

MySQL

QUICK START

Ларри Ульман

VISUAL QUICKSTART GUIDE

MYsql
FOR WINDOWS

Larry Ullman

Москва

Ларри Ульман

QUICK START

Mysql
FOR WINDOWS

УДК 004.65
ББК 32.973.26-018.2

У51
Ульман Л.
MySQL: Пер. с англ. – М.: ДМК Пресс. – 352 с.: ил. (Quick Start).

ISBN 5-94074-229-7

У51

Все права защищены. Любая часть этой книги не может быть воспроизведена в какой бы то ни
было форме и какими бы то ни было средствами без письменного разрешения владельцев авторских
прав.

Материал, изложенный в данной книге, многократно проверен. Но, поскольку вероятность тех-
нических ошибок все равно существует, издательство не может гарантировать абсолютную точность
и правильность приводимых сведений. В связи с этим издательство не несет ответственности за воз-
можные ошибки, связанные с использованием книги.

Authorized translation from the English language edition, entitled MYSQL: VISUAL QUICKSTART
GUIDE, 1st edition 0321127315 by ULLMAN, LARRY, published by Pearson Education, Inc., publishing as
Peachpit Press, Copyright ©.

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording or by any information storage retrieval
system, without permission from Pearson Education, Inc. RUSSIAN language edition published by DMK
Press, Copyright ©.

Реляционная система управления базами данных MySQL разработана и до сих
пор поддерживается шведской компанией MySQL AB. На сегодняшний день
MySQL – одна из самых распространенных СУБД с открытыми исходными ко-
дами. Это означает, что за рядом мелких исключений ей можно пользоваться
бесплатно, а кроме того, модифицировать исходный код, который доступен
в сети Internet.

В данной книге рассматривается установка MySQL в операционных системах
Windows, Linux, Mac OS; подробно описываются запуск СУБД и работа с ней, при-
чем основное внимание уделяется доступу к базе данных и администрированию
из командной строки. Ряд глав посвящен программированию на языках PHP, Perl
и Java. В тексте приводятся упражнения, облегчающие изучение MySQL начинаю-
щими пользователями.

В приложениях рассматриваются вопросы диагностики и устранения оши-
бок, приводятся справочная информация и ссылки на другие источники.

© Peachpit Press
© Перевод на русский язык, оформление

ДМК Пресс

ISBN 0-321-12731-5 (англ.)
ISBN 5-94074-229-7 (рус.)

Содержание

Предисловие .. 10

Введение .. 12

Глава 1. Установка MySQL ... 21

Установка MySQL для Windows ... 23
Установка MySQL для Mac OS X .. 25
Установка MySQL для Linux ... 29
Параметры конфигурации .. 34
Обновление версии MySQL... 35
Ставим «заплаты» ... 38

Глава 2. Эксплуатация MySQL ... 39

Запуск MySQL .. 40
Останов MySQL ... 45
Применение утилиты mysqladmin ... 48
Работа с клиентской программой mysql 51
Пользователи и их права ... 54

Глава 3. Проектирование баз данных ... 59

Нормализация ... 60
Ключи .. 61
Связи ... 63
Первая нормальная форма .. 64
Вторая нормальная форма .. 65
Третья нормальная форма .. 68
Типы данных в MySQL .. 70
NULL и значения по умолчанию ... 75
Индексы .. 77
Заключительные этапы проектирования 79

Глава 4. Язык SQL .. 81

Создание баз данных и таблиц ... 82
Вставка данных .. 86

MySQL6

Выборка данных .. 89
Использование условий ... 92
Операторы LIKE и NOT LIKE ... 95
Операция соединения .. 97
Сортировка результатов запроса ... 101
Ограничение размера результата ... 103
Обновление данных ... 105
Удаление данных ... 107
Модификация структуры таблиц .. 110

Глава 5. Функции MySQL .. 113

Функции для работы с текстом .. 114
Конкатенация и псевдонимы .. 117
Функции для работы с числами ... 120
Функции для работы с датой и временем 123
Формат даты и времени ... 126
Функции шифрования ... 128
Агрегатные функции .. 131
Прочие функции ... 134

Глава 6. MySQL и PHP .. 137

Соединение с MySQL и выбор базы данных 138
Простые запросы .. 141
Выборка данных .. 149
Применение функции mysql_insert_id() 157
Обработка ошибок ... 165
Безопасность .. 168

Глава 7. MySQL и Perl ... 180

Установка Perl с поддержкой MySQL
на платформу Windows ... 181
Установка Perl с поддержкой MySQL
на платформы UNIX и Mac OS X ... 184
Тестирование Perl и MySQL .. 187
Соединение с MySQL .. 191
Простые запросы .. 194
Выборка данных .. 199
Значения автоинкрементного поля ... 204
Безопасность .. 206

Глава 8. MySQL и Java ... 210

Установка поддержки Java для MySQL 211
Соединение с базой данных .. 214
Простые запросы .. 219

Содержание 7

Выборка данных .. 224
Использование файлов свойств ... 229

Глава 9. Методы программирования баз данных 233

Хранение и выборка двоичных данных...................................... 234
Создание поисковой машины .. 244
Разбиение результатов поиска на страницы 252
Безопасность базы данных .. 262

Глава 10. Администрирование MySQL ... 267

Файлы данных MySQL ... 268
Резервное копирование базы данных .. 271
Командные файлы .. 274
Импорт данных ... 276
Обслуживание базы данных ... 278
Повышение производительности .. 281
Протоколирование операций MySQL ... 283
Безопасность .. 286

Глава 11. Дополнительная информация .. 289

Использование таблиц типа InnoDB ... 290
Транзакции в MySQL ... 295
Блокировка таблиц ... 298
Полнотекстовый поиск .. 301
Регулярные выражения .. 305

Приложение 1. Диагностика и устранение ошибок 307

Установка MySQL ... 308
Запуск MySQL .. 309
Доступ к MySQL .. 310
Проблемы с mysql.sock .. 312
Восстановление пароля пользователя root 314
Восстановление начального значения
автоинкрементного поля ... 316
Если запрос возвращает странный результат 318

Приложение 2. Справочник по SQL и MySQL 319

Основы языка SQL .. 320
Команда ALTER ... 322
Административные команды SQL ... 324
Права доступа в MySQL ... 325
Типы данных в MySQL .. 326
Функции MySQL ... 328
Другие справочные материалы .. 331

MySQL8

Приложение 3. Ресурсы ... 333

MySQL ... 334
Приложения сторонних фирм для MySQL 336
Язык SQL .. 337
Общие вопросы теории баз данных .. 338
Язык PHP .. 339
Язык Perl ... 340
Язык Java ... 341
Безопасность .. 342
Прочие ресурсы ... 343

Предметный указатель .. 344

Посвящается Джесс, моей любимой и единственной.

Предисловие

Благодарности
Выражаю искреннюю благодарность всему
замечательному коллективу издательства
Peachpit Press за их стремление выпускать
высококачественную литературу, за предо-
ставленную мне возможность опублико-
вать эту книгу и вообще за все, что они
делают. Отдельное спасибо Нэнси Олдрич-
Рюнцель (Nancy Aldrich-Ruenzel), Мард-
жори Бэер (Marjorie Baer), Киму Ломбарди
(Kim Lombardi), Гэри Полу Принсу (Gary-
Paul Prince) и еще двум десяткам людей,
чьих имен я не знаю, хотя и должен был бы.
Благодарю редактора этой книги Ребекку
Гулик (Rebecca Gulick). Работа с ней была
истинным удовольствием, и книга благо-
даря этому стала только лучше. Мне по-
везло, что нам вновь привелось потру-
диться вместе.
Благодарю Бренду Беннер (Brenda Benner)
за тщательную корректуру и внимание
к деталям.
Я глубоко признателен Конни Юнг-Миллс
(Connie Jeung-Mills) за то, что она превра-
тила разрозненный набор текстовых и гра-
фических файлов в пригодный для чтения
материал.
Спасибо Оуэну Вульфсону (Owen Wolfson),
отвечавшему за общую структуру книги,
Карин Арригони (Karin Arrigoni), состав-
лявшей алфавитный указатель, и Адаму

Нелсону (Adam Nelson) – научному редак-
тору.
Спасибо Джону О’Мэлли (John O’Malley),
блестящему программисту и вообще очень
толковому парню, за помощь при работе
над главой, посвященной Java. Джон хоть
и не в числе самых старых, но все равно
в десятке моих самых любимых друзей.
Как всегда, у меня есть немало поводов
выразить отдельную благодарность всем
сотрудникам компании DMC Insights, Inc.
Благодарю читателей моих предыдущих
книг, которые нашли время сообщить
мне свое мнение (даже если оно сопро-
вождалось просьбой о технической под-
держке) и просили меня написать книж-
ку про MySQL. Надеюсь, вы теперь полу-
чите именно то, что хотели.
Ну и, наконец, спасибо всем членам сооб-
щества пользователей и разработчиков
MySQL – начиная с сотрудников компа-
нии MySQL AB и заканчивая участниками
различных списков рассылки. MySQL –
это еще один пример того, какую огром-
ную пользу может принести программа
с открытым исходным кодом.

Соглашения
Полужирным шрифтом в этой книге от-
мечены пункты меню и прочие элементы
интерфейса, а также клавиши, например:

11

New User (Новый пользователь), клавиша
Return.
Сочетания клавиш, которые нужно нажи-
мать одновременно, приводятся со знаком
+ (плюс), например: Ctrl+A.
Команды, которые требуется выполнить
последовательно, записываются через стре-
лочку, например: Start ⇒ Run (Пуск ⇒ Вы-
полнить).
Перенос строки кода в тексте обозначает-
ся стрелочкой �, например:

SELECT * FROM имя_таблицы
� ORDER BY RAND();

Моноширинным шрифтом выделяются фраг-
менты кода, например: mysqladmin -u root

password 'пароль'. Моноширинным курсивом от-
мечены фрагменты кода, вместо которых
следует подставить какое-либо значение
(в данном примере взамен слова пароль
необходимо ввести пароль).
Адреса сайтов в Internet выделены под-
черкиванием, например: www.mysql.com.

