THE EXPERT’S VOICE® IN SQL

Beginning SQL
Queries

From Novice to Professional

Apply the right operations to the
right problem to generate the right
results, every time

Second Edition

Clare Churcher

ApPress

http://www.it-ebooks.info/

Beginning SQL Queries

Clare Churcher

Apress’

www.it-ebooks.info

http://www.it-ebooks.info/

Beginning SQL Queries

Clare Churcher
Great Neck
New York, USA

ISBN-13 (pbk): 978-1-4842-1954-6 ISBN-13 (electronic): 978-1-4842-1955-3
DOI10.1007/978-1-4842-1955-3

Library of Congress Control Number: 2016944320
Copyright © 2016 by Clare Churcher

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction
on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic
adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted
from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied
specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser

of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright
Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to
prosecution under the respective Copyright Law.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Managing Director: Welmoed Spahr

Lead Editor: Jonathan Gennick

Technical Reviewer: George Anderson

Editorial Board: Steve Anglin, Pramila Balen, Louise Corrigan, Jonathan Gennick, Robert Hutchinson,
Celestin Suresh John, Nikhil Karkal, James Markham, Susan McDermott, Matthew Moodie,
Ben Renow-Clarke, Gwenan Spearing

Coordinating Editor: Jill Balzano

Copy Editor: April Rondeau

Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,

6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com,
or visit www. springer.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress. com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special Bulk
Sales-eBook Licensing web page at waw.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to readers at
www.apress.com. For detailed information about how to locate your book’s source code, go to
WWW.apress.com/source-code/.

Printed on acid-free paper

www.it-ebooks.info

mailto:orders-ny@springer-sbm.com
www.springer.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/
http://www.it-ebooks.info/

To Mark and Ali

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Contents at a Glance

About the AUthOrccvcsmiemms s ——————S——————_ XV
About the Technical REVIEWETccusesmsmmsssmssmsssmsssmssmssssssssssssssssssssssssssnsssnsssnsns Xvii
AcknowledgmEeNts.......ccceermssssssssssnnmmesssssssssssssnsssssssssssssssnsnsssssssssssssnnnnnnssssssssssnnnnnns Xix
INtroductioncccvvemiesmiss s ————————————— XXi
Chapter 1: Relational Database OVervIeWccsssmsssmssssssssssssssmsssssnssssssssssnsssanns 1
Chapter 2: Simple Queries on One Table...........ccmmnmmme————— 15
Chapter 3: A First Look at JOINSccccerssmsmmsmsmsmmsssmsssssssssssssssssssssssssssssssssnsnsanas 33
Chapter 4: SUDQUENISovcurisssesmsssmssmsssmsssss s s s s s s 51
Chapter 5: Self JOINS ... —————————— 67
Chapter 6: Multiple Relationships Between Tablescourvmmsmmsmmsnnssssssssssnnas 85
Chapter 7: Set Operations..........ccunmmmsmmmmmmmmmmems s ——————— 99
Chapter 8: Aggregate Operationsccciuussmsnmmssssnnnmmssssssnmsssssssssssssssnnsssssannns 129
Chapter 9: Window FUNCRIONS.......ccceurssssmmnmmssssssnssssssssssssssssnnsssssssssssssssnnnsssssnnnnss 147
Chapter 10: Efficiency Considerations.........occceeermmnmsmssmssssssssnnmmsssmsssssssssssssssssnns 161
Chapter 11: How to Tackle @ QUErYccuumissssmmsmmmmmssssssssssssnnsssssssssssssssnnssssssssnns 175
Chapter 12: Common Problems......ccccuueemmmmsssssnmmssnnnss 195
Appendix 1: Example Databaseccuumumemmmnmmmmmmmsmmssssssssnnsssssssssssssssssssssssssssssnnnns 211
Appendix 2: Relational Notationcccccemmmnmmmnsssssssnsssnnnmesssssssssssssnsssessssssssnnnns 213
INA@X.ciiieriiesrsmsssssssn s ssn s s ———————— 233
v

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Contents

About the AUROFcccccemmiiemnmmsnsnsssssssss s an s annn s annn s nnnnnnns XV
About the Technical ReVIEWETccussssmssssssssassssnssssnssssssssassssnsssasssssssssnsssassssnsnsns xvii
AcknowledgmEeNts.......ccceermssssssssssnnmmesssssssssssssnsssssssssssssssnsnsssssssssssssnnnnnnssssssssssnnnnnns Xix
INtroductioncccciiimmmimnnnsn s ———————————— XXi
Chapter 1: Relational Database QVervieWccccsureesssssssssnsssnsssssssssssssssssssssssssnns 1
Introducing Database TaDIEScccccerererererere e e sn e nne s 1

L L] 01T 2

THE PHIMAIY KBY ...ttt n s s b p e e p e e n e e s ae e p e n e e 3
Inserting and Updating ROWS in @ TADIEcceeererricrecccccire e sn e 3
Designing Appropriate TabIES ... e e e 5
Introducing Data MOdEIS ..o 6
Retrieving Information from a Databasecccvvrvrverrersrnnss s 9
PrOCESS APPIOACKH.......ccueeeecierieciec e sre e s e s a e s e s e r e e e s e s e e e e s e b e e e se e s e e e e ae e e ne e e e neeneennennen 10
OUECOME APPIOACH ...ttt s e e re e e s s e e sae e ae e e e e s ae e e e ae e saenenaeananns 1

Why We Consider TWO APPIOACKEScceereruerererereresersssersesessesessessssessssessesessesssssssssessssessssessenssssnssaes 12
SUMMEAIY ...ttt a e e e ae e s A e Re e et ene e s ae e e e nnennnnens 13
Chapter 2: Simple Queries on One Table.......cceeermrrrmmmmmsssssssnmmmmm————— 15
Subsets 0f ROWS and COIUMINS.........ccoveemrerrenerresersee s 15
USING AlIBSES ...veveeereereeraessessersessessesse e ssesaessessessesaessesssssesassaesaesae s e s e saennennessesnennennnnsennas 18
SAVING QUETIES ...veveeeeeereeeserresessesss e sse e s e sss s e e s sss e e s s ae e s san e s se e s e ene e snennnsennennnnnas 19
Specifying Conditions for Selecting ROWS...........ccooecriernirnsniern e 19
COMPATISON OPEIALOIS.....cveeerererrererrerererseersesessesessesessessssessesessessssessssessesessesesasssssessssessesessesessssssssansens 19
[T (o L0 T £ 0] £ OO 21

vii

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Dealing With NUIIS ..ot 23
FINGING NUIIS ...ttt e s e e r s 24
Comparisons INVOIVING NUILVAIUES ..o sss s 24

Managing DUPLICALES.c.cvververrerrerrere et nn e n s 25

Ordering QUEPUL ... n e n e n e nn e n e nnennennan 28

Performing Simple COUNTScovcereeiicrner e 29

Avoiding CommON MIiSTAKEScceverererrreerse e seesse s ssessesssssssassassessasssssassassassssssssanns 29
Incorrectly Using a WHERE Clause to Answer Questions with the Word “both”cccccovvvrervierennens 30
Incorrectly Using a WHERE Clause to Answer Questions with the Word “not”ccceevvevrerenierenens 32

R0 1 32

Chapter 3: A First LoOK at JOINScceeuriimimmmssssssssssmmmmmsssssssssssssssssssssssssssssssssssnns 33

The Process Approach t0 JOINS.......c.ccccecrcerinsessisses s s sns s s snsnns 33
Cartesian ProducCt ... 33
INNEE JOIN..c.iiiiiiii e ———— 35

Outcome ApProach 10 JOINSccceeerererrresesee e ssesn e sa e s snesnssassnenes 36

Extending JOiN QUEKIES......cccucvieerrieresrre e sn s n s ene s 38
DN o (0T T A o] 010 T3 SRS 39
Order Of OPEIALIONSccveeereerererererereresserresersesessesasserssessesessesessessssessssessesessesssessssesassersesessessnsesansens 4
AN QUECOME APPIOACH ...ttt ra e ae e sae e ae s a e e sae e saenesaenasaesa e e e e e aeenaen 42
Expressing Joins Through Diagrammatic INterfaces..........ovvmmnnnnnsssnens 43

Other TYPES OF JOINSccueeeeeccecee e snesresa e n e n e nesn e sn e sn e nn e nn e nnennennas 44
OULET JOINS ottt s 45

SUMMAIY ...ttt e s e e e s a e e R e s e eae e s ne e n e nnennnnnas 48

Chapter 4: SUDQUEIIeSccuussmmmmmssssnnnmmssssnnnssssssnnnnsssssnnnnnssssnnsnsssssnnnnsssssnnnnssssnnnnnss 51

IN KEYWOIA.......oeeeeeeereeer e a e sn s sn e nan e e nas o1

USINg IN With SUDQUETIESeouereereereerieree e sae s e e s s sassas s sassassnssassassnsnes 52

Being Careful with NOT @and <> ..o sn e 54

EXISTS KEYWOIQ ...t se e se e se s s sn s s sense s 57

Different Types of SUDQUETIESccvverercerierrer e e 60

viii

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Inner Queries Returning @ SiNGIE VAIUEccvcereverieveniere e sesese e sersesessesessesassessesesssssssssassens 60
Inner Queries Returning @ Set 0f VAIUEScccovverererieresieresere e resesesessesessesessesessesassessssessssssssnassens 62
Inner Queries Checking for EXISTENCE.........ccvvevererererererse st ses s sse e sesas e sas e ssesesassesassanaens 62
Using Subqueries for Updating.........ccoeeeeeeeienenesecre e snssns s s s s snsnas 63
SUMMEAIY ...ttt e e ae e se e s e s a e e ae e s e eae e nae e s e nnennnnnas 64
Examples of Different Types of SUDQUEKIEScveeeerrreercrerrecirre e s 65
Examples of Different USES fOr SUDQUETIEScveeerrrreercrereseesessssssesesesssesessssssese e sssesessssssssessssenes 66
Chapter 5: Self JOINSccusemmmmissnmmmmmsssnmmmmsssmmmssssnmsasss s ———— 67
Self RelationShips.......cccvirrirrrrccr s 67
Creating @ SEIf JOINccccerieercrrre e e e e e nenp e e r e 70
Queries INVOIVING @ SEIT JOINcoccicrererercrerererere e e 71

An Qutcome Approach 10 SEIf JOINSccovrerererenesesirre s 76
Questions INVOIVING “BOth” ..ot s 79
An Outcome Approach to Questions INVOIVING “BOth”ccccvevrererrerenrereresesese e sessesessessesessesenss 80

A Process Approach to Questions InvoIving “Both™..........ccoerrerrerniennrere v sessessesessesenaes 81
1141 1P SRS 82
Self RelatioNSRINSccccie e e 82
Questions INVoIving the WOrd “Both”...........ceeereresenenenesesesesesesesese s sssssssssssssssssssssssssssssnns 82
Chapter 6: Multiple Relationships Between Tablesccccccummnssnnnnmsssssnsnssssssnnns 85
Two Relationships Between the Same Tables.........c.ccoccvervrrrcrsscs s 85
Extracting Information from Multiple Relationships..........cccceevvrvrrrrrcnsscsseeces e, 89
ProCESS APPIOACH.......cceeeeecreecrresere s se s se s se e se e e se s e s e e s ae e s ae e s e an e nan e sannenannnanas 90
OULCOME APPIOACKHcuevveecertrreeesesse s e s e se s e e s e e s s e e e e s e e e e s a e e e e s s e sn e e nnnnn s 93
BUSINESS RUIEScervicrriict it 94
114 1] 112 SRS 97
Chapter 7: Set Operations.......ccccuuseemrmnsssssnnmssssssnsmssssssnnessssssssesssssnssessssssnsssssssnnnss 99
Overview of BasiC Set Operations...........cccceeeeeeresesesese e sse e ses s s snssneneas 99
Union-Compatible TabIes........ccceevireiercrererese e sa e sn e nns 101
Ensuring Union ComMPatiDility.........cccovererernniencssrsesessssese s ses s sessssssssessssssssens 104

ix

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

3 0] o PR SSR 105
Selecting the Appropriate COIUMNS ..o s 106
USES OF UNION.....c.ceiciiicccceee e e 108
Union and FUll OUEET JOINS.......c.coceciirenerenesineeessse s 109

INErSECHION ...t ———————— 111
USES OF INTEISECLION.......ccvriiiris s 112
The Importance of Projecting Appropriate COIUMNS........cccvceveererererererereseressersesessesessesssessssessesesses 115
Managing Without the INTERSECT KEYWOId.........cccururinmrmmnnissnssssssssssssssssssssssssssssssssssssens 116

DIffEIBNCE ...ttt ———————— 118
USES Of DIffErBINCE ...ttt bbb 118
Managing Without the EXCEPT KEYWOITcccecrrirerncrrcris st s sss s snssens 121

D o PSSR 122
Projecting Appropriate COIUMNScccceererreieserisreese s s s e ss e se s ss s e sesssssnsnens 124
SQL FOF DIVISIONvveeeecerreeeasssesesesssssesessssssesesesss e s ssss s s s s sssssesesssssssessssssssessssssssessssssssssessns 125

E3 1111 1P 7SS 126
] 30 127
INEEISECHION.....eecccr e ———————————————— 127
DiIffBIENCE ..cuerecccr s —————————————— 127
D 128

Chapter 8: Aggregate Operationsccoussssmssssnsssssnsssssnsssssnsssssnsssssnsssssnnssssansss 129

Simple Aggregate FUNCLIONSccocvvrrrrnrir s se e e e e e ssssnsnes 129
The COUNT() FUNGLION......ccerererteertesereesereeresesesessesessesessesassessssessssessssassesassessssesssssssessssessssessenenssnsnaes 129
THE AVG() FUNCLION......coveeeeeerereresereesereesessesesesasessssesaesessesassesssessssesassessesassesassessssssssssssessssesssnensensenes 132
The ROUND() FUNCLIONcoveeereerircreesereeseseesesesasessesessesessesassessssessssessssasssssssessssesssssssesssssssssessenssssnssaes 134
Other AgQregate FUNCLIONSccccveeererereressersssersssesessessesessessssessesessesessesassessssessssessenssssssssesassessssenes 135

GIOUPING ..cveeeeeeeereeersesseesessessessessessessessessessessessessessessesnessesaesnessensensensesnennesnenssnsnnnnnsensans 135
Filtering the Result of an Aggregate QUErY.........cccovirrrcrnirnr s 140
Using Aggregates to Perform Division Operations..........cccovcevrvrennesnssinsesnsese s s e sseens 142

Nested Queries and AQQregates.......cccuvrrrrerrerrersersessesses s s s sessesssssessessessessasssssssnsnns 144

E3 1111 P2 7SS 146

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Chapter 9: Window FUNClions.......cccceummmmmmmmssssssmssnnnmss 147

SIMPIE AQGregatescccerirerrriere s s e e s r e a e e ne e ne e 147
PartitiONScoviiiccer s 149
Order BY ClAUSE.......cceeuereereerrereersessersessessesssssesssassssssssssssssnns 150
CUMUIATIVE AQGIEUALES. ... eeuereeeereeereerereerereres e rseseraesesaesesserassesae e saesessesesaesasaesassessesessesesssesaesansenseneres 150
RANKING.....eeereeereerere e rereres e ree e saesesaesessesa s e sas e saesesaesasaesasaesae e sae e sae e sae e saeraesenaesesas e sasenaeansensnneres 152
Combining Ordering With Partitions...........ccovrererererersrre s resseree e sesseseseres e ssesessesessssessesassesssnenes 153
100 SRS 156
1111 1= SRS 159
OVER()«1veveunesesseresesessessesssssssessessesssssssssssssessesssssssssssssessessssssssssessessesssssssnssssssssssssssssssssssssssnsnssssssnssnsns 159
OVER(PARTITION BY <...3) ceecuriusesesesmssessessesssssssssessessessssssssssssssssesssnssssns 159
OVER(ORDER BY <...3) cuoturiureereunessesssssssssesssssssssssssssessesssnsns 159
OVER(PARTITION BY <...> ORDER BY <...3) ceovivurrerreresensssssssssessesssesns 159
OVER(ROWS BETWEEN <...> AND <...3) secourverrrrnrresressessesssssssssessesssns 159
Chapter 10: Efficiency Considerations........ccusssmmmssssnsssmssssssssssssssssssssssssssssssnnnes 161
What Happens 10 @ QUETY........corerererierers s ses s e ses e ssssesnens 161
TR T0 T TR T 2= 10 (o S 163
Storing RECOrdS iN OFAENcceveeererereeereesere s rer s se e ree e saesessesesaesae e saesesaesesaesassesassesaenessenesaeanaens 163
10 (2] =T 0 164
NON-CIUSTErEd INUEXEScvvviiririisiisrsisiss s 165
Clustered Index on @ COMPOUNT KBYcccerurrereerereerereererererersssessesessesessessssessssessesessssssssssssessssesseneres 166
UPAALiNG INUEXEScveereererererereeeree et raeres e raeseraesesassesaesasaesas e saesesaesesaesasaesassesaesesassesassesaesansesnnenes 167
COVEIING INABXES ...eeverereerereereeereerersesersesessesessessesessssessssessessssessssessesessesssessssessssessssessesssesessessssesseneres 168
SeIECHVITY OF INUEXES.....ccveereeereerere st ree s s s ra e e sae e s sesesaesae e sae e s ae e sae e saesae e sae e saeenaeananns 168
JOIN TECHNIQUES.......eiererere e sn e e 168
N L2 (=0 00 oSS 169
1T 0 T= TN o OSSPSR SRS 170
Different SQL EXPressions fOr JOINSccccevererinennnene s sss e sssnses 171

xi

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

SUMMEAIY ...t e s s ae e s r e e s e n e s ae e s e nnnnnnnns 173
PrIMAY KBY ...ttt ne s s s e e s e e e e s e e e e 173
FOT@IGN KBYSucueereeueeerieseisesisse et e s e s s e s b e e s e se et ssne e e e nre e e s e nsnnnnnnas 173
WHERE CONUITIONScocieeiisiesiisisise s es 173
ORDER BY, GROUP BY, and DISTINCTc.occvurermermererressessessesssssssessessssssssssssssssessesssssssssssssssssssssssssssssns 173
USE TNB TOOIS ... 173

Chapter 11: How to Tackle @ QUEerYcccuussssmmmmmmmmmsssssssssssssnssssssssssssssnnnssssssssnns 175

Understanding the Data...........cccoceeeiierenncnncsesr e 175
Determine the Relationships BEtWeen TADIEScccceerurueererireienerereee s sseens 175
Real World Versus Implementation...........c.ovceeeencnnnecsss s ssssssnens 178
What Tables Are INVOIVEA? ... 180
LOOK at SOME Data VAIUESccoceeciceeccceeee s 180

Big Picture Method.........c.ccvvrverieriererserrenes st se e e sn s sa s sn e sn e snenns 181
Combing the TADIES ... ———— 181
Find the SUbSEt 0f ROWS.......cociiniin s 183
Retain the Appropriate COIUMNS..........cceverererrere et re e e sae e ae e sse e s e s e sae e ae e sae e saesasnenaenenes 183
Consider an Intermediate VIEW..........ccvnninnsssssssssssssss s sssssssssens 184

Spotting Keywords in QUESTIONScccceeeeereieesiesee s se s e s s s sneeas 184
AN, BOTh, AlSO......cc it r e s s e b e s a s bbb s s be s b e n e b e s b e Rn e b e s b e an e b e s anaas 185
N [0 A1 L= SRR 187
DY | Y o OO 188

NO Idea Where to Start? ... 189
Find Some Helpful TADIEScocovreeeee e 189
Try to Answer the QUEeSTion BY HaNG...........cocceermreinrreesrr e 189
Write Down a Description of the Retrieved ReSUIL............ccoveeeeirieccreee s 190
Are There AREINALVES? ... s 190

ChECKING QUETIEScovruecrerueerissecsesseesesss e ses e ses e ss s sssss e s s e e s e sssss e sssasssnsssnaes 191
Check a Row That Should Be REtUINEd...........ccvmimninnsninissssssssssssssssssssssssss s 192
Check a Row That Should Not Be REtUrned...........ccouvvrmninnnnsssssssssssssssssssssssssssens 192

xii

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Check Boundary CONGItioNS.........cccveeerererieresrerserersssesesesesesessssessesessesesssssssessssessesesssssssssassessssesssnenes 192
CHECK NUITVEIUESerercnrricssssisesss s 193
1111 112 SRS 193
Chapter 12: Common Problems......ccccuseemmmnsssssnmmssnnnss 195
PoOr Database DESIgNccccevrrerrersessissesses s s e s e s e e e sr s sresnssnssnesnsnnennsnnennans 195
Data That IS Not NOrmalized..........c.cocovrrrinninincrnss s 195
Tables With NO Primary KeY ...t 198
Tables with MisSing FOreign KEYS ..o 199
Similar Data in TWO TADIES........cciiii s 199
INAPPIOPHALE TYPES c.veeeeirerirerre et s e e b bR e b e e e b e 200
Problems with Data VaIUES...........ccerrererreirresere e 201
0o oo T | 201
Incorrect or INCONSISTENT SPEIIING........ccceererreerererrr e enns 202
Extraneous Characters in TEXt FIelds.........cocoecrcrercrcrcrcrcrerereeeseese e 202
Inconsistent Case iN TEXt FIRlUS.........cccoerererererercrereresese e 203
Diagnosing ProbIEmS ... s 203
Check Parts of Nested Queries INdependentlyccccvveeveriereerererenereseressesessessesesse e sessesessessesenes 204
Understand How the Tables Are Being COMDINEU...........ccccvrierererererererereseressessesessesessesessesessessssenes 204
Remove Extra WHERE CIAUSES...........couuuiniiinisisssssesssssssssssss s sesssssssens 204
Retain All the COIUMNS.......co i 204
Check Underlying QUEries iN AGOregatesccvvrerererereriereniersssersesessesessessssesssessesessssssssssssessssesseneres 205
ComMmMON SYMPIOMS ... e sr e sr e sr e sn e nesn e snennennenens 205
NO ROWS Are RBIUMEM.......ccieeiiiiicicisee s 205
ROWS ArE IMISSINGceereeueiririseeesisisse e e s a s b e s s e s s s e e e be e e nnnnnneas 205
More Rows Than There Should Be...........coovninnnnni s 207
Incorrect StatistiCs Or AQQregateso reieecrirreecrrer et 208
THE OFAEr IS WIONQ.....covieiecirieeeeresee e a e p e e p e e nr s 209
Common Typos and Syntax ProbIemsccceeeiiennnnennsesssese e 209
E3 1111 P2 7S 210
xiii

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Appendix 1: Example Databasecccuummmmmmmnnnmmmmmmmsssssssssssmssssssssssssssssssssssssssssnnss 211

Appendix 2: Relational Notationcccccemmmmmmmmmssssssssssnnnsnssssssssssssssssssssssssssnnnns 213
INErOAUCHION ...t —————— 213
Relations, Tuples, and AHDULES.........ccrrerrere e se e e e 214
SQL, AlgeDra, and CAlCUIUScceerererrerereerererereresersesersesessesessessssessssessesesssssssessssesssessenssssssssesasaens 216
Relational Algebra: Specifying the Operations ... 216
£ <] [T 217

o (0] 1=] OSSPSR 218
Combining Select and ProjECL ... e sn s 218
Cartesian ProdUCT ..o s 219
INNEE JOIN...iiiiiiii i —————————————— 220
Union, Difference, and INTErseCtioN.........ccuiieiiiiiiiinii s sssss e ssss s sssessssssssssess 221
DIVISION ... ————————————————— 223
Relational Calculus: Specifying the QULCOME..........ccocveercrcercer s 225
Simple CalCulUS EXPIESSIONS........cueeeererreeereressesesesessssesessssssssesesssenes 225
Free and Bound VariabIes...........covrrenerininiseneesesssese s 225
Existential Quantifier and SAL ... s 226
Universal Quantifier and SAL...........cocovirnnnnreere e 228

A N T 1] o 229
D[]0] SO SSSS 229
CaICUIUS ..ot 230
00T o 1 231
INA@X.ciieiiiesrinsssansssasssn s s s s sn s n s n e 233

Xiv

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Clare Churcher was a senior academic at Lincoln University,
Christchurch, New Zealand, for twenty years and won a teaching award for
her contribution to developing and delivering several undergraduate and
postgraduate courses, including the analysis and design of databases.
Following her time at Lincoln, she spent two years as a business analyst at
Orion Health Software. She is currently developing graduate-level software
courses for Tai Poutini Polytechnic, Christchurch, New Zealand.

XV

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

About the Technical Reviewer

George Anderson Jr. is a working database administrator with nearly a
decade of SQL experience. He credits his exposure to SQL, both at work
and through the SQL community, with providing him many great
opportunities for learning, growing, and networking. When not protecting
data and writing code, George enjoys reading, playing golf very poorly, and
spending time with his family.

xvii

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Acknowledgments

First of all, many, many thanks to my husband, Neville, for reading every chapter and providing so many
valuable suggestions. I would like to acknowledge one of my readers, Scott Lawley, who has given me
helpful feedback and suggested the terms process approach and outcome approach as being friendlier than
algebra and calculus. Thank you to my editor, Jonathan Gennick, for making this second edition possible,
and to Jill Balzano for her excellent coordination. Thanks also to my employer, Tai Poutini Polytechnic,

for its support.

Xix

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction

Overview

The syntax of SQL is quite easy to learn. A few basic ideas and a handful of keywords allow you to tackle a
huge range of queries. However, many users often find themselves completely stumped when faced with a
particular problem. It isn’t really a great deal of help for someone to say “this is how I would do it” What you
need is a variety of ways to get started on a tricky problem. Once you have made a start on a query, you need
to be able to check, amend, and refine your solution until you have what you need.

Two-Pronged Approach

Throughout the book I have approached different types of queries from two directions. The two approaches
have their roots in the formal relational algebra and calculus. In the body of the book I have kept the
descriptions non-mathematical, however, Appendix 2 provides an introduction to the formal notation for
those keen to understand the underlying theory. The first approach, which I've called the process approach,
looks at how tables need to be manipulated in order to retrieve the subset of data required. You will find
explanations of the different types of operations that can be performed on tables; e.g., joins, intersections,
selections. Explanations are provided to help you decide which of these might be useful in particular
situations. Once you understand what operations are needed, translating them into SQL is relatively
straightforward.

The second approach is what I use when I just can’t figure out what operations will give me the required
results. This approach, which I've called the outcome approach, lets you describe what an expected row in
your result might be like —i.e., what conditions it must obey. By looking at the data, it is surprisingly easy to
develop a semi-formal description of what a “correct” retrieved row would be like (and by implication, how
you would recognize an “incorrect” row). Translating this semi-formal description into a working query is
straightforward.

I am always surprised at which approach my students take when confronting a new problem. Some will
instantly see the operations that are needed, and others will find the outcome approach more intuitive. The
choice of approach changes from query to query, from person to person, and (I suspect) from day to day.
Having more than one way to get started means you are less likely to get completely baffled by a new problem.

xxi

www.it-ebooks.info

http://www.it-ebooks.info/

INTRODUCTION

Who Is This Book For?

This book is for anyone who has a well-designed relational database and needs to extract information

from it. You might have noticed in the previous sentence that the database must be “well designed.” I can’t
overemphasize this point. If your database is badly designed, then it will not be able to store accurate and
consistent data, and so the information your queries retrieve will always be prone to inaccuracies. If you are
looking to design a database from scratch, you should read my first book Beginning Database Design.”* The
final chapter in this book will outline a few common design problems you are likely to come across and give
some advice about how to mitigate the impact or correct the problem.

Objective of This Book

In this book you will be introduced to all the main techniques and keywords needed to create SQL queries.
You will learn about joins, intersections, unions, differences, selection of rows, and projection of columns.
You will see how to implement these ideas in different ways using simple and nested queries, and you will
be introduced to a variety of techniques for aggregating and summarizing data, including the use of window
functions. You will also learn how you can investigate and improve the efficiency of your queries.

Most important of all, you will learn different ways to get started on a troublesome problem. There are
almost always several different ways to express a query, and my objective is that for any particular situation
I will provide you with a method of attack that matches your psyche and mood (just kidding).

New in the Second Edition

I'have added a chapter on window functions describing the functionality these recently introduced
concepts give to aggregating and summarizing data.

An appendix that provides an easily understood introduction to formal relational concepts and notation
is also included.

!Clare Churcher, Beginning Database Design: From Novice to Professional (New York: Apress, 2012).

xxii

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1

Relational Database Overview /

SQL (Structured Query Language) enables us to create tables, apply constraints, and manipulate data in a
database. In this book we will concentrate on queries that allow us to extract information from a database
by describing the subset of data we need. That data might be a single number, such as a product price, a list
of the names of members with overdue subscriptions, or a calculation, such as the total dollar amount of
products sold in the past 12 months. In this book we will be looking at different ways to approach a query so
that it can be expressed correctly in SQL.

Before getting into the nuts and bolts of how to specify queries, we will review some of the ideas and
terminology associated with relational databases. We will also look at data models, which are a succinct
way of depicting how a particular database is put together, that is, what data is being kept where and how
everything is interrelated.

Itis imperative that the underlying database has been designed to accurately represent the situation
itis dealing with. This means not only that suitable tables have been created, but also that appropriate
constraints have been applied so that the data is consistent and stays consistent as the database evolves.
Even with all the fanciest SQL in the world, you are unlikely to get accurate responses to queries if the
underlying database design is faulty. If you are setting up a new database, you should refer to a design book*
before embarking on the project.

Introducing Database Tables

In simple terms, a relational database is a set of tables.? Each table in a well-designed database keeps
information about aspects of one thing, such as customers, sales, teams, or tournaments. Throughout the
book we will base the majority of the examples on a database for a golf club. The tables will be introduced
as we progress, and an overview is provided in Appendix 1.

Electronic supplementary material The online version of this chapter (doi:10.1007/978-1-4842-1955-3_1)
contains supplementary material, which is available to authorized users.

'For example, you can refer to my other Apress book, Beginning Database Design: From Novice to Professional
(New York: Apress, 2012).

*More correctly, it’s a set of relations. In the body of the book common words such as table and row are used. In
Appendix 2 we introduce the more formal vocabulary and notation.

© Clare Churcher 2016 1
C. Churcher, Beginning SOL Queries, DOI 10.1007/978-1-4842-1955-3_1

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1955-3_1
http://www.it-ebooks.info/

CHAPTER 1 * RELATIONAL DATABASE OVERVIEW

Attributes

When a table is created we need to specify what information it will hold. For example, a Member table might
contain information about names, addresses, and contact details. We need to decide what the individual
pieces of data will be. For example, we might choose to separate the name information into a title, a first
name, a family name, initials, and a preferred name. This type of separation allows us more flexibility in how
the data is used. For example, we can address correspondence to Mr. J. A. Stevens and start the message with
Dear Jim. Each of these separate pieces of information is an attribute of the table.

To define an attribute we need to provide a name (e.g., FamilyName, Handicap, or DateOfBirth) and a domain
or type. A domain is a set of allowed values and might be something very general or something quite specific.
For example, the domain for columns storing dates might be any valid date (so that February 29is allowed only
in leap years), whereas for columns keeping quantities the domain might be integer values greater than 0. We
might initially think that the domain for a FamilyName attribute could be any string of characters, but on reflection
we will need to consider whether some punctuation is allowed (probably yes), if numbers are permitted (hard
to say), and if there should be a minimum or maximum length. All database systems have built-in domains or
types such as text, integer, or date that can be chosen for each of the fields in a table. More sophisticated products
allow the user to define their own types, which can be used across tables. For example, we might define a type
called CarRegistration that has a predetermined template of letters and digits. Even if it is not possible to define
your own types, all good database systems allow the designer to specify constraints on a particular attribute in a
table. For example, in a particular table we might specify that a birthdate is a date in the past or that a handicap is
between 0 and 40. Some attributes might be allowed to be empty, while others may be required to have a value.

When we view the table, the names of the attributes are the column headers, and the domain or type
provides the set of allowed values. Once we have defined the table we add data by providing a row for each
instance. For example, if we have a Member table, as in Figure 1-1, each row represents one member.

MemberlID -1 LastName -t FirstName +« Handicap - JoinDate - Gender -

118 McKenzie Melissa 30 28-May-05 F
138 Stone Michael 30 31-May-09 M
153 Nolan Brenda 11 12-Aug-06 F
176 Branch Helen 06-Dec-11 F
178 Beck Sarah 24-Jan-10 F
228 Burton Sandra 26 09-Jul-13 F
235 Cooper William 14 05-Mar-08 M
239 Spence Thomas 10 22-Jun-06 M
258 Olson Barbara 16 29-Jul-13/F
286 Pollard Robert 19 13-Aug-13 M
290 Sexton Thomas 26 28-Jul-08 M
323 Wilcox Daniel 3 18-May-09 M
331 Schmidt Thomas 25 07-Apr-09 M
332 Bridges Deborah 12 23-Mar-07 F
339 Young Betty 21 17-Apr-09 F
414 Gilmore Jane 5 30-May-07 F
415 Taylor William 7 27-Nov-07 M
461 Reed Robert 3 05-Aug-05 M
469 Willis Carolyn 29 14-Jan-11F
487 Kent Susan 07-Oct-10 F

Figure 1-1. The Member table
2

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 * RELATIONAL DATABASE OVERVIEW

The Primary Key

One of the most important features of a relational database table is that each of its rows should be unique.
No two rows in a table should have identical values for every attribute. If we consider our member data, it is
clear why this uniqueness constraint is so important. If, in the table in Figure 1-1, we had two identical rows
(say, for Brenda Nolan), we would have no way to differentiate them. We might associate a team with one
row and a subscription payment with the other, thereby generating all sorts of confusion.

The way that a relational database maintains the uniqueness of rows in a table is by specifying a
primary key. A primary key is an attribute, or set of attributes, that is guaranteed to be different in every
row of a given table. For data such as the member data in this example, we cannot guarantee that all our
members will have different names or addresses (a father and son may share a name and address and both
belong to the club). It is important that there are sufficient attributes to be able to distinguish the rows in
a table. Adding a birthdate would resolve the problem mentioned above. Dealing with large numbers of
attributes as a primary key can become cumbersome, so to help distinguish different members, we have
included an ID number as one of the attributes in the table in Figure 1-1. We can now uniquely identify a
member by specifying their ID. This has the added advantage that we can also keep track of members if
they change their names. Adding an identifying number (sometimes referred to as a surrogate key) is very
common in database tables. If MemberID is defined as the primary key for the Member table, then the database
system will ensure that in every row the value of MemberID is different. The system will also ensure that the
primary key field always has a value. That is, we can never add a row that has an empty MemberID field. These
two requirements for a primary key field (uniqueness and not being empty) ensure that given a value for
MemberID, we can always find a single row that represents that member. We will see that this is also important
when we start looking at relationships between tables later in this chapter.

The code that follows shows the SQL code for creating the Member table shown in Figure 1-1. Each
attribute has a name and type specified. In SQL, the keyword INT means an integer or non-fractional
number, and CHAR (n) means a string of characters n long. The code also specifies that MemberID will be the
primary key. Every table in a well-designed database should have a primary key clause.

CREATE TABLE Member (
MemberID INT PRIMARY KEY,
LastName CHAR(20),
FirstName CHAR(20),
Handicap INT,

JoinDate DATETIME,
Gender CHAR(1));

Inserting and Updating Rows in a Table

The emphasis of this book is on getting accurate information out of a database, but the data first has to get
in somehow. Most database application developers will provide user-friendly interfaces for inserting data
into the various tables. Often a form is presented to the user for entering data that may end up in several
tables. Figure 1-2 shows a simple Microsoft® Access form that allows a user to enter and amend data in the
Member table.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 * RELATIONAL DATABASE OVERVIEW

Member

MemberlD 118
LastName 'McKenzte '
FirstName Melissa
Handicap 30
JoinDate 28-May-05
Gender F

Figure 1-2. A form allowing entry and updating of data in the Member table

It is possible to construct web forms or use mechanical readers, such as bar-code readers, that can
collect data and insert it into a database. Data can also be added with bulk updates from files or be imported
from other applications. Behind all the different mechanisms for updating data, SQL update queries are
generated. We will see three types of queries for inserting or changing data just to get an idea of what they
look like.

The code that follows shows the SQL to enter one complete row in our Member table. The data items are
in the same order as specified when the table was created. Note that the date and string values need to be
enclosed in single quotes.

INSERT INTO Member
VALUES (118, 'McKenzie', 'Melissa', '963270', 30, '05/10/1999', 'F')

If many of the data items are empty, we can specify which attributes will have values. If we had only the
ID and last name of a member, we could insert just those two values as shown here:

INSERT INTO Member (MemberID, LastName)
VALUES (258, 'Olson')

When adding a new row as just seen, we always have to provide a value for the primary key.
We can also alter records that are already in the database with an update query. The following query
will find the row for the member with ID 118 and then will update the phone number:

UPDATE Member
SET Phone = '875077'
WHERE MemberID = 118

This query specifies which rows are to be changed (the WHERE clause) and also specifies the field to be
updated (the SET clause).

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 * RELATIONAL DATABASE OVERVIEW

Designing Appropriate Tables

Even a quite modest database system will have hundreds of attributes: names, dates, addresses, quantities,
prices, descriptions, ID numbers, and so on. These all have to find their way into tables, and getting them in
the right tables is critical to the overall accuracy and usefulness of the database. Many problems can arise
from having attributes in the “wrong” tables. As a simple illustration of what can go wrong, I'll briefly show
the problems associated with having redundant information.

Say we want to add teams and practice nights to the information we are keeping about members of our
golf club. We could add these two fields to the Member table, as in Figure 1-3.

MemberiD - | LastName - |FirstName - | Team -l |PracticeNight -

286 Pollard Robert TeamB Tuesday
339 Young Betty TeamB Tuesday
153 Nolan Brenda TeamB Monday
235 Cooper William TeamB Tuesday
461 Reed Robert TeamA Monday
415 Taylor William TeamA Monday
414 Gilmore Jane TeamA Monday
323 Wilcox Daniel TeamA Monday
138 Stone Michael

176 Branch Helen

Figure 1-3. Possible Member table

Immediately, we can see there has been a problem with the data entry because Brenda Nolan has
a practice night that is different from the rest of her team members. The piece of information about the
practice night for each team is being stored several times, so inevitably inconsistencies will arise. If we
formulated a query to find the practice night for TeamB, what would we expect for an answer? Should it be
Monday, Tuesday, or both?

The problem here is that (in database parlance) the table is not properly normalized. Normalization is a
formal way of checking whether attributes are in the correct table. It is outside the scope of this book to delve
into normalization, but I'll just briefly show you how to avoid the problem in this particular case.

The problem is that we are trying to keep information about two different things in our Member table:
information about each member (IDs, names, and so on) and information about teams (the practice nights).
The PracticeNight attribute is in the wrong table. Figure 1-4 shows a better solution with two tables: one for
information about members and one for information about teams.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 * RELATIONAL DATABASE OVERVIEW

MemberlD - LastName -~ FirstName - Team -~ TeamName - PracticeNight ~
286 Pollard Robert TeamB TeamA Tuesday
339 Young Betty TeamB TeamB Monday
153 Nolan Brenda TeamB
235 Cooper William TeamB
461 Reed Robert TeamA
415 Taylor William TeamA
414 Gilmore Jane TeamA
323 Wilcox Daniel TeamA
138 Stone Michael
176 Branch Helen

Member Table Team Table

Figure 1-4. Member and Team tables

This separation of information into two tables prevents the inconsistent data we had previously. The
practice night for each team is stored only once. If we need to find out what night Brenda Nolan should be at
practice, we now need to consult two tables: the Member table to find her team and then the Team table to find
the practice night for that team. The bulk of this book is about how to do just that sort of data retrieval.

Introducing Data Models

Even the simplest databases are likely to have several tables. A data model is a conceptual model of the
underlying data and how it is interrelated. We will use the class diagram notation from the Unified Modeling
Language (UML) to represent our data models. There are many other ways to represent data structure

(for example, Entity Relationship Diagrams) that, for the purposes of this book, would also be suitable.

We choose to use UML as it has a large suite of diagramming tools for developing software applications

that encompasses not only the structure of data but also its behavior. In this section, we will look at how to
interpret a class diagram and how to translate it into tables and constraints in a relational database.

A class is like a template for something we want to keep data about (events, people, places, etc.) For example,
we might want to keep names and other details about the members of our golf club. Figure 1-5 shows the UML
notation for a Member class. The name of the class is in the top panel, and the next panel shows the attributes.
Class diagrams can also have another panel to show methods associated with the behavior of the class.

*If you want more information about UML, then refer to Grady Booch, James Rumbaugh, and Ivar Jacobsen, The Unified
Modeling Language User Guide (Boston, MA: Addison Wesley, 2005). The current standards can be found at
http://www.uml.org/.

www.it-ebooks.info

http://www.uml.org/
http://www.it-ebooks.info/

CHAPTER 1 * RELATIONAL DATABASE OVERVIEW

Member

MemberlD
LastName
FlrstName
Handicap
JoinDate
Gender

Figure 1-5. UML representation of a Member class

In a relational database, each class is represented as a table, the attributes are the columns, and each
instance (in this case an individual club member) will be a row in the table.

The data model can also depict the way the different classes depend on each other. Figure 1-6 shows
two classes, Member and Team, and how they are related.

Member

MemberlD 0:n 0:1 | Team
LastName ——Plays for
FirstName TeamName
Handicap PracticeNight
JoinDate
Gender

Figure 1-6. A relationship between two classes

The pair of numbers at each end of the plays for line in Figure 1-6 indicates how many members play
for one particular team, and vice versa. The first number of each pair is the minimum number. This is often
0 or 1 and is therefore sometimes known as the optionality (that is, it indicates whether a member must have
an associated team, or vice versa). The second number (known as the cardinality) is the greatest number of
related objects. It is usually 1 or many (denoted by 7 or *), although other numbers are possible.

Relationships can be interpreted in both directions. The label on the relationship in Figure 1-6 implies
that we are reading from left to right and we will need to think of the appropriate verb for interpreting the
diagram in the other direction. “Team has members” will do. Reading Figure 1-6 from left to right, we see
that one particular member doesn’t have to play for a team and can play for at most one team (the numbers
0 and 1 at the end of the line nearest the Team class). Reading from right to left, we can say that one particular
team doesn’t need to have any members but can have many (the numbers 0 and n nearest the Member class).
A relationship like the one in Figure 1-6 is called a 1-Many relationship (a member can belong to just one
team, and a team can have many members).

You might think there should be exactly four members for a team (say, for an interclub team). Although
this might be true when the team plays a round of golf, our database might record different numbers of
members associated with the team as we add and remove players throughout the year. A data model usually

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 * RELATIONAL DATABASE OVERVIEW

uses 0, 1, and many to model the relationships between tables. Other constraints (such as the maximum
number on a team) are more usually expressed with business rules or with UML use cases.*

We can represent a 1-Many relationship in our database by looking at the primary key at the 1 end of the
relationship and adding a column of the same type to the table at the Many end. For the model in Figure 1-6
we would add a Team column to the Member table as shown in Figure 1-7.

MemberID -t | LastName -t FirstName ~| Handicap -t JoinDate - |Gender -~ Team -

118 McKenzie Melissa 30 28-May-05 F
138 Stone Michael 30 31-May-09 M
153 Nolan Brenda 11 12-Aug-06 F TeamB
176 Branch Helen 06-Dec-11 F
178 Beck Sarah 24-Jan-10 F
228 Burton Sandra 26 09-Jul-13 F
235 Cooper William 14 05-Mar-08 M TeamB
239 Spence Thomas 10 22-Jun-06 M
258 Olson Barbara 16 29-Jul-13 F
286 Pollard Robert 19 13-Aug-13 M TeamB
290 Sexton Thomas 26 28-Jul-08 M
323 Wilcox Daniel 3 18-May-09 M TeamA

Figure 1-7. Member table with a foreign key column Team

The Team column is called a foreign key. Any non-empty value in this column in the Member table must
be a value that already exists in the primary key column of the Team table. The concept of a foreign key
provides us with a constraint on the Member table so that we cannot assign members to non-existent teams.
This constraint is called referential integrity.

The SQL to create a table with a foreign key is shown here:

CREATE TABLE Member (

MemberID INT PRIMARY KEY,

LastName CHAR(20),

FirstName CHAR(20),

Phone CHAR(20),

Handicap INT,

JoinDate DATETIME,

Gender CHAR(1),

Team CHAR(20) FOREIGN KEY REFERENCES Team);

Because we need to compare the value in the foreign key column of the Member table with the primary
key column of the Team table, these two columns must have the same domain or datatype.

Most database products have a graphical interface for setting up and displaying foreign key constraints.
Figure 1-8 shows the interfaces for Microsoft® SQL Server and Microsoft® Access. These diagrams, which
are essentially implementations of the data model, are invaluable for understanding the structure of the
database so we know how to extract the information we require.

*Alistair Cockburn, Writing Effective Use Cases (Boston, MA: Addison Wesley, 2001).

8

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 * RELATIONAL DATABASE OVERVIEW

[Member
7 MemberD [¥ MemberD | Team
LastName LastName = ¥ TeamMame
FirstName ————.. Firsthome PracticeNight
Phone Team Pnone
Handicap ¥ TeamMName RS
JoinDate
JonDate PracticeNight Gender
Ceach ! Team o
Team O
Gender
SQL Server Access

Figure 1-8. Diagrams for implementing 1-Many relationships using foreign keys

The tables in Figures 1-4 and 1-7 have essentially the same design. For Figure 1-4 we arrived at the
design by removing the PracticeNight column from the Member table and creating a new Team table (a
normalization process). For Figure 1-7 we first considered a data model and added the Team column to the
Member table as a way of representing the relationship between Member and Team. The outcome is the same
whichever way you approach the issue.

At the risk of repeating myself, I do want to caution about the necessity of ensuring that the database
is properly designed. The simple model in Figure 1-6 is almost certainly quite unsuitable even for the tiny
amount of data it contains. A real club will probably want to keep track of how the membership of teams
evolves over the years. This will involve including information about seasons or years along with the team
membership information. Some members might play for more than one team during a year if they are called
in as a substitute. That information may or may not be necessary to retain. Designing a useful database is a
tricky job and outside the scope of this book.’

Retrieving Information from a Database

Now that we have a well-designed database consisting of interrelated normalized tables, we can start to
look at how to extract information by way of queries. When I refer to extracting or retrieving information I
don’t mean that we are removing any data. Think of a query as providing a window onto a small part of the
database. Many database systems will have a diagrammatic interface that can be useful for simple queries.
Figure 1-9 shows the Microsoft® Access interface for retrieving the names of senior members from the
Member table. The checkmarks denote which columns we want to retrieve, and the Criteria row enables us
to specify conditions on the rows that are returned.

SFor more information about database design, refer to my other Apress book, Beginning Database Design: From Novice
to Professional (New York: Apress, 2012).

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 * RELATIONAL DATABASE OVERVIEW

Member
* -
¥ MemberlD B
LastName
FirstName
MemberType
Phone -
Field: | MemberID LastName FirstName MemberType
Table: [Member Member Member Member
Sort:
Show: B] @ B
Criteria: “Senior”

Figure 1-9. Access interface for a simple query on the Member table

The application will take the information from the graphical interface and construct an SQL query.
Most applications will show you the SQL that is generated, and you can amend it or write it from scratch
yourself. The SQL equivalent to the query depicted in Figure 1-9 is:

SELECT FirstName, LastName
FROM Member
WHERE MemberType = 'Senior’;

This SQL query contains three clauses: SELECT specifies which columns to return, FROM specifies the
table(s) where the information is kept, and WHERE specifies the conditions the returned rows must satisfy.
We'll look at the structure of SQL statements in more detail later, but for now the intention of the query is
pretty clear.

As we need to include more and more tables connected in a variety of ways, the diagrammatic
interfaces rapidly become unwieldy, and often we need to write the SQL commands directly. Often, it is
easier to think about a query in a more abstract way. With a clear abstract understanding of what is required,
it then becomes more straightforward to turn the idea into an appropriate SQL statement. There are two
different ways to approach queries on a relational database.

Process Approach

One way to approach a query is to think in terms of the operations we need to carry out on the tables. Let’s
think about how we might to get a list of names for members who practice on a Monday. We might imagine
first retrieving just the rows from the Team table that have Monday in the PracticeNight column. We

might then join those rows with the Member table (more about joins later) and then extract the names from
the result. We will call this the process approach, as it is a series of steps carried out in a particular order.
Figure 1-10 depicts the steps just described.

10

www.it-ebooks.info

http://www.it-ebooks.info/

TeamName - PracticeNight -

A Tuesday
| TeamB Monday

1. Extract subset of rows

where PracticeNight is
Monday

CHAPTER 1 * RELATIONAL DATABASE OVERVIEW

TeamName - |PracticeNight -t
|Team8 | Monday

MemberID - LastName - FirstName - Team -

Brenda

153 Nolan
176 Branch
178 Beck
228 Burton
235 Cooper
239 Spence
258 Olson
286 Pollard
290 Sexton
323 Wilcox
331 Schmidt
332 Bridges
339 Young
414 Gilmore

Helen
Sarah
Sandra

William TeamB

Thomas
Barbara

Robert TeamB

Thomas

Daniel TeamA

Thomas
Debora

Betty TeamB
Jane TeamA

MemberlD -/ LastName 2

FirstName - Team -

2. Join resulting row with the
Member table and retain rows
where Team = TeamName

TeamName - PracticeNight -

153 Nolan Brenda TeamB TeamB Monday
233 Cooper William TeamB TeamB Monday
286 Pollard Robert TeamB TeamB Monday
339.Young Betty TeamB TeamB Monday
LastName ~ FirstName ~
3. Extract name Nolan Brenda
columns to get result Cooper William
Pollard Robert
Young Betty

Figure 1-10. The process approach: thinking of a query as a sequence of operations

Outcome Approach

An alternative way to think about the query in the previous section is to examine all the rows in the Member
table and just return those that satisfy the criteria that the member is on a team that has Monday as a
practice night. Figure 1-11 depicts this train of thought. The row m that we are considering in the Member table
satisfies the condition about the team’s practice night, so we should retrieve the names from that row.

www.it-ebooks.info

11

http://www.it-ebooks.info/

CHAPTER 1 * RELATIONAL DATABASE OVERVIEW

MemberlD - LastName - FirstName - Team - TeamName - pradice”ight -

M &= 153 Nolan Brenda TeamA Tuesday

176 Branch Helen onda
178 Beck Sarah tar
228 Burton Sandra

235 Cooper William TeamB

239 Spence Thomas

258 Olson Barbara

286 Pollard Robert TeamB

290 Sexton Thomas

323 Wilcox Daniel TeamA

331 Schmidt Thomas

332 Bridges Deborah

339 Young Betty TeamB

414 Gilmore Jane TeamA

Figure 1-11. Considering if the row m satisfies the criteria for the query.

We will call this type of thinking about a query the outcome approach because we describe what we
want rather than how to get it.

Why We Consider Two Approaches

Relational database theory has its origins in set theory. If we think of our tables as sets of rows, then a query
is a question that requires us to manipulate those sets to retrieve a subset containing the information we
require. The relational theory has two formal ways of specifying the criteria for extracting subsets of rows:
relational algebra and relational calculus.

We do not need these abstract ideas for simple queries. However, if all queries were simple, you would
not be reading this book. In the first instance, queries are expressed in everyday language that is often
ambiguous. Try this simple expression: “Find me all students who are younger than 20 or live at home and
get an allowance.” This can mean different things depending on where you insert commas. For example
a comma after “20” leads to the interpretation that everyone under 20 is included, while a comma after
“home” suggests that they must also get an allowance. Even after we have sorted out what the natural-
language expression means, we then have to think about the query in terms of the actual tables in the
database. This means having to be quite specific in how we express the query. Both relational algebra and
relational calculus give us a powerful way of being accurate and specific.

Why not skip all this abstract stuff and go right ahead and learn SQL? Well, the SQL language consists of
elements of both calculus and algebra. Older versions of SQL were purely based on relational calculus in that
you described what you wanted to retrieve rather than how. Modern implementations of SQL allow you to
explicitly specify algebraic operations such as joins, unions, and intersections on the tables as well.

There are often several equivalent ways of expressing an SQL statement. Some ways are very much
based on calculus, some are based on algebra, and some are a bit of both. During my time as a university
lecturer I often asked the class whether they found the calculus or algebra expressions more intuitive for
a particular query. The class was usually equally divided. Personally, I find that some queries just feel
obvious in terms of relational algebra, whereas others feel much more simple when expressed in relational
calculus. Once I have the idea pinned down with one or other, the translation into SQL (or some other query
language) is usually straightforward.

12

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 * RELATIONAL DATABASE OVERVIEW

We can make use of the ideas of relational algebra and relational calculus without delving into the
mathematics. In the body of the book I refer to the process approach (algebra) and the outcome approach
(calculus). The more tools you have at your disposal, the more likely it is that you will be able to express
complex queries accurately. In Appendix 2 there is an introduction to the formal notation for relational
algebra and relational calculus for those of you who would like to add that to your armory.

Summary

This chapter has presented an overview of relational databases. We have seen that a relational database
consists of a set of tables that represent the different aspects of our data (for example, a table for members
and a table for teams). The attributes needed to describe the members or teams become the columns of the
tables, and each column has a set of allowed values (a domain). Each table should have a primary key, which
is an attribute or set of attributes guaranteed to have a different value for every row.

It is possible to set up constraints between tables with foreign keys. A foreign key is a value for a
column(s) in one table that has to already exist as a value in the primary key column(s) of another table.
For example, the value of Team in the Member table must be one of the values in the primary key field of the
Team table.

It is often helpful to think about queries in an abstract way, and there are two ways to do this. The
process approach requires us to think about the operations that can be applied to tables in a database. Itis a
way of describing how we need to manipulate the tables to extract the information we require. The outcome
approach requires us to think about what criteria our required information must satisfy. Different people
will find that one or the other of these approaches feels more natural for different queries. SQL is a language
for specifying queries on a database. There are usually many equivalent ways to specify a query in SQL.
Some reflect the process approach and some reflect the outcome approach —and some are a bit of both.

13

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2

Simple Queries on One Table

If a database has been designed correctly, the data will be located in several different tables. For example,
our golf database has separate tables for information about members, teams, and tournaments, as well
as tables that connect these values; for example, which members play on which teams, enter which
tournaments, and so on. To make the best use of our data, we will need to inspect values from different
tables to retrieve the information we require.

In this chapter, we will look at retrieving information from a single table. The table may be one of the
permanent tables in the database, or it may be a virtual table that has been temporarily put together as part
of a more complicated query.

I've been talking in a rather imprecise manner about “retrieving” rows and “returning” information.
What happens to the rows that result from a query? In reality, we are not removing data from tables and
putting it somewhere. A query is like a window onto the database through which we can see just the
information we require. If the data in the underlying database changes, then the results of our query will
change too. It doesn’t hurt to think about the information that results from a query as being “retrieved” into
a “virtual” table as long as you realize it is just temporary.

Subsets of Rows and Columns

Selecting subsets of rows and/or columns is one of the most common operations we will carry out in a
query. In the following sections, we will look at selecting rows and columns from one of the original tables
in the database.' The same ideas apply to retrieving information from virtual tables that result from other
manipulations of the data.

