THE EXPERT'S VOICE® IN DATABASES

Relational
Database
Programming

A Set-Oriented Approach

Database performance through
set-based development practices

Stefan Ardeleanu

ApPress®

http://www.it-ebooks.info/

Relational Database
Programming

Stefan Ardeleanu

Apress-

www.it-ebooks.info

http://www.it-ebooks.info/

Relational Database Programming

Stefan Ardeleanu
Bucharest, Romania

ISBN-13 (pbk): 978-1-4842-2079-5 ISBN-13 (electronic): 978-1-4842-2080-1
DOI 10.1007/978-1-4842-2080-1

Library of Congress Control Number: 2016945177
Copyright © 2016 by Stefan Ardeleanu

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are
brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for
the purpose of being entered and executed on a computer system, for exclusive use by the purchaser
of the work. Duplication of this publication or parts thereof is permitted only under the provisions

of the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and
images only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility
for any errors or omissions that may be made. The publisher makes no warranty, express or implied,
with respect to the material contained herein.

Managing Director: Welmoed Spahr

Lead Editor: Jonathan Gennick

Development Editor: Douglas Pundick

Technical Reviewer: Bradley Beard

Editorial Board: Steve Anglin, Pramila Balen, Aaron Black, Louise Corrigan, Jonathan
Gennick, Robert Hutchinson, Celestin Suresh John, Nikhil Karkal, James Markham,
Susan McDermott, Matthew Moodie, Natalie Pao, Ben Renow-Clarke, Gwenan Spearing

Coordinating Editor: Jill Balzano

Copy Editor: Mary Behr

Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springer.com. Apress Media, LLC is a California LLC and
the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM
Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference our
Special Bulk Sales-eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to
readers at www.apress.com. For detailed information about how to locate your book’s source code,
g0 to www.apress.com/source-code/.

Printed on acid-free paper

www.it-ebooks.info

mailto:orders-ny@springer-sbm.com
www.springer.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com/9781484220733
www.apress.com/source-code/
http://www.it-ebooks.info/

The application developer ... sees himself as a rider on the row.
But the row is not a horse; it’s a donkey!

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Contents at a Glance

About the Authorcccsvemnssmnsms e ————— xiii
About the Technical ReVIEWErcusssvssmssssmsssmsssssssssssssssssssassnsnss Xv
Introduction ... ————— Xvii
Chapter 1: The Concept of Styleccusmmmmnssnmmmmnsssssnnmsssssssnmsssnnns 1
Chapter 2: SQL: Beauty and the Beast............cccirnnsnmmnnsssssnnnsssssnns 17
Chapter 3: A Holistic Vision of the Data...........cccenrrrrnsssssnnnnnnnnnnnas 31
Chapter 4: Data by Set or by ROW?........cccenisnmmmmnssssnnnmmssssnsnssssnnns 43
Chapter 5: Data Transfer Paradigmccccccnsmmmnssmnssssnnsssssnssssans 53
Chapter 6: The Challenge of Scalar Functions..........cccccusseennnsssnnns 81
Chapter 7: Writing SQL vs. Writing Procedurallyccccuusseennnans 103
Chapter 8: Row Triggers and the Need for Atomic Solutions 127
Chapter 9: Final Reflections and Thoughts........c.ccussemnrnsssnnnsnnans 137
1 . 147
v

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Contents

About the AUtROFcccusseemmsssnnmsssnnmssssnssssssssssnsssssnnssssnnssssnnssssnnssssns xiii
About the Technical ReVIEWErcucssvssssssssssmssssssssssssssssssssssassnsnss Xv
Introduction.......cccsiemismimmmm e ————— Xvii
Chapter 1: The Concept of Styleccccvrrrrssssssnnmnsnnnnmssssssssssssnsnnns 1
Style of Development IS DynamicC..........cccoevververrernesnensessesses s s sessessesens 1
SQL Requires ItS OWN SEYIEcevveereeeree sttt ree e res e sae e saesesae e s e sas e sasenaes 2

Style and QUATITY.......ceceeerererererrr s re s rae e rse e re s e sae e sae e s aesessesassesaeesaeenaes 2

A Programmer’s OWN STYIE.......cccevrererrererererere s s see e sse e ssesesaesassessesessssesassenaes 3
Common Styles of DEVEIOPMENT..........ccccveverierererererer e rse s e e e e saesesaesesserasaens 3
MURIEASKING ...cveeeecececece s a e a e sa e sa e sa e sr e sa e a e s r e sr e sa e na e nnennan 4

Team Organization...........ccceeeeererrerersersesersesessesesesesersssessesessesessessssesassessesesssssssenaes 4

The Visual EXPEIIENCE........ccvvereerircrr et sa s s s ss s ss s snssnssas e 5
Common Models in Programming..........cccceereeeeeseessesssssssssssssssssssssssnnenns 5
Object-Oriented Programming...........cccoceerenenenensnenesesse s sesnns 6
Structured Programming..........ccovcrennennnnnsesssesssese s ssssessssessssesnes 6

An Alternate Model? ... ————— 7

Can One Model Fit All?.........ovnnininiiiiss s 7
Starting with Table DeSignccccevverenrnennsesesesse s ssesessens 8
The Table @S @n ENtity.........ccoveeeerernencnensesesesse s sessssens 8

The Table AS A SUM Of COIUMNS ... senenes 9
Database CONSIFAINTS ... 9

What Developers MUSt KNOW........c..cccoeeererernmrreneresere s e sssessssennas 1

vii

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Let’s Begin Coting........ccvvrrrrerrerrernerrerses s ses s ses e e e e e e sssssssesns 12
Revisiting the EXAMPIEccovereriererreresererere s sereserse e rae e ssesessessssessssesassesasssaenes 13
Good Design May Be Wrongly Implemented.........ccccvceervererrerererenerseresreressereesenaens 14

Are You Ready for SQL?.......cccoeeernierrnerers s ses e ses e sessenens 15

Chapter 2: SQL: Beauty and the Beast............cccinnnseennnnsssnnsnsessnnns 17

Can a Query Language Be So Important?ccoeoovnrrriernccrecennenn 17
Databases Require a Language..........ccceceveemriernnsesnssesnssssessssessssessssessssessssssssssssenes 17
SQL IS @ USEfUl LANGUAGEceveeeerererererereresesesesesesssssesesssssssssessssssssssssssssssssssssssnsnens 18
Programmers Must Adapl.........cccoceiiriiniesnicsr e 18
A Different Style IS Needed...........covmrmrcnsninnnens s 19

Understanding What SQL Is and IS Not...........ccccevrvrercrcercescescescesene 19
SQL Is Not Classical Programmingc.ccccececernneneneresssnssesesesesesesessesesesesesesesenns 19
SQL IS ADOUE QUETYING ..vveveeeererererisererisesrsesesessss s s s e s s s e s s sssssessssssssssssssssssnsnens 20
Components of the SAL LANGUAGEccoveeeererenecnereseesesesss e see s seesens 21
Queries and ClAUSES..........ou i 22
Inserting, Updating, and Deleting...........cccoreiennrenennenncscr e 23

What About Programming?ccccvvrvernniensensensessessessessessessessessessessens 24

The Advantage of a Standard.ccccceeerirrcriccnc s 26
Programming Is a Practical ACtiVity.........cccoovrernrcnnsnnsnesne s 26
Is Database Programming SPecial?..........ccoouvevvnniennnnnsscnnnne e senenns 27

The SQL Shop Metaphor.........cccocvvrvrinnnircrer e 28

An Example of Bad PractiCecccevvevierreriesreriessessee s sssesessesssessennns 29

Chapter 3: A Holistic Vision of the Data..........cccccerrrrnssssnnnnnnnnnnnnns 31

The Concept of the Data Set.........cccevvvvrie v 31
The Importance of the Data Set............ouvvmn s ——— 31
SQL and the Data Set...........ouvnmimnn s ————— 32
A Mix Of Art and SCIBNCE........couurrrrmriirrrriinssr i 32

viii

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

SQL and Portability..........cccvreeerseresesessnsesessssessssessessssesssssssesssssssssssseens 33
Operating on Data SEts........cccecrerrerere e e sa e e e 33
TWO APPIOACHES ...ttt sr e r e n s 33
Data Sets as Atomic UNitS ... 34
Like @ ChamelBon ... s 34
ThIinking in Data SetS.......ccccererrerre v sa e e sae e saenens 35

Take Style SEriOUSIYcccceerierererierrsire s sss s sn s snesenaens 35
Understanding the Data Set..........ccoorrrnrnn s 36
The IMpPortance Of STYIE........ccciirrrcerr e 36
Programming as a Distinct Path............ccocovneiiecr e 37
Promoting the HoliStiC SEYIE ..o s 37
The BenefitS......cocuvvrnnnnns s 38

Be Independent ... 38
Visual vs. SQL DeVEIOPMENT ..ot 39
Choosing a TOOI OF @ LANQUAGE.......c..eveeererrereerereeresesesssses e seses s sesessssssesessnns 40
USE SAL ...t 41

Chapter 4: Data by Set or by Row?.........cccccrnimmnnsmnmssssnsssssnssssans 43

Choosing the Level of Detail.........cccoceeevereeececccecccee e 44

Working Atomically........covrminnnnnnn s 44

Row-by-Row Performance............cccverrrsensessenssnsessessesses s s s ssssenns 45
Writing Out of Habit ..o 45
Blocked into Poor PErformance.........c.covnnmnininsnmsmsinsssssssssssssssssssssssssssss s 46
Performance Relies on @ HoliStiC Style.........cccvvinvnrnnncnrnn s 46

Querying ... Al the TIME! ... 47
What Do Programmers DO? ... sesesss e sessssssssessssssssesens 47
How Do Programmers DO [E? ...t 49

Revisiting the SAL SNOPccovcererrrerre e 49

The Use of Scalar FUNCLIONS..........coconrnnnn s 50

ix

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Set-Based Debugging IS SIMPIErcccvvrvrvrrrrnrerrer e 51
Your Role as a Database Developer..........ccccceeereereersensessessessessessessennens 52
Practice TIMe! ... 52
Chapter 5: Data Transfer Paradigmcccccnsmmnssemsnsssnsssssnssssnnnas 53
About the EXamPIEScceeeeeeececircir s 53
Format of the EXamPIESccecevierieeririeererree e see e ssesee s snesnens 54
Example 1: A Full Data Transfer Between Two Systems...........cccevunee. 54
Business and Technical DeSCriptioncccucvvvvninsninsensen e 55
PrEIEOUISITES. .. .eivereerre ettt e e e et e et se e e e e e n e e n e 55
Sample 0f the DAta..........cccevveeeireire s sa e ene e snens 59
An EXample INSEIt SCHPTccveerrererierrerere s sesessessesesassese e s e sss e ssesesssssssensssenes 60
Filtering for English and Frenchcccooienncccnsccsscresn e 61
TrY I ON YOUF OWN.....eceeee et sn s n s n s 69
SOME CONCIUSIONScovrviueeririne ittt b st st b ettt 69
Example 2: Incrementally Update a Target........ccccoovvrcrcrcrcrcenccnnene 70
Changes t0 the SOUICE ..o s 70
The AtOMIC APPrOACH........cceceeeeeecere et 4l
The HoliStiC SOIUION........ccveeceeeeeee e 76
Chapter 6: The Challenge of Scalar Functions..........ccccusseensnsssnnns 81
Cursors Have Their PIacec.ccccveervercercercerser s 81
The Lure of FUNCHONS........cccoveeec e 82
Divide and CONQUETcoecererrererere e srs e sas e snas 82
Example 3: Filtered Full Data Transfer..........cccovervrircrcrcrcrccresene 83
The ATOMIC SOIUONScoveeeeeeeecce e 84
The HoliStiC SOIUIONSceceeerceee e 91

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Example 4: A Simple QUETYc.cvcerverrerrerrerrerser s ses s e 94
NEW EXAMPIE SELeeeeeeeeerere ettt se e ra e e e ae e ae e sa e nae e ns 94
BUSINESS REQUIFEMENT.........coeereeereeeererereres e ree e re e ra s sae e ae e sae e saesasaesasnenes 96
The AtOMIC SOIUTIONS.......cccriiririirirrir s ———— 97
DT G0 Y o]0 - T 99
The HoliStic SOIUtIONSccvvicriis s 100

Chapter 7: Writing SQL vs. Writing Procedurallyccccuusseennnans 103

An Example of an Updateccccvververreniesrersee s sessee s ssee s ssneenes 103
AN ATOMIC SOIULION ...t —————— 104
A HOlISC SOIUION......cvciirririissiisss s 106

The Power of @ UNion ... 108
Taking @ SQL-Based APProaCh........cccuuevrrneresnnssesssss s sessssssesessssssssesassssseens 108
A SPECIfIC EXAMPIE......coveeerececerererte e e sss e s e e sse e se s sas e saesesnesesaenanaens 108
UNION VS, If-BISB....ceceereccere e s 109
Write Accurate Code FirSt.........cocovrererrerenesenes 112

Embedded SQL vs. Dynamic SQL..........ccooeererrierienriernseresensesaesenaens 112
The NOrmal APPrOACHcccoerureeeecrirree e 113
Uncertainty at RUNTIME..........cocouiieee s 113
The Use of SQL GENEIators.........c.cvvrerereresisisisesisisesesesesesesesesess s ssssssssseseses 113
AN EXAMPIE.. ettt 114
The EXPIANGALION ... 116

Other Holistic SOIULIONS.........ccoiecrerecre s 119
Temporary TADIES.......c.ccevecircrr s sr e nn e 120
Table FUNCHONS......cccvii s 120
One Last AtOmIC EXAMPIE.......cccveeerererererererereseresersesessesessesessesessessssessssesssnenaes 121
The HoliStic SOIUtION.........cc i 123
The Atomic Solution in SQAL SEIVEr ... 124
The Holistic Approach in SQAL SEIVETcovceerverereree e reseresrersesessesessesessens 125

xi

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Chapter 8: Row Triggers and the Need for Atomic Solutions 127
The Use 0f ROW TrgQers......cccuvrvrrerrernessessessessessessessessessessessessessesnenns 127
THE SEAUCHION......ccoeeecceeee e 127
The Trap Of ROW THOQEIScceererecererceere e se e se s 128
S0ME EXAMPIE THGGEIS ...ecuverereerereeeere e se s 128

A REVISEU SOIULION........covieeceirirccire et 129
THE DISASIEL.......cceeeeerecrerieecre et 130
The Necessity of the Atomic Approach..........cccvcevververversersessersessensenne 132
Analyzing the EXAMPIEccccerrerererenesesesessssesssessssesesssssssssssssssssssssssssssssssssassanns 132
Reviewing the SOIUtioN.........cccovreccnnnsse e s 135
Wrap-Up on AtomicC OPErationscucceeeeresesesesesssesssssssssssssssssssessssssssssssessassnns 136
Chapter 9: Final Reflections and Thoughts..........ccuseemmmsssennnsninns 137
The Principle of DiVISION.......ccccevevieerierieeriersee s s see e seesseseesaess 137
The Concept of a SQL Template..........cccevereercevecrccssresecescse e 138
Writing Horizontally vs. Vertically..........c.ccorvrvncrcerccrsscercescesesenens 139
My Reason Against TOOIS.........cccererrerrerrersensesses s ses e e 140
Specific Software Applications............ccuceerirrerriesnsesesssese e 141
SQL Itself Can Be IMProved..........cccoeeererenrerssenienensesesessessssessesessesnes 142
Performance, Oh Performance!ccccccvverimniinninnninnsssssssssssssssessnns 143
Just the First STep ... 144
Pure SQL iS the WAycccceeeeeiecrrce e 145
1T - 147

xii

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Stefan Ardeleanu was born in Bucharest, Romania,

in 1967. He studied math and philosophy, and he was
a math teacher for 10 years. Afterwards, he started a
career in software development. He was attracted to
databases from the beginning, so his entire career in
software industry is related to databases and especially
to database development and design.

Stefan Ardeleanu is a database specialist, a
database architect, and a developer. He has worked
in various systems such as Oracle, SQL Server, DB2,
and PostgreSQL. He has experience in OLTP, data
warehouse, and replication systems.

Stefan is a passionate SQL guy and he has a specific
style of development. This style is reflected in his
various projects, including replication systems and data
migration systems, where this style is highly required.

Stefan is also a database trainer, and he delivers
courses in Oracle chain as a partner, especially database
development courses and BI courses.

xiii

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

About the Technical

Reviewer

Bradley Beard is a software engineer with more than
15 years experience writing dynamic, interactive web
sites using ColdFusion and SQL Server. He graduated
from Florida Institute of Technology in 2007 with a
Master of Science in Computer Information Systems,
and studied for his undergraduate degrees in CIS

and Technology Management at Herzing University.

In 2013, he earned the MCSA: SQL Server 2012
certification from Microsoft, and in 2016, he earned the
MCSE: Business Intelligence certification as well.

His continual quest for learning has earned him
shelves full of books at home and at work, most of
which are about SQL Server, ColdFusion, and general
web architectures and frameworks.

He lives in Palm Bay, Florida with his wife, Jessica, and children, Josh, Kaylee,
Matthew, and Emma. He also apparently runs an animal shelter made up of his dogs,
Lady and Bella, and cats, Spice, Simba, Mercury, and Dobby. He enjoys fishing and
spending time with his wife and kids.

Bradley is available for consultation and third-shift remote employment on
ColdFusion and SQL Server. Contact him at bradley.beard@gmail. com.

XV

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction

I want to share some thoughts from my experiences doing project-based work as an IT
contractor. Working as an IT contractor means taking on a mix of short- and long-term
projects. In a short-term project, you need to work on a specific task with a team of
developers, you need to solve a problem quickly, and then you are done with the project!
The team of developers will continue their work and you will search for a new project and
challenge.

Three stories...

Some time ago, I was on a project where most of the members were very experienced
Java developers. They were developing a document management system that was
metadata-based and written almost exclusively in Java. The database was Oracle. The
manager and their technical leader invited me to do some Oracle work, to solve some
database-specific tasks for the project. All the team members were pure application
developers and no one had much expertise with databases. Everything was transformed
in SQL, but no one cared too much about that. The developers were good artists and the
design was very sophisticated. It was written following the principles of object-oriented
programing.

One day, I was in the office listening to some of my colleagues discuss a certain SQL
statement. They asked me some questions, which I did not understand. I went over to
their desks and looked at what they were working on. I was still confused because the SQL
statement in question was quite basic. A self-join was required. I added the self-join and
everything worked perfectly well. The team members were amazed! They were not aware
that a table can be referenced many times in a join using various aliases. They were not
familiar with a self-join!

Later we spoke some more about our careers. They were surprised by the fact that,
the same way they spend their entire career doing Java, I spend my entire career doing
database development and especially doing SQL. “SQL is so simple. Your task is such a
trivial task. Your life is much easier than ours,” they said. “We fight with such complicated
concepts and you just manipulate rows and columns in your simple query language!”

Another time I was in France with two of my good colleagues, Clark and Marjorie.
Clark is American; he has been my manager for a long time and he is a very good friend.
Marjorie is an elegant French woman; she is my colleague in support in the French area.
We were in a café and we were chatting. We ordered some wine. In addition, I asked for
some mineral water. In my country, people mix sparkling water with wine. I thought
about asking Marjorie what she thought of this custom, but I knew the answer. To any
French person, mixing water with wine is a blasphemy. So I left the water where it was,
apart from the glass of wine!

xvii

www.it-ebooks.info

http://www.it-ebooks.info/

INTRODUCTION

What is the connection between these three shared memories? Being an application
developer does not make you SQL independent, in most cases. Whether you like it or
not, you will be in contact with SQL, sometimes more or sometimes less! The same way
any database developer knows the basics of structured programming, normally most
application developers know the basics of SQL. There is no such thing as a superior or
inferior language, just useful and compatible ones according to the business. When you
are in the country of relational databases, even if you are an application developer, you
should learn how to write fair SQL.

Writing Correctly Is Critical to Quality

I believe that one of the most important aspects is the way we write our code, our
style of development. It is hard to say what it means to write correctly in the context of
software development. There is a degree of subjectivity involved in any judgment of
this type. However, I believe that no one can argue with me when I say that the style
of development and the way we write our code is proportional with the quality of the
software we build.

I'am a database developer with many years of experience. During my time spent
inside relational databases, I have gathered enough experience to be able to explain that the
database area requires a certain and distinct style of development. This is the topic of this
book: how to write code inside a relational database in a certain manner, distinct and specific.

There are millions of lines of codes in databases all over the world that are written
in a total inadequate manner and these lines of code cause many performance issues
in many places. All of these performance issues can be avoided if the programmers
understand that a certain style of development is required in a relational database.

The style of this book is not academic although it is a book about database
programming. I am a practical person and I think that programming is part of our lives.

Basic Terminology

Due to the direct style of this book and the fact that this book is about database
development, which means that it is a technical book, I define some basic terminology.
The Internet is full of classifications and manuals, courses and documentation, libraries
and practical examples. The concepts are explained and re-explained by specialists.

I want to be consistent and to avoid any possible confusion, so let’s clarify some
concepts and keywords used in this book.

A data-oriented software application is composed of at least one user interface,
graphical or not, and the database behind it. When I say database, I am referring mostly
to arelational database. One of the main goals for any software application of this type
is to allow data access in the database via the user interface. The end users read and
write from the database via the user interface. This is what I call a classic data-oriented
software system. I will use the term “classic software application” for simplicity. The focus
is on the database, so the topic of the software application is the database section.

Another type of data-oriented software application is one that transfers data between
classic systems. Medium or large companies have many classic software applications.
Every software system of this type has its own purpose, its own database, and will cover

xviii

www.it-ebooks.info

http://www.it-ebooks.info/

INTRODUCTION

one part of the business or another. I call this a specific software application. In most
cases, there is no user interface and no classic end user. One or many classic systems are
the targets and the one or many classic systems are the sources. This system can be a
replication system, a data migration system, or an Extract-Transform-Load system (ETL)
part of a data warehouse system.

Please be aware of the distinction. One is to develop in a database in a classic system
and another one is to develop in a specific system. My main interest in this book is related
to the variety of specific systems where many developers work in the same manner they
work in classic systems.

Finally, please read Oracle database as Oracle and Microsoft SQL Server as
SQL Server.

Types of Software Developers

I'am a SQL developer. In other words, I am a classic database developer. For many years,
I felt bad about this. I thought that the only pure and authentic database specialists were
the database administrators. I wrongly thought that being a database developer, which
means a SQL developer, is not a path by itself but a skill among others, an insufficient
path that could be associated with something else. People were searching for developers
in different combinations like Java plus PL SQL or C# and SQL Server. SQL programming
and classic database development was considered an addition to application
development. Unfortunately, this is still the case in many places.

Being a software developer means knowing how to develop both the database and
non-database layers. Sometimes we must do both and sometimes we do exclusive work.

“He is a very good Java developer, you will see!” “He has many years of experience
with C and almost as many with C#. He is a very good programmer!” These kinds of
statements are very common. Application developers continue to be the most popular
type of developers on the market. For example, developing a web interface is a popular
occupation nowadays, and the market is full of good web developers who can satisfy the
requirements and build extensive and scalable applications.

What is happening with the database? After the 1990s, the only authentic database
people were the database administrators. Being a DBA is a difficult task and involves
enormous responsibilities. If something goes wrong in the factory and the inventories fail,
the DBA must be there and must find a solution so that the work can continue. It is far
from my intention to minimize the role of a DBA: his presence is critical and necessary for
any production system. In large enterprises, there are armies of database administrators
who take care of the databases.

What about the ones that effectively built the databases as part of the data-oriented
software application? For many years, the market neglected them. I admit there is
a degree of subjectivism in this statement that I am not afraid to recognize; you can
consider it as a personal point of view. The database developers should have received
more recognition in the past and even today. Look at the job descriptions in the past,
before the BI and data warehouse explosions; you will rarely see explicit requirements for
database developers. Happily, today you can see more requests for database specialists;
this change is due to the explosion of reporting systems and analytics. For example, an
ETL specialist is a highly specialized database developer, and not an ordinary SQL or
database developer!

Xix

www.it-ebooks.info

http://www.it-ebooks.info/

INTRODUCTION

Styles of Development

The same style of development continues to be too often used in both user-interface work
and inside the database. Software developers think in patterns of structured and object-
oriented programming and apply these principles everywhere in their code, including
the databases. Because people don’t recognize the database developer as a distinct type
of specialist, and because they don’t accept a distinct pattern of development for him,
databases are often built in an inappropriate style.

Unfortunately, there is still confusion between two different images of the language.
I am referring to the confusion between the apparent simplicity of SQL and the potential
huge complexity of the written logic with this language. SQL is a paradox. You can learn
the basics and understand the language in one week. However, becoming a SQL expert is
as difficult as becoming a Java expert.

Software companies want to hire Java or C# programmers with SQL knowledge, and
they often consider database programming a secondary skill. The idea of having a distinct
style of programming within the database has exists for some years. Happily, this idea is
gaining traction. People are starting to see that a database programmer needs to write
code differently. I now often see explicit requirements for a database programmer and
explicit requests for a non-application developer.

In this book, I want to promote a certain style of development specific to the
database. I am referring to SQL development in particular as the most important type
of database development. The SQL programmer is critical in a large variety of projects.
I want to show that, in the database, a different style of development is required.

Application Developers

I dare to say that, in one way or another, this book is for everyone to a certain degree,
and by everyone, of course I am referring to everyone interested in databases, especially
in relational databases. This includes business analysts, software testers, all kinds of IT
consultants, IT project managers, IT technical leaders, and so on.

Still, this book is especially for programmers, especially application developers
like Java, C, C++, C#, and PHP developers. Most of the software today is built on the top
of these technologies and on the shoulders of these developers. These developers are
focused in their classic languages and they usually work at the user interface level. Many
of them are good practitioners of the object-oriented model, for example, and they know
how to apply this model to their applications. The object-oriented model is a complex
model and it covers many of our realities better than other models.

This book is for the application developer who is asked to work in the database.
Very often, moving from the user interface to the database is not seen as a major
change and the application developers don’t think to adjust anything in the way they
write their code.

Some application developers simply ignore any difference; they are not aware of
the distinctions because they think that the same model applies to the database. Others
judge the SQL language by its apparent simplicity. This book is written especially for
application developers who, due to various reasons, subjective or objective, are using the
same style of development in the database as the one in the user interface.

XX

www.it-ebooks.info

http://www.it-ebooks.info/

INTRODUCTION

Database Developers and Other Audiences

This book is also for those pseudo-database developers who are actually more like
application developers and who intensively use the procedural facilities of a language like
PL/SQL.

These pages are also for true database developers, SQL developers. It will provide a
confirmation of what they are doing right.

This book is for students from IT universities, especially computing and computer
science. I hope they will be aware from the beginning that the database is something else
and requires a specific style.

This book is for the young programmers who are just starting out in the software
industry. I hope they will see that they need to follow a different approach in the database
and not develop in the same manner as in the user interface.

This book is also for business people like analysts or testers who deal with data.
I believe is good for them to be familiar with the distinctions between the two styles
of development.

Finally, this book is for managers and technical leaders of software projects where
the database is a critical component. They make the decisions and I hope that some
of them will give more importance to the topic of style, for better performance of their
software.

The Two Sections of the Book

The book is divided into two large sections. The first four chapters in the book are
conceptual. I explain the reason for the two styles of development and justify why we
need a different style when we are inside a relational database. I define the concept of the
style of development to explain why this is such a critical component for a developer.

Considering that the book is for students, there are sections in the first four chapters
where I describe some basic aspects of database development like table design and
the characteristics of SQL language. These sections are also required for the sake of my
argument but they can be ignored by experienced database developers.

The goal in the first four chapters is to show that a separate style of development
is required in a relational database. This style of development is revealed during the
book by the opposition with the classic or typical style of development used by most
application developers. The style of development that should be used in the database
is holistic and set-based as opposed to the atomic and row-oriented style used by many
application developers.

The last four chapters of the book are highly practical and are meant to prove the
concepts revealed in the first part of the book. I offer a series of examples in two of the
most popular database systems: Oracle and SQL Server. These examples illustrate the two
styles of development and show the differences. The practices are described and I am not
afraid to state that my goal is to promote the holistic and set-based style of development.

xxi

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1

The Concept of Style

Nowadays, being a programmer is considered a very good career, and more and more
people are choosing this path. Like anything in life, writing software code is an activity
that is influenced by many factors, both subjective and objective. Many programmers do
their work in a certain way according to their experience, knowledge, and preferences.
Many embrace a certain style of writing code that is more or less correlated to the
application they are creating. Writing a game for children is different than working on a
team of developers in an ERP, for example.

As an analogy, I play badminton and my daughter plays tennis. I have my own style
in badminton and my daughter has her own style in tennis. If I were to use my badminton
style in tennis, I would not do well. To play at an acceptable level, would need to
adapt my style. Even though both are racket sports, there are objective and subjective
differences, such as style and rules.

In software development, programmers’ specific style of development is composed
of the sum of their knowledge derived from both learning process and experiences in
various work projects. I consider the style of development a major factor in success for
both project teams and developers. Being flexible is essential to good code quality and to
a successful career for any programmer.

Style of Development Is Dynamic

I know that I am taking a risk by focusing on a vague concept like the style of development.
The concept of style is not a scientific notion and it involves a certain degree of
subjectivity. I consider the concept of “style of development” similar to the concept of
“development approach,” but I prefer the terminology “style” because I accept the degree
of subjectivity mentioned above.

First, this book is not a scientific one. I am not a scientist. I am a database
programmer who has adopted a style of development by working for many years on
databases under various systems like Oracle, SQL Server, IBM DB2, and others. I don’t
claim to reinvent the wheel; in fact, most of the things described in this book should be
familiar to many specialists, especially database programmers but not exclusively.

Electronic supplementary material The online version of this chapter
(d0i:10.1007/978-1-4842-2080-1_1) contains supplementary material, which is
available to authorized users.

© Stefan Ardeleanu 2016 1
S. Ardeleanu, Relational Database Programming, DOI 10.1007/978-1-4842-2080-1_1

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-2080-1_1
http://www.it-ebooks.info/

CHAPTER 1 " THE CONCEPT OF STYLE

SQL is such a common language that anyone who says something new about it might
be regarded with curiosity and distrust. There are many books and papers on SQL, and
many software applications have been written in SQL. SQL is one of the top languages in
terms of popularity and usage.

SQL Requires Its Own Style

Therefore, this book is not a book about SQL in the sense that I have something new

to say about it. What I want to talk about is the fact that writing SQL code involves a
certain style that is somehow distinct from the common styles used in other languages.
Even in this area, things have become clearer over the past few years. For example, the
set-based approach is now required more often in the software market in many projects.
What I want to show is the fact that, in certain situations, software developers should
use a certain style of programming. They should use a distinct style of development
specific to database programming, not the classic style of structured or object-oriented
programming. I am mostly referring to replication systems, data migration systems,
Extract-Transform-Load (ETL) systems, or any type of application that moves data
between various software systems.

In the theoretical approaches to SQL and in the multitude of courses that have been
written, most specialists describe cases where you are supposed to use a certain syntax,
and they illustrate the use of SQL via a variety of exercises. They explain that SQL is a
query language, so any SQL course is dedicated to the topic of querying. This is the main
purpose of SQL: how to get access to data in the relational format.

This is well known. I will focus on another aspect. My thesis is that, when working
with a database and using a relational language like SQL, you should adopt a certain style
of programming that is not the same as the style you are familiar with as an application
developer.

The source of this book is my experience, so you can consider it a practical guide.
This is why I prefer to use the rather vague concept of “style of development” instead
of a more scientific concept. In my view, this style means the set-based approach but
even more than that. The set-based approach that I am promoting here is just the most
important characteristic of this style.

I believe that people are becoming more aware of the set-based approach and
I see an increased demand for this approach in the market. People are becoming
increasingly aware of the need for a certain distinct and specific style of programming
in the database area.

Style and Quality

What is the most important thing to everyone involved in a data-oriented software
application, apart from the accuracy of information? It’s the performance of the software
itself. There’s a big difference between running a data migration interface in one minute
and in five minutes! Getting good performance in a database is proportional in many
situations to the use of the most appropriate style of development.

Let’s continue. The question remains, what is a style of programming?

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 * THE CONCEPT OF STYLE

A Programmer’s Own Style

Most programmers have their own style. The way developers write their code is
influenced by many factors: their education and background, experience, types of
projects, role within projects, their ambition and talent, seriousness, and capacity for
organization.

We all know how important it is for programmers to be able to organize their work
properly; we all agree that they need to be able to see the details without losing the whole.
This is the ideal programmer in an ideal world.

I think of a programmer as similar to a writer. A writer has more or less restrictions
than a programmer, depending on how you look at it. Writers are restricted by their
audience, and programmers are restricted by their end users and testers. A programmer
is sometimes very technical, but a writer may be technical also. The degree of creativity
is an essential skill of a programmer, as it is for a writer. However, this degree of creativity
is not absolute, as it can be for a writer, but relative because programming is a practical
activity and not pure art. Anyway, just as writers have their own style of writing, so
programmers have their own style of writing development code.

This is the main topic of this book: I posit that a distinct style of programming is
required when writing inside a relational database. I was able to develop this distinct style
of development over many years. I think that this style of development is not promoted
enough and is not clearly explained in detail. I believe that many IT people will find an
advantage to reading this book.

One of my goals is to convince some application developers to reflect upon this
proposed style and change something in the way they write when they program databases.

Another goal is related to IT education systems and universities. I think that this
style needs to be better promoted in database courses at a university level. Apart from
understanding the principles of relational databases, apart from understanding the SQL
language, apart from the delivery of specific vendor languages like PL SQL or Transact
SQL, it is also very important for the young students to understand how to adapt their
code to be more efficient in the database. I do believe this path, the use of a specific style
of development, should be followed by developers that write code for databases. The
best way to make this happen is for it to be explained in universities so the students, the
next generation of programmers, will be warned that something needs to change in the
way they write when dealing with data.

Common Styles of Development

Now that I have clarified and described the concept of style of development, after
admitting that it is a vague concept and not a scientific notion, I will identify some of the
major reasons for one style of development or another. Many factors influence a certain
style of development. There are schools of development, and these schools are based on
certain models and theories. I want to investigate and to describe some of the factors that
contribute to a certain style of programming. I will start with a series of questions. These
questions are addressed to programmers, especially to application developers.

What type of programmer are you? What is your area of expertise? What
programming languages have you used? What paradigm did you follow during your
career as a software developer? During your career in the software industry, what was

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 " THE CONCEPT OF STYLE

your main path? Were you involved in many levels of development? For example, did you
write code at the user interface level and a database level too?

As mentioned, I specialize in database programming and I am a database developer.
I'was involved at the user interface level during my first years of experience, but I liked
databases so much that I decided to specialize in the field of database programming. Are
you this kind of programmer? (Not one who necessarily specializes in databases; you may
be a highly specialized Java developer, for example.)

Multitasking

Alternatively, you may be a programmer that can do other things too. Maybe you're very
flexible; maybe you can switch from PHP or C# to Oracle database and PL SQL, for example.
Are you a programmer that performs very well on all types of code, at both the user interface
and database level? I have respect for these flexible programmers, as long as they make the
distinction and are not trying to work in the same manner in all areas of programming.

Theoretically, when designing and developing an application based on a certain
language like C# or Java and using a certain relational database system like SQL Server
or Oracle, the application can be written by any kind of IT specialist. In most cases, the
programmers can satisfy both goals: they can write code at the user interface level using
Java or C# and they can write their logic at the database level using SQL and PL SQL or
any other specialized vendor database language.

In most projects, software applications are built by application developers that can
write in the database using SQL and associated procedural languages like PL SQL. These
developers work on both levels (user interface and database) and they switch from the
user interface to the database level periodically. This is the most common situation, with
advantages and disadvantages. It is a matter of resources and availabilities, but it is also a
matter of skills and costs.

Another approach, which is not so common, is also possible. Specialized database
programmers can be used for the database section and application developers can be
used for the user interface. Despite the advantages, this is not the general situation; in
fact, it’s quite rare.

Team Organization

Let’s say a company wants to start a new project. It decides to use Java technology and
the Oracle database. The managers don’t generally search for highly specialized Java
developers to allow them to write Java code but forbid them from touching the database
under any circumstances! They don’t search for specialized database developers to do
exclusive database development! Generally managers want to hire people who can do
both. In the most common scenario, the expectations are that the developers will be able
to write C# or Java code on one hand and write SQL code on the other.

The opposite strategy is not as common, although I have noticed an increase in
projects that try to be organized in the opposite manner. I have also noticed an increase
in requests for database developers. This growing demand in database development may
be explained by a larger number of projects where more specific database expertise is
required, like ETL projects and data warehouse projects.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 * THE CONCEPT OF STYLE

My personal opinion is that the mixed approach will continue to be the most
common one. Programmers may prefer the user interface or database, but they are
generally able to do both. The question is how are they doing it? Are they doing the
job right in both sections? Are they using the same principles of programming in both
sections? Or do they use different approaches in different areas?

Any software application is a mirror of a certain business to be implemented.
Therefore, the business drives everything, including the database. The programmers
can be involved mainly in the current functionalities of the business, the operational
systems. For example, they can be involved in classic online transaction processing
(OLTP) configurations in classic production systems. Others developers can participate in
specific projects like data warehouse, replication systems, or data migration ones. There
is a large variety of situations and software applications, and programmers should adapt
their capabilities and be flexible. They should write their code in concordance with the
specificity of the project.

Apart from classic programming, there is a new type of programming, which is
very modern and fancy: visual development. There is a new species of programmer that
specializes in tools, most of them visual.

The Visual Experience

A short time ago, I was speaking to some college-bound students. Some of them were
considering enrolling in IT universities. I explained some basic facts regarding the world
of software developers: the advantages and disadvantages of being a programmer. One
of the students told me he wanted to be a programmer without writing a line of code, if
possible! His dream was to become a visual developer. I can’t imagine a future like this:
full of a new type of programmer who has no writing experience and works exclusively
with visual tools. Maybe I am too conservative!

So, coming back to the list of interrogations, are you a classic programmer who prefers
to write code or are you a visual programmer? This question is reasonable in today’s
market where the complexity is so high and the number of alternatives is increasing year
by year. There are so many technologies, so many languages, and so many visual tools!

These questions are necessary when talking about software programming styles.
The purpose of this book is to define and to clarify a style of programming specific
to the database and to compare it with a classic or typical style. This topic is generally
addressed to developers, but not exclusively. A project manager, a technical leader, a
tester, a business analyst with technical skills, and a student in an IT university should be
interested in this topic too. This book aims to help them understand that changing their
style and adapting it to the necessities of the project is in their interest.

Common Models in Programming

The next step in this discussion is the programming model, the general paradigm in
which the programmers are bounded or linked. There are several common models and,
according to these models, certain programming styles are predominant in the market.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 " THE CONCEPT OF STYLE

Object-Oriented Programming

The most popular model nowadays is the object-oriented paradigm. This model involves

a certain style of programming adapted to the principles of object-oriented programming

(OOP). This model is one of the most complex. I believe this model is closer to reality than any

other. The most common programming languages and frameworks rely on this model, such

as Java or C#. All of these languages satisfy the principles of object-oriented programming.
Object-oriented programming is properly described in IT universities all over the

world. Young and future programmers become familiar with the model from the very

beginning and they understand that most of their activity will be based on this model

and paradigm. The principles of object-oriented programming, like encapsulation,

polymorphism, data abstraction, and inheritance, are explained both in theory and

in practice through a variety of simple applications. Apart from the principles, apart

from the model itself, a certain style of programming is promoted automatically. The

associated style of programming is, to a certain degree, a consequence of this model and

most application programmers start development in a similar fashion and adopt a similar

style. This is very normal and rational. The predominant style on the market and a large

part of all written software is based in this model and its principles.

Structured Programming

When analyzing the database level and the object-oriented programming model, there
are not too many things to discuss. This model has been proven unsuitable for databases,
at least for relational ones. The data is too simple and the object-oriented model is

too complex. The relational model is the one that drives our world of databases! The
simplicity of the relational model is obvious compared to the complexity of the object-
oriented model. Consequently, the many attempts to convert relational databases to the
object-oriented model were unsuccessful. Trying to adapt the object-oriented model
and its associated style of programming to the database was one of the reasons for many
performance issues in databases in the past!

Apart from the object-oriented paradigm, there is another model that stays closer
to the relational model and database programming: the structured programming
model. Students learn both paradigms and try to understand both models. Later, they
decide, depending on the situation and their projects, which model to choose and
what associated style of development to adopt. When I say “decide,” I don’t mean to
say they explicitly adopt one style or another. The process of adopting a certain style of
programming is a somewhat unconscious process. People generally do not realize this.

In IT universities, while learning structured programming students become aware of
basic concepts such as variables, structures, arrays, if-else structures, and while loops.
They learn how to build a function that returns a void “value.” They learn how to create
a procedure in certain languages. They become aware of the more modern and complex
concepts of class and object, and they learn about data structures, fields, and methods.

Software applications are built following the principles of object-oriented
programming or the principles of structured programming. I believe we can consequently
accept as programming styles those styles of programming that are in conformity with the
principles and models described above, like object-oriented programming or the simpler
model of structured programming.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 * THE CONCEPT OF STYLE

To continue the discussion from another angle, one common characteristic of a
good programmer is generality. A good programmer is the one who always tries to be as
general as possible in order to handle many situations.