Таким образом оформлены примечания,
содержащие дополнительную информацию
по теме раздела.

Помимо примечаний в конце разделов при-
водятся советы по работе с MySQL.

Предисловие

Введение

В середине информационной эпохи, ког-
да все больше данных хранится в памяти
компьютеров, возрастает потребность в на-
дежных, обеспечивающих быструю работу
базах данных. На протяжении многих лет
такие компании, как Oracle, поставляли на
рынок приложения для организации хра-
нилищ данных, пользователями которых
были главным образом крупнейшие ком-
пании из списка Fortune 500, способные
заплатить за программное обеспечение
и высококвалифицированный персонал,
необходимый для его эксплуатации, в це-
лях решения критических для бизнеса за-
дач. А тем временем сообщество разра-
ботчиков программ с открытым исход-
ным кодом (которое окончательно сфор-
мировалось в течение последних десяти
лет) выпустило новое поколение компакт-
ных, надежных и недорогих СУБД. Такие

продукты, как mSQL, MySQL и PostgreSQL,
предоставили реальный выход из ситуа-
ции обычным пользователям и разработ-
чикам, не располагающим большими день-
гами.
На данный момент MySQL превратилась
из скромной экспериментальной програм-
мы в надежную, устойчивую и простую
в администрировании СУБД – и, что еще
более удивительно, сохранила свою от-
крытую природу: по-прежнему предлага-
ется для использования и модификации
совершенно бесплатно. Богатство возмож-
ностей MySQL объясняет, почему с ней ра-
ботают такие крупные организации, как
Yahoo!, Бюро переписей США и NASA.
Низкая стоимость и свободное распростра-
нение позволят вам использовать MySQL
в своих проектах. Книга, которую вы дер-
жите в руках, поможет вам в этом!

Введение 13

Что такое MySQL?
MySQL – это самая популярная (а неко-
торые добавят, что еще и самая лучшая
в мире) СУБД с открытым исходным ко-
дом. На самом деле MySQL составляет все
более значительную конкуренцию таким
дорогостоящим гигантам, как Oracle и Mic-
rosoft SQL Server.
MySQL создана и до сих пор поддержива-
ется шведской компанией MySQL AB (ее
сайт расположен по адресу www.mysql.com –
см. рис. 1). В какой-то мере MySQL вырос-
ла из разработанной ранее СУБД mSQL, ко-
торая по-прежнему существует, хотя пик
ее популярности уже в прошлом. Как ни
странно, но ни в этой книге, ни в какой-
либо другой вы не найдете объяснения
тому, что означает аббревиатура MySQL.
Что касается последней части, «SQL», тут
все ясно: это Structured Query Language
(структурированный язык запросов) –
язык, применяемый для взаимодействия
с большинством существующих баз дан-
ных. Но вот префикс «My» никак офици-
ально не расшифровывается даже в самой
компании MySQL AB.
MySQL – это реляционная система управ-
ления базами данных (РСУБД). С техни-
ческой точки зрения MySQL – программа,
управляющая файлами, которые состав-
ляют базу данных, но часто термин «база
данных» (БД) применяется и к самой про-
грамме, и к этому набору файлов. БД –
это просто совокупность взаимосвязан-
ных данных (текстовых, числовых, дво-
ичных), за хранение и организацию кото-
рых отвечает СУБД.

Рис. 1. Домашняя страница MySQL,
расположенная по адресу www.mysql.com.
Здесь можно загрузить программное
обеспечение, почитать документацию
и получить много другой информации

О произношении

Сразу стоит уточнить, что MySQL про-
износится «май эс кью эль».

MySQL14

Есть много видов баз данных: от простей-
ших, где данные хранятся в плоских фай-
лах, до реляционных и объектно-ориен-
тированных. Реляционная база данных со-
держит информацию в нескольких таб-
лицах. Эта концепция была разработана
в начале семидесятых годов, а до того базы
данных напоминали одну огромную элек-
тронную таблицу, где хранится буквально
все. Для проектирования и программиро-
вания реляционной БД требуется больше
усилий, но это окупается повышенной на-
дежностью работы и целостностью дан-
ных.
MySQL – это программа с открытым ис-
ходным кодом, равно как PHP и некоторые
версии операционной системы UNIX. Это
означает, что вы можете бесплатно уста-
навливать, запускать программу и моди-
фицировать ее исходный код (который,
как и ее саму, можно загрузить из Сети).
Но в некоторых случаях вы все же должны
заплатить за лицензию на MySQL и, в част-
ности, тогда, когда получаете прибыль от
включения MySQL в состав своего продук-
та. Подробнее об этом вы можете прочесть
в документе об условиях лицензирования
MySQL.
MySQL состоит из нескольких частей,
в том числе сервера MySQL (программы
mysqld, которая, собственно, и управляет
базой данных), клиента MySQL (програм-
мы mysql, предоставляющей интерфейс
к серверу) и многочисленных служебных
утилит для обслуживания базы данных
и иных целей. Работу с MySQL можно вес-
ти, пользуясь многими распространенны-
ми языками программирования, включая
PHP, Perl и Java. Впоследствии вы узнае-
те, как это делается.

Введение 15

MySQL написана на языках C и C++ и ра-
ботает под управлением различных опера-
ционных систем. Есть примеры примене-
ния MySQL для поддержания баз данных,
состоящих из 60000 таблиц, насчитыва-
ющих более 5 млрд. строк. В некоторых
операционных системах MySQL начиная
с версии 3.23 может работать с таблицами
объемом до 8 млн. Тб (терабайт), а в общем
случае предельный объем составляет 4 Гб.
На момент написания этой книги теку-
щей была не так давно вышедшея версия
4.0, а вскоре готовится выпуск версии 4.1.
В четвертой версии технология MySQL
вышла на качественно новый уровень
и включила целый ряд возможностей, ко-
торых разработчики добивались на про-
тяжении нескольких лет. В тексте я по-
стараюсь отмечать, какие функции спе-
цифичны именно для версии 4 и отсут-
ствуют в более ранних.

MySQL16

Основные ресурсы,
относящиеся к MySQL
Поскольку MySQL – бесплатная программа,
то на ваши вопросы отвечают преимуще-
ственно участники списков рассылки, по-
священных MySQL, а не сотрудники компа-
нии MySQL AB. Однако компания готова
заключить платный контракт на поддерж-
ку, консультирование и обучение. Этот ва-
риант может заинтересовать вас, если вы
намерены использовать MySQL в масшта-
бе предприятия.
По MySQL имеется обширное онлайно-
вое справочное руководство (по адресу
www.mysql.com/documentation/ – см. рис. 2),
включающее примечания, написанные
пользователями. В нем можно произво-
дить поиск, и на большую часть своих во-
просов вы найдете там ответы. На момент
работы над этой книгой руководство охва-
тывало версии вплоть до 4.1.0-alpha.
Списки рассылки по MySQL, возможно, не
так активно действуют, как некоторые дру-
гие, но в них принимают участие как поль-
зователи, так и разработчики MySQL, ко-
торые готовы быстро и информативно от-
ветить на задаваемые вопросы. Имеются
также специализированные списки рас-
сылки, посвященные работе MySQL на
платформе Windows, доступу к MySQL из
программ на языке Java и другим вопро-
сам. Большая популярность этих списков
объясняет тот факт, что MySQL не посвя-
щены сетевые конференции, подобные тем,
где обсуждаются другие технологии.

Рис. 2. Онлайновое руководство по MySQL
очень подробно и хорошо организовано.
Вы можете также загрузить на компьютер
это руководство в других форматах

Введение 17

Технические требования
Чтобы вы могли выполнять приведенные
в этой книге упражнения, ваш компьютер
должен удовлетворять нескольким требо-
ваниям, впрочем, не слишком обремени-
тельным. Прежде всего, конечно, понадо-
бится установить MySQL. К счастью, эта
программа распространяется бесплатно
и работает в большинстве операционных
систем (рис. 3). В главе 1 будет описана
процедура установки MySQL в трех ши-
роко распространенных ОС: Windows, Li-
nux и Mac OS.
В тексте книги упор сделан главным об-
разом на доступ к базе данных и админи-
стрирование из командной строки. Как
именно осуществляется доступ к команд-
ной строке, зависит от операционной сис-
темы. В Windows это окно DOS, в Linux –
интерпретатор команд (shell), а в Mac OS –
окно X-терминала (рис. 4).
И наконец, для проработки глав, посвя-
щенных программированию на языках
PHP, Perl и Java (главы 6, 7 и 8 соответ-
ственно), понадобятся текстовый редак-
тор, Web-браузер и т.п. Конкретные тре-
бования будут сформулированы по ходу
дела.

Рис. 4. В составе операционной системы Mac OS
имеется приложение X Terminal, позволяющее
общаться с компьютером при помощи
командной строки

Рис. 3. Поставляются версии MySQL практически
для любой операционной системы, включая
Windows и различные клоны UNIX

MySQL18

Об этой книге
В этой книге я предпринял попытку рас-
сказать об основах MySQL, включив сюда
сведения, которые могут понадобиться
большинству пользователей. В духе серии
«Visual QuickStart Guide» обучение ведет-
ся пошагово, причем каждый этап работы
проиллюстрирован. Изложение материа-
ла ориентировано скорее на сообщение
конкретных фактов, нежели на углубленное
изучение методов разработки сложных
приложений с использованием MySQL
(как было бы в книге, посвященной про-
граммированию).
Большинство собранных здесь примеров
предполагает работу с командной строкой
(рис. 5), хотя в трех главах, посвященных
программированию, а также в главе 9 дело
обстоит иначе. Там я подробно останов-
люсь на написании сценариев, которые
затем будут протестированы с помощью
подходящих средств (например, Web-бра-
узера).
Последовательность изложения материа-
ла практически линейна. Мы начинаем
с описания процедур установки и адми-
нистрирования. Далее будут рассмотре-
ны вопросы проектирования баз данных
и язык SQL: сначала аспекты, общие для
всех баз данных, а затем – свойственные
только MySQL. Вслед за этим идут три
главы, посвященные программированию,
а также глава, в которой описываются не-
которые специальные приемы програм-
мирования баз данных. Под конец пред-
лагается описание ряда утилит, о кото-
рых вы должны знать. В приложениях
рассматриваются вопросы диагностики
и устранения ошибок, приводятся спра-
вочная информация и ссылки на другие
источники.