To determine which rows to retrieve from a table, it is necessary to specify a condition, which is a
statement that is either true or false. We apply the condition to each row in the table independently,
retaining those rows for which the condition is true and discarding the others. Say we want to find all
the seniors in the golf club. We want just that subset of rows from the Member table where the value in the
MemberType field is “Senior,” as shown in Figure 2-1.

'Tn the formal terms of relational algebra, retrieving a subset of rows (tuples) from a table (relation) is known
as the select operation and retrieving a subset of attributes (columns) is known as the project operation. See Appendix 2
for more information.

© Clare Churcher 2016 15
C. Churcher, Beginning SOL Queries, DOI 10.1007/978-1-4842-1955-3_2

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 * SIMPLE QUERIES ON ONE TABLE

MemberiD LastName FirstName MemberType Phone Handicap JoinDate Coach Team Gender
118 McKenzie Melissa Junior 963270 30 28/05/2005 153 F

176 Branch Helen Social 1589419 6/12/2011 F

178 Beck Sarah Social 226596 24/01/2010 | F

228 Burton Sandra Junior 244493 26 9/07/2013 153 F

286 Pollard Robert Junior 617681 19 13/08/2013 235 TeamB M

414 Gilmore Jane Junior 459558 5 30/05/2007 153 TeamA F

469 Willis ‘Carolyn Junior 1688378 29 14/01/2011 | F
487 Kent Susan Social 707217 7/10/2010

Figure 2-1. Retrieving the subset of rows for Senior members.

The SQL for the query to retrieve Senior members is as follows:

SELECT *
FROM Member
WHERE MemberType = 'Senior'

This query has three parts, or clauses: The SELECT clause says what columns to retrieve. In this case,

* means retrieve all the columns. The FROM clause says which table(s) the query involves, and the WHERE
clause describes the condition for deciding whether a particular row should be included in the result. The
condition says to check the value in the field MemberType. In SQL, when we specify an actual value for a
character or text field, we need to enclose the value in single quotes, as in 'Senior'.

Now let’s look at how we can specify that we want to see only some of the columns in our result. I will
generally refer to selecting a subset of rows and projecting a subset of columns. Often the projection of a
subset of columns is the last step in a series of operations. We can think of gathering all the data we require
and then at the end asking for just the attributes or columns we need. We will see in Chapter 7 that we
sometimes also need to project similar columns from original or virtual tables before applying some of the
set operations, such as union and intersection.

If we want a phone list of all the members we don’t need extra information such as handicaps or join
dates. Figure 2-2 show a subset of the name and phone number columns from the Member table.

16

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1955-3_7
http://www.it-ebooks.info/

CHAPTER 2 " SIMPLE QUERIES ON ONE TABLE

MemberlD Last!

cap JoinDate

30 28[05[2005_
30 31/05/2009
11 12/08/2006

6/12/2011
24/01/2010
26 9/07/2013

14 5/03/2008
10 22/06/2006

16 29/07/2013
19 13/08/2013
26 28/07/2008
3 18/05/2009
25 7/04/2009

12 23/03/2007
21 17/04/2009

5 30/05/2007
7 27/11/2007

3 5/08/2005
29 14/01/2011

7/10/2010

Figure 2-2. Projecting a subset of columns to provide a phone list

The SQL to retrieve the name and phone columns from the Member table is:

SELECT LastName, FirstName, Phone

FROM Member

Coach Team

153

TeamB

153
153 TeamB

235 TeamB
235
TeamA
153
235
TeamB
153 TeamA
235 TeamA
235 TeamA

Gender

Because we want to see these column values for every row, this query doesn’t have a WHERE clause.
It is a simple matter to combine the retrieval of subsets of rows and columns. We might do this if we
wanted a phone list for just the senior members, as in Figure 2-3.

www.it-ebooks.info

17

http://www.it-ebooks.info/

CHAPTER 2 * SIMPLE QUERIES ON ONE TABLE

MemberID LastName FirstName MemberType Phone Handicap JoinDate Coach Team Gender

118 McKenzie Melissa Junior 963270 30 28/05/2005 153 F
138_ Senior 30 31/05/2009 M
153 Senior 11 12/08/2006 TeamB F
176 Branch Helen Social 589419 6/12/2011 F
178 Beck Sarah Social 226596 24/01/2010 F
228 Burton Sandra Junior 244453 26 9/07/2013 153 F
235 Senior 14 5/03/2008 153 TeamB M
239 Senior 10 22/06/2006 M
258 Senior 16 29/07/2013 F
286 Pollard Robert Junior 617681 19 13/08/2013 235 TeamB M
290 Senior 26 28/07/2008 235 M
323 Senior 3 18/05/2009 TeamA M
331 Senior 25 7/04/2009 153 M
332 Senior 12 23/03/2007 235 F
339 Senior 21 17/04/2009 TeamB F
414 Gilmore Jane Junior 459558 5 30/05/2007 153 TeamA F
a15 Senior - 7 27/11/2007 235 TeamA M
461 Senior 3 5/08/2005 235 TeamA M
469 Willis Carolyn Junior 688378 29 14/01/2011 F
487 Kent Susan Social 707217 7/10/2010 F

Figure 2-3. Retrieving a subset of rows and columns to produce a phone list of Senior members

The SQL for the query depicted in Figure 2-3 is:

SELECT LastName, FirstName, Phone
FROM Member
WHERE MemberType = 'Senior’

Using Aliases

As our queries get more complicated they will incorporate a number of different tables. Some of the tables
may have the same column names, and we might need to distinguish them from each other. In SQL we can
preface each of the attributes in our query with the name of the table that it comes from, as shown here:

SELECT Member.LastName, Member.FirstName, Member.Phone
FROM Member
WHERE Member.MemberType = 'Senior’

Because typing the whole table name can become tiresome, and also because in some queries we might
need to compare data from more than one row of a table, SQL has the notion of an alias. Have a look at the
following query:

SELECT m.LastName, m.FirstName, m.Phone

FROM Member m
WHERE m.MemberType = 'Senior'

18

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 " SIMPLE QUERIES ON ONE TABLE

In the FROM clause, we have declared an alias or alternative name for the Member table, in this case m. We
can give our alias any name or letter we like; shorter is better. Then, in the rest of the query we can use the
alias whenever we want to specify an attribute from that table. It is a good idea to get into the habit of using a
table alias for each table contributing to the query.

Saving Queries

It is possible to keep the result of a query in a new permanent table (sometimes called a snapshot), but we
usually don’t want to do that because it will become out of date if the underlying data changes. What we
usually want to do is save the query instructions so that we can ask the same question another day. Consider
our phone list query. Every so often after the membership of the club has been updated, we will produce a
new phone list. Rather than having to construct the query each time, we can save the instructions in what is
known as a view. The code below shows how to create a view that we can use to provide up-to-date phone
lists. We have to give the view a name, which can be anything we want (PhoneList seems sensible), and then
we supply the SQL statement for retrieving the appropriate data:

CREATE VIEW Phonelist AS
SELECT m.LastName, m.FirstName, m.Phone
FROM Member m

You can think of PhoneList as the instructions to create a “virtual” table that we can use in other queries
in the same way that we use real tables. We just need to remember that the virtual table is created on the fly
by running the query on the permanent Member table and it is then gone. To get our phone list now, we can
simply use the PhonelList view:

SELECT * FROM PhoneList

Specifying Conditions for Selecting Rows

In the queries we looked at in the previous sections, we used very simple conditions or criteria for
determining whether to include a row in the result of a query. In the following section, we will look more
closely at the different ways you can specify more complicated conditions.

Comparison Operators

A condition is a statement or expression that is either true or false, such as MemberType = 'Senior'.These
types of expressions are called Boolean expressions after the 19th-century English mathematician, George
Boole, who investigated their properties. The conditions we use to select rows from a table usually involve
comparing the values of an attribute to some constant value or another attribute. For example, we can ask
whether the value of an attribute is the same, different, or greater than some value. Table 2-1 shows some
comparison operators we can use in our queries.

19

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 * SIMPLE QUERIES ON ONE TABLE

Table 2-1. Comparison Operators

Operator Meaning Examples of True Statement
= Equals 5=5, 'Junior' = 'Junior’

< Less than 4<5, 'Ann' < 'Zebedee'

<= Less than or equal to 4<=5, 5¢=5

> Greater than 5>4, 'Zebedee' > 'Ann'

>= Greater than or equal to 5>=4, 5>=5

<> Not equal 5¢<>4, 'Junior' <> 'Senior’

Just a quick note of caution: in Table 2-1, some of our examples compare numbers, and some
compare characters. Recall from Chapter 1 that when we create a table, we specify the type of each field;
for example, MemberID was declared to be an INT (integer or whole number), and LastName a CHAR(20)

(a 20-character field). With fields like integer, comparisons are numerical. With text or character fields,
comparisons are alphabetical, and with date and time fields, comparisons are chronological (earlier dates
come first).

When we compare character attributes, the comparison is based on the ASCII? or Unicode value of the
characters. As we might expect “A” (ASCII value 65) comes before “Z” (ASCII 90), so “A” < “Z”. With a string of
characters, if the first letter is the same then the order is decided by the second, and so on. So “ANNABEL’ <
“ANNE”. However, the lowercase characters have higher ASCII codes than the uppercase ones. This means
that “a” (ASCII 97) > “Z” (ASCII 90). If you order a list of names alphabetically then, by default, a name
starting with a lowercase letter will appear after those starting with uppercase letters. For example “van
Dyke” will appear after “Zebedee.”

If we put numbers in a character field, they will also sort alphabetically. This means you will have
comparisons such as “400” < “5’, because the first character, “4” (ASCII 34), in the left-hand text is less
than the first character, “5” (ASCII 35), on the right-hand side. So, make sure if a column is going to
contain numbers that you want to compare and order numerically, that it is declared as a numeric type,
or you will get some rather surprising results from your queries. Similarly, dates need to be in a column
declared with one of the date types or the comparisons and ordering may not be what you expect.

With comparison operators, we can create many different queries. Table 2-2 shows some examples of
Boolean expressions that we can use as conditions in the WHERE clause of an SQL statement for selecting
rows from the Member table.

Table 2-2. Examples of Boolean Expressions on the Member Table

Expression Retrieved Rows

MemberType = 'Junior' All junior members

Handicap <= 12 All members with a handicap of 12 or less

JoinDate >= '01/01/2008' Everyone who has joined after the beginning of 2008
Gender = 'F' All the women

*http://www.asciitable.com/

20

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1955-3_1
http://www.asciitable.com/
http://www.it-ebooks.info/

CHAPTER 2 " SIMPLE QUERIES ON ONE TABLE

Some implementations of SQL are case sensitive when comparing text, and others are not. Being case
sensitive means that uppercase letters are treated as being different from their lowercase counterpart; in
other words, “Junior” is different from “junior,” which is different from “JUNIOR. I usually check out any
new database system I use to see what it does. If you do not care about the case of the attribute you are
considering (that is, you are happy to retrieve rows where MembexrType is “Junior” or “jUnloR” or whatever),
you can make use of the SQL function UPPER. This will turn the value of each text attribute into uppercase
before you do the comparison. You can then compare that with the uppercase literal value, as shown here:

SELECT *
FROM Member m
WHERE UPPER(m.MemberType) = 'JUNIOR'

Logical Operators

We can combine Boolean expressions to create more interesting conditions. For example, we can specify
that two expressions must both be true before we retrieve a particular row.

Let’s assume we want to find all the junior girls. This requires two conditions to be true: they must be
female, and they must be juniors. We can easily express each of these conditions independently. After that,
we can use the logical operator AND to require that both conditions be true:

SELECT *
FROM Member m
WHERE m.MemberType = 'Junior' AND m.Gender = 'F'

We will look at three logical operators: AND, OR, and NOT. We have already seen how AND works. If we
use OR between two expressions, then only one of the expressions need be true (but if they are both true,
that is OK as well). NOT is used before an expression. For example, for our Member table, we might ask for
rows obeying the condition NOT (MemberType = 'Social'). This means check each row, and if the value of
MemberType is “Social,” then we do not want that row. Table 2-3 gives some more examples of using logical
operators in conditions.

Table 2-3. Examples of Logical Operators

Expression Description of Data
MemberType = 'Senior' AND Handicap < 12 Seniors with a handicap under 12
MemberType = 'Senior' OR Handicap < 12 All the senior members as well as anyone else with a

good handicap (those less than 12)

NOT (MemberType = 'Social') All the members except the social ones (for the current
data, that would be just the seniors and juniors)

Figure 2-4 shows a diagrammatic representation of the queries in Table 2-3. Each circle represents a set
of rows (that is, those for social members or those for members with handicaps under 12). The shaded area
represents the result of the operation.

21

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 * SIMPLE QUERIES ON ONE TABLE

Senior <12
MemberType = 'Senior' MemberType = 'Senior' OR NOT MemberType = 'Social'
AND Handicap < 12 Handicap < 12

Figure 2-4. Diagrammatic representation of the logical operators.

The truth tables in Figure 2-5 can be helpful in understanding how the logical operators work. You read
them like this: in Figures 2-5a and 2-5b, we have two expressions, one along the top and one down the left.
Each expression can have one of two values: True (T) or False (F). If we combine them with the Boolean
expression AND, then Figure 2-5a shows that the overall statement is true only if both the contributing
statements are true (the square in the top left). If we combine them with an OR statement, then the overall
statement is false only if both contributing statements are false (bottom right of Figure 2-5b). The table in
Figure 2-5c says that if our original statement is true and we put NOT in front, then the result is false (left
column), and vice versa.

Expression 1 Expression 1 Expression
T F T F T F
) =
ST T F ST T T F T
D D
a]
=} =}
- -
N F F F N F T F
a) AND b) OR c) NOT

Figure 2-5. Truth tables for logical operators (T = true, F = false)

Sometimes it can be a bit tricky turning natural-language descriptions into Boolean expressions. If you
were asked for a list that included all the women and all the juniors (don’t ask why!), you might translate this
literally and write the condition MemberType = 'Junior' AND Gender = 'F'.However, the AND means both
conditions must be true, so this would give us junior women. What our natural-language statement really
means is “I want the row for any member if they are either a woman or a junior (or both).” Be careful.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 * SIMPLE QUERIES ON ONE TABLE

Dealing with Nulls

The example data in the Member table shown earlier in Figure 2-1 is all accurate and complete. Every row has
a value for each attribute, except for Handicap, which doesn’t apply to some members. Real data is usually
not so clean and tidy. Let’s consider some different data, as in Figure 2-6.

LastName ~ FirstName - MemberType ~ Handicap - | Gender - JoinDate -~

McKenzie Melissa Junior 30 F 28-May-05
Stone Michael Senior 30M

Nolan Brenda Senior 11 F 12-Aug-06
Branch Helen Social F 06-Dec-11
Beck Sarah F 24-Jan-10
Burton Sandra Junior 26 F 09-Jul-13
Cooper William Senior 14 M 05-Mar-08
Spence Kim Senior 10 22-Jun-06
Olson Barbara Senior 16 F 29-Jul-13
Pollard Robert Junior 19 M 13-Aug-13
Sexton Thomas Senior 26 M 28-Jul-08
Wilcox Daniel Senior 3M 18-May-09

Figure 2-6. Table with missing data

When there is no value in a cell in a table, it is said to be null. Nulls in a database can cause a few
headaches. Consider carrying out the following two queries: one to produce a list of male members and the
other a list of females. Given that golfers need to identity as either male or female for competition purposes,
we might assume that all the members of the club would appear on one list or the other. However, for the
data in Figure 2-6, we would leave out Kim Spence. You could argue that the data shouldn’t be like that, but
we are talking about real people and real clubs with less than accurate and complete data. Maybe Kim forgot
(or refused) to fill in the gender part of the application form. We can protect against this by insisting that
nulls are not allowed in a particular field when we create a table. The following SQL statement shows how
we could make Gender a field that always requires a value:

CREATE TABLE Member (
MemberID INT PRIMARY KEY,

.....

Gender CHAR(1) NOT NULL,

)

It is worth bearing in mind that making fields NOT NULL can create more headaches than it cures. If Kim
Spence did not complete all the boxes on his/her membership application but had organized payment for
the subscription, then we want to record him/her as a member and worry about the full details later. If we
make Gender a required field, then we can’t enter a record for him/her in the table—or we have to guess what
his/her gender is. Neither of these options is a good strategy, so it is best to be sparing when making fields
required. Remember that our primary key fields (by definition) always need a value.

23

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 * SIMPLE QUERIES ON ONE TABLE

Not all values of null mean there is a problem with the data. In our Member table, a field might be null
because it does not apply to a particular member. Helen and Sarah’s handicap may be genuinely null
because they do not have handicaps. However, it is fair to assume that every member should have a value for
MemberType and JoinDate, so the nulls in these columns are because we do not know the value. In the real
world, expect that your tables will have missing data.

Finding Nulls

Given that in our tables we may have nulls that might cause us problems, it is useful to be able to find them.
After we have entered a batch of new members into the database, we can check for problems. We might want
to get a list of all the members who don’t have a value for Gender, say. To do this we can use the SQL phrase
IS NULL:

SELECT *
FROM Member m
WHERE m.Gender IS NULL

Alternatively, we might want to retrieve only those members who do have a value in a cell. If we want
the names and handicaps of only those members who have a value for Handicap, we could use the NOT
operator to create the following query:

SELECT *
FROM Member m
WHERE NOT (m.Handicap IS NULL)

Comparisons Involving Null Values

Given that we are going to have unexpected nulls in our tables, it is important to know how to deal with
them. What rows will match the two conditions shown here?

Gender = 'F'
NOT (Gender = 'F')

You might think that if we carry out two queries, one to get all the rows that match a condition and
another for all the rows that don’t match, then we will get the whole table. But, in fact, we don’t. Kim will not
be included with the first condition, because clearly the value of Gender does not equal 'F'. But when we ask
whether the value is NOT 'F' we can’t say, because we don’t know what the value is. It might be 'F" if it had
avalue. In SQL when we compare null values with something, we don’t get either True or False because we
simply don’t know. This probably makes more sense if we think about handicaps. If we ask for everyone with
Handicap > 12, and also for those members who satisfy either NOT (Handicap > 12) orHandicap <=12,
then Sarah’s row will never be retrieved. The question doesn’t apply to her — she doesn’t have a handicap.

Once we take nulls into consideration, our expressions for conditions might actually have one of three
values: True, False, or “Don’t know.” That is pretty much how the world works, if you think about it. Only
rows that are True for a condition are retrieved in a query. If the condition is False or if we don’t know, then
the row is not retrieved.

If we include “Don’t know” in the truth tables they will look like those in Figure 2-7. For an AND
operation, if one expression is False, then it doesn’t matter about the others — the result will be False. For an
OR operation, if one expression is True, then it doesn’t matter about the others, so the result will be True.

24

www.it-ebooks.info

http://www.it-ebooks.info/

Expression 1

T]F]?
o |T| T|F|? o
g E
2 2
S |F| F| F|F)
= =
N N

a) AND

Expression 1

T]F]2

T|T|T

T|F|?

T2
b) OR

Expression

CHAPTER 2

T

F

?

F

T

?

c) NOT

SIMPLE QUERIES ON ONE TABLE

Figure 2-7. Truth tables with three-valued logic (T = True, F = False, ? = Don’t know)

Managing Duplicates

If our tables have been designed well, they will have a primary key. This ensures that every row is unique.
However, as soon as we retrieve a subset of data from the tables the result may not have unique rows.* Let’s

look at an example.

Consider retrieving just the FirstName column from the Member table. Figure 2-8 shows two possible

results.

*Formally, in terms of relational algebra, the result of every operation will generate another relation or set of unique rows.

See Appendix 2 for more information.

www.it-ebooks.info

25

http://www.it-ebooks.info/

CHAPTER 2 * SIMPLE QUERIES ON ONE TABLE

FirstName ~ FirstName ~
Melissa Barbara
Michael Betty
Brenda Brenda
Helen Carolyn
Sarah Daniel
Sandra Deborah
William Helen
Thomas Jane
Barbara Melissa
Robert Michael
Thomas Robert
Daniel Sandra
Thomas Sarah
Deborah Susan
Betty Thomas
Jane William
William

Robert

Carolyn

Susan
a) With duplicates b) Without duplicates

Figure 2-8. Projecting the FirstName column from the Member table

It is useful to think about why we might carry out a query retrieving just names. Perhaps the query is
to help prepare a set of nametags for a club party. If that is the case, then two Thomases and a William are
going to feel left out if we use the unique output.

You might think, what’s all the fuss? Of course we want to keep all the rows. However, consider
retrieving just the column with the membership types. Figure 2-9 shows the outputs with duplicates
included and removed.

26

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 " SIMPLE QUERIES ON ONE TABLE

MemberType ~ MemberType ~
Junior Junior
Senior Senior
Senior Social
Social

Social

Junior

Senior

Senior

Senior

Junior

Senior

Senior

Senior

Senior

Senior

Junior

Senior

Senior

Junior

Social

a) With duplicates b) Without duplicates

Figure 2-9. Projecting the MemberType column from the Member table

It's pretty difficult to think of a situation where you want the duplicated rows in Figure 2-9a. The two
operations we have considered sound similar in natural language. “Give me a list of first names” and
“Give me a list of membership types” sound like the same sort of question, but they mean quite different
things. The first means “Give me a name for each member,” and the other means “Give me a list of unique
membership types.

What does SQL do? If we say SELECT MemberType FROM Member, we will get the output in Figure 2-9a
with all the duplicates included. If we do not want the duplicates, then we can use the keyword DISTINCT:

SELECT DISTINCT m.MemberType
FROM Member m

Whether or not you keep the duplicates depends very much on the information you require, so you
need to give it careful thought. If you were expecting the set of rows in Figure 2-9b and got Figure 2-9a, you

would most likely notice. With the two sets of rows in Figure 2-8, it is much more difficult to spot that you
have perhaps made a mistake. Get into the habit of thinking about duplicates for all your queries.

27

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 * SIMPLE QUERIES ON ONE TABLE

Ordering Output

Every now and then I refer to a “set of rows” rather than a table or a virtual table. The word set has two
implications. One is that there are no duplicates (and we have discussed that a lot!). The other implication
is that there is no particular order to the rows in our set. In theory, we don’t have a first row or a last row or

a next row. If we run a query to retrieve all the rows, or just some of the rows, from a table, then we have no
guarantee in what order they will be returned. However, sometimes we might like to display the resultsin a
particular order. We can do this with the key phrase ORDER BY. The following shows how to retrieve member
information ordered alphabetically by LastName:

SELECT *
FROM Member m
ORDER BY m.LastName

We can order by two or more values. For example, if we want to order Senior members with the same
LastName by the value of their FirstName, we can include those two attributes (in that order) in the
ORDER BY clause:

SELECT *

FROM Member m

WHERE m.MemberType = 'Senior'
ORDER BY m.LastName, m.FirstName

The type of a field determines how the values will be ordered. By default, text fields will be ordered
alphabetically, number fields will be ordered numerically (smallest first), and date and time fields
chronologically (earlier dates and times first). We can also specify that the order be reversed with the
keyword DESC (for descending). There is an equivalent keyword ASC (for ascending), which is the default if
neither is specified. The following will return member names and handicaps ordered in descending order;
i.e., with the highest value of handicap first:

SELECT m.Lastname, m.FirstName, m.Handicap
FROM Member m
ORDER BY m.Handicap DESC

The way nulls are ordered in any output depends on the application; you will need to check. For example,
in SQL Server and Microsoft Access, nulls will appear at the top of an ascending list and the bottom of a
descending list. Oracle provides keywords such as NULLS FIRST and NULLS LAST so you can choose where
the null values go. A little trick to get your nulls at the bottom of an ascending list in SQL Server is to use a
case statement:

SELECT m.LastName, m.FirstName, m.Handicap
FROM Member m
ORDER BY (CASE
WHEN m.Handicap IS NULL THEN 1
ELSE 0
END), m.Handicap

The preceding query has two attributes in the ORDER BY clause. It orders firstly by the case statement in
the parentheses. You can think of the case statement as creating a virtual column giving the value 0 to those
rows with a handicap and 1 to those which have no handicap value. When we order by this first attribute in
the ORDER BY clause, the rows with a value for a handicap will be before the nulls. Within these groups the
rows will then be ordered by the value of the handicap in ascending order.

28

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 " SIMPLE QUERIES ON ONE TABLE

Performing Simple Counts

As well as retrieving a subset of rows and columns from a table, we can also use SQL queries to provide some
statistics. There are SQL functions that allow us to count records, total or average values, find maximum and
minimum values, and so on. In this section, we will look at some simple queries for counting records. We
will return to this topic in Chapter 8.

We can use the COUNT function to return the number of records in the Member table. In the following
query, * means count each record:

SELECT COUNT(*) FROM Member

We can also count a subset of rows by adding a WHERE clause to specify those rows we want to include.
For example, we can use the following query to count the number of senior members:

SELECT COUNT(*) FROM Member m
WHERE m.MemberType = 'Senior'

Because we have just been talking about nulls and duplicate values, it is worth briefly mentioning here
how these will affect our counts. Rather than use * as a parameter to the COUNT function so that it counts all
the rows, we can put an attribute such as Handicap in the parentheses. If we do this only those rows with a
value in the Handicap field will be included in the count.

SELECT COUNT(Handicap) FROM Member

We can also specify that we want to count the number of unique values for an attribute. If we want to
know how many different values of MembexrType appear in the Member table then we can use the following

query:
SELECT COUNT(DISTINCT MemberType) FROM Member

It is worth reiterating that different database software will support different parts of the SQL standard
syntax. For example, Microsoft Access currently does not support COUNT(DISTINCT MemberType), seen in the
previous query. There is usually a way to work around these differences to find an equivalent query, and we
will look at how to rephrase the preceding query and other issues related to aggregates and summaries in
Chapter 8.

Avoiding Common Mistakes

Retrieving a subset of rows and columns from a single table is the most simple of SQL queries. However, you
have seen that you still need to be careful. It is important to remember that there will be null values in your
tables and to think carefully about how your selection conditions will treat them. You also need to remember
that if you do not retain the primary key fields from your tables, there is the potential to have duplicate rows,
and you must deal with them appropriately.

There are a couple of other mistakes that are commonly made when selecting a subset of rows. They
don’t become apparent with a table like Member, so I'll introduce some more of the tables in the golf club
database. Figure 2-10 shows part of the Member table and two other tables: Entry and Tournament. The
first row in the Entry table records that person 118 (Melissa McKenzie) entered tournament 24 (Leeston)
in 2014.

29

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1955-3_8
http://dx.doi.org/10.1007/978-1-4842-1955-3_8
http://www.it-ebooks.info/

CHAPTER 2 * SIMPLE QUERIES ON ONE TABLE

MemberiD - | LastName - |FirstName - MemberID - | TourlD - | Year - TourlD -~ TourName -

118 McKenzie Melissa 118 24 2014 24 Leeston
138 Stone Michael 228 24 2015 25 Kaiapoi
153 Nolan Brenda 228 25 2015 36 WestCoast
176 Branch Helen 228 36 2015 38 Canterbury
178 Beck Sarah 235 38 2013 40 Otago
228 Burton Sandra 235 38 2015
235 Cooper William 235 40 2014
239 Spence Thomas 235 40 2015
258 Olson Barbara 239 25 2015
286 Pollard Robert 239 40 2013
290 Sexton Thomas 258 24 2014
323 Wilcox Daniel 258 38 2014
331 Schmidt Thomas 286 24 2013
332 Bridges Deborah 286 24 2014
339 Young Betty 286 24 2015
414 Gilmore Jane 415 24 2015
415 Taylor William 415 25 2013
461 Reed Robert 415 36 2014
469 Willis Carolyn 415 36 2015
487 Kent Susan 415 38 2013
415 38 2015
415 40 2013
415 40 2014
415 40 2015
a) Member (Some columns) b) Entry c¢) Tournament

Figure 2-10. Introducing the Tournament and Entry tables

We can use some of the SQL operations we have already seen on the Entry table to answer questions
such as which tournaments (just the TourID number) person 258 has entered, who (just the MemberID
number) has ever entered tournament 24, or who entered tournament 36 in 2015. The following is the SQL
for the last query:

SELECT e.MemberID

FROM Entry e
WHERE e.TourID = 36 AND e.Year = 2015

Incorrectly Using a WHERE Clause to Answer Questions with the
Word “both”

In the previous section we used the logical operator AND to find rows in the Entry table where both TourID =
36 and Year = 2015 were true.

30

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 " SIMPLE QUERIES ON ONE TABLE

Say we wanted to find the members who have entered both tournaments 36 and 38. There is a
temptation to again use the AND operator and write the query as follows:

SELECT e.MemberID
FROM Entry e
WHERE e.TourID = 36 AND e.TourID= 38

Can you work out what this query will return? This is where it is helpful to think in terms of the row
variable e investigating each row in table Entry as in Figure 2-11.

MemberlID ~ | TourlD ~ | Year ~

286 24 2014
286 24 2015
415 24 2015
415 25 2013
415 36 2014
e F 415 36 2015
415 38 2013
415 38 2015
415 40 2013
415 40 2014
415 40 2015

Figure 2-11. The row variable e investigates each row independently.

Imagine our finger is pointing at the row shown in the diagram. Does this row (415, 36, 2015) satisfy
the condition e.TourID = 36 AND e.TourID= 387 It satisfies the first part, but the AND operator requires
the row to satisfy both conditions. No single row in our table will have both 36 and 38 in the tournament
column because each row is for just one entry. The SQL query we suggested will never find any rows; it
will always return an empty table. If we change the Boolean operator to OR, we will get the row indicated
in Figure 2-10 returned; however, we will also then get anyone who has entered either 36 or 38 but not
necessarily both.

This particular query cannot be solved with a simple WHERE clause. By definition, the condition in the
WHERE applies to each row independently. To answer the question about who has entered both competitions,
we need to look at more than one row of the Entry table at the same time (that is, two fingers). If we have
two fingers, one pointing at the row shown in Figure 2-10 and another pointing at the following row, then
we can deduce that 415 has entered both tournaments. We’'ll look at how to do this in Chapter 5.

31

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1955-3_5
http://www.it-ebooks.info/

CHAPTER 2 * SIMPLE QUERIES ON ONE TABLE

Incorrectly Using a WHERE Clause to Answer Questions with the
Word “not”

Now let’s consider another common error. It is easy to find the people who have entered tournament 38 with
the condition e.TourID = 38. Itis tempting to try to retrieve the people who have not entered tournament
38 by changing the condition slightly. Can you figure out what rows the following SQL query will retrieve?

SELECT e.MemberID
FROM Entry e
WHERE e.TourID <> 38

What about the row that the finger is pointing to in Figure 2-11? Does this satisfy e. TourID <> 38?1t
certainly does. But this doesn’t mean 415 hasn’t entered tournament 38 (the following row says he did). The
query, in fact, returns all the people who have entered some tournament that isn’t tournament 38 (which is
unlikely to be a question you'll ever want to ask!).

This is another type of question that can’t be answered with a simple WHERE clause that looks at
independent rows in a table. In fact, we can’t even answer this question with a query that involves only the
Entry table. Member 138, Michael Stone, has not entered tournament 38, but he doesn’t even get a mention
in the Entry table because he has never entered any tournaments at all. We'll see how to deal with questions
like this in Chapter 7.

Summary

In this chapter, we have looked at queries on a single table. Some of the main points covered are:

e We canreturn a subset of rows that satisfy a given condition by using a WHERE clause.
The condition is a Boolean expression, which is a statement that is either true or not
true. The condition is applied to each row of the table independently.

e The SELECT clause allows us to specify a subset of columns.

e Because the result of a query is a set of rows, we cannot guarantee the order in which
the rows will be returned. If we want to display the result in a particular order, we can
use the ORDER BY clause.

e Itis possible to create a view, which essentially stores an SQL command so that you
can run it over and over again as the data in the base tables change.

e Tables are likely to have null values (both on purpose and by mistake). Always check
how your conditions will apply to null values.

e When you project a subset of columns using an SQL command, the default is to
retain duplicate rows in the result. Always think about how you need to deal with the
duplicates, and use the keyword DISTINCT if you want unique rows.

e The WHERE clause considers only one row at a time. Don’t use it for queries that
require you to look at several rows at once, as in who entered both tournaments or
who did not enter this tournament.

32

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1955-3_7
http://www.it-ebooks.info/

CHAPTER 3

A First Look at Joins

In the previous chapter, we looked at how to retrieve subsets of rows and/or columns from a single table.
We saw in Chapter 1 that to keep data accurately in a database, different aspects of the information need
to be separated into normalized tables. Most queries will require information from two or more tables. We
can combine data from two tables in several different ways depending on the nature of the information
we are trying to extract. The most often encountered two-table operation is the join. In Chapter 1 we also
introduced two different ways to approach a query: the process approach and the outcome approach. The
first describes how we will combine the tables to achieve the required data, while the second describes
what criteria the retrieved data must satisfy.

The Process Approach to Joins

A join enables us to combine related data from two tables. The example we will start with uses the Member
and Type tables in order to find the membership fees for each member of the golf club. The first step in
carrying out a join is an operation called a Cartesian product.

Cartesian Product

A Cartesian product is the most versatile operation between two tables because it can be applied to any two
tables of any shape. Having said that, it rarely produces particularly useful information on its own, so its
main claim to fame is as the first step of a join.

A Cartesian product is a bit like putting two tables side by side. Let’s have a look at the two tables in
Figure 3-1: an abbreviated Member table and the Type table.

© Clare Churcher 2016 33
C. Churcher, Beginning SOL Queries, DOI 10.1007/978-1-4842-1955-3_3

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1955-3_1
http://dx.doi.org/10.1007/978-1-4842-1955-3_1
http://www.it-ebooks.info/

CHAPTER 3 * A FIRST LOOK AT JOINS

MemberlD - | LastName - |FirstName - |MemberType - Type - |Fee -|
118 McKenzie Melissa Junior Associate 60
138 Stone Michael Senior Junior 150
153 Nolan Brenda Senior Senior 300
176 Branch Helen Social Social 50
178 Beck Sarah Social
228 Burton Sandra Junior
235 Cooper William Senior
239 Spence Thomas Senior
258 Olson Barbara Senior
286 Pollard Robert Junior

a) (Abbreviated) Member table b) Type table

Figure 3-1. Two permanent tables in the database

The virtual table resulting from the Cartesian product will have a column for each column in the two
contributing tables. The rows in the resulting table consist of every combination of rows from the original
tables. Figure 3-2 shows the first few rows of the Cartesian product.

From Member table From Type table

— -~ ———

MemberiD - LastName - FirstName - MemberType - Type - Fee -~

118 McKenzie Melissa Junior Associate 60
118 McKenzie Melissa Junior Junior 150
118 McKenzie Melissa Junior Senior 300
118 McKenzie Melissa Junior Social 50
138 Stone Michael Senior Associate 60
138 Stone Michael Senior Junior 150
138 Stone Michael Senior Senior 300
138 Stone Michael Senior Social 50
153 Nolan Brenda Senior Associate 60
153 Nolan Brenda Senior Junior 150
153 Nolan Brenda Senior Senior 300
153 Nolan Brenda Senior Social 50

Figure 3-2. First few rows of the Cartesian product between Member and Type tables

34

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * A FIRST LOOK AT JOINS

We have the four columns from the Member table and the two columns from the Type table, which gives
us six columns total. Each row from the Member table appears in the resulting table alongside each row from
the Type table. We have Melissa McKenzie appearing on four rows — once with each of the four rows in the
Type table (Associate, Junior, Senior, Social). The total number of rows will be the number of rows in each
table multiplied together; in other words, for this cut-down Member table, we have 10 rows times 4 rows (from
Type), giving a total of 40 rows. Cartesian products can produce very, very large result tables, which is why
they don’t give us much useful information on their own.

A Cartesian product operation is represented in SQL by CROSS JOIN. The SQL to retrieve the data shown
in Figure 3-2 is:

SELECT *
FROM Member m CROSS JOIN Type t;

Not all versions of SQL support the same keywords and phrases (e.g., Microsoft Access 2013 does not
support the CROSS JOIN key phrase). In 1992, keywords representing some relational algebra operations
(such as CROSS JOIN) were added to the SQL standard,' and there have been a number of updates since
then. However, not all vendors incorporate all parts of the standard, and other vendors provide additional
functionality. Later in the chapter we will look at the outcome approach to provide equivalent ways of
expressing queries that will work when the relational algebra operation keywords are not available.

Inner Join

If you look at the table in Figure 3-2, you can see that most of the rows are quite meaningless. For example,
the first, third, and fourth rows have the junior member Melissa McKenzie alongside information about
the associate, senior, and social membership types. It is difficult to see how these rows will ever be useful.
However, the second row, where the member types from each table match, is useful because it allows us
to see what fee Melissa pays. If we take just the subset of rows where the value in the MemberType column
matches the value in the Type column, then we have useful information about the fees for each of our
members. Figure 3-3 shows the rows we would like to retain.

Tnternational Organization for Standardization. Information technology — Database languages — SQL. 1SO, Geneva,
Switzerland, 1992. ISO/IEC 9075:1992.

35

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © AFIRST LOOK AT JOINS

MemberIlD ~ LastName -~ FirstName - MemberType ~ Type ~ Fee ~

118 McKenzie Melissa Junior Associate 60
| 118 McKenzie Melissa Junior Junior 150
118 McKenzie Melissa Junior Senior 300
118 McKenzie Melissa Junior Social 50
138 Stone Michael Senior Associate 60
138 Stone Michael Senior Junior 150
138 Stone Michael Senior Senior 300
138 Stone Michael Senior Social 50
153 Nolan Brenda Senior Associate 60
153 Nolan Brenda Senior Junior 150
153 Nolan Brenda Senior Senior 300]
153 Nolan Brenda Senior Social 50

Select rows where these two
columns have the same value

Figure 3-3. Cartesian product followed by selecting a subset of rows

The operation shown in Figure 3-3 (a Cartesian product followed by selecting a subset of rows) is
known as an inner join (often just called a join). The condition we use to select the rows is known as the join
condition. The SQL for the inner join in Figure 3-3 is:

SELECT *
FROM Member m INNER JOIN Type t ON m.MemberType = t.Type;

The keyword INNER JOIN is used, and we can see the condition for selecting the rows after the keyword
ON. Once again, you may find that some versions of SQL do not support the phrase INNER JOIN; however, we
will see other ways to express the query later in this chapter.

The two columns that we are comparing (MemberType and Type) must be join compatible. Formally,
this means they must both come from the same domain or set of possible values. In practical terms, join
compatibility usually means that the columns in each of the tables have the same data type. For example,
both columns will be integers or both dates. Different database products may interpret join compatibility
differently. Some might let you join on a float (number with a decimal point) in one table and an integer
in another. Some may be fussy about whether text fields are the same length (for example CHAR(10) or
CHAR(15)), and others may not. I recommend you don’t try to join on fields with different types unless you
are very clear what your particular product does. The best strategy, as always, is to think carefully when you
design your tables. Those attributes that are likely to be joined should have the same types.

Outcome Approach to Joins

Let’s take a look at joins with the outcome approach. Rather than look at how we will combine the tables, we
will look at what criteria the retrieved rows must meet.

36

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © A FIRST LOOK AT JOINS

Let’s start with the Cartesian product: we want a set of rows made up of combinations of rows from each
of the contributing tables. Figure 3-4 shows how we can envisage this. We are looking at two tables, so we
need two fingers to keep track of the rows. Finger mlooks at each row of the Member table in turn. Currently it
is pointing at row 3. For each row in the Member table, finger t will point to each row in the Type table. For the
Cartesian product we retain every combination of the rows. In terms of Figure 3-4 the Cartesian product can
be expressed in natural language as:

I'll write out all the attributes from row m and all the attributes from row t so long as m
comes from the Member table and t comes from the Type table.

MemberiD - | LastName - FirstName - MemberType -~ Type - Fee -
118 McKenzie Melissa Junior t & Associate 60
138 Stone Michael Senior Junior 150
m ¢g= 153 Nolan Brenda Senior Senior 300
176 Branch Helen Social Social 50
178 Beck Sarah Social
228 Burton Sandra Junior
235 Cooper William Senior
239 Spence Thomas Senior
258 Olson Barbara Senior
286 Pollard Robert Junior
Member table Type table

Figure 3-4. Row variables m and t point to each row in the Member and Types tables, respectively

The SQL for the query represented in Figure 3-4 and that results in the output shown in Figure 3-2 is:

SELECT *
FROM Member m, Type t;

The preceding statement will return the same rows as the expression we had previously used that used
the CROSS JOIN phrase.

For a join we have the extra condition that we want to retrieve only those combinations of rows where
the membership type from each table is the same. We can express this in natural language as:

I'll write out all the attributes from row m and all the attributes from row t so long as m
comes from the Member table and t comes from the Type table and m.MemberType = t.Type.

The pair of rows depicted in Figure 3-5 satisfies that condition and so will be retrieved. If m stays where it
is and t moves down a row, then the condition will no longer be satisfied and the new combination will not
be included.

37

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © AFIRST LOOK AT JOINS

MemberiD - | LastName - FirstName - MemberType - Type - | Fee -
118 McKenzie Melissa Junior Associate 60
138 Stone Michael Senior Junior 150
M &= 153 Nolan Brenda t g=fenior] 300
176 Branch Helen Social Social 50
178 Beck Sarah Social
228 Burton Sandra Junior
235 Cooper William Senior
239 Spence Thomas Senior
258 Olson Barbara Senior
286 Pollard Robert Junior
Member table Type table

Figure 3-5. Rows will be retrieved where m.MemberType = t.Type

We can translate the query depicted in Figure 3-5 into SQL as follows:

SELECT *
FROM Member m, Type t
WHERE m.MemberType = t.Type;

If we look carefully at the preceding statement we can see that the first two lines represent the Cartesian
product, and the WHERE clause in last line is selecting a subset of the rows where the membership types
are the same. This was how we defined an inner join in the previous section. The preceding statement will
produce the same rows as our previous statement for an inner join, seen again here:

SELECT *
FROM Member m INNER JOIN Type t ON m.MemberType = t.Type;

The first statement says what the rows to be retrieved are like (outcome approach) and the second
expresses what operation we should use to retrieve those rows (process approach). Which one you use does
not matter—it just depends on how you find yourself thinking about the query. Sometimes there is a possibility
that the way you express the query may affect the performance, and we will talk about this more in Chapter 9.
Actually, most database products are pretty smart at optimizing, or finding the quickest way to perform a
query, regardless of how you express it. For example, in SQL Server the two expressions for the join shown
are carried out in the same way. In fact, in SQL Server 2013, if you type the code in the first statement into the
default interface for creating a view, it will be replaced by the code using the INNER JOIN phrase.

Extending Join Queries

Now that we have added joins to our arsenal of operations, we can perform numerous types of queries.
Because the result of a join (as with any operation) is another table, we can then join that result to a third
table (and then another) and then select and project rows and columns to achieve the required result.

Let’s look at an example using the tables in Figure 3-6. The Entry table uses two foreign keys (MemberID
and TourID) to maintain information about which members have entered the different tournaments. The
first line in the Entry table says that member 118 entered tournament 24 in 2014. If we require any additional
information (say, the name of a member or name of a tournament), we need to use the foreign keys to find
the appropriate rows in the Member and Tournament tables, respectively.

38

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1955-3_9
http://www.it-ebooks.info/

CHAPTER 3 © A FIRST LOOK AT JOINS

MemberID - | LastName - FirstName - MemberiD - TourlD -~ Year - TourlD - TourName -

118 McKenzie Melissa 118 24 2014 24 Leeston
138 Stone Michael 228 24 2015 25 Kaiapoi
153 Nolan Brenda 228 25 2015 36 WestCoast
176 Branch Helen 228 36 2015 38 Canterbury
178 Beck Sarah 235 38 2013 40 Otago
228 Burton Sandra 235 38 2015
235 Cooper William 235 40 2014
239 Spence Thomas 235 40 2015
258 Olson Barbara 239 25 2015
286 Pollard Robert 239 40 2013
290 Sexton Thomas 258 24 2014
323 Wilcox Daniel 258 38 2014
331 Schmidt Thomas 286 24 2013
332 Bridges Deborah 286 24 2014
339 Young Betty 286 24 2015
414 Gilmore Jane 415 24 2015
415 Taylor William 415 25 2013
461 Reed Robert 415 36 2014
469 Willis Carolyn 415 36 2015
487 Kent Susan 415 38 2013
415 38 2015
415 40 2013
415 40 2014
415 40 2015
a) Member (Some columns) b) Entry ¢) Tournament

Figure 3-6. Permanent tables in the club database

Let’s find the names of everyone who entered the Leeston tournament in 2014. I'll describe two
different approaches, and you will probably find that one appeals to you more than the other.

A Process Approach

We are starting with three tables, so we need some operation that combines data from more than one table.
We can join the Member table to the Entry table and the result to the Tournament table, as shown in Figure 3-7.

39

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * A FIRST LOOK AT JOINS

Member joined with Entry on Join result to Tournament on
m.MemberlD = e.MemberiD e.TourlD = t.TourlD

ey

m.MemberiD - LastName - FirstName - e.MemberiD -|e.TourlD - Year - t.TourlD - TourName - TourType -

cl(enzle Melissa 24 2014 24 Leeston Social
228 Burton Sandra 228 24 2015 24 Leeston Social
228 Burton Sandra 228 @ 215 (@ xaiapoi Social
228 Burton Sandra 228 36 2015 36 WestCoast Open
235 Cooper William 235 38 2013 38 Canterbury Open
235 Cooper William 235 38 2015 38 Canterbury Open
235 Cooper William 235 40 2014 40 Otago Open
235 Cooper william 235 40 2015 40 Otago Open
239 Spence Thomas 239 25 2015 25 Kaiapoi Social
239 Spence Thomas 239 40 2013 40 Otago Open
258 Olson Barbara 258 24 2014 24 Leeston Social
258 Olson Barbara 258 8 2014 38 Canterbury Open
286 Pollard Robert 286 24 2013 24 Leeston Social
286 Pollard Robert 286 24 2014 24 Leeston Social
286 Pollard Robert 286 24 2015 24 Leeston Social
415 Taylor Wwilliam 415 24 2015 24 Leeston Social
415 Taylor William 415 25 2013 25 Kaiapoi Social
415 Taylor William 415 36 2014 36 WestCoast Open
415 Taylor William 415 36 2015 36 WestCoast Open
415 Taylor William 415 38 2013 38 Canterbury Open
415 Taylor William 415 38 2015 38 Canterbury Open
415 Taylor William 415 40 2013 40 Otago Open
415 Taylor William 415 40 2014 40 Otago Open
415 Taylor William 415 40 2015 40 Otago Open
From Member table (m) From Entry table (e) From Tournament table (t)

Figure 3-7. Joining the Member, Entry, and Tournament tables

The join condition for the first join between the Member and Entry tables is that m.MemberID = e.MemberID
as shown by the rectangular boxes in Figure 3-7. For the second join between the result of the first join and
the Tournament table, the condition is thate.TourID = t.TourID asshown by the circles. It will not make any
difference if we choose to do the join between Entry and Tournament first and then join the result to Member.
The SQL to carry out the two joins is:

SELECT *
FROM (Member m INNER JOIN Entry e ON m.MemberID = e.MemberID)
INNER JOIN Tournament t ON e.TourID = t.TourID;

40

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * A FIRST LOOK AT JOINS

The virtual table resulting from the two joins in this query has all the information we require to answer
our question. We just need to select the rows satisfying the conditions about the year and tournament name
by adding a WHERE clause, and then project the name attributes by specifying them in the SELECT clause. The
complete SQL query to return the names of everyone who entered the Leeston tournament in 2014 is:

SELECT LastName, FirstName

FROM (Member m INNER JOIN Entry e ON m.MemberID = e.MemberID)
INNER JOIN Tournament t ON e.TourID = t.TourID

WHERE TourName = 'Leeston'

AND Year = 2014;

Order of Operations

In the description in the previous section, we joined all the tables first and then selected the appropriate
rows and columns. The result of the join is an intermediate table (as in Figure 3-7) that is potentially
extremely large if there are lots of members and tournaments. We could have done the operations in a
different order. We could have first selected just the Leeston tournament from the Tournament table and the
2014 tournaments from the Entry tables, as shown in Figure 3-8. Joining these two smaller tables with each
other and then joining that result with Member would result in a much smaller intermediate table.

Select 2014 entries Select the Leeston tournament
MemberiD ~ TourlD -~ Year - TourlD ~ | TourName - TourType -
118 24 2014 24 Leeston Social
235 40 2014
258 24 2014
258 38 2014
286 24 2014
415 36 2014
415 40 2014

Figure 3-8. Selecting rows from the Entry and Tournament tables before joining them

So, should we worry about the order of the operations? The answer is “yes” — the order of operations
makes a huge difference — but if you are using SQL, then it is not your problem to worry about. The
SQL statement is always going to be the same, but with the tables possibly in a different order. The
SQL statement is sent to the engine of whatever database program you are using, and the query will be
optimized. This means the database program figures out the best order to do things. Some products do this
extremely well, others not so well. Many products have analyzer tools that will let you see in what order
things are being done. For many queries, writing your SQL differently doesn’t make much difference, but
you can make things more efficient by providing indexes for your tables. We will look at these issues more
closely in Chapter 9.

41

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1955-3_9
http://www.it-ebooks.info/

CHAPTER 3 * A FIRST LOOK AT JOINS

An Outcome Approach

The reason that the way we write our SQL statements often doesn’t affect the efficiency of a query is that SQL
is fundamentally based on relational calculus, which describes the criteria the retrieved rows must meet. The
original SQL standards did not even have keywords like INNER JOIN. SQL statements without these keywords
describe what the retrieved rows should be like, so they do not have anything to say about how. Let’s look at
an outcome approach to finding the names of members who entered Leeston tournaments in 2014.

We want to retrieve just some names from the Member table. Forget joins, and think about how you
would know whether a particular name should be retrieved if you were shown the three tables and knew
nothing about databases or foreign keys or joins or anything. Imagine a finger m tracing down the table, as
in Figure 3-9.

MemberlD -~ LastName - FirstName » MemberiD ~ TourlD -~ Year »~ TourlD -~ TourName ~

118 McKenzie Melissa 118 24 2014 @n
138 Stone Michael 228 24 2015 25 Kaiapoi
153 Nolan Brenda 228 25 2015 36 WestCoast
176 Branch Helen 228 36 2015 38 Canterbury
178 Beck Sarah 235 38 2013 40 Otago
228 Burton Sandra 235 38 2015
235 Cooper William 235 40 2014
239 Spence Thomas 235 40 2015
m = (@58)0lson Barbara 239 25 2015
286 Pollard Robert 239 40 2013
290 Sexton Thomas e =
323 Wilcox Daniel 258 38 2014
331 Schmidt Thomas 286 24 2013
332 Bridges Deborah 286 24 2014
339 Young Betty 286 24 2015
414 Gilmore Jane 415 24 2015
415 Taylor William 415 25 2013
461 Reed Robert 415 36 2014
469 Willis Carolyn 415 36 2015
487 Kent Susan 415 38 2013
415 38 2015
415 40 2013
415 40 2014
415 40 2015
a) Member (Some columns) b) Entry ¢) Tournament

Figure 3-9. Using row variables to describe the rows that satisfy the query conditions

42

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * A FIRST LOOK AT JOINS

Do we want to write out Barbara Olson, the name to which mis currently pointing? How would we
know? Well, first we have to find a row with her ID (235) in the Entry table for the year 2014 such as the one
where finger e is pointing. Then we have to find a row with that tournament ID (24) in the Tournament table
and check it is a Leeston tournament. Looking at Figure 3-9, we see that the rows where the three fingers are
pointing give us enough information to know that Barbara Olson did indeed enter a Leeston tournament in
2014. This set of conditions describes what a row in the result table should be like.

Now let’s write that last paragraph a bit more succinctly. Read the following sentence with reference to
the rows denoted in Figure 3-9:

I'll write out the names from row m, where m comes from the Member table, if there is a row
e in the Entry table where m.MemberID is the same as e.MemberID and e.Year is 2014 and
there also exists a row t in the Tournament table where e. TourID is the same as t. TourId and
t. TourName has the value “Leeston.”

The SQL reflects the preceding paragraph. Look carefully at the following statement with reference
to Figure 3-9:

SELECT m.LastName, m.FirstName
FROM Member m, Entry e, Tournament t
WHERE m.MemberID = e.MemberID
AND e.TourID = t.TourID
AND t.TourName = 'Leeston' AND e.Year = 2014;

You can see how the SQL statement describes what a retrieved row should be like. If you look carefully
at the statement, you can also spot the operations. The second line (the FROM clause) is a big Cartesian
product, the next two lines are the join conditions (which would result in a table like the one in Figure 3-7),
the final line selects the rows with the appropriate year and tournament name, and the SELECT clause line
tells us to project just the names.

The SQL preceding statement is equivalent to the one using the INNER JOIN keywords. They will both
return the same set of rows: one reflects the underlying process of how, and the other reflects the underlying
outcome of what.

Expressing Joins Through Diagrammatic Interfaces

This book is about queries in SQL, but most database products also provide a diagrammatic interface to
express queries. Just for completeness, I'll show you what a typical diagrammatic interface looks like for
retrieving the names of members who entered the Leeston tournament in 2014.

Figure 3-10 shows the Microsoft Access interface, but most products have something very similar. The
tables are represented by the rectangles in the top section with the lines showing the joins between them.
The columns to be retrieved have a checkmark (v) in the row marked Show, and the conditions for selecting a
particular row are shown for the relevant fields in the row marked Criteria.

43

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © AFIRST LOOK AT JOINS

Member Entry Tournament
y =l
¥ MemberlD h—— 20 ¥ MemberlD f ¥ TourlD
LastName % TourlD — TourName
FirstName ¥ vear TourType
MemberType
Phone ~
|
Field: | LastName FirstName Year TourName
Table: | Member Member Entry Tournament
Sort:
Show: @ ¥ 0 v O
Criteria: 2014 Leeston
or

Figure 3-10. Microsoft Access digrammatic interface for the query to find names of members entering the
Leeston tournament in 2014

Other Types of Joins

The joins we have been looking at in this chapter are equi-joins. An equi-join is one where the join condition
has an equals operator, as in m.MemberID = e.MemberID. This is the most common type of condition, but
you can have different operators. A join is just a Cartesian product followed by selecting a subset of rows, and
the select condition can consist of different comparison operators (for example, <> or >) and also logical
operators (for example, AND or NOT). These sorts of joins don’t turn up all that often.

You might also come across a natural join. A natural join assumes that you will be joining on columns
that have the same name in both tables. The join condition is that the values in the two columns with the
same name are equal, and one of those columns will be removed from the result. For example:

SELECT * FROM
Member NATURAL JOIN Entry;

This would produce almost the same output as:

SELECT * FROM
Member m INNER JOIN Entry m ON m.MemberID = e.MemberID;

In the natural join statement, the join condition is implicitly assumed to be equality between the two attributes
with the same name, Membex ID. The only difference between the two queries is that for the natural join only one
of the MemberID columns will be returned. Oracle supports natural joins but SQL Server and Access do not.

44

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © A FIRST LOOK AT JOINS

Outer Joins

One type of join that you will use a great deal and that is important to understand is the outer join. The best
way to understand an outer join is to see where they are useful. Have a look at the (modified) Member and
Type tables in Figure 3-11.