Considering that object-oriented model is the most general and complete
programming paradigm, this model can be used as a baseline for any programming
activity. Moreover, the style of development that every programmer has is in concordance
with the preferred model in most of the cases.

This is generally true but, like any rule and principle, there are exceptions. The database
and the relational model are too simple; they're just not compatible with object-oriented
programming.

An Alternate Model?

There are situations when object-oriented and structured programming are not convenient.
There are certain types of projects in which neither of these two styles are required. Rather,
there are situations where these styles should be adjusted to accommodate new features.

Itis not hard to guess what kind of scenario I have in mind. What happens if you are
developing in a database? Moreover, what should you do if you are instructed to write
code in a relational database? What styles of development are the most suitable ones for
working within a relational database? These questions drive the content of this book.
These are the questions I will answer.

Alarge part of the businesses that we model (production, sales, supply chain
planning or inventory, flight reservation, and others) are implemented in relational
databases. Apart from the variety of OLTP systems, there are more and more historical
databases such as data warehouses used for analysis and prediction. The associated suite
of software applications are built mostly for this data stored in our relational databases.
The database is a critical component of the many applications and huge efforts are
oriented to these databases.

The two main goals to be achieved are trivial. The databases should have a correct
design so the data is stored fairly, and the end users should be able to see the reality of
their business. The logic in the databases and in the associated applications should be
consistent and accurate so that the performance is acceptable. This mainly means that
the response timings should be good.

Considering the importance of the database component, the use of a certain style of
development should not be done automatically. Let’s consider an example scenario.

Can One Model Fit All?

John Doe is a C# developer. He has spent many years writing C# code and now he needs
to build some logic in an Oracle database. He could write his code in a familiar fashion.
The object-oriented model is not suitable for the database, so he will use a mixture of
structure programming and object-oriented programming, as much as he possibly can.
He can’t use classes but he can use records or types if he is using PL SQL, etc.

In my opinion, this is one of the biggest issues for many application developers
who need to write logic at the database level. They adopt an inappropriate style of
development in most cases because they are accustomed to a certain style, to the typical

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 " THE CONCEPT OF STYLE

style. They don’t analyze the situation and they aren’t aware of the different models. They
don’t realize the necessity of changing something in the way they write their code when
they handle the data.

Being a programmer is a vague definition today. People specialize in one language
or tool, in one kind of business, in one type of software. There is a large variety of projects
and it is difficult to ask someone to know everything.

Starting with Table Design

I know that this section may be seen as inappropriate or too basic by some of my readers.
Theoretically, everyone knows what a table is, everyone knows what a column is, and
everyone should know what a constraint is! Still, considering the large audience of this
book, I'would like to describe some of the basic considerations regarding table design.
Feel free to skip this section or read it quickly.

As mentioned, I am discussing how people should write their code inside a relational
database. Imagine that you are part of a team of programmers starting development. You
are already familiar with the two models, the object-oriented model and the structured
model, and you know the SQL language. The relational database can be anything. It can
be Oracle, SQL Server, DB2, or PostgreSQL.

I think that database development starts with the design. This is why I included this
section, because this is the starting point in your development activity. So let’s review
some basics.

There is a list of object types (nothing to do with object-oriented programming) in
any database, and among various classifications of these types, one is the most important.
We can classify objects as base objects and procedural objects. The developer is
obviously involved mainly in the set of procedural objects. However, despite any
appearances, development actually starts from the design of the base objects. To be more
specific, development starts from the table design. A good developer should know this
and not undermine its importance.

The Table as an Entity

The database is firstly the sum of its tables, and the table is the center of the universe

in the universe of databases. I am referring to relational databases. Efficient database
development means, firstly, the proper design of the tables. The table design starts from
the business, like anything else in software development. The table is the mirror of the
business, in the sense that the useful business information is stored in the tables.

The database developer needs to be aware of the meanings of the tables. The table
design can be implemented by specialized architects, by business analysts, or by developers,
but the developers need to have a good understanding of it. The set of procedural code they
will write has one single purpose: to get everything from those tables.

What does “the table design” mean? This is an elementary question. The table is
a combination of columns and rows, like an Excel file. There are two ways of looking
at a table: the design view and the execution view. In the design view, you can see the
definition of the table and the columns. In the execution view, you can see the data, you
can see the rows, and you can analyze and understand the data.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 * THE CONCEPT OF STYLE

Let’s talk about the design view, the table definition. This simply means the
set of columns that make up the table; the columns in the table correspond to the
characteristics of that something that needs to be defined.

The Table As A Sum of Columns

Each column should have a name, unique for a specific table. The name cannot exceed a
certain length, according to the database system. The column should have a certain data
type, from the available list of data types for each database system. The most important
data types are string, numeric, and data, with variations and subtypes. The column can be
a business column, with a clear business meaning, like the first name of the student. The
column can be a technical or artificial column, used for implementing the consistency
of data, like an identifier, such as a student id. This column has no meaning by itself
and the end user will not understand anything from it. However, these columns are very
important for the developers and they manipulate these artificial columns with priority.
The table designers define the columns. They specify the relevant names and they
associate the correct data types according to the business requirements. The first stage
of development, the table design, ends with the layer of constraints, a critical aspect
of the design but also part of the first layer of database development. The designers,
who sometimes are the developers, should be able to use this facility and define all the
constraints correctly.

Database Constraints

The following are the most common types of constraints. Various database systems may
have them all or not.

e The first type of constraint is the so-called NOT NULL. A column
can have such importance that should always be filled with
something when data is added into the table. For example, the
name of a student is essential. What is the relevance of a student
if we do not know the name! This column will be defined as
mandatory. This means that whenever you add a new student, the
name should be specified; otherwise an error will be raised by the
system and the student cannot be added. Adding the NOT NULL
constraint whenever possible is a very good practice. However,
having fewer null values is better for the development because
many problems are caused by the null values in logic!

e Maybe the most important type of constraint is the primary key.
One of the principles of a relational database is the fact that you
identify one row in a table. The identification should be unique.
Normally, good design means not accepting tables without a
primary key. Every table should have a primary key, at least in
anormalized database. The developer should always be aware
of the primary keys and will manipulate them later during
her development activity. There is one primary key per table.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1

10

THE CONCEPT OF STYLE

The primary key can be an artificial column or not, but I
recommend the use of artificial columns whenever possible.

This kind of column has no meaning apart from its role, which

in this case is to identify one row in a table. Still, the primary

key constraint can be defined on a business column, like social
security number, but it is not a common practice. The primary
key can also be defined for a combination of columns. If you want
to define the constraint for a pair of columns, the combination of
columns should be unique.

A similar type of constraint is the so-called unique constraint.
This constraint is similar to the primary key, in the sense of the
uniqueness of the column, or pair of columns. However, there

is a difference in the meaning. The purpose of the primary key

is to identify a row in a table. The purpose is highly artificial. By
contrast, the unique constraint is generally a business constraint,
specifying that a certain column should be unique due to the
business requirements. For example, a social security number

is not the perfect column for a primary key, although you can
use it if you really want to. However, it is a perfect column for a
unique constraint. Compared to a primary key, which is one per
table, many unique constraints per table are generally accepted.
The unique constraint can also be defined for a combination of
columns, which means that a combination of columns should
be unique. The perfect combination, in my opinion, is to have an
artificial primary key and a business unique key, if it exists.

A more complex type of constraint is the check constraint. This
is a simple formula that should be applied to one column in the
table and it implements simple rules. The most common one

is the affiliation to a list of values, like gender, that can be either
Male or Female. Generally, but not always, a check constraint can
be combined with a NOT NULL constraint. Combining check
and NOT NULL is very important because doing so covers all
situations for that column and leaves nothing out. Although the
table stage is when you prepare for development, it’s a good
idea to have the logic in your mind, the set of procedures and
functions that will follow.

The foreign key constraint allows you be sure that when

you separate distinct pieces of information, they will remain
consistent. Normally, every table has a primary key, so it is
uniquely identified by that primary key. Every table should store
the distinct type of information in a transactional and normalized
system. The tables are related by foreign keys and are the base

for most of the joins in the logic. Understanding and properly
defining foreign keys is a critical step and the set of foreign

keys is the key to understanding the joins that are to be found
everywhere in the logic that will follow.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 * THE CONCEPT OF STYLE

e The last type of constraint is the default constraint. This is not
seen as a constraint by all systems. It is not actually a constraint
because it does not restrict the column in any way. This is just a
default value that is added in the absence of an explicit value. For
example, most of the students in university in Paris are from Paris;
let’s say 80%. In this case, whenever adding a new student, based
on the probability of that student being from Paris, the locality
can be skipped at insert time and the default value, Paris, can be
added automatically.

This set of constraints is the first layer of consistency of the data within the database.
A programmer who is working within the database needs to be aware of this layer. This is
not part of the logic itself, our topic of discussion, but it can be considered as such.

For example, the gender is checked by the values Male and Female. This can be done
in a stored procedure without any problems but why would you do it? The programmer
can have an error handling procedure, which catches the error identifier and the error
message, detects the name of the constraint that was violated, identifies the table and
column, and raises an intelligible message. However, the rule itself is checked by the
database layer, the first layer of constraints.

The programmers write the logic but they need to be aware that this already started
in the layer of table design and constraints. The logic is generally for the data, and the
data is defined in tables, and the developers will continuously manipulate these tables.
The potential data should be carefully analyzed; the business should be explained by
those with deep knowledge of the data. Based on this information, when designing the
tables, the programmer will start the development process by implementing a correct
table design including the layer of constraints.

One important matter about the constraints is their names. It is a very good practice
to give explicit names that are relevant in terms of business. Don’t forget that the
constraint names are visible in error messages. When you see the message, if the name is
explicit and relevant, you will understand right away what it is about and you can quickly
identify the starting point for the investigation. Also, you can easily find the objects in the
metadata associated with every database: this is also an important matter.

What Developers Must Know

Now let’s come back to the application developers who are thrown into the middle of a
database! What if these application developers are not familiar with the database and they
don’t know too much about tables and columns? Although not very common, it could
happen. They know what a variable is; they know what a data type is; they know to associate
a data type with a variable; they know to specify a name to the variable; and they know that
the name cannot exceed a certain length. They are also familiar with the Excel file! They can
easily translate everything and have a basic understanding; they have a starting point.

So, what they need to know first when dealing with the database development is not
the logic itself; they already know the principles of structured programming so they have
a good background. They firstly need to become familiar with the basic objects, with the
tables. The table is the object type that will be accessed in the logic almost everywhere.

11

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 " THE CONCEPT OF STYLE

See Listing 1-1. You will create a table and you will add a variety of constraints to
enforce the rules described earlier for the columns.

Listing 1-1. Design of a Table

CREATE TABLE Students
(
Student_Id INT NOT NULL,
Student_Name VARCHAR (30) NOT NULL,
SSN VARCHAR (30) NOT NULL,
Locality Id INT,
Birth _Date DATE,
Gender VARCHAR (10) NOT NULL
);
ALTER TABLE Students ADD CONSTRAINT PK Students Student Id
PRIMARY KEY (Student Id);
ALTER TABLE Students ADD CONSTRAINT UQ Students_ SSN
UNIQUE (Student Id);
ALTER TABLE Students ADD CONSTRAINT CK_Students_Gender
CHECK (Gender IN ('Male', 'Female'));
ALTER TABLE Students ADD CONSTRAINT FK Students Localities
FOREIGN KEY (Locality Id)REFERENCES Localities (Locality Id);

Listing 1-1 illustrates the above considerations. You can see the primary key, an
artificial column named Student_Id with no business meaning and with the simple goal
of identifying one row in the table, the uniquely identified student. In this way, you can
be sure that you can read and write a certain student, without any doubts. You can also
see the column Student_Name, a descriptive field but mandatory, a column with a clear
business meaning. Let’s look at the column SSN; the social security number is a business
column that holds the attribute of uniqueness. This is the business key of the table and
a unique constraint was defined for this column. The column Gender is a column with a
very low selectivity (only two possible values: Male and Female). A check constraint was
applied to the column so you know that no other value can be specified for this column.
The locality is referenced by the foreign key constraint. The tables are linked by relations
and these relations are implemented and checked in most cases by the mechanism of
foreign keys. Assume that you already built another table with the localities; another
primary key that is referenced in the students table will identify one locality.

The table design, without being pure development of any type, can be considered
as such for someone working in the database. A developer who is not aware of this can’t
develop properly in any database.

Let’s Begin Coding

Listing 1-1 is extremely simple. These basic considerations are very familiar to most
programmers that work with data. The goal of this book is not to describe SQL but to
promote a development style. Still, an introduction to relational databases and the SQL
language is required.

12

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 * THE CONCEPT OF STYLE

I started with the table definition and I illustrated the most common set of
constraints attached to the tables. I illustrated a set of data definition language.

In the relational database, there are various classifications. As you saw eatrlier, there
are base objects and procedural objects. The table is the base object by definition, the
most important one. In the relational database, everything is for, against, and with the
tables. This is why a programmer should firstly understand this simple object. You are in
the relational database and you handle tables! You look into the relational database: you
are looking at the tables! It is much simpler than what you already know; all you need is to
be open and try a paradigm shift.

The first task for the programmer is to understand the table. Rows and columns; it’s
too simple! Surprisingly, sometimes even simplicity is a problem. Instead of experiencing
satisfaction, some developers complain about the simplicity of the model.

Someone might say that all these considerations I've talked about have nothing to do
with development; they are work for a DBA. I disagree completely. I think that a database
developer should understand the table design better than the DBA! The DBA’s generally
do not care too much about meanings. They are administrators; they have a very
important role. However, the DBA’s do not know the business well because they are not
experts of that type. The database developers know it much better. Some books say that
the DBA creates the tables. Actually, the table creation is part of the database developer’s
responsibilities. The DBA builds the appropriate scripts for the production environment,
but the tables were created by the developer in the development environment a long time
ago! The DBAs are aware of the table design because they manage the system, especially
production. Still, the true creators of the tables are the database developers because they
know the meanings, they build the logic, and they know the purpose of each column
because they will manipulate them in the logic later during the development process.

The database developer is the one that handles the logic within the database. In
many applications, the complexity of the logic within the database is extremely high. This
complexity can be handled in many ways. Having application developers working in an
inappropriate style in the database will harm the database infinitely even more than a
lack of indexes, for example. The application developer should understand the principles
of database development when writing code in the database.

Revisiting the Example

Let’s start the database development; let’s start writing code into the database. For that, we’ll
examine the responsibilities of a database developer. The following are some examples:

e The programmer builds the logic that allows data access.

e The programmer builds the logic that allows end users to read the
data and to write the data.

e The programmer may build the mechanisms that transfer the
data between various databases.

e The programmer may build, for example, an ETL, a replication
system, or a data migration system. In each case, they are
responsible for the data transfer between various systems.

13

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 " THE CONCEPT OF STYLE

These are just some examples of tasks a programmer may have. There are various
situations and I will analyze some of them later. The programmer can be a database
developer or an application developer who is doing database development along with
application development.

The programmers should be aware of the tables. They can design them or not, but
they definitely use them all the time so they need to know them very well. Regarding the
set of constraints like primary key, check, NOT NULL, unique and foreign keys, a good
and fair implementation is a key to successful development. More than that, a correct
design of the constraints is part of the primary development.

Everything starts with the table design. Let’s see one example of good design wrongly
implemented. I will show you how a good table design may lead to a nightmare in future
development if it is not properly understood. Let’s say you have an important entity in
an application, like an invoice. You have an invoice number and an invoice identifier,
an artificial primary key. This is the header. In the invoice detail, you have a combined
primary key between the invoice identifier from the header and a current number. See the
design in Listing 1-2.

Listing 1-2. Design Is Just the First Step

CREATE TABLE Invoices
(

Invoice_Id INT NOT NULL,

Supplier Id INT NOT NULL,

Invoice Date DATE NOT NULL,

CONSTRAINT PK Invoices Invoice Id
PRIMARY KEY (Invoice Id)
)s
ALTER TABLE Invoices ADD CONSTRAINT FK Invoices_Suppliers
FOREIGN KEY (Supplier Id) REFERENCES Suppliers (Supplier Id);
CREATE TABLE Invoices Details
(

Invoice_Id INT NOT NULL,

Current Number INT NOT NULL,

Quantity INT NOT NULL,

Currency VARCHAR (30) NOT NULL,

CONSTRAINT PK_Invoices_Details
PRIMARY KEY (Invoice Id, Current Number),

CONSTRAINT FK Invoices Invoices Details
FOREIGN KEY (Invoice Id)
REFERENCES Invoices (Invoice Id)

)

Good Design May Be Wrongly Implemented

Listing 1-2 is an example of a good design. Still, if implemented incorrectly, it may have
bad consequences. Imagine that the column Current_Number is a volatile column; every
time new details are added to the invoice, the values are recreated based on certain

14

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 * THE CONCEPT OF STYLE

criteria like a true current number. For example, let’s assume that the details are shown
and the current number is ordered by quantity. In this case, the first detail today will
become the third one tomorrow! Imagine that the details need to be updated. Very often,
an update is done based on the primary key. In the given conditions, this is impossible.
Another field needs to be added to satisfy the condition of uniqueness. This is true if the
mechanism of the current number cannot be changed. Alternatively, the current number
will not be recreated but kept with every change in the invoice.

It is critical for the primary key to be set correctly because very often this is the
criteria for an update. If you want to update anything, you need to be able to identify
it first. The primary key should not just be unique but also stable. The stability needs
to be combined with uniqueness for the primary key to indeed be the criteria for row
identification and, consequently, for an update. Otherwise, you need to use something
else, maybe a business unique constraint, for the update.

Imagine you have to service a part of an invoice with the current number 12. The
invoice id is 100. Therefore, the pair 100, 12 identifies this invoice detail. If you want to
update something in this detail, first you query the detail based on the pair 100 and 12,
and then you update. If the current number is volatile, tomorrow it will become 20. The
pair will become 100, 20 instead of 100 and 12. Trying to update the pair 100 and 12 will
update another detail. Therefore, this is a good design but it hasn’t been correctly
implemented by the application developer. The primary key should be unique and
mandatory. More than that, if the primary key is the criteria for update, it needs to be stable.

Stability is another component of a primary key and this is something that the
developer needs to be aware of. Most of the developer’s work is on these tables, trying
to populate them with data. This is the reason why understanding the tables and the
associated constraints is critical.

Now you can see how the software programmer is already involved in the logic even
before starting it. Later the developers will receive some tasks to update the details of the
invoice. They will need to make a huge effort because someone did not understand the
table design. The combination of the invoice number and the current number is unique.
This pair will identify one row in a table. Still, the primary key is not stable because
the current number is volatile. The primary key is not persistent. The current number
changes all the time after the table is updated, and the developers are forced to find other
ways to identify the rows. They need to define and populate another artificial column
to solve the problem. They should add a unique business constraint, but that one is still
artificial. If they were involved in the table design from the beginning and possessed the
proper knowledge, they could have avoided all of these issues.

This is why I don’t agree that the DBA is responsible for the design of the base objects
like tables. The DBA is responsible for the implementation in production (eventually
adding partitions and indexes, and using parallelism) but the design itself is the
responsibility of the database developer.

Are You Ready for SQL?

Ijust clarified the concept of table as the most important one for a database programmer
or an application programmer dealing with data. The tables are related to each other by
logical relations enforced by the first layer of constraints.

15

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 " THE CONCEPT OF STYLE

You have a database; you have a variety of tables. You want to access these tables,
to populate and read the contents of the tables. What are you using? You may be a true
database developer, or you may be a Java or C developer. Perhaps you are used to dealing
with systems in the classic way and you need to handle data in a relational database. You
can use any database system like Oracle, SQL Server, MySQL, or PostgreSQL. Maybe you
are in the middle of a specialized data warehouse that is using Teradata and you need to
work in an ETL interface system. Well, there’s good news. There is a standard, as you know.

SQL is the standard and most relational database systems use it. Yes, this standard
is implemented differently in different systems, and there are differences between
syntaxes, but the differences are minor. Dealing with one database system and switching
into another database system is relatively easy. As you know, every database system has
its own programming language, which is an extension of SQL. Oracle has the PL SQL
language; SQL Server uses Transact SQL language and others. However, the SQL is almost
the same. All of the software suppliers realize the advantages of having a standard and
they adapted the syntaxes to be compliant with it.

This is one reason to why being a database developer means first being a SQL
developer. The existence of the standard makes it easy for database developers to switch
from one database system to another. You will see more on that soon.

SQL is one of the most popular languages nowadays after so many years of usage.
Still, the number of true and good SQL developers is not very high.

There are PL SQL developers. There are people who say that they work exclusively in
Oracle database as developers. Alternatively, there are exclusive Transact SQL developers.
This is absurd, in my opinion. I believe that they are mainly SQL developers. A true
database developer is mostly a SQL developer. Most of her work is pure SQL. Learning
new syntaxes to create a stored procedure in Oracle or SQL Server is not a big deal!

The transition from one system to another is very simple. The principles of structured
programming apply to all of these dedicated database-programming languages.

Now it is time to see what SQL actually is. The review will be basic because I consider
this quite common and the topic of the book is not to describe the SQL language.

16

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2

SQL: Beauty and the Beast

In the first chapter, I analyzed the table design, including the layer of constraints, and
I concluded that this is actually the beginning of the development process. Database
development includes database design and we cannot analyze one without the other.

Let’s continue with the next step!

When we speak about development, we should speak about a language. Any classic
development activity requires a language. Do we have a language? The answer is obvious,
yes, and that language has been available for many years; it is the universal language
for relational databases. The surprise is the fact that this language is not a typical
programming language. This language is a query language. It is the SQL language, often
knows as the popular Structured Query Language.

This may be shocking to some people. The topic of this book is the necessity of
a certain style of programming inside a database. So we are thinking, obviously, of
a classic programming language. It comes as a big surprise that we are discussing
something else! We are talking about a query language and not about a classic
programming language! This may seems unusual to anyone not familiar with databases.

Can a Query Language Be So Important?

In a data-oriented software application there are many people involved in the generic
activity of query. Customer support people, business analysts, consultants, testers, and
QA analysts all query the data regularly to get whatever they need. They are not doing any
programming; they are simply querying. Almost everyone is querying the data in a certain
way, and almost all of them use SQL for that purpose. SQL is not a dedicated language

for programmers. SQL is a language for every category of people who, for some reason or
another, need access to data. There are so many non-programmers working at software
companies with a good level of SQL! This shows once more that SQL is something other
than a classic programming language; it is very close to a natural language.

Databases Require a Language

A database requires a query language in order to access the data inside it. This applies
to any kind of database. As mentioned, this query language is not necessarily a
programming language in the classic sense. This query language can be embedded in

© Stefan Ardeleanu 2016 17
S. Ardeleanu, Relational Database Programming, DOI 10.1007/978-1-4842-2080-1_2

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 * SQL: BEAUTY AND THE BEAST

a programming language and used by database programmers, or it can be used for the
simple purpose of data access. A good programmer working inside a database should
have at least an acceptable knowledge of the query language.

A parallel with old times comes to my mind. At one time, Latin was the only
academic language and all the others were considered barbarian languages. All books
were written in Latin for many centuries. Today, some programmers consider a classic
programming language to be like Latin and they consider SQL, for example, to be a
barbarian language. They say, for example, that since SQL is not a dedicated language
according to their criteria of evaluation and according to their experience in all sort
of standard classic programming languages like Java, C# or anything else, it must be a
primitive and barbarian language. I feel that this is an arrogant and irrational vision.

I strongly disagree with it, as we all should.

SQL Is a Useful Language

The software development world is a very practical world. The quality of a language
consists firstly in its utility. More than that, the utility should be associated with
simplicity. SQL is a very useful language, and the fact that it is used by so many categories
of professionals, not just by programmers, is an advantage, not a disadvantage. The fact
that non-programmers can learn it proves that SQL is a good language, and it may be
used as a query language by almost everyone in the enterprise.

Moreover, programmers, even specialized database developers and other kinds of
developers doing work inside a database, use SQL as part of a programming language in
their activity of database development.

Programmers Must Adapt

When dealing with data in a relational format, there are some basic things to do. First, you
need to understand the concept of a table, a row, and a column. You need to understand
the table design and its constraints. Second, you need to understand and use the
associated query language specific to data access in that format.

This is the first paradox for application developers who wants to do database work.
They know classic programming and now they need to become familiar with another
type of language, one that is much simpler than what they already know, and, more
importantly, a different language than what they are accustomed to: a query language.
This can be confusing, at least in the beginning.

The application developer needs to understand that a query language is required
due to the nature of data. This is a very basic and trivial statement. The data exists to
be read and written. We need a way to access the data within our databases. This is the
definition of a query language; it allows data access, read and write. More than that, it
allows metadata access, both read and write.

This is one difference between the two levels: user interface level versus the database
level. The goal in the database is specific and particular: data and metadata access. From
the beginning, the expectations are clear. There are the expectations of a reader, and
the expectations of a writer, all in a certain format. At the user interface level, we can
theoretically and potentially expect anything. At the database layer, we have one main
expectation and we want only one thing. I am sure you know very well what that is!

18

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 * SQL: BEAUTY AND THE BEAST

A Different Style Is Needed

The presence of a query language is one indication of the necessity for a certain style distinct
from the one used at the user interface level, where the style is driven mainly by the general
models mentioned in Chapter 1. In the database, the required style should be conform to
the particular expectations and goals described above. The style of development should be
somehow associated with the goal: see the data, get the data, write the data, change the data,
delete the data, and move the data. Since the goal is straightforward and simple, so the style
should be. There is no need for the complexity you see at the user interface level.

The fact that the query language is a natural language and the basics can be learned
in one or two weeks is terrific. From what I know about programming, simple things
are better things. To me, the simplicity and naturalness of the query language is a big
advantage for everyone, including application developers who deal with the database,
and students learning how to write software code.

Nevertheless, some application developers prefer to make things more complicated
because they believe they have some artistic visions in terms of programming. I agree
with the idea that a programmer is an artist, but always a practical one. The programmer
has some clear goals and these goals are driven by the business. The programmer is not
the absolute leader of their work, as the artist is.

So the first thing application developers should do, if they are really involved in
database programming, is to forget for a while about their classic programming background
and dedicate some time to understanding a simple but vital language for their work. They
need to spend some time learning SQL. They also need to comprehend the importance
of a query language in their programming activity and they need to understand that a
query language is something vital for their software development activity. They should not
complain about the lack of aesthetics, for example, when speaking about SQL. You cannot
compare apples and pears.

Even in the absence of SQL and not referring explicitly to the relational database,
but speaking about any database, it comes down to basics. The data is for being queried,
and this activity is critical when implementing the logic inside the database. Therefore,
the query language (because there should be a query language, either SQL or something
else) is critical for the development process. Even theoretically, we may say that the query
language should be integrated in the development process and the style of development
is influenced by the query language.

Understanding What SQL Is and Is Not

Considering the extended audience of this book, including students and application
programmers with limited experience in the field of databases, let’s switch from the
complex considerations described above to the common description of the SQL language
that will follow in the next pages.

SQL Is Not Classical Programming

Let’s analyze the query language. The relational model of data is trivial: tables, rows,
and columns. For such a basic model, there is a trivial language. This language is a
dedicated, specific language for accessing rows and columns in almost any possible way.

19

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-2080-1_1
http://www.it-ebooks.info/

CHAPTER 2 * SQL: BEAUTY AND THE BEAST

SQL is a query language and a standard that is followed closely by almost all of the
vendors that build database systems.

As a query language, SQL is a set of instructions with a clear purpose: to allow
data and metadata access. SQL is English-like, and the statements are very natural
and intuitive. The keywords are so common that you don’t need to think too much to
understand how to use them.

Learning SQL is easy. Still, to become a good SQL professional, you need to spend
some years on the subject.

As application developers, we always need to be aware that SQL is different in its
nature. I have had discussions with Java, C#, and web programmers and they have told
me that SQL should not be integrated in their philosophy of programming. They don’t
consider the SQL language as programming at all. Actually, they are right. SQL is indeed
very different. More than that, SQL is not a classic programming language, according to
their standards. It is true that you cannot compare SQL to C# or Java. SQL has a different
nature and it is obviously something else. SQL is firstly a query language and any
comparison is completely inappropriate. SQL by itself is a separate language, apart from
any other classic programming languages.

SQL Is About Querying

Now, since I've clarified what SQL is not (an unusual start for a definition but
recommended here due to some basic misunderstandings) let’s see what SQL is. I will
start with the three words: structured query language:

1. SQLis alanguage. Surprisingly or not, SQL is apparently not
a strong formalized language because it is more like a natural
language. The main keywords it uses are common words, like
select, insert, and delete. Being a natural language is one major
reason why SQL is available to a large variety of people, not just
programmers and technical people. Many non-programmers
use it at various levels depending on their skill and interest.

2. SQLis a query language as part of a classic programming
language like PL SQL, for example. The purpose of SQL is to
query the data and metadata. By querying the data, I mean
both read and write processes.

3. SQLis a structured language. This means that SQL is
organized in a way that reminds us of one of the models,
the structured model of programming. The principles of
structured programming are satisfied in this query language
to a certain extent, and this is one reason why some
programmers say that the use of SQL is based on the use of
structured programming. To some extent, this is true. I will
explain more about this later. There are differences and they
come from the nature of SQL, from the nature of the data.

20

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 * SQL: BEAUTY AND THE BEAST

A query language has a different and particular scope. Querying something is a
particular task and, considering this limited goal, we can understand the essence of
SQL language.

Components of the SQL Language

When we analyze a data-oriented software application, such as an inventory system or a
software application for a hospital or university, we see similar components. The purpose
is to populate the database via a user interface, either web-based or desktop-based. It
consists of a user interface and the corresponding database in the back end. In most
cases, one of the main goals is to populate the database with information and to access
this information. The end users access the data in the database via the user interface.
These goals, of reading and writing data in the database, are achieved by the use of SQL.
By data, I obviously mean business data, like invoices, inventory, or patient information.

As you know, the data is written in tables. Apart from this well-known task of
reading and writing the data, SQL is responsible for another task. The data within the
database can be classified in two categories. A database stores data and metadata. For
example, whenever a table is created, metadata information is written in the database
automatically. Any database system has a set of tables, called system tables or data
dictionary, and these contains information about the business objects. When a table
is created, the information that defines the table, like the name of the table, the names
of the columns, the data types for the columns, the constraint information, and all the
design characteristics of the table, is written in the set of system tables.

This type of information is named metadata information, which means data about
data. Therefore, when writing with SQL in a relational database, we understand either
writing data or writing metadata, and similarly when reading, we can read any of two
types of data. These considerations are useful and allow me to continue to show the most
important characteristics of SQL, the bread of any database developer and the bread of
any application developer that writes code in the relational database.

There are several sections of statements, all of them described in any SQL course.
Learning SQL means learning and understanding these statements. This is very easy;
everyone can learn them. Then the hard part follows: you need to start the process of
understanding the data. My tip to you: start becoming friends with the data. This task may
take years!

The SQL language is composed mainly of four sections of instructions, called
sublanguages or subsets of the SQL language. The sections are the followings:

1. The first sublanguage is the data manipulation language
(DML). This subsection of SQL is the section responsible
for data access, in both ways as active and passive, by read
and write. Any instruction that relates to reading the data or
writing the data is part of DML.

2. The second sublanguage is the data definition language
(DDL). This is the section of SQL responsible for metadata
access. Creating new objects, like tables but also any type
of object in a database, is an action that generates metadata
in the system. When create a table or a view, many rows are
added in the metadata responsible for tables and views.

21

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 * SQL: BEAUTY AND THE BEAST

3. An additional sublanguage is the data control language (DCL).
This section of the language handles the security within the
database like assigning privileges, for example. Various objects
can be accessible to users and privileges are given to them.
The most common instructions are grant and revoke.

4. The last of the main sections is the transaction control
language (TCL). This section allows us to control the
transactions, and this is a critical section for a developer. The
transaction is a critical concept and the developer should have
a perfect understanding of the transaction. At the database
level, inside the database logic, one of the most difficult tasks
is having consistent control of transactions. The commit and
rollback statements are critical in any database logic.

All of these sections contain specific statements. This limited set of statements is
almost everything you need to know; you can say that this is the SQL language! The first
section is the most important one for a developer. Most of the database development
code is composed from DML statements; maybe 90% of the code written by a
programmer within the database is composed of these instructions.

Queries and Clauses

If you pick any SQL course and divide it in half, you can see that the first part is dedicated to
this type of statement. The QUERY is a statement dedicated to reading data (or metadata)
of any kind. QUERY in this case is the passive process of reading. This is the most important
thing for anyone working at the database level. The purpose of reading is the most
elementary and critical goal for anyone dealing with data. The simplicity and the difficulty
of SQL is the QUERY; being able to select the data properly is an essential skill for a good
database professional, especially a database developer or data analyst.

Most SQL statements can be divided into a subset of phrases called clauses. A clause
is a part of a SQL statement. A “select” statement contains several possible clauses.

1. The first clause is always the SELECT clause. In the select
clause of a query, you specify which columns or expressions
you want to visualize. An expression can be anything: any
combination of various columns and constants plus SQL
operators like addition and concatenation. The columns or
expressions are separated by a comma. This is always the first
clause in a query.

2. The second part of the statement is always the FROM clause.
In this clause, you specify the source(s) of data. You need to
mention the list of tables from where you will get the columns
and expressions in the select clause. The list of tables or views
should be valid objects in the database.

22

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 * SQL: BEAUTY AND THE BEAST

3. Nextis the WHERE clause. In this section, you specify
the criteria for the data and the conditions that need to
be satisfied. For example, if you want to see the students
from Paris, you add criteria for the locality to be Paris. The
conditions are separated by logical operators like conjunction
or disjunction. Be aware of the distinction between the SQL
logic and the classic logic. The SQL logic is a different type of
logic. In this logic, there is another choice apart from true and
false: null. Null means the lack of any value.

4. Ifthere are groupings, two additional clauses are required.
The first clause is GROUP BY. If the data needs to be grouped
by certain columns or expressions, you use this clause. For
example, if you want a list of teachers and the numbers of
courses taught by each teacher, you can group by the teacher
and count the courses.

5. Ifyou have another level of filtering, at the level of groups, a
new clause is required. This is the HAVING clause. This clause
allows you to filter at the level of groups. The HAVING clause
is correlated with the GROUP BY clause.

6. Ifthe data should be ordered, the ORDER BY clause is
required. This clause allows you to sort the data according to
the columns or expressions that you want to sort.

The queries (SQL SELECT statements) and their clauses are maybe the most
important ones for a developer dealing with database programming; they are the simplest
ones and the more complicated ones at the same time. Getting the data is simple enough,
theoretically, but it can become very complicated, which happens very often because the
business itself can be very complicated.

The first thing you need to know, when dealing with data, is how to query data properly.

Inserting, Updating, and Deleting

The rest of the DML contains the instructions for writing the data. There is one type
of instruction per possible write operation. The insert statement is for adding new
information, the update statement is for editing information, and the delete statement is
for deleting data in the database.

All these statements are well known, in theory and in practice. What is important is
that all of these statements are somehow related to the select statement, to the query.
In almost all cases, in order to be able to write something, you need to be able to read.

¢ You want to insert something. If you want to add some new
data manually, you should specify the values one by one for each
columny; this is relatively simple. However, if you want to add
some data into a destination from a source of data, you first need
to be able to identify the source of data. In addition, that source of
data can be a simple or a very complicated query. There are two

23

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 * SQL: BEAUTY AND THE BEAST

main types of insert statements. The INSERT VALUES statement,
which means manually, specifies the values to be added for each
column, and one value will be inserted at a time. This is very
straightforward. Then there it is the INSERT SELECT statement,
which means inserting the data into a destination from a source
of data. The source of data can be trivial or can be a complicated
query. The degree of complexity can vary from infinite simplicity
to infinite complexity. This is another example of how SQL can be
extremely simple and extremely complicated in various situations.

¢ You want to update something. Update statements can also be
very simple or very complicated. An UPDATE means changing
some values in some columns or rows according to the business
requirements. The update statement can be divided into two
phases. First, you need to execute a select statement and identify
the rows to be updated. Second, you need to identify the new
values because, in an update statement, you update certain rows
and you add new values for the columns you want to change. To
identify the new values, you can specify some manual values or
you can get the new values from subqueries. An update can occur
from several sources of data, and identifying these sources can be
trivial or difficult. An update can be extremely complicated; you
may spend hours until you get it right!

¢ Youwant to delete something. The DELETE statement can also
be elementary or complex. Compared to an update, things are
simpler because you have only one problem here: identifying
the rows to be deleted. You do not have any new values because
you are simply deleting some data. Still, identifying the rows
to be deleted can become a difficult task depending on the
requirements, or it can be a trivial matter.

To conclude, the general concept of querying data can mean either reading or
writing and reading data. Reading data means the effective query, the SELECT statement.
Writing data means one of the three actions, INSERT, UPDATE, or DELETE. These are
the main types of tasks for a database developer. This activity should be incorporated
into the programmer agenda and the programmer should adjust his style of development
according to the task.

What About Programming?

Until now, the discussion has been centered on the language as a query language. The
topic of this book is the style of a programmer, the way he should write software code.
Moreover, the discussion has been about SQL, mainly a query language! But what about
classes, objects, entities, arrays, and structures? I have not mentioned any of these
programming concepts!

As you know, most vendors developed their own true database programming
languages, apart from the query language. Oracle’s programming language is called

24

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 * SQL: BEAUTY AND THE BEAST

PL/SQL. Microsoft developed the Transact-SQL programming language for SQL Server.
IBM developed its own programming language for DB2 named SQL PL. In other words,
many vendors offer a private, proprietary programming language for their databases.

All of these languages are structured programming languages and they satisfy the
principles of structured programming. Any beginner studying PL/SQL or a similar offering
will learn, to a certain degree, similar things and features as in a typical, non-database-
oriented structured programming language. Any beginner will start with the basics. He will
learn what a variable is and how to use it, and he will learn about data types. He will study how
to use conditional statements, loops, 1f-else statements; he will learn to handle exceptions.

Avery important feature of a procedural language, specific to databases, is the
cursor. The cursor is a great feature because it allows us, in combination with loops, to
move inside a data set from one row to another to perform various manipulations. The
application developer is often happy to discover the cursor facility, and he learns how to
use this feature easily and right away. Unfortunately, this feature is used in excess and is a
reason for many performance issues in the databases.

Note You will see later how cursors used in excess can lead to many performance
problems.

Afterwards, the developers learn how to create procedural objects like functions
and procedures, and they see how a stored procedure is similar to a void function. The
programmers learn all these things; they can use their familiar programming language
and they are very happy!

DATABASE LOYALTY IS LOYALTY MISPLACED

| have met people who are devoted to specific database systems. These people
consider themselves programmers for that specific database only. For example, Joe
is a PL/SQL developer while Joanna is a Transact-SQL developer. Neither would ever
move to another database system under any circumstances! This is a bad decision,
in my opinion. Let’s see why.

The programming languages just mentioned are actually a mixture. PL SQL, for
example, is a language composed of two types of instructions: SQL statements
and procedural statements. All of these programming languages are a kind of
query-programming languages due to their mixed nature. In the database, in a
stored procedure or a function, you are always in the position to execute either a
SQL statement or a procedural statement. Whenever you want to query something,
mostly to read or write data, you use SQL. The database programming language is
an extension of the query language; it’s not like a classic programming language.
This is a big difference! The programmer needs to be capable of querying the data:
this is his first task. Anything else is secondary.

25

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 * SQL: BEAUTY AND THE BEAST

The Advantage of a Standard

Another advantage of SQL is the fact that it is a standard. This means that the set

of instructions is available in a very similar or even identical manner from one
programming language to another. Every database programming language uses SQL in its
own way. Still, most of the syntaxes are very close to the standard. For example, a select
statement (a query) is almost the same in Oracle and SQL Server and in other relational
databases systems. This also applies to update and insert statements. There are variations
and differences but it’s very easy to move and write from one programming language to
another. You don’t need to feel uncomfortable when switching.

Portability should not be a goal in itself. If I had to choose between portability
and performance, I would always choose performance. Sometimes performance
means writing SQL according to the specific syntax and not necessarily according to
the standard. For example, in SQL Server, the updates are particular and they cannot be
migrated to Oracle or others database systems even if it is pure SQL. However, it is not
very difficult to translate one SQL to another if the performance is better. If there is a
similar performance, portability is desired. Anyway, the existence of a standard assures
maximum portability by itself.

To conclude, do we have something like database programming? The answer is
definitely yes. However, the programming language means maybe 80% query language
and maybe 20% of the extension. A good database developer is a very good SQL developer,
or so they should be. The programming languages, the extensions, were made so that
developers could certain things that couldn’t be accomplished using basic SQL. The set of
procedural statements should be used when the problems cannot be solved with a simple
SQL statement. Database programming mostly means SQL development, because data
access is our goal when we are in the database. In addition, data access is SQL!

Programming Is a Practical Activity

Software development is a highly practical occupation. Most programmers are practical
people, not scientists. The most difficult part of their job is the struggle with one business
or another, trying to understand it.

IT universities should be aware of these realities. From what I know, there are serious
differences between education systems. Without judging any of these systems, I can
objectively say some words about some tendencies. In some places, the programming
courses are highly theoretical and thus too far away from the practical reality of software
development. Math is the foundation but this does not mean students need to go deeper
than necessary. I have been doing database programming for many years and the math
that I use is high school level.

Math is a world in itself. It is almost a perfect world and certainly a very beautiful
world. Programming is our practical world: our economy, our education, our sports, our
industry, our hobbies, everything.

