного
плана выполнения запроса

60  Глава 2. Интеллектуальная настройка производительности

 После того как вы щелкнули мышью точку и просмотрели план вы-
полнения запроса в нижней области окна, наведите указатель мыши
на оператор сканирования таблицы (Table Scan). Обратите внимание
на оценку числа обрабатываемых строк, равную 1, как показано на
рис. 2.13.

Рис. 2.13. Оценка в одну строку для табличной переменной

 Обратите внимание на операцию соединения табличной перемен-
ной и таблицы OrderHistoryExtended. Здесь используется алгоритм
соединения с применением вложенных циклов (Nested Loops Join).
Это вполне разумный выбор для оптимизатора, поскольку он пред-
полагает, что табличная переменная содержит только одну строку.
Проблема в том, что в данном случае табличная переменная содер-
жит около 3 млн строк! Использование подобного типа соединения
(с вложенными циклами) для такого числа строк будет очень дорого-
стоящей операцией и в данном случае не имеет смысла.

9. Теперь щелкните «нижнюю» точку в окне с планами выполнения за-
просов. Наведите указатель мыши на точку, чтобы увидеть среднюю
продолжительность запроса. Это должно выглядеть примерно так,
как показано на рис. 2.14.

 В этом случае средняя продолжительность плана выполнения запро-
са составляет 2,5 секунды, что намного лучше, чем 25 секунд.

Интеллектуальная обработка запросов  61

Рис. 2.14. Средняя продолжительность более быстрого
плана выполнения запроса

 Теперь просмотрите план выполнения запроса. Наведите указатель
мыши на оператор сканирования таблицы (Table Scan). Обратите вни-
мание, что оценки теперь точны, и, поскольку требуется выполнить ска-
нирование таблицы, использование пакетного режима вполне оправ-
дано. Это пример одновременного использования нескольких функций
интеллектуальной обработки запросов. Информация, выводимая для
этого оператора, должна выглядеть, как показано на рис. 2.15.

Рис. 2.15. Лучшая оценка при использовании табличной переменной

62  Глава 2. Интеллектуальная настройка производительности

 Теперь посмотрите на соединение табличной переменной и таблицы
OrderHistoryExtended. Для этой цели используется хеш-соединение,
а также выполняется сканирование таблицы OrderHistoryExtended.

Пакетный режим для хранилища строк
В SQL Server 2012 была добавлена отличная (какое преуменьшение!)

возможность, называемая столбцовыми индексами. Это было сделано в
рамках проекта Apollo (см. оригинальный блог по ссылке https://cloudblogs.

microsoft.com/sqlserver/2011/08/04/columnstore-indexes-a-new-feature-in-sql-server-known-

as-project-apollo/). При разработке этой новой функции был усовершенствован
обработчик запросов – в нем появилась возможность выполнять обработку
строк в пакетном режиме с использованием столбцовых индексов. До этих
пор операторы, включаемые в план выполнения запросов, такие как ска-
нирование таблицы (scan), выполняли операции и обрабатывали данные
построчно, выбирая по одной строке таблицы целиком. Пакетный режим
представляет новую парадигму обработки данных, позволяющую опера-
торам обрабатывать пакеты строк, упорядоченных по столбцам и содержа-
щих векторы для идентификации подходящих строк. Эта концепция очень
хорошо согласуется со столбцовыми индексами, которые упорядочены по
столбцам, а не по строкам.

Хотя столбцовые индексы очень полезны для выполнения аналитиче-
ских запросов, для которых характерны сканирование и обработка большо-
го количества строк, все же столбцовые индексы могут не соответствовать
вашим потребностям в обработке данных; также могут иметься ограниче-
ния, препятствующие их использованию. Кроме того, у вас могут иметься
запросы, соответствующие сценарию «аналитическая нагрузка». Другими
словами, ваши потребности могут заключаться не в выполнении запро-
сов к одной или нескольким строкам (что многие считают стандартным
«сценарием OLTP»). Любая таблица или индекс, которые не организованы
с помощью столбцового индекса, называется хранилищем строк.

В SQL Server 2019 обработчик запросов может автоматически определять,
соответствует ли ваш запрос пакетному режиму для хранилища строк. Исполь-
зование пакетного режима, опять же, может не иметь смысла для всех запро-
сов, поэтому для его применения важно понимать и использовать некоторые
основные принципы. Например, ваш запрос должен обрабатывать большое
количество строк и включать операции, которые требуют агрегации данных
(такие как count(∗) или sum(), а также соединение или сортировку). Другими
словами, пакетную обработку имеет смысл использовать, когда существует
поток данных между несколькими операторами над большим числом строк
для выполнения запроса. Насколько большим? В документации не приво-
дится конкретная цифра (потому что в будущем она может измениться), но
пороговое значение обычно составляет 128 тыс. строк.

Подробная информация о пакетном режиме для хранилища строк, в том
числе о включении и отключении этой возможности, находится по адре-

Интеллектуальная обработка запросов  63

су https://docs.microsoft.com/en-us/sql/relational-databases/performance/intelligent-query-

processing?#batch-mode-on-rowstore. Эта документация содержит сведения об
истории возникновения данной возможности, а также о том, при каких
рабочих нагрузках она принесет наибольшее преимущество, и информа-
цию о существующих ограничениях.

Совет. Вы действительно хотите углубиться в эту тему? Тогда я рекомендую вам
статью в блоге эксперта SQL-сообщества Димы Пилюгина, который определил «ро-

ковой» предел 128 тыс. Этот блог расположен по адресу www.queryprocessor.com/

batch-mode-on-rowstore/.

Мы будем использовать базу данных WideWorldImportersDW, которую
восстановили и расширили в начале этой главы. Давайте рассмотрим при-
мер, в котором пакетный режим для строкового хранилища может уско-
рить выполнение запросов. В каталоге ch2_intelligent_performance\iqp\
batchmoderow размещены все примеры сценариев.

Вы можете выполнить следующие запросы, используя сценарий iqp_
batchmoderow.sql или записную книжку T-SQL iqp_batchmoderow.ipynb.

Какой бы способ вы ни выбрали, давайте продвигаться вперед шаг за
шагом. В этом разделе я рекомендую вам использовать записную книжку
T-SQL, выполняя пример сценария. Вы можете также выполнить сценарий
iqp_batchmoderow.sql, используя любой инструмент SQL, однако вам нуж-
но будет проанализировать планы выполнения запросов в графическом
инструменте, таком как SSMS или Azure Data Studio (или же иметь возмож-
ность прочитать и подробно разобрать XML-план).

Откройте Azure Data Studio, подключенную к вашему экземпляру SQL
Server 2019, и затем откройте записную книжку iqp_batchmoderow.ipynb.

Одним из удобств записных книжек является то, что документация
для каждого шага и ячеек находится в самой записной книжке. Записные
книжки, сохраненные в репозитории GitHub для этой книги, уже содержат
все ответы, так что вы знаете, чего ожидать!

Я даже визуально проиллюстрировал различия в планах выполнения
запросов, используя Azure Data Studio и приводя ожидаемые результа-
ты.

Прочитайте текст и выполните каждый шаг из записной книжки. Вы уви-
дите, что использование пакетного режима для хранилища строк может
дать значительный прирост производительности, особенно при работе с
таблицами, содержащими большие наборы данных. Кроме того, пакетный
режим теперь работает как для столбцового хранилища данных (реализо-
вано в SQL Server 2017), так и для хранилища строк, поэтому вам не нужно
об этом беспокоиться. Обработчик запросов знает, когда его использовать
и как он может повысить производительность вашего запроса.

Чтобы вы могли выполнить самопроверку, на рис. 2.16 показано, как
выглядит верхняя область записной книжки.

64  Глава 2. Интеллектуальная настройка производительности

Рис. 2.16. Записная книжка T-SQL для демонстрации пакетного
режима обработки для хранилища строк

Встраивание скалярных UDF
В SQL Server уже давно существует такая концепция, как пользователь-

ская функция (user-defined function, UDF). Концепция заключается в том, что
вы размещаете код T-SQL внутри оператора FUNCTION, который принима-
ет на вход один или несколько параметров, и функция возвращает резуль-
тирующее значение. Затем вы можете использовать функцию в любом опе-
раторе SELECT T-SQL. Существуют и иные популярные способы повторного
использования кода, например хранимые процедуры, но функция облада-
ет одним преимуществом: она может быть частью оператора SELECT.

Примечание. Есть и другие способы использования пользовательских функций, о ко-

торых вы можете узнать больше, перейдя по ссылке https://docs.microsoft.com/en-us/

sql/t-sql/statements/create-function-transact-sql?view=sql-server-ver15.

Существует два типа пользовательских функций:

• скаляр, который возвращает одно значение;
• табличное значение, которое возвращает результирующий набор

данных в виде таблицы (тип TABLE).

Несмотря на популярность и преимущества UDF, их использование
может привести к проблемам с производительностью из-за существую-
щих ограничений. Эти ограничения связаны с тем, как UDF компилируют-

Интеллектуальная обработка запросов  65

ся и интегрируются в общий план выполнения запросов. Например, всякий
раз, когда скалярная UDF используется для того, чтобы вернуть значение
как часть списка столбцов, каждая строка таблицы, к которой выполняется
запрос, используется в UDF по одной строке за один раз. Существуют и дру-
гие ограничения, связанные с тем, как обработчик запросов обрабатывает
пользовательские функции, что в некоторых ситуациях просто делает их
весьма неэффективными с точки зрения производительности.

Теперь перейдем к встраиванию скалярных UDF. Обработчик запро-
сов может взять код UDF (UDF может состоять из нескольких операторов
T-SQL) и интегрировать эти операторы в общий запрос, отсюда и возник
термин «встраивание».

Вы можете прочитать, как включить встраивание скалярных UDF,
используя параметр dbcompat, в документации, размещенной по ссылке
https://docs.microsoft.com/en-us/sql/relational-databases/user-defined-functions/scalar-udf-
inlining?#enabling-scalar-udf-inlining.

О том, как отключить и включить встраивание скалярных UDF без изме-
нения параметра dbcompat, рассказывается в документации, размещенной
по ссылке https://docs.microsoft.com/en-us/sql/relational-databases/user-defined-functions/
scalar-udf-inlining?#disabling-scalar-udf-inlining-without-changing-the-compatibility-level.

Как и в любом примере интеллектуальной обработки запросов, для
понимания встраивания скалярных UDF лучше всего рассмотреть пример.
В каталоге ch2_intelligent_performance\iqp\scalarinlineudf размещены
все сценарии, которые приводятся здесь в качестве примеров.

Аналогично другим примерам из этой главы, у вас есть два способа про-
хождения сценариев, иллюстрирующих встраивание скалярных UDF. Вы
можете использовать записную книжку T-SQL iqp_scalarudfinlining.pynb
или набор сценариев T-SQL.

Примечание. В основу приведенного мной примера были положены примеры кода,
приведенные в следующей публикации в блоге Microsoft: https://docs.microsoft.com/

ru-ru/archive/blogs/sqlserverstorageengine/introducing-scalar-udf-inlining; в этом
блоге также есть некоторые важные и интересные подробности о предыдущих огра-

ничениях скалярных UDF и о том, как интеллектуальная обработка запросов позво-

лила значительно повысить производительность.

Для выполнения примеров из этого раздела мы будем использовать сце-
нарии T-SQL и проверку фактического плана выполнения запроса в SSMS.

1. Откройте сценарий T-SQL get_customer_spend.sql.
 Код этого сценария выглядит так:

USE WideWorldImportersDW
GO

SELECT c.[Customer Key], SUM(oh.[Total Including Tax]) as total_spend

66  Глава 2. Интеллектуальная настройка производительности

FROM [Fact].[OrderHistory] oh
JOIN [Dimension].[Customer] c
ON oh.[Customer Key] = c.[Customer Key]
GROUP BY c.[Customer Key]
ORDER BY total_spend DESC
GO

 Этот сценарий определяет суммартные затраты на приобретение
продукции на одного клиента, основываясь на данных из таблицы
OrderHistory. Посмотрев на полученные результаты, вы увидите, что
диапазон затрат клиентов составляет от 2 до 7 млн. Согласно усло-
виям поставленной задачи, мы должны создать пользовательскую
функцию, которая будет принимать в качестве входных данных
идентификатор клиента и классифицировать клиента на основании
его суммарных расходов на приобретение продукции.

 Клиенты, суммарные расходы которых составляют ≤ 3M, будут от-
носиться к категории «ПРОСТЫЕ». Клиенты, потратившие от 3 до
4,5 млн, будут относиться к категории «ЗОЛОТЫЕ». Любой, кто по-
тратит сумму более 4,5 млн, будет считаться «ПЛАТИНОВЫМ» кли-
ентом. Преимущество использования функции в данном случае за-
ключается в том, что мы можем изменять правила для определения
категории клиента («ПРОСТОЙ», «ЗОЛОТОЙ» и «ПЛАТИНОВЫЙ»), не
оказывая влияния на весь остальной код, использующий эту функ-
цию.

2. Откройте сценарий T-SQL iqp_scalarudfinlining.sql и выполните все
шаги в соответствии с комментариями, приведенными в сценарии.

3. Выполните фрагмент сценария шаг 1, который создаст скалярную
UDF:
-- Шаг 1. Создайте новую функцию, чтобы получить категорию
-- клиентов на основе их суммарных расходов на заказы
USE WideWorldImportersDW
GO

CREATE OR ALTER FUNCTION [Dimension].[customer_category] (@CustomerKey INT)
RETURNS CHAR(10) AS
BEGIN
DECLARE @total_amount DECIMAL(18,2)
DECLARE @category CHAR(10)
SELECT @total_amount = SUM([Total Including Tax])
FROM [Fact].[OrderHistory]
WHERE [Customer Key] = @CustomerKey
IF @total_amount <= 3000000
 SET @category = 'REGULAR'
ELSE IF @total_amount < 4500000
 SET @category = 'GOLD'

Интеллектуальная обработка запросов  67

ELSE

 SET @category = 'PLATINUM'
RETURN @category
END
GO

4. Задайте нужное значение переменной dbcompat, очистите кеш про-
цедур и «разогрейте» кеш буферного пула, выполнив шаг 2.

-- Шаг 2. Установите для базы данных значение db compat 150,
-- очистите кеш процедур от предыдущих выполнений и добейтесь того,
-- чтобы сравнение было корректным, «разогрев» кеш
ALTER DATABASE WideWorldImportersDW
SET COMPATIBILITY_LEVEL = 150
GO

ALTER DATABASE SCOPED CONFIGURATION
CLEAR PROCEDURE_CACHE;
GO

SELECT COUNT(*) FROM [Fact].[OrderHistory]
GO

5. Давайте запустим запрос с использованием UDF, но применим ука-
зание запроса, чтобы временно отключить встраивание скалярной
UDF. Включите фактический план выполнения (Actual Execution
Plan) в SSMS и выполните шаг 3 сценария.

-- Шаг 3. Запустите запрос, но отключите использование встраивания
-- скалярной функции, используя указание запроса.
SELECT [Customer Key], [Customer], [Dimension].[customer_category]
([Customer Key]) AS [Discount Price]
FROM [Dimension].[Customer]
ORDER BY [Customer Key]
OPTION (USE HINT(‘DISABLE_TSQL_SCALAR_UDF_INLINING'))
GO

 Время выполнения запроса составляет не менее 30 секунд. Фактиче-
ский план выполнения запроса должен выглядеть примерно так, как
показано на рис. 2.17.

 Если вы наведете указатель мыши на каждый оператор, то увиди-
те, что он затрагивает 403 строки. Число строк не так уж велико; так
почему же выполнение запроса занимает так много времени? Это
происходит потому, что вы не видите, что скалярная функция обра-
щается к таблице OrderHistory, которая содержит более 3 млн строк;
для каждой строки в таблице Dimension.Customer она обращается ко
всему множеству строк в таблице OrderHistory (а их более 3 млн). Это
крайне неэффективно.

68  Глава 2. Интеллектуальная настройка производительности

Рис. 2.17. План выполнения запроса для отключенной возможности
встраивания скалярной UDF

6. Запустите шаг 4 сценария, который будет выполнять тот же самый
запрос, не используя указание, тем самым включив встраивание ска-
лярной UDF.

-- Шаг 4: Запустите запрос снова, но не используйте указание
SELECT [Customer Key], [Customer], [Dimension].[customer_category]
([Customer Key]) AS [Discount Price]
FROM [Dimension].[Customer]
ORDER BY [Customer Key]
GO

 Запрос должен выполняться значительно быстрее. Если вы посмот-
рите на фактический план выполнения, то увидите, что в плане
представлены операторы, необходимые для выполнения функ-
ции, а также новые операторы, оптимизирующие запрос к табли-
це OrderHistory, выполняющийся в функции. План будет выглядеть
примерно так, как показано на рис. 2.18.

Рис. 2.18. План выполнения встраиваемой скалярной UDF

Интеллектуальная обработка запросов  69

 Теперь, когда вы смогли убедиться в мощи встраивания скалярных
UDF, вы должны быть более мотивированы использовать скалярные
UDF.

 Узнать больше о встраивании скалярных UDF, в том числе обо всех
связанных с ними требованиях и ограничениях, можно по ссылке
https://docs.microsoft.com/en-us/sql/relational-databases/user-defined-functions/scalar-
udf-inlining.

Функция приблизительного подсчета числа
уникальных значений Approximate Count Distinct
Есть сценарии, в которых вам нужно подсчитать количество строк в

любой таблице. Это сделать легко. Просто используйте оператор SELECT
COUNT(∗) FROM <table> – и вы получите готовый ответ. Но также иногда
бывает необходимо знать количество различных значений в определенном
столбце по всем строкам таблицы. Эта задача не намного сложнее. Просто
используйте SELECT COUNT(DISTINCT <col>) FROM <table>. Это кажется
достаточно простым. Единственная проблема заключается в том, как дол-
жен работать обработчик запросов, чтобы найти все различные значения.

В SQL Server для этого часто используется оператор Hash Match. Этот
оператор похож на Hash Join в том, что «хеш-таблица» используется для
построения списка всех различных значений, чтобы дальше использовать
этот список для подсчета. Как вы помните, ранее в этой главе рассказы-
валось, что для Hash Join необходимо предоставить память; таким обра-
зом, при использовании этого оператора могут возникнуть все пробле-
мы, характерные для предоставления памяти. Кроме того, использование
хеш-таблицы для подсчета всех различных значений – очень ресурсоемкая
операция, и для нее может потребоваться много вычислительных ресурсов.

Есть ли лучший способ решения этой задачи? Да, есть другой способ,
который может работать быстрее, при этом давая чуть менее точный ответ.
Это новая функция T-SQL APPROX_COUNT_DISTINCT(). Это встроенная
функция, подсчитывающая различные значения в столбце на основе выбо-
рочного приближения. Это не расширение функции COUNT(). Это совер-
шенно новая функция, поэтому для ее использования не требуется уста-
навливать значение параметра dbcompat = 150. Данная функция использует
концепцию HyperLogLog (вы можете прочитать больше об этой концепции,
перейдя по ссылке https://en.wikipedia.org/wiki/HyperLogLog). Использование при-
близительного подсчета числа уникальных значений дает вероятность
ошибки 2 % с вероятностью 97 %. Это означает, что если вас устроит ответ,
который будет весьма близок к реальности, вы можете использовать эту
функцию.

Давайте рассмотрим пример использования данной функции и сравним
ее с применением COUNT и DISTINCT.

70  Глава 2. Интеллектуальная настройка производительности

Все примеры сценариев размещены в каталоге ch2_intelligent_
performance\iqp\approxcount. Вы можете просмотреть примеры с по-
мощью записной книжки T-SQL iqp_approxcountdistinct.ipynb. Я также
создал сценарий T-SQL с названием iqp_approxcountdistinct.sql. Давайте
воспользуемся сценарием T-SQL и пройдемся по его шагам, изучая разли-
чия между запросами и их планами выполнения.

1. Откройте сценарий iqp_approxcountdistinct.sql в SSMS.

2. Выполните операторы шага 1. При этом выполняется очистка кеша
процедур, изменение значения уровня dbcompat (dbcompat = 130) и
«разогревается» буферный пул (это «честный бой»).

-- Шаг 1. Очистите кеш, установите значение dbcompat, равное 130,
-- чтобы доказать, что сценарий работает, и «разогрейте» кеш
USE WideWorldImportersDW
GO

ALTER DATABASE SCOPED CONFIGURATION CLEAR PROCEDURE_CACHE
GO

ALTER DATABASE WideWorldImportersDW SET COMPATIBILITY_LEVEL = 130
GO

SELECT COUNT(*) FROM Fact.OrderHistoryExtended
GO

 Вы можете удивиться, почему я установил значение переменной
dbcompat, равное 130. Это сделано, чтобы показать вам, что вам
не нужно использовать значение dbcompat = 150 для применения
этой новой возможности. Это связано с тем, что новая функция
T-SQL APPROX_COUNT_DISTINCT() просто поставляется с ядром
SQL Server 2019, но для нее не требуется устанавливать значение
dbcompat = 150, как для других функций интеллектуальной обработ-
ки запросов.

3. Включите фактический план выполнения запроса (Actual Execution
Plan) в SSMS и выполните шаг 2:

-- Шаг 2. Сначала используйте COUNT и DISTINCT
SELECT COUNT(DISTINCT [WWI Order ID])
FROM [Fact].[OrderHistoryExtended]
GO

 Это займет не так много времени – в зависимости от мощности ва-
шего компьютера, возможно, от 4 до 5 секунд. В результате у вас
должно получиться число 29 620 736. Пять секунд для подсчета раз-
личных значений – не так уж и плохо. Однако что произойдет, если
в этой таблице будет 100 млн строк или больше? Это не так уж не-
обычно для больших баз данных.

Интеллектуальная обработка запросов  71

 Если вы посмотрите на план выполнения запроса, то увидите нечто
похожее на то, что показано на рис. 2.19.

Рис. 2.19. План выполнения запроса для COUNT и DISTINCT

 Обратите внимание на оператор Hash Match. Если вы наведете ука-
затель мыши на этот оператор, то увидите, что он использует по-
строчный режим (Row Mode) и должен обработать все 29 млн строк в
хеш-операторе.

4. Теперь выполните шаг 3 сценария следующим образом:

-- Шаг 3. Используйте новую функцию APPROX_COUNT_DISTINCT для
-- сравнения вычисленных значений и производительность запроса
-- Разность между результатами приблизительного и точного подсчета
-- не должна превышать 2 % от точного значения (с вероятностью 97 %)
SELECT APPROX_COUNT_DISTINCT([WWI Order ID])
FROM [Fact].[OrderHistoryExtended]
GO

 На этот раз выполнение запроса должно занять всего секунду или
две – это примерно на 50 % быстрее, чем раньше. Опять же, это мо-
жет быть важно для очень больших наборов данных.

 Если вы посмотрите на план выполнения запроса, он будет выгля-
деть аналогично, но с меньшим числом операторов, как показано на
рис. 2.20.

Рис. 2.20. План выполнения запроса для APPROX_COUNT_DISTINCT

72  Глава 2. Интеллектуальная настройка производительности

 Обратите внимание, что у оператора Hash Match отсутствует «тол-
стая линия» в качестве иллюстрации выходных данных, потому что
операция приближения применяется именно в этом операторе, что
дает только одну строку для остальной части плана.

 Как вы можете заметить, использование приблизительного подсчета
числа уникальных значений может улучшить производительность,
если вам нужно лишь «достаточно точное» значение.

5. Восстановите предыдущее значение уровня совместимости базы
данных (dbcompat), равное 150, выполнив шаг 4 сценария.

-- Шаг 4. Восстановление предыдущего значения уровня совместимости
-- базы данных.
ALTER DATABASE WideWorldImportersDW SET COMPATIBILITY_LEVEL = 150
GO

 Подробнее о функции APPROX_COUNT_DISTINCT можно прочитать
по ссылке https://docs.microsoft.com/en-us/sql/t-sql/functions/approx-count-distinct-

transact-sql.
 Интеллектуальная обработка запросов – это более интеллектуаль-

ный обработчик запросов, отвечающий вашим потребностям и из-
бавляющий от необходимости внесения серьезных изменений в
имеющиеся приложения. Большая часть его функциональности до-
ступна, если вы просто измените знчение уровня совместимости ва-
шей базы данных, установив для него значение 150.

 Я с нетерпением жду появления новых возможностей в будущем,
поскольку обработчик запросов расширяет поддержку сценариев,
включая новые сценарии, в основу которых положены ваши отзывы.

Упрощенное профилирование запросов
Прежде чем я присоединился к команде разработчиков SQL Server в
2016 году, я работал в технической поддержке, решая самые сложные проб-
лемы, с которыми когда-либо сталкивались наши клиенты. И проблемы с
производительностью оказывались самыми трудными не только для меня,
но и для всей команды CSS. Все проблемы, касающиеся производительно-
сти SQL Server, весьма сложны – в них изначально много неясного, они кри-
тичны по времени, и редко когда у вас под рукой есть вся нужная информа-
ция, чтобы их решить.

В SQL Server существуют великолепные средства диагностики проблем с
производительностью, в число которых входят динамические администра-
тивные представления (Dynamic Management Views, DMVs) и расширенные
события (Extended Events). Мы создали DMV как механизм, позволяющий
видеть, что именно выполняет SQL Server в любой момент времени. Это

Упрощенное профилирование запросов  73

отличный способ узнать об активных подключениях и о том, какие запросы
они выполняют. Однако часто, чтобы решить сложную проблему с произ-
водительностью, информации об активных подключениях и выполняемых
ими запросах недостаточно – вам нужна подробная информация из плана
выполнения запроса.

Итак, разрыв углублялся. Вы можете видеть, какой запрос выполняет-
ся, но вы не можете углубиться в план выполняемого запроса. Кроме того,
если вам необходимы данные из плана выполнения для уже завершенно-
го запроса, вам необходимо использовать то, что может оказаться слож-
ной диагностикой, – расширенные события (Extended Events). Или же вам
нужно найти конкретный запрос и запустить его в автономном режиме (то
есть вне приложения), используя отдельный инструмент, при этом вклю-
чив диагностику плана выполнения запроса, чтобы получить всю необхо-
димую информацию.

Когда я присоединился к команде инженеров, работающих над выпус-
ком новых версий SQL Server, то обнаружил, что известная команда про-
екта Tiger ведет работу над решением подобных проблем. Педро Лопес
(Pedro Lopes), Алексей Эксаревский и Джей Чоу (Jay Choe) уже работали
над инфраструктурой профилирования запросов. Если вы спросите любого
разработчика о том, как выполняется трассировка кода, он будет исполь-
зовать термин профилирование. Итак, как мы профилируем запрос в SQL
Server? Обычно это сводится к получению информации о плане выполне-
ния запроса. Необходимо получить информацию о плане во время выпол-
нения запроса и получить фактический план выполнения запроса после
его завершения.

Эта команда уже создала концепцию статистики запросов в реальном
времени (вы можете получить дополнительную информацию на данную
тему по ссылке https://docs.microsoft.com/en-us/sql/relational-databases/performance/

live-query-statistics). Было очевидно, что команда могла сделать больше. Как
говорит Алексей: «Я хотел реализовать эту функцию в продукте еще в
2009 году… я потратил столько времени на разглядывание планов выпол-
нения запросов и хотел, чтобы они ожили, чтобы легче было видеть, что
происходит. Итак, идея живой статистики запросов. Эти два слова пре-
красно дополняют друг друга, хотя, конечно, упрощенное профилирование
позволяет сделать гораздо больше».

На самом деле команда создала инфраструктуру профиля статисти-
ки выполнения запросов, или стандартное профилирование. Эта возмож-
ность выдает вам фактическую статистику плана выполнения для каждо-
го оператора по строкам, ЦП и вводу-выводу. Это ключевая информация
для профи лирования запроса; однако есть один нюанс. Вы должны вклю-
чить профилирование перед выполнением запроса либо включить рас-
ширенные события для всех запросов, что, в свою очередь, может повли-
ять на производительность. Дополнительная информация о стандартном
профи лировании доступна по ссылке https://docs.microsoft.com/en-us/sql/relational-

74  Глава 2. Интеллектуальная настройка производительности

databases/performance/query-profiling-infrastructure?#the-standard-query-execution-statistics-
profiling-infrastructure.

Я люблю работать с такими коллегами, как Педро, Алексей и Джей. Они
всегда спрашивают: «Можем ли мы улучшить эту функцию?» И конечно же,
все они очень умны. По своему опыту они знают, как сложно и неудобно
использовать стандартное профилирование. Они создали инфраструкту-
ру упрощенного профилирования статистики выполнения запросов, или
упрощенное профилирование. Концепция упрощенного профилирования
состоит в том, чтобы получить данные профилирования для запросов без
дополнительных затрат, которые непременно возникают при стандартном
профилировании. Чтобы «облегчить» и «упростить» профилирование, нам
пришлось исключить из него статистику ЦП; однако при этом вы все рав-
но будете получать данные статистики по количеству строк «на оператор»
и статистику ввода-вывода. Дополнительная информация об упрощенном
профилировании доступна по ссылке https://docs.microsoft.com/en-us/sql/relational-

databases/performance/query-profiling-infrastructure?#lwp.
Это замечательно, но... нам все равно придется включить упрощенное

профилирование, чтобы оно заработало. Как узнать, когда нам следует
включать упрощенное профилирование? Ну, большинство пользователей
SQL Server этого не знает. Никто этого не делает. Правильный ответ – прос-
то запустить упрощенное профилирование по умолчанию. И это то, что
можно сделать в SQL Server 2019. Педро называет это «инсайты относитель-
но производительности в любое время и в любом месте». Есть ли в этом
какие-то нюансы? Да. Вы получаете информацию о количестве строк толь-
ко для активно выполняющихся запросов, но часто этого достаточно, что-
бы помочь разобраться с проблемами производительности. Однако здесь
есть и небольшой бонус. Мы добавили в упрощенное профилирование воз-
можность получить последний фактический план выполнения для боль-
шинства кешированных запросов.

Давайте рассмотрим два сценария, чтобы вы могли понять преимущест-
ва использования упрощенного профилирования запросов по умолчанию
в SQL Server 2019.

Подготовительные шаги для использования
примеров, иллюстрирующих упрощенное
профилирование запросов
Итак, во-первых, вам нужно выполнить некоторые настройки, чтобы

использовать примеры для двух сценариев. Для примеров в этой главе вы
будете использовать базу данных WideWorldImporters (подробную инфор-
мацию об этой базе данных и ее схеме можно получить по ссылке https://docs.

microsoft.com/en-us/sql/samples/wide-world-importers-oltp-database-catalog).
Приведенные здесь примеры будут работать на SQL Server 2019, установ-

ленном на Windows, Linux, а также в контейнерах. Учитывая большой раз-

Упрощенное профилирование запросов  75

мер набора данных, SQL Server потребуется как минимум 12 Гб ОЗУ, чтобы
вы смогли заметить различия в производительности. Кроме того, в неко-
торых примерах запросов используется параллельная обработка, поэтому
для полной демонстрации возможностей лучше установить SQL Server в
многопроцессорной системе.

Все сценарии, применяемые в этой главе, можно найти в репозитории
GitHub в каталоге ch2_intelligent_performance\lwp.

Чтобы использовать на практике примеры из этой главы, выполните сле-
дующие действия:

1. Загрузите резервную копию базы данных WideWorldImporters, до-
ступную по ссылке https://github.com/Microsoft/sql-server-samples/releases/

download/wide-world-importers-v1.0/WideWorldImporters-Full.bak.
2. Восстановите эту базу данных на вашем экземпляре SQL Server 2019.

Вы можете использовать для этого готовый сценарий restorewwidw.
sql. Возможно, вам придется изменить путь к каталогу, где находятся
ваша резервная копия, и путь к месту для восстановления файлов
базы данных.

3. Для запуска некоторых примеров вам понадобятся таблицы
большего размера, чем те, которые добавлены по умолчанию в
WideWorldImporters. Поэтому запустите сценарий extendwwi.sql,
чтобы создать таблицы большего размера. Расширение этой базы
данных увеличит ее размер, включая журнал транзакций, примерно
до 5 Гб. Одна из таблиц называется Sales.InvoiceLinesExtended. Взяв
за основу таблицу InvoiceLines, мы намного увеличим ее размер и
не будем использовать столбцовый индекс.

Нужно ли мне прерывать активный запрос?
Рассмотрим следующий сценарий. Вам говорят, что на SQL Server запу-

щен запрос, который занимает много ресурсов ЦП на сервере. Вы исполь-
зуете DMV, например sys.dm_exec_requests, чтобы идентифицировать
запрос и пользователя. Пользователь – ваш вице-президент, которому
необходимо получить отчет, и при выполнении этого запроса использует-
ся кешированный план. Вы используете стандартные DMV, sys.dm_exec_
requests и sys.dm_exec_query_stats, чтобы узнать, какой запрос выполня-
ется. Как вы узнаете, завершится ли этот запрос в ближайшее время или же
его следует прервать и исправить?

Давайте рассмотрим следующий пример и узнаем, как включенное упро-
щенное профилирование запросов может помочь вам найти ответ.

Вы можете запускать приведенные ниже сценарии T-SQL, применяя
любой инструмент, который сможет подключиться к SQL Server, но лучше
всего использовать SQL Server Management Studio (SSMS), чтобы увидеть
все подробности.

76  Глава 2. Интеллектуальная настройка производительности

1. Откройте сценарий T-SQL mysmartquery.sql (возможно, этот сце-
нарий не столь «умен», как его название) и запустите выполнение
пакета.

2. В новом соединении откройте сценарий T-SQL show_active_queries.
sql.

3. Запустите пакет из шага 1 сценария:

-- Шаг 1. Показывать только источники запросов с активными запросами,
-- кроме данного запроса
SELECT er.session_id, er.command, er.status, er.wait_type,
er.cpu_time, er.logical_reads, eqsx.query_plan, t.text
FROM sys.dm_exec_requests er
CROSS APPLY sys.dm_exec_query_statistics_xml(er.session_id) eqsx
CROSS APPLY sys.dm_exec_sql_text(er.sql_handle) t
WHERE er.session_id <> @@SPID
GO

 Этот код находит любые активные запросы (кроме текущего соеди-
нения). Если вы несколько раз повторно выполните данный запрос,
то увидите, что значения cpu и logic_reads будут увеличиваться, и
значение переменной wait_type будет wait_type = ASYNC_NETWORK_
IO. Такая картина указывает на две вещи:

• запрос отнимает большое количество ресурсов процессора и, ве-
роятно, выполняет сканирование большой таблицы (значение
logical_reads велико и продолжает увеличиваться);

• большой объем данных (результатов) отправляется обратно кли-
енту (т. е. имеет место ожидание ASYNC_NETWORK_IO).

 По моему опыту, это не «хороший» запрос, а тот, который имеет
«шансы на улучшение». Но вопрос в том, стоит ли прерывать его сей-
час или он уже «почти выполнен».

4. Что было бы полезно узнать, когда запрос активен, – так это увидеть
ход выполнения операторов из плана выполнения запроса, напри-
мер статистики активных запросов (Live Query Statistics). Запустите
шаг 2 сценария:

-- Шаг 2. Как выглядит профиль плана выполнения для активного запроса
SELECT session_id, physical_operator_name, node_id, thread_id,
row_count, estimate_row_count
FROM sys.dm_exec_query_profiles
WHERE session_id <> @@SPID
ORDER BY session_id, node_id DESC
GO

Упрощенное профилирование запросов  77

 Результаты должны выглядеть примерно так, как показано на
рис. 2.21.

Рис. 2.21. Профиль плана выполнения для активного запроса

 Заметьте, что значение estimate_row_count для операторов Nested
Loops и Table Spool очень велико. И обратите внимание, что row_count
(это количество строк, обрабатываемых в данный момент) намного
меньше этого оценочного значения. Может быть, оценка является
неточной; однако если она верна, этот запрос еще далек от заверше-
ния. Запустите этот запрос еще раз, чтобы увидеть, как изменяется
значение row_count для этих операторов.

Примечание. Когда в SQL Server 2019 по умолчанию включено упрощенное профи-

лирование запросов, то единственный параметр статистики, который собирается и
сохраняется, – это row_count. Сбор данных, таких как загрузка процессора и объем
ввода-вывода, включенный по умолчанию, может оказаться весьма дорогостоящим.
Вы можете собрать эти данные, используя стандартное профилирование.

5. Давайте посмотрим на сам план выполнения запроса. Это предпо-
лагаемый план, но он может дать представление об этих больших
оценочных числах row_count. Выполните шаг 3 сценария:

-- Шаг 3. Вернитесь и просмотрите план выполнения запроса и текст
-- запроса для лучшего понимания
SELECT er.session_id, er.command, er.status, er.wait_type,
er.cpu_time, er.logical_reads, eqsx.query_plan, t.text
FROM sys.dm_exec_requests er
CROSS APPLY sys.dm_exec_query_statistics_xml(er.session_id) eqsx
CROSS APPLY sys.dm_exec_sql_text(er.sql_handle) t
WHERE er.session_id <> @@SPID
GO

 В SSMS щелкните значение query_plan, после чего должно открыться
новое окно с визуальным планом выполнения запроса.

 План выполнения должен выглядеть так, как показано на рис. 2.22.

78  Глава 2. Интеллектуальная настройка производительности

Рис. 2.22. План выполнения для активного запроса

 Обратите внимание на значок с символом X на операторе соедине-
ния с использованием вложенных циклов (Nested Loops Join). Если
вы наведете указатель мыши на оператор Nested Loops Join, то ото-
бражаемая информация будет выглядеть, как показано на рис. 2.23.

Рис. 2.23. Предупреждение, выведенное для оператора Nested Loops Join

Упрощенное профилирование запросов  79

 Что означает текст «No Join Predicate» (отсутствует условие отбора
для соединения)? Это означает, что существует серьезная проблема
с оператором JOIN в запросе. Это означает, что соединение на основе
равенства («equi» join) действительно не работает.

 В результатах, возвращенных после выполнения шага 3, посмотрите
на значение в текстовом столбце диагностики. Это выглядит так:

SELECT si.CustomerID, sil.InvoiceID, sil.LineProfit
FROM Sales.Invoices si
INNER JOIN Sales.InvoiceLines sil
ON si.InvoiceID = si.InvoiceID
OPTION (MAXDOP 1)

 Поскольку проблема заключается в операторе JOIN, давайте сосре-
доточимся на операторе INNER JOIN:

INNER JOIN Sales.InvoiceLines sil
ON si.InvoiceID = si.InvoiceID

 Вы видите, что этот запрос просто соединяет таблицу с самой собой.
Простая опечатка: написано si, а не sil – вот в чем проблема. Этот
запрос «зависнет», т. е. почти никогда не завершится. Его можно
прервать или исправить, и тогда ваш вице-президент будет намного
счастливее.

6. Отмените запрос из mysmartquery.sql, если он все еще выполняется.

Упрощенное профилирование запросов также включает в себя расши-
ренные события и поддержку указаний запросов, и эти функции можно
включить. Подробнее о том, как их включить, а также о том, как отключить
эту функцию для каждой базы данных, можно узнать по ссылке https://docs.

microsoft.com/en-us/sql/relational-databases/performance/query-profiling-infrastructure?#lwp.

Я не могу его «поймать»!
Рассмотрим другой сценарий. Вы наблюдали увеличение загрузки ЦП

SQL Server и не уверены, что нечто подобное должно происходить в нор-
мальном режиме работы (потому что это не похоже на обычное поведе-
ние). Используя DMV, вы можете видеть значение различных параметров,
например использовать sys.dm_exec_query_stats, чтобы узнать, где имен-
но запросы больше всего загружают ЦП; однако при помощи этого дина-
мического административного представления (DMV) вы получаете только
предполагаемый план. Вы можете попытаться выполнить запрос самостоя-
тельно в автономном режиме и получить фактический план, но вы хоти-
те увидеть фактический план выполнения реального запроса из приложе-
ния, чтобы убедиться, что вы получаете корректные данные. Этот запрос
постоянно выполняется многими пользователями, но время его выполне-

80  Глава 2. Интеллектуальная настройка производительности

ния составляет всего несколько секунд (отсюда и постоянное увеличение
загрузки ЦП), поэтому трудно использовать новые инструменты для того,
чтобы «поймать» выполняемый запрос. Вы можете включить стандартное
профилирование запросов, однако для этого требуется немало ресурсов, и
использование стандартного профилирования может вызвать проблемы с
производительностью приложений в момент выполнения запроса.

Вместе с упрощенным профилированием запросов в SQL Server 2019
появилась новая возможность. В SQL Server 2019 теперь есть новая функция
динамического управления (Dynamic Management Function, DMF) с назва-
нием sys.dm_exec_query_plan_stats. Идея состоит в том, чтобы зафикси-
ровать последний фактический план выполнения кешированного запро-
са. Вы можете прочитать об использовании этой DMF по ссылке https://docs.

microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-exec-

query-plan-stats-transact-sql.
Давайте посмотрим, как применять эту DMF для поиска фактического

плана выполнения запроса, который осуществляется постоянно, не приме-
няя какие-либо специальные средства диагностики, не включая переключа-
тели и флаги и не запуская запрос вручную. Единственный тонкий момент
здесь заключается в том, что эту функцию облегченного профилирования
запросов необходимо включить для каждой базы данных, где вы хотите ее
использовать. Вы можете сделать это с помощью следующего оператора
T-SQL, который будет использован в приведенном ниже примере:

ALTER DATABASE SCOPED CONFIGURATION SET LAST_QUERY_PLAN_STATS = ON

Все сценарии для этого примера размещены в каталоге ch2_intelligent_
performance\lwp. Чтобы было проще увидеть планы выполнения в визу-
альном режиме, я рекомендую вам запустить этот пример с использова-
нием SSMS.

1. Откройте сценарий T-SQL mysmartquery_top.sql.

2. Выполните предварительные настройки параметров для данного
примера. Для этого выполните шаг 1 сценария:

-- Шаг 1. Очистите кеш процедур и установите значение параметра
-- dbcompat = 130, чтобы показать, что вам не нужно значение
-- dbcompat = 150 для вывода данных статистики последнего плана
выполнения.
USE WideWorldImporters
GO

ALTER DATABASE SCOPED CONFIGURATION CLEAR PROCEDURE_CACHE
GO

ALTER DATABASE [WideWorldImporters] SET COMPATIBILITY_LEVEL = 130
GO

ALTER DATABASE SCOPED CONFIGURATION SET LAST_QUERY_PLAN_STATS = ON

Упрощенное профилирование запросов  81

GO

SELECT COUNT(*) FROM Sales.InvoiceLinesExtended
GO

 Для параметра dbcompat установлено значение 130, чтобы показать,
что вам не нужно устанавливать dbcompat=150 для использования
этой функции.

3. Теперь давайте сэмулируем неверные данные статистики, выполнив
шаг 2 сценария:

-- Шаг 2. Имитация устаревших данных статистики: очень низкие значения
UPDATE STATISTICS Sales.InvoiceLinesExtended
WITH ROWCOUNT = 1
GO

4. Запустите запрос. Запрос будет выполняться всего несколько секунд,
но он отнимет ресурсы ЦП. Выполните шаг 3.

Примечание. Вам не нужно выбирать фактический план выполнения, поскольку мы
эмулируем ситуацию, когда вы будете просматривать планы независимо от прило-

жения.

-- Шаг 3. Запустите запрос. Запрос будет выполняться всего несколько
-- секунд, но он отнимет ресурсы ЦП
SELECT si.InvoiceID, sil.StockItemID
FROM Sales.InvoiceLinesExtended sil
JOIN Sales.Invoices si
ON si.InvoiceID = sil.InvoiceID
AND sil.StockItemID >= 225
GO

5. Теперь давайте посмотрим на предполагаемый план выполнения
для этого запроса, используя стандартные DMV. Выполните шаг 4,
чтобы просмотреть предполагаемый план. Обратите внимание на
то, что это позволяет вам увидеть план выполнения запроса из дру-
гого пользовательского подключения.

-- Шаг 4. Что говорит предполагаемый план выполнения? Выглядит
-- как корректный план, основанный на оценках
SELECT st.text, cp.plan_handle, qp.query_plan
FROM sys.dm_exec_cached_plans AS cp
CROSS APPLY sys.dm_exec_sql_text(cp.plan_handle) AS st
CROSS APPLY sys.dm_exec_query_plan(cp.plan_handle) AS qp
WHERE qp.dbid = db_id('WideWorldImporters')
GO

82  Глава 2. Интеллектуальная настройка производительности

 В выходных данных вам нужно найти строку, в которой значения
текстового столбца начинаются с «Шаг 3». Щелкните значение query_
plan для этой строки. Ваш план должен выглядеть подобно тому, что
показано на рис. 2.24.

Рис. 2.24. Предполагаемый план выполнения для проблемного запроса

 Обратите внимание, какая тонкая линия выходит из оператора скани-
рования кластеризованного индекса (Clustered Index Scan). Это свя-
зано с тем, что оптимизатор оценивает таблицу InvoiceLinesExtended
как одну строку. Но это только предполагаемый план, и потому вы
не знаете, что это не так (вы просто сэмулировали ошибочные стро-
ки предполагаемого плана, но притворились, что не знали, что эта
оценка ошибочна).

6. Теперь давайте используем новую DMV, чтобы получить последний
фактический план выполнения для этого запроса и посмотреть, яв-
ляются ли строки предполагаемого плана неправильными. Выпол-
ните шаг 5.

-- Шаг 5. Что говорит последний фактический план выполнения? Ой-ой.
-- Расхождения между предполагаемым и фактическим планом очень велики.
SELECT st.text, cp.plan_handle, qps.query_plan, qps.*
FROM sys.dm_exec_cached_plans AS cp
CROSS APPLY sys.dm_exec_sql_text(cp.plan_handle) AS st
CROSS APPLY sys.dm_exec_query_plan_stats(cp.plan_handle) AS qps
WHERE qps.dbid = db_id('WideWorldImporters')
GO

 В этом примере мы используем функцию dm_exec_query_plan_stats
вместо dm_exec_query_plan. Снова найдите запрос в списке и щелк-
ните значение query_plan. План выполнения запроса должен выгля-
деть так, как показано на рис. 2.25.

Упрощенное профилирование запросов  83

Рис. 2.25. Фактический план выполнения для проблемного запроса

 Обратите внимание на «более толстые» линии. Они выглядят так по-
тому, что фактическое количество обрабатываемых строк намного
больше, чем оценочное значение. В этом заключается проблема, и
это объясняет, почему оптимизатор принял решение использовать
соединение таблиц с применением вложенных циклов (Nested Loops
Join) и сделать таблицу InvoiceLinesExtended «внешней» таблицей:
потому что он предполагал, что это только одна строка.

7. Обновите данные статистики, чтобы исправить их. После этого вы
сможете увидеть, что на самом деле должен делать запрос. Выпол-
ните шаг 6 сценария.

-- Шаг 6. Обновите статистику до правильного значения и очистите
-- кеш процедур.
UPDATE STATISTICS Sales.InvoiceLinesExtended
WITH ROWCOUNT = 3652240
GO

ALTER DATABASE SCOPED CONFIGURATION CLEAR PROCEDURE_CACHE
GO

8. Запустите запрос еще раз, используя шаг 7 сценария, и просмотрите
новый фактический план выполнения. Вы заметите, что запрос ра-
ботает немного быстрее:

-- Шаг 7. Запустите запрос еще раз. Он работает быстрее.
SELECT si.InvoiceID, sil.StockItemID
FROM Sales.InvoiceLinesExtended sil

84  Глава 2. Интеллектуальная настройка производительности

JOIN Sales.Invoices si
ON si.InvoiceID = sil.InvoiceID
AND sil.StockItemID >= 225
GO

9. Выполните шаг 8, чтобы посмотреть, улучшился ли новый фактичес-
кий план.

-- Шаг 8. Как выглядит фактический план на этот раз?
-- Он отличается от предыдущего, потому что статистика актуальна
SELECT st.text, cp.plan_handle, qps.query_plan
FROM sys.dm_exec_cached_plans AS cp
CROSS APPLY sys.dm_exec_sql_text(cp.plan_handle) AS st
CROSS APPLY sys.dm_exec_query_plan_stats(cp.plan_handle) AS qps
WHERE qps.dbid = db_id(‘WideWorldImporters’)
GO

 Щелкнув мышью query_plan для строки, которая соответствует тек-
сту «Шаг 7. Запустите запрос еще раз…», вы увидите план, аналогич-
ный представленному на рис. 2.26.

Рис. 2.26. Фактический план выполнения для улучшенного запроса

 План выполнения запроса кардинально отличается от предыдуще-
го. Вы можете видеть, что в этом случае оптимизатор создает план,
в котором сначала выполняется поиск по индексу для таблицы
InvoiceLinesExtended, а затем операция соединения таблицы с самой
собой с помощью поиска по ключу кластеризованного индекса (Key
Lookup). Для запроса, использующего доступные индексы, это го-
раздо более эффективный способ выполнить соединение промежу-
точного результата запроса с другими таблицами и отфильтровать
полученные результаты.

 Теперь, когда у вас есть возможность в любой момент увидеть фак-
тический план выполнения запроса и вам не нужно включать специ-
альные флаги, которые могут выполнять дорогостоящие операции,
или запускать запрос в автономном режиме, вы видите, что эта воз-
можность дополняет мощный арсенал средств настройки произво-

База данных в памяти  85

дительности запросов и устранения неполадок, имеющихся в вашем
распоряжении.

 Упрощенное профилирование запросов – это просто здорово! Если
вы потратили какое-то время на поддержку SQL-серверов в про-
мышленной среде, решая проблемы с производительностью, то со-
гласитесь, что встроенная диагностика, доступная в любое время и в
любом месте, – это поистине глоток свежего воздуха.

База данных в памяти
В SQL Server 2014 мы представили функцию OLTP в памяти (In-Memory
OLTP), ключевой концепцией которой была концепция таблиц, оптими-
зированных для выделения памяти. При использовании этой функции
вся таблица хранится в памяти, но именно оптимизированный (читайте:
без кратковременных блокировок, latch-free) доступ делает ее особенной.
В SQL Server 2016 мы значительно усовершенствовали функцию In-Memory
OLTP. Более подробно об этой функции рассказывается по ссылке https://docs.

microsoft.com/en-us/sql/relational-databases/in-memory-oltp.
Когда мы работали над новыми функциями для SQL Server 2019, Сла-

ва Окс (Slava Oks), Пэм Лахуд (Pam Lahoud), Брайан Карриг (Brian Carrig),
Аргенис Фернандес (Argenis Fernandez) и другие члены команды инжене-
ров собрались вместе и решили совместно назвать новый набор функций
базой данных в памяти (In-Memory Database). Это новое семейство функ-
ций, в которые входит и In-Memory OLTP.

То, что в SQL Server 2019 названо базой данных в памяти, включает в себя
целый набор различных функций:

• In-Memory OLTP;
• оптимизированные для выделения памяти метаданные TempDB;
• гибридный буферный пул;
• поддержка постоянной памяти.

Полный список этого набора функций доступен по адресу https://docs.mic-

rosoft.com/en-us/sql/relational-databases/in-memory-database?view=sqlallproducts-allversions.
В этом разделе мы рассмотрим все эти новые возможности, кроме

In-Memory OLTP (которая не является «новшеством» SQL Server 2019).

Метаданные TempDB, оптимизированные
для выделения памяти
На протяжении всего времени, в течение которого я работал с SQL Server,

производительность параллельных подключений при использовании вре-
менных таблиц была очень низкой. Это приводило к тому, что почти каж-
дый администратор SQL Server настраивал tempdb для использования

86  Глава 2. Интеллектуальная настройка производительности

нескольких файлов. Вы можете прочитать больше об истории приключе-
ния с этими ресурсами:

• Inside TempDB (Подробно о TempDB) – выступление Боба Уорда (Bob
Ward) на саммите PASS 2017 года (https://www.youtube.com/watch?v=SvseG-

Mobe2w);
• блог Пола Рэндала (Paul Randal) о добавлении файлов tempdb (https://

www.sqlskills.com/blogs/paul/correctly-adding-data-files-tempdb/).

Один из аспектов использования файлов tempdb, которому большинст-
во профессионалов SQL не уделяют особого внимания (поскольку сейчас
это стало обычной практикой), заключается в том, что вы создаете для
механизма SQL Server схему разделения данных для доступа к страницам
размещения, таким как страницы PFS, GAM и SGAM. Подобный тип схемы
полезен, потому что работа с использованием временных таблиц приводит
к «утяжелению» таких операций, как создание таблиц, выделение страниц,
удаление таблиц. В этом случае возникает ситуация конкуренции на этих
системных страницах размещения – так называемые кратковременные
блокировки, или «защелки» (latches). Создавая несколько файлов, вы рас-
пространяете на них и конкуренцию за временные блокировки на страни-
цах этих файлов, что повышает производительность в ситуации, когда с
tempdb работает множество параллельных подключений.

После создания нескольких файлов (начиная с версии SQL Server 2016
программа установки может сделать это автоматически, или же вы можете
настроить этот параметр установки вручную) при более высокой одновре-
менной рабочей нагрузке на базу данных tempdb число ожиданий временно
заблокированных страниц может увеличиться. Эти ожидания затрагивают
страницы, принадлежащие объектам, которые вы не можете распознать,
например такие, как sysschobjs. Это ожидания блокировки страниц для
страниц системных таблиц в базе данных tempdb. При быстром создании и
удалении таблиц SQL Server должен выполнять внутренние операции чте-
ния/записи на страницах системных таблиц, чтобы поддерживать согласо-
ванность метаданных таблиц. Эти операции приводят к увеличению кон-
куренции пользователей за страницы, где установлены кратковременные
блокировки, и, следовательно, к увеличению времени ожидания пользо-
вателей в очереди доступа к заблокированному ресурсу. В прошлом, когда
клиенты сталкивались с высокой конкуренцией за заблокированные стра-
ницы в системных таблицах и обращались ко мне в службу поддержки, я
отвечал: «К сожалению, вы должны уменьшить нагрузку на базу данных
tempdb, чтобы избежать этой проблемы».

Пэм Лахуд (Pam Lahoud) очень хорошо описывает эту проблему в сво-
ем блоге, размещенном по адресу https://blogs.msdn.microsoft.com/sql_server_team/

tempdb-files-and-trace-flags-and-updates-oh-my/.
В SQL Server 2019 появляется решение – метаданные tempdb, оптими-

зированные для выделения памяти. В таблицах, оптимизированных для

База данных в памяти  87

выделения памяти (помните известный проект Hekaton («Гекатон»)?) не
может быть кратковременных блокировок страниц, поскольку все данные
этих таблиц размещены и хранятся в памяти. Если таблицы, оптимизи-
рованные для выделения памяти, являются «просто схемой», то у них нет
ограничений, связанных со временем их жизни. Это идеальная платформа
для системных таблиц tempdb. Поскольку база данных tempdb создается
заново при каждом перезапуске сервера, системные таблицы не должны
быть долговечными. А так как в таблицах, оптимизированных для выде-
ления памяти, хранятся только метаданные (а не данные во временных
таблицах), потребление памяти для них должно быть небольшим. Равиндер
Вуппула (Ravinder Vuppula), ведущий разработчик этого проекта, назвал
создание системных таблиц tempdb «гекатонизированным».

Метаданные tempdb по умолчанию не используют таблицы, оптимизи-
рованные для выделения памяти, при установке SQL Server. Вы должны
выполнить следующую команду T-SQL, чтобы включить эту возможность:

ALTER SERVER CONFIGURATION SET MEMORY_OPTIMIZED TEMPDB_METADATA = ON

Вы можете просмотреть мою демонстрацию данной функции на выступ-
лении SQLBits 2019 по ссылке https://sqlbits.com/Sessions/Event18/Keynote. Брент
Озар (Brent Ozar) в своем блоге сказал об этой возможности, увидев ее
демонстрацию на саммите PASS в 2018 году: «…это улучшение работы с
TempDB просто великолепно. Это реальное улучшение, которое будет иметь
огромную популярность. Люди долго боролись с неразрешимыми пробле-
мами конкуренции TempDB и с блокировками и никак не могли справиться
с этим».

Но вы должны попробовать эту возможность сами, чтобы увидеть ее
в действии. Давайте рассмотрим пример того, как метаданные tempdb,
оптимизированные для выделения памяти, могут значительно улучшить
параллельную работу приложений, использующих временные таблицы.
Все сценарии для этого примера размещены в каталоге ch2_intelligent_
performance\inmem\tempdb. Этот пример немного сложнее, и для него
потребуется координировать или эмулировать одновременную работу
нескольких пользователей. Поэтому вам понадобится бесплатный инстру-
мент для нагрузочного тестирования под названием ostress, который мож-
но загрузить по ссылке www.microsoft.com/en-us/download/details.aspx?id=4511. Этот
инструмент в настоящее время доступен только для Windows. Данный при-
мер будет по-прежнему работать с SQL Server, установленным на Linux;
просто вам понадобится клиент Windows для управления параллельными
пользовательскими подключениями с помощью ostress.

Кроме того, я настроил свой SQL Server на виртуальной машине с
восемь ю логическими процессорами. Когда я запустил программу уста-
новки SQL Server, она автоматически создала восемь файлов данных
tempdb. Я рекомендую вам убедиться, что у вас есть как минимум восемь
файлов данных tempdb, если в вашей системе имеется восемь или более

88  Глава 2. Интеллектуальная настройка производительности

логических процессоров. Подробнее о том, как это сделать, читайте в
следующей статье технической поддержки: https://support.microsoft.com/en-us/

help/2154845/recommendations-to-reduce-allocation-contention-in-sql-server-tempdb-d.

1. Запустите сценарий disableopttempdb.cmd, чтобы отключить функ-
цию оптимизации метаданных tempdb для выделения памяти. По
умолчанию эта возможность отключена; однако рекомендуется
запустить этот сценарий на тот случай, если она была включена в
какой-то момент. Вам нужно запустить данный сценарий на том
сервере, где установлен SQL Server (или использовать другой метод
для удаленного перезапуска SQL Server). Для этого сценария пона-
добится ввести имя учетной записи системного администратора и
имя сервера. Вы можете изменить этот способ аутентификации и
использовать встроенную аутентификацию, изменив -Usa на -E, и
не забудьте заменить текущее значение параметра -S на имя вашего
сервера:

sqlcmd -Usa -idisableopttempdb.sql -Sbwsql2019
net stop mssqlserver
net start mssqlserver

 Как видите, этот сценарий дает инструкцию Windows Server
перезапустить службу SQL Server (mssqlserver). Вы можете написать
свой собственный сценарий для Linux, используя команду типа sudo
systemctl restart mssql-server для перезапуска SQL Server.

 Сценарий disableopttempdb.sql содержит следующую инструкцию
T-SQL:

ALTER SERVER CONFIGURATION SET MEMORY_OPTIMIZED TEMPDB_
METADATA = OFF
GO

2. Запустите сценарий T-SQL tempstress_ddl.sql, чтобы создать базу
данных и хранимую процедуру, которая просто создает временную
таблицу:

DROP DATABASE IF EXISTS DallasMavericks
GO

CREATE DATABASE DallasMavericks
GO

USE DallasMavericks
GO

CREATE OR ALTER PROCEDURE letsgomavs
AS

CREATE TABLE #gomavs (col1 INT)
GO

База данных в памяти  89

 Как видите, хранимая процедура на самом деле ничего не делает с
временной таблицей. Это показывает минимальный объем рабочей
нагрузки, который может повлиять на параллельную работу с мета-
данными временной таблицы (поскольку любой выход из хранимой
процедуры автоматически удаляет временную таблицу).

3. Теперь вы готовы к тому, чтобы создать паралельную рабочую нагруз-
ку на tempdb с помощью ostress. Используйте сценарий tempstress.
cmd для создания этой рабочей нагрузки с применением ostress:

ostress -Usa -Q"exec letsgomavs" -n50 -r10000
-dDallasMavericks -Sbwsql2019

 Вам может потребоваться изменить некоторые из параметров сце-
нария, например изменить -Usa на -E для использования встроенной
аутентификации Windows. Вы также можете изменить имя сервера
(изменив параметр -S). Параметр -n50 – это количество пользовате-
лей, создающих рабочую нагрузку, а -r10000 – количество итераций
для каждого пользователя. Обратите внимание на использование
параметра -Q для непосредственного запуска хранимой процеду-
ры – прием, который я узнал, работая над ранними версиями это-
го сценария для демонстрации. Использование параметра -Q для
ostress для непосредственного запуска запроса работает быстрее,
чем инструкция сценария с -i.

 Если вы используете учетную запись администратора (-Usa), вам бу-
дет предложено ввести пароль, после чего гонки начнутся. В зависи-
мости от мощности вашего компьютера этот нагрузочный сценарий
будет выполняться несколько минут.

4. Пока он выполняется, создайте новое подключение к SQL Server и
откройте сценарий T-SQL pageinfo.sql:

USE tempdb
GO

SELECT object_name(page_info.object_id), page_info.*
FROM sys.dm_exec_requests AS d
 CROSS APPLY sys.fn_PageResCracker(d.page_resource) AS r
 CROSS APPLY sys.dm_db_page_info(r.db_id, r.file_id,
r.page_id,'DETAILED')
 AS page_info
GO

 Этот сценарий использует новые функциональные возможности в
SQL Server 2019 для извлечения информации о странице из ресурса,
указанного в sys.dm_exec_requests, и для выгрузки в многоколоноч-
ном формате полей заголовка страницы.

90  Глава 2. Интеллектуальная настройка производительности

 Почему и в каком случае вам нужно использовать этот сценарий?
Потому, что когда у вас появляются ожидания кратковременных
блокировок страниц для базы данных tempdb, вы одновременно с
этим видите отчет о ресурсах в формате <dbid>: <fileid>: <pageid>. До
того, как появилась эта функция, вам нужно было вручную выпол-
нять команду DBCC PAGE (команду, которая официально не поддер-
живается), чтобы выяснить, к какому объекту относится страница,
для которой наблюдается ожидание снятия кратковременной бло-
кировки. Метод, продемонстрированный здесь, теперь официально
поддерживается при определении страницы в сценарии ожидания
снятия кратковременной блокировки.

 Ваши результаты при выполнении запроса на предыдущем шаге
должны выглядеть примерно так, как показано на рис. 2.27.

Рис. 2.27. Кратковременная блокировка страницы: ожидание
системных таблиц в базе данных tempdb

 Как описано выше, sysschobjs – это системная таблица, являющаяся «уз-
ким местом», поскольку временные таблицы создаются и удаляются.

5. Теперь давайте включим оптимизацию метаданных tempdb для
выде ления памяти. Запустите сценарий optimizetempdb.cmd на
сервере, где установлен SQL Server. Этот сценарий выполняет следую-
щее, однако вы можете использовать другие методы для включения
функции и перезапуска SQL Server:

sqlcmd -Usa -ioptimizetempdb.sql -Sbwsql2019
net stop mssqlserver
net start mssqlserver

 Сценарий optimizetempdb.sql содержит следующую инструкцию
T-SQL:

ALTER SERVER CONFIGURATION SET MEMORY_OPTIMIZED TEMPDB_METADATA = ON
GO

База данных в памяти  91

6. Убедитесь, что оптимизация метаданных tempdb для выделения па-
мяти включена, изучив файл журнала ошибок SQL Server ERRORLOG.
Вы должны увидеть такую запись в ERRORLOG:

Tempdb started with memory-optimized metadata.

7. Теперь снова запустите сценарий tempstress.cmd, создающий рабо-
чую нагрузку. На этот раз при той же рабочей нагрузке, без изме-
нений в приложении, для выполнения сценария потребуется чуть
более 30 секунд.

8. Запустите сценарий pageinfo.sql еще раз, чтобы увидеть, имеет ли
место ожидание снятия кратковременной блокировки страницы.
Ваши результаты должны содержать 0 строк!

9. Пока выполняется сценарий, запущенный на предыдущем шаге, соз-
дайте новое подключение к SQL Server и в нем запустите сценарий
T-SQL find_memoptimized_tables.sql. Ваши результаты должны вы-
глядеть примерно так, как показано на рис. 2.28.

Рис. 2.28. Системные таблицы tempdb после оптимизации
для выделения памяти

В окне результатов вы можете видеть все системные таблицы, оптими-
зированные для выделения памяти (ваш результат может содержать даже
больше таблиц, поскольку эта функция улучшается). Обратите внимание
на серьезные изменения значений в sysschobjs (но это не единственная
системная таблица, которую затронула оптимизация).

Вы можете задаться вопросом: сколько дополнительной памяти потреб-
ляется при использовании этой функции? Пока вы все еще работаете в дан-
ной среде, выполните запрос к DMV sys.dm_os_memory_clerks. Вы увиди-
те строку, в которой будут содержаться записи: type = MEMORYCLERK_XTP
и name = DB_ID_2. Столбец pages_kb – это примерное количество памяти,
потребляемой метаданными tempdb, оптимизированными для выделения
памяти. Как мы видим, для этого примера оно составляет около 200 Мб.

На данном этапе вы можете оставить флаг, переключающий опти-
мизацию для выделения памяти метаданных tempdb, включенным для

92  Глава 2. Интеллектуальная настройка производительности

свое го сервера, но если вы хотите выключить его, используйте сценарий
disableopttempdb.cmd.

Вы можете видеть преимущества этой функции, встроенной в ядро
СУБД. Вам нужно лишь установить один параметр конфигурации сервера,
перезапустить SQL Server – и уже можно начинать работать.

Если вы имеете доступ к представлениям каталога (catalog views) в базе
данных tempdb, то можете заметить, что при использовании метаданных
tempdb, оптимизированных для выделения памяти, существует несколь-
ко ограничений. Вы можете прочитать об этих ограничениях, а также най-
ти более подробную информацию об этой возможности, в документации,
размещенной по адресу: https://docs.microsoft.com/en-us/sql/relational-databases/data-

bases/tempdb-database?view=sqlallproducts-allversions#memory-optimized-tempdb-metadata.

Гибридный буферный пул
Устройства с постоянной памятью существуют уже несколько лет, но

сейчас они начинают набирать популярность. Концепция основана на
постоянно работающей аппаратной памяти с бесперебойным источником
питания. Подумайте о скорости оперативной памяти, обладающей еще
одним новым преимуществом: любые сохраненные данные гарантирован-
но выдержат перезапуск питания. Одним из наиболее популярных реше-
ний в области постоянной памяти является постоянная память от Intel
под названием Optane (www.intel.com/content/www/us/en/architecture-and-technology/

optane-technology/optane-for-data-centers.html).
Наша команда разработчиков SQL Server все время ищет способы опти-

мизировать доступ к данным, и при наличии постоянной памяти сущест-
вует несколько возможностей для такой оптимизации. Фактически еще в
SQL Server 2016 существовала функция, называемая «остатком кеширова-
ния журнала», основанная на использовании постоянной памяти (см. сооб-
щение в блоге Кевина Фарли (Kevin Farlee) на эту тему https://docs.microsoft.

com/ru-ru/archive/blogs/sqlserverstorageengine/transaction-commit-latency-acceleration-using-

storage-class-memory-in-windows-server-2016sql-server-2016-sp1).
Поскольку постоянная память – это одна из разновидностей памяти, SQL

Server может обращаться к любым данным, хранящимся на постоянном
запоминающем устройстве, как будто это обычная память. Это означает,
что SQL Server может найти способ обойти код ядра при обработке вво-
да-вывода, выполняемого при доступе к данным на устройствах постоян-
ной памяти.

Одной из таких новых возможностей является гибридный буферный пул.
Идея заключается в том, что если вы разместите файлы данных вашей базы
данных в постоянной памяти, SQL Server может просто получить доступ к
страницам файла данных с этого устройства без необходимости копировать
данные из файла данных на страницу буферного пула. Гибридный буфер-
ный пул использует вызовы ядра, привязанные к памяти, чтобы реализо-
вать концепцию базы данных в памяти. Если страница базы данных была

База данных в памяти  93

изменена, ее необходимо скопировать в буферный пул и затем в конечном
итоге записать обратно на постоянное запоминающее устройство.

Производительность такой системы может варьироваться в зависимости
от возможности использования тех преимуществ, которые предоставляет
использование гибридного буферного пула, но обычно от этой технологии
можно ожидать некоторого повышения производительности, особенно
если для вашей базы данных характерны высокие нагрузки на чтение.

В SQL Server, если вы разместили один или несколько файлов базы
данных на постоянном запоминающем устройстве, вы можете включить
гибридный буферный пул для всех баз данных для вашего сервера с по-
мощью оператора T-SQL:

ALTER SERVER CONFIGURATION SET MEMORY_OPTIMIZED HYBRID_BUFFER_POOL = ON

Примечание. При включении гибридного буферного пула для всех баз данных необ-

ходимо перезапустить SQL Server.

Вы можете включить гибридный буферный пул для конкретной базы
данных с помощью следующего оператора T-SQL (при этом вам не потре-
буется перезапускать сервер):

ALTER DATABASE <имя_базы_данных> SET MEMORY_OPTIMIZED = ON

Чтобы узнать больше о том, как включить на ваших устройствах посто-
янную память для баз данных, как отключить гибридный буферный пул и
как использовать гибридный буферный пул, обратитесь к документации
по адресу https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/hybrid-
buffer-pool.

Поддержка постоянной памяти
Если вы не хотите включать гибридный буферный пул, но хотели бы,

чтобы SQL Server использовал возможности чтения и записи данных и жур-
нала транзакций на устройствах с постоянной памятью, вы можете настро-
ить используемое устройство как устройство постоянной памяти в Linux.
SQL Server автоматически обнаружит его и будет использовать операции
на основе памяти для перемещения данных в кеш SQL Server и на устрой-
ство, минуя стек ввода-вывода ядра Linux. Этот процесс называется «про-
светлением» (элементом паравиртуализции).

Dell EMC показала значительные улучшения производительности при
использовании «просветления», как описано в публикации www.emc.com/

about/news/press/2019/20190402-01.htm. По словам Dell, «благодаря новой посто-
янной памяти Intel® Optane™ DC клиенты могут ускорить работу баз дан-
ных в оперативной памяти, виртуализации и анализа данных, увеличив
объем памяти в 2,5 раза для отдельных серверов PowerEdge. Используя
постоянную память Intel® Optane™ DC, PowerEdge R740xd обеспечива-

94  Глава 2. Интеллектуальная настройка производительности

ет увеличение объема обрабатываемых транзакций до 2,7 раза, по срав-
нению с числом транзакций в секунду, обеспечиваемым дисками NVMe
в виртуализированной среде предварительного просмотра Microsoft SQL
Server 2019, работающим на VMware ESXi.1».

Вы можете прочитать все подробности о том, как включить устройство
постоянной памяти в Linux для SQL Server, по ссылке https://docs.microsoft.com/

en-us/sql/linux/sql-server-linux-configure-pmem?view=sqlallproducts-allversions.

Конфликт вставки на последней странице
Давайте рассмотрим распространенную проблему пользователей SQL
Server, которая оставалась нерешенной в течение очень долгого време-
ни. Вы хотите построить таблицу с первичным ключом, который будет
использоваться в кластеризованном индексе. И для этого первичного клю-
ча используются последовательные значения. Другими словами, каждая
вставка строки приводит к добавлению нового значения ключа в порядке
увеличения. Наиболее распространенным примером такого ключа являет-
ся столбец, использующий объект SEQUENCE или свойство IDENTITY.

Хотя этот подход в большинстве случаев работает нормально, все же
здесь скрывается сложная проблема, связанная с производительностью
приложений. Каждый раз, когда запрос должен изменить страницу, SQL
Server должен физически защищать другие запросы от одновременного
изменения или чтения структуры страницы (даже при наличии такой воз-
можности, как блокировка на уровне строк), используя кратковременную
блокировку страницы.

Если бы все пользователи пытались изменить одну и ту же страницу,
производительность вашего приложения ухудшилась бы из-за конкурен-
ции за блокировку страницы. Если вы строите кластеризованный индекс
по последовательному ключу, данные сортируются по этому ключу. Каждая
вставка будет пытаться вставить новую строку на последней странице
листового уровня кластеризованного индекса. И если многие пользова-
тели одновременно выполняют вставки, все они могут в конечном ито-
ге попытаться изменить последнюю страницу индекса, отсюда и термин
«конфликт вставки на последней странице».

Хотя описанная ситуация и не идеальна, она, как правило, не вызыва-
ет больших проблем, пока не произойдет явление, называемое «колонной»
кратковременных блокировок. Пэм Лахуд (Pam Lahoud), старший руко-
водитель программы в команде, работающей над SQL Server (известная
также как @SQLGoddess), показала мне следующий ресурс, посвященный
проблеме с «колонной»: https://blog.acolyer.org/2019/07/01/the-convoy-phenomenon/.
В контексте проблемы конкуренции за вставку на последней странице для
SQL Server разделение страницы является примером сценария, в котором
может сформироваться «колонна». Разделение страницы может произой-
ти, если на странице недостаточно строк для нового INSERT и в кластеризо-

Конфликт вставки на последней странице  95

ванном индексе должна быть создана новая страница. Пэм также провела
отличную аналогию с проблемой «колонны». По словам Пэм, «пробки –
обычная аналогия, используемая при описании этой проблемы. Если у вас
есть дорога, по которой движется транспортный поток, равный макси-
мальной пропускной способности этой дороги, то пока весь поток продол-
жает двигаться с одинаковой скоростью, движение будет постоянным, хотя
и немного замеделенным. Как только на дороге происходит что-то, при-
водящее к тому, что водители нажимают на тормоза, например впереди
оказывается водитель, едущий слишком медленно, возникает опасность
на дороге или автомобили приближаются к сложной развязке, движение
затрудняется. Если автомобили продолжают подъезжать к месту затора
движения с той же скоростью, что и раньше, ситуация на дороге становит-
ся все хуже и хуже. Водители все еще продвигаются вперед, но очень мед-
ленно. На этом этапе пропускная способность не восстановится до тех пор,
пока число автомобилей, въезжающих на дорогу, резко не уменьшится и
не станет намного ниже, чем то значение транспортного потока, которое
соответствует пропускной способности дороги».

Многие пользователи в сообществе SQL, технической поддержке и раз-
работке решали эту проблему различными способами на протяжении мно-
гих лет. О многих из них упоминается в статье технической поддержки,
размещенной на странице https://support.microsoft.com/kb/4460004. А как насчет
решения, реализованного внутри самого ядра СУБД и которое не потребу-
ет внесения изменений в приложение? Когда я увидел, что наше решение
появилось в версии SQL Server 2019 CTP 3.1, я знал, что эта проблема уже
обсуждалась нашей командой инженеров, рассмотревших множество воз-
можных решений. Я расспросил Вонсок Ким (Wonseok Kim), ведущего раз-
работчика этой функции, об истории ее реализации. Он показал мне вет-
ку сообщений электронной почты, которая на самом деле имелась в моей
почтовой папке, но я забыл о ней. Оказывается, в переписке, относящей-
ся к работе над этим подходом, часто встречалось знакомое имя – Слава
Окс (Slava Oks). Слава работал над этой идеей вместе со многими другими
выдающимися программистами из команды разработчиков SQL Server.

Решение теперь существует в виде нового параметра для создания индек-
сов – OPTIMIZE_FOR_SEQUENTIAL_KEY. Добавив этот параметр в ограни-
чение индекса или первичного ключа, вы сообщаете SQL Server, что нужно
использовать новый код, чтобы попытаться избежать проблем с «колон-
ной» . Этот параметр не устраняет кратковременные блокировки страниц
и не предотвращает проблему конфликта кратковременных блокировок.
Что он делает, так это старается избежать серьезных проблем в ситуации,
когда образуется «колонна», чтобы выровнять вашу рабочую нагрузку на
сервер, сделать ее постоянной.

Подробнее об этой возможности и о том, как ее использовать, вы може-
те прочитать в документации по ссылке https://docs.microsoft.com/en-us/sql/t-sql/

statements/create-index-transact-sql?view=sqlallproducts-allversions#sequential-keys.

96  Глава 2. Интеллектуальная настройка производительности

Примечание. Если вы используете этот параметр, то можете заметить появившийся
новый тип ожиданий (wait_type) с названием BTREE_INSERT_FLOW_CONTROL. Он яв-

ляется частью механизма, позволяющего избежать или уменьшить проблему с «ко-

лонной».

Однако этот вариант не для всех. Если вы не используете последователь-
ные значения ключа для кластеризованного индекса или не видите серьез-
ных конфликтов, я бы не рекомендовал включать этот параметр. Факти-
чески вы можете сильно ухудшить производительность вашей системы,
слепо применяя его в любом кластеризованном индексе.

Если вы хотите попробовать это сами, убедитесь, что у вас есть достаточ-
но «широкая» таблица. Когда я тестировал эту возможность, в моем слу-
чае простое создание таблицы с одним столбцом IDENTITY не привело к
сущест венному увеличению производительности. Что вам нужно сделать –
так это вызвать условия, при которых происходит достаточное количество
разбиений страниц, чтобы заметить проблему с «колонной».

Примечание. Возможно, что методы, описанные в статье https://support.microsoft.

com/kb/4460004, помогут вам обеспечить более высокую производительность, но
этот новый параметр для индекса может дать вам необходимую стабильную произ-
водительность, и при этом вам придется гораздо меньше вмешиваться в работу ва-

шего приложения.

Резюме
Эта глава была очень длинной и показала невероятные возможности
интеллектуальной настройки производительности, встроенные в SQL
Server 2019, призванные помочь вам повысить производительность без
изменения уже работающих приложений. Я привел в ней много подробных
примеров, чтобы вы могли сами убедиться в богатых возможностях новых
функций, а также посмотреть, как они могут помочь повысить производи-
тельность и сэкономить ваше время, затрачиваемое на настройку произво-
дительности как при развертывании SQL Server 2019 в вашей организации,
так и в разработке пользовательских приложений.

Глава 3
Новые возможности

безопасности

Безопасность имеет важное значение для управления данными. У SQL
Server надежная репутация не только в области создания защищенных про-
дуктов, но и в области предоставления всех необходимых возможностей,
которые помогут вам защитить ваши данные и получить доступ к экзем-
пляру SQL Server. Эта глава о том, как мы расширили функции безопас-
ности в SQL Server 2019.

Улучшение достигнутых показателей
Прочитав и попрактиковавшись в выполнении примеров из предыдущей,
очень длинной главы о производительности, вы можете бегло просмотреть
эту главу, сосчитать количество страниц в ней и спросить себя: «Разве
безопас ность – это не важно?» Ответ: разумеется, важно! Для SQL Server
безопасность является одним из важнейших компонентов общей платфор-
мы данных.

Новые возможности безопасности в SQL Server 2019 и задачи, для реше-
ния которых они предназначены, включают в себя такие, как:

• стратегия постоянного шифрования с защищенными областя-
ми (Always Encrypted with Secure Enclaves).

 Цель – предоставить комплексное решение для шифрования, но не
ограничивать возможности приложений в части запросов к данным;

• классификация данных и аудит (Data Classification and Auditing).
 Цель – предоставить встроенную систему классификации объектов

SQL Server, а также обеспечить возможность аудита для просмотра
данных, помеченных для классификации;

• прозрачное шифрование данных (Transparent Data Encryption,
TDE) с возможностью приостановить и возобновить его.

 Цель – обеспечить механизм для планирования дорогостоящих опе-
раций шифрования данных, хранимых в базе данных, чтобы эти
операции можно было выполнять в период минимальной нагрузки;

98  Глава 3. Новые возможности безопасности

• управление сертификатами (Certificate management).
 Упрощенное управление сертификатами с помощью SQL Server,

включая сценарии экземпляра отказоустойчивого кластера (Failover
Cluster Instance, FCI) и группы постоянной доступности Always On
(Always On Availability Group).

Эти улучшения могут показаться вам чем-то весьма небольшим, одна-
ко каждая новая функция нацелена на решение важных проблем безопас-
ности, с которыми сталкиваются наши клиенты, и разработана на осно-
выве их отзывов. Например, классификация данных была встроена в SQL
Server для соответствия требованиям Генерального регламента о защите
персональных данных (General Data Protection Regulation, GDPR), но может
использоваться для многих других задач классификации и аудита.

Также очень важно помнить, что SQL Server 2019 поставляется с бога-
тым набором функций безопасности, представленных в SQL Server 2016.
В состав этих функций входят:

• функция постоянного шифрования (Always Encrypted);
• ограничение видимости важных данных для непривилегированных

пользователей, или динамическая маскировка данных (Dynamic data
masking);

• ограничение видимости данных на уровне строк, или защита на
уровне строк;

• аппаратное ускорение прозрачного шифрования данных.

Вы можете прочитать обо всех этих функциях безопасности по ссылке
https://docs.microsoft.com/en-us/sql/database-engine/whats-new-in-sql-server-2016?view=sql-
server-2017#security-enhancements.

Важно иметь в виду, что в течение почти десятилетия SQL Server был
наименее уязвимой базой данных и платформой данных, опережая осталь-
ные продукты с большим отрывом, согласно результатам мониторинга
базы данных уязвимостей (National Vulnerability Database, NVD), поддер-
живаемой Национальным институтом стандартов и технологий (National
Institute of Standards and Technology, NIST). Подробную информацию об
этом можно найти на сайте https://nvd.nist.gov/.

Давайте рассмотрим каждую из новых функций безопасности SQL Server
2019 более подробно, начиная со стратегии постоянного шифрования с
защищенными областями (Always Encrypted with Secure Enclaves).

Стратегия постоянного шифрования
с защищенными областями (Always Encrypted
with Secure Enclaves)
До появления версии SQL Server 2016 у SQL Server было несколько способов
шифрования данных, в том числе:

Стратегия постоянного шифрования с защищенными областями  99

• шифрование соединений (Encrypting connections) – все данные
(данные протокола TDS), которыми обмениваются клиентское при-
ложение и SQL Server, зашифрованы;

• шифрование данных (Encrypting data) в таблицах SQL Server с ис-
пользованием T-SQL (иногда называемое шифрованием столбцов
данных или ячеек таблиц);

• прозрачное шифрование данных (Transparent Data Encryption,
TDE) – шифрование хранящихся данных или данные, зашифрован-
ные на уровне файлов базы данных SQL Server.

Ни одно из этих решений не обеспечивает сквозного механизма шиф-
рования. И что еще более важно, администраторы SQL Server контролиру-
ют ключи, используемые для шифрования данных. Поэтому не реализует-
ся концепция разделения обязанностей. В мире современных требований
безопасности владельцы приложений (т. е. владельцы бизнеса) хотят пол-
ностью контролировать безопасность своих данных. Они хотят, чтобы
такие роли, как администраторы баз данных, управляли инфраструктурой
платформы данных, но не имели доступа к бизнес-данным или ключам,
используемым для управления доступом к этим данным.

В SQL Server 2016 мы представили функцию постоянного шифрования
(Always Encrypted) для решения этих проблем. Постоянное шифрование
берет свое начало от проектов в Microsoft Research. Как говорит главный
инженер-программист Microsoft, Рагхав Каушик (Raghav Kaushik): «…есть
два проекта, которые стоит упомянуть. Одним из них является проект
Cipherbase в MSR-Redmond, который пытался построить обработку запро-
сов на зашифрованных данных, вторым – проект Trusted Cloud в MSR-
Cambridge, который больше фокусировался на построении архитектурных
блоков вокруг безопасного оборудования».

На рис. 3.1 показан пример архитектуры и потока постоянного шифро-
вания данных.

Рис. 3.1. Постоянное шифрование данных в SQL Server 2016

Постоянное шифрование Клиентская
сторона

Поиск отдельной
пользовательской

записи

Серверная
сторона

Запрос

Результирующий
набор данных

(зашифрованных)

Конфиденциальные
данные остаются зашиф-
рованными в SQL Server

Расширенная
библиотека
SQL Server

Основной ключ
(на уровне столбцов)

Ключ шифрования
(на уровне столбцов)

Набор
данных CIPHERTEXT

Customer

Customer

Credit card #

Credit card # Exp.

Exp. Tim Irish

Alicia Hodge

Denny Usher
Denny Usher 5/17

5/17

7/19

4/18

0x7ff654ae6d

1x7fg655se2e

0y8fj754ea2c
4949-8003-8473-1930

100  Глава 3. Новые возможности безопасности

Основная идея этого подхода – клиентское приложение, владельцы кото-
рого контролируют жизненный цикл шифрования. Все данные передаются
из клиентского приложения в SQL Server в зашифрованном виде, хранятся
в SQL Server в зашифрованном виде (на уровне столбцов) и отправляют-
ся обратно в клиентское приложение в зашифрованном виде. Только кли-
ентское приложение может расшифровать данные на уровне приложения.
Кроме того, ключи, используемые для шифрования и дешифрования дан-
ных, на самом деле не хранятся в SQL Server. Место размещения ключей,
принадлежащих владельцам приложений, хранится в SQL Server. Но доступ
к этим ключам контролируется приложением.

Похоже, это отличное решение, однако в нем есть один недостаток.
Поскольку все дешифрование происходит в клиентском приложении,
некоторые виды запросов к данным не поддерживаются (например, под-
держиваются только операторы равенства WHERE). Кроме того, индексы
для данных, зашифрованных с использованием постоянного шифрования,
не поддерживаются. Учитывая, что клиентское приложение – единствен-
ное место, где происходит дешифрование, не существует способа создать
индекс, если постоянное шифрование включено. SQL Server должен будет
отправить все данные для столбцов, зашифрованных как часть индекса, в
клиентское приложение, чтобы построить индекс, а затем отправить его
обратно на сервер. Таким образом, какие бы возможности ни обещала кон-
цепция постоянного шифрования, эти рамки делают ее... ну, сильно огра-
ниченной, в которой реализуется всего несколько сценариев.

Существует ли выход из этого положения? Да, и он предлагается в кон-
цепции под названием «Защищенные области» (Secure Enclaves).

Почему используется термин «области»?
Словарь Вебстера определяет область, или анклав (enclave) (www.merriam-

webster.com/dictionary/enclave), как «отдельную территориальную, культур-
ную или социальную единицу, заключенную внутри чужой территории».
В компью терном мире это защищенная зона, которая является безопасной
и независимой от враждебных захватчиков. Эти захватчики могут быть
хакерами, но, к сожалению, они также могут быть системными админист-
раторами или администраторами баз данных.

Intel выпустила концепцию анклава в своем чипсете, известную как
Software Guard Extensions (SGX). Вы можете прочитать о ней по ссылке
https://software.intel.com/en-us/blogs/2016/06/06/overview-of-intel-software-guard-extension-

enclave. SGX поддерживает инструкции в ЦПУ, обеспечивающие возмож-
ность создания защищенных областей памяти, которые безопасны для
шифрования и обеспечивают защиту от вторжения. Это интересно, но что,
если у вас нет чипа SGX? Microsoft предложила решение в виде виртуализи-
рованного анклава под названием «области памяти с защитой целостнос-
ти кода на основе виртуализации» (virtualization-based security, VBS). Вы
можете прочитать все подробности о VBS по ссылке www.microsoft.com/security/

Стратегия постоянного шифрования с защищенными областями  101

blog/2018/06/05/virtualization-based-security-vbs-memory-enclaves-dataprotection-through-

isolation/.
Что это означает для концепции постоянного шифрования, и почему это

важно?

Совместное использование постоянного шифрования
и защищенных областей
Защищенные области (анклавы) предоставляют уникальное решение

для «проблемы с индексами» при использовании постоянного шифрова-
ния. Данные, передаваемые из клиентского приложения на SQL Server и
обратно, по-прежнему полностью зашифрованы. Также зашифрованы дан-
ные в памяти SQL Server и на диске. Однако когда необходимо расшифро-
вать данные, например, для построения индекса или поддержки сложных
вычислений, дешифрование может происходить в защищенной области на
сервере. Эта защищенная область является защищенной областью памя-
ти в пространстве процессов SQL Server. Эта область памяти мала и тес-
но интегрирована в экспресс-сервисы механизма баз данных с помощью
API-интерфейсов защищенных областей (анклавов). Сложные вычисле-
ния – это запросы, которые используют такие возможности T-SQL, как
запросы диапа зонов или поиск по шаблону (т. е. LIKE). Защищенные обла-
сти предоставляют подобную возможность для решений, использующих
постоянное шифрование.

Просмотрите рис. 3.2 на странице документации по SQL Server (https://

docs.microsoft.com/en-us/sql/relational-databases/security/encryption/alwaysencrypted-

enclaves), где показано, как анклавы поддерживают расшифровку данных,
при этом не ослабляя их защиту, но также обеспечивают большую гибкость
для прило жений.

Рис. 3.2. Постоянное шифрование с защищенными областями

Настройка постоянного шифрования никогда не выполнялась начина-
ющими пользователями SQL Server. Это комплексное решение для слож-
ной проблемы. Но это мощная функция, особенно сейчас, когда вы можете
использовать ее совместно с защищенными областями.

Улучшенный
драйвер

клиентской
части

Защищенная
область (анклав)

Незашифрованный
текст

Зашифрованный
текст

Незашифрованный
текст

102  Глава 3. Новые возможности безопасности

Для использования постоянного шифрования совместно с защищен-
ными областями потребуется еще один важный компонент, называе-
мый службой аттестации. Служба аттестации используется клиент-
ским прило жением для проверки того, что защищенная область – анклав,
используемый для шифрования, – является доверенным. Для анклавов VBS
Windows предоставляет аттестацию вычислительного окружения (runtime
attestation), реализуемую Windows Defender System Guard (которая
использует службу с названием Host Guardian Service (HGS)). Вы можете
узнать больше о Windows Defender System Guard по ссылке www.microsoft.com/

security/blog/2018/04/19/introducing-windowsdefender-system-guard-runtime-attestation/.
Вы также можете прочитать более подробно о том, как приложения взаимо-
действуют с защищенными областями (анклавами), по ссылке https://docs.

microsoft.com/en-us/windows/desktop/api/enclaveapi/nf-enclaveapi-callenclave.
Кроме настройки VBS и службы Host Guardian Service, вам необходи-

мо еще раз погрузиться в технические подробности: ваше приложение
должно использовать поставщика, который поддерживает связь с анкла-
вом. Информацию о поддержке анклавов различными провайдерами
можно найти по ссылке https://docs.microsoft.com/en-us/sql/relational-databases/

security/encryption/always-encryptedenclaves?view=sqlallproducts-allversions#secure-enclave-
providers.

На момент написания этой книги SQL Server еще официально не поддер-
живал аппаратные анклавы, предоставляемые производителями микро-
схем, такими как Intel SGX. Я ожидаю, что эта поддержка вскоре появит-
ся, и вы можете регулярно сверяться с обновлениями документации по
постоянному шифрованию для анклавов по ссылке https://docs.microsoft.com/

enus/sql/relational-databases/security/encryption/always-encryptedenclaves?view=sqlallproduc
ts-allversions#why-use-always-encrypted-withsecure-enclaves. Сегодня Linux не поддер-
живает виртуальные анклавы, такие как VBS. Тем не менее я ожидаю, что
как только SQL Server обеспечит поддержку аппаратных анклавов, вскоре
появится их поддержка и в Linux.

Я не создал практический пример настройки и использования постоян-
ного шифрования и защищенных областей (анклавов). Как я уже говорил
ранее в этой главе, это не по силам начинающему пользователю SQL Server.
Это функция, реализуемая в масштабах предприятия, и для ее настройки
потребуется много времени. Но потраченное на ее настройку время оку-
пится, поскольку эта возможность приносит очень много практической
пользы. Якуб Шимашек (Jakub Szymaszek), старший менеджер программы и
руководитель, в чьей зоне ответственности находится постоянное шифро-
вание (Always Encrypted), предоставил несколько полезных ссылок, отно-
сящихся к этой теме.

Для самостоятельного изучения примера постоянного шифрования с
использованием анклава VBS вы можете подключиться к следующему репо-
зиторию GitHub: https://github.com/microsoft/sql-server-samples/tree/master/samples/

features/security/always-encrypted-with-secureenclaves. Якуб также провел отличную

Классификация данных  103

презентацию на конференции Microsoft Ignite, из которой можно почерп-
нуть более подробную информацию о функции постоянного шифрования с
использованием защищенных областей (анклавов). Презентация доступна
по ссылке https://myignite.techcommunity.microsoft.com/sessions/65357#ignite-html-anchor.

Классификация данных
Готовясь к выпуску версии SQL Server 2017, наша группа безопасности в
составе команды разработчиков SQL Server создала специальный набор
инструментов в SQL Server Management Studio (SSMS), чтобы помочь кли-
ентам классифицировать данные в базе данных SQL Server. Этот набор
инструментов включает в себя мастер классификации, набор сценариев
T-SQL и отчет. На рис. 3.3 показан мастер классификации данных в SSMS.