MemberlD - LastName ~ FirstName - MemberType -~ Type =~ Fee -~
118 McKenzie Melissa Junior Associate 60
138 Stone Michael Senior Junior 150
153 Nolan Brenda Senior Senior 300
176 Branch Helen Social Social 50
178 Beck Sarah
228 Burton Sandra Junior
235 Cooper William Senior
239 Spence Thomas Senior
258 Olson Barbara Senior

(modified) Member table Type table

Figure 3-11. Member and Type tables

You might want to produce different lists from the Member table, such as numbers and names, names
and membership types, and so on. In these lists you expect to see all the members (for the table in Figure 3-11,
that would be nine rows). Then you might think that as well as seeing the numbers and names in your
member list, you will also include the membership fee. You join the two tables (with the condition
MemberType = Type) and find that you “lose” one of your members — Sarah Beck (see Figure 3-12).

MemberiD - LastName -~ FirstName -~ MemberType ~ Type ~ Fee ~

118 McKenzie Melissa Junior Junior 150
138 Stone Michael Senior Senior 300
153 Nolan Brenda Senior Senior 300
176 Branch Helen Social Social 50
228 Burton Sandra Junior Junior 150
235 Cooper William Senior Senior 300
239 Spence Thomas Senior Senior 300
258 Olson Barbara Senior Senior 300

Figure 3-12. Inner join between Member and Type, and we “lose” Sarah Beck

The reason is that Sarah has no value for MemberType in the Member table. Let’s look at the Cartesian
product, which is the first step for doing a join. Figure 3-13 shows those rows of the Cartesian product that
include Sarah.

45

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © AFIRST LOOK AT JOINS

MemberlD -~ LastName -~ FirstName - MemberType ~ Type - Fee -

176 Branch Helen Social Associate 60
176 Branch Helen Social Junior 150
176 Branch Helen Social Senior 300
176 Branch Helen Social Social 50
178 Beck Sarah Associate 60
178 Beck Sarah Junior 150
178 Beck Sarah Senior 300
178 Beck Sarah Social 50
228 Burton Sandra Junior Associate 60
228 Burton Sandra Junior Junior 150
228 Burton Sandra Junior Senior 300
228 Burton Sandra Junior Social 50

Figure 3-13. Part of the Cartesian product between the Member and Type tables

Having done the Cartesian product, we now need to do the final part of our join operation, which is to
apply the condition (MemberType = Type). As you can see in Figure 3-13, there is no row for Sarah Beck that
satisfies this condition because she has a null or empty value in MemberType.

Consider the following two natural-language questions: “Get me the fees for members” and “Get me all
member information including fees.” The first one has an implication of “Just get me the members who have
fees,” while the second has more of a feel of “Get me all the members and include the fees for those who have
them.” One of the biggest difficulties in writing queries is trying to decide exactly what it is you want. It is
even more difficult if you are trying to understand what someone else is asking for!

Let’s say that what we actually want is a list of all our members, and where we can find the fee
information, we'd like to include that. In this case, we want to see Sarah Beck included in the result, but with
no fee displayed. That is what an outer join does. Outer joins can come in three types: left, right, and full
outer joins. A left outer join retrieves all the rows from the left table including those with a null value in the
join field, as shown in Figure 3-14. We see that as well as all the rows from the inner join (Figure 3-12), we
also have a row from the Member table for Sarah, who had a null for the join field MembexType. The fields in
that row that would have come from the right-hand table (Type and Fee) have null values.

46

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © A FIRST LOOK AT JOINS

MemberiD - | LastName - FirstName - MemberType - | Type - Fee -

118 McKenzie Melissa Junior Junior 150
138 Stone Michael Senior Senior 300
153 Nolan Brenda Senior Senior 300
176 Branch Helen Social Social 50
178 Beck Sarah

228 Burton Sandra Junior Junior 150
235 Cooper William Senior Senior 300
239 Spence Thomas Senior Senior 300
258 Olson Barbara Senior Senior 300

Figure 3-14. Result of left outer join between Member and Type tables

The SQL for the outer join depicted in Figure 3-14 is similar to an inner join, but the key phrase INNER
JOIN is replaced with LEFT OUTER JOIN (or in some applications simply LEFT JOIN):

SELECT *
FROM Member m LEFT OUTER JOIN Type t ON m.MemberType = t.Type;

You might quite reasonably say that we wouldn’t have needed an outer join if all the members had a
value for the MemberType field (as they probably should). That may be true for this case — but remember my
cautions in Chapter 2 about assuming that fields that should have data will have data. In other situations,
the data in the join field may be quite legitimately empty. We will see in later chapters queries like “List all
members and the names of their coaches — if they have one.” “Losing” rows because you have used an inner
join when you should have used an outer join is a very common problem and is sometimes quite hard to spot.

What about right and full outer joins? Left and right outer joins are the same and just depend on which
order you put the tables in the join statement. The following SQL statement will return the same information
as displayed in Figure 3-14, although the columns may be presented in a different order:

SELECT *
FROM Type t RIGHT OUTER JOIN Member m ON m.MemberType = t.Type;

We have simply swapped the order of the tables in the join statement. Any rows with a null in the join
field of the right table (Member) will be included.
A tull outer join will retain rows with a null in the join field in either table. The SQL for the full outer join

is shown here and will result in the table seen in Figure 3-15:

SELECT *
FROM Member m FULL OUTER JOIN Type t ON m.MemberType = t.Type;

47

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1955-3_2
http://www.it-ebooks.info/

CHAPTER 3 © AFIRST LOOK AT JOINS

MemberlD -~ LastName -~ FirstName - MemberType ~| Type ~ | Fee ~

Associate 60
118 McKenzie Melissa Junior Junior 150
138 Stone Michael Senior Senior 300
153 Nolan Brenda Senior Senior 300
176 Branch Helen Social Social 50
178 Beck Sarah
228 Burton Sandra Junior Junior 150
235 Cooper William Senior Senior 300
239 Spence Thomas Senior Senior 300
258 Olson Barbara Senior Senior 300

Figure 3-15. Result of a full outer join between Member and Type tables

We have a row for Sarah Beck padded with mull values for the missing columns from the Type table. We
also have the first row, which shows us the information about the Associate membership type even though
there are no rows in the Member table with Associate as a member type. In this row, each missing value from
the Member table is replaced with a null.

Not all implementations of SQL have a full outer join implemented explicitly. Access 2013 doesn't.
However, there are always alternative ways in SQL to retrieve the information you require. In Chapter 7 I'll
show you how to get the equivalent of a full outer join by using a union operator between a left and right
outer join (which is what I had to do to get the screen shot in Figure 3-15!).

Summary

A Cartesian product combines two tables. The resulting table has a column for each column in the two
tables, and there is a row for every combination of rows from the contributing tables. The SQL for a Cartesian
product reflecting the process approach is:

SELECT *
FROM <table1> CROSS JOIN <table2>;

The SQL for an inner join reflecting the outcome approach is:

SELECT *
FROM <tablei>,<table2>;

An inner join starts with a Cartesian product, and then a join condition determines which combinations
of rows from the two contributing tables will be retained.

The SQL for an inner join reflecting the process approach is:
SELECT *

FROM <table1l> INNER JOIN <table2>
ON <join condition>;

48

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1955-3_7
http://www.it-ebooks.info/

CHAPTER 3 © A FIRST LOOK AT JOINS

The SQL for an inner join reflecting the outcome approach is:

SELECT *...
FROM <tablel>, <table2>
WHERE <join condition>;

If one (or both) of the tables has rows with a null in the field involved in the join condition, then that row
will not appear in the result for an inner join. If that row is required, you can use outer joins.

The SQL for an outer join, which will retain all the rows in the left-hand table including those with a null
in the join field, is:

SELECT *
FROM <table1> LEFT OUTER JOIN <table2>
ON <join condition>;

Similar expressions exist for right outer joins and full outer joins.

49

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4

Subqueries

In the previous chapters, we looked at retrieving a subset of rows and columns from a single table, and we
also looked at how Cartesian products and joins can be used to retrieve data from two or more tables. In
many of the examples it was possible to construct quite different SQL queries to produce the same result.
Depending on the context or the problem you will probably find that one approach will feel more natural.

As queries become more complicated, we might find that we can think of SQL expressions for small
parts of a query but not for the whole lot in one go. It is possible to return data from a query and then refer
to that data with another query — all in the one SQL statement. This idea of a query within a query is very
powerful. You will hear the concept referred to as a query and subquery or inner and outer queries or
nested queries.

In this chapter, we will look at subqueries and two new SQL keywords, EXISTS and IN. We will see how
to use subqueries as an alternative way to approach some of the queries we have already done and also how
nesting will open up other possibilities.

IN Keyword

The IN keyword allows us to select rows from a table, where the condition allows an attribute to have one of
several values. For example, if we wanted to retrieve the member IDs from the rows in our Entry table for
tournaments with ID 36, 38, or 40, we could do this with a Boolean OR operator as in the following query:

SELECT e.MemberID
FROM Entry e
WHERE e.TourID = 36 OR e.TourID = 38 OR e.TourID = 40;

Clearly, statements of this type will start to become unwieldy as the number of possible options
grows. Using the IN keyword, we can construct a more compact statement where the set of possible values
are enclosed in parentheses and separated by commas. In the following query, each row of Entry is
investigated, and if TourID is one of the values in the parentheses, then the WHERE condition is true, and that
row will be returned:

SELECT e.MemberID

FROM Entry e
WHERE e.TourID IN (36, 38, 40);

© Clare Churcher 2016 51
C. Churcher, Beginning SQL Queries, DOI 10.1007/978-1-4842-1955-3_4

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © SUBQUERIES

It is possible to combine IN with the logical operator NOT. However, you need to be very careful. Consider
the following query:

SELECT e.MemberID
FROM Entry e
WHERE e.TourID NOT IN (36, 38, 40);

The preceding query will return the IDs of members who have entered any tournament that is not in the
list. Be aware though that those members may have entered one of the tournaments in the list as well. We
will look at how to accurately answer questions such as “who has not entered these tournaments” later in
this chapter.

Using IN with Subqueries

The real usefulness of the IN keyword is that we can use another SQL statement to generate the set of values.
For example, the reason that someone may have been interested in tournaments 36, 38, and 40 might have
been because they are the current Open tournaments. Rather than list the Open tournaments individually,
we can use another SQL query to generate the set of values we require. The list will be reconstructed each
time the query is run so that the set of Open tournaments will remain current as the data changes.

Let’s look at a specific example of using a query to generate the set of values for the IN clause. I've
reproduced a few of the columns of the Member table along with the Entry and Tournament tables in Figure 4-1.

g"MemberlD - | LastName - |FirstName | MemberiD - | TourlD - | Year - | TourlD - |TourName - |TourType -

118 McKenzie Melissa 118 24 2014 24 Leeston Social
138 Stone Michael ! 228 24 2015 | 25 Kalapol Social
153 Nolan Brenda E 228 25 2015 E 36 WestCoast Open i
176 Branch Helen 228 36 2015 38 Canterbury Open
;;2 :‘“" :"‘d“ i 235 38 2013 ! 40 Otago Open i
urton ndra : :

235 Cooper william 25 S | i
235 40 2014 :

239 Spence Thomas :]
258 Olson Barbara 285 40 2015
286 Pollard Robert 289 B 015 |
290 Sexton Thomas | 239 40 2013
323 Wilcox Daniel 258 24 2014
331 Schmidt Thomas | 258 38 2014 | §
332 Bridges Deborah | 286 24 2013 |
339 Young Betty : 286 24 2014 | |
414 Gilmore Jane | 286 24 2015 | :
415 Taylor William 415 24 2015 |
461 Reed Robert a15 25 2013 | i
469 Willis Carolyn 415 36 2014
487 Kent Susan 415 36 2015
' a15 38 2013 |

a15 38 2015 | g

415 40 2013 | :

40 ' i
__ 40

.____(Some columns) Member :

Figure 4-1. Member, Entry, and Tournament tables

52

www.it-ebooks.info

__Tournament |

http://www.it-ebooks.info/

CHAPTER 4 * SUBQUERIES

The query to generate the set of IDs for the Open tournaments is:

SELECT t.TourID
FROM Tournament t
WHERE t.TourType = 'Open’;

Now we can replace the list of explicit values (36, 38, 40) in the previous queries with the preceding SQL
statement:

SELECT e.MemberID
FROM Entry e
WHERE e.TourID IN (
SELECT t.TourID
FROM Tournament t
WHERE t.TourType = 'Open');

The SELECT statement inside the parentheses is sometimes referred to as a subquery. To work correctly
with the IN keyword, the inner part of the query must return a list of single values. I have indented it only
to make it easier to read (SQL will ignore the added whitespace). You can understand a nested query by
reading it from the “inside out.” The inside SELECT statement retrieves the set of required tournament IDs
from the Tournament table, and then the outside SELECT finds us all the entries from the Entry table for
tournaments IN that set.

To aid in understanding, it is possible to add comments to SQL statements. In the statement that follows
the line beginning with -- is a comment and will be ignored. It is also possible to use /* and */ around a block
of more than one line of code.

SELECT e.MemberID
FROM Entry e
WHERE e.TourID IN (
-- Subquery returns IDs of Open tournaments
SELECT t.TourID
FROM Tournament t
WHERE t.TourType = 'Open');

Have another look at the tables in Figure 4-1. How else might we have retrieved entries for Open
tournaments? We carried out similar queries in the previous chapter using a join. We can join the two
tables, Entry and Tournament, on their common fields TourID, select just those rows that are for Open
tournaments, and then project the MemberID column. See the following:

SELECT e.MemberID
FROM Entry e INNER JOIN Tournament t ON e.TourID = t.TourID
WHERE t.TourType = 'Open’;
The SQL statements with and without the subquery retrieve the same information. As I've said a

number of times, there are often several different ways to write a query in SQL. The more methods you are
familiar with, the more likely you will be able to find a way to express a complicated query.

53

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © SUBQUERIES

Being Careful with NOT and <>

As well as asking a question such as “What are the IDs of members who have entered an Open tournament?”
itis just as likely that we might want to know “What are the IDs of members who have not entered an Open
tournament?” They sound very similar, but once we start using negatives in our questions, we have to be
very careful about what we really mean. In Chapter 7, we will investigate constructing queries using set
operations, but to keep this chapter complete, I'll talk about how negatives impact the use of subqueries in
particular.

In the previous section we constructed two SQL statements for retrieving member IDs for members
who have entered an Open tournament. One used a subquery and one a join. To find who has not entered an
Open tournament, one might attempt changing IN to NOT IN in the subquery example, as follows:

SELECT e.MemberID
FROM Entry e
WHERE e.TourID NOT IN
(SELECT t.TourID
FROM Tournament t
WHERE t.TourType = 'Open');

In the join example there is a temptation to amend t.TourType = 'Open' to t.TourType <> 'Open':

SELECT e.MemberID
FROM Entry e INNER JOIN Tournament t ON e.TourID = t.TourID
WHERE t.TourType <>'Open’;

Carefully think about which rows will be returned by these two queries. They in fact both return the
same set of rows, but those rows may include members who have entered an Open tournament as well as
those who have not.

The table in Figure 4-2 shows the result of the inner join between Entry and Tournament. The bottom
set of rows are all for Open tournaments, and these will be retrieved by a query that has the condition WHERE
t.TourType = 'Open'. The top set of entries is for tournaments other than Open and will be retrieved by the
query which has the condition WHERE t.TourType <> 'Open’.

54

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1955-3_7
http://www.it-ebooks.info/

CHAPTER 4 * SUBQUERIES

MemberiD - e.TourlD - Year - t.TourlD - TourName - TourType -

118 24 2014 24 Leeston Social

(228) 24 2015 24 Leeston Social

— @ 24 2014 24 Leeston Social
L 286 24 2013 24 Leeston Social
286 24 2014 24 Leeston Social

286 24 2015 24 Leeston Social

24 2015 24 Leeston Social

228 25 2015 25 Kaiapoi Social

25 2015 25 Kaiapoi Social

415 25 2013 25 Kaiapoi Social

228 36 2015 36 WestCoast Open

415 36 2014 36 WestCoast Open

415 36 2015 36 WestCoast Open

235 38 2013 38 Canterbury Open

TourType = ‘Open’ 235 38 2015 38 Canterbury | Open
38 2014 38 Canterbury Open

415 38 2013 38 Canterbury Open

38 2015 38 Canterbury Open

235 40 2014 40 Otago Open

235 40 2015 40 Otago Open

40 2013 40 Otago Open

415 40 2013 40 Otago Open

415 40 2014 40 Otago Open

415 40 2015 40 Otago Open

Figure 4-2. TourType = ‘Open’ versus TourType <> ‘Open’

We can see that some members (indicated by circles) appear in both sets. Figure 4-3 is another

representation of the information in the table in Figure 4-2 but shows two sets of members rather than
entries: the top circle represents those who have entered an Open tournament and the bottom circle those

who have entered a tournament that is not an Open tournament. Four members are in both sets.

www.it-ebooks.info

55

http://www.it-ebooks.info/

CHAPTER 4 © SUBQUERIES

Open Tournaments

‘ 228 258 .
415 239
118 286

Other Tournaments

Figure 4-3. Members who have entered Open tournaments, other tournaments, or both

Now let’s return to the original question. Which members have not entered an Open tournament? We
have to be careful to differentiate the two sets depicted in Figure 4-4.

Open Tournaments Open Tournaments

‘ 228 258 ~
415 239 415 239
118 286 118 286

228 258

Other Tournaments Other Tournaments
a. Shaded area is people b. Shaded area is people who
who have not entered an entered a tournament that
Open tournament is not an Open tournament

Figure 4-4. It is important to be careful to distinguish the SQL for these two situations

56

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © SUBQUERIES

Figure 4-4a shows the set of people who have not entered any Open tournament. Figure 4-4b shows
those members who have entered something other than an Open tournament (but not excluding those
who may have entered an Open tournament as well). For example, member 118 has never entered an Open
tournament, whereas member 228 has entered Open tournaments as well as other types of tournaments.

The two queries at the beginning of this section will both retrieve the set of members depicted in
Figure 4-4b. Member 228 (who has entered an Open tournament) will be returned (because he has entered a
tournament that is not an Open tournament). This is not what we want and is a very common mistake.

To decide whether someone has entered an Open competition, we need to find just one matching entry.
To decide whether someone has not entered an Open competition, we need to check all the Open entries to
make sure that member does not appear.

In terms of our joined tables in Figure 4-2, finding those people who have entered an Open tournament
requires a simple WHERE clause: WHERE t.TourType = 'Open'.Remember that each row is inspected
independently to decide whether it meets the criteria in a WHERE clause. However, to find people who have
not entered an Open tournament, we need to investigate every row in the table to ensure that there is not
an entry for a particular member. This is a much more complex task. In fact, we also need to consider the
members who have never entered any tournaments. These members’ IDs will not appear in the Entry table
at all, so we also have to investigate the Member table to find the complete list.

Finding members who have not entered an Open tournament can be achieved with a process approach
using the set operations found in Chapter 7. However, we can also use the outcome approach to construct an
accurate query. To do that, we need to first introduce the EXISTS keyword.

EXISTS Keyword

Let’s start with a simple question. For example, “What are the names of all members who have ever entered
any tournament?” We can start by thinking in terms of which rows of the Member table would satisfy our
question. Consider the following sentence and Figure 4-5 together:

I'll write out the names from row m, where m comes from the Member table, if there exists a
row e in the Entry table where m.MemberID = e.MemberID.

57

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1955-3_7
http://www.it-ebooks.info/

CHAPTER 4 © SUBQUERIES

MemberiD - LastName - FirstName MemberiD - TourlD - Year -

118 McKenzie Melissa 118 24 2014
138 Stone Michael 228 24 2015
153 Nolan Brenda 228 25 2015
176 Branch Helen 228 36 2015
178 Beck Sarah e 3= @ 38 2013
228 Burton Sandra 335 38 2015
m = @Cooper william

235 40 2014
239 Spence Thomas
258 Olson Barbara 235 40 2015
286 Pollard Robert 239 5 2015
290 Sexton Thomas 239 40 2013
323 Wilcox Daniel 258 24 2014
331 Schmidt Thomas 258 38 2014
332 Bridges Deborah 286 24 2013
339 Young Betty 286 24 2014
414 Gilmore Jane 286 24 2015
415 Taylor William 415 24 2015
461 Reed Robert 415 25 2013
469 Willis Carolyn 415 36 2014
487 Kent Susan 415 36 2015

Member Entry

Figure 4-5. William Cooper has entered a tournament because a matching row exists in the Entry table

We can translate the statement

I'll write out the names from row m, where m comes from the Member table, if there exists a
row e in the Entry table where m.MemberID = e.MemberID.

almost directly into SQL with the use of the keyword EXISTS:

SELECT m.LastName, m.FirstName
FROM Member m
WHERE EXISTS
(SELECT * FROM Entry e WHERE e.MemberID = m.MemberID);

This is another example of a nested query where we have two SQL SELECT statements, one inside
the other. This one is a little different from the simpler example we saw earlier in the chapter. The WHERE
condition in the inner query refers to part of the row being considered in the outer query; that is, e.MemberID
= m.MemberID. Ifind the easiest way to interpret these nested queries is with reference to a diagram like
Figure 4-5. Variable m is checking each row in the Member table. The inner query is looking for a row in the
Entry table with the same value for MemberID as the row under consideration in the Member table. If such a
row (or several such rows) EXIST, then we are in business.

58

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © SUBQUERIES

For those of you who are thinking that this seems like a complicated way to get a simple result, you are
right (partly). The query using the EXISTS clause retrieves the same members as an inner join (on MemberID)
between Member and Entry does.

However, what if we want those members who have not entered a tournament? This requires only a tiny
change to our new SQL query. Instead of looking for members where a matching row in Entry exists, we now
want those where a matching row does not exist. Adding the word NOT to the previous SQL statements gives
us what we require:

SELECT m.Lastname, m.FirstName
FROM Member m
WHERE NOT EXISTS
(SELECT * FROM Entry e WHERE e.MemberID = m.MemberID);

The NOT EXISTS construction will look through every row e in the Entry table, checking whether there
is a row matching the MemberID of the current row in the Member table. The name of the member will be
retrieved only if 7o matching row is found.

Now we have enough ammunition to tackle the query about members who have not entered an Open
tournament. Check out Figure 4-6 to decide if William Cooper should be included in the result.

MemberiD - LastName - FirstName MemberiD - TourlD - Year - TourlD - TourName - TourType -
118 McKenzie Melissa 118 24 2014 24 Leeston Social
138 Stone Michael 228 24 2015 25 Kalapol Social
153 Nolan Brenda 228 25 2015 36 WestCoast Ope
176 Branch Helen 278 6 2015 t 3= @ anterbury
178 Beck Sarah e &= @ 2013 a0 Otago Ope
228 Burton Sandra
m 235 38 2015
&= @Cooper William
235 40 2014
239 Spence Thomas
258 Olson Barbara 35 40 2015
286 Pollard Robert B9 LS 2015
290 Sexton Thomas 239 40 2013
323 Wilcox Daniel 258 24 2014
331 Schmidt Thomas 258 8 2014
332 Bridges Deborah 286 24 2013
339 Young Betty 286 24 2014
414 Gilmore Jane 286 24 2015
415 Taylor William 415 24 2015
461 Reed Robert a15 25 2013
469 Willis Carolyn 415 36 2014
487 Kent Susan 415 16 2015
Member Entry Tournament

Figure 4-6. There does exist an entry for an Open tournament for William Cooper

59

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © SUBQUERIES

The rows indicated in Figure 4-6 show that there does exist an entry for William Cooper, so we will not
include him our result.
Now, look at this natural language statement that describes Figure 4-6:

I'll write out the names from row m, where m comes from the Member table, so long as there
does not exist (a row e in the Entry table where m.MemberID = e.MemberID along with a row
t in the Tournament table where e. TourID = t.TourID and t.TourType = 'Open')

The SQL reflecting the preceding statement is:

SELECT m.Lastname, m.FirstName
FROM Member m
WHERE NOT EXISTS
(SELECT * FROM Entry e, Tournament t
WHERE m.MemberID = e.MemberID
AND e.TourID = t.TourID AND t.TourType = 'Open');

We will look at the process approach to queries like this one when we cover set operations in Chapter 7.

Different Types of Subqueries

We saw different types of subqueries in the previous sections. It is useful to review some of the options here.
The inner part of the nested query can return a single value (e.g, Barbara’s handicap), a set of values (e.g.,
the IDs of Open tournaments), or a set of rows (e.g., entries in Open tournaments). Also, the inner and outer
queries can be independent to some extent, or they can be correlated.

Inner Queries Returning a Single Value

Inner queries that return a single value are often useful in the situation where you are simply retrieving a
subset of rows. Let’s consider the handicaps of our members, as shown in Figure 4-7.

MemberlD -~ LastName -~ FirstName - Handicap -~

118 McKenzie Melissa 30
138 Stone Michael 30
153 Nolan Brenda 11
176 Branch Helen

178 Beck Sarah

228 Burton Sandra 26
235 Cooper William 14
239 Spence Thomas 10
258 Olson Barbara 16
286 Pollard Robert 19
290 Sexton Thomas 26

Figure 4-7. Part of the Member table showing names and handicaps

60

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1955-3_7
http://www.it-ebooks.info/

CHAPTER 4 © SUBQUERIES

If we want to find those members with a handicap of less than 16, then this can be done simply with the
following SQL:

SELECT *
FROM Member m
WHERE m.Handicap < 16;

What should we do if we want to find all the members with a handicap less than Barbara Olson’s? The
preceding query will do that for us, but only if Barbara’s handicap of 16 doesn’t change. For the query to
work for whatever Barbara’s current handicap is, we can replace the single value 16 with the result of an
inner query:

SELECT *
FROM Member m
WHERE Handicap <
(SELECT Handicap
FROM Member
WHERE LastName = 'Olson' AND FirstName = 'Barbara');

We need to compare Handicap with a single value. If in a situation like this our inner query returns more
than one value (for example, if there were more than one Barbara Olson in the club), then we would get an
error when trying to run the query.

An inner query returning a single value is also useful if we want to compare values with an aggregate of
some sort. For example, we might want to find all the members who have a handicap less than the average.
In this case, we can use the inner query to return the average value:

SELECT *

FROM Member m

WHERE m.Handicap <
(SELECT AVG(Handicap)
FROM Member);

If you take it nice and slow, you can gradually build up quite complicated queries. Say we want to see
whether any junior members have a lower handicap than the average for seniors. The inner query has
to return the average value handicap for a senior member, and then we want to select all juniors with a
handicap less than that. In the SQL statement that follows, both the inner and outer queries have an extra
SELECT condition (the inner retrieves just seniors, and the outer retrieves just juniors):

SELECT *

FROM Member m

WHERE m.MemberType = 'Junior' AND Handicap < (
SELECT AVG(Handicap)
FROM Member
WHERE MemberType = 'Senior');

61

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © SUBQUERIES

Inner Queries Returning a Set of Values

This is where we started this chapter. When we use the IN keyword, SQL will expect to find a set of single
values. For example, we might ask for rows from the Entry table for members with IDs IN a set of values. In
the following statement, the inner query selects the IDs of all senior members, and the outer query returns
the entries for those members:

SELECT *
FROM Entry e
WHERE e.MemberID IN
(SELECT m.MemberID
FROM Member m
WHERE m.MemberType = 'Senior');

The inner section in this type of query must return just a single column. IN is expecting a list of single
values (in this case, a list of MemberID). If the inner section returns more than one column (for example,
SELECT * FROM Member), then we will get an error.

Many nested queries such as this can be written in other ways-often by using an inner join as we
discussed earlier in the chapter. Some queries will feel more natural to you one way or the other.

Inner Queries Checking for Existence

Another type of inner query is the one we saw working with the EXISTS keyword. A statement using EXISTS
just looks to see whether any rows at all are returned by the inner query. The actual values or numbers of
rows returned are not important. The query that follows returns any rows from the Member table where we
can find a corresponding row in the Entry table for that member:

SELECT m.Lastname, m.FirstName
FROM Member m
WHERE EXISTS
(SELECT * FROM Entry e
WHERE e.MemberID = m.MemberID);

Because the actual values retrieved by the inner query are not important, the inner query often has the
form SELECT * FROM.

Another feature of this type of query is that the inner and outer sections are usually correlated. By this we
mean that the WHERE clause in the inner section refers to values in the table in the outer section. In this case the
inner query is checking if the current row in the Entry table has the same MemberID as the member currently
under consideration in the outer query. I find the easiest way to visualize this is as illustrated in Figure 4-5.

It is difficult to think of a sensible EXISTS query that doesn’t correlate values in the inner and outer
sections. Consider what the following query will return:

SELECT m.Lastname, m.FirstName
FROM Member m
WHERE EXISTS

(SELECT * FROM Entry e);

The query above doesn’t really make any sense. It says to write out each member’s names if there is a
row in the Entry table (any row!). If the Entry table is empty, we will get nothing returned; otherwise, we will
get all the names of all the members. I can’t think why you'd ever want to do that. EXISTS queries are useful
when we are looking for matching values somewhere else, and that is why the SELECT condition needs to
compare values from both the inner and outer sections.

62

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © SUBQUERIES

It is interesting to compare the following two queries. They both return the names of members who
have entered a tournament, but the results are slightly different. The first uses an EXISTS clause:

SELECT m.Lastname
FROM Member m
WHERE EXISTS
(SELECT * FROM Entry e
WHERE e.MemberID = m.MemberID);

The second uses an INNER JOIN:

SELECT m.LastName
FROM Member m INNER JOIN Entry e ON e.MemberID = m.MemberID;

The difference between the two queries is the number of rows that are returned.

The first query inspects each row in the Member table just once and returns the last name if there
exists at least one entry for that member in the Entry table. The last name for any member will be written
out only once.

The second query forms a join between the two tables that will consist of every combination of rows in
Member and Entry with the same MemberID. The name for a particular member will be written out as many
times as the number of tournaments he or she entered.

It’s a subtle difference, but an important one — especially if you are wanting to count the returned
rows. Adding DISTINCT in the SELECT clause of the second example will make the results of the two
queries the same.

Using Subqueries for Updating

This book is mainly about queries for retrieving data, but many of the same ideas can be used for updating
data and adding or deleting records. In Chapter 1 we looked at simple queries such as updating the phone
number of a particular member, as shown here:

UPDATE Member m
SET m.Phone = '875076'
WHERE m.MemberID = 118;

We also looked at inserting and deleting rows from a table. To insert a row we list the columns we are
providing values for and then the values, as in the following:

INSERT INTO Entry (MemberID, TourID, Year)
VALUES (153, 25, 2016);

Now, let’s consider a situation where we want to add an entry for tournament 25 in 2016 for each of the
juniors in the club. We want to add a set of rows to the Entry table, as shown in Figure 4-8, where the left

column has the member IDs for each of the juniors and the next two columns are the specific tournament
(25) and year (2016) for each entry.

63

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1955-3_1
http://www.it-ebooks.info/

CHAPTER 4 © SUBQUERIES

MemberlD ~ TourlD ~| Year ~

118 25 2016
228 25 2016
286 25 2016
414 25 2016
469 25 2016

Figure 4-8. Rows to be added to Entry table

We can write an SQL query to return a set of rows like those in Figure 4-8:

SELECT m.MemberID, 25, 2016
FROM Member m
WHERE m.MemberType = 'Junior';

This query is a little different from others we have looked at because it has constants in the SELECT
clause. It will construct a row for each junior member with the member’s ID and the two constants 25 (for
the tournament) and 2016 (for the year).

We can now use the preceding query as a subquery in our INSERT query. Rather than provide just one
value with the VALUES keyword, we can provide a set of values resulting from the subquery. In the following
query, the inner SELECT will produce the set of rows seen in Figure 4-8, and the outer INSERT will put them in
the Entry table:

INSERT INTO Entry (MemberID, TourID, Year)
-- create an entry in tournament 25, 2016 for each Junior
SELECT MemberID, 25, 2016
FROM Member
WHERE MemberType = 'Junior';

The same potential for using subqueries applies to other updating issues. Say, for the purposes of
finding an example, that after entering data in the Entry table for the 2016 social tournament at Kaiapoi
(tournament 25) you realize that only players with handicaps of 20 or more were allowed to enter. You could
use a subquery to delete entries for members with handicaps less than 20:

DELETE FROM Entry
WHERE TourID = 25 AND Year = 2016 AND

MemberID IN
(SELECT MemberID FROM Member WHERE Handicap < 20);

Summary

We can use subqueries along with the keywords IN and EXISTS in many situations. Here is a summary of the
situations we have looked at in this chapter.

64

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © SUBQUERIES

Examples of Different Types of Subqueries

Many nested queries can be written in alternative ways. In Chapter 9, we will look at performance issues
relating to different ways of expressing queries, but in general you should use the way that feels most
natural to you when designing a query. Here are some examples of nested queries and alternate ways of
expressing them.

A subquery returning a single value

Find the tournaments that member Cooper has entered:

SELECT e.TourID, e.Year FROM Entry e WHERE e.MemberID =
(SELECT m.MemberID FROM Member m
WHERE m.LastName = 'Cooper');

An alternative way to write the preceding query is to use a join:

SELECT e.TourID, e.Year
FROM Entry e INNER JOIN Member m ON e.MemberID = m.MemberID
WHERE m.LastName = 'Cooper';

A subquery returning a set of single values

Find all the entries for an Open tournament:

SELECT *

FROM Entry e

WHERE e.TourID IN
(SELECT t.TourID FROM Tournament t
WHERE t.TourType = 'Open');

The preceding query can be replaced with:

SELECT e.MemberID, e.TourID, e.Year
FROM Entry e INNER JOIN Tournament t ON e.TourID = t.TourID
WHERE t.TourType = 'Open’;

A subquery checking for existence

Find the names of members that have entered any tournament:

SELECT m.LastName, m.FirstName
FROM Member m
WHERE EXISTS
(SELECT * FROM Entry e
WHERE e.MemberID = m.MemberID);

65

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1955-3_9
http://www.it-ebooks.info/

CHAPTER 4 © SUBQUERIES

This can be replaced with:

SELECT DISTINCT m.LastName, m.FirstName
FROM Member m INNER JOIN Entry e ON e.MemberID = m.MemberID;

Examples of Different Uses for Subqueries

Subqueries can be used in many situations, including the following:

Constructing queries with negatives

Find the names of members who have not entered a tournament:

SELECT * FROM Member m
WHERE NOT EXISTS
(SELECT * FROM Entry e
WHERE e.MemberID = m.MemberID);

Comparing values with the results of aggregates

Find the names of members with handicaps less than the average:

SELECT m.LastName, m.FirstName FROM Member m WHERE m.Handicap <
(SELECT AVG(Handicap) FROM Member);

Update data

Add arow in the Entry table for every junior for tournament 25 in 2016:

INSERT INTO Entry (MemberID, TourID, Year)
SELECT MemberID, 25, 2016
FROM Member WHERE MemberType = 'Junior’;

66

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5

Self Joins

When we select a subset of rows based on a condition in a WHERE clause, the condition is evaluated for each
row independently. An example might be a query to find all the members who have entered tournament 36.
The condition TourID = 36 can be evaluated for each row in the Entry table to achieve the required result.
However, if we want to find members who have entered both tournaments 36 and 24, we cannot do this by
inspecting just one row of the Entry table. We need to find two rows (or entries) for the same member—one
for each of the specified tournaments. A simple WHERE clause cannot achieve this.

In this chapter we will look at self joins. With a join between two tables, we first make a Cartesian
product that gives us a combination of rows from each table. In a self join, we do the same thing but with two
copies of the same table. This provides us with every combination of pairs of rows from the original table.
This is one way to write a query that needs information from more than one row in a table to satisfy some
condition. It will enable us to answer questions involving the word both; for example, “Which members
entered both these tournaments?” Self joins will also allow us to carry out queries on tables involved in self
relationships. We'll look at self relationships first.

Self Relationships

Let’s add some more information to our Member table. Suppose some members have coaches assigned to
them. How do we represent that in the class diagrams we talked about in Chapter 1? We could take the
approach shown in Figure 5-1, with two classes: Member and Coach. Recall what the lines and numbers mean.
From left to right, a coach might have several members to train (the 0..n nearest the Member class). From right
to left, a particular member might have a single coach or no coach (the 0..1 nearest the Coach class).

Member
Coach
MemberlD
e Coaches LastName
FirstName
0:1 0:n
LgstName Phone
F:stName Handicap
Phone JoinDate
Gender

Figure 5-1. Data model for coaches and members (not recommended!)

© Clare Churcher 2016 67
C. Churcher, Beginning SOL Queries, DOI 10.1007/978-1-4842-1955-3_5

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1955-3_1
http://www.it-ebooks.info/

CHAPTER 5 ' SELF JOINS

The problem with the model in Figure 5-1 is that coaches, in all probability, are members of the
club. When we implement this model with a Coach table and a Member table, some people will have a row
recording their details in each table. For example, Brenda Nolan has a row in the Member table. When she
takes up a role as coach, we also would need a row about her in the Coach table. Now if Brenda gets a new
phone number, someone has to remember to change it in both tables. In all likelihood this won’t happen,
and we will end up with the old number in one of the tables.

In this example we don’t actually have two separate classes of members and coaches. We have just one
class of members, some of whom coach other members. This self relationship is shown in Figure 5-2.

Coaches—>

0:n

-

Member

MemberID
LastName
0:1 FirstName
Phone
Handicap
JoinDate
Gender

Figure 5-2. Data model for members coaching other members

The relationship line in Figure 5-2 can be read in a clockwise direction to say that a particular member
might coach several other members or none (0..n). In the other direction, we can read that a particular
member might have one coach or none (0..1).

In Chapter 1 we showed how to represent a 1-Many relationship by adding a column to the table at
the 1 end of the relationship, which will have values from the primary key of the table at the other end. The
model in Figure 5-2 is exactly the same type of 1-Many relationship, except that we have the same table at
each end, hence a self relationship. To represent the relationship we can add a column, Coach, in the Member
table, as shown in Figure 5-3. The values in the Coach field must also exist in the key field MemberID.

68

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1955-3_1
http://www.it-ebooks.info/

CHAPTER 5 ' SELF JOINS

MemberlD - LastName -~ FirstName - Handicap -~ MemberType -~ Gender -~ Coach ~

118 McKenzie Melissa 30 Junior F 153
138 Stone Michael 30 Senior M
153 Nolan Brenda 11 Senior F
176 Branch Helen Social F
178 Beck Sarah Social F
228 Burton Sandra 26 Junior F 153
235 Cooper William 14 Senior M 153
239 Spence Thomas 10 Senior M
258 Olson Barbara 16 Senior £
286 Pollard Robert 19 Junior M 235
290 Sexton Thomas 26 Senior M 235
323 Wilcox Daniel 3 Senior M
331 Schmidt Thomas 25 Senior M 153
332 Bridges Deborah 12 Senior F 235
339 Young Betty 21 Senior F
414 Gilmore Jane 5 Junior F 153
415 Taylor William 7 Senior M 235
461 Reed Robert 3 Senior M 235
469 Willis Carolyn 29 Junior F
487 Kent Susan Social F

Figure 5-3. Column Coach added to the Member table

The first row in the table in Figure 5-3 tells us that Melissa is coached by member 153, and we can
see from the third line of the table that member 153 is Brenda. We need the value in the Coach field to be
constrained to being one of our existing members so that we cannot accidentally add an invalid member
number in the Coach column. We can do this by making the Coach field a foreign key. Recall from Chapter
1 that a foreign key is a field where any non-empty values in the field must already exist as a primary key in
another table. For the table in Figure 5-3, MembexType is a foreign key referring to the Type table, meaning
that any value in the MembexrType column must already exist in the Type table. For the Coach column, the
“other” table is the Member table itself. The following SQL statement shows how we would use the ALTER
command to add the new foreign key column Coach:

ALTER TABLE Member
ADD Coach INT FOREIGN KEY REFERENCES Member;

With the modified Member table, we now can answer several different types of questions. For example:
e What are the names of the coaches?
e Whatis the name of Jane Gilmore’s coach?
e Isanyone being coached by someone with a higher handicap?
e Are any women being coached by men?

None of these questions can be answered by inspecting a single row in the table. What we require is a
selfjoin on the Member table. The easiest way to understand a self join is to see how we make one.

69

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1955-3_1
http://www.it-ebooks.info/

CHAPTER 5 = SELF JOINS

Creating a Self Join

Recall from Chapter 3 the definition of a join between two tables: a Cartesian product (every combination
of rows from each table) followed by selecting a subset of those rows that satisfy some join condition. For

a self join, we think of two copies of the same table. In Figure 5-4, we see part of the Cartesian product
between two copies of the Member table. To distinguish the different elements of the product, I've given the
first copy an alias, m, and the second a different alias, ¢ (you'll see why in a minute). In the small section of
the Cartesian product visible in Figure 5-4, we see the first row (Melissa) from copy m paired with each of the
rows from copy c. Some of the headings of the columns are truncated, as it was getting rather wide.

Rows from first copy of Member (m) Rows from second copy of Member (c)

e

m.M ~ m.LastN: ~ m.FirstN - m.Men ~ m.F ~ m.C ~ m.C - c.M ~ c.LastNar ~ c.Firsth - c.Mem ~ c.t~ C. - CC~

118 McKenzie Melissa Junior 30 F 153 118 McKenzie Melissa Junior 30F 153
118 McKenzie Melissa Junior 30 F 153 138 Stone Michael Senior 30 M
118 McKenzie Melissa Junior 30 F @ Brenda Senior 11/ F
118 McKenzie Melissa Junior 30 F 153 Helen Social F
118 McKenzie Melissa Junior 153 Sarah Social F
118 McKenzie Melissa Junior 153 Sandra Junior 26 F 153
118 McKenzie Melissa Junior 153 William Senior 14 M 153
118 McKenzie Melissa Junior 153 239 Spence Thomas Senior 10M
118 McKenzie Melissa Junior 153 258 Olson Barbara Senior 16 F
118 McKenzie Melissa Junior 153 286 Pollard Robert Junior 19 M 235
118 McKenzie Melissa Junior 153 290 Sexton Thomas Senior 26 M 235
118 McKenzie Melissa Junior 153 323 Wilcox Daniel Senior 3M
118 McKenzie Melissa Junior 153 331 Schmidt Thomas Senior 25M 153
118 McKenzie Melissa Junior 153 332 Bridges Deborah Senior 12 F 235
118 McKenzie Melissa Junior 153 339 Young Betty Senior 21F
118 McKenzie Melissa Junior 153 414 Gilmore Jane Junior S|F 153
118 McKenzie Melissa Junior 153 415 Taylor William Senior M 235
118 McKenzie Melissa Junior 153 461 Reed Robert Senior im 235
118 McKenzie Melissa Junior 153 469 Willis Carolyn Junior 29 F
118 McKenzie Melissa Junior 153 487 Ken Susan Social F

m.Coach c.MemberlD

Figure 5-4. Cartesian product between two copies of the Member table

For queries about coaching, the interesting rows from the Cartesian product are those where the
value of Coach from m is the same as MemberID from c. In Figure 5-4, you can see that the third line contains
information about Melissa (from the m copy of Member) and information about her coach (from the c copy of
Member). Now the choice of aliases becomes clear: m for columns about a member; ¢ for the columns about
that member’s coach. Choosing helpful aliases can make understanding self joins much easier. The rows we
would like to select from the Cartesian product are those satisfyingm.Coach = c.MemberID. This is the join
condition required to find information about members and their coaches. The SQL for the self join is:

SELECT *
FROM Member m INNER JOIN Member c ON m.Coach = c.MemberID;

70

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1955-3_3
http://www.it-ebooks.info/

CHAPTER 5 ' SELF JOINS

The table resulting from the self join is shown in Figure 5-5.

Information about a member (m) Information about their coach (c)

m.M - m.LastN: - m.FirstN - m.Men - m.F - mC- m.(- cM- clastNar - CFirsth - c.Mem - ¢t~ ¢ ~ ¢C~

118 McKenzie Melissa Junior 30 F 153 153 Nolan Brenda Senior 11F
228 Burton Sandra Junior 26 F 153 153 Nolan Brenda Senior 11 F
235 Cooper William Senior 14 M 153 153 Nolan Brenda Senior 11 F
286 Pollard Robert Junior 19 M 235 235 Cooper William Senior 14 M 153
290 Sexton Thomas Senior 26 M 235 235 Cooper William Senior 14 M 153
331 Schmidt Thomas Senior 25M 153 153 Nolan Brenda Senior 11F
332 Bridges Deborah Senior 12 F 235 235 Cooper William Senior 14aM 153
414 Gilmore Jane Junior S5F 153 153 Nolan Brenda Senior 11F
415 Taylor William Senior M 235 235 Cooper William Senior 14 M 153
461 Reed Robert Senior iM 235 235 Cooper William Senior 14 M 153

P —
m.Coach = ¢c.MemberID

Figure 5-5. Selfjoin on Member table to retrieve information about members and their coaches

Now that we have the results of the self join, we can answer the questions posed in the previous section
about coaching. The trickiest part of all this was recognizing that maintaining information about members
and coaches is a self relationship and designing the Member table appropriately in the first place.

Queries Involving a Self Join

With the joined table in Figure 5-5 as our base, we can answer all sorts of questions by simply selecting
subsets of rows and projecting the appropriate columns. Whenever I need to do queries involving self joins,
T usually perform the join first, retaining all the rows and columns as in Figure 5-5. With the joined table (or
a quick sketch of the columns) in front of me, the way forward is usually relatively simple. Let’s see how this
works with a few questions.

What Are the Names of the Coaches?

Looking at Figure 5-5, we can see that the names of the coaches are in the columns coming from the c part of
the join. We just want a list of the names in the columns c. LastName and c.FirstName so those columns can
be included in the SELECT clause. We don’t want the names repeated, so we use the keyword DISTINCT. The
following SQL statement will return the names of the two coaches, Brenda Nolan and William Cooper.

SELECT DISTINCT c.FirstName, c.LastName
FROM Member m INNER JOIN Member c ON m.Coach = c.MemberID;

71

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ' SELF JOINS

Who Is Being Coached by Someone with a Higher Handicap?

To find out who is being coached by someone with a higher handicap, we need to compare the handicap of
the member (m.Handicap) with the handicap of that member’s coach (c.Handicap). What is required is a
WHERE clause after the join clause to find where the member’s handicap is less than the coach’s handicap:

SELECT *
FROM Member m INNER JOIN Member c ON m.Coach = c.MemberID
WHERE m.Handicap < c.Handicap;

For the data in Figure 5-5, this will retrieve the data in the last four rows. (You don’t have to be a great
golfer to be a good coach!) Having done the join and selected the appropriate rows, we can then choose
which columns we want to appear in the final result and list them in the SELECT clause.

List the Names of All Members and the Names of Their Coaches

Listing the names of members and their coaches sounds pretty trivial, but if we are not careful, we can get
itwrong. A first thought might be to project just the four columns containing the names of member and
coach from the joined table in Figure 5-5. However, there are only 10 rows in the joined table, whereas there
are 20 members in the Member table. The issue here is that not all the members have coaches. We looked at
situations like this in the section on outer joins in Chapter 3.

To recap, let’s go back to the Cartesian product of two copies of the Member table, but look at some rows
involving a member with no coach, as shown in Figure 5-6.

Information about a member (m) Information about their coach (c)

/—_\N__\

m.M - m.LastNi - m.FirstN - m.Men - m.k - m.C - m.Coach - c.MemberiD - c.LastNar - C.Firsth - c.Mem - ¢}- ¢ - ¢C-

138 Stone Michael Senior 30M 118 McKenzie Melissa Junior 30 F 153
138 Stone Michael Senior 30M 138 Stone Michael Senior 30M
138 Stone Michael Senior 0M 153 Nolan Brenda Senior 11F
138 Stone Michael Senior 30M 176 Branch Helen Social F
138 Stone Michael Senior 30M 78 Beck Sarah Soclal F
138 Stone Michael Senior 30M O urton Sandra Junior 26 F 153
138 Stone Michael Senior 30M 235 Cooper William Senior 4aMm 153

N~

m.Coach = ¢.MemberID
Never satisfied when m.Coach is null

Figure 5-6. Part of the Cartesian product between two copies of the Member table

72

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1955-3_3
http://www.it-ebooks.info/

CHAPTER 5 ' SELF JOINS

The join condition (m.Coach = c.MemberID) is never satisfied for a member with a null in the
Coach column, so all those members will be missing from our joined table. We just need to be careful to
understand what we really want. Do we want a list of all the members with coaches (10 rows), or a list of all
the members along with their coach’s name if they have one (20 rows)? If it’s the latter, we need an outer join.
We need to see the name of each member (from the m copy of the Member table), along with the name of his
coach, if any (from the ¢ copy). The SQL for this outer join is:

SELECT m.LastName AS MemberLast, m.FirstName AS MemberFirst,
c.LastName AS Coachlast, c.FirstName AS CoachFirst
FROM Member m LEFT OUTER JOIN Member c ON m.Coach = c.MemberID;

In the preceding query we have given each output attribute a column alias. A column alias temporarily
renames a column in order to improve the readability of the output. In this case it helps the reader
distinguish which name belongs to whom, as shown in Figure 5-7. Without the aliases, the attributes would
be labelled as m.LastName and c.LastName and so on, which are not quite so easy to understand. Recall from
Chapter 3 that for a left outer join, where there is no matching row from the right-hand table, those columns
will be filled with nulls. Figure 5-7 shows the output of the left outer join.

MemberlLast ~ MemberFirst -~ CoachlLast -~ CoachFirst ~

McKenzie Melissa Nolan Brenda
Stone Michael

Nolan Brenda

Branch Helen

Beck Sarah

Burton Sandra Nolan Brenda
Cooper William Nolan Brenda
Spence Thomas

Olson Barbara

Pollard Robert Cooper William
Sexton Thomas Cooper William
Wilcox Daniel

Schmidt Thomas Nolan Brenda
Bridges Deborah Cooper William
Young Betty

Gilmore Jane Nolan Brenda
Taylor William Cooper William
Reed Robert Cooper William
Willis Carolyn

Kent Susan

Figure 5-7. Left outer join to list all members and coaches

73

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1955-3_3
http://www.it-ebooks.info/

CHAPTER 5 ' SELF JOINS

Who Coaches the Coaches, or Who Is My Grandmother?

The self join between two copies of the Member table shows us one level of members and coaches. If we

look at the rows in Figure 5-7, we can see that Thomas Sexton is coached by William Cooper, who is in turn
coached by Brenda Nolan, who doesn’t have a coach. The hierarchy isn’t all that interesting for this problem,
but there are several analogous situations where the hierarchy is of considerable interest. Genealogy is one.
Consider the data model and part of the Person table in Figure 5-8. For the sake of keeping things really
simple, we will consider only a tiny bit of information about just women and birth mothers.

PersoniD - Name - Mother -
Is Mother of-->

1001 Agnes 1002
1002 Mary 1006
O:n 1003 Linda 1002
Paison 1004 Grace 1002
1005 Sue 1001
0:1 PersoniD 1006 Brenda

Name 1007 Bo 1003
i) 1008 Lily 1003

Person Table

Figure 5-8. Data model for women and their birth mothers

The relationship in Figure 5-8 can be read clockwise as “a person can be the mother of several other
people” and in the other direction as “a person has at most one mother and might have none.” Now. in real
life, that last statement doesn’t sound right-surely everyone has a mother. However, as with all databases,
this database is only an approximation of the complexities of real life, and it can only keep data that is
available. Unless we trace everyone back to the primeval slime, there will be some people in our table whose
mother we do not know. Brenda is one. The table and model in Figure 5-8 have exactly the same structure
as our member and coach example, but a question like “Who is Sue’s grandmother?” seems a bit more likely
than “Who coaches my coach?”

So, how do we get information about people along with information about their mothers? Just as in the
previous section, we need to join the Person table to itself. (Don’t forget to make the join an outer join so you
don’tlose Brenda.) The SQL is:

SELECT *
FROM Person p LEFT OUTER JOIN Person m on p.Mother = m.ID;

The Access diagrammatic interface for the join is shown in Figure 5-9, along with the resulting table. I've
given the first copy of the table the alias p for person and the second copy the alias m for mother.

4

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ' SELF JOINS

p m

¥ PersonID ¥ PersonID
Name f Name
Mother Mother

p.PersonID - | p.Name - p.Mother -| m.PersoniD - m.Name -| m.Mother -

1001 Agnes 1002 1002 Mary 1006
1002 Mary 1006 1006 Brenda

1003 Linda 1002 1002 Mary 1006
1004 Grace 1002 1002 Mary 1006
1005 Sue 1001 1001 Agnes 1002
1006 Brenda

1007 Bo 1003 1003 Linda 1002
1008 Lilv 1003 1003 Linda 1002

Figure 5-9. Finding people and their mothers: Access diagram for the left outer join and the resulting table

Now, what about going back to the previous generation? For that we need to perform another left outer
join between the result table in Figure 5-9 and another copy of the People (with the alias g for grandmother).
The SQL for the two left outer joins is:

SELECT *
FROM (Person p LEFT JOIN Person m ON p.Mother = m.ID)
LEFT JOIN Person g ON m.Mother = g.ID;

The resulting table is shown in Figure 5-10.

75

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ' SELF JOINS

p m g
¥ PersoniD ¥ PersonID ¥ PersonID
Name Name Name
Mother Mother Mother

p.PersoniD - p.Name - p.Mother - m.PersoniD - m.Name - m.Mother - g.PersoniD - g.Name - g.Mother -

1001 Agnes 1002 1002 Mary 1006 1006 Brenda

1002 Mary 1006 1006 Brenda

1003 Linda 1002 1002 Mary 1006 1006 Brenda

1004 Grace 1002 1002 Mary 1006 1006 Brenda

1005 Sue 1001 1001 Agnes 1002 1002 Mary 1006
1006 Brenda

1007 Bo 1003 1003 Linda 1002 1002 Mary 1006
1008 Lily 1003 1003 Linda 1002 1002 Mary 1006

Figure 5-10. Finding three generations: Access diagram for the left outer joins and the resulting table

Clearly, we can keep making more and more self joins until we run out of generations. These sorts
of hierarchical queries are likely to turn up whenever we have self relationships. One small catch is that
we must specify the number of joins in each query. Standard SQL doesn’t have the notion of a query
that automatically keeps doing the self joins until it runs out of generations, such as “Find all my female
ancestors”; however, some implementations do support this.!

An Outcome Approach to Self Joins

The questions in the previous sections were all quite easy to answer once we realized we needed self joins.
This was an example of the process approach —what operations do we need to perform? Sometimes,
however, these realizations don’t always come when you need them. Whenever my mind goes blank when
faced with a query, I resort to an outcome approach.

Let’s look at our Member table again and ask a simple question: Who is Melissa’s coach? Don’t think
about relationships or joins, just look at the data from a layman’s perspective. In Figure 5-11, you can see
how to figure out the answer, even if you have never heard of a self join (most people haven't).

'Some implementations of SQL do support recursive queries that can track through self relationships. Check your
documentation for key phrases like WITH or CONNECT BY.

76

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ' SELF JOINS

MemberIiD - LastName -~ FirstName - Handicap -~ Coach -

M @= 118 McKenzie 30 @

138 Stone Michael 30
C@~ @Nolan 11
176 Branch Helen
178 Beck Sarah
228 Burton Sandra 26 153
235 Cooper William 14 153
239 Spence Thomas 10
258 Olson Barbara 16
286 Pollard Robert 19 235

Figure 5-11. Finding Melissa’s coach

To find Melissa’s coach, we first find the row for Melissa (m in Figure 5-11) and then note that her coach
is member 153. Then we find another row (c for coach) that has the MemberID value of 153; we can see
that Melissa’s coach is Brenda. You don’t need to know anything about self relationships or foreign keys or
joins to figure that out. But once you have that logic clearly in your mind, you can write it down in natural
language, and then the translation to SQL is pretty straightforward.