Рис. 5. В большинстве глав демонстрируется
доступ к базе данных из стандартного клиента
MySQL или других утилит, интерфейс которых
выполнен в виде командной строки

Введение 19

Для вас ли эта книга?
Эта книга рассчитана на широкий круг чи-
тателей – от начального до среднего уров-
ня. Ясно, что в какой-то мере она может
пригодиться любому, кто желает приме-
нять в своей работе MySQL, но я специаль-
но ориентировался на пользователей, ко-
торые раньше вообще не работали с база-
ми данных или работали с другой базой
и хотели бы знать, как ведет себя MySQL,
а также на тех, кто уже освоил эту систему,
но хотел бы повысить свою квалифика-
цию. Сразу подчеркну, что я не ставил себе
задачей обучить читателя какому-либо
языку программирования, а хотел лишь
показать, как из программ на некоторых
языках можно получить доступ к MySQL.

Сопроводительный
Web-сайт
Специально для этой книги я создал Web-
сайт, расположенный по адресу www.
DMCinsights.com/mysql. Там вы найдете
все приведенные в книге сценарии (из глав,
посвященных программированию), тексто-
вые файлы, содержащие длинные SQL-ко-
манды, а также перечень ошибок, обна-
руженных после выхода книги из печати.
Если вы столкнулись с ошибкой при по-
пытке выполнить команду или сценарий
и при этом уверены, что набрали текст
точно так, как написано в книге, то, преж-
де чем рвать на себе волосы, проверьте по
этому списку, что речь не идет о баналь-
ной опечатке! На сайте также приведены
полезные ссылки; имеется форум, в кото-
ром читатели могут задавать друг другу
вопросы (не обязательно связанные с ма-
териалом книги) и отвечать на них, и мно-
гое другое!

MySQL20

Вопросы, замечания,
предложения
Если у вас есть вопросы по поводу MySQL,
вы можете обратиться к любому из мно-
жества уже существующих сайтов, списков
рассылки и перечней часто задаваемых во-
просов (frequently asked questions, FAQ).
В приложении 3 приведены ссылки на наи-
более популярные из подобных ресурсов.
Свои вопросы, замечания и предложения
вы можете направлять и непосредственно
мне по адресу
mysql@DMCinsights.com

Я стараюсь отвечать на все письма, хотя
гарантировать этого не могу. В первую
очередь и более подробно я отвечу чита-
телям, которые просят пояснить некото-
рые темы, затронутые в данной книге. От-
веты на другие вопросы лучше поискать
в списках рассылки или задать их в чита-
тельском форуме.

Поскольку MySQL поставляется вместе
с исходным кодом, то число вариантов ее
установки больше, чем у типичного ком-
мерческого приложения. Вы можете прос-
то запустить программу установки, а мо-
жете вместо этого задать нужные пара-
метры компиляции и собрать свой экзем-
пляр MySQL из исходных файлов.
В этой главе я рассмотрю инсталляцию на
платформах Windows, Macintosh и Linux.
Именно с ними будет иметь дело боль-
шинство пользователей MySQL, хотя эта
СУБД работает и во многих других опера-
ционных системах. Прочитав об установ-
ке двоичного дистрибутива для Windows
и о сборке из исходных файлов для Linux,
вы получите представление о различных
аспектах проблемы.
Решая вопрос о том, какой именно вари-
ант загрузить из Сети и установить на
свой компьютер, следует принимать во
внимание различные факторы, из кото-
рых самый главный – нужна ли вам ста-
бильная или разрабатываемая версия (час-
то помеченная как «альфа» или «бета»).
MySQL проходит тщательное тестиро-
вание как внутри компании MySQL AB,
ведущей разработку, так и со стороны
пользователей по всему миру, поэтому,
устанавливая стабильную версию, вы все-
гда можете рассчитывать на надежный

Установка MySQL 11111

Установка MySQL22

и высокопроизводительный продукт.
Разрабатываемые версии лучше оставить
специалистам, которые могут отличить
ошибки в программе от неправильных
действий пользователя.
Версия 4 сервера MySQL сейчас является
официально выпущенной, а следующая
версия (4.1) находится на уровне «альфа».
В эту версию включено множество давно
ожидаемых функций, в том числе повы-
шение быстродействия и высокоскорост-
ного сервера, прямой доступ к таблицам
InnoDB и поддержка безопасных транзак-
ций с помощью протокола SSL (Secure
Socket Layer). Вслед за версией 4.0 плани-
руется выпустить версию 4.1, которая бу-
дет поддерживать дополнительные типы
данных, различные функции, вложенные
подзапросы, хранимые процедуры и внеш-
ние ключи1. После появления этих воз-
можностей MySQL уже можно будет срав-
нивать с самыми большими и дорогими
СУБД. Если вам интересно, какое будущее
ожидает MySQL, установите версию 4.1,
но лучше не стоит использовать ее для
критических приложений, пока не выйдет
окончательная редакция.
В этой главе мы рассмотрим процедуру
загрузки программного обеспечения, уста-
новки сервера и создания системной базы
данных. Если на каком-нибудь этапе уста-
новки вы столкнетесь с проблемой, обра-
титесь к приложению 1 или к соответству-
ющим разделам руководства по MySQL.

1 Более подробно вы познакомитесь с возможнос-
тями конкретной версии MySQL и сравните их
с возможностями других СУБД, посетив страни-
цу http://www.mysql.com/information/features.html
сайта разработчиков. – Прим. ред.

23

Установка MySQL
для Windows
Есть два основных способа установить
MySQL в операционной системе Windows:
воспользоваться заранее откомпилирован-
ным дистрибутивом или собрать собствен-
ный экземпляр из исходных файлов. Пер-
вый способ гораздо проще – именно его-
то мы и рассмотрим.
MySQL работает в большинстве операци-
онных систем семейства Windows (точ-
нее, во всех 32-разрядных системах, таких
как Windows 95, 98, Me, NT, 2000 и XP).
Если речь идет о системе из семейства NT
(Windows NT, 2000 или XP в любом изда-
нии – Home, Professional или Server), то
MySQL можно запустить как сервис, что
и будет продемонстрировано в следую-
щей главе. В нижеприведенном примере
я опишу установку последней стабильной
версии MySQL на машину под управле-
нием системы Windows XP Home.

Порядок установки MySQL для Windows

1. Загрузите zip-файл с сайта MySQL
(рис. 1.1).
На момент написания этой книги по-
следняя стабильная версия MySQL вы-
пускалась под номером 4.0.

2. Распакуйте загруженный файл.
Неважно, в какое место на данном эта-
пе распаковывается архив, но установ-
ку MySQL (см. п. 3) лучше производить
в каталог C:\mysql.

Установка MySQL для Windows

Рис. 1.1. Щелкнув по этой ссылке,
вы получите список сайтов-«зеркал»,
из которых сможете выбрать ближайший к вам

Установка MySQL24

3. Запустите программу setup.exe, дважды
щелкнув по ее пиктограмме (рис. 1.2).
При работе с какой-либо из операци-
онных систем семейства Windows NT
вы должны иметь права на установку
программ. Выполните предлагаемые
действия: выберите целевой каталог
(рис. 1.3) и задайте тип установки: Typi-
cal (Типичная), Compact (Компактная)
и Custom (Выборочная). Лично я пред-
почел типичную установку в каталог
C:\mysql.
Если в качестве целевого вы указали ка-
талог C:\mysql, все исполняемые про-
граммы будут находиться в его подката-
логе bin.

4. Пользуясь программой Проводник (Win-
dows Explorer), откройте только что со-
зданный каталог C:\mysql\bin.

5. Запустите утилиту WinMySQLAdmin
(рис. 1.4), дважды щелкнув по соот-
ветствующей пиктограмме.
Эта утилита завершает подготовку фай-
лов, необходимых для нормальной ра-
боты MySQL. Кроме того, на данном
этапе для систем семейства Windows NT
создается сервис MySQL и в системный
лоток помещается значок светофора,
индицирующий текущее состояние сер-
виса. Запомните введенные вами имя
и пароль пользователя MySQL.

Необязательно устанавливать MySQL имен-
но в каталог C:\mysql, но я считаю, что это
разумно. Если по какой-то причине вы ре-
шите произвести установку в другое мес-
то, на первом этапе работы программы
setup.exe укажите имя начального каталога.

Как бы то ни было, запускать MySQL в виде
сервиса в системах семейства Windows NT
проще, если установка произведена в ката-
лог C:\mysql.

Рис. 1.2. После распаковки дистрибутива запустите
программу установки MySQL, дважды щелкнув
по пиктограмме приложения setup.exe

Рис. 1.3. Программа установки setup.exe
предлагает выполнить две операции – в частности,
указать целевой каталог

Рис. 1.4. Последний этап установки MySQL –
запуск утилиты WinMySQLAdmin. Она же
используется для администрирования сервера

25

Установка MySQL
для Mac OS X
В основе системы Mac OS X лежит опера-
ционная система FreeBSD, снабженная
графическим интерфейсом пользователя
Macintosh, а это означает, что к вашим
услугам все возможности и надежность
операционной системы UNIX, равно как
и удобство интерфейса Mac. Поэтому те-
перь программисты все чаще пользуют-
ся операционной системой от компании
Apple для разработки проектов. Стоит
еще добавить, что значительная часть
программ, работающих под UNIX (в том
числе MySQL) будет работать и под Mac
OS X.
На момент написания этой книги сущест-
вовало два основных способа установить
MySQL на платформу Mac OS X: собрать
из исходных файлов (это будет проде-
монстрировано на примере Linux в следу-
ющем разделе) или воспользоваться уже
готовым двоичным пакетом, который мож-
но загрузить с сайта разработчиков MySQL.
На Web-сайте Марка Лянежа (Marc Liyanage)
по адресу www.entropy.ch/software/macosx/
mysql подробно освещаются процессы
установки MySQL на Mac OS X и обнов-
ления уже установленной версии; также
приводятся различные примеры, часто за-
даваемые вопросы (frequently asked ques-
tions, FAQ) и даже инструкции по само-
стоятельной сборке пакета из исходных
кодов (рис. 1.5). Я горячо рекомендую вам
посетить этот сайт.