Рис. 3.3. Мастер классификации данных в SSMS

Одним из побуждающих факторов для создания такого инструмента
была растущая тенденция в компаниях и регулирующих органах в отно-
шении конфиденциальности данных. И решающим фактором стало то, что
Европейский союз готовил Генеральный регламент о защите персональ-
ных данных (General Data Protection Regulation, GDPR) (https://eugdpr.org/).

Совет. Генеральный регламент о защите персональных данных (GDPR) вступил в силу
в мае 2018 года. Если вы хотите получить полное руководство по использованию SQL
Server для удовлетворения требований GDPR в вашей организации, перейдите по
ссылке www.microsoft.com/en-us/trustcenter/cloudservices/sql/gdpr.

Идея состояла в том, чтобы проанализировать имена столбцов в вашей
базе данных и дать рекомендации о том, как классифицировать столб-

104  Глава 3. Новые возможности безопасности

цы с помощью метки (label) и типа информации (information_type). Тип
информации information_type можно использовать для указания типа дан-
ных в столбце (например: контактная информация, имя, финансы), а мет-
ку можно использовать для классификации степени конфиденциальности
(sensitivity) данных, хранящихся в этом столбце (конфиденциально, кон-
фиденциально-GDPR, конфиденциально-HIPAA и др.).

Созданный нами инструмент анализировал имена столбцов и искал
известные примеры, соответствующие определенным типам информации и
определенной степени конфиденциальности. Примером простого соответ-
ствия может быть любой столбец с именем, содержащим в нем слово Email.
Инструмент предоставлял рекомендации по меткам и типам информации
и позволял сохранить их в базе данных. После этого можно было построить
отчет для просмотра информации о выполненной классификации.

Предложенный инструмент был неплох, но у него было два ограничения:

• этот инструмент использовал концепцию SQL Server, называемую
расширенными свойствами (extended properties).

 Хотя этот подход поддерживается и работает, он не является наибо-
лее эффективным способом хранения метаданных о классификации
столбцов, поскольку представляет собой механизм поддержки об-
щих свойств (подробнее о расширенных свойствах можно прочитать
по ссылке https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-

procedures/sp-addextendedproperty-transact-sql);
• отсутствовал встроенный аудит доступа к столбцам, помеченным

для классификации. Аудит является важной частью любой систе-
мы классификации и необходим, чтобы удовлетворить требования
GDPR.

Поэтому наша команда работала над новым решением для SQL Server 2019
(которое также работает в Azure SQL Database) для встроенной классифика-
ции степени конфиденциальности (sensitivity classifications). Слово «встро-
енная» здесь означает новый набор операторов T-SQL, представлений
каталога и функций аудита.

Ниже приведен список операторов T-SQL, поддерживаемых в SQL Server
2019 для классификации:

• ADD SENSITIVITY CLASSIFICATION (https://docs.microsoft.com/en-us/sql/t-

sql/statements/add-sensitivity-classification-transact-sql);
• DROP SENSITIVITY CLASSIFICATION (https://docs.microsoft.com/en-us/

sql/t-sql/statements/drop-sensitivity-classification-transact-sql).

Эти операторы T-SQL позволяют сохранять метаданные непосредствен-
но в системных таблицах (предоставляемых представлениями каталога),
которые относятся к меткам и типам информации (information_types), свя-
занным со столбцами в таблице.

Классификация данных  105

Для просмотра этих метаданных используется новое представление
каталога, названное sys.sensitivity_classification (https://docs.microsoft.com/

en-us/sql/relational-databases/system-catalog-views/sys-sensitivity-classifications-transact-sql).
Кроме того, службы аудита SQL Server Auditing теперь поддерживают

новое свойство, называемое data_sensitivity_information, которое можно
использовать для аудита доступа к секретным данным. Эта функция позво-
ляет узнать, кто и когда пытался просматривать секретные данные, а также
к каким именно данным осуществлялся доступ.

Эти новые возможности были интегрированы в мастере SSMS, чтобы
соответствующие операторы T-SQL можно было использовать, работая
с базой данных в SQL Server 2019. Теперь SQL Server предоставляет воз-
можность встроенной классификации и аудита с помощью специального
инструмента в SSMS и поддерживаемых операторов T-SQL.

Примечание. Если вы использовали мастер с SSMS 17.0 или даже 18.0 в предыдущих
версиях SQL Server (до SQL Server 2019) и восстановили эту базу данных в SQL Server
2019, расширенные свойства классификации данных будут перенесены в новые ме-

таданные классификации степени конфиденциальности.

Давайте рассмотрим пример использования инструмента классифи-
кации данных SSMS, нового синтаксиса T-SQL, представлений каталога и
функций аудита.

Подготовительные шаги для использования
примеров, иллюстрирующих классификацию данных
Вначале вам нужно выполнить ряд настроек, чтобы использовать при-

меры, приведенные в этом разделе. В данной главе вы будете использовать
тестовую базу данных WideWorldImporters (вы можете прочитать боль-
ше об этой базе данных и ее схеме по ссылке https://docs.microsoft.com/en-us/sql/

samples/wide-world-importers-oltp-database-catalog). Если вы уже восстановили эту
базу данных, выполняя примеры из главы 2, то можете просто продолжать
использовать эту базу данных.

Эти примеры будут работать для версии SQL Server 2019, установленной
на Windows, в Linux и в контейнерах.

Вам также понадобится SQL Server Management Studio (SSMS) версии 18.2
или выше, чтобы выполнить все шаги из этого примера. Некоторые шаги
можно выполнить, используя предоставленные сценарии T-SQL, но несколь-
ко примеров основаны на использовании инструментов, встроенных в
SSMS. Вы можете загрузить последнюю версию SSMS, перейдя по ссылке
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms.

Все сценарии, приведенные в этой главе, можно найти в репозито-
рии GitHub, созданном для этой книги, в каталоге ch3_new_security_
capabilities\dataclassification.

106  Глава 3. Новые возможности безопасности

Чтобы использовать примеры из этой главы, вам необходимо выполнить
следующие шаги (пропустите эти шаги, если вы уже восстановили базу дан-
ных из главы 2):

1. Загрузите резервную копию базы данных WideWorldImporters, до-
ступную по ссылке https://github.com/Microsoft/sql-server-samples/releases/

download/wide-world-importers-v1.0/WideWorldImporters-Full.bak.
2. Восстановите эту базу данных на своем экземпляре SQL Server 2019.

Вы можете использовать для этого готовый сценарий restorewwi.
sql. Вероятно, вам придется изменить пути к каталогу, где разме-
щена ваша резервная копия, и к месту восстановления файлов базы
данных.

Использование классификации данных
Чтобы посмотреть на классификацию данных в действии, выполните

следующие шаги. В следующем разделе вы узнаете, как настроить аудит
для отслеживания действий пользователей, которые пытаются просматри-
вать столбцы таблицы, классифицированные по степени конфиденциаль-
ности.

1. Вы могли выполнять эти примеры более одного раза, поэтому запус-
тите сценарий setup_classification.sql:

-- Шаг 1. Если вы запускали эти демонстрации прежде, чем удалили
-- существующую классификацию данных
USE WideWorldImporters
GO

IF EXISTS (SELECT * FROM sys.sensitivity_classifications sc
WHERE object_id(‘[Application].[PaymentMethods]’) = sc.major_id)
BEGIN
 DROP SENSITIVITY CLASSIFICATION FROM [Application].
 [PaymentMethods].[PaymentMethodName]
END
GO

IF EXISTS (SELECT * FROM sys.sensitivity_classifications sc
WHERE object_id('[Application].[People]') = sc.major_id)
BEGIN
 DROP SENSITIVITY CLASSIFICATION FROM [Application].
 [People].[FullName]
 DROP SENSITIVITY CLASSIFICATION FROM [Application].
 [People].[EmailAddress]
END
GO

Классификация данных  107

2. Теперь используйте инструмент классификации данных SSMS,
чтобы классифицировать данные двух столбцов в базе дан-
ных WideWorldImporters. Запустите SSMS и найдите базу данных
WideWorldImporters в обозревателе объектов. Щелкните правой кноп-
кой мыши и выберите Tasks → Data Discovery and Classification →
Classify Data (Задачи → Обнаружение и классификация данных →
Классификация данных), как показано на рис. 3.4.

Рис. 3.4. Запуск инструмента классификации данных

3. Инструмент классификации анализирует имена столбцов для объ-
ектов в базе данных WideWorldImporters и создает рекомендации
относительно того, какие столбцы классифицировать, а также ка-
кие метки и тип информации (information_type) использовать.
Если вы запускаете инструмент классификации на базе данных
WideWorldImporters, в результате должно получиться 66 столбцов с
рекомендациями. Щелкните мышью эти рекомендации, чтобы уви-
деть результат, как показано на рис. 3.5.

4. Теперь вы увидите список столбцов с предлагаемыми вариантами
меток, относящихся к типу информации (information_type) и степе-
ни конфиденциальности (sensitivity). Значения, используемые для
этих рекомендаций, являются внутренней «механикой» этого ин-
струмента, и поэтому их нельзя настроить. Однако, вооружившись
T-SQL, я покажу вам, как «использовать свою собственную систе-
му классификации». Сохраните некоторые из этих рекомендаций,
проверив столбцы PaymentMethodName и FullName, затем нажмите

108  Глава 3. Новые возможности безопасности

Accept selected recommendations (Принять выбранные рекоменда-
ции). Перед тем как вы щелкнете «Принять», ваш экран должен вы-
глядеть примерно так, как показано на рис. 3.6.

Рис. 3.5. Рекомендации по классификации данных в SSMS

Рис. 3.6. Примите рекомендации по классификации

 Обратите внимание, что для PaymentMethodName существует
реко мендация Financial and Confidential (Финансовая и конфиден-
циальная информация): если вы выполните запрос к этой табли-

Классификация данных  109

це, то увидите значения Cash, Check, Credit-Card и EFT (Наличные,
Чек, Кредитная карта и Электронный платеж). Для FullName выдана
рекомендация Name и Confidential-GDPR (Имя и Конфиденциаль-
но-GDPR).

Примечание. Данный инструмент не гарантирует соответствия GDPR и даже не рас-

сматривает элементы GDPR. Это просто рекомендации, основанные на наших знани-

ях о GDPR. Если вам необходимо использовать вашу систему таким образом, чтобы
она для удовлетворяла требованиям GDPR, обязательно следуйте политикам и про-

цедурам вашей компании.

5. После того как вы нажмете «Принять», инструмент покажет вам, ка-
кие столбцы были выбраны, и позволит сохранить выбор. Значки
«мусорной корзины» позволяют вам удалить выбор и затем выбрать
новые столбцы. Обратите внимание, что количество рекомендуемых
столбцов было уменьшено на 2. На данный момент выберите Save
(Сохранить), как показано на рис. 3.7.

Рис. 3.7. Сохранение принятых рекомендаций

6. После сохранения принятых рекомендаций вы можете выбрать ва-
риант View Report (Просмотреть отчет), чтобы просмотреть визу-
альные данные о классификации данных, сохраненные в вашей базе
данных. Для отчета создается новая вкладка в SSMS. Обязательно на-
жмите значок «+» рядом со схемой Application (Приложение), чтобы
увидеть все столбцы, для которых выполнена классификация. Отчет
должен выглядеть так, как показано на рис. 3.8.

110  Глава 3. Новые возможности безопасности

Рис. 3.8. Отчет о классификации данных

 Отчет выполняет запрос к представлению каталога sys.sensitivity_
classification, а также к другим метаданным в базе данных. Отчет по-
казывает, сколько столбцов и таблиц из всех существующих столбцов
и таблиц было помечено метками. В отчете также показано распре-
деление значений label и information_type в базе данных. Обратите
внимание, что в нижней части отчета в списке столбцов отобража-
ются таблицы People_Archive и PaymentMethods_Archive. Почему?
Это связано с тем, что для этих таблиц создаются временные табли-
цы с системными версиями. Временные таблицы, представленные в
SQL Server 2016, предоставляют информацию об изменениях табли-
цы в базе данных на определенный момент времени (подробнее о
временных таблицах можно прочитать по ссылке https://docs.microsoft.

com/en-us/sql/relational-databases/tables/temporal-tables).
 Поскольку мы приняли рекомендации для столбцов в таблице, ко-

торая имеет временную таблицу, мы хотим быть уверены, что также
классифицируем столбцы в «скрытой» архивной таблице. У вас нет
прямого доступа к этим столбцам, но SQL Server сохраняет архивную
таблицу. Таким образом, любой доступ к временным данным также
можно проверить.

Примечание. Нельзя добавлять классификацию по степени конфиденциальности
непосредственно в архивные таблицы из временных данных. При удалении класси-

фикации по степени конфиденциальности для столбца вместе с ней удаляется клас-

сификация для архивной таблицы.

7. Если вы снова вернетесь на вкладку с сохраненными рекомендация-
ми, в панели увидите группу элементов Add Classification (Доба-
вить классификацию). Это способ вручную добавить классифика-

Классификация данных  111

цию по степени конфиденциальности, чтобы либо переопределить
рекомендации, либо выбрать столбец, для которого не были выданы
рекомендации. Вы по-прежнему получаете варианты, предоставля-
емые инструментом: метки и тип информации (information_type).
Если вы щелкнете Add Classification, то увидите на своем экране
картину, похожую на рис. 3.9.

Рис. 3.9. Добавление классификации вручную

8. Инструмент, которым мы воспользовались при демонстрации, –
отличный инструмент; но вы также можете использовать T-SQL,
чтобы добавить классификацию и использовать свою собственную
систему классификации данных. Сначала выполните сценарий
findclassification.sql; он иллюстрирует использование T-SQL для
просмотра всех существующих классификаций.

USE WideWorldImporters
GO

SELECT o.name as table_name, c.name as column_name, sc.information_
type, sc.label
FROM sys.sensitivity_classifications sc
JOIN sys.objects o
ON o.object_id = sc.major_id
JOIN sys.columns c
ON c.column_id = sc.minor_id
AND c.object_id = sc.major_id
ORDER BY sc.information_type, sc.label
GO

112  Глава 3. Новые возможности безопасности

 Ваши результаты должны быть аналогичны данным из полученного
ранее отчета.

9. Чтобы добавить собственную классификацию при помощи T-SQL,
используйте сценарий addclassification.sql. Выполните каждый шаг
сценария, чтобы добавить классификацию и увидеть новые резуль-
таты. Вы можете ввести любые значения label и information_type, ка-
кие только захотите, для своих целей. Для этого примера я выбрал
обозначения, отличающиеся от тех, которые используются в рас-
сматриваемом инструменте. Так как в данном примере разбирается
адрес электронной почты, я назвал свой тип данных Email и ввел
метку PII, что означает личную информацию (Personally Identifiable
Information). По сути, это просто строковые значения, связанные со
столбцами, которые мы храним. Но, как и любая система, которая
строится и проектируется, хорошая система классификации будет
иметь некоторую структуру, определяющую, какие метки label и
information_type следует использовать для всей компании в целом
и для базы данных, и эти метаданные будут отображаться в отчетах
аудита, как мы вскоре увидим.

-- Шаг 1. Добавим классификацию
ADD SENSITIVITY CLASSIFICATION TO
[Application].[People].[EmailAddress]
WITH (LABEL='PII', INFORMATION_TYPE='Email')
GO

-- Шаг 2. Просмотрим все имеющиеся классификации
USE WideWorldImporters
GO

SELECT o.name as table_name, c.name as column_name,
sc.information_type, sc.information_type_id, sc.label, sc.label_id
FROM sys.sensitivity_classifications sc
JOIN sys.objects o
ON o.object_id = sc.major_id
JOIN sys.columns c
ON c.column_id = sc.minor_id
AND c.object_id = sc.major_id
ORDER BY sc.information_type, sc.label
GO

 Ваши результаты должны выглядеть приблизительно так же, как на
рис. 3.10.

 Просматривая эти результаты, обратите внимание, что столбцы, до-
бавленные инструментом, имеют значения в столбцах information_
type_id и label_id. Оператор T-SQL ADD SENSITIVITY CLASSIFICATION
поддерживает значение GUID, размечающий строки, указывая мет-

Классификация данных  113

ки и типы информации. Это может быть особенно ценно, если ваша
компания создает систему классификации для хранения всех при-
нятых результатов классификации, т. е. присвоенных меток и типов.
Теперь вы можете ссылаться на любую метку или тип через значение
GUID (при этом можете сгенерировать значения GUID самостоятель-
но).

Рис. 3.10. Классификация, выполненная с помощью
используемого инструмента и с помощью T-SQL

Совет. Функцию T-SQL NEWID() можно использовать для генерации уникальных зна-

чений GUID в SQL Server. Вы можете найти более подробную информацию по ссылке
https://docs.microsoft.com/en-us/sql/t-sql/functions/newid-transact-sql.

 Итак, кажется, это довольно простая и понятная система. Но внача-
ле она ограничена метками и значениями data_type, которые вы ре-
шите использовать. Преимущество поддержки T-SQL заключается в
том, что любое приложение, поддерживающее T-SQL, теперь может
построить систему классификации и выполнять запросы к ней, по-
скольку в T-SQL также поддерживаются представления каталога.

 А как насчет аудита? Давайте перейдем к следующему разделу, что-
бы посмотреть, как он работает. Оставьте вашу базу как есть, чтобы
выяснить, как работает аудит, используя результаты выполненных
вами шагов из предыдущих примеров.

Аудит и классификация данных
Наличие метаданных классификации степени конфиденциальности для

столбцов таблиц базы данных весьма ценно само по себе, но еще более
нужной возможностью для аудита будет автоматическое отслеживание
событий просмотра пользователями столбцов, помеченных как конфиден-
циальная информация.

Современные версии SQL Server включают в себя встроенную функцию
SQL Server Audit. Основанная на использовании расширенных событий
(Extended Events), функция SQL Server Audit имеет много различных воз-
можностей и предоставляет расширенную систему аудита. Дополнитель-
ную информацию обо всех функциональных возможностях аудита SQL

114  Глава 3. Новые возможности безопасности

Server вы можете найти по ссылке https://docs.microsoft.com/en-us/sql/relational-

databases/security/auditing/sql-server-audit-database-engine.
Аудит проводится в форме записи для каждого события аудита, куда

включаются все типы свойств. SQL Server 2019 добавляет новое свойство
события аудита под названием data_sensitivity_information. Так, например,
если вы включаете аудит выполнения операторов SELECT для определен-
ных таблиц, в которые вы добавили классификацию степени конфиденци-
альности для столбцов, то если эти столбцы являются частью списка опе-
ратора выборки данных SELECT, в столбце data_sensitivity_information будут
отображаться эти события доступа.

Давайте посмотрим на предыдущем примере, как аудит работает с клас-
сификацией степени конфиденциальности.

1. Поскольку вы могли выполнять сценарии, приведенные в этих при-
мерах, более одного раза и вам не хотелось бы восстанавливать базу
данных, для того чтобы выполнить аудит «с чистого листа», сначала
запустите сценарий dropqlaudit.sql.

-- Шаг 1. Отключите аудит и удалите все предыдущие данные.
USE WideWorldImporters
GO

IF EXISTS (SELECT * FROM sys.database_audit_specifications
WHERE name = 'People_Audit')
BEGIN
 ALTER DATABASE AUDIT SPECIFICATION People_Audit
 WITH (STATE = OFF)
 DROP DATABASE AUDIT SPECIFICATION People_Audit
END
GO

USE master
GO

IF EXISTS (SELECT * FROM sys.server_audits WHERE name = 'GDPR_Audit')
BEGIN
 ALTER SERVER AUDIT GDPR_Audit
 WITH (STATE = OFF);
 DROP SERVER AUDIT GDPR_Audit
END
GO

-- Шаг 2. Удалите файлы .audit из каталога, выбранного по умолчанию,
-- или из выбранного вами при установке каталога.
-- del C:\program files\microsoft sql server\mssql15.mssqlserver\
mssql\data\GDPR*.audit

 Обратите внимание на то, что шаг 2 сценария содержит коммента-
рий, описывающий действия, которые необходимо выполнить для
удаления файлов. Когда вы запускаете аудит, SQL Server создает фай-

Классификация данных  115

лы аудита в каталоге, размещенном по указанному вами пути. Когда
вы отключаете аудит и удаляете его результаты, созданные файлы
остаются в этом каталоге. Во избежание ошибок при выполнении
действий в приведенном примере удалите вручную все файлы,
оставшиеся после выполнения предыдущих шагов.

2. Откройте сценарий setupsqlaudit.sql, чтобы создать новую специ-
фикацию и запустить работу аудита. Я не буду вдаваться в подроб-
ности работы аудита. Из текста представленных здесь запросов вы
можете видеть, что аудит настроен для отслеживания выполнения
операторов SELECT в таблице [Application].[People] в базе данных
WideWorldImporters. Чтобы узнать об аудите больше, ознакомьтесь
с документацией по ссылке https://docs.microsoft.com/en-us/sql/relational-

databases/security/auditing/sql-server-audit-database-engine.

USE master
GO

-- Создание журнала аудита сервера
CREATE SERVER AUDIT GDPR_Audit
 TO FILE (FILEPATH = 'C:\program files\microsoft sql server\mssql15.
mssqlserver\mssql\data')
GO

-- Включение аудита сервера
ALTER SERVER AUDIT GDPR_Audit
WITH (STATE = ON)
GO

USE WideWorldImporters
GO

-- Создание спецификации аудита базы данных.
CREATE DATABASE AUDIT SPECIFICATION People_Audit
FOR SERVER AUDIT GDPR_Audit
ADD (SELECT ON Application.People BY public)
WITH (STATE = ON)
GO

3. Теперь давайте запустим несколько запросов и посмотрим, что
именно проверяется. Откройте сценарий findpeople.sql и выполни-
те шаги 1 и 2, руководствуясь комментариями в сценарии:

-- Шаг 1. Выполните сканирование таблицы и посмотрите, были ли проверены
-- столбцы, классифицированные как конфиденциальная информация
USE WideWorldImporters
GO

SELECT * FROM [Application].[People]
GO

116  Глава 3. Новые возможности безопасности

-- Шаг 2. Проверьте результаты аудита
-- Результаты аудита могут быть доступны НЕ СРАЗУ после запуска запроса,
-- а через несколько секунд.
SELECT event_time, session_id, server_principal_name,
database_name, object_name,
cast(data_sensitivity_information as XML) as data_sensitivity_information,
client_ip, application_name
FROM sys.fn_get_audit_file ('C:\program files\microsoft sql server\
mssql15.mssqlserver\mssql\data*.sqlaudit',default,default)
GO

 Ваши результаты должны выглядеть приблизительно так же, как на
рис. 3.11.

Рис. 3.11. Аудит одного просмотра таблицы
с классификацированными данными

 В этом примере вы запустили запрос, выбирающий все столбцы из
таблицы People. Функция T-SQL fn_get_audit_file используется для
получения результатов аудита в формате строки/столбца. Я взял
только определенные столбцы из набора результатов этой функции.
Вы можете просмотреть полный список аргументов и выходных
столбцов для этой функции по адресу https://docs.microsoft.com/en-us/sql/

relational-databases/system-functions/sys-fn-get-audit-file-transact-sql.
 Первая строка – это запись о начале аудита. Вторая строка – это про-

верка оператора SELECT. Обратите внимание, что значение в столб-
це data_sensitivity_information имеет тип данных XML. Щелкните
значение в этом столбце, и в SSMS откроется новое окно с полными
данными XML. Ваши результаты должны выглядеть так, как показа-
но на рис. 3.12.

Рис. 3.12. Степень конфиденциальности для различных данных

 Данные, представленные в виде XML, включают в себя атрибут для
любой уникальной метки и тип информации information_type, к ко-

Классификация данных  117

торому выполняется запрос с использованием оператора SELECT. Те-
перь вы можете посмотреть, какие столбцы указаны в этих данных,
используя представление каталога sys.sensitivity_classification.

4. Выполните шаги 3 и 4 сценария findpeople.sql:

-- Шаг 3. Что, если я попробую обратиться только к одному
-- из столбцов данных напрямую?
SELECT FullName FROM [Application].[People]
GO

-- Шаг 4. Проверьте результаты аудита
-- Результаты аудита могут быть доступны НЕ СРАЗУ после запуска
-- запроса, а через несколько секунд.
SELECT event_time, session_id, server_principal_name,
database_name, object_name,
cast(data_sensitivity_information as XML) as data_sensitivity_information,
client_ip, application_name
FROM sys.fn_get_audit_file ('C:\program files\microsoft sql
server\mssql15.mssqlserver\mssql\data*.sqlaudit',default,default)
GO

 Результаты, полученные после выполнения шага 4, должны выгля-
деть так, как показано на рис. 3.13.

Рис. 3.13. Результаты аудита, включающие SELECT для одного столбца,
данные в котором классифицированы как конфиденциальные

 В результатах аудита присутствует третья строка (вы получите по од-
ной строке для каждого оператора SELECT). Если щелкнуть столбец
data_sensitivity_information, вы увидите только одну метку, посколь-
ку запрос выполнялся лишь к столбцу FullName.

5. Аудит будет отслеживать доступ к данным, классифицированным как
конфиденциальные, только в том случае, если классифицированный
столбец является частью списка столбцов в операторе SELECT или
содержится в выводимых результатах запроса.

 Покажем это. Запустите шаги 5 и 6 сценария findpeople.sql:

-- Шаг 5. Что, если я ссылаюсь на классифицированный столбец только
-- в выражении WHERE?
SELECT PreferredName FROM [Application].[People]
WHERE EmailAddress LIKE '%microsoft%'

118  Глава 3. Новые возможности безопасности

GO

-- Шаг 6. Проверьте результаты аудита
-- Результаты аудита могут быть доступны НЕ СРАЗУ после запуска
-- запроса, а через несколько секунд.
SELECT event_time, session_id, server_principal_name,
database_name, object_name,
cast(data_sensitivity_information as XML) as data_sensitivity_information,
client_ip, application_name
FROM sys.fn_get_audit_file ('C:\program files\microsoft sql server\
mssql15.mssqlserver\mssql\data*.sqlaudit',default,default)
GO

 Результаты, полученные после выполнения шага 6, должны выгля-
деть так, как показано на рис. 3.14.

Рис. 3.14. Результаты аудита для классифицированного
столбца в условии WHERE

 В данном примере запрос выдает результаты для столбца
PreferredName, используя в качестве критерия столбец EmailAddress.
PreferredName не является классифицированным столбцом, а
EmailAddress – является. Но поскольку EmailAddress не является ча-
стью списка SELECT, столбец data_sensitivity_information в результа-
тах аудита не заполняется.

Классификация данных – это простая, но очень мощная новая возмож-
ность в SQL Server 2019, которую вы можете использовать для обеспече-
ния безопасности данных и выполнения требований любых регуляторных
политик в вашей организации. Эта функция работает как в SQL Server 2019,
так и в Azure SQL Database. Ознакомьтесь с полным руководством по защи-
те информации, написанным нашей командой, перейдя по ссылке https://

docs.microsoft.com/en-us/azure/sql-database/sql-database-data-discovery-and-classification.

Другие новые функции безопасности
В SQL Server 2019 есть еще несколько не самых значительных, но важных
новых функций безопасности, включая приостановку и возобновление
прозрачного шифрования данных, а также улучшенное управление серти-
фикатами шифрования для SQL Server.

Другие новые функции безопасности  119

Приостановка и возобновление TDE
Прозрачное шифрование данных (Transparent Data Encryption, TDE) –

это шифрование хранящихся данных. Оно позволяет шифровать базу дан-
ных SQL Server и файлы журналов независимо от ядра базы данных SQL
Server. Таким образом, если кто-то попытается получить доступ к вашей
базе данных и/или файлам журнала транзакций, данные в этих файлах
будут зашифрованы. Функция TDE была включена в несколько версий SQL
Server; о том, как ее использовать, можно прочитать по ссылке https://docs.

microsoft.com/en-us/sql/relational-databases/security/encryption/transparent-data-encryption.
Когда вы включаете TDE для существующей базы данных, SQL Server

должен прочитать каждую страницу базы данных с диска в буферный пул
и записать ее обратно в зашифрованный файл базы данных. Шифрование
происходит в фоновом режиме, поэтому оно не влияет непосредственно на
производительность системы для пользователей; однако при этом может
выполняться интенсивное чтение и запись всех страниц базы данных и
потребляться ресурсы процессора и подсистемы ввода-вывода. Для базы
данных очень большого объема это может повлиять на работу критически
важных приложений.

SQL Server 2019 представляет концепцию приостановки и возобновления
шифрования TDE. Теперь вы можете включить TDE для базы данных, но
затем приостановить шифрование в любой момент и возобновить шифро-
вание с последнего момента, когда оно было приостановлено. Это позволя-
ет эффективно планировать полное шифрование базы данных с использо-
ванием TDE в соответствии с потребностями бизнес-приложений.

Приостановить TDE просто. Для этого можно выполнить следующую
команду T-SQL:

ALTER DATABASE <db_name> SET ENCRYPTION SUSPEND

Возобновить процесс шифрования с того места, где он был приоста-
новлен, можно с помощью следующей команды T-SQL:

ALTER DATABASE <db_name> SET ENCRYPTION RESUME

Для облегчения диагностики этой новой функции в DMV sys.dm_database_
encryption_keys добавлено три новых столбца, где содержатся сведения о
состоянии сканирования данных TDE:

• encryption_scan_state – численное значение, показывающее, вы-
полняется ли сканирование данных TDE, приостановлено или завер-
шено;

• encryption_scan_state_desc – строковое описание состояния скани-
рования: RUNNING (выполняется), SUSPENDED (приостановлено),
COMPLETE (завершено);

120  Глава 3. Новые возможности безопасности

• encryption_scan_modify_date – дата/время последнего изменения
состояния сканирования данных TDE.

Это небольшое по объему, но важное усовершенствование использо-
вания TDE выполнено для работы с очень большими базами данных SQL
Server. Вы можете прочитать больше о приостановке и возобновлении TDE
по адресу https://docs.microsoft.com/en-us/sql/relational-databases/security/encryption/

transparent-data-encryption.

Управление сертификатами безопасности
Допустим, вы хотите зашифровать соединения с SQL Server – это обыч-

ная практика для обеспечения шифрования протокола табличного пото-
ка данных (Tabular Data Stream, TDS) между клиентскими приложениями
и SQL Server. Когда вы используете шифрование с помощью протокола,
например TLS, вам необходимы сертификаты шифрования. Версия SQL
Server для Windows предоставляет возможность использования сертифи-
катов при помощи знакомого всем приложения SQL Server Configuration
Manager. Однако сначала необходимо выполнить всю работу по установке
сертификата на сервере или даже на нескольких серверах для экземпляра
отказоустойчивого кластера (Failover Cluster Instance, FCI) или группы
доступности Always On (Always On Availability Group).

Рис. 3.15. Управление сертификатами безопасности в SQL Server 2017

Резюме  121

На рис. 3.15 показано диалоговое окно SQL Server Configuration Manager,
где предлагается выбрать установленный сертификат безопасности для
использования с SQL Server 2017.

SQL Server 2019 теперь включает возможность через диспетчер конфи-
гурации SQL Server импортировать сертификат безопасности, и даже более
того – передать сертификаты между узлами экземпляра отказоустойчиво-
го кластера (Failover Cluster Instance) или группы доступности (Availability
Group); причем вы можете выполнять эти действия, используя основной
экземпляр SQL Server.

На рис. 3.16 показано диалоговое окно SQL Server Configuration Manager
для SQL Server 2019.

Рис. 3.16. SQL Server Configuration Manager для SQL Server 2019

Обратите внимание на новую кнопку Import (Импорт) в этом диалого-
вом окне. Документацию, в которой рассказывается, как использовать эту
возможность на одном сервере или на кластере, вы можете найти по ссылке
https://docs.microsoft.com/en-us/sql/database-engine/configure-windows/manage-certificates.

Резюме
Используя в качестве основы богатые возможности SQL Server 2016, такие
как постоянное шифрование, ограничение видимости на уровне строк и

122  Глава 3. Новые возможности безопасности

динамическая маскировка данных, SQL Server 2019 представляет новые
функции безопасности: защищенные области (Secure Enclaves), классифи-
кацию степени конфиденциальности данных, приостановку и возобновле-
ние TDE и упрощенное управление сертификатами безопасности. Все это
в сочетании с функциями безопасности, унаследованными от предыдущих
версий SQL Server, предоставляет платформу для обеспечения безопасно-
сти, надежности, совместимости и управления вашими данными.

Глава 4
Непрерывная доступность,

соответствующая требованиям
для систем, критичных

к сбоям

В предыдущих двух главах вы узнали о новых возможностях SQL Server
2019, предназначенных для решения современных задач, связанных с про-
изводительностью и безопасностью. Для многих корпоративных клиентов
существует третья задача – обеспечить, чтобы платформа базы данных
отвечала высоким требованиям современных приложений и бизнеса к ее
доступности.

SQL Server обеспечивает высокую доступность по умолчанию, поскольку
почти все, что вы делаете с помощью SQL, может быть сделано онлайн. SQL
Server 2019 повышает доступность данных в интернете с помощью следую-
щих новых функций, предназначенных для решения новых задач:

• усовершенствованный онлайн-индекс.
 Пользователи всегда хотят всего и сразу. Они хотят, чтобы админист-

раторы поддерживали индексы и обновляли их, но в то же время
им нужен постоянный доступ к их данным в круглосуточном ре-
жиме. SQL Server 2019 расширяет возможности онлайн-индексов
предыдущих версий благодаря возобновляемому построению
онлайн-индексов (resumable online index creation) и онлайн-под-
держке кластеризованных столбцовых индексов (online clustered
columnstore index maintenance);

• улучшенная группа доступности (Availability Group).
 Флагманская функция HADR в SQL Server, группа доступности Always

On (Always On Availability Group), продолжает совершенствоваться с
каждой новой версией SQL Server. В каждой новой версии она содер-
жит больше реплик, а также улучшается возможность перенаправле-
ния соединений с приложениями;

124  Глава 4. Непрерывная доступность, соответствующая требованиям для систем...

• ускоренное восстановление базы данных.
 Читатели этой книги могут столкнуться с ситуацией, когда кто-то

пытается прервать длительную транзакцию и, разочарованный не-
сколькими неудачными попытками, перезапускает SQL Server. А по-
том они приходят к вам и еще больше разочаровываются, когда ока-
зывается, что восстановление базы данных занимает очень много
времени.

Почему SQL Server не восстановил базу данных сразу? Вы объясняете:
потому что восстановление должно откатить транзакцию, которую вы пре-
рвали; в противном случае база данных не будет согласованной. Представь-
те, что ничего подобного больше не должно происходить. Мы представля-
ем вам возможность ускоренного восстановления базы данных (Accelerated
Database Recovery, ADR) – одну из самых инновационных технологий, кото-
рые я когда-либо видел в ядре SQL Server. ADR делает возможными мгно-
венный откат, агрессивное сокращение журнала транзакций и обеспечи-
вает «постоянное восстановление» для пользовательской базы данных.
Я хотел начать с этой темы; однако буду дразнить ваше любопытство до
конца главы.

Поддержка онлайн-индекса
Индексы могут сильно влиять на производительность базы данных. Поэто-
му поддержка индексов является обычной задачей для сохранения работо-
способности вашей базы данных. Одной из проблем при создании индек-
сов является доступность ваших данных с учетом всех блокировок данных
в таблице. Создание или перестройка кластеризованного индекса по сути
блокирует таблицу на все время операции, выполняемой над индексом.
Создание или перестройка некластеризованного индекса все еще может
создать проблемы, поскольку для него требуется совместная (SH) блоки-
ровка таблицы.

В SQL Server 2005 (да, это было так давно) была введена концепция соз-
дания или перестройки индекса онлайн. Построение индекса в режиме
онлайн обеспечивает лучшую доступность приложения, поскольку блоки-
ровка таблицы во время процесса построения индекса не требуется.

Примечание. На данные в таблице устанавливаются определенные блокировки, но
они затрагивают меньший объем данных, чем ранее, и выполняются поэтапно при
построении индекса в режиме онлайн. Чтобы узнать больше о том, как создается
онлайн-индекс, обратитесь к документации, размещенной по ссылке https://docs.

microsoft.com/en-us/sql/relational-databases/indexes/how-online-index-operations-

work. Еще один полезный ресурс для понимания оригинальной реализации он-

лайн-индекса находится по адресу https://docs.microsoft.com/en-us/previous-

versions/sql/sql-server-2005/administrator/cc966402(v=technet.10.

Поддержка онлайн-индекса  125

Хотя создание онлайн-индекса может улучшить показатели доступ-
ности, операция создания индекса может оказаться ресурсоемкой, что, в
свою очередь, повлияет на общую доступность приложения в зависимости
от характера запросов этого приложения. Кроме того, могут возникнуть
ситуации, когда создание индекса для большой таблицы за одну опера-
цию может оказаться проблематичным, например если создание индек-
са завершилось неудачно. В случае ошибки во время построения индекса
(например, у вас недостаточно места в базе данных) потребуется испра-
вить проблему и перезапустить создание индекса с самого начала. Разве
не было бы неплохо иметь возможность выполнить какую-либо операцию
построения индекса, «начав с того места, где она остановилась», в случае ее
неудачного завершения? Также было бы неплохо запланировать построе-
ние индекса в несколько приемов, скажем для распределения этой опера-
ции по доступным окнам времени обслуживания системы.

Возобновляемые операции с индексами
В SQL Server 2017 мы представили концепцию возобновляемой операции

перестройки индекса. Идея состоит в том, что вы начинаете перестрой-
ку индекса с помощью оператора T-SQL ALTER INDEX REBUILD и затем
можете использовать оператор ALTER INDEX с командой PAUSE, чтобы
при остановить перестройку индекса. Все результаты процесса перестрой-
ки онлайн-индекса сохраняются, поэтому вы можете продолжить его с
помощью ALTER INDEX, используя команду RESUME. У вас также имеется
возможность отменить оперативную перестройку индекса с помощью опе-
ратора ALTER INDEX и команды ABORT. Полное описание всех возможно-
стей использования ALTER INDEX для возобновляемых операций с индек-
сом можно прочитать в документации, размещенной по ссылке https://docs.

microsoft.com/en-us/sql/t-sql/statements/alter-index-transact-sql. Более подробно о том,
как работает возобновляемая перестройка индекса и какие ограничения
при этом существуют, вы можете прочитать по адресу https://docs.microsoft.com/

en-us/sql/t-sql/statements/alter-index-transact-sql#online-index-operations.
SQL Server 2019 вводит понятие возобновляемых операций с индексами

при создании индекса с помощью CREATE INDEX. Синтаксис возобновля-
емого создания индекса описан в документации, размещенной по адре-
су https://docs.microsoft.com/en-us/sql/t-sql/statements/create-index-transact-sql. Вы также
можете получить более подробную информацию о возобновляемом созда-
нии индекса по ссылке https://docs.microsoft.com/en-us/sql/t-sql/statements/create-

index-transact-sql#online-option.
Кроме того, SQL Server 2019 вводит концепцию настройки области базы

данных по умолчанию для онлайн- и возобновляемых операций с индек-
сами. Эти новые параметры называются ELEVATE_ONLINE и ELEVATE_
RESUMABLE. Подробная информация об использовании этих параметров
находится по адресу https://docs.microsoft.com/en-us/sql/relational-databases/indexes/

guidelines-for-online-index-operations?view=sql-server-ver15#online-default-options.

126  Глава 4. Непрерывная доступность, соответствующая требованиям для систем...

Однако, чтобы не просто читать о возобновляемом создании индекса,
давайте попробуем разобрать пример, используя настройки области базы
данных.

Подготовительные шаги для использования
примеров, иллюстрирующих возобновляемые
операции с индексами
Для выполнения примера, представленного в этой главе, необходимо

установить SQL Server 2019. В SQL Server 2017 для возобновляемой пере-
стройки индекса требуется версия Enterprise Edition. Поэтому для выпол-
нения примеров, приведенных в этом разделе, вам потребуется устано-
вить одну из версий SQL Server 2019: Enterprise, Evaluation либо Developer
Edition.

Все сценарии и файлы для приведенного в данном разделе примера
можно найти в созданном для этой книги репозитории GitHub, в каталоге
ch4_mission_critical_availability\resumableindex.

Есть три способа выполнения сценариев, приведенных в данном примере:

• используйте записную книжку T-SQL с именем resumableindex.ipynb
в Azure Data Studio (требуется версия от июня 2019 г. или более позд-
няя). В записной книжке T-SQL есть все инструкции для выполнения
примера;

• загрузите сценарий T-SQL resumableindex.sql в SQL Server Manage-
ment Studio (SSMS) или Azure Data Studio и выполните каждый шаг,
как указано в сценарии;

• запускайте каждый набор операторов T-SQL по отдельности, исполь-
зуя сценарий T-SQL resumableindex.sql, как будет показано в следую-
щем разделе.

Возобновляемое создание индекса
Рассмотрим, как использовать возобновляемый онлайн-индекс, шаг за

шагом.

1. Выполните шаг 1 в сценарии resumableindex.sql, чтобы создать
базу данных для этого примера:

-- Шаг 1. Создайте базу данных
USE master
GO

DROP DATABASE IF EXISTS gotexasrangers
GO

CREATE DATABASE gotexasrangers
GO

Поддержка онлайн-индекса  127

2. Выполните шаг 2, чтобы создать таблицу и заполнить ее данными.
Я выбрал количество строк так, чтобы построение индекса заняло
более минуты. Это необходимо для демонстрации использования
параметра MAX_DURATION, минимальное значение для этого па-
раметра составляет 1 минуту. Для выполнения этого шага может
потребоваться до 10–15 минут, так что возьмите чашку кофе и вер-
нитесь, когда выполнение данной операции закончится, после чего
перейдите к шагу 3.

-- Шаг 2. Создайте таблицу как кучу без кластеризованного индекса.
-- Сделайте таблицу достаточно большой, чтобы построение индекса
-- занимало как минимум несколько минут. Параметр возобновляемого
-- индекса MAX_DURATION имеет минимальное значение, равное 1 минуте.
USE gotexasrangers
GO

DROP TABLE IF EXISTS letsgorangers
GO

CREATE TABLE letsgorangers (col1 int, col2 char(7000) not null)
GO

SET NOCOUNT ON
GO

BEGIN TRANSACTION
GO

INSERT INTO letsgorangers values (1, 'I would love to win the
World Series')
GO 750000
COMMIT TRANSACTION
GO

SET NOCOUNT OFF
GO

3. Выполните шаг 3, чтобы создать возобновляемый кластеризован-
ный онлайн-индекс. Обратите внимание на использование пара-
метра MAX_DURATION. Это означает, что построение индекса будет
приостановлено, если оно не завершится через 1 минуту.

-- Шаг 3. Попробуйте создать индекс со следующими свойствами: онлайн,
-- возобновляемый, с параметром max_duration, равным одной минуте.
CREATE CLUSTERED INDEX rangeridx ON letsgorangers (col1) WITH
(ONLINE = ON, RESUMABLE = ON, MAX_DURATION = 1)
GO

 По истечении времени, указанного в max_duration, при выполне-
нии операции CREATE INDEX произойдет сбой. Обычно при этом
потребуется «начать все заново», так как построение индекса будет

128  Глава 4. Непрерывная доступность, соответствующая требованиям для систем...

откатываться. Но поскольку вы создали индекс как возобновляемый,
сборка индекса просто приостанавливается.

 Когда произойдет сбой, вам будет выдано примерно такое сообще-
ние:

Msg 3643, Level 16, State 1, Line 31
The operation elapsed time exceeded the maximum time
specified for this operation. The execution has been stopped.
The statement has been terminated.
Msg 596, Level 21, State 1, Line 29
Cannot continue the execution because the session is in the kill state.
Msg 0, Level 20, State 0, Line 29
A severe error occurred on the current command.
The results, if any, should be discarded.

 Это сообщение означает, что при выполнении операции CREATE
INDEX произошла ошибка и соединение было прервано. Ситуация
похожа на ошибку, однако же это не так – процесс создания индекса
просто приостанавливается.

Примечание. Еще один способ приостановить построение возобновляемого индек-

са – использовать команду ALTER INDEX с параметром PAUSE для другого соедине-

ния, когда выполняется создание индекса.

4. Выполните шаг 4, чтобы проверить ход построения индекса с по-
мощью динамического административного представления (Dyna-
mic Management View, DMV) sys.index_resumable_operations.

-- Шаг 4. Проверьте ход сборки индекса.
USE gotexasrangers
GO

SELECT * FROM sys.index_resumable_operations
GO

 В вашем результирующем наборе данных значение параметра state_
desc должно быть PAUSED, а значение параметра percent_complete
должно составлять около 30 %. Это означает, что когда вы возобно-
вите построение индекса, то до завершения этой операции должно
оставаться около 70 %.

5. Чтобы возобновить операцию построения индекса и завершить ее,
вы можете использовать оператор ALTER INDEX, как в шаге 5.

-- Шаг 5. Возобновите построение индекса
ALTER INDEX rangeridx on letsgorangers RESUME
GO

Поддержка онлайн-индекса  129

 Пока выполняется эта операция, вы можете использовать ALTER
INDEX с параметром PAUSE, чтобы снова приостановить построение
индекса (а затем возобновить его снова).

6. Давайте попробуем создать возобновляемый индекс другим спосо-
бом. Во-первых, выполните шаг 6, чтобы удалить существующий
индекс, и задайте два параметра настройки области базы данных,
чтобы использовать по умолчанию возобновляемое создание он-
лайн-индексов, если оно поддерживается.

Примечание. Не все индексы могут создаваться онлайн, и не все операции создания
индекса могут быть возобновлены. Например, для XML-индексов такая возможность
не поддерживается. Список индексов, которые не поддерживаются для онлайн-
опе раций, можно найти по адресу https://docs.microsoft.com/en-us/sql/relational-

databases/indexes/guidelines-for-online-index-operations?view=sql-server-ver15.

-- Шаг 6. Удалите первый индекс. Используйте параметр настройки
-- области базы данных, чтобы по умолчанию установить
-- возобновляемое создание индексов онлайн
USE gotexasrangers
GO

ALTER DATABASE SCOPED CONFIGURATION SET ELEVATE_RESUMABLE = WHEN_SUPPORTED
GO

ALTER DATABASE SCOPED CONFIGURATION SET ELEVATE_ONLINE = WHEN_SUPPORTED
GO

DROP INDEX IF EXISTS letsgorangers.rangeridx
GO

7. Теперь создайте индекс, выполнив шаг 7, не указывая специальных
параметров. Запустите оператор CREATE INDEX, подождите около
30 секунд, а затем отмените эту операцию (в то время как она все
еще будет выполняться). Используйте любой способ, чтобы отме-
нить запрос. Используемый способ зависит от вашего инструмента
(в SSMS нажмите красную кнопку остановки):

-- Шаг 7. Снова создайте индекс. Обратите внимание, что у оператора
-- создания индекса в данном случае отсутствуют параметры.
-- Отмените эту операцию примерно через 30 секунд (используйте
-- оператор CANCEL)
CREATE CLUSTERED INDEX rangeridx ON letsgorangers (col1)
GO

 При этом вам будет выдано приблизительно такое сообщение:

The statement has been terminated.
Query was canceled by user.

130  Глава 4. Непрерывная доступность, соответствующая требованиям для систем...

 Обычно отмена CREATE INDEX приводит к откату операции. Но по-
скольку по умолчанию для создания индексов были выбраны пара-
метры ONLINE и RESUMABLE, построение индекса только приоста-
новится, даже если вы явно не указали эти параметры.

8. Проверьте состояние приостановленной сборки индекса, выполнив
шаг 8.

-- Шаг 8. Проверьте, как идет построение индекса
USE gotexasrangers
GO

SELECT * FROM sys.index_resumable_operations
GO

 Как было продемонстрировано ранее в этом примере, у параметра
state_desc должно быть значение PAUSED, а percent_complete должно
составлять около 20–30 %.

9. Выполните шаг 9 для возобновления и завершения построения ин-
декса.

-- Шаг 9. Возобновите построение индекса
ALTER INDEX rangeridx on letsgorangers RESUME
GO

Помните об этом возможном сценарии, когда вы думаете о возобнов-
ляемых индексах. Допустим, создание или перестройка индекса занимает
4 часа, и в течение всего этого времени создание индекса занимает опре-
деленный объем памяти, ресурсов ЦП и ресурсов ввода-вывода, которые
могут оказать некоторое влияние на ваше приложение. Теперь вы можете
использовать команду CREATE, а затем PAUSE/RESUME в нескольких интер-
валах. Выберите интервалы для создания или возобновления построения
индекса, когда нагрузка на приложение минимальна (сейчас вы планируе-
те построение индекса в несколько этапов). Вы можете создать задачу в
SQL Server Agent, чтобы запланировать эти этапы на любое время, наибо-
лее отвечающее требованиям вашего приложения.

Поддержка онлайн-индекса для столбцовых
индексов
Кластеризация для столбцового индекса имеет решающее значение в

области высокопроизводительных аналитических запросов, особенно в
сценариях, где используются хранилища данных. Построение (или пере-
стройка) кластеризованного столбцового индекса может занимать доста-
точно долгое время, учитывая размер таблиц, для которых он обычно
строится. Поскольку сборка или перестройка кластеризованного столбцо-

Улучшения в группе доступности Always On (Always On Availability Group)  131

вого индекса выполняется в автономном режиме, вся таблица должна быть
заблокирована от других транзакций, что отнюдь не позволяет достичь
высоких показателей доступности системы.

В SQL Server 2017 появилась возможность создавать и перестраивать
некластеризованные столбцовые индексы онлайн. В SQL Server 2019 теперь
можно создавать и перестраивать в режиме онлайн кластеризованные
столбцовые индексы. Более подробно о командах SQL, позволяющих
выполнять построение кластеризованных столбцовых индексов в режиме
онлайн, вы можете прочитать по ссылке https://docs.microsoft.com/en-us/sql/t-sql/

statements/create-columnstore-index-transact-sql. Синтаксис команд для перестройки
кластеризованного столбцового онлайн-индекса будет таким же, как и для
стандартного индекса с использованием ALTER INDEX. Дополнительная
информация доступна по адресу https://docs.microsoft.com/en-us/sql/t-sql/statements/

alter-index-transact-sql. Возобновляемые индексы для кластеризованных или
некластеризованных онлайн-индексов еще не поддерживаются.

Улучшения в группе доступности Always On
(Always On Availability Group)
Группы доступности Always On (я буду называть их группами доступности до
конца главы) – это наиважнейшая функция в составе новой технологии вос-
становления высокой доступности после аварий (High Availability Disaster
Recovery, HADR) в SQL Server. Впервые появившаяся в SQL Server 2012, она
усовершенствуется с каждой новой версией, расширяя возможности групп
доступности.

Например, в SQL Server 2016 мы представили концепцию поддержания
работоспособности базы данных в случае отказа с помощью групп доступ-
ности (вы можете узнать больше об этой концепции на https://docs.microsoft.

com/en-us/sql/database-engine/availability-groups/windows/sql-server-always-on-database-

health-detection-failover-option). Мы также повысили производительность групп
доступности, о которой вы можете прочитать по ссылке https://docs.microsoft.

com/en-us/sql/t-sql/statements/alter-index-transact-sql?view=sql-server-ver15.
В SQL Server 2017 одной из ключевых новых возможностей для групп

доступности является концепция групп доступности без кластеров. Это
позволяет настроить группу доступности без программного обеспечения
для кластеризации. Любое аварийное переключение выполняется вруч-
ную, но эта возможность может позволить вам установить платформу
репликации с горизонтальным масштабированием для чтения или даже
настроить группы доступности в Windows и Linux. Более подробная инфор-
мация об этой возможности доступна по ссылке https://docs.microsoft.com/en-us/

sql/database-engine/availability-groups/windows/read-scale-availability-groups.
Для SQL Server 2019 мы представили две новые возможности для групп

доступности, добавленные на основе отзывов клиентов и технологических
тенденций:

132  Глава 4. Непрерывная доступность, соответствующая требованиям для систем...

• поддержка большего количества реплик;
• новый метод, обеспечивающий подключение вашего приложения к

первичной реплике.

Поддержка большего количества синхронных реплик
Теперь мы поддерживаем до пяти синхронных реплик в группе доступно-

сти; всего поддерживается до девяти реплик. Для получения дополнитель-
ной информации см. документацию по адресу https://docs.microsoft.com/en-us/

sql/database-engine/availability-groups/windows/always-on-availability-groups-sql-server.

Перенаправление подключений чтения/записи
от вторичной к первичной реплике
Перенаправление подключений чтения/записи от вторичной

реплики к первичной – это новая возможность, позволяющая приложе-
нию всегда обращаться к первичной реплике, независимо от того, на каком
экземпляре SQL находится первичная реплика для группы доступности.

В предыдущих версиях SQL Server единственным доступным разработ-
чику способом убедиться, что вы подключены к основной реплике груп-
пы доступности, было использование концепции прослушивателя. Одна-
ко прослушиватель может не всегда быть доступен при настройке групп
доступности SQL Server, таких как упомянутая ранее в этом разделе группа
доступности без кластеров.

В синтаксис T-SQL в SQL Server 2019 теперь включены параметры для
групп доступности и параметры строки подключения для клиентских при-
ложений, позволяющие выполнить настройки так, чтобы приложение всег-
да было подключено к первичной реплике, независимо от того, к какому
серверу в группе доступности подключено приложение. SQL Server предо-
ставляет встроенную логику для этой концепции и использует концепцию
перенаправления, если приложение подключено к серверу, который был
вторичной репликой.

Вы можете прочитать все подробности о том, как настроить перенаправ-
ление подключений к первичной реплике для SQL Server и вашего прило-
жения, в документации, размещенной по ссылке https://docs.microsoft.com/en-us/

sql/database-engine/availability-groups/windows/secondary-replica-connection-redirection-

always-on-availability-groups.

Ускоренное восстановление базы данных
Один из увлекательных аспектов моей работы в Microsoft – это узнавать
об инновациях, которые начинаются как проекты, и видеть, как они пре-
вращаются в новую функцию выпущенного продукта, иногда спустя годы.

Я могу привести пример того, как в 2016 году я присоединился к про-
ектированию в проекте с названием «постоянное время восстановления»

Ускоренное восстановление базы данных  133

(constant time recovery CTR). Я помню, как потратил некоторое время, что-
бы понять, какова цель этого проекта, увидев в числе участников проекта
имя моего давнего коллеги Питера Бирна (Peter Byrne). CTR стал ускорен-
ным восстановлением базы данных (Accelerated Database Recovery, ADR) в
SQL Server 2019 и Azure SQL Database.

CTR фактически начался как проект в 2015 году. Его инициировал Хану-
ма Кодавалла (Hanuma Kodavalla), выдающийся инженер (Distinguished
Engineer) в Microsoft. Ханума привлек других для участия в проекте, в том
числе Питера Бирна, Панагиотиса Антонопулоса (Panagiotis Antonopoulos)
и Срикумара Рангараджана (Srikumar Rangarajan). Участники проекта
пытались решить очень большую проблему, существовавшую в SQL Server:
длительные транзакции. Когда инженеры – участники проекта закончили
работу, они решили написать статью о разработанной концепции. Перед
тем как вы продолжите чтение этой главы и будете изучать приведенные
примеры, я рекомендую вам ознакомиться со статьей о проекте CTR по
ссылке www.microsoft.com/en-us/research/publication/constant-time-recovery-in-azure-sql-

database/. Я называю этот документ «статья про CTR» (CTR Paper) и далее
буду называть его именно так. Я рекомендую вам проделать то, что проде-
лал я, когда писал эту главу. Найдите этот документ и регулярно обращай-
тесь к нему, читая главу и используя примеры.

Проблема длительных активных транзакций
Длительные транзакции могут привести к тому, что восстановление

«выйдет из-под контроля» (фактически оно займет очень много време-
ни, которое вы не можете предсказать) и повлияет на доступность прило-
жения, работающего с данными. Это не ошибка или проблема с ядром SQL
Server; все работает именно так, как нужно. SQL Server не может предот-
вратить запуск приложением большого количества операций изменения
данных внутри транзакции или же транзакции, которая вносит мало изме-
нений, но не завершается или не выполняет откат (отмену транзакции) в
течение длительного периода времени. Это классическое определение дли-
тельной транзакции.

Кроме того, для отката длительной транзакции требуется выполнение
операции, называемой операцией компенсации. Откат требует логической
отмены. Для выполнения операции DELETE на объеме данных в 1 миллион
строк потребуется 1 миллион записей DELETE в журнале. При откате такой
транзакции удаления данных потребуется отменить все выполненные уда-
ления, а также внести в журнал 1 миллион записей INSERT. Это очень силь-
но удлиняет время, необходимое для отката транзакции. Я часто видел, как
клиенты пытаются завершить сеанс с длительной активной транзакцией
с помощью операции KILL и удивляются, почему KILL не работает мгно-
венно. Обычно это происходит из-за того, что для безопасного завершения
сеанса требуется выполнить откат транзакции (иначе ваши данные могут
стать несогласованными).

134  Глава 4. Непрерывная доступность, соответствующая требованиям для систем...

Другим следствием длительной транзакции является ее влияние на
сокращение журнала транзакций. Журнал транзакций может быть
сокращен только до самой старой активной транзакции. Вы не можете уда-
лить записи журнала транзакций для транзакции, которая еще не завер-
шена или не отменена. Но поскольку журнал транзакций является после-
довательным, одна «старая» активная транзакция (причем она может не
иметь никакой связанной с ней активности) может задержать сокращение
журнала транзакций для каждой другой транзакции, выполненной после
нее. Для вас это выглядит так, что журнал транзакций, кажется, «выходит
из-под контроля» (и часто вы не можете понять, почему).

Ускоренное восстановление баз данных было разработано для решения
всех этих проблем.

Как работает ускоренное восстановление
баз данных
Ускоренное восстановление баз данных (Accelerated Database Recovery,

ADR) предназначено для решения проблем с длительными транзакция-
ми. Для этого используются возможности, перечисленные в документации,
доступной по ссылке https://docs.microsoft.com/en-us/azure/sql-database/sql-database-

accelerated-database-recovery:

• быстрое восстановление базы данных без потери согласован-
ности данных.

 При использовании ADR длительные транзакции не влияют на об-
щее время восстановления, обеспечивая быстрое восстановление
базы данных без потери согласованности данных, независимо от ко-
личества активных транзакций в системе или их размеров;

• мгновенный откат транзакции.
 С помощью ADR откат транзакции происходит мгновенно, незави-

симо от времени, когда транзакция была активной, или количества
выполненных обновлений;

• агрессивное сокращение журнала.
 С помощью ADR журнал транзакций быстро сокращается даже при

наличии активных длительных транзакций, вместе с тем не позво-
ляя ему выйти из-под контроля.

Обычное восстановление SQL Server
Чтобы понять, как ускоренное восстановление базы данных может

решить описанные выше проблемы, сначала необходимо понять, как рабо-
тает обычное восстановление в SQL Server.

Рассмотрите схему на рис. 4.1, приведенную в статье про CTR (www.

microsoft.com/en-us/research/publication/constant-time-recovery-in-azure-sql-database/).

Ускоренное восстановление базы данных  135

Рис. 4.1. Нормальный процесс восстановления SQL Server

Процесс восстановления для SQL Server состоит из трех этапов:

1. Анализ.
 Начните с записи журнала, с момента фиксации контрольной точки

(CHECKPOINT), и последовательно просмотрите все записи журнала
до конца журнала.

 Этот анализ позволяет SQL Server получить следующую информа-
цию:

• какие транзакции не были завершены (т. е. еще были активны)
во время последнего перевода базы данных в автономный режим
(это может быть просто завершение работы SQL Server). Вероятно,
это транзакции, которые необходимо откатить для обеспечения
согласованности;

• запись журнала, содержащая самую старую измененную, или
«грязную», страницу.

 Это нужно, чтобы при необходимости повторить любые подтверж-
денные транзакции, если страницы, связанные с подтвержденными
транзакциями, не отражают состояние транзакции.

 Другими словами, анализ заключается в настройке восстановления
для выполнения следующих двух этапов: повтора и отмены.

2. Повтор.
 Чтобы ваши данные были согласованными, SQL Server должен обес-

печить точное отражение любых завершенных транзакций во время
восстановления. Для того чтобы обеспечить согласованность, необ-
ходимо выполнить поиск записи журнала для самой старой изме-
ненной (или «грязной») страницы в журнале транзакций и сравне-
ние регистрационного номера транзакции в журнале (Log Sequence
Number, LSN) для каждой записи журнала в подтвержденной транз-

Фаза 2а:
установка

блокировки
для повтора

Фаза 1: анализ

Фаза 3: отмена

Фаза 2b:
физический

повтор

Записи журнала

Журнал
транзакций

Регистрационный номер
транзакции (LSN) для

старейшей транзакции
в журнале

Конец журналаMin (LSN контрольной точки,
LSN старейшей «грязной»

страницы)

136  Глава 4. Непрерывная доступность, соответствующая требованиям для систем...

акции с LSN на соответствующей странице. Если LSN страницы мень-
ше, чем LSN записи журнала, операция записи журнала (INSERT,
UPDATE, DELETE и т. д.) должна быть изменена. Для подтвержденных
транзакций каждая запись в журнале проверяется таким образом до
конца журнала.

 Однако фаза восстановления, фаза 2, фактически начинается с запи-
си журнала, в которой отражена самая старая активная транзакция.
Фаза повтора начинается в этом месте, потому что она должна уста-
новить блокировки для активных транзакций, чтобы база данных
могла быть доступна для пользователей (которые будут при этом за-
блокированы, чтобы они не могли запрашивать и изменять данные
активных транзакций) после завершения фазы повтора. Однако это
означает, что на фазу восстановления влияет размер записей жур-
нала, относящихся к самой старой активной транзакции. Теперь вы
понимаете, почему длительность активной транзакции может по-
влиять на продолжительность восстановления? Как только повтор
завершен, происходит третий (и последний) этап отмены.

3. Отмена.
 SQL Server должен обеспечивать следующие правила согласован-

ности данных: на страницах данных должны отражаться лишь за-
вершенные транзакции. Вы можете задаться вопросом: каким же
образом SQL Server может защитить страницы данных на диске для
транзакций, которые не были завершены? Это возможно благода-
ря тому, что SQL Server может в любое время записать измененную
(«грязную») страницу на диск, если страница нужна другому пользо-
вателю и при этом нет свободных страниц.

 Или же может быть выполнена операция установки контрольной
точки (включая дополнительную контрольную точку), которая будет
записывать измененные страницы на диск независимо от того, за-
вершена транзакция или нет. Поэтому если работа SQL Server была
завершена при существующих активных транзакциях, которые не
были завершены, ядро базы данных должно гарантировать во вре-
мя восстановления, что никакие изменения данных, связанные с
незавершенной транзакцией, не были отражены на страницах базы
данных. Любые активные транзакции в этом состоянии необходимо
отменить (аналогично тому, как если бы ROLLBACK TRANSACTION
была осуществлена во время выполнения).

 Для выполнения необходимых операций отката транзакций SQL
Server производит все это путем последовательного просмотра жур-
нала в обратном направлении, начиная с конца журнала до запи си
журнала, относящейся к самой старой активной транзакции. Те-
перь время отмены пропорционально длине самой старой актив-
ной транзакции. Именно поэтому клиенты удивляются, когда они

Ускоренное восстановление базы данных  137

прерывают работу SQL Server в надежде на быстрое восстановление
базы данных, однако длительная транзакция не может быть прерва-
на (потому что она находится в состоянии отката), а восстановление
занимает много времени. Это связано с тем, что SQL Server должен
поддерживать согласованность ваших данных и завершать откат
транзакции, который он выполнял ранее.

Эта система восстановления, основанная на концепции под названи-
ем ARIES (более подробную информацию см. в статье, опубликованной по
адресу https://dl.acm.org/citation.cfm?id=128770), хорошо работала для SQL Server
в течение 25 лет и прекрасно работает (и все еще требуется и использу-
ется) практически везде, за исключением одного сценария, который я
назвал, – длительной активной транзакцией, которая удлиняет время как
на обработку повтора (повторного выполнения транзакции), так и на отме-
ну транз акции.

Теперь давайте посмотрим, как ускоренное восстановление баз данных
(ADR) меняет картину.

Ускоренное восстановление базы данных (Accelerated Database
Recovery, ADR) в SQL Server
Я не буду пытаться подробно рассказать о том, что описано в статье про

CTR; однако рассмотрю основные компоненты, обеспечивающие работу
ADR, и отличия ADR от стандартного подхода к восстановлению (ARIES), а
затем приведу пример, дающий более глубокое понимание.

ADR представляет концепцию постоянного хранилища версий (Persistent
Version Store, PVS). В SQL Server есть концепция, называемая хранилищем
версий, которая используется для изоляции моментальных снимков, но
это хранилище версий размещается в базе данных tempdb. Концепция
PVS аналогична данному подходу в том, что версии изменений для строк
сохраняются; но хранилище версий PVS является постоянным, поскольку
оно находится в пользовательской базе данных (хранилище версий для
изоляции моментальных снимков не является постоянным, так как оно
расположено в базе данных tempdb, а tempdb воссоздается после каждого
перезапуска сервера). После включения ADR SQL Server начнет отслеживать
изменения, используя версии. Версии могут быть сохранены либо в строке
страницы данных (внутристрочно, in-row), либо в автономном (off-row)
хранилище в базе данных. Вcе версии сохраняют предыдущее состояние
данных перед изменением и идентификатор транзакции, изменяющей
данные и создавшей эту версию, чтобы легко определить, должна ли эта
версия данных быть видимой для других транзакций.

Теперь, с использованием PVS, такие операции, как откат транзакции,
становятся простыми. Если транзакция откатывается, SQL Server просто
помечает ее как ABORTED. Теперь любой запрос, просматривающий строку
данных, может определить, является ли версия строки видимой и следует

138  Глава 4. Непрерывная доступность, соответствующая требованиям для систем...

ли ее использовать. Если последняя версия строки связана с транзакцией,
помеченной как ABORTED, запрос может игнорировать эту версию и искать
предыдущую. Если версия строки связана с завершенной или активной
транзакцией, применяются правила уровня изоляции транзакций, чтобы
определить, является ли строка видимой.

SQL Server поддерживает состояние транзакций, чтобы все это работало
с помощью концепции карты прерванной транзакции (Aborted Transaction
Map). Это обсуждается более подробно в документе CTR.

Примечание. Один из аспектов ADR, который может показаться сложным, – это уров-

ни изоляции транзакций. Текущая функция версий (в базе данных tempdb) специаль-

но создана для поддержки уровней изоляции моментальных снимков. Версии для
ADR не созданы для поддержки изоляции моментальных снимков, но могут исполь-

зоваться для их поддержки вместе с другими возможностями ADR.

Постоянное хранилище версий (PVS) также обеспечивает преимущество
для быстрого восстановления (отсюда появился термин «постоянное время
восстановления»). Фаза повтора просто необходима, чтобы убедиться, что
хранилище версий согласовано на уровне строк на страницах таблиц. Для
отмены выполненных изменений просто нужно пометить любую активную
транзакцию как прерванную, а процесс управления версиями, как описано
ранее, сделает все остальное. Это делает восстановление очень быстрым.

Некоторые транзакции, в основном системные транзакции (например,
распределение страниц, обновление данных статистики), не могут исполь-
зовать новую схему PVS. Поэтому, когда ADR включен, SQL Server поддер-
живает вторичный журнал (secondary log – Slog, который хранится в жур-
нале транзакций) для любых транзакций, которые не могут использовать
управление версиями. Транзакции, связанные со вторичным журналом
Slog, должны использовать обычный режим восстановления ARIES. К сча-
стью, системные транзакции почти всегда короткие и потому не вызывают
тех проблем, которые возникают в случае длительных пользовательских
транзакций.

На рис. 4.2, приведенном в статье про CTR, показан новый процесс
восстановления, когда ADR включен.

Как показано на этом рисунке, при ускоренном восстановлении базы
данных SQL Server все так же выполняются три фазы восстановления: ана-
лиз, восстановление и отмена. Но сейчас процесс идет намного быстрее,
поэтому срок восстановления сократился.

Анализ по-прежнему должен выполнять то же самое, что раньше, начи-
ная с последней записи журнала для контрольной точки (CHECKPOINT), но
повтор и отмена существенно различаются.

Повтор гарантирует, что записи журнала для операций Slog будут пере-
мещены из самой старой активной транзакции в запись журнала из самой
старой операции с «грязной» страницей. Начиная с этого момента во время

Ускоренное восстановление базы данных  139

фазы повтора будут выполняться те же операции по обеспечению правиль-
ности фиксации изменений данных, что и при восстановлении ARIES. Но
эта последовательность обычно должна быть короткой, при условии что для
базы данных используются стандартные конфигурации контрольных точек.

Отмена просто помечает любую незафиксированную транзакцию как
прерванную, но при этом потребуется отменить операции транзакций Slog
так же, как выполняется отмена пользовательских транзакций ARIES. При
этом, однако, системные транзакции, как правило, коротки, и их число по
сравнению с общим объемом всех транзакций очень мало, поэтому данный
процесс всегда должен быть быстрым.

В результате мы получаем новую, невероятно быструю систему восста-
новления, в основу которой положено хранилище версий в пользователь-
ской базе данных.

Рис. 4.2. Ускоренное восстановление базы данных в SQL Server

Давайте рассмотрим пример, чтобы подробнее узнать, чем отличается
ведение журнала транзакций при использовании ADR. Этот пример полно-
стью автономен и не зависит от сценариев других примеров, приведенных
в книге. Для его запуска вам просто понадобится SQL Server 2019 и SQL
Server Management Studio (SSMS) или Azure Data Studio (ADS). Вам нужно
будет использовать сценарий alookatadr.sql, который находится в катало-
ге ch4_mission_critical_availability\adr.

1. Откройте сценарий alookatadr.sql и выполните шаг 1 этого сцена-
рия, чтобы создать базу данных.

-- Шаг 1. Создайте базу данных с режимом упрощенного восстановления.
Default for ADR is OFF

Фаза 2а:
повтор Slog

Фаза 1: анализ

Фаза 3: отмена Slog

Фаза 2b: физический
повтор

(журн. транз.)

Записи журнала

Журнал
транзакций

Регистрационный номер
транзакции (LSN) для

старейшей транзакции
в журнале

Конец журналаMin (LSN контрольной точки,
LSN старейшей «грязной»

страницы)

Записи вторичного
журнала (Slog)

Записи Slog, для которых
была установлена контроль-
ная точка (CHECKPOINT)

Вторичный
журнал (Slog)

140  Глава 4. Непрерывная доступность, соответствующая требованиям для систем...

USE master
GO

DROP DATABASE IF EXISTS gocowboys
GO

CREATE DATABASE gocowboys
GO

ALTER DATABASE gocowboys SET RECOVERY SIMPLE
GO

Совет. В этом примере используется простая модель восстановления базы данных,
чтобы упростить изучение записей журнала.

2. Запустите шаг 2 сценария, чтобы создать таблицу и вставить строки.
Обратите внимание, что сценарий добавляет в таблицу 1000 строк.
Из-за оптимизации с использованием ADR вы не можете просто ис-
пользовать одну строку (об этой оптимизации будет более подробно
рассказываться далее в этой главе):

-- Шаг 2. Создайте очень простую таблицу и вставьте 1000 строк.
USE gocowboys
GO

DROP TABLE IF EXISTS howboutthemcowboys
GO

CREATE TABLE howboutthemcowboys (col1 int, col2 char(100) not null)
GO

INSERT INTO howboutthemcowboys VALUES (1, 'Whitten has returned')
GO 1000

3. Выполните шаг 3, чтобы сократить журнал с помощью CHECKPOINT
(дабы было легче увидеть существующие записи журнала) и удалить
1000 строк в транзакции. Откатите транзакцию и просмотрите жур-
нал, используя системную функцию sys.fn_dblog:

-- Шаг 3. Сократите журнал, удалите все строки, откатите назад
-- транзакцию и посмотрите записи журнала
CHECKPOINT
GO

BEGIN TRANSACTION;
DELETE FROM howboutthemcowboys
ROLLBACK TRANSACTION
GO

SELECT * FROM sys.fn_dblog(NULL, NULL)
GO

 В результатах запроса к журналу должно содержаться более 2000 ст-
рок. Если вы просмотрите результаты до конца, то должны увидеть
записи журнала, такие как показано на рис. 4.3.

Ускоренное восстановление базы данных  141

Рис. 4.3. Записи журнала для прерванного удаления (DELETE)

 Обратите внимание на все записи журнала с названием LOP_INSERT_
ROWS, которые следуют до LOP_ABORT_XACT, прерывающим транз-
акцию. Эти записи LOP_INSERT_ROWS являются записями журнала
компенсации для операции DELETE. Логический откат DELETE – это
INSERT. Все записи журнала LOP_INSERT_ROW и завершающая запись
LOP_ABORT_XACT были сгенерированы как часть оператора ROLLBACK
TRANSACTION.

4. На шаге 4 включите ADR с помощью ALTER DATABASE, заново соз-
дайте таблицу и снова вставьте строки:

-- Шаг 4. Перейдите на использование ADR для БД. Создайте таблицу
-- заново.
ALTER DATABASE gocowboys SET ACCELERATED_DATABASE_RECOVERY = ON
GO

USE gocowboys
GO

DROP TABLE IF EXISTS howboutthemcowboys
GO

CREATE TABLE howboutthemcowboys (col1 int, col2 char(100) not null)
GO

INSERT INTO howboutthemcowboys VALUES (1, 'Whitten has returned')
GO 1000

5. На шаге 5 повторите то же упражнение, чтобы сократить журнал,
откатить DELETE и просмотреть записи журнала в журнале транзак-
ций:

-- Шаг 5. Удаление, выполнение отката и повторный просмотр журнала
CHECKPOINT
GO

BEGIN TRANSACTION
DELETE FROM howboutthemcowboys
ROLLBACK TRANSACTION
GO

142  Глава 4. Непрерывная доступность, соответствующая требованиям для систем...

SELECT * FROM sys.fn_dblog(NULL, NULL)
GO

 Теперь вы должны увидеть только 1000+ записей журнала. Просмот-
рите все записи до конца выведенных результатов; посмотрите на
последние записи журнала. Они должны выглядеть как на рис. 4.4.

Рис. 4.4. Записи журнала для прерванной операции
удаления (DELETE) с использованием ADR

 Обратите внимание, что в выведенных результатах отсутствуют
записи компенсации INSERT, а LOP_ABORT_XACT имеет контекст
LCX_CTR_ABORTED. Все записи журнала LOP_DELETE_ROWS были
созданы с помощью инструкции DELETE. Оператор T-SQL ROLLBACK
TRAN сгенерировал только запись LOP_ABORT_XACT.

6. SQL Server 2019 предоставляет диагностику для проверки постоян-
ного хранилища версий (PVS). Выполните шаг 6, чтобы увидеть опе-
раторы для PVS в этой базе данных.

-- Шаг 6. Просмотрите статистику PVS
SELECT * FROM sys.dm_tran_persistent_version_store_stats
WHERE database_id = db_id('gocowboys')
GO

Теперь, когда вы познакомились с тем, как работает ADR, давайте рас-
смотрим два примера, чтобы увидеть, как ADR улучшает производитель-
ность отката и сокращения журнала, а также обеспечивает более быстрое
восстановление.

Использование ускоренного восстановления
базы данных
Как вы видели в только что завершенном примере, для применения уско-
ренного восстановления базы данных (Accelerated Database Recovery, ADR)

Использование ускоренного восстановления базы данных  143

не требуется никаких изменений вашего приложения. Вы просто исполь-
зуете следующий оператор T-SQL, чтобы включить ADR, – и работаете:

ALTER DATABASE <dbname> SET ACCELERATED_DATABASE_RECOVERY = ON

Давайте рассмотрим два примера, чтобы посмотреть:

• как быстро выполняется откат и как агрессивно сокращается журнал
транзакций;

• как скоро восстанавливается, что позволяет вам быстрый доступ к
базе данных.

Все, что вам нужно для выполнения этих примеров, можно найти в
записных книжках и сценариях для каждого примера.

Быстрый откат и агрессивное сокращение журнала
Используйте следующий пример, чтобы увидеть, как можно выполнить

быстрый откат с помощью ADR и насколько агрессивно теперь сокращает-
ся журнал транзакций, во избежание чрезмерного роста журнала. В этом
примере мы сравним скорость отката и рост журнала транзакций с ADR и
без него.

Вы можете выполнить этот пример, используя сценарий T-SQL adr.sql в
каталоге ch4_mission_critical_availability\adr.

В этом примере я рекомендую применять записную книжку T-SQL adr.
ipynb, размещенную в каталоге ch4_mission_critical_availability\adr.
В записной книжке есть полные инструкции по созданию базы данных,
созданию таблицы и вставке данных. Затем, при отключенном ADR, вы
удалите все строки таблицы в транзакции. Далее вы обратите внимание
на полный объем пространства журнала, который был использован, но не
может быть сокращен даже после контрольной точки. Затем вы определите
скорость отката всего удаления (или, если быть более точным, отсутствие
скорости).

Потом, используя записную книжку, вы повторите эти шаги, но на этот
раз при включенном ADR. Сценарий T-SQL содержит те же самые шаги, что
и в первый раз. Изучив этот пример, давайте сделаем что-то более продви-
нутое. Посмотрим на скорость восстановления, используя тот же пример
T-SQL, но с большим количеством строк, чтобы увидеть влияние восста-
новления.

Ускорение восстановления
Чтобы показать, как работает быстрое восстановление, необходимо

создать пример, в котором фаза отмены восстановления должна попытать-
ся откатить большое количество изменений или транзакций.

Итак, как создать сценарий, в котором SQL Server должен запускать этап
отмены определенной транзакции? Для этого вам необходимо создать сце-

144  Глава 4. Непрерывная доступность, соответствующая требованиям для систем...

нарий для активной транзакции, для которого НЕ будет выполнен откат или
фиксация до завершения работы SQL Server. Есть три способа сделать это:

• выполните инструкцию T-SQL SHUTDOWN WITH NOWAIT;
• завершите работу службы SQL Server (например, net stop mssqlserver);
• завершите процесс SQLSERVR.EXE (для Windows используйте коман-

ду End Task (Завершить задачу) в диспетчере задач).

Любой из этих перечисленных методов остановит SQL Server, не влияя
на активную транзакцию. Есть еще одно соображение. Для того чтобы SQL
Server откатывал активные транзакции, «должно быть что-то, что необхо-
димо откатить». Если страницы данных, на которые влияет активная транз-
акция, никогда не записывались на диск, то когда SQL Server запускает вос-
становление, он не может «отменить» то, чего никогда не было. Поэтому
при использовании любого из перечисленных методов вы должны выпол-
нить команду CHECKPOINT для базы данных (завершение работы службы
SQL Server корректно запускает контрольную точку для всех баз данных).
Обратите внимание, что, возможно, Recovery Writer или Lazy Writer уже
перенесли эти страницы на диск, однако вы не можете полностью поло-
житься на это при демонстрации.

Совет. Что делать, если вы хотите принудительно повторить транзакцию? Нужно ис-

пользовать противоположный подход. У вас должна быть завершенная транзакция,
однако страницы, затронутые транзакцией, не должны быть записаны на диск. Запус-
тите транзакцию, аналогичную приведенным в этой главе, но при этом завершите
транзакцию (COMMIT). Затем имитируйте «сбой» сервера, но сделайте это без конт-
рольной точки, поэтому используйте команду End Task (Завершить задачу).

Вооружившись этими знаниями, вы можете просмотреть сценарий
T-SQL adr_recovery.sql или записную книжку T-SQL adr_recovery.ipynb,
размещенные в каталоге ch4_mission_critical_availability\adr. Я рекомен-
дую использовать записную книжку, так как в ней имеются комментарии к
каждому шагу, с указанием того, когда вам необходимо имитировать сбой
сервера.

Далее вы будете просматривать ERRORLOG при прохождении шагов сце-
нария (из записной книжки или размещенного в указанном каталоге сце-
нария). Я приведу примеры того, что вы должны увидеть, когда восстанов-
ление выполняется с включенным ADR и без него.

Ниже приведен пример ERRORLOG, когда ADR не включен:

spid25s Recovery of database 'gocowboys' (6) is 2% complete
 (approximately 697 seconds remain). Phase 2 of 3. This is an
 informational message only. No user action is required.
spid25s Recovery of database 'gocowboys' (6) is 5% complete
 (approximately 682 seconds remain). Phase 2 of 3. This is an

Использование ускоренного восстановления базы данных  145

 informational message only. No user action is required.
spid25s Recovery of database 'gocowboys' (6) is 7% complete
 (approximately 667 seconds remain). Phase 2 of 3. This is an
 informational message only. No user action is required.
spid25s Recovery of database 'gocowboys' (6) is 7% complete
 (approximately 667 seconds remain). Phase 3 of 3. This is an
 informational message only. No user action is required.
spid8s Recovery of database 'gocowboys' (6) is 40% complete
 (approximately 113 seconds remain). Phase 3 of 3. This is an
 informational message only. No user action is required.
spid8s Recovery of database 'gocowboys' (6) is 50% complete
 (approximately 94 seconds remain). Phase 3 of 3. This is an
 informational message only. No user action is required.
spid8s Recovery of database 'gocowboys' (6) is 59% complete
 (approximately 79 seconds remain). Phase 3 of 3. This is an
 informational message only. No user action is required.
spid8s Recovery of database 'gocowboys' (6) is 68% complete
 (approximately 65 seconds remain). Phase 3 of 3. This is an
 informational message only. No user action is required.
spid8s Recovery of database 'gocowboys' (6) is 76% complete
 (approximately 48 seconds remain). Phase 3 of 3. This is an
 informational message only. No user action is required.
spid8s Recovery of database 'gocowboys' (6) is 84% complete
 (approximately 32 seconds remain). Phase 3 of 3. This is an
 informational message only. No user action is required.
spid8s Recovery of database 'gocowboys' (6) is 93% complete
 (approximately 15 seconds remain). Phase 3 of 3. This is an
 informational message only. No user action is required.
spid8s 1 transactions rolled back in database 'gocowboys' (6:0). This
 is an informational message only. No user action is required.
spid8s Recovery is writing a checkpoint in database 'gocowboys' (6).
 This is an informational message only. No user action is
 required.
spid8s Recovery completed for database gocowboys (database ID 6) in
 211 second(s) (analysis 15 ms, redo 56340 ms, undo 154549 ms.)
 This is an informational message only. No user action is
 required.

Примечание. Повтор здесь необходим для некоторых системных транзакций, свя-

занных со статистикой индекса для этого примера.

Ниже приведен пример ERRORLOG, когда ADR включен. Восстановление
при включенном ADR происходит очень быстро; SQL Server даже не выдает
сообщение о том, сколько времени заняло восстановление!

146  Глава 4. Непрерывная доступность, соответствующая требованиям для систем...

spid25s 1 transactions rolled back in database 'gocowboys' (6:0). This
 is an informational message only. No user action is required.
spid25s Recovery is writing a checkpoint in database 'gocowboys' (6).
 This is an informational message only. No user required.

Ускорение восстановления базы данных.
Основные моменты
Все это звучит слишком хорошо, чтобы быть правдой; и я уверен, что вам
интересно, нет ли здесь каких-либо подводных камней. Если ускоренное
восстановление баз данных (ADR) настолько хорошо, почему бы нам не
использовать его всегда?

Производительность и размер базы данных
Когда я разговаривал с клиентами об их использовании ADR, то задавал

два вопроса:
Объем базы данных увеличивается?
Краткий ответ на этот вопрос – конечно, да. Более важный момент –

насколько он увеличивается. Поскольку мы храним версии строк в базе дан-
ных в течение определенного периода времени, естественно, объем, необхо-
димый для постоянного хранилища версий (PVS), будет больше, чем без него.

Проблема, как и в случае с любой подобной функцией, заключается в
том, что «здесь возможны варианты».

Какие варианты возможны? Чтобы сделать осознанный выбор, вам над-
лежит принять во внимание ряд факторов, которые мы перечислим ниже:

• насколько интенсивно ваше приложение выполняет операции запи-
си с большим количеством изменений данных? Чем больше число
изменений, тем больший объем потребуется для хранения версий;

• сколько времени занимают транзакции, которые должны прочитать
данные из сохраненных версий? Если версии данных не используют-
ся ни в одном запросе, их можно не использовать.

Ускоренное восстановление баз данных имеет встроенную оптимиза-
цию, позволяющую минимизировать объем хранилища версий, включая
следующее:

• «по требованию».
 При обновлении строки SQL Server может «повторно использовать»

версию строки, которая была аннулирована, и вместо нее записать
новую версию. Это происходит в процессе изменения данных;

• фоновая очистка.
 Что делать, если все еще существуют версии, которые больше не нуж-

ны (например, прерванные транзакции), а обновление еще не прои-

Ускорение восстановления базы данных. Основные моменты  147

зошло? SQL Server использует существующую фоновую архитектуру
рабочих потоков для планирования очистки (каждые несколько ми-
нут) любых версий, которые могут быть отклонены, как для внутри-
строчного (in-row), так и для автономного (off-row) хранения версий
данных. SQL Server использует концепцию, называемую логическим
возвратом (logical revert), для очистки ненужных версий. Логиче-
ский возврат – это процесс, гарантирующий, что зафиксированная
версия строки является «основной» строкой страницы, тем самым
сокращая «список» версий для просмотра. Раздел 3.3 статьи про
CTR (www.microsoft.com/en-us/research/publication/constant-time-recovery-in-azure-

sqldatabase/) содержит отличное подробное описание того, как рабо-
тает логический возврат. Кроме того, в разделе 3.7 этой же статьи
описывается весь процесс очистки.

Раздел 4 статьи содержит результаты экспериментального тестирования
роста объема баз данных на примере 50 млн операций вставки, обновления
и удаления. Команда инженеров, проводившая тестирование, обнаружила,
что после 50 млн обновлений PVS увеличило базу данных примерно на 1 Гб.
Просмотрите эти результаты, поскольку они также показывают значитель-
ное уменьшение размера журнала транзакций из-за использования ADR
(вы наблюдали это при выполнении примеров кода, приведенных в данной
главе, когда использовали сценарий alookatadr.sql).

Влияет ли использование ADR на производительность?
Это, пожалуй, самый распространенный вопрос, касающийся исполь-

зования ADR. Как и для вопроса о факторе роста, здесь нет однозначного
ответа. Поскольку ADR отслеживает каждое изменение данных, создавая
новые версии, наибольшее влияние на производительность будет наблю-
даться в ситуациях с интенсивной записью данных. Также могут внести
свой вклад и операции чтения для приложений с интенсивной записью:
потребуется выполнение дополнительных операций, чтобы найти нужную
версию строки.

В статье про CTR описано, что группа инженеров провела тестирование
с использованием тестов на основе тестов производительности TPC-C и
TPC-E, являющихся стандартом для индустрии (для получения дополни-
тельной информации о тестах производительности TPC-C и TPC-E см. www.

tpc.org). TPC-C – это более старый стандартный тест производительности,
но он выполняет много операций записи. TPC-E является более сбаланси-
рованным, но «все еще OLTP» эталоном рабочей нагрузки при записи дан-
ных. Процесс выполнения тестов и их результаты описываются в разде-
ле 4.2 статьи; здесь я приведу лишь краткие результаты: при запуске TPC-C
влияние на производительность оказалось около 14 % для внутристрочного
(in-row) хранения версий данных, а при запуске TPC-E влияние на произво-
дительность оказалось около 2,5 % для внутристрочного (in-row) хранения
версий данных.

148  Глава 4. Непрерывная доступность, соответствующая требованиям для систем...

Я провел собственное «быстрое и грязное» тестирование с использова-
нием инструмента с открытым исходным кодом HammerDB (подробнее
см. по ссылке www.hammerdb.com). Этот инструмент поставляется с вариантом
эталонного теста TPC-C. При использовании 10 хранилищ / 10 виртуальных
пользователей в течение 5-минутного периода я наблюдал влияние на про-
изводительность около 15 % при использовании ADR.

Примечание. Ни один из этих результатов тестов не гарантирует, что вы получите
точно такие же цифры либо вообще заметите какое-либо влияние на производи-

тельность, если включите ADR для своей базы данных. Это связано с тем, что при
проведении подобного тестирования используются тесты определенного типа рабо-

чей нагрузки, которые могут соответствовать или не соответствовать профилю рабо-

чей нагрузки вашего приложения. Разработайте стандартный способ тестирования
производительности вашего приложения с ADR и без него, чтобы узнать истинное
влияние ADR на производительность.

Просмотрите результаты в разделе 4 статьи – там приведены впечатля-
ющие цифры по времени восстановления, которые команда наблюдала в
Azure (вы уже видели эффект ускоренного восстановления на простой базе
данных).

Еще одним важным преимуществом ускоренного восстановления баз
данных является то, что время отработки отказа для групп доступности
Always On (Always On Availability Groups) может быть быстрее, и быстрее
выполняются запросы к репликам только на чтение.

Неожиданные сценарии
В некоторых случаях для хранилища постоянных версий (PVS) невоз-

можно использовать режим хранения версий страницы данных «в стро-
ке» (in-row), поскольку данные просто не помещаются на одной странице.
В этом случае версии хранятся во внутренней системной таблице.

Это так называемые сценарии «автономного» (off-row) хранения дан-
ных. Как вы наверняка догадываетесь, случаи, когда PVS использует «авто-
номный» режим хранения, – это не идеальная ситуация. Поэтому таких
сценариев следует по возможности избегать.

Версии, хранящиеся вне строки, в «автономном» хранилище, возникают
главным образом тогда, когда выполняемая операция обновления данных
существенно изменяет текущую версию строки. Если обновление является
настолько значительным, невозможно или не имеет смысла хранить вер-
сию в строке; версия будет сохранена во внутренней системной таблице
как автономная версия. Я провел несколько экспериментов на базах дан-
ных с включенным ADR, при этом для хранения PVS использовалась табли-
ца с именем persistent_version_store в каждой базе данных. Эта таблица
имеет тип INTERNAL_TABLE, напоминающий другие внутренние таблицы

Ускорение восстановления базы данных. Основные моменты  149

для Query Store. Эта системная таблица содержит данные о версии и мета-
данные, чтобы связать ее с актуальной строкой на странице таблицы.

Если вас беспокоит, генерирует ли ваше приложение множество авто-
номных версий, вы можете использовать счетчики производительности и
расширенные события, о которых будет рассказываться в следующем раз-
деле под названием «Контроль ADR».

Примечание. На тот момент, когда я писал эту главу, версии PVS, хранящиеся вне
строки, размещались в файловой группе PRIMARY вашей базы данных, и выбрать
другое место для их хранения было невозможно. Команда инженеров обсуждала,
могут ли они добавить возможность перемещения «автономного» PVS в другую фай-

ловую группу, выбранную пользователем при помощи ALTER DATABASE. Обратитесь
к документации по ALTER DATABASE, чтобы узнать, появилось ли это усовершенство-

вание в финальной версии SQL Server 2019.

Другой неожиданной ситуацей может стать оптимизация коротких
транзакций. Это хорошая ситуация. Использование PVS не имеет смысла,
когда транзакции очень короткие. Поэтому при тестировании ADR не
следует рассматривать транзакции, в которых удаляется несколько строк
для применения ADR. Если вы просматриваете журнал с использованием
fn_dblog(), то можете увидеть транзакции, в которых ADR не будет
применяться со следующими операциями: LOP_FORGET_XACT и LCX_
XACT_DOES_NOT_SUPPORT_CTR.

Контроль ADR
Как и многие новые функции SQL Server, команда ADR имеет типы ожи-

дания, расширенные события и счетчики монитора производительности
для контроля выполнения ADR, использования хранилища постоянных
версий (PVS) и обработки операций очистки.

На рис. 4.5 показаны некоторые счетчики производительности, доступ-
ные для отслеживания использования хранилища постоянных версий
(PVS), включая отслеживание количества создаваемых версий вне строки
(в «автономном» режиме).

Существует несколько расширенных событий, которые также можно
использовать для отслеживания определенного поколения версий и для
задач очистки. Вы можете получить информацию обо всех этих событиях,
выполнив следующие запросы к представлениям динамического управле-
ния XE (XE Dynamic Management Views):

select * from sys.dm_xe_objects where name like '%pvs%'
select * from sys.dm_xe_objects where name like '%ctr%'

Одним из таких событий, интересных с точки зрения контроля ADR,
является событие pvs_add_record. Вы можете использовать это событие

150  Глава 4. Непрерывная доступность, соответствующая требованиям для систем...