A programmer needs to be able to understand different businesses and to adapt
his knowledge to them. He should be one of us, not a savant far away from our world.
The programmers need to be able to understand different businesses and to adapt their
knowledge to them. They should be one of us, not some sort of savants far away from
our world.

26

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 * SQL: BEAUTY AND THE BEAST

If you want to build an application for a game, you need to understand that game, you
need to understand the rules that the game needs to follow, and you need to play the game.
Programming is not science, programming is not math, and programming is not

differential equations! Programming is life, programming means the ability to live in

our world, and the ability to understand and implement one business or another. This

is actually the main reason why programmers are valuable people. The engineer learns
and implements all kinds of technologies technology, the doctor learns to cure and heal
others, and the taxi driver knows the roads like no one else. The programmer needs to be
able to understand each of these businesses and more, also needs to be aware of how to
implement any given business into a software application.

A programming language is not a difficult thing by itself. It is true that not anyone
can understand and write programs in a certain programming language; certain skills
are required. You need to have a logical mind; you must understand what an algorithm is
and how to implement it in a language. You need to have a solid math background, but it
is not necessary to be a mathematician. These skills are not as rare as many people might
think. Moreover, there is no reason to say that programming is a man’s occupation. Ladies
have the same skills as men and it is rather frustrating that such a small number of women
participate,comparing to that of men.

A large numbers of teenagers avoid moving into this area due to lack of self-confidence.
I have some good news for these people: programming is much easier than you think.
Just try it!

What is difficult in programming it is not the language itself and not the set of
theoretical knowledge that you learn in universities. The difficulty consists in the ability
to understand what is to be implemented, in the ability to live and model the life. Because
the businesses that are modelled by our applications are part of our society; they are parts
of our life. What is more complex in this world than us?

Is Database Programming Special?

Now, let’s move back to our goal: database development. The students, the young
programmers, the application developers with little background in database
development, all of these user groups should be able to understand and deal with data.

Data is everywhere, and programmers deal with it all the time. In most cases, the
data is relational. Despite appearances, the data requires a certain type of understanding
and, for that, a different kind of effort is required. Database development is that kind of
programming that deals with data in a relational format, which means rows and columns.
We need it, whether we like it or not, and we need to see if our styles are appropriate
for this purpose. When I say “our styles,” I am referring to the classic styles that we are
familiar with from the user interface level.

Most programmers follow the model of general programming that they learned in
college. However, the relational model and the database are different and particular and,
in many cases, a different style is required.

For example, let’s examine the reality of a factory. This reality consists of a sum of
processes that are handled in the factory, the multitude of documents that are used in
the factory, and the different sets of calculations that are done in the production business
inside the factory. We want to build a software application to reflect the reality of this
enterprise. For that, we may use different models.

27

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 * SQL: BEAUTY AND THE BEAST

No matter the model, relevant business data needs to be stored in a dedicated
space called the database. This business data can consist of a list of materials, with
the multitude of material attributes, like the type of products, different classifications,
the list of components or bills for materials for the finished products, the list of
accountancy documents, company documents, and others. Some of these documents
may be generated from others. Considering this example of production, it is clear that
the segment of data storage is one of the most critical, maybe the most important one.

There is the user interface and the database. The developers spend time in both
places. They can do their work in the same manner in both sections, at the user interface
and at the database level. Alternatively, they can do the work differently when they are
involved in the database layer and they can use a distinct style in concordance with the
nature of data. Both approaches are considered database programming, but I believe that
the second approach is fundamentally better.

I think that we should write in the database in a certain way. Moreover, the way
we should write couldn’t be derived directly from the style we use at the user interface
level and from the two classic models. The fact that this database way is particular and
is derived from the nature of data does not make any difference and is not a counter
argument. The main reason for this book is to illustrate this way and to promote it.

The SQL Shop Metaphor

I hope you will excuse the apparent deviation from the neutral style of this book. I invite
you to step into a world of metaphors and analogies. Imagine you fell asleep and you
found yourself transported into a fantasy shop. This is the SQL Shop.

Welcome to my shop! While shopping, I hope to demonstrate two dominant
keywords: simplicity and naturalness.

My shop is a chocolate shop. There are so many types of chocolate from different
countries. Please feel free to take a look. Read the names of the different types of
chocolate. Terrifc; you have selected different brands to read more about them. Oh, even
better; you have inserted them into your shopping cart.

Did you notice the use of the most important keywords in SQL: select and insert.
First, you need to have the possibility of select information before choosing something
to buy. You read the instructions on different products in the shop and you looked at the
design of the products. You analyzed the utility of each product, and you decided which
product fit your taste and budget. This is the select operation, or the read phase. No one is
able to write without being able to read first.

Next, you decided what to buy. You chose the selected products and inserted them
into your basket. The basket is filled with the inserted products. This inserted keyword
sounds familiar to some SQL Server developers. Is it similar to a temporary table attached
to any insert trigger? Isn’t it fascinating that we can talk about a simple situation like buying
candy and we can easily segue into discussing SQL? This is just one example of why SQL is
so valuable: due to the naturalness of the language. SQL is really a part of our life!

The database is like a shop. You can think of the data in a database as a list of
goods in a supermarket, or a list of books in a library. Whenever you enter a market or a
shop, you can read and understand the utility of the products, comparing benefits and
disadvantages. This is the select phase. This is the read section.

28

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 * SQL: BEAUTY AND THE BEAST

You can also fill your cart with some products. This is the insert phase. You insert
some chosen products into the basket. You can also choose, after reflecting and analyzing
your budget, to dismiss some products before you pay; in other words, you delete them
from your list of products. This delete keyword seems very familiar, doesn’t it? You can
also decide to replace an object with another similar object, requiring an update to your
shopping list.

Everything can change until the moment you arrive at the counter to pay. This
period of indecision can take some time, maybe even a day or two. What if you are called
away from the counter by an emergency right before you commit the transaction? The
store staff would have to rollback the items in the cart, restocking the shelves with your
unpurchased products.

Does this language sound technical? I don’t think so, do you? This is the beauty of SQL!

This shop is the database. The items are the rows in different tables, the tables may
be considered as the brands. The shopping period is a database transaction. During
this period, you have the freedom to add, remove, or change items in the basket. Like in
the database, you have the option to select, update, insert, or delete the rows. After the
payment, changes are not permitted to the basket, unless a new shopping session starts.
The transaction commit is the payment.

This analogy between a shop and a database, between the list of items in a basket
and the list of affected rows in a transaction, between the payment and the transaction
commit, shows the simplicity of the database model and the naturalness of SQL. You will
see more examples throughout this book.

An Example of Bad Practice

Now let’s consider a programming example. I was once on a contract where I needed to
build a data migration system between two sources of data. There was an existing system
and I was required to build a new data migration interface. I analyzed this migration
system and I tried to understand what was going on in it.

For example, there was a very simple step inside this migration system: some
configuration values were required in a certain table. One table was the target for this
step, and three or four columns needed to be updated with highly static values. This table
was configured once and these configuration values were to be used all over the place
in the corresponding application. These values were not to be changed afterwards. Let
me explain how this step was built. A stored procedure was written for this purpose; this
was normal because the configuration values were critical values so the step was very
distinct. Nevertheless, looking at the stored procedure, I was forced to spend some time
to understand the goal of this step.

What I found was unbelievable. Some structures were declared and used, with some
types; one cursor was used; and everything was so complicated! When I realized that the
actual goal of this step was simply to add three or four values in a table and add one row
with some configuration data, I started to laugh! I said to myself that this is not possible.
The programmer that wrote that code, a specific bit of PL/SQL code, was coming from
the user interface and completely ignores the fact that the environment of work was a
relational database! The same style and the same patterns as in Java or C++ or whatever
application language were used! I was amazed!

29

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 * SQL: BEAUTY AND THE BEAST

Once I realized that the goal of this particular step was actually to add one line in
atable, I simply rewrote the procedure completely and added an insert statement. The
entire data migration interface was written in this style, many structures and types, with
CuUrsors over cursors!

This data migration system is a very good example of what happens if a row-by-row
approach and a pure procedural style are used in a data migration application. The PL
SQL language was used like a typical and classic language. That programmer tried to
develop in a pure object-oriented style.

It was a disaster! First, the performance was at the minimum level. That software
application had a very poor performance, and the indexes and performance features
were useless due to the inappropriate style of programming. When I rebuilt the data
migration interface, everything was rewritten in pure SQL. I had maybe one or two
cursors in the entire data migration interface. There were no structures, no arrays and no
cursors: just pure SQL! After that, the performance of the new data migration utility was at
the maximum level. Even better, the data migration system was very simple for anyone to
understand. It made a huge difference!

Many data-oriented software applications are not correctly written. The performance
is the first thing that suffers, and the code is more complicated than it should be. When
you are in the database and when your task is to manipulate data, you need to think SQL;
you need to think in data sets. You need to try to understand the relational model and
appreciate the clarity of this model and the naturalness of SQL.

The database programming languages are just extensions of SQL. PL/SQL is a
programming language but is an extension for SQL. A good database programmer knows
that SQL is the first priority and the extension (the set of procedural statements) is more
like a backup solution for SQL. The philosophy is simple: You have a problem, so try to
solve it in SQL. If this is not possible, go to the extension and use the set of procedural
statements. Why use a cursor when you can solve your problem with a simple SQL
statement?

Let’s end this chapter with another shop analogy. Imagine that you want to buy 20
bottles of wine and 30 bottles of water. Try to imagine, for a moment, that you will fill the
basket 30 times for the wine and 20 times for the water. You will pay 50 times in total. How
long would that take? Far too long. A normal person will fill the basket once and will pay
for the set of 20 bottles of wine and the second set of 30 bottles of water. Any reasonable
person will try to fill just one basket; eventuall will try to limit it to two baskets. Anyway,
the latter approach will save a good deal of time.

Now imagine that you have an update statement and you will affect 20 products in
the update instruction. Many programmers would consider it normal to process the rows
one by one. Instead of thinking of this as a set of rows and trying to affect that set of rows
via a simple SQL statement, they start declaring structures, variables, and eventually try
to use complex objects only because they can’t or don’t want to think SQL!

30

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3

A Holistic Vision of the Data/

I will continue with the theoretical discussions about the two styles of development and
I will introduce you to the key concept behind one of the styles of development. This is
the concept that identifies one style against the other: the concept of the data set. I will
explain that the concept of style, despite its degree of subjectivity, is a notion that should
be analyzed by a variety of professionals in a variety of environments, starting with IT
universities and continuing with software companies.

I will explain how people need to think when following one approach or another,
by opposition, and to show the advantages of one approach over another. I will describe
some alternates paths to database development and delimit the set-based approach
somehow in the general picture.

I will explain that the role of the data set in the development activity in a relational
database is crucial for good performance in that database.

The Concept of the Data Set

The concept of a data set is related to the SQL language, which is mainly a query
language. The purpose of the language is straightforward: data access. Data in a relational
database means a mixture of rows and columns or expressions. In most cases, when
accessing data you are identifying a combination of rows and columns or expressions,
and this is the description of a data set.

The one constant when dealing with data and database programming is a set of
data. There is always a data set; there is always a combination of rows and columns
or expressions whenever you are dealing with data. All the mysteries and solutions of
database development rely on the proper treatment and fair recognition of the data set.

The Importance of the Data Set

Data sets can be taken from a variety of tables linked by joins. Data sets can be combined
by set operators, and data sets can be identified in a variety of ways that are not relevant
for the moment. The SQL developer is the magician who knows how to get the best from
the data set.

If there is one thing that defines the development process in a database (like the
class or an entity in object-oriented programming) it is the data set. Of course there are

© Stefan Ardeleanu 2016 31
S. Ardeleanu, Relational Database Programming, DOI 10.1007/978-1-4842-2080-1_3

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 " A HOLISTIC VISION OF THE DATA

other concepts and terms. I was once working with a team of Java developers on a project.
They were discussing entities and I was discussing tables! These are various perspectives
on the same thing, in one way or another. So, someone else might say that the table is the
main keyword to define databases.

Comparing the two, you can see that the table precedes the data set, because the
data set itself extracts everything from the table. My opinion is that, from the development
process, the data set is more granular. Whenever you have a relational database, you have
the table with rows and columns. This is a reality. You can develop in any way and handle
the data in the table in many ways. One of these paths is the set-based one. In choosing this
development approach, you choose the data set as the key to your development process.

SQL and the Data Set

Most of the practices that follow illustrate this major characteristic of database programming
and SQL. Database programming means firstly SQL development, and SQL is the bread and
the butter of any vendor programming language, be it PL/SQL or another variety.

The main activity in the database is the process of querying. You are querying the
data continuously because this is the essence of database programming. You always try
to get a combination of rows and columns or expressions taken from various tables; you
always try to get a set of data. This is the secret of SQL, and more than that, this is the
secret of database programming: try to think in sets of data and do not think atomically,
whenever possible.

Tip Do not try to divide a data set into smaller units unless you have an authentic
business reason to do so or a technical limitation that stops you from affecting the data set
as a whole.

Try to have the following vision of data: see the data as an integer and not as a sum
of decimals. If the data set corresponds to one row, this is a particular situation. Always
try to find the set of data; try to think in waves of data, like waves in the ocean. When you
see a wave coming from the sea, you never imagine any division; you just see the wave
and admire it! Looking closely you can divide the wave into smaller sections according to
various classifications. However, initially you don’t care about that! Try this with the data
set and you will think like a true database developer!

A Mix of Art and Science

I am not a theoretician but I admire theoreticians. They have great minds and they are
capable of things beyond ordinary people like me. Theoreticians can build foundations.
These foundations are the base for human creations everywhere. Software programming
is a new world in terms of history. It is a child, a growing one!

Every programming language is a miracle, in one way or another. Programmers who
have the ability to write pieces of software are like artists and linguists in a certain way;
they’re not just pure technicians.

32

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * A HOLISTIC VISION OF THE DATA

Every new programming language that we learn to use is like a new natural language
that we learn to speak. Some languages are easier to learn than others. In a similar
fashion, some programming languages are easier to teach than others. It is a matter of
subjectivity and experience, as well as a matter of taste. Some languages and frameworks
can be learned by analogy and comparison.

SQL and Portability

Speaking about the set of database programming languages, like PL/SQL or Transact
SQL, there is another great advantage, one of portability. SQL is part of every relational
database programming language and, even if there are some differences in the syntaxes,
learning one means learning another is quite easy. I am referring, of course, to the list of
programming languages associated to the relational database systems like Oracle, SQL
Server, DB2, My SQL, Teradata, etc.

The procedural facilities are also similar. The syntax of declaring and using a cursor
in Oracle and SQL Server and DB2 is very similar. You don’t need to consider yourself
only a PL/SQL developer and remain in the area of PL/SQL.

Operating on Data Sets

Let’s assume that you are running a query. You just saw the familiar message about the
number of rows affected; let’s say you receive five rows. The affected five rows may be
interpreted in many ways. You may think in terms of five details, try to analyze the details,
and think of the details in a certain way. Alternatively, you can think about the five rows
as one unit. It is this latter way of thinking that leads you to the data set.

The set of five rows can be seen as a whole or it can be seen as a sum of details. The
application developer is tempted to see the multiplicity and is tempted to divide the set
into five pieces. He might open a cursor right away. By contrast, the database developer
will always see the data set; he will be aware of it and he will think SQL. This means he
will try to see the data set and ignore the fact that the data set can be divided into five
pieces. The application developer is not SQL oriented by default; he is oriented to search
for the details. His models are not set-oriented and he is trying, by default, to divide and
to use the procedural features of the language.

Two Approaches

SQL is data set-oriented, SQL is a database-specific language, and SQL is not incorporated
in the paradigm of the classic models of programming. The application developers

should make an effort to try to integrate SQL into their style; they should try to be aware

of the data set. The application developers should do these things if they want to have
good performance in the database and especially if their intended goal is to transfer data
between systems. They should be able to adapt.

Considering these circumstances, I will define two approaches that can be used in
database programming. These are illustrated by the role of the set of data in the process of
database development. These approaches are the ones that map the development styles,
and the developers should use a certain style according to the approaches they follow.

33

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 " A HOLISTIC VISION OF THE DATA

The first is the atomic approach. By contrast, I will name its opposite the holistic
approach. These are the possible visions of the data in database programming.
Consequently, the styles of development will be highly influenced by these.

The programmer that follows the atomic vision is the programmer who thinks
atomically, the programmer who does not think SQL. The atomic vision means to divide
everything and to see things at the row level. The developers do not accept anything apart
from what they know; they know structured programming, they know scalar functions and
row triggers, and they see columns per individual rows as parameters for their functions
and procedures. They believe that the purpose of a cursor is to allow them to move
everything at the level of a row. The atomic vision does not consider the data set at all.

The holistic approach is the opposite approach. These programmers are aware of
another kind of entity apart from what they know from classic programming: they knows
that SQL is something else and they understand that the data set is an integer, and they
think holistically.

They have the data set and they want to affect that set with any possible means. They
use SQL as the tool to accomplish that. As a last resource, if SQL does not allow them to
perform their tasks and to affect the data set holistically, they will divide everything using
the cursor and they will solve his problem in a different way.

Data Sets as Atomic Units

I'will prove that a set of data should be analyzed in its atomicity, not its multiplicity. In
most situations, the data set can be identified as such and affected as a unit. The data
set should be targeted and, finally, affected by our actions, write or read. When working
in the database, in a classic but mostly in a specific application, we affect data sets in a
continuous process. We should be aware of the data set; we should always think of it and
try not to divide it into smaller pieces or rows whenever possible.

Let’s remember the famous concept of an entity, so dear to application developers.
In classic programming, everything is an entity or part of an entity. The entity is a very
complex concept, and programmers are always aware of the belongings of a certain entity
when they are doing their work. In the database, we can say that the role of the entity is
taken by the data set. The data set is the entity, and in a relational database we are usually
positioned in a certain data set.

Like a Chameleon

Operating on data sets as units is the holistic approach, and the developer that thinks
holistically is a true SQL developer, a true database developer. In addition, this is the kind
of transformation that an application developer should be capable of when switching

to the database. I believe that a good programmer can do things at a good level in both
the application and database. Consequently, I believe that programmers should think
differently and adapt their style when moving to the database.

Another purpose of this book is to get you to think SQL! Because the dedicated
language for communicating with the data is SQL, its syntax is perfect for interrogating
rows and columns. Most situations in a database are simply accessing the data in one way
or another.

34

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * A HOLISTIC VISION OF THE DATA

When I want to read or write something, I use SQL. That’s why I am always surprised
when I hear database developers consider themselves PL/SQL developers or P-SQL
developers. To me, a true database developer is a SQL developer. Moreover, a SQL
developer, a good one, needs to be able to think SQL. Thinking SQL means thinking in
sets of data. I cannot imagine anyone thinking PL/SQL or Transact SQL!

Thinking in Data Sets

Let’s continue looking at the advantages of the SQL language. The actions in the database
are restricted to basic statements. Let’s review them. We read some data using a SELECT
statement, we add something using an INSERT statement, we edit something using an
UPDATE statement, or we delete something using a DELETE statement. This is what
database programming is. In almost all situations, we want to affect a set of rows, one single
set. A good SQL developer is always aware of the data set: he tries to search for the data set.
This is the holistic vision: this means thinking SQL and this is true database development!
Only in the rare situations when the data set cannot be handled as a whole will the
programmer split the data set into its details and eventually use the procedural facilities.

The database programmers are not the limited programmers who do not accept
anything but the data set and their precious SQL! These guys are not absurd! The
database developers know the principles of structured programming: they know how to
use cursors, records, variables, while statements, and the rest of the procedural features.
They can solve the problem even if the data set vision does not match all the time. The
data set is not indestructible! It can always be divided! Sometimes the data set must
be divided into many pieces. The holistic vision accepts the possibility of the division
whenever it’s necessary.

The atomic path means the tendency to divide things right away and to solve things
procedurally by default. No attempt is made generally for the data set to be handled; the
data set is not actually seen as a unit. The atomic vision is very common among many
application developers and I point is that this vision should be reconsidered.

A holistic vision of the data will generate a certain distinct style of development in
the database. First, you identify the data set. Next, you analyze the data and see if it can
be affected by one single SQL statement. If that is possible, and very often it is because
SQL is incredible strong and it covers an amazing number of situations, the problem can
be solved at the level of the entire set. This is the holistic vision and the set prioritization.
This is the set-oriented model of database development.

Take Style Seriously

The education systems are an important component of the IT industry. The universities
teach the students about classes, entities, objects, and everything else. The object-
oriented models, the declarative programming, and the structured programming
paradigms are described in a variety of courses. There are many models and paradigms,
and each of them should be taught to the future generations of programmers. These
principles and models will guide the future programmers in their activity and will
influence their work and our lives.

35

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 " A HOLISTIC VISION OF THE DATA

Let’s move back to the database area. Most people think that database programming is
part of structured programming. Apart from typical programming and the classic models,
there are courses about databases where relational databases are explained. The SQL
language is at the top of the list. Sometimes SQL is explained by itself in a dedicated course
or itis described as part of a vendor programming language like PL/SQL. Programing
languages such as PL/SQL can be described in two steps: first the query language and then
the extension with all the procedural facilities.

I believe that there is not enough discussion about the styles of programming,
and this is understandable. The concept of style is a vague concept and it involves a
certain degree of subjectivity. However, no one can argue that these various styles of
development are not important and that our applications are not influenced by this vague
concept of style. It is only because style is a subjective matter that it is ignored.

The style of development is influenced by the subjectivity of the programmer too.
Some programmers are Java-based and they are comfortable with Java; others like
INFORMATICA and visual development and they are comfortable with it. And the
subjectivity of the programmer is influenced by the concepts in the language being used.
It's a vicious circle.

Understanding the Data Set

In teaching programming, I believe that the concept of the data set should be properly
described as one of the main concepts in database programming, maybe the most
important one. I think that the paradigm of set-oriented programming should be
promoted in database courses in universities and explained as a priority to the students.
Many programmers will work on both sides during their careers. They will work at the
application level using Java or C# but they will also work at the database level using
Oracle or DB2. If they know about the data set and the holistic approach, it will be easier
for them to adapt to one style to another. For those who want to specialize in database
development, understanding of the importance of the data set is critical.

The Importance of Style

For example, let’s pick a university where database programming is supported and is
considered a valuable path for students. In this university, the database programming
courses should contain a second part, after the classic SQL course, where the capabilities
of SQL are explained. This second part should discuss database development and the
importance of the data set and the holistic vision of development. It should explain that a
different style should be used in the database, one based on the set-based approach and a
holistic vision of data.

I also believe that discussions on style are very important inside software
development teams. Teams often consist of application and database developers.
Moreover, there are always personal preferences. The software applications are
influenced by these preferences.

I believe that performance will be better if a more appropriate style is used. It will
increase the quality of the written software. Although the users can’t see the database,
they can feel it all the time because of the response timings.

36

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * A HOLISTIC VISION OF THE DATA

Programming as a Distinct Path

Let’s move to the specialized database developers and their role in the market. I believe
that the role of database developers will increase. I believe that the concept of database
developer finally has its own status, without being in the shadow of Java or C. There are
more and more specialized database developers, and the good ones are always aware of
the data set and of the set-oriented style of development that they definitely use!

Still, many people believe that database programming is not necessarily a distinct
path and that it does not require a distinct style. Many people believe that an application
developer can do SQL easily without needing to change anything in the style of work.
There are no official arguments for a different style, and there are so many programmers
doing both application and database programming.

In a classic system, things may be acceptable with a procedural, atomic style.
However, in a specific interface like a replication system or an ETL where the goal is to
move data between systems, if the developers are working atomically it’s a tragedy; it’s the
most catastrophic scenario that we can imagine!

Unfortunately, SQL is sometimes seen as a kind of toy, as a light language that can
be learned by anyone with a minimal effort. To a certain degree, it is a toy, and it is true
that the basics can be accomplished by anyone; the language is extremely natural and
intuitive. That is merely the first stage of learning. Imagine a class that is separated into
many modules, and the first module is very easy and accessible. The following modules
are more and more difficult. This is SQL.

Promoting the Holistic Style

From this perspective, the concept of a data set makes a difference in graduating to the next
module. A programmer that understands this concept and follows it is a good database
developer. For example, Joanna Doe is an application developer who is switching from the
application to the database. If she can change her style and adapt her work from one section
to another, she will be able to accomplish a lot. I really believe that the set-based approach
and the holistic style of development deserve to be promoted more intensively, considering
the advantages of better performance, easier debugging, and more intelligible code.

Let’s consider one more example. Think of a list of customers that satisfy certain
conditions, such as customers from London, UK. If you are thinking SQL, you will think
of them as a set of customers. This is the SQL vision! You don’t consider the customers
in their multiplicity; you think of the list of customer as one list. This vision is opposed to
the atomic vision, where you would think of the customers as single units. This is what I
consider the principle of SQL. We consider multiplicity as unity. As another example, if
you have a book that’s 100 pages long, you think of it as one book, not 100 pages.

Inside projects, the project managers have an important role. Taking various styles
of development in various sections into consideration is important if they want good
performance and good code.

A large portion of our code relies on the databases: the vendors continuously try
to add new features for the performance section. Performance is always critical. What
can be more unpleasant than waiting and waiting for the data to be accessible to the
end users? One reason for a bad performance in the database is the fact that the style of
development is not adapted to the realities of the databases.

37

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 " A HOLISTIC VISION OF THE DATA

The Benefits

I know that most programmers are very practical people and they want to see written
code as proof of concepts. To that end, I will illustrate the concepts described above and
the two alternative programming styles by showing many examples. I will use two of the
most important database systems, Oracle and Microsoft SQL Server. I chose these two
database management systems for my examples for two simple reasons. First, they are
among the most popular database management systems. Secondly, I personally have a
lot of experience with these two systems. I have experience in classic applications and in
specific applications like data warehouse, replication, and data migration. These are my
favorite types of projects and during them I was able to adapt my style more and more to
the set-oriented approach.

Nevertheless, these examples are very easy to reproduce in any other database
management system. This is another advantage of the standard—the fact that most
SQL statements are identical or similar in almost all relational database systems. This
advantage will allow any developer who wants to try the exercises in Oracle, SQL Server,
DB2, PostgreSQL, MySQL, and Teradata to do so. The programmer can practice most of
the exercises with minor modifications.

This is another argument in the favor of the holistic approach, although I do not
consider it the most important one. The argument is portability. This is good for companies
building software applications for various database management systems for different
customers: portability is an attractive word for managers. If you are at a software company
where one application is written in several systems like Oracle, SQL Server, and My SQL,
portability is important. Writing SQL allows you to keep the code similar from one system
to another. In contrast, working procedurally means accepting very different pieces of codes
because, even if the procedural languages are quite similar, there are still different syntaxes
and it takes some time to translate the code from one system to another.

The examples in the atomic approach are taken from the procedural area of the
systems. These are highly particular and non-standard, being non-SQL and procedural.
Working atomically forces you to move your center of interest in the procedural area
of the database language. In the atomic way, the logic is procedural and specific to the
programming language, which materializes in a serious effort in the translation process,
if required. When I say procedural I am mostly refer to Oracle relational database system.
However, even if Transact SQL is declared itself as a declarative language comparing with
PL SQL that is considered a procedural language, a lot of tasks can be achieved non-SQL
in both SQL Server and Oracle.

Working in SQL moves you to the SQL area, close to the standard and to the true
database vision. If you try to reproduce some examples from one system to another, it’s
much easier. It may even be very easy because often the logic and syntax is identical.

Be Independent

Iam discussing SQL. I am trying to show you how to think SQL. This makes you more
independent in the database system. In addition, if you are working in an IT company
that creates software, it is very easy for you to maintain various logic in different systems if
your work is SQL based and not procedurally based.

38

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * A HOLISTIC VISION OF THE DATA

Many database programmers have exclusive experience in one database system.
Some of them believe they are Oracle or PL/SQL developers. Having SQL as a standard
makes our lives easier, and I encourage any developer of this type to consider himself a
neutral database developer, or even better, a SQL developer.

Even with procedural facilities, things are not very difficult. Most of the examples can
be easily migrated and executed in any relational database system. They offer the same
types of programming objects and similar structures of blocks inside the objects; cursors
are declared and used in similar ways. In the field of programming, the database developers
have a huge advantage. For a database programmer, one experience in any database system
is a gate to any other database system, and the database programmers need to have more
confidence in themselves regarding their ability. For example, many experienced SQL
Server programmers are not confident in switching to Oracle projects. Of course, an initial
effort is required to understand the differences but this is not that difficult.

The switch is especially straightforward if the style of the programmer is SQL-
oriented and not procedural oriented. A lot of code is pretty much the same. Writing
mainly SQL and being in concordance with the standard allows us to write very similarly
in different database systems and this is a great advantage!

Even if we do write SQL, there are many ways of writing SQL. There are various SQL
syntaxes, and some can be more standard and others more specific. Sometimes a specific
SQL syntax offers better performance. A good example is the SQL Server particular form
of update. This syntax has a better performance and, despite the fact that is particular to
SQL Server, it’s the one to use. When a compromise between performance and portability
is required, I always vote for performance.

I want to conclude the discussions about portability and performance in database
development and share my opinions gathered from years of experience with various
databases. The first rule, to write SQL and not procedural, is a golden rule for both
performance and portability. The second conclusion refers to the SQL code itself.

The code is similar, sometimes identical in various database systems. When the code
is similar, there are many acceptable syntaxes. Sometimes you may use the specific
syntaxes and avoid the identical ones because very often the specific syntaxes have
better performance. A good example is the specific form of update and delete in SQL
Server; although this doesn’t work in Oracle, I encourage you to use it and leave the
syntax with subqueries because the performance for the specific DML is better. Again,
choose performance over portability.

Visual vs. SQL Development

There is a new generation of programmers. I call them visual developers. This new
category of programmers is becoming more and more appreciated on the market.
To remain in the field of databases, let’s consider data warehousing. I am especially
thinking of the ETL process of extracting, transforming, and loading the data from a set
of operational systems to a large data warehouse system, a historical database. There are
many examples of ETL visual tools, like INFORMATICA, Oracle Warehouse Builder, or
Microsoft Integration Services.

An ETL process is a very complicated process where data needs to be integrated from
various operational systems into a historical database, with the purpose of analysis and
prediction. An ETL developer nowadays is sometimes a visual developer and not a classic

39

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 " A HOLISTIC VISION OF THE DATA

developer. Of course the best ones are both because even a visual developer will need to
debug and know the sources behind the visual tool. Therefore, especially when speaking
about specific interfaces like a replication system, an ETL, or a data migration system,
whenever we are discussing the transfer of data between systems, a visual tool might be a
solution. Managers very often choose these types of solutions.

We are slowly moving to a mixed world. The future world will also be the world of
tools: this seems to be the tendency. Consequently, the future world will be a world of
visual developers, too. To be a good specialist today does not necessarily mean to be a
good classic programmer of a certain type, like a C# programmer. You can be a very good
visual programmer.

Choosing a Tool or a Language

I have some experience in visual development but I do not intend to move to this area.
I'like SQL too much. Moreover, in my experience, choosing a tool instead of a custom
solution with SQL is not a good decision. I affirm that with the SQL language, you can

do miracles and very often the use of tools can be avoided and replaced with pure SQL
systems. I don’t believe you can build a better replication system or data migration
system with a tool than with pure SQL. Of course, visual developers will disagree and it is
their right to do so; I am sure they have solid arguments too. Not being a visual developer,
Irespect their arguments and their options. However, my experience with visual tools
showed me that the argument of time is not necessary valid. I am not certain that the
development time with a visual tool is indeed better than the development time with a
classic, non-visual approach. Moreover, sometimes when you have problems in a visual
tool, it is almost impossible to move forward!

It is clear that there are various alternatives on the market and this is great.
Companies can choose. There is more and more demand for the specific type of software
application, with the clear goal of data movement between existing systems. Companies
are moving their data continuously; there is a huge demand for this task almost
everywhere, and companies try to find better solutions to satisfy their goals. Sometimes
they are not satisfied with true database specialists and classic database development
and they prefer to move to tools and visual development instead.

I am on the SQL side! I think that often a task can be achieved with simple and pure
database programming, with simple SQL and using ordinary database development tools
like Oracle SQL Developer or Microsoft SQL Server Management Studio, even in the ETL
area, which is maybe the most complex case of pure database system. I once built a very
complex replication and data migration system (similar to an ETL system) and I did it in
pure SQL, using something like 5% procedural code. In addition, it works great, I know
what is there and I understand everything, and I have the perspective of the whole and of
the details. Developers who come after me can understand all of the migration steps.

This task, of moving data between different systems, can be done in most cases with
pure SQL. For that, we need to have the proper developers to do that.

I can say, based on my experience as a contractor, tools represent a bit of danger.

A person working in a certain tool for five years may become completely dependent on
that tool. The second problem is the fact that most of these tools are visual. For example,

40

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * A HOLISTIC VISION OF THE DATA

in the ETL area, almost everything is done within the complex visual diagrams. Many
people are not aware of anything apart from their diagrams. I feel that many of these tool
specialists have a limited understanding of the whole picture.

Use SQL

Anyway, using a custom solution with authentic database programmers is possible and
if the complexity allows, it gives the company the advantage of not being dependent on
the tool and the tool specialists. It also provides the company with the possibility of a
product and to understand its own work. In many cases, the solutions with the tools are
more expensive and less efficient than the traditional solution that use SQL and database
programmers.

Speaking of tools, the fact that visual development is easier than classic development
is an illusion. The reason for visual tools is speed and efficiency. Things can be done
faster and more efficiently with visual tools. The visual developer works fast compared
to the classic developer. At first, this seems true. Allow me to express my doubts and to
affirm that, in many cases, using a pure SQL solution for a specific interface can be faster,
with a better performance, better control, and more understanding of the system.

41

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4

Data by Set or by Row?

This book is divided in two parts. The first part describes the concepts and the second part
illustrates these concepts with practical examples. With these examples I want to show
that, very often, the same task within a database can be done either using the atomic

style of programming, a common style used by many application developers, or using the
holistic approach for data access, the true SQL style of programming, a style that is specific
to authentic database programmers. You will see that this latter style of programming is
much simpler and more accurate. The code is much simpler, the performance is better,
and the code is highly portable from one database system to another. Actually, I don’t

see any advantage of the atomic approach over the holistic approach (of course, these
considerations apply to the specific context of database development).

When I refer to true database developers and an authentic database development
approach, I don’t mean to say that a set-based style is an exclusive style that should be
used exclusively by specialized database developers. This style is different and, with some
effort, it can be accommodated by application developers working in a database relatively
easy. They don’t need to change their style completely; they can obviously continue
to write in the same manner at the application level. But when moving from the user
interface to the database they should adjust their style to think holistically and write SQL,
as much as they can.

Database developers think in sets almost natively because they are a kind of
mercenaries of the set-based approach; they do not follow the atomic approach unless
it’s required. They find the atomic approach as totally inadequate, inefficient, and
counterintuitive. For database developers, the set-oriented approach is the obvious way
of doing things. This approach is not so clear to the application developers, so they need
to spend some time to understand and accommodate this new approach. However, this
is not a very difficult task and, as soon as they understand it, it’s infinitely more efficient
in the database. All these considerations apply to classic applications, where both
approaches are acceptable in the database.

Note | want to mention again the specific data migration applications, where the goal
is to move data between various database systems. In these specific software systems,
the atomic approach is completely forbidden and the application developers should stay
away from these applications if they do not want to change the way they write code!

© Stefan Ardeleanu 2016 43
S. Ardeleanu, Relational Database Programming, DOI 10.1007/978-1-4842-2080-1_4

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 DATA BY SET OR BY ROW?

Choosing the Level of Detail

One of the main tasks for anyone working in a database is querying and returning the
required information. This is why a query language like SQL was invented: this language
is dedicated to this purpose. SQL is a natural language and its naturalness is derived
from the limited purpose of the language. You can never compare SQL to a classic
programming language! A query language like SQL is highly particular and applies to the
data organized in a relational manner. This is why, basically, it is easy to learn SQL.

SQL is never on its own. The set of SQL instructions is always embedded in a
programming language. I am using PL/SQL for Oracle or Transact SQL for SQL Server
in this book. There are many relational database systems and associated languages, and
Oracle and SQL Server are just the examples that I prefer to use.

All of these programming languages contain two types of instructions: SQL
statements and procedural, eventually declarative, statements. There is an alternative
for any programmer. Your logic can rely more on SQL statements or it can rely more on
procedural statements. You can think more procedurally or you can think more SQL. In
most of the cases, the procedural way is associated with the atomic approach. However, it
is possible to work holistically and procedurally, as you will see in some examples later in
the book.

There are many levels of details in our logic when we write code in the database.
There is always the lowest level of detail, the row itself. In most cases, a superior level of
detail should be present, the data set to be affected. Very often, the data is identified and
updated in data sets. In most cases, we are in a position to choose what level to pick up.
The traditional models don’t know about the data set because this concept is particular
to relational databases. Consequently, the application developers coming from Java or
C, and their traditional models, should become familiar with the data set; otherwise they
will be tempted to remain at the lowest level of detail, the data row.

Working Atomically

The application developers will start opening cursors for every action, declaring variables,
and using records to supply simple insert statements. By contrast, the database developers
are able to think SQL. The database developers know that they need to identify the

data set and will rely on SQL statements instead of procedural statements to make the
identification because they will choose the level of detail at the data set and not the data
row. The database developers know that the SQL language is a set-oriented language and
know that this is what should be used in most of their development activity.

For any programmer working in the database and trying to manage the data either by
reading something or by writing information, a decision must be made regarding how to
write the logic. What is the starting point? What is the concept that stays behind the scene
in this strange and simple world of rows and columns? The application developers, used
to objects and entities, need now to understand the simpler concept of rows and columns
and the concept of the data set. Very often, they see that the procedural facilities available
in the dedicated programming languages for data access are applicable to the lowest level
of detail. For example, they think the scalar function, a row trigger, and even loop and
while statements are excellent for data access at the lowest level of detail: the row itself.

44

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © DATA BY SET OR BY ROW?

Consequently, the application developers believe that they always need to move the logic
to the lowest level of detail, the row. They believe it’s normal for code to be written and
applicable to the lowest level of detail. This is a bad decision in my opinion and it leads to
poor performance in many databases. Writing data access logic in this manner, when the
principle is to move the logic by default to the lowest level of detail and to use the atomic
style, is the worst programming someone can write in the database!

Do you know what’s funny? The resulting row-level code may look very professional
and attractive to classic programmers. All the principles of structured programming are
satisfied, and this code may look like a piece of art. This shows once more the subjectivity
of the concept of style of programming!

Row-by-Row Performance

The atomic approach is not wrong and it will generate the desired results. However, the
effects of row-by-row processing are dramatic and the consequences are terrible for the
database. First, the performance is a disaster. Imagine large data sets affected by cursors
all the time, one by one per row. Even if you don’t have large data sets (because database
programming is not just data warehouses and very large data sets), you might still have
issues with performance. If the dimension of the data is moderate, what happens to your
databases?

Do you know what the tragedy is? Some companies implement large data warehouse
systems and deal with large data sets. These companies hire specialized database
developers and these developers know how to write set-oriented code. In a data
warehouse, the style is generally the proper one.

If someone tries to use the atomic approach in an ETL process, for example, the ETL
will simply become almost unusable and the consequences will be detected immediately.
Therefore, in a data warehouse you're less likely to find these inappropriate styles of
development. However, it happens often in transactional, operational systems where
people can’t afford or don’t think it’s necessary to hire specialized database developers.
In these cases, you'll usually find application developers with some SQL knowledge.

Writing Out of Habit

How does the application programmers learn the SQL language? In most cases, they learn
by analogy with their application development. So style will they use? They will probably
use a style similar to the atomic style of development.

Here is the logic of some IT professionals: everyone can learn SQL. It’s simple. You
already know Java or C#, so SQL should be a piece of cake, right? In these systems, the
code can be written at the lowest level of detail. Due to the moderate dimensions of
the data, the logic will not always be detected as inappropriate and the application will
survive as written. The bad performance will not be so visible; the timings will be bad, but
not very bad.

Choosing the lowest level of detail, the data row, and using the atomic style has
another disadvantage apart from poor performance. Any bid for improvement is
effectively blocked; the performance will remain very low due to the use of atomic style.

45

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 DATA BY SET OR BY ROW?

What do you do when you have low performance? You try to improve it, of course.
One of the most challenging tasks for the developers is when they are instructed to
improve the performance. I have been in this position many times. Do you know what
I did in most of the cases? I rewrote the entire logic! The reason for low performance is
the use of the atomic approach following the wrong decision of dealing with the lowest
level of detail. If programmers choose to write their code at the row level by default, this
code simply can’t be optimized. All the nice features for performance, like indexes, and
materialized views, are useless if the code is written in the atomic style.

Blocked into Poor Performance

Choosing to develop software at the row level and using the atomic style of development
in the database has two major consequences. The performance will be very low and any
improvements are impossible. The code simply can’t be optimized because all the
features available for improving performance are set-oriented and not row-oriented.

Any database system has many great facilities for improving performance. As a
developer or a DBA, you need to learn to apply all of them. Unfortunately, all of these nice
features are applicable for the set-oriented approach! They are almost useless if applied to
the atomic style of development. So, if you want a bad performance in your database and
if you want to be sure that no one can improve this performance, stay with your favorite
atomic approach and work at the row level using cursors and all of the other features!