Рис. 1.5. Сайт Марка Лянежа содержит подробную
информацию об использовании MySQL
на платформе Mac OS X

Установка MySQL для Mac OS X

Установка MySQL26

Как стать суперпользователем

В операционных системах, производ-
ных от UNIX, в частности Mac OS X
и Linux, для обеспечения безопасности
применяется концепция «пользовате-
ля». Суперпользователь с именем root
может делать все, что угодно, – даже
стереть саму систему. По этой причи-
не вести работу от имени пользова-
теля root нужно очень аккуратно, но
при установке новых программ аль-
тернативы просто нет.
Если учетная запись пользователя root
уже существует и защищена паролем,
то, чтобы зарегистрироваться под этим
именем, нужно набрать команду su
root в приложении Terminal (Терми-
нал). После этого вам будет предложе-
но ввести пароль пользователя root.
Альтернативно можно начинать лю-
бую команду со слова sudo, напри-
мер, sudo ./scripts/mysql_install_db,
но тогда каждый раз придется вводить
пароль.
Чтобы задать пароль пользователя root
в системе Mac OS X, наберите коман-
ду sudo passwd root, в ответ на первое
приглашение нажмите клавишу Re-
turn, а затем два раза подряд введите
придуманный вами пароль.

27

Порядок установки MySQL для Mac OS X

1. Загрузите пакет с сайта разработчиков
MySQL: http://www.mysql.com/downloads/
mysql-4.0.html.
На момент написания этой книги по
вышеприведенному адресу находилась
версия 4.0.

2. Распакуйте загруженный файл.
С помощью утилиты StuffIt Expander
или аналогичной программы раскрой-
те загруженный архив; в результате вы
увидите пакет, содержащий MySQL
(рис. 1.6).

3. Установите MySQL.
Дважды щелкните мышью по пакету
MySQL и следуйте инструкциям мас-
тера.

4. Откройте панель управления Users
(Пользователи) с помощью меню Sys-
tem Preferences (Системные настрой-
ки) – рис. 1.7.
Я собираюсь создать учетную запись
специального пользователя, от имени
которого будет запускаться MySQL. Это
мера безопасности, которую рекомен-
дую принять и вам.

5. Добавьте нового пользователя с име-
нем mysql (рис. 1.8). Для этого щелкни-
те по кнопке New User (Новый пользо-
ватель), затем введите в поля формы
полное и краткое имя mysql и пароль по
своему выбору. Нажмите кнопку Save
(Сохранить) и закройте панель управ-
ления Users.

Рис. 1.7. Панель Users, вызываемая из меню
System Preferences, служит в системах Apple
для управления учетными записями пользователей

Рис. 1.8. Конкретные свойства пользователя mysql
не столь существенны. Важно лишь, чтобы это
имя было уникальным и легко запоминалось.
Если вы ассоциируете с ним пароль,
его тоже нужно запомнить

Рис. 1.6. В системе Mac OS X, как и в UNIX,
дистрибутивы программ могут распространяться
в виде пакетов (файлов с расширением .pkg).
Вот как выглядят их пиктограммы

Установка MySQL для Mac OS X

Установка MySQL28

6. Откройте приложение Terminal (Терми-
нал) и зарегистрируйтесь как пользова-
тель root (рис. 1.9).
Выполнять нижеописанные действия,
как правило, проще, если вы входите
в систему как пользователь с именем
root. Если для такого пользователя еще
не создано учетной записи, можете на-
чинать каждую команду словом sudo,
но тогда придется всякий раз вводить
пароль администратора (см. выше врез-
ку «Как стать суперпользователем»).

7. Перейдите в каталог /usr/local/mysql:

cd /usr/local/mysql

8. Создайте начальные базы данных (рис.
1.10):

./scripts/mysql_install_db

9. Измените права доступа к каталогу:

chown -R mysql /usr/local/mysql/*

Если вы создали специального пользовате-
ля, от имени которого будет работать
MySQL, то нужно изменить права досту-
па к файлам, входящим в состав MySQL,
сделав нового пользователя их владель-
цем. После этого вы будете готовы к за-
пуску системы MySQL и к работе с ней.

Если вы решите собрать MySQL из исход-
ных файлов (а это совсем не сложно), то
придется предварительно установить сред-
ства разработки компании Apple. Их можно
загрузить с сайта Apple (http://developer.
apple.com) или взять с компакт-диска Deve-
loper Tools, поставляемого вместе с опера-
ционной системой.

Рис. 1.9. Для завершения процедуры установки
воспользуйтесь приложением Terminal
и зарегистрируйтесь как пользователь root

Рис. 1.10. Сценарий mysql_install_db
создает две начальные базы данных – mysql и test

29

Установка MySQL для Linux
Компания MySQL AB считает, что для
установки MySQL в системе Linux лучше
всего пользоваться RPM-пакетом (RPM –
Red Hat Package Manager, администратор
пакетов, применяемый в дистрибутиве Red
Hat Linux). На сайте MySQL имеется не-
сколько пакетов для различных целей, ска-
жем для установки только серверной или
только клиентской части (рис. 1.11). Ско-
рее всего, вы захотите установить и сервер,
и клиент, но если нужен только доступ
к серверу MySQL, работающему на другой
машине, то будет достаточно одной лишь
клиентской части.
По умолчанию RPM-пакет подготовлен
так, что приложение устанавливается
в каталог /var/lib/mysql. Кроме того, в ка-
талог /etc/rc.d записываются служебные
файлы, гарантирующие автоматический
запуск сервера в виде процесса-демона
при перезагрузке компьютера. Процедура
установки RPM-пакета не вызывает слож-
ностей, так что я не стану ее здесь рас-
сматривать. Она аналогична установке
любого другого RPM-пакета или запуску
программы setup.exe в среде Windows.
Еще два возможных варианта – это уста-
новка заранее собранной двоичной версии
и компиляция исходных файлов вручную.
Необходимые при этом действия частично
совпадают, поэтому я опишу обе процеду-
ры одновременно.

Порядок установки MySQL для Linux

1. Получите доступ к серверу из команд-
ной строки (рис. 1.12).
В этом примере описывается установ-
ка MySQL в системе Red Hat Linux 6.1
с помощью приложения Terminal. Вам
будут необходимы права для манипу-
лирования файлами и создания новых

Рис. 1.11. Простейший способ установки MySQL
в системе Linux – это загрузка с сайта MySQL
подходящего дистрибутива и его инсталляция
как любого другого RPM-пакета

Рис. 1.12. При установке двоичного
или исходного дистрибутива MySQL
необходимо работать с командным
интерпретатором (предпочтительно
от имени пользователя root)

Установка MySQL для Linux

Установка MySQL30

каталогов внутри каталога /usr/local,
поэтому имеет смысл войти в систему
от имени пользователя root (см. выше
врезку «Как стать суперпользователем»).

2. Перейдите в каталог /usr/local:

cd /usr/local

Я предпочитаю устанавливать MySQL в
каталог /usr/local, как рекомендуется в
руководстве. Разумеется, вы можете
выбрать любое другое место, допуска-
емое операционной системой.

3. Загрузите двоичный или исходный дис-
трибутив MySQL.
Здесь есть несколько вариантов, вот са-
мые простые:
– загрузить файл с сайта www.mysql.

com, пользуясь браузером, а затем
переместить его в каталог /usr/local;

– воспользоваться утилитами wget или
curl, чтобы сразу загрузить файл в те-
кущий каталог.

4. Распакуйте файлы (рис. 1.13):

gunzip mysql-4.0.12.tar.gz
tar mysql-4.0.12.tar

Файл с исходным дистрибутивом име-
нуется в соответствии с соглашением
mysql-VERSION.tar.gz. Файл с двоичным
дистрибутивом именуется в соответст-
вии с соглашением mysql-VERSION-
PLATFORM.tar.gz, например: mysql-
4.23.49a-pc-linux-gnu-i686.tar.gz. Выпол-
няя эту и последующие процедуры, не
забывайте изменять имена файлов в ко-
мандах в соответствии с той версией,
которую вы устанавливаете.

5. Создайте символическую ссылку на на-
чальный каталог MySQL (рис. 1.14):

ln -s /usr/local/mysql-4.0.12 mysql

Рис. 1.13. Первый этап установки двоичного
или исходного дистрибутива – распаковка
загруженного файла в каталог /usr/local

Рис. 1.14. Создание символической ссылки
на начальный каталог MySQL поможет
сэкономить время и избежать ошибок,
хотя эта операция не обязательна

31

Это необязательная процедура, но она
позволит ссылаться на файлы, входя-
щие в состав дистрибутива MySQL,
с использованием более коротких имен,
например /usr/local/mysql вместо /usr/
local/mysql-4.0.12.

6. Создайте пользователя и группу для
работы с MySQL:

groupadd mysql
useradd -g mysql mysql
Это позволит запускать MySQL и ад-
министрировать эту СУБД от имени
пользователя mysql, а не root, что по-
вышает безопасность системы в целом.

7. Перейдите в каталог mysql:

cd mysql

Поскольку на этапе 5 была создана сим-
волическая ссылка, данная команда, по
сути, делает текущим тот каталог, в ко-
торый была установлена система MySQL
(например, /usr/local/mysql-4.0.12/).

8. Сконфигурируйте исходные файлы,
входящие в дистрибутив (рис. 1.15):

./configure --prefix=/usr/local/
� mysql

Если вы производите сборку из исход-
ного дистрибутива, необходимо само-
стоятельно выполнить конфигуриро-
вание, а затем команды сборки и уста-
новки (см. пп. 9 и 10). Если же вы уста-
навливаете двоичный дистрибутив,
пропустите этот и следующие два шага.
Подробнее о процедуре конфигуриро-
вания MySQL рассказывается ниже,
в разделе «Параметры конфигурации»,
а также в руководстве по MySQL. Флаг
prefix очень важен: он задает каталог, в
который будет установлена система
MySQL после сборки.