вместе с sql_text, чтобы выяснить, какие запросы генерируют версии вне
строки.

Рис. 4.5. Счетчики производительности PVS

Примечание. Я не проводил никакого тестирования с использованием этих расши-

ренных событий, поэтому не могу сказать, какое влияние они могут оказать на ваше
приложение.

И наконец, для тех, кто действительно хочет углубиться в данную тему,
есть несколько типов ожидания, перечисленных в статистике DMV sys.dm_
os_wait_stats, которые применяются к ADR. Вы можете отслеживать их, что-
бы контролировать выполнение таких операций, как очистка. Используйте
следующую инструкцию T-SQL для поиска этих типов ожидания:

select * from sys.dm_os_wait_stats
where wait_type like '%pvs%' or wait_type like '%ctr%'

Нужно ли использовать ADR?
Если у вас нет длительных транзакций, ADR, скорее всего, не поможет и

может отрицательно повлиять на ваше приложение. Если ваше приложение
генерирует много автономных версий, воздействие может быть слишком

Резюме  151

сильным, чтобы увидеть преимущества ADR. Имейте в виду, однако, что
ADR все еще может быть очень полезным для сценариев восстановления
после отказа, например с использованием групп доступности Always On.

Я рекомендую разработать методику тестирования ADR для вашего при-
ложения. Мы не реализовали использование ADR по умолчанию (пока) для
SQL Server 2019, потому что профили рабочих нагрузок весьма различны и
не для всех – как уже обсуждалось в этой главе – использование ADR даст
очевидное преимущество. Однако возьмите на заметку следующие послед-
ние замечания.

• ADR – одна из тех функций, про которые вы не можете определенно
сказать, что они нужны вам сейчас, но когда они вам понадобятся...
они вам понадобятся! Возможно, вы не сможете предсказать, в какой
именно момент длительное восстановление приведет к существен-
ным потерям для вашего бизнеса. Разве не хорошее решение – вклю-
чить эту функцию, чтобы исключить подобную ситуацию?

• В большинстве случаев профили рабочей нагрузки приложений не
похожи на тесты производительности TPC-C, выполняющие очень
много операций записи данных. Наши результаты тестирования с
более сбалансированной рабочей нагрузкой по чтению/записи, та-
кой как TPC-E, не оказали большого влияния.

• Примите во внимание следующую цитату из статьи про CTR, так как
команда инженеров, писавших эту статью, использовала «облачный»
подход для развертывания ADR в Azure: «…CTR уже используется в
пяти регионах, примерно в одном миллионе баз данных, и получен-
ные результаты весьма обнадеживают».

Резюме
Обеспечение доступности ваших данных и приложений является важным
аспектом любого продукта платформы данных. SQL Server 2019 продолжа-
ет улучшать основные функции доступности, такие как возобновляемая
онлайн-индексация и группы доступности.

Кроме того, SQL Server 2019 предлагает инновационный подход к реше-
нию проблем простоя из-за длительных активных транзакций с помощью
ускоренного восстановления баз данных.

Глава 5
Современная платформа

разработки

Данные нужны практически любому разработчику, а такой продукт, как
SQL Server, обладает всеми необходимыми возможностями, включая языки
программирования, драйверы и платформы. Современному разработчи-
ку данных нужна платформа баз данных для решения современных задач.
SQL Server 2019 отвечает этим потребностям, предоставляя следующие
возможности:

• поддержка широкого спектра языков и драйверов для различных
платформ операционных систем, таких как Windows, macOS и Linux,
а также обеспечение совместимости между ними. Различные версии
SQL Server предоставляют общий внешний слой для минимизации
логики приложения;

• графовые базы данных, интегрированные с SQL Server, позволяют
разработчикам реализовывать различные модели данных, такие как
социальные сети, без необходимости включать в архитектуру сво-
их приложений дополнительные продукты, и выполнять запросы к
ним, используя знакомый язык T-SQL;

• разработчикам нужна способность создавать приложения для об-
работки данных Unicode, используя системы кодирования, широко
распрост раненные в отрасли. SQL Server 2019 поддерживает коди-
ровку UTF-8 благодаря новым правилам сравнения и хранения дан-
ных;

• разработчикам нужна платформа баз данных для поддержки новых
типов приложений, интегрированных с машинным обучением, –
приложений, которые масштабируемы, безопасны и интегрированы
с базой данных. Службы машинного обучения SQL Server (SQL
Server Machine Learning Services) включают эти новые возмож-
ности SQL Server 2019;

• язык T-SQL предоставляет множество возможностей, но разработ-
чикам может потребоваться больше. Им нужна возможность расши-
рения языка T-SQL, интегрированного с базой данных. Расширения

Языки, драйверы и платформы  153

языка в SQL Server (SQL Server Language Extensions) в версии SQL
Server 2019 позволяют разработчикам устанавливать и использовать
новые языки, такие как Java, интегрированные с данными SQL Server.

Языки, драйверы и платформы
Когда я начал работать в Microsoft в 1993 году, разработчики, создавав-
шие приложения для SQL Server, в основном использовали такие языки,
как Visual C или Visual Basic, используя драйвер DB-Library. Все клиенты
работали с DOS (да, DOS) или Windows, тогда как SQL Server был основным
сервером баз данных Windows NT. Вскоре появились C ++ и ODBC, но выбор
языков, драйверов и платформ был довольно ограничен. Сегодня разно-
образие выбора языков, драйверов и платформ для клиентских приложе-
ний и SQL Server превосходит все те варианты, о которых я когда-либо мог
подумать.

Языки и драйверы
SQL Server 2019 является современной платформой баз данных, и наряду

с этим предлагается широкий выбор языков программирования, включая
современные языки, популярные у разработчиков, которые традиционно
не использовались с SQL Server.

Наряду с выбором языков предлагается широкий выбор драйверов для
доступа к SQL Server, полностью соответствующих потребностям каждого
языка. Кроме того, эти драйверы работают на различных клиентских плат-
формах, включая macOS, Linux и Windows.

Также выбор драйверов, таких как ODBC, OLE-DB и .Net, стал более ясным,
чем тот широкий, но иногда весьма запутанный набор средств, который
предлагался в прошлом.

Итак, как вы выбираете язык и/или драйвер? Во-первых, выбор язы-
ка в некоторых случаях определяется драйвером, который вы намерены
использовать. Например, если вы хотите написать код на PHP и получить
доступ к SQL Server, то должны использовать драйвер PHP для SQL Server.

К счастью, Microsoft создала веб-сайт, который поможет вам принять
решение о языке, выбрать правильный драйвер, одну или несколько кли-
ентских платформ и увидеть примеры кода на этом языке для обеспечения
доступа к SQL Server.

Чтобы ознакомиться с этими работающими примерами, перейдите на
сайт http://aka.ms/sqldev. Основная страница этого сайта выглядит так, как
показано на рис. 5.1.

Наведя курсор на один из вариантов выбора языка, вы можете выбрать
язык клиентской платформы, чтобы получить подробные сведения об
использовании этого языка с соответствующим драйвером и учебным при-
мером кода (на рис. 5.2 показан пример использования Go).

154  Глава 5. Современная платформа разработки

Рис. 5.1. Центр разработки SQL Server

Рис. 5.2. Использование языка Go с SQL Server

Выбрав вариант Windows, вы получите полное руководство по созданию
вашего первого приложения Go для Windows (ваш SQL Server может рабо-
тать на Windows, Linux или даже в контейнерах), используя версию SQL
Server Developer Edition. У каждого языка и платформы есть шаблон, анало-
гичный тому, который показан на рис. 5.3 для Go.

Многие разработчики, использующие такие языки, как C++ или C#, виде-
ли довольно запутанный список вариантов выбора драйверов для SQL
Server.

После выхода версии SQL Server 2012 мы консолидировали список драй-
веров и версий, которые необходимо использовать, для ODBC, OLE-DB или
ADO.Net. Я нашел соответствующую страницу документации https://docs.

microsoft.com/en-us/sql/connect/connect-history, чтобы продемонстрировать богатую

Языки, драйверы и платформы  155

историю прошлых драйверов и предоставить информацию о том, какие из
них следует использовать сейчас, если вы работаете с SQL Server 2014 или
более поздней версией.

Рис. 5.3. Создание приложения Go для SQL Server

Кроме того, чтобы получить полный список языков и подходящих драй-
веров для создания приложения с помощью SQL Server, я рекомендую вам
ознакомиться со следующей страницей документации: https://docs.microsoft.

com/en-us/sql/connect/sql-connection-libraries (этот список включает драйвер для
приложений, использующих интегрированную среду объектно-реляцион-
ного отображения (object-relational mapping, ORM)).

Я немного «старомодный» разработчик, поэтому чаще всего выби-
раю драйвер ODBC. И мы создали драйвер ODBC для SQL Server, который
соответствует новым функциям SQL Server и доступен для Linux, macOS и
Windows. Вы можете ознакомиться с полной документацией для послед-
ней версии драйвера ODBC для SQL Server по https://docs.microsoft.com/en-us/sql/

connect/odbc/microsoft-odbc-driver-for-sql-server.

Платформы и версии
Начиная с SQL Server 2017 теперь SQL Server поддерживается в Windows,

Linux и контейнерах Docker (Docker Containers). Это создает платформу для
разработчиков, которые никогда раньше не рассматривали SQL Server как
средство разработки. Независимо от того, на какой операционной системе
работает промышленный SQL Server, разработчики могут тестировать свои
приложения, применяя SQL Server Developer Edition для Windows, Linux или
в контейнерах. А поскольку на всех этих платформах используется одина-
ковая кодовая база ядра SQL Server, разработчики могут создавать прило-
жения, локальные для их среды, в которой установлен SQL Server, и при
этом быть полностью уверенными, что они совместимы с SQL Server, рабо-
тающим в промышленной среде. Этот новый подход включает те возмож-

156  Глава 5. Современная платформа разработки

ности, которые прежде были недоступны для SQL Server на Linux, такие как
репликация и распределенные транзакции (Distributed Transactions, DTC),
которые теперь также поддерживаются в SQL Server 2019.

Хотя это и не является новой возможностью SQL Server 2019 (такая воз-
можность появилась в SQL Server 2016 SP1), версии SQL Server, отличные
от Enterprise Edition, содержат аналогичные «верхнеуровневые» функции,
которые упрощают создание приложений, работающих с разными версия-
ми SQL Server. Например, OLTP в памяти (In-Memory OLTP) теперь доступ-
на для SQL Server Enterprise Edition и SQL Server Standard Edition и даже для
SQL Server Express Edition (хотя эта функция по-разному поддерживается
для разных версий). Теперь вы можете создать свое приложение, исполь-
зующее OLTP в памяти, в Developer Edition, и быть уверенными, что оно
будет работать с разными версиями, не предусматривая в своем прило-
жении дополнительную логику, позволяющую определить, с какой именно
версией вы работаете.

Графовая база данных
Концепция реляционной базы данных охватывает все типы моделей проек-
тирования, схемы данных и приложения. Тем не менее существуют опре-
деленные разновидности моделей данных, разработанные для решения
задач в определенной области, которые не всегда полностью соответству-
ют стандартной реляционной модели и языку SQL. Такие модели обыч-
но включают иерархические, «сетевые» или сложные отношения данных
«многие ко многим». В Википедии есть хорошее описание этой проблемы
и ее решения, доступное по ссылке https://en.m.wikipedia.org/wiki/Graph_database.

Некоторые разработчики все еще пытались использовать реляционную
базу данных, чтобы «встроить» ее в модель графа, и писать сложные запро-
сы T-SQL для навигации по графу. Были даже созданы специальные проек ты
для графовых данных, такие как популярная графовая база данных с откры-
тым исходным кодом Neo4j (https://github.com/neo4j/neo4j). Другие платформы
баз данных разрабатывали «надстройки» над своими реляционными база-
ми данных, чтобы обеспечить возможность работы с данными графов.

В 2016 году члены команды SQL Engineering, в том числе Ханума Кода-
валла (Hanuma Kodavalla), Крейг Фридман (Craig Freedman), Девин Райдер
(Devin Rider) и Шрея Верма (Shreya Verma), создали проект для изучения
возможностей построения графовой базы данных в SQL Server и Azure SQL
Database. Их целью было включить встроенные возможности работы с гра-
фами в ядро SQL Server и найти способ использовать язык T-SQL для созда-
ния графовых таблиц, а также обрабатывать графовые данные и выполнять
поисковые запросы к таким данным с помощью T-SQL. Это еще один заме-
чательный пример расширения возможностей T-SQL.

Результатом этих усилий стала поддержка графовой базы данных в SQL
Server 2017 и Azure SQL Database. Одним из огромных преимуществ гра-
фовой базы данных в SQL Server является то, что она обладает всеми мощ-

Графовая база данных  157

ными возможностями SQL Server. К этим возможностям относятся HADR,
безопасность, производительность и все функции ядра. Другие платформы
используют иной подход к решению данной проблемы. Вместо того чтобы
включать эти возможности в ядро базы данных, они рассматривают такие
функции как надстройки или полностью отдельные продукты.

Что представляет собой графовая база данных
в SQL Server?
Графовая база данных в SQL Server использует таблицы для представле-

ния узлов и ребер в графовой модели с использованием расширений T-SQL.
Использование термина «база данных» здесь оправдано, поскольку графо-
вая база данных не является отдельной базой данных в SQL Server. В графо-
вой базе данных узел – это сущность или объект, а ребро – это отношение
между узлами.

Таким образом, графовая база данных представляет собой набор таблиц
узлов и ребер, а также данных и метаданных, которые связывают их вмес-
те. SQL Server поддерживает расширения языка T-SQL для определения
таблицы узлов или ребер с помощью синтаксиса AS NODE или AS EDGE для
опера тора CREATE TABLE. Полное описание синтаксиса команды, исполь-
зуемой для создания таблицы узлов или ребер, можно найти по адресу
https://docs.microsoft.com/en-us/sql/t-sql/statements/create-table-sql-graph.

Кроме того, SQL Server поддерживает новое ключевое слово T-SQL –
MATCH, позволяющее перемещаться по таблицам узлов и ребер, как часть
оператора SELECT. Описание правил использования ключевого слова
MATCH можно найти в документации по адресу https://docs.microsoft.com/en-us/

sql/t-sql/queries/match-sql-graph.
Вы можете ознакомиться с полной документацией для графовой базы

данных в SQL Server и Azure SQL Database, перейдя по ссылке https://docs.

microsoft.com/en-us/sql/relational-databases/graphs/sql-graph-overview. Вы также може-
те просмотреть отличную презентацию, подготовленную сотрудником
Microsoft Кевином Фарли (Kevin Farlee), на YouTube по адресу www.youtube.

com/watch?v=xirfl_t4Gqs.
Однако лучший способ увидеть, как работает таблица узлов или ребер в

SQL Server, – это рассмотреть пример.

Использование графовой базы данных в SQL Server
Многие из вас, вероятно, являются новичками в использовании графовой

базы данных в SQL Server, поэтому я приведу простой пример, чтобы про-
демонстрировать всю мощь этой возможности. Фактически я буду исполь-
зовать пример, приведенный в документации, который можно найти по
адресу https://docs.microsoft.com/en-us/sql/relational-databases/graphs/sql-graph-sample,
однако добавлю в этот пример несколько дополнений, а также сопровожу
его разъясняющими комментариями.

158  Глава 5. Современная платформа разработки

Рассмотрим такое понятие, как социальная сеть. Многие из вас исполь-
зуют их каждый день, пользуясь такими платформами, как Facebook или
LinkedIn. Сеть по своей природе представляет собой соединение объектов,
обычно моделируемое в виде графа. Рассмотрим сеть друзей, показанную
на рис. 5.4.

Рис. 5.4. Сеть друзей

В этой модели графа узлами являются Человек (Person), Город (City) и
Ресторан (Restaurant). Стрелки представляют отношения между узлами;
это – ребра графа. Обратите внимание на особые отношения под названи-
ем Friends, которые связывают людей друг с другом. Построить эту модель,
используя набор реляционных таблиц, не так уж и сложно, но обход графа
с использованием традиционных запросов T-SQL становится достаточно
трудоемкой задачей.

Давайте создадим пример графовой базы данных с использованием
предыдущей модели, чтобы вы могли познакомиться с основами, а затем
посмотреть, что нового в SQL Server 2019.

Примечание. Для практического выполнения примеров использования графовой
базы данных не требуется особых предварительных настроек, кроме установки SQL
Server 2019 (на Windows, Linux или в контейнере) и использования таких инструмен-

тов, как SQL Server Management Studio (SSMS) или Azure Data Studio (ADS) (июньской
версии 2019 г. или более поздней). Пример графа в этом разделе разработан для
SQL Server 2019.

Для нашего примера допустим, что некто Джон (John) является пользо-
вателем социальной сети. Он дружит с Мэри (Mary) и Джули (Julie), но еще

Человек

Друзь
я

Ж
ив

ет
 в(

ад
ре

с,
…

)

Нрав
ится

(рей
ти

нги, о
бзо

р …
)

Нравится(рейтинги, обзор …
)

Город Ресторан
Находится в(адрес, …, …)

Графовая база данных  159

не знает, с кем они дружат (и с кем дружат их друзья и т. д.). Он хочет рас-
ширить свою социальную сеть, а также узнать, какие рестораны нравятся
его друзьям.

Рассмотрим «социальную сеть друзей» на рис. 5.5.

Рис. 5.5. Социальная сеть друзей

Джон не знает всей социальной сети, поэтому ему нужно использовать
графовую базу данных для навигации.

Все сценарии для примеров использования графовой базы данных можно
найти в каталоге ch5_modern_development_platform\sqlgraph. Используя
модель на рис. 5.4 в качестве руководства, выполните шаги 1–7 в записной
книжке T-SQL socialnetwork.ipynb, воспользовавшись Azure Data Studio.
На примере этих шагов вы узнаете, как строить таблицы графов в виде
узлов и ребер, добавлять данные, а затем выполнять обход графа с исполь-
зованием синтаксиса T-SQL MATCH.

Также вы можете использовать сценарий T-SQL socialnetwork.sql для
выполнения шагов 1–7 с применением SSMS или ADS.

Расширение возможностей работы с графовыми
данными в SQL Server 2019
SQL Server 2019 включает несколько улучшений, которые помогли сде-

лать графовую базу данных более мощной и привлекательной платформой
для работы с данными графов по сравнению с другими продуктами. Эти
возможности включают в себя:

• обход пути графа с использованием нового синтаксиса SHORTEST_
PATH();

• поддержку производных таблиц (derived tables) и представлений
(views) в графовой базе данных;

John

Ryan

GingerAliceJulie

MaryJacob

160  Глава 5. Современная платформа разработки

• ограничения ребер, необходимые для построения правильных отно-
шений внутри графа;

• использование оператора T-SQL MERGE для поддержки таких сцена-
риев, как upsert.

Давайте рассмотрим некоторые из этих новых возможностей.

SHORTEST_PATH
Одной из наиболее распространенных задач, которые необходимо

решить с помощью графовой базы данных, является рекурсивный про-
смотр данных графа без необходимости вручную переходить на каждый
уровень. SQL Server 2017 не поддерживает эту возможность, но SQL Ser-
ver 2019 обеспечивает ее поддержку посредством нового синтаксиса T-SQL
SHORTEST_PATH().

Используя примеры шагов 8 и 9 в socialnetwork.ipynb и socialnetwork.
sql, посмотрите, как SHORTEST_PATH позволяет Джону и Джейкобу выпол-
нять обход социальной сети друзей.

Вы можете ознакомиться с подробностями использования SHORTEST_
PATH(), обратившись к документации, размещенной по ссылке https://docs.

microsoft.com/en-us/sql/relational-databases/graphs/sql-graph-shortest-path, или к заметке
в блоге Шреи Верма (Shreya Verma) по ссылке https://techcommunity.microsoft.com/

t5/SQL-Server/Public-Preview-of-Shortest-Path-on-SQL-Server-2019/ba-p/721240.

Ограничения ребер
Хотя синтаксис NODE и EDGE T-SQL обеспечивает отличный новый спо-

соб построения данных графа с использованием таблиц SQL Server, в SQL
Server 2017 не существовало способа обеспечить целостность данных узлов
и ребер. Аналогично тому, как концепция ограничений внешнего ключа
в таблицах SQL Server поддерживает целостность данных в таблицах, SQL
Server 2019 поддерживает возможность обеспечения целостности данных
для узлов и ребер.

Исследуйте только что созданную социальную сеть, используя примеры
из этой главы. Было бы неплохо убедиться, что любые данные для таблицы
ребер friendOf должны быть взяты из соответствующей строки в таблице
Person. Ограничения ребер предоставляют такую возможность.

Кроме того, ограничения ребер поддерживают правильные связи внутри
сети. В нашей модели социальной сети человеку может нравиться ресто-
ран, но ресторану не может нравиться человек. Ограничение ребер также
может обеспечить выполнение этого правила. Кроме того, ограничения
ребер гарантируют, что ребра не останутся «оборванными», т. е. ссылаю-
щимися на несуществующий объект. Ограничения ребер не позволяют уда-
лить узел, который является частью отношения ребер, если такие данные
присутствуют в таблице ребер. Опять же, подобное поведение аналогично
ограничениям внешних ключей в традиционных реляционных таблицах.

Поддержка UTF-8  161

Вы можете получить более подробную информацию об ограничениях
ребер, обратившись к документации по ссылке https://docs.microsoft.com/en-us/

sql/relational-databases/tables/graph-edge-constraints или к заметке в блоге Шреи по
ссылке https://docs.microsoft.com/ru-ru/archive/blogs/sqlserverstorageengine/public-preview-

of-graph-edge-constraints-on-sql-server-2019.

Использование MERGE с таблицами графов
SQL Server использует оператор T-SQL под названием MERGE, который

выполняет операции вставки, обновления или удаления целевой таблицы
на основе результатов объединения с исходной таблицей. В SQL Server 2017
вы можете использовать инструкцию MERGE для консолидации опера-
ций DML в таблицах узлов, но не в таблицах ребер. SQL Server 2019 теперь
предо ставляет возможность применять MERGE и для таблиц ребер.

Взгляните на несколько замечательных примеров на эту тему в блоге
Шреи Верма (Shreya Verma), перейдя по ссылке https://blogs.msdn.microsoft.com/

sqlserverstorageengine/2018/07/16/match-support-in-merge-dml-for-graph-tables/.

Поддержка UTF-8
Приложения и базы данных использовали Unicode в качестве стандарта для
кодирования символьных данных еще в начале 1990-х годов. SQL Server в
Windows включает типы данных и порядки сопоставления для поддерж-
ки кодировки символов Unicode почти с самого начала своего возникно-
вения и развития как продукта. SQL Server 2019 представляет новый метод
использования Unicode под названием UTF-8, который широко использу-
ется приложениями и базами данных, обычно в системах Linux.

Если вы хотите получить больше информации об основах Unicode перед
прочтением этого раздела, то можете обратиться к следующим источни-
кам:

• https://docs.microsoft.com/en-us/windows/win32/intl/unicode;

• https://en.wikipedia.org/wiki/Unicode;

• https://unicode.org/standard/WhatIsUnicode.html.

Unicode и SQL Server
Обычный способ, которым SQL Server поддерживает кодировку Unicode, –

это использование типов данных nchar и nvarchar. SQL Server поддержива-
ет кодировку Unicode этих типов данных с использованием схемы коди-
рования UTF-16. В UTF-16 потребуется как минимум 2 байта на «символ»
для хранения данных. Символ ASCII, применяющий UTF-16 «a», использует
2 байта памяти. Когда вы определяете столбец, как показано ниже:

col1 nchar(10) not null

162  Глава 5. Современная платформа разработки

SQL Server использует 20 байт памяти для этого столбца, даже если вы хра-
ните в нем только стандартные символы ASCII.

Этот способ несовместим со следующим определением столбца:

col1 char(10) not null

для которого потребуется 10 байт, но в котором можно хранить только сим-
волы из набора символов ASCII.

Примечание. Среди разработчиков и специалистов по обработке данных очень рас-

пространена следующая ошибка: они используют типы данных nchar, char и т. д. и при
этом считают, что длина – это просто количество символов, а не объем хранилища
памяти в байтах.

UTF-16 поддерживает весь набор символов Unicode, потому что многие
символы для поддержки различных языков, кроме символов ASCII, исполь-
зуют 2 байта для представления символа.

Зачем нужно использовать UTF-8?
Хотя большинство приложений и баз данных, таких как SQL Server,

используют UTF-16 для кодировки символов Unicode, многие в сообществе
Linux применяют кодировку под названием UTF-8. UTF-8 похож на UTF-16
в том, что он поддерживает весь набор символов Unicode, но использу-
ет другую схему кодирования и хранения байтов в зависимости от того,
какой символ хранится. Например, для символов ASCII потребуется толь-
ко 1 байт памяти в UTF-8, но в UTF-16 для тех же символов потребуется
2 байта.

Рассмотрим в качестве примера приложение, где используется только
набор символов ASCII, которое нуждается в обновлении, чтобы обеспечить
поддержку всех символов Unicode. Возможно, это приложение использу-
ет типы данных char и varchar в SQL Server. Прежде чем SQL Server начал
поддерживать UTF-8, специалист по данным был бы должен изменить
типы данных всех столбцов SQL Server, заменив char на nchar и varchar
на nvarchar. Использование ALTER TABLE для изменения типов данных
таким образом для символов ASCII практически удваивает требования к
объему памяти, необходимому для хранения данных этих столбцов, даже
если вы изначально используете только символы ASCII.

Теперь, с появлением версии SQL Server 2019, существует альтернатив-
ный вариант решения этой проблемы – оставить ваши типы данных char и
varchar, но изменить порядок сопоставления для столбцов, чтобы исполь-
зовать новые варианты порядка сопоставления UTF-8, такие как LATIN1_
GENERAL_100_CI_AS_SC_UTF8. ALTER TABLE позволяет изменить порядок
сопоставления на уровне столбца. В кодировке UTF-8 для символов потре-
буется только 1 байт памяти для символов ASCII.

Службы машинного обучения SQL Server  163

Принимайте эти решения с осторожностью, поскольку существуют неко-
торые ограничения для UTF-8, а для хранения некоторых символов в UTF-8
(не ASCII) потребуется больше памяти, чем для UTF-16.

UTF-8 поддерживается для SQL Server для Windows, Linux и контейнеров
(помните, что порядок сопоставления «Windows» поддерживается для SQL
Server в Linux благодаря архитектуре SQLPAL. В документации говорится,
что UTF-8 поддерживается только для порядка сопоставления символов в
Windows, но не порядка сопоставления SQL).

Чтобы узнать, подходит ли вам UTF-8, обратитесь к следующим ресурсам:

• https://cloudblogs.microsoft.com/sqlserver/2018/12/18/introducing-utf-8-support-in-

sql-server-2019-preview/;

• https://docs.microsoft.com/en-us/sql/relational-databases/collations/collation-and-

unicode-support;

• https://docs.microsoft.com/en-us/sql/relational-databases/collations/collation-and-

unicode-support#utf8.

Службы машинного обучения SQL Server
Когда я присоединился к команде SQL Engineering в 2016 году, проработав
в Microsoft более 20 лет, Джозеф Сирош (Joseph Sirosh) занимал должность
вице-президента по SQL Server. SQL Server 2016 только что вышел, и я знал,
что Джозеф особенно гордится работой по интеграции машинного обуче-
ния с SQL Server благодаря поддержке языка программирования R, проде-
ланной командой, разрабатывающей SQL Server.

Джозеф – ученый, специалист в области науки о данных, увлекается
машинным обучением и работой с данными. Как язык с открытым исход-
ным кодом, R является одним из самых популярных языков программиро-
вания в области науки о данных и машинного обучения, поэтому его инте-
грация с SQL Server казалась естественной. Кроме того, в 2015 году Microsoft
приобрела компанию Revolution Analytics, которая создала коммерческую
версию R под названием RevoScaleR, включив в нее изменения, позволя-
ющие сделать этот язык более масштабируемым. (Если вы хотите узнать
больше об истории R, обратитесь к следующему ресурсу: https://en.wikipedia.

org/wiki/R_(programming_language).) Теперь стало возможным объединить эти
силы для создания платформы машинного обучения, используя данные,
размещенные на SQL Server. Эта функция получила название SQL Server
2016 R Services. В SQL Server 2017 была представлена интеграция с языком
программирования Python, в основу которой были положены те же кон-
цепции и архитектура. Благодаря этим новым возможностям R и Python
совместно стали службами машинного обучения SQL Server (SQL Server
Machine Learning Services).

Хотя изменения в службах машинного обучения SQL Server (ML Services)
для SQL Server 2019 не являются кардинальными, эти возможности могут

164  Глава 5. Современная платформа разработки

привлечь ваше внимание в силу своей новизны, поэтому я потрачу немно-
го времени на обсуждение того, как они работают. Это важно по несколь-
ким причинам:

• понимание того, как работают ML Services, и преимуществ их ис-
пользования позволит вам принять решение о том, подходят ли эти
возможности для вас и вашего приложения;

• вы можете больше доверять ML Services для SQL Server, если знаете
больше об интеграции, безопасности и управлении этими службами;

• архитектура, называемая Extensibility Framework, используемая
для ML Services, та же, что и для так называемых языковых расшире-
ний SQL Server, новых для SQL Server 2019.

Перед прочтением оставшейся части этой главы ознакомьтесь с доку-
ментацией по службам SQL Server ML Services, размещенной по ссылке
https://docs.microsoft.com/en-us/sql/machine-learning/?view=sql-server-ver15.

Как это работает
До появления SQL Server ML Services специалисты по обработке и анализу

данных разрабатывали и использовали свои модели (термин, часто исполь-
зуемый для программы машинного обучения) на отдельных компью терах
(рабочих станциях или серверах), где доступ ко всем данным, таким как SQL
Server, осуществлялся удаленно. Во многих случаях программы на R или
Python, используемые для этих моделей, просто «вытягивали» всю табли-
цу и фильтровали результаты в самой программе, не используя преиму-
щества таких языков, как SQL.

Службы SQL Server ML Services предлагают новую возможность для соз-
дания и использования масштабируемых приложений машинного обуче-
ния в соответствии со следующими концепциями:

• приложения машинного обучения выполняются на том же компью-
тере, что и SQL Server, но в независимых от SQLSERVR.EXE процес-
сах;

• SQL Server предоставляет интерфейс T-SQL посредством системной
хранимой процедуры sp_execute_external_script для выполнения
кода машинного обучения;

• SQL Server предоставляет архитектуру, делающую возможными ин-
теллектуальный обмен данными и масштабируемость, используя
специальный программный код для машинного обучения.

Рассмотрите рис. 5.6, иллюстрирующий архитектуру служб SQL Server ML
Services, называемую расширяемой архитектурой служб машинного обуче-
ния SQL Server (Extensibility architecture in SQL Server Machine Learning
Services). Эта иллюстрация приведена в документации по SQL Server,

Службы машинного обучения SQL Server  165

доступной по ссылке https://docs.microsoft.com/en-us/sql/advanced-analytics/concepts/

extensibility-framework#architecture-diagram.

Рис. 5.6. Архитектура служб SQL Server ML Services

К сожалению, в документации не приводится подробное описание циф-
ровых сносок, изображенных на диаграмме, поэтому я дам это описание
здесь. Это поможет вам лучше понять, как работают службы SQL Server ML
Services.

Примечание. Я уже говорил на эту тему ранее в данной книге, и у меня есть очень
подробная схема архитектуры с разъяснениями. Вы можете ознакомиться с ней
на рис. 5.7, а также просмотрев материалы, опубликованные по ссылкам на www.

youtube.com/watch?v=y52oBaI32Jo и www.slideshare.net/BobWard28/sql-server-r-
services-what-every-sql-professional-should-know. Эти ресурсы раскрывают архитек-

туру SQL 2016 R Services, при этом архитектура, использующая Python, аналогична
той, что описана в материалах, опубликованных по приведенным ссылкам. Обнов-

ленный слайд, иллюстрирующий поддержку Python, можно найти по адресу https://

aka.ms/bobwardms. Найдите в папке SQL2017 строку с дополнительной информаци-

ей о статье, которая называется «Службы машинного обучения SQL Server» (Inside
SQL Server Machine Learning Services).

Вот моя версия архитектуры при более глубоком погружении (рис. 5.7).

1. Пользователь выполняет сценарий sp_execute_external_script, вы-
брав язык программирования (R или Python), сценарий и другие
параметры, такие как запрос T-SQL, для выполнения сценария.
SQL Server вызывает отдельную программу с названием Launchpad
(служба в Windows или демон в Linux) через именованные каналы,
передавая все соответствующие данные (например, сценарий R или
Python).

Процесс
SQL Server

Процесс
Launchpad

Процесс
BxlServer.exe

Процесс
расширения

Запускаемая
DLL

Исполняемые
файлы под-

держиваемого
языка

Собственный
процессор

Собственный
модуль

Именованный канал

Именованный канал

sqlservr.exe
launchpad.exe bxlserver.exe

SqlSatellite.dll

TCP/IP

166  Глава 5. Современная платформа разработки

Рис. 5.7. Более глубокое погружение в службы SQL Server ML Services

2. Launchpad содержит код для выполнения DLL, соответствующей
языку R или Python. Launchpad использует модель рабочего пото-
ка, аналогичную ядру SQL Server. Фактически он загружает систему
SQLOS, которую SQL Server использует для служб ОС.

3. DLL-библиотека Launchpad запустит или создаст новый процесс
для соответствующего языка (rterm.exe для R или python.exe для
Python).

4. Другой процесс выполняет создание дочернего потока, который на-
зывается bxlserver.exe (часто его называют периферийным процессом).
Этот программный модуль будет взаимодействовать с rterm.exe или
python.exe для обмена данными.

5. bxlserver.exe обменивается данными с ядром SQL Server, используя част-
ный канал TCP (это не аналогично подключению клиента к SQL Server)
для получения данных из запроса T-SQL, выполняемого для передачи
данных в программу на R или Python. Этот обмен данными выполняется
с чередованием. Это означает, что механизм SQL Server может получить
строки для запроса T-SQL, чтобы передать их в программный модуль
машинного обучения, и в то же время получить результаты обратно.
DLL, которая поддерживает такой обмен, называется sqlsatellite.dll.

6. sqlsatellite.dll работает с модулем в bxlserver.exe для обмена данны-
ми с rterm.exe или python.exe.

7. Все результаты (включая сообщения stdout) из программного моду-
ля rterm.exe или python.exe передаются обратно на SQL Server через
канал TCP.

Поддержка R/Python в SQL Server
Это локальный ресурс!

BxlServer.exe

Служба
MSSQLSERVER

Пул процессов объекта
задания Windows

sqlservr.exe launchpad.exe

sqlsatellite.dll

Раздельные
ресурсы
(память

и процессор)
(Windows Job)

Служба
MSSQLLAUNCHPAD

SNI/TCP – малый объем передачи данных (не TDS)
Получение входных данных и параметров
Отправка результатов и выходных параметров
stdout и stderr

sp_execute_external_script

rterm.exe

BxlServer.exe

sqlsatellite.dll

Периферийный
процесс

python.exe

Локальная учетная запись
пользователя
низкий уровень привилегий

Локальная учетная запись пользователя
низкий уровень привилегий

CreateProcess –
именованный канал

python35.dll

pylink.dllrxlink.dll

conhost.exe

SQLOS
XEvent
ScaleR

SQLOS
XEvent
ScaleR

rlauncher.dll

rlauncher.dll

pythonlauncher.dll

pythonlauncher.dll

Сценарий R

Сценарий
Python

CreateProcess
канал

Open R

Отправка результата

Получение результата с чередованием

составление входного запроса
к данным
Отправка сообщения в канал
Выполнение запроса

Ожитание EXTERNAL_
SCRIPT_NETWORK_IO

Службы машинного обучения SQL Server  167

В результате этого пользователь выполняет sp_execute_external_script и
получает обратно результаты в виде таблицы (например, набора резуль-
татов SELECT) вместе с сообщениями stdout. У этой процедуры есть также
специальные параметры оператора для выходных параметров и многое
другое.

Ключевая концепция этого улучшения заключается в том, что код R или
Python выполняется на том же компьютере, что и SQL Server (близко к дан-
ным), и SQL Server может эффективно обмениваться данными с программ-
ным кодом (сетевой трафик для обмена данными не используется).

Лучший способ понять, как взаимодействуют запрос T-SQL (или «вход-
ной запрос») и программа на R или Python, – это рассмотреть практический
пример. Вместо того чтобы разбирать пример здесь, я настоятельно реко-
мендую вам использовать пример по ссылке https://aka.ms/sqldev или непо-
средственно для Python по ссылке https://microsoft.github.io/sql-ml-tutorials/python/

rentalprediction/. Одна из причин, по которой я рекомендую вам применять
этот пример, состоит в том, что он также включает в себя иллюстрацию
того, как использовать встроенную оценку (native scoring) в T-SQL (https://

docs.microsoft.com/en-us/sql/advanced-analytics/sql-native-scoring).
Мой коллега Бак Вуди (Buck Woody) также провел отличный семинар на

данную тему. Я рекомендую просмотреть его, чтобы попробовать выпол-
нить практический пример и увидеть его в действии, по ссылке https://github.

com/Microsoft/sqlworkshops/tree/master/SQLServerMLServices. Что особенно замеча-
тельно в этом семинаре, так это то, что вы погрузитесь в тему интеллекту-
альной обработки данных (что будет полезно для тех из нас, кто, в отличие
от Бака, не слишком глубоко погружен в науку о данных).

Безопасность, изоляция и функции регулирования
Одним из первых заданий, которые Джозеф Сирош поручил мне, было

укрепление доверия со стороны сообщества SQL в целом к службам SQL
Server R Services. Он обсуждал эти новые возможности с представителями
нескольких крупных компаний, использующих SQL Server, и специалис-
ты по данным в этих компаниях опасались запускать сценарии на R в SQL
Server.

Одним из первых шагов, которые я предпринял, было разъяснение архи-
тектуры, приведенное в предыдущем разделе и в презентации на www.

slideshare.net/BobWard28/sql-server-r-services-what-every-sql-professional-should-know. Эта
архитектура помогла объяснить модель изоляции служб SQL Server ML
Services. Все сценарии на R и Python выполняются в отдельных процессах,
изолированных от SQLSERVR.EXE, поэтому любые проблемы при выполне-
нии этих сценариев не вызовут проблем с ядром базы данных. Эта концеп-
ция коренным образом отличается от других «расширенных» моделей SQL
Server, таких как расширенные процедуры и SQLCLR, которые все запус-
каются внутри процесса SQLSERVR.EXE. Кроме того, периферийные про-
цессы работают изолированно друг от друга, поэтому операции обработки

168  Глава 5. Современная платформа разработки

данных в R или Python различных пользователей не могут помешать друг
другу. В дополнение к тому, что они выполняются как отдельные процес-
сы, любой процесс, созданный на Launchpad, выполняется в изолирован-
ной модели с использованием концепции AppContainer в Windows (https://

docs.microsoft.com/en-us/windows/win32/secauthz/appcontainer-isolation) и пространстве
имен в Linux (https://en.wikipedia.org/wiki/Linux_namespaces).

Другая концепция, которую мне нужно было объяснить, – это безопас-
ность. Рассмотрим модель безопасности при использовании R или Python
для служб SQL Server ML Services:

• эта функция включена, только если она сперва установлена, а затем
настроена с помощью sp_configure. О том, как установить службы
SQL Server ML Services в Windows, можно прочитать по ссылке https://

docs.microsoft.com/en-us/sql/machine-learning/install/sql-machine-learning-services-

windows-install?view=sql-server-ver15, а для Linux – по ссылке https://docs.

microsoft.com/en-us/sql/linux/sql-server-linux-setup-machine-learning. О парамет-
ре sp_configure вы можете прочитать по адресу https://docs.microsoft.

com/en-us/sql/database-engine/configure-windows/external-scripts-enabled-server-

configuration-option;
• для системной процедуры T-SQL, sp_execute_external_script, требует-

ся разрешение EXECUTE ANY EXTERNAL SCRIPT. Это разрешение по
умолчанию предоставляется только тем пользователям или ролям,
у которых имеется разрешение CONTROL, или учетным записям и
ролям, обладающим разрешениями CONTROL SERVER. Любому дру-
гому пользователю или учетной записи, пытающимся выполнить
сценарий R или Python, должны быть предоставлены явные разре-
шения;

• пользователям также потребуется разрешение для доступа к объ-
ектам, на которые есть ссылка во «входном запросе» sp_execute_
external_script;

• процессы, разветвленные для выполнения R и Python (rterm.exe и
python.exe), выполняются с использованием определенной учетной
записи с низким уровнем привилегий. Получить дополнительную
информацию об этом для Windows можно по ссылке https://docs.microsoft.

com/en-us/sql/machine-learning/security/create-a-login-for-sqlrusergroup?view=sql-
server-ver15. Для Linux эти программы запускаются с использованием
учетной записи mssql_satellite;

• по умолчанию периферийные процессы не имеют доступа для под-
ключения к сети за пределами компьютера, на котором работает SQL
Server.

Третья концепция, которая дает больше уверенности в управлении
выполнением модулей, написанных на R и Python, – это регулирование.
Начиная с SQL Server 2008 SQL Server включал в себя концепцию регули-

Службы машинного обучения SQL Server  169

рования, обеспечиваемую функцией под названием регулятор ресурсов
(Resource Governor). Регулятор ресурсов предоставляет пользователям
механизм управления ресурсами, обеспечивающими работу SQL Server,
такими как ресурсы ЦП, памяти и ввода-вывода. Следовательно, регулятор
ресурсов является естественным интерфейсом для управления использо-
ванием ресурсов для программных модулей ML Services.

Концепция внешнего пула ресурсов была добавлена в SQL Server, что-
бы явно контролировать использование ресурсов для процессов, которые
создаются с помощью sp_execute_external_script, включая rterm.exe, python.
exe, bxlserver.exe и другие. В Windows внешние группы ресурсов реализуют-
ся с помощью концепции, называемой заданиями (Jobs) или объектами-за-
даниями (Job Objects). Вы можете получить дополнительную информацию
об объектах-заданиях Windows, перейдя по ссылке https://docs.microsoft.com/

en-us/windows/win32/procthread/job-objects. В Linux для управления использова-
нием ресурсов используется концепция контрольных групп (cgroups). Вы
можете прочитать больше о cgroups в статье из Википедии по ссылке https://

en.wikipedia.org/wiki/Cgroups.
Внешние группы ресурсов могут не только помочь вам управлять про-

цессором и памятью для внешних процессов; с их помощью вы также
можете указать привязку к процессору. Таким образом, вы можете привя-
зать периферийные процессы к определенному узлу или набору процес-
соров и сохранить привязку обработки SQL Server к другим процессорам
или узлам. Это та самая архитектура, которая использовалась для дости-
жения производительности в 1 млн прогнозов в секунду; более подроб-
но вы можете прочитать об этом по ссылке https://cloudblogs.microsoft.com/

sqlserver/2016/10/11/1000000-predictions-per-second/.

Что нового в SQL Server 2019?
Службы машинного обучения SQL Server (SQL Server Machine Learning

Services) помогают усовершенствовать и модернизировать SQL Server,
делая его не просто системой управления базами данных, а настоящей
платформой данных. SQL Server 2019 расширяет службы SQL Server ML
Services, вводя следующие новые функции:

• внешние библиотеки теперь можно устанавливать для новых паке-
тов R или Python с помощью оператора T-SQL CREATE EXTERNAL
LIBRARY. Подробнее об этом можно прочитать по адресу https://

docs.microsoft.com/en-us/sql/t-sql/statements/create-external-library-transact-sql
(SQL Server 2017 поддерживал такую возможность для R);

• служба (или демон в Linux) Launchpad имеет решающее значение для
архитектуры служб SQL Server ML Services. Теперь в SQL Server 2019
службы SQL Server ML Services могут быть частью экземпляра всег-
да включенного отказоустойчивого кластера, включая саму службу
Launchpad;

170  Глава 5. Современная платформа разработки

• службы машинного обучения SQL Server теперь поддерживаются в
Linux. Эта тема будет обсуждаться далее в главе 6;

• службы SQL Server ML Services теперь поддерживают создание и
обуче ние моделей для сегментированных данных; для этого исполь-
зуются новые параметры сценария sp_execute_external_script. Допол-
нительная информация, включающая пример использования этой
новой функции, находится по ссылке https://docs.microsoft.com/en-us/sql/

advanced-analytics/tutorials/r-tutorial-create-models-per-partition.

Я думаю, что службы машинного обучения SQL Server – это инновацион-
ное решение, изменяющее привычные подходы и расширяющее границы
возможного. Я попросил своего коллегу Бака Вуди (Buck Woody), специа-
листа по теории и методам анализа данных в Microsoft, поделиться сво-
им мнением о значении интеграции SQL Server с машинным обучением.
По словам Бака, «выполнение задач прогнозирования и категоризации в
машинном обучении на SQL Server позволяет не только повысить произво-
дительность за счет размещения вычислений непосредственно над данны-
ми, но и имеет несомненные преимущества с точки зрения безопасности.
SQL Server поддерживает один из самых высоких уровней безопасности
в отрасли и с добавлением традиционных языков машинного обучения,
таких как R и Python, а также различных библиотек прозрачно использу-
ет эту безопасность. Еще одно преимущество использования SQL Server в
качестве платформы для машинного обучения заключается в том, что он
предоставляет специалисту по анализу данных место для экспериментов
и практической работы с рабочими задачами, а разработчик баз данных
получает контроль за внедрением кода машинного обучения R и Python в
Transact-SQL, что способствует эффективному разделению обязанностей».

Расширение языка T-SQL
В конце лета 2018 года я был в Редмонде (штат Вашингтон), в штаб-кварти-
ре Microsoft, и занимался презентацией, целью которой было подготовить
официальное предварительное представление возможностей SQL Server
2019 на конференции Microsoft Ignite. Работая над этой презентацией, я
консультировался с руководителями различных программ, чтобы убедить-
ся, что моя презентация содержит точные данные, и просил руководителей
программ подготовить демонстрации.

В числе руководителей программ, с которыми я встречался во время
подготовки к выступлению, была Нелли Густафссон (Nellie Gustafsson).
Нелли, среди прочего, является одним из ведущих менеджеров по служ-
бам машинного обучения SQL Server. Я говорил с Нелли о том, поддержку
каких языков команда предполагала включить в SQL Server, в том числе
для SQL Server ML Services в SQL Server 2019. На нашей встрече она заста-
ла меня врасплох, сказав, что следующим языком будет Java. Она пошла
дальше: она сказала, что в идеале команда хотела бы открыть архитекту-

Расширение языка T-SQL  171

ру для ML Services с поддержкой собственного набора инструментальных
средств разработки программ (Software Development Kit, SDK). Таким обра-
зом, любой, кто обладает достаточными техническими знаниями, сможет
использовать свой собственный язык для расширения T-SQL, используя ту
же архитектуру, которая применялась для запуска R и Python для служб SQL
Server ML.

Однако в то время, когда мы выпускали CTP 2.0 для SQL Server 2019, мы
решили отложить планы по включению SDK в эту версию и просто обес-
печить поддержку Java в качестве третьего языка для служб SQL Server ML
Services. Java не является общераспространенным и обязательным для
использования языком для решения задач машинного обучения, поэтому
мы запустили эту функцию с примерами, которые просто демонстрирова-
ли, как расширить T-SQL для поддержки новой функциональности (честно
говоря, мы также использовали Java для демонстрации машинного обуче-
ния с кластерами больших данных).

В основу этой новой возможности положены те же концепции, что и в
SQL Server ML Services. Вы должны использовать ту же системную хранимую
процедуру sp_execute_external_script, но указать «Java» в качестве языка и
предоставить скомпилированный класс Java. Несмотря на то что это была
не полностью открытая архитектура с возможностью расширения, инте-
грация Java с SQL Server 2019 привлекла внимание многих разработчиков,
предоставив новые возможности для работы с продуктами Microsoft.

Инфраструктура, обеспечивающая расширяемость
К тому времени, как версия SQL Server 2019 была готова к выпуску, мы

решили открыть архитектуру ML Services. Мы назвали это инфраструкту-
рой, обеспечивающей расширяемость (extensibility framework). Способ полу-
чить доступ к инфраструктуре, обеспечивающей расширяемость, – это
языковое расширение. Мы проиллюстрируем использование этого нового
фреймворка на примере Java и включим это языковое расширение, чтобы
использовать его в новой версии продукта.

Чтобы сделать жизнеспособной инфраструктуру, обеспечивающую рас-
ширяемость, нам пришлось внести дополнения в существующую архитек-
туру SQL Server ML Services, в том числе:

• нам нужно оставить R и Python «как есть», чтобы эти языки счита-
лись «встроенными» в SQL Server. R и Python не считаются языко-
выми расширениями, а являются лишь частью SQL Server в качестве
служб SQL Server ML;

• «средство запуска» для R и Python в службе Launchpad запуска-
ет rterm.exe и python.exe. Файл bxlserver.exe также был разработан
специально для работы с R и Python. Мы создали «общий» модуль
запуска на сервере Launchpad для запуска любого языка (вы увидите,
что это связано с концепцией CREATE EXTERNAL LANGUAGE);

172  Глава 5. Современная платформа разработки

• нам нужна новая «хост»-программа для запуска других языков. По-
этому мы поставляем хост-программу под названием Extension
Host (хост расширения). В Windows эта программа называется
exthost.exe;

• узел расширения должен включать файл sqlsatellite.dll (или
sqlsatellite.so в Linux) и обеспечивать возможность взаимодействия
языкового расширения с ним для обмена данными с SQL Server.

На рис. 5.8 показана грубая картина этой архитектуры для Windows (там
же есть диаграмма архитектуры Linux) из документации, размещенной
по ссылке https://docs.microsoft.com/en-us/sql/language-extensions/concepts/extensibility-

framework.

Рис. 5.8. Архитектура, обеспечивающая расширяемость
для внешних языков в Windows

Теперь, используя эти новые возможности в SQL Server 2019, вы можете:

• применять sp_execute_external_script для запуска сценариев R или
Python для модулей машинного обучения;

• расширять T-SQL с помощью sp_execute_external_script, обеспечивая
поддержку других языков, таких как Java, при условии что вы устано-
вили языковое расширение. В SQL Server 2019 мы предоставляем все
программное обеспечение для расширения T-SQL с помощью Java.

Особо заметим, что языковое расширение (которое представляет собой
DLL в Windows или библиотеку совместно используемых объектов, .so, в
Linux, обычно написанную на C ++) является ключевым элементом про-
граммного обеспечения для поддержки языкового расширения. Microsoft
предоставляет языковое расширение для Java при установке SQL Server.
Поскольку языковое расширение скомпилировано для Java, оно будет
загружать виртуальную машину Java (JVM) для запуска ваших классов Java.
Каким образом происходит установка JVM для запуска этого расширения?
Об этом будет рассказываться в следующем разделе.

SQL Server

sqlsatellite.dll

Launchpad

Хост расширения

AppContainer

Языковое расширение

commonlauncher.dll

Расширение языка T-SQL  173

Кроме того, вам понадобится библиотека SDK для вашего языка. Как вы
узнаете из следующего раздела, Microsoft предоставляет библиотеку SDK
для Java. SDK будет реализовывать набор известных классов и методов,
чтобы обеспечить поддержку исполнения вашего класса и вы могли обме-
ниваться данными с SQL Server.

Расширение T-SQL с помощью Java
Вопрос, который вы, возможно, задавали себе: что представляет собой

языковое расширение T-SQL? Использование R и Python для машинного
обучения имеет смысл. T-SQL не имеет встроенных функций или возмож-
ностей машинного обучения. Так зачем вам нужен Java? Вы, вероятно, зна-
комы с термином «регулярное выражение», или regex (https://en.wikipedia.org/

wiki/Regular_expression). Regex – это поиск выражений, имеющих определен-
ную структуру, в строковых или символьных данных на основе заданного
выражения. Выражение, на основе которого выполняется поиск в regex, –
это очень мощный инструмент, намного более мощный, чем оператор LIKE
и другие строковые функции T-SQL.

Поскольку T-SQL не обеспечивает встроенную поддержку полных воз-
можностей регулярных выражений, вы можете создать класс Java, который
поддерживает регулярные выражения, и интегрировать его в T-SQL, исполь-
зуя инфраструктуру расширяемости и расширение Java, поставляемое с
SQL Server 2019. Так как инфраструктура предоставляет языковое расши-
рение для возможности обмена данными с SQL Server, вы можете исполь-
зовать класс Java с sp_execute_external_script для применения регулярных
выражений при работе с данными, полученными на основе запроса T-SQL.
Это показано в обучающих материалах, включенных в документацию, раз-
мещенную по ссылке https://docs.microsoft.com/en-us/sql/language-extensions/tutorials/

search-for-string-using-regular-expressions-in-java.
Я не включил в эту книгу пошаговый пример, иллюстрирующий такую

возможность; вместо этого я предлагаю вам воспользоваться указанным
обучающим материалом. Я выполнил все описанные в обучающем мате-
риале действия на Windows; эти материалы также доступны и для Linux.
У меня есть несколько подсказок и сценариев, которые я использовал для
этого.

Эти обучающие материалы покажут вам следующее:

• как создать базу данных и образцы данных;
• как создать класс Java для реализации механизма выражений regex;
• как создать свой код, чтобы его можно было установить с SQL Server,

используя SQL Server Java SDK;
• как подключить внешний язык и библиотеки для включения Java и

установить ваш код. Внешний язык будет связан с DLL, поддерживаю-
щей расширение языка, или файлом .so. Внешними библиотеками
будут SQL Server Java SDK и ваш код;

174  Глава 5. Современная платформа разработки

• как вызвать созданный вами класс Java с помощью sp_execute_
external_script.

С технической точки зрения, вы можете создать свой код на отдельном
компьютере, а не на том, на котором установлен ваш SQL Server. Но если вы
сделаете это, вам понадобится SQL Server Java SDK с названием mssql-java-
lang-extension.jar (для Windows и Linux). Один из способов установить этот
SDK – поставить SQL Server с возможностью расширения Java. Поэтому я
рекомендую вам работать с обучающим материалом и создавать практиче-
ский пример на том же компьютере, где вы установили SQL Server. Вы так-
же можете выполнить практический пример на своем ноутбуке, используя
версию SQL Server Developer Edition, а затем установить скомпилирован-
ный вами код (который будет являться .jar-файлом) на рабочий SQL Server.

Примечание. На момент написания этой книги мы опубликовали репозиторий GitHub
по ссылке https://github.com/microsoft/sql-server-language-extensions для языковых
расширений, включая SQL Server Java SDK. Но файл mssql-java-langextension.jar не
был включен в него. Мы планируем сделать SDK доступным на GitHub, чтобы вы мог-
ли создавать свои собственные классы Java независимо от установки SQL Server.

Подготовительные шаги для использования обучающих
материалов
Предварительные шаги, которые необходимо выполнить для исполь-

зования обучающих материалов, описаны в документации, доступной по
ссылке https://docs.microsoft.com/en-us/sql/language-extensions/tutorials/search-for-string-

using-regular-expressions-in-java#prerequisites.
Одним из подготовительных шагов является установка Java Runtime

Engine (JRE). Вот более радикальные вещи для вас. В SQL Server 2019 мы
поставляем JRE из открытого источника Zulu Open JRE. Вот так. Java бес-
платно поставляется с SQL Server 2019!

Экран установки в Windows для выбора вашей JRE выглядит так, как
показано на рис. 5.9.

Примечание. Несмотря на то что Zulu Open JRE бесплатна и поставляется с SQL Server,
она полностью поддерживается Microsoft. У вас также есть возможность установить
свою собственную среду исполнения (JRE). Если вы устанавливаете свою собственную
JRE, вам придется выполнить несколько дополнительных шагов для настройки, кото-

рые описаны в документации по установке.

Не забудьте правильно установить переменную среды JRE_HOME в
Windows и перезапустить службу Launchpad после установки SQL Server.
Дополнительную информацию об этом вы можете получить по ссылке

Расширение языка T-SQL  175

https://docs.microsoft.com/en-us/sql/language-extensions/install/install-sql-server-language-

extensions-on-windows#add-the-jre_home-variable. (Для Linux это JAVA_HOME, но
процесс установки должен был автоматически сделать это.) Обратите вни-
мание, что в руководстве приведен пример, где в качестве каталога уста-
новки указан C:\Program Files\Zulu\zulu-8\jre\, а на самом деле SQL Server
размещает Azul Open JRE в каталоге C:\Program Files\Microsoft SQL Server\
MSSQL15.MSSQLSERVER\AZUL-OpenJDK-JRE.

Рис. 5.9. Выбор JRE для SQL Server

В рамках процесса установки Microsoft также установит файл языково-
го расширения для Java. Для Windows он называется javaextension.dll и
упакован в архивный файл java-lang-extension.zip. В Linux он называ-
ется javaextension.so и упакован в архивный файл с именем java-lang-
extension.tar.gz. В обучающем материале показано расположение этих
файлов, так как этот путь понадобится вам для подключения внешнего
языка.

Теперь вы можете пройти курс из обучающего материала, чтобы создать
базу данных и образцы данных, создать свой класс Java, подключить внеш-
ний язык, установить свой собственный код и затем вызвать свой класс
Java.

Советы по использованию обучающих материалов
Ниже приведено несколько советов по использованию обучающих мате-

риалов. Я разместил набор сценариев, которые использовал, в каталоге
ch5_modern_development_platform\java.

176  Глава 5. Современная платформа разработки

• Выбор JDK для компиляции кода
 В обучающем материале показан пример кода для создания клас-

са regex и приведены инструкции по установке SQL Server Java SDK.
К сожалению, обучающий материал не дает подробных инструкций
относительно компиляции классов в Java. Я установил Zulu Open
JDK (это можно сделать, перейдя по ссылке www.azul.com/downloads/zulu-

community), чтобы при выполнении практического задания можно
было использовать мой компилятор Java, javac. Поскольку я выпол-
нял практическое задание, работая в Windows, то выбирал эти пара-
метры, как показано на рис. 5.10.

Рис. 5.10. Установка Zulu JDK для Windows

 Возможно, на вашем компьютере уже установлен Java SDK. Вы мо-
жете использовать один из наиболее популярных инструментов –
Visual Studio Code, IntelliJ или Eclipse. Мне просто был нужен простой
способ компиляции своего Java-кода из командной строки, поэтому
я выбрал Zulu JDK.

 Zulu JDK поставляется в виде zip-файла, и я перетащил его в папку
«Загрузки». Затем я распаковал zip-файл в текущий каталог. Я хотел
использовать javac и jar, поэтому распаковал zip-файл и добавил
этот каталог в системный путь: C:\Users\Administrator\Downloads\
zulu11.33.15-ca-jdk11.0.4-win_x64\zulu11.33.15-ca-jdk11.0.4-win_x64\
bin.

• Компиляция кода
 Я рекомендую следовать инструкциям, приведенным в руковод-

стве, чтобы создать файл .jar для вашего кода, но при этом исполь-
зовать концепцию пакета. Применение этого метода предполагает

Расширение языка T-SQL  177

наличие подкаталога pkg для вашего класса. Я подготовил сценарий
buildclass.cmd, который выполнит эту работу. Он скомпилирует код
RegexSample.java вместе с файлом SQL Server Java SDK mssql-java-
langextension.jar. Затем он использует программу jar для сборки па-
кета из кода в подкаталоге pkg. (В учебном примере используется
пакет, который при создании файла .jar будет применять подкаталог
pkg.) Результатом всего процесса сборки является файл sqlregex.jar.
Этот скомпилированный вами класс и будет установлен как внеш-
няя библиотека.

• Установка скомпилированного кода
 Сценарий T-SQL setuplanguage.sql используется в Windows для под-

ключения внешнего языка Java и создания двух внешних библиотек:
(1) для SQL Server Java SDK и (2) для созданного вами кода.

 Важно отметить, что внешний язык и библиотеки установлены в
пользовательской базе данных.

• Запуск скомпилированного кода
 Сценарий T-SQL sqlregex.sql показывает пример запуска вашего

Java-класса, аналогичный показанному в учебном пособии.
 Я хочу предостеречь вас, что если вы пропустите какой-либо шаг,

в том числе какой-либо из подготовительных шагов, то получите
ошибку при выполнении sp_execute_external_script. И отладка оши-
бок в этой функции может стать весьма неприятным занятием.

Вот несколько вещей, о которых нужно помнить:

• необходимо включить выполнение внешних сценариев, включив соот-
ветствующий параметр конфигурации (external scripts enabled);

• если вы выбрали Zulu Open JRE во время установки, обязательно
установите JRE_HOME при работе на Windows и перезапустите служ-
бу Launchpad;

• если вы используете свою собственную JRE, вам необходимо выпол-
нить дополнительные шаги для получения разрешений для двоич-
ных файлов JRE. В документации рассказывается, как это сделать в
Windows и Linux;

• когда вы создаете .jar-файл для своего кода, вы должны поместить
скомпилированный код (файл .class) в подкаталог с именем pkg, в ко-
тором вы создаете код. Это соглашение об использовании имени па-
кета (имя пакета может быть любым в вашем коде, и тогда ваша subdir
должна соответствовать этому имени). В документации рассказыва-
ется о том, насколько проще выполнять все эти действия, используя
среду разработки с Java (Java IDE). Я попробовал использовать IntelliJ
и Visual Studio Code и в конце концов просто предпочел применять
сценарии, запускаемые из командной строки, с javac и jar.

178  Глава 5. Современная платформа разработки

Использование других языков
Благодаря тому что мы создали инфраструктуру, обеспечивающую рас-

ширяемость, и обеспечили поддержку внешних языков, теперь в T-SQL
можно использовать и другие языки программирования, отличные от Java.
Java приводится лишь в качестве примера, который мы поставляем вместе
с версией SQL Server 2019, чтобы позволить вам использовать расширение
«из коробки», а также показать, как интегрировать другие языки програм-
мирования. Представьте, что вам доступны внешние языки платформы
.Net или Go.

Ключ к этому – расширение языка. Расширение языка – это DLL в Windows
или объект общей библиотеки в Linux, который понимает, как взаимо-
действовать с узлом расширения (Extension Host). Как только становится
доступным расширение языка, набор классов SDK может быть скомпили-
рован на этом поддерживаемом языке. Ваш код будет использовать классы,
реализованные в SDK, вместе с классом, который будет выполнен вызовом
sp_execute_external_script.

Необходимый набор классов для SDK для включения расширения язы-
ка показан на примере Java по ссылке https://docs.microsoft.com/en-us/sql/language-

extensions/how-to/extensibility-sdk-java-sql-server.
Кроме того, как я описал в предыдущем разделе, исходный код и доку-

ментация по созданию языковых расширений будут доступны на GitHub по
ссылке https://github.com/microsoft/sql-server-language-extensions.

Будет интересно посмотреть, как развиваются языковые расширения в
сообществе SQL Server. Представьте себе сценарии, в которых вы не може-
те реализовать что-то в T-SQL сегодня, но хотели бы расширить язык и
воспользоваться всеми возможностями SQL Server, включая безопасность,
доступность и управление ресурсами, без того, чтобы писать дополнитель-
ный код вне T-SQL.

Все функции изоляции процессов, безопасности и управления, которые
существуют для служб SQL Server ML Services, используют языковые расши-
рения и инфраструктуру, обеспечивающую расширяемость.

Резюме
Из этой главы вы узнали, какие функции и инструменты предоставляет
SQL Server 2019 для современных разработчиков. В число этих новых воз-
можностей входят поддержка практически любого языка программирова-
ния, обновленные источники данных, графовая база данных, поддержка
UTF-8, машинное обучение и расширения T-SQL. Все эти новые функции, в
сочетании с и без того мощными возможностями интеллектуальной обра-
ботки запросов (Intelligent Query Processing) и оптимизацией метаданных
tempdb, предоставляют необходимый инструментарий для современных
разработчиков, специализирующихся на обработке данных.

Глава 6
SQL Server 2019 для Linux

В этой главе я расскажу, что нового в SQL Server 2019 для Linux. Однако
если вы малознакомы с SQL Server для Linux, я начну главу с удивительной
истории о том, как и почему мы включили поддержку работы в Linux для
SQL Server.

История SQL Server для Linux
В октябре 2017 года наша команда разработчиков SQL Server всколыхнула
индустрию, выпустив SQL Server для Linux на таких платформах, как Red
Hat, Ubuntu и SUSE. Наша команда инженеров смогла вывести SQL Server на
рынок, используя инновационную стратегию и архитектуру с программ-
ным обеспечением, известным как уровень абстракции платформы SQL
(SQLPAL).

На рис. 6.1 показана фундаментальная архитектура SQL Server в Linux с
SQLPAL.

Рис. 6.1. Архитектура SQL Server в Linux

Я подробно рассказал об этой архитектуре в своей книге «SQL Server для
Linux: руководство для профессионалов» (Pro SQL Server on Linux), выпу-
щенной издательством Apress Media, поэтому не буду повторять свой рас-

Все остальное

Пути выполнения системного
и чувствительного к задержкам

кода

Сопоставление выполнения хоста системным вызовам ОС
(ввод-вывод, память, процессор, планирование)

Процесс
Linux

(в кольце 3)

LibOS
(WinAPI и ядро) SQLOS (SQLPAL)

SQL PAL

Уровень абстракции
платформы SQL (SQLPAL)

API Linux (mmap, pthread_create, …)

Кольцо 0 Ядро Linux Родительский «сторожевой» процесс

порождение

процесса

API

ABI

SQLSERVRSQLAGENT

180  Глава 6. SQL Server 2019 для Linux

сказ в этой книге (я знаю, бесстыдная реклама другой книги). Тем не менее
я привожу здесь эту иллюстрацию и краткое обсуждение, позволяющие
раскрыть историю выбора возможностей, обеспечивающих совмести-
мость. Ядро СУБД SQL Server и его код созданы с использованием одной
и той же базы исходного кода для обеих версий – SQL Server для Windows
и для Linux. SQLPAL предоставляет программное обеспечение, обеспечи-
вающее независимость SQL Server от платформы ОС. Это означает, что вы
можете сделать резервную копию базы данных на SQL Server для Windows и
восстановить ее на SQL Server для Linux, обеспечив полную совместимость.

По большей части набор функций SQL Server 2017 для Linux был таким
же, как в Windows. Слава Окс (Slava Oks) однажды сказал мне: «Боб, процес-
сор запросов – это... это процессор запросов, будь то в Windows или Linux».
Он имел в виду, что один и тот же двоичный код для процессора запросов
работает как в Windows, так и в Linux. Даже такие функции, как SQL Server
Agent и SSIS, доступны для SQL Server в Linux.

Мы «синхронизируем» практически все версии SQL Server, стремясь
макси мизировать ценность того, что мы вкладываем в основную версию,
учитывая сроки, необходимые для выпуска новых версий на рынок.

Хотя нам бы очень хотелось, чтобы все возможности SQL Server для
Windows поддерживались в SQL Server 2017 для Linux, на стороне ядра были
некоторые функции, которые мы не успели внедрить, такие как реплика-
ция (Replication) и координатор распределенных транзакций (Distributed
Transaction Coordinator, DTC). Кроме того, было предпринято несколько
улучшений платформы, чтобы SQL Server для Linux был таким же надеж-
ным и готовым к работе для корпоративных клиентов, как и наш SQL Server
для Windows.

Прежде чем углубиться в эту тему, я должен сказать, что данная глава не
содержит примеров. Возможно, вы будете удивлены, учитывая, что я напи-
сал целую книгу, посвященную SQL Server для Linux. Однако для демон-
страции того, о чем рассказывается в этой главе, потребуется выполнение
сложной работы по конфигурации системы; к тому же некоторые из затра-
гиваемых тем относятся к сценариям использования SQL Server, незави-
симым от Linux. Теперь, когда я предупредил вас, просмотрите следующие
примеры и демонстрации, посвященные SQL Server для Linux:

• репозиторий GitHub Pro SQL Server on Linux – https://github.com/Apress/
pro-sql-server-on-linux;

• демонстрации и примеры в репозитории GitHub bobsql – https://

github.com/microsoft/bobsql;

• практические занятия Microsoft по SQL Server для Linux – https://

docs.microsoft.com/en-us/learn/paths/sql-server-2017-on-linux/;

• сайт с материалами семинаров по SQL Server – https://aka.ms/

sqlworkshops. Хотя у меня пока нет отдельного семинара по SQL Server
для Linux, не удивляйтесь, если он появится в какой-то момент.

Что нового в SQL Server 2019 для Linux  181

В этих мастерских есть практические работы по репликации в SQL
Server для Linux Replication с использованием контейнеров;

• наконец, в главе 7 я приведу пример, позволяющий попробовать вы-
полнить репликацию в SQL Server для Linux , используя контейнеры.

Что нового в SQL Server 2019 для Linux
Взяв импульс при создании новой версии SQL Server для Linux, в SQL Server
2019 мы добавили несколько улучшений для решения задач профессиона-
лов в области данных и обеспечения паритета функциональных возможно-
стей с SQL Server для Windows, включая:

• усовершенствования платформы и развертывания, чтобы обес-
печить корректное реагирование SQL Server для Linux на текущую
доступность ресурсов и поддержку параметров развертывания, для
паритета функциональных возможностей с SQL Server в Windows.
Кроме того, мы работали над тем, чтобы обеспечить поддержку са-
мой современной версии дистрибутивов Linux, которая включает в
себя усовершенствования ввода-вывода в Linux, на создание кото-
рых повлияла команда разработчиков SQL Server;

• улучшенная производительность ввода-вывода с поддержкой
постоянной памяти, позволяющая идти в ногу с достижениями в об-
ласти аппаратных технологий;

• репликация SQL Server теперь поддерживается в Linux, облегчая
процедуру и расширяя возможности синхронизации данных, – эта
функция SQL Server пользуется популярностью в течение многих
лет;

• сбор данных об изменениях (Change Data Capture, CDC) предо-
ставляет разработчикам и специалистам по данным инструмента-
рий для отслеживания изменений в структуре и данных таблиц в SQL
Server. Эта функция остается популярной в SQL Server для Windows
на протяжении многих версий; теперь она доступна и в Linux;

• поддержка распределенных транзакций (Distributed Transac-
tions) в SQL Server на Linux, позволяющая разработчикам создавать
приложения, использующие распределенные данные, – возможность,
имевшаяся в SQL Server для Windows на протяжении многих лет;

• упрощенное развертывание Active Directory с использованием
поставщиков OpenLDAP;

• поддержка служб машинного обучения SQL Server и расшире-
ний языка T-SQL в Linux для включения новых сценариев приложе-
ний, сближения моделей машинного обучения с данными с исполь-
зованием безопасного и масштабируемого метода и обеспечения
расширенных возможностей языка T-SQL;

182  Глава 6. SQL Server 2019 для Linux

• виртуализация данных в SQL Server для Linux, поддержка запро-
сов Polybase к внешним источникам данных, таким как Hadoop, SQL
Server, Oracle, Teradata и MongoDB, без необходимости перемещения
данных.

Каждому из этих улучшений в этой главе посвящен отдельный раздел.

Улучшения платформы и процедуры
развертывания
Для SQL Server 2019 мы внесли улучшения в процессор ядра СУБД и
SQLPAL, чтобы SQL Server был полностью готов к работе, аналогично вер-
сии для Windows. Кроме того, мы поработали над усовершенствованием
процеду ры развертывания, чтобы поддерживать новые пакеты, включаю-
щие новые возмож ности, и предоставлять пользователям те же функцио-
нальные возмож ности, что и в Windows. Мы также хотим быть уверены, что
SQL Server в Linux поддерживается в последних версиях Linux, таких как
Red Hat Enterprise Linux 8.0, Ubuntu 18.04 и SUSE Linux Enterprise Server 15.
В этих новых версиях Linux были предприняты усовершенствования ядра
Linux для повышения производительности ввода-вывода и общей отказо-
устойчивости системы; эти усовершенствования были инициированы,
чтобы удовлетворить требования к производительности ввода-вывода в
SQL Server.

Улучшения платформы
Хотя ядро СУБД SQL Server создано с использованием одной и той же

базы исходного кода для обеих версий – SQL Server для Windows и для Linux,
в версии SQL Server для Linux включен дополнительный компонент SQL
Server Platform Abstraction Layer (SQLPAL) (а также компонент, называемый
расширением хоста, Host Extension), обеспечивающий взаимодействие
SQL Server с ядром Linux при необходимости. После того как мы выпусти-
ли версию SQL Server для Linux, мы обнаружили, что необходимо внести
в нее несколько улучшений, чтобы наша платформа баз данных работала
так же, как SQL Server в Windows. Поскольку эти улучшения касались основ-
ных функций ядра СУБД, интегрированных с операционной системой, мы
распро странили эти изменения на версию SQL Server 2017. Если вы устано-
вите последний накопительный пакет обновления для SQL Server 2017, то
заметите эти изменения.

Уведомления памяти
Система управления памятью SQL Server всегда создавалась так, чтобы

она была гибкой и отвечала как потребностям в памяти SQL Server, так и
требованиям вне ядра в общей среде операционной системы.

Улучшения платформы и процедуры развертывания  183

Хотя в SQL Server для Linux используется такое же ядро СУБД, как и в
версии для Windows, такие понятия, как реагирование на нехватку памя-
ти, специфичны для операционной системы. Мы обнаружили некоторые
проб лемы с уведомлениями памяти в SQL Server 2017 для Linux и усовер-
шенствовали нашу интеграцию с Linux, чтобы гарантировать, что SQL
Server для Linux работает так же, как SQL Server 2019 для Windows.

Примечание. Мы также внесли изменения в последнее накопительное обновление,
чтобы выполненные изменения были включены в SQL Server 2017 для Linux.

Выполненное усовершенствование позволит нам достичь нашей цели –
установить верхний предел выделения памяти для SQL Server и обеспе-
чить возможность его корректировки в случае нехватки памяти со сторо-
ны операционной системы. Другими словами, если в общей операционной
системе недостаточно физической памяти, SQL Server уменьшит верхний
предел выделения памяти, чтобы попытаться избежать подкачки памя-
ти в ОС или вмешательства «ужасного OOMKiller» (подробнее о том, как
работает OOMKiller, можно прочитать по ссылке https://unix.stackexchange.com/

questions/153585/how-does-the-oom-killer-decide-whichprocess-to-kill-first).
Чтобы увидеть, как выделяемая память SQL Server корректируется с уче-

том нехватки памяти (т. е. нехватки физической памяти), нужно следить за
значениями в столбце ommitted_target_kb в представлении динамическо-
го управления (Dynamic Management View, DMV) с названием dm_os_sys_
info.

Динамические представления управления кольцевым буфером
В SQL Server есть DMV с названием dm_os_ring_buffers, который мож-

но использовать для отслеживания загрузки ЦП для сервера и процесса
SQLSERVR.EXE. Этот DMV официально не поддерживается, но используется
для одного из ключевых инструментов мониторинга – панели мониторин-
га производительности (Performance Dashboard) в SQL Server Management
Studio (SSMS). Более подробно о том, как использовать Performance
Dashboard, рассказывается в документации по ссылке https://docs.microsoft.com/

en-us/sql/relationaldatabases/performance/performance-dashboard.
Одно из удобств панели мониторинга заключается в том, что эта панель

показывает данные об общем использовании ЦП компьютера и SQLSERVR.
EXE (даже за последний час), чтобы помочь диагностировать проблемы с
ЦП, характерные для SQL Server. Этот отчет основан на данных из dm_os_
ring_buffers. Проблема в том, что в Linux мы всегда сообщали об исполь-
зовании процессора как о 100%-ной фиксированной величине, поэтому
в отчете не отображались правильные данные. Теперь в SQL Server 2019
(и новейшем накопительном обновлении для SQL Server 2017) этот DMV
сообщает корректные данные об использовании ресурсов ЦП, и Performance
Dashboard можно использовать в SQL Server для Linux.

184  Глава 6. SQL Server 2019 для Linux

Развертывание SQL Server 2019 в Linux
Если вы знакомы с процедурой установки SQL Server на Windows, то

будете поражены простотой процедуры развертывания SQL Server на
Linux. В документации, размещенной по ссылке https://docs.microsoft.com/en-us/

sql/linux/sql-server-linux-overview?view=sql-server-ver15, содержится краткое руко-
водство для развертывания SQL Server на Linux.

В процедуру развертывания SQL Server на Linux было внесено несколько
изменений, которые стоит упомянуть:

• созданы новые пакеты для поддержки новых функций. Одна из
причин, по которой развертывание SQL Server на Linux выполняется
легче и быстрее, заключается в том, что программный продукт раз-
вертывается в виде серии пакетов. В то время как пакет mssql-server
включает ядро базы данных, SQL Agent, средства репликации, CDC
и распределенные транзакции, для включения новых функций ис-
пользуются следующие пакеты:
 mssql-mlservices-mlm-py∗ и mssql-mlservices-mlm-r∗ – про-

граммное обеспечение для служб машинного обучения. Сущест-
вуют и другие пакеты для ML Services, о которых я расскажу позже
в этой главе;

 mssql-server-extensibility – программное обеспечение для вклю-
чения внешних языков (поддержка инфраструктуры, обеспечива-
ющей расширяемость);

 mssql-server-extensibility-java – программное обеспечение, обес-
печивающее поддержку Java в качестве внешнего языка. Этот па-
кет также устанавливает пакет mssql-server-extensibility;

 mssql-server-polybase – программное обеспечение для включе-
ния функции виртуализации данных Polybase в SQL Server для
Linux;

• как и в версии SQL Server для Windows, SQL Server для Linux теперь
автоматически создает более одного файла данных для базы данных
tempdb (их количество может варьироваться до 8) в зависимости от
количества ядер процессора, обнаруженных во время установки. Эта
возможность помогает избежать конфликта кратковременных бло-
кировок страниц;

• параметры mssql-conf, добавленные для поддержки новых функций
для SQL Server 2019. Например, были добавлены параметры mssql-
conf для поддержки DTC, о которых вы можете прочитать подробнее
по ссылке https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-configure-msdtc.

Поддержка новых версий Linux
Мы в Microsoft считаем очень важным, чтобы SQL Server поддерживал-

ся в последних версиях основных дистрибутивов Linux. Поэтому в SQL

Улучшения платформы и процедуры развертывания  185

Server 2019 мы хотим обеспечить поддержку следующих основных версий
Linux:

• Red Hat Linux Enterprise 8.0;
• Ubuntu 18.04;
• SUSE Linux Enterprise Server 15.

Примечание. На момент написания данной книги мы планировали официально под-

держивать эти версии Linux в SQL Server 2019. SQL Server действительно работает
на всех этих версиях, но нам пришлось внести некоторые изменения в установочный
пакет и убедиться, что они были хорошо протестированы. Возможно, возникнут неко-

торые проблемы, которые не позволят нам быть на 100 % готовыми к моменту выхо-

да SQL Server 2019, но даже если поддержка всех этих версий не будет объявлена к
этому моменту, я ожидаю, что она будет официально объявлена вскоре после этого.

Наряду с поддержкой последних версий Linux была улучшена произво-
дительность ввода-вывода. Мой давний коллега Боб Дорр (Bob Dorr) после
выхода версии SQL Server 2017 заметил, что производительность вво-
да-вывода в SQL Server для Linux с обеспечением общей отказоустойчи-
вости может оказаться одним из проблемных «узких мест». В результате
мы добавили несколько параметров конфигурации SQL Server для реали-
зации концепции, называемой «принудительная запись на диск» (forced
flush), о которой рассказывается в статье, опубликованной Microsoft по
ссылке https://support.microsoft.com/en-us/help/4131496/enable-forced-flush-mechanism-
insql-server-2017-on-linux. По умолчанию мы решили обеспечить в SQL Server
приоритет надежности над производительностью. Но, разумеется, наши
клиенты хотят и того, и другого. Любой клиент может изменить значения
параметров, используемых по умолчанию, и добиться и надежности, и про-
изводительности, если он знает, что используемая им дисковая система
может поддерживать правильную запись на диск.

В течение 2018 года Боб Дорр (Bob Dorr) и другие сотрудники команды
разработчиков SQL Server работали с командой, ведущей разработку Linux
с открытым исходным кодом, особенно с командой, занимающейся разра-
боткой версии Red Hat. Результатом этой работы стали изменения в ядре
Linux для файловой системы XFS. Red Hat Enterprise Linux (RHEL) 8.0 вклю-
чает эти изменения ядра. Другие версии Linux должны следовать за этими
изменениями. Теперь пользователь может «отключить» наши принуди-
тельные изменения в SQL Server для Linux, но при этом достичь макси-
мальной производительности и отказоустойчивости.

Как это часто случается со знаковыми событиями, Боб Дорр (Bob Dorr)
хотел рассказать «историю про историю». И он сделал это в своей заметке в
блоге, которую можно прочитать по ссылке https://bobsql.com/sql-server-on-linux-

forced-unit-access-fua-internals/. Я продемонстрировал эти изменения на самми-
те Red Hat в мае 2019 года и показал невероятные улучшения производи-

186  Глава 6. SQL Server 2019 для Linux

тельности (на 100 % и более) при использовании RHEL 7.6 и RHEL 8.0, с SQL
Server, сконфигурированным для применения улучшений FUA. Эта исто-
рия кажется не такой уж заметной, но я призываю вас остановиться и заду-
маться: Microsoft помогла внести определенные улучшения в ядро Linux с
открытым исходным кодом, чтобы улучшить показатели ввода-вывода для
всех приложений!

Поддержка постоянной памяти
Мне очень нравится работать в команде разработчиков SQL Server – члены
этой команды всегда смотрят в будущее, постоянно следят за последними
достижениями в области технологий, чтобы SQL Server оставался на шаг
впереди.

Меня не удивляет, что SQL Server для Linux может использовать преиму-
щества постоянных запоминающих устройств. Постоянная память (pmem) –
это запоминающее устройство с байтовой адресацией. Это означает, что к
постоянной памяти можно получить доступ, как к обычной оперативной
памяти, однако у этой памяти имеются все преимущества запоминающего
устройства, поэтому данные, хранящиеся в ней, могут выдержать перебои
с питанием и перезапуск компьютера.

Постоянные запоминающие устройства всегда можно рассматривать как
устройства блочного ввода-вывода и в Windows, и в Linux. Другими словами,
они могут быть представлены операционной системой как стандартный
диск, и SQL Server может обращаться к ним, как к любому диску. В блоч-
ном режиме доступ к постоянным запоминающим устройствам может осу-
ществляться быстрее, чем даже к некоторым самым быстрым современ-
ным SSD. Однако, поскольку устройства pmem являются устройствами с
байтовой адресацией, такое приложение, как SQL Server, может передавать
данные между устройством и стандартной оперативной памятью, как если
бы вместо устройства использовалась память; подобная передача данных
осуществляется с помощью вызовов API, таких как memcpy(), что позволя-
ет еще больше увеличить производительность ввода-вывода.

Кроме тех улучшений производительности ввода-вывода, о которых мы
уже говорили, в число улучшений SQL Server 2019 также были включены
распознавание файлов базы данных и журналов транзакций, хранящихся
на устройствах pmem, и обход стека ввода-вывода ядра Linux для передачи
данных с этих устройств. Вы можете получить дополнительную информа-
цию о том, как приложения могут использовать устройства pmem, исполь-
зуя концепцию DAX (www.kernel.org/doc/Documentation/filesystems/dax.txt), по ссыл-
ке https://docs.pmem.io/getting-started-guide/installing-ndctl.

О том, как настроить устройство pmem в SQL Server, вы можете узнать
из документации, опубликованной по ссылке https://docs.microsoft.com/en-us/

sql/linux/sql-server-linux-configure-pmem. Как ранее говорилось в главе 2, DELL
EMC удалось добиться более высокой производительности SQL Server с
помощью поддержки pmem. О результатах, полученных при тестирова-

Сбор данных об изменениях (Change Data Capture, CDC) в Linux  187

нии этой конфигурации, вы можете узнать из материалов, размещен-
ных по ссылке www.emc.com/about/news/press/2019/20190402-01.htm. Кроме того,
инженеры HPE продемонстрировали улучшение производительности
ввода-вывода в SQL Server 2019 в следующем видеоролике на YouTube:
www.youtube.com/watch?v=8WUix125tQQ.

Репликация SQL Server в Linux
Репликация SQL Server (SQL Server Replication) – одна из самых популяр-
ных технологий для копирования и переноса данных между различными
экземплярами SQL Server. Поскольку в SQL Server 2017 был включен SQL
Server Agent, а ядро базы данных обеспечивает большую часть функций
репликации SQL Server, мы хотели, чтобы эта возможность существовала в
версии SQL Server 2017 для Linux. Однако время, отведенное для подготов-
ки к выпуску новой версии, истекло, прежде чем мы смогли собрать вместе
все необходимые для репликации компоненты и убедиться, что эта функ-
ция хорошо протестирована, и поэтому возможность репликации в SQL
Server для Linux появилась в версии SQL Server 2019.

Продолжая традиции обеспечения совместимости версий, почти все
возможности репликации SQL Server для Windows присутствуют в Linux.
Список этих функций включает моментальные снимки (snapshot), транз-
акции (transaction), слияние (merge) и одноранговую репликацию (peer-
to-peer replication). Кроме того, вы можете настроить репликацию так,
чтобы использовать концепцию издателей (publishers) и подписчиков
(subscribers) в Windows и Linux.

Ознакомиться с полным набором функций репликации SQL Server для
Linux вы можете в документации по ссылке https://docs.microsoft.com/en-us/sql/

linux/sql-server-linux-replication.
В главе 7, где речь пойдет о контейнерах, будет продемонстрирован

пример использования репликации SQL Server в Linux с использованием
контейнеров. В сопутствующую документацию также включены обучаю-
щие материалы, доступные по ссылке https://docs.microsoft.com/en-us/sql/linux/sql-

server-linux-replication-tutorial-tsql.

Сбор данных об изменениях
(Change Data Capture, CDC) в Linux
Аналогично случаю с репликацией, все компоненты для сбора данных об
изменениях (Change Data Capture, CDC) входят в состав версии SQL Server
для Linux. Однако мы не смогли включить эту функцию в SQL Server 2017
для Linux из-за нехватки времени. В SQL Server 2019 возможность CDC пол-
ностью поддерживается.

Если вы незнакомы с CDC, это отличная технология для сбора измене-
ний данных в таблицах, особенно полезная для приложений, выполняю-

188  Глава 6. SQL Server 2019 для Linux

щих извлечение, преобразование и загрузку данных (Extract, Transform,
and Load, ETL).

В SQL Server имеются все функции для отслеживания и запроса измене-
ний. CDC использует некоторые из тех же внутренних технологий, что и
модуль репликации SQL Server (SQL Server Replication), для сбора информа-
ции об изменениях в данных. Документация, в которой подробно расска-
зывается о CDC, доступна по ссылке https://docs.microsoft.com/en-us/sql/relational-

databases/track-changes/about-change-data-capture-sql-server.

DTC для Linux
После того как мы выпустили SQL Server 2017 для Linux, я спросил свое-
го друга Боба Дорра (Bob Dorr), какими новыми направлениями он будет
заниматься. Конечно, он ответил «всеми», но одна задача, которую ему
поручил Слава Окс (Slava Oks), заключалась в том, чтобы поработать над
обеспечением паритета функциональных возможностей для SQL Server в
Linux. Одной из таких функций была поддержка распределенных транз-
акций, включая поддержку координатора распределенных транзакций
Microsoft (Microsoft Distributed Transaction Coordinator, MSDTC).

Вместе с Капилом Такером (Kapil Thacker) и другими инженерами из
нашей команды мы смогли использовать архитектуру SQLPAL, чтобы
заставить основной сервис MSDTC и программное обеспечение работать
на Linux, а не разрабатывать «новый» DTC для Linux с нуля. (Этот SQLPAL –
прекрасная вещь. Я уверен, что когда-нибудь мы должны найти способ
открыть архитектуру SQLPAL, чтобы другие разработчики могли так же
просто заставить свои приложения Windows работать на Linux.)

Одним из наиболее распространенных способов использования DTC для
SQL Server является распределенная транзакция между связанными сер-
верами, от одного SQL Server к другому, которая запускается с помощью
оператора T-SQL BEGIN DISTRIBUTED TRANSACTION. Запросы к свя-
занным серверам, позволяющие передавать данные между различными
экземплярами SQL Server, работали в версии SQL Server 2017 для Linux,
однако распределенные транзакции в этой версии не поддерживались.
Как заявил Боб Дорр (Bob Dorr) в сообщении в блоге, доступном по ссылке
https://bobsql.com/sql-server-linuxdistributed-transactions-requiring-the-microsoft-distributed-

transactioncoordinator-service-are-not-supported-on-sql-server-running-on-linux-sqlserver-to-

sql-server-distributed-tr/, вы получите ошибку, если попытаетесь это сделать
(подождите немного... это будет работать после установки последнего
накопительного обновления на SQL Server 2017).

Если хотите узнать, как DTC работает и взаимодействует с SQL Server
(или любой транзакцией XA), прочитайте подробную заметку в блоге Боба
Дорра (Bob Dorr) по ссылке https://bobsql.com/how-it-works-sql-server-dtc-msdtc-and-

xa-transactions/.
В то время как распределенные транзакции между связанными серве-

рами были главной целью для команды, осуществляющей перенос DTC-

DTC для Linux  189

транз акций на SQL Server для Linux, существовали и другие сценарии,
которые хотелось бы поддерживать. В их число входили:

• распределенные транзакции OLE-TX в SQL Server для Linux для по-
ставщиков ODBC. Вы можете получить дополнительную информа-
цию о создании приложений с помощью OLE-TX по ссылке https://docs.

microsoft.com/en-us/sql/relational-databases/native-client-odbc-how-to/use-microsoft-

distributed-transaction-coordinator-odbc;

• распределенные XA-транзакции в SQL Server для Linux с участием
провайдеров JDBC и ODBC. Более подробная информация о XA-транз-
акциях доступна по ссылке https://docs.microsoft.com/en-us/sql/connect/jdbc/

understanding-xa-transactions.

Чтобы обеспечить поддержку всех этих возможностей, Капил, Боб и
команда инженеров должны были спроектировать службу MSDTC таким
образом, чтобы SQLPAL поддерживал существующую архитектуру обмена
данными между портами, реализованную на настоящий момент в Windows.
Получившаяся архитектура показана на рис. 6.2 (призвав на помощь Капи-
ла и Боба, мы вместе с Теджасом Шахом (Tejas Shah) создали эту схему).

Рис. 6.2. MSDTC в Linux

Эта диаграмма определенно нуждается в пояснениях. Представьте себе,
что клиент MSDTC – это распределенная транзакция SQL Server, идущая
через связанный сервер (при этом другой SQL Server работает под управ-
лением Linux или Windows). В группе, показанной на рисунке справа, в
процессе Linux SQLSERVR с использованием SQLPAL работают два компо-

распределенная_транзакция.
tcp-порт_сервера

Клиент
MSDTC

MSDTC
в sqlservr

Сопостави-
тель

конечных
точек

сеть.
rpc-порт

SQLPAL

Порт XXX

Порт 135

«Использовать

порт XXX»

Хост

190  Глава 6. SQL Server 2019 для Linux

нента: сопоставитель конечных точек и MSDTC. Общий хост – это операци-
онная система Linux, в которой работает процесс SQLSERVR.

MSDTC использует порт 135, и мы не сможем выбрать другой порт, если
не изменим код MSDTC для Linux. Клиент MSDTC сначала пытается устано-
вить связь через порт 135. Мы создали «устройство сопоставления конеч-
ных точек», которое сопоставит порт 135 с портом, который мы можем
прослушивать. Это настраивается при помощи параметра конфигурации
(mssql-conf) network.rpcport. Затем сопоставитель конечных точек сооб-
щит клиенту MSDTC, какой порт использовать для связи со службой MSDTC
Linux, которая затем интегрируется с SQL Server. Порт для службы MSDTC
может быть сгенерирован случайным образом, но вам необходимо обеспе-
чить доступ брандмауэра к этому порту, поэтому вы должны настроить его,
используя параметр конфигурации (mssql-conf) distributedtransaction.
servertcpport.

Полная информация об этих параметрах конфигурации доступна по
ссылке https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-configure-msdtc. После
того как вы выполните все настройки, вы можете просто запустить BEGIN
DISTRIBUTED TRANSACTION на связанном сервере SQL Server. Я включил
в эту книгу пример, позволяющий попробовать сделать это с использова-
нием контейнеров. Чтобы ознакомиться с этим примером, перейдите по
ссылке https://github.com/microsoft/sql-server-samples/tree/master/samples/containers/dtc.