Let’s write a description of Figure 5-11:

I need to look at two rows (m and c) in the Member table, and I want to write out c. FirstName
where c.MemberID has the same value as m.Coach and m. FirstName is ‘Melissa’

And here is the corresponding SQL:

SELECT c.FirstName
FROM Member m, Member c
WHERE c.MemberID = m.Coach AND m.FirstName = 'Melissa’;

So, how does this output approach correspond to the process approach we considered earlier? As you
might expect, the preceding SQL is just an alternative way of stating the same query as the one where we
used the self join. In the preceding SQL statement, the middle line is the Cartesian product between two
copies of the Member table, and the first part of the WHERE clause is the join condition. The statement FROM
Member m, Member c WHERE c.MemberID = m.Coach is just another way of expressing the self join we used
in the previous sections.

Let’s try one of the other queries using an outcome approach: Who is being coached by someone with a
higher handicap? The picture I would need in my head to answer this question is shown in Figure 5-12.

77

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ' SELF JOINS

MemberID - LastName -~ FirstName - Handicap - Coach -

118 McKenzie Melissa 30 153
138 Stone Michael 30
153 Nolan Brenda 11
176 Branch Helen
178 Beck Sarah
228 Burton Sandra 26 153

(e @Cooper William [14] 153
239 Spence Thomas 10
258 Olson Barbara 16
286 Pollard Robert 19 235 ; :
290 Sexton Thomas 26 235 | M-Handicap <cHandicap
323 Wilcox Daniel 3
331 Schmidt Thomas 25

m = 332 Bridges Deborah @ @

339 Young Betty 21
414 Gilmore Jane 5 153
415 Taylor William 7 235
461 Reed Robert 3 235
469 Willis Carolyn 29
487 Kent Susan

Figure 5-12. Finding members who are coached by someone with a higher handicap

We can see that Deborah, whose handicap is 12, is being coached by member 235. Member 235,
William, has a handicap of 14, so Deborah satisfies our criteria. Here is the more general statement
representing the logic depicted in Figure 5-12:

I'm going to look at every row (m) in the Member table and will write out m. FirstName and
m. LastName if there exists some other row (c) in the Member table where c.MemberID is the
same as m.Coach and m.Handicap is less than c.Handicap

The SQL follows in a straightforward manner:

SELECT m.FirstName, m.LastName
FROM Member m, Member c
WHERE c.MemberID = m.Coach AND m.Handicap < c.Handicap;

Once again, you can see the equivalent of the self join in the preceding query (FROM Member m, Member
C WHERE c.MemberID = m.Coach). The usefulness of this outcome approach is that you don’t need to
understand what a self join is, nor must you make the mental leap that you need one. By thinking in terms of
virtual fingers and which rows are involved in helping you with your decision, you can sketch a statement of
the criteria. The SQL usually follows quite easily from that.

78

www.it-ebooks.info

http://www.it-ebooks.info/

Questions Involving “Both”

In the “Avoiding Common Mistakes” section of Chapter 2, we looked at a questions such as, “Which members
have entered both tournaments 24 and 36?” To recap, I've reproduced the Entry table in Figure 5-13.

MemberID ~ TourlD -

118
228
228
228
235
235
235
235
239
239
258
258
286
286
286
415
415
415
415
415
415
415
415
415

Figure 5-13. Entry table

24
24
25
36
38

REBSEER

38
24
24
24
24

8888&EI&N

Year ~
2014
2015
2015
2015
2013
2015
2014
2015
2015
2013
2014
2014
2013
2014
2015
2015
2013
2014
2015
2013
2015
2013
2014
2015

www.it-ebooks.info

CHAPTER 5 ' SELF JOINS

79

http://dx.doi.org/10.1007/978-1-4842-1955-3_2
http://www.it-ebooks.info/

CHAPTER 5 SELF JOINS

A common first attempt at an SQL statement to find entries in both tournaments is the following:

-- Will not produce the desired result
SELECT e.MemberID

FROM Entry e

WHERE e.TourID = 24 AND e.TourID = 36;

Remember that a WHERE condition is applied to each row of the table individually. The condition (e.
TourID = 24 AND e.TourID = 36)isnever true for any individual row, as each row has only a single value
for TourID. The preceding query will never return any rows because the value in TourID cannot be two
different things (24 and 36) simultaneously. Such a query can be quite dangerous, because the user may
interpret the empty result as meaning that no members have entered both tournaments, whereas the query
statement is actually incorrect.

To answer the question, we need to look at more than one row in the Entry table. I find an outcome
approach to be the most natural for dealing with questions involving “both.”

An Outcome Approach to Questions Involving “Both”

The picture I need in my head to answer “Which members have entered both tournaments 24 and 36?” is
shown in Figure 5-14.

MemberiD + TourlD - Year -~

118 24 2014
el @=(229 2015
228 25 2015
€2 @229 2015
235 38 2013
235 38 2015
235 40 2014
235 40 2015

Figure 5-14. Which members have entered both tournaments 24 and 36?

Looking at Figure 5-14, it is pretty clear that member 228 has entered both the tournaments. We are to
looking for two rows (two fingers, e1 and e2) with matching MemberID values and where the rows have the
required two TourID values.

A more general expression of the logic displayed in Figure 5-14 is:

I'm going to look at every row (e1) in the Entry table. I'll write out that row’s member ID
if TourID has the value 24 and I can also find another row (e2) in the Entry table with the
same value for MemberID and that has 36 as the value for TourID.

80

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ' SELF JOINS

The SQL follows from here. If you have trouble with it, refer to Figure 5-14.

SELECT el1.MemberID
FROM Entry ei1, Entry e2
WHERE e1.MemberID = e2.MemberID
AND e1.TourID = 24 AND e2.TourID = 36;

A Process Approach to Questions Involving “Both”

As always, we have several ways to think about a query. Take a look at the middle two lines of the last query.
FROM Entry e1, Entry e2isa Cartesian product (which will give us every combination of pairs of rows),
followed by selecting a subset of rows satisfying (WHERE e1.MemberID = e2.MemberID). This is a join. In fact,
itis a self join between two copies of the Entry table. Part of the join between two copies of the Entry table is
shown in Figure 5-15.

From copy e1 of Entry From copy e2 of Entry
-~ _““\/_\—/\"—\
el.MemberIiD -~ | el.TourlD - el.Year - e2.MemberiD ~ e2.TourlD - e2.Year -
118 24 2014 118 24 2014
228 24 2015 228 24 2015
228 25 2015 228 24 2015
228 36 2015 24 2015
228 24 2015 5 2015
228 25 2015 25 2015
228 36 2015 25 2015
2015 2015
25 2015 36 2015
36 2015 36 2015
38 2013 38 2013
38 2015 38 2013
40 2014 38 2013
40 2015 38 2013
38 2013 38 2015
Join condition

el.MemberlD = e2.MemberlD

Figure 5-15. Part of the self join between two copies of the Entry table

81

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 SELF JOINS

The self join in Figure 5-15 shows those combinations of rows from the Entry table for the same
member. For example, we can see every combination of rows involving member 228. We can use this self
join to answer the question about members who have entered both tournaments 24 and 36. We just need to
find a row that has 24 from the first copy and 36 from the second copy (or vice versa) —that is, e1.TourID =
24 AND e2.TourID = 36.

The SQL for this self join followed by the WHERE clause to select the rows with the appropriate values of
TourID is shown here:

SELECT el.MemberID
FROM Entry e1 INNER JOIN Entry e2 ON el.MemberID = e2.MemberID
WHERE el1.TourID = 24 AND e2.TourID = 36;

If you compare the two queries for finding the entries in both tournaments 24 and 26, you will see how
similar they are. They will both produce exactly the same result. You will probably find one or the other to be
more intuitive.

Summary

Many queries require us to obtain information from two rows of a table. This turns up in a number of
situations. The main ones are where we have self relationships or where there are questions involving the
word “both.” We have looked at both process approaches and outcome approaches to these queries. Both
resulted in very similar-looking SQL statements that return the same output. Having the two different
approaches is helpful for those occasions when the query statement is not immediately obvious.

Self Relationships

We have a self relationship when different instances of a class are related to each other. In the example in this
chapter, we had that some members are coaches of other members.

From a process perspective, queries about coaches or coaching relationships require self joins, which
take two copies of the table and join them. In the following example, the copy of the Member table with the
information about the member has the alias m, and the copy with information about the coach has the alias c:

SELECT m.LastName, m.FirstName, c.LastName, c.FirstName
FROM Member m INNER JOIN Member c ON m.Coach = c.MemberID

Alternatively, from an output approach we might come up with this equivalent query:
SELECT m.FirstName, m.LastName, c.LastName, c.FirstName
FROM Member m, Member c
WHERE c.MemberID = m.Coach

Both these queries can form the basis of queries to answer a number of questions about coaching.

Questions Involving the Word “Both”

Questions with the word “both” often mean we need to look at two rows in a table. In our example, we
wanted to find the MemberID of members who have entered both tournaments 24 and 36.

82

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ' SELF JOINS

From an outcome approach we needed to find two rows in the Entry table (el and e2) for the same
member. One of the rows needed to be for tournament 24 and the other for tournament 36. The following
shows the outcome-based SQL query:

SELECT el.MemberID
FROM Entry e1, Entry e2
WHERE el1.MemberID = e2.MemberID AND el.TourID = 24 AND e2.TourID = 36;

Alternatively, from a process approach we might recognize the need for a self join between two copies
of the Entry table, which is done using the join condition e1.MemberID = e2.MemberID. This would need to
be followed by a WHERE clause to return the rows with the appropriate TourID values.

The self join query equivalent to the preceding query is:

SELECT el1.MemberID
FROM Entry e1 INNER JOIN Entry e2 ON el.MemberID = e2.MemberID
WHERE e1.TourID = 24 AND e2.TourID = 36;

83

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6

Multiple Relationships
Between Tables

We have looked at simple 1-Many relationships between tables (e.g., each member is associated with one

member type), and we have also looked at self relationships (e.g., members may coach other members). Another

situation that occurs frequently is where there is more than one relationship between the same two tables.

Two Relationships Between the Same Tables

Let’s consider how we might introduce the idea of teams into the golf club database. We can start off by

thinking about what basic information we need to keep about a team. Figure 6-1 shows a class representing a

simple team along with some rows in a table that represents the class.

TeamName -~ |PracticeNight ~
TeamA Tuesday

TeamName TeamB Monday
PracticeNight

Team

Figure 6-1. The Team class and some rows in a Team table

Now we need to think about relationships between the new Team class and our other classes. The
most obvious relationship is that members will play for teams. Figure 6-2 shows a possible class diagram

representing this situation.

Member

MemberiD 0:n 0:1 | Team
LastName Plays for

FirstName TeamName
Handicap PracticeNight
JoinDate

Gender

Figure 6-2. A member can belong to one team

© Clare Churcher 2016
C. Churcher, Beginning SQL Queries, DOI 10.1007/978-1-4842-1955-3_6

www.it-ebooks.info

85

http://www.it-ebooks.info/

CHAPTER 6 © MULTIPLE RELATIONSHIPS BETWEEN TABLES

Interpreting the class diagram in Figure 6-2 from left to right, we have that a particular member might
play on one team (the 1 nearest the Team class), but a member does not need to play for any teams at all (the
0 nearest the Team class). Reading from right to left, we have that a team could have many members playing
for it (the n nearest the Member class) but might not have any (the 0 nearest the Member class). That last
statement might seem a bit odd, but when we add new teams, or want to start afresh in a new season, a team
might not have any members straight away.

To represent a 1-Many relationship, recall from Chapter 1 that we take the primary key from the table at
the 1 end of the relationship and add it as a foreign key to the table at the Many end. Figure 6-3 shows a new
foreign key field, Team, which refers to the Team table.

MemberID -~ | LastName -~ FirstName - Team -~
118 McKenzie Melissa

138 Stone Michael

153 Nolan Brenda TeamB
176 Branch Helen

178 Beck Sarah

228 Burton Sandra

235 Cooper William TeamB
239 Spence Thomas

258 Olson Barbara

286 Pollard Robert TeamB
290 Sexton Thomas

323 Wilcox Daniel TeamA
331 Schmidt Thomas

332 Bridges Deborah

339 Young Betty TeamB
414 Gilmore Jane TeamA
415 Taylor William TeamA
461 Reed Robert TeamA
469 Willis Carolyn

487 Kent Susan

Figure 6-3. Foreign key field Team in the Member table

Another relationship that is likely to occur between Member and Team is that a member might manage a
team. Figure 6-4 shows this additional relationship in the class diagram.

86

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1955-3_1
http://www.it-ebooks.info/

CHAPTER 6 © MULTIPLE RELATIONSHIPS BETWEEN TABLES

Manages

1:1

0:1

Member
Team

MemberID
LastName TeamName

FirstName PracticeNight
Handicap
JoinDate
Gender

0:1

O:n

Plays For

Figure 6-4. Two relationships between the Member and Team classes

The top line in Figure 6-4 can be interpreted, from left to right, as stating that a particular member might
manage (at most) one team; and from right to left, as that each team has exactly one manager.

This new relationship is a 1-1 relationship. For 1-Many relationships we have always taken the primary
key from the one end of the relationship and put it in the table at the other end. This time both ends have
a cardinality of 1. We could puta Team_I_Manage column in the Member table or a Manager column in the
Team table. The latter is more sensible, as the compulsory Manager attribute is a more important piece of
information about teams than the optional Team_I_Manage is for members. Generally, in a 1-1 relationship
we take the primary key from the compulsory end (1:1 on the diagram in Figure 6-4) and put that as a foreign
key in the other end.

The Team table, with its new Manager foreign key column, is shown along with the Member table
in Figure 6-5.

87

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 © MULTIPLE RELATIONSHIPS BETWEEN TABLES

MemberlD -~ LastName =~ FirstName ~ Team -
118 McKenzie Melissa

138 Stone Michael
153 Nolan Brenda TeamB
176 Branch Helen
178 Beck Sarah
228 Burton Sandra
235 Cooper William TeamB
239 Spence Thomas TeamName - |PracticeNight - | Manager -
258 Olson Barbara TeamA Tuesday 239
286 Pollard Robert TeamB TeamB Monday 153
290 Sexton Thomas
323 Wilcox Daniel TeamA
331 Schmidt Thomas
332 Bridges Deborah
Team

339 Young Betty TeamB
414 Gilmore Jane TeamA
415 Taylor William TeamA
461 Reed Robert TeamA
469 Willis Carolyn
487 Kent Susan

Member

Figure6-5. Foreign keys Team in Member table and Manager in Team table to represent the relationships in Figure 6-4

From the Member table, we can see that four people play for TeamB (Brenda Nolan, William Cooper, Robert
Pollard, and Betty Young), and from the Team table, we can see that member 153 (Brenda Nolan) is the manager
of TeamB. You will notice that there is nothing in the data model that says whether or not a manager must be
amember of the team. TeamB’s manager is a member of TeamB, whereas TeamA’s manager, 239 (Thomas
Spence), is not a member of TeamA. The only constraints implied by the foreign keys are that the manager of a
team must be in the Member table and a member can belong only to a team that exists in the Team table.

Some of you may have also realized that making Manager a foreign key does not prevent the same
person from managing more than one team. The foreign key constraint does not prevent us from putting
member 239 as the manager for both TeamA and TeamB. We have effectively set up a 1-Many relationship
between Team and Member for the Manages relationship. If you want to prevent a single member from
managing more than one team, you can put a UNIQUE constraint on the Manager column of the Team table.
This type of situation is discussed in more depth in my database design book.! The following SQL would
create a Team table where Manager is a foreign key referring to the Member table and a particular member can
only appear once in the Manger column in the table:

CREATE TABLE Team (

TeamName CHAR(10) PRIMARY KEY,

PracticeNight CHAR(20),

Manager INT FOREIGN KEY REFERENCES Member UNIQUE);

!Clare Churcher, Beginning Database Design: From Novice to Professional (New York: Apress, 2012).

88

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 © MULTIPLE RELATIONSHIPS BETWEEN TABLES

Extracting Information from Multiple Relationships

Now that we have the Team and Member tables and their two relationships (Plays for and Manages), we can
start extracting information. If we just consider one relationship at a time, it is relatively straightforward to
construct queries. If we want a list of the members who play for a team along with the basic information
about their teams from the Team table, we can simply join the Member and Team tables on Team = TeamName as
in the SQL query here:

SELECT m.MemberID, m.LastName, m.FirstName, m.Team,
t.TeamName, t.PracticeNight, t.Manager
FROM Member m INNER JOIN Team t ON m.Team = t.TeamName;

A graphical representation and the output of the preceding query is shown in Figure 6-6.

m t

¥ MemberD -l ¥ TeamName

LastName] PracticeNight
FirstName Manager ~

MemberType
Phone

Handicap
JoinDate

Coach

Team ¥

MemberID ~ LastName -~ |FirstName - Team - TeamName - PracticeNight -~ Manager -~

323 Wilcox Daniel TeamA TeamA Tuesday 239
414 Gilmore Jane TeamA TeamA Tuesday 239
415 Taylor William TeamA TeamA Tuesday 239
461 Reed Robert TeamA TeamA Tuesday 239
153 Nolan Brenda TeamB TeamB Monday 153
235 Cooper William TeamB TeamB Monday 153
286 Pollard Robert TeamB TeamB Monday 153
339 Young Betty TeamB TeamB Monday 153

Join Condition
m.Team = t.TeamName

Figure 6-6. Joining Member and Team to get additional information about a member’s team

89

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 © MULTIPLE RELATIONSHIPS BETWEEN TABLES

Similarly, if we want to retrieve information about teams, including the name of the manager, we can
join Member and Team on Manager = MemberID:

SELECT t.TeamName, t.PracticeNight, t.Manager,
m.MemberID, m.LastName, m.FirstName
FROM Team t INNER JOIN Member m ON t.Manager = m.MemberID;

A graphical representation and the output of the preceding query is shown in Figure 6-7.

m t

¥ MemberlD [+] ¥ TeamName

LastName] PracticeNight

FirstName Manager ™

MemberType
Phone

Handicap
JoinDate

Coach

Team v

TeamName - PracticeNight - Manager - | MemberID - LastName ~ FirstName -
TeamA Tuesday 239 239 Spence Thomas
TeamB Monday 153 153 Nolan Brenda

T

Join Condition
t.Manager = m.MemberID

Figure 6-7. Joining Member and Team to get additional information about a team’s manager

Now we will look at how to retrieve information involving both relationship types.

Process Approach

The information from the join shown in Figure 6-6 is not particularly helpful. We have the managers’ IDs,
but it would be more useful to have their names as well. We need another join. First, we'll have a look at what
Access will do by default if you add both the Member and Team tables onto the query design interface. This is
shown in Figure 6-8.

90

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 © MULTIPLE RELATIONSHIPS BETWEEN TABLES

Member Team
¥ MemberlD -
LastName

¥ TeamName |~
PracticeNight
Manager v

/'

FirstName —

MemberType
Phone

Handicap
JoinDate

Coach

Team v

Figure 6-8. Default joins in Access if Member and Team are added to diagrammatic query interface

SELECT *
FROM Member m INNER JOIN Team t
ON t.TeamName = m.Team AND m.MemberID = t.Manager;

Can you figure out what question this query is answering? The output is shown in Figure 6-9.

MemberID -t LastName - |FirstName -~ Team - TeamName - PracticeNight - Manager ~

@\lolan Brenda [TeamB I ||'eamB | Monday @

One join with complex condition.
m.Team = t.TeamName AND t.Manager = m.MemberID

Figure 6-9. Output for the default Access join in Figure 6-8

To understand what is happening with the preceding join it is useful to consider the Cartesian product
of Member and Team. The Cartesian product gives us every combination of rows from each table. The join
condition says show only rows where the MemberID is the same as the Manager and where Team and TeamName
are the same. In everyday language, this amounts to “Show me the members who manage the team they are
in” For our data, that is just the single row for Brenda Nolan we see in Figure 6-9.

So, how do we construct a query that will show us member names, their teams, and the names of the
teams’ managers? The query that follows will provide the information about the members, their teams, and
the managers’ IDs (t.Manager); however, it does not provide the managers’ names:

SELECT m.MemberID, m.LastName, m.FirstName, t.TeamName, t.Manager
FROM Member m INNER JOIN Team t ON m.Team = t.TeamName;

What we need to do is to take the result of the preceding join and join that to a second copy of the
Member table (m2) to retrieve the names of the managers. We want the join condition to be that t.Manager =

m2.MemberID so we get the names of the manager. Figure 6-10 shows a diagrammatic representation and the
output of the two joins.

91

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 © MULTIPLE RELATIONSHIPS BETWEEN TABLES

m t m2

YV MemberlD =] ? TeamName [~| ¥ MemberlD [«]
LastName i PracticeNight _ I LastName .
FirstName Manager - FirstName
MemberType MemberType
Phone Phone
Handicap Handicap
JoinDate JoinDate
Coach ' Coach
Team b Team =
From Member (m) From Team (t) From Member (m2)

m.Member - |m.Last? - |m.First! - |Team - | TeamP -~ Manag ~ m2.Me ~ ' m2.Las! »~ ' m2.FirstN ~

323 Wilcox Daniel TeamA TeamA 239 239 Spence Thomas
414 Gilmore Jane TeamA TeamA 239 239 Spence Thomas
415 Taylor William TeamA TeamA 239 239 Spence Thomas
461 Reed Robert TeamA TeamA 239 239 Spence Thomas
153 Nolan Brenda TeamB TeamB 153 153 Nolan Brenda
235 Cooper William TeamB TeamB 153 153 Nolan Brenda
286 Pollard Robert TeamB TeamB 153 153 Nolan Brenda
339 Young Betty TeamB TeamB 153 153 Nolan Brenda

Join Condition Join Condition
m.Team = t.TeamName t.Manager = m2.MemberiD

Figure 6-10. Two joins and two copies of Member table to include names of team managers

The first join gives us the member information from the first copy of the Member table and the
information from the Team table for that member; the second join gives us the name of the team manager
from the second copy of the Member table. The SQL for the two joins is:

SELECT *
FROM (Member m INNER JOIN Team t ON m.Team = t.TeamName)
INNER JOIN Member m2 ON t.Manager = m2.MemberID;

You might find it instructive to compare this latest query and output with the query involving a single
join between the Member and Team tables shown in Figures 6-8 and 6-9.

We are now in position to generate a variety of reports about teams and their members. Figure 6-11
shows a report based on the preceding query and its output, shown in Figure 6-10.

92

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 © MULTIPLE RELATIONSHIPS BETWEEN TABLES

Teams
TeamA Manager: Thomas Spence

461 Reed Robert
Datafromfist —__——" wn Taylor Wiliiam
copy of Member 414 Gilmore Jane
table i) Data from m2 copy of

- Wilcox Daniel Member and from

Team tables
amB Manager: Brenda Nolan
339 Young Betty
86 Pollard Robert
235 Cooper William
153 Nolan Brenda

Figure 6-11. A report based on the query shown in Figure 6-10

The report has been grouped by team, with the team and manager information (from the Team table and
m2 copy of the Member table) in a group header. The members of the team (from the first copy m of the Membex
table) are in the detail part of the report.

Outcome Approach

We will now look at an alternative way to construct a query to retrieve all the information about a team
(members’ names, team name, and manager’s name) for a report like the one in Figure 6-11. 1 find the idea
of two joins quite intuitive, but other people prefer a different approach.

I have reproduced the two tables in Figure 6-12. Now, without thinking about joins, let’s see how we can
pick a member and find out what team he or she is on and who the manager is for that team.

M*amberln « | LastName ~ FirstName - Team -~ TeamName - PracticeNight - Manager -
118 McKenzie Melissa TeamA Tuesday 239

138 Stone Michael t f Monday @—

m2 ?@Nolan Brenda TeamB

176 Branch Helen Team
178 Beck Sarah
228 Burton Sandra
m g~ 235 Cooper William
239 Spence Thomas
258 Olson Barbara
286 Pollard Robert TeamB
290 Sexton Thomas
Member

Figure 6-12. Finding a team member (William Cooper), his team’s name, and the name of the team'’s manager

93

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 © MULTIPLE RELATIONSHIPS BETWEEN TABLES

Without needing to think about joins, we can find the information we require. We need information from
three rows. Let’s look at one specific case. One row (m) from the Member table will give us the name of a member
(William Cooper in Figure 6-12). We need to find the row (t) in the Team table for his team (m.Team = t.TeamName).
Then we need another row in the Member table (m2) for the manager of the team (t.Manager = m2.MemberID).

With help from Figure 6-12 we can construct the following SQL:

SELECT m.LastName, m.FirstName, m.Team, m2.LastName, m2.FirstName
FROM Member m, Team t, Member m2
WHERE m.Team = t.TeamName AND t.Manager = m2.MemberID

We could replace m. Team with t. TeamName in the SELECT clause of the preceding query if we wish.

The preceding query is equivalent to the query with the two joins. The FROM clause is the Cartesian
product of the three tables. The WHERE clause provides the join condition for the join between Membex (m)
and Team (t) onm.Team = t.TeamName and the join condition for the join between Team and another copy of
Member (m2) on t.Manager = m2.MemberID.

Business Rules

The data model from Figure 6-4 is redisplayed below as Figure 6-13.

Manages

1:1

0:1

Member
Team

MemberID
LastName TeamName

FirstName PracticeNight
Handicap
JoinDate
Gender

0:1

Plays For
Figure 6-13. Two relationships between the Member and Team classes

Members can belong to teams, and members can manage teams. When we implement these relationships
with foreign keys, the constraints that are placed on the data are quite simple. A member can only be on a team
that exists in the Team table, and a team can be managed only by someone in the Member table.

Other constraints are likely to apply in various situations. For example, we might have the additional
constraints that a team can have no more than four members or that the manager must be a member of
the team (or not). These types of constraints are commonly referred to as business rules. The data model in
Figure 6-13 might underpin a database for two different golf clubs. While the basic integrity rules will apply
for both clubs (e.g., a member cannot be on a team that doesn’t exist), each club might have different rules
about sizes of teams and who can manage them. The foreign key constraints are not sufficient to enforce
such business rules.

94

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 © MULTIPLE RELATIONSHIPS BETWEEN TABLES

Relational database products will usually provide some way to enforce business rules. Large systems
such as SQL Server and Oracle provide triggers. Triggers are actions that take place when a specified event
occurs (for example, when inserting or updating a record). The trigger will reject any changes that do
not obey the rules. In Access and other products, it is not possible to apply such constraints to the tables
themselves. However, you can attach macros to input forms. These macros will check the data on the form
before it is committed to the database. The issue with this approach is that there is no such checking if a user
bypasses the form and enters data directly into a table with (for example) an SQL update command.

We won't look in detail at how business rules are implemented in different products, but we will look at
how queries can help find any instances where the constraints are not satisfied. Although this is finding the
problem after it has occurred, variations of these queries would form a basis for any trigger or macro that
you would need to write to enforce the constraints.

Let’s look at finding teams whose managers are not members of the team. My mind often goes blank
when faced with a query like this, and in that case, I always take an outcome approach. This means picturing
the tables involved and imagining the type of instance I am seeking. Have a look at Figure 6-14.

MemberiD ~ LastName ~ FirstName - Team -
118 McKenzie Melissa

138 Stone Michael
153 Nolan Brenda TeamB

TeamName - PracticeNight - | Manager - 176 Branch Helen

t g= Teama Tuesday 178 Beck Sara
TeamB Monday 153 228 Burton Sandra
Team 235 Cooper william TeamB
m = ence Thomas @

258 Olson Barbara —
286 Pollard Robert TeamB
290 Sexton Thomas
323 Wilcox Daniel TeamA
331 Schmidt Thomas
332 Bridges Deborah
339 Young Betty TeamB
414 Gilmore Jane TeamA
415 Taylor William TeamA
461 Reed Robert TeamA
469 Willis Carolyn
487 Kent Susan

Figure 6-14. Finding teams whose managers are not members of the team

In Figure 6-14, we see in the Team table that TeamA'’s manager is 239, and we can see in the Member table
that member 239 is not a member of any team. If we had a constraint that managers must belong to the
team, TeamA would not obey it.

To find all teams like this, we would say:

Find the team names from all the rows (t) in the Team table where the matching row (m) in
the Member table for the team manager (i.e., t.Manager = m.MemberID) has a team (m.team)
that is either empty or different from the team in the Team table (m. Team <> t.TeamName).

95

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 © MULTIPLE RELATIONSHIPS BETWEEN TABLES

The equivalent SQL is shown here:

SELECT t.teamname

FROM Member m, Team t

WHERE m.MemberID = t.Manager

AND (m.Team <> t.Teamname OR m.Team IS NULL)

The middle two lines are equivalent to a join between the two tables on m.MemberID = t.Manager, and
the final line finds those managers who are on a different team or not on a team at all. The following query
will produce an equivalent output but uses the inner join notation:

SELECT t.teamname
FROM Member m INNER JOIN Team t ON m.MemberID = t.Manager
WHERE m.Team <> t.Teamname OR m.Team IS NULL

Just a note about why we have included the IS NULL condition in the two queries: You might remember
from Chapter 2 that if we make a comparison with a null value, the result is neither true nor false. If we
want to find managers who aren’t in a team, we need to specifically include that possibility in our query.
Had the requirement been just that a manager must not belong to a different team, we could have left
out the checking of null values, because a manager with no team would have been OK. As always, clearly
understanding what you are actually trying to find is the most important part of specifying a query.

The two preceding queries will find teams with incorrect managers, but only after they have been added
to the database. How do we prevent them from being added in the first place? The solution depends on
the database implementation. Before changes to data are finally committed to a database, they are usually
recorded in a buffer of some sort. For example, in SQL Server, the records being updated or added are kept
in a temporary table called inserted. If we add or update some records to the Team table, a temporary table
(inserted) that has the same structure as the Team table is created to hold the new or updated records
temporarily. We want to perform a query to check if any new records about to be added to the Team table
have managers that don’t obey the constraint. However, instead of looking at the Team table, we want to look
at the records in the temporary inserted table and count how many of those are invalid.

The following SQL query, which is very similar to the previous two queries, will count how many of
the rows in the inserted buffer for the Team table have managers that do not obey the business rule about
managers belonging to the team they manage:

SELECT COUNT(*)
FROM Member m INNER JOIN inserted i ON m.MemberID = i.Manager
WHERE m.Team <> i.Teamname OR m.Team IS NULL

If this count is not zero then there are rows that are about to be inserted that do not obey the rules. In
that case we want to rollback the insertion so the rows do not get committed to the Team table. The following
SQL statement would be included in a trigger in SQL. The trigger would need to be assigned to run on
updating or inserting rows in the Team table.

IF
(SELECT COUNT(*)
FROM Member m INNER JOIN inserted i ON m.MemberID = i.Manager
WHERE m.Team <> i.Teamname OR m.Team IS NULL)
<> 0)
BEGIN
Rollback Tran
END

96

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1955-3_2
http://www.it-ebooks.info/

CHAPTER 6 © MULTIPLE RELATIONSHIPS BETWEEN TABLES

This is a bit of a crude approach, because if any of the new records are incorrect, the whole lot gets
rejected. You will need to consult the documentation for your database product to see how to develop
triggers that work efficiently, but the idea of using a query to check the validity of new records is a common
one.

In Access, the checking is done at the interface level, usually on a form. Instead of checking the
inserted table as in the previous query, we would create a macro with a similar query to investigate the
values of fields on the form before committing them to the database.

Summary

There can be more than one relationship between tables. For example, “a member may belong to a team”

is one relationship. “A team has a club member who is the manager” is another relationship. Finding
information about a member’s team (including the manager’s ID) requires a join between Member and Team.
If we want to also find the name of the manager, we need to join that result to a second copy of the Member
table, like this:

SELECT * FROM
(Member m INNER JOIN Team t ON m.Team = t.TeamName)
INNER JOIN Member m2 ON t.Manager = m2.MemberID

There can be quite complex business rules or constraints involving the relationships between tables.
For example, we might require that the manager be a member of the team he or she manages, or that a
manager should not be a member of any team, or that a team must have fewer than six members. These
often require the use of triggers. The types of queries discussed in this chapter will be helpful in formulating
the code required in triggers.

97

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7

Set Operations

One of the great strengths of relational database theory is that the tables (or, more formally, the relations)
are made up of distinct rows and so can be considered a set. We can then use set operations to help with
combining and extracting specific information. The types of questions that set operations help with are
those such as “which people are in both these sets?” or “which people are in this set but not that one?”

In Appendix 2 you can find some formal notation that is helpful with managing set operations. In
this chapter we will keep formalities to a minimum, but the symbols for the set operations are a useful
shorthand. Table 7-1 shows the four set operations we will look at along with their common symbols and the
associated SQL keyword (for those that have them).

Table 7-1. Four Set Operations and Their Symbols

Operation Symbol SQL Keyword
Union U UNION
Intersection n INTERSECT
Difference - EXCEPT
Division +

Not all implementations of SQL support all the keywords in Table 7-1, so we will look at alternative ways
to achieve the same result when the keywords are not available.

Overview of Basic Set Operations

We will look at each of the set operations in turn, but so that you know where we are heading, I'll just give a
very quick overview of the three most common operations: union, intersection, and difference. Imagine we
have membership tables from two golf clubs. We might want to do the following:

e Determine who is in both clubs.
e Form alarge list that combines all the members.
e Find out who is in one club but not the other.

The basic set operations allow us to carry out all these tasks.

Let’s assume that the each club keeps the names of its members in a table. The two tables have exactly
the same columns (more about this in the next section) and are shown in Figure 7-1. (OK, they are very
small clubs!)

© Clare Churcher 2016 99
C. Churcher, Beginning SOL Queries, DOI 10.1007/978-1-4842-1955-3_7

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © SET OPERATIONS

LastName ~ FirstName ~ LastName ~ FirstName ~
Cooper William Olson Barbara
Gilmore Jane Pollard Robert
Kent Susan Reed Robert
McKenzie Melissa Schmidt Thomas
Nolan Brenda Sexton Thomas
Olson Barbara

Pollard Robert

ClubA ClubB

Figure 7-1. Two tables of member names

The basic set operations on these two tables are summarized in Figure 7-2. The images of two club
tables have been overlaid so that the members in common are superimposed. CLubA is the top table in each
picture. For each section of Figure 7-2, the box shows the result of the set operation.

100

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © SET OPERATIONS

a) ClubA v ClubB

Union

(All unique rows from both tables)

Cooper William Cooper William
Gilmore Jane Gilmore Jane
Kent Susan Kent Susan
McKenzie Melissa McKenzie Melissa
Nolan Brenda Nolan Brenda
Olso|Olson Barbara Dlso|Olson Barbara
Polli{Pollard Robert PolldPollard Robert
Reed Robert Reed Robert
Schmidt Thomas Schmidt Thomas
Sexton Thomas ISexton Thomas

b) ClubA ~ ClubB
Intersection

(Rows that are in both tables)

_ooper William ICooper William
Silmore Jane Gilmore Jane
ent Susan Kent Susan
AcKenzie Melissa McKenzie Melissa
Nolan Brenda Nolan Brenda
OlsolOlson Barbara Olso|Olson Barbara
PolliPollard Robert PolliPollard Robert
Reed Robert eed Robert
Schmidt Thomas chmidt Thomas
Sexton Thomas exton Thomas
¢) ClubA-ClubB d) ClubB - ClubA
Difference Difference

(Rows in ClubA but not in ClubB) (Rows in ClubB but not in ClubA)

Figure 7-2. The basic set operations on the two tables ClubA (top) and ClubB (bottom)

The union operator (top left in Figure 7-2) shows all the names from each table (with duplicates
removed). The intersect operator (top right) returns the two rows that appear in both tables. The difference
operators (bottom) return those rows that are found in one club but not the other.

Union-Compatible Tables

The set operations union, intersection, and difference operate between two sets of rows. It does not make
any sense to try to compare rows in tables that have very different structures, such as those in Figure 7-3.

101

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © SET OPERATIONS

MemberiD ~ LastName - FirstName - Handicap ~ MemberiD ~ TourlD -~ Year -
118 McKenzie Melissa 30 118 24 2014
138 Stone Michael 30 228 24 2015
153 Nolan Brenda 11 228 25 2015
176 Branch Helen 228 36 2015
178 Beck Sarah 235 38 2013
228 Burton Sandra 26 235 38 2015
235 Cooper William 14 235 40 2014
239 Spence Thomas 10 235 40 2015
258 Olson Barbara 16 239 25 2015

239 40 2013
258 24 2014
Member Table Entry Table

Figure 7-3. It makes no sense to try to compare rows from tables with different structures

So what determines whether two sets of rows can be compared using the set operations union,
intersection, and difference? Formally, the two sets must have the same number of columns, and each
column must have the same domain. Strictly speaking, a domain is a set of possible values. However,
in practice, the requirement for set operations is that the corresponding columns (i.e., in order from
left to right) in each set of rows have the same types — both character, both integer, and so on.! The
names of the columns do not need to be the same. Tables that meet these requirements are referred to
as being union compatible, although the requirement is necessary for the intersection and difference
operations as well.

Figure 7-4 shows a pair of tables that are union compatible. Even though the names of the
columns are different, they have the same number of columns, and the corresponding columns have
the same types.

'In formal relational theory, the attributes of a relation have no order but rather are referenced by their names. The
ordering of columns in tables is how implementations of SQL determine union compatibility.

102

www.it-ebooks.info

http://www.it-ebooks.info/

MemberiD - LastName -~

176 Branch

178 Beck

228 Burton

235 Cooper

239 Spence

258 Olson

286 Pollard

290 Sexton

RegNum ~ FamilyName -~

239 Spence

258 Olson

286 Pollard

290 Sexton

323 Wilcox

331 Schmidt

332 Bridges

339 Young

CHAPTER 7 © SET OPERATIONS

FirstName - Handicap - MemberType ~

Helen Social
Sarah Social
Sandra 26 Junior
William 14 Senior
Thomas 10 Senior
Barbara 16 Senior
Robert 19 Junior
Thomas 26 Senior

ClubA

Name -~ |Handicap ~ Grade -

Thomas 10 Senior
Barbara 16 Senior
Robert 19 Junior
Thomas 26 Senior
Daniel 3 Senior
Thomas 25 Senior
Deborah 12 Senior
Betty 21 Senior

ClubB

Figure 7-4. Union-compatible tables, even though column names are different

Figure 7-5 has two tables with the same column names, but they are not union compatible because the
order of the columns is such that the fourth column has a number type in the top table and a character type
in the bottom, and vice versa for the last column.

103

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © SET OPERATIONS

MemberlD -~ LastName - FirstName - | Handicap - | MemberType ~

176 Branch Helen Social
178 Beck Sarah Social
228 Burton Sandra 26 Junior
235 Cooper William 14 Senior
239 Spence Thomas 10 Senior
258 Olson Barbara 16 Senior
286 Pollard Robert 19 Junior
290 Sexton Thomas 26 Senior
ClubC
MemberID -~ LastName -~ FirstName - MemberType ~ Handicap ~
239 Spence Thomas Senior 10
258 Olson Barbara Senior 16
286 Pollard Robert Junior 19
290 Sexton Thomas Senior 26
323 Wilcox Daniel Senior 3
331 Schmidt Thomas Senior 25
332 Bridges Deborah Senior 12
339 Young Betty Senior 21
ClubD

Figure 7-5. Tables that are not union compatible

Different implementations of SQL may interpret the strictness of this requirement for the “sameness” of
domains or types differently. Strictly speaking, two fields defined as CHAR(10) and CHAR(12) have different
domains, but many implementations of SQL will allow these to be regarded as the same for the purposes of
set operations. Some implementations will also convert numbers into characters to enable set operations to
be carried out. I find this particularly scary and don’t recommend you let your application make these sorts
of decisions for you. The following sections demonstrate how you can use SQL to make your tables union
compatible.

Ensuring Union Compatibility

When tables are not union compatible, you can often remedy the incompatibility in the SELECT clauses.
For the pair of tables in Figure 7-5, if we just select the columns as follows the order of the columns will
prevent the returned rows from being union compatible:

SELECT * FROM ClubC;
SELECT * FROM ClubD;

104

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © SET OPERATIONS

However, we can specify the order of the columns in the SELECT clause:

SELECT MemberID, LastName, FirstName, Handicap, MemberType FROM ClubC;
SELECT MemberID, LastName, FirstName, Handicap, MemberType FROM ClubD;

The two sets of rows returned from these queries are now union compatible.

Another incompatibility problem occurs when the types of the columns have been declared as
different types in the original design of the tables. For example, the ClubC table may have the Handicap field
declared as an INT, whereas the ClubD table may have (unwisely) stored the Handicap values in a CHAR field.
(Recall from Chapter 2 that if we store values in a character or text field then they will order alphabetically,
and we will not be able to perform functions such as average on them.) As mentioned earlier, different
implementations of SQL will treat these different types in a variety of ways. Many will try to convert the
numbers to text or vice versa. You can take control of these conversions yourself (which is probably a good
idea) by using type-conversion functions.

For example, in SQL Server, the expression Convert (INT, Handicap) would take a text value in the
Handicap field (“14”) and convert it to an integer value (14). (If the value in the Handicap field wasn’t able to
be converted to an integer then an error would occur.) If the Handicap field in the ClubD table were a CHAR
type then we could use the conversion function in the SELECT clause. The two sets of rows returned by the
following queries will now be union compatible:

SELECT MemberID, LastName, FirstName, Handicap FROM ClubC;
SELECT MemberID, LastName, FirstName, Convert(INT, Handicap) FROM ClubD;

Union

Union allows us to produce output consisting of all the unique rows from two union-compatible sets of rows.
To carry out a union in SQL, we need to first retrieve two sets of rows using two SELECT clauses and then
combine the two sets with the UNION keyword. The following SQL shows the union of all the rows from the
two union-compatible tables (ClubA and C1ubB) shown in Figure 7-4.

SELECT * FROM ClubA
UNION
SELECT * FROM ClubB;
The resulting table will include all the rows from both tables with no duplicates, so you will see only one

row each for Barbara Olson, Robert Pollard, and Thomas Sexton, as shown in Figure 7-6. If you wish to retain
the duplicates for some reason, you can use the key phrase UNION ALL.

105

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1955-3_2
http://www.it-ebooks.info/

CHAPTER 7 © SET OPERATIONS

MemberID - LastName - FirstName - Handicap -~ MemberType -

176 Branch Helen Social
178 Beck Sarah Social
228 Burton Sandra 26 Junior
235 Cooper William 14 Senior
239 Spence Thomas 10 Senior
258 Olson Barbara 16 Senior
286 Pollard Robert 19 Junior
290 Sexton Thomas 26 Senior
323 Wilcox Daniel 3 Senior
331 Schmidt Thomas 25 Senior
332 Bridges Deborah 12 Senior
339 Young Betty 21 Senior

Figure 7-6. Union of ClubA and ClubB with no duplicate rows

As union-compatible tables do not need to have the same column names, the names of the columns
in the resulting virtual table will usually be from one of the tables. In the example in Figure 7-6, the column
names are the same as the first table mentioned in the union query.

It does not matter for the union operator in which order the two tables are specified. The query that
follows will return the same rows as the previous query did. The rows may appear in a different order, and
the displayed names of the columns may change, but the data will be the same.

SELECT * FROM ClubB
UNION
SELECT * FROM ClubA;

Selecting the Appropriate Columns

When using the union operator you need to think carefully about what it is you actually want. The examples
with the clubs are rather contrived (as you have no doubt noticed). It is very unlikely that two clubs would
have members with the same ID numbers and identical membership types. A more likely scenario is that if
Barbara Olson did belong to two clubs, she would have different data in each club table. In the C1ubA table,
she might be a Senior with a value of 258 for MemberID. In the ClubB table, she might be an Associate with a
value of 4573 for RegNum. If we do the union shown in Figure 7-6, where we select all the columns from each
table, the two rows for Barbara will be different, and so both will appear in the result, as in Figure 7-7.

106

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © SET OPERATIONS

MemberIlD -~ LastName -~ FirstName - MemberType -~ Handicap -

176 Branch Helen Social

178 Beck Sarah

228 Burton Sandra Junior 26

235 Cooper William Senior 14

239 Spence Thomas Senior 10

258 Olson Barbara Senior 16
4573 Olson Barbara Associate 16

286 Pollard Robert Junior 19

Figure 7-7. Two records appear for Barbara Olson in the union because the rows are different

We need to consider what we really want from such a union. If we need a list of names for a joint
Christmas party for the two clubs, then we don’t want everyone listed twice. The way to avoid duplicates is to
project just the names from each table before carrying out the union:

SELECT FamilyName, Name FROM ClubA
UNION
SELECT LastName, FirstName FROM ClubB;
With this query the two rows for Barbara will be the same and will only appear in the union once, as

in Figure 7-8.

LastName ~ FirstName ~

Branch Helen
Beck Sarah
Burton Sandra
Cooper William
Spence Thomas
Olson Barbara
Pollard Robert

Figure 7-8. Only one row appears for Barbara Olson if only the name columns are in the union

There is, of course, a serious issue with this last query. There may be two Barbara Olsons, one in
each club, and now only one nametag will be printed for the pair of them. Sadly, real data is fraught
with these sorts of problems. With any luck there will be some universal national golf association
number that might sort this out, but if not you just need to be alert. The intersection operation,
discussed in the next section, would produce the names that appear in both club lists, and a manual
sanity check could be carried out.

107

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © SET OPERATIONS

Uses of Union

The main use for union is combining data from two or more tables, as we have been doing in the previous
sections. For example, if the tournament entry data for different months had been stored in separate tables
(not a great design decision!), we could use several union operations to combine the data for the whole year.

It is also possible to combine two sets of rows from the one table. Say we wanted to know how many
people have entered either tournament 24 or tournament 36 from the Entry table in Figure 7-9.

MemberlD ~ TourlD ~t | Year ~

118 24 2014
228 24 2015
258 24 2014
286 24 2013
286 24 2014
286 24 2015
415 24 2015
228 25 2015
239 25 2015
415 25 2013
228 36 2015
415 36 2014
415 36 2015
235 38 2013
235 38 2015

Figure 7-9. Entry table

We could try selecting the rows for members entering tournament 24 and the rows for members
entering tournament 36, and take the union. How many rows will we get if we perform the following query?

SELECT * FROM Entry WHERE TourID = 24
UNION
SELECT * FROM Entry WHERE TourID = 36;

We will get ten rows from this query, one for every row with a 24 or a 36. Because we have retained the
TourID and Year columns, the rows we have selected are all different and so will all appear in the result of
the union. The query is actually returning all the distinct entries into tournaments 24 and 36 rather than all
the distinct members who have entered the two tournaments. The flowing query takes the union of just the
IDs for the two tournaments:

SELECT MemberID FROM Entry WHERE TourID = 24
UNION
SELECT MemberID FROM Entry WHERE TourID = 36;

108

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © SET OPERATIONS

Now we will get the five IDs (118, 228, 258, 286, 415) that are the unique IDs for those entering one or
the other of the tournaments.

There is a much simpler way of retrieving those who have entered either tournament 24 or 36. We can
simply include an OR in the WHERE clause:

SELECT MemberID FROM Tournament
WHERE TourID = 24 OR TourID = 36;

How many rows will the preceding query return? Again, it will return ten rows—each of the rows with
a 24 or a 36 in the TourID column. To get the five unique IDs, we need to add the DISTINCT keyword in the
SELECT clause.

Union and Full Outer Joins

In Chapter 3 we looked at different join operations: inner joins, left and right outer joins, and full outer joins.
Some products (e.g., Microsoft Access 2013) do not support the FULL OUTER JOIN keyword; however, we can
perform an equivalent query using the UNION keyword.

To recap, let’s review the different types of join we can carry out between the Member table (just a very
little one!) and the Type table shown in Figure 7-10.

MemberlD -~ LastName -~ FirstName - MemberType -~ Type =~ Fee ~
118 McKenzie Melissa Junior Associate 60
138 Stone Michael Senior Junior 150
153 Nolan Brenda Senior Senior 300
176 Branch Helen Social 50
178 Beck Sarah Social
Member Type

Figure 7-10. The (small) Member and Type tables

Figure 7-11 shows the inner join between the two tables, with join condition MemberType = Type. We
do not get a row for Helen Branch because she has no value in MemberType and so the join condition will
never be true for her. This may be a problem if someone looking at the table in Figure 7-11 assumes it is
showing all members.

MemberiD - LastName - FirstName - MemberType - Type - Fee ~

118 McKenzie Melissa Junior Junior 150
138 Stone Michael Senior Senior 300
153 Nolan Brenda Senior Senior 300
178 Beck Sarah Social Social 50

Figure 7-11. The inner join between Member and Type on MemberType = Type

109

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1955-3_3
http://www.it-ebooks.info/

CHAPTER 7 © SET OPERATIONS

Now we will look at the outer joins. The left outer join ensures that we see all the rows from the left-hand
table (Member); the right outer join gives us all rows from the right-hand table (Type); and the full outer join
gives us all rows from both tables. These outer joins, all with join condition MemberType = Type, are shown
in Figure 7-12.

MemberlD -~ LastName -~ FirstName - MemberType ~ Type =~ Fee ~

118 McKenzie Melissa Junior Junior 150
138 Stone Michael Senior Senior 300
153 Nolan Brenda Senior Senior 300

176 Branch Helen
178 Beck Sarah Social Social 50

Member Left Join Type
MemberID -1| LastName -~ FirstName - MemberType ~ Type =~ Fee ~
Associate 60
118 McKenzie Melissa Junior Junior 150
138 Stone Michael Senior Senior 300
153 Nolan Brenda Senior Senior 300
178 Beck Sarah Social Social 50
Member Right Join Type

MemberlD -t| LastName - FirstName - MemberType - Type =~ Fee -~
Associate 60
118 McKenzie Melissa Junior Junior 150
138 Stone Michael Senior Senior 300
153 Nolan Brenda Senior Senior 300

176 Branch Helen
178 Beck Sarah Social Social 50

Member Full Join Type

Figure 7-12. Three outer joins between Member and Type on MemberType = Type

Figure 7-12 shows that, in this case, the full outer join consists of the unique rows from each of the other
two outer joins; that is, a union. If your SQL implementation does not explicitly support a full outer join, you
can always achieve the same result with the following query:

SELECT * FROM Member LEFT JOIN Type ON MemberType = Type
UNION
SELECT * FROM Member RIGHT JOIN Type ON MemberType = Type;

110

www.it-ebooks.info

http://www.it-ebooks.info/

Intersection

CHAPTER 7 © SET OPERATIONS

If you take the intersection of two union-compatible tables, you will retrieve those rows that are found in
both tables. Figure 7-13 reproduces the two tables, ClubA and ClubB, from Figure 7-4. We can see that there
are four rows that are identical in both tables.

MemberlD ~ LastName -~

FirstName - Handicap ~ MemberType ~

176 Branch Helen Social
178 Beck Sarah Social
228 Burton Sandra 26 Junior
235 Cooper William 14 Senior
239 Spence Thomas 10 Senior
258 Olson Barbara 16 Senior
286 Pollard Robert 19 Junior
290 Sexton Thomas 26 Senior
ClubA
RegNum ~ FamilyName - Name ~ Handicap - Grade -
239 Spence Thomas 10 Senior
258 Olson Barbara 16 Senior
286 Pollard Robert 19 Junior
290 Sexton Thomas 26 Senior
323 Wilcox Daniel 3 Senior
331 Schmidt Thomas 25 Senior
332 Bridges Deborah 12 Senior
339 Young Betty 21 Senior
ClubB

Figure 7-13. The rows in the intersection between the ClubA and ClubB tables

The keyword for the intersection operator in SQL is INTERSECT. The expression to retrieve the four rows
common to both tables (i.e., for members Spence, Olson, Pollard, and Sexton) is as follows:

SELECT * FROM ClubA
INTERSECT
SELECT * FROM ClubB;

www.it-ebooks.info

111

http://www.it-ebooks.info/

CHAPTER 7 © SET OPERATIONS

As with the union operator, the two sets of rows must be union compatible; that is, they must have the
same number of columns, and the corresponding columns must have the same domains. This may mean
projecting the appropriate columns from the base tables in the same way as described in the “Selecting the
Appropriate Columns” section earlier in this chapter. It makes no difference which of the tables we mention
first in the query, as the rows returned by the intersection will be the same regardless of the order of the
tables.

Uses of Intersection

A common use of the intersection operation is the one shown in Figure 7-13: finding common rows in two
tables with similar information. Another very common use of intersection is answering questions that
include the word both. A typical example is “Which members have entered both tournaments 36 and 38?”
The Entry table is reproduced in Figure 7-14.

MemberIlD ~ TourlD ~1 Year -

118 24 2014
228 24 2015
258 24 2014
286 24 2013
286 24 2014
286 24 2015
415 24 2015
228 25 2015
239 25 2015
415 25 2013
228 36 2015
415 36 2014
415 36 2015
235 38 2013
235 38 2015
258 38 2014
415 38 2013
415 38 2015
235 40 2014
235 40 2015
239 40 2013
415 40 2013
415 40 2014
415 40 2015

Figure 7-14. The Entry table

112

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © SET OPERATIONS

What will be returned if we retrieve the rows for each tournament and take the intersection as in the
following query?

SELECT * FROM Entry WHERE TourID = 36
INTERSECT
SELECT * FROM Entry WHERE TourID = 38;

There will be no rows returned. Figure 7-15 will help you understand why.

MemberiD ~ TourlD ~t Year - MemberlD ~ TourlD ~t Year -
228 36 2015 235 38 2013
415 36 2014 235 38 2015
415 36 2015 258 38 2014
415 38 2013
415 38 2015
SELECT * FROM Entry SELECT * FROM Entry
WHERE TourlD = 36 WHERE TourlD = 38

Figure 7-15. Two queries have no rows in common, so no rows result from intersection

The two queries will never have any rows in common because one will always have 36 in the TourID
column while the other will always have 38. Essentially, the query we were trying to carry out was to find
all the entries for tournament 36 that are also entries for tournament 38. The result, given the way we are
managing entries, is none.

To retrieve the members who are in common in the two sets of rows in Figure 7-15, we must retrieve just
the MemberID column before carrying out the intersection, as in the query here:

SELECT MemberID FROM Entry WHERE Tourid = 36
INTERSECT
SELECT MemberID FROM Entry WHERE Tourid = 38;

This query is illustrated in Figure 7-16. As with a union, the result of the intersection operation returns
unique rows.

MemberiD ~ MemberlD - MemberlD -
228 235 415
415 i 235
415 258
415
415
SELECT MemberID SELECT MemberID
FROM Entry FROM Entry The intersection
WHERE TourlD=36; WHERE TourlD=38

Figure 7-16. Using intersection to find members entered in both tournaments 36 and 38

113

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © SET OPERATIONS

Suppose we now want to find the names of the members. From a process point of view, we can take the
result of the intersection and join it with the Member table to get the names, as shown in Figure 7-17.