Рис. 1.15. При сборке MySQL из исходных файлов
вы должны самостоятельно выполнить процедуру
конфигурирования. Как минимум следует указать
в команде configure флаг prefix

Установка MySQL для Linux

Установка MySQL32

9. По завершении конфигурирования вы-
полните команды сборки и установки
продукта (рис. 1.16).

make

make install
На выполнение этих процедур уйдет
значительное время, зависящее от ва-
шей операционной системы и быстро-
действия процессора. Если на этапе
сборки (при выполнении команды make)
произойдет ошибка, не запускайте ко-
манду make install. В случае, когда про-
блему не удается решить сразу, обра-
щайтесь к руководству по MySQL или
к приложению 1 либо попробуйте уста-
новить двоичный, а не исходный дис-
трибутив.

10.Создайте начальные базы данных (рис.
1.17):

scripts/mysql_install_db

На этой стадии создаются база данных,
необходимая для работы MySQL (она
называется mysql), и тестовая база дан-
ных под названием test. Их необходимо
организовать при установке как двоич-
ного, так и исходного дистрибутива.
По завершении работы вы увидите со-
общения, касающиеся установленного
продукта (рис. 1.18).

Рис. 1.16. Если процедура конфигурирования
(рис. 1.15) завершилась успешно, на экране
должно появиться сообщение о том,
что можно приступать к сборке и установке

Рис. 1.17. Перед первым запуском сервера
необходимо создать начальные базы данных –
для этого предназначен сценарий mysql_install_db

Рис. 1.18. После создания начальных баз данных
вы увидите сообщения о том, что надо сделать,
чтобы запустить сервер

33

11.Измените права доступа к вновь со-
зданным файлам (рис. 1.19):

chown -R root /usr/local/mysql/
chown -R mysql /usr/local/mysql/data
chgrp -R mysql /usr/local/mysql/

Это завершающая операция. Она по-
зволяет запускать сервер MySQL от
имени вновь созданного пользователя
mysql.

В зависимости от операционной системы для
добавления пользователя и группы mysql,
возможно, придется использовать другие
команды (например, adduser и
addgroup). Если вы работаете с системой
Red Hat Linux, то проще всего воспользо-
ваться графической панелью конфигурации
Linuxconf.

Рис. 1.19. Предоставив пользователю mysql права
доступа к своим файлам, вы предотвратите запуск
MySQL от имени root

Установка MySQL для Linux

Установка MySQL34

Параметры конфигурации
Поскольку система MySQL поставляется
в исходных кодах и обладает большой гиб-
костью, то сконфигурировать ее можно
самыми разными способами. При сборке
MySQL из исходных файлов стоит задать
определенные параметры, от которых за-
висит работа программы.

Во время установки можно с помощью
флага prefix указать, где должны нахо-
диться двоичные файлы. Также вы впра-
ве решить, следует ли устанавливать сер-
вер MySQL (или оставить только клиен-
та), и задать используемый язык. Это все-
го лишь некоторые примеры – полный
перечень настроек вы получите, если набе-
рете команду ./configure --help, предвари-
тельно открыв начальный каталог MySQL
(например, /usr/local/mysql) – рис. 1.20.

По завершении установки MySQL допус-
кается дополнительное конфигурирование
путем редактирования файла my.cnf, рас-
положенного в каталоге /etc (впрочем, это
зависит от конкретной установки). Чтобы
выяснить, какие возможности у вас име-
ются, откройте my.cnf в текстовом редак-
торе. Если такого файла нет, создайте его
самостоятельно. Не забудьте перезапус-
тить сервер MySQL после внесения изме-
нений, чтобы они вступили в силу (поря-
док останова и запуска сервера рассматри-
вается в главе 2).
На платформе Windows изменить пара-
метры работы MySQL проще всего с по-
мощью утилиты WinMySQLAdmin (рис.
1.21), которую мы уже упоминали при
описании процедуры установки. Резуль-
тат работы WinMySQLAdmin – внесение
изменений в файл my.ini или my.cnf, ко-
торый сервер считывает во время запуска.
Первый файл находится в каталоге Windows
(обычно C:\WINDOWS или C:\WINNT),

Рис. 1.20. В руководстве по MySQL описаны
наиболее распространенные параметры
конфигурации, а команда ./configure --help
выдает полный их перечень

Рис. 1.21. На платформе Windows для изменения
некоторых аспектов работы MySQL лучше всего
воспользоваться утилитой WinMySQLAdmin

а второй – в начальном каталоге MySQL
(обычно C:\mysql). Их оба можно моди-
фицировать и вручную с помощью любого
текстового редактора, например Notepad.

Подробную информацию о конфигуриро-
вании MySQL на различных платформах вы
найдете на странице www.mysql.com/doc/c/
o/configure options.html.

35

Обновление версии MySQL
Итак, вы успешно установили и запустили
MySQL. Но позже может понадобиться
обновить версию продукта, особенно ког-
да будет выпущена версия 4.1 или 5.0.
Процедура обновления MySQL не сложнее
процедуры первоначальной установки, но
все же лучше предпринять некоторые меры
предосторожности (например, сделать ре-
зервную копию системы) на случай, если
что-то пойдет не так. При установке MySQL
на платформе Windows инсталлятор мо-
жет уничтожить существующие файлы
с данными и вообще все файлы MySQL,
если вы будете работать неаккуратно.
В руководстве по MySQL подробно рас-
сматриваются особенности обновления вер-
сии этой системы – ознакомьтесь с ними,
чтобы получить представление о возмож-
ных ситуациях. Нижеприведенные реко-
мендации носят более общий характер.

Порядок обновления MySQL

1. Остановите работающий процесс сер-
вера MySQL (рис. 1.22).
В принципе остановить сервер можно,
набрав команду bin/mysqladmin -u root
shutdown при открытом каталоге mysql.
Если вы задали пароль пользователя
MySQL с именем root (а это необходи-
мо сделать), то команда должна выг-
лядеть так:

bin/mysqladmin -u root -p shutdown

При работе в системе Windows из окна
сеанса DOS наберите команду NET STOP
MySQL, если СУБД MySQL запущена как
сервис (или воспользуйтесь пикто-
граммой-светофором в системном лот-
ке, как показано в следующей главе).
Подробнее об останове сервера MySQL
рассказывается в главе 2.

Рис. 1.22. Для останова работающего сервера
MySQL можно прибегнуть к помощи утилиты
mysqladmin

Обновление версии MySQL

Установка MySQL36

2. Сделайте резервную копию данных
MySQL (рис. 1.23).
В главе 10 описаны утилиты, специ-
ально предназначенные для резервно-
го копирования базы данных. Но в сис-
темах Linux и Mac OS X можно просто
выполнить команду

tar -cvf /tmp/mysql-data.tar data

которая упакует весь каталог data в файл,
сохраненный во временном каталоге tmp.

3. Установите новую версию MySQL.
Установка производится в соответствии
с вышеописанными инструкциями. Не-
которые этапы, например создание но-
вого пользователя и запуск сценария
mysql_install_db, можно пропустить.

4. Запишите во вновь созданный ката-
лог data данные из резервной копии
(рис. 1.24).
Восстановление данных из резервной
копии подробнее описывается в главе
10, но если вы последовали рекоменда-
ции в п. 2 (в системе Linux), то доста-
точно будет набрать команду

tar -xf /tmp/mysql-data.tar

5. Перезапустите сервер, следуя инструк-
циям из главы 2.

Рис. 1.23. Один из способов архивировать данные
MySQL – воспользоваться командой tar. В главе 2
рассматриваются другие утилиты, применяемые
для решения этой задачи

Рис. 1.24. Для восстановления данных
из резервной копии (рис. 1.23)
снова применяется команда tar

37

Если вы работаете в системе Windows NT
и СУБД MySQL запущена как сервис, то вам
придется удалить существующий сервис.
Для этого выполните в сеансе DOS коман-
ду mysqld-max-nt --remove, предвари-
тельно открыв каталог mysql\bin.

Сценарий mysql_install_db нужно запус-
кать только один раз, но случайный по-
вторный запуск не катастрофичен, по-
скольку существующие базы данных и
таблицы не будут затерты.

В качестве дополнительной меры предосто-
рожности при обновлении MySQL на плат-
форме UNIX можно заранее переименовать
исполняемый файл mysqld в mysqld.old
или нечто подобное. Тогда, если новый сер-
вер не заработает, вы без труда вернетесь
к прежней версии.

При обновлении версии MySQL на плат-
форме UNIX не забудьте, что при установке
RPM-пакета в каталоге /etc/rc.d создаются
файлы, необходимые для автоматического
запуска сервера MySQL во время загрузки.
Отсюда следует, что при обновлении исход-
ный стартовый файл в каталоге /etc/rc.d бу-
дет перезаписан, если вы заранее не сде-
лаете копию.

Обновление версии MySQL

Установка MySQL38

Ставим «заплаты»
Для исправления ошибок или устранения
брешей в системе безопасности иногда
приходится ставить «заплаты» – так назы-
ваемые патчи (patches). Компания MySQL
AB поддерживает список текущих патчей
на своем сайте по адресу www.mysql.com/
downloads/patches.html (рис. 1.25). Имей-
те в виду, что «наложить заплату» можно
только на исходный дистрибутив MySQL,
который вы собирали самостоятельно,
а не на двоичный дистрибутив или RPM-
пакет.

Порядок установки патча

1. Остановите работающий сервер MySQL.
2. Загрузите файл с патчем в тот же ката-

лог, где находится исходный дистрибу-
тив.

3. При необходимости распакуйте файл:

gunzip имя_файла_патча.gz

Патчи – это просто текстовые файлы.
Другой способ загрузить патч – про-
смотреть его в окне браузера, а затем
сохранить на диске в виде текстового
файла.

4. Установите патч, набрав команду

patch -p1 <имя_файла_патча

Она внесет необходимые изменения
в исходные файлы.

5. Удалите ранее созданную информацию
о параметрах конфигурации:
rm config.cache
make clean

При конфигурировании программ в сис-
теме UNIX создается файл config.cache,
где сохраняется информация о парамет-
рах конфигурации. Перед сборкой но-
вого экземпляра продукта с иными па-
раметрами этот файл следует удалить
или переименовать.