Active Directory и OpenLDAP
Чтобы завоевать доверие представителей корпоративного бизнеса, в
SQL Server для Linux нужно было поддерживать аутентификацию Active
Directory (AD). Как и в случае других аспектов работы с SQL Server в Linux,
хотя процесс конфигурации отличается от Windows, но опыт и совмести-
мость одинаковы.

Мы приводим обзор процесса установки для Linux в документации по
ссылке https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-active-directory-authoverview,
и я рассказываю об этом в главе 7 моей книги «SQL Server для Linux: руко-
водство для профессионалов» (Pro SQL Server on Linux), выпущенной изда-
тельством Apress Media.

Одним из шагов по настройке поддержки AD для SQL Server в Linux
является подключение сервера Linux, на котором размещен SQL Server, к
домену Active Directory. Когда мы выпустили SQL Server 2017 для Linux, мы
рассказали, как это сделать, используя пакет Linux под названием SSSD и
программу под названием realmd. Мы слышали отзывы клиентов о том,
что им нужны альтернативные методы для подключения к домену, в част-
ности более простой интерфейс, позволяющий использовать сторонние
пакеты, такие как PBIS, VAS или Centrify. Оказывается, SQL Server никак не
запрещает использовать эти пакеты; нам просто нужно было выполнить
несколько небольших изменений в конфигурации, чтобы все заработа-
ло. Мы обрисовываем весь процесс в общих чертах в документации, раз-

Службы машинного обучения SQL Server и расширяемость в Linux  191

мещенной по ссылке https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-active-

directory-joindomain. Теджас Шах (Tejas Shah) совместно с командой инженеров
потратили некоторое время на обновления всей документации для вклю-
чения этих возможностей. Важно знать, что это не новая возможность SQL
Server 2019, поскольку все будет также работать и в SQL Server 2017. Однако
концепция достаточно нова, и я хотел бы подробнее рассказать о ней в этой
книге.

Службы машинного обучения SQL Server
и расширяемость в Linux
Как подробно рассказывалось в главе 5, службы машинного обучения SQL
Server позволяют объединить возможности R и Python, интегрированных с
SQL Server, для создания масштабируемых и мощных моделей и приложе-
ний машинного обучения.

Это было революционное изменение для SQL Server для Windows, и нам
нужно было также перенести эту технологию в Linux. Кроме того, поскольку
мы представили новую инфраструктуру, обеспечивающую расширяемость,
и языковые расширения, в число которых входило расширение для Java,
нам нужно было убедиться, что все эти новые возможности также доступ-
ны в Linux.

Развертывание служб SQL Server ML в Linux
Как и в SQL Server для Windows, для машинного обучения SQL Server в

Linux мы облегчаем установку необходимых пакетов для развертывания
сценариев R и Python с SQL Server.

Мы предлагаем различные варианты развертывания служб SQL Server
ML – минимальный, полный или комбинированный. Ниже приводится
описание каждого из этих вариантов:

• полный (full) – содержит все пакеты для R или Python и включает
в себя предварительно подготовленные модели для использования
в задачах машинного обучения. Этот пакет для языка R называется
mssqlmlservices-mlm-r, а для Python – mssql-mlservices-mlm-py.
Когда вы выбираете полный вариант, при установке этих пакетов
также устанавливаются все зависимые пакеты (например, R Open);

• минимальный (minimal) – содержит все пакеты для R или Python,
но не включает предварительно обученные модели. Этот пакет для
языка R называется mssql-mlservices-packages-r, а для Python –
mssql-mlservices-packages-py. Когда вы выбираете минимальный
вариант, при установке этих пакетов также устанавливаются все за-
висимые пакеты (например, R Open);

• комбинированный (combo) – позволяет установить SQL Server
2019 (ядро базы данных) со службами SQL Server ML Services за один

192  Глава 6. SQL Server 2019 для Linux

шаг. Вы можете прочитать о том, как это сделать, по ссылке https://docs.

microsoft.com/en-us/sql/linux/sql-serverlinux-setup-machine-learning#install-all.

После выбора варианта установки полной версии SQL Server ML Services
для R результат установки этих пакетов выглядит так, как показано на
рис. 6.3.

Рис. 6.3. Установка полной версии SQL Server ML Services для R

Совет. Если вы хотите использовать ssh для вашего SQL Server в Linux, то можете вос-

пользоваться службой Terminal в Azure Data Studio. Как это сделать, будет показано в
практических примерах из этой главы.

Обратите внимание, что в числе установленных пакетов имеется пакет
mssql-server-extensibility, о котором я расскажу позже в этой главе; он –
часть инфраструктуры, поддерживающей расширяемость, необходимой
для языковых расширений (одна и та же среда используется как для служб
SQL Server ML Services, так и для языковых расширений).

После установки всех пакетов вам нужно будет выполнить еще несколь-
ко дополнительных шагов, завершающих процесс установки, в том числе
принять условия лицензионного соглашения для R или Python. Выполните
действия, описанные в документации по ссылке https://docs.microsoft.com/en-us/

sql/linux/sql-server-linux-setup-machinelearning#post-install-config-required.
Я также рекомендую, как и для Windows, использовать пример «При-

вет, мир», чтобы убедиться, что установка прошла успешно. Пример для R
выглядит следующим образом:

EXEC sp_execute_external_script
@language =N'R',
@script=N'

Службы машинного обучения SQL Server и расширяемость в Linux  193

OutputDataSet <- InputDataSet',
@input_data_1 =N'SELECT 1 AS hello'
WITH RESULT SETS (([hello] int not null));
GO

Также возможно, что вам как специалистам по обработке данных пона-
добятся дополнительные библиотеки R или Python для ваших приложений.
Чтобы узнать, как их установить, обратитесь к документации по ссылке
https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-setup-machine-learning#add-more-

rpython-packages.

Примечание. Если вы использовали эту функцию со сборками одной из предвари-

тельных версий выпуска SQL Server 2019 SQL Server 2019 (CTP), обязательно удалите
все эти пакеты, прежде чем пытаться использовать функцию окончательной версии
ML SQL Server 2019 (RTM).

Как это работает
В главе 5 мы рассматривали архитектуру служб SQL Server ML Services,

включая службу Launchpad и вспомогательные процессы.
В основу служб SQL Server ML Services в Linux положена та же концеп-

ция. В Linux процесс Launchpad представляет собой системный сервис-
ный модуль с названием mssql-launchpadd. Вы можете просматривать
или контролировать работу этого сервиса с помощью systemctl. На рис. 6.4
показан пример состояния этого сервиса в Linux.

Рис. 6.4. Панель запуска в Linux

Служба Launchpad представлена в Linux процессом-демоном, называе-
мым launchpadd. Та же концепция разветвления процессов в Windows для

194  Глава 6. SQL Server 2019 для Linux

спутниковых процессов работает в Linux, включая программу R и bxlserver.
На рис. 6.5 показаны процессы, порожденные launchpadd для запуска сце-
нария R.

Рис. 6.5. Вспомогательные процессы для сценария R на SQL Server в Linux

Вы можете спросить, как мне удалось «поймать» эти процессы «на лету»?
Чтобы сделать это, выполните следующие действия: из другого сеанса ssh
запустите следующий сценарий T-SQL:

EXEC sp_execute_external_script
@language =N'R',
@script=N'
OutputDataSet <- InputDataSet
Sys.sleep(10)',
@input_data_1 =N'SELECT 1 AS hello'
WITH RESULT SETS (([hello] int not null));
GO

Обратите внимание на вызов Sys.sleep(), приостанавливающий выпол-
нение сценария R.

В другом сеансе ssh выполните следующие команды из оболочки Linux:

ps -axf

Службы SQL Server ML (и инфраструктура, поддерживающая расширяе-
мость) используют пространства имен, позволяющие изолировать процес-
сы, для изоляции вспомогательных процессов. Вы можете использовать
приведенный пример ранее, чтобы заставить сценарий R приостановить
работу, и запустить команду в Linux:

sudo lsns

Вы увидите отдельное пространство имен, созданное для процес-
са launchpad (от которого порождаются вспомогательные процессы). На
рис. 6.6 показан пример этого отдельного пространства имен.

На рис. 6.6 показано еще несколько важных деталей, относящихся к рабо-
те служб SQL Server ML Services (и инфраструктуры, поддерживающей рас-
ширяемость). Учетная запись пользователя, под которой работает вспомо-
гательный процесс, называется mssql_s satellite. Это важно иметь в виду
для того, чтобы предоставить необходимые разрешения для сценариев R
или Python (и языков расширения).

Службы машинного обучения SQL Server и расширяемость в Linux  195

Рис. 6.6. Пространство имен для вспомогательных процессов в Linux

Примечание. Не забывайте, что функция оценки (скоринга) SQL Server встроена в
ядро SQL Server, поэтому ее можно использовать в SQL Server в Linux (и даже в SQL
Server 2017). Более подробная информация об этом приведена по ссылке https://

docs.microsoft.com/en-us/sql/advanced-analytics/sql-native-scoring.

Границы расширяемости и языковые расширения
Основываясь на той же платформе, что и SQL Server ML Services, мы пред-

ставили концепцию языковых расширений, которую я подробно описал в
главе 5. Мы включили в поставку версии SQL Server поддержку языка Java в
качестве примера языкового расширения.

Чтобы развернуть языковые расширения SQL Server в Linux, вы можете
установить один из следующих пакетов:

• mssql-server-extensibility – это основное программное обеспече-
ние, которое использует платформу расширяемости для любого
языка. Это зависимый пакет, как вы видели ранее в данной главе,
установленный совместно с SQL Server ML Services;

• mssql-server-extensibility-java – этот пакет устанавливает инфра-
структуру, поддерживающую расширяемость, расширение языка
Java и SDK, чтобы вы могли запустить свой код Java.

Как и в случае SQL Server ML Services, у вас также есть возможность
выполнить комбинированную установку SQL Server с языковыми расши-
рениями. Об этом способе установки вы можете прочитать по ссылке https://

docs.microsoft.com/en-us/sql/linux/sql-server-linux-setup-language-extensions.
Кроме того, SQL Server установит Java Runtime Engine (JRE) версии 8, если

он еще не установлен в Linux (как и при установке SQL Server ML Services на
Windows, мы установим JRE Zulu).

Процесс развертывания вашего Java-класса практически идентичен ана-
логичной процедуре для SQL Server в Windows; вы можете просмотреть
описание использования обучающих материалов по регулярным выраже-
ниям, приведенное в главе 5. На самом деле язык Java обладает широкими
возможностями совместимости, поэтому вы можете использовать тот же

196  Глава 6. SQL Server 2019 для Linux

класс Java, который вы создали в главе 5, и скомпилировать/собрать JAR-
файл в Linux. Вы используете те же шаги для подключения внешнего языка,
внешней библиотеки для SDK и внешней библиотеки для вашего Java-клас-
са (в виде файла JAR).

Когда вы запускаете свой код, та же архитектура Launchpad использу-
ется для разветвления процесса для обработки вспомогательных процес-
сов. Как и SQL Server в Windows, этот процесс называется Extension Host и
выглядит так, как показано на рис. 6.7, где приведены данные о процессах
в Linux.

Рис. 6.7. Вспомогательный процесс exthost, используемый
при запуске Java для SQL Server в Linux

Polybase в Linux
Материалы в книге трудно расположить в правильном порядке. Глава 9
этой книги посвящена концепции виртуализации данных и Polybase в SQL
Server 2019. Я хотел бы вкратце упомянуть об этом здесь, поскольку под-
держка Polybase – новая возможность в SQL Server для Linux.

Поддержка Polybase появилась в SQL Server 2016. Она используется для
коннекторов Hadoop, а в SQL Server 2019 была дополнена коннекторами
для SQL Server, Oracle, Teradata и MongoDB.

Как узнаете из главы 9, Polybase использует некоторые компоненты
нашей системы аналитической платформы (Analytics Platform System, APS,
ранее известной как Parallel Data Warehouse) для выполнения обработ-
ки запросов с горизонтальным масштабированием. Они существуют как
службы в Windows и используют SQLPAL для SQL Server 2019 в Linux.

Мы представили пакет mssql-server-polybase, обеспечивающий под-
держку Polybase для SQL Server в Linux. Вы можете получить подробные
инструкции по его развертыванию, перейдя по ссылке https://docs.microsoft.

com/en-us/sql/relational-databases/polybase/polybase-linux-setup.
В Polybase в SQL Server для Linux используются те же самые концепции

и операторы T-SQL, что и в SQL Server для Windows; однако в SQL Server
2019 существует несколько различий между версиями SQL Server для Linux
и Windows:

• Polybase для SQL Server в Linux не поддерживает масштабируемые
группы;

• базовый коннектор ODBC не поддерживается.

Резюме  197

Наши планы на будущее состоят в том, чтобы обеспечить паритет функ-
циональных возможностей для Polybase в SQL Server для Linux и SQL Server
для Windows после выхода версии SQL Server 2019. Подробнее о том, как
использовать Polybase, вы узнаете в главе 9.

Резюме
SQL Server в Linux – это история о выборе и совместимости. В SQL Server
2017 ядро базы данных для Linux было аналогично ядру SQL Server для
Windows. В SQL Server 2019 мы существенно расширили список функцио-
нальных возможностей, общих для этих версий, включив в него реплика-
цию, сбор данных об изменениях, распределенные транзакции, службы
машинного обучения и языковые расширения, а также Polybase.

Кроме того, мы внесли улучшения в интеграцию платформы с Linux,
обеспечили поддержку последних версий Linux, улучшили производитель-
ность ввода-вывода и отказоустойчивость, добавили поддержку посто-
янной памяти и пояснили, как используются поставщики OpenLDAP для
настройки аутентификации Active Directory.

Глава 7
SQL Server и контейнеры

Зачем нужны контейнеры в SQL Server?
Когда я планировал содержание этой главы, то думал только о новых функ-
циях контейнеров в SQL Server 2019. Хотя про эти новые возможности
стои ло бы написать целую главу, я все же решил расширить ее содержание
и поговорить о концепции контейнеров, об их важности как нового спо-
соба развертывания SQL Server и, конечно же, о новых возможностях кон-
тейнеров в SQL Server 2019. Я мог бы написать целую книгу о контейнерах,
дающую исчерпывающие знания по этому предмету. Есть много замеча-
тельных ресурсов, посвященных контейнерам (один из которых, www.docker.

com, я считаю очень полезным!), которые могут дополнить эту главу. Цель
данной главы – предоставить вам информацию в таком объеме, чтобы вы
могли увидеть, как работают контейнеры с SQL Server и почему и где вы
должны их использовать. Я уверен, что эта глава даст вам понимание того,
как развертывать, управлять и использовать контейнеры с SQL Server.

Если вам кажется, что вы достаточно хорошо знакомы с концепцией
контейнеров, то можете перейти к разделу «Что нового в SQL Server 2019».
После этого раздела в главу включена серия примеров, позволяющих более
глубоко погрузиться в тему контейнеров. Я должен сказать, что если вы
знакомы с основами контейнеров, то можете начать с раздела «Как рабо-
тают контейнеры с SQL Server», в частности с подраздела «Контейнер SQL
Server», поскольку я расскажу о некоторых особенностях использования
контейнеров с SQL Server.

Контейнеры решают проблему, которую виртуальные машины не позво-
ляют решить сегодня. Виртуальные машины – это удивительная техно-
логия, позволяющая абстрагировать приложения от базовой аппаратной
платформы, но они требуют загрузки и запуска всей операционной систе-
мы, для того чтобы ваше приложение могло работать. Виртуальные маши-
ны позволяют приложениям запускаться изолированно друг от друга на
хост-системе, и для SQL Server это было отличным решением для сценариев
консолидации (даже несмотря на то, что SQL Server допускает размещение
нескольких экземпляров на одном компьютере). Контейнеры обеспечи-
вают ту же концепцию изоляции, но они намного легче, чем виртуальные
машины. Контейнеры часто считаются отдельным уровнем абстракции от
операционной системы.

Зачем нужны контейнеры в SQL Server?  199

Вот важная концепция, которую нужно помнить, когда речь идет о кон-
тейнерах. Контейнеры не заменяют виртуальные машины. Контейнеры
дополняют их. Фактически одна из самых распространенных сред для
запуска контейнеров – это виртуальная машина. Позвольте мне дать опре-
деление контейнера, сначала определив образ контейнера. Образ контей-
нера представляет собой двоичный файл, который описывает набор фай-
лов, организованных в файловой системе, и программу, запус каемую из
этих файлов. Контейнер является экземпляром программы, запускаемой
изолированным способом в образе контейнера вместе с файловой систе-
мой.

Рассмотрим следующую схему на рис. 7.1, которую я часто использую,
чтобы пояснить, что такое контейнеры и почему они могут решать опре-
деленные задачи для современных приложений.

Рис. 7.1. Концепция контейнеров SQL Server

Ниже приведены комментарии к этому рисунку, начиная с его левой сто-
роны:

Переносимые
 Контейнеры являются переносимыми, потому что образ контейнера

можно запускать везде, где можно запустить Docker, то есть прак-
тически везде, включая компьютеры, работающие под управлением
ОС Windows, Linux и macOS, а также в облачных системах, поддер-
живающих эти операционные системы или Kubernetes (о Kubernetes
рассказывается в главе 8). Вы можете взять образ контейнера SQL
Server в виде двоичного файла и поместить его в любую из систем,
где он будет работать точно так же.

Постоянное хранилище

Контейнер

База
данных

Двоичные файлы/
библиотеки

Зачем нужны контейнеры в SQL Server

Переносимые

Работают везде, где поддерживается Docker

Облегченные

Пониженное потребление дискового
пространства, памяти и ресурсов процессора
Согласованные

Целостный образ SQL Server, сценариев и
инструментов

Эффективные

Более быстрое развертывание, уменьшение
количества исправлений и меньшее время простоя

sqlservr

Двоичные файлы/
библиотеки

Контейнер

sqlservr

Двоичные файлы/
библиотеки

Контейнер

sqlservr

ОС сервера виртуальных машин (хост-системы)

Инфраструктура

DockerDev Ops

Конфигурация контейнера

Переключение
на простые
обновления

200  Глава 7. SQL Server и контейнеры

Примечание. Для пользователей macOS: просмотрите, пожалуйста, мою заметку
в блоге, где показано, как теперь можно запускать SQL Server и инструменты для
работы с ним без установки Windows: https://bobsql.com/take-the-sql-server-mac-

challenge/.

Облегченные
 Контейнер – это запущенный экземпляр образа контейнера, и в

конце концов, это всего лишь процесс, представляющий собой при-
ложение, работающее изолированно. Это делает его намного более
легким, чем виртуальная машина, предназначенная для размеще-
ния приложения. Требования контейнеров к ресурсам также опти-
мизированы, потому что если вы запускаете более одного контейне-
ра из образа, часть файлов образов (называемых читаемым слоем,
или слоем, доступным для чтения, о котором я расскажу далее в этой
главе) распределяется между контейнерами. Это уменьшит объем
ресурсов, необходимый для запуска нескольких экземпляров SQL
Server на хост-системе или виртуальной машине.

Примечание. В Linux не поддерживается запуск нескольких экземпляров SQL Server,
однако вы все же можете запустить несколько экземпляров, используя контейнеры.

Согласованные
 Это один из аспектов контейнеров, который мне очень нравится, и

он помогает решить огромную проблему для SQL Server. В течение
многих лет во многих компаниях сложилась практика, когда адми-
нистраторы устанавливали отдельные серверы с SQL Server, форми-
руя платформы для тестирования и разработки. Это может вызвать
сложности, так как несколько разработчиков, использующих один
и тот же SQL Server (при этом им обычно требуется более высокий
уровень доступа к SQL Server), могут создать множество проблем для
администраторов баз данных.

 Контейнеры предоставляют разработчикам согласованный способ
использования SQL Server, при этом отказавшись от обязательного
совместного использования экземпляра SQL Server. Например, если
вы хотите, чтобы все разработчики использовали определенный
образ версии SQL Server вместе с определенной базой данных, то
можете просто создать образ контейнера. А поскольку контейнеры
переносимы, и SQL Server теперь работает на Linux, вы можете предо-
ставить один и тот же образ контейнера SQL Server для разработчи-
ков, использующих разные платформы. Разработчики macOS могут
использовать тот же образ SQL Server, что и разработчики Windows.
Это великолепная история о согласованности! Символ DevOps в ниж-
нем левом углу рисунка просто показывает, насколько важна кон-
цепция контейнеров для поддержки модели DevOps.

Зачем нужны контейнеры в SQL Server?  201

Эффективные
 Контейнеры предоставляют новые эффективные возможности для

обновления программного обеспечения, в том числе SQL Server.
Если вам когда-либо приходилось устанавливать обновления для
SQL Server, вы оцените то, как просто это делается при помощи кон-
тейнеров. Вы сможете существенно сократить время простоя и при
необходимости быстрее откатывать обновления.

На рис. 7.1 с правой стороны представлена схема работы контейнеров.
Контейнер в середине, выделенный серым цветом, представляет собой
остановленный контейнер SQL Server. Контейнер слева – это новая версия
SQL Server, которая запускается, но указывает на те же системные и поль-
зовательские базы данных, размещенные в постоянном хранилище (при
этом используется концепция томов, о которой я расскажу позже в данной
главе). Эту технику, которую я покажу вам позже здесь, я называю «пере-
ключением» контейнеров, позволяющим применить или откатить накопи-
тельное обновление SQL Server.

Пока вы рассматриваете рисунок, я хочу сделать несколько замечаний:

• черные прямоугольники с надписью Двоичные файлы/библиоте-
ки представляют собой двоичные файлы, необходимые для запуска
SQL Server. Они иллюстрируют аспект «облегченности» контейнера,
отличающий его от виртуальной машины. И что не показано на ри-
сунке, так это то, что если все контейнеры созданы на основе одного
и того же образа, эти файлы совместно используются всеми контей-
нерами;

• элемент с надписью Docker обозначает программное обеспечение
Docker, которое используется для запуска и управления контейнера-
ми. На самом деле это должно означать, что Container Runtime, или
Docker, является просто примером среды выполнения контейнера;

• обратите внимание на стрелки, проходящие через Docker к операци-
онной системе хост-узла. Docker не является слоем между контей-
нером и операционной системой хост-узла. Другими словами, SQL
Server не нужно взаимодействовать через некоторый отдельный
уровень для выполнения операций ОС ядра. Вот почему еще кон-
тейнеры считаются более легкими – поскольку они содержат про-
граммное обеспечение, напрямую взаимодействующее с операци-
онной системой хост-узла. Уникальной особенностью контейнеров
является то, что они работают изолированно друг от друга, отсюда и
появился термин «контейнер».

Теперь, когда вы познакомились с основными концепциями работы кон-
тейнеров, давайте перейдем к изучению работы контейнеров. Понимание
того, как работает та или иная технология, позволяет вам использовать ее
более эффективно.

202  Глава 7. SQL Server и контейнеры

Как работают контейнеры с SQL Server
Прежде чем вы начнете использовать контейнеры с SQL Server, давайте
разберемся, как они работают. Чтобы объяснить это, мне нужно потра-
тить некоторое время на объяснение концепций размещения контейнеров,
магии, стоящей за Docker, и жизненного цикла контейнера.

Размещение контейнеров
В предыдущем разделе я упоминал о том, что контейнеры – это про-

граммные модули, которые взаимодействуют непосредственно с опе-
рационной системой хост-узла. Операционная система хост-узла может
находиться на виртуальной машине или непосредственно на аппаратной
платформе.

Поскольку наша программа в контейнере взаимодействует напрямую
с операционной системой хост-узла, так же как и любая другая программа
в системе (за исключением того, что, разумеется, контейнеры запускаются
специальным изолированным способом), она должна быть скомпилирова-
на и запущена на этой операционной системе.

Когда мы выпустили версию SQL Server 2017 для Linux, мы также пред-
ставили образы контейнеров SQL Server на основе Linux, а именно Ubuntu
Linux. Почти каждый образ контейнера, существующий в мире, создан на
базе операционной системы хост-узла, и абсолютное большинство из них
использует Linux. Для хост-узлов, работающих на Linux, запуск контейне-
ра SQL Server на Linux не является проблемой. Контейнеры с SQL Server
в Linux могут использоваться независимо от того, установлена система
Linux непосредственно на аппаратной платформе или на виртуальной
машине.

А как насчет Windows и macOS? Ключевой концепцией здесь являет-
ся Docker как среда выполнения для контейнера. Docker поддержива-
ет контейнеры, работающие в Windows, посредством Docker Desktop для
Windows. Любой контейнер, основанный на образе Linux, будет запускаться
в контекс те виртуальной машины с Linux, называемой DockerDesktopVM.
В Docker Desktop для macOS используется концепция HyperKit (https://github.

com/moby/hyperkit). Вы можете прочитать больше о Docker Desktop на сайте
www.docker.com/products/docker-desktop.

В последнее время были достигнуты определенные успехи в реализации
контейнеров с версией Docker для Windows благодаря поддержке концеп-
ции, называемой Linux Containers for Windows (LCOW). Команда Windows
описывает эту концепцию как более легкий метод запуска контейнеров
Linux в Windows, чем полноценная виртуальная машина. Вы можете про-
читать больше о LCOW по ссылке https://docs.microsoft.com/en-us/virtualization/

windowscontainers/deploy-containers/linux-containers.
Кроме того, Docker Desktop для Windows может использовать оптимизи-

рованный метод с использованием новой подсистемы Windows для Linux

Как работают контейнеры с SQL Server  203

(WSL). Дополнительную информацию об использовании WSL2 с Docker
Desktop можно получить по ссылке https://engineering.docker.com/2019/06/docker-

hearts-wsl-2/.
А как насчет контейнеров на основе образов для Windows или macOS?

Если можно создать образ контейнера на основе операционной системы
Linux, существуют ли образы контейнеров на основе Windows или macOS?
Для Windows ответ на этот вопрос – да. В Windows существует концеп-
ция образа контейнера, основанного на Windows. Вы можете узнать боль-
ше о контейнерах Windows, перейдя по ссылке https://docs.microsoft.com/en-us/

virtualization/windowscontainers/about/. SQL Server пока не поддерживает версию
контейнера Windows. Но летом 2019 года мы анонсировали закрытую про-
грамму предварительного тестирования SQL Server Windows Container.
Я расскажу больше о контейнерах SQL Server Windows Containers в конце
этой главы. На момент написания данной книги я еще не видел образов
контейнеров на основе macOS. Вообще говоря, версий SQL Server специ-
ально для macOS не существует, но, как я уже говорил, SQL Server поддер-
живает Linux, который будет работать с использованием Docker Desktop
для macOS (с применением HyperKit).

Docker – это магия?
Все, о чем до сих пор говорилось в этой главе, кажется неким волшеб-

ством для любого, кто знаком с компьютерными системами. Каждый раз,
когда используется слово «контейнер», сразу же упоминается и Docker.
Концепция виртуализации операционной системы, которая лежит в основе
контейнеров, не нова (для получения дополнительной информации обра-
титесь к статье https://en.wikipedia.org/wiki/OS-level_virtualisation). Все, кто работал
вместе со мной, знают, что когда я исследую, как что-то работает, я всегда
задаю вопрос «с помощью какого API?». Другими словами, какой интер-
фейс программирования используется для достижения цели? Для контей-
неров ответ на этот вопрос – используются API, предоставляемые операци-
онной системой ядра.

Docker (как и другие среды выполнения контейнеров на рынке) при-
нял концепцию контейнеров и создал платформу и экосистему, которые
используются повсеместно. Но сам Docker использует возможности опера-
ционной системы для поддержки контейнеров (в Linux аналогичные кон-
цепции применяются к контейнерам Windows). Поддержка контейнеров
включает в себя следующие основные понятия:

 пространства имен – обеспечивают механизм, позволяющий за-
пускать процессы изолированно друг от друга. Дополнительную
информацию о пространстве имен вы можете получить по ссылке
https://en.wikipedia.org/wiki/Cgroups#NAMESPACE-ISOLATION;

 контрольные группы (Control groups, cgroups) – предоставляют
механизм для управления использованием ресурсов для процессов

204  Глава 7. SQL Server и контейнеры

или множества процессов. Контейнеры по умолчанию имеют доступ
ко всем вычислительным ресурсам, таким как память и процессор,
но cgroups предоставляют метод для ограничения использования
ресурсов для контейнера:

 объединенная файловая система – позволяет представлять не-
сколько каталогов как один. Эта концепция является ключевой для
минимизации размера контейнеров и поддержки слоев для чтения
и для записи. В системе Linux файловая система OverlayFS поддер-
живает объединенную файловую систему. Подробнее о том, как это
работает для контейнеров, можно прочитать на странице https://docs.

docker.com/storage/storagedriver/overlayfs-driver/#how-the-overlay-driver-works.

Позвольте мне остановиться и объяснить ключевую концепцию для кон-
тейнеров, о которой шла речь в предыдущем абзаце.

 Слой для чтения – образ контейнера доступен только для чтения и
состоит из набора файлов, размещенных в файловой системе. Для
SQL Server это включает минимум поддерживаемых файлов из обра-
за базовой операционной системы и файлов для SQL Server, включая
двоичные файлы и системные базы данных.

 Слой для записи – это любые изменения, внесенные в файловую
систему контейнера после его запуска. Они могут включать любые
изменения в файлах из слоя для чтения или добавление новых фай-
лов. Слой для записи сохраняется в течение всего срока службы кон-
тейнера. После удаления контейнера слой для записи также удаля-
ется. Как вы догадываетесь, для пользовательских баз данных SQL
Server это представляет проблему.

 Том – это место постоянного хранилища на хост-узле, которое свя-
зано с каталогом в доступном для записи слое контейнера. Для SQL
Server вы увидите, что обычной практикой является использование
тома, связываемого с каталогом в контейнере для хранения баз дан-
ных. Тома сохраняются независимо от времени существования кон-
тейнера, поэтому если контейнер удален, том все еще существует.

Одна вещь, за которую я люблю Docker, – это за то, что он представил
свой собственный API, абстрагирующий концепции ОС, который поддер-
живает контейнеры, называемый libcontainer. Дополнительную инфор-
мацию о libcontainer можно найти по ссылке https://github.com/opencontainers/

runc/tree/master/libcontainer. Еще один интересный ресурс, где рассказывается
о природе контейнеров с открытым исходным кодом, – Open Container
Initiative (OCI), членом которой является Microsoft (www.opencontainers.org/).

Важно отметить, что Docker является примером среды выполнения
контейнера – одной из самых популярных в отрасли. Существует среда
выполнения контейнера с открытым исходным кодом, которая называется
containerd, о которой вы можете прочитать по ссылке https://containerd.io/.

Как работают контейнеры с SQL Server  205

Жизненный цикл контейнера
При установке Docker в Linux, Windows или macOS устанавливаются сле-

дующие компоненты, которые обеспечивают работу контейнеров:

 механизм Docker (docker engine) – состоит из демона Docker (кото-
рый является «сервисом»), контролирующего все операции по созда-
нию и запуску контейнеров. Механизм Docker поддерживает API для
программ, взаимодействующих с механизмом построения и запуска
контейнеров. Вы можете прочитать больше о механизме Docker, пе-
рейдя по ссылке https://docs.docker.com/engine/, а также об API механизма
Docker, перейдя по ссылке https://docs.docker.com/develop/sdk/;

 клиент Docker (docker client) – это приложение, которое использу-
ет API механизма Docker для создания и запуска контейнеров. Кли-
ент Docker – это согласованная программа, которая поддерживает
все возможности и ведет себя одинаково в Windows, macOS и Linux.
Вы будете использовать клиента Docker для выполнения практиче-
ских упражнений в этой главе;

 инструмент для управления набором контейнеров Docker
(docker compose) – это приложение под названием docker-compose,
которое позволяет создавать и запускать многоконтейнерные при-
ложения. В одном из практических примеров с использованием ре-
пликации SQL Server, приведенных далее в этой главе, будет исполь-
зоваться данный инструмент.

Используя эти компоненты, рассмотрим следующую схему, приведен-
ную на рис. 7.2, которую я называю жизненным циклом контейнера.

Рис. 7.2. Жизненный цикл контейнера

Давайте рассмотрим каждый из ее элементов более подробно.

 build – команда сборки Docker, которая используется для создания
нового образа контейнера. Хотя командой поддерживается SDK,
стандартный подход заключается в определении образа для построе-
ния с использованием файла с именем Dockerfile. Дополнитель-
ную информацию о сборке Docker можно получить по ссылке https://

docs.docker.com/engine/reference/commandline/build/. Ссылку на синтак сис
Dockerfile можно найти по адресу https://docs.docker.com/engine/reference/

builder/. Microsoft создает образы, которые содержат SQL Server, по-
этому во многих случаях вам не придется самостоятельно проделы-
вать эту процедуру. Однако существуют обстоятельства, при кото-
рых вы будете создавать настраиваемый образ на основе SQL Server.
Я приведу примеры таких сценариев далее в этой главе.

build push pull run

206  Глава 7. SQL Server и контейнеры

 push – после создания образа вам нужно будет предоставить другим
людям возможность использовать его; для отправки или публика-
ции образа контейнера в реестре используется команда docker push.
Этот реестр может находиться на локальном сервере или в открытом
доступе. Одним из наиболее распространенных реестров в публич-
ном доступе является Docker Hub или hub.docker.com. Microsoft
публи кует образы своих контейнеров, в том числе и контейнеров с
SQL Server, на сайте mcr.microsoft.com (так называемый реестр кон-
тейнеров Microsoft). Далее в этой главе я расскажу, как найти раз-
личные образы SQL Server в реестре контейнеров Microsoft. Допол-
нительная информация о docker push доступна по ссылке https://docs.

docker.com/engine/reference/commandline/push/.
 pull – любой, кто хочет использовать образ контейнера, должен по-

лучить его по запросу, даже если этот образ хранится на локальном
сервере. Получить образ контейнера можно с помощью команды
docker pull. Механизм Docker (docker engine) будет хранить копию
образа локально на хост-узле. Дополнительную информацию о ко-
манде docker pull можно найти по ссылке https://docs.docker.com/engine/

reference/commandline/pull/.
 run – чтобы запустить контейнер на основе образа, используется ко-

манда docker run. Если вы запускаете контейнер на основе образа,
который еще не был получен по запросу, Docker сначала получает
образ, а затем запускает контейнер. В этой главе вы познакомитесь
со всеми операциями, необходимыми для запуска контейнера SQL
Server.

После того как вы запустите контейнер, вы захотите управлять им.
С помощью клиента Docker вы сможете остановить, запустить, перезапус-
тить и удалить контейнер. Кроме того, клиент Docker позволит вам управ-
лять образами, в том числе удалять их.

Клиента Docker также можно использовать для мониторинга и управ-
ления экосистемой контейнеров: он позволяет получить списки запущен-
ных и остановленных контейнеров, а также выводить данные статистики и
журналов для запущенных и остановленных контейнеров.

Наконец, клиент Docker позволяет вам взаимодействовать с запущенны-
ми контейнерами, копируя файлы в слой для записи на хост-узле и запуская
программу, которая существует в файловой системе контейнеров (которая
будет выполняться в том же пространстве имен, что и основная програм-
ма-контейнер). Эти команды будут очень полезны для контейнеров SQL
Server, как вы увидите в примерах, приведенных в данной главе.

Контейнер SQL Server
Образы контейнеров SQL Server содержат необходимые файлы для ядра

SQL Server, SQL Server Agent, всех функций, включенных в механизм SQL

Как работают контейнеры с SQL Server  207

Server, таких как репликация и средства командной строки SQL Server
(sqlcmd и bcp). Когда вы запускаете контейнер SQL Server, SQL Server уже
предварительно установлен! Другими словами, когда вы получаете и
запуска ете контейнер SQL Server, вы готовы его использовать. Это одно
из основных преимуществ использования контейнера SQL Server. После
запус ка контейнера установка SQL Server не требуется.

В предыдущем разделе я упоминал, что образ создается с помощью
команды сборки Docker docker build с использованием файла с названием
Dockerfile. Чтобы понять, как предварительно установлен контейнер SQL
Server, вот примерное описание команд в Dockerfile для SQL Server:

FROM <базовый образ на основе ubuntu или rhel>
LABEL <информация о метке Microsoft>
EXPOSE 1433
COPY <библиотеки и двоичные файлы SQL Server>
RUN ./install.sh
CMD ["/opt/mssql/bin/sqlservr"]

Команда FROM задает базовый образ ОС, на котором построен образ кон-
тейнера SQL Server. Одной из замечательных особенностей контейнеров
является возможность создавать новые образы на основе других, создавая
эффект наложения образов. Далее в этой главе я покажу вам, как создать
свой собственный образ на основе образа SQL Server (который основан на
образе базовой ОС).

Команда EXPOSE позволяет контейнеру SQL Server устанавливать
соедине ния, необходимые приложениям для обмена данными, с исполь-
зованием порта 1433 внутри контейнера. Это важно, поскольку по умолча-
нию контейнеры изолированы. Вы увидите, что часто этот порт отобража-
ется на другой порт хост-узла, что позволяет нескольким контейнерам SQL
Server работать на одном хост-узле (что обычно приводит к сбою, посколь-
ку два приложения не могут быть привязаны к одному и тому же порту).

Команды COPY и RUN являются лишь частью процесса сборки для копи-
рования всех двоичных файлов SQL Server в файловую систему образа кон-
тейнера и установки любых программных зависимостей.

Все эти команды в Dockerfile SQL Server до сих пор являются шагами соз-
дания образа контейнера. Когда выполняется команда сборки Docker docker
build, каждый из этих операторов используется для построения образа.
Оператор CMD сообщает Docker имя программы, запускаемой при запуске
контейнера, в нашем случае это sqlservr. Это означает, что контейнер SQL
Server не работает как «служба» (например, служба systemd в Linux). Ког-
да я рассказал об этом нескольким профессионалам, они спросили: «Как
же SQL Server продолжает работать?» Оказывается, приложение SQL Server
(это работает таким же образом в Windows) создано как программа-демон,
а это означает, что оно работает в фоновом режиме, пока не получит сигнал
о том, что должно остановиться.

208  Глава 7. SQL Server и контейнеры

Итак, теперь давайте посмотрим, как запускается контейнер SQL Server,
а затем поговорим о том, как мы «предварительно устанавливаем» SQL
Server.

Основной синтаксис для запуска контейнера SQL Server выглядит, как
показано ниже, и выполняется с помощью команды docker run (примеча-
ние: в Linux обычно нужно перед командами запуска контейнера вводить
команду sudo):

docker run
-e 'ACCEPT_EULA=Y' -e 'MSSQL_SA_PASSWORD=Sql2017isfast'
-p 1401:1433
-v sqlvolume:/var/opt/mssql
--hostname sql2019latest
--name sql2019latest
-d

mcr.microsoft.com/mssql/rhel/server:2019-latest

Далее я расскажу о каждом из аргументов этой команды.

-e 'ACCEPT_EULA=Y' -e 'MSSQL_SA_PASSWORD=Sql2017isfast'

Параметры -e обозначают переменные среды, которые используются
для запуска и работы контейнера. В случае с SQL Server вам необходимо
как минимум принять пользовательское соглашение и ввести пароль sa.
Также в команде могут использоваться другие переменные среды, позво-
ляющие указать версию SQL Server или включить SQL Server Agent. Любая
переменная среды, поддерживаемая SQL Server, может использоваться для
предварительной настройки установки SQL Server при запуске контейнера.
Полный список переменных среды приведен по ссылке https://docs.microsoft.

com/en-us/sql/linux/sql-server-linux-configure-environment-variables.

-p 1401:1433

Этот параметр не потребуется, если вы собираетесь запускать только
один контейнер SQL Server на одном хост-узле (причем на этом хост-уз-
ле не установлен SQL Server). Если у вас есть несколько экземпляров SQL
Server, вам нужно связать порт 1433 с другим портом. Любое приложе-
ние, желающее подключиться к этому контейнеру SQL Server, теперь будет
использовать порт 1401 вместо порта по умолчанию.

-v sqlvolume:/var/opt/mssql

Данный параметр указывает, какой том следует применять для свя-
зывания с каталогом SQL Server, где хранятся базы данных. Это необя-
зательный параметр; однако если вы хотите, чтобы ваши базы данных
сохранялись независимо от времени жизни контейнера, вам придется
использовать тома для их хранения. Так, тома определенно будут исполь-

Как работают контейнеры с SQL Server  209

зоваться для любого контейнера SQL Server, используемого в промыш-
ленной среде.

--hostname sql2019latest

Данный параметр тоже необязательный, но он очень удобен. Это удобство
заключается в том, что указанное вами имя вычислительного узла, на кото-
ром размещен контейнер, станет значением @@SERVERNAME в SQL Server.

--name sql2019latest

Данный параметр также не является обязательным, но он удобен для
управления контейнером. Задав для контейнера имя, вы теперь може-
те легко идентифицировать контейнер по имени и управлять им. Напри-
мер, после запуска этого контейнера вы можете остановить его, выполнив
команду docker stop sql2019latest.

-d

Этот параметр определяет, что контейнер будет запускаться в фоно-
вом режиме. Обычно данный параметр используется для контейнера SQL
Server. Тем не менее хорошим способом отладки является удаление этого
параметра, если вы не можете запустить контейнер SQL Server. Это связа-
но с тем, что когда программа sqlservr запускается из командной строки,
поведение по умолчанию – передать содержимое ERRORLOG в стандарт-
ный вывод (stdout); выведенные таким образом данные затем отобразят-
ся при запуске контейнера. Вы также можете использовать команду docker
logs, чтобы вывести ERRORLOG контейнера SQL Server.

mcr.microsoft.com/mssql/rhel/server:2019-latest

Это тег образа контейнера, который вы хотите запустить. В следующем
разделе я покажу, как выяснить, какие теги использовать для определенно-
го контейнера SQL Server. Если помеченный с помощью тега образ контей-
нера отсутствует на локальном узле, Docker сначала получит этот образ по
запросу, а затем запустит контейнер.

Одним из интересных аспектов работы контейнера SQL Server явля-
ется последовательность запуска. Когда программа sqlservr запускается
в контейнере, каталог /var/opt/mssql не существует. Однако программа
sqlservr достаточно интеллектуальна для того, чтобы создать этот каталог
и извлечь системные базы данных из установленных файлов образа кон-
тейнера при запуске. Кроме того, sqlservr понимает, как принимать пере-
менные среды и использовать их в качестве параметров запуска, чтобы
было возможно принять пользовательское соглашение, указать пароль sa
и задать значения других переменных среды. Проще говоря, программа
sqlservr знает, как себя установить! Давайте посмотрим, что нового в SQL
Server 2019 при работе с контейнерами, а затем перейдем к практическим
примерам.

210  Глава 7. SQL Server и контейнеры

Что нового для SQL Server 2019
Теперь, когда вы получили представление о том, как работают контейнеры
и как они работают с SQL Server, давайте посмотрим, какие новые возмож-
ности для использования контейнеров появились в SQL Server 2019.

• Сейчас мы предоставляем образы контейнеров SQL с базовым обра-
зом ОС Red Hat Enterprise Linux (RHEL) для SQL Server 2019. Далее вы
узнаете, как выглядят эти образы. Для примеров в этой главе я буду
использовать в основном образы RHEL.

• Контейнеры SQL Server 2019 по умолчанию запускаются без полно-
мочий root, что позволяет официально поддерживать SQL Server в
Red Hat OpenShif.

• Все образы контейнеров SQL Server теперь хранятся в реестре
Microsoft Container Registry, размещенном по ссылке mcr.microsoft.
com.

 Когда мы выпустили SQL Server 2017 и образы контейнеров, то опуб-
ликовали созданные образы в хранилище Docker Hub, доступном по
ссылке https://hub.docker.com/_/microsoft-mssql-server. С тех пор в Microsoft
мы установили стандарт, согласно которому официальные образы
контейнеров Microsoft теперь будут публиковаться в реестре кон-
тейнеров Microsoft, размещенном по ссылке mcr.microsoft.com. Мы про-
должаем публиковать ссылки на наши образы контейнеров в Docker
Hub, но сами образы хранятся только на mcr.microsoft.com.

 Здесь я должен остановиться и объяснить правила именования для
образов контейнеров.

 Образы контейнеров SQL используют следующее соглашение об
именах:

 mcr.microsoft.com/mssql/server:<tag> – образы Ubuntu;
 mcr.microsoft.com/mssql/rhel/server:<tag> – образы Red Hat Enter-

prise Linux.

Примечание. Хотя в настоящий момент мы не поставляем образы контейнеров для
SUSE, вы можете создать их самостоятельно, используя следующий пример, предо-
ставленный сотрудником Microsoft Вин Ю (Vin Yu) по ссылке https://github.com/

microsoft/mssql-docker/tree/master/linux/.

 В части имени <tag> указывается конкретная сборка, которую вы
ищете, или «последняя» сборка.

 Например, чтобы получить последнюю сборку образа контейнера
SQL Server 2017 для Ubuntu, вы должны использовать следующее имя
образа контейнера:

Что нового для SQL Server 2019  211

 mcr.microsoft.com/mssql/server:2017-latest-ubuntu

 или для SQL 2017 CU10 для Ubuntu, вам нужно было бы использовать

 mcr.microsoft.com/mssql/server:2017-CU10-ubuntu.

Примечание. Вы также можете использовать тег 2017-latest для последней версии
образа Ubuntu, однако это не рекомендуется. Это были оригинальные теги, которые
мы использовали при первой поставке SQL 2017. Лучше всего явно указывать имя
базового образа.

 В SQL Server 2017 мы не поставляли образы контейнеров RHEL. Все
они относятся к версии SQL Server 2019. Например, чтобы получить
последний образ контейнера SQL Server 2019 RHEL, вам нужно ис-
пользовать следующую ссылку:

 mcr.microsoft.com/mssql/rhel/server:2019-latest

 Если вы загружаете образ контейнера SQL и не уверены, для какой
версии SQL Server он был создан, используйте команду docker inspect.
Сначала выполните следующую команду:

 docker images

 В результате вы получите список образов, которые хранятся локаль-
но на вашем сервере. Столбец TAG может дать вам подсказку о вер-
сии SQL Server. Но если значение в столбце TAG будет примерно та-
ким, как 2017-latest-ubuntu, вы не узнаете, что такое сборка CU для
SQL Server 2017, пока не запустите контейнер из этого образа. Но
если вы выполните команду

 docker inspect <IMAGE ID>

 где IMAGE ID – это идентификатор GUID из списка, полученного в
результате выполнения команды docker images, то в результате полу-
чится файл JSON с описанием образа. Это может быть очень полезно
для любого образа контейнера. Если вы найдете в тексте JSON раздел
Labels, то увидите примерно следующий фрагмент:

 "Labels": {
 "com.microsoft.product": "Microsoft SQL Server",
 "com.microsoft.version": "14.0.3223.3",
 "vendor": "Microsoft"

 Здесь номер версии (com.microsoft.version) – это номер сборки SQL
Server. Вы можете выполнить простой поиск в интернете и найти
номер версии, соответствующий этому номеру сборки SQL Server.
В данном примере 14.0.3223.3 соответствует SQL Server 2017 CU16.

212  Глава 7. SQL Server и контейнеры

 Это, конечно, приятно, но как получить весь возможный список об-
разов контейнеров с mcr.microsoft.com? Лучшую подсказку дал мне
мой коллега Умачандар Джаячандран (Umachandar Jayachandran),
который работает в Калифорнийском университете; она позволит
вам сэкономить много времени.

 Список всех образов Ubuntu находится по ссылке
 https://mcr.microsoft.com/v2/mssql/server/tags/list.

 Для образов RHEL вы можете воспользоваться ссылкой
 https://mcr.microsoft.com/v2/mssql/rhel/server/tags/list.

Совет. Если вы устанавливаете расширение Docker с помощью Azure Data Studio

или кода Visual Studio, то можете использовать это расширение для просмотра mcr.
microsoft.com, включая образы mssql/server. В следующей заметке в блоге расска-

зывается о расширениях: https://jeeweetje.net/2019/07/10/exploring-containers-in-

the-microsoft-container-registry-with-visual-studio-code/.

• Теперь мы поддерживаем некорневые контейнеры с SQL Server
2019. До этого времени все контейнеры для SQL Server запуска-
лись в контексте пользователя root в Linux. Хотя контейнеры ра-
ботают изолированно, некоторые специалисты считают, что запуск
от имени root не является безопасной моделью, что не позволяет
официально поддерживать SQL Server в таких средах, как RedHat
OpenShift.

• До настоящего момента контейнеры SQL Server поддерживают толь-
ко аутентификацию SQL Server. Мы намерены поддерживать про-
верку подлинности Active Directory для контейнеров в SQL Server
2019. В то время когда я писал эту главу, было несколько сомнений
относительно того, будет ли это официально поддерживаться для
SQL Server 2019. Я подробнее расскажу об этой концепции позже в
разделе «Развертывание контейнеров SQL в промышленной среде»
данной главы.

• Когда мы готовились к выпуску SQL Server 2019, то объявили о про-
ведении предварительного тестирования контейнеров SQL Server на
основе базового образа Windows. Я называю это образом Windows
контейнера SQL Server. В конце главы есть отдельный раздел, где
обсуждается эта тема.

Как и во многих темах, связанных с компьютерными технологиями, вы
можете прочитать о том, как что-то работает. Но, лишь используя что-то,
вы можете собрать все фрагменты головоломки в единую картину. Давай-
те рассмотрим ряд тем о контейнерах SQL Server на конкретных приме-
рах.

Подготовительные шаги для использования примеров, иллюстрирующих...  213

Подготовительные шаги для использования
примеров, иллюстрирующих использование
контейнеров с SQL Server
Возможно, вы были несколько разочарованы, прочитав предыдущую главу,
не содержавшую примеров, однако в этой главе их более чем достаточно.
Это одна из глав, над которой мне больше всего нравилось работать, пото-
му что я люблю тему контейнеров.

В этой главе я собираюсь показать вам несколько разных способов запус-
ка контейнеров в Windows и Linux. Я привел сценарии, в которых вы може-
те запускать все примеры на любой платформе (или в macOS), но в каждом
из этих примеров я могу более подробно рассказать о том, как использо-
вать приведенный код на конкретной платформе.

Работая над этой главой, я поставил себе цель, чтобы все примеры были
основаны на сценариях оболочки Bash и использовали новую подсистему
Windows для Linux (WSL2). Однако на момент написания данного материа-
ла для этого потребовалась бы инсайдерская сборка Windows 10, и я не хотел,
чтобы читатели столкнулись с этим риском. Для пользователей Windows у
меня есть примеры, использующие PowerShell (но вы помните, что в пре-
дыдущем разделе обсуждалось, что при этом все еще будет использоваться
виртуальная машина Docker Desktop). С WSL2 ситуация в корне изменится,
но для применения WSL2 вам потребуется использовать следующую офи-
циальную версию Windows 10 (если только вы не имеете доступа к инсай-
дерским сборкам).

Для выполнения всех примеров на всех платформах вам понадобится
следующее:

• интернет-соединение, используя которое, будут извлекаться образы
Docker из реестра контейнеров Microsoft;

• файл резервной копии базы данных WideWorldImporters, доступный
по ссылке https://github.com/Microsoft/sql-server-samples/releases/download/wide-

world-importers-v1.0/WideWorldImporters-Full.bak;
• утилиты командной строки SQL Server, установленные на вашем

компьютере, где будут выполняться практические примеры (если
это еще не сделано). Пользователи Windows могут загрузить уста-
новочный пакет по ссылке https://docs.microsoft.com/en-us/sql/tools/sqlcmd-

utility. Пользователи Linux могут воспользоваться документацией,
размещенной по ссылке https://docs.microsoft.com/en-us/sql/linux/sql-server-

linux-setup-tools. Пользователи macOS могут обратиться к следующей
документации: https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-setup-

tools#macos;

• Azure Data Studio или ADS (версия июня 2019 г. или более поздняя),
доступная по ссылке https://docs.microsoft.com/en-us/sql/azure-data-studio/

214  Глава 7. SQL Server и контейнеры

download. ADS идеально подходит для этих примеров, так как это
кросс-платформенный инструмент. Пользователям ADS я рекомен-
дую установить следующее расширение: https://marketplace.visualstudio.

com/items?itemName=ms-azuretools.vscode-docker. Для ADS вам нужно вы-
брать вариант Download Extension на странице установки. Загрузи-
те файл VSIX на свой локальный компьютер и следуйте инструкции
по установке ADS. О том, как добавить расширение для ADS, расска-
зывается в документации, доступной по ссылке https://docs.microsoft.

com/en-us/sql/azure-data-studio/extensions.

Далее приводится список компонент для каждой платформы, которые
вам нужно установить.

Пользователи Windows:
 Установите Docker Desktop для Windows, доступный по ссылке https://

hub.docker.com/editions/community/docker-ce-desktop-windows. Пользователи Win-
dows Server также могут установить Docker, прочитав документацию,
размещенную по ссылке https://docs.docker.com/install/windows/docker-ee/.

 Еще один важный момент для пользователей Windows. Вероятно, вы
будете использовать git для клонирования репозитория этой кни-
ги для всех примеров кода, и при этом вы воспользуетесь Git для
Windows. При установке Git для Windows обязательно отключите
параметр autocrlf. В противном случае сценарии оболочки Linux,
необходимые для этой главы, не будут работать. Если вы не знаете,
как отключить данный параметр, используйте следующую команду
при клонировании репозитория:

 git clone --config core.autocrlf = false <URL-адрес github>

Пользователи Linux:
 Docker поставляется бесплатно, в версии Community Edition (CE), или

платно, для версии Enterprise Edition (EE). Для CE существуют раз-
личные варианты установки в зависимости от вашего дистрибути-
ва Linux. Например, пользователи Ubuntu могут установить Docker,
перейдя по ссылке https://docs.docker.com/install/linux/docker-ce/ubuntu/ или
https://hub.docker.com/search/?type=edition&offering=community.

 Если у вас версия Docker EE, вы можете воспользоваться инструкция-
ми по установке Ubuntu, RHEL и SUSE, перейдя по ссылке www.docker.

com/products/docker-enterprise.

Пользователи macOS:
 Установите Docker Desktop для Mac, перейдя по ссылке https://hub.

docker.com/editions/community/docker-ce-desktop-mac. В сценариях, которые я
создал для пользователей Linux и macOS, перед всеми командами
docker используется команда системного администрирования sudo.

Развертывание контейнера SQL Server  215

Хотя это не требуется для macOS, включение команды sudo в текст
сценариев позволяет применять один набор сценариев для любой
платформы.

Развертывание контейнера SQL Server
Чтобы оценить возможности контейнеров и посмотреть, как они работа-
ют, вам нужно увидеть их в действии. Как вы помните из обсуждения жиз-
ненного цикла контейнера, приведенного ранее в этой главе, Microsoft уже
осуществила сборку и отправку контейнеров SQL Server. Позже в этой главе
я расскажу, как вы сможете создавать свои собственные образы на основе
SQL Server, но сейчас я покажу вам последовательность действий pull ⇒
run и stop ⇒ start ⇒ remove. Я также покажу другие команды Docker, кото-
рые вы можете использовать для исследования контейнеров.

ВАЖНО: вы должны скопировать файл резервной копии базы данных
WideWorldImporters в локальный каталог, где запускаете эти сценарии, чтобы вы-

полнить данное действие. Вы можете загрузить эту резервную копию с сайта
https://github.com/Microsoft/sql-server-samples/releases/download/wide-world-

importers-v1.0/WideWorldImporters-Full.bak.

Все примеры, приведенные в этом разделе, можно найти в каталоге
h7_inside_sql_containers\deploy. Используйте каталог dockerpowershell
для Windows. Для Linux и macOS используйте каталог dockerbash (убеди-
тесь, что ваши сценарии выполняются с помощью chmod u+x <имя_сценария>).
В этой главе я приведу примеры с применением PowerShell.

1. Запустите следующую команду из PowerShell, чтобы запустить
контейнер SQL Server. (Я решил использовать параметр Terminal в
Azure Data Studio (ADS) для запуска сценариев или сценария step1_
dockerrunsql.ps1.) Поскольку образ для SQL Server 2019 не установлен
локально на моем компьютере, Docker сначала извлекает, а затем запус-
кает контейнер:

 docker run -e "ACCEPT_EULA=Y" -e "SA_PASSWORD=Sql2019isfast"
 -p 1433:1433 --name sql2019latest --hostname sql2019latest
 -d mcr.microsoft.com/mssql/rhel/server:2019-latest

 На рис. 7.3 показан пример выполнения в ADS этого сценария для
извлечения образа RHEL для SQL Server 2019.

 Возможно, вы захотите получить информацию об используемом об-
разе SQL Server 2019. Вы можете сделать это с помощью команды,
аналогичной приведенной ниже:

 docker inspect mcr.microsoft.com/mssql/rhel/server:2019-latest

216  Глава 7. SQL Server и контейнеры

Рис. 7.3. Развертывание SQL Server в контейнере RHEL

 В результате ее выполнения вы получите очень длинный JSON-
файл. Обратите внимание на следующий интересный раздел этого
JSON-файла:

 "Cmd": [
 "/bin/sh",
 "-c",
 "#(nop) ",
 "CMD [\"/opt/mssql/bin/sqlservr\"]"
],

 Данный фрагмент текста показывает вам команду CMD из Dockerfile,
которая должна просто запустить sqlservr. К сожалению, не сущест-
вует проверенного способа удостовериться в том, какой именно
образ является базовым образом контейнера. Я использовал много
различных программ, и во всех команда docker history для наших
контейнеров не выдает имени базового образа.

 К сожалению, при запуске контейнера вы не узнаете, правильно ли
запущен SQL Server. Команда выведет длинное значение guid и вер-
нется в режим командной строки. Мы можем использовать Docker,
чтобы увидеть, запущен ли контейнер, и попытаться подключиться
к SQL Server.

2. Выполните следующую команду, чтобы увидеть состояние контей-
нера SQL Server, который вы запустили:

 docker ps

Развертывание контейнера SQL Server  217

 Если SQL Server был успешно запущен, то результат выполнения
этой команды будет выглядеть примерно так:

CONTAINER ID IMAGE
 COMMAND CREATED STATUS
 PORTS NAMES
95345f25b901 mcr.microsoft.com/mssql/rhel/server:
2019-latest "/opt/mssql/bin/sqls..." About a minute ago
Up About a minute 0.0.0.0:1401->1433/tcp sql2019latest

 Единственный верный способ узнать, запущен ли SQL Server, – это
попытаться подключиться к нему. Вы можете подключаться к нему
вне контейнера или внутри контейнера. Давайте сначала воспользу-
емся способом вне контейнера, выполнив следующую команду или
воспользовавшись сценарием step2_dockerconnecttosql.ps1:

 sqlcmd -Usa -PSql2019isfast '-Slocalhost,1401' '-Q"SELECT @@VERSION"'

 Результат выполнения данной команды должен выглядеть примерно
так (версия SQL Server может отличаться; я использовал SQL Server
2019 CTP 3.2):

Microsoft SQL Server 2019 (CTP3.2) – 15.0.1800.32 (X64)
 Jul 17 2019 21:29:33
 Copyright (C) 2019 Microsoft Corporation
 Developer Edition (64-bit) on Linux (Red Hat Enterprise
 Linux Server 7.6 (Maipo)) <X64>

 Обратите внимание, что SQL Server считает, что он работает на
RHEL 7.6. Я также упомянул, что контейнер – это программа,
работаю щая в изолированном режиме. Это можно проверить, если
вы работаете в системах Linux, выполнив следующую команду на
хост-компью тере:

 ps -axf

 Результат выполнения этой команды должен выглядеть примерно
так (значения PID могут отличаться):

/usr/bin/containerd
 22846 ? Sl 0:02 _ containerd-shim -namespace
 moby -workdir /var/lib/containerd/
 io.containerd.runtime.v1.linux/
 moby/4f5c
 22864 ? Ssl 0:00 _ /opt/mssql/bin/sqlservr
 22909 ? Sl 31:37 _ /opt/mssql/bin/sqlservr

218  Глава 7. SQL Server и контейнеры

 Вниманию пользователей Windows и macOS: у меня есть одна хит-
рость, чтобы полученные вами результаты выглядели примерно так
же, как показано выше. Поскольку контейнер SQL Server Linux рабо-
тает на виртуальной машине Linux, как вы можете получить доступ
к самой виртуальной машине?

 Попробуйте такой способ. Выполните следующие команды либо из
PowerShell, либо из своего терминала macOS (см. следующую заметку
в блоге https://nickjanetakis.com/blog/docker-tip-70-gain-access-to-the-mobylinux-

vm-on-windows-or-macos):

 docker container run --rm -it -v /:/host alpine

 Вы должны получить запрос на доступ к root. Теперь запустите эту
команду:

 chroot /host

 Вы находитесь в оболочке Bash в контексте виртуальной машины
Linux на Windows. Действия, которые вы можете выполнить, ограни-
чены, и команда ps, которую вы использовали ранее, не работает. Но
вы можете запустить следующую команду:

 ps -o ppid,pid,comm

 Это исключит множество процессов, и поскольку sqlservr был только
что запущен, он должен находиться в конце списка. Вы увидите два
таких процесса sqlservr (ваши результаты, вероятно, будут отличать-
ся от приведенных ниже):

2922 2946 sqlservr
2946 2991 sqlservr

 Для первого процесса sqlservr значение слева – это ppid, или роди-
тельский pid. Теперь запустите такую команду (подставьте в нее зна-
чение ppid):

 ps | grep 2922

 Вы должны получить следующий результат:

2922 root 0:00 containerd-shim -namespace moby -workdir
/var/lib/docker/containerd/daemon/io.containerd.runtime.v1.linux/
moby/a0c005ccefe8c8a716e066b0a857e919bded6f50ac791cb82f6de2b0dbe
f220e -address /var/run/docker/containerd/containerd.sock
-containerd-binary /usr/local/bin/containerd -runtime-root /var/
run/docker/runtime-runc -debug

 Это процесс Docker, который используется для порождения копии
процесса программы, запущенной в контейнере (в данном случае
это sqlservr).

Развертывание контейнера SQL Server  219

3. Чтобы восстановить резервную копию WideWorldImporters, вы долж-
ны скопировать ее в слой контейнера для записи. Выполните следую-
щую команду или запустите сценарий step3_dockercopybackup.ps1:

docker cp c:\sql_sample_databases\WideWorldImporters-Full.bak
sql2019latest:/var/opt/mssql

 Когда вы копируете файл резервной копии в /var/opt/mssql, файл ре-
зервной копии сразу же становится доступным для SQL Server в кон-
тейнере.

4. Когда резервная копия размещена в слое для записи, SQL Server в
контексте контейнера может получить доступ к этой резервной ко-
пии, таким образом вы можете восстановить ее. Чтобы восстановить
базу данных, вы можете использовать инструмент sqlcmd, который
находится в контейнере. Для этого можно использовать команду
docker exec, приведенную ниже, или выполнить аналогичную коман-
ду из сценария step4_dockerrestorebackup.ps1:

docker exec -it sql2019latest /opt/mssql-tools/bin/sqlcmd
-S localhost -U SA -P "Sql2019isfast" -Q "RESTORE DATABASE
WideWorldImporters FROM DISK = '/var/opt/mssql/WideWorldImporters-
Full.bak' WITH MOVE 'WWI_Primary' TO '/var/opt/mssql/data/
WideWorldImporters.mdf', MOVE 'WWI_UserData' TO '/var/opt/mssql/
data/WideWorldImporters_userdata.ndf', MOVE 'WWI_Log' TO '/var/
opt/mssql/data/WideWorldImporters.ldf', MOVE 'WWI_InMemory_Data_1'
TO '/var/opt/mssql/data/WideWorldImporters_InMemory_Data_1'"

 Резервная копия WideWorldImporters была создана с использова-
нием версии SQL Server 2016, поэтому вы получите сообщение о
том, что база данных восстанавливается и обновляется до версии
2019 года.

5. Возможно, вы хотите просмотреть файл ERRORLOG SQL Server, ра-
ботающего в контейнере. Одним из способов сделать это является
использование docker exec и перемещение по структуре каталогов
контейнера с помощью следующей команды (или сценария step5_
dockerexec.ps1):

 docker exec -it sql2019latest bash

 При успешном выполнении этой команды ваш курсор переместится
в приглашение оболочки Bash в контексте контейнера, как показано
ниже:

 root@sql2019latest:/#

 Теперь вы можете перейти в каталог /var/opt/mssql/log и вывести
ERRORLOG с помощью команды cat ERRORLOG.

220  Глава 7. SQL Server и контейнеры

 Помните, что одним из преимуществ контейнера является миними-
зация необходимого размера для выполнения программы, которая
выполняется на виртуальной машине с загруженной ОС. Кроме того,
я говорил вам, что контейнер – это на самом деле просто программа,
работающая изолированно и совместно использующая ресурсы опе-
рационной системы хоста.

 Вы можете увидеть это, выполнив следующую команду:

 ps -axf

 Результат выполнения этой команды должен выглядеть примерно
так:

[root@sql2019latest /]# ps -axf
PID TTY STAT TIME COMMAND
268 pts/0 Ss 0:00 bash
561 pts/0 R+ 0:00 _ ps -axf
1 ? Ssl 0:00 /opt/mssql/bin/sqlservr
7 ? Sl 1:25 /opt/mssql/bin/sqlservr

 Вы можете видеть, что работают лишь bash и sqlservr. Это можно
сравнить с выполнением следующей команды на сервере RHEL 7.6
или виртуальной машине на хост-системе (не в контейнере):

 ps -axf | wc -l

 Результатом выполнения данной команды будет являться число про-
цессов. На «свежем» сервере RHEL 7.6, который я установил в Azure, я
получил число 122! Программа bash запускается в том же простран-
стве имен, что и контейнер SQL Server, поэтому она изолирована для
доступа только к файлам в доступном для чтения и доступном для
записи слое этого контейнера.

 Выйдите из оболочки, введя команду exit.

Примечание. Вы можете спросить, как можно выполнить эти команды Linux, если
контейнер – это просто программа sqlservr. Это связано с тем, что docker exec

может запускать программу в пространстве имен программы-контейнера (аналогич-

но тому, как sqlcmd работает с контейнером SQL Server). Команда docker exec не
будет работать, если сама программа не существует в структуре каталогов файлов
для контейнера. Командная оболочка bash работает, потому что она размещена в
базовом образе. Оболочка sqlcmd работает, поскольку мы устанавливаем sqlcmd в
образе SQL Server.

 Позвольте мне остановиться и наглядно показать преимущества
использования расширения Docker с Azure Data Studio (или Visual
Studio Code). В разделе «Подготовительные шаги для использования

Развертывание контейнера SQL Server  221

примеров, иллюстрирующих применение контейнеров с SQL Server»
я упомянул, что вы можете установить это расширение. На рис. 7.4
показан пример управления работающим контейнером SQL Server
для «добавления» оболочки Bash.

Рис. 7.4. Использование расширения Docker в Azure Data Studio

 Как показано на рисунке, вы можете использовать возможности
«проводника» данного расширения, чтобы просмотреть запущен-
ные (или остановленные) контейнеры и образы, которые были из-
влечены, и даже просмотреть реестры контейнеров, такие как mcr.
microsoft.com, или ваш собственный реестр контейнеров Azure или
Docker Hub.

6. Если вам нужно завершить работу SQL Server в контейнере, техниче-
ски вы можете выполнить команду T-SQL SHUTDOWN. Это остано-
вит процесс SQLSERVR и закроет контейнер, поскольку он является
основной программой, запущенной из контейнера. Также вы може-
те выполнить следующую команду или сценарий step6_dockerstop.
ps1, чтобы остановить контейнер:

 docker stop sql2019latest

 Если команда будет выполнена успешно, она выведет имя контейне-
ра, используя стандартные средства вывода.

 Когда вы останавливаете контейнер, программа, запустившая кон-
тейнер, завершает работу. Для SQL Server это приведет к выполне-
нию команды kill и, как следствие, «чистому» завершению работы.

 Вы можете проверить, что SQL Server был выключен, выполнив сле-
дующую команду после остановки контейнера:

222  Глава 7. SQL Server и контейнеры

 docker logs sql2019latest

 Результирующие данные ERRORLOG для контейнера SQL Server бу-
дут отображаться в консоли, при этом будет выведена следующая
инструкция:

<datetime> spid<n>s SQL Server is terminating in response
to a 'stop' request from Service Control

 На этом этапе сохраняется доступный для записи слой контейнера
(в данном случае база данных WideWorldImporters является частью
этого слоя, поскольку она была восстановлена), и контейнер счита-
ется свободным, но доступным для повторного запуска. Вы можете
увидеть любые остановленные контейнеры, которые не были удале-
ны, выполнив следующую команду:

 docker ps -a

 Ваш результат должен выглядеть следующим образом:

CONTAINER ID IMAGE
 COMMAND CREATED
 STATUS PORTS NAMES
95345f25b901 mcr.microsoft.com/mssql/rhel/server:
2019-latest "/opt/mssql/bin/sqls..." 10 hours ago
 Exited (0) 11 seconds ago sql2019latest

7. Вы можете снова запустить контейнер с помощью следующей ко-
манды или сценария step7_dockerstart.ps1:

 docker start sql2019latest

 Так же, как и в прошлый раз, имя контейнера будет отображаться в
консоли, и вы снова вернетесь в режим командной строки, к пригла-
шению оболочки.

8. Вы можете выполнить запрос к базе данных WideWorldImporters с
помо щью следующей команды или сценария step8_dockerquerywwi.
ps1:

sqlcmd -Usa -PSql2019isfast '-Slocalhost,1401' '-Q"SELECT
COUNT(*) FROM [WideWorldImporters].[Application].[People]"'

 В качестве результата вы должны получить число 1111 – количество
строк в таблице People.

9. Если вы остановите контейнер и удалите его, доступный для записи
слой контейнера тоже будет уничтожен, как и ваша база данных (это не
очень хорошо). Вы можете остановить и удалить контейнер с помощью
следующих команд или сценария step9_dockerstopandremove.ps1:

Развертывание контейнера SQL Server  223

 docker stop sql2019latest
 docker rm sql2019latest

 В контексте работы с контейнерами рассматривайте остановку и
удаление SQL Server как удаление ПО SQL Server с компьютера. Од-
нако хорошая новость заключается в том, что других контейнеров
SQL Server (даже основанных на том же образе) эта операция не за-
трагивает.

10. Как было упомянуто выше во время рассказа о том, как работает кон-
тейнер SQL Server, используйте тома для хранения своих баз данных
в постоянном хранилище, размещенном на вычислительном узле.
Том, в котором вы разместите базу данных, сохранится при удале-
нии контейнера.

 Запустите контейнер в указанном томе, используя следующую ко-
манду или сценарий step10_dockerrunvolume.ps1:

docker run -e "ACCEPT_EULA=Y" -e "SA_PASSWORD=Sql2019isfast"
-p 1401:1433 --name sql2019latest --hostname sql2019latest -v
sqlvolume:/opt/mssql/data -d mcr.microsoft.com/mssql/rhel/
server:2019-latest

Примечание. Поскольку образ для SQL 2019 по-прежнему находится на вашем ло-

кальном компьютере, Docker не будет пытаться снова загрузить его с внешнего узла.

 В этом примере имя sqlvolume будет автоматически сопоставлено
с каталогом, находящимся на хост-сервере или на виртуальной ма-
шине, который не является частью доступного для записи слоя кон-
тейнера. Все данные, которые будут записываться в каталог /var/opt/
mssql в слое, доступном для записи, перенаправляются в каталог вы-
числительного узла, выделенный для тома SQL Server (sqlvolume).

 Вы можете узнать имя каталога, выделенного для sqlvolume, выпол-
нив следующую команду:

 docker inspect sqlvolume

 В результате вы должны получить приблизительно следующее:

[

 {
 "CreatedAt": "2019-08-07T02:24:50Z",
 "Driver": "local",
 "Labels": null,
 "Mountpoint": "/var/lib/docker/volumes/sqlvolume/_data",
 "Name": "sqlvolume",
 "Options": null,

224  Глава 7. SQL Server и контейнеры

 "Scope": "local"
 }

]

 В Windows /var/lib/docker/volumes/sqlvolume/_data является катало-
гом внутри виртуальной машины Linux, но при этом он все еще со-
храняется.

Примечание. Во время написания данной книги мы обнаружили проблему с контей-

нерами SQL Server и томами Windows. Я хотел, чтобы примеры для пользователей
Windows включали инструменты сопоставления томов, которые выглядят примерно
так:

 -v c:\data:/var/opt/mssql

Однако мы обнаружили проблему, имевшую место в SQL Server 2017 CU14, кото-

рая нарушает эту модель. Другие пользователи сообщали об этой же проблеме на
GitHub по ссылке https://github.com/microsoft/mssql-docker/issues/441. Я верю, что
эта проб лема будет решена ко времени выхода данной книги. Отслеживайте про-

гресс исправления этой проблемы на указанной странице GitHub.

11. Скопируйте резервную копию WideWorldImporters и снова выполните
восстановление базы данных из этой копии, как вы делали это на пре-
дыдущих шагах, запустив сценарий step11_dockercopyandrestore.
ps1 или выполнив следующие команды:

docker cp c:\sql_sample_databases\WideWorldImporters-Full.bak
sql2019latest:/var/opt/mssql
docker exec -it sql2019latest /opt/mssql-tools/bin/sqlcmd
-S localhost -U SA -P "Sql2019isfast" -Q "RESTORE DATABASE
WideWorldImporters FROM DISK = '/var/opt/mssql/WideWorld
Importers-Full.bak' WITH MOVE 'WWI_Primary' TO '/var/opt/mssql/
data/WideWorldImporters.mdf', MOVE 'WWI_UserData' TO '/var/opt/
mssql/data/WideWorldImporters_userdata.ndf', MOVE 'WWI_Log' TO
'/var/opt/mssql/data/WideWorldImporters.ldf', MOVE 'WWI_InMemory_
Data_1' TO '/var/opt/mssql/data/WideWorldImporters_InMemory_
Data_1'"

12. Теперь остановите и удалите контейнер. Затем запустите его снова
с тем же именем тома, выполняя следующие команды или сценарий
step12_dockerrestart.ps1:

docker stop sql2019latest
docker rm sql2019latest
docker run -e "ACCEPT_EULA=Y" -e "SA_PASSWORD=Sql2019isfast"
-p 1401:1433 --name sql2019latest --hostname sql2019latest

Развертывание контейнера SQL Server  225

-v sqlvolume:/var/opt/mssql -d mcr.microsoft.com/mssql/rhel/
server:2019-latest

 В этой ситуации, когда запускается новый контейнер SQL 2019, все
системные и пользовательские базы данных уже существуют. SQL
Server распознает эту ситуацию и просто «использует» эти базы дан-
ных и запускается.

13. Убедитесь, что ваши данные все еще размещены в томе, в котором
вы их разместили, выполнив запрос к WideWorldImporters анало-
гично тому, как это было сделано на предыдущем шаге, выполнив
следую щую команду или сценарий step13_dockerquerywwi.ps1:

sqlcmd -Usa -PSql2019isfast '-Slocalhost,1401' '-Q"SELECT
COUNT(*) FROM [WideWorldImporters].[Application].[People]"'

 В результате вы должны получить число 1111 – это число строк в таб-
лице People.

 Воспользуемся инструментом Azure Data Studio (ADS) для подключе-
ния к контейнеру. Запустите Azure Data Studio (если вы этого еще не
сделали). Установите новое соединение и в поле Server (Сервер) вве-
дите localhost, 1401 (или же <имя_сервера>, 1401). Введите пароль
учетной записи sa, который вы использовали для запуска контейне-
ра. ADS должна подключиться и взаимодействовать с контейнером,
как с любым другим SQL Server.

 На рис. 7.5 показаны соединение и запрос к базе данных
WideWorldImporters с использованием ADS.

Рис. 7.5. Подключение к контейнеру с помощью Azure Data Studio

226  Глава 7. SQL Server и контейнеры

14. Теперь освободим все ресурсы, остановив контейнер, удалив его,
удалив том и удалив образ, выполнив следующие команды или сце-
нарий cleanup.sh:

sudo docker stop sql2019latest
sudo docker rm sql2019latest
sudo docker volume rm sqlvolume
sudo docker rmi mcr.microsoft.com/mssql/rhel/server:2019-latest

Теперь, когда вы познакомились с основными операциями по разверты-
ванию и управлению контейнером SQL Server, включая сохранение поль-
зовательской базы данных в томе, давайте применим эти навыки, чтобы
изучить новый способ обновления SQL Server, используя контейнеры.

Новый способ обновления SQL Server
В самом начале этой главы я упоминал, что контейнеры предоставляют
новый способ обновления SQL Server. Давайте посмотрим, как это работа-
ет. Поскольку официальная версия SQL Server 2019 еще не вышла, когда я
писал эту книгу, не было выпущено и накопительных обновлений, позво-
ляющих показать вам обновление с использованием контейнеров для SQL
Server 2019. Поэтому в этом примере я покажу вам, как обновлять контей-
неры с SQL Server 2017. После выхода SQL Server 2019 мы начинаем выпус-
кать накопительные обновления, и вы сможете использовать тот же подход
для работы с ними.

Чтобы понять данный пример, представьте себе следующий сцена-
рий. В настоящее время вы используете накопительное обновление SQL
Server 2017 (CU) 10 в контейнере в промышленной среде. Необходимо при-
менить последнюю версию CU для SQL Server 2017. В Windows или Linux
процесс заключается в исправлении или обновлении текущего экземпляра
SQL Server, который требует перезапуска SQL Server.

Контейнеры предлагают новый подход, который также требует перезапус-
ка, но быстрее обновляется и обеспечивает огромное преимущество при
откате. Вы помните, что контейнеры SQL Server содержат предваритель-
но установленные версии, включая пакеты обновлений. Поэтому, когда вы
запускаете контейнер SQL Server на основе любого накопительного обновле-
ния, вы не вносите изменений в существующее программное обеспечение.

Все примеры, позволяющие увидеть, как работают обновления для кон-
тейнеров, можно найти в каталоге ch7_inside_sql_containers\update. Поль-
зователи Windows могут применять каталог dockerpowershell, а пользова-
тели Linux и macOS – каталог dockerbash (убедитесь, что ваши сценарии
запускаются с помощью chmod u+x <имя_сценария>).

В этом разделе я покажу вам примеры, использующие PowerShell.

1. Выполните следующую команду или сценарий step1_dockerrun.ps1,
чтобы развернуть контейнер SQL Server 2017 CU10:

Новый способ обновления SQL Server  227

docker run -e "ACCEPT_EULA=Y" -e "SA_PASSWORD=Sql2017isfast"
-p 1401:1433 --name sql2017CU10 --hostname sql2017CU10 -v
sqlvolume:/var/opt/mssql -d mcr.microsoft.com/mssql/server:
2017-CU10-ubuntu

 Маловероятно, что вы уже извлекли образ SQL 2017 CU10, поэтому
сначала он будет извлечен. Обратите внимание на использование
тома для размещения данных – это ключевой момент для данного
метода обновления SQL Server.

2. Подключитесь к SQL Server, чтобы найти версию, которую вы
установили, выполнив следующую команду или сценарий step2_
dockerconnecttosql.ps1:

sqlcmd -Usa -PSql2017isfast '-Slocalhost,1401' '-Q"SELECT@@VERSION"'

 Ваш результат должен выглядеть так:

Microsoft SQL Server 2017 (RTM-CU10) (KB4342123) – 14.0.3037.1 (X64)
 Jul 27 2018 09:40:27
 Copyright (C) 2017 Microsoft Corporation
 Developer Edition (64-bit) on Linux (Ubuntu 16.04.5 LTS)

3. Выполните следующие команды для обновления контейнера или ис-
пользуйте сценарий step3_dockerupdate.ps1:

docker stop sql2017CU10
docker run -e "ACCEPT_EULA=Y" -e "SA_PASSWORD=Sql2017isfast"
-p 1401:1433 --name sql2017latest --hostname sql2017latest -v
sqlvolume:/var/opt/mssql -d mcr.microsoft.com/mssql/server:
2017-latest-ubuntu

 Я немного расскажу о том, что здесь происходит. Первый контейнер
остановлен и больше не имеет доступа к системным базам данных,
размещенным в томе. Второй контейнер запускается с использова-
нием того же тома и порта, но другого образа для последней сбор-
ки CU. Новый контейнер запускает SQL Server, который распозна-
ет, что системные базы данных уже существуют. Ядро базы данных
достаточно интеллектуально, чтобы распознавать ситуацию, когда
системные базы данных уже существуют, и просто использовать их.
Кроме того, SQL Server выполняет все необходимые шаги по обнов-
лению системных и пользовательских баз данных, чтобы гарантиро-
вать их совместимость с конкретной сборкой CU.

4. Выполните следующие команды для подключения к контейнеру (ис-
пользуется тот же порт, что и в предыдущем случае), чтобы убедить-
ся, что версия SQL Server была обновлена, или используйте сценарий
step4_dockerconnecttosql.ps1:

228  Глава 7. SQL Server и контейнеры

sqlcmd -Usa -PSql2017isfast '-Slocalhost,1401' '-Q"SELECT@@VERSION"'

 В зависимости от того, как скоро вы выполните этот шаг после об-
новления, вы можете получить следующую ошибку:

Sqlcmd: Error: Microsoft ODBC Driver 17 for SQL Server : Login
failed for user 'sa'. Reason: Server is in script upgrade mode.
Only administrator can connect at this time..

 Эта ошибка связана с тем, что SQL Server выполняет все необходи-
мые действия для обновления системных и пользовательских баз
данных, чтобы обеспечить их совместимость с новым CU. Пользова-
тельские данные при этом не затрагиваются.

 Технически не каждое обновление требует каких-либо изменений в
метаданных для системных и пользовательских баз данных. Однако
мы заметили, что «пытаемся» выполнить эти шаги обновления для
любого CU. Это может замедлить процесс обновления – но даже в
подобном случае обновление контейнера будет завершено намного
быстрее, чем обычный способ обновления ПО SQL Server. Существует
способ избежать этого замедления; однако данный способ исполь-
зуется только для целей отладки. Флаг трассировки 902 позволяет
обойти любой из шагов обновления CU.

 Это означает, что вы можете запустить свой контейнер, добавив сле-
дующий оператор в конец команд запуска Docker, которые вы ис-
пользовали до этого момента:

/opt/mssql/bin/sqlservr -T902

 Это интересная возможность, которую предоставляет Docker. Я пока-
зал вам, что Docker использует оператор CMD для запуска программы
в контейнере. Оказывается, вы можете переопределить это для обра-
за контейнера, указав вместо этого программу для запус ка. Запустив
SQL Server с этим флагом трассировки, вы можете запус тить контей-
нер с sqlservr, используя флаг трассировки для пере определения зна-
чения по умолчанию. Я использую этот прием, когда демонстрирую
новый способ обновления SQL Server с применением контейнеров,
но только для презентационных целей. В нашей инженерной группе
я обсуждал с одним из руководителей команд, Ли Чжаном (Li Zhang),
возможность в будущем сделать процесс обновления SQL Server в
контейнере более интеллектуальным, чтобы каждый шаг обновле-
ния выполнялся только тогда, когда это действительно необходимо.

 В конце концов, запрос на подключение будет работать, и ваш ре-
зультат должен выглядеть так:

Microsoft SQL Server 2017 (RTM-CU16) (KB4508218) – 14.0.3223.3 (X64)
 Jul 12 2019 17:43:08

Новый способ обновления SQL Server  229

 Copyright (C) 2017 Microsoft Corporation
 Developer Edition (64-bit) on Linux (Ubuntu 16.04.6 LTS)

 Ваша версия Microsoft SQL Server может отличаться от указанной
здесь, потому что, когда вы будете пытаться выполнить эти шаги,
вероятно, уже будут выпущены другие, более поздние сборки CU для
SQL Server 2017. Идея подобной демонстрации заключается в том,
что ваша версия должна быть не ниже CU10, и вам не пришлось об-
новлять SQL Server вручную.

5. Хотя само по себе обновление наглядно демонстрирует преиму-
щества нового метода, настоящая убедительная история – это откат
обновления. Для нового метода процесс отката заменяется прос-
тым переключением. Это возможно потому, что сборки SQL Server
CU совместимы друг с другом. Используя тот же том и тот же порт,
вы теперь можете переключиться обратно на версию обновления
CU10, просто выполнив следующие операторы или сценарий step5_
dockerrollback.ps1:

docker stop sql2017latest
docker start sql2017CU10

 Поскольку параметры обновлений для контейнеров сохраняются, вы
на самом деле просто переключаетесь на установленные версии SQL
Server с тем же набором системных и/или пользовательских баз дан-
ных.

6. Запустите следующую команду или сценарий step6_dockercon-
necttosql.ps1, чтобы убедиться, что вы вернулись и работаете с вер-
сией SQL 2017 CU10:

sqlcmd -Usa -PSql2017isfast '-Slocalhost,1401' '-Q"SELECT@@VERSION"'

 Вы снова можете получить ошибку обновления, но довольно быстро
в результате выполнения команды вы получите версию обновления
SQL 2017 CU10.

 Теперь вы можете просто переключаться между различными вер-
сиями в соответствии с вашими потребностями. Представьте себе
такой мир, где вы предварительно извлекаете образы для серии сбо-
рок CU, которые хотите использовать в рабочей среде на локальном
сервере. Затем вы можете запускать контейнеры со сборкой, соот-
ветствующей любой версии CU, которая вам потребуется для вашего
приложения.

 Что действительно важно, так это возможность применять контей-
неры для тестирования определенного CU на тестовом сервере, а
затем перенести его на рабочий сервер для обновления в заданное
вами время.

230  Глава 7. SQL Server и контейнеры

7. Очистите все использованные ресурсы, выполнив сценарий cleanup.
ps1. Если вы хотите удалить все ресурсы, но оставить образы для по-
вторного, более быстрого выполнения этой серии шагов, используй-
те сценарий reset.ps1.

Развертывание контейнера как приложения
В некоторых ситуациях вы можете настроить образ контейнера с SQL
Server. Концепция настраиваемых контейнеров заключается в использова-
нии образа контейнера SQL Server в качестве основы и добавлении файлов
в образ контейнера. Так вы можете, например, добавлять файлы резервных
копий баз данных и/или файлы сценариев.

Одним из сценариев настройки образа контейнера SQL является раз-
вертывание нескольких контейнеров в качестве приложения. Примером
этого, который часто демонстрирует мой коллега Вин Ю (Vin Yu), является
развертывание контейнера SQL Server с базой данных и приложением ASP.
Net. Вы можете посмотреть на пример построения контейнерного прило-
жения с использованием SQL Server по ссылке https://docs.docker.com/compose/

aspnet-mssql-compose/.
Docker-compose – один из инструментов, который очень полезен для соз-

дания нескольких образов контейнеров и запуска контейнеров на основе этих
образов. Docker-compose позволяет объявлять определение образов контей-
неров вместе с параметрами для запуска контейнеров на основе этих образов.

Отличным примером приложения, использующего SQL Server, для кото-
рого требуется несколько контейнеров, является SQL Server Replication.
Поскольку репликация SQL Server теперь полностью поддерживается в SQL
Server 2019, контейнеры предоставляют интересный метод развертывания.
В 2018 году мы вместе с Вин Ю должны были представить новые возможно-
сти SQL Server в Linux на различных конференциях. Я попросил Вина под-
готовить сценарий репликации. Когда мы готовили наши демонстрации,
он попросил меня посмотреть на созданный им результат. Он сказал, что
использовал контейнеры для развертывания репликации моментальных
снимков с участием издателя, распространителя и подписчика с помощью
одной команды. Моя первая реакция на эти слова была: «Это невозможно
сделать». И он доказал, что я неправ. Давайте воспользуемся примером,
который он создал для этой демонстрации (который вы также можете най-
ти в наших примерах на GitHub по ссылке https://github.com/microsoft/sql-server-

samples/tree/master/samples/containers/replication).
Все файлы для этого примера можно найти в каталоге ch7_inside_sql_

containers\sqlrepl.
Поскольку мы будем использовать docker-compose для этого примера,

нам не понядобятся сценарии PowerShell или bash. Мы также предоставим
набор сценариев для оболочки Bash и T-SQL, но они выполняются в контек-
сте каждого контейнера.

Развертывание контейнера как приложения  231

Поскольку в этом примере потребуется только одна команда для раз-
вертывания и запуска контейнеров для развертывания репликации SQL
Server, давайте рассмотрим структуру файлов, представленных в этом при-
мере, прежде чем приступать к практике.

Файл docker-compose.yml
Docker-compose использует декларативный текстовый файл с именем

docker-compose.yml (который является файлом YAML. YAML расшифро-
вывается как Yet Another Markup Language – еще один язык разметки). Вы
можете использовать другое имя файла, но по умолчанию docker-compose
ищет файл с именем docker-compose.yml.

Давайте рассмотрим файл docker-compose.yml для этого примера. Тег
версии в верхней части файла указывает, какую версию docker-compose
следует использовать (последняя версия 3, но вы можете прочитать о вер-
сиях compose в документации, размещенной по ссылке https://docs.docker.com/

compose/compose-file/compose-versioning/).

services:
 db1:
 build: ./db1
 environment:
 SA_PASSWORD: "MssqlPass123"
 ACCEPT_EULA: "Y"
 MSSQL_AGENT_ENABLED: "true"
 ports:
 – "2500:1433"
 container_name: db1
 hostname: db1
 db2:
 build: ./db2
 environment:
 SA_PASSWORD: "MssqlPass123"
 ACCEPT_EULA: "Y"
 MSSQL_AGENT_ENABLED: "true"
 ports:
 – "2600:1433"
 container_name: db2
 hostname: db2

В этом примере будут использоваться две «службы» (или два контей-
нера), которые будут созданы и выполнены при помощи docker-compose.
Одна из них называется db1, а другая – db2.

Метод, при помощи которого работает docker-compose, состоит в том,
чтобы сначала создать образ контейнера (если указана сборка), а затем

232  Глава 7. SQL Server и контейнеры

запустить контейнер на основе этого образа, используя другие параметры,
определенные в файле docker-compose.yml.

Инструкция

build: ./db1

указывает, что docker-compose должен перейти в каталог db1 из текущего
каталога и выполнить сборку Docker в этом каталоге. То же самое относит-
ся и к db2.

Оставшаяся часть определения в файле .yml указывает, как запускать
встроенный контейнер в каждом каталоге.

environment:
 SA_PASSWORD: "MssqlPass123”
 ACCEPT_EULA: "Y"
 MSSQL_AGENT_ENABLED: "true"
ports:
 – "2500:1433"
 container_name: db1
 hostname: db1

Каждое из этих значений передается команде запуска Docker, исполь-
зуемой для запуска контейнера после его сборки. Обратите внимание на
приме нение MSQL_AGENT_ENABLED в этом примере, поскольку для репли-
кации используется агент SQL Server Agent.

Сборка каждого из контейнеров
Давайте посмотрим, что находится в каждом каталоге, представленном

в примере создания и запуска контейнеров для репликации. Я называю
этот сценарий «методом Вин Ю» как дань уважения моему коллеге Вин Ю,
который научил меня, как это сделать.

Каждый каталог содержит следующие файлы:

Dockerfile – содержит определение того, как создать пользовательский
образ на основе образа контейнера SQL Server;

entrypoint.sh – становится основной программой, запускаемой для
контейнера. Он запускает сценарий с именем db-init.sh и програм-
му sqlservr;

db-init.sh – этот сценарий вызывается entrypoint.sh, он приостанавли-
вается на некоторое время, и затем выполняется сценарий db-init.
sql;

db-init.sql – содержит операторы T-SQL для создания издателя, рас-
пространителя и подписчика и публикации моментальных сним-
ков на db1. Это создаст базу данных подписчиков для db2. По сути,
Вин создал сценарий, который воспроизводит действия SQL Server

Развертывание контейнера как приложения  233

Management Studio, чтобы настроить репликацию и сохранить ее для
«умного» выполнения кода на T-SQL.

Файл Dockerfile для db1 и db2 будет выглядеть так:

FROM mcr.microsoft.com/mssql/rhel/server:2019-latest
COPY . /
RUN chmod +x /db-init.sh
CMD /bin/bash ./entrypoint.sh

Когда docker-compose выполняет операцию сборки для каждого контей-
нера, определение Dockerfile дает команду выполнить следующие действия:

• использовать последний образ контейнера SQL Server RHEL в качест-
ве основы (тот образ, который применяет образ ОС RHEL);

• скопировать сценарии entrypoint.sh, db-init.sh и db-init.sql в файло-
вую систему образа контейнера;

• изменить сценарий db-init.sh, чтобы он был исполняемым сценари-
ем (вам не нужно это делать для сценария entrypoint.sh);

• создать программу по умолчанию для запуска оболочки Bash, вы-
полнив сценарий entrypoint.sh.