MemberiD - LastName - FirstName - MemberiD - MemberiD -~ LastName - FirstName -

118 McKenzie Melissa 415 415 Taylor William
138 Stone Michael
153 Nolan Brenda
176 Branch Helen
178 Beck Sarah
228 Burton Sandra
235 Cooper William
239 Spence Thomas
258 Olson Barbara
286 Pollard Robert
290 Sexton Thomas
323 Wilcox Daniel
331 Schmidt Thomas
332 Bridges Deborah
339 Young Betty
414 Gilmore Jane
415 Taylor William
461 Reed Robert
469 Willis Carolyn
487 Kent Susan
Member Table Intersection Member Inner Join Intersection

Figure 7-17. Joining the intersection with the Member table to find the names

So what does the SQL look like to first do the intersection and then join with the Member table? The
following is a good first attempt, but unfortunately will not work:

--Will not work
SELECT LastName, FirstName
FROM Member m INNER JOIN
(SELECT el1.MemberID FROM Entry el WHERE el.TourID = 36
INTERSECT
SELECT e2.MemberID FROM Entry e2 WHERE e2.TourID
ON m.MemberID = el.MemberID;

38)

The tables that only appear inside the inner query (the part in parentheses) are not able to be referenced
by the outer query (the join). This is easily resolved by giving the nested part of the query an alias. In the same
way we have given the Member table an alias by putting an m after Member in the FROM clause, we can give the
whole inner query an alias of NewTable (as an example) by putting NewTable after the final parenthesis of the
inner query. We can now refer to that alias in the join condition as shown in the query here:

SELECT LastName, FirstName
FROM Member m INNER JOIN
(SELECT el1.MemberID FROM Entry el WHERE el.TourID = 36

114

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © SET OPERATIONS

INTERSECT
SELECT e2.MemberID FROM Entry e2 WHERE e2.TourID = 36) NewTable
ON m.MemberID = NewTable.MemberID;

Another way to retrieve the names is to use a nested query. Here, the inner query retrieves the IDs that
are in the intersection, and the outer query finds the corresponding names from the Member table.

SELECT LastName, FirstName

FROM Member

WHERE MemberID IN
(SELECT MemberID FROM Entry WHERE TourID
INTERSECT
SELECT MemberID FROM Entry WHERE TourID = 38);

36

The Importance of Projecting Appropriate Columns

It is important to think very carefully about which columns are included in the tables involved in an
intersection operation. We saw in the previous section how the following query will return no rows:

SELECT * FROM Entry WHERE TourID = 36
INTERSECT
SELECT * FROM Entry WHERE TourID

38;

The rows from the first query will always have 36 as the value of TourID and the rows from the second
query will have 38. There will never be any rows in common. Retrieving just the MemberID in each of the
queries solves this problem.

More interesting is that correctly projecting different columns can provide answers to quite different
questions. How would you describe the rows returned by the following query?

SELECT MemberID, Year FROM Entry WHERE TourID = 25

INTERSECT

SELECT MemberID, Year FROM Entry WHERE TourID = 36;

The query is illustrated in Figure 7-18.

MemberlD ~ Year ~ MemberiD - Year - MemberID -~ Year ~
228 2015 228 2015 228 2015
239 2015 a1s 2014
415 2013 415 2015

SELECT MemberiD, Year SELECT MemberiD, Year What does the intersection

FROM Entry FROM Entry mean?

WHERE TourlD=25 WHERE TourlD=36

Figure 7-18. What does the intersection mean?

115

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © SET OPERATIONS

In Figure 7-18, we are finding all the members who entered tournaments 25 and 36 in the same year.
This is why there is no entry for member 415 in the intersection: he entered tournament 25 in 2013 and
tournament 36 in 2014 and 2015. Although his member ID appears in the two contributing tables, the
corresponding rows are for different years. There is no row for member 415 that is the same in both tables.

Asyou can see, the choice of columns that are projected for the contributing tables is fundamental to
what will appear in the intersection. It means there are many different questions that can be answered very
elegantly, but it also means that you can easily get incorrect answers if you don’t think the query through
carefully.

Managing Without the INTERSECT Keyword

Not all implementations of SQL support intersection explicitly. However, we have other ways to perform
the queries involving “both.” Intersection is a process approach — we are saying what operations we need

to carry out on the tables involved in the query. If we don’t succeed with this approach then we can try

the outcome approach. This involves figuring out some possible answers by inspecting the tables and not
worrying about operations such as intersections and joins. In Figure 7-19 we imagine two fingers traversing
the rows of the Entry table. We need to find two rows in the Entry table with the same MemberID: one with
TourID =36 and one with TourID = 38.

MemberlD -~ Year - | TourlD ~t

415 2013 25
228 2015 36
el &= 2014
415 2015 36
235 2013 38
235 2015 38
258 2014 38
e2 g~ (215) 2013
415 2015 38
235 2014 40

Figure 7-19. Finding members who have entered both tournaments 36 and 38

The situation that Figure 7-19 is depicting can be described as:

Return me the MemberID from a row el in the Entry table where TourID=36 if there is
another row e2 in the Entry table that has the same MemberID and TourID=38 .

The SQL expression equivalent to this description and Figure 7-19 is:
SELECT DISTINCT el.MemberID
FROM Entry ei1, Entry e2

WHERE e1.MemberID = e2.MemberID
AND e1.TourID = 36 AND e2.TourID = 38;

116

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © SET OPERATIONS

What about the query to find the rows that appear in both the ClubA and ClubB tables? The club tables
are redisplayed in Figure 7-20. To find the rows that are the same in both tables we need to check each of the
values in the corresponding columns to ensure they are the same.

RegNum =~ FamilyName - Name -~

176 Branch Helen
178 Beck Sarah
228 Burton Sandra
235 Cooper William
239 Spence Thomas
2 (Do)
286 Pollard Robert
ClubA

MemberlD -~ LastName - FirstName -~

e ™

286 Pollard Robert

290 Sexton Thomas

323 Wilcox Daniel

331 Schmidt Thomas

332 Bridges Deborah

339 Young Betty
ClubB

Figure 7-20. Finding the intersection between ClubA and ClubB

The situation depicted in Figure 7-20 can be described as:

I will return row a from table ClubA if there is a row b in ClubB that has identical
values in all the fields (i.e., a.RegNum = b.MemberID, a.FamilyName = b.LastName, and
a.Name = b.FirstName).

The SQL for the intersection shown in Figure 7-20 is:
SELECT a.RegNum, a.FamilyName, a.Name
FROM ClubA a, ClubB b
WHERE a.RegNum = b.MemberID

AND a.FamilyName = b.LastName
AND a.Name = b.FirstName;

117

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © SET OPERATIONS

Difference

Taking the difference between two tables finds those rows that are in the first table but not the second and
vice versa. For our two tiny clubs, I have reproduced the results of the difference operator in Figure 7-21.

ooper William ooper William
ilmore Jane ilmore Jane
ent Susan Kent Susan
cKenzie Melissa McKenzie Melissa
olan Brenda Nolan Brenda
\izmson Barbara IsolOlson Barbara
Polli{Pollard Robert Poll{Pollard Robert
Reed Robert Reed Robert
ISchmidt Thomas bchmidt Thomas
Sexton Thomas bexton Thomas
ClubA — ClubB ClubB — ClubA

Figure 7-21. The difference operator finds rows in one table that do not appear in the other.

The keyword in standard SQL for the difference operator is EXCEPT. Oracle differs from the ISO SQL
standard, and from most other database systems, in its use of the keyword MINUS rather than EXCEPT.

As with the union and intersection operators, the tables involved in a difference operation must be
union compatible. Unlike with the union and intersection operators, the order of the tables is important for
the difference operator; the results for ClubA - ClubB are different from those for ClubB - ClubA (as shown
in Figure 7-21).

The SQL for finding the names of people in the ClubA table that do not appear in the CLubB table is:

SELECT LastName, FirstName FROM ClubA
EXCEPT
SELECT LastName, FirstName FROM ClubB;

Uses of Difference

Whenever you have a query that has the word “not,” you should consider the possibility that the difference
operator will be useful. For example, how do we find members who have not entered tournament 25?
Recall from Chapter 5 why the following query does not return those members who have not entered
tournament 25:

SELECT MemberID FROM Entry
WHERE TourID <> 25;

118

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1955-3_5
http://www.it-ebooks.info/

CHAPTER 7 © SET OPERATIONS

The query above selects all the rows in the Entry table that are not for tournament 25. Essentially it finds
a member who has entered any tournament other than 25 (although they could have entered 25 as well).
Looking at Figure 7-15, we see that the query would return the row marked el for member 415 entering
tournament 36 (TourID <> 25). However, two rows above, we see that member 415 has also entered
tournament 25. It is difficult to think of a reason that you might ever want to use this query.

A process approach to this type of query is to use difference. We need to retrieve a set of the IDs of all
members and another set of IDs for all the members who have entered tournament 25. We then want the
difference; i.e., those IDs that are in the former set but not the latter.

Finding the set of all members who have entered tournament 25 is simple:

SELECT MemberID FROM Entry WHERE TourID = 25;
We might think a similar query will find us all the member IDs as well:
SELECT MemberID FROM Entry;

However, the preceding query only finds us a set of the members who have entered tournaments. To get
a set of all member IDs, we need to query the Member table.
Figure 7-22 is an illustration of how the difference operator can be used to find the member IDs we require.

MemberlID - MemberlD -
118 118
138 138
153 153
176 176
178 178
228 235
235 MemberiD - 258
239 e 286
258 = 290
286 A 323
290 331
323 332
331 339
332 a14
339 461
414 469
415 487
461
469
487

A B A-B
IDs of all members IDs of members entering 25 IDs of meml;efst;ﬂgsﬁ have not
entere

Figure 7-22. Members who have not entered tournament 25

119

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © SET OPERATIONS

The SQL expression to retrieve the IDs of members who have not entered tournament 25 is as follows:

SELECT MemberID FROM Member
EXCEPT
SELECT MemberID FROM Entry WHERE TourID = 25;

As with intersection and union operations, it is important that we project the appropriate columns
before we use the difference operator. In Figure 7-22, we have retrieved the IDs from the Member and Entry
tables. If we want to include the names of the members, we can use one of the methods explained in the
“Uses of Intersection” section earlier in this chapter.

However, in this difference example, we already had the names of the members in the Member table
before we removed them to get the set of rows on the left side of Figure 7-22. It seems a bit perverse to
remove the names and then put them back later. What is important is that the two sets of rows involved in
the difference are union compatible; that is, the corresponding columns must have the same domains. Either
both sets have just IDs or both sets have IDs and names. In the operation on the left side of Figure 7-22, we
took the first option and removed the names from Member. We could have left the names in the Member table
and added the names to the rows in the middle of Figure 7-22 by joining the Entry and Member tables, as
shown in Figure 7-23. We could then take the difference between these two sets of rows.

MemberiD -~ LastName - FirstName -

118 McKenzie Melissa
138 Stone Michael
153 Nolan Brenda
176 Branch Helen .Member - LastName - FirstName -\ e.Memberi - | TourlD - | Year -
178 Beck Sarah 239 Spence Thomas 239 25 2015
228 Burton Sandra 228 Burton Sandra 228 25 2015
235 Cooper William 415 Taylor William 415 25 2013
239 Spence Thomas
258 Olson Barbara
286 Pollard Robert
290 Sexton Thomas
323 Wilcox Daniel
331 Schmidt Thomas
332 Bridges Deborah
339 Young Betty
414 Gilmore Jane
415 Taylor william
461 Reed Robert
469 Willis Carolyn
487 Kent Susan
A B
IDs and Names from Member Entry table joined with Member table

Then rows for tournament 25 selected
Then IDs and Names projected

Figure 7-23. Including names of members in both sets of rows before taking the difference

120

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7

The SQL equivalent of the operations shown in Figure 7-23 is as follows:

SELECT MemberID, LastName, FirstName FROM Member

EXCEPT

SELECT m.MemberID, m.LastName, m.FirstName

FROM Entry e inner join Member m on e.MemberID = m.MemberID
WHERE TourID = 25;

Managing Without the EXCEPT Keyword

SET OPERATIONS

Not all versions of SQL support the EXCEPT (or MINUS) keyword. As always, there is usually another way
to formulate a query. In Chapter 4, we looked at an outcome approach to answering questions involving
the word not. Figure 7-24 reviews the thought processes used to find the names of members who have not

entered tournament 25.
MemberlD -~ LastName -~ FirstName - MemberlD -~ Year -~ TourlD -t
118 McKenzie Melissa 118 2014 24
138 Stone Michael 228 2015 24
153 Nolan Brenda e & 2014 ?
176 Branch Helen 286 2013 24
178 Beck Sarah 286 2014 24
228 Burton Sandra 286 2015 24
235 Cooper William 415 2015 24
239 Spence Thomas 228 2015 25
m &= (@58)0lson Barbara 239 2015 25
286 Pollard Robert 415 2013 25
290 Sexton Thomas 228 2015 36
323 Wilcox Daniel 415 2014 36
331 Schmidt Thomas 415 2015 36
332 Bridges Deborah 235 2013 38
339 Young Betty 235 2015 38
414 Gilmore Jane 2014 @ ?
415 Taylor William 415 2013 38
461 Reed Robert 415 2015 38
469 Willis Carolyn 235 2014 40
487 Kent Susan 235 2015 40
239 2013 40
415 2013 40
415 2014 40
415 2015 40
Member table Entry table

Figure 7-24. Deciding that member 258 has not entered tournament 25

www.it-ebooks.info

121

http://dx.doi.org/10.1007/978-1-4842-1955-3_4
http://www.it-ebooks.info/

CHAPTER 7 © SET OPERATIONS

The thought process behind Figure 7-24 is:

Write out the names from row m of the Member table if there does not exist a row e in the
Entry table for that member (i.e., m.MemberID = e.MemberID) where TourID=25

The SQL reflecting Figure 7-24 is:

SELECT m.LastName, m.FirstName
FROM Member m
WHERE NOT EXISTS
(SELECT * FROM Entry e
WHERE e.MemberID = m.MemberID
AND e.TourID = 25);

Which type of query should you use for questions involving the word not? The one using the process

approach and the keyword EXCEPT or the one using the outcome approach with the keywords NOT EXISTS

or NOT IN? Usually, I'd say it doesn’t really matter, as your database engine will probably be smart enough

to recognize them as being the same. However, the version of SQL Server I am using at the moment (2013)
performs the query using NOT EXISTS more efficiently than the corresponding query using EXCEPT. You have
to ask yourself whether you care! Queries on small databases are usually so quick that it really doesn’t matter
if they run a bit more slowly. However, if you have a lot of data, then everything changes. The efficiency of
queries can become extremely important, and in that case, you will need to also consider other aspects of
your database design, such as indexes. I'll talk a little more about this in Chapter 9.

Division

The last set operator we will look at in this chapter is division. Division is useful for queries that involve the
word all or every. An example is “Which members have entered every tournament?” Standard SQL doesn’t
have a keyword for the divide operation, and it can be a little awkward to figure out the SQL for queries
involving division.

In Appendix 2 you will find the formal algebraic notation for carrying out division and how to represent
it using other operators if you need to. In the section “Universal Quantifier and SQL” in Appendix 2, you
will also find an alternative way to carry out division-type queries using calculus (or outcome) expressions.
Both these methods help you to construct SQL statements that are analogous to the division operator. In
Chapter 8, we'll look at aggregates and see what I think is the simplest way of writing an SQL equivalent of
the division operator.

For now we will look at what the division operator does and how to use it to answer different types of
questions involving every and all.

The easiest way to understand the division operation is with an example. If we want to know which
members have entered every tournament, we need two bits of information. First, we need information about
the members and the tournaments they have entered, which we can get from the Entry table. We also need
a list of all the tournaments, which needs to come from the Tournament table, as not all tournaments may be
represented in the Entry table.

Figure 7-25 illustrates how division works. I've projected just the MemberID and TourID columns from
the Entry table, and the TourID column from the Tournament table. It is important which columns you
project, and I'll come back to that in a moment.

122

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1955-3_9
http://dx.doi.org/10.1007/978-1-4842-1955-3_8
http://www.it-ebooks.info/

CHAPTER 7 © SET OPERATIONS

MemberiD ~ TourlD -~ TourlD ~ MemberiD -~
118 24 o 24 — 415
228 24 —_— 25
| S
& & 36 Answer
228 36 38
235 38 40
235 40 Naas e 3
239 5 Check
239 40
258 24
258 38
286 24
415 24
415 25
415 36
415 38
415 40
R
Answer Check
SELECT MemberlD, TourlD SELECT TourlD Result of
FROM Entry FROM Tour Devision

Figure 7-25. Using division to find members who have entered all tournaments

Looking at Figure 7-25, we have in the middle a table with all the TourID values (I've labelled that
Check). The division operation checks the left-hand table to find the values of MemberID that have a row for
every TourID. The Answer (on the right of the figure) contains the MemberID values for members who have
entered every tournament. Member 415 can be found paired with each of the five tournaments in the Entry
table, and so appears in the result of the division. Member 228 does not appear in the result because there
are no rows in the Entry table with 228 paired with 38 or 40.

Itis important to get the correct columns in the two tables involved in the division. I like to think of
setting up the division operation like this:

e Decide which attribute I want to find out about. Let’s call this Answer. In this case, 1
want to find values of MemberID, so our Answer attribute is MemberID.

e On the right-hand side of the division operator, the attribute(s) in the table should be
the thing I want to check against. Let’s call this attribute(s) Check. In this case, the Check
attribute is TourID. We can get all the values for TourID from the Tournament table.

123

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 © SET OPERATIONS

e Onthe left-hand side of the division, I want a table containing the just the two sets of
attributes Answer and Check, as shown in Figure 7-25. We need MemberID and TourID
(in this case, which members have entered which tournament, and these come from
the Entry table). It is important that these are the only two columns in the left-hand
table. If extra columns are added, then we will be asking different questions, as
explained in the next section.

As a small aside, many people wonder why this operation is called division, as it doesn’t seem to relate
particularly well to something like 4 divided by 2. Division is the inverse (or undoing) of multiplication in
normal arithmetic. For set operations, division is like the inverse of the Cartesian product. If you think of
taking the Cartesian product of the two tables in the middle and far right of Figure 7-25, you will get a table
with the same columns (but not rows) as on the far left of Figure 7-25.

We can answer a number of questions by changing what is on the right-hand side of the division
operator. For example, if we wanted to know who had entered all the Open tournaments, we would replace
the table in the middle of Figure 7-25 with just the rows for Open tournaments:

SELECT TourID
FROM Tour
WHERE TourType = 'Open’;

Projecting Appropriate Columns

As with intersection and difference operations, projecting different columns in division operations will give you
answers to different questions. Once again, an example is the easiest way to understand this. In Figure 7-26, an
extra column has been retrieved from the Entry table. Can you understand what this query is finding?

124

www.it-ebooks.info

http://www.it-ebooks.info/

MemberID ~1 Year ~

118
228
228
228
235
235
235
235
239
239
258
258
286
286
286
415
415
415
415
415
415
415
415
415
415

Answer

2014
2015
2015
2015
2013
2015
2014
2015
2015
2013
2014
2014
2013
2014
2015
2015
2013
2014
2015
2013
2015
2013
2014
2015
2020

TourlD +t
24
24
25
36
38

38
40
40
25
40

24
38
24
24
24
24

888888880

Check

Figure 7-26. What is the division operation finding?

TourlD ~
24
25
36
38
40

Check

CHAPTER 7 © SET OPERATIONS

po— 9

Answer

The division is looking for a set of Answer attributes in the left-hand table that are paired with every
attribute from the Check table. In this case, the operation looks for a pair MemberID and Year in the left-hand
table that appears with each of the tournaments. This division example is finding those members who have
entered all tournaments in the same year.

SQL for Division

Using an output approach, the query we want can be expressed something like this:

Write out the value of m.LastName, m.FirstName from rows m in the Member table where for
every row t in the Tournament table there exists a row e in the Entry table with e.MemberID =
m.MemberID and e.TourID = t.TourID.

www.it-ebooks.info

125

http://www.it-ebooks.info/

CHAPTER 7 © SET OPERATIONS

We have an SQL keyword for exists but not for every. We can get rid of the every word in the preceding
statement by using the following slightly mind-bending logic. The phrase

for every row t in the Tournament table there exists a row e in the Entry table...
is equivalent to saying

there is no row t in the Tournament table where there does not exist a row e in the Entry
table...

Appendix 2 provides a more formal explanation of how to derive these expressions, but for now we
will just rewrite the original description of how to retrieve the names of members who have entered all the
tournaments by using the equivalence just discussed.

Write out the value of m. LastName, m.FirstName from rows m in the Member table where for-
everytrow there is no row t in the Tournament table there-existsarow where there does not
exist a row e in the Entry table with e.MemberID = m.MemberID ande.TourID = t.TourlID.

The corresponding SQL is:

SELECT m.LastName, m.FirstName FROM Member m
WHERE NOT EXISTS
(
SELECT * FROM Tournament t
WHERE NOT EXISTS
(
SELECT * FROM Entry e
WHERE e.MemberID = m.MemberID AND e.TourID = t.TourID
)
)s

The double negatives can be a bit daunting, but as I said at the beginning of the chapter, I promise a
conceptually easier method to find members who have entered every tournament in the next chapter.

Summary

Because tables in a relational database have unique rows (if they are properly keyed!), they can be treated
like mathematical sets. This allows us to use the set operations union, intersection, difference, and division.
Union, intersection, and difference are operations that act between union-compatible tables. This
means the table on each side of the operator must have the same number of columns, and the columns must

have the same domains (commonly interpreted as the same types). You can get union-compatible tables by
sensibly projecting columns.

SQL has keywords to represent union, intersection, and difference, although not every implementation
supports the keywords for all of these operations. If your SQL product does not support keywords for
intersection or difference, you can find other ways to express the query. You should formulate your queries
in the way you find most natural. Where you have very large amounts of data and speed is important, you
may need to investigate the efficiencies of the different ways of formulating some queries.

126

www.it-ebooks.info

http://www.it-ebooks.info/

Here is a summary of the set operations and alternative ways to represent them

CHAPTER 7 © SET OPERATIONS

with SQL. A and B are

two union-compatible tables with (for simplicity) just one column called attribute.

Union

A union operation returns all the unique rows that are in either table A or table B:

SELECT attribute FROM A
UNION
SELECT attribute FROM B;

Intersection

An intersection operation returns all rows that are in both table A and table B:

SELECT attribute FROM A
INTERSECT
SELECT attribute FROM B;

An alternative way to represent intersection is:

SELECT A.attribute
FROM A
WHERE EXISTS
(SELECT B.attribute FROM B
WHERE A.attribute = B.attribute);

Difference

Difference returns all rows that are in the first table (A) that are not in the second table (B). Some

implementations use the keyword MINUS instead of EXCEPT:

SELECT attribute FROM A
EXCEPT
SELECT attribute FROM B;

An alternative way to represent difference is:

SELECT A.attribute
FROM A
WHERE NOT EXISTS
(SELECT B.attribute FROM B
WHERE A.attribute = B.attribute);

www.it-ebooks.info

127

http://www.it-ebooks.info/

CHAPTER 7 © SET OPERATIONS

Division
The division operation helps with queries with the words every or all. Current versions of SQL do not support
division directly. Refer to the sections “Division” and “Universal Quantifier and SQL” in Appendix 2 for
details of how to express queries involving division.

For completeness, we repeat the following query, which returns the MemberID values for those members
who have entered every tournament:

SELECT m.LastName, m.FirstName FROM Member m
WHERE NOT EXISTS
(
SELECT * FROM Tournament t
WHERE NOT EXISTS
(
SELECT * FROM Entry e
WHERE e.MemberID = m.MemberID AND e.TourID = t.TourID
)
)5

128

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8

Aggregate Operations

SQL has a number of functions for counting, summing, averaging, and otherwise performing aggregate
operations on a table. These functions enable us to perform a variety of queries. For example, we can count
the number of members in the club or find the average handicap. We can group the data in different ways to
find aggregates. For example, we might want to count the number of tournament entries in each individual
year, or we might want to find the number of entries in each particular tournament.

In this chapter we will look at simple aggregates and how to make the most of the SQL grouping
capabilities. In the next chapter we will look at window functions, which provide elegant solutions in
situations that can be difficult to address with just the basic aggregate functionality.

Simple Aggregate Functions

Simple aggregates include averages, totals, and counts. These are straightforward ideas, but, as always, you
need to be sure you understand how they work when nulls and duplicates are involved.

The COUNT() Function

The COUNT () function calculates the number of rows being returned from a query. The simplest example is to
count all the rows returned by a query, which we can do by adding an asterisk between the parentheses. The
following query will return the number of rows in the Member table:

SELECT COUNT(*)
FROM Member;

A single aggregate function such as COUNT() in the preceding query will return a table with one column
and one row, as shown in Figure 8-1.
Exprl000 -

20

Figure 8-1. Result of COUNT() function

© Clare Churcher 2016 129
C. Churcher, Beginning SOL Queries, DOI 10.1007/978-1-4842-1955-3_8

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 * AGGREGATE OPERATIONS

The output in Figure 8-1 was produced in Access, and, as you can see, the column is labelled with a
default name. We can provide a better name by giving the column an alias. In the following query we have
added a WHERE clause to count the subset of rows satisfying the condition Gender = 'F' and used an AS
clause so the column has a more informative heading:

SELECT COUNT(*) AS NumberWomen
FROM Member
WHERE Gender = 'F';

The output of this query is shown in Figure 8-2.

NumWomen -
11

Figure 8-2. Result of COUNT() function with an alias

Providing the columns returned by aggregates with an alias is a good idea so that the reader has some
idea of what the numbers mean.

Managing Nulls

The previous query returns a count of the number of members with a gender of 'F'. Now consider the
query here:

SELECT COUNT(*)
FROM Member
WHERE Gender <> 'F';

At first glance we might think that the two counts from the previous two queries should add up to the
total number of members. But we need to be careful. In Chapter 2, we looked at how WHERE conditions
operate when we make comparisons with a null (or empty) value. If there is no value for the attribute then
we cannot say whether it does or does not satisfy a condition. We don’t know! In SQL, if the value we are
comparing is a null, then the result of the comparison will always be false. Rows in the table with a null in the
Gender column will not be included in either of the two previous queries.

We could argue that the attribute should have been declared as NOT NULL in the design of the table. In
Chapter 2 we discussed why this might not be a good idea. If we are trying to enter details for a new member
who has not provided their gender then we either will be prevented from saving the details we do know or
will have to guess the gender. Neither option is satisfactory. It’s better to save the details and follow up on the
missing data later.

We can explicitly find how many of the rows do not have a value for Gender with the query:

SELECT COUNT(*)
FROM Member
WHERE Gender IS NULL;

The numbers for the three previous queries with conditions Gender = 'F', Gender <> 'F', and Gender
IS NULL will now add up to the total number of members in the club. Queries like the preceding one can be
very useful for checking if there are null values in columns where we would ideally expect to have values.

The COUNT() function can also return the number of values in a particular column of a table or query.
Let’s look at a few of the columns in the Member table, as shown in Figure 8-3.

130

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1955-3_2
http://dx.doi.org/10.1007/978-1-4842-1955-3_2
http://www.it-ebooks.info/

CHAPTER 8 ' AGGREGATE OPERATIONS

MemberiD - LastName - FirstName -~ Gender - |Handicap -~ Coach -

118 McKenzie Melissa E 30 153
138 Stone Michael M 30

153 Nolan Brenda F 11

176 Branch Helen F

178 Beck Sarah F

228 Burton Sandra F 26 153
235 Cooper William M 14 153
239 Spence Thomas M 10

258 Olson Barbara F 16

286 Pollard Robert M 19 235
290 Sexton Thomas M 26 235
323 Wilcox Daniel M 3

331 Schmidt Thomas M 25 153
332 Bridges Deborah F 12 235
339 Young Betty F 21

414 Gilmore Jane F 5 153
415 Taylor William M 7 235
461 Reed Robert M 3 235
469 Willis Carolyn F 29

487 Kent Susan F

Figure 8-3. Some columns of the Member table

Say we want to find the number of members who have a coach. We have two options. One way is to
formulate a query to return just those members who have a non-null value for Coach and count those:

SELECT COUNT(*)
FROM Member
WHERE Coach IS NOT NULL;

The other option is to ask the COUNT () function to specifically count the number of not-null values in
the Coach column using COUNT(Coach):

SELECT COUNT(Coach)
FROM Member;

To recap: if we just want to find the number of rows returned from a query (or a whole table), we use
SELECT COUNT(*). If we want to find the number of rows that have a value in a particular column, use SELECT

COUNT (<Column Name>).The COUNT(*) and COUNT (<Column Name>) options allow us to be specific about how
we want null values to be treated.

131

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 * AGGREGATE OPERATIONS

Managing Duplicates

The values in the Coach column of the Member table (Figure 8-3) are duplicated. There are only two distinct
values (153 and 235). We therefore have two quite different questions that can be answered by counting the
values in the Coach column: “How many people have a coach?” and “How many coaches are there?” The
answer to the first question requires us to include all the values. The answer to the second question requires
us just to count the distinct values. This can be done by including the DISTINCT keyword as in the query here:

--Won’t work in Access (2016)
SELECT COUNT(DISTINCT Coach)
FROM Member;

While I am trying not to become product-specific in this book, I feel obliged (given how many copies
of Access are in the world) to point out that Access does not currently support COUNT(DISTINCT). However,
you can get the equivalent result in Access with the nested query that follows. (Note that SQL Server does not
allow a subquery in the FROM clause for an aggregate.)

--Won’t work in SQL Server (2012)
SELECT COUNT(*)
FROM (SELECT DISTINCT Coach FROM Member WHERE Coach IS NOT NULL);

You can also use the keyword ALL. This just reinforces that you want to count all values, rather than just
distinct values. If you do not include either DISTINCT or ALL then all values are included by default.

Similar sorts of queries can be applied to the other tables in the golf club database. For example,
we might want to know how many tournaments members entered in 2015 (11) or how many different
tournaments members entered in 2015 (5). The two queries that follow will provide the answers to the
respective questions:

-- How many tournaments were entered
SELECT COUNT(TourID)

FROM Entry

WHERE Year = 2015;

-- How many different tournaments were entered
SELECT COUNT(DISTINCT TourID)

FROM Entry

WHERE Year = 2015;

The AVG() Function

To find averages, we use the function AVG(). The parameter that goes in the parentheses (. . .), is the
expression we want to average. The expression has to be a numeric value. If you try to average a text field
such as LastName you will get an error.

As an example, we can find the average handicap for members of our club by including the Handicap
column as the parameter for the AVG() function:

SELECT AVG(Handicap)
FROM Member;

132

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 ' AGGREGATE OPERATIONS

The expression could be just the name of one of the numeric-valued columns as in the preceding query
or it could be the result of a calculation. Say in another database we have an Order table that includes the
columns Price and Quantity for each item ordered. The net value of each order can be found by multiplying
the Price and Quantity. If we want to find the average net value for all our orders, we can put the expression
Price * Quantity in the parentheses as seen here:

SELECT AVG(Price * Quantity)
FROM Order;

Managing Nulls

As with the COUNT () function, the AVG() function does not include rows where the value of the expression

is null. In the Member table we have 20 members in total, and 17 members with handicaps. If we sum all

the handicaps, we get 287. The AVG() function will take the total of the handicaps (287) and divide by the
number of rows that have a non-null value in the Handicap column (17). This is what we want. If we included
the members without handicaps (by dividing by the total number of rows, 20), we would essentially be
saying that these members have a handicap of 0 by default. This would seriously skew the results.

It is not always so obvious whether you want the null values considered. For example, say we have
another database with a table called Student and a column called TestScore. If we enter test scores for
students, and some of the students do not take the test, then we will have a null in the TestScore column
for those students. What do we really want for the average? We could take the average over all the students
(divide the total score by the count of all students), which means the students who missed the test are
effectively being counted as having scored 0. On the other hand, we might take the average of just those who
participated in the test (divide by the number who took the test). AVG(TestScore) will always give us just the
average for those who took the test. It is by no means trivial to determine which of the two options you need.
There is a constant debate in schools as to whether the pass rates (on which funding may depend) should
include students who have dropped out along the way.

If we want the average over all the students, including those with a null mark (counted as 0), we can
calculate that in the query by totaling the marks (using the SUM() function) and dividing by the total number
of students as seen here:

SELECT SUM(TestMark)/COUNT(*)
FROM Student;

We could have entered a mark of 0 for those students who did not take the test, saving us this
complication. However, if we do that then we can no longer distinguish students who took the test and got
0 from students who missed the test. Regardless of whether that is an issue or not, it is always useful to be
aware of the implications.

Managing Duplicates

As with the COUNT () function, the AVG() function can also incorporate the keywords ALL and DISTINCT. Just
be aware that ALL (which is the default) means all the not-null values including duplicates, as opposed to
only the distinct not-null values. It doesn’t mean take an average over all the rows (including those that are
null), as in our discussion in the previous section. I find it quite difficult to come up with examples of when
you would want to average over just the distinct values—certainly none that apply to our club database.

133

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 * AGGREGATE OPERATIONS

Managing Types and Output

The AVG() function will accept only numeric expressions as a parameter. We cannot successfully average
FirstName or JoinDate (although we could use functions to average the length of members’ first names or
the number of days since their join date).

What result do we expect to get when we average the handicaps of our members? The total of the
handicaps is 287, and the number of people with handicaps is 17. The result for the AVG(Handicap) function
in SQL Server 2012 is 16. The result in Access 2016 is 16.8823529411765. Why?

In SQL Server (and some other implementations of SQL), the average function returns the same type
as the numbers being averaged. In this case, the Handicap column is an integer type, and so AVG(Handicap)
in SQL Server returns an integer. It also does an integer division (which means the result is truncated to 16
rather than rounded up to 17). In Access the average is returning a floating-point number (i.e., one with a
fractional part).

We can control how the result is calculated. If we want a result with a fractional part for the average, we
can convert the Handicap value to a floating-point number before we do the average. To do this we can use
the CONVERT() function that we mentioned in Chapter 7:!

SELECT AVG(CONVERT(FLOAT,Handicap))
FROM Member;

Another way to do this is just to multiply the handicap by 1.0, which effectively converts it to a
floating-point:

SELECT AVG(Handicap * 1.0)
FROM Member;

The ROUND() Function

While not strictly speaking an aggregate function, it is worthwhile to take a moment to look at how to
perform rounding. Because averaging involves a division by the number of items involved, the AVG()
function will often return a result with many decimal places. We use a rounding function to specify the
number of decimal places we would like included in the output of AVG() and other expressions that result
in floating-point numbers. We provide the ROUND() function with two parameters: the expression to be
rounded and the number of decimal places to return. The following statement returns the average handicap
rounded to two decimal places:

SELECT ROUND(AVG(Handicap * 1.0), 2)
FROM Member;

Rounding can behave differently in different implementations of SQL. In Access the previous query will
return 16.88, whereas in SQL Server it will return 16.880000. While it is possible to remove the trailing zeroes
in SQL Server, it is often better to leave that sort of formatting to front-end tools such as report writers.

There are many different ways to carry out rounding, so it is a good idea to consult the documentation
to understand how your implementation of SQL goes about it. The traditional method of everything ending
in a5 or greater to be rounded up (e.g., 4.5 rounds up to 5) causes a bias to higher numbers. To remove this
bias some implementations of rounding functions round to the nearest even number. For example, 3.5 and
4.5 would both round to 4. This evens things out, but it can come as a surprise if you are not expecting it. SQL
Server’s ROUND () function rounds all the 5s up, while Access rounds the 5s to the nearest even number.

Different versions of SQL will have different functions to do this. In Oracle, you might consider using the
CAST function.

134

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1955-3_7
http://www.it-ebooks.info/

CHAPTER 8 ' AGGREGATE OPERATIONS

Other Aggregate Functions

SQL also provides other common aggregate functions such as SUM(), MAX(), and MIN(), which are very
straightforward to use. Similar to the AVG() function, the arguments to the SUM() function must be a
numeric expression (either a numeric attribute or some expression with a numeric result, such as Price *
Quantity). The arguments to MAX() and MIN() can be numeric, text, or date types. For text types, the order is
alphabetical. For dates, the order is chronological. For example, MIN(LastName) would return the first value
of LastName alphabetically, while MAX(JoinDate) would return the most recent value of JoinDate.

It is possible to combine several aggregate functions in one query. The following query returns the
maximum, minimum, and average values for Handicap.

SELECT MAX(Handicap) AS maximum, MIN(Handicap) AS minimum,
ROUND(AVG(Handicap * 1.0),2) AS average
FROM Member;

Providing an alias for the result of each column with an AS clause helps make the result easier to
understand. Figure 8-4 shows some typical output.

maximum - minimum -~ average -
30 3 16.88

Figure 8-4. Typical output from a query with several aggregate functions

Grouping

If we want to know how many times a particular member has entered tournaments we can query the Entry
table. For example, if we would like to find how many times member 235 has entered tournaments, we could
select all the rows in the Entry table for that member and count them as in the following query:

SELECT COUNT(*) AS NumEntries
FROM Entry
WHERE MemberID = 235;

If we want to find the number of entries for a different member, we would need to rewrite the query with
a different WHERE clause. If we want to find the counts for all members, that would get very tedious.

Grouping allows us to find the counts for all members using one SQL statement. The key phrase GROUP
BY is used to do this. Have a look at the following query:

SELECT COUNT(*) AS NumEntries
FROM Entry
GROUP BY MemberID;

The extra GROUP BY clause says, “Rather than just count all the rows in the Entry table, count all the
subsets or groups with the same MemberID.” Figure 8-5 illustrates how we can visualize what is happening.

135

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 ' AGGREGATE OPERATIONS

We can also include the fields we are grouping by in the SELECT clause so we can see which counts

belong to which entries, as in the query here:

SELECT MemberID, COUNT(*) AS NumEntries
FROM Entry
GROUP BY MemberID;

MemberID ~ | TourlD ~ | Year ~

NumeEntries ~

-
Ll

e 2614

=

24
25

118
228
228
228
235

2015

415
415
415

Entry table

Figure 8-5. Counting the rows in the Entry table grouped by MemberID

The output of this query is shown in Figure 8-6.

136

www.it-ebooks.info

W NN~ W =

10

Count of rows
grouped by MemberlD

http://www.it-ebooks.info/

CHAPTER 8 ' AGGREGATE OPERATIONS

MemberiD v | NumEntries ~
118
228
235
239
258
286
415 10

w NN B W

Figure 8-6. Including the MemberID in the output

We might prefer to see the names of the members in the output in Figure 8-6. In this case, we need to
join the Entry table with the Member table first, and then group and count.

SELECT m.MemberID, m.LastName, m.FirstName, COUNT(*) AS NumEntries
FROM Entry e INNER JOIN Member m ON m.MemberID = e.MemberID
GROUP BY m.MemberID, m.LastName, m.FirstName;

The output is shown in Figure 8-7.

MemberlD - LastName -~ FirstName -~ NumEntries ~

118 McKenzie Melissa 1
228 Burton Sandra 3
235 Cooper William 4
239 Spence Thomas 2
258 Olson Barbara 2
286 Pollard Robert 3
415 Taylor William 10

Figure 8-7. Joining the Entry and Member tables and grouping by the IDs and names

You might wonder why we have included LastName and FirstName in the GROUP BY clause in the
preceding query. When you are using GROUP BY, the SELECT clause can only include the fields you are
grouping by or the aggregates. If we want to see the names in the output, we need to include them in the fields
we are grouping by. This guards against cases where there might be different names for one MemberID (clearly
impossible in this case, as MemberID is the primary key of the Member table). Putting this aside for now, if there
were two rows with a MemberID of 118 with two different names, then if we group just by MemberID, it would
not be possible to determine which name to associate with the count in the output in Figure 8-7.

We can get a range of different information from our data using GROUP BY if we include WHERE clauses
and different attributes in the GROUP BY clause. Let’s take another look at the Entry table. If we want find the
number of entries for each tournament, we imagine grouping all the rows with the same TourID together
and then counting the rows in each set, as in the query here:

SELECT TourID, COUNT(*) AS NumEntries
FROM Entry
GROUP BY TourID;

137

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 * AGGREGATE OPERATIONS

The output is shown in Figure 8-8.

TourlD - NumeEntries -~

24 7
25 3
36 3
38 5
40 7

Figure 8-8. Counting the number of entries in each tournament

We do not always need to count all the rows in the table. We might like to select a subset of the rows first.
For example, we might just want to gather the statistics in Figure 8-8 just for the year 2014. The following
query shows the SQL to do this. Note that the WHERE clause (which finds the subset of the rows we want to
consider) must come before the GROUP BY clause:

SELECT TourID, COUNT(*) AS NumEntries
FROM Entry

WHERE Year = 2014

GROUP BY TourID;

By adding more fields in the GROUP BY clause, we can get more detailed information. If we want to
repeat this query for each tournament for each year, we can remove the WHERE clause and group by both Year
and TourID:

SELECT TourID, Year, COUNT(*) AS NumEntries
FROM Entry
GROUP BY TourID, Year;

Figure 8-9 shows how the grouping on both fields works.

138

www.it-ebooks.info

http://www.it-ebooks.info/

MemberiD - | TourlD +t | Year

286 24
258 24
118 24
286 24
228 24
415 24
286 24
415 25
239 25
228 25
415 36
415 36
228 36
415 38
235 38
258 38
235 38
415 38
239 40
415 40
235 40
415 40
235 40
415 40

Entry table (reordered)

TourlD
2013~ —>
2014 /
2014

2014
2015

} Counting rows with the
same TourlD and Year

Figure 8-9. Grouping by TourID and Year

24
24

a b &R

B
(=]

Year -~
2013
2014
2015
2013
2015
2014
2015
2013
2014
2015
2013
2014
2015

CHAPTER 8 ' AGGREGATE OPERATIONS

NumeEntries -

NINNINE NN N W W =

We can use grouping with aggregate functions other than COUNT (). For example, if we want to see the
maximum, minimum, and average handicap for women and men, we could use a query like the one here:

SELECT Gender, MIN(Handicap)as Minimum, Max(Handicap)as Maximum,
ROUND(AVG(Handicap),1) AS Average

FROM Member
GROUP BY Gender;

www.it-ebooks.info

139

http://www.it-ebooks.info/

CHAPTER 8 * AGGREGATE OPERATIONS

The output from this query is shown in Figure 8-10.

Gender ~ |Minimum ~ | Maximum ~ Average -~
F 5 30 18.8
M 3 30 15.2

Figure 8-10. Grouping aggregates for Handicap by Gender

Filtering the Result of an Aggregate Query

Once we have calculated some aggregates for groups of rows, we may want to ask some questions about the
results. For example, in Figure 8-9, we have the number of entries in each tournament in each year. A likely
question is “Which tournaments had three or more entries?” Looking at the result table in Figure 8-9, we
want to select just those rows in the aggregated output with a count greater than or equal to 3. We can do this
with the HAVING keyword. Take a look at the following query:

SELECT TourID, Year, COUNT(*) AS NumEntries
FROM Entry

GROUP BY TourID, Year

HAVING COUNT(*) >= 3;

The HAVING clause always comes after a GROUP BY clause. The aggregate and the grouping is carried
out first, and the output rows matching some condition (in this case, COUNT(*) >= 3) are selected. It is like
having a WHERE clause that acts on the aggregated numbers. As a little aside, we must use COUNT (*) in the
HAVING clause; we can’t use the alias NumEntries from the first line of the statement. This alias is just used at
the end of the query to label the output column.

Let’s look at another example. Say we want to find those members who have entered four or more
tournaments. First, construct a set of rows with the members and the counts of the tournaments they have
entered, as in the first three lines of the query that follows. We then use the HAVING clause to select just those
rows from the result with COUNT(*) >= 4:

SELECT MemberID, COUNT(*) AS NumEntries
FROM Entry

GROUP BY MemberID

HAVING COUNT(*) >= 4;

We have two opportunities to select a subset of rows in queries involving aggregates. If we take the
subset before we do the aggregation, we use a WHERE clause. When we want to select just some rows after
the aggregation, we use a HAVING clause. For example, let’s change the previous query to find out which
members have entered more than four Open tournaments. To find the Open tournaments, we need to do the
following:

1. Join the Entry table with the Tournament table.
Take just the subset of entries for Open tournaments (with a WHERE clause).

Group the entries for each member and count them.

Eal A

Take the resulting aggregate table and retrieve just those rows with a count
greater than 4 (with a HAVING clause).

140

www.it-ebooks.info

http://www.it-ebooks.info/

The process is illustrated in Figure 8-11.

MemberlD - e.TourlD - Year - t.TourlD - TourType -

E= 2 >4 2644 24 Social
228 24 2615 24 Social
25———24¢—284—24 Social
286 2 2643 24 Social
28— 24—26——24 Social
286 24 2615 24 Social

435 24 2615 24 Social

2268 25 2015 25 Social

239 25 2615 25 Social
55— 35——32813—25 Social

228 36 2015 36 Open

415 36 2014 36 Open

415 36 2015 36 Open

235 38 2013 38 Open

235 38 2015 38 Open

258 38 2014 38 Open

415 38 2013 38 Open

415 38 2015 38 Open

235 40 2014 40 Open

235 40 2015 40 Open

239 40 2013 40 Open

415 40 2013 40 Open

415 40 2014 40 Open

415 40 2015 40 Open

1. Join Entry and Tournament

Select rows for Open

tournaments

(WHERE)

228
235
235
235
235
239
258
415
415
415
415
415
415
415

CHAPTER 8 ' AGGREGATE OPERATIONS

36
40
40
38
38
40
38
40
40

2015
2015
2014
2015
2013
2013
2014
2015
2014
2013
2015
2013
2015
2014

36 Open
40 Open
40 Open
38 Open
38 Open
40 Open
38 Open
40 Open
40 Open
40 Open
38 Open
38 Open
36 Open
36 Open

2. Group by MemberiD

and count

MemberiD ~ NumEntries -

228

235

390

B

r—r

aSco

tr

415

~ W

3. Retain rows from result

with COUNT >=4

(HAVING)

Figure 8-11. Finding members who have entered more than four Open tournaments

The query for the process in Figure 8-8 is:

SELECT MemberID, COUNT(*) AS NumEntries
FROM Entry e INNER JOIN Tournament t ON e.TourID = t.TourID
WHERE t.TourType = 'Open’

GROUP BY MemberID
HAVING COUNT(*) > 4;

MemberID - e.TourlD - Year - t.TourlD - TourType -

In Chapter 2 we looked at ordering the output of a query. We can also order the output by the aggregate.
If we would like to see results of the previous query in descending order of the number of tournaments
entered, we could add an ORDER BY COUNT(*) DESC clause at the end of the query.

www.it-ebooks.info

141

http://dx.doi.org/10.1007/978-1-4842-1955-3_2
http://www.it-ebooks.info/

CHAPTER 8 * AGGREGATE OPERATIONS

Using Aggregates to Perform Division Operations

In Chapter 7, we looked at the algebra operation division. To recap, division allows us to answer many
questions containing the words all or every. For example, say we want to find those members who have
entered every tournament. Figure 8-12 reviews how we can use division to do this. The attribute we want
returned in our Answer is MemberID. On the right side of the division operator, we have the set of things to
Check against (in this case, a list of all the TourID values projected from the Tournament table). On the left
side of the division operator is a table that has both the attributes from Answer and Check (in this case, the
columns MemberID and TourID from the Entry table). The result of the division is a list of the MemberID values
that appear with every tournament (in this case, just the one member with ID 415).

This figure is the same as Figure 7-25.

MemberiD ~ TourlD ~ TourlD ~ MemberlD ~
118 24 . 24 S— 415
228 24 = 25 - N~
228 25 26 Answer
228 36 38
235 38 40
235 40 ——
239 25 Check
239 40
258 24
258 38
286 24
415 24
415 25
415 36
415 38
415 40
—_— A~
Answer Check
SELECT MemberID, TourID SELECT TourlD Result of
FROM Entry FROM Tour Division

Figure 8-12. Using division to find the members who have entered every tournament

Currently, standard implementations of SQL do not have a keyword for the division operation, so
we need to find other ways to express a query like that depicted in Figure 8-12. We looked at one way in
Chapter 7 and some others in Appendix 2. Here, we will look at a method that uses aggregates.

The Tournament table lists five different tournaments. If we can find a member who has entered
five different tournaments, then he or she must have entered all of them. We now have the ability to use
aggregates and grouping to construct the equivalent of a division operation.

142

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1955-3_7
http://dx.doi.org/10.1007/978-1-4842-1955-3_7#Fig25
http://dx.doi.org/10.1007/978-1-4842-1955-3_7
http://www.it-ebooks.info/

CHAPTER 8 ' AGGREGATE OPERATIONS

We have already seen queries to count how many tournaments each member has entered. However,
now we want to count only the different tournaments entered by each member. Adding the DISTINCT
keyword in the COUNT () function will achieve this:

SELECT MemberID, COUNT(DISTINCT TourID) AS NumTours
FROM Entry e
GROUP BY MemberID;

The result of this query is shown in Figure 8-13.

MemberlD - | NumTours -~
118
228
235
239
286
415

N NN W=

Figure 8-13. Finding the number of distinct tournaments entered by each member

From the resulting table in Figure 8-13, we now want just those rows where the NumTours is equal to the
number of distinct tournaments, which is 5 in this case. We can use the HAVING clause to find those members
who have entered five different tournaments:

SELECT MemberID

FROM Entry e

GROUP BY MemberID

HAVING COUNT(DISTINCT TourID) = 5;

We can make this query more general by replacing 5 with an expression to calculate the number of
distinct tournaments on the fly:

SELECT MemberID
FROM Entry e
GROUP BY MemberID
HAVING COUNT(DISTINCT TourID) =
(SELECT COUNT(DISTINCT TourID) FROM Tournament);

This query is equivalent to the algebra division operation as depicted in Figure 8-12. It returns the IDs of
members who have entered every tournament. To summarize, we count the number of distinct tournaments
each member has entered, and then, using the HAVING clause, retain just those whose count equals the
number of possible tournaments (a distinct count from the Tournament table). I find this method of doing
a division conceptually more straightforward than the ones in Chapter 7 and Appendix 2. However, all
methods accomplish the same goal.

143

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1955-3_7
http://www.it-ebooks.info/

CHAPTER 8 * AGGREGATE OPERATIONS

Nested Queries and Aggregates

We have already lightly covered nested queries and aggregates in Chapter 4. It is useful to revisit this idea
here. In this chapter, we've looked at how to find averages, totals, counts, and so on. Now we can use these
aggregate results in other queries. For example, we might want to find everyone with a handicap greater than
the average handicap. Consider the following query:

SELECT * FROM Member

WHERE Handicap >
(SELECT AVG (Handicap)
FROM Member);

The inner part of the query returns the average handicap, and the outer part of the query compares the
handicap of each member with that average.

Let’s try something else. What about finding members who have entered more than three tournaments?
If your mind goes blank, you can revert to the outcome approach of picturing the tables and figuring out
what the rows you want returned will look like. Figure 8-14 shows how you can visualize the query.

MemberlD - | LastName - |FirstName - |Gender - MemberlD - | TourlD - | Year -
118 McKenzie Melissa F 118 24 2014

138 Stone Michael M 228 24 2015

153 Nolan Brenda F 228 25 2015

176 Branch Helen F 228 36 2015

178 Beck Sarah F 235 38 2013

228 Burton Sandra F ez | 235 38 2015

m @Cooper William M 235 40 2014
239 Spence Thomas M 235 40 2015

258 Olson Barbara F 239 25 2015

286 Pollard Robert M 239 40 2013

258 24 2014

Figure 8-14. Which members have more than three entries in tournaments?

We can describe the members we want returned like this:

Find all the rows m from the Member table where if we count the number of rows e from the
Entry table for that member (m.MemberID = e.MemberID) the count is > 3.

This turns into SQL in a straightforward way, as shown here:

SELECT * FROM Member m

WHERE

(SELECT COUNT (*)

FROM Entry e

WHERE e.MemberID = m.MemberID) > 3;
144

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1955-3_4
http://www.it-ebooks.info/

CHAPTER 8 ' AGGREGATE OPERATIONS

What about something a bit more complex? How do we find the average number of tournaments
entered by members? We will need the AVG() function, but what are we trying to average? We want to count
the number of tournaments for each member and then average those counts.

We can use grouping, as described in the previous section, to find the number of tournaments entered
by each member:

SELECT MemberID, COUNT (*) AS CountEntries FROM Entry
GROUP BY MemberID

The result of the preceding query is shown in Figure 8-15.

MemberiD - CountEntries ~
118
228
235
239
258
286
415

W W NN & W =

Figure 8-15. Number of entries for each member

Now we want to find the average of the column CountEntries. As a first try, it seems reasonable to use
our previous query as the inner part of a nested query, and then attempt to find the average:

--Won’t work in some implementations

SELECT AVG (CountEntries) FROM
(SELECT MemberID, COUNT (*) AS CountEntries FROM Entry
GROUP BY MemberID);

However, many versions of SQL do not support a nested query in a FROM clause. The preceding query
works fine in Access 2013 but not in some other implementations of SQL.

We encountered a similar problem in the previous chapter when we wanted to join a table with the
result of a union. We simply give the result of the inner query an alias (e.g., NewTable). This creates a
temporary virtual table (often referred to as a derived table). We can then access the attributes of the new
virtual table as here:

SELECT AVG (NewTable.CountEntries) FROM

(SELECT MemberID, COUNT (*) AS CountEntries FROM Entry

GROUP BY MemberID)AS NewTable;

145

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 * AGGREGATE OPERATIONS

Summary

Aggregate functions provide us with the means to answer a huge range of questions about our data. Here is a
summary of some of the main points in this chapter.
Most versions of SQL will offer the simple aggregate functions MIN(), MAX(), COUNT(), SUM(), and AVG().

e For COUNT(), you often just want to count rows returned by a query. This can be done
by including an asterisk in the parentheses: COUNT (*). If you include a column name
in the parentheses (e.g., COUNT (Handicap)) then only the non-null values in that
column will be included in the count.

e For the other common aggregates, you need to include a field name. For AVG() and
SUM() this needs to be a numeric expression, such as AVG(Handicap).

Nulls and duplicates:

e Null values are not included when calculating aggregates. For example,
AVG(Handicap) is the sum of the handicaps divided by the number of rows that have
anon-null value for Handicap.

e Bydefault, all non-null values are included in the aggregates. You can include the
keyword DISTINCT to remove duplicates. For example, COUNT (DISTINCT Handicap)
will count the number of different values appearing in the Handicap column.

Grouping:

e The GROUP BY clause can be used to collect rows with the same value of some
expression together and then apply the aggregates to those groups. For example,
we can find the number of tournaments each member has entered by grouping
together all the rows in the Entry table with the same value of MemberID (e.g., SELECT
MemberID, COUNT(*) FROM Entry GROUP BY MemberID).

e After you have grouped and performed an aggregate, you can select rows from the
resulting table using the keyword HAVING. For example, we can find members who
have entered three or more tournaments by adding the clause HAVING COUNT(*) »>=
3 to the expression in the previous item.

e Use WHERE to select a subset of rows before the grouping and aggregating. Use HAVING
to select a subset of rows after the grouping and aggregating.

More complex aggregates:

e Use derived tables where you want to nest aggregates, such as to find the average of
counts. Simply give the inner query an alias.

e Compare counts of rows to do the equivalent of relational division.

146

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9

Window Functions

Window functions were added to standard SQL in 2003 and provide considerable extra capability for
dealing with aggregation. Window functions allow us to perform aggregates on a “window” of data based
upon the current row. This provides an elegant way to specify queries to perform actions such as ranking,
running totals, and rolling averages. Window functions also provide considerable flexibility when it comes
to grouping data for aggregation as they allow a single query to have several different groups or partitions.
Itis also possible to reference the data contributing to the aggregate from within the query. This allows the
underlying data to be compared to the aggregate.

Oracle and Postgres have supported window functions for many years, while SQL Server just introduced
them in 2012. Access and MySQL do not currently support these functions. This chapter outlines how to use
a few of the most common window functions.