6. Повторно выполните процедуры кон-
фигурирования, сборки и установки,
пользуясь вышеописанными инструк-
циями из этой главы.

Рис. 1.25. Компания MySQL AB поддерживает
список текущих патчей на своем сайте. Чтобы
не отстать от жизни, периодически проверяйте,
не нужно ли выполнить обновление

После того как система MySQL успешно
установлена, пришло время узнать, как
запускать и останавливать сервер. Если
исходить из того, что вы установили не
только клиентскую часть, в вашем распо-
ряжении имеется несколько утилит, пред-
назначенных для запуска и администри-
рования сервера.
В этой главе я сначала расскажу о том, как
запускать и останавливать MySQL на раз-
личных платформах. Затем будет описа-
но, как создается пароль пользователя root,
как работать с клиентской программой
mysql и добавлять новых пользователей.
Если, выполняя упражнения, вы столкне-
тесь с ошибками, обратитесь к приложе-
нию 1 или к соответствующим разделам
руководства по MySQL.

Эксплуатация MySQL 22222
Я продемонстрирую различные приемы
на примере операционных систем Red Hat
Linux, Windows 2000 и Mac OS X. На наше
счастье, большинство команд одинаково
во всех операционных системах, будь
то Linux, Mac OS X, AIX или сеанс DOS
в Windows XP. Не опасайтесь, что опи-
сываемые приемы у вас не сработают, –
я постарался подробно рассказать, какие
изменения могут понадобиться при ре-
шении задачи в тех или иных условиях.
Что касается пользователей Windows, по-
чти все задачи администрирования базы
данных можно решить с помощью ути-
литы WinMySQLAdmin, кратко описан-
ной в предыдущей главе.

Эксплуатация MySQL40

Запуск MySQL
Увы, вы не узнаете, нормально ли устано-
вилась система MySQL, пока не попробу-
ете запустить сервер. При запуске часто
возникают проблемы и всякого рода пу-
таница, особенно если вы еще не очень
опытный пользователь системы UNIX.
С другой стороны, раз уж СУБД MySQL
запущена, она будет устойчиво и надеж-
но работать в течение многих месяцев без
перезагрузки. Если что-то на данном эта-
пе пойдет не так, обратитесь к разделу
«Запуск MySQL» в приложении 1.
Собственно сервер MySQL, то есть при-
ложение, управляющее доступом к базе
данных, находится в исполняемом фай-
ле mysqld. На платформах, отличных от
Windows, процесс-демон mysqld запуска-
ется с помощью программы safe_mysqld,
которая следит за тем, чтобы сервер не
прекращал работу. В системах семейства
Windows NT можно запустить один из
нескольких исполняемых файлов, входя-
щих в дистрибутив. Под NT программа
MySQL может работать как сервис (то есть
будет автоматически запускаться в про-
цессе загрузки операционной системы).
В других ОС, скажем, Windows 98 или
Windows Me, программу mysqld придется
запускать вручную после каждой пере-
загрузки компьютера.

Порядок запуска MySQL в системах UNIX

1. Войдите в систему, пользуясь команд-
ным интерпретатором.

2. Перейдите в начальный каталог MySQL
(рис. 2.1):

cd /usr/local/mysql

Рис. 2.1. Практически все описанные в этой главе
действия должны выполняться из командной
строки при условии, что открыт каталог mysql

41

Если при установке вы следовали ин-
струкциям из главы 1, то все необхо-
димые утилиты должны находиться
в подкаталоге bin каталога /usr/local/
mysql. В системе Red Hat Linux они бу-
дут расположены в каталоге /usr/bin1.

3. Запустите программу safe_mysqld в фо-
новом режиме (рис. 2.2):

bin/safe_mysqld &

Эта команда гарантирует непрерывную
работу сервера MySQL. Если процесс
mysqld по каким-то причинам заверша-
ется, команда перезапускает его. При
первом запуске safe_mysqld обнаружи-
вает, что mysqld не работает, и сразу же
вводит его в действие.
В системах UNIX иногда трудно разоб-
раться с тем, из какого места следует
запускать приложения. Если вышепри-
веденная команда не дает желаемого
результата, попробуйте ввести ./bin/
safe_mysqld & или перейдите в каталог
bin и наберите safe_mysqld & либо
./safe_mysqld &.
Если mysqld не запускается, запомните
напечатанное сообщение об ошибке
и обратитесь к приложению 1, где рас-
смотрены типичные проблемы.

4. Приступайте к администрированию базы
данных.

Далее в этой главе будет рассказано о том,
как обращаться к базе данных MySQL, со-
здавать новых пользователей и выпол-
нять многие другие задачи.

Рис. 2.2. Если процесс-демон mysqld запустился
нормально, то вы увидите такие сообщения

1 Если установка производилась из RPM-пакета. –
Прим. переводчика.

Запуск MySQL

Эксплуатация MySQL42

Запуск MySQL на платформе Windows го-
раздо проще, чем в UNIX. Нужно только
определиться с тем, какую версию mysqld
запускать, – а тут есть несколько вариан-
тов, причем в системах семейства Windows
NT (Windows NT, 2000 и XP) их больше,
так как существует возможность запуска
MySQL в виде сервиса, которую вы, веро-
ятно, и захотите использовать. Ниже опи-
сывается, как запустить MySQL под Win-
dows, если вы решили обойтись без рас-
смотренной в главе 1 утилиты WinMySQL-
Admin (она автоматически запускает MySQL
как сервис).

Порядок запуска MySQL в системах Windows

1. Решите, какой тип сервера использо-
вать (рис. 2.3).
В дистрибутив MySQL включено не-
сколько версий сервера MySQL. Выбор
зависит от того, какие цели вы ставите.
Имеются следующие варианты:
– mysqld – стандартный сервер;
– mysqld-opt – версия, оптимизиро-

ванная для достижения максималь-
ной производительности;

– mysqld-nt – аналогична mysqld, но
предназначена специально для ОС
семейства Windows NT;

– mysqld-max – аналогична mysqld-opt,
но включает поддержку таблиц типа
InnoDB и DBD. Эти типы таблиц бу-
дут рассмотрены в главе 11.

– mysqld-nt-max – функциональное объ-
единение mysqld-nt и mysqld-max.

Средний пользователь, скорее всего, не
заметит разницы между этими вариан-
тами. Я рекомендую начать с самого
простого – mysqld или mysqld-nt, а поз-
же при необходимости перейти к дру-
гой версии для оптимизации произво-
дительности. Выбор сервера не отража-
ется на данных, хранящихся в базе.

Рис. 2.3. В дистрибутив MySQL для Windows
входит несколько заранее сконфигурированных
исполняемых файлов сервера; все они находятся
в каталоге mysql/bin

43

2. Запустите Notepad или любой другой
текстовый редактор для создания кон-
фигурационного файла.
Конфигурационный файл требуется для
работы MySQL в нескольких случаях,
и, коль скоро вы не пользовались ути-
литой WinMySQLAdmin, его придется
создать вручную. Это необходимо, если
вы хотите изменить местоположение
файлов MySQL, собираетесь пользо-
ваться вариантами сервера mysqld-opt,
mysqld-max или mysqld-max-nt (см.
п. 1) или как-то иначе изменить пара-
метры работы сервера MySQL. На плат-
форме Windows можно создать либо
файл my.ini в каталоге WINDOWS или
WINNT, либо файл my.cnf в каталоге
C:\. Вы вправе использовать либо тот,
либо другой, но не оба сразу; я рекомен-
дую остановиться на my.ini.
Хочу все же отметить, что если вы сле-
довали инструкциям в главе 1 и запус-
тили утилиту WinMySQLAdmin, то она
создала конфигурационный файл авто-
матически.

3. Наберите в текстовом редакторе следу-
ющие строки (рис. 2.4):
[mysqld]

basedir=C:/mysql

datadir=C:/mysql/data

Это лишь малая часть того, что может
храниться в конфигурационном фай-
ле. Приведенные выше строки сообща-
ют серверу MySQL, где находятся фай-
лы MySQL (basedir) и файлы данных
(datadir). Если вы изменили параметры
во время установки, скорректируйте
команды.

Рис. 2.4. Файл my.ini можно создать
вручную, пользуясь программой
Notepad или любым другим
текстовым редактором

Запуск MySQL

Эксплуатация MySQL44

В файле могут присутствовать ком-
ментарии, например содержащие дату
его создания и имя автора. Строка ком-
ментария должна начинаться со знака #.

4. Сохраните файл, назвав его my.ini.
Файл следует сохранять в системном ка-
талоге Windows (обычно C:\WINDOWS
или C:\WINNT).

5. Запустите сервер (рис. 2.5).
Находясь в сеансе DOS, наберите сле-
дующие строки:
cd C:\mysql\bin
mysqld --standalone
Если вы работаете не в системе семей-
ства Windows NT, то флаг --standalone
можно не ставить.

6. Приступайте к администрированию базы
данных.

Далее в этой главе будет рассказано о том,
как обращаться к базе данных MySQL, со-
здавать новых пользователей и выполнять
другие важные операции.

Приложения mysqld-nt и mysqld-max-nt,
предназначенные для работы в системах
Windows NT, 2000 или XP, могут работать
и в системах Windows 95, 98, Me при усло-
вии, что установлен стек TCP/IP.

Чтобы открыть сеанс DOS, выберите пункт
Run (Выполнить) из меню Start (Пуск) и вве-
дите имя команды cmd.

Некоторые пользователи системы Red Hat
Linux сталкивались с трудностями, пыта-
ясь запустить MySQL согласно вышеизло-
женным инструкциям. Если СУБД MySQL
устанавливалась с помощью RPM-пакета,
то она, вероятно, уже сконфигурирована
как сервис. В таком случае запустить mysqld
можно, либо введя команду service

mysqld start, либо воспользовавшись
панелью управления Linuxconf. Ну и на
крайний случай подойдет команда /etc/
rc.d/init.d/mysqld start.

Рис. 2.5. Чтобы запустить сервер mysqld
на платформе Windows, не прибегая к утилите
WinMySQLAdmin, перейдите в каталог mysql/bin
и наберите команду mysqld (следует добавить
флаг ––standalone, если работа ведется
в системе семейства Windows NT)

Следует помнить, что в Windows раздели-
телем каталогов в пути к файлу служит об-
ратная косая черта (\), тогда как в других
операционных системах – прямая (/).