Теперь давайте рассмотрим сценарий entrypoint.sh:

Запуск SQL Server, запуск сценария для создания/настройки БД
Вам нужен незавершающийся процесс, чтобы сохранить контейнер в рабочем
состоянии.
В серии команд, разделенных символом "&", команды слева от крайнего
правого знака "&" выполняются в фоновом режиме.
Так что если вы выполняете серию команд одновременно, используя один
символ "&", команда в крайней правой позиции не должна приводить к
завершению работы
 /db-init.sh & /opt/mssql/bin/sqlservr

Этот сценарий сначала выполнит сценарий db-init.sh и, пока он выпол-
няется, запустит программу sqlservr (именно это и означает символ «&»:
запустите одну программу, а затем запустите следующую).

db-init.sh для db1 выглядит так, как показано ниже:

дождитесь запуска SQL Server
sleep 45s

mkdir /var/opt/mssql/ReplData/
chown mssql /var/opt/mssql/ReplData/
chgrp mssql /var/opt/mssql/ReplData/

echo "запуск сценария настройки"

234  Глава 7. SQL Server и контейнеры

запустить сценарий настройки для создания БД и схемы в БД
/opt/mssql-tools/bin/sqlcmd -S localhost -U sa -P MssqlPass123 -d master -i
db-init.sql

Поскольку сначала запускается db-init.sh, он должен дождаться запуска
SQL Server, прежде чем выполнять какие-либо сценарии T-SQL.

Затем он создает несколько каталогов, необходимых для хранения
моментальных снимков для репликации в слое контейнеров, доступном
для записи.

Наконец, выполняет сценарий T-SQL db-init.sql с использованием ути-
литы sqlcmd, включенной в каждый контейнер SQL Server.

Сценарий db-init.sql для db1 довольно длинный; он содержит код T-SQL
для настройки издателя, распространителя и подписчика и публикации
снимков.

Сценарий db-init.sh для db2 приостановит запуск своего SQL Server, а
затем выполнит сценарий db-init.sql в своем каталоге. db-init.sql для db2
требуется только создать базу данных для хранения данных для подпис-
чика.

Это довольно интересный способ настройки контейнера SQL Server. Этот
же метод можно использовать для настройки контейнера SQL Server для
создания базы данных и запуска собственных сценариев T-SQL. В долго-
срочной перспективе нам нужен лучший метод для достижения подоб-
ной цели, чтобы вам не пришлось вручную запускать сценарии в оболоч-
ке для выполнения пользовательского кода. На данный момент этот метод
зареко мендовал себя как удобное средство запуска и выполнения пользо-
вательского кода.

Запуск контейнеров для репликации
Попробуйте воспользоваться одним из следующих двух способов:

• запустите следующую команду (в Linux перед этой командой добавь-
те sudo). Переместитесь в каталог ch7_inside_sql_containers\sqlrepl,
чтобы запустить эту команду.

docker-compose up

 Если вы используете данный способ, контейнеры запускаются не в
фоновом режиме, поэтому вы увидите выведенную в консоль ин-
формацию, в том числе содержимое файлов SQL Server ERRORLOG.
НЕ нажимайте Ctrl+C на этом этапе, иначе вы закроете контейне-
ры;

• если у вас установлено расширение Docker, вы можете щелкнуть пра-
вой кнопкой мыши файл docker-compose.yml и выбрать Compose Up.
Такой способ запускает контейнеры в фоновом режиме.

Развертывание контейнера как приложения  235

Примечание. В некоторых системах Windows 10 я видел всплывающее окно бранд-

мауэра Windows, показанное на рис. 7.6, для службы, необходимой Docker для работы
в сети. Если вы увидите это окно, нажмите Allow Access.

Рис. 7.6. Предупреждение брандмауэра Windows для Docker

Чтобы убедиться, что ваши контейнеры развернуты правильно и репли-
кация SQL Server запущена, сначала проверьте, реплицированы ли данные
подписчика. Используйте Azure Data Studio или SQL Server Management
Studio (SSMS) для подключения к localhost,2600 и посмотрите, есть ли
данные в таблице [Sales].[dbo].[customer]. Таблица должна содержать три
строчки.

Кроме того, вы можете убедиться, что задание агента моментального
снимка было успешно выполнено, с помощью SSMS, подключающейся к
подписчику. Используйте Object Explorer, как показано на рис. 7.7, чтобы
проверить статус этого задания.

Когда Вин впервые показал мне такой метод, мне пришлось остановить-
ся и подумать. Я долго работал над сложной проблемой – репликацией,
впервые представленной в SQL Server 6.0. Я никогда не думал, что увижу
способ развернуть ее так легко. Разумеется, SQL Server Replication может
быть сложнее, чем в приведенном примере, поэтому для использования
контейнеров вам может потребоваться приложить больше усилий. Но
обратите внимание на то, какие возможности предоставляют контейнеры
для распределенной системы, такой как SQL Server Replication.

236  Глава 7. SQL Server и контейнеры

• Если вы запустили docker-compose из командной строки, нажмите
Ctrl+C, чтобы остановить контейнеры.

• Вам понадобится освободить занятые ресурсы, поэтому, когда вы за-
вершите выполнение практических заданий, выполните следующую
команду (предисловие с sudo в Linux). Вы должны находиться в ката-
логе ch7_inside_sql_containers\sqlrepl, чтобы запустить ее.

docker-compose down

 Это остановит и удалит работающие контейнеры.
 Это не приведет к удалению пользовательских образов Docker, по-

этому для очистки всех ресурсов используйте сценарий cleanup.ps1
или cleanup.sh, чтобы удалить настроенные образы.

Рис. 7.7. Задание моментального снимка для контейнера репликации SQL Server

Развертывание контейнеров SQL
в промышленной среде
Я провожу презентации и рассказываю о контейнерах с тех пор, как мы
начали поддерживать их в SQL Server 2017. Поскольку я представил эту тему,
говоря о том, что контейнеры на самом деле являются просто програм-
мой sqlservr, работающей специфическим образом, я столкнулся с неко-
торым скептицизмом по поводу того, что контейнеры SQL Server могут
использоваться в рабочей среде. Я надеюсь убедить некоторых скептиков,
предо ставив им в этом разделе главы информацию о производительности,
безопас ности, доступности, управлении ресурсами и конфигурации серве-
ра в контексте использования контейнеров.

Развертывание контейнеров SQL в промышленной среде  237

Производительность
Как я уже говорил, один из мифов о контейнерах, которые я слышал, состо-

ит в том, что контейнеры SQL Server могут работать не так, как экземпляр
SQL Server, запущенный не в контейнере. Я рассказал о том, что контейнер
SQL Server – это просто программа, работающая изолированно и имеющая
прямой доступ к ресурсам операционной системы. Следовательно, с точки
зрения производительности контейнеры SQL Server для Linux ни в чем не
будут уступать SQL Server для Linux, который работает не в контейнере.

Однако вам, разумеется, нужны доказательства. Поэтому я взял инстру-
мент для тестирования с открытым исходным кодом под названием
HammerDB (www.hammerdb.com) и провел тест с использованием анали-
тического теста производительности, полученного из сценария TPC-H.
С помощью HammerDB я сравнил производительность для SQL Server для
Linux, работающего в контейнере, и SQL Server вне контейнера на той же
виртуальной машине Linux. Я обнаружил, что производительность этих
двух вариантов полностью идентична.

Я призываю вас попробовать выполнить подобную проверку самостоя-
тельно. Вот описание шагов, которые я выполнил, чтобы использовать для
этой цели HammerDB:

• я установил HammerDB на виртуальную машину Windows 10 в Azure;
• создал виртуальную машину Azure с RHEL 7.4, используя конфигура-

цию DS13 v2 (8 процессоров VCPU, 56 Гб ОЗУ);
• создал управляемый диск Premium SSD объемом 2 ТБ для размеще-

ния баз данных, которые будет использовать HammerDB. Я смонти-
ровал этот диск в каталоге в Linux и назвал его /data. Вот ссылка на
руководство, которое я использую для добавления диска для хране-
ния данных в Linux на виртуальной машине Azure: https://docs.microsoft.

com/en-us/azure/virtual-machines/linux/attach-disk-portal;
• установил SQL Server 2019 CTP 3.2 на виртуальной машине Linux;
• создал базу данных tpch, размер файла данных которой 35 Гб, и

журнала – 5 Гб. Я использовал коэффициент масштабирования 10
для 16 виртуальных пользователей (клиент виртуальной машины
Windows – это 8-ядерная виртуальная машина);

Совет. При использовании последней версии HammerDB измените драйвер БД на
ODBC Driver 17 для SQL Server и используйте кластерный столбцовый индекс.

• затем я запустил тест TPC-H, подключив 16 виртуальных пользова-
телей. Мне удалось достичь производительности ~ 160 000 запросов
в час при запуске HammerDB как для контейнера SQL Server, так и
для SQL Server вне контейнера, установленных на одной и той же
виртуаль ной машине (я запускаю только один из них одновременно).

238  Глава 7. SQL Server и контейнеры

Я рекомендую вам самостоятельно запустить такой тест или любой дру-
гой тест производительности для контейнеров SQL Server. Просто убеди-
тесь, что вы выполняете справедливое сравнение между SQL Server в кон-
тейнере и SQL Server вне контейнера.

Безопасность
Поскольку контейнеры SQL Server представляют собой просто SQL Server

в Linux как изолированные программы, все возможности безопасности и
все возможности версии SQL Server для Linux работают и для контейнеров.
Эти возможности включают в себя функции безопасности ядра SQL Server
для входа, защищаемых объектов и правил. Такие функции, как динами-
ческое маскирование данных, безопасность на уровне строк, прозрачное
шифрование данных (TDE) и другие, также работают для контейнеров.

Аутентификация Active Directory
Единственным исключением из полного набора функций безопасно-

сти является аутентификация Active Directory (AD) (Active Directory (AD)
Authentication). На протяжении всего времени разработки версии SQL
Server 2019 мы собирались документировать и поддерживать аутентифи-
кацию Active Directory для контейнеров. И все это еще может быть реали-
зовано в нашем окончательном релизе. Однако, в то время когда я писал
эту главу, я обсуждал данную тему с Диланом Греем (Dylan Gray), одним из
наших ведущих разработчиков для Linux и контейнеров. Если на момент
выхода официальной версии SQL Server 2019 AD еще не поддерживается и
не снабжена подробной документацией, я ожидаю, что это будет сделано
вскоре после выпуска SQL Server 2019.

Мы с Диланом обсудили, как будет выглядеть процесс с точки зрения
документации; оказалось, что он очень похож на настройку аутентифика-
ции AD для SQL Server в Linux без контейнеров, которую вы можете най-
ти по адресу https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-active-directory-

authentication. Основные отличия состоят в том, чтобы передать в контейнер
информацию об имени субъекта-службы Kerberos (Kerberos SPN) через
файл ключа (keytab file) в томе, который может использовать контейнер
SQL Server. Несколько клиентов говорили мне, что аутентификация AD
является ключевым элементом для использования контейнеров SQL Server
в промышленной среде, и мы намерены выполнить этот запрос.

Контейнеры без доступа root
С тех пор, как мы начали поддерживать контейнеры SQL Server, програм-

ма-контейнер запускается в контексте пользователя root в пространстве
имен контейнера. Даже несмотря на то, что программа контейнера, запус-
каемого от имени root, не имеет полных привилегий пользователя root для
компьютера, на котором она запущена, не рекомендуется запускать про-
грамму контейнера с правами root.

Развертывание контейнеров SQL в промышленной среде  239

SQL Server 2019 будет поддерживать контейнеры, не наделенные пра-
вами root; и я говорил с Мэдлин Макдональд (Madeline McDonald), одним
из наших ведущих разработчиков контейнеров, о поддержке контейнеров
без предоставления им уровня доступа root. Она сказала мне, что когда мы
работали над выпуском SQL Server 2019, то собирались поставлять все кон-
тейнеры SQL Server 2019 без прав доступа root, однако при этом контейне-
ры SQL Server 2017 останутся с этим доступом.

Я спросил Мэдлин, как запустить CTP-контейнер SQL Server 2017 или
SQL Server 2019 без прав доступа root, и она привела мне пример.

Попробуйте использовать сценарии и файлы, которые я разместил в
папке ch7_inside_sql_containers\nonroot. Вы будете применять Dockerfile
для создания собственного контейнера. Dockerfile выглядит следующим
образом:

FROM mcr.microsoft.com/mssql/rhel/server:2019-latest
RUN useradd -u 10001 -g root mssql
RUN mkdir -p -m 770 /var/opt/mssql && chgrp -R 0 /var/opt/mssql
USER mssql
CMD ["/opt/mssql/bin/sqlservr"]

Обратите внимание на команды RUN, которые добавят пользователя и
группу для mssql и создадут необходимые каталоги SQL Server, к которым
впоследствии будут применены разрешения для группы mssql. Команда
USER Dockerfile указывает, в каком пользовательском контексте запускать
контейнерную программу. Все остальное происходит точно так же, как
обычный запуск контейнера SQL Server. Создайте образ Docker с помощью
команды сборки Docker docker build, а затем используйте предоставленные
мной сценарии для запуска контейнера.

Высокая доступность
Контейнеры SQL Server поддерживают основные функции резервного

копирования и восстановления, и даже доставки журналов. Я показал вам
пример использования SQL Server Replication, который может оказаться
вариантом решения с высокой доступностью для некоторых клиентов.

Несмотря на то что можно установить группу доступности Always On
(Always On Availability Group) между контейнерами, предпочтительным
методом обеспечения высокой доступности для контейнеров является
использование Kubernetes. Я расскажу о том, как сделать SQL Server высоко-
доступным с помощью Kubernetes, в главе 8.

Управление ресурсами
По умолчанию контейнеры SQL Server (как и все контейнеры) имеют

доступ ко всем ресурсам ЦП и памяти на хост-сервере. Docker предоставляет
способ контроля и управления доступом к этим ресурсам для любого кон-
тейнера. Например, команда docker run реализует следующие параметры:

240  Глава 7. SQL Server и контейнеры

-m – управляет объемом памяти, к которому может обращаться кон-
тейнер;

-cpuset-cpus – определяет, на каком процессоре могут выполняться
потоки в контейнере. Будьте осторожны с этим параметром управ-
ления ресурсами. SQL Server не будет ограничивать количество пла-
нировщиков на основе этого параметра. Однако Docker (используя
cgroups) будет принудительно определять, на каких процессорах
работают все потоки SQL Server. Если вы включите этот параметр,
я рекомендую вам использовать его совместно с привязкой к вы-
числительным ядрам SQL Server, используя команду ALTER SERVER
CONFIGURATION.

Вы можете получить дополнительную информацию о применении ресур-
сов для контейнеров Docker по ссылке https://docs.docker.com/config/containers/
resource_constraints/.

Хотя эти параметры можно использовать, для SQL Server я рекомен-
дую использовать встроенные возможности конфигурации SQL Server для
управления памятью и ресурсами ЦП.

Например, рассмотрите следующие варианты:

memorylimitmb – управляет объемом физической памяти, доступной
для использования SQL Server в Linux. Вы можете получить допол-
нительную информацию об этой возможности, обратившись к до-
кументации, размещенной по ссылке https://docs.microsoft.com/en-us/sql/

linux/sql-server-linux-configure-mssql-conf?view=sql-server-ver15#memorylimit;
«Max server memory» – этот параметр sp_configure хорошо знаком

пользователям SQL Server и контролирует объем памяти, используе-
мый ядром SQL Server в пределах доступной памяти memorylimitmb;

ALTER SERVER CONFIGURATION – эта команда T-SQL позволяет вам
определить, на каких узлах NUMA и/или процессорах будет рабо-
тать SQL Server. Дополнительную информацию о команде можно
найти по ссылке https://docs.microsoft.com/en-us/sql/t-sql/statements/alter-server-

configuration-transact-sql;
регулятор ресурсов (Resource Governor) – позволяет контролировать

ресурсы ЦП, памяти и ввода-вывода, особенно на уровне приложе-
ния или рабочей нагрузки. Дополнительную информацию об этой
возможности можно найти по ссылке https://docs.microsoft.com/en-us/sql/

relational-databases/resource-governor/resource-governor?view=sql-server-ver15.

Справедливости ради, не все, что работает в sqlservr в Linux (с исполь-
зованием SQLPAL), управляется этими параметрами T-SQL. Для обработки
инструкций SQL Agent, DTC, Polybase или другого кода вне ядра SQL Engine,
выполняемого в SQLPAL, при работе в контейнере может потребоваться
контроль ресурсов, и параметры Docker, перечисленные в данном разделе,

Развертывание контейнеров SQL в промышленной среде  241

могут вам в этом помочь. Однако большая часть потребления ЦП и памяти
приходится на ядро базы данных, и SQL предоставляет вам возможность
получить желаемый контроль.

Конфигурация сервера или базы данных
В этом разделе главы я привел несколько вариантов конфигурации

SQL Server, которые вы можете использовать. Есть много других, предо-
ставляемых сценарием mssql-conf, а также такими средствами T-SQL, как
sp_configure и ALTER SERVER CONFIGURATION. Кроме того, базы данных
имеют много иных параметров конфигурации, которые вы можете указать
при создании базы данных или при выполнении команды ALTER DATABASE.

Хотя работающий контейнер SQL Server можно настроить с помощью
операторов T-SQL, следует тщательно продумать, является ли это правиль-
ной стратегией. Например, если вы применили изменение sp_configure к
контейнеру, который требует перезапуска, вам придется перезапустить
контейнер, чтобы изменение вступило в силу. Кроме того, вам необходимо
убедиться, что вы используете постоянный том для системных баз данных,
чтобы ваши изменения не были потеряны.

Другой вариант – создать настроенный образ (как я показал вам в этой
главе на примере использования контейнеров для репликации), приме-
няя сценарии конфигурации, которые понадобятся вам после запуска SQL
Server.

Например, допустим, вы хотите убедиться, что ваш SQL Server обеспе-
чивает конкретное значение максимальной степени параллелизма для
любого контейнера SQL Server в вашей среде. Один из способов сделать
это – создать собственный образ контейнера с помощью сценария, кото-
рый устанавливает желаемое значение maxdop. Вы даже можете пометить
его тегом и назвать, чтобы всегда знать, какие параметры вы использовали
для определенного контейнера SQL. Эти сценарии для создания контей-
нера совместно со сценариями T-SQL могут стать частью вашего процесса
контроля изменений и жизненного цикла непрерывной интеграции и раз-
вертывания программного обеспечения (CI/CD).

Пожалуй, единственной ситуацией, где данный подход не даст поло-
жительного эффекта, является любое изменение конфигурации, при
котором не требуется перезапуск SQL Server для экземпляра вашей базы
данных. Для таких сценариев вы все равно можете создать конкретный
образ контейнера с новыми параметрами конфигурации, но также може-
те напрямую применить изменения конфигурации к работающему SQL
Server.

Другая интересная проблема заключается в применении изменений
конфигурации, которые требуют перезагрузки (их меньше, чем вы думае-
те). Однако если у вас есть такой сценарий, вам придется перезапустить
контейнер сразу после запуска с изменениями применяемой конфигура-
ции.

242  Глава 7. SQL Server и контейнеры

Для любых изменений mssql-conf вы должны использовать переменные
окружения, которые соответствуют целевым настройкам, как показано в
примерах запуска Docker в этой главе. Отличный пример использования
этой возможности для DTC можно найти по ссылке https://github.com/microsoft/

sql-server-samples/tree/master/samples/containers/dtc. Если по какой-либо причине
у вас имеется параметр mssql-conf, в котором отсутствует эквивалентная
настройка переменной среды, вы можете создать настроенный образ с
предварительно созданным файлом mssql.conf. Вот приблизительный при-
мер того, как можно использовать Dockerfile для этой цели:

FROM microsoft/mssql-server-linux:latest
COPY ./mssql.conf /
RUN mkdir /var/opt/mssql
RUN mv ./mssql.conf /var/opt/mssql
CMD ["/opt/mssql/bin/sqlservr"]

где ваш mssql.conf содержит все необходимые значения параметров
конфи гурации. Дополнительную информацию о структуре и формате дан-
ного файла можно получить по ссылке https://docs.microsoft.com/en-us/sql/linux/sql-

server-linux-configure-mssql-conf#mssql-conf-format.

Использование других пакетов
Я уже говорил вам, что образ контейнера SQL Server поставляется с ядром

базы данных, агентом SQL Server Agent, и включает такие возможности, как
репликация и DTC. SQL Server в Linux был построен на концепции пакетов.
Поддержка таких возможностей, как Polybase, не входит в стандартный
пакет SQL Server и отсутствует в образе контейнера SQL Server.

Мы собрали ряд примеров, чтобы вы узнали, как создать собственный
настроенный образ, добавив образ SQL Server в те пакеты, которые вы хоте-
ли бы добавить в свой контейнер. Вы можете найти эти примеры по ссылке
https://github.com/microsoft/mssql-docker/tree/master/linux/preview/examples.

Версии и лицензирование
По умолчанию, когда вы извлекаете и запускаете образ контейнера SQL

Server, как я показал вам в этой главе, мы автоматически применяем версию
SQL Server для разработчиков (SQL Server Developer Edition). Как вы, возмож-
но, знаете, Developer Edition не подходит для промышленной эксплуа тации.

Следовательно, при запуске контейнера SQL Server вы можете исполь-
зовать переменную среды MSSQL_PID, чтобы выбрать нужную версию SQL
Server. Вы можете получить дополнительную информацию о применении
этой возможности по ссылке https://docs.microsoft.com/en-us/sql/linux/sql-server-

linux-configure-docker?view=sql-server-ver15#production.
Один из самых распространенных вопросов о контейнерах, которые мне

задавали, – это вопрос о лицензировании в применении к контейнерам.

Контейнеры SQL Server в Windows  243

С выходом версии SQL Server 2017 мы изменили наше руководство по
лицензированию, включив в него раздел, относящийся к контейнерам. Вы
можете скачать руководство, перейдя по ссылке www.microsoft.com/en-us/sql-

server/sql-server-2017-pricing. Я рекомендую просмотреть, в частности, раздел
Licensing SQL Server 2017 in Containers («Лицензирование SQL Server 2017
в контейнерах»). После выхода версии SQL Server 2019 будет выпущено
новое руководство. Лицензирование для контейнеров аналогично лицен-
зированию для виртуальных машин. Для многих пользователей применя-
ется полная модель лицензирования по количеству ядер. Однако имеется
одно интересное исключение, о котором вы должны прочитать: клиен-
ты с Software Assurance (SA) и Enterprise Edition получают выгоду. Соглас-
но руководству, «…с добавлением покрытия Software Assurance (SA) для
всех основных лицензий Enterprise Edition (для полностью лицензиро-
ванного сервера) права пользователей расширены, и разрешается запуск
любого количества контейнеров на лицензированном сервере. Это ценное
преиму щество SA позволяет заказчикам развертывать неограниченное
количество контейнеров для удовлетворения потребностей динамических
рабочих нагрузок и в полной мере использовать аппаратные вычислитель-
ные мощности».

Контейнеры SQL Server в Windows
До сих пор в этой главе мы обсуждали контейнеры SQL Server на основе
образов Linux. Вы видели, что эти контейнеры могут работать на любой
платформе, включая Linux, Windows и macOS.

Тем не менее команда разработчиков Windows создала возможность
запуска контейнеров в Windows на основе образов Windows. Летом
2019 года мы объявили закрытую программу предварительного тестиро-
вания возможностей поддержки контейнеров SQL Server на основе обра-
зов Windows.

Многие из уже обсуждавшихся ранее понятий будут применяться практи-
чески ко всему, что содержится в этой главе. Во многом это связано с заме-
чательной историей совместимости SQL Server в Windows и Linux. Ключе-
вые различия будут в некоторых аспектах, различных для Windows и Linux,
таких как конфигурация для Active Directory. Кроме того, когда вы хотите
напрямую работать с контейнером, то обычно используете PowerShell или
командный процессор.

Windows поддерживает те же концепции, что и Linux, позволяющие
раскрыть преимущество использования контейнеров, включая изоляцию
через пространства имен. Вы можете получить дополнительную информа-
цию о работе контейнеров Windows по ссылке https://docs.microsoft.com/en-us/

virtualization/windowscontainers/about/.
Концепция работы с контейнерами в Windows немного отличается от

Linux. Контейнеры могут работать в двух режимах изоляции:

244  Глава 7. SQL Server и контейнеры

• изоляция процесса – контейнеры работают как изолированные
процессы с использованием пространств имен;

• режим изоляции Hyper-V – контейнеры работают в «специальной»
виртуальной машине (этот термин придуман не мной, он использу-
ется в документации).

Вы можете дополнительно прочитать об этих моделях изоляции, перей-
дя по ссылке https://docs.microsoft.com/en-us/virtualization/windowscontainers/manage-

containers/hyperv-container.
В Docker for Desktop для Windows вы можете запускать только контей-

неры Windows или Linux. (Примечание: эта ситуация должна измениться с
выходом версии Docker для WSL2. Подробнее об этом можно прочитать по
ссылке https://engineering.docker.com/2019/06/docker-hearts-wsl-2/.)

По умолчанию Docker for Desktop поддерживает контейнеры Linux. Что-
бы переключиться на использование контейнеров Windows, выберите этот
параметр на значке Docker на панели задач Windows, как показано на рис. 7.8.

Рис. 7.8. Переход на контейнеры Windows с помощью Docker Desktop

Hyper-V и изоляция процессов поддерживаются для контейнеров
Windows в последних сборках Windows 10 и Windows Server 2019. Подроб-
нее о контейнерах Windows в Windows Server 2019 можно прочитать по
ссылке https://docs.microsoft.com/en-us/virtualization/windowscontainers/quick-start/quick-

start-windows-server. Я также рекомендую вам прочитать ответы на часто зада-
ваемые вопросы о контейнерах Windows в документации, размещенной по
ссылке https://docs.microsoft.com/en-us/virtualization/windowscontainers/about/faq.

Кроме того, Windows Server 2019 поддерживает контейнеры Linux в
Windows (Linux Containers on Windows, LCOW), что обеспечивает возмож-
ность применять контейнеры Linux с использованием режима изоляции
Hyper-V. Вы можете прочитать больше о LCOW по ссылке https://docs.microsoft.

com/en-us/virtualization/windowscontainers/deploy-containers/linux-containers. Это делает

Контейнеры SQL Server в Windows  245

Windows Server практически единственной платформой для одновремен-
ного запуска контейнеров Windows и Linux (контейнеры Windows можно
запускать, установив виртуальную машину Windows на macOS, но Windows
Server является единственной операционной системой, которая изначаль-
но поддерживает эти сценарии).

Я попробовал контейнеры Windows в их раннем варианте для закрытого
тестирования в Windows Server 2019.

Вот пример синтаксиса команды запуска Docker для Hyper-V и изоляции
процесса для контейнера SQL Server Windows:

docker run -e 'ACCEPT_EULA=Y' -e 'MSSQL_SA_PASSWORD=SafePassw0rd' -p
1401:1433 --isolation=process -d -e 'MSSQL_PID=Developer' --name sql1
private-repo.microsoft.com/mssql-private-preview/mssql-server:windows-ctp3.1

docker run -e 'ACCEPT_EULA=Y' -e 'MSSQL_SA_PASSWORD=SafePassw0rd' -p
1402:1433 --isolation=hyperv -d -e 'MSSQL_PID=Developer' --name sql2
private-repo.microsoft.com/mssql-private-preview/mssql-server:windows-ctp3.1

Можно видеть, что синтаксис этой команды почти такой же, как для
контейнеров Linux. Обратите внимание на синтаксис для параметра
--isolation.

Я использовал известный инструмент для просмотра того, что происхо-
дит внутри системы, – Process Explorer (https://docs.microsoft.com/en-us/sysinternals/

downloads/process-explorer), чтобы посмотреть, как выглядит sqlservr с точки
зрения изоляции процесса. На рис. 7.9 вы можете увидеть, как, аналогично
демону docker, программа CExecSvc отвечает за ветвление контейнерной
программы sqlservr.

Рис. 7.9. Контейнер SQL Server в Windows: изоляция процесса

246  Глава 7. SQL Server и контейнеры

Документация по режиму изоляции Hyper-V довольно скудна; в ней
практически упоминается лишь то, что программы-контейнеры размеща-
ются в программе Windows под названием vmwp.exe.

Я надеюсь, что к тому времени, когда вы прочтете эту книгу, мы продол-
жим нашу работу над контейнерами SQL Server в Windows, так как пола-
гаю, что многие клиенты хотят использовать контейнеры, но по ряду раз-
личных причин не используют или не могут использовать контейнеры на
основе Linux. Я лично считаю, что если контейнеры LCOW хорошо зареко-
мендуют себя, то многие клиенты могут столкнуться со смешанной средой
контейнеров Windows и Linux, размещенных на Windows Server.

Резюме
Это была очень длинная глава. Я рассказал о том, что такое контейнеры и
почему с их помощью можно решать современные задачи по развертыва-
нию таких программных продуктов, как SQL Server, и о разработке прило-
жений. К очевидным преимуществам контейнеров можно отнести их пор-
тативность, легкость, надежность и эффективность.

Я показал, что контейнеры – это на самом деле просто программы, рабо-
тающие изолированным и уникальным способом. Вы узнали о новых улуч-
шениях для контейнеров SQL Server в версии SQL Server 2019, в том числе
об образах RHEL и новом реестре контейнеров Microsoft.

Если вы внимательно прочитали последнюю часть главы, то увидели и,
возможно, попробовали выполнить несколько практических примеров,
включая развертывание контейнеров, новый способ обновления (и отката)
SQL Server и развертывание многоконтейнерного приложения, такого как
репликация SQL Server.

Вы узнали, что контейнеры готовы к эксплуатации в промышленной
среде (несмотря на то что вам, возможно, доводилось слышать обратное)
по всем параметрам, включая производительность, безопасность и доступ-
ность контейнеров SQL Server.

И наконец, добравшись до конца главы, вы получили представление о
том, как будут работать контейнеры SQL Server для Windows.

Надеюсь, что теперь вы хорошо разбираетесь в контейнерах SQL Server и
готовы узнать о платформе, созданной для развертывания и масштабиро-
вания контейнеров, под названием Kubernetes.

Глава 8
SQL Server и Kubernetes

Если контейнеры – это «новые виртуальные машины», то Kubernetes – это
«новые серверы». В этой главе вы увидите, что Kubernetes – это важная тех-
нология для будущего контейнерных приложений, особенно работающих в
промышленных средах с их высокими требованиями к рабочим нагрузкам.
К числу таких приложений относится SQL Server.

Что такое k8s?
Если вы еще не читали главу 7, то можете вернуться и хотя бы просмотреть
ее, прежде чем приступать к этой главе. Почему? Потому что Kubernetes,
или k8s, – это о размещении контейнеров. Разумеется, k8s на самом деле
представляет собой нечто гораздо больше, чем просто хостинг. В оставшей-
ся части главы я буду использовать сокращение k8s для обозначения Kuber-
netes – это популярная аббревиатура (и, конечно, ее быстрее набрать на
клавиатуре). k8s означает k<8 букв>s в слове Kubernetes (я должен был сам
об этом догадаться, когда впервые увидел этот термин).

В отличие от главы 7, я не буду вдаваться в подробности, рассказывая
о внутреннем устройстве k8, потому что для этого нужно было бы напи-
сать отдельную книгу. Однако я познакомлю вас с некоторыми терминами,
добавлю несколько комментариев о том, как это работает изнутри, и дам
несколько отличных ссылок.

Познакомив вас с основами k8s в данной главе, я расскажу о том, как k8s
решает важные задачи по развертыванию контейнеров на масштабируе-
мой платформе, которая обеспечивает встроенную высокую доступность
(High Availability, HA). Я также покажу, как обновить все контейнеры SQL
Server в среде k8s, аналогично процессу обновления одного контейнера,
который я описал в главе 7. Я познакомлю вас с концепцией развертыва-
ния SQL Server в k8s, которая называется Helm Charts. Наконец, я расскажу
о планах на будущее по повышению доступности SQL Server 2019 с приме-
нением k8s и о том, как мы собираемся интегрировать группы доступности
Always On (Always On Availability Groups) с k8s.

Рекомендуемые источники информации по k8s
Начнем со ссылок – вы можете для начала просмотреть их.
Видеоматериалы Брендана Бернса о k8s (это мой термин, а не офици-

альное название). Брендан Бернс (Brendan Burns), один из основателей k8s

248  Глава 8. SQL Server и Kubernetes

и ныне выдающийся инженер (Distinguished Engineer) в Microsoft, создал
серию обучающих видео по k8s. Я лично думаю, что вы можете посмотреть
их и узнать, что вам потребуется, если собираетесь использовать k8s. Вы
можете посмотреть их на канале www.youtube.com/playlist?list=PLLasX02E8BPCrIhF
rc_ZiINhbRkYMKdPT. Я имел удовольствие выступить с Бренданом на саммите
Microsoft MVP весной 2019 года и был по-настоящему удивлен тем, как он
может упростить рассказ о k8s при помощи графических схем (он создает
их на своем устройстве Surface Go с помощью графического пера).

Другой ресурс, который использует эти видео, находится на нашем сайте
Azure по ссылке https://azure.microsoft.com/en-us/topic/what-is-kubernetes.

Managing Kubernetes («Управление Kubernetes») – это книга Крейга
Трейси (Craig Tracey) и Брендана Бернса (Brendan Burns). Я считаю, что это
отличный ресурс, позволяющий познакомиться со внутренним устрой-
ством k8s. Вы можете найти эту книгу по адресу https://learning.oreilly.com/library/

view/managing-kubernetes/9781492033905/.
Документация AKS – это документация Azure Kubernetes Service (AKS),

и есть отличные видеоролики и документация, в которой рассказывается
не только об AKS, но и о ядре k8s. Вы можете найти эти ресурсы по ссылке
https://azure.microsoft.com/en-us/services/kubernetes-service/.

https://kubernetes.io/ – это основной веб-сайт, посвященный k8s с
открытым исходным кодом, где имеется множество примеров, подроб-
ностей и графических материалов по k8s. На https://kubernetes.io/docs/tutorials/

online-training/overview/ имеется ссылка на отличные онлайн-курсы, посвя-
щенные k8s.

Вот еще два онлайн-курса обучения, которые я бы порекомендовал:

www.pluralsight.com/courses/getting-started-kubernetes и
www.pluralsight.com/courses/kubernetes-installation-configuration-fundamentals.

Эти курсы написаны моим другом и техническим редактором Pro SQL
Server для Linux Энтони Ночентино (Anthony Nocentino).

Объекты k8s
Возможно, вы уже познакомились со всеми материалами, которые я

рекомендовал вам. Однако в этой главе я дополнительно приведу некото-
рые термины, относящиеся к k8s, и немного расскажу о них с моей соб-
ственной точки зрения. Также я чуть-чуть расскажу о внутреннем устрой-
стве, о том, что показалось мне интересным, когда я изучал эту тему.

Вот основные термины и объекты k8s, с которыми вам нужно познако-
миться в начале этой главы.

Кластер – думайте о кластере k8s как о сервере или компьютере. Это
основной вычислительный узел (основной хост) для всех программ,
работающих на k8s. Обычно хосты, на которых размещены все объ-
екты, называются кластером k8s.

Что такое k8s?  249

Узел – рассматривайте узел как виртуальную машину, работающую в
кластере. Узел будет хостом для запуска модулей (которые имеют
контейнеры) в кластере. Как правило, в кластере k8s имеется не-
сколько узлов. Вы можете прочитать о концепции узлов по ссылке
https://kubernetes.io/docs/concepts/architecture/nodes/.

Под (pod) – это логическая коллекция контейнеров, работающих на
узле в кластере. Под – это модуль развертывания, управления и отра-
ботки отказа контейнеров, работающих в кластере. Вы можете про-
читать об этой концепции по ссылке https://kubernetes.io/docs/concepts/

workloads/pods/pod-overview/.

Служба – документация Kubernetes описывает службу как «абстрак-
цию, которая определяет логический набор модулей и политику до-
ступа к ним». Для целей SQL Server служба будет выполнять функции
балансировщика нагрузки и абстракции внутреннего IP-адреса моду-
ля, на котором размещен SQL Server. Это очень похоже на прием-
ник (прослушивающий узел) в классической модели кластеризации
SQL Server. k8s предоставляет концепцию сервиса, встроенного в
программное обеспечение k8s, и такие приложения, как SQL Server,
могут связываться с ним, так что независимо от того, где именно мо-
дуль SQL Server размещен в кластере, приложения всегда могут под-
ключаться к сервису с использованием одного и того же IP-адреса и
порта. Вы можете прочитать больше о службе k8s, перейдя по ссылке
https://kubernetes.io/docs/concepts/services-networking/service/.

Секрет (secret) – это объект k8s, который позволяет хранить конфиден-
циальную информацию, например пароль. Для SQL Server это очень
удобный способ для хранения пароля sa. Вы можете прочитать боль-
ше об этой концепции k8s, перейдя по ссылке https://kubernetes.io/docs/

concepts/configuration/secret/.

Класс хранилищ (storage class) – это объект k8s, который представля-
ет хранилище, аналогичное дисковой системе. Вы можете найти до-
полнительную информацию о классах хранилищ k8s по ссылке https://

kubernetes.io/docs/concepts/storage/storage-classes/.

Persistent Volume Claim, PVC – это хранилище, резервное копирова-
ние которого осуществляется с использованием постоянного тома,
который связан с классом хранилищ. Для меня это все равно, что за-
просить том на обычном диске для хранения данных. Работая с SQL
Server, вы убедитесь, насколько удобно и полезно будет использовать
эту концепцию для размещения файлов базы данных.

Разумеется, это неполный список терминов, относящихся к k8s. Другие
термины я буду вводить и обсуждать по мере того, как мы будем рассмат-
ривать примеры в оставшейся части главы.

250  Глава 8. SQL Server и Kubernetes

Несколько слов о внутреннем устройстве k8s
Ссылки, которые я привел ранее в этой главе, помогут вам по-настояще-

му погрузиться в тему k8s, однако я особо замечу, что один из аспектов k8s,
который вы должны понимать, – это API. Мне нравится, что я могу посмот-
реть, как что-то работает, просмотрев интерфейс прикладного програм-
мирования (Application Programing Interface, API). Вся внутренняя часть
k8s базируется на сервере API. Вы можете прочитать обо всех компонен-
тах, которые приводят в действие кластер k8s, но сервер API – это часть
программного обеспечения, которая обрабатывает запросы и «выполняет
работу». Возможно, концепцию сервера API вам поможет понять пример с
SQL Server. Рассматривайте сервер API как SQL Server. API SQL Server – это
T-SQL: приложения могут отправлять команды T-SQL на SQL Server, и он
«что-то делает». k8s работает аналогично. Вы можете дополнительно про-
читать об API k8s, перейдя по ссылке https://kubernetes.io/docs/concepts/overview/
kubernetes-api/. Сервер API является частью уровня управления k8s, допол-
нительную информацию о котором вы можете найти по ссылке https://
en.wikipedia.org/wiki/Kubernetes#Kubernetes_control_plane_(primary). Ознакомьтесь с
концепцией уровня управления и сервера API при использовании k8s, а
затем переходите к теме кластеров больших данных SQL Server в главе 10.

Это означает, что если вам нравится писать код, вы можете развертывать
и управлять контейнерами в k8s с помощью API; или вы можете использо-
вать очень удобный интерфейс командной строки (command-line interface,
CLI) с названием kubectl (Бак Вуди (Buck Woody) всегда произносит это как
«кубекатл»), который взаимодействует с API-интерфейсом k8s. Вы будете
программировать API k8s с помощью kubectl и декларативного протоко-
ла, использующего файлы YAML. Вы можете прочитать больше о kubectl по
ссылке https://kubernetes.io/docs/reference/kubectl/overview/. Для того чтобы иметь
под рукой краткий справочник, воспользуйтесь следующей «шпаргалкой»:
https://kubernetes.io/docs/reference/kubectl/cheatsheet/.

Ознакомьтесь с компонентами, входящими в состав кластера k8s, по ссыл-
ке https://kubernetes.io/docs/concepts/overview/components/. И если вам интересно, как
осуществляется развертывание и управление контейнерами в кластере k8s,
то я подскажу, что Docker – это тот компонент, который устанавливается
k8s и работает в каждом узле кластера. Я считаю k8s удобной, но непростой
системой для развертывания, планирования, управления, масштабирования
и управления приложениями-контейнерами, и в их числе SQL Server.

Поскольку k8s является системой с открытым исходным кодом, мож-
но развернуть кластер различными способами, на разных платформах и
системах. Давайте рассмотрим различные варианты развертывания k8s,
которые соответствуют вашим потребностям.

Варианты развертывания k8s
Оригинальная версия k8s была разработана Google примерно в 2014 году,
когда там работал Брендан, для создания системы для масштабирования

Варианты развертывания k8s  251

контейнерных приложений, и первоначально использовалась для внутрен-
них нужд. В 2015 году была выпущена версия k8s 1.0 с открытым исходным
кодом, и до сих пор k8s остается проектом с открытым исходным кодом
(в Википедии приводится интересная история происхождения k8s по ссыл-
ке https://en.wikipedia.org/wiki/Kubernetes#History). Название Kubernetes происхо-
дит от греческого слова «лоцман» или «рулевой», и оно вполне подходит
для того, чтобы задавать курс кораблю мира контейнеров.

С тех пор как k8s стал открытым, несколько компаний взялись за про-
ект k8s и создали коммерческую систему k8s для пользователей. Вы може-
те просмотреть на сайте k8s список партнеров по ссылке https://kubernetes.io/

partners/#kcsp.
В то время когда я писал эту книгу, мой опыт работы с ландшафтом k8s

сводился к следующим вариантам развертывания:

• k8s с открытым исходным кодом. Я разговаривал с некоторы-
ми клиентами, которые думают о возможностях применения k8s в
работе с SQL Server, и они сказали, что собираются развернуть соб-
ственные платформы k8s в своем центре обработки данных или на
виртуальных машинах в облаке с использованием последней сборки
с открытым исходным кодом из k8s. Если вы идете по этому пути,
то обычно используете инструмент развертывания с названием
kubeadm (https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/

install-kubeadm/).
 Другим популярным вариантом является инструмент под назва-

нием kubespray (https://kubernetes.io/docs/setup/production-environment/tools/

kubespray/). Если вы думаете о развертывании собственной среды
k8s в вашем центре обработки данных, то такой вариант дает вам
максимальный контроль; однако при этом вы являетесь владельцем
инфраструктуры. Другими словами, вам придется заниматься как
обслуживанием, так и управлением кластером k8s вместе с запущен-
ным в нем SQL Server;

• Minikube. Хотите, чтобы на вашем ноутбуке или на виртуальной
машине работал быстрый и простой k8s с одним узлом? Minikube
придет к вам на помощь; он предназначен для небольших тестов
и разработки, и вы можете быстро приступить к работе. Вы можете
прочитать о том, как настроить Minikube, по ссылке https://kubernetes.io/

docs/setup/learningenvironment/minikube/;

Совет. Docker Desktop может автоматически развернуть Minikube. Посмотрите на
пример по ссылке https://docs.docker.com/docker-for-windows/#kubernetes.

• Azure Kubernetes Service (AKS). Если вы хотите почувствовать, что
такое управляемый кластер k8s, выберите в качестве примера об-
лачную службу, например Azure Kubernetes Services (AKS). Брендан

252  Глава 8. SQL Server и Kubernetes

управляет командой, которая развивает и поддерживает этот сервис,
поэтому я чувствую себя довольно уверенно, когда использую AKS,
и понимаю, что получаю доступ к самым последним инновацион-
ным решениям k8, а также использую преимущества облачных сер-
висов. В примерах, приведенных в этой главе, я буду использовать
AKS, однако они совместимы с любым дистрибутивом k8s. Посколь-
ку AKS является облачным сервисом, они могут внедрять инновации
со скоростью облаков (извините за каламбур). Например, AKS мо-
жет поддерживать как контейнеры Linux, так и Windows (см. https://

azure.microsoft.com/en-us/blog/announcing-the-preview-of-windows-servercontainers-

support-in-azure-kubernetes-service/). И еще AKS поддерживает концепцию
виртуальных узлов (https://docs.microsoft.com/en-us/azure/aks/virtual-nodes-

cli). Погрузиться в AKS можно по адресу https://azure.microsoft.com/en-us/

services/kubernetes-service;

• Azure Stack – это система устройств, предоставляющая клиентам
сервисы Azure в их собственных центрах обработки данных. Azure
Stack поддерживает вариант развертывания с использованием k8s,
о котором вы можете прочитать по ссылке https://docs.microsoft.com/en-

us/azure-stack/user/azure-stack-solution-template-kubernetes-deploy. Вы должны
рассматривать k8s в Azure Stack как эквивалент AKS, работающий в
вашем центре обработки данных. По мере развития AKS будет раз-
виваться и k8s в Azure Stack;

• Red Hat OpenShift. Платформа OpenShift очень популярна в отрас-
ли. OpenShift – это платформа k8s, которую можно запустить в вашем
центре обработки данных или в общедоступных облаках, о чем вы
можете прочитать на сайте www.openshift.com/. Хотя OpenShift совмес-
тим с k8s с открытым исходным кодом, все же существуют некото-
рые различия в использовании системы и платформы. Вы, вероятно,
этому не поверите, но я возглавил команду инженеров Microsoft на
саммите Red Hat в мае 2019 года, чтобы проконсультировать исследо-
вательскую команду SQL Server 2019 в OpenShift. Проверьте это сами
на https://github.com/Microsoft/sqlworkshops/tree/master/SQLonOpenShift. Несколько
примеров, приведенных в данной главе, содержат версию OpenShift
на GitHub, которую вы можете использовать в своей среде OpenShift.
Microsoft предлагает управляемую платформу OpenShift (фактически
AKS) под названием Azure Red Hat OpenShift. Вы можете найти допол-
нительную информацию об этой службе по ссылке https://docs.microsoft.

com/en-us/azure/virtual-machines/linux/openshift-get-started#azure-red-hat-openshift;

• Windows Server. Как эта платформа попала в данную главу? Все, что
я писал до сих пор о k8s, основано на Linux. И это неудивительно,
ведь k8s берет свое начало в Linux. Для большей гибкости мы хотели,
чтобы Windows Server стал частью мира k8s, поэтому теперь можно
использовать Windows Server для размещения кластера k8s. Не все

Подготовительные шаги для использования примеров, иллюстрирующих...  253

в этом кластере будет «чистой» Windows, но при этом поддержива-
ются узлы, основанные на контейнерах Windows. Вы можете узнать
больше о Kubernetes и Windows по ссылке https://docs.microsoft.com/en-us/

virtualization/windowscontainers/kubernetes/getting-started-kubernetes-windows;

• другие облачные провайдеры k8s. Azure – не единственный про-
вайдер облачных решений, поддерживающих k8s. У Amazon есть
Elastic Kubernetes Service (EKS), у Google есть Google Kubernetes
Engine (GKE), а также существуют и другие провайдеры;

• другие провайдеры k8s. На рынке есть другие провайдеры k8s.
У SUSE есть несколько решений k8s, о которых вы можете прочитать
на www.suse.com/solutions/kubernetes/. Одним из самых популярных из
тех, о которых я слышал от своих клиентов, является Rancher (https://

rancher.com/). Я уверен, что вы, возможно, слышали об иных решениях,
которые хотят использовать клиенты. Еще один провайдер k8s, кото-
рому я буду уделять особое внимание, – это VMWare PKS (https://cloud.

vmware.com/vmware-enterprise-pks).

В конечном счете ваш выбор зависит от того, хотите ли вы развернуть k8s
в собственном центре обработки данных или же в общедоступном облаке.
Остальные ваши решения должны основываться на том, какую поддержку
вы получите, будете ли вы сами управлять кластером k8s, а также будет ли
продолжаться дистрибуция k8s и будет ли она актуальна в будущем. SQL
Server будет работать практически на всех платформах и решениях про-
вайдеров k8s. Работая в Microsoft, мне будет интересно увидеть, как будет
расти популярность k8s на AKS и Windows Server. По моему опыту работы с
Linux, OpenShift является основной платформой k8s, которую используют
и оценивают многие клиенты.

Пришло время перейти к практическим примерам, поэтому начнем
следующий раздел, где описаны основные требования, которым должна
удовлетворять ваша среда для использования примеров, демонстрирую-
щих развертывание, высокую доступность и обновления SQL Server 2019 с
использованием технологий k8s.

Подготовительные шаги для использования
примеров, иллюстрирующих применение
SQL Server и Kubernetes
Все примеры, разработанные для этой главы, используют кросс-плат-
форменную утилиту командной строки kubectl. Вы должны быть готовы
выполнять примеры, приведенные в этой главе, с любым дистрибутивом
k8s, применяя kubectl.

Я использовал Azure Kubernetes Service (AKS) для развертывания моего
кластера k8s для всех примеров. Поэтому при использовании моих при-

254  Глава 8. SQL Server и Kubernetes

меров для вашего дистрибутива k8s, возможно, встретится два следующих
различия:

• класс хранилищ. В моих примерах используется класс хранилищ
для дисков Azure. Вам нужно будет указать класс хранения, соответ-
ствующий вашей платформе;

• балансировщик нагрузки. В моих примерах используется тип ба-
лансировки нагрузки для сервиса, но он реализован только в облач-
ных провайдерах k8s. Если вы не применяете решение облачного
провайдера для k8s, вам нужно использовать тип службы, называ-
емый NodePort. Вы можете узнать больше о NodePort, перейдя по
ссылке https://kubernetes.io/docs/concepts/services-networking/#nodeport.

Кроме этого, примеры, приведенные в этой главе, должны работать
практически на любой настроенной вами платформе k8s.

Если вы применяете AKS, воспользуйтесь моим примером – я использо-
вал для создания своего кластера AKS шаги, описанные в документации,
опубликованной по ссылке https://docs.microsoft.com/en-us/azure/aks/kubernetes-

walkthrough.

createaksrg.sh

az group create --name bwaks --location eastus2

createaks.sh

az aks create \
 --resource-group bwaks \
 --name bwsqlaks \
 --node-count 2 \
 --enable-addons monitoring \
 --generate-ssh-keys

connectoaks.sh

az aks get-credentials --resource-group bwaks --name bwsqlaks

Вы можете найти сценарии и команды, которые я использовал для соз-
дания группы ресурсов, создания кластера и подключения к кластеру в
каталоге ch8_sql_on_k8s. Несмотря на то что это сценарии оболочки Bash,
вы можете запустить эти команды в среде, где поддерживается интерфейс
командной строки Azure. Мне нравится использовать облачную оболоч-
ку Azure, которую я покажу вам в этих примерах, поскольку интерфейс
командной строки Azure встроен в этот инструмент. Если вы хотите при-
менять платформу, вам необходимо установить интерфейс командной
строки Azure, который можно найти по ссылке https://docs.microsoft.com/en-us/

cli/azure/install-azure-cli?view=azure-cli-latest.

Развертывание SQL Server на k8s  255

Я также рекомендую установить расширение Kubernetes Visual Studio
Code, чтобы облегчить использование кластеров и объектов k8s. Я хотел
установить это расширение в Azure Data Studio. Для этого вам необходимо
скачать следующие расширения:

• https://marketplace.visualstudio.com/items?itemName=redhat.vscode-yaml;
• https://marketplace.visualstudio.com/items?itemName=ms-kubernetes-tools.vscode-

kubernetes-tools.

Чтобы использовать это расширение, вам также необходимо установить
kubectl, перейдя по ссылке https://kubernetes.io/docs/tasks/tools/install-kubectl/.

Подробнее о том, как установить эти расширения в Azure Data Studio, см.
https://docs.microsoft.com/en-us/sql/azure-data-studio/extensions.

Как я уже сказал, мне нравится использовать облачную оболочку Azure
для демонстрации этих примеров. Облачная оболочка Azure поддерживает
как PowerShell, так и bash и включает в себя множество встроенных инстру-
ментов, таких как Azure CLI, kubectl и sqlcmd. Вы можете узнать больше
об облачной оболочке Azure, перейдя по ссылке https://azure.microsoft.com/en-us/

features/cloud-shell.
Независимо от того, какой дистрибутив клиента или k8s вы используете,

если вы можете запустить kubectl, то можете использовать все приведен-
ные ниже примеры.

Развертывание SQL Server на k8s
В процессе практической работы в этом разделе я покажу вам, как развер-
нуть модуль с одним контейнером SQL Server.

Вам понадобится использовать объект secret для хранения пароля sa,
хранилище для баз данных и балансировщик нагрузки для подключения к
SQL Server. Все это будет сделано с помощью ряда команд kubectl и декла-
ративных файлов YAML.

Кроме того, я рекомендую вам создавать свои собственные модули,
используя концепцию пространств имен в k8s. Пространство имен дает
вам область для объектов (например, pods), которые вы создаете в кластере
k8s, отделяющих их от других объектов. Пространства имен предоставляют
удобный механизм для организации и управления вашими объектами k8s.

Давайте шаг за шагом рассмотрим процесс развертывания и подключе-
ния к контейнеру SQL Server в модуле. Эти шаги предполагают, что у вас
есть кластер k8s. Я создал кластер, в который входят два узла, используя
AKS, как описано в разделе «Подготовительные шаги для использования
примеров, иллюстрирующих применение SQL Server и Kubernetes», но
даже кластер с одним узлом будет работать.

Когда я просматривал эти примеры, то использовал облачную оболоч-
ку Azure, которую можно запустить из любого браузера, как показано на
рис. 8.1.

256  Глава 8. SQL Server и Kubernetes

Рис 8.1. Использование Kubernetes в облачной оболочке Azure

Я люблю Azure Cloud Shell. Однажды я летел самолетом обратно в Техас,
и на моем ноутбуке разрядился аккумулятор. Мне нужно было поработать
с AKS для подготовки очередной демонстра-
ции. Мой iPhone все еще работал, и я слы-
шал о мобильном приложении Azure (https://

apps.apple.com/us/app/microsoft-azure/id1219013620).
Я установил приложение, установил соеди-
нение с моим узлом и просмотрел доступные
ресурсы Azure. Я заметил, что в приложении
есть инструмент для работы с облачной сре-
дой Cloud Shell. Я выбрал его и вернулся к
работе. На рис. 8.2 показан пример исполь-
зования Azure Cloud Shell с моего телефона.

Я помню, как сидел рядом с пассажиром,
который играл в Candy Crush на своем теле-
фоне. Он увидел, что я делаю, и спросил: «Что
это за игра, в которую вы играете?» Я отве-
тил: «Я развертываю кластер Kubernetes с
помощью Cloud Shell». Мой сосед вернулся
к своей игре, очевидно, подумав, что этот
чудак играет в странную «игру Kubernetes».

Примеры сценариев для развертывания
можно найти в каталоге ch8_sql_on_k8s\
deploy. Убедитесь, что вы установили разре-
шения на выполнение сценариев оболочки с
помощью команды chmod u+x <script>. Кроме
того, если вы хотите запустить сценарии в
облачной оболочке Azure, прочитайте доку-

Рис. 8.2. Мобильный
пользователь k8s

Развертывание SQL Server на k8s  257

ментацию по загрузке этих сценариев, используемых в качестве примера
(https://docs.microsoft.com/en-us/azure/cloud-shell/persisting-shell-storage#transfer-local-files-
to-cloud-shell). Помните, что большим преимуществом облачной оболочки
Azure является то, что для нее требуется только браузер, а все необходимые
инструменты, такие как kubectl, az и sqlcmd, уже установлены.

Ниже приведены примеры развертывания SQL Server в AKS.

1. Создайте пространство имен, используя следующую команду или сце-
нарий step1_create_namespace.sh:

 kubectl create namespace mssql

 В результате выполнения этой команды вы должны получить следу-
ющее сообщение, указывающее, что пространство имен было созда-
но:

 namespace/mssql created

 Проверить, что пространство имен было действительно создано,
можно с помощью следующей команды:

 kubectl get namespaces

 Результат, который я получил для своего кластера, приведен ниже.
Для кластера k8s вы можете получить другие пространства имен.

NAME STATUS AGE
default Active 2d10h
kube-public Active 2d10h
kube-system Active 2d10h
mssql Active 56s

2. Я хочу, чтобы все мои объекты создавались в новом пространстве
имен mssql. Я могу явно указывать пространство имен при создании
объектов или установить контекст по умолчанию для нового простран-
ства имен, выполнив следующие команды (или используя сценарий
step2_setcontext.sh). В приведенных здесь командах подставьте свой
кластер и имя пользователя (вы можете получить эти данные, выполнив
команду kubectl config view).

kubectl config set-context mssql --namespace=mssql
--cluster=bwsqlaks --user=clusterUser_bwaks_bwsqlaks
kubectl config use-context mssql

 Если эта команда выполнена успешно, вы должны получить пример-
но такой результат:

Context "mssql" created.
Switched to context "mssql".

258  Глава 8. SQL Server и Kubernetes

 Чтобы проверить, правильный ли контекст вы используете, или про-
смотреть его в любое время, вы можете выполнить следующую ко-
манду:

 kubectl config current-context

3. Теперь давайте создадим службу балансировки нагрузки, которая бу-
дет использоваться для модуля SQL Server. Я должен сделать одно по-
яснение о балансировщике нагрузки и облачных сервисах, таких как
Azure. Azure фактически предоставляет вам общедоступную конечную
IP-точку, которая не изменится, поэтому вы можете привязать ее к внут-
реннему IP-адресу объекта pod независимо от того, изменяется ли он.
Я видел сценарии, в которых требуется некоторое время для создания
службы балансировки нагрузки. Поэтому я рекомендую после созда ния
не удалять их, если только вы не планируете выполнять тестовые сцена-
рии, аналогичные демонстрации из этой главы.

 Чтобы создать балансировщик нагрузки, выполните следующую ко-
манду или сценарий step3_create_service.sh:

 kubectl apply -f sqlloadbalancer.yaml --record

 Ниже приведен пример использования файла YAML для декларатив-
ного доступа к серверу API k8s. Действия, которые выполняются с по-
мощью команды kubectl apply, – это отправка команд API на сервер
API, точно так же, как если бы вы написали код с использованием API
напрямую (да, теперь вы программист k8s).

 Давайте посмотрим на файл sqlloadbalancer.yaml, чтобы понять его
формат:

apiVersion: v1
kind: Service
metadata:
 name: mssql-service
spec:
 selector:
 app: mssql
 ports:
 – protocol: TCP
 port: 31433
 targetPort: 1433
 type: LoadBalancer

 Протокол использует метки и их значения. Одна из ссылок, которую
вы можете использовать для определения точного набора меток и
значений для различных объектов k8s, находится по адресу https://

kubernetes.io/docs/concepts/overview/working-with-objects/kubernetes-objects/. Лич-

Развертывание SQL Server на k8s  259

но я смотрю на примеры, копирую их и модифицирую для своих
собст венных сценариев.

 Давайте использовать этот файл YAML для наглядного пояснения не-
которых из значений.

 apiVersion: v1

 Каждый файл YAML содержит поле apiVersion. Оно сообщает серверу
API, какую «версию» API вы используете для различных применений
k8. Обычно вам следует использовать версию v1, но для некоторых
новых концепций k8s может потребоваться «бета» или другие вер-
сии. Подробнее о версиях API читайте по ссылке https://kubernetes.io/

docs/reference/using-api/api-overview/#api-versioning.

 kind: Service

 Это поле сообщает серверу API, с каким объектом вы взаимодей-
ствуете. В данном случае это объект Service, который поможет нам
развернуть балансировщик нагрузки. Вы можете прочитать больше
о параметре Service для k8s по ссылке https://kubernetes.io/docs/concepts/

services-networking/service/.

metadata:
 name: mssql-service

 Это название сервиса. Оно используется, чтобы управлять объек-
том, а также связывать его с другим объектом, например с объектом
pod.

spec:
 selector:
 app: mssql
 ports:
 – protocol: TCP
 port: 31433
 targetPort: 1433
 type: LoadBalancer

 Метка spec позволяет вам дать подробное описание объекта Service.
Метка selector дает возможность задать данные для группиров-
ки и идентификации объекта. В этом случае использование мет-
ки app:mssql позволяет управлять и просматривать объекты в k8s.
Я покажу вам пример использования этой метки в данном упражне-
нии. Метка app:mssql также важна для LoadBalancer, поскольку она
связывает LoadBalancer с любым объектом pod, использующим та-
кую же метку (в нашем случае это будет SQL Server).

260  Глава 8. SQL Server и Kubernetes

 Раздел port позволяет сопоставить внешний порт, через который бу-
дет осуществляться подключение снаружи, с портом внутри объекта
pod. Этот раздел необходимо использовать при развертывании SQL
Server, поскольку, как рассказывалось в главе 7 о контейнерах, у вас
может быть только один SQL Server, прослушивающий порт 1433 на
уровне хост-узла. В этом примере, когда приложения хотят подклю-
читься к SQL Server, они будут использовать IP-адрес, указанный в
разделе Service, и порт 31433. Ниже в этом примере я покажу вам
хитрый способ подключения к Service для SQL Server.

 Метка type – это тип службы (Service), в данном случае это сервис
LoadBalancer, реализованный провайдером облака. Различные типы
служб, которые можно использовать, можно найти по ссылке https://

kubernetes.io/docs/concepts/services-networking/service/#publishingservices-service-

types.
 Когда вы запускаете kubectl с параметром apply и файлом YAML, вы-

полнение часто происходит асинхронно. Это означает, что команда
kubectl вернет результат немедленно, но операция, объявленная в
файле YAML, будет запланирована сервером API в фоновом режи-
ме.

 В данном случае, когда вы выполните команду kubectl apply для этой
службы, ваш результат должен выглядеть следующим образом:

 service/mssql-service created

 Этот результат фактически означает, что создание службы mssql
было запланировано. Как узнать, готова ли служба к работе? Есть не-
сколько способов. Сначала вы можете запустить следующую коман-
ду:

 kubectl get service

 Ваш результат может выглядеть так:

NAME TYPE CLUSTER-IP EXTERNAL-IP
 PORT(S) AGE
mssql-service LoadBalancer 10.0.150.233 <pending>
 31433:32010/TCP 61s

 CLUSTER-IP – это внутренний IP-адрес в кластере k8s. EXTERNAL-IP
будет статическим внешним IP-адресом, который вы можете исполь-
зовать для подключения к SQL Server. Обратите внимание, что порт
имеет значение 31433:32010. Хотя SQL Server прослушивает порт 1433
в контейнере, порт 32010 сопоставлен с портом 1433 в кластере. Порт
31433 сопоставлен с портом 32010, что позволяет подключаться к
<EXTERNAL-IP>,<31433> для подключения к SQL Server, независимо
от того, где именно объект pod с SQL Server находится в кластере k8s.

Развертывание SQL Server на k8s  261

 Обратите внимание, что значение параметра EXTERNAL-IP равно
<pending>, когда вы смотрите на него сразу после выполнения ко-
манды kubectl apply. Вы не сможете использовать LoadBalancer, пока
это значение не станет реальным IP-адресом, а это может занять не-
сколько минут.

4. Теперь, когда создание LoadBalancer запланировано, давайте созда-
дим объект secret для хранения пароля sa для SQL Server. Выполните
следующую команду или сценарий step4_create_secret.sh:

kubectl create secret generic mssql-secret --from-literal=
SA_PASSWORD=»Sql2019isfast»

 После выполнения этой команды вы должны получить следующие
результаты (объект secret должен быть создан):

 secret/mssql-secret created

Примечание. В главе 7 я упомянул, что в версии SQL Server 2019 будет поддержи-

ваться аутентификация Active Directory для контейнеров SQL Server. Как только эта
возможность будет реализована, мы сможем также поддерживать аутентификацию
AD для SQL Server в k8s.

5. Следующим шагом является создание хранилища для баз данных
SQL Server с использованием концепции Persistent Volume Claim
(PVC). PVC похоже на том, определенный поверх системы дисков,
который мы можем использовать для сопоставления с каталогами
баз данных для объекта pod с SQL Server.

 Используйте следующую команду для создания PVC, который будет
применяться для объекта pod с SQL Server, или выполните сценарий
step5_create_storage.sh:

 kubectl apply -f storage.yaml

 Команда должна выполниться очень быстро, и в результате вы долж-
ны получить следующее сообщение о том, что запланировано созда-
ние PVC в фоновом режиме:

 persistentvolumeclaim/mssql-data created

 Пока PVC создается (это может произойти очень быстро), давайте ис-
следуем структуру файла storage.yaml, чтобы посмотреть, что про-
исходит за кулисами:

apiVersion: v1
kind: PersistentVolumeClaim
metadata:

262  Глава 8. SQL Server и Kubernetes

 name: mssql-data
 annotations:
 volume.beta.kubernetes.io/storage-class: azure-disk
spec:
 accessModes:
 – ReadWriteOnce
 resources:
 requests:
 storage: 8Gi

 Метаданные интересны тем, что метка annotations связывает PVC с
диском, называемым классом хранилищ (storage class). Как я узнал,
что мне нужно использовать значение azure-disk для этого парамет-
ра? Ответ на этот вопрос заключается в том, что при создании
клас тера AKS вы автоматически получаете диск Azure, размещен-
ный в хранилище класса Premium, с классом хранилищ, называе-
мым azure-disk. Вы можете создавать другие устройства для хране-
ния данных, но это стандартный диск, созданный AKS. Вы можете
узнать больше о хранилищах, используемых в AKS, перейдя по ссыл-
ке https://docs.microsoft.com/en-us/azure/aks/concepts-storage. Если вы не ис-
пользуете k8s, значит, вам уже нужно было создать классы хранилищ
до выполнения этого шага. Вы можете узнать, какие классы храни-
лищ доступны, спросив об этом вашего администратора k8s или вы-
полнив следующую команду:

 kubectl get StorageClass

 Вы можете узнать больше о свойствах azure-disk, выполнив следую-
щую команду:

 kubectl describe StorageClass azure-disk

 Раздел spec файла storage.yaml описывает, какой доступ разре-
шен для PVC, а также указывает размер тома. Значение параметра
AccessModes ReadWriteOnce означает, что том предназначен для чте-
ния/записи и в любой момент доступ к тому разрешен только одному
объекту pod/узлу. Это не означает, что объект pod нельзя переместить
на другой узел и получить доступ к тому (это будет фундаментальной
концепцией HA, как вы узнаете позже в данной главе). Это означает
лишь то, что два объекта pod или два узла не могут одновременно
получить доступ к одному и тому же тому. Такой подход оправдан для
базы данных SQL Server. 8Gi означает объем хранилища 8 Гб.

 Вы можете узнать, было ли создано PVC, выполнив следующую ко-
манду:

 kubectl describe PersistentVolumeClaims mssql-data

Развертывание SQL Server на k8s  263

 Успешное создание PVC (см. сообщение в конце выведенного резуль-
тата) выглядит следующим образом:

Type Reason Age From
 Message
---- ------ ---- ----

Normal ProvisioningSucceeded 9m16s persistentvolumecontroller
Successfully provisioned volume pvc-b8c9225e-c038-11e9-b5fa-
c6f80bad26d8 using kubernetes.io/azure-disk

 Я сталкивался с ситуациями, в которых при выполнении этой коман-
ды происходили некоторые временные задержки или выдавались
ошибки, но в конечном итоге PVC создавалось.

6. Теперь у вас есть служба балансировки нагрузки, объект secret для
хранения пароля sa и хранилище. Пришло время собрать все это
воедино и создать объект pod, который будет содержать один кон-
тейнер для SQL Server. Запустите следующую команду или сценарий
step6_deploy_sql2019.sh (параметр --record предоставляет дополни-
тельную информацию о том, как выполняется развертывание):

 kubectl apply -f sql2019deployment.yaml --record

 Вы должны получить следующий результат, который указывает, что
развертывание было запланировано:

 deployment.apps/mssql-deployment created

 Задание развертывания позволит нам создать объект pod с концеп-
цией ReplicaSet для SQL Server. Я подробно расскажу о ReplicaSet поз-
же, когда буду демонстрировать встроенные возможности HA в k8s.

 Чтобы увидеть состояние задания развертывания и объектов, свя-
занных с объектом pod, выполните следующую команду:

 kubectl get all

 В результате выполнения данной команды вы получите все объекты
в текущем контексте (пространство имен mssql), включая состояние
объекта pod, LoadBalancer и развертывания.

 Когда вы запустите эту команду, то можете получить такие результа-
ты:

NAME READY STATUS RESTARTS AGE
pod/mssql-deployment-7bb4c5f5d7-rpw45 0/1 ContainerCreating 0 4s

NAME TYPE CLUSTER-IP EXTERNAL-IP

264  Глава 8. SQL Server и Kubernetes

PORT(S) AGE
service/mssql-service LoadBalancer 10.0.150.233 13.77.103.119
31433:32010/TCP 55m

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/mssql-deployment 0/1 1 0 4s

NAME DESIRED CURRENT READY AGE
replicaset.apps/mssql-deployment-7bb4c5f5d7 1 1 0 4s

 Первая строка полученного результата содержит статус создания
объекта pod. Значение ContainerCreating параметра STATUS, относя-
щегося к объекту pod, означает, что контейнер, определенный для
объекта pod, находится в процессе создания. Если вы создаете объект
pod с образом контейнера SQL Server, это может занять больше вре-
мени, так как образ контейнера должен быть загружен в локальный
реестр Docker k8s.

 Значение параметра STATUS для развертывания (deployment) по-
казывает, когда развертывание выполняется успешно. Значение
параметра STATUS для LoadBalancer не зависит от развертывания.
Это означает, что вам нужно подождать, пока для объекта pod бу-
дет установлено состояние Running, LoadBalancer будет иметь кор-
ректный адрес EXTERNAL-IP, а для развертывания будет указан
статус AVAILABLE = 1, прежде чем вы сможете подключиться к SQL
Server. Состояние реплики должно соответствовать состоянию объ-
екта pod или развертывания.

 Пока объект pod еще создается, давайте внимательно изучим раз-
личные фрагменты содержимого файла sql2019deployment.yaml.

kind: Deployment
metadata:
 name: mssql-deployment

 Этот раздел сообщает API-серверу, что мы создаем задание развер-
тывания объекта pod и имя объекта.

 Остальная часть файла YAML – это спецификация развертывания.
Давайте подробно разберем ее.

replicas: 1
 selector:
 matchLabels:
 app: mssql
 strategy:
 type: Recreate

 Этот фрагмент определяет количество реплик, необходимых для
объекта pod (в данном случае оно равно единице) и для повторного

Развертывание SQL Server на k8s  265

создания объекта pod при необходимости каких-либо обновлений.
Я объясню значение данных терминов позже в этой главе. Параметр
matchLabels должен связать метку развертывания с меткой объекта
pod (оба значения – mssql).

 Следующий большой раздел файла называется шаблоном, он опре-
деляет более подробную информацию о контейнерах для объекта
pod и о томах, используемых для хранения данных.

 Вы можете увидеть в шаблоне, что мы используем другую метку для
приложения mssql, что дает нам возможность управлять объектами
в процессе развертывания, просматривать их или управлять ими с
помощью этой метки.

 Далее следует спецификация объекта pod, содержащая подробную
информацию о контейнере, который необходимо развернуть внутри
объекта pod.

spec:
 terminationGracePeriodSeconds: 10
 containers:
 – name: mssql
 image: mcr.microsoft.com/mssql/rhel/server:2019-latest
 env:
 – name: MSSQL_PID
 value: "Developer"
 – name: ACCEPT_EULA
 value: "Y"
 – name: MSSQL_SA_PASSWORD
 valueFrom:
 secretKeyRef:
 name: mssql-secret
 key: SA_PASSWORD
 volumeMounts:
 – name: mssqldb
 mountPath: /var/opt/mssql

 В спецификации вы можете увидеть несколько фрагментов, которые
выглядят знакомо, если вы используете контейнеры. Вы замечаете
там образ, положенный в основу контейнера, и переменные среды,
используемые для передачи контейнеру SQL Server. Обратите вни-
мание, как пароль sa сопоставлен с объектом secret, который вы уже
создали.

 Значение параметра terminationGracePeriodSeconds определяет,
сколько времени k8s отведет контейнеру на завершение работы, в
случае если контейнер будет необходимо остановить. Для SQL Server
может потребоваться значение, большее (или меньшее) использо-

266  Глава 8. SQL Server и Kubernetes

ванного в приведенном примере, однако выбранное мной значение
10 секунд позволяет корректно завершить работу. SQL Server обеспе-
чивает согласованность данных независимо от того, корректно ли
завершилась его работа.

 Запись volumeMount – это имя mssqldb, которое привязывается
к каталогу для хранения всех баз данных SQL Server. Имя mssqldb
определяется прямо под следующим фрагментом спецификации как
параметр развертывания:

volumes:
 – name: mssqldb
 persistentVolumeClaim:
 claimName: mssql-data

 Здесь было выполнено сопоставление с созданным PVC. Теперь,
когда контейнер SQL Server запущен в объекте pod, все системные
и пользовательские базы данных по умолчанию будут находиться в
постоянном хранилище PVC. Вы увидите, насколько это важно, когда
перейдете к другим разделам этой главы, посвященным темам вы-
сокой доступности и обновлений SQL Server.

 Вы можете снова выполнить команду kubectl get all, чтобы увидеть,
все ли готово для работы с SQL Server.

 В вашем арсенале также имеется несколько других интересных ко-
манд kubectl для проверки состояния объекта pod и SQL Server. Что-
бы увидеть полный список их параметров, вы можете выполнить
команду kubectl help или обратиться к справочной документации по
kubectl по ссылке https://kubernetes.io/docs/reference/kubectl/overview.

7. Выполните следующую команду, чтобы просмотреть журналы объ-
екта pod (и размещенного в нем контейнера). Журнал, который вы
увидите, выполнив ее, – это журнал ошибок (ERRORLOG) SQL Server.
Вы также можете использовать сценарий step7_getlogs.sh:

 kubectl logs -l app=mssql --tail=100000

 Обычно для команды kubectl logs требуется имя объекта pod, но вы
можете использовать метку mssql, а не искать имя объекта pod.

 В результате выполнения этой команды на ваш экран должны быть
выведены данные журнала ошибок SQL Server (ERRORLOG).

8. Вы также можете просмотреть подробное представление событий,
связанных с операциями в k8s, которые вы выполнили в этом про-
странстве имен, выполнив следующую команду или сценарий step8_
getevents.sh:

 kubectl get events

Развертывание SQL Server на k8s  267

 В результате вы должны получить хронологию событий, которые
произошли в этом пространстве имен. Если все команды были вы-
полнены без ошибок, ваш результат должен выглядеть примерно
так:

LAST SEEN TYPE REASON KIND
 MESSAGE
29m Normal ProvisioningSucceeded PersistentVolumeClaim
 Successfully provisioned volume pvc-c18b530f-c040-11e9-b5fac6f80bad26d8
 using kubernetes.io/azure-disk
25m Normal Scheduled Pod
 Successfully assigned mssql/mssql-deployment-7b6565d684-8r7cctoaks-
 nodepool1-90949249-0
25m Normal SuccessfulAttachVolume Pod
 AttachVolume.Attach succeeded for volume “pvc-c18b530f-c040-11e9-
 b5fa-c6f80bad26d8”
24m Normal Pulled Pod
 Container image "mcr.microsoft.com/mssql/rhel/server:2019-latest"
 already present on machine
24m Normal Created Pod
 Created container
24m Normal Started Pod
 Started container
25m Normal SuccessfulCreate ReplicaSet
 Created pod: mssql-deployment-7b6565d684-8r7cc
25m Normal ScalingReplicaSet Deployment
 Scaled up replica set mssql-deployment-7b6565d684 to 1
30m Normal EnsuringLoadBalancer Service
 Ensuring load balancer
29m Normal EnsuredLoadBalancer Service
 Ensured load balancer

9. Вы можете также получить более подробную информацию о раз-
вертывании, выполнив следующую команду или запустив сценарий
step9_describe_deployment.sh:

 kubectl describe deployment mssql-deployment

 В результате вы получите все сведения о выполненном развертыва-
нии, включая самые последние события, связанные с ним.

10. Вы можете получить более подробную информацию о развернутом
объекте pod, выполнив следующую команду или сценарий step10_
describe_pod.sh:

 kubectl describe pod -l app=mssql

268  Глава 8. SQL Server и Kubernetes

 Вот где использование метки mssql снова пригодится. Вы получите
более подробную информацию об объекте pod, контейнерах внутри
него и событиях, связанных с ним. Все, что вам нужно запомнить, –
это метка mssql.

 Эта команда вместе с kubectl get events может быть полезна для
устранения ошибок при развертывании объекта pod.

11. Теперь (наконец) пришло время подключиться к SQL Server, работа-
ющему в контейнере, размещенном в объекте pod. Вот прием, кото-
рый я узнал от Энтони Ночентино (Anthony Nocentino), известного
эксперта по Linux, Containers и k8s и технического рецензента моей
книги Pro SQL Server в Linux. Выполните следующую команду или
сценарий step11_testsql.sh, чтобы подключиться к SQL Server через
LoadBalancer:

SERVERIP=$(kubectl get service | grep mssql-service |
awk {'print $4'})
PORT=31433
sqlcmd -Usa -PSql2019isfast -S$SERVERIP,$PORT -Q"SELECT@@version"

 В результате вы должны получить версию установленного SQL Server.
Если вы внимательно посмотрите на эту команду, она динамически
извлекает EXTERNAL-IP в LoadBalancer и находит IP-адрес, кото-
рый будет использоваться как часть строки соединения. Вы, одна-
ко, можете пойти дальше и добавить синтаксический разбор, чтобы
получить порт, выведенный при выполнении команды kubectl get
service.

В этом разделе приведено множество подробных описаний выполняемых
действий, потому что я хотел рассказать вам, что происходит за сценой k8s,
и показать, как можно использовать YAML в качестве API для интерфейса
программирования k8s.

Советы по k8s
Прежде чем перейти к следующему разделу, позвольте мне дать вам
несколько практических советов по использованию других ресурсов с
k8s. Поскольку у вас есть развернутый объект pod с SQL Server, мы будем
использовать его.

Расширение k8s
В разделе «Подготовительные шаги для использования примеров,

иллюст рирующих применение SQL Server и Kubernetes» этой главы я рас-
смотрел расширение Kubernetes для Visual Studio Code и показал, как уста-
новить его для Azure Data Studio (ADS).

Советы по k8s  269

Позвольте мне показать вам несколько примеров использования этого
расширения с вашим развернутым объектом pod с SQL Server.

Во-первых, одним из преимуществ использования расширения k8s,
а также описаний в YAML являются подсказки по использованию файлов
YAML. Найдите файл sql2019deployment.yaml в каталоге ch8_sql_on_k8s\
deploy. Используйте проводник ADS, чтобы найти файл.

Наведите указатель мыши на любой фрагмент файла YAML и просмотри-
те подсказки о различных ключевых словах, содержащихся в файле. Напри-
мер, на рис. 8.3 показана подсказка для описания terminationGracePeriodSe-
conds.

Рис. 8.3. Использование расширения k8s для изучения
структуры файла YAML

Расширение ADS также включает в себя «живой» проводник для про-
смотра ресурсов k8s. Я использовал его для подключения к своему класте-
ру AKS (если вы работаете с AKS, вам потребуется ввести данные учетной
записи для входа в систему, когда будете использовать этот инструмент).
После подключения я мог просматривать объекты и даже выполнять неко-
торые операции.

Поскольку мой объект pod был развернут в пространстве имен, мне сна-
чала нужно было изменить контекст на это пространство имен, как пока-
зано на рис. 8.4.

Одна замечательная вещь, которую я могу сделать, – это подключиться к
работающему объекту pod и запустить оболочку Bash для просмотра жур-
нала ошибок (ERRORLOG). Я сделал это буквально при помощи нескольких
щелчков мыши – сначала я нашел свой объект pod в проводнике k8s, затем
щелкнул правой кнопкой мыши, чтобы выбрать Terminal, как показано на
рис. 8.5.

270  Глава 8. SQL Server и Kubernetes

Рис. 8.4. Настройка пространства имен с расширением k8s

Рис. 8.5. Запуск сеанса работы с терминалом в объекте pod k8s

На экране моего компьютера появился терминал ADS, и теперь я нахо-
дился в оболочке Bash в контейнере SQL объекта pod. Затем я смог перейти
в /var/opt/mssql/log и вывести содержимое журнала ERRORLOG, как пока-
зано на рис. 8.6.

Советы по k8s  271

Рис. 8.6. Просмотр журнала ошибок (ERRORLOG)
для объекта pod с SQL Server в k8s

Для завершения сеанса работы с терминалом я ввел команду exit. Еще
одна интересная вещь, которую я обнаружил, – это возможность реинжи-
ниринга выполненного развертывания, чтобы просмотреть содержимое
файла YAML, использованного для этого развертывания. Щелкнув правой
кнопкой мыши объект, полученный в результате развертывания, я выбрал
команду Convert to Template (Преобразовать в шаблон), как показано
на рис. 8.7.

Рис. 8.7. Реинжиниринг развертывания K8S

272  Глава 8. SQL Server и Kubernetes

Я ввел имя моего файла YAML, и полученный файл YAML был открыт в
редакторе.

Я уверен, что есть и другие замечательные возможности расширения k8s,
которые я еще не исследовал, и я буду продолжать открывать их, глубже
знакомясь с k8s.

Другие команды kubectl
В kubectl есть много других команд, о которых стоит рассказать. Ниже

приведен список этих команд.

• kubectl top – эта команда на основе узла или объекта pod отобра-
жает метрики для памяти и ЦП. Это может быть полезно, например,
чтобы увидеть, сколько памяти использует объект pod или сколько
памяти осталось на узле.

• kubectl cp – эту команду можно использовать для копирования фай-
ла в файловую систему контейнера для объекта pod. Точно так же,
как команду docker cp, вы можете использовать эту команду для ко-
пирования файла резервной копии базы данных SQL Server в слой
контейнера, доступный для записи.

Например, для выполненного вами примера по развертыванию SQL
Server в контейнере предположим, что mssql-deploy-7b6565d684-92l8s – это
имя объекта pod в пространстве имен mssql, и вы загрузили образец базы
данных WideWorldImporters (https://github.com/Microsoft/sql-server-samples/releas-

es/download/wide-world-importers-v1.0/WideWorldImporters-Full.bak) в ваш локальный
каталог. Следующая команда скопирует файл резервной копии в контей-
нер SQL Server, чтобы базу данных можно было восстановить:

kubectl cp ./WideWorldImporters-Full.bak mssql/mssql-deployment-
7b6565d684-92l8s:/var/opt/mssql

• kubectl exec – эта команда позволяет вам выполнить программу в
пространстве имен контейнера в объекте pod. Эта команда во мно-
гом похожа на docker exec для запуска оболочки Bash для контейне-
ра или утилиты sqlcmd в SQL Server, поскольку она является частью
контейнера SQL Server.

Основываясь на примере, который я только что показал вам для копи-
рования в контейнер резервной копии БД WideWorldImporters, для восста-
новления резервной копии можно использовать следующую команду:

kubectl exec mssql-deployment-7b6565d684-92l8s -- /opt/mssql-tools/bin/sqlcmd
-S localhost -U SA -P "Sql2019isfast" -Q “RESTORE DATABASE WideWorldImporters
FROM DISK = '/var/opt/mssql/WideWorldImporters-Full.bak' WITH MOVE 'WWI_
Primary' TO '/var/opt/mssql/data/WideWorldImporters.mdf', MOVE 'WWI_UserData'
TO '/var/opt/mssql/data/WideWorldImporters_userdata.ndf', MOVE 'WWI_Log' TO

Советы по k8s  273

'/var/opt/mssql/data/WideWorldImporters.ldf', MOVE 'WWI_InMemory_Data_1' TO
'/var/opt/mssql/data/WideWorldImporters_InMemory_Data_1'"

Мне потребовалось некоторое время, чтобы разобраться в синтаксисе
данной команды; обратите внимание, что вы не указываете пространство
имен, поэтому вы должны находиться в контексте пространства имен для
вашего объекта pod. Также обратите внимание на использование симво-
лов -- перед указанием /opt/mssql/bin/sqlcmd; они применяются для раз-
деления аргументов для kubectl и аргументов для программы (в данном
случае это sqlcmd).

• kubectl version – эта команда выводит версию kubectl. Я видел си-
туации, когда у пользователей были проблемы с kubectl, потому что
используемая версия kubectl была старше и несовместима с версией
кластера k8s. Эта команда выводит версии как клиента, так и сер-
вера. Подробнее о совместимости версий читайте по ссылке https://

kubernetes.io/docs/setup/release/version-skew-policy/.
• kubectl explain – эта команда выводит документацию с информаци-

ей об объектах k8s. Например, команда, приведенная ниже, позволя-
ет получить дополнительную информацию о требованиях к файлу
YAML для ReplicaSet:

 kubectl explain ReplicaSet

• kubectl cluster-info dump – осторожно куберинфо (это используе-
мый термин? Если нет, я только что придумал его). Эта команда вы-
ведет огромный объем данных диагностики. Используйте синтаксис
--output-directory для создания набора диагностических файлов.
Обязательно используйте параметр --all-namespaces для диагности-
ки всех пространств имен. Эта команда создает дамп практически
любого файла журнала, который является частью кластера k8s, вклю-
чая объекты pod. Я действительно не смог найти какой-либо доку-
ментации о том, что находится в журналах, но поскольку я активно
осваиваю k8s, то, вероятно, узнаю об этом больше.

Панель мониторинга K8S
Панель мониторинга Kubernetes отображает визуальную информацию о

кластере k8s. Вы можете прочитать все о панели мониторинга, перейдя по
ссылке https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard/.

Для AKS вы можете прочитать, как вывести панель мониторинга k8s для
вашего кластера, по ссылке https://docs.microsoft.com/en-us/azure/aks/kubernetes-dash-

board. После того как я выполнил действия, описанные на этой странице,
чтобы запустить панель мониторинга, в моем браузере появился пользо-
вательский интерфейс. Затем я просто выбрал пространство имен mssql, и
на моем экране появилась панель, приведенная на рис. 8.8.

274  Глава 8. SQL Server и Kubernetes

Рис. 8.8. Панель мониторинга K8S

Метрики и журналы в AKS
Использование AKS имеет свои преимущества, поскольку оно предостав-

ляет возможности управляемой платформы k8s. Арсенал средств управле-
ния включает в себя встроенные метрики, инструменты визуализации и
возможности просмотра журналов на портале Azure. На рис. 8.9 показаны
некоторые возможности визуализации, доступные мне при помощи пор-
тала Azure с моим кластером AKS.

Рис. 8.9. Данные, представленные в графическом виде,
на портале Azure для AKS

Следующий шаг, который я намерен предпринять в этой главе, – пока-
зать, как встроенные средства, обеспечивающие высокую доступность
(HA), работают с k8s и как это применяется к SQL Server. Если вы собирае-

Высокая доступность SQL Server на k8s  275

тесь использовать примеры в следующем разделе, не удаляйте те ресурсы,
которые вы уже настроили. Сценарий cleanup.sh можно использовать для
удаления всех ресурсов, поэтому вы можете использовать его, если не пла-
нируете выполнять на практике примеры из следующего раздела.

Высокая доступность SQL Server на k8s
Одним из самых замечательных аспектов k8s является встроенный набор
функций для обеспечения высокой доступности. Представьте себе высокую
доступность SQL Server без программного обеспечения для кластеризации,
которое вам необходимо устанавливать и поддерживать!

Я уже упоминал термин ReplicaSet ранее в этой главе, и теперь пришло
время поговорить о его значении.

Когда вы выполнили развертывание SQL Server в примере из предыду-
щего раздела, в файле YAML содержалось следующее объявление:

replicas: 1

Это объявление указывает k8s следующее: k8s всегда должен пытаться
гарантировать, что один экземпляр контейнера в объекте pod (который в
этом случае содержит контейнер SQL Server) всегда работает. Если в работе
контейнера происходит сбой, то k8s перезапустит контейнер. Если объект
pod прекращает существовать, то k8s создает новый объект pod; если узел
прекращает работать, k8s разворачивает новый объект pod на новом узле,
если таковой существует (и доступны ресурсы, позволяющие это сделать).

В SQL Server, когда вы объединяете ReplicaSet с LoadBalancer и посто-
янным хранилищем, все эти компоненты естественным образом обеспе-
чивают высокую доступность совместно используемого хранилища. На
рис. 8.10 представлено визуальное представление развертывания, которое
вы выполнили в предыдущем разделе.

Рис. 8.10. Высокая доступность для SQL Server и k8s

Узел Узел Узел

Пользо-
ватель

Служба балансировщика
нагрузки

Объект Pod

Постоянный том в хранилище

SQL Server

276  Глава 8. SQL Server и Kubernetes

В этом примере пользователь подключается к балансировщику нагрузки,
который связан с объектом pod, в котором находится контейнер SQL Server
(на самом деле балансировщик нагрузки не размещен на узле, но ради
простоты мы изобразили его таким образом). Если произойдет аварийное
завершение работы контейнера SQL Server, вы увидите только небольшое
отклонение параметров нагрузки, поскольку k8s переключается на другой
контейнер в объекте pod.

Подумайте, что произойдет, если объект pod внезапно станет недосту-
пен, как показано на рис. 8.11.

Рис. 8.11. Внезапное отключение объекта pod в k8s

В этом сценарии k8s создает и запускает другой объект pod (скорее всего,
на том же узле), который запускает новый контейнер. Но обратите вни-
мание, контейнер по-прежнему указывает на PVC, который привязан к
системным и пользовательским базам данных. Для SQL Server он просто
видит существующие системные и пользовательские базы данных и запус-
кается. Новый объект pod будет иметь новый внутренний IP-адрес, но
балансировщик нагрузки автоматически перенаправляется на этот новый
адрес. С точки зрения приложения, это просто повторная попытка соеди-
нения, и все происходит незаметно для пользователя.

Что происходит, если узел (это может быть виртуальная машина) дает
сбой, показано на рис. 8.12.

k8s обнаружит эту проблему и запустит новый объект pod на новом узле.
Даже если новый объект pod имеет новый внутренний IP-адрес, баланси-
ровщик нагрузки будет перенаправлен на новый объект pod. Этот сцена-
рий аналогичен тому, как работает экземпляр отказоустойчивого кластера
Always On (Always On Failover Cluster Instance), за исключением того, что
вам не нужно устанавливать никакого специального программного обес-
печения для кластеризации.

Узел Узел Узел

Пользо-
ватель

Служба балансировщика
нагрузки

Объект Pod

SQL Server

SQL Server

Объект Pod

Постоянный том в хранилище

Высокая доступность SQL Server на k8s  277

Рис. 8.12. Сбой узла в k8s

Давайте продолжим выполнять практические задания, используя при-
мер из предыдущей главы, чтобы увидеть, как это работает. Все сценарии
для этого примера размещены в каталоге ch8_sql_on_k8s\ha.

1. Запустите следующую команду или step12_getpods.sh, чтобы уви-
деть имя модуля, IP-адрес и узел, на котором работает объект pod:

 kubectl get pods -o wide

 Полученный результат должен выглядеть примерно так:

NAME READY STATUS RESTARTS
 AGE IP NODE NOMINATED NODE
 READINESS GATES
mssql-deployment-7b6565d684-8r7cc 1/1 Running 0
 91m 10.244.1.11 aks-nodepool1-90949249-0 <none> <none>

2. Давайте смоделируем сбой контейнера, завершив работу SQL Server.
Выполните следующую команду или сценарий step13_crash_sql.sh,
чтобы завершить работу SQL Server и тем самым остановить контей-
нер:

SERVERIP=$(kubectl get service | grep mssql-service |
awk {'print $4'})
PORT=31433
sqlcmd -Usa -PSql2019isfast -S$SERVERIP,$PORT -Q"SHUTDOWN WITH NOWAIT"

3. Запустите следующую команду или сценарий step14_getpods.sh,
чтобы увидеть все то же самое:

 kubectl get pods -o wide

Узел Узел Узел

Пользо-
ватель

Служба балансировщика
нагрузки

Объект Pod

SQL ServerSQL Server

Объект Pod

SQL Server

Объект Pod

Постоянный том в хранилище

278  Глава 8. SQL Server и Kubernetes

 Вы должны получить результат, схожий с тем, который получили
раньше, поскольку контейнер был перезапущен в том же объекте pod
на том же узле:

NAME READY STATUS RESTARTS
 AGE IP NODE NOMINATED NODE
 READINESS GATES
mssql-deployment-7b6565d684-8r7cc 1/1 Running 1
 91m 10.244.1.11 aks-nodepool1-90949249-0 <none> <none>

 Выполните следующую команду, чтобы просмотреть последователь-
ность событий:

 kubectl get events

 Ваш результат должен выглядеть примерно так:

LAST SEEN TYPE REASON KIND MESSAGE
16s Normal Pulled Pod Container image
"mcr.microsoft.com/mssql/rhel/server:2019-latest" already
present on machine
16s Normal Created Pod Created container
16s Normal Started Pod Started container

4. Попробуйте подключиться к SQL Server и убедитесь, что он работает,
выполнив следующую команду или сценарий step15_testsql.sh:

SERVERIP=$(kubectl get service | grep mssql-service |
awk {'print $4'})
PORT=31433
sqlcmd -Usa -PSql2019isfast -S$SERVERIP,$PORT -Q"SELECT@@version"

 Вы должны увидеть, что можете подключиться к SQL Server, и в ре-
зультате выполнения команды должна быть выведена версия SQL
Server.