Simple Aggregates

To get started with window functions we will use them to write alternate queries for some of the simple
aggregates we encountered in Chapter 8. Let’s reconsider a simple aggregate query to count and average
members’ handicaps:

SELECT COUNT(Handicap) AS Count, AVG(Handicap * 1.0)as Average
FROM Member;

The output for the query is shown in Figure 9-1.

Count ~ | Average -~
17 16.88

Figure 9-1. Output for simple count and average of handicaps

With simple aggregates the only attributes allowed in the SELECT clause are the aggregate and those
attributes included in a GROUP BY clause. This means we no longer have access to the individual handicaps
contributing to the results.

Window functions allow us to retrieve the underlying data along with the aggregates. The keyword for
window functions is OVER(); they are also sometimes referred to as over functions.

Here is a query similar to the preceding one using the OVER() function:

SELECT MemberID, LastName, FirstName, Handicap,
COUNT(Handicap) OVER() AS Count,
AVG(Handicap * 1.0) OVER() as Average

FROM Member;

© Clare Churcher 2016 147
C. Churcher, Beginning SOL Queries, DOI 10.1007/978-1-4842-1955-3_9

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1955-3_8
http://www.it-ebooks.info/

CHAPTER 9 © WINDOW FUNCTIONS

Unlike the simple COUNT () function, with the OVER() function we are able to include additional fields
in the SELECT clause. In the preceding query we have included four fields of detailed data about each
member along with the two aggregates (which are indented on new lines to make them easier to read).
The aggregates are just the same as the simple aggregates but include the OVER() function.

Part of the output of the preceding query is shown in Figure 9-2. The count and average of the
handicaps appear with the detailed data for each member.

MemberlD ~ FirstName - LastName ~ Handicap - Average - Count -

118 Melissa McKenzie 30 16.88 17
138 Michael Stone 30 16.88 17
153 Brenda Nolan 11 16.88 17
176 Helen Branch 16.88 17
178 Sarah Beck 16.88 17
228 Sandra Burton 26 16.88 17
235 William Cooper 14 16.88 17
239 Thomas Spence 10 16.88 17
258 Barbara Olson 16 16.88 17
286 Robert Pollard 19 16.88 17
290 Thomas Sexton 26 16.88 17

Figure 9-2. Output when using OVER() to count and average handicaps

While it doesn’t seem particularly useful in the example in Figure 9-2 to have the aggregates returned
for every row, it opens the door to some new queries. We are now able to easily compare each individual’s
handicap with the average, something that was not at all simple without window functions. On the third
line of the following query we subtract the average of the handicap from the handicap for each member and
include that in the SELECT clause:

SELECT MemberID, LastName, FirstName, Handicap,
AVG(Handicap * 1.0) OVER() AS Average,
Handicap - AVG(Handicap *1.0) OVER() AS Difference
FROM Member;

The result is displayed in Figure 9-3.

MemberlD ~ FirstName - LastName -~ Handicap -~ Average -~ | Difference -

118 McKenzie Melissa 30 16.88 13.12
138 Stone Michael 30 16.88 13.12
153 Nolan Brenda 11 16.88 -5.88
176 Branch Helen 16.88

178 Beck Sarah 16.88

228 Burton Sandra 26 16.88 9.12
235 Cooper William 14 16.88 -2.88
239 Spence Thomas 10 16.88 -6.88

Figure 9-3. Window functions allow us to compare aggregates with detail values

148

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 © WINDOW FUNCTIONS

Partitions

The OVER() function can also be used to produce queries that are similar to the GROUP BY queries we looked at
in the previous chapter. The key phrase we need here is PARTITION BY. Let’s try some different counts on rows
in the Entry table. If we use just the function OVER () with our COUNT (*) function, we will count all the rows,
whereas if we use OVER(PARTITION BY TourID) it will count the rows for each different value of TourID.

The real power of partitioning is that, unlike the GROUP BY clause for simple aggregates, it is possible to
have several different partitions in a single query. This is best explained by an example. The following query
includes three different counts:

SELECT MemberID, TourID, Year,

COUNT(*) OVER() as CountAll,

COUNT(*) OVER(PARTITION BY TourID) AS CountTour,

COUNT(*) OVER(PARTITION BY TourID, Year) AS CountTourYear
FROM Entry;

The output is shown in Figure 9-4.

MemberiD ~ TourlD ~t Year ~t| CountAll ~ CountTour - CountTourYear -
286 (24 2013 24 El 1
286 24 2014 24 7 3
118 24 2014 o > 7 3
258 24 2014 24 7 3
228 24 2015 24 7 3
286 24 2015 24 7 3
415 24 2015 24 7 3
415 (75" 2013 24 (3) 1
228 25 2015. 24 >3 2
239 25 2015 24 3] 2
415 (36) 2014 24 3] 1
228 36 2015 24 >l 3 2
415 36 2015 24 | 3] 2
235 38 2013 24 5 2
415 38 2013 24 5 2
258 "3 2014 }-------- 24reccccccann. O > 1
415 {38 2015 24 5 (7
235 \ 38 2015| Jf==rEe=s 2T I 1
415 T R § I 24 6 2!
239 .40 _________ e R 2T e |
415 AT 'V 24 6 {2
235 i 40 204 1T 22T 6 12
415 40 2015 24 6 2
235 40 2015 24 6 2

Figure 9-4. Using different partitions in a single query
149

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 © WINDOW FUNCTIONS

In Figure 9-4 the column CountAll displays the result of COUNT (*) OVER(), which counts every row in
the Entry table (24).

The column CountTour is the result of COUNT(*) OVER(TourID), which partitions (or groups) the rows
with the same value of TourID and then counts them. The top three sets of solid boxes in Figure 9-4 show the
rows contributing to CountTour for TourID of 24, 25, and 36.

The column CountTourYear is the result of COUNT(*) OVER(TourID, Year) and partitions all the rows
with the same values for TourID and Year. The set of dashed boxes toward the bottom of Figure 9-4 shows
examples of how these counts are evaluated.

Order By Clause

The OVER() function can include an ORDER BY clause. This specifies an order for the rows to be visited when
the aggregates are evaluated. Having an order for the rows provides a mechanism for carrying out running
totals and ranking operations.

Cumulative Aggregates

If an ORDER BY clause is included in the OVER() function then, by default, the aggregate is carried out from
the beginning of the partition to the current row (but see below for a more precise definition).
Have a look at the following query:

SELECT MemberID, TourID, Year,
COUNT(*) OVER(ORDER BY Year) AS Cumulative
FROM Entry;

In the Entry table we have several rows with the same value of Year (as you can see in Figure 9-5). As
far as the ordering goes, these rows are equivalent, so if one of them is included in a count then we should
include them all. I'll now correct the definition of what rows are included in the aggregate.

If an ORDER BY clause is included in the OVER() function then, by default, the aggregate is carried out
from the beginning of the partition to the current row, and includes any following rows with the same value
of the ordering expression.

The output in Figure 9-5 illustrates what this means.

150

www.it-ebooks.info

http://www.it-ebooks.info/

MemberlD -
286
239
415
415
415
235
118
415
415
258
258
235
286
415
228
228
228
235
239
235
286
415
415
415

Figure 9-5. Using ORDER BY to produce a cumulative count for each year

TourlD

-

24
40
25
38
40
38
24
40
36
24
38
40
24
38
24
25
36
40
25
38
24
24
36
40

Year -1, Cumulative -
(7013 G
2013 | -
2013 ! 6
2013 6
2013| ! 6
(2013) | 6]
2014 | 13}
2014 | 113}
2014 | 113}
2014 | 131
2014 1 i3l
2014 | 113}
2014 } 113)
2015 24
2015 24
2015 24
2015 24
2015 24
2015 24
2015 24
2015 24
2015 24
2015 24
2015 24

CHAPTER 9 © WINDOW FUNCTIONS

In Figure 9-5 the rows are ordered by Year. Let’s see how this cumulative counting works for the first few
rows. For the first row, if we count from the beginning of the table we have 1 row. However, the next five rows
have the same value for our ordering expression Year, so we include them in the count, giving us a total of 6.

Now let’s move down to the first row for member 258. Counting from the beginning of the table we have

10 rows, but the next 3 rows have the same value of Year. This makes a total of 13.

Essentially, we have a cumulative count of entries for each year. We have 6 entries in the first year
(solid boxes), and for the second year we have an additional 7 entries to make 13 total (dashed boxes).

The SUM() function works in much the same way if there is an ORDER BY clause in the OVER() function to
give us running totals.

Let’s say the club collects data on income from fundraising and tournaments in a table called Income.
Figure 9-6 shows income for the first six months.

www.it-ebooks.info

151

http://www.it-ebooks.info/

CHAPTER 9 © WINDOW FUNCTIONS

Month ~ Income -~

1 2400
2 3800
3 1400
- 4500
5 6200
6 4800

Figure 9-6. Income table

We can find a running total of the income by performing a SUM(Income) with an ORDER BY Month clause
in the OVER() function, as in the following query:

SELECT Month, Income,
SUM(Income) OVER(ORDER BY Month) AS RunningTotal
FROM Income;

The income is summed from the beginning of the table to the current row (when ordered by the value
of Month), as shown in Figure 9-7.

Month - | Income - RunningTotal -

1 2400 2400
2 3800 6200
3 1400 7600
- 4500 12100
5 6200 13300
6 4800 23100

Figure 9-7. Running totals for monthly income ordered by month

Ranking

Yet another use for the ORDER BY clause is with the RANK() function. As an example we will rank the
members of the club by their handicap. Have a look at the following query:

SELECT MemberID, Handicap,

RANK() OVER (ORDER BY Handicap) AS Rank
FROM Member

WHERE Handicap IS NOT NULL;

152

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 © WINDOW FUNCTIONS

The ORDER BY clause in the OVER() function specifies the order of the rows when determining the
rank—in this case the value of Handicap. Each time the value of Handicap changes, the rank becomes the
row number in the partition (in this case the entire table ordered by Handicap).The rank then stays the
same until the value of Handicap changes, as shown in Figure 9-8. (Some of the handicaps have been
changed to illustrate the process more clearly. Rows with the same value of Handicap and therefore rank
have been delineated.)

MemberlD - Handicap - Rank -t

461 3 1
323 3 1
414 o 3
415 7 4
239 7 4
153 7 4
332 12 7
235 14 8
258 14 8
286 19 10
339 21 11
331 25 12
290 26 13
228 26 13
469 26 13
138 30 16
118 30 16

Figure 9-8. Result of the RANK() function ordered by handicap. Rows with the same value handicap have
the same rank

The first row in Figure 9-8 has rank 1 (it is the first row!). The second row has the same value of the order
expression (Handicap) as the previous row so it also has rank 1. In the next row the value of Handicap has
changed so the rank becomes the row number (3).

Null values will be included in the ranking, which is why they have been explicitly excluded in the
previous query. Without the WHERE clause the null values would have been included at the top of the ranking
(or at the bottom if the order had been DESC).

Combining Ordering with Partitions

In the previous sections on ordering I didn’t include any partitions in the queries. Now that we (hopefully)
understand the concept we can look at some more examples.

Let’s consider a more detailed Income table that has monthly amounts for each of three areas where the
golf club carries out fundraising. The data for the first five months of the year is shown in Figure 9-9.

153

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 © WINDOW FUNCTIONS

Month -~ Area * Income -~
1 Halswell 2400
1 Pegasus 3868
1 Russley 2123
2 Halswell 3800
2 Pegasus 2719
2 Russley 3534
3 Halswell 1400
3 Pegasus 1650
3 Russley 1486
4 Halswell 4500
4 Pegasus 5072
4 Russley 4471
5 Halswell 6200
5 Pegasus 6406
5 Russley 5846

Figure 9-9. Income table including areas

We will build up some queries slowly.
First, we will just calculate the total income for the table. We could use a simple SUM() aggregate, but we
will include an OVER () function so we can keep the detail in the output:

SELECT Month, Area, Income,
SUM(Income) OVER() AS Total
FROM Income;

This will produce a table the same as in Figure 9-9 but with an additional column, Total, which will
have the overall total for every row.

Now let’s change this to a running total. We do this by including an ORDER BY clause in the OVER()
function. By default this calculates the total for the values from the beginning of the table to the current row
and the next rows with the same value of Month. The query is:

SELECT Month, Area, Income,
SUM(Income) OVER(ORDER BY MONTH) AS RunningTotal
FROM Income;

The incomes are summed from the top of the table to the current row including the following rows
with the same value of Month (the attribute we are ordering by). Essentially, the output sums all the values

for each month and then accumulates the totals month by month. The output is shown in Figure 9-10. The
different months have been delineated.

154

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 © WINDOW FUNCTIONS

Month ~ Area »* |Income ~ RunningTotal -

1 Halswell 2400 8391
1 Pegasus 3868 8391
1 Russley 2123 8391
{2 Halswell 3800 21011
i 2 Pegasus 2719 21011
... 2Russley . ________ 3534 __________ 21011
3 Halswell 1400 25547
3 Pegasus 1650 25547
3 Russley 1486 25547
C 4 Halswell 4500 39590]
i 4 Pegasus 5072 3SSBOE
—— 4Russley Ml 39590,
5 Halswell 6200 58042
5 Pegasus 6406 58042
5 Russley 5846 58042

Figure 9-10. Running total when ordering by month

Now let’s look at the areas independently. This requires a PARTITION BY clause. Consider this query:

SELECT Month, Area, Income,
SUM(Income) OVER(
PARTITION By Area
ORDER BY MONTH) AS AreaRunningTotal
FROM Income;

The PARTITION BY clause needs to come before the ORDER BY clause, which reflects what is happening.
We first partition the data and then order within the partitions. The aggregate is calculated for rows from

the beginning of the current partition to the current row. Figure 9-11 shows the output for just the first five
months of the year. The three partitions have been delineated so it is easier to see what is happening.

155

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 © WINDOW FUNCTIONS

Month -~ Area =~ Income - AreaRunningTotal -

1 Halswell 2400 2400
2 Halswell 3800 6200
3 Halswell 1400 7600
4 Halswell 4500 12100
5 Halswell 6200 18300
e 1 Pegasus 3868 3868
i 2 Pegasus 2719 6587
| 3 Pegasus 1650 8237:
i 4 Pegasus 5072 13309
I S Pegasus__________ 6406 ______________. 19715,
1 Russley 2123 2123
2 Russley 3534 5657
3 Russley 1486 7143
4 Russley 4471 11614
S5 Russley 5846 17460

Figure 9-11. Running totals for income partitioned by area and ordered by month

Framing

The last feature of the window functions we will look at is the ability to further specify which rows are
included in an aggregate. This is how the name window functions came about. They provide a window
or frame onto the section of data we are interested in. The general form of the OVER() function has three
clauses, as shown here:

OVER(
[<PARTITION BY clause>]
[<ORDER BY clause>]
[<ROWS clause>]

)5

We have already looked at two of these clauses: The PARTITION BY clause allows us to group the data
by some expression before aggregating. The ORDER BY clause allows us to determine the order in which the
aggregate function traverses the rows within a partition and allows us to perform ranking and running totals.
A ROWS clause allows us to narrow down the set of rows, relative to the current row, that are to be included in
the aggregate.

By default, a query with an OVER (ORDER BY) clause calculates the aggregate of the values from the
beginning of the current partition up to and including the current row. Let’s recap with a query that
calculates a running average for each area:

SELECT Month, Area, Income,
AVG(Income) OVER (

PARTITION BY AREA

ORDER BY Month) AS AreaRunningAverage
FROM Income;

156

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 © WINDOW FUNCTIONS

The output in Figure 9-12 is for just the Halswell area. The solid boxes show which rows are included
in the average for the third row from the top. The dashed boxes show the rows contributing to the average
for the third row from the bottom of the image. If there is no ROWS clause after an ORDER BY clause, then
this is the default behaviour.

Month ~ Area » Income ~ | AreaRunningAverage -~
1 Halswell . 2400
2 Halswell E 3100
3 Halswell i
4 Halswell ! 3025
5 Halswell ; 3660
6 Halswell E 3850
7 Halswell E 3914
8 Halswell i 4038
9 Halswell E 4167

10 Halswell E S -:ég-g-(_i-
11 Halswell 4245
12 Halswell 4308

Figure 9-12. Running average for Income table
The syntax for the ROWS clause is:
ROWS BETWEEN <start of frame> AND <end of frame>

Table 9-1 shows some expressions for specifying <start of frame> and/or <end of frame>.
Remember that we always have to have an ORDER BY clause if we are using the ROWS clause.

Table 9-1. Specifying Rows of a Window

Expression Meaning

UNBOUNDED PRECEDING Start at the beginning of the current partition
<n> PRECEDING Start n rows before the current row

CURRENT ROW Can be used for either the start or end of frame
<m> FOLLOWING End m rows after the current row

UNBOUNDED FOLLOWING End at the end of the current partition

Here is the previous query with the (default) window of required rows spelled out:

SELECT Month, Area, Income,
AVG(Income) OVER(
PARTITION BY AREA
ORDER BY Month
ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
) AS AreaRunningAverage
FROM Income;

157

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 © WINDOW FUNCTIONS

The ROWS clause in the preceding query is the default if no ROWS clause is specified after an ORDER BY
clause.

Now we can change which rows are to be included in the average. Say we would like to see rolling three-
month averages. This means that for each month we take an average that includes the current month, the
one preceding, and the one following. The following query shows how we can add another ROWS clause to
the preceding query to see both the running average and the rolling three-month average:

SELECT Month, Area, Income,
AVG(Income) OVER(
PARTITION BY AREA
ORDER BY Month
ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
) AS AreaRunningAverage,
AVG(Income) OVER(
PARTITION BY AREA
ORDER BY Month
ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING
) AS Area3MonthAverage
FROM Income;

Figure 9-13 shows the output of this query. The boxes show which values are contributing to the
averages on the rows for month 4 (solid boxes) and month 9 (dashed boxes).

Month ~ Area »| Income
1 Halswell g
2 Halswell
3 Halswell
4 Halswell
5 Halswell
6 Halswell
7 Halswell
8 Halswell
9 Halswell

10 Halswell
11 Halswell
12 Halswell

Figure 9-13. Running averages and rolling three-month averages

The RunningAverage in the row for month 4 includes all the values from the beginning to month 4, and
similarly the RunningAverage in the row for month 9 includes all the incomes up to and including month 9.
The Rolling3MonthAverage in row 4 includes months 3 to 5 (one month preceding and one month following
the current row). In row 9 the Rolling3MonthAverage averages months 8 to 10 (i.e., one month each side of
month 9).

158

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 © WINDOW FUNCTIONS

The different averages provide different information about the how the business is doing. The running
average provides the average income to date for the year. The rolling three-month average gives a better idea
of how the income is tracking at the moment. The later values in the rolling average column are higher than
their running average counterparts because they are not including the lower values in the first few months.

Summary

Window functions provide an elegant way to carry out partitioning, running, and rolling aggregates and
allowing both the detail and the aggregate to be available in the same query.

Here is a brief summary of the functionality covered in this chapter. I have used the word table in the
descriptions but the functionality equally applies to the result of a query.

OVER()

Use the OVER () function with no clauses in the parentheses to calculate the aggregate for the whole table.
Unlike simple aggregates it is possible to include other attributes in the SELECT clause, thereby retaining
access to the detail as well as the aggregated value.

OVER(PARTITION BY <...>)

If PARTITION BY isincluded in the OVER() function then the rows are separated into groups that have the
same value for the partitioning expression. The aggregates are carried out for each partition. This is similar
to GROUP BY for a simple aggregate but has the advantage that several different partitions can be included in
a single query.

OVER(ORDER BY <...>)

When ORDER BY is included in the OVER() function then the table is (virtually) ordered by the order by

expression. The aggregate is then evaluated for the rows from the beginning of the table to the current

row (and any following rows with the same value for the ordering expression). This is used for running
aggregates.

OVER(PARTITION BY <...> ORDER BY <...>)

The table is first partitioned into different groups with the same value for the partitioning expression, and
the rows are then ordered by the ordering expression within those groups. The aggregate is then evaluated
for the rows from the beginning of the table to the current row (and any following rows with the same value
for the ordering expression).

OVER(ROWS BETWEEN <...> AND <...>)

A ROWS BETWEEN clause can be added to an OVER() function with an ORDER BY clause. This restricts the
aggregate to a set or rows relative to the current row, typically a number of rows preceding and or following
the current row. It is useful for calculating rolling aggregates.

159

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10

Efficiency Considerations

You may not need to read this chapter! Database management systems (DBMS) are very efficient, and if
you have a modest amount of data, most of your queries will probably be carried out in the blink of an eye.
Complicating your life in an attempt to make your queries a little faster does not make a great deal of sense.
However, if you have (or might have) vast amounts of data and speed is absolutely critical, you will need
more skill and experience than you are likely to get from reading one chapter in a beginners’ book. Having
said that, you are likely to have people tell you that it matters how you express your queries or that you
should be indexing your tables, so it is handy to have some idea about what is going on behind the scenes
and understand some of the terminology.

Throughout this book, I have emphasized that there are often alternative ways to phrase a query in
SQL. The implementation of SQL you are using may not support some constructions, so your choices
may be limited. Even then, you usually have alternatives for most queries. Does it matter which one you
use? One consideration is the transportability of your queries. If you are unsure where your query may be
used, you might choose to avoid keywords and operations that are not widely supported (yet). However,
typically you will be writing queries for a database with a specific implementation of SQL. In that case, your
main questions are “How will the different constructions of a query affect the performance?” and “Is there
anything I can do to improve performance?”

What Happens to a Query

Up to this point we have been concentrating on taking a question we need answered and constructing a
query that will return appropriate and accurate information from the database. Conceptually the query
writer thinks of the database as being a collection of tables. An SQL statement is an expression describing
which data should be retrieved from those tables and what constraints that data must obey (the outcome
approach).!

We have also seen that a query can be specified by describing set operations, such as joins and
intersections, which would result in the appropriate data being returned (the process approach). Using set
operations makes forming a query very elegant, but the operations are purely conceptual. While we might
specify the query in terms of, say, a join followed by an intersection, this will be interpreted by the DBMS as a
description of the data to be returned not as a method for retrieving the data.

The ideas of tables and data models is a useful way for us to understand how the pieces of data are
logically related. We leave it to the DBMS to take care of how the data is physically stored and retrieved.
Figure 10-1 is a simplified schematic of the different levels of abstraction that can help us understand a
database.

'SQL is based on relational calculus, which provides a description of the data to be retrieved. See Appendix 2 for more
information.

© Clare Churcher 2016 161
C. Churcher, Beginning SQL Queries, DOI 10.1007/978-1-4842-1955-3_10

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10~ EFFICIENCY CONSIDERATIONS

Result User Level

LNam - FrName - Wandcap -

Mctess Melna ®

SQL Query TR — » 4
i} I_I Data Model Conceptual Level

Execution Plan L =

v i = 7=

H Physical Level

Concurrency
Control

Access Control

1

Data

Figure 10-1. Levels of a database management system

At the top of the diagram in Figure 10-1 we have the user level. This is where we have the different
applications and devices that form the interface between the humans and the data. It is here that a user (or
application) will construct an SQL statement (top left of the diagram).

The middle layer is a conceptual view of the database. We can think of the data as being in tables with
various key and validation constraints. It is also where we can form models of how the database should deal
with concurrent users and the rules for allowing access to different data. The SQL statements we construct
are in terms of all these concepts.

The actual data is stored in the physical level, shown at the bottom of Figure 10-1. What we think of as a
table may be segments of data stored on possibly different servers maybe in different countries. At this level
there will be indexes that allow rapid access to different records; we will talk about those in later sections of
this chapter.

How the relevant pieces of information are located and assembled to produce the result of the query is a
job for the query optimizer. The SQL statement constructed by the user is passed to the optimizer, which has
access to information about the number of rows in a (conceptual) table, the amount of data in each row, the
attributes on which indexes have been created, and so on. It uses all this information to create an execution
plan. The execution plan is an efficient sequence of steps to find, compare, and assemble the data into the
result specified by the query. The data is retrieved from physical storage and assembled in accordance with
the execution plan, and the result is returned to the user — usually in the form of a table.

162

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 - EFFICIENCY CONSIDERATIONS

Most commercial database software provides tools for displaying proposed execution plans and the
estimated times for each step to be carried out. This provides insight into how a query is being executed and
where the time is being spent. A good database administrator will be able to use this type of information to
tune the database; for example, by adding new indexes.

In the following sections, we will take a brief look at how records are stored, how indexes can improve
efficiency, and some of the things that go on behind the scenes when a query is carried out.

Finding a Record

Most of the queries on a database will, at some point, involve finding records that match a particular
condition. For example we may want to find records in a single table (e.g., WHERE LastName = 'Smith"), find
records from two tables that match a join condition (e.g., WHERE m.MemberID = e.MemberID), or look for the
existence or otherwise of values (e.g., WHERE NOT EXISTS...).

Searching for and finding data all seems pretty easy these days when everything is stored electronically.
If we want to find a topic in an online book we just open a search box and type in some keywords. With a
physical book it is a very different story. We either have to scan through every page or hope there is a useful
index or table of contents. Those who remember physical telephone books will recall that it was easy to find
Jim Smith but impossible to find who lives at 16 Murray Place.

Behind the scenes in a database the issues are the same as for physical books. The data can only be
stored in one order, but we might want to search it in a variety of ways. It is useful to know what is actually
going on so that we have an understanding of what affects the performance of locating a specific record.

One way to find records matching a condition is to simply look sequentially through every row in the
table. This is the slowest and costliest way to find what you are looking for. Having said that, it may not be a
problem. It would not take long to scan the golf club Type table to find the membership fee for seniors. On
the other hand, it would be a bigger job to scan every row in (a realistic) Entry table to find members who
had entered tournament 38 over the last forty years.

Storing Records in Order

If we consider relational theory, then the rows in a table? have no order. This allows us to consider a table as
a set and apply all the set operations. This is useful from a conceptual point of view, but in practice how the
records are stored is going to make a difference in how quickly we can find what we are looking for.

If the records of a table are stored in a random order (perhaps the order they were created) then this is
referred to as a heap table. The only way to find a record in a heap table is to scan the entire table. Generally the
records will be stored ordered by some attribute(s) — often the primary key. There are all sorts of algorithms for
finding a particular record quickly in an ordered table, but most will be built on the idea of a binary search.

When we try to find a name in a telephone book or a word in a dictionary we employ a type of binary
search. In the simplest scenario we inspect a page in the middle of the book and decide if the target word is
before or after the words on that page. We then start again and inspect a page halfway through the portion
that is of interest. Very quickly we zero in on the page required. If the records in a table are ordered by a
particular field, then searches on that field will be more efficient than searches on fields with no index.

When we talk about records in a table being stored in order, we don’t mean they are physically one
after the other on a disc. If this were the case then if we wanted to insert a new record near the beginning
we would have to move all the others along. The records can be thought of as being in a tree-like structure.
One common type of tree is a B-Tree. Figure 10-2 shows a very simple representation of a B-Tree structure for
storing letters of the alphabet.

*More formally the tuples in a relation have no order.

163

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10~ EFFICIENCY CONSIDERATIONS

GIO I.S

ADF HKL P Q vV X

Figure 10-2. Representation of data in a B-Tree

If you are searching for a letter in the tree in Figure 10-2 you would start at the top node, or box. In the
top node you either find what you are looking for or you follow the appropriate path. For example, if you
are looking for H you would follow the path between G and O. The structure allows records to be added and
deleted with the minimum of disruption. We can easily add R to the box containing P and Q without altering
any of the other letters. Maintaining a B-Tree is not trivial. As data is added and removed the tree will need
to be rearranged to keep it balanced and to add and remove nodes and levels. Fortunately, all this goes on
under the hood.

Having said all that, when we are thinking about records being in order it is usually easiest to imagine
them all in a single line. That is what I will do for the rest of this chapter.

Clustered Index

If the records are physically stored in some order then this is referred to as a clustered index. If we thought it
a good idea to store our member records in order of names, we could specifically create a clustered index so
that the records are stored in order of the value of LastName. We can create an index with an SQL statement.
We need to provide a name for the index (e.g., Clustered_Name) and specify the field(s) on which to order
the index, as in the query here:

CREATE CLUSTERED INDEX Clustered Name ON Member (LastName);

By default, the order for a clustered index is usually the value of the primary key. While it is possible to
specify a different order for the clustered index, you need to have a good reason to do so.

With a clustered index in place, there are now two ways to locate a record. Consider running the
following query on the Member table with the clustered index on LastName:

SELECT *
FROM MEMBER
WHERE LastName = 'Smith';

Because the table is in order of LastName we can quickly navigate to the correct record by doing a binary
search. This is known as a table seek.
Now consider the following query:

SELECT *
FROM MEMBER
WHERE Phone = '03-567-123';

We have no option now but to check every record in the table. We cannot even stop when we get to a
matching record, as there may be several records with the same phone number. This is known as a table scan.

164

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 - EFFICIENCY CONSIDERATIONS

Non-Clustered Indexes

The records in a table can only be stored in one physical order, so there can only ever be one clustered
index, which is usually on the primary key. If the clustered index for the Member table is on the primary key
field MemberID, we can seek a particular value of MemberID and find the complete row with all the details for
that member. If we want to find a row with a particular last name we would have to scan the whole table.
Fortunately, we are able to set up additional non-clustered indexes on the table. I'll refer to these non-
clustered indexes as simply indexes from now on. Here is the SQL to create an index on LastName for the
Member table:

CREATE INDEX idx_Name ON Member (LastName);

What this does is create a list of all the values of LastName in order. Each entry will include a reference to
the clustered index so that the full row with the rest of the information can be found. Figure 10-3 illustrates

how the first few entries in the LastName index refer to the clustered index.

Beck 118 McKenzie Melissa 28-May-05 Junior F 30
Branch 138 Stone Michael 31-May-09 Senior M 30
Bridges 153 Nolan Brenda 12-Aug-06 Senior F 11
Burton 176 Branch Helen 06-Dec-11 F
Cooper 178 Beck Sarah 24-)an-10 Social F
Gilmore 228 Burton Sandra 09-Jul-13 Junior F 26
Kent 235 Cooper William 05-Mar-08 Senior M 14
McKenzie 239 Spence Thomas 22-Jun-06 Senior M 10
Nolan 258 Olson Barbara 29-Jul-13 Senior F 16
Olson 286 Pollard Robert 13-Aug-13 Junior M 19
Pollard 290 Sexton Thomas 28-Jul-08 Senior M 26
Reed 323 Wilcox Daniel 18-May-09 Senior M 3
Schmidt 331 Schmidt ~ Thomas 07-Apr-09 Senior M 25
Sexton 32 Bridges Deborah 23-Mar-07 Senior F 12
Spence 339 Young Betty 17-Apr-09 Senior F 21
Stone 414 Gilmore Jane 30-May-07 Junior F 5
Taylor 415 Taylor William 27-Nov-07 Senior M 7
Wilcox 461 Reed Robert 05-Aug-05 Senior M 3
Willis 469 Willis Carolyn 14-Jan-11 Junior F 29
Young 487 Kent Susan 07-Oct-10 Social F
Index on LastName Clustered Index on MemberiD
Figure 10-3. Index on LastName has references to clustered index for full information
165

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10~ EFFICIENCY CONSIDERATIONS

Because the index is ordered by last name it is possible to do an index seek to find the entry we require
and then use the reference to look up the associated row in the clustered index to retrieve the rest of the
information.

In practice, whether the query optimizer uses a particular index depends on many factors: the number
of rows in the table, the size of each row in the index and the table, whether the records have been accessed
recently and have been cached, and so on.

Clustered Index on a Compound Key

Let’s consider the Entry table. Recall that the Entry table has three fields: MemberID, TourID and Year. Two
questions we might ask about the data in this table are:

e Which tournament has a particular member entered (say, member 235)?
e Who has entered a particular tournament (say, tournament 40)?

It would seem sensible to have two indexes: one on TourID and one on MemberID. However, each of
these would refer to the clustered index. What order will that be for the Entry table?

By default, the table will be clustered on the primary key, which for the Entry table is a combination of
all three fields. The order of the records will depend on how we specified the primary key. Let’s say the Entry
table was created with the following SQL statement:

CREATE Table Entry (

MemberID INT,

TourID INT,

Year INT,

PRIMARY KEY (MemberID, TourID, Year);

The order of rows in the clustered index will be as in Figure 10-4. First, they are ordered by the first field

specified in the PRIMARY KEY clause (MemberID). Those rows with the same value of MemberID will be ordered
by the second field (TourID) and so on.

MemberlID ~t | TourlD ~t Year ~

118 24 2014
228 24 2015
228 25 2015
228 36 2015
235 38 2013
235 38 2015
235 40 2014
235 40 2015
239 25 2015
239 40 2013

Figure 10-4. Order of data in the default clustered index for the Entry table

166

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 - EFFICIENCY CONSIDERATIONS

The system can easily find the tournaments which member 235 has entered because the entries are in
order of MemberID and a table seek can be carried out. We do not necessarily need an additional index on
MemberID. On the other hand, finding who has entered tournament 40 would require a scan to investigate
every row. In this situation an index on TourID would be an improvement.

The order in which we specify the fields of the primary key can therefore affect how queries are carried
out and can influence what other indexes might be useful. Had the order of the primary key fields been
specified with PRIMARY KEY (TourID, MemberID, Year) then the clustered index would be in order of
TourID. In that case, an index on MemberID should be considered if we regularly need to find rows for a
particular member.

I was careful to say for the situation in Figure 10-4 that we might not necessarily need an index on
MemberID. The optimizer will take into account many things. One that is important is the size or number of
bytes of a typical entry in the index. Each entry in an index made up of two text fields such as LastName and
FirstName will be larger than an index on a single text field, which will in turn be larger than an index on a
numeric field. Each time an entry in an index is visited it has to be retrieved, so there is an 10 (input/output)
cost that will depend on the size of the entry.

If the clustered index in Figure 10-3 had significantly more data in each row (e.g., some descriptive text
fields) then the cost of retrieving a row would be higher than for retrieving just the three numeric fields.

In that case having an index on MemberID would be worth considering. It would not alter how many index
entries needed to be investigated, but it would have a smaller IO cost as each entry is smaller. The downside
is that once the correct MemberID is located by an index seek the system will need to look up the clustered
index to find the rest of the information. Depending on all the information it can access, the optimizer will
determine whether it is more efficient to use the index on MemberID and look up the rest of the information,
or just to scan all the records in the clustered index.

Updating Indexes

Indexes are clearly wonderfully useful. Why do we not just index everything we are ever likely to search on?
This is certainly possible. The downside is that the indexes have to be maintained. Every time we add or
delete a record in a table every index on that table will need to be updated also. We therefore have a tradeoft.
Lots of indexes will mean fast retrieval but slower updating. Fewer indexes will mean faster updating but
possibly slower retrieval.

Managing these tradeoffs is work for an experienced database administrator with excellent knowledge
of the domain. There are many tools available that will monitor the database and provide statistics on the
use of indexes and other information about the data. If the data is relatively stable with few updates then
having several indexes will make retrieval faster. If the data is constantly being updated then indexes may be
counterproductive.

In situations where there are a lot of updates it may be practical to do bulk updates of data. With a bulk
update you can remove the indexes. The following query shows how to remove the index we created on the
Member table earlier in the chapter:

Drop idx_Name on Member;
All the additions, deletions, and modifications to the table can then be carried out without the overhead

of updating the indexes. At the end of the updates on the table, the indexes can be recreated. This may or
may not be more efficient than updating each index for every change.

167

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10~ EFFICIENCY CONSIDERATIONS

Covering Indexes

Adding more fields to some indexes can also be effective. Consider the following query:

SELECT FirstName
FROM Member
WHERE LastName = 'Smith’

If the Member table has an index on LastName, then the preceding query would require an index seek to
find Smith and then a lookup of the clustered index to find the first name. If the index was on the compound
index (LastName, FirstName) then all the information required for the query is contained in the index and
no lookup is required. This is known as a covering index. Again, there is the tradeoff of having a larger IO cost
for the bigger rows in the index versus the cost of the lookup.

Selectivity of Indexes

Indexes are most useful when the number of rows returned by an index search is small compared to the
number of rows in the table.

For example, let’s consider finding information about a member with a particular last name. An index
on LastName in the Member table is likely to return only a small percentage of its elements if we search for
a specific name. The system can then look up the clustered index for each of those returned elements to
retrieve the rest of the information about the members.

By contrast, what happens if we want to find information about women. An index on Gender will return
around half its entries if we search for 'F' in the golf club’s Member table. The DBMS would then have to look
up the corresponding records in the clustered index. In this situation it is probably more efficient to just scan
the clustered index, which contains all the information we require, and not bother with the index at all.

Sometimes the selectivity of an index is not obvious. For example, an index on a field City will not be
useful if most of the records in the table have the same value for city and most of the queries are for that city.

Database software often provides tools that can help us. The tools might provide statistics on the current
spread of data in fields in a table — for example, what percentage of the table has the same values in a field,
such as City. This will help determine if an index might be useful. Often statistics can be collected about
how often an index is used. If the optimizer makes little use of an index then it might as well be removed
rather than be constantly updated.

Join Techniques

If we consider the Entry table in Figure 10-4, most queries will require a join on the Member table to find the
names of the entrants and/or a join on the Tournament table to find the names and other information about
the tournaments. Each of these joins compares a foreign key in the Entry table with the primary key of the
Member or Tournament table. Refer to Chapter 1 to review what we mean by a foreign key. This joining of a
foreign key with a primary key is such a common scenario that it is worth understanding how joins can be
carried out. We will use the Member and Entry tables as an example, but the ideas have wide application.

There are a number of different approaches that can be taken when carrying out a join. Which
approach will be the most efficient will depend on many things, including the relative sizes of the tables, the
indexes that have been created, whether the query also includes projecting specific columns or selecting
rows, whether an output order has been specified, and so on. You don’t have to worry about the choice of
approach, as that will be decided by the optimizer. However, creating particular indexes can influence the
approach taken.

168

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1955-3_1
http://www.it-ebooks.info/

CHAPTER 10 - EFFICIENCY CONSIDERATIONS

Nested Loops

One approach to joining tables is called nested loops. This means that the system scans one table, and for each
row in that table looks through all the rows in the other table to find matches for the join condition. The nested-
loop approach is illustrated in Figure 10-5 for the join condition Entry.MemberID = Member.MemberID.

MemberlD ~t | TourlD -1 Year ~

286 24 2013
415 MemberlD ~ LastName ~ FirstNar ~ JoinDate ~ Mem ~ Ge ~
235 118 McKenzie Melissa 28-May-05 Junior F
ol 415 138 Stone Michael 31-May-09 Senior M
239 153 Nolan Brenda 12-Aug-06 Senior F
415 176 Branch Helen 06-Dec-11 F
118 178 Beck Sarah 24-)Jan-10 Social F
258 & 228 Burton Sandra 09-Jul-13 Junior F
286 235 Cooper William 05-Mar-08 Senior M
415 239 Spence Thomas 22-Jun-06 Senior M
258 258 Olson Barbara 29-Jul-13 Senior F
235 286 Pollard Robert 13-Aug-13 Junior M
415 290 Sexton Thomas 28-Jul-08 Senior M
228 323 Wilcox Daniel 18-May-09 Senior M
286 331 Schmidt Thomas 07-Apr-09 Senior M
415 332 Bridges Deborah = 23-Mar-07 Senior F
228 339 Young Betty 17-Apr-09 Senior F
239 414 Gilmore Jane 30-May-07 Junior F
228 415 Taylor William 27-Nov-07 Senior M
415 461 Reed Robert 05-Aug-05 Senior M
235 469 Willis Carolyn 14-Jan-11 Junior F
415 487 Kent Susan 07-Oct-10 Social F
\'4 235 40 2015
415 40 2015
For each row in first table... ...loop over the second

table to find the matches

Figure 10-5. Nested-loops approach to finding rows with matching MemberIDs

In Figure 10-5 the outside loop is on the Entry table. For each row in the Entry table, the system will
need to find the matching rows in the Member (inner) table. The tables shown in Figure 10-5 are not ordered,
which means that every row of the Member table will need to be visited for each row in the Entry table to find
the matching records (a table scan).

169

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10~ EFFICIENCY CONSIDERATIONS

If there is an index on the matching field in the inner loop (MemberID in the Member table, in this case)
then finding the matching field will be more efficient. The index can be used to quickly find the matching
records without having to visit every row. In practice, the Member table will probably have a clustered index
on its primary key MemberID. If the tables are nested with the Entry table on the inside, then the internal
loop will be more effective if there is an index on the MemberID of the Entry table. The optimizer will take this
information into account to decide if the nested-loops option is efficient for carrying out the join and which
tables should be the inner and outer tables.

Most commercial database systems will provide tools to view the execution plan for a query. Figure 10-6
shows a screenshot from SQL Server showing the execution plan for the join on the Member and Entry tables
in the following query:

SELECT *
FROM Member m INNER JOIN Entry e on m.MemberID = e.MemberID;

Select * from Member m Inner join Entry e on m.MemberID = e.MemberID

= tc] ™

SELECT = Nested Loqps < - Table Scan
Cost: 0 & (Inner Join) [Entzy] [e]
wEEE Cost: 1 % Cost: 32 &

Clustered Index Seek (Clustered)

[Member] . [PK_Member] [m]
Cost: €7 &%

Figure 10-6. Execution plan showing nested loops

In Figure 10-6 we see on the top right a table scan of the Entry table. This is the outside loop of the
nested loop (as depicted in Figure 10-5). The icon on the bottom right shows that for each row in the Entry
table, a seek on the clustered index of the Member table will be carried out to find the row with a matching
MemberID.

Does it matter in which order we specify the tables in a join query? If we put the Entry table first in the
SQL expression, will that make a difference? Once upon a time it may have. These days almost certainly not.
Expressing the query with the table in a different order results in the same execution plan in SQL Server
as the plan in Figure 10-6. However, if we change which fields are being selected, or add other indexes, or
choose to sort the output, then the execution plan will very probably change.

Merge Join

Another approach to doing a join is to first sort both tables by the join field. It is then very easy to find
matching rows. This is called a merge join and is shown in Figure 10-7.

170

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 - EFFICIENCY CONSIDERATIONS

MemberID -1 TourlD ~t Year ~ MemberlD -t LastName -~ FirstNar ~
11 118 McKenzie Melissa
228 24 2015 138 Stone Michael

22 153 Nolan Brenda
228 176 Branch Helen
235 178 Beck Sarah
235 228 Burton Sandra
235 235 Cooper William
235 239 Spence Thomas
239

238

258 24 2014

258 38 2014

Figure 10-7. Merge join requires each table to be sorted by the field being compared

Sorting tables is an expensive operation. However, if the tables have indexes on the join fields then the
rows can be accessed in order by an index scan, making the merge join an option.

Both the merge join and the nested-loops join will be more effective if one or both of the fields in the
join condition have indexes.

Different SQL Expressions for Joins

In the previous section I briefly touched on whether the order of the tables in a join would affect the
execution. The answer was no for the query in Figure 10-6. However, we have other ways of expressing joins.
The two queries that follow have exactly the same execution plans in SQL Server:

SELECT LastName FROM Member m, Entry e WHERE m.MemberID = e.MemberID;

SELECT LastName FROM Entry e INNER JOIN Member m ON m.MemberID = e.MemberID;

The following two SQL statements specify the join in terms of nested queries. They have different
execution plans from the preceding queries but they are the same as each other:

SELECT LastName FROM Member m WHERE m.memberID IN
(SELECT MemberID FROM Entry);

SELECT LastName from Member m WHERE EXISTS
(SELECT * FROM Entry e WHERE m.MemberID = e.MemberID);

So, should we use or avoid nested queries? The answer, as always, is “it depends.”

171

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10~ EFFICIENCY CONSIDERATIONS

Before we compare the preceding two pairs of SQL statements we need to be aware that the output
from them is different. The first pair will produce duplicate names (repeating a member’s name for every
tournament they have entered). The second pair of queries will produce unique names. To be fair in the
comparison we will compare the following two queries, which have identical output:

SELECT DISTINCT LastName
FROM Entry e INNER JOIN Member m ON m.MemberID = e.MemberID;

SELECT LastName FROM Member m WHERE m.MemberID IN
(SELECT MemberID FROM Entry);

You can see the two plans in Figure 10-8.

Guery 11 Query cost (relative to the nun
Select DISTIECT lastKame from Iatry & Inner G e on m.MesberiD = e.Mesberid;

| B m (5%

P Stream Aggregate - Nested Loops P Clustered Index Scan (Clustered)
Cost: O % (Aggregate) {Inner Join) [Member]. [PK_Member] (=)
= Cost: 0 % Cost: 0 & Cost: 16 %
Index Seek (NonCluste)
(Entry) . [idx_entry] (e) . s .
Cost: 30 4 Inner join with
74%
R
Cuary It Queary coat (relative to the batel): 26
Selest LastEame from Meaber m wvhere I-WW.!:D from Eatey) s
@ icl : k%
. Kested Loops Strean Aggregate
SELECT
Cost: O & (Inner Join) (Aggregate) NeStEU CII.IEI')"
T Cost: 0 & Cost: 0 &
26%

e

Clustered Index Seek (Clustered)
[Member] . [PK_Member] (m]
Cost: 56 &

Figure 10-8. The same output but very different execution plans and costs

Figure 10-8 shows the plan for the query using the INNER JOIN keyword at the top and the plan for the
nested query underneath. The percentages are saying that if both these queries were executed in one batch
then the top one would account for 74 percent of the time and the bottom one 26 percent. That is, the INNER
JOIN query takes three times as long as the nested query.

The addition of the DISTINCT keyword in the top query accounts for much of the time. The optimizer
has chosen to sort the records in order to prepare to remove the duplicate names. This sorting operation
accounts for over half the total cost of the first query. Seeing this plan, you might consider adding an index
on LastName so that the records for the Member table could be accessed in LastName order, thus eliminating
the need for the time-consuming sort.

Unless you have real insider knowledge, it is just about impossible to second guess what the optimizer
will come up with. In the long run it probably doesn’t matter unless the tables have huge numbers of rows
or a query is particularly time critical. The important thing to remember is that if you suspect that a critical
query is causing a bottleneck, there are tools that can help you understand what is going on. You can then
experiment with indexes or the ways the query is expressed to see if that can speed things up.

172

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 - EFFICIENCY CONSIDERATIONS

Summary

Indexes can make a considerable difference in the performance of many queries. However, there is the
downside that they have to be maintained. With any tuning of a database it is important to know what the
important processes are. There is no point going to any lengths to improve a query that is rarely carried
out, and it is counterproductive to improve retrieval performance if most of the time-critical work in your
database is the updating of records.

The tools provided by many database systems can provide valuable information. Execution plans can
give insight into where the time is being spent in a query. Statistics can be collected about the use of indexes
or the distribution of data in a field. All this information is useful when deciding whether the addition of a
new index might be worth investigating.

Here are some general rules of thumb for creating indexes.

Primary Key

You need a very good reason not to have an index on the primary key field(s) of a table. Generally a clustered
index will be placed on the primary key by default.

Foreign Keys

Joins where the join condition is between a foreign key and a primary key are very common. For this reason
an index on foreign keys is usually worth considering.

WHERE Conditions

If you have queries that frequently use particular fields in a WHERE condition, then it is useful to index on
those fields. This enables an index seek rather than having to do a table scan to find the relevant rows.
This is most useful when the WHERE condition is selective, meaning that it will retrieve only a small subset
of the rows.

ORDER BY, GROUP BY, and DISTINCT

Sorting can be a very expensive operation if there are no indexes on the fields involved in the sorting
condition. Clearly ORDER BY requires rows to be sorted. Queries that contains DISTINCT or GROUP BY often
sort the records to remove duplicates or to aggregate the data. With appropriate indexes, an index scan can
be used to retrieve the rows in order, thus eliminating the need for an expensive sorting operation.

Use the Tools

Query optimizers are very sophisticated. They maintain statistics about your tables (number of rows, size
of columns, distribution of data, etc.) and use these to help determine an efficient execution plan for a
query. If you have a critical query that you want to be as efficient as possible, check the execution plans to
see where the time is being spent. You can then experiment with the effects of restating the query or adding
additional indexes.

173

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11

How to Tackle a Query

In the previous chapters, we saw different ways to express a query. We looked at the process approach, which
describes how tables and data could be manipulated to produce the required result. These queries are
expressed using keywords describing operations such as INNER JOIN and INTERSECTION. We also looked at
how to express queries in terms of the outcome approach, which describes the criteria that the resulting data
must satisfy rather than the process for retrieving the result.

However, sometimes when I am presented with a complicated natural language description of a query,
itis not uncommon to find that my mind goes blank. I have a lot of ammunition at hand, but for a moment
or two, have no idea which weapons to choose.

Usually, it is just a matter of being confident and relaxed. Large, complicated queries can always be
broken down into a series of smaller, simpler queries that can be combined later. This chapter describes how
to do just that.

Understanding the Data

It may sound like stating the obvious, but you can’t retrieve information from a database without
understanding where all the different elements of data are stored and how the relevant tables are
interrelated. Most of the time you will be querying a database designed by someone else, and probably
maintained and altered over time by various people. As well as understanding the tables and relationships
that have been implemented, it is also necessary to have a feel for the underlying real-world scenario. You
also must be alert to the unfortunate reality that the database may have been badly designed. This might
mean that you are not able to retrieve the required information accurately. We will consider this problem of
working against bad design a bit more in Chapter 12.

Determine the Relationships Between Tables

The best way to get an overview of the implementation of a database is to look at a schematic of the
relationships between the tables. Most database management software provides a way of viewing the fields
in the tables and the foreign key relationships between the tables. Figures 11-1 and 11-2 show the foreign key
relationship diagrams for our club database as depicted by SQL Server and Microsoft Access.

© Clare Churcher 2016 175
C. Churcher, Beginning SQL Queries, DOI 10.1007/978-1-4842-1955-3_11

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1955-3_12
http://www.it-ebooks.info/

CHAPTER 11 © HOW TO TACKLE A QUERY

"

Member
% MemberlD

LastName
FirstName

Typ O——0g MemberType

¢ Type Handica
; E Tournament

G ¢ TourdD

TourName

Fee Coach c0—0d | § MemberlD

Phone @ TourdD
JoinDate @ Year

TourType

Team

Gender

8

8
Team

F TeamName
PracticeNight

Manager

Figure 11-1. A database diagram from SQL Server

176

www.it-ebooks.info

http://www.it-ebooks.info/

Team

¥ TeamName
PracticeNight
Manager

Member_1

% MemberlD
LastName
FirstName
MemberType
Phone
Handicap
JoinDate
Coach
Team
Gender

Team_1

¥ TeamName
PracticeNight
Manager

Figure 11-2. A relationship diagram from Microsoft Access

Member

¥ MemberlD
LastName
FirstName
MemberType
Phone
Handicap
JoinDate
Coach
Team
Gender

CHAPTER 11 © HOW TO TACKLE A QUERY
Entry Tournament
1 T
¥ MemberlD _/—' ¥ TourlD
? TourlD — TourName
¥ Year TourType
Type
¥ Type
Fee

On the surface, the diagrams in Figures 11-1 and 11-2 look a bit different, but they represent exactly
the same database. The Access schematic in Figure 11-2 displays an additional copy of the Member and
Team tables. The two copies of the Member table arise from the self relationship between members (that
is, a member can coach other members). The additional copy of the Team table is because of the two
relationships between Member and Team: a member can be the manager of a team, and a member can belong
to a team. These relationships are depicted in the SQL Server diagram in Figure 11-1 by showing two lines
between the tables so that the tables are not shown twice. The different diagrammatic representations are
just a quirk of the different management systems. Both schematics represent the same set of tables and

relationships.

www.it-ebooks.info

177

http://www.it-ebooks.info/

CHAPTER 11 © HOW TO TACKLE A QUERY

The lines in the two diagrams in Figures 11-1 and 11-2 represent the foreign keys that were set up when
the tables were created. For example, the statement for creating the Member table contains two foreign key
constraints:

CREATE TABLE Member(

MemberID Int PRIMARY KEY,

LastName CHAR(20),

FirstName CHAR (20),

MemberType CHAR (20) FOREIGN KEY REFERENCES Type,
Phone CHAR (20),

Handicap INT,

JoinDate DATETIME,

Coach INT FOREIGN KEY REFERENCES Member,
Team CHAR (20),

Gender CHAR (1));

Recall from Chapter 1 that this line of code:
MemberType CHAR (20) FOREIGN KEY REFERENCES Type

means that if there is a value in the MemberType field then that value must exist in the primary key field in the
Type table. A line representing this foreign key relationship between the Member table and the Type table can
be seen in Figures 11-1 and 11-2.

This line of code:

Coach INT FOREIGN KEY REFERENCES Member

means that the values in the Coach field must already exist in the primary key field in the Member table; that
is, there is a self relationship on the Member table. This relationship is expressed in Figure 11-1 with the loop
connecting the Member table to itself. In Figure 11-2 the relationship is depicted by displaying a second copy
of the Member table.

Real World Versus Implementation

The database diagrams in the previous section represent how the database has been implemented and in
particular which foreign keys have been set up. When the database is first set up, the design will be based on
a conceptual data model that describes how the tables for a particular problem are interrelated. A number of
methods exist for representing a data model, such as entity-relationship (ER) diagrams and the UML class
diagrams we have been using in this book. Figure 11-3 shows the class diagram for the golf club. Refer back
to Chapter 1 if you need a refresher on how to interpret the lines and numbers.

178

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1955-3_1
http://dx.doi.org/10.1007/978-1-4842-1955-3_1
http://www.it-ebooks.info/

CHAPTER 11 © HOW TO TACKLE A QUERY

Coaches—>
Manages
0:n 1:1
Member i
MemberiD Team
LastName L PlaysFor
0:1 FirstName 0:n 0:1 TeamName
Phone PracticeNight
Handicap
Type 11 o= | JoinDate
Gender
TypeName
i
Fee Tournament
O:n Entry 0:n 0:1
has n .is“for_ﬁ TourlD
Year TourName
Grade

Figure 11-3. Class diagram representing the conceptual model

The class diagram in Figure 11-3 does not display foreign key fields in the classes. You can see this
by comparing the Entry table in Figure 11-3 with those in the two earlier database diagrams. The foreign
keys MemberID and TourID are missing as attributes in the class diagram. Foreign keys are simply a way of
representing the relationship between classes if we choose to implement the data model in a relational database.
If we decide to implement it in an object-oriented database we might not need foreign key fields at all.

A class diagram with well-labelled relationships gives us a much greater understanding of the
real-world situation than do the implementation diagrams in Figures 11-1 and 11-2. Have a look at the
relationships between Member and Team to see what I mean.

The database diagrams presented by relational database software show you the foreign keys that have
actually been set up. These may not tell the whole story. The developer may not have implemented the
relationship for coaching (for example) with a foreign key constraint on the Coach field. He or she may
have overlooked the requirement or may have decided to enforce the constraint that a coach must be an
existing member some other way (with a trigger or via the interface). However, even if there is no foreign
key constraint on the Coach field in the Member table, we still need to understand that members coach other
members if we want to design reliable queries about coaching.

In some cases, the implemented database may not have much in common with an accurate data model.
For example, if the golf club database contained separate tables for members, coaches, and managers or one
of the relationships between the Member and Team tables was not implemented, then the database diagram
and the data model would look quite different. The likelihood of getting reliable information would be low.
Chapter 12 looks at problems like this, although short of a major redesign there is sometimes not much you
can do.