Программе mysqld (а, стало быть, и сцена-
рию safe_mysqld) можно передать в коман-
дной строке аргументы, модифицирующие
способ ее работы. Обычному пользователю
это, как правило, не требуется, но изучить
дополнительную информацию не помешает.
Для этого обратитесь к странице www.mysql.
com/doc/C/o/Command-line options.html.

45

Останов MySQL
Уж если вам удалось запустить сервер MySQL,
то остановить его совсем просто. Впрочем,
вам вряд ли придется часто останавливать
сервер – разве что перед обновлением вер-
сии или на период длительного обслужи-
вания (все приложение в целом спроекти-
ровано так, чтобы работать непрерывно).
Порядок останова сервера MySQL одина-
ков для Windows и UNIX/Linux/Mac OS X,
если не считать возможности использова-
ния утилиты WinMySQLAdmin. Сначала
я приведу общие рекомендации, затем оста-
новлюсь на WinMySQLAdmin, а в приме-
чаниях познакомлю вас еще с двумя ме-
тодами.

Порядок останова MySQL

1. Войдите в систему, пользуясь команд-
ным интерпретатором.
Для выполнения этой операции необя-
зательно иметь полномочия админис-
тратора (входить под именем root).

2. Перейдите в каталог mysql/bin, восполь-
зовавшись одной из команд:

cd /usr/local/mysql/bin (UNIX)

cd C:\mysql\bin (Windows)

Снова повторим, что в разных операцион-
ных системах действуют свои правила,
определяющие, откуда можно запускать
программы. Измените вышеуказанные
строки, если возникнут проблемы. Напри-
мер, в некоторых версиях Linux следует пе-
рейти в каталог /usr/local/mysql и добавить
к имени следующей ниже команды bin/.
В других версиях Linux, например Red Hat,
нужно перейти в каталог /usr/bin.

Останов MySQL

Эксплуатация MySQL46

3. Наберите команду mysqladmin shutdown
(рис. 2.6).
Если пользователю root уже присвоен
пароль, в дополнение необходимо ука-
зать еще два флага:

mysqladmin -u root -p shutdown

После нажатия клавиши Return в ответ на
приглашение введите пароль пользовате-
ля root (рис. 2.7).

Порядок останова MySQL
с помощью утилиты WinMySQLAdmin

1. Щелкните по пиктограмме-светофору
в системном лотке (рис. 2.8).
Утилита WinMySQLAmin запускает
MySQL как сервис и одновременно по-
мещает в системный лоток (располо-
женный по умолчанию в правом ниж-
нем углу экрана) пиктограмму-свето-
фор. При щелчке по ней открывается
контекстное меню.

2. Выберите пункт Win NT (рис. 2.9).
Если вы работаете с системой не из се-
мейства Windows NT, соответствую-
щий пункт, конечно, будет называться
иначе.

3. Щелкните по пункту Stop the Service
(Остановить сервис) – рис. 2.9.

Рис. 2.6. Если вы еще не задали пароль
для пользователя root, то можете остановить
сервер MySQL командой mysqladmin shutdown

Рис. 2.7. Если для пользователя root требуется
пароль, добавьте к команде shutdown флаги
-u root -p

Рис. 2.8. Щелчок по пиктограмме-светофору
предоставляет доступ к утилите WinMySQLAmin

Рис. 2.9. При наведении указателя мыши на пункт
Win NT открывается второе меню, в числе прочего
содержащее команду останова сервера MySQL

47

4. Нажмите кнопку Yes (Да) во всплываю-
щем окне (рис. 2.10).
В отличие от UNIX, версия MySQL для
Windows сначала предупредит, что оста-
нов сервиса приведет к закрытию всех
установленных соединений (то есть ра-
ботающие пользователи будут отклю-
чены).

5. Убедитесь, что сервис MySQL останов-
лен, посмотрев на пиктограмму-свето-
фор (рис. 2.11).
Если сервис MySQL работает, то горит
зеленый свет. Пока идет процедура ос-
танова, светофор горит желтым. А ког-
да сервис остановлен, включается крас-
ная лампочка.

В системах UNIX (в частности, Linux) сервер
также останавливается по команде /etc/
rc.d/init.d/mysqld stop.

Если MySQL работает как сервис под Win-
dows NT, то остановить программу можно
командой NET STOP mysql (независимо от
того, какой каталог при этом открыт).

В большинстве систем Windows можно
пропустить один шаг при выполнении вы-
шеописанных действий, введя команду
C:\mysql\bin\mysqladmin shutdown

без предварительного перехода в началь-
ный каталог MySQL.

Рис. 2.10. Окно подсказки дает вам шанс
передумать и отменить останов сервера

Рис. 2.11. Красный цвет «светофора»
свидетельствует о том, что MySQL
не работает. Зеленый означает,
что сервис работает, а желтый –
что выполняется процедура останова

Останов MySQL

Эксплуатация MySQL48

Применение утилиты
mysqladmin
Как следует из ее названия, утилита my-
sqladmin предназначена для администри-
рования базы данных. В круг задач, решае-
мых при помощи этой программы, входит
останов сервера MySQL (см. предыдущий
раздел), установка паролей пользователей
и др. Ряд функций mysqladmin продубли-
рован в утилите WinMySQLAdmin, разра-
ботанной для платформы Windows. Нако-
нец, многое из того, что делает mysqladmin,
можно выполнить непосредственно из кли-
ентской программы mysql, о которой пой-
дет речь в следующем разделе данной
главы.
Одно из самых первых применений mysql-
admin – назначение пароля пользователя
root. При установке MySQL этот пароль не
задается. Разумеется, здесь налицо брешь
в системе безопасности, которую необ-
ходимо заделать до запуска сервера. На-
помним, что к базе данных, равно как
и к операционной системе, может обра-
щаться несколько пользователей. Одна-
ко пользователи MySQL и пользовате-
ли ОС – это не одно и то же, даже если
их имена совпадают. Так, пользователь
MySQL root не имеет ничего общего с су-
перпользователем ОС под именем root:
у них разные полномочия и даже пароли
могут быть разные (последнее желатель-
но, хотя и необязательно).
Нужно понимать, что для работы утилиты
mysqladmin сервер MySQL (mysqld) дол-
жен быть запущен. Если он остановлен,
запустите его, как было показано выше.

49

Порядок установки пароля пользователя root

1. Войдите в систему из командного ин-
терпретатора.

2. Перейдите в каталог mysql/bin или
просто в каталог mysql в зависимости
от операционной системы:

cd /usr/loсal/mysql/bin (UNIX)

cd C:\mysql\bin (Windows)

3. Введите следующую команду, заменив
слово пароль желаемым паролем (см.
рис. 2.12):

mysqladmin -u root password
� 'пароль'

Помните, что MySQL различает регистр
символов в паролях, так что Kazan и ka-
zan – это не одно и то же. Слово pass-
word, предшествующее самому паролю,
заключенному в одинарные кавычки,
означает, что система MySQL должна
зашифровать следующую строку.

Изменить первоначально заданный па-
роль немногим сложнее.

Порядок изменения пароля
пользователя root

1. Войдите в систему из командного ин-
терпретатора.

2. Перейдите в каталог mysql/bin или про-
сто в каталог mysql в зависимости от
операционной системы.

3. Введите следующую команду, заменив
слово новый пароль желаемым паролем
(рис. 2.13):

mysqladmin -u root -p password
� 'новый пароль'

Рис. 2.12. Поскольку я не могу вызвать утилиту
mysqladmin непосредственно из каталога bin,
то для изменения пароля пришлось вызвать ее
как bin/mysqladmin, открыв каталог mysql

Рис. 2.13. Для изменения существующего пароля
следует добавить флаг -p при вызове утилиты
mysqladmin (рис. 2.12), чтобы можно было ввести
текущий пароль

Применение утилиты mysqladmin

Эксплуатация MySQL50

Поскольку у пользователя root уже есть
пароль, то утилита mysqladmin потребует
его указать. Флаг -p дает mysqladmin ко-
манду запросить текущий пароль.
Способы применения утилиты mysqladmin
на этом не исчерпываются: она обеспечива-
ет, в частности, создание и удаление баз дан-
ных. Эти вопросы мы рассмотрим позже,
в главе 4, при изучении клиентской про-
граммы mysql. Напоследок поговорим
о том, как mysqladmin используется для
опроса текущего состояния сервера.

Проверка текущего состояния сервера MySQL

1. Войдите в систему из командного ин-
терпретатора.

2. Перейдите в каталог mysql/bin или про-
сто в каталог mysql в зависимости от
операционной системы.

3. Введите следующую команду (рис. 2.14):

mysqladmin -u root -p status

Получив приглашение password:, введите
действующий пароль пользователя root.
Если пароль набран правильно, то вы уви-
дите, сколько времени (в секундах) про-
цесс mysqld проработал после загрузки,
а также другие статистические данные.

Чтобы узнать, с какой версией MySQL вы
работаете, введите команду

mysqladmin -u root -p version

Чтобы проверить, работает ли сервер
MySQL, не просматривая всю статистику,
введите команду mysqladmin -u root -p
ping (рис. 2.15).

К сожалению, вы можете забыть пароль
root, тем самым закрыв доступ самого важ-
ного пользователя к базе данных. О том,
как вести себя в этой ситуации, рассказы-
вается в приложении 1.