5. Сэмулируйте сбой объекта pod с помощью следующей команды или
сценария step16_pod_failure.sh:

 kubectl delete pod -l app=mssql

 В этом примере мы можем не указывать имя объекта pod, а восполь-
зоваться тем, что мы связали метку, которую легко запомнить, с объ-
ектом pod.

 Вы должны увидеть сообщение, подобное следующему:

 pod "mssql-deployment-7b6565d684-8r7cc" deleted

Высокая доступность SQL Server на k8s  279

6. Проверьте состояние объекта pod, включая IP-адрес, выполнив сле-
дующую команду или сценарий step17_getpods.sh:

 kubectl get pods -o wide

 Из полученного результата видно, что объект pod теперь работает на
том же узле (его создание можно было запланировать на новом узле)
с новым именем и новым IP-адресом:

NAME READY STATUS RESTARTS
 AGE IP NODE NOMINATED NODE
 READINESS GATES
mssql-deployment-7b6565d684-gq48v 1/1 Running 0
 2m55s 10.244.1.12 aks-nodepool1-90949249-0 <none> <none>

 Проверьте последовательность событий, используя следующую ко-
манду:

 kubectl get events

 Полученный вами результат покажет последовательность заверше-
ния работы объекта pod и создания нового. Примерный вид резуль-
тата выполнения команды приведен ниже.

LAST SEEN TYPE REASON KIND MESSAGE
6m53s Normal Pulled Pod Container image
"mcr.microsoft.com/mssql/rhel/server:2019-latest" already present on machine
6m53s Normal Created Pod Created container
6m53s Normal Started Pod Started container
39s Normal Killing Pod Killing container
with id docker://mssql:Need to kill Pod
40s Normal Scheduled Pod Successfully
assigned mssql/mssql-deployment-7b6565d684-gq48v to aks-nodepool1-90949249-0
34s Normal Pulled Pod Container image
"mcr.microsoft.com/mssql/rhel/server:2019-latest" already present on machine
34s Normal Created Pod Created container
34s Normal Started Pod Started container
40s Normal SuccessfulCreate ReplicaSet Created pod:
mssql-deployment-7b6565d684-gq48v

7. Попробуйте подключиться к SQL Server с помощью службы LoadBal-
ancer, выполнив следующую команду или сценарий step18_testsql.
sh:

SERVERIP=$(kubectl get service | grep mssql-service |
awk {'print $4'})
PORT=31433

280  Глава 8. SQL Server и Kubernetes

sqlcmd -Usa -PSql2019isfast -S$SERVERIP,$PORT -Q"SELECT
@@version"

 Поскольку мы используем LoadBalancer, привязанный к объекту pod,
в параметрах соединения не выполняется никаких изменений, даже
если объект pod имеет новый внутренний IP-адрес.

8. Очистите все ресурсы, выполнив следующие команды или сценарий
cleanup.sh:

kubectl delete namespace mssql
kubectl config delete-context mssql
kubectl config use-context bwsqlaks

Теперь вы познакомились с основными возможностями высокой доступ-
ности SQL Server, работающего в k8s. Для сценария, в котором узел боль-
ше не доступен, для имитации настоящего сбоя узла потребуется прямой
доступ к виртуальным машинам, поддерживающим узел, и останов узла.
Однако вы можете увидеть, как k8s будет автоматически планировать раз-
вертывание SQL Server на основе определения ReplicaSet, выполнив следу-
ющую команду:

kubectl drain <nodename>

Вы можете вернуть свой узел в рабочий режим для планирования (однако
это не означает, что объекты pod будут перемещены на этот узел), выпол-
нив следующую команду:

kubectl uncordon <nodename>

Теперь давайте рассмотрим, как вы можете обновить SQL Server в k8s
подобно тому, как вы обновляли контейнер в главе 7.

Обновление SQL Server на k8s
В главе 7 вы узнали, как обновить контейнер SQL Server, «переключая»
контейнеры, работающие с постоянным томом. Работающий контейнер
останавливается, и запускается новый контейнер с новой сборкой CU SQL
Server, указывающий на тот же том, который сопоставлен с каталогом,
содержащим системные и пользовательские базы данных.

В k8s вы можете получить такой же результат. Только в этот раз k8s сдела-
ет всю работу за вас, учитывая правильные объявления параметров. Давай-
те вернемся к следующему разделу файла sql2019deployment.yaml из пер-
вого упражнения этой главы:

spec:
 replicas: 1
 selector:

Обновление SQL Server на k8s  281

 matchLabels:
 app: mssql
 strategy:
 type: Recreate

Обратите внимание на фрагмент strategy: type: Recreate. Recreate объ-
являет k8s, что если развернутые объекты обновлены, необходимо оста-
новить и заново создать контейнер. Другой вариант для объявления stra-
tegy: type: – RollingUpdate. Мы не можем использовать его с SQL Server,
если у нас отсутствует определенное синхронизированное взаимодействие
с несколькими контейнерами SQL Server. Мы поговорим об этом поня-
тии, однако, в последнем разделе данной главы, где речь пойдет о группах
доступности Always On (Always On Availability Groups) и k8s.

Одним из способов обновления развертывания является обновление
образа контейнера, запущенного в объекте pod. Для SQL Server это может
означать обновление с использованием нового накопительного обновле-
ния; оно выполняется аналогично тому примеру, в котором я показал вам,
как переключиться на контейнер с новым образом в главе 7. А посколь-
ку мы используем постоянный том, новый контейнер распознает систе-
му и пользовательскую базу данных, когда мы будем использовать обнов-
ленный образ. k8s предоставляет метод, позволяющий выполнить все это
при помощи одной команды. Также возможно выполнить откат, так как k8s
отслеживает обновление для развернутых объектов как новую версию.

Давайте рассмотрим эти возможности на практическом примере. Все
сценарии для данного примера можно найти в каталоге ch8_sql_on_k8s\
update. Если вы выполняли практические задания из предыдущих приме-
ров, обязательно очистите все существующие ресурсы с помощью сцена-
рия cleanup.sh, находящегося либо в каталоге ha, либо в каталоге deploy.

На момент написания этой книги мы еще не поставили накопительное
обновление для SQL Server 2019, поэтому в этих примерах я буду использо-
вать SQL Server 2017. Однако как только мы начнем поставлять сборки CU,
вы можете использовать те же приемы для SQL Server 2019.

1. Сначала нам нужно развернуть объект pod SQL Server аналогично
тому, как мы проделали это в первом примере данной главы. Чтобы
не выполнять по одному все необходимые для этого шаги, я создал
один сценарий, который делает все необходимое, под названием
step1_deploysql.sh.

 Этот сценарий выполняет следующие команды:

kubectl create namespace mssql
kubectl config set-context mssql --namespace=mssql
--cluster=bwsqlaks --user=clusterUser_bwaks_bwsqlaks
kubectl config use-context mssql
kubectl apply -f sqlloadbalancer.yaml

282  Глава 8. SQL Server и Kubernetes

kubectl create secret generic mssql --from-literal=SA_
PASSWORD="Sql2017isfast"
kubectl apply -f storage.yaml
kubectl apply -f sql2017deployment.yaml

 Файлы storage.yaml и sqlloadbalancer.yaml идентичны файлам,
использованным в первом примере этой главы. Файл sql2017de-
ployment.yaml также почти не изменился, за исключением следую-
щего раздела:

 image: mcr.microsoft.com/mssql/server:2017-CU10-ubuntu

 Это означает, что наш новый объект pod с контейнером будет ис-
пользовать образ SQL Server 2017 CU10 для Ubuntu. Если этот образ
не находится на узле, развернутом для объекта pod, k8s сначала дол-
жен будет извлечь образ.

Примечание. На сегодняшний день я не нашел ни одного простого способа предва-

рительного извлечения образов SQL Server на всех узлах k8s, за исключением запус-
ка объектов pod с использованием этих образов и последующего удаления объектов
pod (образ SQL Server при этом остается в кеше на локальном узле). Существуют и
другие методы, и один из них заключается в том, чтобы получить доступ администра-

тора для входа на виртуальные машины узла Linux и непосредственного использо-

вания Docker для извлечения образов.

 Используйте те же методы, что и в первом примере, чтобы убедить-
ся, что объект pod и развернутые образы работают. Например, вы-
полните следующую команду:

 kubectl get all

 Прежде чем вы сможете продолжать выполнять дальнейшие шаги,
вам необходимо убедиться, что в столбце состояния объекта pod, ко-
торое будет указано в возвращаемом результате выполнения коман-
ды, указано Running и для LoadBalancer указан правильный адрес
External-IP.

2. Теперь мы хотим обновить развернутую конфигурацию, изменив
образ с помощью следующей команды или сценария step2_upda-
tesql.sh:

kubectl --record deployment set image mssql-deployment
mssql=mcr.microsoft.com/mssql/server:2017-latest-ubuntu

 k8s выполнит все необходимые действия без участия пользователя,
чтобы остановить текущий контейнер и запустить новый (используя
те же аргументы) с новым образом.

Обновление SQL Server на k8s  283

3. Используйте следующую команду или сценарий step3_checkstatus.
sh, чтобы следить за ходом обновления. Эта команда не будет выпол-
нена до тех пор, пока не будет завершено обновление контейнера с
новым образом и контейнер снова не запустится:

kubectl rollout status deployment mssql-deployment
kubectl rollout history deployment mssql-deployment

 Когда новое развертывание будет завершено, ваш результат будет
выглядеть примерно так:

Waiting for deployment "mssql-deployment" rollout to finish:
0 out of 1 new replicas have been updated...
Waiting for deployment "mssql-deployment" rollout to finish:
0 out of 1 new replicas have been updated...
Waiting for deployment "mssql-deployment" rollout to finish:
0 out of 1 new replicas have been updated...
Waiting for deployment "mssql-deployment" rollout to finish:
0 of 1 updated replicas are available...
deployment "mssql-deployment" successfully rolled out
deployment.extensions/mssql-deployment
REVISION CHANGE-CAUSE
1 <none>
2 kubectl deployment set image mssql-deployment mssql=mcr.
microsoft.com/mssql/server:2017-latest-ubuntu --record=true

4. Вы можете убедиться, что ваш объект pod снова активен, с помощью
этой команды или сценария step4_getpods.sh:

 kubectl get pods -o wide

 Статус объекта pod должен отображаться как Running.

5. SQL Server распознает существующие системные и пользовательские
базы данных, но должен будет выполнить все необходимые шаги
для обновления до новой сборки CU. Поэтому если вы попытае тесь
подключиться к SQL Server слишком быстро, то можете получить
следую щую ошибку:

Sqlcmd: Error: Microsoft ODBC Driver 17 for SQL Server : Login
failed for user ‘sa’. Reason: Server is in script upgrade mode.
Only administrator can connect at this time.

 Попробуйте несколько раз выполнить следующую команду или сце-
нарий step5_testsql.sh, пока не увидите, что запущена новая версия
SQL Server:

284  Глава 8. SQL Server и Kubernetes

SERVERIP=$(kubectl get service | grep mssql-service |
awk {'print $4'})
PORT=31433
sqlcmd -Usa -PSql2017isfast -S$SERVERIP,$PORT -Q"SELECT@@version"

6. Как и в примере с контейнерами в главе 7, вы можете выполнить от-
кат, восстановив предыдущий контейнер. k8s позволяет сделать это,
изменив номер версии. Выполните следующую команду для отка-
та к предыдущей сборке CU или используйте сценарий step6_roll-
backsql.sh:

 kubectl rollout undo deployment mssql-deployment --to-revision=1

7. Выполните следующую команду или сценарий step7_getpods.
sh, чтобы убедиться, что состояние объекта pod снова вернулось в
Running:

 kubectl get pods -o wide

8. После запуска объекта pod выполните следующую команду (или ис-
пользуйте сценарий step8_testsql.sh), чтобы убедиться, что был вы-
полнен откат до SQL 2017 CU10:

SERVERIP=$(kubectl get service | grep mssql-service |
awk {'print $4'})
PORT=31433
sqlcmd -Usa -PSql2017isfast -S$SERVERIP,$PORT -Q"SELECT@@version"

Вы успешно обновили контейнер SQL Server и выполнили откат измене-
ний, используя встроенные возможности k8s для обновления образов из
работающего контейнера.

Используйте сценарий cleanup.sh для очистки всех ресурсов, которые
вы развернули, выполняя практическое задание из этого примера.

Использование Helm Charts
Процесс развертывания объекта pod с контейнером в k8s довольно прост,
но, как вы видели на предыдущих примерах, для его завершения требует-
ся выполнить много шагов. Было бы неплохо развернуть контейнер, такой
как SQL Server, в объекте pod, аналогично тому, как выполняется установка
из диспет чера пакетов (например, yum на RHEL).

Такую возможность предоставляет Helm. Вы можете прочитать о том,
как использовать Helm Charts, перейдя по ссылке https://helm.sh/.

Helm Chart для SQL Server 2017 для Linux доступен по ссылке https://github.

com/helm/charts/tree/master/stable/mssql-linux.
Когда вы установите Helm в своем кластере k8s, то сможете развернуть

SQL Server, используя всего лишь одну команду, аналогичную приведенной
ниже:

Группы доступности SQL Server в k8s  285

helm install --name sql-server stable/mssql-linux --set acceptEula.value=Y
--set sapassword=Sql2019isfast --set edition.value=Developer

Примеры, приведенные по ссылке https://github.com/helm/charts/tree/master/sta-

ble/mssql-linux, показывают, как настроить установку с сохранением объектов
и как подключиться к работающему объекту pod, используя встроенный
LoadBalancer.

Я думаю, что в арсенале Helm есть прекрасные возможности для упроще-
ния работы k8s с SQL Server, поэтому будет интересно продолжить изуче-
ние этой технологии в сочетании с k8s для развертывания SQL Server.

Группы доступности SQL Server в k8s
Встроенное решение высокой доступности для k8s хорошо соответствует
требованиям к доступности SQL Server. Однако при использовании этого
подхода для обеспечения высокой доступности вашей базы данных возни-
кает несколько проблем.

• Если k8s должен развернуть новый объект pod и контейнер, это фак-
тически означает перезапуск SQL Server. Для всех системных и поль-
зовательских баз данных должно выполняться полное восстановле-
ние. В зависимости от того, как была завершена работа контейнера
(и если вы не используете нашу новую возможность ускоренного
восстановления базы данных), это может привести к увеличению
ожидаемого времени запуска нового контейнера SQL Server (даже
если объект pod находится в состоянии Running). Работающий объ-
ект pod означает, что процесс sqlservr запущен, но это не значит, что
SQL Server в действительности доступен.

• Вторая проблема – это время, которое может потребоваться для
извле чения нового образа SQL Server. Если образы SQL Server предва-
рительно не извлекаются на узле, где для SQL Server создается новый
объект pod, это может привести к задержке запуска объекта pod и
временной недоступ ности SQL Server.

• k8s знает только о состоянии контейнера, объекта pod или узла.
Однако k8s ничего не знает о работоспособности программы, запу-
щенной в контейнере. Контейнер SQL Server может быть запущен,
но недоступен (либо база данных недоступна) из-за проблемы непо-
средственно с самим SQL Server.

 Мы создали группы доступности Always On (Always On Availability
Groups), чтобы уменьшить время простоя для обеспечения доступ-
ности в случае сбоя. Частью этой технологии является распознава-
ние условий перехвата управления при отказе за пределами работо-
способности хост-узла для SQL Server. Вы можете прочитать больше
об этих условиях аварийного переключения по ссылке https://docs.

microsoft.com/en-us/sql/database-engine/availability-groups/windows/flexible-auto-

286  Глава 8. SQL Server и Kubernetes

matic-failover-policy-availability-group. Кроме того, мы добавили состояние
отработки отказа для баз данных в группах доступности, о которых
вы можете прочитать подробнее по ссылке https://docs.microsoft.com/

en-us/sql/database-engine/availability-groups/windows/sql-server-always-on-database-

health-detection-failover-option?view=sql-server-ver15.
• Четвертая проблема заключается в том, что если у вас имеется один

объект pod для sqlservr, отсутствует понятие реплики. Только один
объект pod за один раз может получить доступ к системной и пользо-
вательской базам данных. Было бы неплохо, чтобы в решении высо-
кой доступности было задействовано более одного SQL Server, дабы
другие экземпляры (реплики) могли считывать копии данных и все
контейнеры не полагались бы на одно хранилище PVC.

 Поэтому для нас имеет смысл найти способ объединить встроенную
HA k8s с технологией отработки отказа SQL Server, реализуемой при
помощи групп доступности. И мы сделали это во время предвари-
тельного пользовательского тестирования SQL Server 2019. Вы мо-
жете прочитать историю о том, как мы это сделали и как это рабо-
тает, в следующей заметке моего коллеги Сураба Агарвала (Sourabh
Agarwal) по ссылке https://cloudblogs.microsoft.com/sqlserver/2018/12/10/avail-

ability-groups-on-kubernetes-in-sql-server-2019-preview/.
 Методология заключается в том, что мы используем концепцию

StatefulSet для k8s (подробнее см. https://kubernetes.io/docs/concepts/work-

loads/controllers/statefulset/) для развертывания реплик группы доступ-
ности. Мы также будем использовать концепцию оператора для
орга низации развертывания группы доступности (Availability Group)
и выявления сценариев отработки отказа.

 Кроме того, мы разработали это решение для использования служб
LoadBalancer как для первичной, так и для вторичной реплики. Та-
ким образом, приложение может подключиться к первичной репли-
ке с помощью основного LoadBalancer, независимо от того, какая
реп лика была первичной. При этом другое приложение (в част ности,
приложение для создания отчетов) может подключаться к одной или
нескольким вторичным репликам для чтения и использовать k8 для
правильной балансировки нагрузки соединений. Мы также создали
новый контейнер, называемый AG Agent, который размещен внут-
ри объекта pod SQL Server, чтобы помочь обнаруживать и коорди-
нировать сценарии отработки отказа для SQL Server. В сочетании с
концепцией под названием k8s ConfigMap (дополнительную инфор-
мацию вы можете получить по ссылке https://kubernetes.io/docs/tasks/con-

figure-pod-container/configure-pod-configmap/) AG Agent и оператор помогли
бы интегрировать решения, направленные на обеспечение высокой
отказоустойчивости, с кластером k8s для сценариев, выходящих за
рамки отслеживания состояния k8s (контейнер, узел или объект pod).

Резюме  287

 Все эти возможности основаны на компонентах, которые мы созда-
ли во время подготовки к выпуску SQL Server 2019 для предвари-
тельного пользовательского тестирования; мы объявили, что груп-
пы доступности для k8s не войдут в версию SQL Server 2019. Однако
группы доступности являются частью решений HADR для кластеров
больших данных, о которых будет рассказываться в главе 10.

 Я разговаривал с Россом Монстером (Ross Monster), ведущим разра-
ботчиком этой функции. Он сказал мне, что все еще намерен разви-
вать эту функцию в будущем. Росс сказал мне, что основная идея ее
развития такова, чтобы в конечном итоге использовать концепцию
оператора, концепцию агента AG и концепцию StatefulSet, одна-
ко общий дизайн может измениться. После развертывания группы
доступ ности (Availability Group, AG) AG будет вести себя так же, как
AG, не использующая k8s; это, в частности, обеспечит вам возмож-
ность читать вторичные реплики и иметь аналогичные возможности
отработки отказа. Опять же, одно из больших преимуществ k8s с AG
заключается в том, что вам не потребуется устанавливать и обслужи-
вать программное обеспечение отказоустойчивого кластера.

 Если вы хотите выполнить практическое упражнение с использо-
ванием предварительной версии AG с k8s, обратите внимание на
модуль 5 SQL Server 2019 в OpenShift lab (см. https://github.com/microsoft/

sqlworkshops/blob/master/SQLonOpenShift/sqlonopenshift/05_Operator.md).
 Росс объяснил, что планируется включить в число возможностей SQL

Server 2019 с k8s сценарий непрерывного обновления. Таким обра-
зом, вместо того чтобы выполнять переключение контейнеров вруч-
ную, что в конечном итоге увеличивает время простоев, мы могли
бы потенциально представить сценарий работы практически без
простоев для обновления множества контейнеров SQL Server в груп-
пе доступности. Этот дивный новый мир будет очень похож на уже
реализованную нами возможность, которую Red Hat продемонстри-
ровал на конференции Red Hat Summit в мае 2019 года. Вы можете
просмотреть видео этой демонстрации, размещенное по ссылке www.

pscp.tv/RedHatOfficial/1vAGRWYPjngJl, познакомиться с этим новым миром
операторов и увидеть, как обеспечивается практически нулевое вре-
мя простоя SQL Server.

Резюме
Я уверен, что контейнеры и Kubernetes – это будущее распределенных и
масштабируемых вычислений. И мы создали SQL Server, который станет
частью этого будущего. В этой главе вы изучили достаточно основных
понятий Kubernetes (k8s), чтобы разобраться, как развернуть SQL Server в
кластере k8s. Вы также смогли увидеть мощь технологий высокой доступ-
ности (HA), реализованных в k8s, и посмотрели, как это можно использо-

288  Глава 8. SQL Server и Kubernetes

вать в SQL Server. Как вы узнали из главы 7, посвященной контейнерам,
вы можете использовать возможности k8s для обновления контейнера SQL
Server в объекте pod – установки нового накопительного обновления (CU)
и отката выполненных изменений при необходимости. Я кратко познако-
мил вас с Helm Charts, которые представляют новый метод развертывания
объектов pod и контейнеров в k8 с использованием подхода управления
пакетами.

Наконец, я дал вам представление о будущем SQL Server с k8s, посколь-
ку мы интегрируем группы доступности с k8s, чтобы получить решение
высокой доступности для SQL Server, включая все возможности групп
доступнос ти, которые имеются на сегодняшний день. Главы 7 и 8 являются
важными основами для выполнения практических упражнений в главе 10,
посвященной кластерам больших данных SQL Server.

Глава 9
Виртуализация данных

в SQL Server

Виртуализация данных – одна из самых захватывающих возможностей в
SQL Server 2019. В этой главе вы узнаете больше о том, как благодаря тех-
нологии Polybase в SQL Server 2019 появилась виртуализация данных. Эта
глава наряду с главами 6, 7 и 8 закладывает основы для изучения кластеров
больших данных SQL Server, которым посвящена глава 10.

Что такое Polybase?
Polybase – это инновационная технология, представленная в SQL Server 2016
и усовершенствованная в SQL Server 2019, позволяющая решить проблему
перемещения данных. Перемещение данных обычно включает использо-
вание дорогостоящих и сложных процессов извлечения, преобразования и
загрузки данных (Extract, Transform, and Load, ETL) из других источников
данных в SQL Server. Polybase решает эту проблему, используя концепцию
виртуализации данных (Data Virtualization). Виртуализация данных – тер-
мин, который я буду обсуждать и разъяснять по мере продвижения вперед.
В этой главе я подробно расскажу о виртуализации данных.

Здесь я поведаю вам историю возникновения Polybase и покажу, как она
реализует виртуализацию данных. Я расскажу о том, как Polybase устрое-
на «внутри», и о типичном сценарии работы с Polybase с использованием
внешних таблиц. И как и в большинстве глав этой книги, мы будем исполь-
зовать примеры, чтобы показать вам детали того, как применять Polybase
для ваших потребностей в виртуализации данных.

Вы можете использовать нашу документацию в качестве руководства по
Polybase. Эта документация опубликована по ссылке https://docs.microsoft.com/

en-us/sql/relational-databases/polybase/polybase-guide.

История Polybase
Примерно в 2011 году доктор Дэвид ДеВитт (Dr. David DeWitt) и его

команда создали новый проект под названием Polybase (веб-сайт это-
го проекта размещен по ссылке http://gsl.azurewebsites.net/Projects/Polybase.aspx).
В эту команду входили Римма Нехме (Rimma Nehme), ныне известная бла-

290  Глава 9. Виртуализация данных в SQL Server

годаря проекту Azure CosmosDB, и Алан Хэлверсон (Alan Halverson) из лабо-
ратории Jim Gray Systems Lab, входящей в состав подразделения Microsoft
Research. Целью данного проекта было создание нового способа доступа
к данным в системах Hadoop, в котором отсутствовала бы необходимость
программирования заданий MapReduce (подробнее о MapReduce, который
очень популярен среди тех, кто использует Hadoop, см. https://en.wikipedia.org/

wiki/MapReduce).
Я подробно расспросил Дэвида, который сейчас работает в MIT, об исто-

рии Polybase. Я спросил его, что натолкнуло его на мысль создать новый
способ использования MapReduce. Он дал мне ссылку на заметку в бло-
ге, которую написали он и Майкл Стоунбрейкер (Michael Stonebraker). Вы
можете прочитать эту заметку, перейдя по ссылке https://homes.cs.washington.

edu/~billhowe/mapreduce_a_major_step_backwards.html. В ней названо несколько при-
чин, в силу которых MapReduce представляет собой ужасный подход к
решению проблемы доступа к данным.

Впоследствии Дэвид и его команда создали проект Polybase для исполь-
зования технологии Parallel Data Warehouse (PDW) в платформах Microsoft
для доступа к большим данным в системах Hadoop. PDW, теперь называе-
мый Analytics Platform System (APS), является предшественником облачно-
го хранилища данных Azure SQL Data Warehouse. Как говорит Дэвид: «…мы
могли бы подключить PDW к HDFS и использовать параллельный запрос
PDW, чтобы дать нашим клиентам возможность применять стандартный
SQL вместо MapReduce. Это даст клиентам возможность получать доступ
к своим реляционным данным и внешним таблицам, хранящимся в HDFS,
используя только один запрос».

Команда написала статью, где рассказала об этой технологии. Статья
доступна по ссылке http://gsl.azurewebsites.net/portals/0/users/projects/polybase/

polybasesigmod2013.pdf. Этот документ был опубликован в материалах конфе-
ренции ACM SIGMOD 2013 года. Polybase впервые появилась как функция
в PDW в середине 2012 года, и она до сих пор существует и используется.

На рис. 9.1 представлена визуальная схема оригинальной концепции
Polybase.

Перенесемся к моменту подготовки к выпуску SQL Server 2016. Если
Polybase может использоваться через SQL в PDW, почему бы не использо-
вать эту технологию с SQL Server? В SQL Server 2016 мы добавили поддерж-
ку Polybase для доступа к данным в системах Hadoop с помощью T-SQL.
Я часто называю эту функцию «классическая Polybase» (это мой собствен-
ный термин, а не официальный термин Microsoft). Вы можете использо-
вать T-SQL для создания так называемой внешней таблицы для отображе-
ния файлов HDFS, а затем выполнить запрос к этой внешней таблице, как
и к любой другой таблице. «Запрос» будет преобразован в Java-программу
MapReduce для запуска в целевой системе Hadoop.

Я присоединился к команде разработчиков сразу после выхода версии
SQL Server 2016 и никогда не видел, чтобы Polybase пользовалась популяр-

Что такое Polybase?  291

ностью у наших пользователей. Я точно не знаю, почему так произошло,
но, возможно, одна из причин может заключаться в том, что пользователи
должны были установить Java – обычно это пакет Java Runtime Environment
(JRE), выпускаемый Oracle, – на тот же компьютер, что и SQL Server. Воз-
можно также, что в 2016 году пользователи SQL Server просто не были гото-
вы к интеграции с Hadoop, а пользователи Hadoop хотели дистанцировать-
ся от реляционных баз данных.

В 2016 году Microsoft приобрела компанию под названием Metanautix, о
которой я упоминал во вступительной части данной книги. Благодаря это-
му приобретению появилась технология ODBC для доступа к различным
источникам данных, таким как SQL Server, Oracle, Teradata и MongoDB.
Трэвис Райт (Travis Wright) и Слава Окс (Slava Oks) увидели преимущест-
во, которое можно получить, применяя эти технологии, и поэтому они
расширили возможности Polybase в SQL Server 2019, чтобы пользовате-
ли могли применять внешние таблицы для доступа не только к Hadoop,
но также и к SQL Server, Oracle, Teradata и MongoDB. И что еще сильнее
поразит вас, мы добавили поддержку доступа к любому источнику дан-
ных с помощью драйвера ODBC на ваш выбор. Я называю эту новую воз-
можность Polybase++ (опять же, это мой термин, а не официальный тер-
мин, используемый Microsoft).

Рис. 9.1. Оригинальная концепция Polybase,
разработанная Jim Grey Systems Lab

Что такое виртуализация данных?
Я не затратил много времени на погружение в тему Polybase для SQL

Server 2016, поскольку был знаком с ее основными концепциями. Когда же
я начал участвовать в обсуждениях и подготовке обучающих материалов
по SQL Server 2019, то, услышав термин «виртуализация данных» (я думаю,
что впервые услышал этот термин от Трэвиса Райта), был вынужден глубже
погрузиться в Polybase.

Результаты

БД

SQL

SQL
Server
PWD

HDFS

292  Глава 9. Виртуализация данных в SQL Server

Существует много различных определений виртуализации данных, и
вы можете прочитать «официальное» определение в Википедии по ссылке
https://en.wikipedia.org/wiki/Data_virtualization. Мне нравится следующая формули-
ровка, в которой говорится: «В отличие от традиционного процесса извле-
чения, преобразования, загрузки (Extract, Transform, Load – ETL), данные
остаются на месте, и доступ к исходной системе для данных предоставляет-
ся в режиме реального времени. Этот подход снижает риск возникновения
ошибок данных, исключает лишнюю нагрузку на систему, появляющуюся
вследствие перемещений данных, которые могут никогда не использо-
ваться, и не пытается навязать единую модель данных».

Ключ к виртуализации данных – это концепция отсутствия перемеще-
ния данных. Для ясности, «данные» в этом случае не должны перемещаться
из источника в их исходном формате. Вместо этого данные извлекаются с
помощью запроса или же выполняются запросы к источнику данных.

В рамках общей стратегии SQL Server 2019 по внедрению решения для
виртуализации данных мы можем сказать, что SQL Server является пре-
восходным центром виртуализации данных. Другими словами, SQL Server
2019 может стать центром данных (data hub) для вашей организации.

На рис. 9.2 приведен слайд презентации, часто используемый при
обсуждении общей концепции Polybase, виртуализации данных (Data
Virtualization) и SQL Server 2019.

Рис. 9.2. Polybase и виртуализация данных в SQL Server 2019

Посмотрите на значки на этом рисунке. SQL Server 2019 позволяет выпол-
нять запросы T-SQL к внешним таблицам на основе разнообразных источ-
ников данных, начиная от HDFS и Oracle и заканчивая CosmosDB и SAP
HANA. И наиболее радикальным изменением является то, что вы можете

Что представляет собой Polybase
в SQL Server?
 Механизм распределенных вычислений,

интегрированный с SQL Server
 Запросы к данным с использованием T-SQL там, где эти

данные находятся
 Распределенная, масштабируемая производительность

запросов
 Развертывание вручную / развертывание с SQL Server
 Автоматическое развертывание / оптимизация для

кластеров больших данных

Аналитика

> Переключение на простые обновления

«Это всё про виртуализацию
данных»

SQL Server

T-SQL

NoSQL

Приложения

Внешние таблицы PolyBase

Реляционные базы данных Большие данныеODBC

HDFS

Microsoft
SQL Server

Cosmos DB
Excel

Что такое Polybase?  293

создавать и выполнять запросы T-SQL ко всем этим ресурсам и присоеди-
нять их к локальным таблицам SQL Server или к любой другой внешней
таблице, представляющей любой из этих других источников данных.

На данном слайде я попытаюсь упростить определение того, что такое
Polybase:

• механизм распределенных вычислений.
 Polybase содержит программное обеспечение, изначально присущее

первоначальному дизайну PDW, которое интегрировано с SQL Server
и содержит собственный механизм распределенных вычислений. Об
этом компоненте будет рассказываться в следующем разделе «Как
работает Polybase»;

• запросы к данным с использованием T-SQL там, где эти данные
находятся.

 Это преимущество виртуализации данных – возможность выпол-
нять запросы T-SQL к локальному серверу SQL и запросы к данным
из других источников, не перемещая их. Еще один момент, касаю-
щийся Polybase для SQL Server 2019: программное обеспечение, не-
обходимое для запросов к SQL Server, Oracle, Teradata и MongoDB,
уже включено в состав дистрибутива SQL Server. Никакого дополни-
тельного клиентского программного обеспечения не требуется!

• распределенная, масштабируемая производительность запросов.
 Polybase предоставляет нечто большее, чем просто метод «подклю-

чения» к другим источникам данных; это возможно благодаря свя-
занным серверам. Поскольку Polybase является интегрированным
механизмом распределенных вычислений, он может обеспечить
масштабируемую производительность запросов. А концепция, на-
зываемая масштабируемыми группами, позволяет распределять за-
просы к источникам данных, таким как Hadoop, SQL Server и Oracle;

• развертывание вручную / развертывание с SQL Server.
 Все, что было сказано о Polybase, уже прозвучало весьма впечатля-

юще; так неужели здесь нет никаких подводных камней? Что ж, на-
стройка Polybase требует некоторых усилий, особенно если вы хотите
настроить масштабируемые группы в Windows. После развертыва-
ния Polybase настройка не требуется. При настройке подключений к
источникам данных требуется выполнить определенные действия,
поскольку Polybase хороша только в том случае, если вы можете по-
лучить доступ и подключиться к источникам данных, которые будут
использоваться с помощью внешних таблиц;

• автоматическое развертывание / оптимизация для кластеров
больших данных.

 Как вы узнаете из главы 10, кластеры больших данных SQL Server
обеспечат виртуализацию данных с развернутым компонентом

294  Глава 9. Виртуализация данных в SQL Server

Polybase и развернутым кластером Hadoop с оптимизированным до-
ступом к данным в HDFS.

Как работает Polybase
Я считаю, что понимание того, как работает SQL Server, позволяет вам
использовать его наиболее эффективно. Если вы видели мои выступления
на различных конференциях, таких как PASS Summit, то знаете, что я обла-
даю необходимым набором компетенций, чтобы представлять внутренние
аспекты функциональности SQL Server. Поэтому, когда меня попросили
подготовить несколько сессий на конференции SQL Bits 2019 в Манчестере
(Великобритания), я выбрал Polybase в качестве темы выступлений. Я хотел
рассказать о том, как Polybase работает внутри компании, особенно о том,
какую архитектуру мы создали для доступа к источникам данных, таким
как Oracle. У меня был большой опыт работы с SQL Server, поэтому я был
очень хорошо знаком с подробностями относительно работы со связан-
ными серверами. Чем же отличается Polybase? Я приведу подробное срав-
нение этих технологий далее в главе. Хорошим дополнением к этой главе
будет мой доклад на SQL Bits на эту тему, который вы можете найти по
ссылке https://sqlbits.com/Sessions/Event18/Inside_SQL_Server_2019_Polybase.

Схема работы Polybase
Прежде чем я перейду к описанию всех программных компонентов, кото-

рые необходимо развернуть совместно с SQL Server для обеспечения рабо-
ты с Polybase, вам необходимо познакомиться со схемой работы Polybase.

На рис. 9.3 представлен слайд, который я часто использую, чтобы пока-
зать схему работы Polybase с SQL Server.

Далее я объясню каждую из частей этой схемы.

• Настройка и конфигурирование Polybase. Более подробно о на-
стройке и конфигурировании Polybase я расскажу в разделе «Подго-
товительные шаги для использования примеров, иллюстрирующих
применение Polybase и SQL Server». Вы также можете прочитать о
настройке Polybase для Windows по ссылке https://docs.microsoft.com/en-

us/sql/relational-databases/polybase/polybase-installation и для Linux по ссылке
https://docs.microsoft.com/en-us/sql/relational-databases/polybase/polybase-linux-

setup.
• Настройка аутентификации. Вам необходимо настроить способ

аутентификации для подключения к внешнему источнику данных.
Polybase поддерживает только концепцию базовой аутентифика-
ции, которая означает, что вы должны хранить определенный тип
IDENTITY (или пользователя) и SECRET (пароль или ключ) в SQL
Server для доступа к внешнему источнику данных. Это объект, назы-
ваемый учетными данными в базе данных (database scoped credential),

Как работает Polybase  295

и он зашифрован с помощью объекта SQL Server MASTER KEY. Вы
можете прочитать об учетных данных в базе данных, перейдя по
ссылке https://docs.microsoft.com/en-us/sql/t-sql/statements/create-database-scoped-

credential-transact-sql.

Рис. 9.3. Схема работы Polybase с SQL Server

• Внешний источник данных (EXTERNAL DATA SOURCE). Рассмат-
ривайте внешний источник данных как объект T-SQL, аналогичный
источнику данных ODBC. Создайте его один раз для источника дан-
ных, который вы будете использовать для одного или нескольких
определений внешних таблиц EXTERNAL TABLE. В примерах из этой
главы вы увидите, что вам потребуется информация о подключе-
нии к внешнему источнику данных. Вы можете прочитать о внеш-
них источниках данных по адресу https://docs.microsoft.com/en-us/sql/t-sql/

statements/create-external-data-source-transact-sql. Значение CREDENTIAL бу-
дет именем созданной вами учетной записи в базе данных.

• Формат внешних файлов (EXTERNAL FILE FORMAT). Реляцион-
ные данные и даже данные noSQL имеют определенную структуру;
обычно они представлены в виде столбцов или полей. Данные, храня-
щиеся в системах Hadoop, как правило, полуструктурированы. Чтобы
SQL Server имел доступ к данным в файлах в HDFS, необходимо ука-
зать формат, который определяется параметром формат внешних
файлов (EXTERNAL FILE FORMAT). Эта спецификация не нужна для
таких источников данных, как Oracle. Вы можете прочитать о фор-
мате внешних файлов, перейдя по ссылке https://docs.microsoft.com/en-us/

sql/t-sql/statements/create-external-file-format-transact-sql.

Использование Polybase в SQL Server: ВНЕШНЯЯ ТАБЛИЦА в T-SQL (EXTERNAL TABLE)

Непросто без BDC

метаданные

Настройка
и конфигурирование

Polybase

Учетная запись
и пароль

Только для HDFS

И объединение с любой
другой таблицей или
внешней таблицей

Операция вставки (INSERT) только для HDFS

Настройка
аутентификации

Создание ВНЕШНЕГО
ИСТОЧНИКА ДАННЫХ

(EXTERNAL DATA SOURCE)

Создание ФОРМАТА
ВНЕШНИХ ФАЙЛОВ

(EXTERNAL FILE FORMAT)

Создание
ВНЕШНЕЙ ТАБЛИЦЫ

(EXTERNAL TABLE)

Создать объекты
статистики для

ключевых столбцов

Выполнение запросов
как к любой другой

таблице

Данные в потоковом режиме

Данные
находятся

здесь

HDFS
Microsoft
SQL Server

Cosmos DB

296  Глава 9. Виртуализация данных в SQL Server

• Внешняя таблица (EXTERNAL TABLE). Внешние таблицы можно
рассматривать как виртуальные таблицы SQL Server (более извест-
ные как представление (view)). Это означает, что внешние таблицы
работают как таблицы SQL Server – метаданные, описывающие таб-
лицы, хранятся в представлениях каталога (catalog views), но сами
данные или хранилище внешних таблиц находятся непосредствен-
но в источнике данных. Вы можете прочитать о внешних табли-
цах, перейдя по ссылке https://docs.microsoft.com/en-us/sql/t-sql/statements/

create-external-table-transact-sql. Параметр DATA_SOURCE при создании
внешней таблицы будет именем внешнего источника данных. Для
внешних таблиц HDFS вы укажете формат внешнего файла, который
создали, используя параметр FILE_FORMAT.

• Объекты статистики (Statistics). Чтобы помочь обработчику за-
просов и механизму вычислений Polybase создать оптимальный
план запроса для внешних таблиц, вы можете определить данные
статистики, хранящиеся в SQL Server, на основе столбцов из внеш-
них таблиц. Вы можете прочитать о создании объектов статистики
по ссылке https://docs.microsoft.com/en-us/sql/t-sql/statements/create-statistics-

transact-sql.
• Запрос. После определения всех этих объектов можно выполнять

запросы T-SQL к внешним таблицам и даже выполнять операции их
соединения (join) с локальными таблицами SQL Server либо другими
внешними таблицами. Ключевая концепция заключается в том, что
данные размещены во внешнем источнике данных и не загружают-
ся в SQL Server; а в базе данных SQL Server хранятся лишь метадан-
ные и объекты статистики. Запросы к внешним таблицам доступны
только для чтения везде, кроме Hadoop. SQL Server поддерживает
процессы получения, внесения и обработки данных для последую-
щего их использования или хранения в своей базе данных или встав-
ку во внешние таблицы на основе Hadoop. Вы можете прочитать о
запросах Polybase, перейдя по ссылке https://docs.microsoft.com/en-us/sql/

relational-databases/polybase/polybase-queries.

Архитектура SQL Server 2019 Polybase
Теперь, когда мы рассмотрели объекты и схему работы Polybase для

запросов к внешним таблицам, я перейду к описанию программных ком-
понентов, которые обеспечивают эту возможность, прежде чем вы присту-
пите к практическому использованию данной возможности.

Примечение. Я глубоко признателен Стюарту Падли (Stuart Padley), Дэвиду Кризу
(David Kryze), Джеймсу Роуланду-Джонсу (James Rowland-Jones) и Калифорнийскому
университету за информацию, относящуюся к внутренним компонентам Polybase, ко-

торая использовалась в этом разделе главы.

Как работает Polybase  297

Как работают внешние таблицы
На рис. 9.4 показан первый слайд со схемой, которую я привожу, когда

рассказываю о том, как работает Polybase.

Рис. 9.4. Как работают внешние таблицы

При использовании и изучении Polybase важно понимать, что SQL Server
хранит только метаданные для внешних источников данных (EXTERNAL
DATA SOURCE) и внешних таблиц (EXTERNAL TABLE), а не сами данные.
Пользователи выполняют запросы T-SQL, ссылаясь на внешние таблицы
так же, как на таблицы SQL Server. Внешние таблицы связаны с внешни-
ми источниками данных, указывающими на место, где в действительности
находятся данные. SQL Server как концентратор данных (data hub) прини-
мает запрос к внешней таблице и отправляет новый запрос во внешний
источник данных, используя драйвер, соответствующий этому источнику.
Результаты отправляются обратно на SQL Server и в конечном итоге отобра-
жаются пользователю, выполнившему запрос. Другим аспектом запросов к
внешним таблицам является концепция «передачи вниз» (pushdown).

Внешняя фильтрация, или «передача вниз» (pushdown), – это концепция
передачи фильтрации данных во внешний источник данных. На рис. 9.4,
если внешним источником данных была база данных Azure SQL Database,
а в запросе использовалось условие WHERE, определяющее критерии
запроса, Polybase попытается отправить запрос в базу данных Azure SQL
Database, включая оператор WHERE (это может быть неявное выражение
WHERE для всех источников данных), так что определение минимального
числа результирующих строк выполняется на внешнем источнике данных.

Внешняя таблица
(EXTERNAL TABLE)

Внешний источник
данных

(EXTERNAL DATA SOURCE)

T-SQL

запрос результаты

Таблица

 (TABLE)

298  Глава 9. Виртуализация данных в SQL Server

Противоположный (и менее эффективный) подход заключается в том, что-
бы вернуть все строки из внешней таблицы в SQL Server и позволить меха-
низму SQL Server выполнять фильтрацию строк, определяя, какие стро-
ки необходимы для получения результата запроса. Вы можете прочитать
больше о внешней фильтрации для Polybase по ссылке https://docs.microsoft.

com/en-us/sql/relational-databases/polybase/polybase-pushdown-computation.

Автономный экземпляр Polybase
Давайте углубимся в архитектуру Polybase, представленную на рис. 9.5.

Рис. 9.5. Архитектура головного узла Polybase

Я рассмотрю эту схему подробнее в контексте Windows, а затем расскажу,
как мы реализуем ее в Linux.

При развертывании Polybase в Windows вам будет предложено два вариан-
та:

• Standalone PolyBase-enabled instance (Автономный экземпляр с
поддержкой PolyBase).

 Выберите этот параметр, если хотите, чтобы для Polybase использо-
вался только один экземпляр SQL Server. Все программное обеспече-
ние, необходимое для Polybase, будет установлено на этом экземпля-
ре и будет считаться головным узлом;

• Use the SQL Server instance as part of a PolyBase scale-out group
(Используйте экземпляр SQL Server как часть масштабируемой
группы PolyBase).

 Используйте этот вариант, чтобы настроить так называемую масшта-
бируемую группу. Далее я расскажу о масштабируемых группах более
подробно.

Архитектура Polybase в SQL Server

Механизм SQL

HDFS

Microsoft
SQL Server

Cosmos DB

«Головной» узел

Служба перемещения
данных Polybase

Ваши источники данных

Механизм
Polybase

DW dbs

tempdb

mpdwsvc.exe

Контроль и
выполнение

Поток
данных

Как работает Polybase  299

На рис. 9.5 представлен рабочий сценарий для автономного экземпляра
с поддержкой PolyBase. Ниже приведено описание всех элементов этой схе-
мы.

• Механизм Polybase (Polybase Engine). Это служба Windows, кото-
рая включает исполняемый модуль mpdwsvc.exe. Обратите внима-
ние на схему, приведенную на рисунке: Polybase Engine отвечает за
контроль и выполнение. Другими словами, Polybase Engine явля-
ется координатором для выполнения запросов к внешним таблицам.
Механизм SQL Server будет координировать выполняемые действия
с механизмом Polybase. Polybase Engine фактически включает ис-
полняемый программный код Polybase в PDW для поддержки внеш-
них таблиц. Исполняемый файл mpdwsvc.exe выполняется службой
Windows с использованием параметра -dweng. Связь между Polybase
Engine и SQL Server осуществляется через локальный именованный
канал.

• Служба перемещения данных Polybase (Polybase Data Move-
ment Service, DMS). Как и следует из названия, за данные отвечает
Polybase DMS. Это означает, что Polybase DMS будет выполнять за-
просы к внешним источникам данных и передавать результаты об-
ратно в механизм SQL Server.

 Что интересно, Polybase DMS также реализована с помощью исполня-
емого файла mpdwsvc.exe, но с другим параметром -dms. На сервере
головного узла вы должны увидеть два процесса с именем mpdwsvc.
exe. Это также означает, что Polybase DMS – программа, которая за-
гружает все драйверы ODBC или запускает код Java для MapReduce
для систем Hadoop. Polybase DMS также взаимодействует с механиз-
мом SQL Server и механизмом Polybase через именованные каналы.
Служба Polybase DMS будет передавать данные по именованному ка-
налу с помощью механизма SQL Server для отправки результатов из
запросов к внешним данным.

• DW dbs – для Polybase требуются собственные метаданные. При
установке Polybase вы найдете следующие базы данных, установлен-
ные на SQL Server: DWConfiguration, DWDiagnostics и DWQueue. Вы
должны рассматривать эти базы данных как системные базы данных
для Polybase, поэтому они должны быть доступны, чтобы Polybase
могла функционировать. Я не буду вдаваться в подробности того, что
находится в каждой базе данных, и в официальной документации
не приведено никаких сведений об этом. Однако я нашел интерес-
ного пользователя, который писал в своем блоге о том, как «ныр-
нуть» внутрь этих баз данных, по ссылке https://36chambers.wordpress.

com/2019/04/03/polybase-revealed-the-dwdatabases/.
• Tempdb – Polybase может использовать tempdb для промежуточной

обработки запросов при выполнении запросов к внешним таблицам.

300  Глава 9. Виртуализация данных в SQL Server

Кроме того, чтобы обеспечить правильную обработку потоков дан-
ных, Polybase создаст таблицы tempdb в качестве «хранилища дан-
ных» для потоковой передачи данных (хотя она может никогда не
использовать ее). В моей практике использования Polybase я не на-
блюдал сколько-нибудь значительного применения tempdb. Я прос-
то хочу, чтобы вы знали об использовании базы данных tempdb – по-
этому вы не удивитесь, увидев в Polybase активность, связанную с
временными таблицами.

В состав поставляемого пакета Polybase также входят ряд представле-
ний каталога (catalog views) и представлений динамического управления
(Dynamic Management Views, DMV). Некоторые из них я буду использовать
в примерах в данной главе. Список этих представлений каталога и пред-
ставлений динамического управления можно найти по ссылке https://docs.

microsoft.com/en-us/sql/relational-databases/polybase/polybase-troubleshooting.

Масштабируемая группа Polybase
Если вы решите настроить масштабируемую группу Polybase, можно

использовать несколько экземпляров SQL Server для масштабирования
обработки запросов; см. рис. 9.6, где представлена конфигурация масшта-
бируемой группы.

Рис. 9.6. Масштабируемая группа Polybase

Масштабируемые группы Polybase позволяют включить использова-
ние Polybase для других экземпляров SQL Server для обработки запросов с
горизонтальным масштабированием. Другие экземпляры SQL Server, кото-
рые при этом работают с Polybase, называются вычислительными узлами.
Обратите внимание, что на вычислительных узлах Polybase Engine неакти-

Архитектура Polybase в SQL Server

Механизм SQL

HDFS

Microsoft
SQL Server

Cosmos DB

«Головной» узел

Служба перемещения
данных Polybase

Ваши источники данных

Механизм
Polybase

DW dbs

tempdb

mpdwsvc.exe

Контроль и
выполнение

Поток
данных

Механизм SQL

«Вычислительный» узел

Служба перемещения
данных Polybase

Механизм
Polybase

DW dbs

tempdb

Механизм SQL

«Вычислительный» узел

Служба перемещения
данных Polybase

Механизм
Polybase

DW dbs

tempdb

Как работает Polybase  301

вен. В Windows служба Polybase Engine установлена, но она отключена и не
используется. Polybase Engine на головном узле выполняет всю координа-
цию на всех узлах, а службы Polybase DMS отвечают за весь обмен данными
на каждом узле. Причина, по которой мы устанавливаем Polybase Engine
на всех узлах, заключается в том, что вычислительный узел при необходи-
мости может стать головным узлом (например, если на текущем головном
узле возникла проблема).

Использование масштабируемых групп наиболее эффективно, когда
SQL Server решает, что применение нескольких экземпляров может уско-
рить запрос к внешней таблице. Это может быть очень мощным рабочим
инструментом для систем Hadoop, и масштабируемые группы создавались
с учетом распределенных систем Hadoop. Для других источников данных,
таких как SQL Server или Oracle, Polybase может обнаруживать разделы в
этих источниках и использовать масштабируемую группу для запросов к
каждому разделу в целевом объекте.

Мы называем эту возможность чтением с возможностью масштабирова-
ния, о котором вы можете прочитать по ссылке https://docs.microsoft.com/en-us/

sql/relational-databases/polybase/polybase-scale-out-groups?view=sql-server-ver15#scale-out-
reads.

Обработка запросов и Polybase
Одним из замечательных нововведений Polybase является то, что запро-

сы к внешним таблицам встроены в процессор запросов SQL Server. Это
означает, что обработчик запросов SQL Server понимает, когда он работает
с внешней таблицей, и создает правильные сценарии плана выполнения
для отправки в Polybase Engine, чтобы можно было поддерживать такие
операции, как внешняя фильтрация данных (pushdown).

Далее в этой главе я покажу пример того, как выглядит оператор удален-
ного запроса для запроса к внешней таблице в механизме SQL Server.

Как это работает в Linux?
SQL Server 2019 в Linux поддерживает только автономный экземпляр

Polybase (мы будем поддерживать концепцию масштабируемой группы с
кластерами больших данных SQL Server, об этом будет рассказываться в
главе 10). Кроме того, Polybase для SQL Server 2019 в Linux не поддерживает
универсальный коннектор ODBC для источников данных.

Поэтому архитектура Polybase подразумевает внедрение механизма
Polybase Engine и службы перемещения данных Polybase (Polybase Data
Movement Service) в процесс sqlservr в Linux с использованием SQLPAL
(более подробно об SQLPAL рассказывается в главе 6).

В то время когда я писал эту главу, мы завершали работу над выпуском
версии SQL Server 2019, но все еще не поддерживали внешние таблицы
Hadoop в SQL Server для Linux (за исключением кластеров больших дан-

302  Глава 9. Виртуализация данных в SQL Server

ных SQL Server). Я ожидаю, что эта функция войдет в официальный выпуск
SQL Server 2019; однако в ее основе лежат те же концепции, что и в версии
для Windows. Возможно, у нас будет отдельный пакет для Linux для этой
возможности; это должно быть отражено в документации, размещенной
по ссылке https://docs.microsoft.com/en-us/sql/relational-databases/polybase/polybase-

linux-setup.

Чем это отличается от Azure?
В настоящее время Polybase реализована как функция в SQL Server,

хранилище данных Azure SQL Data Warehouse и Analytics Platform System
(APS, ранее известной как Parallel Data Warehouse). Однако возможности
Polybase, предоставляемые для каждого из этих решений, различны.

Примечание. Объект EXTERNAL TABLE существует в базе данных Azure SQL Database,
но сам по себе он не является функцией Polybase (на момент выхода версии SQL
Server 2019). Внешняя таблица в базе данных Azure SQL Database используется для
поддержки эластичных запросов. Вы можете узнать больше об эластичных запросах
из документации, опубликованной по ссылке https://docs.microsoft.com/en-us/azure/

sql-database/sql-database-elastic-query-getting-started.

Polybase для хранилища данных Azure SQL Data Warehouse использует
внешние таблицы для доступа к Hadoop или HDFS с такими источниками,
как хранилище BLOB-объектов Azure (Azure Blob Storage) или озеро дан-
ных Azure (Azure Data Lake). Такие источники, как SQL Server, Oracle и т. д.,
не поддерживаются для хранилища данных Azure SQL Data Warehouse. Вы
можете прочитать больше об использовании Polybase с хранилищем дан-
ных Azure SQL Data Warehouse, перейдя по ссылке https://docs.microsoft.com/

en-us/sql/t-sql/statements/create-external-data-source-transact-sql.
Polybase для APS похож на хранилище данных Azure SQL Data Warehouse,

но больше предназначен для предоставления доступа к «локальным»
системам Hadoop. Вы можете найти информацию о Polybase для APS по
ссылке https://docs.microsoft.com/en-us/sql/t-sql/statements/create-external-table-transact-

sql?view=aps-pdw-2016-au7.

Подготовительные шаги для использования
примеров, иллюстрирующих применение
Polybase и SQL Server
Теперь перейдем к практическим примерам, размещенным в оставшей-
ся части главы. Сначала я дам вам несколько советов по развертыванию и
настройке Polybase, а затем несколько советов, относящихся к практиче-
скому использованию примеров.

Подготовительные шаги для использования примеров, иллюстрирующих...  303

Настройка и подключение Polybase
Чтобы установить Polybase для Windows, вы можете выполнить действия,

описанные в документации по ссылке https://docs.microsoft.com/en-us/sql/relational-

databases/polybase/polybase-installation. Процесс установки очень прост, если
выбрать установку автономного экземпляра Polybase. Один из вариантов,
который вы должны выбрать, – это использовать ли Java-коннектор для
HDFS (Java connector for HDFS). Если вы устанавливаете Polybase для под-
держки внешних таблиц для HDFS, то вам будет предложен выбор приме-
нять по умолчанию Open Java – пакет, который мы поставляем с SQL Server
2019, или установить свою собственную версию. Пакет Open Java, который
мы предоставляем, основан на Zulu Java, о которой вы можете прочитать
по ссылке https://cloudblogs.microsoft.com/sqlserver/2019/07/24/free-supported-java-in-sql-

server-2019-is-now-available/.
После установки Polybase в Windows мы установим серию драйверов

ODBC (которые поместим в каталог binn\Polybase\ODBC Drivers). Эти
драйверы поддерживают встроенные коннекторы для SQL Server, Oracle,
Teradata и MongoDB.

После установки компонента Polybase необходимо включить его с
помощью sp_configure, как описано в документации, размещенной
по ссылке https://docs.microsoft.com/en-us/sql/relational-databases/polybase/polybase-

installation?view=sql-server-ver15#enable.
В SQL Server для Linux мы предоставляем отдельный пакет для установ-

ки Polybase; о том, как его настроить и использовать, вы можете прочитать
по ссылке https://docs.microsoft.com/en-us/sql/relational-databases/polybase/polybase-linux-

setup.
Для групп с горизонтальным масштабированием процесс настройки

становится очень интересным. Поскольку в настоящее время масштабиру-
емые группы поддерживаются только в Windows, это единственная конфи-
гурация SQL Server 2019, которую вам нужно поддерживать.

Мой опыт развертывания масштабируемых групп был довольно слож-
ным. Вы можете прочитать инструкцию по развертыванию, подробно
описывающую все необходимые шаги, в документации по ссылке https://

docs.microsoft.com/en-us/sql/relational-databases/polybase/configure-scale-out-groups-

windows?view=sql-server-ver15.
Для начала позвольте мне дать вам несколько советов, прежде чем вы

приступите к процедуре развертывания:

• вам потребуется домен Windows; поэтому если у вас нет контроллера
домена, вам необходимо его настроить;

• все службы Windows для масштабируемой группы Polybase должны
использовать одну и ту же учетную запись службы домена. Вы долж-
ны настроить эту конфигурацию при установке или с помощью дис-
петчера конфигурации SQL Server;

304  Глава 9. Виртуализация данных в SQL Server

• сначала вам придется установить параметры конфигурации на го-
ловном узле и вычислительном узле. Когда вы впервые устанавли-
ваете Polybase на все узлы с помощью программы установки и вы-
бираете вариант Use the SQL Server instance as part of a PolyBase
scale-out group (Использовать экземпляр SQL Server как часть
масштабируемой группы PolyBase), все узлы являются кандида-
тами для выбора в качестве головного узла. Для правильной работы
Polybase вам необходимо выбрать один из ваших компьютеров в ка-
честве головного узла. Затем для других узлов вам нужно запустить
хранимую процедуру, чтобы настроить их как вычислительные узлы,
перечислив имя сервера и порта головного узла (обратите внимание
на порт, который вы выбрали во время установки, потому что он вам
здесь понадобится). Процесс присоединения в качестве вычисли-
тельного узла описан в документации, доступной по ссылке https://

docs.microsoft.com/en-us/sql/relational-databases/polybase/configure-scale-out-groups-
windows?view=sql-server-ver15#add-other-sql-server-instances-as-compute-nodes;

• вам необходимо включить Polybase с помощью sp_configure на всех
узлах и перезапустить SQL Server;

• вам также необходимо перезапустить все службы Polybase на всех уз-
лах. Фактически, если хранимая процедура не делает этого автома-
тически, вам нужно остановить Polybase Engine на вычислительных
узлах. Если все работает хорошо, служба Polybase Engine будет отклю-
чена на вычислительных узлах, но вы должны дважды проверить это;

• выполните запрос DMV dm_exec_compute_nodes, чтобы убедиться, что
все узлы имеют правильный статус HEAD или COMPUTE. Подробная
информация об этом DMV доступна в документации по ссылке https://

docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/

sys-dm-exec-compute-nodes-transact-sql.

Выполнение практических упражнений
Рассмотрим возможный сценарий для компании WideWorldImporters,

представленный на рис. 9.7.
В этом примере компания WideWorldImporters (WWI) использует SQL

Server 2019, но хочет получить доступ к данным, размещенным в следую-
щих источниках данных:

• SQL Server 2008R2 – компания имеет систему SQL Server одной из
предыдущих версий, в которой хранится архив поставщиков. Они не
хотят трогать эту систему, но хотят получить доступ к информации
о поставщиках;

• база данных Azure SQL Database. Команда компании ищет возмож-
ности перехода в облако и создания новой базы данных StockItems с
использованием Azure. Структурные подразделения WWI хотят ви-

Подготовительные шаги для использования примеров, иллюстрирующих...  305

деть и объединять эти данные StockItem с существующими в базе
данных SQL Server 2019, не прерывая работу с базами данных;

Рис. 9.7. Центр данных SQL Server

• Azure CosmosDB – еще одна команда пилотирует мобильное прило-
жение для заказов и экспериментирует с Azure CosmosDB. Команда
WWI хочет иметь возможность просматривать эти заказы и объеди-
нять данные, связанные с заказами, в локальной базе данных;

• Oracle – бухгалтерское программное обеспечение для WWI исполь-
зует Oracle. Хотя WWI собирается выполнять миграцию этой базы
данных на SQL Server, для проекта миграции требуется время. Между
тем в WWI знают, что некоторые данные в базе данных SQL Server
ссылаются на данные в базе данных дебиторской задолженности.
Если они могут получить доступ к Oracle, они хотели бы объединить
локальные данные SQL Server с данными дебиторской задолженнос-
ти в Oracle, пока миграция не будет завершена;

• Hadoop – команда WWI создает систему рейтинга на веб-сайте ком-
пании, чтобы клиенты могли просматривать данные о заказах. Для
ускорения проекта группа разработчиков хранит сводные данные о
заказах в полуструктурированном формате с использованием хра-
нилища BLOB-объектов Azure (Azure Blob Storage). Структурные под-
разделения WWI хотят анализировать эти данные и объединять их с
локальными данными SQL Server;

• SAP HANA – компания WWI недавно приобрела другую компанию,
Vandelay Industries (меня вдохновила вымышленная компания из
Seinfeld. См. https://seinfeld.fandom.com/wiki/Vandelay_Industries). Эта компа-
ния хранит данные о своих клиентах в SAP HANA. В то время как
команда WWI разрабатывает стратегию миграции, они хотят анали-
зировать данные об этих клиентах, не перемещая при этом данных.

SQL Server: виртуализация данных

Поставщики данных
из унаследованных

систем

Microsoft
SQL Server Новая БД StockItems

Мобильное
приложение

Orders

WideWorldImporters

Данные о дебиторской
задолженностиДанные о клиентах из модуля

сбора данных о клиентах Отзывы о заказах

SQL Server
2019

306  Глава 9. Виртуализация данных в SQL Server

Все эти сценарии возможны с использованием Polybase в SQL Ser ver 2019
и внешних таблиц. Пример каждого из них есть в каталоге ch9_data_
virtualization\sqldatahub.

Использование внешних таблиц
Прежде чем мы перейдем к подробному рассмотрению некоторых при-
меров из каталога sqldatahub, я опишу некий базовый шаблон, который
вы, несомненно, обнаружите в этих примерах. Этот шаблон соответству-
ет общему процессу, используемому при работе с внешними таблицами,
который я описал в разделе «Схема работы Polybase». Все объекты Polybase
находятся в области пользовательской базы данных.

1. Создайте главный ключ (MASTER KEY) в базе данных.
2. Создайте учетную запись уровня базы данных (DATABASE SCOPED

CREDENTIAL) для аутентификации во внешнем источнике данных.
3. Создайте внешний источник данных (EXTERNAL DATA SOURCE), что-

бы указать местоположение источника данных. Параметр CREDEN-
TIAL будет именем учетной записи уровня базы данных.

4. Создайте формат внешнего файла (EXTERNAL FILE FORMAT) для
данных HDFS.

5. Создайте внешнюю таблицу (EXTERNAL TABLE) для сопоставления с
целевыми таблицами внешнего источника данных. Свойство DATA_
SOURCE будет именем внешнего источника данных. Свойство FILE_
FORMAT (только для HDFS) будет наименованием формата внешнего
файла.

6. Создайте локальный объект статистики (local statistics) для столбцов
для внешней таблицы.

7. Выполните запрос к внешней таблице (EXTERNAL TABLE), включив в
запрос соединения с локальными таблицами SQL Server или другими
внешними таблицами.

В качестве подсказки вот отличная ссылка на документацию, где описа-
ны все операторы T-SQL, связанные с созданием объектов Polybase: https://

docs.microsoft.com/en-us/sql/relational-databases/polybase/polybase-t-sql-objects.

Инструменты и внешние таблицы
Прежде чем мы перейдем к практическим примерам сценариев из

sqldatahub, я должен рассказать об инструментах поддержки внешних
источников данных и внешних таблиц.

SQL Server Management Studio (SSMS) поддерживает создание внеш-
них источников данных и внешних таблиц с помощью шаблонов SSMS.
На рис. 9.8 показан пример использования SSMS для создания внешнего
источника данных.

Использование внешних таблиц  307

Рис. 9.8. Использование шаблона SSMS для создания
внешнего источника данных

То же самое относится и к внешним таблицам.
Создав внешние источники данных и внешние таблицы, вы можете

использовать SSMS Object Explorer для просмотра этих ресурсов. На рис. 9.9
показан пример внешних источников данных и форматов файлов, создан-
ных в базе данных WideWorldImporters.

Рис. 9.9. SSMS Object Explorer, используемый
для просмотра внешних источников данных и форматов файлов

308  Глава 9. Виртуализация данных в SQL Server

Azure Data Studio (ADS) также предоставляет мастер для создания внеш-
них таблиц External Table Wizard для источников данных SQL Server и Oracle.
Вы можете прочитать об этой возможности по ссылке https://docs.microsoft.com/

en-us/sql/relational-databases/polybase/data-virtualization.
Я расскажу вам, как настроить внешнюю таблицу для Azure SQL Database.

Что касается других примеров в sqldatahub, я приведу примеры сценариев
и объясню несколько моментов для каждого сценария.

Использование внешних таблиц в Azure SQL Database
Один из встроенных коннекторов SQL Server обеспечивает доступ к

источникам данных для SQL Server, базы данных Azure SQL Database и хра-
нилища данных Azure SQL Data Warehouse.

Я разместил примеры сценариев на основе шагов из шаблона, которые
описал выше, в каталоге ch9_data_virtualization\sqldatahub\azuredb.
Я создал сценарии для записной книжки T-SQL (T-SQL Notebook) и сцена-
рии T-SQL для создания внешних таблиц и выполнения запроса к ним.

Чтобы использовать эти сценарии, в первую очередь вам необходимо
подготовить и получить доступ к Azure SQL Database. Используйте опера-
торы, приведенные в сценарии createazuredbtable.sql, для вашей базы
данных в Azure SQL Database.

Как только вы выполните все необходимые настройки, давайте рассмот-
рим каждый шаг сценария и получим результаты, которые можно ожидать
при выполнении сценария T-SQL azuredbexternaltable.sql.

1. Выполните шаг 1 из сценария T-SQL, чтобы изменить контекст базы
данных и создать главный ключ для шифрования учетных данных в
области базы данных:

-- Шаг 1. Создайте главный ключ для шифрования учетных данных базы
-- данных.
USE [WideWorldImporters]
GO

CREATE MASTER KEY ENCRYPTION BY PASSWORD = 'S0me!nfo'
GO

2. Выполните шаг 2, чтобы создать учетные данные в области базы
данных, защищенной главным ключом. Вам необходимо указать
имя учетной записи и пароль сервера для созданной вами базы дан-
ных Azure SQL Database:

-- Шаг 2. Создайте учетные данные для базы данных, где будут храниться
-- имя пользователя и пароль для базы данных Azure SQL Server.
-- IDENTITY = имя учетной записи
-- SECRET = пароль
CREATE DATABASE SCOPED CREDENTIAL AzureSQLDatabaseCredentials

Использование внешних таблиц  309

WITH IDENTITY = '<login>', SECRET = '<password>'
GO

3. Выполните шаг 3, чтобы создать внешний источник данных с ис-
пользованием учетных данных в базе данных для аутентификации с
использованием учетных данных CREDENTIAL:

-- Шаг 3. Создайте внешний источник данных
-- sqlserver – это ключевое слово, означающее, что источником данных
-- является SQL Server, база данных Azure SQL Database или хранилище
-- данных Azure SQL Data Warehouse.
-- Имя после символов :// является именем сервера Azure SQL Server
-- Database. Ваш SQL Server должен находиться в той же виртуальной
-- сети, что и Azure SQL Server Database, или должен удовлетворять
-- проверкам брандмауэра.
CREATE EXTERNAL DATA SOURCE AzureSQLDatabase
WITH (
LOCATION = 'sqlserver://<azure sql database server URI>',
PUSHDOWN = ON,
CREDENTIAL = AzureSQLDatabaseCredentials
)
GO

 Есть несколько моментов, на которые стоит обратить внимание в этом
сценарии. Синтаксис LOCATION содержит параметры <тип>:<инфор-
мация о соединении>, где параметр тип имеет следую щие возмож-
ные значения:

• sqlserver;
• oracle;
• teradata;
• mongodb;
• OBDC.

 Параметр тип будет указывать SQL Server, какой драйвер ODBC ис-
пользовать для внешнего источника данных. Для SQL Server сведе-
ния о соединении для базы данных Azure SQL Database должны быть
URL-адресом сервера (например, <сервер>..database.windows.net).

 После успешного создания внешнего источника данных вы можете
увидеть список созданных источников, используя представление ка-
талога external_data_sources в контексте вашей пользовательской
базы данных.

Совет. К сожалению, внешний источник данных можно создать без проверки со-
единения с источником данных. Если вы неправильно введете данные о соединении,
то не узнаете об этом, пока не попытаетесь создать внешнюю таблицу. То же самое

310  Глава 9. Виртуализация данных в SQL Server

относится и к учетным данным для базы данных: если вы неправильно введете имя
учетной записи и/или пароль, то не узнаете об этом, пока не попробуете создать
внешнюю таблицу.

4. Выполните шаг 4 сценария, чтобы создать схему для хранения объек-
тов внешней таблицы. Это не обязательно, но мне нравится исполь-
зовать схемы для организации объектов (это также весьма разум но с
точки зрения безопасности):

-- Шаг 4. Создайте схему в WideWorldImporters для внешней таблицы.
CREATE SCHEMA azuresqldb
GO

5. Выполните шаг 5, чтобы создать внешнюю таблицу с использовани-
ем внешнего источника данных, указанного в значении параметра
DATA_SOURCE:

-- Шаг 5: Создайте внешнюю таблицу (EXTERNAL TABLE)
-- Каждый столбец должен соответствовать столбцу в удаленной таблице
-- (remote table).
-- Обратите внимание, что символьные столбцы используют параметры
-- сортировки, совместимые с целевой таблицей.
-- Ключевое слово WITH содержит имя удаленного [database].[Schema].
-- [Table] и внешнего источника базы данных.
CREATE EXTERNAL TABLE azuresqldb.ModernStockItems
(
 [StockItemID] [int] NOT NULL,
 [StockItemName] [nvarchar](100) COLLATE Latin1_General_100_CI_AS
 NOT NULL,
 [SupplierID] [int] NOT NULL,
 [ColorID] [int] NULL,
 [UnitPackageID] [int] NOT NULL,
 [OuterPackageID] [int] NOT NULL,
 [Brand] [nvarchar](50) COLLATE Latin1_General_100_CI_AS NULL,
 [Size] [nvarchar](20) COLLATE Latin1_General_100_CI_AS NULL,
 [LeadTimeDays] [int] NOT NULL,
 [QuantityPerOuter] [int] NOT NULL,
 [IsChillerStock] [bit] NOT NULL,
 [Barcode] [nvarchar](50) COLLATE Latin1_General_100_CI_AS NULL,
 [TaxRate] [decimal](18, 3) NOT NULL,
 [UnitPrice] [decimal](18, 2) NOT NULL,
 [RecommendedRetailPrice] [decimal](18, 2) NULL,
 [TypicalWeightPerUnit] [decimal](18, 3) NOT NULL,
 [LastEditedBy] [int] NOT NULL
)

Использование внешних таблиц  311

 WITH (
 LOCATION='wwiazure.dbo.ModernStockItems',
 DATA_SOURCE=AzureSQLDatabase
)
GO

 Это важная часть сценария Polybase, поэтому я укажу на несколько
особенностей, на которые нужно обратить внимание:

• число столбцов, имена и типы данных в создаваемой внешней таб-
лице должны точно соответствовать таблице из внешнего источника
данных, однако в SQL вы можете использовать любое имя как для
имен столбцов, так и для имени самой таблицы;

• отображение типов – достаточно сложная тема. У нас есть докумен-
тация, которая поможет вам определить типы данных SQL Server
для сопоставления с соответствующими типами данных внешних
источников данных. Эта документация доступна по ссылке https://

docs.microsoft.com/en-us/sql/relational-databases/polybase/polybase-type-mapping;

• ключевое слово LOCATION для внешней таблицы – это способ со-
поставления объекта внешнего источника данных. Каждый источ-
ник данных имеет размещение (LOCATION), при этом параметры
LOCATION могут различаться для разных источников и использо-
ваться для идентификации объекта источника данных. В случае SQL
Server или базы данных Azure SQL Database вы должны ссылаться на
таблицу, используя соглашение об именовании, состоящее «из трех
частей»: <база данных>.<Схема>.<Имя таблицы>;

• при попытке создать внешнюю таблицу выполняется проверка пра-
вильного сопоставления столбцов, сопоставления типов и проверки
использования любых запрещенных типов (я упомяну об ограниче-
ниях ниже, в разделе «Ограничения»);

• после создания внешних таблиц вы можете увидеть список внеш-
них таблиц, используя представление каталога sys.external_tables.
Представление каталога sys.objects выводит внешние таблицы, име-
ющие тип USER_TABLE. Представление каталога sys.tables содержит
столбец is_external, который вы можете использовать, чтобы опре-
делить, какие таблицы являются внешними.

6. Выполните шаг 6, чтобы создать локальный объект статистики по
ключевым столбцам из внешней таблицы. Это не обязательно, но
рекомендуется, чтобы помочь обработчику запросов принимать
разумные решения для поддержки таких операций, как вычисления,
связанные с фильтрацией данных (pushdown):

-- Шаг 6. Создайте локальный объект статистики по столбцам, которые
-- вы будете использовать для фильтров.

312  Глава 9. Виртуализация данных в SQL Server

CREATE STATISTICS ModernStockItemsStats ON azuresqldb.
ModernStockItems ([StockItemID]) WITH FULLSCAN
GO

7. Выполните шаг 7, чтобы увидеть простой пример сканирования всех
строк во внешней таблице. В этом примере должна быть возвращена
только одна строка, если запрос был выполнен успешно:

-- Шаг 7. Просто попробуйте просканировать удаленную таблицу
SELECT * FROM azuresqldb.ModernStockItems
GO

 Удаленные операторы (remote operators) встроены в обработчик
запросов для поддержки запросов к внешним таблицам с исполь-
зованием службы Polybase. На рис. 9.10 показан фактический план
выполнения запроса для шага 7, включая сведения об удаленном
операторе.

Рис. 9.10. Удаленный оператор для внешних таблиц

 Polybase поставляется с серией динамических административных
представлений (Dynamic Management Views, DMV), которые можно
использовать для анализа выполнения запросов к внешним табли-
цам.

 sys.dm_exec_distributed_requests – подобно sys.dm_exec_requests,
вы можете найти запросы, относящиеся к Polybase. Что приятно в
этом DMV, так это то, что он хранит историю последних запросов, а

Использование внешних таблиц  313

не только активных. Значение в столбце execution_id является клю-
чом, позволяющим использовать другие DMV для более глубокого
анализа выполнения запроса.

 sysdm_exec_distributed_request_steps – это DMV будет получать
execution_id из sys.dm_exec_distributed_requests и позволит вам по-
смотреть на конкретные шаги, выполняемые Polybase при обработке
запроса к внешней таблице. Для execution_id каждый шаг имеет зна-
чение step_index.

 sys.dm_exec_distributed_sql_requests – это DMV отображает бо-
лее подробную информацию для каждого step_index в sys.dm_exec_
distributed_steps, включая информацию о том, какой вычисли-
тельный узел выполняет запрос (это может быть головной и/или
вычислительный узел для масштабируемого запроса).

 dm_exec_dms_workers – это DMV предоставляет более подробную
информацию о выполнении с помощью службы перемещения дан-
ных (DMS) Polybase для определенного execution_id и step_index.
Позво ляет просмотреть данные подключения к внешнему источни-
ку данных через драйверы ODBC, включая информацию о возмож-
ных ошибках.

8. Выполните шаг 8, чтобы использовать конструкцию WHERE для
фильтрации результатов (и, возможно, использовать вычисления,
связанные с фильтрацией данных (pushdown) для внешнего источ-
ника данных):

-- Шаг 8. Попробуйте найти только определенный StockItemID
SELECT * FROM azuresqldb.ModernStockItems WHERE StockItemID = 100000
GO

9. Выполните шаг 9, чтобы найти все элементы StockItem как в SQL
Server 2019, так и в базе данных Azure SQL Database с помощью опе-
ратора UNION:

-- Шаг 9. Используйте оператор UNION, чтобы найти все элементы
-- StockItem для определенного поставщика как в локальной таблице,
-- так и в таблице Azure.
SELECT msi.StockItemName, msi.Brand, c.ColorName
FROM azuresqldb.ModernStockItems msi
JOIN [Purchasing].[Suppliers] s
ON msi.SupplierID = s.SupplierID
and s.SupplierName = 'Graphic Design Institute'
JOIN [Warehouse].[Colors] c
ON msi.ColorID = c.ColorID
UNION
SELECT si.StockItemName, si.Brand, c.ColorName

314  Глава 9. Виртуализация данных в SQL Server

FROM [Warehouse].[StockItems] si
JOIN [Purchasing].[Suppliers] s
ON si.SupplierID = s.SupplierID
and s.SupplierName = 'Graphic Design Institute'
JOIN [Warehouse].[Colors] c
ON si.ColorID = c.ColorID
GO

 Первая часть UNION включает соединение внешней таблицы и ло-
кальной таблицы SQL Server.

Итак, мы рассмотрели пример использования внешней таблицы, приме-
няющей концепцию виртуализации данных (Data Virtualization) при рабо-
те с базой данных Azure SQL Database с использованием встроенного кон-
нектора для SQL Server. Далее я приведу краткую информацию для других
примеров, размещенных в каталоге sqldatahub.

Использование встроенных коннекторов
для внешних таблиц
Есть и другие примеры сценариев, использующих встроенные коннек-

торы для работы с внешними таблицами. Каждый пример содержит файл
readme.md с советами по настройке внешнего источника данных и сцена-
риями для создания объекта источника данных и добавления данных. Все
они используют тот же шаблон, что и пример для базы данных Azure SQL
Database.

• ch9_data_virtualization\sqldatahub\cosmosdb – используйте этот
сценарий в качестве демонстрации применения коннектора Mon-
goDB с Azure CosmosDB.

• ch9_data_virtualization\sqldatahub\oracle – применяйте этот сце-
нарий в качестве примера использования коннектора Oracle.

Совет. При использовании коннектора Oracle имейте в виду, что значение параметра
LOCATION для EXTERNAL TABLE для Oracle учитывает регистр.

• ch9_data_virtualization\sqldatahub\sql2008r2 – используйте этот
сценарий в качестве примера использования коннектора SQL Server
для более старой версии SQL Server.

Примечание. В этом примере потребуется использовать обходной путь для SQL
Server 2008R2, который не рассматривался во время написания данной главы. Когда
мы готовились к выпуску SQL Server 2019, не было ясно, какие из предыдущих версий
SQL Server будут поддерживаться, и версия 2008R2 больше не поддерживается.

Использование внешних таблиц  315

Использование внешней таблицы с HDFS
Пример использования Polybase с HDFS и хранилищем BLOB-объектов

Azure (Azure Blob Storage) можно найти в каталоге ch9_data_virtualization\
sqldatahub\hdfs. Файл readme.md, содержащийся в этом каталоге, предо-
ставляет дополнительную информацию о том, как выполнить необходи-
мые настройки и как использовать приведенный пример.

Одно большое отличие для внешних источников данных с HDFS – это
использование свойства LOCATION с внешним источником данных и при-
менение свойства TYPE.

Вот пример оператора T-SQL для создания внешнего источника данных
из сценария, размещенного в каталоге ch9_data_virtualization\sqldatahub\
hdfs:

CREATE EXTERNAL DATA SOURCE bwdatalake with (
TYPE = HADOOP,
LOCATION ='wasbs://<container>@<azure storage account name>',
CREDENTIAL = AzureStorageCredential
)
GO

В отличие от других приведенных примеров, для HADOOP необходи-
мо поле TYPE. Кроме того, свойство LOCATION не имеет атрибута <type>,
подобного sqlserver. Это связано с тем, что спецификация TYPE = HADOOP
сообщает SQL Server тип коннектора, используемого для HDFS.

Использование внешних таблиц с коннекторами ODBC
Последний пример – демонстрация использования внешней таблицы

SAP HANA, применяющей коннектор ODBC. Обратите внимание, что этот
пример работает только для версии SQL Server 2019 для Windows. Примеры
кода для данного примера размещены в каталоге ch9_data_virtualization\
sqldatahub\saphana.

В этом примере источник данных отличается от используемых в преды-
дущих разделах, так как для него требуются данные об источнике данных
ODBC и строка подключения. Вот как выглядит создание внешнего источ-
ника данных для этого примера:

CREATE EXTERNAL DATA SOURCE SAPHANAServer
WITH (
LOCATION = 'odbc://<datasource>',
CONNECTION_OPTIONS = 'Driver={HDBODBC};ServerNode=<server>:<port>',
PUSHDOWN = ON,
CREDENTIAL = SAPHANACredentials
)
GO

316  Глава 9. Виртуализация данных в SQL Server

Совет. Вот важный совет по использованию коннектора данных ODBC с масштаби-

руемыми группами, потому что в этом месте я столкнулся с проблемами при первой
настройке этих сценариев. Необходимо установить драйвер ODBC, который вы ис-

пользуете, на каждом узле масштабируемой группы. Если вы этого не сделаете, то
можете периодически получать ошибки при выполнении запросов. Это связано с тем,
что при наличии масштабируемой группы любой из узлов может использоваться для
выполнения запросов к внешнему источнику данных, даже если это не готовый к
масштабированию запрос.

Документация, которая поможет вам разобраться с коннекторами ODBC,
находится по ссылке https://docs.microsoft.com/en-us/sql/relational-databases/polybase/

polybase-configure-odbc-generic. Я должен сказать вам, что коннекторы ODBC
открывают некоторые интересные возможности для использования SQL
Server в качестве концентратора данных. Один клиент Microsoft на большом
мероприятии спросил меня о возможности применения Polybase с Office 365.
Я не знал ответа на этот вопрос и потому спросил: «Есть ли драйвер ODBC
для O365?» Оказывается, такой драйвер есть на https://marketplace.visualstudio.

com/items?itemName=CDATASOFTWARE.Office365ODBCDriver. Подождите немного. Воз-
можно, вы когда-нибудь увидите, как я создаю демонстрацию, показываю-
щую, как SQL Server выполняет запросы к моей электронной почте!

Обсуждение внешних таблиц
Теперь, когда вы увидели, как работает Polybase, и рассмотрели несколько
примеров, я должен сказать, что есть несколько областей, которые следует
учитывать при принятии решения о том, нужно ли использовать Polybase
с SQL Server 2019.

Дополнительный семантический слой
Я позаимствовал эту концепцию у моего коллеги Трэвиса Райта (Travis

Wright). Идея состоит в том, что Polybase позволяет вам определять объек-
ты, используя соглашения об именах, находящиеся под вашим контролем,
а не использовать соглашения об именах объектов из внешних источников
данных.

Другими словами, вы можете использовать семантику политик и про-
цедур, которые применяете в SQL Server. При создании внешних таблиц
вы используете соглашения, схемы и защищаемые объекты SQL Server,
находя щиеся под вашим контролем. Добавьте это к возможности соедине-
ния с локальными таблицами SQL Server, используйте UNION для объеди-
нения с локальными таблицами, а затем создавайте представления (views)
поверх этих конструкций.

Также помните, что Polybase определяется на уровне пользовательской
базы данных, поэтому все объекты защищены и контролируются владель-
цем пользовательской базы данных.

Резюме  317

Внешние таблицы или связанные серверы?
Один из самых частых вопросов, которые мне задают о Polybase и внеш-

них таблицах, заключается в том, отличаются ли они от связанных серве-
ров, которые поддерживались начиная с версии SQL Server 7.0.

Мы представили сравнение технологий в документации, размещенной
по ссылке https://docs.microsoft.com/en-us/sql/relational-databases/polybase/polybase-

faq?view=sql-server-ver15#polybase-vs-linked-servers.
Наиболее заметным отличием является то, что связанные серверы опре-

деляются на уровне экземпляра и используют OLE-DB для доступа к дан-
ным из другого источника данных. Polybase определяется на уровне поль-
зовательской базы данных и использует ODBC для доступа к внешним
данным.

Ограничения
Ограничение номер один, о котором вам нужно знать, – это то, что Poly-

base является, по большей части, решением только для чтения данных
(исключение состоит в том, что вы можете использовать операторы INSERT
для внешних таблиц, созданных на HDFS).

Я также столкнулся с несколькими проблемами с поддерживаемыми
типами данных в SQL Server для внешних таблиц. Следующие типы дан-
ных не поддерживаются для внешних таблиц (EXTERNAL TABLE) в SQL
Server 2019:

• VARCHAR(MAX);
• GEOGRAPHY;
• Computed Columns;
• JSON.

Резюме
Я полагаю, что с добавлением новых встроенных коннекторов и поддерж-
кой ODBC Polybase получит большее распространение, чем ранее, когда она
была впервые включена в состав в SQL Server 2016. Возможность доступа и
выполнения запросов к данным из многих различных источников данных
без перемещения данных – весьма убедительный пример. На самом деле
даже после того, как я представил возможности SQL Server 2019 в сентяб-
ре 2019 года, это одна из наиболее востребованных функций новой версии
SQL Server у наших клиентов. Тот факт, что вы можете выполнять запро-
сы к данным Oracle через SQL Server и не устанавливать специальное про-
граммное обеспечение на SQL Server, открыл пользователям глаза.

Polybase может стать частью стратегии перехода с Oracle на SQL Server.
Просмотрите эту запись выступления, которое я провел вместе со своим
коллегой Амитом Банерджи (Amit Banerjee) на Microsoft Ignite в 2019 году,
где Амит показывает, как использовать Polybase с SQL Server 2019 для

318  Глава 9. Виртуализация данных в SQL Server

стратегии постепенного перехода с Oracle на SQL Server (https://myignite.

techcommunity.microsoft.com/sessions/65955).
Важно, чтобы вы прочитали эту главу, прежде чем приступите к главе 10,

потому что в главе 10 будет обсуждаться новое решение для SQL Server 2019,
которое включает в себя концепцию виртуализации данных и Polybase и
известно под названием кластеры больших данных SQL Server (SQL Server
Big Data Clusters).

Глава 10
Кластеры больших данных

в SQL Server

Если вы помните, в главе 1 я показал основные новые возможности SQL
Server 2019. На рис. 10.1 изображена первая основная функция, приведен-
ная в верхнем левом углу рис. 1.3 первой главы.

Рис. 10.1. Интеллектуальная обработка данных

Более точным представлением этой инфографики является интеллек-
туальная обработка всех ваших данных. Это связано с тем, что функцио-
нальность, показанная на рис. 10.1, представляет собой нечто большее, чем
просто Polybase++. Когда вы прочитаете эту главу, то узнаете больше о том,
что я имею в виду под интеллектуальной обработкой всех ваших данных.

На рис. 10.1 в двух словах показано, что стоит за кластерами больших
данных (Big Data Clusters, BDC) SQL Server; однако рисунок не полностью
раскрывает их потенциал. То, что начиналось как проект Aris, о котором я
рассказал в главе 1, стало продуктом внутри продукта и одной из самых
интересных историй о SQL Server 2019.

Если я начал с обсуждения Project Aris в главе 1 и этой инфографики на
рис. 10.1, почему кластеры больших данных SQL Server появились лишь в
десятой главе?

Когда я планировал эту книгу, изначально я планировал рассказ о BDC в
первой главе, и основной рассказ начался очень хорошо! Однако, посколь-
ку я больше думал о выпуске всей книги, то оставил этот рассказ на потом,

320  Глава 10. Кластеры больших данных в SQL Server

включив его в одну из последних глав. Это имело смысл по следующим
причинам:

• мне нужно было познакомить вас с основами SQL Server 2019 для
Linux, Containers, Kubernetes и Polybase, чтобы вы смогли понять
концепцию BDC. Вот почему эти темы обсуждались в главах 6, 7, 8 и 9;

• вы увидите, что элементом BDC является ведущий экземпляр SQL
Server (SQL Server Master Instance). Когда разговор зайдет о ведущем
экземпляре SQL Server, необходимо, чтобы вы уже были знакомы с
другими основными возможностями SQL Server 2019, которые вхо-
дят в состав этого элемента BDC;

• для создания такой возможности, как BDC, потребовались серьезные
усилия многих членов команды, занимавшихся ее проектировани-
ем, сборкой и написанием программного кода. Таким образом, это
самый большой компонент SQL Server 2019, который был полностью
завершен во время наших сборок CTP и предварительных выпусков.
Я хотел подождать до заключительной части работы над книгой,
чтобы предоставить вам самую свежую и точную информацию о
BDC, рассказать, для чего вы можете использовать кластеры больших
данных и как они работают.

Из этой главы вы узнаете, каким образом BDC решают некоторые инте-
ресные задачи, актуальные для современного профессионала в области
обработки данных:

• как я показал в главе 9, посвященной Polybase, профессионалы в об-
ласти обработки данных должны иметь доступ к источникам дан-
ных в своей организации, размещенным вне SQL Server. Они хотели
бы иметь возможность доступа к данным из различных источников
практически без перемещения данных;

• многие профессионалы в области обработки данных активно инте-
ресуются темой больших данных. В следующем разделе я подробнее
расскажу о некоторых аспектах, связанных с термином «большие
данные»; но когда встречается этот термин, обычно подразумевает-
ся система, основанная на Hadoop;

• некоторые организации никогда не вкладывали средства в Hadoop,
поэтому они хотели бы получить руководство по развертыванию
систе мы Hadoop или даже автоматизировать развертывание систе-
мы Hadoop для хранения неструктурированных или полуструкту-
рированных данных. В таких ситуациях обычно речь идет о данных
большого объема, в то время как данные, хранящиеся на их SQL Server,
считаются данными, имеющими большую ценность;

• кроме того, многим организациям требуются более совершенные
защита и управление системой Hadoop, аналогичные тому, как это

Кластеры больших данных в SQL Server  321

сегодня реализовано в SQL Server. Им нужна полная экосистема для
создания озера данных, которое легко развертывается, защищает-
ся и масштабируется и использует лучшие современные технологии
как для SQL Server, так и для больших данных;

• организации хотят вкладывать больше средств в машинное обуче-
ние (ML) и хотят создавать и развертывать приложения ML, которые
являются масштабируемыми и безопасными и работают близко к
источникам данных, с которыми работают модели ML. Я слышал, что
клиенты говорят, что им нужна комплексная платформа для машин-
ного обучения.

Рисунок 10.2 – это схема, которую мы использовали для обсуждения трех
основных аспектов решения, которые пытаются воплотить кластеры боль-
ших данных.

Рис. 10.2. Решения, используемые в кластере больших данных

В этой главе я намерен ответить на следующие вопросы:

• Почему мы назвали это решение кластерами больших данных?
• Какие возможности вы получаете при развертывании кластера

больших данных?
• Как разворачивать кластер больших данных?
• Какова архитектура кластеров больших данных и как она работает?
• Как используется кластер больших данных?
• Как используется машинное обучение с кластером больших данных?
• Как осуществляются управление и контроль кластера больших

данных?

Кажется, всего перечисленного хватило бы на отдельную книгу, поэто-
му я не могу глубоко погрузиться во все эти темы. Тем не менее я раскрою
некоторые подробности, которых нет в документации и которые, как я
полагаю, вы должны знать. А также приведу практические примеры и
советы относительно BDC и расскажу о том, почему BDC является важным
решением для SQL Server 2019.