Choosing one style or another is a matter of subjective and personal experience.
Experience influences and is influenced by taste. Moreover, experience and taste can be
driven by the learning process. For example, I am sure many of us were not completely
aware of the level of granularity, of the duality between the data set and data row, and the
decision that we should always make when writing SQL. This distinction is very clear and
simple, but very often we are not aware of clear and simple things.

In applications where you need to move data between systems, choosing the row
level of detail is a catastrophic decision. The data movement process is like the sea. Data
movement should be done in waves of data, and the waves are defined according to the
business criteria. These waves of data are the data sets. Choosing the data set instead
of the data row and trying to identify it whenever possible should be the principle that
drives any developer when writing code in the database.

Performance Relies on a Holistic Style

One of the main tasks for an experienced database developer is the ability to read,
understand, and eventually drive the execution plan of a SQL statement. The execution
plan shows what the optimizer will probably choose when executing a SQL statement.
Tuning SQL statements for a better performance is another critical task. Generally, the
database administrators are responsible because the production environment is the
real world and they are the gatekeepers. However, in reality, the SQL tuning process
starts much earlier in the development environment and should be managed by the
development team. First, a good database developer knows how to write clean and
accurate SQL. Depending on the quantity of data to be processed, a variety of features
available in any database engine will be added to the SQL statement by the database

46

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © DATA BY SET OR BY ROW?

administrator. If the logic is written by an application developer who is determined to
follow his favorite and familiar atomic approach, there is almost nothing to tune and
almost nothing to improve!

The concept of SQL tuning implies two steps. The first step is to catch the SQL statements
that seem to cause performance issues. For this, tuning tools like Oracle Enterprise Manager
or SQL Server Profiler allow us to see and analyze the statements. Afterwards, we analyze all
the features for performance. There are so many manuals and courses, so please refer to them
ifyou need more information. A precondition for all of these tuning and performance features
is that they are applied in a holistic style of development.

Querying ... All the Time!

Although we can speak about database developers like me, most programmers are
application developers. Most of the difficult work is at user interface level, and most
programmers are Java, C, PHP, or C# programmers. These programmers often work at
both the user interface and database level. At the user interface level, there are so many
things that need to be done! However, at the relational database level, things are much
simpler and straightforward. The main task of the developer is always the same: to write
queries. Let’s review the major tasks of a database programmer.

What Do Programmers Do?
A database programmer basically does four things:

1. The programmer reads business information. This is the
query, the select statement with all the additional clauses.
Let’s imagine Joanna Doe again, our top programmer. She
simply gets the data according to her needs. Learning how
to select is very simple but it is also very difficult; this is the
paradox in database programming. A query is like a business
request and the set of data returned by the query is the
response to the business request. A business request may
be very simple or very complicated. What may be simple
or complicated to the programmer is not the request itself,
but the means and facilities that the programmer should
use to write the select statement. One of the first things the
programmer should do is identify the data set behind the
request. The business request is always reflected in a data set!
Being aware of this principle and thinking holistically is highly
recommended.

2. Theprogrammer may add new data via an insert statement. The
insert can be done in classic insert-values syntax, where the
values for the columns are manually supplied. The programmer
may add data in a certain target from a source of data and she
may use the most complex syntax, insert-select. The difficult
thing is the select statement and the set-based orientation.

47

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 DATA BY SET OR BY ROW?

Whenever proposing to insert into a target from a source, you
need to identify the source. The source of data may be taken
from a table or from a variety of tables, linked by joins, and
eventually grouped by union. Therefore, the difficult part in the
insert statement is actually the same select statement. Again, the
programmer should think holistically and identify the source of
data as a whole. It is not always possible and, if not possible, she
should move to a lower level of detail: the row.

3. The programmer, our Joanna Doe, may edit data, which means
changing something. This is the update statement. An update
can be divided in two segments. The first part is the identification
of the rows to be updated. What do you want to update? The
second part corresponds to the set of new values. What are the
new values? When the programmer wants to see the rows to be
updated, she wants to get a data set. Consequently, she needs
to do a select statement first, the same old select statement.
Secondly, she needs to find a set of data, again the same holistic
vision. When she wants to find the new values, she can manually
supply some values or she can get the values from a source of
data. Getting the values from data sources can be very difficult;
for that, again you need to build some select statements and use
them to identify the sources of data for the new values.

4. The programmer can delete some data. In order to do that,
she needs to identify the rows to be deleted. The programmer
needs to write a select statement first (even if she does it in her
mind): the select statement with the rows to be deleted. That
will be, of course, another data set.

Let’s look at these descriptions to find constants that occur in all four major actions.
Select statements (the queries) should be executed all the time, before anything else.
Even if a write action is required, a read action is usually correlated with it. A select
statement is involved in almost everything. Secondly, a data set is always present in
any action. You are reading and writing data sets in all of the major actions involved
in database development. Dividing the data set into data rows by default is against the
definitions of these major actions.

Looking at these basic actions and reviewing them, you can see the importance of
the set-based approach. Even in the definition of the four important SQL statements the
data set is present everywhere. The data set division, apart from the technical limitations
and reasons why the division is required, is against the definitions of the major actions
in database programming. What is an update? An update means changing the values for
a data set. What is a delete? A delete means deleting a data set. What is an insert into a
target from a source of data? This represents an insertion of a data set from a source to the
target. The data set is everywhere!

48

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © DATA BY SET OR BY ROW?

How Do Programmers Do It?

When doing database development, the first task is to get the data. The only way to access
data is SQL.

A database programmer needs to be able to think SQL, to think in data sets. In
any programming language there are general features like variables and structures and
specific features like cursors. These are part of any database developer’s life. However,
what is important is to realize that these facilities are not to be used before SQL.

The logic is written in stored procedures, functions, and triggers. However, when
looking inside them, we should see mostly SQL. If we see a cursor, this means there was
no other way for the problem to be solved in SQL.

What if you need to concatenate some values in a column, values taken from
another column? You may need to position yourself in the data set, take the value from
the column in a row-by-row approach, move the data into a variable, concatenate in
another variable, get the result, and update the other column. This is a context where
the procedural facilities of the language are required and used accordingly. Pure SQL
language was not enough! This may happen, which is why you always have the cursors
and the rest of procedural facilities that allow you to handle things in a row-by-row
approach.

Say you need to move some data from one table to another, from a source to a target.
You can think in many ways. You can declare some variables or structures, you can move
the data elements into temporary storage spaces like the variables, you can open a cursor,
you can move the values in the cursor and, being in the cursor, you can copy the elements
from the source into the target. This is the atomic vision of the programmer. This is, in
my opinion, the vision that is compatible more with typical programming, the style of
programming that is described in most courses and used by most developers. The atomic
vision works and the goals can be achieved. More than that, the atomic approach is
followed by many application developers within the database.

The problem is that this vision, the atomic vision, is not exactly the best vision for the
database. The atomic vision is not optimal and is not suitable for data.

Revisiting the SQL Shop

Let’s go back to the SQL Shop. I have a basket full of products. I go to the cashier to pay for
them. There are ten chocolates in the basket. Instead of paying all at once, I pay for one
chocolate at a time. Obviously, a huge queue forms behind me. People in the shop get
upset. I am taking too long.

The cashier hands me a bag. Ilook at her, very surprised. “What do you want me to
do with a bag?” I ask her. The cashier stares at me. “Don’t you know what these bags are
for? They allow you to add many goods at one time and transport them easily. If you add
the goods one by one, you don’t just act illogically and against common sense, you don’t
just waste your time and others, but you also refuse to use the tool the right way.”

So what’s the main reason for this story, apart from the fact that it seems quite silly
to pay for ten chocolates one at a time instead of paying for them in one shot? The reason
is performance. My performance was very poor and the main consequence was the bad
timing in the queues. More than that, any feature for performance improvement was
useless.

49

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 DATA BY SET OR BY ROW?

In the database, using the atomic vision may not cause too much harm in the testing
activity where the quantity of data is generally low and the variety of data is generally
reduced. In production, however, it has a great impact. Very often, this inappropriate style
may cause issues.

In my experience, whenever I was involved in performance, I almost always had to
rewrite large pieces of code and replace the atomic vision with the holistic vision.

Let’s go back to the example in the beginning of this section. You must move some
data from one source to a destination. If you think holistically, which means SQL, you
analyze the entire set of data in the source. You identify the data set to be transported
into the target. For that, you need a query; that is all you need! This is actually the most
difficult part. You simply take the entire set of data and move it in one shot into the target.
There is no need for anything else; you don’t need cursors and structures.

The Use of Scalar Functions

One valuable principle when studying languages like C or Pascal is the use of functions.
Every student starts by learning the basics: variables, loops, and conditional statements.
The student learns arrays and then structures. Finally the student learns functions.

Before that, everything was done in the main function. Then the student learned
how to split every distinct task according to the business and how to embed it in
a function.

The function can return a true value, like an integer or a string, or it can do
something without returning anything, like a void function. The programmers are
seduced by this principle and they keep it in their mind forever. They like how the use of
functions allow them to organize their work better and to divide the complexity of their
activity into less complex tasks.

The programmers build functions over functions and they remain constant to this
principle of divisions: to divide the complexity and separate the task into smaller tasks
embedded in functions.

After some time, the programmers starts working in the database. No one told them
that working in the database is a different thing, and that they should not necessarily follow
exactly the same paths and principles they use outside the database. They see that there are
two main types of procedural facilities: procedures and functions. They acknowledge that a
stored procedure performs an action while a function returns a value. They understand the
use of a stored procedure and they see that in most cases they are doing particular actions,
especially reading or writing data using the set of DML statements.

The principle of division is equally valuable and applicable in the database.
However, the use of functions should be seen differently. The application programmers
are accustomed to functions and they can easily see the combination between a cursor
and a function. They see the scalar function right away as an ideal type of procedural
facility for their atomic approach. A scalar function is a type of function that acts per
variable, per column and row. It is the last type of function the programmers should use
if they want to follow the set-based approach!

The scalar function returns a certain value of a certain type. Any scalar function
can be applied to a certain column or expression in a certain row. The scalar function is
the best feature for the atomic approach and it is a favorite feature of many application
developers working inside the databases. Imagine you have 1,000 rows in a data set and

50

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © DATA BY SET OR BY ROW?

you create one function and apply it in a cursor in the data set 1,000 times instead of
avoiding that function and doing the entire logic in the data set directly! This is a very
common situation in many databases!

On the other hand, in the database there are many types of functions. There are table
functions that apply to data sets; these types of functions are much better than scalar
functions. A good database developer should apply them directly per sets of data. That
is the difference. A table function can be called per a data set while a scalar function is
always called per column and row in a cursor.

A scalar function can be defined and used if you apply it to configuration tables. You
know that one certain function will return one single value from a configuration table:
this is the ideal scenario for a scalar function.

In the database, the main procedural object is the stored procedure. This is obvious
because in the database the main task is data manipulation, either reading or writing.
This is what we are doing in most of our stored procedures: reading data and writing data.
Using the holistic approach and the set-based approach, we read and write data sets.

Set-Based Debugging Is Simpler

Another advantage of the holistic approach is the ease of debugging. I am referring now
to specific systems where the goal is to move data between various systems, such as a
data migration system, a replication system, or an ETL system. If such a system is built
entirely in SQL, as I recommend, apart from all the advantages described in the previous
pages, the debugging will be easier.

In these specific systems, you don’t have the classic debug functionalities with
variables and watch. There is a much simpler debug method. Whenever you have an
error of a certain type, like a constraint violation or a conversion error, there is an error
handling procedure that shows you the place where the error occurred. It is very simple.
All you need to do is to simulate everything until that point; you need to make sure you
have the data when the error occurs. You take the entire set of data separately, check the
data, and see what caused the error.

In most cases, the reason for the error will be a data set. Take that data set, analyze it,
and figure out which details of the data set caused the error.

If the migration system is properly organized in steps, if the error handling procedure
is built coherently, then it can catch the error and store it in the error table. There you can
see the step and the error identifier and description. There could be constraint violations
errors or conversion errors. You simply comment the steps after the step with the error and
run the interface until that point. You then take the step with the error and check the data.
You query the data before the error, analyze it, and see what caused it. Again, for debugging,
SQL is the required skill. In order to be able to identify the reasons for the error, you need to
query the data and see what was happening. It is very straightforward!

Another advantage of the holistic approach is readability. The code is much clearer,
and you can see everything organized in data sets.

51

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 DATA BY SET OR BY ROW?

Your Role as a Database Developer

I want to add some words about database development. Let’s look at the market.
Database development is an accepted specialization nowadays, after many years when
mainly database administrators were accepted as distinct database specialists. Now there
is an explosion of database specialists and a continuous and increasing demand. This
change is because more and more reporting and analytics databases are being built over
the set of operational systems everywhere.

Data warehouse and big data technologies are more and present everywhere. The BI
technologies are increasingly more popular in the market. Database developers (along
with business analysts and reporting analysts) are the ones that can sustain all these
increasing demands.

However, from my perspective as a SQL developer and specialist, despite
appearances things are not very different today. SQL is still considered in the “other”
section for many projects and many teams. Let’s analyze the specialized PL/SQL
developers who use the atomic approach and the procedural facilities. They call
themselves as database developers. I call them application developers, because they
do not think SQL and holistically, even though they are developing in PL/SQL.

In the field of data warehousing where there are so many ETL systems, and in
medium or large companies with a variety of systems communicating between them
by specific replication systems or data migration systems, more and more database
developers are needed. The set-oriented approach is requested on the market, and
this shows that the enterprises are aware of the necessity of the holistic approach. The
project managers should either decide to use specialized database developers or teach
application developers to write holistically.

Practice Time!

Finally, after so much discussions, concepts, and clarifications, it is time for some
exercises. In the following chapters, I will illustrate the two styles of development
with examples. I will show that the holistic approach is the best approach when in the
database.

As mentioned, the examples are taken from two major database management
systems, Oracle and SQL Server. I want to reaffirm that all the considerations and
thoughts described in this book are general and refer to any relational database system.
The holistic approach is a vision that should be present in any relational database. These
examples can be easily reproduced in any other database system.

It will be very easy for you to translate the holistic version because SQL is a standard
and the syntax is very similar. In the atomic approach, you will have to work to translate
the examples from Oracle or SQL Server to your system. The procedural languages are
similar but there are differences; there is no standard, apart from the same mode of
structured programing.

52

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5

Data Transfer Paradigm)

Starting with this chapter, I will demonstrate the two styles through a variety of examples.
These examples will make the distinctions very clear. My main goal in this book is to
clarify the two styles of development, to show the differences between them, and to show
the advantages and disadvantages of each. I also intend to promote the holistic style.
Please feel free to experiment with applying the two styles.

About the Examples

The considerations and the arguments for a certain style of programming specific to

the database versus a classic style specific to the user interface will be illustrated in the
following chapters via a list of practices and exercises. These examples will explain the
two approaches, the holistic approach and the atomic approach. The purpose is to show
that, inside a relational database, the holistic approach should be used in most cases.

I have organized the examples so they can be compared and tested on your own
systems. I invite you to run the exercises and see the differences for yourself. I recommend
that you create a distinct user and schema for the exercises; for example, I call it two_styles.
Add all the developer privileges like create table, for example. Execute the scripts under
this user.

Of course, the ideal is to imagine similar practices in your systems and test one
approach versus another in your logic inside your databases. Even more ideal is to change
your style in the systems you are working on at this moment, if that applies to you. The
best way to see the differences is by analyzing real data and real scenarios.

Take these examples and practices as what they are: some simple exercises. This
means you don’t need to focus on the examples, which are actually trivial examples,
but on the way the problems are solved and the style of programming that drives the
solutions. Despite the simplicity of the exercises, the style of development behind the
scenes is the same (one or another or a mixture of both).

The most important things have been already said in the previous chapters; the
main ideas have even been repeated many times. These examples will just reinforce and
confirm the statements, advice, and ideas expressed in the first part of this book.

One of the most important characteristic of an exercise or practice is the context.
The context of an example consists of the business description of the exercise, the
technical description that should be generated from the business description, the
characteristics and prerequisites of the sample, like the data definition statements that

© Stefan Ardeleanu 2016 53
S. Ardeleanu, Relational Database Programming, DOI 10.1007/978-1-4842-2080-1_5

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 " DATA TRANSFER PARADIGM

may be used for the exercise, and the goals that need to be achieved in each example.
I don’t focus too much on the business description.

Most of the exercises are illustrated in both Oracle and SQL Server, more precisely in
both PL SQL and Transact SQL. Almost all of the principles and almost all of the examples
can be reproduced similarly in any other database system, like IBM DB2, PostgreSQL,
Sybase and others. Oracle and SQL Server are the systems I chose to show the relevant
examples because they are popular systems; that’s all! These principles are not specific to
these two popular database management systems; they are common to all of them.

Please take note again of the fact that the goal is to illustrate a holistic approach in a
relational database system.

Format of the Examples

Most examples in this and later chapters contain similar elements and follow a common
pattern. Examples are introduced in the context of a business problem. Then I provide a
technical description. Each example contains a set of data definition language statements
(DDL) associated with it, like a list of prerequisites or a list of the tables involved.

In most cases, the DDL used in the examples is associated with a sample of data,
enough to illustrate my points. The business description is very important and I will
define the purposes and the goals with enough clarity so that the examples can be clearly
understood. The solutions are driven from these business descriptions and I show how
the business description can be the key to one style of development or another.

Iillustrate and describe the various methods that are used, and the explanations and
reasons for choosing one technique or another. This is maybe the most important part
because here the reader can see and understand one style of development or another.

I display the scripts in Oracle, SQL Server, or both. These scripts will sometimes be
embedded in stored procedures because they are the most representative type of object
in database programming.

I always compare the two approaches because the purpose of these examples is to
compare and describe the advantages or disadvantages of one style of development
or another. I admit that the purpose of most of the exercises is to promote the holistic,
set-oriented style specific to database developers versus the atomic and row-oriented
style specific to application developers.

In most cases, if you want to practice on your own, you can execute the two examples
in Oracle or SQL Server, or whatever system you prefer, and compare the results.

Example 1: A Full Data Transfer Between Two
Systems

Very often, when doing database development, we are simply transferring data between
asource and a target. By transferring data, I mean moving data from A to B, eventually
updating or deleting information based on certain conditions. The process of data transfer
can be made in any kind of application: a classic application or a specific application. It is
one of the most common operations in database programming. Very often, programming

54

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 " DATA TRANSFER PARADIGM

paradigms are quite simple, and database development is one good example that confirms
this statement. In most cases, we are doing pretty much the same thing, and the data
transfer paradigm is one of the first tasks for anyone working in a relational database.

To illustrate some data transfer examples, I chose a simple model. Imagine moving
data between two systems. The first system is a normalized system and the second one is
areporting or analytic system where a certain degree of normalization may exist.

A data transfer can be full or incremental. I consider a transfer a full one if the target
is completely deleted before the transfer. An incremental transfer is committed when the
data is moved incrementally and only the changes from the source system are applied to
the target.

This first example will illustrate a full transfer. The second example will show an
incremental data transfer, which is a more complex scenario.

Let’s define the context. It will be the base for most of the examples that follow.

Business and Technical Description

The context specifies the source and target systems. A set of countries, languages, and
their association is part of the source system, and a set of reporting tables per language is
part of the destination system. The source system (named A) contains a set of three tables
to store the following information:

1. Alist of countries
2. Alist oflanguages

3. The association between countries and languages, including
some common information for both country and language

The target system (named B) may be a separate system or not. Let’s consider it a
separate reporting system where the data is denormalized according to the language. The
system contains a list of tables per language with country information.

There is one table for the English language and one for the French language. The
target system contains a list of reporting tables per language. (For simplicity, I'm using
just the English and French languages because this is enough to illustrate my goals.)

The information from the source system, A, should be moved into the destination
system, B. The goal is to generate the set of countries for the English language in the
specific table containing only the English countries and, eventually, the set of countries
for French language in the specific table containing the French countries.

Prerequisites

Let’s continue with the context definition. You just saw the business and technical
description of the context. Now let’s see the table design. The source system, A, is
composed of three tables, shown in Listing 5-1.

55

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 " DATA TRANSFER PARADIGM

Listing 5-1. Countries and Languages Design

CREATE TABLE Countries

(

Country_Id INT CONSTRAINT NN_Country Id NOT NULL,

Country Code VARCHAR(3) CONSTRAINT NN Country Code NOT NULL,
Country Name VARCHAR(50) CONSTRAINT NN _Country Name NOT NULL,
Continent VARCHAR(15) CONSTRAINT NN Country Continent

NOT NULL,

CONSTRAINT PK Country Id PRIMARY KEY (Country Id),
CONSTRAINT UQ Country Code UNIQUE (Country Code),

CONSTRAINT CK Country Continent

CHECK(Continent IN ('Europe', 'North America' ,'South America', 'Asia’,
"Africa', 'Australia', 'Central America'))

)5

CREATE TABLE Languages

(
Language Id INT CONSTRAINT NN_Language Id NOT NULL,
Language Name VARCHAR(50)

CONSTRAINT NN Language Name NOT NULL,
CONSTRAINT PK_Language_Id PRIMARY KEY (Language_Id),
CONSTRAINT UQ Language Name UNIQUE (Language Name)

)

CREATE TABLE Countries_Languages

(
CL_Id INT CONSTRAINT NN CL Id NOT NULL,
Language_Id INT CONSTRAINT NN CL_Language Id NOT NULL,
Country Id INT CONSTRAINT NN CL Country Id NOT NULL,
Language Category VARCHAR(10)

CONSTRAINT NN_CL_Category NOT NULL,
Make Flag INT,
CONSTRAINT PK CL Id PRIMARY KEY (CL Id),
CONSTRAINT UQ_Language_Country

UNIQUE (Language Id, Country Id),
CONSTRAINT CK_CL_Category

CHECK (Language Category IN ('MAIN', 'SECONDARY')),
CONSTRAINT CK CL Make Flag CHECK (Make Flag IN (0, 1)),
CONSTRAINT FK_CL_Countries

FOREIGN KEY (Country Id) REFERENCES Countries(Country Id),
CONSTRAINT FK CL_Languages

FOREIGN KEY (Language_Id) REFERENCES Languages (Language_Id)

);

-- Build an Oracle sequence too

CREATE SEQUENCE CL_Id Seg;

Create these objects in Oracle, SQL Server, or both if you want to reproduce the

examples yourself.

56

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 " DATA TRANSFER PARADIGM

According to the design in Listing 5-1, there is one table for the countries, one for
the languages, and one for the association between the countries and the languages.
According to the business needs, some languages should be associated with some
countries and some common information will be added there.

I want to review some of the design considerations shown in this script.

1.

Notice that every table has its own primary key, as it should
be in a normalized system. The primary key is enforced by an
artificial column with no business meaning. This is the most
common scenario. I always prefer to keep the primary key
away from the business.

Sometimes, when the primary key is artificial, you can add a
unique constraint. This is the so-called unique business key
and it defines the table from the business point of view. For
example, the code of the country should be unique and that
code has a business meaning, compared to the artificial key
with the sole purpose of uniquely identifying one row. The
combination language and country should also be unique in
the association table, so you can see the unique constraint.
The business key can be defined as the primary key.
Technically speaking, it’s a suitable candidate, but I prefer to
separate things and to always keep the primary key away from
the business.

The constraints are all named constraints, not system
generated. The names are very relevant and are generally
obtained by the concatenation between the table, column,

and constraint type. The names can be seen in the set of
system objects or data dictionary, so the developer can quickly
understand what'’s going on by the names. The constraint
names are also visible in error messages so the developer can
quickly see what the errors refer to. I recommend that the
prefix of the constraint be the constraint type.

Add the check constraints or foreign key constraints whenever
possible. If you know the exact values, do not hesitate and
do not leave the columns optional. Combine the check
constraints with NOT NULL constraints. In most cases, a
column with low selectivity can have a check constraint. See
if that is the case and add both constraints, if possible. If the
list with values defined by the check constraint will increase
in time, you should transform the check constraint into a
foreign key constraint. Add a lookup table first and restrict
the table using that lookup table. Before choosing the type of
constraint, think of the future. Although there may only be a
few values now, if you anticipate that the list may grow, add
the lookup table from the beginning.

57

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 " DATA TRANSFER PARADIGM

5. Itis good to apply the constraints and to restrict the data
to be conformed to the business definition. If the layer of
constraints is properly set from the beginning, you have a
good starting point in your database development activity.
You can see in the example that almost every column has at
least one constraint attached to it. Of course, descriptive fields
won'’t have any constraints. However, the tip is to see if any
type of constraint can be applied in one way or another to the
column and do this investigation constantly for any column in
any table.

6. You can see that this script can be executed as is in Oracle and
SQL Server and in others database systems too. This is the
advantage of the standard!

Let’s now illustrate the destination system. The target system, B, is composed of a list
of reporting tables per country. You can see these tables in Listing 5-2.

Listing 5-2. The Destination System Design
CREATE TABLE English European_Countries

(
English CL_Id INT CONSTRAINT NN English CL Id NOT NULL,
Country Code VARCHAR(3)

CONSTRAINT NN_LCountry Code NOT NULL,
Country Name VARCHAR(50)

CONSTRAINT NN_LCountry Name NOT NULL,
Language_Category VARCHAR(10),
CONSTRAINT PK English CL Id PRIMARY KEY (English CL Id),
CONSTRAINT UQ_ECountry_Code Category

UNIQUE (Country Code, Language Category));

CREATE TABLE French_European_Countries

(
French CL_Id INT CONSTRAINT NN French CL_Id NOT NULL,
Country Code VARCHAR(3)

CONSTRAINT NN_FCountry Code NOT NULL,
Country Name VARCHAR(50)

CONSTRAINT NN_FCountry Name NOT NULL,
Language_Category VARCHAR(10),
CONSTRAINT PK French CL_Id PRIMARY KEY (French CL Id),
CONSTRAINT UQ_FCountry Code Category

UNIQUE (Country Code, Language Category)

)

Other reporting tables may be added per various languages.
Here is reporting activity where the reports are set per language and the data
is divided per language. The examples want to illustrate a style, and this style is

recommended for databases in general, but specifically for a replication system, a data
migration system, or a data warehouse system.

58

www.it-ebooks.info

http://www.it-ebooks.info/

Sample of the Data

CHAPTER 5 " DATA TRANSFER PARADIGM

Let’s see the initial data. It will be used in most of the examples in this book. For anyone
working in databases, such as programmers, analysts, or testers, the data should have
a strong relevancy. The business reflects in the data. Any database design should be

associated with some samplings.

Table 5-1 lists counties, Table 5-2 contains a sampling of languages, and Table 5-3
contains some common data in an association table. The data is highly normalized and
will implement a many-to-many relationship between countries and languages, which is
the reason for the association table, Countries_Languages (see the design in Listing 5-1).

Table 5-1. Sample Country Values

Country ID Code Name Continent
1 AR Argentina South America
2 AT Austria Europe
3 FR France Europe
4 MT Malta Europe
5 ES Spain Europe
6 CH Switzerland Europe
7 NL The Netherlands Europe
8 UK United Kingdom Europe
9 Us United States North
of America America

Table 5-2. Sample Language Values

Language ID Language Name

Dutch
English
French
German

Maltese

(=23 B S

Spanish

59

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 " DATA TRANSFER PARADIGM

Table 5-3. Countries and Languages

Id Languageld Countryld Category Make Flag
1 6 1 MAIN 0

2 4 2 MAIN 1

3 3 3 MAIN 1

4 2 4 MAIN 1

5 5 4 MAIN 0

6 6 5 MAIN NULL
7 3 6 MAIN 1

8 4 6 MAIN 0

9 2 6 SECONDARY 1

10 1 7 MAIN 1

11 2 7 SECONDARY 0

12 2 8 MAIN 1

13 2 9 MAIN 0

An Example Insert Script

Before starting the first example, due to the fact that most of the exercises will be taken
from these samplings of countries and languages, let’s discuss the insert script, so anyone
who wants to do so can effectively execute all the examples and reproduce the exact
conditions as in my system.

Listing 5-3 shows the INSERT statements used to put the example data from Tables 5-1
through 5-3 into the example tables. The countries, languages, and their associations are
initialized with the required quantity of data. The tables above show this initial data. Now
the same data can be seen in a more technical manner, in an insert script. Of course, if
execute the insert script in Oracle, don’t forget to commit!

Listing 5-3. Insert Script to Populate Countries and Languages

INSERT INTO Countries (Country Id, Country Code, Country Name, Continent)
VALUES (1, 'AR', 'Argentina', 'South America');

INSERT INTO Countries (Country Id, Country Code, Country Name, Continent)
VALUES (2, 'AT', 'Austria', 'Europe');

INSERT INTO Countries (Country Id, Country Code, Country Name, Continent)
VALUES (3, 'FR', 'France', 'Europe');

INSERT INTO Countries (Country Id, Country Code, Country Name, Continent)
VALUES (4, 'MT', 'Malta’, 'Europe');

INSERT INTO Countries (Country Id, Country Code, Country Name, Continent)
VALUES (5, 'ES', 'Spain', 'Europe');

INSERT INTO Countries (Country Id, Country Code, Country Name, Continent)
VALUES (6, 'CH', 'Switzerland', 'Europe');

60

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 " DATA TRANSFER PARADIGM

INSERT INTO Countries (Country Id, Country Code, Country Name, Continent)
VALUES (7, 'NL', 'The Netherlands', 'Europe');

INSERT INTO Countries (Country Id, Country Code, Country Name, Continent)
VALUES (8, 'UK', 'United Kingdom', 'Europe');

INSERT INTO Countries (Country Id, Country Code, Country Name, Continent)
VALUES (9, 'US', 'United States of America', 'North America');

INSERT INTO Languages (Language Id, Language Name) VALUES (1, 'Dutch');
INSERT INTO Languages (Language_Id, Language_ Name) VALUES (2, 'English');
INSERT INTO Languages (Language_Id, Language_Name) VALUES (3, 'French');
INSERT INTO Languages (Language Id, Language Name) VALUES (4, 'German');
INSERT INTO Languages (Language Id, Language Name) VALUES (5, 'Maltese');
INSERT INTO Languages (Language Id, Language Name) VALUES (6, 'Spanish');
INSERT INTO Countries Languages (CL_Id, Country Id, Language Id,
Language_Category, Make_Flag) VALUES (1, 1, 6, 'MAIN', 0);

INSERT INTO Countries_Languages (CL_Id, Country Id, Language Id,

Language Category, Make Flag) VALUES (2, 2, 4, 'MAIN', 1);

INSERT INTO Countries Languages (CL_Id, Country Id, Language Id,

Language Category, Make Flag) VALUES (3, 3, 3, 'MAIN', 1);

INSERT INTO Countries Languages (CL_Id, Country Id, Language Id,

Language Category, Make Flag) VALUES (4, 4, 2, 'MAIN', 1);

INSERT INTO Countries_Languages (CL_Id, Country Id, Language Id,

Language Category, Make Flag) VALUES (5, 4, 5, 'MAIN', 0);

INSERT INTO Countries Languages (CL_Id, Country Id, Language Id,

Language Category, Make Flag) VALUES (6, 5, 6, 'MAIN', NULL);

INSERT INTO Countries Languages (CL_Id, Country Id, Language Id,

Language Category, Make Flag) VALUES (7, 6, 3, 'MAIN', 1);

INSERT INTO Countries_Languages (CL_Id, Country Id, Language Id,

Language Category, Make Flag) VALUES (8, 6, 4, 'MAIN', 0);

INSERT INTO Countries Languages (CL_Id, Country Id, Language Id,

Language Category, Make Flag) VALUES (9, 6, 2, 'SECONDARY', 1);

INSERT INTO Countries Languages (CL_Id, Country Id, Language Id,

Language Category, Make Flag) VALUES (10, 7, 1, 'MAIN', 1);

INSERT INTO Countries_Languages (CL_Id, Country Id, Language Id,

Language Category, Make Flag) VALUES (11, 7, 2, 'SECONDARY', 0);

INSERT INTO Countries Languages (CL_Id, Country Id, Language Id,

Language Category, Make Flag) VALUES (12, 8, 2, 'MAIN', 1);

INSERT INTO Countries Languages (CL_Id, Country Id, Language Id,

Language Category, Make Flag) VALUES (13, 9, 2, 'MAIN', 0);

Filtering for English and French

Listing 5-4 shows the atomic solution to the problem as implemented in Oracle. This
is the row-by-row solution that in my experience will be chosen by many application
developers.

61

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 " DATA TRANSFER PARADIGM

Listing 5-4. Full Data Transfer, Atomic Style, Using Oracle

CREATE PROCEDURE Atomic_Full Transfer Country
(p_Language_Name VARCHAR)
As
v_Country Name VARCHAR2(50);
v_Country Code VARCHAR2(3);
v_Language Category VARCHAR2(10);
v_New EEC_Id INT;
CURSOR c_Get_Countries (p_Language VARCHAR2) IS
SELECT c.Country Name, c.Country Code, cl.Language_Category
FROM Countries_Languages cl INNER JOIN Languages 1
ON (1l.Language Id = cl.Language Id)
INNER JOIN Countries c
ON (c.Country Id = cl.Country Id)
WHERE 1.language Name = p_Language;
BEGIN
v_New EEC Id := 1;
IF p _Language Name = 'English' THEN
DELETE English European_Countries;
ELSIF p_Language Name = 'French' THEN
DELETE French_European_Countries;
END IF;
OPEN c_Get_Countries (p_Language Name);
LooP
FETCH c_Get Countries
INTO v_Country Name, v_Country Code, v_Language Category;
EXIT WHEN c_Get_Countries%NOTFOUND;
IF p_Language Name = 'English' THEN
INSERT INTO English European Countries (English CL Id,
Country Code, Country Name, Language Category)
VALUES (v_New EEC Id, v_Country Code, v_Country Name,
v_Language Category);
ELSIF p_Language Name = 'French' THEN
INSERT INTO French_European_Countries (French_CL_Id,
Country Code, Country Name, Language Category)
VALUES (v _New EEC Id, v_Country Code, v_Country Name,
v_Language Category);
END IF;
v_New EEC_Id := v_New EEC_Id + 1;
COMMIT;
END LOOP;
CLOSE c_Get_Countries;
END Atomic_Full Transfer Country;
/

62

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 " DATA TRANSFER PARADIGM

You can see from Table 5-1 (Countries) that there is a list of countries with an artificial
identifier, a name, a unique code, and the continent. Looking at Table 5-2 (Languages)
you can see the artificial identifier and the name of the language. The association table
(Table 5-3) has one language and one country, like any association table. Apart from that,
the category of a language can be MAIN or SECONDARY for the country and there is a flag for
each country language combination. The destination table has another artificial identifier
as primary key, the country code, name, and the category. You are positioned in the English
or French language so you know that you are within a certain language. This is why no
language reference is required, just the country information.

The task is to fill the reporting table, either the English or French one, from the set of
normalized tables. The transfer is a full transfer because the target table with countries is
first deleted. Let’s analyze the Oracle version.

Listing 5-4 shows the first solution using the atomic approach and the associated
style of development. Just to clarify, even though the details should be straightforward,
I will describe the flow for this first example.

1. The parameter is the language, either French or English. The
list may expand for others languages, of course.

2. You declare some variables to store the data to be inserted, for
country name and code, for the language category, and for the
key identifier that should be generated. Obviously, you can
use a record or structure instead of the variables to achieve
the same goal. The purpose is to be able to store atomically
the values to be inserted in these variables. You can already
see how code is atomically oriented: you are preparing to
store the data and manipulate it at the atomic (row) level.

3. Youdeclare the cursor that will store the country name, code,
and the language category from the series of source tables
(Countries, Languages, Countries_ Languages). The cursor
with the loop facility, which allows you to position it wherever
you want it in the data set, is the base for the atomic approach.

4. You initialize the value for the identifier to 1, using the
dedicated variable v_New_EEC_Id. The primary key from the
target, an artificial identifier, will have to receive a unique
value taken from this variable.

5. Based on the language, either English or French, the logic
deletes one reporting table or another. The transfer is full so
the target table is deleted first.

6. Youopen the cursor and start adding the values from the
cursor into the variables using the fetch instruction. This is
the classic series of steps in every cursor.

63

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 " DATA TRANSFER PARADIGM

Based on the language, the data is added into the target
table, row by row. For every row, the data is inserted from the
variables that store the current set of values from the cursor.
The same if-else statement is used to detect the target table
based on the language.

You increment the key to prepare the next value for the next
iteration.

This procedural style corresponds to the atomic approach of
programming. Many application developers think atomically
in almost any circumstance; they try to use the same style in
the database that they use in the user interface. They know the
principles of structured programming and they apply them
here at the row level.

Let’s see the results for both countries. After executing in Oracle the procedure

specified in Listing 5-4, with the parameter English (EXECUTE Atomic_Full Transfer_
Country ('English'),youneed to query from the reporting table English_European_
Countries. Change the parameter to French and query the second reporting table.
Tables 5-4 and 5-5 show the rows that will be transferred between systems.

Table 5-4. Rows transferred, English

English CL Id Country Code Country Name Country Category
1 MT Malta MAIN
2 CH Switzerland SECONDARY
3 NL The Netherlands SECONDARY
4 UK United Kingdom MAIN
5 Us United States of MAIN
America

Table 5-5. Rows transferred, French

French CL Id Country Code Country Name Country Category
1 FR France MAIN
2 CH Switzerland MAIN

Before continuing to comment on this approach, let’s see the SQL Server version of

the atomic approach. You can see it in Listing 5-5. You see all the same steps. This should
demonstrate the classic, procedural, and atomic style of development. Move the data into
the variables one by one and populate the table with new rows one by one, according to
the values stored in the variables.

64

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 " DATA TRANSFER PARADIGM

Listing 5-5. Full Data Transfer, Atomic Style, in SQL Server

CREATE PROCEDURE Atomic_Full Transfer Country

(

@p_Language_Name VARCHAR(50)

AS

DECLARE @v_Country Name VARCHAR(50);

DECLARE @v_Country_Code VARCHAR(3);

DECLARE @v_Language_Category VARCHAR(10);

DECLARE @v New EEC Id INT;

DECLARE c_Get Countries CURSOR FOR

SELECT c.Country Name, c.Country Code, cl.Language Category
FROM Countries Languages cl INNER JOIN Languages 1

ON (1.Language Id = cl.language Id)

INNER JOIN Countries c

ON (c.Country Id = cl.Country_Id)

WHERE UPPER(1.Language_Name) = UPPER(@p_Language_Name);

BEGIN

SET @v_New EEC Id = 1;
IF @p_Language Name = 'English'
DELETE English_European_Countries;
ELSE IF @p_Language Name = 'French’
DELETE French European Countries;
OPEN c_Get_Countries
FETCH NEXT FROM c_Get_Countries
INTO @v_Country Name, @v_Country Code, @v_Language Category;
WHILE (@@FETCH_STATUS = 0)
BEGIN
IF @p_Language Name = 'English’
INSERT INTO English European Countries (English CL Id,
Country Code, Country Name, Language Category)
VALUES (@v_New EEC_Id, @v_Country Code, @v_Country
Name, @v_Language Category);
ELSE IF @p_Language Name = 'French’
INSERT INTO French European Countries (French CL Id,
Country Code, Country Name, Language Category)
VALUES (@v_New EEC_Id, @v_Country Code, @v_Country
Name, @v_Language Category);
SET @v_New EEC_Id = @v_New EEC_Id + 1;
FETCH NEXT FROM c_Get_Countries INTO @v_Country Name, @v_Country
Code, @v_Language Category;
END

CLOSE c_GCet_Countries;
DEALLOCATE c_Get_Countries;

END;
GO

65

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 " DATA TRANSFER PARADIGM

Execute the procedure with the values for the parameters of English and then
French, and check the reporting tables in SQL Server. You will get the same results as in
Oracle, of course.

Notice how the data is manipulated atomically and procedurally, row by row. These
programmers completely exclude the holistic manipulation of the data set from their logic.
They may be aware of the data set because the query that defines the cursor is the data set.
However, the application developers think that the data row is the only thing they should
take into consideration when writing their logic. They do not try to analyze and they do
not question if they can solve the problem in a holistic manner; they are prepared by
default to divide everything in rows, at the lowest level of detail. This style of development
is a consequence of their classic and typical vision of programming and of their decision
to ignore the fact that they are now developing in a specific, data-oriented environment,
where the concept of data set should be incorporated into their structured model of
programming.

It is true that sometimes we need to solve things atomically. There are business
and technical situations where division is required because some problems cannot be
simply solved at the data set level. Still, most tasks can be solved by affecting everything
as a whole and not piece by piece or row by row. Consider a replication system or a data
migration system, that type of application I was talking about earlier. Imagine you are
moving medium-to-large quantities of data from different sources to different targets
and imagine you are following the atomic approach. The first thing to suffer will be the
performance. You can add thousands of indexes; you can do whatever you want, but you
won'’t solve the issue. The issue is the improper style of programming.

Now let’s look at the holistic, SQL approach for the same example. Listing 5-6 shows
the set-based solution in Oracle. Notice the differences in terms of readability and simplicity.
See how clear the code is in the holistic approach compared to the code in the atomic
approach.