179

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1955-3_12
http://www.it-ebooks.info/

CHAPTER 11 © HOW TO TACKLE A QUERY

What Tables Are Involved?

Once we have an understanding of the tables in the database and how they are related (conceptually as

well as by the existence of foreign keys), we can look at which tables you will need in order to extract the
subset of data required. Consider a query like “Find all the men who have entered a Leeston tournament.”
This sentence contains a few key words. Nouns are often a clue to what tables or fields we are going to need.
Verbs often help us find relationships. Let’s look at the nouns. “Tournament” is a big clue, and we have a
Tournament table, so that is a start. The word “men” is another noun in the query description. We don’t have
a Men table, but we do have a Member table with a Gender field.

It is fairly clear then that the Member and Tournament tables are going to play a part in our query. Now we
need to get a feel for how these two tables are related. Figure 11-4 shows the part of the SQL Server database
diagram containing these two tables. We see that that they are not directly related, but rather are connected
via the Entry table. That makes sense, because the verb “enter” is in our query description.

Member *
¥ MemberlD

LastName
FirstName

MemberType

Handicap Entry _ Tournament
Coach O—0g | § MemberlD oo_@;. ¥ TourD

Phone % TourlD
JoinDate @ Year

TourName

TourType
Team

Gender

Figure 11-4. Part of the database diagram showing the Member and Tournament tables

So, it looks like at least three tables will be involved in our query: Member, Tournament, and Entry. We
then use our understanding of the relational operators to determine how these tables could be combined.
Do we need a join or a union, or some combination of these and other relational operators? We'll look at
ways to help decide on the appropriate operations in later sections in this chapter.

Look at Some Data Values

Requests for information from a database are usually couched in rather informal and imprecise natural
language. Even a simple request, such as “Find all the men who have entered a Leeston tournament,” has a
few things we need to clarify. Having a look at the actual data in the tables can sometimes help.

Our query does not actually “find” the men, but rather returns some information about them. Looking
at the data values in the table will help us decide what information might be helpful. Presumably, the
questioner would like to see the names of the men. Do we need the IDs as well? We will need IDs if we want
to distinguish two members with the same name.

180

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 © HOW TO TACKLE A QUERY

It may not always be clear what some of the words in the question refer to. What is a “Leeston”
tournament? Is Leeston the name of a tournament, a type of tournament, or a location? Looking at a few
rows of the Tournament table can help us. We see that the TourName field has the value “Leeston” here and
there. Sometimes it might not be so easy to determine what imprecise words in the query description refer
to. It may be necessary to talk to the developer or users to get a better understanding of what information
they are trying to retrieve.

How do we determine which members are men? Fortunately, the Member table has a Gender column,
and it looks like we want values of M. Is selecting rows with values of M going to be enough? Might there be
some rows that have m or Male as the values? We’ll look at how to deal with issues of inconsistent data in the
next chapter. For now, let’s assume that men are denoted by M.

For the simple query in this example, we now have a more precise description. It is something like
“Retrieve the MemberID, LastName, and FirstName of the men (Gender = 'M') who have entered the
tournament where TourName = 'Leeston'”

You might think of some other particulars that need clearing up. It is often a good idea to ask why this
information is required. Do we just want to find which men have ever been to Leeston (because we want
to ask one of them some questions about the golf course), or do we want to know how many times our
male club members have entered Leeston tournaments (because we are interested in how popular the
tournament is with the members of the club)? These questions can have different answers, as you will see in
the “Retain the Appropriate Columns” section coming up soon.

Big Picture Method

My first attempt at a query is seldom elegant or complete. For a query such as “Find all the men who have
entered a Leeston tournament,” there are two ways I might tackle it, depending how my muses are working.
One way is the big picture. I do this if I have a bit of an idea of how to combine the tables. I will cover another
tactic in the section “No Idea Where to Start?’, which I use when I have no idea where to start!

In the big picture method, I like to combine all the tables I'll need and retain all the columns, so I can
see what is happening. I usually find it easiest to have an SQL window of some sort open so I can try small
queries to see if the intermediate results look promising for answering the overall question.

Let’s look at the big picture approach to the query “Find all the men who have entered the Leeston
tournament.” We decided we needed three tables: Member, Entry, and Tournament. These tables are all
connected by foreign keys, and this often suggests that joins will be useful. If it isn’t clear to you that a join
is what is required for the query, then resort to the methods in the “No Idea Where to Start?” section later in
this chapter.

Combine the Tables

Let’s assume that we think joining tables looks like a promising approach for the query about men entering
the Leeston tournament. You don’t have to do everything at once. Start slowly with some small queries to see
how things shape up.

To carry out a join, we need to find the fields on which to join. Review Chapter 3 if you need to refresh
your understanding of join-compatible fields. The Entry table is critical to this query, as it connects the
Member and Tournament tables. The Entry table has a foreign key field labeled TourID, which we can join
with the primary key of the Tournament table. Do that much first.

SELECT * FROM
Tournament t INNER JOIN Entry e ON t.TourID = e.TourID;

Figure 11-5 shows a few rows of the resulting virtual table.

181

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1955-3_3
http://www.it-ebooks.info/

CHAPTER 11 © HOW TO TACKLE A QUERY

t.TourlD -1 TourName - TourType - MemberiD 1 e.TourlD -1 Year -

24 Leeston Social 118 24 2014
24 Leeston Social 228 24 2015
25 Kalapol Social 228 25 2015
36 WestCoast Open 228 36 2015
38 Canterbury Open 235 38 2013
38 Canterbury Open 235 38 2015
40 Otago Open 235 40 2014
40 Otago Open 235 40 2015
25 Kaiapoi Social 239 25 2015
40 Otago Open 239 40 2013
24 Leeston Social 258 24 2014

Figure 11-5. Part of the result of joining the Tournament and Entry tables

The result shown in Figure 11-5 is certainly helpful. We can see the entries and the names of the
corresponding tournaments. We can see from the first two rows that members 118 and 228 have entered
a Leeston tournament. Now we need to find out whether 118, 228, and other members entering the
tournament are men and find their names. We can get this additional information by joining the virtual table
in Figure 11-5 to the Member table on the MemberID fields:

SELECT * FROM
(Tournament t INNER JOIN Entry e ON t.TourID=e.TourID)
INNER JOIN Member m ON m.MemberID = e.MemberID;

Figure 11-6 shows the result. I haven’t included all the columns in Figure 11-6 because there are a lot of
them. You will see shortly why I like to leave all the columns in as long as possible.

TourName - TourType - e.Member! - e.TourlD - m.Member - LastName - FirstName - Gender -

Leeston Social 118 24 118 McKenzie Melissa F
Leeston Social 228 24 228 Burton Sandra F
Kalapol Social 228 25 228 Burton Sandra F
WestCoast Open 228 36 228 Burton Sandra F
Canterbury Open 235 38 235 Cooper William M
Canterbury Open 235 38 235 Cooper William M
Otago Open 235 40 235 Cooper william M
Otago Open 235 40 235 Cooper william M
Kalapoi Social 239 25 239 Spence Thomas M
Otago Open 239 40 239 Spence Thomas M
Leeston Social 258 24 258 Olson Barbara B
Canterbury Open 258 38 258 Olson Barbara £
social 286 24 286 Pollard Robert ®
Leeston Social 286 24 286 Pollard Robert M
Leeston Social 286 24 286 Pollard Roben M
Leeston Social 415 24 415 Taylor William M
Kalapoi social 415 25 415 Taylor william M

Figure 11-6. Part of the result of joining the Tournament, Entry, and Member tables (just some columns)

182

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 © HOW TO TACKLE A QUERY

The virtual table shown in Figure 11-6 has all the information we need to find the required data. The
first two rows show that members 118 and 228 are women. The row for member 286 (with the circles) looks
more promising. How do we amend the query to find the appropriate subset of rows and columns?

Find the Subset of Rows

From Figure 11-6 we can see that the rows that we want to retain from the result of the join are where the
Gender field has the value M and the TourName field has the value Leeston. We can select these rows by
adding an appropriate WHERE clause to the previous query:

SELECT * FROM

(Entry e INNER JOIN Tournament t ON
INNER JOIN Member m ON m.MemberID =
WHERE m.Gender = 'M' AND t.TourName

.TourID=e.TourID)
.MemberID
'Leeston’;

N M e+

Figure 11-7 shows just some of the columns from the result of the query above. It has four rows: three
for Robert Pollard and one for William Taylor.

TourName ~ TourType -~ e.MemberiD ~ e.TourlD -~ Year - LastName -~ FirstName - Gender ~

Leeston Social 286 24 2013 Pollard Robert M
Leeston Social 286 24 2014 Pollard Robert M
Leeston Social 286 24 2015 Pollard Robert M
Leeston Social 415 24 2015 Taylor William M

Figure 11-7. Men who have entered Leeston tournaments (just some columns)

Why do we have three rows for Robert Pollard? The rows are identical except for the value of the Year
field. Robert has entered the Leeston tournament in three different years. We can see this quite clearly from
Figure 11-6 because we have left the Year column in the output. Had we retained only the name columns,
we might initially be a bit puzzled at having Robert Pollard repeated three times. What we do about the
repetition of Robert Pollard depends on understanding the initial question a bit more clearly, as you will see
in the next section.

Retain the Appropriate Columns

We have the appropriate subset of rows from our large join. Now we need to retain just the columns we
require by amending the SELECT clause, which is currently returning all the columns (SELECT *). This is not
always as simple as it might sound. The three rows for Robert Pollard give us a bit of a clue that things may
not be as straightforward. We have two possibilities.

If we only want to know who has entered the tournament in any year, then we want just the distinct
names Robert Pollard and William Taylor and perhaps their ID numbers. Amending the SELECT clause as in
the following query will provide that outcome:

SELECT DISTINCT m.MemberID, m.LastName, m.FirstName
FROM ...

183

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 © HOW TO TACKLE A QUERY

If the objective of the question is to find out how often men enter Leeston tournaments, then we want to
retain all the entries. In that case, it might be useful to retain the year as well to distinguish the rows as in the
following:

SELECT m.MemberID, m.LastName, m.FirstName, e.Year
FROM ...

Consider an Intermediate View

The SQL for the joining the Entry, Member, and Tournament tables is likely to be the basis of many queries
about entries in tournaments. For example, the following questions will all require a join of the Member,
Entry, and Tournament tables:

e Do junior members enter open tournaments?
e Which tournaments did William Taylor enter in 2015?
e Whatis the average number of Social tournaments that members entered in 2013?

As we are likely to use this large join many times, it can be convenient to make a view. A view is an
instruction for how to create a temporary table that we can use in other queries. The following is a first
attempt at the SQL for creating a view that retains all the fields from the joins:

--First Attempt (unsuccessful)

CREATE VIEW AllTournamentInfo AS

SELECT * FROM

(Entry e INNER JOIN Tournament t ON t.TourID=e.TourID)
INNER JOIN Member m ON m.MemberID = e.MemberID;

As it stands, this query will not run in most versions of SQL. This is because the view would have fields
with the same name; for example, there will be two fields called MemberID: one from the Entry table and one
from the Member table.

When you create a view, all the field names must be distinct. The view will not use the aliases to
differentiate the columns in the resulting table. The * in the SELECT clause needs to be altered to list all the
field names. We need to either include just one of the fields with duplicated names (MemberID and TourID) or
rename those that are duplicated (e.g., SELECT m.MemberID AS MMember, e.MemberID AS EMember). Thisis a
bit tedious, but if you are creating a view that you are likely to use many times, it is worth the effort.

Once we have the view Al1TournamentInfo, it can be used in the same way as any other table in our
queries. To find the names of men who have entered a Leeston tournament, we can use the view as shown here:

SELECT DISTINCT LastName, FirstName
FROM AllTournamentInfo
WHERE Gender = 'M' AND TourName = 'Leeston';

Spotting Keywords in Questions

The big picture approach assumes that we have decided how to combine the tables that will contribute to
the query. Sometimes, it will be obvious that, for example, certain tables need to be joined. Other times, it
may not be at all clear initially. In this section, we will look at some keywords that often appear in questions
and that can provide a clue about which relational operations are needed. If none of these help, remember
that we still have the “No Idea Where to Start?” section coming up!

184

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 © HOW TO TACKLE A QUERY

And, Both, Also

And and also are words that can be misleading when it comes to interpreting queries, and we will consider
this further in the next chapter. In this section, we will look at queries that have the idea of two conditions
needing to be met simultaneously. Queries that require two conditions to be met fall into two categories:
those that can be carried out with a simple WHERE clause containing a Boolean AND operator, and those that
require an intersection or self join.

To decide if a query really needs two conditions to be met, I usually look at a natural language statement
and see if I can reword it with the word both connecting the conditions. Consider these examples:

e Find the junior boys. (Both a male and a junior? Yes.)
e Find those members who entered tournaments 24 and 38. (Both tournaments? Yes.)
e Find the women and children. (Both a female and a child? No.)

The last query is the one that can sometimes trip people up. Although it contains the word and, the
common interpretation of “women and children” doesn’t mean someone who is both a female and a
child (that is a girl). Rather, the phrase means anyone who is either a female or a child (especially when
populating lifeboats).

The diagram in Figure 11-8 is a useful way to visualize whether the natural language word both really
means both or either. The circles represent the two sets: woman and children. Figure 11-8a shows the union
(only one condition must be satisfied) and Figure 11-8b the intersection (both conditions must be satisfied).

Women Children Women Children

a) Either aWoman or a child b) Both a Woman and a Child
Women UNION Children Women INTERSECTION Children
(“Women and Children”) (“Girls”)

Figure 11-8. Visualizing whether a union or an intersection is needed

When two conditions must be met, we are looking at the intersection of two groups of data, as in
Figure 11-8b. This doesn’t necessarily mean we must use the INTERSECT keyword. I find the following
question helpful in deciding what to do next:

Do I need to look at more than one row to decide if both conditions are satisfied?

Consider the query to find junior boys. This is going to need the Member table. Can we look at a single
row and determine if the member is both a junior and a boy? We can see in Figure 11-9 that both pieces of
information are available in a single row.

185

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 © HOW TO TACKLE A QUERY

MemberID - LastName - FirstName - MemberType - Gender -

178 Beck Sarah Social F
228 Burton Sandra Junior F
235 Cooper William Senior M
239 Spence Thomas Senior M
258 Olson Barbara Senior F
286 Pollard Robert @
290 Sexton Thomas Senior M
323 Wilcox Daniel Senior M
331 Schmidt Thomas Senior M
332 Bridges Deborah Senior F

Figure 11-9. Information about membership type and gender are available in a single row

In this situation, we can use a simple SELECT operation with the Boolean AND to check for both
conditions, as discussed in Chapter 2:

SELECT * FROM Member m
WHERE m.Gender = 'M' AND m.MemberType = 'Junior';

Now consider a different type of query. What about finding the members who have entered both
tournaments 24 and 36? To do this, we need to look at the Entry table (probably joined with the Member table
if we want the names). As we can see in Figure 11-10, we cannot check that a member, e.g., member 228, has
entered both tournaments by looking at a single row.

MemberID ~ TourlD - | Year -~

118 24 2014
@ 2015
5 25 2015

235 38 2013
235 38 2015
235 40 2014
235 40 2015

Figure 11-10. We need to investigate more than one row to check both tournaments

186

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1955-3_2
http://www.it-ebooks.info/

CHAPTER 11 © HOW TO TACKLE A QUERY

Where we need to satisfy both of two conditions and we need to look at more than one row in the table,
we can either use a self join (discussed in Chapter 5) or an intersection (discussed in Chapter 7).
If we use the self join then the query is:

SELECT DISTINCT el.MemberID
FROM Entry el INNER JOIN Entry e2 ON el.MemberID = e2.MemberID
WHERE el1.TourID = 24 AND e2.TourID = 36;

A query producing the same output but using the INTERSECT keyword is:
SELECT MemberID FROM Entry WHERE TourID

INTERSECT
SELECT MemberID FROM Entry WHERE TourID = 36;

24

Not, Never

Here are some examples of queries involving the words not or never:
e Find the members who are not seniors.
e Find members who are notin a team.
e Find members who have never entered a tournament.

Often when people see not in a description of a query, they immediately think of using a Boolean NOT
or a <> operator in a WHERE clause. This is fine for some queries, but will fail for others. As in the previous
section, I find the following test helpful to understand the category of the query.

Do I need to look at more than one row to decide if a condition is not true?

For the first two queries in the preceding bulleted list, we can look at a single row in the Member table
and decide whether that member satisfies the condition. In the first query, the condition in the WHERE clause
would be NOT MemberType = 'Senior' orMemberType <> 'Senior'.To find members who are notin a
team, we want the Team field to be empty, so a clause like WHERE Team IS NULL would do the trick.

To find the members who have never entered a tournament, what tables do we need? We are certainly
going to need the Entry table. We can decide if a member has entered a tournament by finding just one row
with his or her value of MemberID. To see if he or she has not entered a tournament, we need to look at every
row in the Entry table. We also must look at the Member table, because those members who have not entered
a tournament will not appear in the Entry table at all.

In situations like this, it can be helpful to think in terms of sets as in Figure 11-11.

187

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1955-3_5
http://dx.doi.org/10.1007/978-1-4842-1955-3_7
http://www.it-ebooks.info/

CHAPTER 11 © HOW TO TACKLE A QUERY

have entered
Tournaments

Figure 11-11. Finding members who have not entered tournaments by considering sets

In Chapter 7 we looked at how to represent the difference between two sets by using the process
approach and the keyword EXCEPT. The following query will return the IDs of members who have not
entered a tournament:

SELECT MemberID FROM Member
EXCEPT
SELECT MemberID FROM Entry;

If we think in terms of the outcome approach we can describe the criteria for returning a particular
MemberID. The following query is an example of using NOT IN to find the IDs of members who have never
entered a tournament:

SELECT m.MemberID FROM Member m
WHERE m.MemberID NOT IN
(SELECT e.MemberID FROM Entry e);

Chapter 7 has many examples of how to use nested queries such as this one.

All, Every

Wherever you see the words all or every in a description of a query you should immediately think of the
division operator. Here are some examples of such queries:

e Find members who have entered every open tournament.
e Has anyone coached all the juniors?

Examples of the SQL to carry out these types of query are explained in detail in Chapter 7.

188

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1955-3_7
http://dx.doi.org/10.1007/978-1-4842-1955-3_7
http://dx.doi.org/10.1007/978-1-4842-1955-3_7
http://www.it-ebooks.info/

CHAPTER 11 © HOW TO TACKLE A QUERY

No Idea Where to Start?

Now let’s look at the case where we have a good understanding of the intention of the natural language
query and have an idea of which tables are involved. We've checked for some key words, but still feel
confused. Now what? This is not uncommon (it happens to me regularly), so just relax.

When I have no idea where to start, I forget all about set operations and SQL. I stop thinking about
tables, foreign keys, joins, and so on. Instead, I open the tables I think will be needed to answer the question
and look at some of the data. I try to find examples that should be retrieved by the query. Then I try to write
down the conditions that make that particular data acceptable.

This is the outcome approach describing what conditions the rows returned by the query should obey.
It is a great way to proceed if you are having trouble deciding on the operations that could be involved in
manipulating the tables (the process approach).

Let’s try a query that stumped me a bit when I first thought of it: “Which teams have a coach as their
manager?” The steps described here can really help.

Find Some Helpful Tables

Let’s look at the key words in the query “Which teams have a coach as a manager?” We have the nouns
” o«

“team,” “coach,” and “manager” We have a table called Team, and Coach and Manager are fields in the Member
and Team tables, respectively. So the Team and Member tables look like a good place to start.

Try to Answer the Question by Hand

Next, take a look at the data in the tables and see how you would decide if a team had a coach as a manager.
Figure 11-12 shows some relevant columns of the two tables. Can you find a team that satisfies the condition?

TeamName - Manager - MemberID -~ LastName - |FirstName - Coach - Team -
TeamA 239 118 McKenzie Melissa 153
TeamB @ 138 Stone Michael
153 Nolan Brenda TeamB
176 Branch Helen
Team table 178 Beck Sarah
228 Burton Sandra
235 Cooper William 153 TeamB
239 Spence Thomas
258 Olson Barbara
286 Pollard Robert 235 TeamB
290 Sexton Thomas 235
Member table

Figure 11-12. How do we tell if a team has a coach as a manager?

We can find the IDs of the two team managers easily enough. They are the values in the Manager column
of the Team table (239 and 153). Now, how do we check if these members are coaches? Looking at the Member
table, we see that the coaches are in the Coach column. We need to check if either of our two managers appears
in the Coach column. Member 153 does appear in the Coach column, so (TeamB) is managed by a coach.

189

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 © HOW TO TACKLE A QUERY

Write Down a Description of the Retrieved Result

Figure 11-12 illustrates how we determined that TeamB has a coach as its manager. We now need to write
a description of the logic that leads to that conclusion. This is where I like to use my fingers to point to the
relevant rows to make it easier to describe the query, as in Figure 11-13.

TeamName - Manager -~ MemberiD - LastName -~ FirstName - Coach - Team -
TeamA 239 118 McKenzie Melissa 153
t &Teams @ 138 Stone Michael
153 Nolan Brenda TeamB
176 Branch Helen
Team table 178 Beck Sarah
m ¢g= 228 Burton Sandra
235 Cooper William 153 TeamB
239 Spence Thomas
258 Olson Barbara
286 Pollard Robert 235 TeamB
290 Sexton Thomas 235
Member table

Figure 11-13. Naming the rows to help describe the required data

We are going to check every team to decide if it should be retrieved. In Figure 11-13 this is represented
by the finger labeled t, which will visit each row in turn. We can describe whether the current row meets the
criteria as follows:

I'llwrite out the TeamName from row t in the Team table, if there exists a rowm in the Member
table where the value of coachm. Coach is the same as the manager of the team t.Manager.

We can now translate this almost directly into SQL using a nested query (discussed in Chapter 4). One
possible query would be:

SELECT t.TeamName FROM Team t
WHERE EXISTS
(SELECT * FROM Member m WHERE m.Coach = t.Manager);

Are There Alternatives?

First attempts at queries aren’t necessarily the most elegant. After all, we are following this route because we
were stumped in the first place. This may not be a problem for the execution of the query, as the optimizer
will likely find an efficient process. However, an inelegant SQL statement might be difficult for you and
others to understand at a later time. Following the technique of solving the query by hand and describing
the conditions often helps you understand what you are trying to do. That often makes the query seem much
easier than you first thought.

190

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1955-3_4
http://www.it-ebooks.info/

CHAPTER 11 = HOW TO TACKLE A QUERY

Having made a first attempt at the query described in the previous section, we might realize that we
could have thought of it this way: “The manager just has to be in the set of coaches” We can easily find the
IDs of coaches with the query:

SELECT m.Coach FROM Member m;
We can then use that in a nested query, as shown here:

SELECT t.TeamName FROM Team t
WHERE t.Manager IN
(SELECT m.Coach FROM Member m);

For me, the preceding query is simpler and easier to understand than the earlier one even though they
have equivalent results.
We could have phrased the condition illustrated in Figure 11-13 like this:

IfI have rows t in the Team table and m in the Member table then I'll write out the TeamName
from row t in the Team table, if t.Manager = m.Coach

Here is the preceding sentence translated into SQL:

SELECT t.TeamName FROM Team t, Member m
WHERE t.Manager = m.Coach;

The preceding query can be restated as a join:

SELECT t.TeamName
FROM Team t INNER JOIN Member m ON t.Manager = m.Coach;

Personally, I don’t find the join particularly intuitive for this query. I doubt if someone else looking at
the query would quickly understand its purpose.

Given there are several options for phrasing this query, it can be useful to check their relative
efficiencies (as discussed in Chapter 10) if you think that might be important (unlikely in this case). If we add
a DISTINCT phrase in the SELECT clause for the join queries then all four alternatives will produce the same
result. For SQL Server 2012, each of the queries had the same execution plan, so they were all carried out in
exactly the same way under the hood.

Checking Queries

We've written a query, run it, and retrieved some results. Is all well and good? Not necessarily. Just as first
attempts at a query may not be elegant, neither may they be correct. Mistakes might arise from simple
errors in the query syntax. These are usually easy to spot and correct. However, errors that result from subtle
misunderstandings of the question or of the data can be more difficult to find.

I can’t offer a foolproof way of checking that your query is correct, but I can give you some ideas for
catching potential errors. Basically, they boil down to checking that you do not have extra, incorrect rows in
your result and checking that you aren’t missing any rows. In this section, we will look at ways to spot that
your query might have a problem. In the next chapter, we will look at some of the common mistakes that
might be behind the errors.

191

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1955-3_10
http://www.it-ebooks.info/

CHAPTER 11 © HOW TO TACKLE A QUERY

Check a Row That Should Be Returned

Itis a good idea to have a rough idea of how many rows should be returned by your query: none, one, a few,
or lots. If you get a surprising number then that can be a clue that something could be wrong. Next, take a
look at your data and determine one record or row that should be returned by the query. In our example
about teams with managers as coaches, we can check through the tables and find a team that satisfies the
query. In Figure 11-13, we see that TeamB satisfies the conditions, so check that this team is in the output.

Remember that some queries may quite legitimately have no output. For example, it’s perfectly
reasonable that, with the data we have at any particular time, no teams are managed by a coach. However,
your query must work in all situations. If it is at all possible, make a copy of the tables, alter the data so that a
row meets the condition, and check that it is returned correctly.

Check a Row That Should Not Be Returned

Similar to checking for a row that should be returned, look through the data and find a team that doesn’t
have a coach as a manger. TeamA’s manager (member 239) does not appear as a coach in the Member table,
so make sure that team is not included in your output. Once again, it is a good idea to use some dummy data
to check this if the real data does not cover all eventualities.

Check Boundary Conditions

If a query has any sort of numeric comparison, then as well as checking for example data that should be
returned and that which shouldn’t, we should also check the edge cases. Consider a query where we want to
find people who have been members of our club for more than ten years. To be certain of the correctness, we
need to check three possibilities:

e Make sure no record is returned for someone with less than 10 years of membership
(for example, 8 years of membership).

e Make sure that someone who has belonged to the club for 12 years does get his
record retrieved.

e Check for someone who has been a member for exactly 10 years.

The last boundary condition is always tricky. It comes down to an interpretation of the natural language
question. Does “more than ten years” include people who joined in the season exactly ten years ago? Well,
it probably does, given that a single season covers a whole year. With numerical comparisons of this sort the
decision is whether we use > or >= in the select condition. It is important to check with users if there is any
doubt about the intention of the query.

Finding data in the tables that are exactly on the boundaries is not always easy. However, it is usually
possible to change the numeric value in your query to match the data. Find a particular member and change
the value you are checking against in the query to match their years of membership. If Harry joined 16 years
ago, change the query to compare with the value 16 and see if Harry is included (or not) as you expect.

Another important boundary condition, especially for aggregates and counts (covered in Chapter 8),
is the value 0. Consider a query such as “Find members who have entered fewer than six tournaments.”
Doing a grouped by count on the Entry table will return some rows for sure, and we can check for those who
have less than, more than, or exactly six entries. However, what about members who have never entered a
tournament? They won’t appear in the Entry table at all and will be missing from the results. So, whenever
aggregates are involved, always check for what happens for a count of 0. For example, does your query return
members who have entered no tournaments?

192

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1955-3_8
http://www.it-ebooks.info/

CHAPTER 11 = HOW TO TACKLE A QUERY

Check Null Values

Be aware that some of the values you are checking against may be nulls (discussed in Chapter 2). How does
your query about team managers cope with the situation where the Manager field is null? Try it out on some
dummy data and see. What do we expect (or want) to happen if there is a null in the JoinDate field when we
run the query about length of membership?

Summary

The first rule about starting a query is to not panic. The next rule is to take small steps and look at the
intermediate output to see if what you have done so far is helping you. Retain as many columns as possible
in the initial queries so you can check that you understand what is happening.

Figure 11-14 gives a summary of some of the steps you can take when first starting out on a query. The
diagram doesn’t cover the whole process, but you should be able to make a reasonable start with these steps.
Refer to the relevant chapters for more help.

193

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1955-3_2
http://www.it-ebooks.info/

CHAPTER 11

Find the tables you need.
Look at example data

Determine how the tables
are related from the data
model

Do you think
joins will be OK?

Join the tables
(Chapter 3)

v

Select required rows
(Chapter 2)

|

Project required columns
(Chapter 2)

HOW TO TACKLE A QUERY

\

Look for keywords

oS

Do you need to
look at 2 rows?

keywords
no help i
Still no
—) :
idea?

|

Division
(Chapter 7)

Try the outcome approach.
See this chapter for clues.

No Yes
(Both) (Not)
Self Join Difference
(Chapter 5) (Chapter 7)
Intersection
(Chapter 7)
Check

Check for data that should be returned
Check for data that should not be returned

Check boundary conditions and 0 for numerical comparisons

Check what happens with nulls

Figure 11-14. Some steps to help you get started on a tricky query

194

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12

Common Problems

In this book, we’ve looked at different ways to tackle a variety of categories of queries. However, even if

a query retrieves some valid-looking rows, all may not be well. In the previous chapter, we looked at the
importance of checking the output to confirm that (at least some of) the expected rows are retrieved, as well
as checking to make sure that (at least some) incorrect (or irrelevant) rows are not being returned.

The problems that can befall queries are not just a matter of having the wrong syntax in SQL statements,
although that can certainly happen. Problems with the design of the tables or with data values can also affect
the accuracy of queries. In this chapter, we will look at some common design and data problems, and also at
some of the most common syntactic mistakes.

Poor Database Design

Good database design is absolutely essential to being able to extract accurate information. Unfortunately,
you will sometimes be faced with databases that are poorly designed and maintained. Often there is not a
great deal you can do. Sometimes you can extract something that looks like the required information, but it
should be presented with a caution that the underlying data was probably inconsistent. In this section we
look at some common problems and how they might be mitigated.

Data That Is Not Normalized

One of the most common data design mistakes is to have tables that are not normalized. We looked at an
example of this in Chapter 1. Rather than having two tables, one for members and one for membership
information such as fees, all this data was stored in a single table. As can be seen in Figure 12-1, this has the
effect of storing the fee information several times.

© Clare Churcher 2016 195
C. Churcher, Beginning SQL Queries, DOI 10.1007/978-1-4842-1955-3_12

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1955-3_1
http://www.it-ebooks.info/

CHAPTER 12 © COMMON PROBLEMS

MemberlD ~ | LastName ~ FirstName - Phone - Handicap ~ MemberType ~| Fee ~

118 McKenzie Melissa 963270 30 Junior $150.00
138 Stone Michael 983223 30 Senior $300.00
153 Nolan Brenda 442649 11 Senior $250.00
176 Branch Helen 589419 Social $50.00
178 Beck Sarah 226596 Social $50.00
228 Burton Sandra 244493 26 Junior $150.00
235 Cooper William 722954 14 Senior $300.00
239 Spence Thomas 697720 10 Senior $300.00
258 Olson Barbara 370186 16 Senior $300.00

Figure 12-1. A non-normalized Member table containing fee information

What happens now if we are asked to find the fee for senior members? The query here will result in two
values: 300 and 250.

SELECT DISTINCT Fee
FROM Member
WHERE MemberType = 'Senior'

Although the two values retrieved by the query may be surprising, nothing is wrong with the query
or the result. The value for Brenda Nolan, which is inconsistent with the other senior members, gives us
the additional fee result. That value may be a typographical error, or it may indicate some sort of discount
for Brenda, or it may be an instance of last year’s fee that has not been updated. In either case, there is a
problem with the design. The design should allow for regular fees for each grade to be recorded consistently
and, if necessary, allow for storage of additional discounting regimes. At this point, other than redesigning
the tables, there is nothing we can do but return the list of fees that have been recorded against the senior
members. It is just worth understanding the underlying issues.

Another problem you may encounter is a single table that stores multivalued data. The versions of the
club tables that we have been using allow a member to belong to just one team. The club may evolve to have
several different types of teams (interclub teams, social teams, pairs, foursomes, and so on) that members
can belong to at the same time. When the requirement for a second team to be recorded against a member
arises, a common short-term fix is to add another Team column to the existing table. Figure 12-2 shows how
the Member table might have evolved to allow members to be associated with up to three teams.

MemberlD -~ | LastName ~ FirstName -~ Teaml ~ Team2 ~ Team3 -~
118 McKenzie Melissa

138 Stone Michael

153 Nolan Brenda TeamB

176 Branch Helen TeamA TeamB

178 Beck Sarah

228 Burton Sandra TeamC

235 Cooper William TeamB

239 Spence Thomas TeamA TeamC TeamB
258 Olson Barbara

Figure 12-2. Poor table design to store more than one team for a member

196

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 ©* COMMON PROBLEMS

Now, suppose we are asked to find those members in TeamB. Brenda has TeamB in the Team1 column,
Helen has TeamB in the Team2 column, and Thomas has TeamB in the Team3 column. We need to check
every team column for the existence of TeamA. This isn’t difficult, as the query here shows:

SELECT * FROM Member
WHERE Teaml = 'TeamB' OR Team2 = 'TeamB' OR Team3 = 'TeamB';

While we can extract the information we require from the table in Figure 12-2, the design is going to
cause problems. We will have trouble if we have queries like “Find members who are in both TeamA and
TeamB” or “Find members who are in more than two teams.” You could probably devise queries that would
answer these questions, but they would be ungainly. I would ask for the database to be redesigned properly
before trying to fulfill such requests. If you meet resistance you can ask them what they will do if a member
belongs to four teams or maybe twenty teams.

If members can belong to several teams we have a Many-Many relationship, which should be represented
in arelational database with an intermediate Membexrship table' — something like the one in Figure 12-3.

MemberiD ~ Team
153 TeamB
176 TeamA
176 TeamB
228 TeamC
235 TeamB
239 TeamA
239 TeamB
239 TeamC

Figure 12-3. A Membership table that records the relationship between members and teams

The Membership table in Figure 12-3 records relationships between members and teams and is very
similar to the Entry table, which records relationships between members and tournaments. The Membership
table will need to be joined with the Member table to find the associated names, but if that is done we will
have the same information as the one in Figure 12-2. With the new Membership table, we can now use all the
relational operations, as described in previous chapters, to easily answer questions like “Who is in TeamA
and TeamB?” and “Who is in three or more teams?”

We can create a Membership table with the following SQL code. The table includes only two foreign keys,
to the existing Member and Team tables, and those fields also form a concatenated primary key.

CREATE TABLE Membership(

MemberID INT FOREIGN KEY REFERENCES Member,
Team CHAR(20) FOREIGN KEY REFERENCES Team,
PRIMARY KEY (MemberID, Team));

'Refer to my book Beginning Database Design (New York: Apress, 20xx) for more information.

197

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 © COMMON PROBLEMS

If you don’t mind a bit of manual fiddling about, you can populate the new Membership table with
repeated update queries like the one here:

INSERT INTO Membership (MemberID, Team)

SELECT MemberID, 'TeamA'

FROM Member

WHERE Teaml = 'TeamA' OR Team2 = 'TeamA' OR Team3 = 'TeamA'

The query finds each member who is in TeamA and creates an appropriate row in the Membership table.
If there are not too many teams, you can manually alter the second and last lines of the query for each team
(TeamA, TeamB, and so on) and populate the new Membership table quite quickly. You then need to delete
the Team columns from the Member table in Figure 12-2, and the database will be greatly improved.

Tables with No Primary Key

The previous section gave an example of the problems you can run into if the underlying database has
inappropriate tables. You will sometimes find that the database has the correct tables, but they do not

have suitable primary or foreign key constraints. In these cases, the underlying data values are likely to be
inconsistent. While your queries may be correctly formed, the results will be unreliable. In this section, you
will see how you can use queries to find some inconsistencies that may be present in your data.

Suppose that the Membership table in Figure 12-3 had been created without a primary key. This would
allow the table to have duplicate rows. For example, we might have two identical rows for member 153 being
on TeamB.? A query to count the number of members on TeamB will produce an incorrect result.

If you try to add a primary key when duplicates already exist, you will get an error. This is one way to
find where problems are! Before you can add a primary key you will need to find the duplicated rows and
investigate how to resolve the issue. One convenient way to find duplicated values is to do a GROUP BY query
(see Chapter 7) on the fields that should be unique and use a HAVING clause to find those with two or more
entries. The following query will return duplicated values for our potential primary key fields MemberID and
Team:

SELECT MemberID, Team, Count(*)
FROM Membership

GROUP BY MemberID, Team

HAVING Count(*) > 1;

If the table has fields other than the primary key fields, you need to manually inspect the values in those
columns to decide which row should be deleted. The Membership table, which has only primary key fields,
causes a different problem. How do we delete just one copy of the row for member 153 in TeamB? Because
the entire rows are the same, we can’t differentiate them, and so any query that deletes one row will delete
both. You software might have a tabular-like interface that will allow you to delete just one of the rows, but if
not you may have to delete both rows and manually add one back. If there are a lot of duplicate values, then
another way to resolve the situation is to create a new table and then insert just the distinct values from the
original table. The following query shows how to populate the new table NewMembership:

INSERT INTO NewMembership
SELECT DISTINCT MemberID, Team
FROM Membership;

*This is the difference between a relation that is defined as having unique tuples and a table that can have duplicate rows.
See Appendix 2 for further information.

198

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1955-3_7
http://www.it-ebooks.info/

CHAPTER 12 ©* COMMON PROBLEMS

You will then need to remove all the foreign key constraints referencing the old table, delete that table,
rename the new table, and recreate the foreign keys. It’s easier to make sure every table has a primary key
from the start!

Tables with Missing Foreign Keys

Another problem is having a Membership table (as in Figure 12-3) with no foreign key constraints. We can
then find ourselves with the problem of having a row for member 1118 being in TeamA when no member
1118 is listed in the Member table. We will not be able to add a foreign key constraint if the data has this sort of
problem.

There are several ways to find such values of MemberID in the Membership table that do not have a
matching entry in the Member table. One way is to use a nested query (discussed in Chapter 4), as shown here:

SELECT ms.MemberID FROM Membership ms
WHERE ms.MemberID NOT IN
(SELECT m.MemberID FROM Member m);

Having found the unmatched values for MemberID, we will then have to decide if it is a typographical
error or if we are missing a member from the Member table.

When the data is in a consistent state it will be possible to add a foreign key constraint to the
Membership table to make sure it stays that way. The following query will add the constraint to the MemberID
field:

ALTER TABLE Membership
ADD FOREIGN KEY (MemberID)
REFERENCES Member;

Similar Data in Two Tables

Sometimes a database might have extra tables that are not required and will cause problems. An example for
our club database might be having a separate table for coaches or managers, as shown in Figure 12-4. The
rationale might have been that the extra table would make it easier to create lists of coaches and their phone
numbers (which would otherwise require a self join or nested query).

199

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1955-3_4
http://www.it-ebooks.info/

CHAPTER 12 © COMMON PROBLEMS

MemberIlD -~ LastName -~ FirstName - Phone ~

153 Nolan Brenda 442649
235 Cooper William 685563
Coach Table

MemberiD - LastName - FirstName - Phone - Handicap - MemberType - JoinDate - Coach - |Gender -

118 McKenzie Melissa 963270 30 Junior 28-May-05 153 F
138 Stone Michael 983223 30 Senior 31-May-09 M
153 Nolan Brenda 442649 11 Senior 12-Aug-06 F
176 Branch Helen 589419 Social 06-Dec-11 B
178 Beck Sarah 226596 Social 24-Jan-10 ©
228 Burton Sandra 244493 26 Junior 09-Jul-13 153 F
235 Cooper william (722954 14 Senior 05-Mar-08 153 M
239 Spence Thomas 697720 10 Senior 22-Jun-06 M
258 Olson Barbara 370186 16 Senior 29-Jul-13 F
286 Pollard Robert 617681 19 Junior 13-Aug-13 235 M
290 Sexton Thomas 268936 26 Senior 28-Jul-08 235 M
Member Table

Figure 12-4. An additional table for coaches can lead to inconsistent data

The additional table will inevitably cause problems. In Figure 12-4, we already see inconsistent data for
William Cooper’s phone number. The only real cure is to get rid of the extra table.

If the purpose of an additional table like the one in Figure 12-4 is unclear, we can use set operations to
investigate which members appear in each of the tables. The intersection operator will find rows for people
who are in both tables, and the difference operator will find those people who are in one and not the other.
This may help with understanding what the tables represent.

Once the design is correct, creating a view that shows the coach information would be helpful for users
who don’t want to be creating self joins every time they want information just about coaches. The following
query does the trick:

CREATE VIEW CoachInfo AS
SELECT * FROM Member
WHERE MemberID IN

(SELECT Coach FROM Member);

Inappropriate Types

Having the fields in a table created with inappropriate types is another problem that can make queries look
as though they are not behaving. I've seen whole databases where every field is a default text field.

Having the wrong field type means the data misses a great deal of validity checking. For example, if our
Member table had all text fields, we could end up with values like “16a” or “10” in the Handicap column, which
should only have integer numbers, or text like “Brenda” in the Coach column, which should only contain IDs
of members.

200

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 ©* COMMON PROBLEMS

Incorrectly entered values aside, inappropriate types give rise to other problems. Each type has its
own rules for ordering values. Text types order alphabetically, numbers order numerically, and dates order
chronologically. Different orderings clearly will be an issue if we add an ORDER BY clause to a query. A text
field containing numbers will order alphabetically, giving an order like “1,” “15,” “109,” “20,” “245,” and “33,
as described in Chapter 2.

Incorrect types also cause problems when making comparisons. If we ask for values to be compared,
the comparison used will depend on how the particular field type involved is ordered. For numbers entered
in a text field, we will get comparisons such as “109” < “15” or “33” > “245” as per the ordering described
in the previous paragraph. This will cause some odd output if we ask for people with handicaps less than
5, for example. It can be difficult to sort out what is going wrong, because the query syntax is fine and the
data appears to be OK. Going behind the scenes to check out the data type might not be something that is
immediately obvious.

It is possible to change the type of a column in an existing table, but I find it a bit scary. For example,
if you change from text to numeric values, “10” will probably be fine but “10” will cause an error. I prefer a
more conservative approach: I make a new table with the appropriate types, and then insert the old values
with the aid of a conversion function. The query that follows shows how we could populate a new table
NewMember with IDs and names and with the old text values for the Handicap column converted to numeric
values:

INSERT INTO NewMember (MemberID, LastName, FirstName, Handicap)
SELECT MemberID, LastName, FirstName, CONVERT(INT Handicap)
FROM Member;

This way, we still have the original data if the conversions result in something unexpected.

Problems with Data Values

Even with a well-designed database, we still have the issue of the accuracy of the data that has been entered.
As the query designer, you can’t be held responsible for some accuracy problems. If a person’s address has
been entered incorrectly, there is not much anyone can do to find or fix the problem (apart from waiting for
the mail to be returned to sender). However, you can be aware of a number of things, and even if you can’t fix
the problems, you can at least raise some alarms. In addition, it is sometimes possible to fix some problem
data with careful use of update queries.

Unexpected Nulls

Nulls can cause all sorts of grief in databases. The real problem (as discussed in Chapter 2) is that a null can
mean either that the value is unknown or that the value doesn’t apply for a particular record. If a member in
our club has a null value for his Team field, it could mean he isn’t on a team or it could mean that heison a
team but we haven’t recorded which one. As with other data problems, there is not much we can do about
this. However, with something like the Gender field, we know that for the golf club, all members need to
identify as either male or female. The nulls mean that for some members the gender has not been recorded.
The same applies to fields like date of birth.

If, for example, you are asked for a list of the men in the club, it is often a good idea to also run another
query for those rows where Gender IS Null.You can then say to your client, “Here are the men, and here
are the members I'm not sure about.” Such an approach can help avoid letters from aggrieved gentlemen
who don’t appear on the list.

Be aware of the differences between queries with the following two counts: COUNT(*) and
COUNT (Gender). The first will count all the rows in the database; the second will count all the rows with a
non-null value for gender. In the ideal golf club, these would be the same. In practice, they may not be.

201

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1955-3_2
http://dx.doi.org/10.1007/978-1-4842-1955-3_2
http://www.it-ebooks.info/

CHAPTER 12 ©* COMMON PROBLEMS

Incorrect or Inconsistent Spelling

Any database will have spelling mistakes in the data at some point. Mr. Philips may appear as Phillips,
Philipps, or Philps for various reasons, ranging from illegible handwriting on the application form to a
simple data-entry mistake. If you are trying to find information about Mr. Philips and you suspect there
might be a problem, you can use functions or wildcards to find similar data. Different products have different
ways of doing this.

We can use the keyword LIKE to find similar spellings. The wildcard symbol % (* in Access) stands for
any group of characters. Our several versions of spelling for Philips would all be retrieved by the following

query:

SELECT * FROM Member
WHERE LastName LIKE 'Phil%’;

Another problem involving incorrect or inconsistent spelling arises when you might be expecting a
particular set of values or categories in a field. For example, in our Member table, we might be expecting
values M or F in the Gender column, but there may be the odd male or mvalue. In the MemberType column,
we expect Junior, Senior, or Associate, but in practice may find jnior or senor. If the tables have been
designed with appropriate check constraints or foreign keys, this won’t be a problem. However, often these
constraints are not present, so it is useful to check for problematic entries with a query such as the one here:

SELECT * FROM Member
WHERE MemberType NOT IN ('Senior', 'Junior', 'Associate');

Having found the rows that do not conform to expectations it may be possible to amend the data and
then apply a check constraint so that it remains consistent. For example, the following query will apply a
constraint on the MemberType field so that only the valid values can be entered:

ALTER TABLE Member
ADD CONSTRAINT Chk_type CHECK(MemberType IN
('Senior', 'Junior', 'Associate'));

Extraneous Characters in Text Fields

A common problem when trying to retrieve data that matches a text value is leading or trailing spaces and
other nonprintable characters that have found their way into the data.

If we have a field like FirstName in our database, for example, we may find that there are some spaces
before or after the name. Sometimes, if a character field is specified as being a particular length, trailing
spaces may be added. If a row has a name has been stored as ' Dan ' then a WHERE clause with the
condition FirstName = 'Dan' may not retrieve that row. Most database software will have several functions
for dealing with text. There are likely to be forms of ¢rim functions, which remove spaces from the start and
end of text values. Check out your documentation to see what your implementation has.

The RTRIM() function in the SQL statement that follows will strip any spaces from the right end of the
FirstName value before making the comparison:

SELECT * FROM Member
WHERE RTRIM(FirstName) = 'Dan’;

202

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 ©* COMMON PROBLEMS

The preceding query does not strip the spaces from the field permanently. The RTRIM() function just
returns a value without the spaces in order to make the comparison. However, you can use update queries
to permanently remedy some of these data inconsistencies. The query that follows shows how to ensure no
values in the FirstName column of the Member table have any leading (LTRIM()) or trailing (RTRIM()) spaces.
It essentially replaces all the values with trimmed values:

UPDATE Member
SET FirstName = RTRIM(LTRIM(FirstName));

A more disturbing problem is characters that look like spaces but are actually some other white space
characters. This sometimes occurs when data is cut and pasted or otherwise moved between various
products and different implementations. This can take some tracking down.

Two other data-entry gotchas are the numbers 0 (zero) and 1 (one) being entered instead of the letters
o (oh) and 1 (el). You can spend hours trying to debug a query that is looking for “John” or “Bill,” but if the
underlying data has been mistakenly entered as “JOhn” or “Bil1” you will search in vain.

The moral is that weird things can happen with data values, so when the troubleshooting of your query
syntax fails, check the underlying data.

Inconsistent Case in Text Fields

If your SQL implementation is case sensitive, you need to be aware that some data values may not have

the expected case. Dan may have had his first name incorrectly entered into the Member table as “dan.” In
case-sensitive implementations, a query with the clause WHERE FirstName = 'Dan' will not retrieve his
information. As mentioned in Chapter 2, using a function that converts strings of characters to uppercase
will help find the right rows. In the query that follows we convert FirstName (temporarily) to uppercase, and
then compare that with the uppercase rendition of what we are seeking:

SELECT * FROM Member
WHERE UPPER(FirstName) = 'DAN';

It is quite difficult to find problems with case in names because not all names conform to being
lowercase with an uppercase first letter; for example, de Vere and McLennan. But, for fields like Gender (M
or F) or MemberType (Junior, Senior, or Associate), we know what we expect the values to be. The best way to
ensure that they are consistent is to put a check constraint on the field as discussed earlier in this chapter.

Diagnosing Problems

In the previous sections, we saw problems that can arise with poor database design and inconsistent or
incorrect data. Much of the time, however, if the result of your query is not looking quite right, it is probably
because you have the wrong SQL statement. The statement may be retrieving rows that are different from
what was expected. In Chapter 10 there is a section on some ways that you can check to see if the result of a
query is what is expected.

In the previous chapter, I suggested a way to approach queries that lets you build the query up slowly so
you can check that each step is returning appropriate rows. However, if you are presented with a full-blown,
complex query that is not delivering as expected, you need to pare it down until you find where the problem
lies. If you have noticed a problem, then you have a good place to start. You have either noticed an expected
row is missing or that a row not satisfying the requirements has been retrieved. Concentrate on finding
where in the query that problem is. The following sections offer some suggestions.

203

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1955-3_2
http://dx.doi.org/10.1007/978-1-4842-1955-3_10
http://www.it-ebooks.info/

CHAPTER 12 ©* COMMON PROBLEMS

Check Parts of Nested Queries Independently

Where you have one query nested inside another, the first thing to check is that the nested part is behaving
itself. Take a look at this query:

SELECT *

FROM Member m

WHERE m.MemberType = 'Junior' AND Handicap <
(SELECT AVG(Handicap)
FROM Member);

If you are having trouble with a query like this, cut and paste the inner query and run it independently.
Check to see if it is returning the correct result. If this is OK, you can try doing the outer query on its own. To
do this, just put some value in place of the inner query (such as Handicap < 10) and see if that returns the
correct results. If you can narrow down the problem to one part of the query, you have made a good start.

This approach doesn’t work if the inner and outer parts of the query are related (see Chapter 4), but
some of the following techniques might help with that situation.

Understand How the Tables Are Being Combined

Many queries involve combining tables with relational operations (join, union, and so on). Make sure you
understand how the tables are being combined and whether that is appropriate. Consider a query such as
the following:

SELECT m.LastName, m.FirstName

FROM Member m, Entry e, Tournament t

WHERE m.MemberID = e.MemberID

AND e.TourID = t.TourID AND t.TourType = 'Open' AND e.Year = 2014;

Three tables are involved in this query. It might take a moment to figure out that they are being joined.
Make sure that is appropriate for the question being asked. Chapter 10 has examples of keywords in
questions and the appropriate ways to combine tables.

Remove Extra WHERE Clauses

After combining tables, usually only some of the resulting rows are required. In the query in the previous
section, only part of the WHERE clause is needed for the join operations. After the join, only the rows satisfying
t.TourType = 'Open' AND e.Year = 2014 are retained. If you have rows missing from your result, it is often
useful to remove the parts of the WHERE clause that are selecting a final subset of the rows after the join. If the
rows are still missing, then you know that (for this example) the problem is occurring in the join.

Retain All the Columns

I'm a big fan of always saying SELECT * in the early stages of developing queries that involve joins. If we suspect
a problem with the joins, then by leaving all the columns visible, we can see if the join conditions are behaving
as expected. Once we are happy with the rows being retrieved, we can retain just the columns required.

However, if we are combining tables with set operations, this approach will be counterproductive, as
projecting the right columns is critical (see the “Do You Have Correct Columns in Set Operations” section
later in this chapter).

204

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1955-3_4
http://dx.doi.org/10.1007/978-1-4842-1955-3_10
http://www.it-ebooks.info/

CHAPTER 12 ©* COMMON PROBLEMS

Check Underlying Queries in Aggregates

If you have a problem with a query involving an aggregate (for example, SELECT AVG(Handicap) FROM ...
WHERE ...) check that you have retrieved the correct rows before the aggregate function is applied. Change
the query to SELECT * FROM ... WHERE ..., and confirm that this returns the rows for which you want to
find the average. In fact, l recommend always doing this with an aggregate, because it is difficult to otherwise
check if the numbers being returned are correct.

Common Symptoms

Having tried some of the steps in the previous chapter, you will have simplified your query to isolate where
the problem is. In this section, we will look at some specific symptoms and some likely causes.

No Rows Are Returned

It is usually easy to spot a problem with your query when no rows are returned and you know that some
should be. Questions that involve “and” or “both” can often have this problem. For example, consider a
question such as “Which members have entered tournaments 24 and 36?” A common first attempt (and I
still catch myself doing this sometimes) is a query statement such as:

SELECT * FROM Entry
WHERE TourID = 24 AND TourID = 36;

The preceding query asks for a row from the Entry table where TourID simultaneously has two different
values. This never happens, and so no rows are retrieved. The cure is to use a self join (covered in Chapter 5)
or an intersection operation (covered in Chapter 7).

Getting no rows returned from a query may also be an extreme example of one of the problems in the
next section.

Rows Are Missing

It can be difficult to spot if some rows are being missed by your query, especially when the set of retrieved
rows is large. If you get 1,000 rows returned, you might not notice that one is missing. Careful testing is
required, and some ideas for how to do this were discussed in Chapter 10. It is often worthwhile to run
through the following list of common errors to see if any might apply.

Should You Have an Quter Join?

Using an inner join when an outer join is required is a very common problem. Suppose that we are trying
to get a list of member information that includes names and fees. For this, we need the Member table (for the
names) and the Type table (for the fees). A first attempt at a query might be as follows:

SELECT m.LastName, m.FirstName, t.Fee
FROM Member m, Type t
WHERE m.MemberType = t.Type;

205

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1955-3_5
http://dx.doi.org/10.1007/978-1-4842-1955-3_7
http://dx.doi.org/10.1007/978-1-4842-1955-3_10
http://www.it-ebooks.info/

CHAPTER 12 ©* COMMON PROBLEMS

We know there are, say, 135 members, but we are getting only 133 rows from the query. The issue here
is that we are performing an inner join (see Chapter 3), so any members with a null value for member type
will not appear in the result. Of course, this may be the result you want (those members who have a type and
fee), but it is not the correct output if you want a list of all members and the fees for those who have them.

An outer join (also discussed in Chapter 3) that includes all the rows of the Member table will solve this
problem. Whenever you have a join, it is worth thinking about the join fields and considering what you want
to happen where a row has a null value in that field.

Have Selection Conditions Dealt with Nulls Appropriately?

Nulls can cause quite a few headaches if you forget to consider their effect on your queries. The previous
section looked at nulls in a joining field. You also need to remember to check for comparisons involving
fields that may contain nulls. We looked at this in Chapter 2 and also earlier in this chapter.

Consider two queries on the Member table with selection conditions Gender = 'M' and Gender <> 'M'.
It is reasonable to think that all rows in the Member table should be returned by one of these queries.
However, rows with a null in the Gender field will return false for both these conditions (any comparison
with a null returns false), and the row will not appear in either result.

Say we want to get a list of members of our club who are not particularly good players (to offer them
coaching, perhaps). Someone may suggest a query like the following to find members who do not have a low
handicap:

SELECT *
FROM Member m
WHERE m.Handicap > 10;

The problem is that the preceding query will miss all the members with no handicap. Altering the WHERE
condition tom.Handicap > 10 OR m.Handicap IS Null will help in this situation.

Are You Looking for a Match with a Text Value?

It is very disturbing to be trying to find rows for Jim, to be able to see Jim in the table, and to have your query
return nothing. This may be caused by one of the problems we looked at in the “Problems with Data Values”
section earlier in this chapter.