Виртуализация данных Управляемые SQL Server, Spark
и озеро данных

Целостная платформа AI

Аналитика ПриложенияT-SQL

Внешние таблицы SQL Server

Пулы вычислений и пулы данных

Открытый
доступ к базам

данных

Реляционные
базы данных

NoSQL HDFS HDFS

Портал администрирования и службы управления

Службы безопасности, интегрированные с AD

SQL
Server Spark

Масштабируемое общее хранилище (HDFS)

Контейнеры REST API
для моделей

Внешние
источники

данных

Службы машинного
обучения SQL Server

Spark и машинное
обучение Spark

322  Глава 10. Кластеры больших данных в SQL Server

Примечание. В этой главе я иногда буду ссылаться на информацию и примеры, при-

веденные на семинаре, подготовленном моим коллегой Баком Вуди (Buck Woody)
под названием «Мастерская: кластеры больших данных SQL Server – архитек-
тура» (Workshop: SQL Server Big Data Clusters – Architecture). Вы можете найти эту
информацию по ссылке https://github.com/Microsoft/sqlworkshops/tree/master/

sqlserver2019bigdataclusters. Это отличный ресурс, дополняющий данную главу.

Зачем нужны кластеры больших данных,
и почему они так называются?
Я уверен, что у нашей команды есть много причин назвать это решение
кластерами больших данных SQL Server (SQL Server Big Data Clusters). Для
меня же ответ на прозвучавший вопрос очень прост. В этом решении мы
внедряем и объединяем три основные технологии:

• SQL Server – SQL Server будет центром доступа к данным в класте-
ре. Это полная версия SQL Server, включающая все то, что я описал в
этой книге, работающая в контейнере на основе образа ОС Linux;

• большие данные – мы внедряем технологии больших данных, та-
кие как HDFS и Spark;

• кластер. Мы используем кластер Kubernetes для развертывания и
запуска различных контейнеров, чтобы обеспечить единую, полную,
целостную систему.

По мере того как вы будете знакомиться со следующими несколькими
разделами этой главы, вы узнаете, как мы интегрируем эти технологии.

Я хочу остановиться и сделать акцент на моем понимании термина «боль-
шие данные» и на том, как мы решали, какие элементы важно включить в
это решение для кластеров больших данных. Мой коллега Бак Вуди (Buck
Woody) из Microsoft написал отличную заметку в блоге на тему «Большие
данные» по ссылке https://buckwoody.wordpress.com/2019/08/26/big-data-is-just-data/.

Мне нравится следующее определение термина «большие данные»:
большие данные – это любые данные, которые вы не можете обработать
за приемлемое время с помощью имеющихся у вас систем. Для SQL Server
это означает, что в вашей организации могут иметься данные, для хране-
ния которых не подходит система управления реляционными базами дан-
ных (Relational Database Management System, RDBMS), такая как SQL Server.
Подобная ситуация может быть следствием многих разнообразных при-
чин, в числе которых можно назвать объем, структуру, происхождение дан-
ных и сложность их преобразования в реляционные таблицы.

Было интересно читать об истории проекта Hadoop. Изначально осно-
ватели Hadoop хотели, чтобы файловая система позволяла распределять
огромные объемы данных по кластеру, созданному на основе стандарт-

Что входит в состав кластеров больших данных?  323

ных (недорогих) аппаратных средств. Они назвали это решение файловой
системой Google (Google File System) (в действительности это более слож-
ная история; вы можете прочитать об истории появления Hadoop по ссыл-
ке https://en.wikipedia.org/wiki/Apache_Hadoop#History). Целью данного проекта было
решить проблему, обозначенную Баком при определении термина «боль-
шие данные».

На мой взгляд, используя кластеры больших данных SQL Server (SQL
Server Big Data Clusters), мы действительно предлагаем единую систему,
которая объединяет возможности хранилищ данных и обработки данных.
Мы используем SQL Server для хранения доступа к данным, находящимся
в реляционных таблицах. Кроме того, мы разворачиваем кластер распре-
деленной файловой системы Hadoop (Hadoop distributed file system, HDFS),
позволяющий хранить данные в неструктурированном или полуструкту-
рированном формате. Ключевым компонентом, который делает эту систе-
му особенной, является то, что они интегрированы. С помощью Polybase
вы можете объединять таблицы из SQL Server (и других источников, таких
как Oracle, Teradata и MongoDB) с файлами HDFS взаимодополняющим
способом, использующим эффективную интеграцию и обеспечивающим
масшта бируемую производительность.

Есть еще кое-что в этой истории; в следующем разделе я опишу, какую
ценность вы получите, разворачивая кластер больших данных SQL Server.

Что входит в состав кластеров больших
данных?
Я описал кластер больших данных (Big Data Cluster, BDC) SQL Server как
продукт, являющийся частью другого продукта. Это связано с тем, что
при развертывании BDC вы получаете множество ценных инструментов и
функциональных возможностей, перечисленных ниже.

SQL Server 2019
BDC поставляется с экземпляром SQL Server 2019, работающим в кон-

тейнере, использующем образ ОС Linux. Это означает, что все возможности
SQL Server 2019 для Linux также включены в BDC. В их число входят аутен-
тификация Active Directory и высокая доступность, с поддержкой групп
доступности Always On (Always On Availability Groups).

Polybase
Компонент Polybase для SQL Server с BDC устанавливается и включает-

ся автоматически. Это означает, что вы получаете встроенные коннекторы
для SQL Server, Oracle, Teradata, MongoDB и Hadoop. Кроме того, BDC постав-
ляется со специальными коннекторами для оптимизированного доступа к

324  Глава 10. Кластеры больших данных в SQL Server

файлам HDFS и кешам данных в кластере. Более того, даже несмотря на
то, что SQL Server 2019 в Linux не поддерживает группы масштабирова-
ния Polybase (Polybase Scale-Out Groups), BDC включает реализацию групп
масшта бирования Polybase с использованием концепции, называемой
пулом вычислений (Compute Pool), о которой я расскажу подробнее в раз-
деле «Архитектура кластера больших данных».

Распределенная файловая система Hadoop (HDFS)
Когда вы будете использовать решение BDC, оно развернет кластер хра-

нения данных HDFS при помощи набора инструментов Apache Hadoop
(Apache Hadoop – свободно распространяемый набор утилит, библиотек и
фреймворк с открытым исходным кодом). В вашем распоряжении будет
несколько разных способов доступа к файлам, хранящимся в кластере
HDFS в BDC, включая способ, использующий Polybase для обеспечения воз-
можности работы с данными в SQL Server. Мы также предоставляем метод
для подключения собственного внешнего хранилища HDFS к локальному
хранилищу HDFS в BDC, концепцию, которую называем многоуровневой
концепцией хранения HDFS (HDFS Tiering).

Spark
При развертывании BDC устанавливается фреймворк Apache Spark,

предо ставляющий еще один способ для анализа и обработки данных. Мне
нравится определение фреймворка Spark, данное Баком Вуди: «Apache
Spark – это аналитический механизм для обработки больших данных. Он
может работать с данными, хранящимися в HDFS, и имеет коннекторы для
работы с данными в SQL Server». Взаимодействие со Spark будет осущест-
вляться посредством Spark Jobs, которые будут получать данные, разме-
щенные внутри кластера. Более подробно об использовании Spark с BDC я
расскажу в разделе «Использование Spark».

Кеш данных
В нашей документации говорится, что мы предоставляем витрину дан-

ных, и я полагаю, что этот термин корректен с технической точки зрения.
Однако для меня это кеш данных. Я называю это кешем данных, пото-
му что мы предоставляем специализированный набор экземпляров SQL
Server, оптимизированных для хранения результатов запросов к внешним
источникам данных Polybase. Представьте сценарий, в котором вы хотите
сохранить набор результатов, обновляемых еженедельно, для целей отчет-
ности. Эти результаты могут быть получены из запросов Polybase с исполь-
зованием множества различных источников данных, и наш кеш данных в
BDC является идеальным решением для этого. Мы реализуем кеш данных
в компоненте, называемом пулом данных (Data Pool), о котором я расскажу
более подробно в разделе «Архитектура кластера больших данных».

Что входит в состав кластеров больших данных?  325

Инструменты и сервисы
Для облегчения развертывания, использования и управления BDC мы

предоставляем набор инструментов, доступных как часть решения. Вы
увидите, что инструмент Azure Data Studio, с которым вы познакомились
в этой книге, станет ключевой частью общего решения BDC, включая
поддержку записных книжек (Notebooks).

Кроме того, мы развертываем набор контейнеров в качестве сервисов,
которые помогают координировать и управлять BDC. В документации эти
сервисы названы Контроллером (Controller), и рассказу о том, как работает
контроллер, посвящено несколько разделов этой главы.

Конечные точки
Вам потребуется возможность подключения к BDC для всех типов задач,

поэтому мы предоставляем ряд конечных точек сервисов. В их число вхо-
дят конечные точки для подключения к SQL Server, HDFS и Spark, а также
нескольких сервисов управления и мониторинга. О конечных точках будет
рассказываться на протяжении данной главы.

Развертывание приложений
Кластеры больших данных SQL Server позволяют исполнять программ-

ный код посредством операторов T-SQL и Spark Jobs. Службы машинного
обучения SQL Server (SQL Server Machine Learning Services) и платформа
расширяемости (включая языковые расширения) также позволяют запус-
кать код на R, Python и Java, интегрированный с SQL Server. Поскольку BDC
развертывается в кластере Kubernetes, мы хотим предоставить разработ-
чикам удобный способ развертывания приложений в BDC, а также откры-
тый интерфейс для взаимодействия с этими приложениями и обеспечить
приложению доступ к источникам данных, подключенным к BDC, таким
как таблицы SQL Server и внешние таблицы.

Таким образом, BDC предоставляет концепцию развертывания приложе-
ний (Application Deployment) для приложений, написанных на R, Python,
MLeap и SSIS. Развертывание приложений является ключевой концепци-
ей использования BDC в качестве комплексной платформы машинного
обуче ния. Более подробно о развертывании приложений я расскажу в раз-
деле «Использование кластеров больших данных» далее в этой главе.

Машинное обучение
Я уже говорил, что одним из решений, предоставляемых BDC, являет-

ся комплексная платформа для машинного обучения. Это становится воз-
можным благодаря таким элементам BDC, как:

• службы машинного обучения SQL Server;
• SparkML;

326  Глава 10. Кластеры больших данных в SQL Server

• MLeap;
• пакеты машинного обучения;
• развертывание приложений.

Я расскажу об этом более подробно в разделе «Машинное обучение и
кластеры больших данных» этой главы.

Просмотрите внимательно данный список! Теперь вы понимаете, поче-
му кластеры больших данных SQL Server – это продукт внутри продукта?
Наша история становится все интереснее. Продолжайте читать!

Примечание. Семинар Бака Вуди «Кластеры больших данных SQL Server – архи-
тектура» (Workshop: SQL Server Big Data Clusters – Architecture) содержит страницу
с описанием компонентов BDC в разделе Module 2.0. Используйте этот материал как
дополнительный ресурс, позволяющий понять, что находится «внутри» BDC.

Подготовительные шаги для использования
обучающих материалов
Прежде чем погружаться в тему развертывания BDC, я должен рассказать,
где находятся обучающие материалы, которые буду использовать в этой
главе. Вместо того чтобы создавать и рассматривать конкретные примеры
и сценарии, я буду использовать несколько примеров из следующих источ-
ников:

• репозиторий GitHub с примерами для SQL Server (SQL Server
Samples GitHub Repo). Несколько примеров, которые я буду исполь-
зовать и о которых буду рассказывать, размещены по ссылке https://

github.com/Microsoft/sql-server-samples/tree/master/samples/features/sql-big-data-

cluster;

• семинар по кластерам больших данных SQL Server 2019 (SQL
Server 2019 Big Data Cluster Workshop) – у Бака Вуди есть несколь-
ко замечательных примеров, которые я буду использовать. Они
размещены по ссылке https://github.com/Microsoft/sqlworkshops/tree/master/

sqlserver2019bigdataclusters.

Для использования этих материалов вам потребуется:

• развернутый кластер больших данных с SQL Server 2019 (SQL Server
2019 Big Data Cluster). Во время написания главы этой книги я ис-
пользовал версию-кандидат SQL Server 2019, которая очень близка
к финальной версии SQL Server 2019. Более подробно о требованиях,
включая клиентские инструменты, я расскажу в следующем разделе
этой главы «Развертывание кластеров больших данных»;

Развертывание кластеров больших данных  327

• клиент Windows, macOS или Linux для развертывания и запуска
примеров сценариев или запросов T-SQL. Почти все инструмен-
ты, используемые при развертывании и в приведенных примерах,
работают на Windows, macOS и Linux. Я также рекомендую устано-
вить и использовать Azure Data Studio (ADS) (этот инструмент мож-
но загрузить по ссылке https://docs.microsoft.com/en-us/sql/azure-data-studio/

download-azure-data-studio). Для успешного применения кластеров боль-
ших данных вам потребуется использовать ADS и записные книжки
(notebooks).

Развертывание кластеров больших данных
Я продемонстрирую вам свой опыт развертывания кластеров больших
данных SQL Server и затем опишу их компоненты и архитектуру. Когда я
писал эту главу, мне было сложно решить, что следует показать сначала –
архитектуру или развертывание. Я подумал, что важно сначала развернуть
кластер, а затем описать развернутое решение.

Примечание. Все программное обеспечение в BDC развертывается в виде контей-

неров в кластере Kubernetes. При работе с BDC предполагается, что вы развертывае-
те свой собственный кластер Kubernetes, но также опционально предоставляются
инстру менты, помогающие развернуть k8s.

Планирование развертывания
Развертывание BDC необходимо спланировать. Далее я расскажу о сво-

ем опыте планирования развертывания BDC, поскольку это может помочь
вам, когда вы будете самостоятельно планировать и выполнять процедуру
развертывания. Если вы планируете развертывание BDC в промышленной
среде, то рекомендую вам прочитать раздел «Настройка развертывания
для промышленной среды» этой главы.

Определитесь с k8s
Первое решение, которое необходимо принять при развертывании

BDC, – это выбор варианта размещения Kubernetes (k8s). BDC поддержи-
вает развертывание на k8s в общедоступном облачном провайдере Azure
Kubernetes Service (AKS), или на вашем собственном сервере Linux, или
на виртуальной машине, где развернут k8s (например, если вы самостоя-
тельно развернули k8s с помощью kubeadm). Я ожидаю, что список дру-
гих известных поставщиков k8s, которые будут поддерживаться BDC, будет
расширяться с выходом SQL Server 2019 и более поздних версий и будет
включать Azure Stack, Red Hat OpenShift и другие платформы. На настоя-
щий момент времени, когда я пишу эту книгу, вы можете развернуть BDC
при развертывании k8s на Windows Server, но для этого сценария потребу-
ются виртуальные машины Linux, работающие на Windows Server.

328  Глава 10. Кластеры больших данных в SQL Server

Наши инструменты для развертывания BDC создадут серию объектов pod
с контейнерами (в большинстве случаев они будут иметь несколько кон-
тейнеров) в k8s для поддержки системы BDC. Мы также будем разверты-
вать и использовать другие объекты k8s, такие как Load Balancer, Persistent
Volume Claim, ReplicaSet и StatefulSet.

Как только вы определитесь с вариантом размещения k8s, вы можете
либо самостоятельно развернуть k8s, либо использовать сценарии, кото-
рые мы создали, для совместного развертывания k8s и BDC.

Для любого варианта основным требованием для развертывания BDC в
среде dev/test является виртуальная машина (ВМ) Linux или компьютер
(в случае если вы развертываете свое решение на AKS, выберите размер вир-
туальной машины), удовлетворяющая следующим требованиям к ресурсам:

• 64 ГБ ОЗУ;
• 8 процессоров (могут быть логическими объектами);
• для AKS – размер виртуальной машины Azure, поддерживающей не

менее 24 дисков;
• если вы планируете развернуть более одного узла BDC, каждый узел

(ВМ) должен будет соответствовать этим требованиям к ресурсам.

Примечание. Мы со Славой Окс (Slava Oks) беседовали о необходимости уменьшить
требования к ресурсам для «Developer Edition» BDC, для которого не нужно так много
оперативной памяти. Я сказал Славе, что в идеале хотел бы развернуть BDC на своем
ноутбуке для демонстрации основных возможностей.

В предоставленных нами сценариях и записных книжках по умолчанию
выбирается размер виртуальной машины Azure: Standard_L8s_v2, но если
вы выберете виртуальную машину Azure для AKS с 64 ГБ, 8 ЦП и 24 дисками,
все сценарии должны работать. Подробнее о размере виртуальных машин
Azure можно прочитать по ссылке https://docs.microsoft.com/en-us/azure/virtual-ma-

chines/linux/sizes-general.
Для моего варианта развертывания я собираюсь использовать AKS и

предоставленный нами сценарий, который развернет кластер AKS и BDC
за один шаг. Я рекомендую при планировании развертывания обратиться
к следующим ресурсам, где вы найдете полезную информацию:

• https://docs.microsoft.com/en-us/sql/big-data-cluster/deploy-get-started;

• https://docs.microsoft.com/en-us/sql/big-data-cluster/deployment-guidance.

Выберите клиентское приложение и загрузите необходимый
инструментарий
После того как вы определились со стратегией k8s, вам нужны инстру-

менты для развертывания BDC. Очень важно убедиться, что на клиентском
узле установлены все необходимые инструменты, прежде чем вы попы-

Развертывание кластеров больших данных  329

таетесь развернуть BDC. В документации, размещенной по ссылке https://

docs.microsoft.com/en-us/sql/big-data-cluster/deploy-big-data-tools, представлен список
инструментов, которые вам понадобятся. Для своего клиента я выбрал
«ноутбук в облаке». Это означает, что я установил Windows 10 на виртуаль-
ной машине Azure и использовал все ресурсы этой виртуальной машины
для установки инструментария BDC.

Данный инструментарий включает в себя следующие компоненты:

Python – Python является ключевым компонентом, используемым не-
сколькими различными инструментами, и доступен на всех плат-
формах ОС. Инструмент azdata, необходимый для установки BDC,
написан на Python. Мне Python был необходим, поскольку я исполь-
зовал сценарий Python для развертывания AKS и BDC за один шаг.
Чтобы установить Python для Windows, я просто загружаю послед-
нюю версию Python с сайта www.python.org/downloads/release/python-374/;

kubectl – как вы узнали из главы 8, kubectl – это инструмент, специаль-
но разработанный для отправки запросов на сервер API k8s. Это ваш
программный интерфейс для Kubernetes.

 Я уже установил kubectl на моем компьютере, работающем под
Windows. Я проверил версию kubectl, это была версия 1.14. В приме-
чаниях к документации сказано: «Вы должны использовать kubectl
версии 1.10 или более поздней. Кроме того, версия kubectl должна
удовлетворять следующему правилу: младший номер версии дол-
жен отличаться не более чем на 1 (плюс или минус) от версии вашего
клас тера Kubernetes». Поскольку я использую AKS, то выполнил ко-
манду, чтобы посмотреть, какие версии будут применяться в моем
развертывании AKS, и обнаружил, что самая последняя поддерживае-
мая версия – 1.14.6; так что с моей конфигурацией все должно быть
в порядке. Подробнее о проверке наличия поддерживаемых версий
AKS в вашем кластере можно узнать по ссылке https://docs.microsoft.com/

en-us/azure/aks/supported-kubernetes-versions;

azdata – инструмент, известный под названием mssqlctl в ранних вер-
сиях SQL Server 2019, предназначавшихся для предварительного
пользовательского тестирования. Он крайне важен для развертыва-
ния и управления BDC. Он написан на Python, и вы можете рассмат-
ривать его как «kubectl» для BDC.

 Чтобы убедиться, что я правильно установил azdata, я просто запус-
тил azdata из командной строки и увидел, как выглядит его интер-
фейс. Результаты показаны на рис. 10.3.

 Вы можете найти полную документацию для azdata, перейдя по
ссылке https://docs.microsoft.com/en-us/sql/big-data-cluster/reference-azdata;

Azure Data Studio (ADS). Этот кросс-платформенный инструмент с от-
крытым исходным кодом можно использовать для выполнения за-

330  Глава 10. Кластеры больших данных в SQL Server

просов, развертывания, управления и навигации по данным в BDC.
Хотя SQL Server Management Studio (SSMS) можно использовать для
подключения к главному экземпляру SQL Server в BDC, ADS име-
ет функции и расширения, специально предназначенные для BDC,
включая поддержку записных книжек (Notebooks).

Рис. 10.3. Интерфейс командной строки azdata

 Работая над материалами этой главы, я использовал сборку
ADS Insiders, опубликованную по ссылке https://github.com/microsoft/

azuredatastudio#try-out-the-latest-insiders-build-from-master, но я ожидаю, что
к моменту выпуска SQL Server 2019 в вашем распоряжении будет
иметься официальная версия ADS, включающая все, что необходи-
мо для BDC. Вы можете получить последнюю версию ADS по ссылке
https://docs.microsoft.com/en-us/sql/azure-data-studio/download.

 Я также взял последнюю версию расширения SQL Server 2019 для
ADS, размещенную по ссылке https://docs.microsoft.com/en-us/sql/azure-

data-studio/sql-server-2019-extension, и установил файл vsix. (Вы можете
проигно рировать предупреждение о сторонних расширениях, пото-
му что это расширение выпущено Microsoft.) Во время его установ-
ки довольно трудно определить, устанавливается оно или установка
уже завершена, но подождите несколько минут, и вы увидите в пра-
вом нижнем углу сообщение, например «Завершена установка рас-
ширения microsoft.sql-vnext»;

az – если вы используете AKS, вам потребуется интерфейс командной
строки Azure для входа в Azure, а также для развертывания и управ-
ления AKS;

curl – curl означает «URL-адрес клиента». Это популярный инструмент
для копирования данных с определенного URL-адреса (в частности,
файлов, хранящихся на веб-сайтах). В моем случае он был установ-
лен в Windows 10. Curl – отличный инструмент не только для копи-

Развертывание кластеров больших данных  331

рования удаленных сценариев для использования с BDC, но и для
копирования данных в кластер BDC HDFS.

Выбор способа развертывания
Теперь, когда вы знаете, какой тип кластера k8s развернете, и загрузи-

ли все необходимые инструменты, вы должны выбрать способ разверты-
вания:

• «одношаговый» способ для развертывания AKS и BDC с использова-
нием Python, сценарий которого можно найти по ссылке https://docs.

microsoft.com/en-us/sql/big-data-cluster/quickstart-big-data-cluster-deploy?view=sql-
server-ver15;

• «одношаговый» сценарий оболочки Bash для развертывания k8s и
BDC в кластере k8s с использованием kubeadm, сценарий которо-
го можно найти по ссылке https://docs.microsoft.com/en-us/sql/big-data-cluster/

deployment-script-single-node-kubeadm?view=sql-server-ver15;
• создание своего собственного кластера AKS или k8s, с последующим

развертыванием BDC с помощью инструмента azdata, о котором
вы можете прочитать по адресу https://docs.microsoft.com/en-us/sql/big-data-

cluster/deployment-guidance;

• использование Azure Data Studio (ADS) для развертывания BDC
вместе с новым кластером AKS, в существующем кластере AKS или
в существующем кластере k8s, который вы развернули с помощью
kubeadm.

На рис. 10.4 показано, как выбрать вариант развертывания BDC в ADS.

Рис. 10.4. Выбор варианта развертывания BDC в Azure Data Studio

332  Глава 10. Кластеры больших данных в SQL Server

На рис. 10.5 показан выбор метода развертывания.

Рис. 10.5. Параметры развертывания для BDC в Azure Data Studio

Автономное развертывание
Я хочу особо упомянуть автономное развертывание (offline deployment).

Если вам необходимо развернуть свой кластер автономно, поскольку ваш
кластер k8s не подключен к интернету (по крайней мере, когда вам нуж-
но развернуть BDC), то для этого случая мы специально описали в доку-
ментации, как получить образы наших контейнеров и развернуть BDC на
k8s. Вам все еще понадобятся все инструменты, которые я упоминал в этой
главе, для развертывания в автономном режиме. Подробная информация
доступна по ссылке https://docs.microsoft.com/en-us/sql/big-data-cluster/deploy-offline.

Развертывание BDC
Чтобы дать вам представление о развертывании BDC, я собираюсь раз-

вернуть BDC на AKS и использовать сценарий Python, предоставленный в
«одношаговом» способе. Вы можете прочитать подробности о том, как при-
менить этот подход, по ссылке https://docs.microsoft.com/en-us/sql/big-data-cluster/

quickstart-big-data-cluster-deploy.
Я выбрал настройки по умолчанию, за исключением того, что мне нужно

было развернуть кластер AKS и BDC в области eastus2.
Используемый сценарий Python по сути является «оберткой» для az и

azdata. Он использует выбранные вами параметры (или переменные, или
значения по умолчанию) для создания группы ресурсов Azure, кластера
AKS и BDC. BDC создается с использованием конфигурации aks-dev-test.
Это базовая конфигурация для BDC, которая хорошо подходит для сцена-
рия разработки или тестирования. О конфигурации рабочих вариантов

Развертывание кластеров больших данных  333

развертывания для промышленных сред я расскажу в разделе «Настройка
развертывания для промышленной среды» далее в этой главе.

Для развертывания BDC потребуется время. Для решения BDC нужно
развернуть множество объектов pod и контейнеров, и этот процесс займет
больше времени, если вы также развернете кластер k8s. Я затратил око-
ло 20 минут на развертывание с использованием сценария Python в AKS,
однако видел случаи, когда это занимало около часа.

Когда вы запустите сценарий Python, то получите примерно такие сооб-
щения:

Creating azure resource group: <rgname>
<json details for the resource group>
Creating AKS cluster: <aks cluster name>
<json for the AKS cluster>
Creating SQL Big Data cluster:mssql-cluster
custom\bdc.json created
custom\control.json created
The privacy statement can be viewed at:
https://go.microsoft.com/fwlink/?LinkId=853010

The license terms for SQL Server Big Data Cluster can be viewed at:
https://go.microsoft.com/fwlink/?LinkId=2002534

Cluster deployment documentation can be viewed at:
https://aka.ms/bdc-deploy

NOTE: Cluster creation can take a significant amount of time depending on
configuration, network speed, and the number of nodes in the cluster.

Starting cluster deployment.
Waiting for cluster controller to start.

Последнее сообщение Waiting for cluster controller to start (Ожидание
запуска контроллера кластера) может повторяться несколько раз. Снача-
ла в кластере k8s создается контроллер, а затем служба контроллера будет
использоваться для развертывания оставшейся части BDC.

Далее вы увидите примерно такое сообщение:

Cluster controller endpoint is available at <ip address>:<port>
Cluster control plane is ready.

А вскоре увидите следующие сообщения:

Data pool is ready.
Master pool is ready.
Compute pool is ready.

334  Глава 10. Кластеры больших данных в SQL Server

Storage pool is ready.
Cluster deployed successfully.

Последнее сообщение означает, что AKS и BDC успешно развернуты.
Я руководствуюсь принципом «доверяй, но проверяй», поэтому в следую-
щем разделе расскажу о том, как можно убедиться, что развертывание
прош ло успешно и BDC готов к использованию.

Примечание. Имя для кластера больших данных SQL: mssql-cluster становится
пространством имен Kubernetes для всех объектов, созданных BDC. Поэтому в моем
варианте развертывания mssql-cluster является пространством имен k8s.

Проверка выполненного развертывания
Я использовал следующие сценарии проверки работоспособности

успешного развертывания AKS и BDC:

• выполните действия, описанные в документации, размещенной по
указанной ссылке. В ней описано, как использовать kubectl для про-
верки кластера: https://docs.microsoft.com/en-us/sql/big-data-cluster/quickstart-

big-data-cluster-deploy?view=sqlallproductsallversions#inspect-the-cluster;
• войдите в кластер, используя azdata, найдите конечную точ-

ку контрол лера, а затем попробуйте подключиться к SQL Server,
чтобы убедиться, что вы можете подключиться к нему. Следуйте
инструк циям на странице https://docs.microsoft.com/en-us/sql/big-data-cluster/

deployment-guidance?view=sqlallproducts-allversions#endpoints.
 Найдите конечную точку с названием SQL Server Master Instance

Front-End. Конечной точкой является IP-адрес и порт для подклю-
чения к SQL Server.

 Следуйте инструкциям на следующей странице документации, что-
бы подключиться к SQL Server в BDC с помощью Azure Data Studio
(ADS): https://docs.microsoft.com/en-us/sql/big-data-cluster/connect-to-big-data-

cluster.
 Результат моей проверки возможности подключения к моему BDC в

ADS показан на рис. 10.6.

Примечание. При развертывании BDC я использовал инсайдерскую ADS и поэтому
должен предупредить вас, что некоторые из показанных на рисунке интерфейсов
могут измениться после выпуска официальной версии SQL Server 2019.

• Проверьте общее состояние BDC с помощью следующей команды:

 azdata bdc status show

Развертывание кластеров больших данных  335

Рис. 10.6. Подключение к SQL Server в BDC после завершения развертывания

 Полученный мной для моего кластера BDC результат выглядел так:

Mssql-cluster: ready Health Status:
 healthy
===
Services: ready Health Status:
 healthy

Servicename State Healthstatus Details
sql ready healthy -
hdfs ready healthy -
spark ready healthy -
control ready healthy -
gateway ready healthy -
app ready healthy -

Sql Services: ready Health Status:
 healthy

Resourcename State Healthstatus Details
master ready healthy StatefulSet master is healthy
compute-0 ready healthy StatefulSet compute-0 is healthy
data-0 ready healthy StatefulSet data-0 is healthy
storage-0 ready healthy StatefulSet storage-0 is healthy

336  Глава 10. Кластеры больших данных в SQL Server

Hdfs Services: ready Health Status:
 healthy

Resourcename State Healthstatus Details
nmnode-0 ready healthy StatefulSet nmnode-0 is healthy
storage-0 ready healthy StatefulSet storage-0 is healthy
sparkhead ready healthy StatefulSet sparkhead is healthy

Spark Services: ready Health Status:
 healthy

Resourcename State Healthstatus Details
sparkhead ready healthy StatefulSet sparkhead is healthy
storage-0 ready healthy StatefulSet storage-0 is healthy

Control Services: ready Health Status:
 healthy

Resourcename State Healthstatus Details
controldb ready healthy -
control ready healthy -
metricsdc ready healthy DaemonSet metricsdc is healthy
metricsui ready healthy ReplicaSet metricsui is healthy
metricsdb ready healthy StatefulSet metricsdb is healthy
logsui ready healthy ReplicaSet logsui is healthy
logsdb ready healthy StatefulSet logsdb is healthy
mgmtproxy ready healthy ReplicaSet mgmtproxy is healthy

Gateway Services: ready Health Status:
 healthy

Resourcename State Healthstatus Details
gateway ready healthy StatefulSet gateway is healthy

App Services: ready Health Status:
 healthy

Resourcename State Healthstatus Details
appproxy ready healthy ReplicaSet appproxy is healthy

 Если не все в порядке, обратитесь к следующей документации для
устранения неполадок в кластере: https://docs.microsoft.com/en-us/sql/big-

data-cluster/cluster-troubleshooting-commands.

Развертывание кластеров больших данных  337

Настройка развертывания для промышленной среды
В моем сценарии развертывания использовалась конфигурация, постав-

ляемая с инструментом azdata, предназначенная для кластера, используе-
мого в разработке или тестировании. Конфигурация для azdata определя-
ется в файлах JSON и используется для управления различными типами
определений ресурсов в кластере. Вы можете вывести список этих конфи-
гураций с помощью команды

azdata bdc config list

Файлы JSON, используемые для конфигурации, очень похожи на
YAML-файлы Kubernetes, примеры которых вы видели в главе 8. В данном
случае JSON-файлы имеют формат, распознаваемый инструментом azdata
(так же, как файлы YAML имеют формат, распознаваемый kubectl).

Чтобы узнать, какие параметры можно настроить для развертывания
BDC, вы можете выполнить команду, аналогичную приведенной ниже, что-
бы посмотреть, как развертывается конфигурация aks-dev-test по умолча-
нию:

azdata bdc config init --source aks-dev-test --target custom

Эта команда создает новую папку с именем custom и сохраняет в этом
каталоге файлы с именами bdc.json и control.json. Вы можете внести изме-
нения в эти файлы и выполнить команду, аналогичную следующей, чтобы
создать новый BDC с выбранными параметрами конфигурации:

azdata bdc create --config-profile custom --accept-eula yes

Этот метод описан в документации по ссылке https://docs.microsoft.com/en-us/

sql/big-data-cluster/deployment-guidance?view=sqlallproducts-allversions#customconfig.
Чтобы понять, как вносить изменения в файлы JSON для BDC, вам необ-

ходимо познакомиться с архитектурой, о которой будет рассказываться в
следующем разделе «Архитектура кластера больших данных». Я ожидаю,
что после прочтения раздела, посвященного архитектуре, вы вернетесь к
этому разделу, чтобы взглянуть поближе на файлы и методы JSON и изме-
нить их соответствующим образом. Если у вас есть представление о том,
что нужно изменить, вы можете использовать следующие рекомендации в
нашей документации о том, как вносить изменения в файлы JSON для BDC:
https://docs.microsoft.com/en-us/sql/big-data-cluster/deployment-custom-configuration.

Полная документация по конфигурации развертывания BDC, описыва-
ющая структуру файлов JSON, находится по адресу https://docs.microsoft.com/

en-us/sql/big-data-cluster/reference-deployment-config.
Вам также следует изучить наши сценарии «автоматического развер-

тывания» для Python и bash, чтобы увидеть, как можно создавать k8s и
BDC:

338  Глава 10. Кластеры больших данных в SQL Server

• Python – https://docs.microsoft.com/en-us/sql/big-data-cluster/quickstart-big-data-

cluster-deploy;

• bash – https://docs.microsoft.com/en-us/sql/big-data-cluster/deployment-script-single-

node-kubeadm.

Эти сценарии предполагают применение одного узла Kubernetes (k8s).
Скорее всего, вы захотите использовать несколько узлов в производствен-
ном кластере k8s. Затем вы можете решить, как разместить различные
компоненты BDC на определенных узлах k8s. Обратитесь к документа-
ции по ссылке https://docs.microsoft.com/en-us/sql/big-data-cluster/deployment-custom-

configuration.
Другим важным аспектом настройки BDC для производства является

хранилище. Наша документация содержит рекомендации по настройке
хранилища BDC в соответствии с конфигурацией хранилища k8s для про-
мышленной среды по ссылке https://docs.microsoft.com/en-us/sql/big-data-cluster/

concept-data-persistence. Каждый объект pod, имеющий хранилище с сохране-
нием состояния в BDC, использует отдельное PVC. Вы можете получить
список всех объектов PVC в BDC, выполнив следующую команду:

get PersistentVolumeClaim --namespace=mssql-cluster

Двумя другими важными аспектами развертывания BDC в промышлен-
ной среде являются безопасность и высокая доступность, о которых я рас-
скажу более подробно в разделах «Безопасность» и «Высокая доступность»
далее в этой главе.

Архитектура кластера больших данных
Я буду использовать свой развернутый BDC для знакомства с архитектурой
кластеров больших данных. Я описал компоненты, которые поставляются с
BDC, но это был скорее «список возможностей». Архитектура представляет
интерес для читателя, поскольку вы cможете точно узнать, какие объекты
pod и контейнеры установили. Знания, почерпнутые из глав 7 и 8, здесь
непременно пригодятся.

Примечание. Если вы хотите перейти к использованию BDC, перейдите к следую-

щему разделу «Использование кластеров больших данных». Я считаю этот раздел об
архитектуре необязательным, но важным разделом данной главы. Вы всегда можете
вернуться к нему, изучив некоторые аспекты использования BDC. Важно знать, что
мы создали BDC, так что вам не нужно знать каждую деталь архитектуры. И любая
информация, приведенная в этом разделе, может устареть. Я приведу здесь некото-

рые подробности, скрытые «за кадром», однако они, безусловно, могут измениться
со временем.

Архитектура кластера больших данных  339

На рис. 10.7 приведена схема общей архитектуры кластеров больших
данных SQL Server (BDC).

Рис. 10.7. Архитектура кластера больших данных SQL Server

Обратите внимание, что на этой схеме используется термин пул. Пул –
это логический термин в BDC, который представляет собой набор объектов
pod, которые служат определенной цели. Я упоминал некоторые из этих
пулов ранее в данной главе, например пул вычислений (Compute Pool) и
пул данных (Data Pool). В этом разделе я расскажу более подробно, какие
объекты pod и контейнеры входят в состав этих пулов.

Давайте разберем каждый фрагмент рис. 10.7, чтобы составить представ-
ление об архитектуре BDC, используя различные команды и визуальные
элементы схемы. Один из способов понять архитектуру – это исследовать
ее с точки зрения k8s.

Когда я запускаю приведенную ниже команду, то получаю список всех
объектов pod, развернутых BDC в моем кластере k8s с одним узлом:

kubectl get pods --namespace mssql-cluster

В результате я получаю следующий список объектов pod и их статусов:

NAME READY STATUS RESTARTS AGE
appproxy-q8zkk 2/2 Running 0 24h
compute-0-0 3/3 Running 0 24h
control-vjwjf 3/3 Running 0 24h
controldb-0 2/2 Running 0 24h
controlwd-l8fmp 1/1 Running 0 24h
data-0-0 3/3 Running 0 24h
data-0-1 3/3 Running 0 24h
gateway-0 2/2 Running 0 24h

Контроллер

Служба управления Прокси Kibana Grafana

Хранилище конфигурации (SQL Server)

Кластер больших данных SQL Server

Эластичный поиск
(Elastic Search) InfluxDB

Внешние

Приложение

Экземпляр
SQL для пула

данных

Экземпляр SQL
для вычислений

источники данных

Пользовательские
приложения АналитикаBI

Главный экземпляр
SQL Server

Пул приложений
Пул вычислений

Хранилище

Экземпляр SQL
для вычислений

Экземпляр SQL
для вычислений

Пул данных Пул хранения

Экземпляр
SQL для пула

данных

Хранилище

Узел данных HDFS Узел данных HDFS Узел данных HDFS

Объект pod Kubernetes

Постоянное хранилище

УзелУзелУзелУзелУзел Узел Узел

Данные
интернета вещей

Непосредственное
чтение из HDFS

SQL

SQL
Server

Spark
SQL

Server
Spark

SQL
Server

Spark

340  Глава 10. Кластеры больших данных в SQL Server

logsdb-0 1/1 Running 0 24h
logsui-f42ln 1/1 Running 0 24h
master-0 3/3 Running 0 24h
metricsdb-0 1/1 Running 0 24h
metricsdc-gtrxn 1/1 Running 0 24h
metricsui-kwh4q 1/1 Running 0 24h
mgmtproxy-nc8tl 2/2 Running 0 24h
nmnode-0-0 2/2 Running 0 24h
sparkhead-0 4/4 Running 0 24h
storage-0-0 4/4 Running 0 24h
storage-0-1 4/4 Running 0 24h

Основываясь на этом списке и концепциях, с которыми вы уже успели
познакомиться, вы, вероятно, сможете догадаться, где на рис. 10.7 нахо-
дятся некоторые из объектов pod. Значения в столбце READY показывают,
сколько контейнеров запущено в каждом из этих объектов. Нетрудно уви-
деть, что простой кластер BDC dev/test содержит около 43 контейнеров!

Давайте воспользуемся этим списком для сопоставления объектов pod
в кластере k8s с компонентами на рис. 10.7, используя концепцию пулов.

Главный экземпляр SQL Server
Главный экземпляр SQL Server (SQL Server Master Instance) представлен

в виде объекта pod master-0. Основным контейнером, запущенным в этом
объекте pod, является контейнер SQL Server Linux. Вы можете использовать
следующую команду, чтобы получить подробную информацию о том, как
BDC развертывает контейнер SQL Server:

kubectl describe pod master-0 --namespace mssql-cluster

Одним из важных аспектов организации BDC является использование
меток в Kubernetes. Я описал, как использовать метки, в главе 8, посвящен-
ной SQL Server и k8s. Посмотрите на следующий фрагмент результатов
выполнения предыдущей команды:

Labels: MSSQL_CLUSTER=mssql-cluster
 app=master
 controller-revision-hash=master-7bbc4d95fb
 mssql.microsoft.com/sql-instance=master
 plane=data
 role=master-pool
 statefulset.kubernetes.io/pod-name=master-0
 type=sqlservr

Вы можете видеть, как мы применяем некоторые из этих меток для сопо-
ставления с терминами BDC. Например, следующие две метки представ-
ляют интерес:

Архитектура кластера больших данных  341

plane=data
role=master-pool

Если вы выполните следующую команду, то получите все объекты pod в
«разрезе данных»:

get pods --namespace mssql-cluster -lplane=data

Для своего BDC я получил следующий результат:

NAME READY STATUS RESTARTS AGE
appproxy-q8zkk 2/2 Running 0 24h
compute-0-0 3/3 Running 0 24h
data-0-0 3/3 Running 0 24h
data-0-1 3/3 Running 0 24h
master-0 3/3 Running 0 24h
nmnode-0-0 2/2 Running 0 24h
sparkhead-0 4/4 Running 0 24h
storage-0-0 4/4 Running 0 24h
storage-0-1 4/4 Running 0 24h

Этот список содержит большинство основных компонентов, представ-
ленных на рис. 10.7, за исключением контроллера, о котором я расскажу в
следующем разделе главы «Контроллер».

Если вы посмотрите дальше на приведенный выше результат выполне-
ния команды kubectl description pod, то увидите структуру контейнера SQL
Server, начиная с

Containers:
 mssql-server:

Если вы вернетесь к главе 8, то увидите, что важными компонентами,
задействованными в объекте pod для SQL Server в k8s, были:

• образ контейнера;
• Persistent Volume Claim;
• объект Secret;
• балансировщик нагрузки;
• ReplicaSet.

Результат выполнения команды kubectl describe, показанный ранее,
содержит все эти компоненты.

Вы можете найти образ контейнера для контейнера SQL Server (помни-
те, что я использовал версию SQL Server 2019 Big Data Clusters) в следую-
щем разделе:

Image: mcr.microsoft.com/mssql/bdc/mssql-server-data:2019-RC1-ubuntu

342  Глава 10. Кластеры больших данных в SQL Server

Позже в выводимых данных вы увидите список смонтированных объ-
ектов, которые описывают смонтированные постоянные хранилища для
объектов PersistentVolumeClaim.

Обратите внимание на следующий фрагмент:

/var/opt from data (rw)

И на следующий том:

Volumes:
 data:
 Type: PersistentVolumeClaim (a reference to a
 PersistentVolumeClaim in the same namespace)
 ClaimName: data-master-0
 ReadOnly: false

Как вы помните, в главе 8 я показал вам, как сопоставить каталог SQL
Server, например /var/opt, с объектом PVC.

Вы можете выполнить следующую команду, чтобы просмотреть структу-
ру объекта PVC:

describe PersistentVolumeClaim data-master-0 --namespace=mssql-cluster

Просмотрев полученный результат, вы можете видеть, что этот объект
PVC привязан к классу StorageClass, используемому по умолчанию для
AKS, и имеет размер 15 ГБ. Это, разумеется, не такой большой объем для
хранения данных SQL Server, однако это всего лишь тестовый кластер. Если
вам необходимо изменить размер хранилища для реальной конфигура-
ции, то можете прочитать, как это сделать, в нашей документации, опубли-
кованной по ссылке https://docs.microsoft.com/en-us/sql/big-data-cluster/concept-data-

persistence.
Объект secret для SQL Server в главе 8 использовался для хранения паро-

ля учетной записи sa для подключения к SQL Server. Развертывание BDC
содержит переменную среды с именем MSSQL_SA_PASSWORD, которую
мне предложил использовать сценарий развертывания, написанный на
Python. Для главного экземпляра SQL Server мы создаем файл secret с име-
нем mssql-sa-password.

Как вы помните, в главе 8 я показал вам, как создать службу LoadBalancer
для SQL Server в объекте pod, используемую для подключения к SQL Server.
Наш инструмент развертывания BDC создает эту службу для главного
экземпляра SQL Server. Чтобы просмотреть объекты для этой службы, вы
можете выполнить следующую команду:

kubectl get service --namespace=mssql-cluster -lrole=master-pool

Полученный результат будет содержать службу master-svc-external,
внешний IP-адрес и порт.

Архитектура кластера больших данных  343

Последний компонент для объекта pod SQL Server – ReplicaSet. В гла-
ве 8 я показал вам, как ReplicaSet обеспечивает «базовую высокую доступ-
ность (HA)» для k8s для SQL Server. Для BDC мы используем концепцию
StatefulSet, которая предоставляет функциональность HA, аналогичную
ReplicaSet, но с более широкими возможностями. Объекты StatefulSet
используются для всех объектов pod в BDC, за исключением контроллера.
Объекты StatefulSet позволяют упорядочивать и масштабировать объекты
pod и являются ключевым компонентом для обеспечения высокой доступ-
ности в BDC. Более подробно о высокой доступности в BDC я расскажу в
разделе «Высокая доступность» далее в этой главе.

Если вы посмотрите на результат выполнения команды kubectl describe,
то увидите следующий фрагмент:

Controlled By: StatefulSet/master

Вы можете посмотреть, как мы определяем StatefulSet, выполнив сле-
дующую команду:

kubectl describe StatefulSet master --namespace=mssql-cluster

Обратите внимание, что в объекте pod master-0 есть два других контей-
нера:

collectd:
fluentbit:

Эти контейнеры являются составной частью каждого объекта pod в BDC
и используются для сбора данных журналов и метрик, применяемых при
управлении и мониторинге BDC.

Документация, в которой вы можете найти информацию о главном
экземпляре SQL Server, размещена по ссылке https://docs.microsoft.com/en-us/sql/

big-data-cluster/concept-master-instance.
Более подробно о том, как использовать главный экземпляр SQL Server, я

расскажу в разделе «Использование кластеров больших данных» этой главы.

Контроллер
Контроллер – это логический термин, представляющий коллекцию объ-

ектов pod и контейнеров. Вы можете получить список объектов pod в конт-
роллере с помощью следующей команды:

kubectl get pods --namespace mssql-cluster -lplane=control

Вот список объектов pod, полученный для моего развернутого BDC:

NAME READY STATUS RESTARTS AGE
control-vjwjf 3/3 Running 0 38h
controldb-0 2/2 Running 0 38h

344  Глава 10. Кластеры больших данных в SQL Server

controlwd-l8fmp 1/1 Running 0 38h
gateway-0 2/2 Running 0 38h
logsdb-0 1/1 Running 0 38h
logsui-f42ln 1/1 Running 0 38h
metricsdb-0 1/1 Running 0 38h
metricsdc-gtrxn 1/1 Running 0 38h
metricsui-kwh4q 1/1 Running 0 38h
mgmtproxy-nc8tl 2/2 Running 0 38h

Контроллер также называется уровнем управления; эта концепция очень
похожа на концепцию Kubernetes для уровня управления (https://kubernetes.io/

docs/concepts/#kubernetes-control-plane).
На рис. 10.8 показан крупный план компонентов уровня управления для

BDC.

Рис. 10.8. Уровень управления BDC

Контроллер можно рассматривать как набор сервисов, которые исполь-
зуются для управления BDC. Одной из задач управления является развер-
тывание, и контроллер используется для развертывания BDC. Как только
azdata развертывает контроллер, контроллер «захватывает» и развертыва-
ет другие компоненты BDC. Все объекты pod, работающие на уровне управ-
ления, используют концепцию k8s ReplicaSet для обеспечения высокой
доступности.

Одним из наиболее важных компонентов контроллера является служба
контроллера (также указанная в качестве службы управления на рис. 10.8).
Служба контроллера фактически является сервером API для BDC. Эта служ-
ба поддерживает REST API для выполнения всех типов операций для BDC,
включая развертывание, управление, виртуализацию данных и многое
другое. В практических примерах будет использоваться взаимодействие
со службой контроллера с применением нескольких различных методов,
включая azdata, внешние таблицы T-SQL и Azure Data Studio (ADS).

На момент написания этой книги отсутствует общедоступная докумен-
тация по протоколу использования службы контроллера для определен-
ных API. Все API доступны с использованием операторов Azdata, Azure Data
Studio (ADS) и T-SQL.

Совет. Azure Data Studio (ADS) может подключаться и взаимодействовать с BDC без
azdata. Поэтому примеры REST API для взаимодействия со службой контроллера со-

держатся в его открытом исходном коде, размещенном по ссылке https://github.com/

Контроллер

Служба управления Прокси Kibana Grafana

Хранилище конфигурации (SQL Server)

Кластер больших данных SQL Server

Эластичный поиск
(Elastic Search) InfluxDB

Архитектура кластера больших данных  345

microsoft/azuredatastudio. Однако в будущем мы можем их изменить, поэтому я при-

зываю вас обращать особое внимание на этот момент. Кроме того, при использова-

нии данного способа доступа у вас отсутствует возможность установить необходимое
программное обеспечение и получить доступ к сертификатам в BDC.

Другие объекты pod, принадлежащие этому уровню управления, реали-
зуют службы, которые поддерживают подключение к различным сервисам
(прокси): Kibana и Elasticsearch для ведения журнала, Grafana и InfluxDB
для получения значений метрик и мониторинга, а также SQL Server для
хранения «метаданных» BDC.

Контейнер SQL Server для хранения метаданных – это обычный экземп-
ляр SQL Server, но он «скрытый» (private). Другими словами, вы никогда не
подключаетесь к этому экземпляру. Контейнер контроллера использует этот
SQL Server для чтения важных данных, относящихся к управлению и исправ-
ности, а также для обеспечения возможности выполнения запросов HDFS.

Мне нравится узнавать, как все работает, поэтому я использовал следую-
щие методы для запуска оболочки Bash внутри этого специального контей-
нера SQL Server. Объект pod, в котором размещен этот контейнер, называ-
ется controldb-0.

Я использовал следующую команду для запуска оболочки Bash и подклю-
чения к контейнеру SQL Server:

kubectl exec -it controldb-0 --namespace=mssql-cluster -- /bin/bash

При помощи этой команды я подключаюсь к первому контейнеру внут-
ри объекта pod – это контейнер SQL Server. Как оказалось, мы создаем этот
образ SQL Server на основе нашего основного образа SQL Server, на котором
установлен sqlcmd.

Мне нужен пароль sa для работы с sqlcmd, однако это не тот пароль учетной
записи sa, который используется для подключения к главному экземпляру
SQL Server. Это служебный пароль, используемый только контроллером.
Я обнаружил, что мы храним объект secret для пароля sa внутри контей-
нера в /var/run/secrets/credentials/mssql-sa-password/password. Используя
эту строку пароля, я подключился к sqlcmd и обнаружил, что в контей-
нере установлены следующие базы данных: health_system, controller и
hive_metastore. Эти базы данных используются внутри BDC. Это пример
контейнера SQL Server, используемого для внутренней функциональности
BDC, в отличие от основного экземпляра SQL Server, который использует-
ся для обычных целей SQL Server, а также виртуализации данных с HDFS и
другими источниками данных.

Пул хранения
В главе 9 я рассказал, как Polybase позволяет вам получать доступ к источ-

никам данных вне SQL Server, включая данные HDFS. При доступе Polybase

346  Глава 10. Кластеры больших данных в SQL Server

к HDFS преобразует запросы T-SQL в Java MapReduce Jobs для доступа к
данным HDFS.

BDC развертывает свой собственный кластер HDFS, чтобы вы могли полу-
чить доступ к данным HDFS как через Polybase, так и напрямую, используя
Knox Gateway (https://knox.apache.org/), через контроллер.

На рис. 10.9 показано, как кластер HDFS развернут в BDC в качестве пула
хранения (Storage Pool).

Рис. 10.9. Пул хранения BDC

Пул хранения состоит из одного или нескольких объектов pod k8s. По
умолчанию при использовании конфигурации aks-dev-test развертывают-
ся два объекта pod пула хранения. Если вы выведете список объектов pod в
пуле хранения при помощи команды kubectl describe, то увидите, что они
связаны меткой role=storage-pool. Вы можете масштабировать ваше реше-
ние, добавляя объекты pod в пул хранения, используя пользовательскую
конфигурацию и указав число реплик.

В моем списке объектов pod, развернутых на BDC, пул хранения пред-
ставляют следующие объекты pod:

storage-0-0 4/4 Running 0 24h
storage-0-1 4/4 Running 0 24h

Объекты pod пулов хранения являются частью их собственного мно-
жества объектов StatefulSet, поэтому в случае двух реплик в конфигурации
BDC вы получаете два объекта pod в одном StatefulSet.

Каждый объект pod в пуле хранения содержит четыре контейнера
(предустановлены collectd и fluentbit), включая объект pod для компонен-

Экземпляр SQL
для вычислений

Главный экземпляр
SQL Server

Пул вычислений

Пул хранения

Узел данных HDFS

Объект pod Kubernetes

Непосредственное
чтение из HDFS

SQL
Server

Spark

Экземпляр SQL
для вычислений

Узел данных HDFS

SQL
Server

Spark

Экземпляр SQL
для вычислений

Узел данных HDFS

SQL
Server

Spark

Архитектура кластера больших данных  347

тов Hadoop и один объект pod для SQL Server. Объект pod для компонен-
тов Hadoop (имя контейнера Hadoop) запускает YARN и HDFS. YARN – это
менеджер ресурсов для компонентов Hadoop, запускаемых в кластере,
включая Spark Jobs (подробнее о YARN можно прочитать по ссылке https://

hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html). HDFS обеспе-
чивает функциональность распределенной файловой системы Hadoop.
BDC также развертывает узел имен HDFS (HDFS Name Node) для хранения
метаданных и управления доступом к кластеру HDFS.

Возможности YARN и HDFS включают распределенные вычисления и
хранение, что означает, что когда вы взаимодействуете и используете пул
хранения через T-SQL и Spark, ваши вычисления и хранение данных явля-
ются частью встроенной распределенной системы.

Контейнер SQL Server в системе BDC служит для специальных целей. На
рис. 10.9 обратите внимание на коннектор с надписью «Непосредствен-
ное чтение из HDFS». Это примечание означает, что контейнер SQL Server
в объектах pod пула хранения может считывать данные непосредственно
из хранилища HDFS, в том числе из файлов определенного формата, тако-
го как csv и parquet. Вы не подключаетесь к этим контейнерам SQL Server
напрямую; они используются внутри BDC для оптимизации доступа к фай-
лам HDFS в кластере BDC. Служба контроллера перенаправляет запросы к
внешним таблицам в HDFS в BDC на эти экземпляры SQL Server (эти запро-
сы могут перенаправляться через пул вычислений).

Если у вас есть собственная система HDFS, то можете смонтировать ее
в пул хранения, используя концепцию под названием HDFS Tiering. Вы
можете прочитать о HDFS Tiering по адресу https://docs.microsoft.com/en-us/sql/

big-data-cluster/hdfs-tiering.

Пул вычислений
На рис. 10.9 в предыдущем разделе, посвященном пулу хранения, также

показана концепция пула вычислений. Пул вычислений (Compute Pool) –
это множество (StatefulSet) объектов pod, которые реализуют группу
масшта бирования Polybase, о которой рассказывалось в главе 9.

Масштабировать пул вычислений можно, настроив конфигурацию раз-
вертывания BDC с помощью счетчика реплик (Replicas count). По умолча-
нию конфигурация aks-dev-test развертывает только один объект pod пула
вычислений (в документации это называется экземпляром).

Если ваша конфигурация BDC включает пул вычислений, все запросы к
внешним таблицам в BDC будут использовать пул вычислений. Контрол-
лер перенаправляет все запросы к внешним таблицам в источники данных
BDC через пул вычислений.

Для моей конфигурации BDC пул вычислений реализуется указанным
ниже объектом pod и использует метку role=compute-pool.

compute-0-0 3/3 Running 0 43h

348  Глава 10. Кластеры больших данных в SQL Server

Пул данных
В пуле данных размещены один или несколько объектов pod для кеши-

рования данных, о котором я говорил в разделе «Что входит в состав клас-
теров больших данных». По умолчанию конфигурация aks-dev-test для BDC
развертывает два объекта pod для пула данных. В моей конфигурации BDC
эти объекты pod представлены следующим образом:

data-0-0 3/3 Running 0 43h
data-0-1 3/3 Running 0 43h

Пул данных состоит из одного или нескольких объектов pod, использу-
ющих метку role=data-pool в StatefulSet, внутри каждого из которых раз-
мещен контейнер SQL Server. Ваш доступ к SQL Server в пуле данных осу-
ществляется через внешние таблицы Polybase из главного экземпляра SQL
Server.

При создании внешних таблиц в главном экземпляре SQL Server с исполь-
зованием внешнего источника данных для пула данных в каждом из объек-
тов pod SQL Server создает отдельную базу данных пула данных, имя кото-
рой совпадает с именем области внешних таблиц главного экземп ляра SQL
Server. Кроме того, мы создаем таблицу с тем же именем, что и имя внеш-
ней таблицы.

Это означает, что ваше взаимодействие с пулом данных происходит
через внешние таблицы в главном экземпляре SQL Server. На каждом SQL
Server в объектах pod пула данных мы создадим базу данных и таблицу,
соответствующие вашей внешней таблице. Кроме того, мы автоматически
разделяем или сегментируем данные (не используя разделы SQL Server),
когда вы добавляете данные в пул данных (по умолчанию используется
циклический перебор), и создаем кластеризованный столбцовый индекс
для каждой таблицы в каждом объекте pod пула данных, чтобы оптими-
зировать доступ для чтения. Это означает, что наш пул вычислений может
использоваться для доступа к этим данным в масштабируемом режиме
через сегменты базы данных. Данные в пуле данных невозможно изме-
нить; вы можете только добавлять (INSERT) данные или выполнять запро-
сы к ним. Поскольку это кеш, это означает, что вы должны удалить внеш-
нюю таблицу и снова заполнить ее данными, когда будете готовы обновить
кеш. Контроллер перенаправляет конкретные запросы к внешним табли-
цам на экземпляры SQL Server в пуле данных (которые могут выполняться
в пуле вычислений).

Пул приложений
Пул приложений (Application Pool) – это набор объектов pod, разверну-

тых на основе приложений в BDC. На рис. 10.10 показана область BDC для
пула приложений.

Использование кластеров больших данных  349

Рис. 10.10. Пул приложений в BDC

Когда вы используете интерфейсы BDC для создания приложения с
помощью файла YAML, служба контроллера будет динамически создавать
набор объектов pod ReplicaSet с вашим приложением, работающим в кон-
тейнере. В число поддерживаемых типов приложений в настоящее время
входят Python, MLeap и SSIS.

Существует еще один объект pod, представляющий прокси-приложе-
ния, включая балансировщик нагрузки, который позволяет подключаться
к приложению, работающему в пуле, как изнутри BDC, так и из внешней
среды через конечную точку службы:

appproxy-<id>

Вы можете узнать больше об архитектуре развертывания приложений
в BDC, перейдя по ссылке https://docs.microsoft.com/en-us/sql/big-data-cluster/concept-

application-deployment.

Использование кластеров больших данных
В этом разделе я рассмотрю различные варианты использования клас-
теров больших данных (Big Data Clusters, BDC). Первое, что вы захотите
сделать, – это войти в BDC, используя azdata. Технически вам не нужно
входить в систему для доступа к некоторым ресурсам в BDC, но использо-
вание azdata для входа дает вам контекст для доступа ко всем конечным
точкам службы.

Для входа в BDC необходима конечная точка службы контроллера.
Конечная точка службы контроллера – это IP-адрес и порт балансировщика
нагрузки (LoadBalancer) для объекта pod службы контроллера. В моем вари-
анте развертывания AKS я смог получить данные о конечной точке службы
контроллера с помощью следующей команды:

kubectl get svc controller-svc-external -n mssql-cluster

Теперь я могу задать для инструмента azdata правильный контекст для
использования в различных сценариях, выполнив следующую команду:

Приложение

Пул приложений

350  Глава 10. Кластеры больших данных в SQL Server

azdata login --controller-endpoint https://<ip-address-of-controller-svc-
external>:30080 --controller-username admin

После этого мне было предложено ввести пароль (это пароль, который я
вводил для сценария Python в разделе «Развертывание BDC»). После успеш-
ного входа я увидел следующее сообщение:

Logged in successfully to `https://<ip-address>:30080`

В этом контексте я могу использовать azdata для многих целей. Первое,
что я хочу сделать, – это получить список других конечных точек службы
для работы с BDC. Для получения списка этих конечных точек я выполню
следующую команду:

azdata bdc endpoint list -o table

Полученный в результате список выглядит следующим образом:

 Protocol
-- --------------------------

---------------------------- ------------------ -------

Gateway to access HDFS files, Spark https://<knox-ip>:30443
 gateway https
Spark Jobs Management and Monitoring Dashboard https://<knox-ip>:30443/
gateway/default/sparkhistory spark-history https
Spark Diagnostics and Monitoring Dashboard https://<knox-ip>:30443/
gateway/default/yarn yarn-ui https
Application Proxy https://<appproxy-ip>:
30778 app-proxy https
Management Proxy https://<mgmt-ip>:30777
 mgmtproxy https
Log Search Dashboard https://<mgmt-ip:30777/
kibana logsui https
Metrics Dashboard https://<mgmt-ip>:30777/
grafana metricsui https
Cluster Management Service https://<cluster-ip>:
30080 controller https
SQL Server Master Instance Front-End <sql-ip>,31433
 sql-server-master tds
HDFS File System Proxy https://<knox-ip>:30443/
gateway/default/webhdfs/v1 webhdfs https
Proxy for running Spark statements, jobs, applications https://<knox-ip>:30443/
gateway/default/livy/v1 livy https

Я заменил некоторые имена для представления фактического IP-адреса
в моем кластере:

Использование кластеров больших данных  351

• <knox-ip> – это IP-адрес Knox Gateway, который, как вы можете ви-
деть в этом списке, используется для нескольких целей. Knox Gateway
применяется для доступа к файлам HDFS (webhdfs), запуска Spark
Jobs (livy), просмотра истории Spark Jobs (spark-history) и монито-
ринга Spark Jobs (yarn-ui);

• <appproxy-ip> – это IP-адрес, используемый для подключения к
приложениям, развернутым в BDC;

• <sql-ip> – это IP-адрес для подключения к главному экземпляру SQL
Server;

• <cluster-ip> – это IP-адрес службы контроллера.

Вы также можете получить все IP-адреса и порты конечной точки,
используя kubectl, но только azdata дает вам конкретные данные, такие как
доступ к webhdfs и livy.

Azure Data Studio (ADS) теперь предлагает возможности управления BDC,
включая возможность просмотра списка конечных точек.

На рис. 10.11 показан пример списка конечных точек BDC, отображае-
мого в ADS.

Рис. 10.11. Конечные точки BDC в Azure Data Studio

В документации, размещенной по ссылке https://docs.microsoft.com/en-us/sql/

big-data-cluster/concept-security, показаны общие конечные точки BDC. Вы также
можете увидеть общие конечные точки BDC на рис. 10.12.

Применение виртуализации данных
Одним из распространенных вариантов применения BDC являет-

ся доступ к данным из внешних источников данных с использованием
Polybase, как упоминалось в главе 9.

352  Глава 10. Кластеры больших данных в SQL Server

Рис. 10.12. Общие конечные точки BDC

Polybase с BDC обеспечивает те же функциональные возможности, что и
Polybase для Linux, включая встроенные коннекторы для SQL Server, Oracle,
Teradata, MongoDB и HDFS.

В BDC можно обеспечить поддержку этой функции посредством двух
дополнительных встроенных коннекторов, уникальных для BDC:

• sqlhdfs – этот коннектор позволяет получить доступ к данным HDFS
в пуле хранения;

• sqldatapool – этот коннектор позволяет получить доступ к данным,
специально хранящимся в пуле данных.

Вот примеры сценариев T-SQL для создания внешних источников дан-
ных в вашей базе данных для доступа к этим встроенным коннекторам:

IF NOT EXISTS(SELECT ∗ FROM sys.external_data_sources WHERE name =
'SqlDataPool')
 CREATE EXTERNAL DATA SOURCE SqlDataPool
 WITH (LOCATION = 'sqldatapool://controller-svc/default');
IF NOT EXISTS(SELECT ∗ FROM sys.external_data_sources WHERE name =
'SqlStoragePool')
 CREATE EXTERNAL DATA SOURCE SqlStoragePool
 WITH (LOCATION = 'sqlhdfs://controller-svc/default');

Обратите внимание, что URI для LOCATION – это конкретное местопо-
ложение службы контроллера. Служба контроллера направляет запросы
к внешним таблицам на основе этих источников в соответствующий пул
через пул вычислений, если он развернут.

В нашей документации есть пример использования внешней таблицы с
BDC для доступа к данным Oracle (см. https://docs.microsoft.com/en-us/sql/relational-

Контроллер

Azure Data Studio

Шлюз Spark/HDFS

Приложения (Azure Data Studio/SSMS)
ODBC, JDBC, SQLClient, OleDB

HTTPS

Приложение
Экземпляр SQL

для пула
данных

Экземпляр SQL
для вычислений

Главный экземпляр
SQL Server

Пул приложений

Пул вычислений

Хранилище

Экземпляр SQL
для вычислений

Экземпляр SQL
для вычислений

Пул данных Пул хранения

Экземпляр SQL
для пула
данных

Хранилище

Узел данных HDFS Узел данных HDFS Узел данных HDFS

Объект pod Kubernetes

Постоянное хранилище

УзелУзелУзелУзелУзел Узел Узел

Непосредственное
чтение из HDFS

SQL

SQL
Server

Spark
SQL

Server
Spark

SQL
Server

Spark

HTTPS

azdata

TDS

Использование кластеров больших данных  353

databases/polybase/data-virtualization). Вам понадобится установить экземпляр
Oracle, чтобы использовать этот пример. Вы также можете использовать
примеры, которые я привел в главе 9, размещенные в каталоге ch9_data_
virtualization\sqldatahub.

Примечание. В этой папке нельзя использовать только два примера: hdfs и saphana.
Доступ к данным HDFS в BDC осуществляется через коннектор sqlhdfs. Коннекторы
ODBC, которые требуются для работы с SAP HANA, в настоящее время не поддержи-

ваются для BDC.

Я полагаю, вас более заинтересуют примеры, иллюстрирующие доступ к
данным через коннекторы sqlhdfs и sqldatapool.

Я рекомендую сначала загрузить образцы данных для использова-
ния BDC, следуя инструкциям на странице документации, размещенной
по ссылке https://docs.microsoft.com/en-us/sql/big-data-cluster/tutorial-load-sample-data.
Я выполнил действия, описанные в этих инструкциях, и у меня не возник-
ло проблем с загрузкой нужных мне данных. В этом примере вы загрузи-
те каталог csv files в HDFS, используя инструмент curl. В данном приме-
ре используется конечная точка WebHDFS (https://hadoop.apache.org/docs/r1.0.4/

webhdfs.html) объекта Knox Gateway, который называется прокси файловой
системы HDFS (HDFS File System Proxy).

После того как вы загрузите данные, можете перейти к обучающим мате-
риалам, размещенным по ссылке https://docs.microsoft.com/en-us/sql/big-data-cluster/

tutorial-query-hdfs-storage-pool, чтобы получить доступ к данным HDFS. Вам так-
же может быть интересно попробовать поработать с мастером внешних
таблиц, поставляемым с Azure Data Studio. Мастер внешних таблиц обеспе-
чивает альтернативный способ создания внешней таблицы, связанной с
данными HDFS в BDC. Обратитесь к документации, размещенной по ссыл-
ке https://docs.microsoft.com/en-us/sql/big-data-cluster/data-virtualization-csv.

Возможно, вам потребуется загружать данные непосредственно в HDFS
из таких источников, как устройства IOT. В нашей документации, разме-
щенной по ссылке https://docs.microsoft.com/en-us/sql/big-data-cluster/data-ingestion-

curl, приводятся примеры того, как напрямую взаимодействовать с HDFS.
Кроме того, Azure Data Studio включает возможность просмотра и рабо-

ты с файлами в HDFS напрямую, как вы можете видеть на рис. 10.13.
Бак Вуди (Buck Woody) провел семинар под названием «Кластеры боль-

ших данных SQL Server – архитектура» (SQL Server Big Data Clusters –
Architecture) и создал набор записных книжек (Notebooks), которые можно
использовать с ADS, чтобы увидеть, как виртуализация данных работа-
ет с BDC. Вы можете просмотреть и загрузить эти записные книжки по
ссылке https://github.com/microsoft/sqlworkshops/tree/master/sqlserver2019bigdataclusters/

SQL2019BDC/notebooks, используя учебные пособия 00, 01 и 02 для записных
книжек, предназначенных для сценариев виртуализации данных.

354  Глава 10. Кластеры больших данных в SQL Server

Рис. 10.13. Работа с HDFS в BDC с помощью Azure Data Studio

Использование пула данных
Ранее в этой главе я представил пул данных как кеш данных. Процесс

использования пула данных заключается в получении или добавлении
данных на основе запросов из других источников данных, которые могут
быть таблицами основного экземпляра SQL Server, внешними источника-
ми данных из HDFS или любого другого коннектора Polybase.

Данные автоматически распределяются между объектами pod в пуле
данных и оптимизируются для доступа на чтение с кластеризованными
столбцовыми индексами.

Я рекомендую вам ознакомиться с примером в нашей документации,
размещенной по ссылке https://docs.microsoft.com/en-us/sql/big-data-cluster/tutorial-

data-pool-ingest-sql, чтобы получить представление об использовании пула
данных.

На семинаре Бака Вуди в занятии 03 показано, как использовать пул дан-
ных в BDC (см. https://github.com/microsoft/sqlworkshops/blob/master/sqlserver2019bigda-

taclusters/SQL2019BDC/notebooks/bdc_tutorial_03.ipynb).

Использование кластеров больших данных  355

Использование Spark
Spark (https://spark.apache.org/) – это механизм вычислений, который часто

применяется в системах Hadoop. BDC автоматически предоставляет воз-
можности для запуска Spark Jobs для различных приложений. Существует
несколько способов запуска Spark Jobs в BDC, о которых я расскажу в этом
разделе. Вы можете просмотреть некоторые из этих примеров, чтобы уви-
деть, как Spark работает с BDC. Если у вас нет опыта работы со Spark, вам нуж-
но сначала подумать, почему вы хотите использовать Spark, прежде чем при-
менять Spark Jobs в BDC. Есть несколько очень хороших сценариев, в которых
Spark может быть эффективным методом обработки данных в HDFS, поэто-
му мы включили Spark в состав общего решения BDC. Вы также увидите, что
Spark является распространенным решением, используемым в сценариях
машинного обучения, о которых я подробнее расскажу в следующем разде-
ле этой главы «Машинное обучение и кластеры больших данных».

Запуск Spark Jobs из Azure Data Studio
Одним из сценариев, в котором Spark может быть полезен, является

загрузка данных из HDFS из пула хранения в таблицы и в пул данных в BDC.
Одним из способов запуска задания Spark является использование Azure

Data Studio, подключенной напрямую к главному экземпляру SQL Server.
На рис. 10.14 показан пример запуска Spark Job из Azure Data Studio (ADS).

Рис. 10.14. Запуск Spark Job в Azure Data Studio

Дополнительную информацию об отправке Spark Jobs напрямую в ADS
можно получить по ссылке https://docs.microsoft.com/en-us/sql/big-data-cluster/spark-

submit-job.

356  Глава 10. Кластеры больших данных в SQL Server

Запуск Spark Jobs из других инструментов
Мы также поддерживаем отправку Spark Jobs в BDC с помощью инстру-

мента IntelliJ, о котором вы можете прочитать по ссылке https://docs.microsoft.

com/en-us/sql/big-data-cluster/spark-submit-job-intellij-tool-plugin. Вы также можете
отправить Spark Jobs в BDC, используя Visual Studio Code, о котором вы
можете прочитать по ссылке https://docs.microsoft.com/en-us/sql/big-data-cluster/

spark-hive-tools-vscode. В обоих этих сценариях вы будете использовать конеч-
ную точку Gateway to access HDFS files, Spark (Шлюз для доступа к фай-
лам HDFS, Spark) для подключения к BDC и запуска Spark Jobs.

BDC также предоставляет конечную точку REST под названием Livy (https://

livy.apache.org/) для отправки Spark Jobs. Конечная точка Livy предостав ляется
посредством прокси, как часть <knox-ip>, и называется Proxy for running
Spark statements, jobs, applications (Прокси для запуска операторов,
исполняемых сценариев (jobs), приложений).

Возможно, наиболее распространенный способ использования Spark
в контексте BDC – это применение записных книжек (Notebooks) в Azure
Data Studio (ADS) . В предыдущих главах данной книги я показывал вам
множество примеров использования записных книжек в работе с ADS,
использую щей ядро для SQL. ADS поддерживает ядра и для других языко-
вых сред, в том числе:

• PySpark3;

• PySpark;

• Spark | Scala;

• Spark | R;

• Python.

В любом из этих сценариев вы будете подключаться к главному экземп-
ляру SQL Server с помощью записной книжки. ADS будет обрабатывать
отправку Spark Jobs из записной книжки через Knox Gateway, чтобы пра-
вильно запустить Spark Job в BDC. Любой код Python или R, который содер-
жится в этих записных книжках, будет работать и на вашем локальном
компьютере.

MSSQL Spark Connector
Мы предоставляем и другой метод для запуска Spark Jobs через MSSQL

Spark Connector. Этот коннектор взаимодействует с основным экземпля-
ром SQL Server, использует для записи API-интерфейсы массового копи-
рования SQL (SQL Bulk Copy APIs) и имеет знакомый интерфейс JDBC. Вы
можете прочитать больше о MSSQL Spark Connector и о том, как исполь-
зовать его с BDC, по ссылке https://docs.microsoft.com/en-us/sql/big-data-cluster/spark-

mssql-connector.

Безопасность  357

Развертывание и использование приложений
В разделе «Архитектура кластера больших данных» я описал, как работает
пул приложений (Application Pool) в BDC, и дал ссылки на документацию по
развертыванию приложений в BDC.

Мы предоставляем «среду выполнения» для приложений, написанных
на R и Python, а также приложений, которые поддерживают пакеты MLeap
(https://mleap-docs.combust.ml/) и службы SSIS. Разработчик предоставляет код и
файл YAML, в которых содержатся инструкции, как запустить приложение,
а BDC запустит ReplicaSet контейнеров для выполнения кода приложения.

Развернутые в BDC приложения всегда «работают» как контейнер. Если
вы хотите использовать или выполнить код приложения, то можете исполь-
зовать команду azdata с параметром app. Вот ссылка на документацию
azdata: https://docs.microsoft.com/en-us/sql/big-data-cluster/reference-azdata-app.

BDC также предоставляет другой метод для применения развернутых
приложений через веб-интерфейс REST. По умолчанию все развернутые
приложения могут использоваться таким образом через протокол Swagger
(https://swagger.io/).

Лучший способ понять, как все это работает, – это посмотреть приме-
ры, которые вы можете найти, перейдя по ссылке https://github.com/Microsoft/

sql-server-samples/tree/master/samples/features/sql-big-data-cluster/app-deploy.

Безопасность
В то время когда я писал эту главу, BDC поддерживал только базовую аутен-
тификацию, то есть учетные записи и пароли. Все конечные точки службы,
которые связаны с контроллером, Knox и главным экземпляром SQL Server,
требуют ввести имя учетной записи и пароль.

Все взаимодействие между объектами pod внутри кластера происходит
по частным каналам связи с использованием объектов secret k8s (которые
сами по себе имеют учетные записи и пароли) и самозаверяющих серти-
фикатов.

К тому времени, когда мы выпустим окончательную версию SQL Server
2019, включив в нее все возможности поддержки кластеров больших дан-
ных, мы намерены включить поддержку аутентификации Active Directory
(AD) в BDC для всех конечных точек служб. Это включает в себя подклю-
чение к главному экземпляру SQL Server, службе контроллера (Controller
Service) и Knox Gateway.

Я ожидаю, что наша документация, размещенная по ссылке https://docs.

microsoft.com/en-us/sql/big-data-cluster/concept-security, будет содержать подробную
информацию о том, как включить BDC в домен, как развернуть BDC, обес-
печив все необходимые для AD данные, а также будет включать описание
процесса добавления пользователей AD и инструкцию, как войти в BDC с
учетной записью AD.

358  Глава 10. Кластеры больших данных в SQL Server

Высокая доступность
Как я уже упоминал в этой главе, объекты pod в BDC развертываются с по-
мощью StatefulSet или ReplicaSet в k8s. Это обеспечивает встроенную высо-
кую доступность (HA) для платформы k8s в случае сбоя контейнера, объек-
та pod или узла (высокая доступность при сбое узла будет обеспечиваться
только при развертывании k8s с несколькими узлами).

Хотя такая поддержка базовой HA полезна для SQL Server, было бы луч-
ше использовать нашу технологию группы доступности Always On (Always
On Availability Group, AG), которая включает реплики чтения и мониторинг
работоспособности SQL Server.

При развертывании BDC у вас есть возможность включить hadr. Вклю-
чение hadr по умолчанию создаст группу доступности в BDC и включит
системные базы данных в AG. Для поддержки этого варианта разверты-
вания создается несколько объектов pod в StatefulSet.

Используя эту конфигурацию, мы также создаем конечные точки для
подключения к первичной и вторичной репликам AG. Поскольку систем-
ные базы данных включены как часть AG, ваше основное подключение –
это подключение к основному экземпляру главного экземпляра SQL Server,
например прослушивателю AG. Если происходит аварийное переключение,
эта конечная точка останется подключенной к той реплике, которая станет
основной. Подключения к вторичным репликам (только для чтения) также
поддерживаются через отдельную конечную точку.

Документация, в которой рассказывается о том, как включить hadr, и
описаны особенности использования этого типа развертывания, доступ-
на по ссылке https://docs.microsoft.com/en-us/sql/big-data-cluster/deployment-high-

availability.

Jupyter Books для кластеров больших
данных SQL Server
Jupyter Books (https://jupyter.org/jupyter-book/intro.html) предоставляет меха-
низм для создания коллекции записных книжек. Azure Data Studio (ADS)
предостав ляет коллекцию записных книжек Jupyter Books, которая помо-
гает отслеживать, управлять и устранять неполадки кластеров больших
данных SQL Server. В основу этих записных книжек положены руководства
по устранению неполадок (Troubleshooting Guides, TSG), используемые
командой разработчиков SQL Server.

На рис. 10.15 показан интерфейс Jupyter Books для кластеров больших
данных SQL Server.

Машинное обучение и кластеры больших данных  359

Грамматика Случайность Выход

Модель
мира

Фильтрация

Метаданные
группы

Фрагменты

Взгляд модели
мира

Рис. 10.15. Jupyter Books для кластеров больших данных SQL Server

Машинное обучение и кластеры больших
данных
Одним из вариантов применения кластеров больших данных (Big Data

Clusters, BDC) SQL Server является комплексная платформа машинного
обучения. Рассмотрим упрощенную схему работы машинного обучения на
рис. 10.16.

Рис. 10.16. Использование кластеров больших данных в машинном обучении

Журналы, файлы
и медиаданные

(неструктурированные)

Упрощенные управление и анализ с использованием унифицированного развертывания, управления и инструментария

Оцифровка

Датчики и интернет вещей
(неструктурированные)

Бизнес / Пользовательские
приложения

(структурированные)

Хранение Подготовка и обучение

Потоковые данные Spark Пулы данных

HDFS

Главный экземпляр

Главный экземпляр

Машинное обучение Spark

Spark

Моделирование
и передача

для отображения
пользователю

Приложения для
прогнозирования

Инструменты BIКонтейнеры REST API
для моделей

Службы машинного
обучения SQL Server

360  Глава 10. Кластеры больших данных в SQL Server

Вы можете сделать все это, используя BDC! Вы можете получать дан-
ные из различных типов источников данных, как структурированных, так
и неструктурированных, с помощью Spark и SSIS. Вы можете хранить эти
данные в BDC, используя пулы данных, HDFS или даже основной экземп ляр
SQL Server. Некоторые из ваших данных для моделей машинного обуче ния
могут находиться во внешних источниках данных за пределами BDC, таких
как Azure, SQL Server, Oracle, Teradata и MongoDB. BDC предоставляет вам
доступ к любым из этих данных с помощью T-SQL.

Теперь вы можете подготовить и обучить свою модель машинного обуче-
ния с помощью Spark, SparkML и/или служб машинного обучения SQL Server
(SQL Server Machine Learning Services, ML). Затем вы можете размес тить
свою модель как приложение машинного обучения с использованием SQL
Server ML с T-SQL или как приложение, работающее через интерфейс REST,
в пуле приложений. Пул приложений предоставляет интересный подход
для разработчиков, поскольку в его основу положены код вашего приложе-
ния, декларативные файлы YAML и контейнеры. Это означает, что он может
использовать модель разработки, основанную на концепции непрерывной
интеграции / непрерывной доставки (Continuous Integration / Continuous
Delivery, CI/CD).

Пакеты для машинного обучения
Одним из огромных преимуществ для специалистов по исследованию и

обработке данных, использующих BDC и SQL Server 2019, являются пакеты
для машинного обучения (Machine Learning Packages), входящие в состав
поставляемого нами продукта. Я спросил доктора Рони Чаттерджи (Rony
Chatterjee), старшего менеджера программы в нашей команде, каким
образом могу узнать, какие из пакетов ML установлены. Он показал мне
следую щий запрос T-SQL, который я мог запустить на SQL Server 2019 или
в BDC, чтобы получить список установленных пакетов:

EXEC sp_execute_external_script
@language=N'Python',
@script=N'
import pkg_resources
import pandas
OutputDataSet = pandas.DataFrame([(d.project_name, d.version) for d in
pkg_resources.working_set])'

Я выполнил этот запрос на своем развернутом BDC и узнал, что в нем
было установлено более 160 пакетов машинного обучения!

Использование примеров
Я считаю, что вы должны познакомиться и попробовать выполнить сле-

дующие практические примеры, чтобы увидеть возможности машинного
обучения и кластеров больших данных SQL Server (BDC):

Машинное обучение и кластеры больших данных  361

• SparkML – у нас есть пример использования Spark и Spark ML
совмест но с BDC для прогнозирования уровней доходов на осно-
ве данных прошлых переписей в Соединенных Штатах. Вы можете
озна комиться с этим примером по ссылке https://docs.microsoft.com/en-us/

sql/big-data-cluster/spark-create-machine-learning-model;

• приложения BDC – существует несколько примеров приложений
ML с использованием Application Deploy, которые можно найти
по ссылке https://github.com/microsoft/sql-server-samples/tree/master/samples/

features/sql-big-data-cluster/app-deploy;

• пример Бака Вуди – мы с Баком Вуди (Buck Woody) весной 2019 го-
да проводили курс обучения для клиента, и Бак привел очень инте-
ресный пример задачи, решаемой методами машинного обучения
(Machine Learning, ML). Идея заключается в том, что выдуманная
компания WideWorldImporters имеет грузовики, которые перевозят
чувствительные к температуре продукты. На грузовиках установле-
ны системы охлаждения от батарей. Большая проблема заключается
в том, что системы охлаждения на грузовиках могут выйти из строя
из-за ограниченного жизненного цикла аккумулятора. Аккумулято-
ры рассчитаны на три месяца, но во многих случаях они выходят из
строя раньше. Компания хочет построить прогностическую модель
ML, чтобы определить, когда может потребоваться замена батареи, –
на основе динамических параметров грузовика и груза вместо фик-
сированного трехмесячного цикла.

 У Бака есть специальная записная книжка, которую вы можете ис-
пользовать, чтобы увидеть этот пример, – она опубликована по ссылке
https://github.com/microsoft/sqlworkshops/blob/master/sqlserver2019bigdataclusters/

SQL2019BDC/notebooks/bdc_tutorial_05.ipynb. Для применения этого обуча-
ющего материала вам необходимо выполнить все практичес-
кие упражнения, опубликованные в записных книжках по ссылке
https://github.com/microsoft/sqlworkshops/tree/master/sqlserver2019bigdataclusters/

SQL2019BDC/notebooks.
 Когда мы с Баком проводили данный курс обучения, один из пред-

ставителей заказчика сказал что-то вроде: «Наконец-то кто-то дал
мне практический, наглядный пример машинного обучения, и я по-
нял, как я могу использовать кластеры больших данных, чтобы реа-
лизовать его».

Управление и мониторинг кластеров больших данных
Вы можете видеть, что кластеры больших данных Big Data Clusters (BDC)

SQL Server включают в себя множество компонентов. Для мониторинга
и управления BDC необходимо учитывать множество факторов, включая
управление кластером Kubernetes, SQL Server и другими компонентами
BDC.

362  Глава 10. Кластеры больших данных в SQL Server

Управление Kubernetes (k8s)
Если вы зададите себе вопрос, что же мы создали с помощью BDC, ответ,

скорее всего, будет таков: это приложение, работающее на Kubernetes.
Несмотря на то что в составе решения BDC для SQL Server 2019 имеются
определенные средства, которые могут помочь вам управлять приложе-
нием BDC, вы все равно должны быть готовы управлять своим кластером
k8s. Для разработки и тестирования BDC это, скорее всего, не представля-
ет проблемы, однако для запуска BDC в рабочей среде вы должны сплани-
ровать, каким образом будете управлять кластером k8s и контролировать
его независимо от BDC. Я вряд ли преувеличиваю, когда говорю, что очень
важно понять, как обеспечить правильное управление и функционирова-
ние вашего кластера k8s на должном уровне. От того, насколько хорошо вы
управляете вашим кластером, зависит работоспособность вашего решения
BDC.

Чтобы погрузиться в тему управления k8s, я рекомендую вам следующие
ресурсы:

• ознакомьтесь с нашей документацией по управлению Azure Kuber-
netes Service (AKS), размещенной по ссылке https://docs.microsoft.com/

en-us/azure/aks/best-practices;

• настоятельно рекомендую книгу, в которой также содержится отлич-
ная информация о внутреннем устройстве k8s: https://learning.oreilly.com/

library/view/managing-kubernetes/9781492033905/.

Я также дал несколько советов и показал несколько методов управления
и мониторинга кластера k8s в разделе «Советы по k8s» главы 8.

Управление и мониторинг кластеров больших данных
Помимо стандартного управления и мониторинга главного экземпляра

SQL Server с помощью средств диагностики SQL Server, такой как пред-
ставления динамического управления (Dynamic Management Views, DMV)
и расширенные события, мы предоставили ряд инструментов и ресурсов,
которые помогут вам управлять и контролировать кластер больших дан-
ных (Big Data Cluster, BDC) SQL Server.

• Панель мониторинга кластера больших данных Azure Data
Studio (ADS)

 ADS поставляется с панелью мониторинга BDC, которая поможет
вам оценить работоспособность кластера BDC, включая все его ком-
поненты. На рис. 10.17 показан внешний вид панели мониторинга
ADS BDC.

Машинное обучение и кластеры больших данных  363

Рис. 10.17. Панель мониторинга кластера больших данных Azure Data Studio

 Вы можете щелкнуть один из объектов панели Cluster Details (Ин-
формация о кластере), например SQL Server, и просмотреть со-
стояние главного экземпляра SQL Server, вычислительных ресурсов,
данных и пула хранения. Мы внедрили проверку «жизнеспособ-
ности» (https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-
readiness-probes/) в каждый объект pod в BDC, чтобы отобразить общее
состояние работоспособности всех компонентов BDC. Более подроб-
ную информацию о панели мониторинга кластера больших данных
вы можете найти по ссылке https://docs.microsoft.com/en-us/sql/big-data-

cluster/manage-with-controller-dashboard.

• Метрики Grafana
 Используя этот контекст, вы можете перейти к метрикам, отобража-

емым в панели мониторинга Grafana (https://grafana.com/), управляемой
компонентами, размещенными в контроллере. На рис. 10.18 показа-
на панель Grafana для главного экземпляра SQL Server.

• Kibana и Elasticsearch
 Каждый основной компонент BDC имеет панель мониторин-

га Grafana и панель визуализации Kibana (https://en.wikipedia.org/wiki/

Kibana) и Elasticsearch (www.elastic.co/), а также журналы, используемые
для более глубокого анализа и устранения неполадок. На рис. 10.19
пока зана визуализация в Kibana журнала Elasticsearch для главного
экземп ляра SQL Server, отображаемая в панели мониторинга класте-
ра больших данных ADS.

364  Глава 10. Кластеры больших данных в SQL Server

Рис. 10.18. Панель инструментов Grafana

для кластеров больших данных SQL Server

Рис. 10.19. Визуализация данных журналов BDC
посредством Kibana и Elasticsearch

• Использование azdata с SQL Server
 В то время как Kubernetes позволяет вам взаимодействовать с кон-

тейнерами с помощью такой команды, как kubectl exec, azdata позво-
ляет вам взаимодействовать с SQL Server, используя параметр sql
azdata, как описано в документации, размещенной по ссылке https://

docs.microsoft.com/en-us/sql/big-data-cluster/reference-azdata-sql. Это дает вам
возможность выполнять команды T-SQL для главного экземпляра

Резюме  365

SQL Server, а также получать доступ к «оболочке» sqlcmd. Помните,
что инструмент azdata похож на утилиту kubectl для BDC; вы можете
ознакомиться с полной документацией по ссылке https://docs.microsoft.

com/en-us/sql/big-data-cluster/reference-azdata.

• Устранение неполадок Kubernetes (k8s) и BDC
 Прочитайте мое описание команд k8s в главе 8; однако у нас так-

же имеется еще несколько советов в нашей документации, разме-
щенной по ссылке https://docs.microsoft.com/en-us/sql/big-data-cluster/cluster-

troubleshooting-commands. Не забудьте также ознакомиться с нашими
руководствами по устранению неполадок SQL Server, которые я
привел в разделе «Jupyter Books для кластеров больших данных SQL
Server» этой главы.

Резюме
В то время как SQL Server 2019 содержит радикальные изменения, кластеры
больших данных SQL Server (SQL Server Big Data Clusters) являются револю-
ционным решением. Кто бы мог подумать, что продукт, который, по мне-
нию некоторых, представляет собой просто механизм реляционных баз
данных, включает в себя полное, целостное решение для создания вашего
собственного озера данных, виртуализации данных и сквозной платформы
машинного обучения на базе Kubernetes?

Взгляните на перечень технологий, которые мы использовали для клас-
теров больших данных:

• SQL Server;
• Polybase;
• HDFS;
• Spark;
• Livy;
• Kibana;
• Elasticsearch;
• Grafana;
• InfluxDB;
• записные книжки;
• машинное обучение с поддержкой R и Python;
• расширения Java;
• группы доступности Always On (Always On Availability Groups).

Все это поддерживается платформой управления с нашим «сервером
API» или контроллером, функция которого заключается в обеспечении
средств для развертывания, управления и обеспечения функционирования
кластера больших данных, построенного на Kubernetes.

366  Глава 10. Кластеры больших данных в SQL Server

Это мое мнение, но почему бы просто не привести отзыв клиента,
который уже познакомился в общих чертах с этим решением: «Создание
и развертывание нашего вертикального AI-решения для клинической
радио логии сочетает в себе очень разнообразные парадигмы реализации,
форматы данных и нормативные требования. Кластеры больших данных
SQL Server 2019 позволили нам приспособить и интегрировать все аспек-
ты в рамках одной общей платформы, предоставляя богатый спектр воз-
можностей для наших исследователей данных с их взглядом вглубь дан-
ных, а также для наших инженеров-программистов, которые подключают
рабочие процессы, обеспечивают безопасность и масштабируемость. Наши
клиенты в области здравоохранения получают выгоду от использования
контейнеров благодаря простоте их развертывания и обслуживания, а так-
же они могут легко перемещать наше решение между локальной и облач-
ной средами», – Рене Бальцано (René Balzano), основатель и генеральный
директор компании Balzano.

Эта цитата взята из нашего блога, из заметки, которую мы опублико-
вали, когда выпустили предварительную версию кластеров больших дан-
ных для SQL Server 2019 (см. https://cloudblogs.microsoft.com/sqlserver/2019/08/29/

sql-server-2019-release-candidate-refresh-with-big-data-clusters/). Я с нетерпением жду,
что множество других клиентов остановят свой выбор на этом продукте,
убедившись, что кластеры больших данных – это поистине революционное
решение, которое необходимо им для развития бизнеса.