Listing 5-6. Full Data Transfer, Holistic Style, in Oracle

CREATE PROCEDURE Holistic Full Transf Country
(

p_Language_Name VARCHAR

AS
BEGIN
DELETE English European_Countries
WHERE p_Language Name = 'English';
DELETE French_European_Countries
WHERE p_Language Name = 'French’;
INSERT INTO English European_ Countries (English CL_Id, Country Code,
Country Name, Language Category)
SELECT ROW_NUMBER() OVER (ORDER BY c.Country Code, cl.language_
Category) AS English CL Id, c.Country Code,
c.Country Name, cl.lLanguage Category
FROM Countries Languages cl INNER JOIN Languages 1
ON (1l.Language Id = cl.Language_Id)

66

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 " DATA TRANSFER PARADIGM

INNER JOIN Countries c
ON (c.Country Id = cl.Country Id)
WHERE 1.language Name = p_Language Name
AND p Language Name = 'English';
INSERT INTO French_European Countries (French CL _Id, Country Code,
Country Name, Language Category)
SELECT ROW_NUMBER() OVER (ORDER BY c.Country Code, cl.language_
Category) AS French CL Id, c.Country Code,
c.Country Name, cl.Language Category
FROM Countries Languages cl INNER JOIN Languages 1
ON (1.Language Id = cl.language Id)
INNER JOIN Countries ¢
ON (c.Country Id = cl.Country Id)
WHERE 1.language Name = p_Language Name
AND p Language Name = 'French';
COMMIT;
END Holistic_Full Transf Country;
/

This Oracle stored procedure contains only SQL statements, no procedural instructions.
The stored procedure contains two delete statements and two insert statements and that’s it!
The logic moves the data in data sets (in waves, as I like to say). The entire transfer is seen as
one transfer and there was no need for any movement at the row level.

Now let’s see the SQL Server version of the holistic approach and then analyze the
holistic approach in greater detail. Listing 5-7 shows the SQL Server solution.

Listing 5-7. Full Data Transfer, Holistic Style, in SQL Server

CREATE PROCEDURE Holistic_Full Transf Country

(
@p_Language Name VARCHAR(50)

AS
BEGIN
DELETE English_European_Countries
WHERE @p_Language Name = 'English';
DELETE French_European_Countries
WHERE @p_Language Name = 'French’;
INSERT INTO English European Countries (English CL Id, Country Code,
Country Name, Language Category)
SELECT ROW_NUMBER() OVER (ORDER BY c.Country Code, cl.language
Category) AS English CL Id,
c.Country Code, c.Country Name, cl.Language Category
FROM Countries_Languages cl INNER JOIN Languages 1
ON (1.Language Id = cl.language Id)
INNER JOIN Countries c
ON (c.Country Id = cl.Country Id)
WHERE 1.language Name = @p_Language_Name

67

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 " DATA TRANSFER PARADIGM

AND @p_Language_Name = 'English';
INSERT INTO French European Countries (French CL _Id, Country Code,
Country Name, Language_Category)
SELECT ROW_NUMBER() OVER (ORDER BY c.Country Code, cl.language
Category) AS French CL Id,
c.Country Code, c.Country Name, cl.Language Category
FROM Countries_Languages cl INNER JOIN Languages 1
ON (1l.Language_Id = cl.Language_Id)
INNER JOIN Countries c
ON (c.Country Id = cl.Country Id)
WHERE 1.lLanguage Name = @p_Language_Name
AND @p_Language Name = 'French';
END
GO

Execute the procedures in either Oracle or SQL Server and check the results.
Compare the results of the holistic approach with the results of the atomic approach
to make sure you have the same results. The goal was achieved in both cases, but the
method and style are different.

Let’s analyze the steps, as we did for the atomic versions. Here’s how the holistic
solutions operate:

1. Delete the table with English or French languages, based
on the parameter’s value. The deletion is holistic: all the
countries for the respective language are deleted.

2. Insert the English or French countries, based on the value of
the parameter, in one single instruction: all the countries for
the respective languages are added and the new identifier is
generated using the function Row_Number. Both steps are set-
based and holistic. Whether its 2 countries, 10 countries, or
1,000 countries, all of them are added in one single statement.
There is one set of countries. You don’t care how many are
within the data set; you visualize the set of countries and you
don’t care about the details.

I believe the difference in terms of simplicity is obvious. There are merely two steps,
and they are simple steps. In contrast, the atomic approach required nine steps; it is
clearly more complex to grasp.

In terms of portability, things should be clear now with this example. The only
difference between Oracle and SQL Server is the naming convention for variables: in SQL
Server the @ sign is required! The portability advantage clearly goes to the holistic, set-
based approach.

The versions of stored procedures are almost identical! You need to know the specific
syntax for SQL Server, which is the declarative language of Transact SQL or you need to
know the procedural language for Oracle, which is PL SQL. These procedural languages
are similar in some aspects. There is no standard, just the same principles of structured
programming. It’s not hard to learn a new programming database language, especially

68

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 " DATA TRANSFER PARADIGM

when you know another one, but it does take some time. For the holistic approach, things
are much simpler. The standard is followed by all vendors inside their programming
languages. The SQL from SQL Server and the SQL from Oracle are almost the same. The
slight differences may be accommodated easily.

Try It on Your Own

Dear reader, I encourage you to solve similar exercises in both ways! Please identify a data
set and affect it in a holistic manner. Then divide the data set into rows, use cursors, and
complete the task using the atomic and procedural approach. Apart from the fact that
the code looks so different, and apart from the increased complexity of the procedural
approach, in most cases you will notice increased performance from the holistic
approach when operating on medium-to-large quantities of data. You will not see a big
difference in performance for just two to three rows, but you will notice a difference as the
number of rows increases.

You need to check the results after the execution in the atomic approach, save the
results, go back to the starting conditions, and then implement the solution using the
holistic approach. Compare the results and, if there are differences, try to see why. If the
logic is well written, there should be no differences.

After you make sure that the result sets are correct, you may check the performance.
I'was not able to see many cases where the performance in the database suffered due to
the holistic approach versus the atomic approach.

Of course, using the holistic approach, even the SQL itself can be improved. Writing
SQL instead of writing procedurally is the first condition for good performance. The
second condition is knowing how to write the best SQL. A good database developer
will take the SQL and rewrite it repeatedly until he has the best code. Then he can apply
additional features like indexes, materialized views in a static environment like a data
warehouse, and so many others. All these performance facilities are useless if they are
applied to the atomic and procedural code. The atomic and procedural code itself will
generate a poor performance.

Some Conclusions

No one should write atomically in the relational database. If you analyze the holistic
approach and compare it with the atomic approach, you will see how the degree of
simplicity is obviously in favor of the holistic approach. If you are an application developer,
I am asking you to be objective and to free yourself from your paradigms and models.

In the holistic approach, you can see how the procedural code was completely
avoided: even the if-else was excluded from the logic! I removed the if-else and
replaced it with the condition for the parameter to be English or French; my goal was to
minimize the use of procedural code completely. In a replication system written in SQL,
an ETL or a data migration system, this is a great advantage in terms of performance. The
data movement is done in data sets, which is the fastest possible way!

Working based on sets, holistically, and in SQL is the most suitable style within a
relational database. It is the authentic style of a database developer.

69

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 " DATA TRANSFER PARADIGM

Building a specific data migration system in the holistic manner requires having good
SQL professionals with a perfect understanding of the data. This means having a good
understanding of the concept of a data set. Some developers that think SQL is the most
valuable asset in this context. I believe that very often the use of tools can be avoided.

Example 2: Incrementally Update a Target

The first example was relatively easy. This is the general rule: one should always start with
a simple example. Let’s increase the complexity and see more examples to illustrate the
two styles of programming.

You just saw one feature that works with the set-based approach: the row number
function. Apart from the simple copy example, one other requirement was to dynamically
generate an artificial identifier for the key in the target. The tendency of the application
developer is clear: they believe that they need to manipulate data row by row to generate
the artificial identifier. They don’t know that the database system has a set of operators
and functions dedicated to set-based approach that will allow them to avoid the row-by-
row data manipulation.

Let’s continue using the same design. You are in the same data migration system and
you are moving data from a production system, where all the countries and languages are
stored in one place, into a destination system where the data is organized per language.
Let’s increase the complexity of the data transfer and assume that the data is not
completely erased before the transfer. The data transfer will be incremental, so only the
changes will be applied to the target.

Changes to the Source

Three changes will occur in the source tables. For Malta, the English language will
become a secondary language instead of the principal one (MAIN). You completely

delete the English language from Switzerland, and you add the English language as a
secondary language for Austria. You also add a new country, Algeria, along with a new
language, Algerian Arabic. This is the main language in Algeria, and the French language
is secondary. Listing 5-8 modifies the data and creates new rows for this second example.
(Obviously, don’t forget a commit statement if you're running in an Oracle database!)

Listing 5-8. Changing the Source Data

UPDATE Countries_Languages

SET Language Category = 'SECONDARY'
WHERE Country Id = 4 AND Language Id
DELETE Countries_Languages

WHERE Country Id = 6 AND Language Id = 2;

INSERT INTO Countries Languages (CL_Id, Country Id, Language_Id,
Language_Category)

VALUES (14, 2, 2, 'SECONDARY');

INSERT INTO Languages (Language Id, Language Name)

VALUES (7, 'Algerian Arabic');

2;

70

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 " DATA TRANSFER PARADIGM

INSERT INTO Countries (Country Id, Country Code, Country Name, Continent)
VALUES (10, 'Ag', 'Algeria’', 'Africa');

INSERT INTO Countries_Languages (CL_Id, Country Id, Language Id,
Language_Category)

VALUES (15, 10, 7, 'MAIN');

INSERT INTO Countries Languages (CL_Id, Country Id, Language Id,
Language_Category)

VALUES (16, 10, 3, 'SECONDARY');

Obviously, things are more complicated now! You are not simply deleting the target
table anymore, either the English or French reporting table. You are also trying to keep
the reporting tables syncronized with the source tables and applying the changes that
have been made to the sources.

More than that, you need to be able to syncronize deletions. Whenever you delete
a country from the sources, you need to remove it from the reporting table. When you
have a new country in the source, you need to add it in the target, and when you change
something in the source, you need to update the information in the target. This is the
incremental data transfer.

Note that the business key is apart from the primary key in the source table,
Countries_Languages. The business key is composed of the columns Country_Code and
Language_Category. The role of the artificial key is just for unique identification and the
role of the unique business key is to be sure that any unique row has relevance from the
business point of view.

One country may have one category at a time. This one is subject to change, as in the
Malta case. Based on the language category, you can detect the changes using either the
atomic approach or the holistic approach. You can check for the differences one by one
using the atomic approach, or you can check for the differences for all the countries using
the holistic approach.

The Atomic Approach

You will solve this exercise by deleting the non-synchronized values and adding the list
of new values. You can try to do so by thinking atomically and defining two cursors:

one for the deletions of English countries that were changed in the source that will be
applied first and the second one for the new values. You can see this atomic approach in
Listing 5-9 (Oracle) and Listing 5-10 (SQL Server).

Listing 5-9. Incremental Data Transfer, Atomic Style, in Oracle

CREATE PROCEDURE Atomic_Inc_Transfer English
AS

v_Country_Name VARCHAR (50);

v_Country Code VARCHAR (3);

v_Language Category VARCHAR (10);

v_Next EEC_Id INT;

v_Count INT;

71

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 " DATA TRANSFER PARADIGM

CURSOR c_Existing Countries IS
SELECT Country Code, Language Category
FROM English European_Countries;

CURSOR c_New Countries IS
SELECT c.Country Name, c.Country Code, cl.Language Category
FROM Countries_Languages cl INNER JOIN Languages 1
ON (l.Language Id = cl.language Id)
INNER JOIN Countries c ON (c.Country Id = cl.Country Id)
WHERE 1.language Name = 'English'j
BEGIN
OPEN c_Existing Countries;

LooP
FETCH c_Existing Countries INTO v_Country Code, v_Language Category;

EXIT WHEN c_Existing Countries#NOTFOUND;

SELECT COUNT(1) INTO v Count
FROM Countries_Languages cl INNER JOIN Languages 1
ON (l.Language_Id = cl.Language Id)
INNER JOIN Countries ¢ ON (c.Country Id = cl.Country Id)
WHERE 1.Language Name = 'English’
AND c.Country Code = v_Country Code AND cl.lLanguage Category =
v_Language_Categorys;
IF (v_Count = 0) THEN
DELETE English European_Countries
WHERE Country Code = v_Country Code AND Language Category =
v_Language_Categorys;
END IF;

COMMIT;
END LOOP;

CLOSE c_Existing Countries;
OPEN c_New_Countries;
LooP
FETCH c_New_Countries INTO v_Country Name, v_Country Code,

v_Language_Categorys;

EXIT WHEN c_New_Countries%NOTFOUND;

72

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 " DATA TRANSFER PARADIGM

SELECT COUNT(*) INTO v_Count FROM dual
WHERE NOT EXISTS

(

SELECT 1

FROM English_European_Countries eecl

WHERE eeci.Country Code = v_Country Code

AND eecil.language_Category = v_Language_Category
);

IF (v_Count = 1) THEN
SELECT MAX (English CL_Id) + 1 INTO v_Next EEC_Id FROM
English European_Countries;

INSERT INTO English_European_Countries (English_CL_Id,
Country_Code, Country Name, Language Category)
VALUES (v_Next EEC Id, v _Country Code, v Country Name,
v_Language Category);

END IF;

COMMIT;
END LOOP;

CLOSE c_New_Countries;
END Atomic_Inc_Transfer_English;
/

The logic in this example looks so professional! Let’s analyze it.

1. You declare two cursors, one for storing the countries that
should be deleted and another for storing the list of new
countries.

2. You use the unique business key composed of Country Code
and Language_Category, and store the pair in two variables,
row by row. The values are taken from the target table,
English _European_Countries.

3. You check in the source system country by country, and filter
per the combination country code and language category, for
the English language. You calculate the count and add itin a
dedicated variable.

4. Ifthe countis zero, the data does not exist in the source system
anymore, so it should be deleted from the target system.

5. Secondly, you open the second cursor from the source system.

73

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 " DATA TRANSFER PARADIGM

6. You store the required information in the dedicated variables:
country name, code, and the category of the language.

7. You checkin the reporting table against the sources to see
if you have new countries. You rely on the business key,
of course. You calculate another count to see if you have
something.

8. Ifthe respective count is one, you consider the country as new
and add it to the reporting table.

This task could have been accomplished in different ways in the atomic approach;
this is just one solution to the problem. The important aspect here is to see the atomic
approach in action: everything is imagined per unit and row by row.

Now let’s see the SQL Server version of the atomic approach; it’s very similar to the
Oracle version, but there are differences due to the different nature of the programming
language, which is another disadvantage of the atomic approach.

Using the atomic approach, which generally means using procedural code, requires
a better understanding of the procedural language. The logic may be completely different
when using the atomic approach because the programming languages are distinct,
despite similarities.

Check the reporting table with English countries before and after the execution to
see how the reporting table is synchronized with the sources. Do this for both the atomic
approach now and the holistic approach later. Remember to start at the same initial
conditions if you want to be 100% accurate.

Listing 5-10. Incremental Data Transfer, Atomic Style, in SQL Server

CREATE PROCEDURE Atomic_Inc_Transfer_ English
As
DECLARE @v_Country Name VARCHAR (50);
DECLARE @v_Country Code VARCHAR (3);
DECLARE @v_Language_Category VARCHAR (10);
DECLARE @v_Next EEC Id INT;
DECLARE @v_Count INT;

DECLARE c_Existing Countries CURSOR FOR
SELECT Country Code, Language Category
FROM English European_Countries;

DECLARE c_Get New Countries CURSOR FOR
SELECT c.Country Name, c.Country Code, cl.Language Category
FROM Countries_Languages cl INNER JOIN Languages 1

ON (l.Language Id = cl.language Id)
INNER JOIN Countries c ON (c.Country Id = cl.Country Id)
WHERE 1.lLanguage Name = 'English’j

74

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 " DATA TRANSFER PARADIGM

BEGIN
OPEN c_Existing Countries;

FETCH NEXT FROM c_Existing Countries INTO @v_Country Code,
@v_Language Categorys

WHILE (@@FETCH_STATUS = 0)
BEGIN
SET @v_Count = (SELECT COUNT (1)
FROM Countries Languages cl INNER JOIN Languages 1

ON (l.Language Id = cl.Language Id)
INNER JOIN Countries c ON (c.Country Id = cl.Country Id)
WHERE 1.language Name = 'English’
AND c.Country Code = @v_Country Code AND cl.lLanguage_Category = @v_Language_
Category

)s

IF (@v_Count
BEGIN

DELETE English European_Countries

WHERE Country Code = @v_Country Code AND Language_Category =
@v_Language_Category;
END;

0)

FETCH NEXT FROM c_Existing Countries INTO @v_Country Code, @v_Language_
Categorys

END

CLOSE c_Existing Countries;

DEALLOCATE c_Existing_Countries;

OPEN c_Get_New_Countries

FETCH NEXT FROM c_Get New Countries INTO @v_Country Name, @v_Country Code,
@v_Language Categorys

WHILE (@@FETCH_STATUS = 0)
BEGIN

SELECT @v_Count = COUNT(*)
WHERE NOT EXISTS

(

SELECT 1

FROM English_European_Countries eecl

WHERE eeci1.Country Code = @v_Country Code

AND eecil.language_Category = @v_Language Category
);

75

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 " DATA TRANSFER PARADIGM

IF (@v_Count = 1)

BEGIN
SET @v_Next EEC Id = (SELECT MAX (English CL Id) + 1 FROM English_
European Countries);
INSERT INTO English European_Countries (English CL_Id, Country Code,
Country Name, Language Category)
VALUES (@v_Next EEC Id, @v_Country Code, @v_Country Name, @v_
Language_Category);

END;

FETCH NEXT FROM c_Get New Countries INTO @v_Country Name, @v_Country Code,
@v_Language Categorys;
END

CLOSE c_Get New Countries;

DEALLOCATE c_Get_New_Countries;
END;
GO

Execute the procedures and check the reporting tables. See how Malta is a secondary
language now, how Switzerland was deleted from the reporting table, and how Austria
was added. Check all of this in the English_European_Countries table, comparing the
results before and after the execution.

Comparing the two stored procedures, the Oracle and SQL Server versions, you
can see almost the same steps. The while is a loop, the cursor is a cursor, the variable is
avariable with or without the @ sign, the fetch is a fetch, the if statement is the same
statement. In the end, it is not difficult to write in one system or another; things are
similar. Portability is not the main problem; the performance and the clarity of the code
are the problems.

The Holistic Solution

The holistic approach is much simpler. It’s given in Listing 5-11 for SQL Server and in
Listing 5-12 for Oracle. You don’t need anything like cursors or variables in the holistic
approach. All you need is to think holistically and understand that you have a set of data
to affect with two actions.

Listing 5-11. Incremental Data Transfer, Holistic Style, in SQL Server

CREATE PROCEDURE Holistic_Inc_Transfer English
As
BEGIN
DELETE FROM English European_Countries
FROM English European_Countries eec
WHERE NOT EXISTS

76

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 " DATA TRANSFER PARADIGM

(
SELECT 1
FROM Countries_Languages cl INNER JOIN Languages 1 ON
(l.Language Id = cl.Language Id)
INNER JOIN Countries c ON (c.Country Id = cl.Country Id)
WHERE 1.Language Name = 'English’
AND eec.Country Code = c.Country Code
AND eec.language_Category = cl.lLanguage_Category
)s

INSERT INTO English European Countries (English CL _Id, Country Code,

Country Name, Language Category)

SELECT (SELECT MAX (English CL Id) AS Max English CL Id FROM English_

European_Countries) + ROW_NUMBER() OVER (ORDER BY c.Country Code,
cl.Language_Category) AS English CL_Id, c.Country Code,
c.Country Name, cl.Language Category

FROM Countries Languages cl INNER JOIN Languages 1 ON (l.Language Id =

cl.Language Id)

INNER JOIN Countries c ON (c.Country Id = cl.Country Id)
WHERE 1.language Name = 'English’

AND NOT EXISTS

(
SELECT 1 FROM English European_Countries eec
WHERE eec.language Category = cl.lLanguage_Category AND eec.Country_
Code = c.Country Code
);
END;
GO

Let’s see the steps.

1. First, you delete the countries from the reporting table that
don’t conform to the business key and were eliminated from
the set of source tables. You have all the items that need to be
removed in a single select statement. You identify the rows to
be removed in a simple select statement and then transform
this into a delete statement.

2. Second, you add the new English European countries that
do not exist in the reporting target table. You generate an
artificial key for the reporting key in the select statement using
different SQL features.

Now let’s compare the two approaches. You have one delete statement and one

insert statement; that’s it! You might need to check a select statement to identify the data

that needs to be deleted.

Let’s assume you tested the data before. You look at the data and try to understand

the nature. You look to see if what you have is indeed what needs to be deleted and,
afterwards, you transform this select statement into a delete statement.

www.it-ebooks.info

77

http://www.it-ebooks.info/

CHAPTER 5 " DATA TRANSFER PARADIGM

You think in these terms. There are some countries in the reporting table that
may be obsolete due to some changes in the source tables. Let’s see these countries
first. You have a set of countries, one single data set. There’s no reason to go country by
country; there’s a list of countries, a set of rows, and you want to identify this list. This list,
once correctly identified, can be used for the deletion. In the logic, there is one delete
statement. In reality, we always think of the delete action in three steps: we have a set of
rows, we identify it, and we change it into a delete.

Secondly, and similarly, you have another set of countries that needs to be added in
the reporting table. You take the select statement and make sure to identify the correct set
of new countries. You find a way to dynamically generate new artificial identifiers for the
key in the reporting table. There’s no reason to move the logic at the atomic level.

Let’s analyze the Oracle logic in the holistic approach and compare it to the SQL
Server logic. You will be amazed to see how similar the logic is. Actually, if you weren’t
inside a stored procedure and you executed everything in a SQL editor, you could copy
the entire piece of code from Oracle and execute it in SQL Server or vice versa.

Listing 5-12. Incremental Data Transfer, Holistic Style, in Oracle

CREATE PROCEDURE Holistic_Inc_Transfer English
AS

BEGIN

DELETE FROM English European_Countries eec
WHERE NOT EXISTS

(
SELECT 1
FROM Countries Languages cl INNER JOIN Languages 1
ON (l.Language Id = cl.Language Id)
INNER JOIN Countries c
ON (c.Country Id = cl.Country Id)
WHERE 1.lLanguage Name = 'English’
AND eec.Country Code = c.Country Code
AND eec.language Category = cl.Language Category
)s

INSERT INTO English European Countries (English CL Id, Country Code,
Country Name, Language Category)
SELECT (SELECT MAX (English CL_Id) AS Max English CL Id
FROM English European Countries) + ROW_NUMBER() OVER (ORDER BY c.Country
Code, cl.Language Category) AS English CL Id, c.Country Code,
c.Country Name, cl.lLanguage Category
FROM Countries_Languages cl INNER JOIN Languages 1

ON (l.Language Id = cl.language Id)
INNER JOIN Countries c

ON (c.Country Id = cl.Country Id)
WHERE 1.Language Name = 'English'

78

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 " DATA TRANSFER PARADIGM

AND NOT EXISTS

(
SELECT 1 FROM English European_Countries eec
WHERE eec.language Category = cl.lLanguage Category
AND eec.Country Code = c.Country Code

)H

END Holistic_Inc_Transfer Englishj

/

You just analyzed two simple examples of data transfer. The data transfer, which is a
copy process from a source to a destination, is the most common task for a programmer
when writing inside the database. In these examples, you first transferred the data in a
simple full approach: the data was completely deleted first and replaced with the data
from the sources. The second exercise increased the complexity: the data in the target
was not deleted first. The data was incrementally updated, and only the changes were
applied to the target. In both scenarios, the artificial identifier in the target needed to be
dynamically generated.

This data transfer problem can be solved in both ways, according to the two visions
and styles of development. The application developers will be tempted to open cursors
and to move the context and the transfer to the row level. Because they are not fully aware
of the fact that they are in a relational database, where the data is affected in data sets,
and they know just the principles of structure programming, they imagine that they can
transfer everything at the row level.

By contrast, the database developers or the flexible application developers
familarized with the set based approach are aware of the data set. They know that the
data should be handled in data sets, and they always try to identify and affect the data
set as a whole, in a holistic manner. They know that there are many set-based facilities in
every database system for various things. For example, they use the row number function
to generate the identifier, and this function is applied per the entire data set. Their logic
is much simpler, more condensed, set-oriented, more performant, and portable because
SQL is a standard, so the logic is almost the same in any database system. The transfer
occurs at the level of the entire data set. This requires a certain style of development,
one that is different from the style of the user interface. It may not be attractive to some
programmers, but it is efficient and it is what it should be used in a relational database.

79

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6

The Challenge of Scalar
Functions

The cursor is the main feature that allows the application developer to move the entire
context to the row level. From my point of view, when teaching application developers to
work in the database, I would completely remove the cursor from their work agenda and
forbid the use of it until they learn and understand the concept of the data set. I would
also remove the loop feature from their development activity and not allow them to loop
under any circumstances. Cursors with loops are the favorite tools of many application
programmers, who like to use them often because they handle things atomically.

The truth is that the cursor is a great feature and it allows us to solve many problems
in the atomic style when the holistic style is not satisfactory. There are many situations
when we need them and when the data set cannot be handled as a whole so we are forced
to move the context from data set to the row level. So please don’t believe that I reject
cursors on the whole. On the contrary, I believe that the cursor is a great feature by itself;
the abuse of cursors is a disaster.

Cursors Have Their Place

To be honest, I like working with cursors! The steps are very clear. Declaring the cursor,
opening it, moving intermediate columns or expressions from the cursor data set into
the layer of variables, moving through the loop from one row to another, and performing
various manipulations are all challenging and exciting actions.

Many programming ideas can only be understood and clarified in time. Even now,

I continue to discover new things and clarify others. For example, cursors and their
mechanisms are fascinating. Especially when trees are involved, it’s difficult to handle
the logic; this is when we need to use cursors. The use of cursors is a perfect feature for
the atomic approach. It allows us to change the context from the data set to data row.
Sometimes this switch is required.

The atomic approach itself is mandatory and critical, and we cannot live without it.
However, the atomic approach should be seen as a backup solution for the holistic approach
within a relational database. This is a crucial point. It is similar to the use of antibiotics; no
one can say that antibiotics are bad. They add many years to the average lifespan. However,
excessive use of antibiotics is a bad practice, and doctors recommend avoiding using

© Stefan Ardeleanu 2016 81
S. Ardeleanu, Relational Database Programming, DOI 10.1007/978-1-4842-2080-1_6

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 ' THE CHALLENGE OF SCALAR FUNCTIONS

antibiotics unless they are necessary. The same way that the excessive use of antibiotics will
damage the body in time, the use of the atomic approach will damage a database in time.

The Lure of Functions

The application developer is a great fan of the cursor for another reason. As we all know,
one of the most important features for an application developer is the function. The
application developers loves functions and they like to use them as much as they can. In
specific programming languages like PL SQL or Transact SQL, these functions are named
scalar functions.

A scalar function returns a certain value of a certain type, like a string or number. The
scalar functions are very suitable for the atomic approach because they can be applied
per variables within loops and cursors. As with stored procedures, if the application
developer sees a stored procedure like a scalar function returning a void, they know that a
stored procedure should be defined to act in one expression or value and this action can
be executed atomically within a loop in a cursor.

So what are the connections between the cursor, the scalar function, and the atomic
approach? The cursor and the loop allow you to go down from the data set to the data row.
The scalar function accepts variables as parameters, it returns discrete values, and it is a type
of function that is executed per row. The scalar function is a row function; it is exactly what the
application developer needs to be able to move the context of development from the data set
to the data row. When I say to move the context from the data set to the data row, I don’t mean
that the application developers are necessarily aware of the context switch. In most cases, they
are not aware of any data set and they go down to the row level by instinct, automatically.

The principle of structured programming teaches us to create functions and to use
them to divide the logic into smaller pieces. One of the first things the students learn is
the use of functions. They learn to create functions, they learn that the function will return
something in most cases, and they learn to add parameters to the functions and recall them
later in their logic. When they start to work in the database and see the scalar functions,
they make the connection right away to what they already know from classic programming.

Of course, those functions are useful in the database too. But not all functions are
scalar, per row. There are set-based functions like table functions, for example. There
are alternatives in almost any database programming language. The function can be
applied to a data set and it can return a data set. The function can be used holistically.
Unfortunately, nothing compares to scalar functions for application developers because
they remind them of what they know from the user interface. They are tempted to use
scalar functions in excess; they combine them with cursors and loops, and they imposes
the atomic style in the database.

Divide and Conquer

One of the most important principles in structured programming is to divide complex
problems into simpler ones by using functions or procedures. This is a great principle and
itis followed in database programming too. But that doesn’t mean to divide the problem at
the data row level instead of trying to solve it at the data set level. Solving problems at the
data set level, which is how it should be in database programming, may generate a smaller

82

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 * THE CHALLENGE OF SCALAR FUNCTIONS

number of routines as a secondary consequence. However, this is no tragedy. This principle
is not valuable by itself but for the benefits it brings to the software application. We are not
dealing with ethics, metaphysics, or even a science like geometry where principles should
be respected under any circumstances and regardless of any consequences. We are in the
practical world of software development and we are in the database. The use of functions

is different here than in the user interface, and the holistic approach generally means less
and different routines, especially in specific systems like a data migration interface between
system A and system B.

If you look at the types of available functions, you can see that every database
programming language has many types of functions. In SQL Server, there are table
functions, which return a set of values in the form of an object called a table variable.
Similarly, there is the possibility of returning complex types in PL SQL like arrays or
collections. This shows that all database engines and their associated programming
languages offer the option to use functions in a holistic approach. Some of these
functions may be required and may be used. Very often, though, the use of functions
causes bad performance and so should be avoided.

Scalar functions in particular are part of a serious performance issue if applied to
large data sets inside cursors. Let’s imagine one set of values with thousands of rows.

You can create a function and call that function in a cursor thousands of times. Or you

can manipulate the entire data set using some simple SQL statements. These kinds of
applications should be set-oriented but are row-oriented. One of the rules I would state in
these kinds of applications is this one: use scalar functions for system settings if you want
to identify one setting or another in some configuration tables. Do not use scalar functions
for operations that involve data sets. Solve the problem at the level of the data set.

Identify the level of granularity required by your software application. If it’s a set-
oriented application, forget about scalar functions. Most of the time they won’t be used
because these functions apply to details and require the atomic level.

So when should you use scalar functions? There is one situation when scalar
functions are excellent in the database. Let’s define the concept of scalar query, by
analogy with a scalar function. A scalar query is that type of query that returns one single
value of a certain type, like a string value or numeric one. Very often, configuration
tables are suitable for scalar queries if they read from the configuration tables. The scalar
queries are ideal for scalar functions and are excellent especially for configurations tables,
so they may be used intensively in the database.

Example 3: Filtered Full Data Transfer

This next example is a more complex scenario that builds on Example 1 from Chapter 5.
This new example is a full data transfer between two systems. The same design applies but
the conditions for the report table generation are not so simple anymore. The data transfer
will be filtered and some conditions will occur based on whether the transfer will take place.

The business (technical) request is as follows: you need to generate the same report
table, in the full approach used in Chapter 5, with one difference. The data should be
generated from the set of three source tables into the target-reporting table, either English
or French, under certain conditions. If the language is the principal language (or MAIN),
you need to check for the flag. If the flag is set to a positive value like 1, then you will
generate the English or French set of countries into the table.

83

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-2080-1_5
http://dx.doi.org/10.1007/978-1-4842-2080-1_5
http://www.it-ebooks.info/

CHAPTER 6 ' THE CHALLENGE OF SCALAR FUNCTIONS

Note that the business (technical) description is clearly written in the atomic style.
The problem has been defined atomically before any line of code was written anywhere!

The application developer will follow his dear, classic, structured philosophy,
completely atomic and procedural. Our dear Joanna Doe likes functions so she will build
some nice and cozy functions, scalar of course.

Our solutions are always driven by the business. The distinction between a
business analyst and a software programmer is not always clearly made and very often
programmers are also analysts. The first thing when doing any development is to make
sure you know what you have to do.

On the other hand, the business request itself, explained by a developer, is clearly
influenced by a developer experienced in writing code. If an application developer
like Joanna sees things atomically, she will come up with reasons to write her specs
atomically. She can easily blame the business later, saying that she was instructed to write
the code in a certain way due to the way the business request was written!

The Atomic Solutions

The application developer will see things per the business key, the combination between
language and country. If you look at the design of the table, you can see that the business
key is composed of a language and a country corresponding to the unique constraint
named UQ_Language_Country. This is the key to the atomic approach because the
application developer knows that they can have one set of attributes or characteristics
per country and language. Therefore, the functions will be oriented per language and
country, and these fields will be the parameters for the scalar functions.

Listing 6-1 shows the two functions in the SQL Server solution. The first function
returns the category of the language for the respective country. The category can be either
principal (MAIN) or secondary (SECONDARY). This function is a get function, of course, and
the function is get_category. The second function returns the flag (make_flag) for the
same combination of language and country; the function is named get_flag. Let’s see
the nice scalar functions!

Listing 6-1. Scalar Functions, Atomic Style, in SQL Server

CREATE FUNCTION get category

(
@p_language_id INT,
@p_country_id INT

)

RETURNS VARCHAR(10)

BEGIN
DECLARE @v_category VARCHAR(10);
DECLARE @v_count INT;

SELECT @v_count = COUNT(*) FROM countries_ languages
WHERE language id = @p_language_id AND country id = @p_country id;

84

www.it-ebooks.info

http://www.it-ebooks.info/

END
GO

CHAPTER 6 * THE CHALLENGE OF SCALAR FUNCTIONS

IF @v_count = 0
SET @v_category = NULL

ELSE
SELECT @v_category = Language Category FROM countries languages
WHERE language id = @p_language id AND country id = @p_country id;

RETURN @v_category;

CREATE FUNCTION get flag

(

)

@p_language id INT,
@p_country_id INT

RETURNS INT
BEGIN

END
GO

DECLARE @v_make flag INT
DECLARE @v_count INT

SELECT @v_count

= COUNT(*) FROM countries languages
WHERE language id =

@p_language id AND country id = @p_country id;

IF @v_count = 0
SET @v_make_flag = NULL
ELSE
SELECT @v_make_flag
WHERE language id =

= Make Flag FROM countries_languages
@p_language id AND country id = @p_country id;

RETURN @v_make flag;

These functions specify, for each language and country, the value for the flag

and category, MAIN or SECONDARY. These functions allow the developer to identify the
conditions specified in the business requirement. The assumption when building these
functions is clearly atomic and procedural; the programmer already sees one country and
one language. He sees himself as a rider on the row! Unfortunately, the row is not a
horse but a donkey!

e Looking at the scalar functions in Listing 6-1, you can describe
them very easily in accordance with the business description.

¢ You assume from the beginning that you are positioned in
one language and one country. You can see this by looking at the
parameters of the functions: language and country. From the
beginning you see that you can think atomically because
you consider yourself as being inline with one country and
one language.

85

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 ' THE CHALLENGE OF SCALAR FUNCTIONS

e Looking at the name of the function and the return type, you see
that the function is scalar and you understand that the function
will return a certain category, which is a field of type string. For
the second function you see that the return type is an integer and
you understand that you will receive the flag.

e Perevery country and language, you check a count to see if you
have anything for that language and country in the association table
(countries_languages). If not, you set the return value to null.

e Ifyouhave anything in the association table, you will get the
category or the flag in a dedicated variable and you can specify
that variable as the return value for the function.

You can see the atomic vision even before the function is called. The house for the
scalar functions will be the cursor, of course.

Now, when the developer is ready for the final call, he will use a similar logic to
the one in Chapter 5, but now it will be even better because she can use her dear scalar
functions and call them in the cursor, so the database will be the mirror of what she
knows from her classic development. Look at Listing 6-2 and see the atomic style for
SQL Server.

Listing 6-2. Full Filtered Data Transfer, Atomic Style, in SQL Server

CREATE PROCEDURE Atomic_Transfer Country Flag

(
@p_Language_Name VARCHAR (50)

AS

DECLARE @v_Country Name VARCHAR (50),
@v_Country Code VARCHAR (3);

DECLARE @v_Language_Category VARCHAR (10),
@v_New_EEC_Id INT;

DECLARE @v_Country Id INT, @v_Language Id INT,
@v_Make_Flag INT;

DECLARE c_Get_Countries_Lang CURSOR FOR

SELECT Country Id, Language Id

FROM Countries_Languages

WHERE Language_Id IN (SELECT Language Id FROM Languages WHERE

Language Name = @p_Language_Name);
BEGIN

SET @v_New EEC Id = 1;

IF @p_Language Name = 'English’

DELETE English_European_Countries;
ELSE IF @p_Language Name = 'French’
DELETE French European Countries;

OPEN c_Get Countries_Lang

FETCH NEXT FROM c_Get_Countries_Lang

INTO @v_Country Id, @v_Language Id;

86

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-2080-1_5
http://www.it-ebooks.info/

WHILE (@@FETCH_STATUS = 0)

BEGIN

SET @v_Language_Category

@v_Country Id);

CHAPTER 6 * THE CHALLENGE OF SCALAR FUNCTIONS

= dbo.get_category(@v_Language_Id,

IF @v_Language Category = 'MAIN'

BEGIN

SET @v_Make_Flag

@v_Country Id);
IF @v_Make Flag = 1

BEGIN

= dbo.get flag (@v_Language Id,

SELECT @v_Country Name = Country Name, @v_
Country Code = Country Code FROM countries
WHERE Country Id = @v_Country Id;

IF @p_Language_Name = 'English’

ELSE IF

INSERT INTO English European_
Countries (English CL Id, Country
Code, Country Name, Language_
Category)

VALUES (@v_New EEC Id, @v_Country
Code, @v_Country Name, @v_Language_
Category);

@p_Language Name = 'French’

INSERT INTO French_European_
Countries (French CL_Id, Country
Code, Country Name, Language_
Category)

VALUES (@v_New EEC_Id, @v_Country
Code, @v_Country Name, @v_Language
Category);

SET @v_New EEC Id = @v_New EEC Id + 1;

FETCH NEXT FROM c_Get Countries_Lang INTO @v_Country Id,

@v_Language Id;

CLOSE c_Get_Countries_Lang;

DEALLOCATE c_Get_Countries_Lang;

END;
G0

Let’s analyze this logic, written in a very classic style and in full compliance with the
business description of the problem. The business analyst that described the problem
was already under the influence of the atomic approach. This is not an excuse for the
developers because they can use their own mind and they can correctly interpret the

statements.

87

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 ' THE CHALLENGE OF SCALAR FUNCTIONS

The steps are the following:

1. Declare the cursor with all the combinations of language and
country. Open it. Fetch the identifiers for both country and
language. These will be used as parameters for the scalar functions.

2. Initialize the value for the artificial identifier.
3. Delete the reporting table, either English or French.

4. Calculate the category for the language and country, using the
function get_category. The parameters are taken from the
variables generated from the cursor.

5. Ifthe category is MAIN, continue the logic in the most pure
procedural style and calculate the flag using the second
function, get_flag.

6. Ifthe flagis positive (value 1), generate the data in the
reporting table.

7. You can see the results after executing Malta and New Zealand
for English European countries and Canada for French
European countries.

Let’s see the logic in Oracle, and start with the functions. Listing 6-3 shows the Oracle
versions of the two functions from Listing 6-1. As you can see, things are similar; the
procedural syntax differs but not so much that it’s difficult to translate the functions from
one database brand to the other.

Listing 6-3. Scalar Functions, Atomic Style, in Oracle

CREATE OR REPLACE FUNCTION get category

(
p_language_id INT,
p_country id INT
)
RETURN VARCHAR2
AS

v_category VARCHAR2(10);
v_count INT;
BEGIN
SELECT COUNT(*) INTO v_count FROM countries languages
WHERE language id = p_language id AND country id = p_country id;

IF v_count = 0 THEN
v_category := NULL;
ELSE
SELECT Language Category INTO v_category FROM countries_languages
WHERE language id = p_language id AND country id = p_country id;
END IF;

88

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 * THE CHALLENGE OF SCALAR FUNCTIONS

RETURN v_category;
END;
/
CREATE FUNCTION get flag
(
p_language id INT,
p_country id INT
)
RETURN INT
AS
v_make_flag INT;
v_count INT;
BEGIN
SELECT COUNT(*) INTO v_count FROM countries languages
WHERE language_id = p_language_id AND country id = p_country id;

IF v_count = 0 THEN
v_make_flag := NULL;
ELSE
SELECT Make_Flag INTO v_make_flag FROM countries_languages
WHERE language_id = p_language_id AND country id = p_country id;
END IF;

RETURN v_make_flag;
END;
/

You may see a similar style in any system. The programmer uses the same atomic
style, the same mind, and the same confusions; old habits can’t be changed, despite
the necessities. Hello, my dear developers: wake up! We are in the database, we are in a
relational database, and it is a different world. Listing 6-4 shows how the Oracle or
PL/SQL developer ends his logic in triumph!