One quick way to eliminate the possibility of dodgy text values is to use LIKE for comparisons. For
example, where you have = 'Jim', replace it with LIKE '%Jim%'. If the query then finds the row you were
expecting (possibly along with some others), you know the problem is with the data. As noted earlier, putting
the wildcard % (or * in Access) at the beginning and end of the string will find leading or trailing spaces and
other nonprintable characters.

Have You Used AND Instead of OR?

We discussed the problem of queries involving the words and or or in the previous chapter (in the “Spotting
Key Words in Questions” section). I'll recap briefly. The word and can be used in natural English to describe
both a union and an intersection. When we say “women and children,” we usually mean the union of the set
of females and the set of young people. When we say “cars that are small and red,” we mean the intersection
of the set of small cars and the set of red cars.

206

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1955-3_3
http://dx.doi.org/10.1007/978-1-4842-1955-3_3
http://dx.doi.org/10.1007/978-1-4842-1955-3_2
http://www.it-ebooks.info/

CHAPTER 12 ©* COMMON PROBLEMS

If we are looking for “women and children” and use the selection condition Gender = 'F' AND age < 12,
we are actually retrieving the intersection of women and children (or girls). We need the condition to be
Gender = 'F' OR age < 12.

It is very easy to unwittingly translate the and in the English question to an AND in the query
inappropriately, which can result in missing rows. If in doubt, try drawing the Venn diagrams described in
the previous chapter.

Do You Have Correct Columns in Set Operations?

If your query involves intersection or difference operations, the result may have fewer rows than expected
because you have projected the wrong columns initially. We looked at this in Chapter 7. Here is a brief
example for intersection; the same issue applies to difference operations as well.

We want to find out who has entered both tournaments 25 and 36. We realize that we need an
intersection and try the following query:

SELECT * FROM Entry
WHERE TourID = 25
INTERSECT

SELECT * FROM Entry
WHERE TourID = 36;

No rows will be returned from this query, regardless of the underlying data. The intersection finds rows
that are exactly the same in each set. However, all the rows in the first set will have 25 as the value for TourID
25, and all the rows in the second set will have the value 36. There can never be a row that is in both sets.
What we are looking for is the member IDs that are in both sets, so the SELECT clauses in each part of the
query should be SELECT MemberID FROM Entry.

The preceding query is an extreme example of retaining the wrong columns, resulting in no rows
being returned. The discussion around Figure 7-14 in Chapter 7 shows how retaining different columns
in intersection and difference queries can result in very different results. You need to ensure that you are
retaining the columns that are appropriate for the question being asked.

More Rows Than There Should Be

It is often easier to spot extra rows than it is to notice that rows are missing from your query result. You only
need to see one record that you weren’t expecting, and you can concentrate on the different parts of your
query to see where it failed to be excluded. Here are a couple of causes of extra rows.

Did You Use NOT Instead of Difference?

With questions containing the words not or never, a sure way to get extra rows is to use a condition in a WHERE
clause when you really need a difference operator. We looked at this issue in Chapter 4. To recap, consider a
question like “Which members have never entered tournament 25?” A common first attempt using a select
condition is:

SELECT * FROM Entry
WHERE TourID <> 25;

207

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1955-3_7
http://dx.doi.org/10.1007/978-1-4842-1955-3_7#Fig14
http://dx.doi.org/10.1007/978-1-4842-1955-3_7
http://dx.doi.org/10.1007/978-1-4842-1955-3_4
http://www.it-ebooks.info/

CHAPTER 12 ©* COMMON PROBLEMS

The condition in the WHERE clause checks rows one at a time to see if they should be included in the
result. If there is a row for member 415 entering tournament 36, then that row will be retrieved, regardless
of the possibility that another row shows member 415 entered tournament 25. For example, if member
415 has entered tournament 25 and four other tournaments, we will retrieve four rows when we were
expecting none.

The correct procedure for this type of question is to use a nested query (see Chapter 4) or the EXCEPT
difference operator (see Chapter 7). We need to find the set of all members (from the Member table) and
remove the set of members who have entered tournament 25 (from the Entry table).

If we employ the process approach we might come up with the following query, which looks for the
difference between the two sets:

SELECT MemberID FROM Member
EXCEPT

SELECT MemberID FROM Entry
WHERE TourID = 25;

If we started with an outcome approach we might have arrived at a nested query, as here:

SELECT MemberID FROM Member
WHERE MemberID NOT IN
(SELECT MemberID FROM Entry
WHERE TourID = 25);

Have You Dealt with Duplicates Appropriately?

It sometimes takes a little thought to decide what needs to be done with duplicate records retrieved from a
query. By default, SQL will retain all duplicates. The following two requests sound similar:

e Give me alist of the names of my customers.
e Give me alist of the cities my customers live in.

In the first, we probably expect as many rows as we have customers; if we have several Johns, we
expect them all to be retained. In the second, we expect one row per city. If we have 500 customers living in
Christchurch, we don’t expect all 500 rows to be returned.

In the query to find the cities, we want only the distinct values, so we should use the DISTINCT keyword:

SELECT DISTINCT (City) FROM Customer;

Incorrect Statistics or Aggregates

If we are using aggregates such as counting, grouping, or averaging and the underlying query misses rows
or returns extra rows, then clearly the statistics will be affected. A couple of other things to consider are how
nulls and duplicates are being handled.

SQL will not include any null fields in its statistics. For example, COUNT (Handicap) or AVG(Handicap)
will ignore any rows with nulls in the Handicap field. It is also important to consider what you want done
with duplicates, especially for counting functions. COUNT (Handicap) will return the number of members who
have a value in the Handicap column. COUNT(DISTINCT Handicap) will return the number of different values
in the Handicap column; if all the members have a handicap of 20, it will return a count of 1.

208

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1955-3_4
http://dx.doi.org/10.1007/978-1-4842-1955-3_7
http://www.it-ebooks.info/

CHAPTER 12 ©* COMMON PROBLEMS

The Order Is Wrong

If you have used an ORDER BY clause in your query and you are having problems with the order in which the
rows are being presented, there is often a problem with the underlying data. Review the “Problems with Data
Values” section earlier in this chapter. Check that the field types are appropriate (for example, numeric values
aren’t being stored in text fields) and that text values have consistent case and no extraneous characters.

Common Typos and Syntax Problems

Sometimes a query doesn’t run because of some simple problem with the syntax — that is, the way the
query is worded. Syntax problems involve things like missing parentheses or incorrect spellings of fields or
keywords. Hopefully the database software will alert you if there is a problem with the syntax, but, as some
editors are quite basic, that may or may not be helpful in finding and correcting the problem. Here are a few
things to check:

e Quotation marks: Most versions of SQL require single quotation marks around text
values, such as 'Smith' or 'Junior’, although some use double quotation marks
in some circumstances. If you are cutting and pasting queries, be sure the correct
quotation marks have been transferred. When I cut and paste the queries in this
book from Word to Access, the quotation marks look OK, but I need to re-enter them.
Also check that all the quotation marks are paired correctly. Don’t use quotes around
numeric values. Something like Handicap < '12' will cause problems if Handicap is
a numeric field.

e Parentheses: These are required in nested queries and also can be used to help
readability in many queries (such as those with several joins). Check that all the
brackets are paired correctly.

e Names of tables and fields: It seems obvious that you need to get the names of tables
and fields correct. However, sometimes a simple misspelling of a table name or field
can cause an unintelligible error message. Check carefully.

e Use of aliases: If you use an alias for table names (for example, Member m), check that
you have associated the correct alias with each field name.

o Spelling of keywords: Some software for constructing SQL queries will highlight
keywords, so it is very apparent if you have spelled them incorrectly. If your version
doesn’t show this, then check keyword spelling, too. I often type FORM instead of FROM
or AVERAGE () instead of AVG().

e IS Null versus= Null: Some versions of SQL treat these quite differently. IS Null
always works if you are trying to find fields with a null value.

209

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 ©* COMMON PROBLEMS

Summary

Before you can correct a query, you need to notice that it is wrong in the first place. It is preferable that we
find potential problems before our users find them for us. Always check the rows returned from a query, as
described in the previous chapter. When you do discover errors, the following are some ideas for tracking
down the cause of the problem:

e Check that the underlying tables are combined appropriately (join, intersection, and
so on).

e Simplify the query by removing selection conditions and aggregates to ensure the
underlying rows are correct.

e Retain all the columns in a query with joins until you are sure that the tables have
been combined appropriately.

e Checkeach part of nested queries or queries involving set operations independently.

e Check queries for questions with the words and or not to ensure you have not used
selection conditions when you need a set operation or nested query.

e Check that the columns retained in queries with set operations are appropriate.
e Check that nulls and duplicates have been dealt with properly.

e Check that underlying data types are correct and that data values are consistent.

210

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 1

Example Database

Most of the examples in this book use the golf club database. Visit the catalog page for this book on the
Apress website, look under the Source Code/Downloads tab, and you will find an Access version of this
database and also the SQL scripts for creating and populating the tables. Figure A1-1 shows how the tables in
the database are related, and Figure A1-2 shows the data in the tables.

.)

Type

Member

¥ MemberdD
LastName
FirstName

berType

7 Type
Fee

Figure Al-1. The data model for the golf club database

© Clare Churcher 2016

Phone
Handicap
JoinDate
Coach
Team

Gender

[Entry

% MemberD
¥ TourdD
T Year

Tournament -

¢ ToudD
TourName

TourType

Team

- ---?- :I'ean';ﬁ_arne

PracticeNight

M

9

C. Churcher, Beginning SQL Queries, DOI 10.1007/978-1-4842-1955-3_13

www.it-ebooks.info

211

http://www.it-ebooks.info/

APPENDIX 1 © EXAMPLE DATABASE

MemberiD -1 | LastName -1 FirstName - Handicap - Gender - Team - MemberType - Coach - Phone - JoinDate - |

118 McKenzie Melissa 30F Junior 153 963270 28-May-05
138 Stone Michael 30M Senior 983223 31-May-09
153 Nolan Brenda 11F TeamB Senior 442649 12-Aug-06
176 Branch Helen F Social 589419 06-Dec-11
178 Beck Sarah F Social 226596 24-Jan-10
228 Burton Sandra 26 F Junior 153 244493 09-Jul-13
235 Cooper William 14 M TeamB Senior 153 722954 05-Mar-08
239 Spence Thomas 10MmM Senior 697720 22-Jun-06
258 Olson Barbara 16 F Senior 370186 29-Jul-13
286 Pollard Robert 19M TeamB Junior 235 617681 13-Aug-13
290 Sexton Thomas 26 M Senior 235 268936 28-Jul-08
323 Wilcox Daniel M TeamA Senior 665393 18-May-09
331 Schmidt Thomas 25M Senior 153 867492 07-Apr-09
332 Bridges Deborah 12F Senior 235 279087 23-Mar-07
339 Young Betty 2F TeamB Senior 507813 17-Apr-09
414 Gilmore Jane 5 F TeamA Junior 153 459558 30-May-07
415 Taylor William ™ TeamA Senior 235 137353 27-Nov-07
461 Reed Robert im TeamA Senior 235 994664 05-Aug-05
469 Willis Carolyn F Junior 688378 14-Jan-11
487 Kent Susan F Social 707217 07-Oct-10
Member Table
MemberiD - TourlD - Year - TeamName - PracticeNight - Manager -

118 24 2014 TeamA Tuesday 239

228 24 2015 TeamB Monday 153

3 ﬁ ﬁ Team Table

235 38 2013

235 38 2015

235 40 2014 I

25 40 2015 TourlD - TourName - TourType -

239 25 2015 24 Leeston Social

239 40 2013 25 Kaiapoi Social

258 24 2014 36 WestCoast Open

258 38 2014 38 Canterbury Open

286 24 2013 40 Otago Open

286 24 2014

e o Tournament Table

415 24 2015

415 25 2013

415 36 2014

415 36 2015 I

415 38 2013 Lo @O

a15 8 2015 Associate 60

415 40 2013 Junior 150

415 40 2014 Senior 300

415 40 2015 Social 50

Entry Table Type Table

Figure AlI-2. The tables and data for the golf club database

212

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 2

Relational Notation

Relational database theory is based on set theory.! When we query a database we are essentially formulating
a question to retrieve a subset containing the information we require. There are two approaches for
retrieving a subset of data. Relational algebra is a description of the operations to perform on the data

(in the body of the book we called this the process approach). Relational calculus describes conditions that
the retrieved data must satisfy (we referred to this as the outcome approach). In this appendix we introduce
the formal notation to formulate queries using relational algebra and calculus. This will allow you to think
about queries from a different perspective. If you are interested in following up on the formal mathematics,
There are more theoretical publications available.? No new concepts are presented here that have not been
discussed previously—it is just the notation that is different. The more formal notation allows queries to

be expressed very concisely, and the underlying mathematics can be useful when dealing with complex
situations. We will use the database described in Appendix 1 for the examples.

Introduction

As an example of how thinking of data as sets can help us, let’s consider a set that contains information
about all the people on Earth. We can define a subset that contains all the men, another that contains all the
golfers, another that contains people over 40, and another that contains Italians. These sets can all overlap,
as shown in the diagram in Figure A2-1. This type of diagram is called a Venn diagram.

'The relational theory was first introduced by the mathematician E. F. Codd in June 1970 in his article “A Relational
Model of Data for Large Shared Data Banks” in Communications of the ACM: 13, pp. 377-387.
For example: Databases in Depth: Relational Theory for Practitioners by C.J. Date (City, state: O’Reilly, 2005).

© Clare Churcher 2016 213
C. Churcher, Beginning SQL Queries, DOI 10.1007/978-1-4842-1955-3_14

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 2 RELATIONAL NOTATION

Figure A2-1. Venn diagram showing subsets of people

Figure A2-1 helps us visualize the sets that satisfy criteria such as Italian men over 40 who play golf (the
area where all the circles overlap) or people who don’t play golf (everywhere in the large rectangle except
the Golfers circle). These two areas are easy to describe; however, it is not always simple to define the subset
we require. The area containing Italian golfers who are 40 or under takes a bit more effort to find, and it is
difficult to describe without the diagram to help.

A database is only useful if you can accurately extract the appropriate subset of data when you need it.
As the criteria become more complex and the number of tables increases, it can become difficult to keep
everything in your head and correctly describe what you are trying to find. It is in these more complex
situations that having a more formal and succinct notation can be very helpful.

Relations, Tuples, and Attributes

It is common to think of a database as a number of tables. A table (e.g., Person) will have a several columns.
Each row in the table represents an individual person with the appropriate values for that person appearing
in each column. More formally, a database is referred to as a set of relations, and each relation is a set of
tuples. A tuple is a set of attribute values; for example, {Ali, Brown, 2/8/1967}.

A relation consists of a heading and a body. The heading is a description of the data that is contained in
the relation. Part of that description is a set of attribute names; for example, {FirstName, LastName, Date_of_
Birth}. In addition, each attribute has a domain, or set of allowed values. For example, Date_of Birth must
be a valid date. A domain can be a primitive type (e.g., integer, string) or a user-defined type (e.g., WeekDays
={Mon, Tue, Wed, Thu, Fri, Sat, Sun}). A database schema is the set of headings for all the relations plus any
constraints that have been defined.

214

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 2 © RELATIONAL NOTATION
The body of the relation contains the data values. It consists of tuples containing values for each of the
attributes.

Table A2-1 shows analogous terms for the two ways of describing a database.

Table A2-1. Comparative Terms

Relational Term Database Term

Database (set of relations) Database

Relation (set of tuples) Table

Tuple (set of attribute values) Row

Attribute name Column Name

Domain Column datatype (primitive or user defined)

The main differences between an (unkeyed) table and a relation or set of tuples are that there is no
order to the tuples and each tuple must be unique.

Figure A2-2 shows how we can visualize a relation as a set of tuples.

{Mary, West, 11/9/1967)

Figure A2-2. A relation is a set of tuples.

The traditional way of representing a set in a Venn diagram, as in Figure A2-1, reinforces the concept
that there is no order to elements in a set. There is no first or next or previous element. The usual format
for a table can imply that the rows have some sort of intrinsic order. When you query a database then,
theoretically, the tuples returned have no guaranteed order unless you specify an order as part of the query.
In practice, a simple query is likely to return rows in the same order each time it is repeated because under
the hood the same operations will be carried out. However, with large tables, as the number of tuples
changes the number and order of the operations may change to improve efficiency, or data that has been
previously cached may be accessed first. These may affect the order in which tuples are returned.

215

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 2 RELATIONAL NOTATION

As discussed in Chapter 1, having unique tuples in a relation is essential if we are going to be able to
identify our data correctly. If, in the relation in Figure A2-2, we found we had another person called John
Smith born on 2/6/1988 we would be in trouble, because we would not be able to distinguish the tuples for
the two people. We need enough information stored about people so that they can be differentiated. The
concept of a primary key (a set of attributes that must be unique for every tuple) ensures uniqueness.

Once we think of our data as sets of tuples then all the power of set operations is at our disposal.

SQL, Algebra, and Calculus

SQL is a language that is mostly based on relational calculus. Relational calculus describes the conditions
the retrieved tuples must obey. In the following SQL query, the WHERE clause describes the resulting tuples:

SELECT LastName, FirstName, Handicap, PracticeNight
FROM Member, Team
WHERE TeamName = Team AND Handicap < 15;

Although SQL is a calculus-based language, more and more keywords suggesting set operations from
relational algebra have been included in the syntax over the years. In many cases this makes the queries
easier to understand. The preceding query can also be written using the syntax associated with the relational
algebra inner join operation, as follows:

SELECT LastName, FirstName, Handicap, PracticeNight
FROM Member INNER JOIN Team ON TeamName = Team
WHERE Handicap < 15;

The preceding SQL appears to suggest that the join is carried out first and then those tuples with
Handicap < 15 are retrieved. This is not the case in practice. SQL is simply a description of the resulting
tuples and does not imply how the query will be carried out. The database’s query optimizer will determine
how the tuples are retrieved, and a good optimizer would carry out the two queries in the same (most
efficient) way.

In the remainder of this appendix we will look at a more formal notation for relational algebra and
calculus. I will often provide an equivalent SQL expression and will choose one that is similar to the algebra
or calculus depending on the section. The important thing to remember is that all SQL expressions are
descriptions of the query output, and the way they are expressed does not necessarily determine the
operations involved in retrieving the resulting data.

Relational Algebra: Specifying the Operations

With relational algebra, we describe queries by considering a sequence of operations or manipulations
on the relations in the database. Some operations act on one relation (unary operations), while others
are different ways of combining data from two relations (binary operations). Every time we perform an
operation on one or more relations the result is another relation. This is a very powerful concept and means
we can build up complicated queries in small steps by taking the result of one operation and applying
another operation to it.

The relational algebra operations and the symbols commonly used to represent them are shown in
Table A2-2.

216

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1955-3_1
http://www.it-ebooks.info/

APPENDIX 2 I RELATIONAL NOTATION

Table A2-2. Relational Operators and Their Symbols

Operation Symbol
select c
project b1
Cartesian product X
union U
difference -

inner join >4
intersection n
division +

The operations are not completely independent. For example, later we will see that an inner join is
defined as a Cartesian product followed by a select and a project. The first five operators in Table A2-2 can
be used to define the final three, which is why SQL does not need to provide keywords representing division
and intersection. However, it is convenient to be able to specify the equivalent SQL for an operation such as
inner join because it occurs so frequently in database queries. We will now introduce a more formal notation
for each of the operations and show how it can be used to specify queries.

Select

The select operation returns just those tuples from a relation that satisfy a particular condition involving
the attributes. An example of using a select operation would be to retrieve all the senior members from our
Member relation. The Greek letter sigma (o) stands for the select operation, and the condition, MembexrType
'Senior’, is specified in a subscript. The following expression shows the notation for using select to return
senior members:

(Member)

O-MemberType ='Senior’

Each tuple in the relation Member is investigated, and if the tuple meets the condition it is included in
the resulting relation. In table terms, the select operator retrieves a subset of the rows of the table. All of the
attributes or columns are returned.

In SQL the WHERE clause contains the condition for the select operator and controls the tuples or rows
that are returned. The SQL equivalent of the select operation Oyerpertype—Senior’ (Member) is:

SELECT *
FROM Member m
WHERE m.MemberType = 'Senior';

Note that the SELECT keyword in SQL has nothing directly to do with the relational algebra select
operation. More about that in the next section.

217

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 2 RELATIONAL NOTATION

Project

The project operation returns a relation where the attributes are a subset of the attributes of a relation. The
project operator is denoted by = (pi), and the attributes are listed in a subscript. In table terms, project
returns a subset of the columns of a table. The following statement would return the FirstName and
LastName attributes from every tuple in the relation Member:

77'-FirstName,LastN ame (Member)

How many tuples or rows would you expect to be returned from the Member relation as a result of the
operationn, . (Member)? The tuples consist of the single attribute FirstName. The Member relation
has 20 tuples, but that includes two occurrences of William, two of Robert, and three of Thomas. Earlier I
mentioned that the result of every operation results in another relation. The result of &, (Member) must
be a set of unique tuples. The duplicates will all be removed, leaving us with 16 unique names.

Think of the project operation as returning all the unique combinations of values for the specified
attributes.

In SQL the attributes to be returned by the project operator are specified in the SELECT clause. I know
this seems perverse, but remember that SQL syntax is based on relational calculus, not on algebra. The SQL
equivalent of the project operationm, ... Lasvame Member) is:

SELECT DISTINCT FirstName, LastName
FROM Member;

Combining Select and Project

Because the result of an algebra operation on a relation always results in another relation, we can apply the
operations successively. The following expression first uses the select operation to find all the tuples for
senior members (the inner parentheses) and then applies the project operation to return just the names:

TFirstName, LastName (GMemberType:'Senior’ (Member))

Does the order of the operations make a difference? Consider the following expression where the order
of the select and project operations is reversed:

GMemberType:’Senior' (ﬂ:FirstName,LastName (Member))

The tuples resulting from the initial project operation (inner parentheses) have just the two attributes
FirstName and LastName. The MemberType attribute is no longer in the tuples, so we cannot use it in the
select condition. The algebra expression is not valid.

The SQL statement equivalent to our combined select and project operations is:

SELECT FirstName, LastName FROM Member
WHERE MemberType = 'Senior';

Because SQL is based on relational calculus rather than algebra, there is no concept of operations or
order in the preceding statement. It is just a description of the tuples to be retrieved.

218

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 2 I RELATIONAL NOTATION

For more complex queries it is sometimes helpful to introduce intermediate relations so we can break
up the query into smaller steps. For example, we might call the relation resulting from the select operation
SenMemb, as in the following:

SenMemb < Oy ertype Member)

='Senior’ (

Now we can use the project operation on the newly named relation SenMemb to return the names:

(SenMemb)

ﬂFirstName, LastName

In SQL we can use views to break down queries into simpler steps. A view can be thought of as
instructions for creating a new temporary relation:

CREATE VIEW SenMemb AS
SELECT * FROM Member
WHERE MemberType = 'Senior';

The view can then be used in other queries:

SELECT LastName, FirstName
FROM SenMemb;

Cartesian Product

The select and project operations are both unary operations, which means they act on a single relation.
We will now look at binary operations, which act on two relations. The result of both unary and binary
operations is a single relation.

A Cartesian product is the most versatile binary operation because it can be applied to any two
relations. The notation for a Cartesian product between two relations Member and Team is:

Member x Team

Each tuple in a Cartesian product will have a value for each attribute from the two contributing
relations. The tuples in the resulting relation consist of every combination of tuples from the original
relations. If one relation has N tuples and the other M, then the resulting relations will have N x M tuples.
In table terms, the Cartesian product takes two tables of any shape and produces a table with a column for
each column in the original tables and a row for every combination of the original rows. Figure A2-3 shows
abbreviated Member and Team tables and their Cartesian product.

219

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 2 RELATIONAL NOTATION

MemberlD - LastName - FirstName - Team ~ TeamName - PracticeNight -
286 Pollard Robert TeamB TeamA Tuesday
461 Reed Robert TeamA TeamB Monday
Member Team

MemberID -~ LastName -~ FirstName - Team -~ | TeamName - PracticeNight -~

286 Pollard Robert TeamB TeamB Monday

286 Pollard Robert TeamB TeamA Tuesday

461 Reed Robert TeamA TeamB Monday

461 Reed Robert TeamA TeamA Tuesday
Member X Team

Figure A2-3. The Cartesian product of Member and Team

The SQL for a Cartesian product use the keyword CROSS JOIN, as in the following statement:

SELECT * FROM Member CROSS JOIN Team;

Inner Join

In relational algebra an inner join is defined as a Cartesian product followed by a select operation that
compares the values of attributes from the two original relations. The attributes being compared must have
the same domains.

Referring to the tables in Figure A2-3, we can specify a Cartesian product followed by a select that will
return only those tuples where the value of Team is the same as the value of TeamName:

O Team=TeamName (Member X Team)

We can use the join operation to produce an equivalent expression. The join symbol x is used, and the
select, or join, condition is expressed in a subscript as shown in the following expression:

Member X Team

Team=TeamName

The preceding expressions are equijoins where the select condition uses equality. This is the most
common type of join. The more general case is a 0-join (theta-join) where the expression can include
comparisons such as > and <. A natural join is one where the two relations each have one or more attributes
with the same name. By default, the join condition will be equality on the values of the attribute with the same
name, and one of those duplicate attributes will be removed from the final result with a project operation.

When we have expressions involving several operations we often have a choice as to the order in which
the operations are applied. For example, if we want to retrieve the practice night for Mr. Pollard, we can
either select Pollard from the Member relation before the join or afterward from the result of the join. These
two options are shown here:

Member >< Team=TeamName

TpracticeNight (GLastName ='Pollard’ (Team))

Team=TeamName

Memb er) > Team)

nPracticeNight ((O-LastNamez’Pollard’

220

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 2 I RELATIONAL NOTATION

The tuples resulting from the preceding two expressions are the same; however, the method for
obtaining them is quite different. The first will involve first creating a large relation that is the Cartesian
product of Member and Team. In the second expression, we reduce the number of tuples in the Member relation
to just those for Pollard and then construct a much smaller Cartesian product. Clearly the second expression
will be more efficient.

SQL being based on calculus rather than algebra does not imply any ordering of operations. While the
SQL statement that follows might suggest that the join is carried out first, it is just a statement describing the
tuples to be retrieved:

SELECT *
FROM Member INNER JOIN TEAM ON Team = TeamName
WHERE LastName = 'Pollard’;

The query optimizer in a database system will determine an effective method for carrying out the query.

Union, Difference, and Intersection

Because a relation is defined as a set of tuples, the three binary set operations union (U), difference (-),
and intersection (N) can be used for retrieving information. For relational algebra there is the additional
constraint that the two relations involved in these operations must be union compatible. This means that the
two relations must have the same number of attributes, and the corresponding attributes in each relation
must be defined on the same domains.

For example, consider two relations with the following attributes:

Staff:{FamilyName, FirstName, Salary}
Students:{LastName, Name, Address, Course}

The set operations will help us to retrieve the names of all the people (union), the names of those
people who are both students and staff members (intersection), and those who are students but not staff and
vice versa (difference). (This, of course, makes naive assumptions about the uniqueness of names!)

We cannot compare tuples in the relations as they stand because they have different attributes. Staff
and Student are not union compatible. One has a Salary while the other has an Address and a Course.
However, the names can be compared, as they have the same domains (text) in each relation. We can
retrieve just the names by applying a project operation to each of the original relations as follows:

(Staff)

n-FamilyName, FirstName

(Student)

ﬂ-LastName, Name

Strictly speaking, for union compatibility the attributes should be identical (same name and domain).
However, in practice just the domains need to be the same, and the order of the attributes determines what
is compared. We can now apply any of the three set operations to the new union-compatible relations. For
example:

(Staff) Ur Student)

ﬂFamilyN ame, FirstName LastName, Name(

221

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 2 RELATIONAL NOTATION

The SQL expression is:

SELECT FamilyName, FirstName FROM Staff
UNION
SELECT LastName, Name FROM Student;

We can continue applying operations to the results of our expressions. If taken slowly it is quite
straightforward. For example, if we want to find the names and salaries of those staff who are also students
we can build up a series of relational algebra operations starting with the initial relations. See the following:

1. Project out the names to get union-compatible relations.
Use the intersection operation to find those staff who are also students.

Join the result with the Staff relation so we have access to the Salary attribute.

> e N

Project the Names and Salary attributes.

You can see each of these operations in the following expression—just read the brackets from the inside
to the outside:

ﬂFamilyName, FirstName,Salary ((nFamilyName, FirstName (Staff) ﬂ

7LastName, Name (Student)) e FamilyName=LastName AND FirstName=Name (Staff))

Union, difference, and intersection are not independent. An intersection can be expressed in terms of
two difference operations. Assuming StaffNames and StudentNames are two union-compatible relations, we
have that:

StaffNames () StudentNames = StaffNames —(StaffN ames — StudentNames)

Draw yourself a sequence of pictures to convince yourself of this.

Some versions of the SQL language do not implement the INTERSECT keyword because the query can
be restated, as just seen, using EXCEPT (the SQL syntax for difference). The following SQL query uses the
INTERSECT keyword:

SELECT * FROM StaffNames
INTERSECT
SELECT * FROM StudentNames;

An equivalent query can be constructed using the EXCEPT keyword:

SELECT * FROM StaffNames
EXCEPT
(
SELECT * FROM StaffNames
EXCEPT
SELECT * FROM StudentNames

)s
222

www.it-ebooks.info

http://www.it-ebooks.info/

Division

APPENDIX 2 I RELATIONAL NOTATION

Division is the last of the relational algebra operations we will consider. The easiest way to understand the
division operation is with an example.
If we want to know which members of our club have entered every tournament, we need two pieces
of information. We need information about the members and the tournaments they have entered, which
we can get from the Entry table, and we also need a list of all the tournaments, which comes from the

Tournament table.

In Figure A2-4, you can see how division works. It shows the MemberID and TourID attributes from the
Entry relation, and the TourID attribute from the Tournament relation. The result of the division is the set of
MemberID values that have a tuple in the Entry relation for every value TourID.

MemberlD -~ TourlD ~

118
228
228
228
235
235
235
235
239
239
258
258
286
286
286
415
415
415
415
415
415
415
415
415

T MemberiD, TouriD(ENtry)

24
24
25
36
38
38
40
40
25
40
24
38
24
24
24
24
25
36
36
38
38
40
40
40

TourlD ~
. 24 —
- 25 =
36
38
40
Tl rourip(TOUrnament)

Result

MemberlD -~

415

Figure A2-4. Using the division operator to find members who have entered all tournaments

www.it-ebooks.info

223

http://www.it-ebooks.info/

APPENDIX 2 RELATIONAL NOTATION
The relational algebra expression for the division operation in Figure A2-4 is as follows:

n—MemberID,TourID (Entry) * T TourlD (Tournament)

There is no SQL keyword for the division operator. However, it is possible to express division in terms of
other algebraic operations. It can be a bit daunting if presented in one step, so we will take it slowly.

First, find all the members who have entered a tournament and, by way of a Cartesian product, create
tuples for each of those members paired with every tournament. We'll call the resulting relation A11Pairs:

AllPairs =7y, o (Entry) x 7o o (Tournament)

Now we will remove from A11Pairs the pairings that are in the Entry table by using a difference
operation. If we project out the MemberID from the result we will have the IDs for members who are not
associated with every tournament.

Unmatched =7y nperp (Allpairs ~ T MemberID,TourlD (Entry))

By removing these unmatched MemberIDs from the MemberIDs in the Entry relation we will arrive at the
result we require:

ResultDivision =z, . (Entry)— Unmatched

We can use SQL views to express these same steps in a manageable way. First, create a view with all the
pairs of members and tournaments:

CREATE VIEW AllPairs AS

SELECT M.MemberID, T.TourID FROM
(SELECT MemberID FROM Entry)M
CROSS JOIN

(SELECT TourID FROM Tournament)T;

Now create a view to find the unmatched pairs:

CREATE VIEW Unmatched AS
SELECT * FROM AllPairs
EXCEPT

SELECT MemberID, TourID
FROM Entry;

Now use these two views to find the result of the division; i.e., the MemberID of members who have
entered every tournament:

SELECT MemberID FROM Entry
EXCEPT
SELECT MemberID FROM Unmatched;

If you are brave you could try to combine all these steps into one SQL query; however, we will look
at a more manageable way to express the equivalent query using relational calculus in the section on the
universal quantifier later in this Appendix.

224

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 2 I RELATIONAL NOTATION

Relational Calculus: Specifying the Outcome

Relational algebra lets us specify a sequence of operations that eventually results in a set of tuples with
the required information. Rather than specifying how to do the query, relational calculus describes what
conditions the resulting data should satisfy. This section provides a very brief introduction to the notation
for describing calculus queries without delving into the mathematics.

Simple Calculus Expressions

In informal language, a relational calculus description of a query has the following form:
Twant the tuples that obey the following conditions....

More formally we can express the above as:
{ m | condition(m) }

The part on the left of the bar | specifies the attributes in the tuples we want returned, while the part on
the right (often referred to as the predicate) describes the criteria they must satisfy. mis called a tuple variable
and condition(m) is a function that must be true for each of the tuples m returned. Strictly speaking, the
preceding notation is called tuple calculus. Another equivalent notation, which we will not pursue here, is
domain calculus.

The following expression means that each returned tuple m must be from the Member relation and must
have ‘Senior’ as the value of the attribute MemberType:

{m | Member(m) AND m.MemberType = 'Senior'}

We can further refine the expression to specify which attributes of the tuple m should be included in the
result:

{m.LastName, m.FirstName | Member(m) AND m.MemberType = 'Senior'}

Because SQL is based on relational calculus, the equivalent SQL statement is an almost direct
translation of the calculus expression, as we see here:

SELECT m.LastName, m.FirstName
FROM Member m
WHERE m.MemberType = 'Senior';
The part on the left of the bar | in the calculus expression becomes the SELECT clause, Member (m)

becomes the FROM clause, and the rest of the expression makes up the WHERE clause. In SQL the mis can be
referred to as a table alias, but it is useful to think of it as tuple variable as well.

Free and Bound Variables

The following calculus expression retrieves members’ names and the fee associated with their membership
type. It is essentially an inner join between the Member and Type relations.

{m.LastName, m.FirstName, t.Fee | Member(m) Type(t) AND m.MemberType = t.Type}

225

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 2 RELATIONAL NOTATION

The tuple variables m and t are referred to as free variables. The conditions on the right of the expression
cannot be evaluated until we give m and t values. It is usual to refer to the free variables as ranging over every
tuple in their respective relations and then evaluating the conditions for each combination to see if it should
be included in the result. In the body of the book I suggested thinking of the variables as being attached
to fingers that move through their respective relations so we can determine if the condition (in this case
m.MemberType = t.Type) evaluates to true. Free variables denote the tuples being returned and should
always appear on the left of the bar.

Suppose we want to find the names of those members who have entered any tournament. In order to
include a member in the result there has to be a tuple for that member in the Entry relation. The symbol 3,
meaning “there exists,” is used in the following calculus expression to return the names of those members
where a tuple exists in the Entry relation with their MemberID:

{m.LastName, m.FirstName | Member(m) AND

3(e)(
Entry(e) AND m.MemberID = e.MemberID

I've spread the expression out on different lines so that the conditions on the variable e are clear. The
variable e is referred to as a bound variable. It does not appear on the left of the equation and is only used to
determine whether the condition on the right side of the expression is true. The free variables (which always
appear on the left side of the expression) are the ones for which we consider every possibility. In the preceding
expression our free variable m is given the value of every tuple in the Member relation in turn. For each value of m
we use the bound variable e to help determine if there is an appropriate tuple in the Entry relation.

Bound variables need to have what is called a quantifier, which explains how the variable will be used
in calculating the condition statement. In this case we use the existential quantifier (3), which requires us to
find a single tuple in the associated relation that satisfies the condition. There is also a universal quantifier
(V) that requires every tuple in the associated relation to satisfy the condition. We will now look at examples
of using these quantifiers and the equivalent SQL statements.

Existential Quantifier and SQL

An expression such as 3(e) (Entry(e) AND (condition(e)) is true, if we can find a tuple e in the relation
Entry that satisfies the specified condition. Let’s look at how this query can be represented in SQL:

{m.LastName, m.FirstName | Member(m) AND
3(e)(

Entry(e) AND e.MemberID = m.MemberID

First, we’ll consider an SQL expression that follows the calculus as closely as possible by using an
EXISTS clause:

SELECT m.LastName, m.FirstName
FROM Member m

WHERE EXISTS (
Select * FROM Entry e WHERE e.MemberID = m.MemberID
)

226

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 2 I RELATIONAL NOTATION

Asyou can see, the SQL is almost a direct translation of the calculus statement. Equivalently, we can
represent the existence requirement with a nested query and IN clause:

SELECT m.LastName, m.FirstName
FROM Member m
WHERE m.MemberID IN (

SELECT MemberID FROM Entry e
)5

Each of preceding SQL statements returns the correct result, but I'm sure you are thinking that they are
a complicated way of getting there. The query to find members who have entered a tournament can be more
simply expressed as a join between the two relations:

SELECT m.LastName, m.FirstName
FROM Member m, Entry e
WHERE e.MemberID = m.MemberID;

The preceding SQL statement is not strictly equivalent to the first two. The latter one will return
duplicate names, one for each of the tournaments the member has entered. If we look at the first two SQL
queries, we see that they are checking each tuple in the Member table (just the once) and looking for a
corresponding tuple in the Entry table. The final query considers all combinations of the tuples in Member
and Entry and returns any that satisfy the condition (thereby returning the duplicates).

Even though we can remove the duplicates from the final SQL query by adding a DISTINCT keyword, it
is considering a different set of tuples for inclusion in the result, and so is responding to a subtly different
question than are the two earlier SQL statements. The relational calculus query is very precise, and it is that
precision that can be helpful in some situations.

To find members who have not entered a tournament we simply replace 3 with NOT 3 (or A) in the query
to find members who have entered a tournament:

{m.LastName, m.FirstName | Member(m) AND
NOT 3(e)(
Entry(e) AND m.MemberID = e.MemberID

The equivalent SQL statement simply requires the addition of the keyword NOT, as in the example here:

SELECT m.LastName, m.FirstName
FROM Member m
WHERE NOT EXISTS (

SELECT * FROM Entry e

WHERE e.MemberID = m.MemberID

);

227

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 2 RELATIONAL NOTATION

Universal Quantifier and SQL

The universal quantifier V allows us to check that a condition holds for all tuples in some set. This is what
we require in order for a query to find the names of members who have entered all tournaments. We have
looked at this query many times! The relational calculus statement that follows is a straightforward way to
express the query:

{m.LastName, m.FirstName | Member(m) AND

v(t)(
Tournament(t)
3(e)(
Entry(e) AND
e.MemberID = m.MemberID
AND e.TourID = t.TourID
)
)
}

The calculus statement should be interpreted as “Retrieve the LastName and FirstName for a particular
tuple m in Member if for every tuple t in Tournament there exists a tuple e in Entry for the member m and the
tournament t.”

You will recognize the outcome of this query as the equivalent of the relational algebra division
operator. You will also remember that SQL does not have a keyword for division. Sadly, it doesn’t have a
keyword for the universal quantifier either. Relational calculus can help us out here with the use of the
following identity:

v(t)(condition (t)) = NOT 3(t)(NOT condition(t))

This statement means that if we say “for every tuple t a condition holds” then that is the same as saying
“there is no tuple t for which the condition does not hold.” We can use this identity to recast our original
calculus expression to the following:

{m.LastName, m.FirstName | Member(m) AND
NOT 3(t)(
Tournament (t)(
NOT 3(e)(
Entry(e) AND e.MemberID = m.MemberID
AND e.TourID = t.TourID

)

Essentially, this says that there is no tuple t in Tournament for which there is not a corresponding tuple e
in Entry. This translates quite easily to the SQL statement seen here:

SELECT m.LastName, m.FirstName
FROM Member m
WHERE NOT EXISTS (
SELECT * FROM Tournament t
WHERE NOT EXISTS (
SELECT * FROM Entry e

228

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 2 I RELATIONAL NOTATION

WHERE e.MemberID = m.MemberID
AND e.TourID = t.TourID

)s

An Example

Let’s look at the algebra and calculus for a query that could be a little tricky. We want to find the names of the
women who have never played in the Leeston tournament.

Algebra

First, we need to retrieve all entries for the Leeston tournament by joining the Tournament and Entry tables
and then using a select operation:

LeestonEntries <— -y :Name = J(Entry ™ touip=Tourip TOUrNament)

'Leeston

The words “have never” suggests we need a difference operator. So, we need to find the set of all women
by using a select operation on the Member table, and then we need to remove the set of people who have
played at Leeston. In order to use our difference operator we need to have union-compatible relations, so we
will project just the MemberID from the two sets just described. The following expression will return the IDs of
the women who have not entered the Leeston tournament:

NonlLeestonLadies < 7y oo (O gender— (Member)) (LeestonEntries)

~ 7 MemberID

Now we need to join NonLeestonLadies to the Member table so we have access to their names. We can
retrieve the final set of names with:

Result < ZpyName, LastName (Member NonLeestonLadles)

MemberID=MemberID

We can now construct an SQL statement that reflects the algebra expression. In the following SQL the
most indented rows represent the LeestonEntries, the next indentation represents the NonLeestonlLadies
(and has been given that alias), and the outer rows represent the final join and project:

SELECT m2.LastName, m2.FirstName FROM
(SELECT m.MemberID FROM Member m
WHERE m.Gender = 'F'
EXCEPT
SELECT e.MemberID
FROM entry e INNER JOIN tournament t ON e.tourID = t.tourID
WHERE t.TourName = 'Leeston'
)NonLeestonLadies
INNER JOIN Member m2 ON m2.MemberID = NonlLeestonlLadies.MemberID;

229

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 2 RELATIONAL NOTATION

Calculus

Let’s approach the same query (the names of the women who have never played in the Leeston tournament)
using calculus. I always need to visualize the tuple variables as fingers to get myself started. Figure A2-5
shows the relations that we will need for the query.

MemberlD -t LastName -+t FirstName -1 Gender - MemberlD -~ TourlD - TourlD - TourName -
118 McKenzie Melissa F 118 24 t ce=(2Leeston
138 Stone Michael M 228 24 25 Kalapoi
153 Nolan Brenda F 228 25 36 WestCoast
176 Branch Helen F 228 36 :2 g‘::;z’b”“’
178 Beck Sarah F 235 38
228 Burton Sandra F 235 38
235 Cooper William M 235 40
239 Spence Thomas M

m & Olson Barbara £ i:: :g
286 Pollard R:bert M 239 40
290 Sexton Thomas M
323 Wilcox Daniel M 9 b
331 Schmidt Thomas M 286 24
332 Bridges Deborah F = =
339 Young Betty F = ~
414 Gilmore Jane F
415 Taylor William M S 2
461 Reed Robert M 415 25
469 Willis Carolyn F 415 36
487 Kent Susan F 415 36

Member Entry Tournament

Figure A2-5. Tuple variables required for the query

We want to retrieve the names of women from the Member table, so we need to consider each tuple in
turn. That means m will be our free variable. For each tuple m we need to check that the value of Gender is F
and that there is no tuple e in the Entry table that has the same MemberID as m and also has TourID = 24
(the Leeston tournament). Figure A2-5 shows us that although Barbara Olson is a female, we will not include
her as she has an entry for the Leeston tournament.

The following calculus expression will retrieve the names of members satisfying the conditions we have
just described:

{m.LastName, m.FirstName | Member(m) AND m.Gender = 'F'

NOT 3(e)(
Entry(e)(
e.MemberID = m.MemberID
AND 3(t)(
t.TourID = e.TourID
AND t.Tourname = 'Leeston’
)
}
230

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX 2 I RELATIONAL NOTATION

The calculus expression translates directly to the following SQL statement:

SELECT m.LastName, m.FirstName
FROM Member m
WHERE m.Gender = 'F'
AND NOT EXISTS (
SELECT *
FROM Entry e
WHERE e.MemberID = m.MemberID
AND EXISTS (
Select * FROM Tournament t
WHERE
t.TourID = e.TourID
AND t.Tourname = 'Leeston’

)
)5

Conclusion

Having applied a calculus and algebra approach to our query to find women who have not entered a Leeston
tournament, we have arrived at two equivalent but quite different-looking SQL queries. There are, no

doubt, several other equivalent SQL statements. Testing these in SQL Server 2012 shows that the optimizer
produces slightly different execution plans, with the calculus query coming out slightly faster — although

adding some indexes could completely change that.
The message from this book is that there are two equivalent but quite different methods of approaching

any query. This appendix adds concise notations to help you represent those approaches.

231

www.it-ebooks.info

http://www.it-ebooks.info/

Index

A B,C
Aggregate operations

AVG() function, 132
duplicates, 133
Nulls, 133

COUNT() function, 129
duplicates, 132
Nulls, 130

MAX() function, 135

MIN() function, 135

nested queries, 144

ROUND() function, 134

SUM() function, 135

D

Database design
combining tables, 204
foreign key constraints, 199
inconsistent data, 200
inconsistent spelling, 202
numeric values, 201
primary key, 198
SQL implementation, 203
Difference, 40-41, 44, 63, 99, 101-102, 112, 118-122,
124, 126-127, 163, 170, 173, 188, 198, 200,
207-208, 217-218, 221-222, 224, 229
Division, 63, 122-126, 128, 134, 142-143, 146, 188,
217, 223-224, 228

E

EXISTS keyword, 57-60, 62, 64

F

Frames, 156-159

© Clare Churcher 2016

G H

Golf club database, 211-212
Grouping function
DISTINCT keyword, 143
HAVING keyword, 140, 142

Intersection, 16, 99, 101-102, 107, 111-117, 118,
120, 124, 126-127, 161, 175, 185, 187, 200,
205-207, 210, 217, 221-222

JKL M
Join
diagrammatic interfaces, 43
equi-join, 44
inner join, 35-36, 38, 43, 45-49, 96, 109,
216- 217,220
natural, 44
order, 41
outcome approach, 36, 42
outer, 45-49, 73-76, 109-110, 205-206
process approach
Cartesian product, 33
inner join, 35
techniques
merge join, 170
nested loops, 169-170
SQL Server, 171

N

Nested queries, 51, 53, 58, 60, 62, 65, 115, 144-145,
171-172, 191, 199, 204, 208-209
Normalization, 5, 9

233

C. Churcher, Beginning SQL Queries, DOI 10.1007/978-1-4842-1955-3

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX

(0

Outcome approach, 11-13, 33, 35-38, 42,
76-78, 80-81,93-94, 175, 188
OVER() function, 147

PQ

Project, 1, 15-16, 32, 38, 41, 43, 53, 72, 107, 120, 122,
217-222, 224, 229
Process approach. See also Relational algebra
Cartesian product, 33
inner join, 35

R

Referential integrity, 8
Relational algebra
algebra operations, 222, 229
Cartesian product, 219
combined select and project operation, 218
difference (-), 221
division operation, 223
inner join, 220
intersection (M), 221
project operation, 218
select operation, 217
union (V), 221
universal quantifier, 228
Relational calculus
existential quantifier, 226-227
free variables, 226
universal quantifier, 228
Relational database
data models
cardinality, 7
class, 6
foreign key, 8
graphical interface, 8
optionality, 7
referential integrity, 8
relations, tuples, and attributes, 214
retrieving information
outcome approach, 11, 13
process approach, 10, 13
relational algebra, 12

234

relational calculus, 12

SQL query, 10
SQL, algebra, and calculus, 216
table

designing, 5

domain, 2

primary key, 3

rows insertion and updation, 3
Venn diagram, 213-214

S, T
Select, 15-16, 19, 32, 38, 41, 43, 51, 53, 59, 61-64, 71,
73,94, 104-105, 136-137, 146-148, 164,
183-184, 186, 192, 204, 205, 207, 217-220,
225,229
Simple aggregates, 129-130, 147-149, 159
Subqueries
EXISTS keyword, 57
IN keyword, 51
inner queries
EXISTS keyword, 62
single value, 60
values, set of, 62
NOT IN keyword, 54
row insertion and deletion, 63
updating data, 63
Surrogate key, 3

U Vv

Unified Modeling
Language (UML), 6, 8

Union, 16, 48, 99, 101-113, 118, 120, 126, 127, 145,
180, 185, 204, 206, 217, 221-222, 229

W XY, Z

Window functions
cumulative count, 151
frame, 156
GROUP BY clause, 149
ORDER BY clause, 150
RANK() function, 152-153
SUM() function, 154
simple aggregates, 147

www.it-ebooks.info

http://www.it-ebooks.info/

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Relational Database Overview
	Introducing Database Tables
	Attributes
	The Primary Key
	Inserting and Updating Rows in a Table
	Designing Appropriate Tables

	Introducing Data Models
	Retrieving Information from a Database
	Process Approach
	Outcome Approach
	Why We Consider Two Approaches

	Summary

	Chapter 2: Simple Queries on One Table
	Subsets of Rows and Columns
	Using Aliases
	Saving Queries
	Specifying Conditions for Selecting Rows
	Comparison Operators
	Logical Operators

	Dealing with Nulls
	Finding Nulls
	Comparisons Involving Null Values

	Managing Duplicates
	Ordering Output
	Performing Simple Counts
	Avoiding Common Mistakes
	Incorrectly Using a WHERE Clause to Answer Questions with the Word “both”
	Incorrectly Using a WHERE Clause to Answer Questions with the Word “not”

	Summary

	Chapter 3: A First Look at Joins
	The Process Approach to Joins
	Cartesian Product
	Inner Join

	Outcome Approach to Joins
	Extending Join Queries
	A Process Approach
	Order of Operations
	An Outcome Approach
	Expressing Joins Through Diagrammatic Interfaces

	Other Types of Joins
	Outer Joins

	Summary

	Chapter 4: Subqueries
	IN Keyword
	Using IN with Subqueries
	Being Careful with NOT and <>
	EXISTS Keyword
	Different Types of Subqueries
	Inner Queries Returning a Single Value
	Inner Queries Returning a Set of Values
	Inner Queries Checking for Existence

	Using Subqueries for Updating
	Summary
	Examples of Different Types of Subqueries
	A subquery returning a single value
	A subquery returning a set of single values
	A subquery checking for existence

	Examples of Different Uses for Subqueries
	Constructing queries with negatives
	Comparing values with the results of aggregates
	Update data

	Chapter 5: Self Joins
	Self Relationships
	Creating a Self Join
	Queries Involving a Self Join
	What Are the Names of the Coaches?
	Who Is Being Coached by Someone with a Higher Handicap?
	List the Names of All Members and the Names of Their Coaches
	Who Coaches the Coaches, or Who Is My Grandmother?

	An Outcome Approach to Self Joins

	Questions Involving “Both”
	An Outcome Approach to Questions Involving “Both”
	A Process Approach to Questions Involving “Both”

	Summary
	Self Relationships
	Questions Involving the Word “Both”

	Chapter 6: Multiple Relationships Between Tables
	Two Relationships Between the Same Tables
	Extracting Information from Multiple Relationships
	Process Approach
	Outcome Approach

	Business Rules
	Summary

	Chapter 7: Set Operations
	Overview of Basic Set Operations
	Union-Compatible Tables
	Ensuring Union Compatibility

	Union
	Selecting the Appropriate Columns
	Uses of Union
	Union and Full Outer Joins

	Intersection
	Uses of Intersection
	The Importance of Projecting Appropriate Columns
	Managing Without the INTERSECT Keyword

	Difference
	Uses of Difference
	Managing Without the EXCEPT Keyword

	Division
	Projecting Appropriate Columns
	SQL for Division

	Summary
	Union
	Intersection
	Difference
	Division

	Chapter 8: Aggregate Operations
	Simple Aggregate Functions
	The COUNT() Function
	Managing Nulls
	Managing Duplicates

	The AVG() Function
	Managing Nulls
	Managing Duplicates
	Managing Types and Output

	The ROUND() Function
	Other Aggregate Functions

	Grouping
	Filtering the Result of an Aggregate Query
	Using Aggregates to Perform Division Operations

	Nested Queries and Aggregates
	Summary

	Chapter 9: Window Functions
	Simple Aggregates
	Partitions
	Order By Clause
	Cumulative Aggregates
	Ranking
	Combining Ordering with Partitions

	Framing
	Summary
	OVER()
	OVER(PARTITION BY <…>)
	OVER(ORDER BY <…>)
	OVER(PARTITION BY <…> ORDER BY <…>)
	OVER(ROWS BETWEEN <…> AND <…>)

	Chapter 10: Efficiency Considerations
	What Happens to a Query
	Finding a Record
	Storing Records in Order
	Clustered Index
	Non-Clustered Indexes
	Clustered Index on a Compound Key
	Updating Indexes
	Covering Indexes
	Selectivity of Indexes

	Join Techniques
	Nested Loops
	Merge Join
	Different SQL Expressions for Joins

	Summary
	Primary Key
	Foreign Keys
	WHERE Conditions
	ORDER BY, GROUP BY, and DISTINCT
	Use the Tools

	Chapter 11: How to Tackle a Query
	Understanding the Data
	Determine the Relationships Between Tables
	Real World Versus Implementation
	What Tables Are Involved?
	Look at Some Data Values

	Big Picture Method
	Combine the Tables
	Find the Subset of Rows
	Retain the Appropriate Columns
	Consider an Intermediate View

	Spotting Keywords in Questions
	And, Both, Also
	Not, Never
	All, Every

	No Idea Where to Start?
	Find Some Helpful Tables
	Try to Answer the Question by Hand
	Write Down a Description of the Retrieved Result
	Are There Alternatives?

	Checking Queries
	Check a Row That Should Be Returned
	Check a Row That Should Not Be Returned
	Check Boundary Conditions
	Check Null Values

	Summary

	Chapter 12: Common Problems
	Poor Database Design
	Data That Is Not Normalized
	Tables with No Primary Key
	Tables with Missing Foreign Keys
	Similar Data in Two Tables
	Inappropriate Types

	Problems with Data Values
	Unexpected Nulls
	Incorrect or Inconsistent Spelling
	Extraneous Characters in Text Fields
	Inconsistent Case in Text Fields

	Diagnosing Problems
	Check Parts of Nested Queries Independently
	Understand How the Tables Are Being Combined
	Remove Extra WHERE Clauses
	Retain All the Columns
	Check Underlying Queries in Aggregates

	Common Symptoms
	No Rows Are Returned
	Rows Are Missing
	Should You Have an Outer Join?
	Have Selection Conditions Dealt with Nulls Appropriately?
	Are You Looking for a Match with a Text Value?
	Have You Used AND Instead of OR?
	Do You Have Correct Columns in Set Operations?

	More Rows Than There Should Be
	Did You Use NOT Instead of Difference?
	Have You Dealt with Duplicates Appropriately?

	Incorrect Statistics or Aggregates
	The Order Is Wrong

	Common Typos and Syntax Problems
	Summary

	Appendix 1: Example Database
	Appendix 2: Relational Notation
	Introduction
	Relations, Tuples, and Attributes
	SQL, Algebra, and Calculus

	Relational Algebra: Specifying the Operations
	Select
	Project
	Combining Select and Project
	Cartesian Product
	Inner Join
	Union, Difference, and Intersection
	Division

	Relational Calculus: Specifying the Outcome
	Simple Calculus Expressions
	Free and Bound Variables
	Existential Quantifier and SQL
	Universal Quantifier and SQL

	An Example
	Algebra
	Calculus
	Conclusion

	Index