Глава 11
Голос клиента и миграция

Я надеюсь, что к тому времени, когда вы дойдете до этой главы, вы сможете
оценить большое количество инноваций, появившихся в SQL Server 2019.
И если вы прочитали все первые десять глав, у вас, вероятно, возникло чув-
ство «информационной перегрузки». Несколько человек, которые посеща-
ли мои презентации, говорили, что чувствуют, как их мозг «плавится». Если
вы испытываете похожие ощущения, дойдя до этой главы книги, значит,
я выполнил одну из поставленных мною целей. Я хотел, чтобы эта книга
была чем-то большим, чем просто обзор SQL Server 2019, потому что любой
может почерпнуть необходимые сведения из документации. Я хотел, что-
бы моя книга стала полноценным обзором версии SQL Server 2019.

Итак, после того как мы познакомились со всеми этими возможностями
для решения современных проблем с данными, осталось ли что-либо, о чем
еще можно поговорить? Конечно, да. В заключение я расскажу об «огром-
ной куче функций» (я позаимствовал этот термин у моего коллеги Конора
Каннингема (Conor Cunningham)), которые мы добавили в SQL Server 2019
на основе отзывов клиентов. Я также расскажу о методах, инструментах и
технологических приемах, которые вы можете использовать при переходе
на SQL Server 2019.

Голос клиента
Все, о чем вы прочитали в этой книге, так или иначе зависит от наших кли-
ентов. В этом разделе я покажу вам улучшения для SQL Server 2019, которые
были получены непосредственно из отзывов и запросов клиентов, путем
эскалации из службы поддержки Microsoft, нашего собственного внутрен-
него тестирования или взаимодействия инженеров нашей компании непо-
средственно с клиентами. Если вы никогда не видели канал обратной свя-
зи напрямую с командой разработчиков, вы можете найти его по ссылке
https://aka.ms/sqlfeedback. В этом разделе я приведу список улучшений, разде-
лив их на три области:

• производительность. Повышение производительности ядра СУБД
SQL Server, ускоряющее работу для всех или отдельных типов рабо-
чих нагрузок;

• пользовательский опыт – это усовершенствования, позволяющие
улучшить использование или настройку продукта SQL Server;

368  Глава 11. Голос клиента и миграция

• диагностика – это усовершенствования, предназначенные для
улучшения процесса устранения неполадок или диагностики проб-
лем SQL Server.

Улучшения производительности
Наша команда инженеров всегда стремится повысить производитель-

ность ядра базы данных и ищет такие возможности с помощью исследо-
вания проблем клиентов и получения отзывов от них, изучения проблем в
работе поддержки Microsoft и часто с использованием тестов производи-
тельности. Этот опыт и наблюдения были положены в основу следующих
изменений в ядре базы данных.

• Сокращение компиляции для временных таблиц
 Один из стандартных приемов проектирования с использованием

временных таблиц – это создание временной таблицы в одной об-
ласти и использование ее в другой. Например, вы можете создать
временную таблицу в пакете, а затем попытаться использовать вре-
менную таблицу в хранимой процедуре, вызываемой пакетом. Это
обычно приводит к перекомпиляции хранимой процедуры, которая
ссылается на временную таблицу. В SQL Server 2019 по умолчанию
мы можем избежать перекомпиляции в данном сценарии. Хотя это
улучшение может не сделать рабочую нагрузку значительно быстрее,
оно может помочь общему приложению использовать SQL Server,
поскольку уменьшение количества перекомпиляций может снизить
общую загрузку ЦП SQL Server.

• Масштабируемость дополнительных контрольных точек
 Дополнительные контрольные точки – это новый метод по умолча-

нию для контрольных точек базы данных, о котором можно прочитать
по ссылке https://docs.microsoft.com/en-us/sql/relational-databases/logs/database-

checkpoints-sql-server. Проведя тестирование производительности и изу-
чив отзывы клиентов, мы обнаружили, что тяжелые модификации
данных могут вызывать сбои в механизме SQL Server, что приводит
к состоянию, называемому неработающим планировщиком. Обыч-
но мы видели эти проблемы только в больших системах с большим
количеством процессоров, что позволяет нам предположить, что это
проблема масштабируемости. SQL Server 2019 внес улучшения в ядро
базы данных, позволяющие избежать этой проблемы.

• Параллельные обновления PFS
 Страницы PFS – это специальные страницы в файле базы данных,

которые SQL Server использует для определения свободного места
при выделении пространства для объекта. (Вы можете прочитать за-
метку в блоге Пола Рэндала (Paul Randal), которую он написал, когда

Голос клиента  369

работал в Microsoft, посвященную страницам PFS, по ссылке https://

blogs.msdn.microsoft.com/sqlserverstorageengine/2006/07/08/under-the-covers-gam-

sgam-and-pfs-pages/.)
 Конфликт блокировки страниц на страницах PFS обычно ассоции-

руется с tempdb, но он также может возникать в пользовательских
базах данных, когда существует много параллельных потоков выде-
ления объектов. Это улучшение меняет способ управления паралле-
лизмом с помощью обновлений PFS, так что они могут обновляться
в рамках разделяемой кратковременной блокировки страниц, а не
эксклюзивной кратковременной блокировки. Это поведение вклю-
чено по умолчанию во всех базах данных (включая tempdb), начиная
с версии SQL Server 2019.

 Поскольку клиенты начинают работать с SQL Server 2019, мне очень
интересно увидеть эффективность параллелизма TempDB при ра-
боте с метаданными TempDB, оптимизированными для выделения
памяти (о которых речь шла в главе 2), в сочетании с этим усовер-
шенствованием.

• Захватывание рабочих потоков
 Я называю это улучшение «улучшением Славы» в честь Славы Окс

(Slava Oks). На протяжении многих лет мы видели, что одним из недо-
статков планировщика SQLOS является конфликт планировщика для
рабочих потоков. Какой совершенной могла бы стать система SQLOS,
если бы мы могли динамически менять рабочие потоки для данной
задачи, перенаправляя их на другой планировщик в ситуации конку-
ренции. Неофициально, в плане эксперимента мы начали внедрять
такую систему в ограниченном масштабе. SQL Server поддерживает
концепцию параллельного повтора операций для восстановления.
Донг Цао (Dong Cao) является ведущим разработчиком этой работы
и ведет блог о параллельном повторе операций и внутреннем повто-
ре операций на вторичных репликах группы доступности Always On
(Always On Availability Group) по ссылке https://docs.microsoft.com/ru-ru/

archive/blogs/sql_server_team/sql-server-20162017-availability-group-secondary-replica-

redo-model-and-performance. Донг реализовал концепцию захватывания
рабочих потоков только для параллельного повтора операций на вто-
ричных репликах. Если наши тесты по-прежнему будут успешными,
я жду, когда мы сможем внедрить это изменение в основное планиро-
вание в SQLOS для всего ядра для всех типов рабочих нагрузок.

Пользовательский опыт
Мы работали над рядом улучшений, предназначенных для облегчения

взаимодействия пользователей с сообщениями об ошибках, и настройкой
SQL Server.

370  Глава 11. Голос клиента и миграция

• Подробные уведомления о планируемом усечении данных
 Знаете ли вы, что является одним из самых частых пожеланий

клиен тов относительно SQL Server? Это пожелание детализировать
следую щее сообщение об ошибке:

 String or binary data would be truncated

 Это сообщение об ошибке, под номером 8152, возникает при попыт-
ке вставить или обновить данные в столбце, в котором значение,
используемое для вставки или обновления, превышает размер целе-
вого столбца. Проблема здесь заключается в отсутствии контекста –
в сообщении не указывается имя таблицы, столбца или фрагмента
данных, которые будут отсечены.

 В SQL Server 2019 по умолчанию для приложения выдается сообще-
ние об ошибке с номером 2628, которое выглядит следующим обра-
зом:

String or binary data would be truncated
in table '%.*ls', column '%.*ls'.
Truncated value: '%.*ls'

 Об этом улучшении рассказывает Пэм Лахуд (Pam Lahoud) в одном
из популярных блогов SQL Tiger Team. Ее заметка, в которой содер-
жатся конкретные примеры, размещена по ссылке https://docs.microsoft.

com/ru-ru/archive/blogs/sql_server_team/string-or-binary-data-would-be-truncated-re-

placing-the-infamous-error-8152.
 В этой заметке в блоге она призывает использовать флаг трассиров-

ки 460 в SQL Server 2017, чтобы выводить более подробное сообще-
ние об ошибке.

 SQL Server 2019 также имеет настраиваемый параметр базы дан-
ных, позволяющий изменить выдаваемое по умолчанию сообщение
об этой ошибке. Об этом вы можете прочитать по ссылке https://docs.

microsoft.com/en-us/sql/t-sql/statements/alter-database-scoped-configuration-trans-

act-sql?#verbose-truncation.

• Память и параметры, позволяющие установить степень парал-
лелизма во время настройки

 Два наиболее распространенных параметра конфигурации экземп-
ляров SQL Server, которые нужно изменить после установки, – это
max server memory (максимальный объем памяти сервера) и max
degree of parallelism (максимальная степень параллелизма).

 Учитывая, как часто они меняются, мы теперь добавили параметры
конфигурации, которые можно использовать во время установки
SQL Server в Windows, чтобы задать эти значения.

Голос клиента  371

 На рис. 11.1 показан параметр настройки для выбора степени парал-
лелизма.

Рис. 11.1. Выбор значения параметра MaxDOP во время установки

 На рис. 11.2 показаны параметры конфигурации памяти во время
настройки.

 Обратите внимание, что на этом рисунке в программе установки
SQL Server показано рекомендованное значение Max Server Me mory
(MB) (Максимальный объем памяти (Мб)). Мы не описываем в
документации, как получаем конкретное значение этого параметра,
и вы можете использовать любое приемлемое значение для вашей
среды. Мы обнаружили, что большинство клиентов используют зна-
чение, меньшее, чем максимальный объем физической памяти ком-
пьютера или виртуальной машины. Я лично считаю, что в рекомен-
дациях программы установки используются алгоритмы, которые вы
можете найти в утилитах Tiger Team BPCheck, по ссылке https://github.

com/microsoft/tigertoolbox/tree/master/BPCheck.

• Процент памяти, выделяемой регулятором ресурсов
 В главе 2 я описал проблему с производительностью, которая может

возникнуть из-за выделения больших объемов памяти. Одним из
решений, которое может помочь в управлении большими объемами

372  Глава 11. Голос клиента и миграция

памяти, является использование регулятора ресурсов с параметром
REQUEST_MAX_MEMORY_GRANT_PERCENT. Одна из проблем, свя-
занных с этим параметром, состоит в том, что возможные значения
представлены целыми числами от 1 до 100, представляющими про-
цент от максимального значения памяти для SQL Server. Даже 1 %
от 1 ТБ составляет 10 ГБ, что может быть слишком много для предо-
ставления памяти. SQL Server 2019 теперь допускает указывать для
REQUEST_MAX_MEMORY_GRANT_PERCENT значения с плавающей
запятой, что означает, что он может принимать значения < 1,0.

 Дополнительная информация об использовании REQUEST_MAX_
MEMORY_GRANT_PERCENT доступна по ссылке https://docs.microsoft.com/

en-us/sql/relational-databases/resource-governor/change-workload-group-settings.

Рис. 11.2. Конфигурация памяти во время настройки

• Оценка сжатия столбцового индекса
 В SQL Server имеется системная процедура для оценки экономии при

сжатии страниц и строк с названием sp_estimate_data_compression_
savings. В SQL Server 2019 эта процедура была улучшена, и теперь она
выводит приблизительное сжатие при использовании столбцовых
индексов и параметров для архивов столбцовых индексов. Вы мо-

Голос клиента  373

жете узнать больше об использовании этой процедуры, перейдя по
ссылке https://docs.microsoft.com/en-us/sql/relational-databases/system-stored-pro-

cedures/sp-estimate-data-compression-savings-transact-sql.

Диагностика
Я посвятил диагностике и устранению неисправностей в Microsoft более

20 лет, работая в службе поддержки Microsoft. Я все еще люблю оценивать
новые диагностические возможности, добавленные в новые версии этого
продукта, даже если они кажутся незначительными. То, что может пока-
заться незначительным одним, может принести огромную пользу другим.

• Вы тоже можете быть Полом Рэндалом
 Пол Рэндал (Paul Randal) – мой давний друг. Мы подружились, еще

когда он работал в подразделении, разрабатывающем Microsoft SQL
Server, и наша дружба продолжалась, когда он занял пост генераль-
ного директора SQLskills, где работал вместе со своей женой Ким-
берли Трипп (Kimberly Tripp). Мы с Полом являемся экспертами в
области Microsoft SQL Server – того, как он работает «изнутри», и
изуче ние внутренних элементов страниц базы данных (что иногда
называется «взломом страниц») – один из наших важных навыков.
Мы оба годами использовали недокументированную и неподдержи-
ваемую команду DBCC PAGE, чтобы «взломать» страницы базы дан-
ных. В SQL Server 2019 есть несколько системных объектов, позво-
ляющих изучи ть заголовки страниц базы данных:

 dm_db_page_info – это системная функция, возвращающая заголо-
вок страницы в виде одной строки, включающей столбцы для каж-
дого поля в заголовке страницы. Дополнительная информация об
этой системной функции доступна по ссылке https://docs.microsoft.com/

en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-db-page-

info-transact-sql.
 Входными данными для данной функции является информация,

необ ходимая для идентификации страницы: идентификатор базы
данных, идентификатор файла и номер страницы. В некоторых сце-
нариях идентификатор страницы отображается в результирующем
наборе данных (столбцов) аналогично тому, как это возвращает DMV.
Одним из примеров является wait_resource для dm_exec_requests.
Идентификатор страницы в wait_resource представлен в виде ресурс-
ной строки страницы, которая имеет вид <dbid>:<fileid>:<pageid>.
Системная функция fn_PageResCracker принимает в качестве вход-
ных данных ресурсную строку страницы и возвращает в качестве ре-
зультата db_id, file_id и page_id.

 Таким образом, вы можете выполнить следующий запрос T-SQL:

374  Глава 11. Голос клиента и миграция

SELECT page_info.∗
FROM sys.dm_exec_requests AS d
CROSS APPLY sys.fn_PageResCracker(d.page_resource) AS r
CROSS APPLY sys.dm_db_page_info(r.db_id, r.file_id, r.page_
id,'DETAILED')
AS page_info;

 Это позволит получить данные заголовка страницы из ресурса
страницы. Для сценария параллелизма, такого как ожидание крат-
ковременной блокировки страницы, этот метод может быть поле-
зен, чтобы выяснить, какой объект принадлежит заблокированной
странице.

 Если вы вернетесь к главе 2, то увидите, что я включил в нее при-
мер использования этого способа проверки, чтобы выяснить, какая
таблица была затронута ожиданием кратковременной блокировки
страниц tempdb:

USE tempdb
GO

SELECT object_name(page_info.object_id), page_info.∗
FROM sys.dm_exec_requests AS d
CROSS APPLY sys.fn_PageResCracker(d.page_resource) AS r
CROSS APPLY sys.dm_db_page_info(r.db_id, r.file_id, r.page_
id,'DETAILED')
AS page_info
GO

 Пэм Лахуд (Pam Lahoud) также написала очень хорошую заметку в
блоге об этом небольшом, но очень важном улучшении механиз-
ма базы данных, о котором вы можете прочитать по ссылке https://

docs.microsoft.com/ru-ru/archive/blogs/sql_server_team/sql-server-2019-ctp-2-0-new-

features-introducing-the-page-cracker-aka-sys-dm_db_page_info.

• Диагностика с использованием данных статистики
 Данные статистики являются очень важной частью диагностики

производительности запросов. Данные статистики можно обнов-
лять с использованием синхронного или асинхронного метода, где
синхронный метод означает, что запрос должен ждать обновления
статистики, а асинхронный метод означает, что запрос может про-
должаться, но статистика будет обновляться в фоновом режиме.
Синхрон ные обновления данных статистики в некоторых случаях
могут приводить к тому, что выполнение команды SELECT займет
больше времени, чем обычно. SQL Server 2019 предоставляет средст-
во диаг ностики, дающее детальную информацию об ожидании
синхрон ных обновлений статистики:

Голос клиента  375

 WAIT_ON_SYNC_STATISTICS_REFRESH – это новый тип ожидания
(wait_type), найденный в dm_os_wait_stats. Он показывает суммиро-
ванное нарастающим итогом время на уровне экземпляра, затра-
ченное на синхронные операции обновления статистики.

 dm_exec_requests – в столбце command sys.dm_exec_requests будет по-
казано значение SELECT (STATMAN), если запрос ожидает завершения
операции синхронного обновления статистики до продолжения вы-
полнения запроса.

• Улучшения хранилища запросов (Query Store)
 Query Store – важная возможность для настройки производитель-

ности, тестирования производительности и устранения неполадок.
В главе 2 я показал несколько примеров использования хранилища
запросов для сравнения различий в производительности запросов с
интеллектуальной обработкой запросов.

 Возможности Query Store были расширены, и теперь они включают:
 принудительные планы выполнения запросов для «быстрых»

курсоров (fast-forward cursors) и статических курсоров (static
cursors) – Query Store уже поддерживает принудительные планы,
которые используются для «быстрых» и статических курсоров;

 пользовательская политика отслеживания запросов для
Query Store. У некоторых клиентов возникали проблемы с ис-
пользованием Query Store для определенных типов рабочих на-
грузок. В SQL Server 2019 мы добавили больше параметров, чтобы
расширить контроль над тем, что происходит в хранилище запро-
сов. Вы можете найти описание этих новых возможностей, объ-
ясняемых на примере QUERY_CAPTURE_POLICY, в документации
по ссылке https://docs.microsoft.com/en-us/sql/t-sql/statements/alter-database-

transact-sql-set-options. Лучшее объяснение, как использовать дан-
ные параметры, представлено сообществом SQL Server. Я не знаю
никого, кто был бы более погружен в тему Query Store, чем Эрин
Стеллато (Erin Stellato), и у нее есть отличный блог, где рассказы-
вается об этих новых возможностях: https://www.sqlskills.com/blogs/erin/

query-store-in-sql-server-2019-ctp-3-0/.

• Гранулярный контроль кеша плана
 В некоторых случаях вы хотите вручную удалить запрос или процеду-

ру из кеша плана выполнения запроса. Один из возможных способов
сделать это – принудительная перекомпиляция запроса. Вы можете
использовать параметр CLEAR PROCEDURE_CACHE оператора ALTER
DATABASE SCOPED CONFIGURATION, чтобы очистить кеш плана для
всех запросов и объектов, связанных с базой данных. Начиная с SQL
Server 2019 вы можете очистить кеш плана, применяя этот оператор

376  Глава 11. Голос клиента и миграция

на основе дескриптора plan_handle. Вы можете найти plan_handle, ис-
пользуя DMV, например dm_exec_query_stats.

• Улучшения DBCC CLONEDATABASE
 DBCC CLONEDATABASE можно использовать для устранения непола-

док, чтобы исследовать схему и собрать статистику из базы данных,
исключая пользовательские данные, в новую базу данных. Это мо-
жет позволить вам изучить примерный план выполнения запросов
для базы данных без необходимости копировать все фактические
данные.

 SQL Server 2019 расширяет возможности DBCC CLONEDATABASE,
собирая статистику для столбцовых индексов, о которой вы може-
те прочитать подробнее по ссылке https://docs.microsoft.com/en-us/sql/t-sql/

database-console-commands/dbcc-clonedatabase-transact-sql.

Совет. Поскольку DBCC CLONEDATA BASE фиксирует все данные в системных табли-

цах (то есть метаданные), эта информация включает в себя данные для Query Store.
Это означает, что вы можете просматривать данные производительности Query Store
в автономном режиме из пользовательской базы данных main.

А как насчет бизнес-аналитики?
Продукт SQL Server поставляется с возможностями Business Intelligence
(BI), включая службы аналитики SQL Server (SQL Server Analysis Services,
SSAS) и службы отчетов SQL Server (SQL Server Reporting Services, SSRS).

И SSRS, и SSAS являются частью лицензии SQL Server для различных вер-
сий SQL Server (SSAS является только частью Enterprise и Standard).

Для SSRS в SQL Server 2019 нет новых функций и улучшений. Важно пом-
нить, что сервер отчетов Power BI, который обновляется отдельно от вер-
сии SQL Server, является частью лицензии Enterprise Edition для SQL Server.
Подробнее о сервере отчетов Power BI можно узнать по ссылке https://docs.

microsoft.com/en-us/power-bi/report-server/get-started#licensing-power-bi-report-server.
SSAS предлагает новые возможности в SQL Server 2019; вы можете про-

читать об этих улучшениях по ссылке https://docs.microsoft.com/en-us/sql/sql-server/

what-s-new-in-sql-server-ver15?view=sql-server-ver15#analysis-services.

Переход на SQL Server 2019
Когда вы принимаете решение о переходе на SQL Server 2019 для одного,
нескольких или всех ваших экземпляров SQL Server, всегда полезно иметь
план миграции. В этом разделе я расскажу об инструментах и ресурсах,
которые могут быть вам полезны при принятии решений и составлении
плана перехода на SQL Server 2019.

Переход на SQL Server 2019  377

Шоу Пэм и Педро
Это не новый сериал, несмотря на название. Он представляет методоло-

гию, которую мои коллеги Пэм Лахуд (Pam Lahoud) и Педро Лопес (Pedro
Lopes) пропагандируют среди клиентов и в сообществе. Их обучающие
выступления посвящены тому, как планировать успешный переход на
новые версии SQL Server. Пэм и Педро называют этот процесс «правильной
модернизацией». Вместо того чтобы пытаться повторить все то, что Пэм и
Педро использовали в качестве примеров, я предлагаю вам просмотреть
подготовленные ими видеоматериалы. Вы можете просмотреть одночасо-
вую презентацию Пэм и Педро на эту тему в своем собственном темпе на
YouTube: www.youtube.com/watch?v=5RPkuQHcxxs.

Я также включил в эту книгу слайд из своих презентаций о процессе
миграции и инструментах, которые вы, возможно, тоже захотите исполь-
зовать. Этот слайд приведен на рис. 11.3.

Рис. 11.3. Процесс и инструменты миграции для SQL Server

Обучающие материалы, подготовленные Пэм и Педро, включают обсуж-
дение инструментов миграции. В оставшейся части главы я буду рассмат-
ривать этот процесс и инструменты, представленные на рис. 11.3.

Database Migration Assistant
Database Migration Assistant (DMA) – это бесплатный инструмент, кото-

рый вы можете загрузить и запустить на компьютере Windows, чтобы
выполнить оценку текущей конфигурации и кода для существующего
экземпляра SQL Server и увидеть любые возможные проблемы, с которы-
ми вы можете столкнуться при переходе на более новые версии. Педро
дает пошаговое руководство по этому инструменту в видеоматериале, на

Старая версия SQL Server

SQL Server Migration Assistant (SSMA)

Переход на современную версию SQL Server

Переход с устаревшей версии SQL Server Переход из внешних баз данных

Обновление на месте (Windows)
Резервное копирование базы данных

Доставка журнала
Групповой импорт

SSIS

* В версии GA

SQL Server 2017
SQL Server 2019*

SQL Server на виртуальной
машине Azure

Database Experimentation
Assistant

Database Migration
Assistant

Azure Database Migration
 Service

Azure Site Recovery

Query Tuning
 Assistant

SQL SQL

SQL Server

378  Глава 11. Голос клиента и миграция

который я ссылался ранее, но позвольте мне также углубиться в некоторые
подроб ности, рассказывая об этом инструменте. Я также расскажу о том,
почему, по моему мнению, вам следует его использовать.

DMA – это гораздо больше, чем его предшественник, Database Upgrade
Advisor. Ниже перечислены основные возможности DMA.

• Оцените возможные блокирующие факторы для миграции вашего
SQL Server (DMA также поддерживает Amazon Relational Database
Service (RDS) в качестве источника). Сюда включены параметры,
позволяющие увидеть, какие варианты предоставит вам в процессе
миграции использование различных параметров уровня совмести-
мости базы данных. Блокирующие факторы могут включать крити-
ческие изменения, изменения поведения и устаревшие функции.
Более подробно об этом я расскажу в разделе «Совместимость баз
данных».

• Откройте для себя новые функции в новой версии SQL Server, по-
зволяющие выполнить сравнение новой версии и вашей текущей
конфигурации. DMA – достаточно интеллектуальный инструмент,
чтобы распознавать функции, которые могут предоставить вам не-
сомненные преимущества. Некоторые примеры рекомендаций по
новым функциям включают столбцовые индексы, использование
Always Encrypted, прозрачное шифрование данных (Transparent Data
Encryption, TDE) и динамическое маскирование данных (Dynamic
Data Masking).

• Несмотря на то что DMA не относится конкретно к SQL Server 2019,
он также будет оценивать проблемы миграции для пакетов служб
SSIS при переходе на базу данных SQL Azure.

• DMA тоже будет поддерживать миграцию вашей базы данных на раз-
личные целевые версии, такие как SQL Server 2019. Я рекомендую
использовать эту возможность только для миграций очень малого
объема или для тестирования миграции вашей базы данных.

Несмотря на то что DMA – это инструмент, созданный для работы в
Windows, вы можете использовать этот инструмент для множества различ-
ных источников и целей, включая SQL Server для Windows и Linux, Azure
SQL Database, Azure SQL Database Managed Instance и SQL Server на вирту-
альных машинах Azure (Azure Virtual Machine).

На рис. 11.4 показаны возможные целевые конфигурации для оценки и
миграции с использованием DMA 4.4.

Есть и несколько других приятных возможностей DMA, о которых вы
должны знать:

• DMA является графическим инструментом в Windows, но также
имеет интерфейс командной строки (command-line interface, CLI),
по этому вы можете использовать его в сценариях автоматизации.

Переход на SQL Server 2019  379

Вы можете прочитать больше об интерфейсе командной строки,
поддерживаемом DMA, по ссылке https://docs.microsoft.com/en-us/sql/dma/

dma-commandline;

• если вы хотите выполнить оценку для большого количества экземп-
ляров SQL Server, наша группа по миграции предоставила метод для
сохранения информации в базе данных с целью составления отче-
тов, о котором вы можете прочитать, перейдя по ссылке https://docs.

microsoft.com/en-us/sql/dma/dma-consolidatereports;

• используя это хранилище данных оценки, вы можете создавать от-
четы Power BI на основе содержащихся в нем данных. Группа мигра-
ции также предоставила репозиторий GitHub для отчетов Power BI
по ссылке https://docs.microsoft.com/en-us/sql/dma/dma-consolidatereports.

У Педро Лопеса есть демонстрация использования DMA в видеоссылке
на YouTube, которую я приводил ранее в этой главе в разделе «Шоу Пэм и
Педро».

У нас в Microsoft работает отличная команда инженеров, занимающихся
вопросами миграции баз данных, и вы, без сомнения, оцените по досто-
инству некоторые из их публикаций в блоге на эту тему: https://techcommunity.

microsoft.com/t5/microsoft-data-migration/bg-p/MicrosoftDataMigration.

Рис. 11.4. Целевые конфигурации, поддерживаемые DMA

Database Experimentation Assistant
Оценка миграции вашей базы данных и развертывания SQL Server осно-

вана на конфигурации вашего SQL Server и баз данных (включая код T-SQL,
такой как хранимые процедуры). Однако эта оценка довольно статична и
не сможет учесть возможных проблем при миграции вашего SQL Server.

380  Глава 11. Голос клиента и миграция

Поэтому одним из важных аспектов миграции является производитель-
ность. Выполнение как можно большего объема тестирования произво-
дительности приложения SQL Server является одним из наиболее важных
аспектов успешной миграции. Database Experimentation Assistant (DEA)
может быть очень мощным инструментом для достижения этой цели. Цель
состоит в том, чтобы использовать DEA для определения, какие запросы в
вашем приложении будут работать лучше, какие – хуже, а производитель-
ность каких не изменится для целевой версии SQL Server. Кроме того, DEA
может предупредить вас о том, какие запросы могут дать сбой – например,
из-за проблемы совместимости.

Документацию по DEA можно найти по ссылке https://docs.microsoft.com/

en-us/sql/dea/database-experimentation-assistant-overview; на этой же странице преду-
смотрена возможность загрузки DEA. Данная утилита предоставляется
бесплатно и работает в Windows, но может использоваться и для оценки
миграции на SQL Server в Linux.

Для правильного использования DEA может потребоваться до четырех
экземпляров SQL Server:

• исходный SQL Server для отслеживания и захвата вашей рабочей
нагруз ки;

• два целевых сервера SQL для воспроизведения потоков рабочей на-
грузки;

• один SQL Server для хранения анализа и запуска отчетов (вам нужна
база данных для хранения результатов, чтобы она могла фактически
существовать в одном из целевых экземпляров SQL Server).

Основной сценарий использования DEA выглядит следующим образом.

1. Создайте резервную копию базы данных на исходном сервере SQL.
2. Отследите вашу рабочую нагрузку с помощью инструментария DEA,

который может использовать SQL Server Trace или Extended Events.
Трассировка SQL Server требуется, если вы оцениваете рабочую на-
грузку для версии SQL Server, более ранней, чем SQL Server 2012,
поскольку в Extended Events отсутствуют необходимые события в
SQL Server 2008. DEA поддерживает SQL Server 2005, но для этой вер-
сии вам необходимо использовать SQLTrace (вы должны применять
SQLTrace для любой версии SQL Server до 2012 года).

 Чтобы наилучшим образом использовать инструмент DEA, необ-
ходимо снять профиль вашей рабочей нагрузки, характерный для
приложения. Инструмент DEA позволяет исследовать вашу рабочую
нагрузку в диапазоне от 5 минут до 3 часов. Вы можете работать с
тестовым сервером, на котором можете выполнить трассировку для
вашего приложения, или вам может потребоваться запустить его на
производственном SQL Server.

Переход на SQL Server 2019  381

3. Подготовьте воспроизводимые трассировки, восстановив резервную
копию, созданную на шаге 1 для двух целевых экземпляров SQL
Server:
 целевой сервер № 1 – версия SQL Server, которая совпадает с ис-

ходным кодом из трассировки, выполненной на шаге 2. Как пра-
вило, вы не хотите использовать для этого производственный SQL
Server;

 целевой сервер № 2 – новая версия SQL Server, на которую вы
переходите, которая может быть SQL Server в Linux.

 Вы должны настроить эти экземпляры SQL Server в средах, макси-
мально приближенных к тем, с которыми вы будете работать, с точ-
ки зрения процессора, памяти, скорости диска и конфигурации SQL
Server.

4. Используйте инструмент DEA, чтобы воспроизвести трассировку,
выполненную на шаге 2, на обоих целевых серверах SQL. Инструмент
DEA запросит место для сохранения следа воспроизведения.

5. Используйте инструмент DEA для анализа двух воспроизводимых
трассировок, чтобы сравнить производительность или возможные
ошибки при выполнении запросов в трассировке. Инструмент DEA
выдаст вам запрос о том, какую базу данных SQL Server следует ис-
пользовать для хранения результатов анализа и местоположения
воспроизведенных трассировок, выполненных на шаге 4.

Совет. В более ранних версиях DEA требовалось использовать функцию в SQL Server,
которая называется Distributed Replay. Вы все еще можете применять этот метод, но
начиная с DEA версии 2.6 вы можете использовать метод воспроизведения InBuilt.
Метод воспроизведения InBuilt вызывает утилиту ostress.exe (я познакомил вас с
этой утилитой в главе 2). Это все еще популярный инструмент в команде и сообщест-
ве SQL Server, разработанный моими друзьями из Microsoft, Китом Элмором (Keith
Elmore) и Робертом Дорром (Robert Dorr).

Я настоятельно рекомендую вам попробовать поработать с DEA, преж-
де чем приступать к какой-либо серьезной миграции SQL Server. У Педро
Лопеса (Pedro Lopes) есть отличная демонстрация отчетов DEA в видеоро-
лике на YouTube, ссылку на который я давал ранее в этой главе в разделе
«Шоу Пэм и Педро».

Вот несколько советов и замечаний по использованию инструмента
DEA:

• DEA поставляется с инструментами отчетности для просмотра анали-
за воспроизведений сохраненного профиля нагрузки. Дополнитель-
ную информацию об отчетах DEA вы можете найти по ссылке https://

docs.microsoft.com/en-us/sql/dea/database-experimentation-assistant-view-report;

382  Глава 11. Голос клиента и миграция

• DEA также имеет интерфейс командной строки (command-line inter-
face, CLI), о котором вы можете прочитать, перейдя по ссылке https://

docs.microsoft.com/en-us/sql/dea/database-experimentation-assistant-run-command-

prompt.

Обновление до SQL Server 2019
После того как вы выполните все необходимые оценки и будете готовы

приступить к обновлению, вам будет необходимо выбрать один из следую-
щих вариантов.

Обновление на месте
Это процесс прямого обновления SQL Server путем запуска програм-

мы установки на том же компьютере, где установлен SQL Server. Хотя этот
процесс полностью поддерживается Microsoft для экземпляров SQL Server,
установленных в корпоративных производственных средах, я не рекомен-
дую использовать его, за исключением случаев непрерывных обновлений,
о которых я расскажу позже в этой главе. Это не официальная позиция
Microsoft, а моя собственная рекомендация, основанная на многолетнем
опыте работы с клиентами в службе поддержки Microsoft. Если вы все же
выберете этот вариант, ОБЯЗАТЕЛЬНО убедитесь в том, что у вас созданы
и сохранены полные резервные копии баз данных SQL Server предыду-
щей версии SQL Server, прежде чем выполнять обновление. И более того,
я настоятельно рекомендую вам создать полный образ сервера или вирту-
альной машины, чтобы вы могли быстро выполнить откат к моментально-
му снимку вашего производственного сервера, если это потребуется.

Примечание. SQL Server для Linux также поддерживает обновление на месте путем
переключения хранилища на новую версию SQL Server и запуска обновления менед-

жера пакетов (например, yum update mssql-server).

Существует вариант обновления на месте, называемый последователь-
ным обновлением. Этот метод можно использовать с экземпляром отказо-
устойчивого кластера Always On (Always On Failover Cluster Instance) или
с группами доступности Always On (Always On Availability Groups). Я буду
обсуждать данный вариант в разделе «Динамическая миграция».

Не забывайте о возможном сценарии обновления с использованием кон-
тейнеров, о чем рассказывалось в главе 7, в разделе «Новый способ обнов-
ления SQL Server».

Восстановление базы данных
Это, пожалуй, самый распространенный способ обновления SQL Server

(за исключением непрерывного обновления). Механизм SQL Server пони-

Переход на SQL Server 2019  383

мает, как обновить базу данных при ее восстановлении (технически SQL
Server знает, как обновить базу данных при ее подключении к сети, – так
работает обновление на месте). Поэтому многие клиенты предпочитают
устанавливать SQL Server на другой компьютер или виртуальную машину
для миграции и затем восстанавливать свои базы данных из более старой
версии SQL Server.

Невозможно восстановить обновленную базу данных из новой версии
SQL Server, перейдя обратно на более старую версию SQL Server. Напри-
мер, вы не можете восстановить резервную копию с SQL Server 2019 на SQL
Server 2017 (но, как я показал в главе 7, вы можете переключаться между
экземплярами с установленными накопительными обновлениями, остава-
ясь в рамках одной основной версии).

В SQL Server 2019 вы сможете восстановить базы данных из SQL Server
2008 или более поздней версии. Возможно также выполнить восстанов-
ление базы данных из SQL Server для Windows в SQL Server 2019 в Linux,
поскольку базы данных полностью совместимы на всех платформах. Если
у вас есть резервная копия базы данных для версии SQL Server, более ран-
ней, чем SQL Server 2008, вам необходимо выполнить процесс «перехода»,
восстановив резервную копию в поддерживаемой версии SQL Server (2008),
а затем выполнить еще одно резервное копирование, потом произвести
восстановление базы данных в SQL Server 2019.

Одним из ключевых факторов, помогающих уменьшить проблемы с
миграцией, является то, что при восстановлении базы данных в новой
версии SQL Server уровень совместимости базы данных сохраняется
и остается таким, каким он был установлен для старой версии SQL Server.
Более подробно об этой концепции я расскажу в следующем разделе главы
«Совместимость баз данных».

SQL Server Integration Services (SSIS)
или групповой импорт/экспорт
Другой способ переноса вашей базы данных в SQL Server 2019 – это экс-

порт и импорт данных с использованием служб интеграции SQL Server (SQL
Server Integration Services, SSIS) или других инструментов, позволяющих
выполнять операции массового экспорта/импорта.

Я видел, как некоторые клиенты используют этот метод, когда им нужно
выполнить преобразования или структурные изменения в общем дизайне
или схеме базы данных. Другими словами, вместо того чтобы просто пере-
мещать базу данных «как есть», некоторые клиенты выполняют перенос
приложения с переходом на новую версию SQL Server. Этот перенос вклю-
чает в себя изменения в схеме базы данных. Другой метод преобразования,
который я видел, заключается в восстановлении базы данных из предыду-
щей версии и последующем запуске компилирующего кода в новой версии
SQL Server для изменения некоторых таблиц или хранимых процедур.

384  Глава 11. Голос клиента и миграция

Динамическая миграция
При восстановлении базы данных приложения на некоторое время

стано вятся недоступными для пользователей (это время входит во вре-
мя простоя системы). Что, если ваши бизнес-требования допускают очень
малое время простоя? В этом случае вы можете использовать некоторые из
приведенных ниже методов.

• Последовательное обновление
 Это один из популярных вариантов, если вы используете экземпляр

отказоустойчивого кластера Always On (Always On Failover Cluster
Instance) или группы доступности Always On (Always On Availability
Groups). Оба этих варианта реализованы в SQL Server 2019, и, в част-
ности, благодаря возможности выполнять последовательное обнов-
ление клиенты используют эти решения высокой доступности.

 Always On Failover Cluster Instance поддерживает непрерывное об-
новление, при условии что версия SQL Server в текущем кластере
поддерживает сценарий обновления на месте. Подробнее о развер-
тывании обновлений для экземпляра отказоустойчивого кластера
Always On (Always On Failover Cluster Instance) можно прочитать по
ссылке https://docs.microsoft.com/en-us/sql/sql-server/failover-clusters/windows/

upgrade-a-sql-server-failover-cluster-instance.
 Группы доступности Always On (Always On Availability Groups) под-

держиваются в более ранних версиях SQL Server, начиная с SQL Server
2012 и выше, поскольку SQL Server 2012 – это первая версия, в кото-
рой эта технология была доступна. Данный вариант последователь-
ного обновления имеет много разнообразных параметров настрой-
ки и, вероятно, является оптимальным для сценария оперативной
миграции SQL Server в масштабах предприятия. Вы можете прочи-
тать об этом по ссылке https://docs.microsoft.com/en-us/sql/database-engine/

availability-groups/windows/upgrading-always-on-availability-group-replica-instances.
 В SQL Server 2017 также включил новую функцию для групп доступ-

ности, которая называется бескластерными группами доступности
(Clusterless Availability Groups). Группе доступности без кластеров
не требуется базовое программное обеспечение отказоустойчивой
кластеризации. Эта технология также предоставляет возможность
выполнить динамическую миграцию, и такой способ может быть од-
ним из лучших вариантов перехода с SQL Server 2017 на SQL Server
в Linux. Вы можете прочитать больше об этом варианте по ссылке
https://docs.microsoft.com/en-us/sql/linux/sql-server-linux-availability-group-cross-

platform.

• Доставка журналов
 Более простой метод для динамической миграции – использовать

доставку журналов (Log Shipping).

Переход на SQL Server 2019  385

 Доставка журналов – это простая технология, которая использует
резервные копии базы данных и журнала транзакций SQL Server и
восстанавливает их для синхронизации данных со вторичным SQL
Server. Вы можете прочитать о доставке журналов по ссылке https://

docs.microsoft.com/en-us/sql/database-engine/log-shipping/about-log-shipping-sql-

server. Это способ ручного обновления, для которого не требуются
технологии постоянной доступности (Always On).

 Информация о процессе обновления с помощью доставки журналов
находится по ссылке https://docs.microsoft.com/en-ca/sql/database-engine/log-

shipping/upgrading-log-shipping-to-sql-server-2016-transact-sql.

• Репликация
 Наша документация, размещенная по ссылке https://docs.microsoft.com/

en-us/sql/database-engine/install-windows/upgrade-replicated-databases, содержит
подробную информацию о том, как обновить полную топологию
репли кации SQL Server.

 Одна интересная идея (меня на нее вдохновила Амит Банерджи (Amit
Banerjee) во время нашей совместной работы) – использовать репли-
кацию SQL Server для оперативной миграции, даже если ваша страте-
гия развертывания не предполагает использовать репликацию.

 Поскольку подписчик в топологии репликации может быть более
новой версией SQL Server, нежели распространитель и издатель, вы
можете использовать сервер-подписчик в качестве нового первич-
ного сервера. Другими словами, вы могли бы назначить подписчи-
ком SQL Server 2019 для более старой версии SQL Server в качестве
распространителя и издателя. Поскольку ваши приложения и поль-
зователи используют старый сервер-издатель, ваш подписчик SQL
Server 2019 будет иметь все последние данные. Когда вы будете гото-
вы к переключению, отключите репликацию и перенаправьте всех
пользователей, подключив их к новой базе данных SQL Server 2019
(которая была подписчиком). Это выглядит просто, но такой способ
подразумевает некоторое время простоя для настройки и отклю-
чения репликации, и это время может оказаться критическим для
приложения высокой доступности. Отключение репликации не уда-
ляет данные в базе данных подписчика; это описано в документа-
ции, размещенной по ссылке https://docs.microsoft.com/en-us/sql/relational-

databases/replication/disable-publishing-and-distribution.

Совместимость баз данных
Совместимость баз данных – это функция, обеспечивающая обратную

совместимость при переходе на более новую версию SQL Server. Следую-
щий ресурс содержит терминологию и полную информацию о совмести-
мости баз данных: https://aka.ms/dbcompat.

386  Глава 11. Голос клиента и миграция

Прежде всего вам необходимо разобраться в том, какие уровни совмес-
тимости базы данных соответствуют уровню, установленному по умол-
чанию для определенной версии SQL Server. Вы можете просмотреть этот
список на странице https://docs.microsoft.com/en-us/sql/t-sql/statements/alter-database-

transact-sql-compatibility-level?view=sql-server-ver15#syntax. Например, уровень сов-
местимости базы данных SQL Server 2012 по умолчанию равен 110.

Примечание. Ранее меня спрашивали, почему уровни dbcompat не совпадают с на-

званием или цифрой версией SQL Server. Это связано с тем, что SQL Server име-

ет внутренний номер версии, а уровни dbcompat обозначаются в соответствии
с этим номером версии. SQL Server 2012 на самом деле является версией 11.x

(см. @@VERSION), поэтому уровень dbcompat для этой версии равен 110. Я понимаю,
что это сбивает с толку, но мы называем релизы немного иначе, чем версии нашего
продукта.

Если вы восстановите резервную копию базы данных, созданную на SQL
Server 2012, на SQL Server 2019, SQL Server сохранит уровень совместимости
базы данных, равный 110. Цель подобной схемы – гарантировать, что ваше
приложение, запросы и взаимодействие сервера с базой данных будут
работать точно так же, как они работали на SQL Server 2012. Разница лишь
в том, что теперь вы можете воспользоваться новыми функциями в новой
версии SQL Server (существует исключение, заключающееся в том, что мы
иногда используем совместимость баз данных для включения новых функ-
ций).

В одном из предыдущих разделов этой книги, «Database Migration
Assistant (DMA)», я упоминал, что инструмент DMA будет определять воз-
можные проблемы миграции: критические изменения, изменения поведе-
ния и устаревшие функции. Позвольте мне определить все эти термины в
отношении обеспечения обратной совместимости баз данных.

Критические изменения определяются как изменения поведения, кото-
рые могут привести к получению другого результата. В некоторых случаях
от критического изменения можно защититься, установив соответствую-
щий уровень совместимости базы данных в новой версии SQL Server. Одна-
ко в других случаях уровень совместимости баз данных не поможет защи-
титься от критического изменения. Вы в замешательстве? Я понимаю ваши
чувства. К счастью, в последних версиях SQL Server очень мало критических
изменений, которые не защищены. И еще одна хорошая новость заключа-
ется в том, что инструмент DMA предназначен для выявления подобных
проблем.

Чтобы ознакомиться со списком критических изменений в каждой из
версий SQL Server, откройте страницу документации, размещенную по
ссылке https://docs.microsoft.com/en-us/sql/t-sql/statements/alter-database-transact-sql-

compatibility-level?#using-compatibility-level-for-backward-compatibility, и переместитесь

Переход на SQL Server 2019  387

по этой странице вниз, до раздела, начинающегося с предложения «Крити-
ческие изменения, внесенные в данную версию SQL Server…». В этом раз-
деле содержатся ссылки на критические изменения для всех версий SQL
Server, включая предыдущие, вплоть до SQL Server 2012.

Существуют некоторые изменения поведения, используемые с опре-
деленным уровнем совместимости баз данных и предназначенные для
исправления проблемы или добавления новых функций. Одним из приме-
ров этого является возможность интеллектуальной обработки запросов, о
которой я говорил в главе 2 и которая сопряжена с уровнем совместимости
баз данных 140 или 150.

Устаревшая функциональность защищена соответствующим уровнем
совместимости базы данных. Устаревшая функциональность включает
функции или поведение, которые мы не собираемся улучшать в будущем.
Microsoft может удалить эту функцию в любом новом выпуске. Устаревшая
функциональность означает, что мы удалили функцию или поведение из
выпуска SQL Server, и потому совместимость базы данных не будет рабо-
тать. Функциональность, поддержка которой будет прекращена, вначале
помечается как устаревшая. К счастью, в последних выпусках мы приняли
решение не прекращать поддерживать никаких старых функций. Однако
я лично не стал бы полагаться на устаревшую функциональность, особен-
но в новых проектах. Документация по SQL Server для поиска устаревших
функций была переработана и упростилась с выходом последних версий.
Воспользуйтесь следующей ссылкой на документацию, чтобы найти уста-
ревшие функции и функции, поддержка которых прекращена в последних
выпусках: https://docs.microsoft.com/en-us/sql/database-engine/discontinued-database-

engine-functionality-in-sql-server. Чтобы просмотреть документацию, относящую-
ся к более ранним версиям, вам придется перейти к более старой вер-
сии документации. Например, вот ссылка для версии SQL Server 2014:
https://docs.microsoft.com/en-us/sql/database-engine/sql-server-database-engine-backward-

compatibility?view=sql-server-2014.
Учитывая все вышесказанное, давайте попробуем ответить на вопрос:

насколько удобна такая возможность, как уровень совместимости баз дан-
ных, для обеспечения обратной совместимости при переходе на новую вер-
сию SQL Server? Это достаточно удобно; и Педро Лопес (Pedro Lopes) наде-
ется, что вы будете использовать эту возможность. Он надеется убедить
многих независимых поставщиков программного обеспечения (ISV) при-
нять такой же подход. Педро считает, что разработчики приложений долж-
ны сертифицировать свои приложения, гарантируя их работоспособность,
для определенного уровня совместимости базы данных, а не для опре-
деленной версии SQL Server. Если вы внимательно слушали выступ ление
Педро, записанное в видеоролике, ссылку на который я привел в разделе
«Шоу Пэм и Педро», то вы помните, что он говорит: «Microsoft поддержит
совместимость баз данных» в качестве модели сертификации, обеспечив
следующее:

388  Глава 11. Голос клиента и миграция

• полную функциональную защиту, если инструмент DMA не обнару-
жит никаких ошибок.

 Это означает, что для вашего приложения будут отсутствовать кри-
тические изменения, если вы выберете соответствующий уровень
совместимости баз данных, для которого не будет выявлено ника-
ких потенциальных ошибок;

• защиту структуры плана выполнения запроса на аналогичном обо-
рудовании.

 Это означает, что структура плана выполнения запроса (т. е. опера-
торы и их последовательность) не должна изменяться на оборудо-
вании, аналогичном тому, где вы выполняли запрос в предыдущей
версии, если используется тот же уровень совместимости базы дан-
ных в новой версии SQL Server.

На сегодняшний день опыт показывает, что эти смелые обещания мы
выполняем для своих клиентов.

Вот краткое резюме того, чего вы можете ожидать от обратной совмести-
мости при переходе на SQL Server 2019.

• Если вы используете функцию, поддержка которой прекращается,
ваше приложение может перестать работать после миграции.

• Если вы используете устаревшую функцию, все будет в порядке. Но я
бы рекомендовал в будущем отказаться от использования этой уста-
ревшей функциональности.

• Начните с уровня совместимости базы данных (dbcompat), который
соответствует версии SQL Server, с которой вы выполняли миграцию.
Если вы работаете с SQL Server 2012, установите значение dbcompat,
равное 110, в качестве отправной точки.

Примечание. Самое большое изменение уровня совместимости базы данных
(dbcompat), которое может повлиять на производительность запросов, соответствует
значению dbcompat, равному 120. Это связано с тем, что мы внесли в оптимизатор
запросов изменение, названное моделью оценки мощности (CE). Если вы перешли на
более новую версию SQL Server и вам нужно использовать dbcompat 120 или выше,
но возникают проблемы, связанные с моделью CE, то можете отключить режим CE,
используя параметр LEGACY_CARDINALITY_ESTIMATION оператора ALTER DATA BASE
SCOPED CONFIGURATION.

• Сохраните этот уровень dbcompat для экземпляра SQL Server 2019,
работающего в промышленной среде, или выполните тестовую миг-
рацию на SQL Server 2019 и проведите дальнейшее тестирование с
новыми уровнями dbcompat, чтобы обнаружить возможные пробле-
мы с вашим приложением. В следующем разделе я расскажу об ин-

Переход на SQL Server 2019  389

струменте под названием Query Tuning Assistant, который может
вам в этом помочь. Вы можете использовать инструмент DMA, чтобы
увидеть оценку конфигурации различных уровней dbcompat для SQL
Server 2019 для вашей базы данных.

Несколько других комментариев о совместимости базы данных
(dbcompat) и обратной совместимости:

• вы можете увидеть полный список различий в поведении для различ-
ных уровней dbcompat, перейдя по этой ссылке на документацию:
https://docs.microsoft.com/en-us/sql/t-sql/statements/alter-database-transact-sql-

compatibility-level?view=sql-server-ver15#differences-between-compatibility-level-140-
and-level-150. Перемещайтесь по странице вниз, чтобы увидеть разли-
чия, вплоть до dbcompat = 90 (SQL Server 2005);

• совместимость базы данных не затрагивает критические измене-
ния на уровне экземпляра SQL Server. Поэтому наша цель состоит в
том, чтобы использовать dbcompat в качестве механизма для сер-
тификации приложения. Если приложение использует какую-либо
функциональность уровня экземпляра SQL Server, вам необходимо
убедиться, что она хорошо протестирована. Функциональные воз-
можности уровня экземпляра могут быть любыми: использование
представлений системного каталога, системные динамические
административные представления (Dynamic Management Views,
DMV), SQL Agent, связанные серверы или операторы T-SQL, кото-
рые влияют на весь экземпляр SQL Server и не относятся к области
базы данных.

Query Tuning Assistant и Post Migration
В разное время в 2018 году я продолжал получать электронные письма

от наших команд от Педро Лопес (Pedro Lopes) о проекте, над которым он
работал, под названием TUNA (так я продолжал называть этот проект). На
самом деле, как я узнал, проект назывался TunA. TunA расшифровывается
как Tuning Assistant.

Если вы вспомните содержание предыдущего раздела, в котором шла
речь о рекомендациях по совместимости баз данных, я упомяну идею
тестирования вашего приложения на новом уровне совместимости баз
данных в рамках нашей миграции.

Давайте вернемся к видео из раздела «Шоу Пэм и Педро» этой главы. На
временной отметке приблизительно 40:40 в видео вы увидите, как Педро
расскажет о постмиграции (Post Migration).

Здесь речь идет о том, что есть шаги, которые вы можете предпринять
для оптимизации рабочей нагрузки после перехода на более новую версию
SQL Server, при условии что вы сохранили уровень совместимости исход-
ной базы данных, совпадающий с предыдущей версией SQL Server.

390  Глава 11. Голос клиента и миграция

Педро предлагает методологию использования Query Store для сравне-
ния производительности рабочей нагрузки до и после изменения уровня
совместимости базы данных. Этот метод взят из документации по храни-
лищу запросов и применяется в сценарии использования, который назы-
вается «Сохранение стабильности производительности при обновле-
нии до более нового SQL Server» (Keep performance stability during the
upgrade to newer SQL Server), о котором можно прочитать по ссылке https://

docs.microsoft.com/en-us/sql/relational-databases/performance/query-store-usage-scenarios.
Теперь вернемся к проекту TunA. Педро и его команда встроили функ-

циональность Query Tuning Assistant (QTA) в инструмент SQL Server
Management Studio (SSMS) версии 18.x. QTA позволяет автоматизировать
процесс использования хранилища запросов для оценки и устранения
проблем с производительностью запросов при переходе на новый уровень
совместимости баз данных.

На рис. 11.5 показано, как работает QTA.

Рис. 11.5. Как работает QTA

Использование QTA совместно с SSMS дает вам подсказки, когда произ-
водительность запроса может ухудшиться при новом уровне совместимос-
ти базы данных после перехода на более новую версию SQL Server. Выда-
ваемые рекомендации могут включать изменение запроса – например,
использование определенных параметров запроса. Все подсказки основа-
ны на рекомендациях, включенных в документацию. Это «Педро Лопес в
коробке».

В этой главе я собирался привести пример для QTA, однако решил, что
вы можете просто использовать пример Педро Лопеса, опубликованный на
GitHub. Вы можете скачать и использовать этот пример по ссылке https://

github.com/microsoft/tigertoolbox/blob/master/Sessions/Winter-Ready-2019/Lab-QTA.md.

Запуск в виртуальной машине Azure
Когда вы принимаете решение о развертывании или миграции на

SQL Server 2019, то можете рассмотреть возможность использования SQL
Server 2019 в облаке. Одним из вариантов запуска SQL Server 2019 в облаке
является виртуальная машина Azure, известная как среда Infrastructure as
a Service (IAAS).

Обновление
до последней

версии SQL
Server и

поддержание
уровня

совместимости
исходной БД

Использование
Query Store

Ожидание
для того,

чтобы собрать
данные о
рабочей
нагрузке

(определить
базовый
уровень)

Установка
наивысшего

уровня совмес-
тимости с БД

(или любой це-
левой уровень
совместимости
БД → исход-
ный уровень

совместимости
БД)

Сбор
данных по

обновлению
базы данных

Проведение
эксперимен-
тов и поиск

рекомендуе-
мых действий
по настройке

(замещающих
последний
принятый

рабочий план)

 (начало
сравнения
с базовым
уровнем)

Переход на SQL Server 2019  391

Виртуальная машина Azure (VM) позволяет сосредоточиться на развер-
тывании операционной системы (Windows или Linux) и SQL Server и не бес-
покоиться об аппаратной платформе и инфраструктуре.

Виртуальная машина Azure известна как один из наиболее простых спо-
собов перехода на облако для SQL Server, поскольку взаимодействие с SQL
Server аналогично виртуальной машине в вашем центре обработки данных
или вашей среде.

На самом деле это не на 100 % верно, потому что вы должны выбрать
некоторые параметры, специфичные для Azure, в том числе размер
компью теров и хранилища, сеть и безопасность. Руководство, в котором
рассказывается обо всех этих вариантах, доступно по ссылке https://docs.

microsoft.com/en-us/azure/azure-sql/virtual-machines/windows/sql-server-on-azure-vm-iaas-

what-is-overview.
Мы также предоставляем автоматизацию с использованием виртуаль-

ной машины Azure, о которой вы можете не знать. Этот вариант включает
в себя автоматическое резервное копирование для SQL Server и автомати-
ческую установку пакетов обновления для операционной системы и SQL
Server. Вы можете прочитать об автоматическом резервном копировании,
перейдя по ссылке https://docs.microsoft.com/en-us/azure/azure-sql/virtual-machines/

windows/automated-backup.
Летом 2019 года мы объявили о трех важных новых возможностях в

Azure, которые полезны для управления SQL Server на виртуальной маши-
не Azure:

• новый портал Azure, называемый Azure SQL, который упрощает со-
здание и управление ресурсами, связанными с SQL Server, в облаке.

 На рис. 11.6 показан новый интерфейс портала Azure SQL;

Рис. 11.6. Новый интерфейс портала Azure SQL

392  Глава 11. Голос клиента и миграция

• способ регистрации виртуальной машины Azure (Azure Virtual
Machine, VM) с SQL Server у нашего поставщика ресурсов. Эта ре-
гистрация применяется к сценариям, в которых вы устанавливаете
SQL Server на виртуальной машине Azure вместо использования об-
разов галереи. Он разблокирует ваш SQL Server в виртуальной ма-
шине Azure, чтобы воспользоваться преимуществами Azure Hybrid
Benefits, совместимостью, автоматическим резервным копировани-
ем и автоматической установкой обновлений. Вы можете прочитать
больше об этой возможности, перейдя по ссылке https://docs.microsoft.

com/en-us/azure/azure-sql/virtual-machines/windows/sql-vm-resource-provider-

register;

• заявление Azure об уровне общей доступности Ultra Disk Storage или
Ultra SSD. Ultra SSD обеспечивает высокую скорость работы и чрез-
вычайно высокую производительность в облаке, что соответству-
ет требованиям, предъявляемым интенсивными нагрузками вво-
да-вывода SQL Server. Вы можете прочитать об Ultra SSD по ссылке
https://azure.microsoft.com/en-us/blog/announcing-the-general-availability-of-azure-

ultra-disk-storage/. Если вы хотите посмотреть, как Ultra Disk Storage ра-
ботает с SQL Server, ознакомьтесь с записью следующего доклада на
Microsoft Ignite, сделанного в 2018 году: https://azure.microsoft.com/en-us/

resources/videos/ignite-2018-running-high-performance-workloads-in-azure-with-ultra-

ssds-the-next-gen-azure-managed-disk/. Если вы переместитесь примерно на
46 минут в этой записи, то можете узнать докладчика, демонстриру-
ющего производительность SQL Server с Ultra Disk Storage.

SQL Server Migration Assistant
Некоторые из читателей этой книги могут не использовать SQL Server

или работать с другими системами и иными продуктами баз данных, таки-
ми как Oracle, mySQL и DB2. В главе 9 я рассказал, как использовать Polybase
для доступа к этим источникам данных. Но что, если вы хотите перенести
базу данных и ваше рабочее приложение из этих систем в SQL Server?

У нас есть бесплатный инструмент, который поможет вам перейти на
SQL Server (и Azure) из других, «сторонних» решений для баз данных. Этот
инструмент называется SQL Server Migration Assistant. На правой части
рис. 11.3 представлены возможности данного инструмента. Подробнее об
этом инструменте, о том, как его развернуть и как успешно использовать
для миграции, вы можете прочитать по ссылке https://docs.microsoft.com/en-us/

sql/ssma/sql-server-migration-assistant.
На рис. 11.7 показано использование SSMS для перехода с Oracle на SQL

Server.
SSMA представляет собой набор инструментов, по одному для каждого

типа поддерживаемого стороннего продукта, с которого вы можете выпол-
нить переход. Подобно DMA и DEA, SSMS также имеет интерфейс команд-

Резюме  393

ной строки (command-line interface, CLI). Вы можете прочитать больше о
синтаксисе SSMS для Oracle по ссылке https://docs.microsoft.com/en-us/sql/ssma/

oracle/command-line-options-in-ssma-console-oracletosql.

Рис. 11.7. Использование SSMS для перехода с Oracle на SQL Server

Резюме
В этой главе я продемонстрировал многочисленные улучшения SQL
Server 2019, в основу которых легли отзывы клиентов и наш опыт работы.
Каждое из них может показаться незначительным улучшением, но в сово-
купности они представляют собой инновационное решение, нацеленное
на повышение производительности, улучшение пользовательского опыта
и расширение возможностей диагностики SQL Server.

Я также рассказал, как спланировать и выполнить миграцию на SQL
Server 2019, какие инструменты и стратегии для этого используются, и

394  Глава 11. Голос клиента и миграция

осветил тему совместимости баз данных для функциональной защиты и
улучшения производительности.

Эта глава знаменует собой конец нашего совместного путешествия в мир
SQL Server 2019. Я надеюсь, что вам так же сильно понравилось читать и
изучать SQL Server 2019, как мне понравилось писать о нем. Для многих из
вас эта книга станет началом знакомства с SQL Server 2019. Я же надеюсь,
что вы будете продолжать слушать, как я рассказываю про SQL Server 2019.
Но я также смотрю в будущее, в котором планируется выпуск новой вер-
сии, обеспечивающей высокую скорость работы в облаке и предлагающей
новые инновационные изменения, которые делают SQL Server поистине
уникальным продуктом в отрасли.

Символы
«Сиэтл»

проект 19, 20

A
Active Directory (AD) 190, 238, 243, 261

Adaptive Query Processing (AQP). См. адаптив-
ная обработка запросов

AG Agent. См. Kubernetes (k8s)
Amazon Relational Database Service (RDS) 378

Analytics Platform System 21

Analytics Platform System (APS) 196, 302

Apache Spark 21, 22, 33

Application Programing Interface (API) 203

Approximate Count Distinct (APPROX_COUNT_
DISTINCT()) 70, 71, 72

функция 37, 69

ASP.Net 230

Azdata 344

Azure Data Lake 302

Azure Data Studio 35, 42, 63, 158, 212, 213, 215

Azure Data Studio (ADS) 31, 139, 268, 308,

327, 344, 351, 358

Azure Data Warehouse 21

Azure Kubernetes Service (AKS) 248, 251, 253, 327

метрики и журналы 274

Azure Red Hat OpenShift 252

Azure SQL 391

Azure SQL Database 308, 314

Azure SQL Data Warehouse 302, 308

Azure Stack 252

B

Business Intelligence (BI) 376

C

COUNT()
функция 69

D

Database Experimentation Assistant (DEA) 380

Предметный указатель
Database Migration Assistant (DMA) 377, 378

целевые конфигурации 378

Data Transformation Services (DTC) 242

Docker. См. контейнер
Docker Desktop 251

DRY. См. не повторяйся, Dont Repeat
Yourself (DRY)

Dynamic Management Views (DMVs). См. дина-
мические административные представ-

ления

E
Elastic Kubernetes Service (EKS) 253

G
Google Kubernetes Engine (GKE) 253

H

Hadoop 290, 293

Helm Charts 247

Host Guardian Service (HGS) 102

HyperLogLog 69

I

Infrastructure as a Service (IAAS) 390

In-Memory Database 85. См. база данных в
памяти

Intelligent Query Processing (IQP). См. интел-

лектуальная обработка запросов
IP-адрес

внутренний 249, 258, 260

J

Java Runtime Engine (JRE) 174

Java Runtime Environment (JRE) 291

Jupyter Books. См. кластеры больших данных
(Big Data Clusters, BDC)

K
Knox Gateway 346

Kubernetes 246

396  Предметный указатель

Kubernetes (k8s) 23, 247

AG Agent 286

ConfigMap 286

Helm 284

kubectl 253

команды 272

kubectl cluster-info dump 273

kubectl exec 272

kubectl explain 273

kubectl version 273

SQL Server
группы доступности 285, 286

доступность 275, 276, 277

обновление 280, 281

развертывание 275

балансировщик нагрузки 254

варианты развертывания 250, 251

внутреннее устройство 250

инструменты развертывания
kubeadm 251

kubespray 251

minikube 251

интерфейс командной строки
kubectl 250

использование Helm Charts 284, 285

использование шаблонов 271

история возникновения 251

кластер
панель мониторинга 273

развертывание и управление контейне-

рами 250, 251

команды 272

kubectl cp 272

kubectl top 272

компоненты 250

Docker 250

локальный реестр Docker 264

настройка пространства имен 270

облачные провайдеры
Elastic Kubernetes Service (EKS) 253

Google Kubernetes Engine (GKE) 253

объекты 248

Persistent Volume Claim (PVC) 249

pod 259

Service 259

группировка 259

идентификация 259

класс хранилищ (storage class) 249,

254, 262

кластер 248

описание 259

под (pod) 249

секрет (secret) 249

служба 249

создание 257, 260

узел 249

управление 259

параметры развертывания
ReplicaSet 263

внутренний IP-адрес 260

объект secret 261

шаблон 265

платформы
Azure Kubernetes Service (AKS) 251

Azure Stack 252

Red Hat OpenShift 252

Windows Server 252

поддержка аутентификации Active Directo-
ry (AD) 261

провайдеры
Rancher 253

VMWare PKS 253

пространство имен 255, 257

развертывание SQL Server 255

использование декларативных файлов
YAML 255

контекст, используемый по умолча-

нию 257

создание пространства имен 257

создание службы балансировки нагруз-

ки 258, 259, 260

расширение 268, 269, 270, 271

рекомендуемые источники информации 247

уровень управления 250

Kubernetes Visual Studio Code 255

L

Linux
группы Polybase в SQL Server 30

Предметный указатель  397

Linux Containers for Windows (LCOW). См.
контейнер

M

Metanautix 22

Microsoft Container Registry 210

O
ODBC 315, 316

OLE-DB 317

OLTP в памяти (In-Memory OLTP) 85, 156

Open Container Initiative (OCI) 204

P

Parallel Data Warehouse 21

Parallel Data Warehouse (PDW) 290

Persistent Volume Claim (PVC) 249, 261

Polybase 196, 242. См. виртуализация
данных

Power BI 376

PowerShell 255

Q

Query Processor (QP) 36

Query Store 57, 375

Query Tuning Assistant (QTA) 390

R

Rancher 253

Red Hat Enterprise
Linux (RHEL) 210

Red Hat Linux 185

Red Hat OpenShift 252

REST API 344

S

Software Guard Extensions (SGX) 100

Spark 21, 324, 355

Spark Jobs 355, 356

запуск из ADS 355

запуск из IntelliJ 356

запуск из Visual Studio Code 356

запуск через MSSQL Spark Connector 356

использование записных книжек
(Notebooks) в Azure Data Studio
(ADS) 356

SQL Server
версии

Developer Edition 242

Enterprise Edition 243

Software Assurance 243

диагностика 373

гранулярный контроль кеша плана 375

кратковременная блокировка стра-

ниц 373

с использованием данных статисти-

ки 374, 375

для Linux
архитектура 179

поддержка Polybase 196

поддержка аутентификации Active
Directory (AD) 190, 191

поддержка координатора распределен-

ных транзакций Microsoft (Microsoft
Distributed Transaction Coordinator,
MSDTC) 188, 189, 190

поддержка новых версий Linux 184,
185, 186

поддержка постоянной памяти 186

репликация SQL Server (SQL Server
Replication) 187

сбор данных об изменениях (Change
Data Capture, CDC) 187, 188

уведомления памяти 183

инструменты аналитики и отчетности 376

интеграция с Hadoop 291

использование Unicode
поддержка UTF-8 161, 162, 163

поддержка UTF-16 161

типы данных nchar и nvarchar 161

использование постоянной памяти. См.
постоянная память

кластеризация 249

контейнеры
безопасность 238

в Windows 243

высокая доступность 239

двоичные файлы/библиотеки 201

398  Предметный указатель

добавление пакетов 242

запуск без доступа root 238

команда COPY 207

команда EXPOSE 207

команда FROM 207

команда RUN 207, 208

компоненты 205

концепция 198

концепция изоляции 198

лицензирование 243

настраиваемые 230

новые функции в SQL Server 2019 210

облегченные 200

обновление версий SQL Server
226, 227, 228

основные команды 207

основные концепции
198, 199, 200, 201

основные принципы работы 207

переносимость 199

поддержка аутентификации Active
Directory (AD) 238

поддержка модели DevOps 200

последовательность запуска 208

постоянное хранилище 201

производительность 237

развертывание как приложения 230

размещение системных и пользователь-

ских баз данных 201

резервное копирование и восстановле-

ние журналов 239

репликация 205, 234, 235, 236

согласованность 200

создание образа 207, 242

степень параллелизма 241

управление 206, 207

управление конфигурацией SQL Server
или базы данных 241

управление ресурсами 239

файл docker-compose.yml 231

эффективность 201

конфликт вставки на последней странице 94

материалы для изучения 33

миграция на SQL Server 2019 376

Database Experimentation Assistant
(DEA) 379, 380

сценарий использования 380, 381, 382

Database Migration Assistant (DMA) 377

Query Tuning Assistant (QTA) 389

SQL Server Integration Services (SSIS) 383

SQL Server Migration Assistant 392, 393

варианты обновления 382

восстановление базы данных 383

динамическая миграция 384, 385

массовый экспорт/импорт данных 383

обновление на месте 382

оценка миграции 379

переход на виртуальную машину
Azure 390

совместимость баз данных 385, 386

параметры конфигурации
максимальный объем памяти 370

 процент памяти, выделяемой регулято-

ром ресурсов 372

пользовательский опыт 369

диагностика 373, 375, 376

оценка сжатия столбцового индекса 372

расширенные возможности Query
Store 375

уведомления о планируемом усечении
данных 369

улучшения DBCC CLONEDATABASE 376

производительность 368

захватывание рабочих потоков 369

масштабируемость дополнительных
контрольных точек 368

параллельные обновления PFS 368

сокращение компиляции для времен-

ных таблиц 368

развертывание
Azure Data Studio 221

каталог dockerpowershell 215

контейнер RHEL 216

резервная копия базы данных
WideWorldImporters 215

развертывание в Linux 184

управление кольцевым буфером
с помощью динамических администра-

Предметный указатель  399

тивных представлений (Dynamic
Management Views, DMVs) 183

SQL Server 2019
основные возможности 26

SQL Server Agent 130, 180, 206, 208, 242

SQL Server Analysis Services, (SSAS) 376

SQL Server Integration Services (SSIS) 383

SQL Server Management Studio 42, 75, 103,
126, 139, 158

SQL Server Management Studio (SSMS)
183, 235, 330, 390

SQL Server Reporting Services (SSRS) 376

SQL Server и Azure
SQL Database 26

SUSE Linux 185

T
T-SQL 104, 125, 132, 142, 241, 250, 327,

344, 360

SHORTEST_PATH() 160

расширение с помощью Java 173

языковое расширение 171, 172, 173

U
Ubuntu 185

Ultra Disk Storage (Ultra SSD) 392

Unicode

поддержка UTF-8 161, 162

поддержка UTF-16 161

V

VMWare PKS 253

W
WideWorldImporters (WWI) 304

Windows Defender System Guard 102

Windows Server 252

А
адаптивная обработка запросов 36

архитектура кластера больших данных 338, 339

Elasticsearch 345

Grafana 345

InfluxDB 345

Kibana 345

главный экземпляр SQL Server (SQL Server
Master Instance) 340, 341

контейнер SQL Server 341

контроллер 343, 344

ADS 344

контейнер SQL Server 345

служба контроллера 344

пул 339

пул вычислений 347

пул данных 348

пул приложений 348

пул хранения 346

служба контроллера 344

уровень управления 344

Б
база данных в памяти (In-Memory Database) 85

гибридный буферный пул. См. гибридный
буферный пул

оптимизация выделения памяти. См. мета-

данные TempDB
статья технической поддержки Microsoft 88

функции 85

база данных уязвимостей (National
Vulnerability Database, NVD) 98

балансировщик нагрузки 249

безопасность 28, 29, 97

Генеральный регламент о защите пер-

сональных данных (General Data
Protection Regulation, GDPR) 103

защита данных. См. защита данных
использование защищенных облас-

тей (анклавов). См. защищенные
области (анклавы) (Secure Enclaves)

постоянное шифрование. См. постоянное
шифрование

разделение обязанностей 99

сквозное шифрование 99

управление сертификатами. См. управле-

ние сертификатами

400  Предметный указатель

шифрование соединений (Encrypting
Connections) 99

блокировка страниц
кратковременная (latch) 86, 90, 94, 95,

373, 374

колонна 94, 95

блокировка таблицы 124

при поддержке онлайн-индекса 124

совместная 124

большие данные (Big Data) 320

буферный пул 39, 42, 47, 67, 70

гибридный. См. гибридный буферный пул

В
виртуализация данных 22, 27, 292

Polybase 289, 290, 291

внешние источники данных 293, 294,
295

настройка аутентификации 295

настройка и конфигурирование 294

обработка запросов 301

принципы работы 294

работа в Linux 301, 302

служба перемещения данных Polybase
(Data Movement Service, DMS) 299

внешние таблицы, BDC 352

общая концепция 289, 292

работа с HDFS в BDC 354

центр данных 292

виртуальная машина 198

DockerDesktopVM 202

виртуальная машина Azure (VM) 391, 392

внешние таблицы 289, 296, 307

HDFS 315

в Azure SQL Database 307, 308, 309, 310,

311, 312, 313, 314

внешние коннекторы 314

дополнительный семантический слой 316

коннекторы ODBC 315, 316

ограничения 317

связанные серверы 317

внешний пул ресурсов 169

восстановление базы данных 138, 140

Lazy Writer 144

Recovery Writer 144

фазы восстановления
анализ, повтор, отмена 138, 139

временная таблица 47, 57, 85, 86

выделение страниц 86

Г
гибридный буферный пул 92, 93

графовая база данных 156

графовая модель
ребро 157

узел 157

использование в SQL Server 157

основные сведения 156

представления 159

производные таблицы 159

расширения в SQL Server 157, 159, 160

SHORTEST_PATH() 160

использование MERGE с таблицами
графов 161

расширения в SQL Server 161

ключевое слово MATCH в операторе
SELECT 157

ограничения ребер 160

связи между узлами и ребрами
использование данных и метадан-

ных 157

социальная сеть 158, 159

таблица ребер 157

таблица узлов 157

графовая модель. См. графовая база данных
группа доступности Always On (Always On

Availability Group) 120, 121, 123, 239,

247, 281, 285

группы доступности Always On (Always On
Availability Group) 131

без кластеров 131

концепции 131

перенаправление подключений чтения/
запи си от вторичной реплики к пер-

вичной 132

улучшения 131

группы доступности Always On (Always On
Availability Groups) 369, 384

Предметный указатель  401

Д
двоичный файл 199

динамическая маскировка данных (Dynamic
data masking) 98

динамические административные представле-

ния (Dynamic Management Views,
DMVs) 72, 75, 79, 128, 183, 300

длительная транзакция 133, 134

доступ к данным
оптимизация 92

Ж
журнал транзакций 93, 134

агрессивное сокращение 124, 134

вторичный журнал (secondary log Slog) 138

операции при откате транзакций 133

сокращение 134

З
защита данных

аудит 97, 114, 115, 116, 117, 118

результаты аудита 117, 118

динамическая маскировка данных. См.
динамическая маскировка данных

классификация данных 97, 103, 104, 105,
106, 113, 114, 117, 118

аудит 104

добавление классификации вруч-

ную 111, 112, 113

инструмент классификации данных
SSMS 107, 108

использование T-SQL для добавления
классификации 113

мастер классификации данных 103

метка 104

метки 104

отчет 109, 110

расширенные свойства (extended
properties) 104

рекомендации по классификации
данных в автоматическом режми-

ме 108

сохранение рекомендаций 109

степень конфиденциальности 104, 105

тип информации 104

на уровне строк 98

прозрачное шифрование данных
(Transparent Data Encryption,
TDE). См. прозрачное шифрование
данных (Transparent Data Encryption,
TDE)

шифрование данных. См. шифрование
данных

защищенные области 28

защищенные области (анклавы) (Secure
Enclaves) 97, 98, 99, 100, 101, 102

аттестация вычислительного окружения
(runtime attestation) 102

виртуальные 102

поддержка аппаратных анклавов 102

И
извлечение, фильтрация и загрузка данных

(Extract, Transform, and Load, ETL) 22

именованный канал 299

индекс
возобновляемые операции 125

настройки области базы данных по
умолчанию 125

параметр ELEVATE_ONLINE 125

параметр ELEVATE_RESUMABLE 125

кластеризованный 82, 94, 95, 96, 124

некластеризованный 124

онлайн. См. онлайн-индекс
перестроение

возобновляемое 125, 126, 129

оператор ALTER INDEX 125

создание
возобновляемое 125, 126, 127, 128,

129, 130

команда PAUSE 130

команда RESUME 130

оператор CREATE INDEX 125

оптимизация для последовательных
значений ключа (OPTIMIZE_FOR_
SEQUENTIAL_KEY) 95

столбцовый. См. столбцовый индекс

402  Предметный указатель

интеллектуальная обработка запросов
(Intelligent Query Processing, IQP) 35,
36, 37, 61, 65, 70

более быстрый план выполнения 61

более медленный план выполнения 59

использование табличных перемен-

ных. См. табличная переменная
методы 39

отложенная компиляция табличных пере-

менных 56, 57

отчет Top Resource Consuming Queries (Са-

мые ресурсоемкие запросы) 58

оценка кардинальности (cardinality
estimation, CE). См. оценка карди-

нальности (cardinality estimation, CE)
оценка табличной переменной

недооценка числа строк 60

точная оценка числа строк 61

повышение производительности 65

пример 57

родословное древо 37

интерфейс прикладного программирования
(Application Programing Interface,
API) 250

сервер API 250, 258, 259

К
класс хранилищ (storage class). См. Kuberne-

tes (k8s)
кластер Aris 22

кластеры больших данных (Big Data Clusters,
BDC) 23, 319, 323

ADS 351

HDFS 323

IP-адрес 351

Jupyter Books 358

Spark ML 361

Swagger 357

архитектура. См. архитектура кластера
больших данных

безопасность 357

витрина данных 324

высокая доступность 358

данные, имеющие большую ценность 320

кеш данных 324

компоненты 323

Polybase 323

Spark 324, 355

SQL Server 2019 323

распределенная файловая система
Hadoop (HDFS) 324

конечная точка службы контроллера 349

конечные точки сервисов 325, 349

машинное обучение (Machine Learning) 325

внешние источники данных 360

компоненты 325

пакеты для машинного обучения
(Machine Learning Packages) 360

многоуровневая концепциея хранения
HDFS (HDFS Tiering) 324

развертывание. См. развертывание BDC
развертывание приложений 325

Java 325

MLeap 325

Python 325

R 325

SSIS 325

технологии 322, 365

управление Kubernetes (k8s) 362

управление и мониторинг 362

панель визуализации Kibana и
Elasticsearch 363

панель мониторинга ADS 362

панель мониторинга Grafana 363

коннектор ODBC 196

контейнер
API 204

Docker 199, 201, 203

команда docker inspect 211

контрольные группы (Control groups,
cgroups) 203

основные понятия 203

слой для записи 204

слой для чтения 204

том 204

файл docker-compose.yml 231

DockerDesktopVM 202

Docker Desktop для macOS 202

Предметный указатель  403

Docker Desktop для Windows 202

HyperKit 202

libcontainer 204

Linux Containers for Windows (LCOW) 202

SQL Server Windows Container 203

жизненный цикл 202, 205

образ 199, 207

образы Linux (RHEL) для SQL Server 2019 210

основные концепции 198

пространство имен 203

развертывание 230

размещение 202

среда выполнения 204

контрольная точка
дополнительная 368

контрольная точка (CHECKPOINT) 135, 138,
140, 144

М
масштабируемые группы 196

машинное обучение 30, 163

SQL Server
поддержка языка Go 154

службы машинного обучения SQL Server
Extensibility Framework 164

службы машинного обучения SQL Server
(ML Services) 163

архитектура 165, 171, 172

безопасность, изоляция и регулирова-

ние 167, 168, 169

инфраструктура, обеспечивающая
расширяемость (extensibility
framework) 171, 172, 173

расширение T-SQL с помощью Java 173

расширяемая архитектура 164

машинное обучение (Machine Learning) 325,
359, 360

метаданные TempDB
оптимизация для выделения памяти 86, 87,

90, 91

ограничения использования 92

механизм выполнения запросов 39

механизм распределенных вычислений 293

модель DevOps 200

Н
Национальный институт стандартов и техноло-

гий (National Institute of Standards and
Technology, NIST) 98

непрерывная доступность 29

непрерывная интеграция и развертывание
программного обеспечения (CI/CD) 241

непрерывная интеграция / непрерывная
доставка (Continuous Integration /
Continuous Delivery, CI/CD) 360

О
обмен данными

с чередованием 166

оболочка Bash
сценарии 213

оболочка PowerShell 213

обработка запросов
пакетный режим обработки 41, 61, 62

для столбцового хранилища 63

для хранилища строк 62, 63

с использованием столбцовых индек-

сов 62

построчный режим (row mode) 71

обработчик запросов 36, 62, 63, 65

встроенная адаптация 36

обратная связь по временно предоставля-
емому буферу памяти 41, 42, 48,
49, 53, 56, 57

адаптивное предоставление памяти 41

включение и отключение 41

выделение слишком большого объема
памяти 51

выделение слишком малого объема памя-
ти 42

для пакетного режима 41

ключевые параметры 53

объединенная файловая система. См. кон-

тейнер
объект SEQUENCE 94

объекты-задания (Job Objects) 169

онлайн-индекс 124

поддержка 124, 125

пример 126, 127, 128, 129

404  Предметный указатель

столбцовый
кластеризованный 130, 131

некластеризованный 131

отказоустойчивый кластер Always On (Always
On Failover Cluster) 276

отказоустойчивый кластер Always On (Always
On Failover Cluster Instance) 384

отказоустойчивый кластер (Failover Cluster
Instance, FCI) 120, 121

откат транзакции 130, 133, 136, 137, 140,

141, 142, 143

для длительной транзакции 133, 134

сокращение журнала транзакций 134

карта прерванной транзакции (Aborted
Transaction Map) 138

контрольная точка (CHECKPOINT). См.
контрольная точка (CHECKPOINT)

мгновенный 124

с помощью ADR 134

операция компенсации 133

уровень изоляции транзакций. См. уровень
изоляции транзакций

ускорение 143

оценка кардинальности (cardinality estimation,
CE) 35, 40, 52, 53

для табличных переменных 56

П
паравиртуализция 93

периферийный процесс 166

план выполнения запроса 35, 39, 42, 73, 77, 79

кешированный 41, 44, 55, 75

предполагаемый 79

фактический 44, 79, 80, 84

данные статистики 73

платформа баз данных
SQL Server как платформа 153

поддержка языков программирования 153,
154, 155

языки программирования и драйверы 153

платформа данных 20

подсчет числа уникальных значений
приблизительный. См. Approximate Count

Distinct (APPROX_COUNT_DISTINCT())

точный 69

пользовательская функция (user-defined
function, UDF) 64

влияние на производительность 64

скалярная 64, 66

встраивание 65, 67, 69

обработка запросов 65

табличная 64

постоянная память 92, 93, 94, 186

концепция DAX 186

постоянное запоминающее устройство. См.
постоянная память

постоянное хранилище версий (Persistent
Version Store, PVS) 137, 138

автономное (off-row) 137

внутристрочное (in-row) 137

откат транзакции. См. откат транзакции
постоянное шифрование (Always Encryp-

ted) 28, 97, 98

архитектура 99

клиентское приложение 100

с защищенными областями. См. защищен-

ные области (анклавы)
служба аттестации 102

предоставление памяти (memory grant) 39,
40, 41, 45

обратная связь по временно предоставляе-
мому буферу памяти. См. обратная
связь по временно предоставляемому
буферу памяти

регулятор ресурсов (resource governor) 51, 55

утечка данных в tempdb (tempdb spill) 40,
42, 46, 48, 49, 56

флуктуации памяти 56

представление каталога 105

представления каталога (catalog views) 92

прерывание транзакции 141

приложение-контейнер 250

проект Apollo 62

проект «Сиэтл» 19, 20

прозрачное шифрование данных (Transparent
Data Encryption, TDE) 97, 119

аппаратное ускорение 98

приостановка и возобновление 119

производительность 27, 41, 51, 64, 65, 85

Предметный указатель  405

интеллектуальная настройка 34, 35

функции 34

конкуренция за блокировку страницы 94

обратная связь по временно предоставляе-
мому буферу памяти. См. обратная
связь по временно предоставляемому
буферу памяти

при использовании гибридного буферного
пула 93

при использовании функции ADR 147

средства диагностики проблем 72

пространство имен. См. Kubernetes (k8s)
профилирование запросов 35, 73

стандартное 73, 74, 77, 80

упрощенное 35, 73, 74, 75, 77, 79, 80, 85

Р
рабочий поток 369

разведочное программирование. См. им-
пульс ное исследование и его внедре-

ние
развертывание BDC 327

автономное 332

выбор варианта развертывания 332

для промышленной среды 337

инструменты 329

конфигурация 337

файлы JSON 337

планирование 327

проверка 334, 336

размещение k8s 327

Azure Stack 327

Red Hat OpenShift 327

сценарии 331

сценарии автоматического развертывания
bash 337

python 337

распределенная транзакция. См. транзакция
распределенная файловая система Hadoop

(Hadoop distributed file system, HDFS) 323

распределенные вычисления 21

распределенная обработка запросов 21

распределенные транзакции (Distributed
Transactions Coordinator, DTC) 156

расширенные события (Extended Events) 72,
73, 79

регистрационный номер транзакции в журна-

ле (Log Sequence Number, LSN) 135

регулятор ресурсов (Resource Governor) 169

репликация SQL Server (SQL Server Replica-
tion) 187

поддержка в Linux 187

С
свойство IDENTITY 94

связанные серверы 317

сервер API 344. См. интерфейс приклад-

ного программирования (Application
Programing Interface, API)

система управления реляционными ба-

зами данных (Relational Database
Management System, RDBMS) 322

сканирование таблицы 45, 60, 61, 62

сложные вычисления 28

служба перемещения данных Polybase (Data
Movement Service, DMS)

параметры 299

совместимость баз данных 385

dbcompat 388, 389

критические изменения 386

устаревшая функциональность 387

современная платформа данных
Azure Data Studio (ADS). См. Azure Data

Studio (ADS)
безопасность 28

инвестиции 30, 31

непрерывная доступность 29

поддержка пользователей 31

современная платформа разработки 29, 30

соединение таблиц
внутреннее (INNER JOIN) 79

с использованием вложенных циклов
(Nested Loops Join) 60, 78, 83

сортировка данных (sort) 39, 40

среда объектно-реляционного отображения
(object-relational mapping, ORM) 155

столбцовый индекс 41, 62, 75

страница PFS 368

406  Предметный указатель

Т
табличная переменная 56

табличный поток данных (Tabular Data Stream,
TDS) 120

технология восстановления высокой доступ-

ности после аварий (High Availability
Disaster Recovery, HADR) 131

тип данных
nchar 161

nvarchar 161

транзакция
длительные транзакции 133

журнал транзакций. См. журнал транзак-

ций
короткие транзакции

оптимизация в SQL Server 138

откат. См. откат транзакции
прерывание. См. прерывание транзак-

ции
распределенная

координатор распределенных
транзакций Microsoft (Microsoft
Distributed Transaction Coordinator,
MSDTC) 188, 189, 190

уровень изоляции. См. уровень изоляции
транзакций

У
узлы данных 22

управление данными
извлечение, преобразование и загрузка

данных (Extract, Transform, and Load,
ETL) 188, 289

управление сертификатами 98, 120, 121

уровень изоляции транзакций 138

уровень совместимости базы данных
(COMPATIBILITY_LEVEL) 42, 69, 72

ускоренное восстановление базы данных
(Accelerated database recovery,
ADR) 124, 133, 134, 137, 148

агрессивное сокращение журнала 134

быстрый откат и агрессивное сокращение
журнала транзакций 143

ведение журнала транзакций 139

включение и выключение режима ускорен-

ного восстановления 142

восстановление базы данных. См. восста-

новление базы данных
ускорение восстановления 143

вторичный журнал (secondary log Slog) 138

длительные активные транзакции. См.
длительная транзакция

контроль ADR 149

использование DMV 149, 150

использование T-SQL 150

использование счетчиков производи-

тельности PVS 149

мгновенный откат транзакции 134

постоянное хранилище версий (Persistent
Version Store, PVS).

производительность и размер базы дан-

ных 146, 147, 148

уровни изоляции транзакций. См. уровень
изоляции транзакций

устройство с постоянной памятью. См. посто-

янная память
учетные данные в базе данных (database

scoped credential) 294

Ф
файловая система Google (Google File Sys-

tem) 323

файл подкачки 47

функция динамического управления (Dynamic
Management Function, DMF) 80

Х
хост

основной 248

хранилище BLOB-объектов Azure (Azure Blob
Storage) 302, 315

хранилище строк 62

хеш-соединение (hash join) 39, 40, 43, 47, 62, 69

входные данные сборки 45

выделение памяти 49

хеш-сравнение (hash match) 69, 71, 72

построчный режим (row mode) 71

хеш-таблица 69

Предметный указатель  407

Ш
шифрование данных

постоянное. См. постоянное шифрование
(Always Encrypted)

прозрачное. См. прозрачное шифрование
данных

Я
язык Go. См. машинное обучение
языковое расширение. См. T-SQL

	Предисловие от издательства
	Об авторе
	О техническом рецензенте
	Предисловие
	Благодарности
	Вступление
	Глава 1
	Почему SQL Server 2019?
	Проект «Сиэтл»
	Проект Aris
	«Сиэтл» становится SQL Server 2019
	Модернизация базы данных
с помощью SQL Server 2019
	Начало работы с SQL Server 2019

	Глава 2
	Интеллектуальная настройка производительности
	Почему используется термин «интеллектуальная настройка производительности»?
	Интеллектуальная обработка запросов
	Упрощенное профилирование запросов
	База данных в памяти
	Конфликт вставки на последней странице
	Резюме

	Глава 3
	Новые возможности безопасности
	Улучшение достигнутых показателей
	Стратегия постоянного шифрования с защищенными областями (Always Encrypted with Secure Enclaves)
	Классификация данных
	Другие новые функции безопасности
	Резюме

	Глава 4
	Непрерывная доступность, соответствующая требованиям для систем, критичных к сбоям
	Поддержка онлайн-индекса
	Улучшения в группе доступности Always On (Always On Availability Group)
	Ускоренное восстановление базы данных
	Использование ускоренного восстановления базы данных
	Ускорение восстановления базы данных. Основные моменты
	Резюме

	Глава 5
	Современная платформа разработки
	Языки, драйверы и платформы
	Графовая база данных
	Поддержка UTF-8
	Службы машинного обучения SQL Server
	Расширение языка T-SQL
	Резюме

	Глава 6
	SQL Server 2019 для Linux
	История SQL Server для Linux
	Что нового в SQL Server 2019 для Linux
	Улучшения платформы и процедуры развертывания
	Поддержка постоянной памяти
	Репликация SQL Server в Linux
	Сбор данных об изменениях
(Change Data Capture, CDC) в Linux
	DTC для Linux
	Active Directory и OpenLDAP
	Службы машинного обучения SQL Server и расширяемость в Linux
	Polybase в Linux
	Резюме

	Глава 7
	SQL Server и контейнеры
	Зачем нужны контейнеры в SQL Server?
	Как работают контейнеры с SQL Server
	Что нового для SQL Server 2019
	Подготовительные шаги для использования примеров, иллюстрирующих использование контейнеров с SQL Server
	Развертывание контейнера SQL Server
	Новый способ обновления SQL Server
	Развертывание контейнера как приложения
	Развертывание контейнеров SQL в промышленной среде
	Контейнеры SQL Server в Windows
	Резюме

	Глава 8
	SQL Server и Kubernetes
	Что такое k8s?
	Варианты развертывания k8s
	Подготовительные шаги для использования примеров, иллюстрирующих применение SQL Server и Kubernetes
	Развертывание SQL Server на k8s
	Советы по k8s
	Высокая доступность SQL Server на k8s
	Обновление SQL Server на k8s
	Использование Helm Charts
	Группы доступности SQL Server в k8s
	Резюме

	Глава 9
	Виртуализация данных
в SQL Server
	Что такое Polybase?
	Как работает Polybase
	Подготовительные шаги для использования примеров, иллюстрирующих применение Polybase и SQL Server
	Использование внешних таблиц
	Обсуждение внешних таблиц
	Резюме

	Глава 10
	Кластеры больших данных в SQL Server
	Зачем нужны кластеры больших данных, и почему они так называются?
	Что входит в состав кластеров больших данных?
	Подготовительные шаги для использования обучающих материалов
	Развертывание кластеров больших данных
	Архитектура кластера больших данных
	Использование кластеров больших данных
	Развертывание и использование приложений
	Безопасность
	Высокая доступность
	Jupyter Books для кластеров больших данных SQL Server
	Машинное обучение и кластеры больших данных
	Резюме

	Глава 11
	Голос клиента и миграция
	Голос клиента
	А как насчет бизнес-аналитики?
	Переход на SQL Server 2019
	Резюме