Listing 6-4. Full Filtered Data Transfer, Atomic Style, in Oracle

CREATE OR REPLACE PROCEDURE Atomic_Transfer Country Flag

(
p_Language Name VARCHAR

AS
v_Country Name VARCHAR (50);
v_Country Code VARCHAR (3);
v_Language_Category VARCHAR (10);
v_New EEC Id INT;
v_Country Id INT;
v_Language _Id INT;
v_Make Flag INT;
CURSOR c_Get_Countries_Lang IS
SELECT Country Id, Language Id

89

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 ' THE CHALLENGE OF SCALAR FUNCTIONS

FROM Countries_Languages
WHERE Language Id IN (SELECT Language Id FROM Languages
WHERE Language_Name = p_Language_Name);
BEGIN
v_New EEC Id := 1;
IF p_Language Name = 'English' THEN
DELETE English_European_Countries;
ELSIF p_Language Name = 'French’' THEN
French_European_Countries;
END IF;
OPEN c_Get_Countries_Lang;
Loop
FETCH c_Get_Countries_Lang
INTO v_Country Id, v_Language Id;
EXIT WHEN c_Get Countries_Lang%NOTFOUND;
v_Language Category := get category(v_Language Id,
v_Country Id);
IF v_Language Category = 'MAIN' THEN
v_Make Flag := get flag (v_Language Id, v_Country Id);
IF v_Make Flag = 1 THEN
SELECT Country Name, Country Code INTO
v_Country Name, v_Country Code
FROM countries WHERE Country Id = v_Country Id;
IF p_Language Name = 'English' THEN
INSERT INTO English_
European_Countries (English_
CL_Id, Country Code, Country
Name, Language Category)
VALUES (v_New EEC Id, v_Country
Code, v_Country Name, v_Language
Category);
ELSIF p_Language Name = 'French' THEN
INSERT INTO French European
Countries (French CL Id,
Country Code, Country Name,
Language_Category)
VALUES (v New EEC Id,
v_Country Code, v_Country_
Name, v_Language_Category);

END IF;
v_New EEC Id := v_New EEC Id + 1;
END IF;
END IF;
COMMIT;
END LOOP;
CLOSE c_Get_Countries_Lang;
END;
/
90

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 * THE CHALLENGE OF SCALAR FUNCTIONS

Asyou can see, this is a very impressive logical and procedural design, according to
the business definition. The principles of structured programming are satisfied and the
application developer is extremely happy. It does not matter that this code does not mean
good performance for the database, that the number of lines of code is triple, and that the
logic is infinitely more complex.

Regarding the results, if you check the reporting table, you can see that the UK is the
only country that satisfies the business requirements.

The Holistic Solutions

Let’s go back to the example and let’s prepare the holistic solution for the exercise. Now
you will see that even the business definition can be changed to be SQL oriented. What
do you think about that? Any programmer, before doing any development work, should
gather the requirements. Many programmers prepare their own requirements; few of
them are lucky enough to work with specialized business analysts. Therefore, the first
phase, the requirements, is very often done by the programmers. Even here, in this early
stage, the vision can be atomic or holistic. Let’s see the same business requirement from
earlier in the chapter written in a total different style.

The business (technical) request: you need to generate the same report table in the
full approach, as in Chapter 5, but with one difference. The data should be generated
from the set of three source tables into the target reporting table, either English or French,
for the countries where the language is principal (MAIN) and for the countries with the
positive flag (1).

Now the text looks like a simple query, don’t you think? This is exactly what it is. You
need to generate the English or French European countries for the ones with the flag set
to 1 and category of MAIN. It is a simple insert select statement, and the difference in the
logic is obvious. Listing 6-5 shows the holistic approach for Oracle.

Listing 6-5. Full Filtered Data Transfer, Holistic Style, in Oracle

CREATE OR REPLACE PROCEDURE Holistic Transfer Country Flag

(
p_Language Name VARCHAR

AS
BEGIN
DELETE English_European_Countries
WHERE p Language Name = 'English';
DELETE French_European_Countries
WHERE p_Language Name = 'French';
INSERT INTO English European Countries (English CL Id, Country Code,
Country Name, Language Category)
SELECT ROW_NUMBER() OVER (ORDER BY c.Country Code, cl.language
Category) AS English CL_Id, c.Country Code,
c.Country Name, cl.Language Category
FROM Countries_Languages cl INNER JOIN Languages 1

91

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-2080-1_5
http://www.it-ebooks.info/

CHAPTER 6 ' THE CHALLENGE OF SCALAR FUNCTIONS

ON (1.Language Id = cl.language Id)
INNER JOIN Countries c ON (c.Country Id = cl.Country Id)
WHERE 1.Language Name = p_Language_Name AND p_Language Name =
'English' AND cl.language Category = 'MAIN' AND cl.Make Flag = 1;
INSERT INTO French European Countries (French CL _Id, Country Code,
Country Name, Language Category)
SELECT ROW_NUMBER() OVER (ORDER BY c.Country Code, cl.language_
Category) AS French CL Id, c.Country Code,
c.Country Name, cl.lLanguage Category
FROM Countries Languages cl INNER JOIN Languages 1
ON (1.Language Id = cl.language Id)
INNER JOIN Countries c ON (c.Country Id = cl.Country Id)
WHERE 1.language Name = p_Language Name
AND p Language Name = 'French’
AND cl.language Category = 'MAIN' AND cl.Make Flag = 1;
COMMIT;
END Holistic_Transfer Country Flag;
/

This is the set-based approach and the holistic style of development, the one that is
recommended in the relational database and that should be used by every programmer,
not just by specialized database developers. Let’s examine and compare the two logics
and see the difference in style. In the holistic approach, there is no procedural logic at all,
just pure SQL.

Let’s see the steps.

1. The countries with the language specified as parameter are
deleted. There is no if-else statement and the language
specifies just the filter condition. I intentionally removed the
if-else to show that the procedural code can be avoided and
replaced with the use of SQL.

2. The countries are populated for English or French from the set
of source tables. Similarly, the use of filter conditions after the
language parameter replaces the if-else statement.

3. Just to clarify, one language will be transferred based on the
value of the parameter. The other will not be affected at all
because the filter condition for the language will not be satisfied.
The reason for this approach was to show that the procedural
code is very often optional. I also wanted to maximize the use of
SQL and minimize the use of procedural code.

The data in the target is generated easily and straightforward, in a holistic manner.
The data set, depending on the value of the parameter, is generated according to
the language. The difference compared to Exercise 1 from Chapter 5 is that two new
additional filter conditions were added to the logic. They replace the scalar functions and
the rest of the additional procedural facilities. Regarding portability, see how the SQL
server version in Listing 6-6 is almost the same as the Oracle solution from Listing 6-5.
This similarity is one of the advantages of the holistic style.

92

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-2080-1_5
http://www.it-ebooks.info/

CHAPTER 6 * THE CHALLENGE OF SCALAR FUNCTIONS

Listing 6-6. Full Filtered Data Transfer, Holistic Style, in SQL Server

CREATE PROCEDURE Holistic_Transfer_Country Flag
(
@p_Language_Name VARCHAR (50)
)
AS
BEGIN
DELETE English European_Countries
WHERE @p_Language Name = 'English';
DELETE French_European_Countries
WHERE @p_Language Name = 'French';
INSERT INTO English European Countries (English CL Id, Country Code,
Country Name, Language Category)
SELECT ROW_NUMBER() OVER (ORDER BY c.Country_Code, cl.Language_
Category) AS English CL Id, c.Country Code,
c.Country Name, cl.Language Category
FROM Countries_Languages cl INNER JOIN Languages 1
ON (1.Language Id = cl.lLanguage Id)
INNER JOIN Countries c ON (c.Country Id = cl.Country Id)
WHERE 1.language Name = @p_Language_Name
AND @p_Language Name = 'English'
AND cl.language Category = 'MAIN' AND cl.Make Flag = 1;
INSERT INTO French_ European Countries (French CL_Id, Country Code,
Country Name, Language Category)
SELECT ROW_NUMBER() OVER (ORDER BY c.Country Code, cl.language
Category) AS French CL Id, c.Country Code,
c.Country Name, cl.Language Category
FROM Countries_Languages cl INNER JOIN Languages 1
ON (1l.Language Id = cl.Language Id)
INNER JOIN Countries c ON (c.Country Id = cl.Country Id)
WHERE 1.language Name = @p_Language Name
AND @p_Language Name = 'French’
AND cl.language_Category = 'MAIN' AND cl.Make Flag = 1;
END
GO

To conclude, imagine that the quantity of data is moderate to medium large and
imagine an atomic style. This scenario is not exotic; unfortunately, this is really happening
in many databases all over the world. The performance of scalar functions in cursors is very
poor and normally they should be minimized (with the exception of true scalar functions,
when applied to scalar data sets, returning exactly one row, like configuration data).

In my data migration interface I used two scalar functions. They are used to get the
values for configuration data, which are highly static data and useful for the functionality of
the data migration interface. In this case, because these configuration values actually drive
the entire data migration/replication system, I used scalar functions because their meaning
is the same in any classic system. Apart from that scenario, I never use them because I don’t
need them; they are inefficient and they require the intensive use of cursors.

93

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 ' THE CHALLENGE OF SCALAR FUNCTIONS

Example 4: A Simple Query

Let’s continue to illustrate the two development approaches within the database. Let’s
see the context of a query. I know how important these examples are for any developer,
experienced or not. Words and concepts are good; words and programming code are
even better!

New Example Set

Future examples in this book will be based on a simple design composed of two tables:
one contains a list of products and one is a list of the types of products with the associated
foreign key. Listing 6-7 shows the table design.

Listing 6-7. Products Design

CREATE TABLE Product_Types

(

Product_Type Id INT CONSTRAINT Nn_Product Type Id NOT NULL,
Product_Type Code VARCHAR (5)

CONSTRAINT Nn_Product Type Code NOT NULL,

Name VARCHAR (255) CONSTRAINT Nn_Product Type Name NOT NULL,
CONSTRAINT Pk _Product Type Id PRIMARY KEY (Product Type Id)

);

CREATE TABLE Products

(

Product_Id INT CONSTRAINT Nn_Product_Id NOT NULL,
Name VARCHAR (30) CONSTRAINT Nn Product Name NOT NULL,
Product_Code VARCHAR (5)
CONSTRAINT Nn_Product_Code NOT NULL,

Product Description VARCHAR (255),

Make_Flag INT,

Product_Type Id INT,

Default_Quantity INT,

CONSTRAINT Pk Product Id PRIMARY KEY (Product Id),
CONSTRAINT Fk_Products_Product_Types

FOREIGN KEY (Product Type Id)

REFERENCES Product Types (Product Type Id)

);
The table named Products contains the following columns:
1. The column Product_Idisaunique and artificial product
identifier, and this is the primary key as well.
2. The column Product_Name represents the name of the product.
3. The column Product_Code represents the code of the product.
94

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 * THE CHALLENGE OF SCALAR FUNCTIONS

4. The column Product_Description represents the description

of the product.

5. The flag called Make_Flag can be either zero or one.

6. The type of the product is specified as a reference to the table

with product types.

7. The default quantity for the product will be used later.

Tables require data. Listing 6-8 puts some example data into the two tables.

Listing 6-8. Insert Script to Populate Products

INSERT INTO Product Types
VALUES (1, 'C1', 'Product
INSERT INTO Product Types
VALUES (2, 'C2', 'Product
INSERT INTO Product Types
VALUES (3, 'D3', 'Product type 03
INSERT INTO Products (Product Id,
Type_Id, Default Quantity)

VALUES (1, 'Product o1', 'A1', o,
INSERT INTO Products (Product Id,
Type_Id, Default Quantity)

VALUES (2, 'Product 02', 'A2', 1,
INSERT INTO Products (Product Id,
Type_Id, Default Quantity)

VALUES (3, 'Product 03', 'A3', o,
INSERT INTO Products (Product Id,
Type_Id, Default Quantity)

VALUES (4, 'Product 04', 'A4', 1,
INSERT INTO Products (Product Id,
Type_Id, Default Quantity)

VALUES (5, 'Product o5', 'As', o,
INSERT INTO Products (Product Id,
Type_Id, Default Quantity)

VALUES (6, 'Product 06', 'A6', 0,
INSERT INTO Products (Product Id,
Type_Id, Default Quantity)

VALUES (7, 'Product o7', 'A7', O,
INSERT INTO Products (Product Id,
Type_Id, Default Quantity)

VALUES (8, 'Product 08', 'A8', 1,
INSERT INTO Products (Product Id,
Type_Id, Default Quantity)

VALUES (9, 'Product 09', 'A9', 1,
INSERT INTO Products (Product Id,
Type_Id, Default Quantity)

type 02

description');

description');
Name, Product_Code,

1, 10);
Name, Product Code,

2, 20);
Name, Product_Code,

1, 5);
Name, Product Code,

3, 1);
Name, Product_Code,

1, 9);
Name, Product Code,

1, 20);
Name, Product_Code,

2, 15);
Name, Product_Code,

3, 6);
Name, Product_Code,

1, 8);
Name, Product Code,

VALUES (10, 'Product 10', 'A10', 1, 2, 8);

www.it-ebooks.info

Make_Flag,

Make_Flag,

Make_Flag,

Make_Flag,

Make_Flag,

Make_Flag,

Make_Flag,

Make_Flag,

Make_Flag,

Make Flag,

(Product_Type Id, Product Type Code, Name)
type 01 description');
(Product_Type Id, Product Type Code, Name)

(Product_Type Id, Product Type Code, Name)

Product_

Product_

Product_

Product_

Product_

Product_

Product_

Product_

Product_

Product

95

http://www.it-ebooks.info/

CHAPTER 6 ' THE CHALLENGE OF SCALAR FUNCTIONS

Tables 6-1 and 6-2 show the values for the products and their types. Table 6-1 shows
the product type values, and Table 6-2 shows the product values.

Table 6-1. Sample Product Types Values

Product Type Id Product Type Code Name

1 C1 Product type 01 description
2 C2 Product type 02 description
3 D3 Product type 03 description

Table 6-2. Sample Product Values

Productld Name Code Description Make Flag PrTypeld Default
Quantity

1 Product01 Al NULL 0 1 10

2 Product 02 A2 NULL 1 2 20

3 Product03 A3 NULL 0 1 5

4 Product04 A4 NULL 1 3 1

5 Product05 A5 NULL 0 1 9

6 Product06 A6 NULL 0 1 20

7 Product07 A7 NULL 0 2 15

8 Product 08 A8 NULL 1 3 6

9 Product09 A9 NULL 1 1 8

10 Product 10 A10 NULL 1 2 8

Business Requirement

Everything starts with the business requirements. Now you have a simple design with
some familiar products and their types. Let’s see what you want from this list of products.
The following is the first business requirement: you want to get a simple result set, a data
set taken from the Products table. You want to select the product identifier, the name for
each product, the name for the previous product, and the product code for the previous
product if the flag is set to 1 (otherwise the current product code). The concept of previous
product is based on the product identifier. For example, the previous product for product id
3 is product id 2, etc.

This exercise seems very suitable for the atomic approach because it looks like you
need to access the data row by row and gather the information for the previous rows.
This is a complex example and the use of the atomic approach may be understandable.
That does not mean it can’t be avoided, but you need to have good eyes and a good
SQL-oriented mind to be able to see the holistic approach. For the moment, let’s focus on
the atomic approach that seems so unavoidable.

96

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 * THE CHALLENGE OF SCALAR FUNCTIONS

The Atomic Solutions

Any experienced application developer will start dividing everything into small pieces
of code and will start imagining how to move the previous values into variables for
each row, etc. You're working with 10 products, so it’s not hard to work atomically
from a performance point of view. However, this is actually a sample from a large table
with thousands of products. If you need to dig into larger data sets atomically from the
beginning, you should question whether there’s another way to solve the problem!

Most developers are familiar with the atomic style because it is the one used at the
user interface level. Thinking SQL and thinking holistically requires a different vision and
a different style. The good news is that this style is simpler and it offers better performance.
The differences in performance between the two styles when dealing with a significant
quantity and variety of data are impressive for anyone who wants to do some testing.

You need to start getting friendly with the data. Query more, dig into the data and
see more meanings, correlate the business with the data and try to see the business in the
data. More than that, transfer your atomic vision to the holistic one. This means trying
to find the data sets from the data rows. You need to start having a vision of the data.

The atomic approach actually starts from a lack of vision of the data. Using the typical
approach of development in the database stems from a total neglect of the most intimate
aspect of the database, the nature of data. The nature of data is holistic and set-oriented.

Let’s go back to the exercise. This exercise can be solved in many ways. I picked one
solution for the atomic approach and one solution for the holistic approach. Let’s investigate
the atomic approach. Begin by looking at Listing 6-9 to see the code for SQL Server.

Listing 6-9. Display Products, Atomic Style, in SQL Server

CREATE PROCEDURE Get Products_Atomically

AS

BEGIN
DECLARE @v_Product Id NUMERIC (10, 0), @v_Prev Product Code NVARCHAR (5);
DECLARE @v_First Name NVARCHAR (30), @v_First Product_Code NVARCHAR (200)
DECLARE @v_Current_Name NVARCHAR (30), @v_Minl_Product_Id NUMERIC (10, 0);
DECLARE @v_Previous Name NVARCHAR (30), @v_Product Code NVARCHAR (200);
DECLARE @v_Min Product Id NUMERIC (10, 0), @v_Make Flag INT;
DECLARE @v_Products TABLE(Product Id INT, Current Name NVARCHAR (30),
Previous Name NVARCHAR (30), Product Code NVARCHAR (5));
SELECT @v_Min Product Id = MIN (Product Id) FROM Products;
SELECT @v_Minl_Product_Id = MIN (Product_Id)
FROM Products WHERE Product Id > @v_Min_Product Id;
SELECT @v_First Name = Name FROM Products

WHERE Product_Id = @v_Min_Product_Id;
SELECT @v_First Product Code = Product_Code

FROM Products WHERE Product_Id = @v_Min_Product_Id;
INSERT INTO @v Products (Product Id, Current Name, Product Code)
SELECT Product Id, Name,
CASE WHEN Make Flag = 1 THEN NULL ELSE Product Code END

AS Product_Code
FROM Products WHERE Product Id = @v_Min_Product_Id;

97

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 ' THE CHALLENGE OF SCALAR FUNCTIONS

DECLARE c_Products CURSOR FOR

SELECT Product_Id, Name, Product_Code, Make_Flag FROM Products
WHERE Product Id > @v_Min_Product_Id

ORDER BY 1;

OPEN c_Products;

FETCH NEXT FROM c_Products

INTO @v_Product_Id, @v_Current Name, @v_Product_Code, @v_Make Flag;
WHILE (@@FETCH STATUS = 0)

BEGIN
IF (@v_Mini Product Id = @v_Product Id)
BEGIN
SET @v_Previous_Name = @v_First_ Name;
IF (@v_Make Flag = 1)
SET @v_Prev Product Code = @v_First Product_Code;
ELSE
SET @v_Prev Product Code = @v_Product Code;
INSERT INTO @v_Products (Product Id, Current Name,
Previous_Name, Product Code)
SELECT @v_Product_Id, @v_Current_Name, @v_Previous_Name,
@v_Prev_Product_Code
SET @v_Previous_Name = @v_Current_Name;
END
ELSE
BEGIN

IF (@v_Make Flag = 0)
SET @v_Prev_Product_Code = @v_Product_Code;
INSERT INTO @v Products (Product Id, Current Name, Previous Name,
Product Code)
SELECT @v_Product_Id, @v_Current Name, @v_Previous_ Name,
@v_Prev_Product_Code
SET @v_Previous_Name = @v_Current_Name;
SET @v_Prev_Product_Code = @v_Product_Code;
END
FETCH NEXT FROM c_Products
INTO @v_Product Id, @v_Current Name, @v_Product Code, @v_Make Flag;
END;
CLOSE c_Products;
DEALLOCATE c_Products;
SELECT * FROM @v_Products
END
GO

Let’s analyze the logic, step by step.

1. You store in two variables: the product identifiers for the
first product and the next product. See the variables
@v_Min Product Idand@v_Minl Product Id.

98

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 * THE CHALLENGE OF SCALAR FUNCTIONS

2. You store the name and product code for the first product. See
the variables @v_First Name and @v_First Product Code.

3. You add the first product into the table variable. See the table
variable @v_Products.

4. You open the cursor with all the products apart from the first
one. See the cursor named c_Products.

5. For the second product (the first one in the cursor, equal with
the variable @v_Min1_Product_Id), you set up the previous name
and you check the flag. If the flag is set to 1, the previous code
is the first product code. Otherwise, the previous code is the
current product code. You add the data using the variables into
the table variable and set the previous name to current name.

6. Ifthere is another product apart from the second one (the
first one in the cursor), you check the flag. If it is set to 0, the
previous product code becomes the current product code.
Add the data to the results table and set up the values for the
@v_Previous_Name and @v_Prev_Product_Code.

7. Select the data from the table variable, @_Products.

Let’s analyze the SQL Server solution for the atomic approach more deeply.
The Oracle solution is similar but even more procedural!

A Mixed Approach

The solution in Listing 6-9 is very consistent and logical, in strong correlation with the
principles of classic structured programming. However, the solution is not purely atomic,
as in all of the preceding atomic examples. You are developing a mixed solution because
you are using a table variable. The implementation for this example is half-atomic and
half-holistic. The table variable is firstly populated in a holistic manner, in a set-oriented
style. Then, using the atomic way, a cursor is opened and the table is updated. This is a
kind of mixed approach and it is better than a completely atomic approach.

This kind of development, this mixed approach and this partially holistic
and partially atomic implementation, is very close to the classic SQL Server style
of development, in which a table, either a table variable or a temporary table, is
manipulated several times until it gets the proper data.

The temporary table is very common in SQL Server, but it’s not used much in Oracle.
The temporary table or even the variable of type table, or a record or a collection if we
look into the garden of Oracle, can be very useful and is part of development. Sometimes
they are combined in a mixed approach, like in this example, and things get handled
partially holistically in data sets and atomically afterwards. One solution is to partially
generate a data set in a structure like a temporary table or an array and populate that
structure. Afterwards, you can update the data generated in the temporary table and
handle the rest of the logic atomically. This is what you did here.

99

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 ' THE CHALLENGE OF SCALAR FUNCTIONS

This mixed approach is an example of a semi-classic procedural approach that is
used to generate the results set according to the requirements. This is what most students
and application developers do in the database: structured programming and the use of
the atomic development approach. The rows in the source table are taken in the cursor
row by row and handled atomically: various conditions are checked against the variables
stored row by row. In the Oracle version, things are quite similar; however, the objects
are even more procedural than in SQL Server because they use real structures (called
records) and arrays. The SQL Server table variable is a simpler structure and it is close
to SQL; the Oracle types are more procedural. The meaning and the style are the same;
the atomic approach is the same. Actually Transact SQL is defined as being a declarative
language while PL SQL is a procedural language. However, the cursor is the same cursor
and the atomic style can be present in any of the two languages.

This is the general trend and the preferred style that is used in many databases
despite the fact that we can use the other approach, native to the database: the holistic
approach. We can identify situations where the atomic style needs to be used, because
these situations do exist. However, very often (more often than you think) the atomic
approach and the procedural style can be avoided and replaced with the holistic
approach and the pure SQL style of development.

Table 6-3 shows the results.

Table 6-3. Sample Product Values

Product Id Current Name Previous Name Product Code

1 Product 01 NULL Al
2 Product 02 Product 01 Al
3 Product 03 Product 02 A3
4 Product 04 Product 03 A3
5 Product 05 Product 04 A5
6 Product 06 Product 05 A6
7 Product 07 Product 06 A7
8 Product 08 Product 07 A7
9 Product 09 Product 08 A8
10 Product 10 Product 09 A9

The Holistic Solutions

Let’s see the solution of the holistic approach to this problem and analyze it. This is a
complete holistic approach. You can compare the two approaches and you can see the
differences. From the performance point of view, you can generate larger data sets and
compare the timing in both implementations. You will be amazed at the differences.

The holistic approach is so simple compared to the atomic approach! Review
Listing 6-10.

100

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 * THE CHALLENGE OF SCALAR FUNCTIONS

Listing 6-10. Display Products, Holistic Style, in SQL Server

CREATE PROCEDURE Get Products Holistically

AS

SELECT Product_Id, Current Name, Previous_Name, Product Code
FROM

(
SELECT a.Product_Id, p_Current.Name AS Current Name, p_Previous.Name
AS Previous_Name,
CASE WHEN p_Current.Make Flag = 1 THEN p_Previous.Product_Code ELSE
p_Current.Product_Code END
AS Product_Code, 1 AS Type
FROM
(
SELECT Product_Id, ROW_NUMBER () OVER (ORDER BY Product_Id)
Current_Row_No,
ROW_NUMBER () OVER (ORDER BY Product Id) -1 AS
Previous Row_No
FROM Products
) a INNER JOIN Products p Current ON (p Current.Product Id =
a.Product_Id)
INNER JOIN
(
SELECT Name, Product Id, Product_Code, ROW_NUMBER () OVER
(ORDER BY Product Id) Row No FROM Products
) p_Previous ON (p Previous.Row No = a.Previous Row No)
UNION
SELECT TOP 1 Product_Id, Name AS Current Name, NULL AS Previous_ Name,
CASE WHEN Make Flag = 1 THEN NULL ELSE Product_Code END AS Product_
Code, 0 AS Type
FROM Products
ORDER BY Type, Product Id
) A
GO

Just one select statement for so many things? Is that possible? The answer is yes, a
simple select statement solves all of the problems. There is no need for cursors, no need
for records or tables or temporary variables to populate, etc. There is no need for an
atomic approach; there’s no need for a mixed approach. One simple select statement is
enough.

First, please compare the results. For that, you should execute the store procedures
in SQL Server. You will see the same results because the logic is the same; only the
approaches and styles are totally different.

101

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 ' THE CHALLENGE OF SCALAR FUNCTIONS

This is not a simple example. An effort is required to understand it. Look at the
data and analyze everything. You should be aware of the set-based operators and
functions like Row_Number; see how you take the data from the previous row in direct
SQL and not in a cursor. In this scenario, most programmers would choose the atomic
approach, even some database programmers. It looks like a case for a cursor and for
manipulation. But this example proves that such situations can be solved holistically.
You need to have imagination and you need to jump, mentally, from one row to
another and get the data.

Ilike to say that SQL can perform miracles, and this is a good example!

102

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7

Writing SQL vs. Writing
Procedurally

This chapter offers more examples of the two styles of development. I will use the same
simple design taken from an inventory database: two tables that store products and
product types. The design of the tables can be seen in Listing 6-7 in Chapter 6. Don’t
forget to create the two tables by executing the script in Listing 6-7.

The two styles of development will be illustrated by another opposition, apart
from the main one of holistic versus atomic. I am talking about the opposition between
SQL code and procedural code. These two approaches are related and similar, but still
different.

An Example of an Update

If you take a closer look at the data in the tables, you will notice that there is no
description for the products. The purpose of the following exercise is to update the
description based on a certain algorithm.

Here is the business description: You want to update the product description in
the Products table. In an inventory system (production), product codes have their own
significance. According to this, you can see an algorithm for the description based on
the code of the type (field Product_Type in the table Product_Types) and the already
familiar flag (field Make_Flag from the table Products). If the type starts with the letter
C, you should look at the flag. If the flag is 1, you need to concatenate the constant string
value DESC plus the code of the product and the code of the type; otherwise you should
concatenate the constant DESC plus the code of the product plus the name of the product.
If the type is anything else but C, you look at the flag and add the name of the product and
the constant if it is 1; otherwise you add the type of the code.

Looking at this description, you can easily see that the author was thinking
atomically and procedurally. You can already derive the set of if-else statements, the
scalar functions, and a nice cursor! This is the atomic approach.

© Stefan Ardeleanu 2016 103
S. Ardeleanu, Relational Database Programming, DOI 10.1007/978-1-4842-2080-1_7

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-2080-1_6#FPar64
http://dx.doi.org/10.1007/978-1-4842-2080-1_6
http://dx.doi.org/10.1007/978-1-4842-2080-1_6#FPar64
http://www.it-ebooks.info/

CHAPTER 7 © WRITING SQL VS. WRITING PROCEDURALLY

An Atomic Solution

For this type of request, let’s use a pure atomic solution. Create one function named
get_type with a parameter of the product identifier. This procedure will return the type
based on the flag, one of the two parts of the algorithm. Listing 7-1 shows the function in
the Oracle version.

Listing 7-1. Scalar Function, Atomic Style, in Oracle

CREATE FUNCTION Get Type
(

)
RETURN VARCHAR2

As
v_Type VARCHAR2 (255);
v_Make Flag INT;
BEGIN
SELECT Make_Flag INTO v_Make Flag FROM Products WHERE Product Id =
p_Product_Id;

p_Product_Id INT

IF (v_Make Flag = 1) THEN
SELECT t.Product Type Code INTO v_Type
FROM Product Types t INNER JOIN Products p ON (p.Product Type Id
t.Product_Type Id)
WHERE p.Product_Id = p_Product_Id;
ELSE
SELECT t.Name INTO v_Type
FROM Product Types t INNER JOIN Products p ON (p.Product Type Id
t.Product_Type Id)
WHERE p.Product_Id = p_Product_Id;
END IF;

RETURN (v_Type);
END;
/

For a given product, based on the value of the flag, you either generate the type’s
code from the Product_Types table or the name of the product from the Products table.
This is a classic scalar function and the purpose is obvious. This function will be executed
in a cursor for all the products later. This is one of the most common scenarios of work for
an application developer.

This is the same pattern described in Chapter 6. The cursor and the set of scalar
functions and their walk through the cursor allow row division.

After building this function, the logic will continue with the update procedure.
Listing 7-2 shows the procedure.

104

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-2080-1_6
http://www.it-ebooks.info/

CHAPTER 7 © WRITING SQL VS. WRITING PROCEDURALLY

Listing 7-2. Update Description in a Cursor in Oracle

CREATE PROCEDURE Upd Products Desc_Atomic

AS
v_Product_Id INT;
v_Product_Type Code VARCHAR2 (5);
v_Product_Code VARCHAR2 (5);
v _Description VARCHAR2 (255);
v_Generated Type VARCHAR2 (255);
v_rid ROWID;
CURSOR c_Get Products IS
SELECT Product_Id, rowid FROM Products FOR UPDATE OF Product_
Description;
BEGIN
OPEN c_Cet_Products;
LooP
EXIT WHEN c_Get_Products’NOTFOUND;
FETCH c_Get Products INTO v _Product _Id, v rid;
v_Generated Type := Get Type(v_Product Id);
SELECT p.Product Code, t.Product Type Code INTO v_Product_
Code, v_Product_Type Code
FROM Products p INNER JOIN Product Types tON (p.Product_
Type_Id = t.Product Type Id)
WHERE p.Product Id = v_Product_Id;
v_Description := 'DESC_';
IF (SUBSTR (v_Product Type Code, 1, 1) = 'C') THEN
v Description := v_Description || v_Product Code;
END IF;
IF SUBSTR (v_Description, LENGTH (v_Description), 1) <> '_'
THEN
v _Description := v _Description || '_';
END IF;
v Description := v Description || v_Generated Type;
UPDATE Products
SET Product_Description = v_Description
WHERE rowid = v_rid;
END LOOP;
COMMIT;
CLOSE c_Get Products;
END;
/

The steps are quite clear.

1. Declare the cursor for the table Products with the option of
updating the description, which is your goal.

2. Calculate the generated type using the function created
before.

105

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © WRITING SQL VS. WRITING PROCEDURALLY

3. Use astring inside the cursor for the description and start
concatenate to that string (v_Description).

4. Getthe code of the product and the product code type for the
given product from the cursor.

5. Ifthe firstletter of the type code is the letter C, add the
product code to the description string.

6. Add the generated type and finalize the description for the
given product inside the cursor.

7. Update the description with the calculated value of the
description for the given product.

8. That will happen for all products. Finally, the table will be
updated.

This is the classic atomic and procedural approach. It is so complicated compared
to a simple update. Yet the atomic approach is all too familiar to application developers,
who follow it instinctively if they are not warned from the beginning (ideally, in college)
that they should write their code in a different way if they are inside a relational database.

A Holistic Solution

There’s an easier way! Maybe the developer reads the business description in a holistic
manner and not in an atomic one, In this case. the holistic solution will be used, which is
actually trivial for a SQL developer. See it in Listing 7-3.

Listing 7-3. Update Product Description, Holistic Style, in Oracle

CREATE PROCEDURE Upd Products_Desc_Holistic

AS
BEGIN
UPDATE Products
SET Product Description = (SELECT
CASE WHEN Products.Make Flag = 1 AND SUBSTR (t.Product Type
Code, 1, 1) = 'C'
THEN 'DESC_' || Products.Product Code || ' ' ||
t.Product_Type Code
WHEN Products.Make Flag = 0 AND SUBSTR (t.Product Type
Code, 1, 1) = 'C’
THEN 'DESC_' || Products.Product Code || ' ' ||
t.Name
WHEN Products.Make Flag = 0 AND SUBSTR (t.Product Type
Code, 1, 1) <> 'C'
THEN 'DESC_' || t.Name
WHEN Products.Make Flag = 1 AND SUBSTR (t.Product Type
Code, 1, 1) <> 'C'
106

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © WRITING SQL VS. WRITING PROCEDURALLY

THEN 'DESC ' || t.Product Type Code
END
FROM Product_Types t WHERE t.Product Type Id = Products.Product_
Type_I1d);
COMMIT;
END;
/

Here you see the power of the case statement. This statement can successfully
replace the if-else statement in simple SQL. Notice how the simple update statement
does everything: it generates the descriptions according to the algorithm and updates the
columns. Why complicate things using sophisticated classic methods? Use the power of
SQL, a dedicated language for relational databases!

You can easily understand the algorithm from the SQL statement defined in the
holistic approach. You can see the conditions specified in the when clause of the case
statement. Nothing is secret or difficult in this update statement.

Listing 7-4 shows the holistic approach for SQL Server. Notice how the two
approaches are almost identical.

Listing 7-4. Update Description, Holistic Style, in SQL Server

CREATE PROCEDURE Upd Products Desc_Holistic
AS
BEGIN
UPDATE Products
SET Product Description =
CASE WHEN dest.Make Flag = 1
AND SUBSTRING(t.Product Type Code, 1, 1) = 'C'
THEN 'DESC_' + dest.Product_Code +
' ' + t.Product_Type Code
WHEN dest.Make Flag = 0
AND SUBSTRING (t.Product Type Code, 1, 1) = 'C'
THEN 'DESC_' + dest.Product_Code + '_' + t.Name
WHEN dest.Make Flag = 0
AND SUBSTRING (t.Product Type Code, 1, 1) <> 'C'
THEN 'DESC_' + t.Name
WHEN dest.Make Flag = 1
AND SUBSTRING (t.Product Type Code, 1, 1) <> 'C'
THEN 'DESC_' + t.Product Type Code
END
FROM Products dest INNER JOIN Product Types t
ON (t.Product Type Id = dest.Product Type Id);
END
GO

Let’s look at the two procedures in Oracle and SQL Server. See how the code is very
similar. This is the advantage of portability. Things are almost the same because SQL is
almost the same. Working in SQL and holistically offers you a great advantage.

107

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © WRITING SQL VS. WRITING PROCEDURALLY

However, the most important reason for a holistic approach is performance. The
other perks are secondary. Performance, portability, simplicity of code, and the fact that
the data set is the keyword that defines a relational database; these are enough reasons
for an application developer to start rethinking his code in a database.

The Power of a Union

I'will continue to analyse and compare the two styles of development. The atomic style
is highly general and the holistic style is clearly particular. But the particularity of the
holistic style comes directly from the development battlefield: the relational database.
Let’s consider a situation that might occur in specific systems where the goal is to
move data between classic systems. New data is added to the target from various sources
according to certain business conditions. These various conditions can be specified via
procedural means like if...then...else statements. Very often, however, the same logic
can be implemented by a union operation.

Taking a SQL-Based Approach

Instead of using a variety of if-else and insert statements, you can use one insert
statement based on a union. This is not a surprise considering that a union is a
combination of data sets. The meaning of an if-else in this context is one of adding data
to one target from various sources based on certain conditions.

I'want to clarify the concepts once more. There are two oppositions that I want to
analyze. The first opposition is the one between atomic and holistic styles. The second
one is the opposition between SQL code and procedural code. In most cases, a holistic
style is correlated with a SQL, non-procedural style. However, there are situations when
the style can be holistic and implemented partially procedurally and, vice versa, the
atomic implementation can be implemented partially atomically.

You should be aware that the topic of discussion now is related to the SQL versus
procedural code. I am not necessarily referring to the opposition of atomic versus holistic.
The approach can be holistic, but even the holistic approach can be implemented in a
SQL style or in a procedural style. Moreover, the use of a union instead of an if-elseisa
solution to replace procedural code with SQL code. I don’t say it’s always better and I don’t
say it’s always recommended, but I encourage you to keep all-SQL solutions in mind.

In a specific system, due to the nature of the system of data transfer between various
classic systems, it is always better to handle things both holistically and in SQL, not just
holistically.

A Specific Example

Imagine that you have geographical criteria for some data and you want to populate a
target from various sources. The sources are from different countries and you need to
insert various pieces of information based on a condition like country. Instead of using
if-else, you can use a union, maybe even union all if you know that the data sets are
distinct. Each query block of the union has the respective data set that you would have
been writing in the if-else.

108

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © WRITING SQL VS. WRITING PROCEDURALLY

The use of union with the use of variables that specify different sets of data can
be easily integrated and, very often, large pieces of procedural code (not necessarily
atomically, even in the holistic manner) can be replaced with a highly simplified piece of
SQL code. For example, any query block of a union can be defined according to a value
of a certain application setting. In this way, the query block may be identified either by
certain columns that need to satisfy some criteria (like country) but they can also be
defined by some variables.

As you now know, it is possible to write holistic and either procedural or SQL,
although in most cases the procedural style is associated with the atomic style and the
SQL style is associated with the holistic style.

I will show you two different solutions of the same problem, one using the
traditional if-else statements (Listing 7-5) and the other using the SQL operator union
(Listing 7-6).

Union vs. if-else

Imagine you have a warehouse of SQL templates which is called multiple times in your
software application, at the database level of course. The temptation is to avoid the use
of procedural code in this warehouse, being a warehouse of SQL statements. If you can
use the union instead of if-else, your warehouse will really be a warehouse of SQL
statements. I have built this kind of warehouse and it has almost no procedural code
inside it, only pure SQL. I found solutions to replace the procedural code.

Assume the same tables with the de-normalized English and French countries and
the normalized table. You have data on English and French countries and you need to
populate the set of normalized tables like Countries_Languages. You have the countries
and the languages; you just need to populate the association tables. Based on variable
p_Language_Name, you can add either French languages or English languages or both.
Of course the atomic solution can be used. The holistic solution can be made in a more
specific procedural way or in a more SQL-oriented manner.

Listing 7-5 shows procedural solution for Oracle.

Listing 7-5. Procedural if-else Solution in Oracle

CREATE PROCEDURE Holistic_Full Tr_Country Proc
(

p_Language_Name VARCHAR

AS
v_English_Language Id INT;
v_French_Language Id INT;
v_Max_CL_Id INT;

BEGIN

SELECT Language Id INTO v_English Language Id
FROM Languages WHERE Language Name = 'English';
SELECT Language Id INTO v_French_Language Id
FROM Languages WHERE Language Name = 'French';

109

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © WRITING SQL VS. WRITING PROCEDURALLY

IF p_Language Name = 'English' THEN

DELETE Countries_Languages
WHERE Language Id = v_English_Language Id;

ELSIF p Language Name = 'French' THEN

DELETE Countries_Languages
WHERE Language Id = v_French_Language Id;

ELSIF p_Language Name = 'Both' THEN

END IF;

DELETE Countries_Languages
WHERE Language Id = v_English_Language Id;
DELETE Countries_Languages
WHERE Language Id = v_French_Language Id;

SELECT MAX(CL Id) INTO v Max CL Id
FROM Countries_Languages;
IF v _Max CL Id IS NULL THEN

END IF;

v_Max CL Id := 0;

IF p_Language Name = 'English' THEN

INSERT INTO Countries Languages (CL_Id, Country Id,
Language Id, Language Category)

SELECT v_Max CL Id + CL_Id Seq.NextVal, c.Country Id,
v_English Language Id, eec.Language Category

FROM English European_Countries eec INNER JOIN Countries c
ON (c.Country Code = eec.Country Code);

ELSIF p _Language Name = 'French' THEN

INSERT INTO Countries Languages (CL_Id, Country Id,
Language_Id, Language Category)

SELECT v Max CL Id + CL_ID Seq.NextVal, c.Country Id,
v_French_Language Id, eec.lLanguage Category

FROM French_European_Countries eec INNER JOIN Countries c ON
(c.Country Code = eec.Country Code);

ELSIF p_Language Name = 'Both' THEN

END IF;
COMMIT;

INSERT INTO Countries_Languages (CL_Id, Country Id,
Language_Id, Language Category)

SELECT v_Max CL Id + CL_ID Seq.NextVal, c.Country Id,
v_English_Language Id, eec.language Category

FROM English_European_Countries eec INNER JOIN Countries c
ON (c.Country Code = eec.Country Code);

INSERT INTO Countries_Languages (CL_Id, Country Id,
Language_Id, Language Category)

SELECT v Max CL Id + CL_ID Seq.NextVal, c.Country Id,
v_French_Language Id, eec.language Category

FROM French_European_Countries eec INNER JOIN Countries c ON
(c.Country Code = eec.Country Code);

END Holistic_Full Tr Country Proc;

/

110

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © WRITING SQL VS. WRITING PROCEDURALLY

The logic is very clear. Based on the language (English, French or both), the data for
that language in the normalized table Countries_Languages is deleted and replaced with
the data from one reporting table or the other or both. It is a classic if-else statement,
nothing else. A lot of programmers will solve this problem in this way, especially
application developers. This is a pure procedural solution, and fortunately a holistic
solution. This exercise could have been made atomically using a cursor and that would
have been the worst scenario.

Now I want to show that sometimes simple SQL statements are enough and the
quantity of procedural code can be completely minimized. There is a lot of code in this
procedure. Imagine hundreds of pieces like this everywhere in the software application
within the database. Let’s replace them with pure SQL code; instead of 10,000 lines of
code, you will have 3,000, for example. In most cases, the performance will be better.

Listing 7-6 shows the SQL-based solution

Listing 7-6. Holistic SQL Solution in Oracle

CREATE PROCEDURE Holistic Full Tr Country SOL

(
p_Language Name VARCHAR

AS
BEGIN
DELETE Countries_Languages dest
WHERE EXISTS
(
SELECT 1 FROM Languages lang
WHERE lang.Language Name = p_Language_Name
AND p lLanguage Name IN ('English', 'French')
AND lang.language_Id = dest.language_Id
)

OR EXISTS
(
SELECT 1 FROM Languages lang
WHERE lang.Language Name IN ('English', 'French')
AND lang.language Name = 'Both’
AND lang.language Id = dest.language_Id
);

INSERT INTO Countries Languages (CL_Id, Country Id, Language Id,
Language Category)
SELECT v_Max_CL_Id + RowNum AS CL_Id, Country Id, Language Id,
Language_Category
FROM
(
SELECT c.Country Id, eec.language Category,
(SELECT COALESCE(Max(CL_Id) , 0)
FROM Countries Languages) AS v_Max CL Id,
(SELECT Language_Id FROM Languages

111

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © WRITING SQL VS. WRITING PROCEDURALLY

WHERE Language Name = 'English') AS Language Id
FROM English_European_Countries eec INNER JOIN Countries c ON
(c.Country Code = eec.Country_Code)
WHERE p Language Name IN ('English', 'Both")
UNION
SELECT c.Country Id, eec.language Category,
(SELECT COALESCE(Max(CL_Id) , 0)
FROM Countries Languages) AS v_Max CL Id,
(SELECT Language_Id FROM Languages WHERE Language Name =
"French') AS Language Id
FROM French_European_Countries eec INNER JOIN Countries c ON
(c.Country Code = eec.Country Code)
WHERE p_Language_Name IN ('French', 'Both')
) 1f;
COMMIT;
END Holistic Full Tr Country SOL;
/

Asyou can see, this logic contains one delete statement and one insert statement.
The reason is simple: SQL contains a lot of “procedural” facilities, almost all of them set-
oriented. If you understand the power of SQL and you understand the concept of the data
set, you can use its strength properly. The code is much simpler and more readable. The
performance is much better because SQL is set-based and is very fast and native when
working with data sets, which is what you are doing when you are inside a database.

Write Accurate Code First

First and foremost, the programmers need to write correctly. Then they should improve
their SQL. For that, there are many techniques and methods, starting with a continuous
process of rewriting for the SQL itself and continuing with a lot of features and techniques
for the database engine. They can work with the DBAs of course. At this level, the
developers need to know how to read an execution plan; they need to be able to see the
statistics and eventually gather new ones at various levels, etc.

Embedded SQL vs. Dynamic SQL

I still remember the first time I saw the use of dynamic SQL. It was fascinating to see how
to concatenate and add more and more filter conditions to a string. The filter conditions
were dynamically generated by the user, so there was a good reason for the use of
dynamic SQL. The context was one of a report; the conditions in the report contained
many parameters, the filter conditions. The string continued to grow and grow, becoming
anice and relevant SQL statement. Finally, the concatenation ended, the string was
executed, and the results set were displayed.

112

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © WRITING SQL VS. WRITING PROCEDURALLY

The Normal Approach

Sometimes you want to query a table but you don’t know exactly which table: it depends
on the execution context. You need to select from the unknown and that is not quite
normal, is it? In these cases, when uncertain things are waiting at the door of execution,
you may consider the use of dynamic SQL.

There are two types of SQL, embedded or dynamic. Embedded SQL is normal SQL,
a clear and fair statement or set of statements, written as such and interpreted as such,
clearly compiled and determined before the execution. If everything goes fine with
the compilation step and the syntax of the statements, the semantics of the statements
are checked, and the primary and basic elements of the statements are consistently
determined. Errors and other surprises might occur during execution, but all these are
part of the execution context.

Normally, all the good developers will try to use embedded SQL as much as is
possible; they should be confident in the separation between compilation phase
and execution phase as two distinct phases that should be analyzed separately and
chronologically. If nothing is uncertain at runtime, embedded SQL is an absolute favorite.

Uncertainty at Runtime

However, sometimes the execution contains questions. Let’s consider the example of
selecting in a table, or updating the table in a certain way. You don’t know the name of
the table when you build the logic: it might change at runtime. In these cases, you build
a string containing all the known elements of the statement and the unknown elements
of the statements specified as parameter for the string. After that, the string is generated
and executed. The string will become known at execution time so the compilation and
execution will be made at execution time. This is a reason for concern because the
execution will take the burden of compilation and its impact may be infinitely more
severe. This is the main reason why the use of dynamic SQL is to be avoided. It is always
better to solve the basic problems of parsing before execution. No one wants to check the
syntax and the semantics of the statements at execution time.

The Use of SQL Generators

One of the data migration interfaces I used to work on happened to have large lists

of attributes that should have been updated quite often. The statement was pretty
much the same but it contained, of course, different variables, like the attributes to be
updated. Therefore, it was a repetitive code and it could have been transformed into
dynamic SQL. I preferred to avoid this, butI couldn’t. I used dynamic SQL but I kept it
separate in what I named a list of SQL generators. That list contained many strings that
concatenated constants like keywords and variables like columns from tables. I had many
lists and I kept them safely, but I did not add them into the software application. These
lists were executed and the content of the lists were sets of embedded SQL statements.
These statements were copied into the software applications. In this way, the logic was
consistent and classic, containing only embedded SQL. If there was an error, I knew
exactly where it was; this was another reason for the embedded SQL.

113

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © WRITING SQL VS. WRITING PROCEDURALLY

Finding and locating the errors when using dynamic SQL is an extremely difficult
task. You need to dig like dog to get the exact place of the error and start the debug
activity. If anything changed, I could use the SQL generators to generate everything again.

This is an example of where dynamic SQL is a good choice, when it is acting like a
shadow in the back of the actual code. No one knows it exists! I believe it is better this way.

An Example

Imagine you have more reporting tables, not just English and French but 50 reporting
tables. You want to periodically generate the data in the 50 tables from the normalized
table. You might write a stored procedure to update the 50 tables and use embedded SQL,
or you might write a string and execute it in a cursor, changing the name of the country
and populating every country from the 50 tables in the cursor. In the first case, you
need to maintain the file with the set of 50 embedded SQL statements, which could be
time-consuming. Using dynamic SQL, you don’t need to do anything, but you may lose
the clarity and the significance of the code. Happily, there is a third option: to use these
strings as part of the backup logic (metadata logic), to use these strings as SQL generators
and execute them to generate the real files of the software.

First, let’s add one column to the table Languages. Let’s add some data too.
Listing 7-7 shows the changes.

Listing 7-7. Update the Design

ALTER TABLE Languages

ADD Language Table Name VARCHAR(30);

UPDATE Languages

SET Language Table Name = 'English European_Countries'
WHERE Language Id = 2;

UPDATE Languages

SET Language Table Name = 'French_European_Countries'
WHERE Language Id = 3;

There are two reporting tables: one for the English language and one for the French
language. These tables are linked to the language so you add this information to the
Languages tables. More reporting tables will follow: this information will be updated in
the Languages table. If you create a reporting table for Spanish tomorrow, the name of the
table will populate the row with the Spanish language. In this way, the table Languages
will contain both data and metadata information and will double its utility. Rebuild the
data in Countries_Languages and add the initial script and the changes reflected in the
initial script (Listing 5-3).

The update above allows you to see data and metadata information in one place and
allows you to use dynamic SQL. The table Languages contains the rows 2 and 3 with the
values English_European_Countries and French_European_Countries. They are values
in the “business” table so they are data. On the other hand, these values correspond
to objects in the database, respectively to the tables with the same names. Therefore,
they are metadata. This is a common scenario for dynamic SQL, trying to generate your
own set of metadata and use it for various purposes. The set of custom metadata allows

114

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-2080-1_5#FPar46
http://www.it-ebooks.info/

CHAPTER 7 © WRITING SQL VS. WRITING PROCEDURALLY

the developer to generate SQL logic, especially if things are repetitive. This logic can be
hidden in dynamic SQL or it can be revealed in embedded SQL and the mechanism for
embedded SQL can be separated in a parallel logic. I prefer the second approach: use
metadata and dynamic SQL in a parallel layer to generate and use embedded SQL. At
execution time, the software application will only see the embedded SQL.

Let’s get back to the example. After recreating the three base table again using the
script in Listing 5-3 from Chapter 5, let’s see one classic example of dynamic SQL in
action. Take a look at Listing 7-8.

Listing 7-8. Dynamic SQL and Holistic SQL Server

CREATE PROCEDURE Holistic_Full Country Dynamic
As
DECLARE @v_Language Id INT;
DECLARE @v_Language Name VARCHAR(50);
DECLARE @v_Language Table Name VARCHAR(30);
DECLARE @v_SQL Statement NVARCHAR(1000);
DECLARE c_Get_Languages CURSOR FOR
SELECT Language_Id, Language Name, Language_Table Name
FROM Languages
WHERE Language Table Name IS NOT NULL;
BEGIN
OPEN c_Get_Languages
FETCH NEXT FROM c_Get Languages INTO @v_Language Id, @v_Language
Name, @v_Language Table Name
WHILE @@FETCH STATUS = 0
BEGIN
SET @v_SQL Statement = 'DELETE ' + @v_Language Table Name;
EXECUTE sp_executesql @v_SQOL_Statement
SET @v_SQL Statement = 'INSERT INTO ' + @v_Language Table Name + '
(" + @v_Language Name + ' CL_Id, Country Code, Country Name, Language_
Category)' +
' SELECT ROW_NUMBER() OVER (ORDER BY c.Country Code, cl.language Category)
AS CL_Id, c.Country Code,
c.Country Name, cl.lLanguage Category
FROM Countries Languages cl INNER JOIN Languages 1 ON (l.Language
Id = cl.lLanguage Id)
INNER JOIN Countries ¢ ON (c.Country Id = cl.Country Id)
WHERE 1.Language Name = ''' + @v_Language Name + ''"";
EXECUTE sp_executesql @v_SQL Statement
FETCH NEXT FROM c_Get_Languages INTO @v_Language Id, @v_Language Name,
@v_Language Table Name
END
CLOSE c_Get_Languages
DEALLOCATE c_Get_Languages
END
GO

115

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-2080-1_5#FPar46
http://dx.doi.org/10.1007/978-1-4842-2080-1_5
http://www.it-ebooks.info/

CHAPTER 7 © WRITING SQL VS. WRITING PROCEDURALLY

Listing 7-8 is dynamic SQL! It is a special kind of programming and it has a certain
degree of popularity. I was a fan of dynamic SQL at the beginning but I'm not anymore.
Anyway, dynamic SQL is very useful and of great help in certain situations. Let’s look at
the code: it seems a bit like a Morse code, doesn’t it? Of course, you can always print the
strings before executing anything in order to understand the meanings; this is what we all
do when we have issues.

The Explanation

In this example, there are just two reporting tables. You generated and executed one
delete and one insert statement for two tables. This is not a serious economy in code.
However, imagine 20 reporting tables and you generate one insert statement and one
delete statement instead of twenty. The amount of code will be reduced to a minimum
level. The procedure will have 20 lines instead of 200 lines. This is one consequence of
dynamic SQL. The length of the code is many times smaller but so is the meaning. Not
too many people will understand it. They will guess; they will print various strings, the
final string or intermediates; it will be a battle for understanding. What is most important
thing when you look at the code? Is it the length of the code? Are you happy to see one
procedure with 10 lines but no meaning? Or are you happy to see one procedure with 100
lines but a clear meaning? (There are no general answers to these questions.)

If you execute the procedure above, you will populate the French and English
reporting tables. You will see the same data as in Chapter 5 after executing the procedure
Atomic_Full Transfer_Country for both parameters, English and French (see the
values). There are five English countries and two French ones.

You can choose to use embedded SQL and to explicitly specify all the tables and
objects. The logic will contain everything. With embedded SQL, you see what you
execute, you understand everything, and you can catch the errors, if any. The handle
errors procedure generator will take you to the error and you can safely debug everything.
With dynamic SQL, it is extremely difficult sometimes to identify the place with the error.
This is another disadvantage of dynamic SQL.

However, the use of dynamic SQL can be extremely useful, even apart from the
classic situation of uncertain things at runtime. Dynamic SQL can be used in a parallel
layer; let’s call it generator.

Let’s take the example above. Let’s change that code and remove the essential call to
the string, sp_executesql, and replace it with a simple print. For simplicity, you will just
print the string instead of saving it directly for example in a custom metadata table with
SQL generators.

The new procedure is similar to the previous one but with a major difference. Review
the script first. You can see it in Listing 7-9.

Listing 7-9. Dynamic SQL Generator in SQL Server
CREATE PROCEDURE Holistic Full C Generator

AS
DECLARE @v_Language Id INT;
DECLARE @v_Language_Name VARCHAR(50);
DECLARE @v_Language Table Name VARCHAR(30);
DECLARE @v_SQL Statement NVARCHAR(1000);
116

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-2080-1_5
http://www.it-ebooks.info/

CHAPTER 7 © WRITING SQL VS. WRITING PROCEDURALLY

DECLARE c_Get_Languages CURSOR FOR
SELECT Language Id, Language Name, Language Table Name
FROM Languages
WHERE Language Table Name IS NOT NULL;
BEGIN
OPEN c_Get_Languages
FETCH NEXT FROM c_Get_Languages INTO @v_Language Id, @v_Language
Name, @v_Language Table Name
WHILE @@FETCH_STATUS = 0
BEGIN
SET @v_SQL Statement = 'DELETE ' + @v_Language Table Name;
PRINT @v_SQL_Statement
SET @v_SQL Statement = 'INSERT INTO ' + @v_Language Table Name + '
(" + @v_Language Name + ' CL Id, Country Code, Country Name, Language
Category)' +
' SELECT ROW_NUMBER() OVER (ORDER BY c.Country Code, cl.language Category)
AS CL_Id, c.Country Code,
c.Country Name, cl.Language Category
FROM Countries Languages cl INNER JOIN Languages 1 ON (1.Language
Id = cl.lLanguage Id)
INNER JOIN Countries ¢ ON (c.Country_Id = cl.Country_Id)
WHERE 1.Language Name = ''' + @v_Language Name + '''';
PRINT @v_SQL_Statement
FETCH NEXT FROM c_Get Languages INTO @v_Language Id, @v_Language Name,
@v_Language Table Name
END
CLOSE c_Get_Languages
DEALLOCATE c_Get Languages
END
GO

The difference is between a print instruction and an execute instruction. The same
string is printed instead of being executed. Consequently, the difference is actually huge.
The previous procedure was named Holistic_Full Country Dynamic and this one is
called Holistic_Full_C_Generator. Now you will execute the last procedure and you
will display the data in a new code example. The printed string is the text that should
be executed. Instead of executing the string in dynamic SQL, you will generate the text
with embedded SQL. That text will actually be the effective logic. Listing 7-10 shows the
execution results after calling the last procedure.

Listing 7-10. Execution Results in SQL Server

DELETE English European_Countries
INSERT INTO English European Countries (English CL Id, Country Code,
Country Name, Language Category)
SELECT ROW_NUMBER() OVER (ORDER BY c.Country Code, cl.language Category) AS
CL_Id, c.Country Code,

c.Country Name, cl.Language Category

117

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © WRITING SQL VS. WRITING PROCEDURALLY

FROM Countries Languages cl INNER JOIN Languages 1 ON (1.Language
Id = cl.Language Id)
INNER JOIN Countries ¢ ON (c.Country Id = cl.Country Id)
WHERE 1.Language Name = 'English'
DELETE French_European_Countries
INSERT INTO French_European_Countries (French_CL_Id, Country_Code, Country
Name, Language Category)
SELECT ROW_NUMBER() OVER (ORDER BY c.Country Code, cl.language Category) AS
CL_Id, c.Country Code,
c.Country Name, cl.lLanguage Category
FROM Countries Languages cl INNER JOIN Languages 1
ON (1.Language Id = cl.language Id)
INNER JOIN Countries c ON (c.Country Id = cl.Country Id)
WHERE 1.language Name = 'French'

This is amazing. It’s so clear and readable! Everyone can understand it. If you have an
error, it can be identified correctly and quickly: after the line id you will know exactly where
to go to debug. The code is pure SQL, native database code, the same code as before but the
difference is that now the code is visible and not hidden. What do you need to do? Take this
execution result and add it, create a new procedure and store that in your database. This is
the real procedure, containing embedded SQL, and you can see it in Listing 7-11.

Listing 7-11. Generated Procedure in SQL Server

CREATE PROCEDURE Holistic_Full Country Embedded
AS
DELETE English_European_Countries;
INSERT INTO English European Countries (English CL_Id, Country Code,
Country Name, Language Category)
SELECT ROW_NUMBER() OVER (ORDER BY c.Country Code, cl.language Category) AS
CL_Id, c.Country Code,
c.Country Name, cl.lLanguage Category
FROM Countries_Languages cl INNER JOIN Languages 1
ON (1l.Language Id = cl.Language_Id)
INNER JOIN Countries c ON (c.Country Id = cl.Country Id)
WHERE 1.Language Name = 'English';
DELETE French_European_Countries;
INSERT INTO French European Countries (French CL _Id, Country Code, Country
Name, Language Category)
SELECT ROW_NUMBER() OVER (ORDER BY c.Country Code, cl.Language Category) AS
CL_Id, c.Country Code,
c.Country Name, cl.lLanguage Category
FROM Countries Languages cl INNER JOIN Languages 1
ON (1.Language Id = cl.language Id)
INNER JOIN Countries c ON (c.Country Id = cl.Country Id)
WHERE 1.language Name = 'French’;
GO

118

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © WRITING SQL VS. WRITING PROCEDURALLY

The logic in Listing 7-11 is the real procedure and the real logic that should be
displayed and executed. The approach is purely holistic and SQL, and the reporting
tables are updated from the normalized system: everything is clear and straightforward. If
you add two more reporting tables tomorrow, you have two options: you can add the two
new insert and delete statements directly, or you can simply update the custom metadata
information and execute the generator again. I can copy the text into the procedure
and recreate the logic. This is my recommended way of working through these kinds of
situations.

The use of dynamic SQL is great and it helps us solve some delicate situations like
the one when you want to select from a table but the name of the table is unknown.

Today you want to generate the English countries and tomorrow you may want the
French countries. The decision is made at runtime by the execution user. In these
scenarios, dynamic SQL is a good decision. However, in a scenario where you simply have
repetitive code and you have a list of actions that should be generated, like a list of insert
statements, you can use dynamic SQL in a parallel layer called generator. That generator
will be executed periodically and will be the base for your effective code. The effective
code will be pure embedded SQL with all the advantages of embedded SQL. This is the
scenario that I recommend in this context.

Other Holistic Solutions

Let’s move back to the discussion of the atomic approach and the holistic one. The atomic
style is defined in most cases by the use of one or more cursors and the use of variables

or records, where the data in the cursor is stored atomically, by the loop through the
cursor and whatever manipulation is required. This strategy and style is adopted by many
application developers who are not fully aware of the fact that inside a relational database
the manipulation should be done per data sets in a holistic manner.

My suggestion in most of the examples is that the holistic approach means solving
the problem by using a simple SQL statement. By simple, I do not mean that every
solution should be very simple. Actually a SQL statement, like a select statement, can
be very complicated and can contain hundreds of lines. The code length, the simplicity
or complexity of the statement, is not an argument in itself and, very often, the holistic
solution is better than the atomic approach.

Sometimes, however, a simple SQL statement is not enough to solve the problem.
Sometimes the data needs to be manipulated and intermediary results should be stored
and set before getting the result. Sometimes, to be able to reach the results, you need to
do an intermediary update of the data to generate all kinds of identifiers and to perform
certain concatenations and calculations. There are so many possible reasons for this data
manipulation.

In these situations, a simple SQL statement will not be enough to solve the
problem in a holistic manner. However, before you rush off to use the cursor, you can try
something else. Let’s try temporary tables, either explicit or implicit.

119

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © WRITING SQL VS. WRITING PROCEDURALLY

Temporary Tables

The temporary table is very dear to SQL Server developers and not so common for Oracle
developers. There are some differences between the statuses of the temporary table in
the two systems. This is not relevant in our context. The temporary table is a kind of table
that exists in any database system. This is one holistic method for storing intermediates
in a data manipulation and is often an alternative to the cursor facility and to the atomic
approach. The temporary table can be explicit or implicit, if you consider the with

clause, which is used more often in database software development. The temporary table
generated by the with clause offers great advantages, one of them being exactly this one:
avoiding the atomic approach for a better performance and a holistic data manipulation.

During one of my projects, I was in the position to improve performance. There was
anice, big cursor, like Big Brother. This Big Brother drove the entire process of report
generation. To be able to generate that report, a lot of intermediate results were generated
before the final result. Of course, the Big Brother was extremely slow and the report
was terrible. After some deliberation, I decided a holistic solution was required. Simple
SQL was not possible, due to the fact that the data to be manipulated required updates.
Therefore, I needed to search for something else.

The with clause is a great feature. I tried it, but it was not enough. So finally [used
a classic temporary table instead. The atomic approach was used, not with direct SQL
but with a classic temporary table. The table was populated first and updated afterwards
based on certain conditions. The difference in performance against the cursor was huge.
Even if you use a normal table and not a temporary table, the difference is impressive
compared with the cursor and the atomic approach. I know that temporary tables are
not loved by everyone. I don’t recommend using them often. However, compared to the
atomic approach, the temporary table is a better solution because it works holistically. By
the way, this solution was, surprisingly, in an Oracle environment and not in the classic
SQL Server environment.

We all know that cursors in Oracle have a good performance. Despite all these
considerations, the atomic approach remains an abnormal style that should not be used
unless a holistic solution is unavailable. This is my opinion and this is what I try to prove
in this book.

Table Functions

Another holistic feature is the table function, or a type of function that returns a data set
or a similar holistic object. These functions are available in many database systems and
they are a better alternative than scalar functions executed in cursors. I want to introduce
another example of performance improvement that I did, this time in a SQL Server
environment.

There was a complex logic of data transfer between two systems. It was an application
very suitable for the holistic approach. In this logic, one portion was very expensive with
very poor performance. Analyzing the logic, I noticed the procedural and atomic style; a
variety of scalar functions were defined and called everywhere in cursors. The performance
was a disaster and, of course, any improvement of any type was not possible, except for
the rewrite mechanism, of course! The rewrite procedure is very expensive. Whenever
you rewrite the logic, you need to continuously check the results, not just the final but

120

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © WRITING SQL VS. WRITING PROCEDURALLY

also the intermediate results. It is a difficult work, but the satisfaction when you are done

is enormous. So what did I do? I replaced almost all of the scalar functions and cursors
with a table function. The table function returns a data set, like a temporary table. Instead
of updating all the items in the cursor several times using various scalar functions, I
updated the table to be returned in the table function. Instead of acting atomically, I acted
holistically. That was the big difference. And the difference in performance was impressive.

One Last Atomic Example

These are just two examples of situations where the holistic approach was implemented
using other types of objects like temporary tables, explicit or implicit, or table functions
instead of cursors with scalar functions. Whenever you replace an atomic solution, use
a simple SQL statement. It will work more often than you expect. If one simple SQL
statement cannot solve the problem, because the data set should be updated somehow
and the simple SQL select statement is not sufficient, there are other possible solutions
like the ones specified above. The atomic approach can be used if the row-by-row
functionality is really requested by the logic; this will happen rarely.

Let’s see one more example. Let’s go back to the set of product tables, the products
and their descriptions (see Listing 6-7). Here's the business description: you want to
calculate the quantities per type of the product according to an algorithm. For each
product, if the type is C, you read the flag. If the flag is set to 1, you take the quantity
squared, and if the flag is zero, you take the double the quantity. If the type is D, you look
again at the flag and take the quantity squared minus the simple quantity if the flag is
positive. You take the triple quantity if the flag is zero.

The same question again: do you see this exercise atomically? Are you already
riding on the row like John Wayne in the olden days? Let’s see the pure atomic solution,
although it is quite clear that this can be easily avoided.

Before executing the procedure, reinitialize the list of products and types. This
means running the statements once again from Listing 6-8 from Chapter 6, but not before
deleting the products and the associated types.

Listing 7-12 shows the atomic solution in Oracle PL/SQL.

Listing 7-12. Atomic Get Default Quantity in Oracle

CREATE PROCEDURE Atomic_Get Qtty Per Type
AS
v_Product Type Code VARCHAR(5S);
v_Make Flag INT;
v_Default Quantity INT;
v_First Letter Type CHAR(1);
v_Current_Otty INT;
v_Current_Qtty C INT;
v_Current_Qtty D INT;
CURSOR c_Get_Products Qtty IS
SELECT pt.Product Type Code, p.Make Flag, p.Default Quantity
FROM Product Types pt INNER JOIN Products p
ON (p.Product Type Id = pt.Product Type Id);

121

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-2080-1_6#FPar64
http://dx.doi.org/10.1007/978-1-4842-2080-1_6#FPar74
http://dx.doi.org/10.1007/978-1-4842-2080-1_6
http://www.it-ebooks.info/

CHAPTER 7 © WRITING SQL VS. WRITING PROCEDURALLY

BEGIN
v_Current_Otty C := 0;
v_Current Qtty D := 0;
v_Current Otty := 0;
OPEN c_Get Products Qtty;
LooP
FETCH c_Get_Products_OQtty
INTO v_Product Type Code, v_Make Flag, v Default Quantity;
EXIT WHEN c_Get Products_Qtty%NOTFOUND;
v_First Letter Type := SUBSTR(v_Product Type Code, 1, 1);
IF v_First Letter Type = 'C' THEN
IF v_Make Flag = 1 THEN
v_Current Qtty := v_Default Quantity *
v_Default Quantity;
ELSIF v_Make Flag = 0 THEN
v_Current Qtty := 2 * v Default Quantity;
END IF;
ELSE
IF v_Make Flag = 1 THEN
v_Current Qtty := v_Default Quantity *
v_Default Quantity - v Default Quantity;
ELSIF v _Make Flag = 0 THEN
v_Current Qtty := 3 * v _Default Quantity;
END IF;
END IF;
IF v_First_Letter Type = 'C' THEN
v_Current Qtty C := v_Current_Qtty C + v_Current Qtty;
ELSE
v_Current Otty D := v_Current Qtty D + v_Current Otty;
END IF;
END LOOP;
CLOSE c_Get Products_Qtty;
DBMS_OUTPUT.PUT_LINE ('The total default quantity for the products
with C type is ' || TO_CHAR(v Current Qtty C));
DBMS_OUTPUT.PUT_LINE ('The total default quantity for the products
with D type is ' || TO_CHAR(v_Current Qtty D));
END;
/

This solution is very traditional and I believe there is no need for any explanation.
The same procedural logic applies; for each row in the data set with the list of products,
you check if the type is C or D, and then you look at the flag and, depending on the
value, you calculate one quantity or another. Using a kind of global variable to the cursor
(actually two, one for C and one for D), you add the current quantities to either C or D.
Finally, the two global variables store the quantities.

122

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © WRITING SQL VS. WRITING PROCEDURALLY

After the execution of the procedure, you get the following results:

anonymous block completed
The total default quantity for the products with C type is 646
The total default quantity for the products with D type is 30

This solution will vary based on the database system. There will be differences between
Oracle, SQL Server DB2, and PostgreSQL, for example. The procedural languages are
different and you need to familiarize yourself with one or another. However, the procedural
languages, despite these differences, are all very similar. A cursor is a cursor, a loop is a loop,
the syntax is different but the meaning is the same. The atomic style is the same.

The Holistic Solution

Now let’s see the holistic approach for Oracle. Seeing the complicated logic, you might
believe is it going to be difficult. Actually it is not, and the famous with clause discussed
earlier will transform the previous exercise into a simple SQL statement. Listing 7-13
shows the holistic solution.

Listing 7-13. Holistic Get Default Quantity in Oracle

WITH types quantities AS (
SELECT SUBSTR(pt.Product Type Code, 1, 1) AS Type Code,
CASE WHEN p.Make Flag = 1 THEN p.Default Quantity * p.Default_
Quantity
WHEN p.Make Flag = 0 THEN 2 * p.Default Quantity
ELSE NULL END AS Current Qtty
FROM Product _Types pt INNER JOIN Products p
ON (p.Product Type Id = pt.Product Type Id)
WHERE SUBSTR(pt.Product Type Code, 1, 1) = 'C'
UNION ALL
SELECT SUBSTR(pt.Product Type Code, 1, 1) AS Type Code,
CASE WHEN p.Make Flag = 1 THEN p.Default Quantity * p.Default_
Quantity - p.Default Quantity
WHEN p.Make Flag = 0 THEN 3 * p.Default_Quantity
ELSE NULL END AS Current Qtty
FROM Product_Types pt INNER JOIN Products p
ON (p.Product Type Id = pt.Product Type Id)
WHERE SUBSTR(pt.Product Type Code, 1, 1) = 'D'
)
SELECT Type Code, SUM(Current Qtty) AS Current Qtty
FROM types_quantities
GROUP BY Type Code;

As you can see, this is a simple SQL statement with the help of the with clause.
A similar solution can be offered in SQL Server. However, the with clause may not be
implemented yet in all database systems.

123

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © WRITING SQL VS. WRITING PROCEDURALLY

The Atomic Solution in SQL Server

Let’s see another implementation for this practice using the SQL Server database. You can
see it in Listing 7-14.

Listing 7-14. Holistic Get Default Quantity in SQL Server

CREATE PROCEDURE Atomic_Get Qtty Per Type
As
DECLARE @v_Product Type Code VARCHAR(S),
@v_Make Flag INT, @v_Default Quantity INT,
@v_First Letter Type CHAR(1),
@v_Current_Qtty INT, @v_Current_Qtty C INT, @v_Current_Qtty D INT;
DECLARE c_Get Products_Qtty CURSOR FOR
SELECT pt.Product_Type Code, p.Make Flag, p.Default Quantity
FROM Product Types pt INNER JOIN Products p
ON (p.Product Type Id = pt.Product Type Id);
BEGIN
SET @v_Current_Otty C
SET @v_Current Qtty D = 0;
SET @v_Current Qtty = 0;
OPEN c_Get Products Qtty;
FETCH NEXT FROM c_Get Products Qtty
INTO @v_Product Type Code, @v_Make Flag, @v_Default Quantity;
WHILE @@FETCH_STATUS = 0
BEGIN

1)
o
-

SET @v_First Letter Type = SUBSTRING (@v_Product Type
Code, 1, 1);

IF @v_First Letter Type = 'C'

BEGIN

IF @v_Make Flag = 1
SET @v_Current Qtty = @v_Default Quantity *
@v_Default Quantity;
ELSE IF @v_Make Flag = 0
SET @v_Current Qtty = 2 * @v_Default Quantity;

END
ELSE
BEGIN
IF @v_Make Flag = 1
SET @v_Current Qtty = @v_Default Quantity
* @v_Default Quantity - @v_Default Quantity;
ELSE IF @v_Make Flag = 0
SET @v_Current Qtty = 3 * @v_Default Quantity;
END
IF @v_First Letter Type = 'C'
SET @v_Current Qtty C = @v_Current Otty C +
@v_Current_Qtty;

124

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © WRITING SQL VS. WRITING PROCEDURALLY

ELSE
SET @v_Current Qtty D = @v_Current Qtty D +
@v_Current_Otty;
FETCH NEXT FROM c_Get Products Qtty
INTO @v_Product_Type Code, @v_Make Flag, @v_Default_
Quantity;
END
CLOSE c_Get Products Qtty;
DEALLOCATE c_Get Products_Qtty;
PRINT('The total default quantity for the products with C type is '
+ CAST(@v_Current Qtty C AS VARCHAR(20)));
PRINT ('The total default quantity for the products with D type is '
+ CAST(@v_Current Qtty D AS VARCHAR(20)));
END;
GO

You can easily see the similarities between Oracle and SQL Server, at least in these
simple examples of atomic approaches. With this, I want to illustrate the fact that the style
is similar even if the approaches are atomic. You can check the results and you should see
the same values.

The Holistic Approach in SQL Server

The with clause can be used in SQL Server too. I prefer to use a classic temporary table
instead. The reason is that sometimes you should manipulate the data before getting the
results and sometimes the with clause can be insufficient. Listing 7-15 shows this last
example of the holistic approach.

Listing 7-15. Another Holistic Method in SQL Server

CREATE PROCEDURE Holistic_Get Qtty Per Type

AS

BEGIN
CREATE TABLE #types and quantities (Type Code Prefix CHAR(1),
Current Qtty INT);
INSERT INTO #types and quantities (Type Code Prefix, Current Qtty)
SELECT SUBSTRING (pt.Product Type Code, 1, 1) AS Type Code Prefix,
CASE WHEN p.Make Flag = 1 THEN p.Default Quantity * p.Default Quantity
WHEN p.Make Flag = 0 THEN 2 * p.Default Quantity
ELSE NULL END AS Current Qtty
FROM Product_Types pt INNER JOIN Products p

ON (p.Product Type Id = pt.Product Type Id)

WHERE SUBSTRING (pt.Product Type Code, 1, 1) = 'C';
INSERT INTO #types and quantities (Type Code Prefix, Current Qtty)
SELECT SUBSTRING (pt.Product Type Code, 1, 1) AS Type Code,
CASE WHEN p.Make Flag = 1 THEN p.Default Quantity * p.Default_
Quantity - p.Default Quantity

125

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © WRITING SQL VS. WRITING PROCEDURALLY

WHEN p.Make Flag = 0 THEN 3 * p.Default_Quantity
ELSE NULL END AS Current Qtty
FROM Product _Types pt INNER JOIN Products p
ON (p.Product Type Id = pt.Product Type Id)
WHERE SUBSTRING (pt.Product Type Code, 1, 1) = 'D';
SELECT Type Code Prefix, SUM(Current Qtty) AS Current Qtty
FROM #types_and_quantities
GROUP BY Type Code Prefix;
END;
GO

The difference is that, if the algorithm were even more complicated, this temporary
table could have been updated several times and eventually combined with other
temporary tables. This approach may not offer the best performance sometimes, but
itis a holistic approach. This style of work with temporary tables, if required due to
complexity, will very rarely have a lower performance compared to the atomic approach.
This is one more reason for using a holistic solution versus a classic atomic and
procedural solution.

In the following chapters, I will show more examples to illustrate the two styles of
development.

126

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8

Row Triggers and the Need
for Atomic Solutions

Any relational database has a variety of logical and procedural objects, some of them
quite classic and inherited from other languages, like the scalar function or stored
procedure. The scalar function is clearly oriented per row, so it is an atomic object. Apart
from the traditional objects, there are database-specific objects, and the trigger is maybe
the most common one. As you probably know, there are many types of triggers, such as
statement triggers and row triggers. In a way, the row trigger is very similar to the scalar
function, because it is a row-oriented object. In this chapter, you will see how row triggers
work and how they move the context to the row level whether we like it or not.

The Use of Row Triggers

When learning database programming languages like PL SQL or Transact SQL, the
programmers start with the basics and finish with the set of procedural objects like
functions and procedures. The latter are well known from the classic languages so
they can understand them relatively quickly. However, soon after learning these types
of procedural objects, the programmers learn about a new type of object, specific to
databases and especially specific to tables: triggers.

The Seduction

The developer can be seduced by the idea of implicit and automatic execution of

the trigger. The main difference between a trigger and a stored procedure resides in
execution. A stored procedure is always executed manually and you have full control over
the execution, which means you know exactly when you execute it, but you can’t say the
same thing about the trigger. The most common type of trigger, the table trigger, is always
executed indirectly and automatic based on a certain event in the table. These events are
generally DML statements. Consequently, you can have insert, update, or delete triggers.
The trigger is a dependent object because it is linked to the table. In a way, the trigger

is like a constraint, a similar type of object. Moreover, you can do very complex data
manipulation inside a trigger and the complexity of a trigger is similar to the complexity
of a stored procedure.

© Stefan Ardeleanu 2016 127
S. Ardeleanu, Relational Database Programming, DOI 10.1007/978-1-4842-2080-1_8

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 © ROW TRIGGERS AND THE NEED FOR ATOMIC SOLUTIONS

The programmers are first seduced by the fact that the execution is automatic, so
they can remove this task completely from their head and leave it for the table event.
Sometimes automatic execution may be even required.

Afterwards, the programmers learn that a trigger can be a holistic trigger or an
atomic trigger, so a statement or row trigger. Statement triggers act holistically so they
are in concordance with the holistic approach. On the other hand, the row trigger
is very similar to the scalar function; it is an ideal feature for application developers
working inside relational databases. The row triggers are intensively used by them—too
intensively, I think.

The Trap of Row Triggers

Row triggers offer the advantage of allowing direct access per every field and every row.
Row triggers can be useful. However, the performance of triggers is very poor, so they
should normally be avoided. Still, because they are so intimately related to the atomic
style of development, they are used intensively in a variety of data-oriented software
applications. This is why you can see a large variety of databases filled with row triggers
and scalar functions!

One common example is where an artificial identifier should be generated from
a sequence. Sequences are a great facility; they're an independent logical object
responsible for the generation of numbers starting from a minimum value and growing
with a step specified at the time of creation. Sequences are very common and they are an
ideal method for artificial numeric generation.

Unfortunately, the application developer likes the combination of the insert trigger
and the sequence, or rather a before insert trigger and a sequence. A trigger is also
classified by the timing of the event that raises the trigger. The trigger can be before the
event or after the event of instead of the event, for views. The before insert triggers and
sequences are a common method for the population of artificial identifiers.

Some Example Triggers

Let’s go back to Chapter 5 and review the Oracle atomic full transfer, the first exercise. The
solution was written in the Listing 5-4. You can see how the identifiers for the English and
French languages were generated in the logic in the loop. Now let’s change this logic and
use some sequences for the key generation for the reporting tables.

You can create either one sequence for both reporting tables or two sequences, one
per language. I prefer to create two dedicated sequences. See Listing 8-1.

Listing 8-1. Adding Two Sequences in Oracle

CREATE SEQUENCE English CL_Id Seq START WITH 1 INCREMENT BY 1
/
CREATE SEQUENCE French CL_Id Seq START WITH 1 INCREMENT BY 1
/

128

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-2080-1_5
http://dx.doi.org/10.1007/978-1-4842-2080-1_5#FPar48
http://www.it-ebooks.info/

CHAPTER 8 © ROW TRIGGERS AND THE NEED FOR ATOMIC SOLUTIONS

You will use these sequences to generate the new values for the artificial keys for the
reporting tables. For that, you will create two triggers, one per table. Let’s see the triggers
and then analyze the logic inside, which is actually very simple and classic. See Listing 8-2.

Listing 8-2. Adding Two Row Triggers

CREATE TRIGGER English CL Id Tg
BEFORE INSERT ON English European_Countries
FOR EACH ROW
DECLARE
BEGIN
IF :new.English CL_Id IS NULL THEN
:new.English CL _Id := English CL_Id Seq.nextval;
END IF;
END;
/

CREATE TRIGGER French CL Id Tg
BEFORE INSERT ON French European_Countries
FOR EACH ROW
DECLARE
BEGIN
IF :new.French_CL_Id IS NULL THEN
:new.French _CL_Id := French_CL_Id Seq.nextval;
END IF;
END;
/

These two triggers are similar; one is for English and one is for French. These triggers will
be executed every time before a new row is inserted into the base table. The new value will
be taken from the sequence. Afterwards, it will populate the artificial identifier. This is a very
common technique and many application developers use it, especially Oracle developers.
Of course, using sequences with triggers mean that the sequence will be the only accepted
method for the identifiers population. You can’t combine it with any other methods.

A Revised Solution

Let’s update the code from Listing 5-4 accordingly and generate the full transfer again.
See Listing 8-3.

Listing 8-3. Atomic Full Transfer with Triggers in Oracle

CREATE PROCEDURE Atomic_Full Transfer_ Country t
(p_Language _Name VARCHAR)
AS

v_Country Name VARCHAR2(50);

v_Country Code VARCHAR2(3);

v_Language Category VARCHAR2(10);

129

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-2080-1_5#FPar48
http://www.it-ebooks.info/

CHAPTER 8 © ROW TRIGGERS AND THE NEED FOR ATOMIC SOLUTIONS

CURSOR c_Get Countries (p_Language VARCHAR2) IS
SELECT c.Country Name, c.Country Code, cl.Language_Category
FROM Countries_Languages cl INNER JOIN Languages 1
ON (1.Language Id = cl.language Id)
INNER JOIN Countries c
ON (c.Country Id = cl.Country Id)
WHERE 1.language Name = p_Language;
BEGIN
IF p_Language Name = 'English' THEN
DELETE English European_Countries;
ELSIF p Language Name = 'French' THEN
DELETE French_European_Countries;
END IF;
OPEN c _Get Countries (p_Language Name);
Loop
FETCH c_Get Countries
INTO v_Country Name, v_Country Code, v_Language Category;
EXIT WHEN c_Get Countries%NOTFOUND;
IF p_Language Name = 'English' THEN
INSERT INTO English European_Countries (Country_Code,
Country Name, Language_Category)
VALUES (v_Country Code, v _Country Name, v_Language Category);
ELSIF p Language Name = 'French' THEN
INSERT INTO French European Countries (Country Code,
Country Name, Language Category)
VALUES (v_Country Code, v_Country Name, v_Language Category);
END IF;
COMMIT;
END LOOP;
CLOSE c_Get_Countries;
END Atomic_Full Transfer Country t;
/

Compare Listing 8-3 to Listing 5-4. The identifier is not visible anymore: it is updated
in the back, by the trigger. If you look at the target tables, you will not see the key because
the trigger updates the key.

The Disaster

The technique in Listing 8-3 will be a disaster if medium to large sets of data are to be
handled in a data transfer. If you are affecting data sets and using row triggers, you are in a
dilemma. Triggers are not visible; you need to search for them.

Imagine a scenario where you are working holistically and set based. You are affecting
100 rows in clean and pure SQL logic. You know that the flow is as fast as it can be. Still, the
logic is very slow and you don’t know why! Suddenly, you realize that you have a row trigger
that changes the entire flow; instead of being a set-based flow and in the holistic style, it is
transformed into an atomic flow. Let’s rewrite Listing 5-6. You can see it in Listing 8-4.

130

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-2080-1_5#FPar48
http://dx.doi.org/10.1007/978-1-4842-2080-1_5#FPar68
http://www.it-ebooks.info/

CHAPTER 8 © ROW TRIGGERS AND THE NEED FOR ATOMIC SOLUTIONS

Listing 8-4. Holistic Full Transfer with Triggers in Oracle
CREATE OR REPLACE PROCEDURE Holistic_Full Transf_Country

(
p_Language_Name VARCHAR
)
AS
BEGIN
DELETE English European_Countries
WHERE p_Language Name = 'English';
DELETE French_European_Countries
WHERE p Language Name = 'French';
INSERT INTO English European Countries (Country Code, Country Name,
Language Category)
SELECT c.Country Code, c.Country Name, cl.lLanguage_Category
FROM Countries_Languages cl INNER JOIN Languages 1
ON (1.Language Id = cl.language Id)
INNER JOIN Countries c
ON (c.Country Id = cl.Country Id)
WHERE 1.Language Name = p_Language Name AND p_Language Name =
'English’;
INSERT INTO French European Countries (Country Code, Country Name,
Language Category)
SELECT c.Country Code, c.Country Name, cl.lLanguage_Category
FROM Countries Languages cl INNER JOIN Languages 1
ON (1.Language Id = cl.language Id)
INNER JOIN Countries c
ON (c.Country Id = cl.Country Id)
WHERE 1.language Name = p_Language Name AND p_Language Name =
'"French';
COMMIT;
END Holistic_Full Transf Country;
/

This example looks like an example of the holistic style of development. Actually, it
isn’t! Despite the fact that the logic itself is set-based and holistic, the row triggers change
everything and the logic is atomic instead of holistic.

Personally, I rarely use triggers, especially row triggers. They act per row, and they
have all the disadvantages of the atomic vision of development. Of course, sometimes
they are necessary. You can decide for yourself, but be aware of these disadvantages, and
especially be aware of the fact that set-based logic, when associated with row triggers,
transforms everything. It’s like a mask, and the person behind the mask is revealed by the
row trigger!

131

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 © ROW TRIGGERS AND THE NEED FOR ATOMIC SOLUTIONS

The Necessity of the Atomic Approach

As mentioned, sometimes the atomic approach is necessary. There are situations when
we need to think atomically, to open cursors and move the data at the row level into
variables, do various manipulations, etc. The combination of SQL and procedural, and
the combination of holistic and atomic, make up database programming. A database
programming language is composed of all of them and all the features are needed, more
or less often. Still, it is very important to remember that whenever you are developing
inside a relational database to just think of rows and columns.

The set-based approach and the holistic style of development refer to tendencies
and statistics. In most cases, you should answer your business questions using set-based
solutions and holistic answers. However, there are exceptions. The data set is composed
of a number of rows and sometimes, to be able to solve your problems, you need to move
back to the row level and think atomically. Let’s analyze one type of scenario where an
atomic solution can be used. Here’s the business description:

You want to display the list with all the languages and the countries
attached, as principal or secondary. You need to concatenate in a string
the list of countries separated by commas, for each category.

This is one of the situations where you can work atomically. Very often, you need to.
You may look for set-based facilities like analytics functions (for example, row number).
However, if you can’t find them, you may think at the cursor and row level.

When is working at the row level actually necessary? From my experience,
this occurs when we are forced to do various manipulations row by row and store
some intermediate results. I don’t believe we can state any rule for the division to be
acceptable; things are related to the particularities of the situation. When we need to see
things row by row, a simple SQL statement is not enough.

Analyzing the Example

Let’s work with an example. There are three tables: one with the languages, one with the
countries, and one with their associations. For every language, you have a list of countries,
and every language is either principal or secondary for the country. The data is highly
normalized. From this design, you need to get a report, a situation per language with two
lists. The first list contains all the countries where the language is principal and the second
list contains the countries where the language is secondary. For that, you need to be able to
move into the tables, in a row-by-row approach, to concatenate the countries, store them
somehow, and finally generate the report. This example illustrates the need for the atomic
approach in certain situations. Listing 8-5 shows the version for SQL Server.

Listing 8-5. Display a List Atomically in SQL Server

CREATE PROCEDURE Atomic List Of Countries

AS
DECLARE @v_Country Name NVARCHAR(50);
DECLARE @v_Language_Category NVARCHAR(10);

132

www.it-ebooks.info

http://www.it-ebooks.info/

BEGIN

CHAPTER 8 © ROW TRIGGERS AND THE NEED FOR ATOMIC SOLUTIONS

DECLARE @v_Language Name NVARCHAR(50);

DECLARE @v_Language Id INT;

DECLARE @v_List Of Countries Main NVARCHAR(4000);
DECLARE @v _List Of Countries Sec NVARCHAR(4000);
DECLARE @v_Previous_ Language Name NVARCHAR(50);
DECLARE c_Get_Languages CURSOR FOR

SELECT 1.Language_Id, l.lLanguage Name

FROM Languages 1

WHERE EXISTS

(
SELECT 1 FROM Countries_Languages cl
WHERE cl.language Id = 1.language_Id
)
ORDER BY 2;

CREATE TABLE #List Of Countries (Language Name NVARCHAR(50),
List Of Countries Main NVARCHAR(4000), List Of Countries Sec
NVARCHAR(4000)) ;
OPEN c_Get_Languages;
FETCH NEXT FROM c_Get_Languages
INTO @v_Language Id, @v_Language_Name;
WHILE @@FETCH_STATUS = 0
BEGIN
SET @v_List Of Countries Main ="'
SET @v_List Of_Countries_Sec ="'
DECLARE c_Get_Countries CURSOR FOR
SELECT c.Country_Name, cl.language_Category
FROM Countries Languages cl INNER JOIN Countries c
ON (c.Country Id = cl.Country Id)
WHERE cl.language Id = @v_Language_Id
ORDER BY cl.language Category, c.Country Name;
OPEN c_Get_Countries;
FETCH NEXT FROM c_Get Countries
INTO @v_Country Name, @v_Language_Category;
WHILE @@FETCH_STATUS = 0

BEGIN
IF @v_Language_Category = 'MAIN'
SELECT @v_List Of_Countries Main = @v_List_
0f Countries Main + @v_Country Name + ','
ELSE
SELECT @v_List Of Countries Sec = @v_List_
Of _Countries_Sec + @v_Country Name + ','
FETCH NEXT FROM c_Get Countries
INTO @v_Country Name, @v_Language Category;
END

CLOSE c_Get Countries;
DEALLOCATE c_Get Countries;

133

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 © ROW TRIGGERS AND THE NEED FOR ATOMIC SOLUTIONS

IF LEN(@v_List_Of_Countries Main) > 1
SET @v_List Of Countries Main = SUBSTRING (@v List Of
Countries Main, 1, LEN(@v_List Of Countries Main) - 1);
IF LEN(@v_List Of Countries Sec) > 1
SET @v_List Of Countries Sec = SUBSTRING (@v_List Of_
Countries Sec, 1, LEN(@v_List Of Countries Sec) - 1);
INSERT INTO #List Of Countries (Language Name, List Of
Countries Main, List Of Countries Sec)
VALUES (@v_Language Name, @v_List Of Countries Main,
@v_List Of Countries Sec);
FETCH NEXT FROM c_Get_Languages
INTO @v_Language_Id, @v_Language Name;
END
CLOSE c_Get_Languages
DEALLOCATE c_Get Languages;
SELECT * FROM #List Of Countries
DROP TABLE #List Of Countries
END
GO

Of course, that this could have been done in many ways; this is one of the many
possible solutions. Let’s analyze the logic in Listing 8-5. Even if the solution is atomic, you
are still in the world of data. This means that everything starts from a data set. Let’s call it
the base data set or the detail data set. The base set is shown in Listing 8-6.

Listing 8-6. Display the Base Data Set in SQL Server

SELECT c.Country Name, cl.language_Category, l.Language Name
FROM Countries_Languages cl INNER JOIN Languages 1
ON (1.Language Id = cl.language Id)
INNER JOIN Countries c
ON (c.Country Id = cl.Country Id)
ORDER BY 1.Language Name, cl.language Category, c.Country Name;

Let’s look at the data because this is the key to the solution. Table 8-1 shows the
countries and their languages.

134

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 © ROW TRIGGERS AND THE NEED FOR ATOMIC SOLUTIONS

Table 8-1. Countries and Languages

Country Name Category Language Name
The Netherlands MAIN Dutch
Malta MAIN English
United Kingdom MAIN English
United States of America MAIN English
Switzerland SECONDARY English
The Netherlands SECONDARY English
France MAIN French
Switzerland MAIN French
Austria MAIN German
Switzerland MAIN German
Malta MAIN Maltese
Argentina MAIN Spanish
Spain MAIN Spanish

Listing 8-1’s data set is the starting point for the solution. Starting from here, you

need to generate the report. You can see a variety of languages and associated countries
with the associated category. For example, Malta, UK, and US have English as the main

language. Switzerland and Netherlands have English as a secondary language. For a
larger list, you need to position in the language and then you need to concatenate the
countries based on category (main and secondary). Simple SQL isn’t enough because
obtaining the list of countries requires row-by-row access and row division.

Reviewing the Solution

Let’s see the proposed solution. Start by looking again at Listing 8-5. The overall approach

is the following:

1. You declare one cursor for the languages. You store the
languages that have at least one country assigned to it. You
store from this cursor, for every row, the language name and
language identifier.

2. You create a temporary table in the pure SQL Server style to
get the results.

3. You declare two variables dedicated to storing the lists of countries,
based on category: one for main and one for secondary.

4. For every language, you declare another cursor and use it with
the list of countries. For every language, you store the country
and the category in dedicated variables.

www.it-ebooks.info

135

http://www.it-ebooks.info/

CHAPTER 8 = ROW TRIGGERS AND THE NEED FOR ATOMIC SOLUTIONS
5. Inthe second cursor, the inner cursor, you start concatenation
and link the countries, separated by a comma.

6. When you're done, you move back to the outer cursor and
remove the last comma from the string from both lists.

7. Inthe outer cursor with the languages, you add the data from
the dedicated variables and populate the reporting table.

8. Inthe end, you display the desired list.

The results are in Table 8-2.

Table 8-2. The Results

Language Name List of Countries Main List of Countries Sec

Dutch The Netherlands

English Malta, United Kingdom, Switzerland, The Netherlands
United States of America

French France, Switzerland

German Austria, Switzerland

Maltese Malta

Spanish Argentina, Spain

Listing 8-5 shows that sometimes you can use the atomic approach. Cursors are a great
feature and this example shows why. The cursors, in combination with loops and fetch,
allow you to position yourself from one row to another and do various manipulations. I
don’t deny their utility. What I intend to show almost everywhere in this book is the fact that
you need to be aware that you are in a database, you are affecting data sets, and you need
to keep in mind the holistic vision first. That does not mean you should not be aware of the
possibility of division from data set to data row when necessary.

Wrap-Up on Atomic Operations

Cursors and row-level manipulation are necessary when the business requirements are of
a nature that forces you to position at the row level and do various manipulations. These
manipulations can be handled by various set-based facilities like row number, but if you
don’t have such facilities or if you can’t find them, you always have the option to use
cursors and move the context to the row level.

Sometimes you need to handle things atomically, but you don’t need to think
atomically unless it’s necessary. This is the whole point of this book. In addition to
performance, portability, simplicity, and naturalness, it is obvious and normal to think
holistically and to think SQL, due to the nature of data.

136

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9

Final Reflections and
Thoughts

I am not a guru. What I am is a passionate and dedicated SQL person. I spent many
years in SQL development and I developed my own style. During these years, I
gathered many experiences, discovered many ideas, and rediscovered the wheel many
times. I know very well that most of the ideas explained here are well known to many
professionals all over the world. However, I hope to offer a better view and I hope to
clarify some of our realities.

Apart from the distinction between the two styles of development, I want to share
some other thoughts and ideas from my experience as a SQL developer. Maybe some
developers will follow some of my advice, maybe not. We live in a free world, so every
reader of this book can make the best decision in accordance with his personality and,
why not, with his style!

The Principle of Division

When considering the holistic approach for your database and deciding to develop
accordingly, and depending on the type of system, you should follow the classic
principles of programming. Working holistically does not mean ignoring the classic
principles of programming, but trying to combine what is most suitable from both worlds.

For example, working holistically does not mean having large procedures with a lot
of logic inside. You may have such things due to business requirements, not because of
the holistic style of development.

The principle of division, popular in programming and in life, is also available in the
holistic approach. This principle states that, if a problem is complex, it can be divided into
simpler problems; and these ones can eventually be divided too.

Division may occur over time, not necessarily from the beginning. Very often, we
are focused on the general task, the big problem, without being aware of the principle of
division. When we are done with the logic and we look at our masterpiece, we realize that
we could have divided the logic into many pieces, like functions and procedures.

© Stefan Ardeleanu 2016 137
S. Ardeleanu, Relational Database Programming, DOI 10.1007/978-1-4842-2080-1_9

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 " FINAL REFLECTIONS AND THOUGHTS

The Concept of a SQL Template

Considering that you are in a database and you should work holistically, there are many
SQL statements to handle and manage. Very often, these SQL statements are similar;
sometimes they are not. SQL templates are a good option. In a replication or data
migration system, which is a kind of specific software application that is very suitable for
the holistic approach, you may consider the use of SQL warehouses. A SQL warehouse
is a collection of SQL templates. I use the term template because it is used repeatedly
with minor changes, which can be various parameters, and I call it SQL because it is a
pure SQL statement. That collection of statements can embrace a large number of SQL
statements that can be executed in one context or another. At execution time, the SQL
templates will receive effective values for the parameters.

The holistic approach means the use of SQL. Most of the logic is made up by SQL
statements. In a specific system where the goal is always the same (moving data from
A to B), the data movement process can be managed in pure SQL. Consequently, the only
thing you need to do is to get the set of SQL statements. For better organization, you can
gather many SQL statements in the warehouse and call a template from various places in
the specific software application.

The SQL warehouse can be placed in a table. It will become data and metadata at the
same time. The metadata table can contain many fields that are related to the template
and one field with the template itself. The SQL templates are executed using dynamic
SQL, of course, in various contexts in the software application.

The custom metadata table is one possible house for SQL templates. The warehouse
can also be placed in a stored procedure with a series of parameters. The stored
procedure will be executed in one context or another.

I'have used both approaches. I prefer the stored procedure because I see only
embedded SQL. I see the templates, I can easily read and understand everything, and I
can eventually compare various templates. If I use the metadata table, all the templates
are hidden. To look into a SQL template, I need to query the table, take the template
separately in another window, and debug that template. The procedure is not convenient.
But both methods are acceptable and are good places for the SQL template warehouse.

Thinking holistically is the first step, especially in a specific system like an ETL or
data migration system. The holistic style and vision are welcome in the classic software
system, but some things are atomic due to the nature of the business.

Consider an invoicing system. You are now in an invoice and you are updating
that invoice. You are already in one invoice, so the level is close to the atomic level.
Consequently, it does not matter too much if the approach is holistic or atomic. But think
of the details of the invoice; it’s one thing to update 200 details in one action in a holistic
manner and another to try to affect every detail in a cursor.

Asyou can see, even in a classic system, it's recommended to follow the holistic
approach, but it’s not always necessary. However, it is necessary in a system where the
goal is to move data between various systems. In these kinds of software systems, at the
database level, you should always consider the holistic approach. You can classify the
statements and try to organize them properly. For this reason, you can organize them in
SQL warehouses, embedded in either custom metadata tables or stored procedures.

138

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 " FINAL REFLECTIONS AND THOUGHTS

The fact that a large number of SQL templates are grouped in one single place like
a stored procedure is a feature close to the classic vision of programming. Based on
business criteria, many SQL warehouses can be created in a system. For example, you
can have a staging area between the source and the target system. You can have one SQL
warehouse for all the templates that are used for the data movement from the source to
the staging and you can have another warehouse composed of most SQL templates used
for the movement from the staging to the target.

In a specific system where the goal is simply to move data from one system to
another, the data should be moved in data sets as much as possible. The main type of
statement responsible for the data set flow is the SQL statement. The decision to group
the SQL statements according to certain criteria is a good decision and it will increase the
level of organization of the system.

Writing Horizontally vs. Vertically

The programming style of development is defined by a set of principles and rules
described in the models and paradigms. The style of development is also relative to
the area of interest and work. It is one thing to develop mainly in Oracle and another to
develop mainly in Java. Our style is influenced by the technologies used in our projects,
and our style is dynamic; it may change in time. This is one reason why I am optimistic
that some application developers will reconsider their work in the database and try to
change something. Even an intention to change is a victory for the database in general
and for me in particular.

Working holistically or atomically is part of each person’s style of programming
in the database. This decision and this tendency is a major component of the style of
development. The style is reflected in the code; it’s easy to recognize. If you see cursors
over cursors for every operation and a variety of scalar functions or row triggers, it means
that you are in front of an application developer working in the database in his own way.
If you see data sets manipulated holistically almost everywhere, this is the opposite style.

A secondary characteristic of a style of development is the way we effectively write.
The aspect of our code is an important component but has its degree of subjectivity. That
is why this topic is not regulated and indeed it should not be regulated. We can’t force
people to write in a certain way, but we can explain that a certain writing rule is better
than another one. A procedural object, like a procedure or function, can have hundreds
of lines. The most important thing for this object is to work properly. The procedure also
needs to be intelligible. Others programmers should be able to understand it. Sometimes
we don’t even understand our own code! One reason is the way we write.

I will explain using a clear and common example. In the database, there are many
SQL statements. Let’s imagine one procedure with 10 insert statements, 5 update
statements, 7 delete statements, and other procedural logic in it apart from the SQL.

Some programmers write the SQL statements vertically. For example, if you have an
insert statement and you have 20 columns, you will have between 40 and 50 lines for this
insert statement. Vertical writing means specifying one column per line and effectively
writing vertically. If you have 10 insert statements, you may have between 400 and 500 lines
for these insert statements. You can see how it can get very confusing.

Let’s see an example. Imagine you have one insert statement in a procedure.
Listing 9-1 shows two ways to write the insert statement.

139

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 " FINAL REFLECTIONS AND THOUGHTS

Listing 9-1. Writing Insert Statements

--Writing vertically

INSERT INTO Countries Languages (
CL_Id,
Country Id,
Language_Id,
Language_Category
)VALUES (
14,
2,
2,
"SECONDARY ") ;

-- Writing horizontally

INSERT INTO Countries Languages (CL_Id, Country Id, Language Id,
Language_Category)

VALUES (14, 2, 2, 'SECONDARY');

My Reason Against Tools

Imagine you are in a specific system where you have many insert, update, and delete
statements, and you write everything vertically. Will you be able to understand anything
from the logic? It will be extremely difficult. See the difference in the example above and
answer one question. Why would you write an insert statement vertically? Give me one
good reason.

The insert statement is one statement. If you declare 10 variables, you may add
them in 10 lines, each variable declaration on one line. Every variable is distinct and
deserves its own line! In contrast, a column in an insert or a value specified is not a
distinct component to be added in distinct lines. One insert statement is one single
statement. The purpose is to be able to understand the insert statement. For that, writing
horizontally makes it much easier to see and understand what it is about. You can follow
each column to each corresponding value; you can check the data types. Eventually, you
can check the compatibility. An insert statement, to be intelligible, should be written
mostly horizontally.

Another reason for writing an insert statement vertically is the fact that it is the
mirror of the tool. Some development tools generate the insert statements vertically
by default. Some tools present you with a certain way to write. That does not mean
you should write blindly without thinking. Writing SQL vertically is a catastrophe for
your logic because it will make your code completely unreadable. For example, in an
insert statement, you should be able to follow the link between every column and every
associated value. Writing vertically makes this task impossible. The tools should not drive
us; we should drive the tools.

Regarding the style in the database, I think writing SQL statements horizontally is
extremely important for the readability of our software. We need to understand what
we write. The SQL statement is the most important type of statement and we need to

140

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 " FINAL REFLECTIONS AND THOUGHTS

understand it exactly. Although it is a matter of form and not substance, it is important.

In addition, writing horizontally does not mean writing 30 columns in one line; this

will cause the same problems and the same lack of understanding. Writing horizontally
means writing the number of columns or expressions that fill the line. The point is to have
the proper visibility and to understand the code without needing to move to the right all
the time.

Sometimes programmers generate the logic from the tools. They have an initial
version, and they update everything after. This is another reason for the existence of
unreadable code. If the logic is very simple, you can leave it. If not, it is difficult to work in
this style.

Writing vertically also shows a lack of respect for the SQL statement. The developers
should understand that the SQL statement is one statement; it’s a unit of work. They
need to do everything in their power to catch the whole, or as much as possible. A SQL
statement can have hundreds of lines even in a horizontal manner.

Writing horizontally is a decision based on reason and not on taste. Some
programmers will say it is their taste. Even if this is true, all the arguments for
intelligibility are in favor of the horizontal writing of SQL statements. Taste should be a
factor of decision for a programmer as long as it is not against reason, don’t you think?

Specific Software Applications

A specific (data migration, replication, even ETL) software application is very

common nowadays. Most large enterprises have multiple systems and databases that
communicate with each other. In a continuous transfer between operational systems, like
areplication system or a data migration system, or a transfer between a set of operational
systems and an analytics, like in an ETL process, the logic of data transfer between
systems is more and more present everywhere.

These kinds of systems should be made by database developers and should not
be left in the hands of pure application developers. I know many people may disagree
with this categorical statement. I also recognize there is a degree of subjectivity in this
statement. Actually, I can rephrase it and affirm that these kind of systems should be
made by either specialized database developers or by mixed developers with an open
mind—so open that they can write classically in the user interface and write holistically
and set-oriented in the database. These application developers, even though they
specialize in languages like Java or C++, understand the simpler model of the database;
they understand the set-based approach. They are very good programmers, with brilliant
and flexible minds, who can make the switch appropriately.

The first condition for this kind of specific system to work properly and to have
a good performance is to be written correctly. By having the proper style in a specific
system, and adopting the holistic style of development, you can analyze the logic in data
sets and search for any weaknesses. There is no such thing as a perfect software system of
any type. Consequently, there will always be performance issues.

The holistic style of development means using mostly SQL. The entire data migration
system should be composed mainly of SQL statements. The data is transferred, as it
should be. Now the programmer can move to the next phase, trying to improve the
performance of the SQL itself!

141

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 " FINAL REFLECTIONS AND THOUGHTS

Regarding the SQL itself and the performance, there are so many possibilities that
I could fill five books. Improving one SQL statement or improving certain logic composed
of mainly SQL statements is a challenging task. Let’s cover a few things that must be done.

SQL Iltself Can Be Improved

First, let’s get a deeper understanding of the SQL paradigm, apart from the language, apart
from the business. As mentioned, there are two main goals when dealing with software.
First, you need to implement the business. For example, if you want to move some products
from an ERP system to a production system, you need to make sure the products are moved
correctly. If you have ten products to be moved from the ERP system, you can check them in
the target system, attribute by attribute. If everything is accurate, you have successfully
completed the first and the most important goal. Once this is done, you can look further
and question the performance. Waiting one minute for ten products may be acceptable.
Waiting ten minutes for ten products may not be acceptable, even if you see the products in
the target. In other words, the second goal is performance. In the database, you can see any
performance issues easily by looking at the response times.

If you have a log in the data migration system, you may find steps with performance
issues. You can detect the place with the issue. You need to take the SQL or the set of SQL
statements separately and investigate. The first phase of the investigation is to check if the
SQL was accurate. Let’s see some of the performance checks that can be done against the
SQL in the database.

e When you have to choose between joins and subqueries, it’s
generally better to use joins. In most cases, this is possible. An
excessive use of subqueries and a replacement of the joins with
subqueries will decrease the performance of the SQL statement.
In SQL, the same result set can be achieved in many ways.

A SQL programmer should know which technique offers better
performance. Some things are quite well known, others can be
found by looking at the execution plan of the statement.

e The use of unions should be made with caution; always check to
see if you can use a union all instead. The union operator always
involves a sort operation, which is very expensive. Check that the
data sets are grouped in a union and check if there is a need for
removal of duplicates. If you know that the data sets in the union
are distinct, you can replace the union with union all for much
better performance. A union may take five minutes and a union
all against the same blocks may take five seconds!

e Avoid aleft outer join because the indexes may not work on the
tables. Sometimes a left outer join can be avoided or replaced
with something else, so add it only if it is really required by the
business.

142

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 " FINAL REFLECTIONS AND THOUGHTS

e Use the specific SQL for the vendor if it has better performance
than standard SQL. As mentioned, the SQL Server form of update
is specific but it has better performance than the more general
form with the subquery. Many SQL statements are available in
many different forms and you should know if the performance is
the same or not.

There are many more tips to cover; this is another topic that deserves a separate
space. However, the most important thing is to write clean SQL from the business point of
view and from the performance point of view.

The ability to read an execution plan is, of course, crucial. Not all developers
know how. But if you want to improve performance, you need to be able to read and
understand the execution plan of a SQL statement. If you write clean and you know the
basics, you will get good performance.

There are many other things, like indexes, partitions, parallelism, materialized views,
and other facilities. These facilities will improve the performance and the developer that
knows all them is a true database developer.

Performance, Oh Performance!

Performance is the second goal in the database, the first one being the accurate
implementation of the business. All books mention performance. Everyone says that
performance is critical. In reality, we rarely think of performance from the beginning.
We analyze it later when the software application has been created and is already in
production. Consider an invoicing system. We think about the user interface design and
the database design; we analyze the invoicing business; but we rarely think seriously
about performance. Despite the fact that most professional books recommend that
performance should be carefully analyzed from the beginning, we rarely listen. It's the
same with our health: we begin to care about our health only after we get sick.

I have read many books about performance and I have worked on this issue
many times. I am a contractor, and very often contractors are called in to solve
performance issues that have existed for years. There are many techniques for improving
performance. I already described some of my interventions on some of my projects.
Being able to improve performance is a valuable skill for a professional. You need to
have a distinct type of knowledge for it, apart from simple development. In the field of
databases, performance is a separate section and the database professionals involved in
performance are half developers, half DBAs: they are the doctors of the databases, and
they are very appreciated and respected.

As an analogy, the Nordics have the best hearts in the world. Their health is
incredible and they are happy nations. I can tell you it is true because I had been in
Nordic countries many times. I was amazed by what I saw. First, I am a sports person. I
love sports; I play squash and badminton regularly, I like to run, and I also like to watch
various sports like tennis and handball. I was even a sports journalist for a short period.
Asyou can see, sports are part of my life. Still, I never imagined that I would find a nation
dedicated to sports. But I did in Finland, Sweden, Norway, and Denmark. These nations
are healthy nations firstly because they all participate in sports. Everyone runs, everyone
bikes, and the pools are full of people of all ages, from children to seniors. Why are they

143

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 " FINAL REFLECTIONS AND THOUGHTS

doing so many sports? Not because they are necessarily great fans like me; many of
them don’t care about professional sports. They are simply doing sports because they
care about their body. This applies to diet as well. During my database courses I would
eat lunch with my students. They ate only salads; they were not eating much bread. The
reason was the same: health (otherwise known as performance).

You just saw how a nation can analyze and take into account performance in their
daily activities. Why can’t we do the same in our projects? Regarding the database, the
first measure we should take is to write correctly in the database. In other words, stop
using an inappropriate style of development in our databases. Stop killing performance
with cursors over cursors and scalar functions over scalar functions called everywhere,
and structures and records and arrays instead of classic and native SQL facilities. We
need to stop considering SQL as an additional skill that can be achieved easily by anyone,
and instead have more respect for this language. Looking at performance firstly means
explaining to the application developers working in our databases that they need to think
differently due to the simple fact that they are in a distinct environment, the database,
where the main concept and concern is to handle everything in data sets.

Just the First Step

When we write correctly from the beginning, we start with the premise of good
performance. This is why I insist on explaining the concepts of the data set and the set-
oriented style of development to my students. The young generation of programmers
must be aware from the beginning, before they start to write code, that they need to think
differently in the database. They must be told this explicitly. It is such a simple solution
but it may have very good consequences! Let’s imagine for a moment that all data-
oriented software applications are written correctly in the databases. I can guarantee that
it will be a better world, from a performance point of view.

True SQL specialists need to take SQL statements and improve them; they need to
replace a poor syntax with a better one until they get the best SQL. Then the DBAs and the
database specialists can enter the scene and add valuable features for performance. The
main reasons for poor performance will be eliminated. Of course, this will never happen.
I am not naive enough to believe this; it was just a game of imagination.

All of the principles described in this book can be applied to a database where the
style of development is the holistic, set-oriented style of development. If the database is
written in the atomic style of development, these principles are useless. Consequently,
from this perspective, my book is a book about performance, even the first part of it. If you
don’t write holistically in the database, especially ones that implement specific software
applications, you will have poor performance. It is up to you to decide, as a programmer
and as a manager of the project, if you really care about the performance of your software
application. The game is yours: you should properly learn the rules! The style of the player
is always a critical component of the game. Apart from learning the rules, look at the style
and choose wisely in concordance with your reason. I offered you good reasons for a
certain style, and you can check for yourself whether it makes any difference in terms of
performance. The ball is in your court!

144

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 " FINAL REFLECTIONS AND THOUGHTS

Pure SQL is the Way

The main topic of this book is the use of a proper style of development in every layer of
a software application. I focused on the relational database, but I believe this applies

to other sections in the field of software development. The way we write our code

and our style of development should be a main concern to all of us programmers. We
should analyze ourselves and make sure we are using the proper style of development
everywhere we do our work. Although the concept of style of development is not clearly
defined, and it has its degree of subjectivity, it is very important.

I believe everyone will agree that our software applications and databases are
influenced by our style of development. This is reflected especially in the area of
performance because we are generally able to build a software application but at what
cost? I am referring to the cost of development and to the cost of performance. All of this
is influenced by our style of development.

I believe I have made my case. Some people will not be satisfied with my ideas, and
that’s their right. I respect the work of the application developer. I don’t have a strong
perspective of the user interface and application development, and I didn’t evaluate their
activity in their classic fields. I do, however, have a very good perspective of the relational
database. I have a very good understanding of the SQL language. I have often been in the
position of cleaning up code written by application developers in relational databases.
This is why I strongly believe that the application developers need to make an effort to
understand the concept of the data set and to follow set-oriented development inside the
database. They need to write their code differently inside a relational database. I hope
some application developers will understand and act accordingly.

With these final considerations I finish this book, and I hope you enjoyed it.

I'would be the happiest person in the world if at least one application developer learned
something from my book or if some students started their first projects knowing that

the database is something different. In addition, if anyone has earned the differences
between the holistic and the atomic style of development, this would be another source
of great satisfaction.

145

www.it-ebooks.info

http://www.it-ebooks.info/

Index

A

Atomic approach, 43, 45-46, 53

BI technologies, 52

C

Coding, 12
database development, 13
wrong implementation, 15

D

Database
atomically work, 44
atomic approach, 43, 144
big data technologies, 52
BI technologies, 52
database development, 52
data row, 44
data warehouse, 52
development, 145
holistic approach, 43, 52
performance, 143
PL/SQL developer, 52
procedural, declarative, statements, 44
queries, 47
row-by-row processing, 45
scalar function, 50
set-based approach, 43, 52
set-based debugging, 51
SQL Shop, 49
SQL statements, 44
superior level of detail, 44

© Stefan Ardeleanu 2016

Data control language (DCL), 22
Data definition language (DDL), 21
Data manipulation language (DML), 21
Data set
advantages, 35
atomic approach, 34
atomic units, 34
characteristics, 32
definition, 31
features, 31
holistic approach, 34
portability, 38
styles, 35
benefits, 38
database programming, 37
features, 36
holistic approach, 37
tool/language, 40
using SQL, 41
visual vs. SQL development, 39
Data transfer
atomic approach, 53
business description, 53
DDL, 54
fulltransfer (see Full data transfer)
holistic approach, 53
incremental transfer
atomic approach, 71
holistic solution, 76
source, changes to, 70
Definition language statements (DDL), 54
Division principle, 137
Dynamic SQL
dynamic SQL generator, 116
Holistic_Full_C_Generator, 117
Holistic_Full_Country_Dynamic, 117
holistic SQL server, 115

147

S. Ardeleanu, Relational Database Programming, DOI 10.1007/978-1-4842-2080-1

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX

Dynamic SQL (cont.)
Languages tables, 114
normal approach, 113
uncertainity, 113

E

ERP system, 142
Extract-Transform-Load (ETL) systems, 2

FG

Full data transfer

business and technical description, 55
classic/specific application, 54
countries and languages design, 56
data samples, 59
design considerations, 57
destination system design, 58
English and French

atomic style, 62, 65

holistic solutions operation, 68

holistic style, 66-67

if-else statement, 69

Oracle version, 63

rows transferred, English, 64

rows transferred, French, 64
insert script, 60
scalar functions

atomic solutions, 84

holistic solutions, 91

principal language, 83

H

Holistic approach, 34, 43, 51-53, 69,
123, 125

LJ KL MN

Insert statement, 140

(0

Object-oriented programming (OOP), 6
Online transaction processing (OLTP), 5

P

Performance issues, 142

148

Q

query language, 24

R

Row triggers

atomic approach
base data set display, 134
business description, 132
countries and languages, 135
list display, 132
results, 136
wrap-up, 136

atomic full transfer, 129

disaster, 130

seduction, 127

trap of, 128

two row adding, 129

two sequences adding, 128

S

Scalar functions, 50
cursors, 81
divide and conquer, 82
full data transfer
atomic solutions, 84
holistic solutions, 91
principal language, 83
simple query
atomic solutions, 97
business requirement, 96
holistic solutions, 100
insert script, 95
mixed approach, 99
products design, 94
sample product types values, 96
string/number, 82
table functions, 82
Set-based approach, 43, 52, 132
Software applications, 141, 145
SQL server
atomic get default quantity, 121
atomic solution, 124
business description, 103
embedded SQL vs. dynamic SQL
dynamic SQL and holistic
SQL server, 115
dynamic SQL generator, 116
execution results, 117

www.it-ebooks.info

http://www.it-ebooks.info/

generated procedure, 118
Holistic_Full_Country
_Dynamic, 117
Languages tables, 114
normal approach, 113
one delete and one insert
statement, 116
SQL generators, 113
uncertainty, at runtime, 113
get_type function creation, 104
holistic approach, 123, 125
Holistic_Full_C_Generator, 117
holistic solution, 106
if-else statements, 108
simple SQL statement, 119
SQL-based approach, 108
table function, 120
temporary table, 120
union vs. if-else, 109
write accurate code, 112

programmers, 18
querying, 20
relational model, 19
SELECT clause, 22
shop metaphor, 28
structured programming, 25
styles, 19
sublanguages/subsets, 21
UPDATE statement, 24
WHERE clause, 23

Style of development, 1
description, 3
ETL systems, 2
multitasking, 4

team organization, 4
visual experience, 5

OLTP systems, 7
OOP model, 6
programmer styles, 3
relational model, 6

INDEX

SQL Shop, 49
SQL template, 138
Stability, 15
Structured query language (SQL), 17
advantages, 18
components, 21
cursor, 25
database, 18
database development, 27
data migration interface, 29
DELETE statement, 24
FROM clause, 22 primary key, 9
GROUP BY clause, 23 unique constraint, 10
HAVING clause, 23 entity, 8
INSERT SELECT statement, 24 sum of columns, 9
INSERT VALUES statement, 24 Transaction control language (TCL), 22

metadata information, 21
ORDER BY clause, 23
W XY,Z2Z
Writing horizontally vs. vertically, 139

structured programming model, 6

LUV

Table design, 8
creation, 12
database constraints, 9
check constraint, 10
default constraint, 11
foreign key constraint, 10
NOT NULL constraint, 9-10

portability and performance, 26
practical activity, 26

149

www.it-ebooks.info

http://www.it-ebooks.info/

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Introduction
	Chapter 1: The Concept of Style
	Style of Development Is Dynamic
	SQL Requires Its Own Style
	Style and Quality
	A Programmer’s Own Style
	Common Styles of Development
	Multitasking
	Team Organization
	The Visual Experience

	Common Models in Programming
	Object-Oriented Programming
	Structured Programming
	An Alternate Model?
	Can One Model Fit All?

	Starting with Table Design
	The Table as an Entity
	The Table As A Sum of Columns
	Database Constraints
	What Developers Must Know

	Let’s Begin Coding
	Revisiting the Example
	Good Design May Be Wrongly Implemented

	Are You Ready for SQL?

	Chapter 2: SQL: Beauty and the Beast
	Can a Query Language Be So Important?
	Databases Require a Language
	SQL Is a Useful Language
	Programmers Must Adapt
	A Different Style Is Needed

	Understanding What SQL Is and Is Not
	SQL Is Not Classical Programming
	SQL Is About Querying
	Components of the SQL Language
	Queries and Clauses
	Inserting, Updating, and Deleting

	What About Programming?
	The Advantage of a Standard
	Programming Is a Practical Activity
	Is Database Programming Special?

	The SQL Shop Metaphor
	An Example of Bad Practice

	Chapter 3: A Holistic Vision of the Data
	The Concept of the Data Set
	The Importance of the Data Set
	SQL and the Data Set
	A Mix of Art and Science

	SQL and Portability
	Operating on Data Sets
	Two Approaches
	Data Sets as Atomic Units
	Like a Chameleon
	Thinking in Data Sets

	Take Style Seriously
	Understanding the Data Set
	The Importance of Style
	Programming as a Distinct Path
	Promoting the Holistic Style
	The Benefits

	Be Independent
	Visual vs. SQL Development
	Choosing a Tool or a Language
	Use SQL

	Chapter 4: Data by Set or by Row?
	Choosing the Level of Detail
	Working Atomically
	Row-by-Row Performance
	Writing Out of Habit
	Blocked into Poor Performance
	Performance Relies on a Holistic Style

	Querying … All the Time!
	What Do Programmers Do?
	How Do Programmers Do It?

	Revisiting the SQL Shop
	The Use of Scalar Functions
	Set-Based Debugging Is Simpler
	Your Role as a Database Developer
	Practice Time!

	Chapter 5: Data Transfer Paradigm
	About the Examples
	Format of the Examples
	Example 1: A Full Data Transfer Between Two Systems
	Business and Technical Description
	Prerequisites
	Sample of the Data
	An Example Insert Script
	Filtering for English and French
	Try It on Your Own
	Some Conclusions

	Example 2: Incrementally Update a Target
	Changes to the Source
	The Atomic Approach
	The Holistic Solution

	Chapter 6: The Challenge of Scalar Functions
	Cursors Have Their Place
	The Lure of Functions
	Divide and Conquer
	Example 3: Filtered Full Data Transfer
	The Atomic Solutions
	The Holistic Solutions

	Example 4: A Simple Query
	New Example Set
	Business Requirement
	The Atomic Solutions
	A Mixed Approach
	The Holistic Solutions

	Chapter 7: Writing SQL vs. Writing Procedurally
	An Example of an Update
	An Atomic Solution
	A Holistic Solution

	The Power of a Union
	Taking a SQL-Based Approach
	A Specific Example
	Union vs. if-else
	Write Accurate Code First

	Embedded SQL vs. Dynamic SQL
	The Normal Approach
	Uncertainty at Runtime
	The Use of SQL Generators
	An Example
	The Explanation

	Other Holistic Solutions
	Temporary Tables
	Table Functions
	One Last Atomic Example
	The Holistic Solution
	The Atomic Solution in SQL Server
	The Holistic Approach in SQL Server

	Chapter 8: Row Triggers and the Need for Atomic Solutions
	The Use of Row Triggers
	The Seduction
	The Trap of Row Triggers
	Some Example Triggers
	A Revised Solution
	The Disaster

	The Necessity of the Atomic Approach
	Analyzing the Example
	Reviewing the Solution
	Wrap-Up on Atomic Operations

	Chapter 9: Final Reflections and Thoughts
	The Principle of Division
	The Concept of a SQL Template
	Writing Horizontally vs. Vertically
	My Reason Against Tools
	Specific Software Applications
	SQL Itself Can Be Improved
	Performance, Oh Performance!
	Just the First Step
	Pure SQL is the Way

	Index