Рис. 2.14. При задании аргумента status
утилита mysqladmin выводит информацию
о текущем состоянии процесса mysqld

Рис. 2.15. При задании аргумента ping утилита
mysqladmin сообщает, работает ли в данный
момент сервер MySQL

51

Работа с клиентской
программой mysql
Самый распространенный способ общения
с сервером mysqld (если не говорить о про-
граммировании) – использование клиент-
ской программы mysql (ее еще иногда назы-
вают монитором). Это приложение позво-
ляет установить соединение с сервером,
работающим на той же или на другой ма-
шине. Почти все упражнения в данной кни-
ге ориентированы на применение програм-
мы mysql (слово mysql, написанное строч-
ными буквами, означает конкретное клиент-
ское приложение, тогда как MySQL – весь
комплекс программ).
Клиент mysql распознает некоторые аргу-
менты в командной строке, в том числе имя
пользователя, пароль и имя хоста (компью-
тера, на котором работает сервер). Вот как
они задаются:

mysql -u имя_пользователя -p -h имя_хоста

Флаг -p дает mysql команду открыть окно
ввода пароля точно так же, как в случае
mysqladmin. При желании пароль можно
задать прямо в командной строке, сразу
после флага -p, но тогда он будет виден на
экране, что небезопасно.
В мониторе mysql каждое предложение (ко-
манду SQL) нужно завершать точкой с за-
пятой. Отсюда следует, что одно предложе-
ние может для наглядности размещаться на
нескольких строках. Поэтому при работе
вы можете встретиться с несколькими при-
глашениями, что проиллюстрировано на
рис. 2.16. Полный список возможных при-
глашений приведен в табл. 2.1.
Чтобы познакомить вас с клиентом mysql,
я покажу, как запустить его, выбрать ра-
бочую базу данных и закончить сеанс. Ес-
тественно, для этого сервер (mysqld) дол-
жен быть запущен.

Рис. 2.16. Клиент mysql индицирует свое
представление о текущем состоянии ввода
различными приглашениями

Таблица 2.1. Четыре приглашения монитора,
проиллюстрированные на рис. 2.16, показывают,
чего ожидает mysql в данный момент

Приглашение Расшифровка

mysql> Готовность к вводу
новой команды

-> Продолжение команды

'> Необходимо закончить
строку одиночной
кавычкой

"> Необходимо закончить
строку двойной
кавычкой

Работа с клиентской программой mysql

Эксплуатация MySQL52

Порядок работы с монитором mysql

1. Войдите в систему из командного ин-
терпретатора.

2. Перейдите в каталог mysql/bin или про-
сто в каталог mysql в зависимости от
операционной системы:

cd /usr/loсal/mysql/bin (UNIX)
cd C:\mysql\bin (Windows)

3. Введите следующую команду (рис. 2.17):

mysql -u имя_пользователя -p

Упоминаемый выше аргумент -h имя_
хоста необязателен, и я предпочитаю
указывать его лишь тогда, когда не могу
соединиться с сервером иначе. Если вы
уже задали пароль для пользователя
root, как было показано ранее, то те-
перь в качестве имени пользователя мо-
жете ввести root и соответствующий
пароль.

4. Выберите базу, с которой вы хотите ра-
ботать (рис. 2.18):

USE test;

Команда USE сообщает MySQL, с какой
базой данных вы собираетесь дальше
работать (чтобы не приходилось вво-
дить ее имя каждый раз). Сценарий
mysql_install_db, который запускался
в ходе процедуры установки, создал две
базы данных: mysql и test.
Если вы заранее знаете, с какой базой
будете работать, то можете сразу ука-
зать ее имя в командной строке:

mysql -u имя_пользователя -p
� имя_базы_данных

5. Закончите работу с mysql (рис. 2.19):

exit

Рис. 2.17. Монитор mysql будет чаще всего
использоваться в этой книге для доступа
к базе данных

Рис. 2.18. Первый шаг при работе с клиентом
mysql – выбор рабочей базы данных

Рис. 2.19. Команды exit и quit завершают
работу с монитором mysql

53

Для выхода из монитора можно также ис-
пользовать команду quit. Эти две коман-
ды, в отличие от всех остальных, не требу-
ют завершающей точки с запятой.

Чтобы получить справочную информацию
о возможностях программы mysql, набери-
те команду mysql --help (рис. 2.20).

Клиент mysql использует функцию readline
из стандартной библиотеки UNIX, которая
позволяет применять клавиши со стрелками
вверх и вниз для прокрутки списка ранее вве-
денных команд. Это может существенно со-
кратить время набора команд.

Ускорить работу с монитором mysql по-
могает также клавиша Tab, позволяющая
завершать неполные слова (наберите сим-
вол # и нажмите клавишу Return, чтобы
узнать, какие слова можно завершать), а
кроме того, сочетания Ctrl+A и Ctrl+E, пе-
ремещающие курсор в начало и конец
строки соответственно.

Если вы сделали ошибку в длинном пред-
ложении, то для отмены наберите \c и
нажмите клавишу Return. Если mysql счи-
тает, что отсутствует одиночная или двой-
ная кавычка, придется сначала ввести ее.

Хотя вводимые в mysql команды заверша-
ются точкой с запятой, запросы, посылае-
мые серверу из сценариев (написанных на
PHP, Perl и других языках), не нуждаются
в данном символе. Это типичная (хотя и бе-
зобидная) ошибка.

В зависимости от того, как установлена сис-
тема MySQL, для Windows допустим запуск
монитора, равно как и других утилит, рас-
сматриваемых в этой главе, двойным щелч-
ком мыши по исполняемому файлу в папке
mysql/bin. Кроме того, монитор можно за-
пускать из меню Start ⇒ Run (Пуск ⇒ Вы-
полнить).

Рис. 2.20. Подробную справку о порядке запуска
mysql предоставляет команда mysql --help

Работа с клиентской программой mysql

1 Буквально «Я чайник» (англ.). – Прим. переводчика.

Если вы не уверены в себе, запускайте mysql
с параметром --i-am-a-dummy1. Тогда попыт-
ка выполнить некоторые сомнительные опе-
рации будет пресечена самим монитором.

Эксплуатация MySQL54

Пользователи и их права
После успешной установки и запуска
MySQL, а также указания пароля пользо-
вателя root настало время добавить и дру-
гих пользователей. В целях безопасности
я настоятельно рекомендую создать учет-
ные записи дополнительных пользовате-
лей, а не работать все время от имени root.
Система прав доступа в MySQL спроекти-
рована так, что для выполнения опреде-
ленных команд над определенными базами
данных требуются полномочия. Именно
эта технология обеспечивает посетителям
Web-сайта безопасную работу с различ-
ными базами данных. У каждого пользо-
вателя MySQL есть набор прав доступа
к определенным базам с конкретных хос-
тов (компьютеров). Пользователь root –
не операционной системы, а MySQL – на-
делен всеми правами и может создавать
учетные записи других пользователей,
которые в принципе могут обладать та-
кими же правами (хотя это и не рекомен-
дуется).
Когда пользователь пытается что-то сде-
лать, MySQL сначала проверяет, разреше-
но ли ему вообще устанавливать соедине-
ние с сервером (при этом имя пользова-
теля и его пароль сравниваются с инфор-
мацией, хранящейся в таблице user базы
данных mysql). Затем выясняется, есть ли
у пользователя право выполнять запро-
шенную команду в указанной базе данных,
например осуществлять выборку или встав-
ку данных, создавать новые таблицы и т.д.
Для этого MySQL сверяется с таблицами
db, host, user, tables_priv и columns_priv
(также в базе mysql). В табл. 2.2 перечис-
лены права доступа, которые можно ассо-
циировать с каждым пользователем. Ис-
пользование большинства из них будет
продемонстрировано в главе 4.

Таблица 2.2. Список прав доступа,
которые можно назначать пользователям MySQL

Право Разрешает

SELECT Выбирать данные из таблицы

INSERT Добавлять новые строки
в таблицу

UPDATE Изменять существующие данные
в таблице

DELETE Удалять данные из таблицы

INDEX Создавать и удалять индексы
над таблицами

ALTER Модифицировать структуру
таблицы

CREATE Создавать новые таблицы
или базы данных

RELOAD Перезагружать таблицы
полномочий (как следствие,
вступают в силу изменения
в наборе прав доступа
пользователя)

SHUTDOWN Останавливать сервер MySQL

PROCESS Просматривать список
и останавливать процессы MySQL

FILE Импортировать данные
в таблицы из текстовых файлов

GRANT Создавать учетные записи
новых пользователей и наделять
их правами

REVOKE Отзывать права у пользователей

55

MySQL предоставляет несколько способов
добавить пользователя и назначить ему
права доступа; лично я предпочитаю де-
лать это вручную, выполняя команду GRANT
в мониторе mysql. Вот ее синтаксис:

GRANT права ON имя_базы_данных.* TO
� имя_пользователя IDENTIFIED BY 'пароль'

Вместо слова права вы можете перечислить
конкретные права из табл. 2.2 либо указать
сразу все с помощью ключевого слова ALL
(не рекомендуется). Сочетание имя_базы_
данных.* определяет те базы данных и таб-
лицы, с которыми может работать пользо-
ватель. Можно указать конкретную табли-
цу в виде имя_базы_данных.имя_таблицы, или
разрешить доступ ко всем базам и всем таб-
лицам (это тоже не рекомендуется). Нако-
нец, следует задать имя и пароль пользова-
теля.
Максимальная длина имени пользователя –
16 символов. Имена не должны содержать
пробела (применяйте вместо него символ
подчеркивания); кроме того, MySQL раз-
личает в них регистр символов. На длину
паролей ограничений не накладывается,
прописные и строчные буквы в них также
различаются. Пароли могут храниться
в зашифрованном виде, не допускающем
восстановления исходного представле-
ния. Если опустить фразу IDENTIFIED BY
'пароль', то пользователь сможет обра-
щаться к серверу без пароля (категоричес-
ки не рекомендуется).
И наконец, у вас есть возможность разре-
шить доступ пользователя только с опре-
деленных хостов. Имя хоста – это либо
имя компьютера, на котором работает
сервер MySQL (типичное значение – local-
host), либо доменное имя компьютера,
с которого пользователь осуществляет до-
ступ. Вместо доменного имени можно ука-
зывать IP-адрес. Чтобы разрешить доступ

Пользователи и их права

Эксплуатация MySQL56

с одного хоста, наберите команду в такой
форме:

GRANT права ON имя_базы_данных.* TO
� имя_пользователя@localhost

� IDENTIFIED BY 'пароль'

Чтобы разрешить доступ с любого хоста,
воспользуйтесь метасимволом % (знак про-
цента):

GRANT права ON имя_базы_данных.* TO
� имя_пользователя@'%'

� IDENTIFIED BY 'пароль'

Для примера я опишу добавление двух
новых пользователей с различными пра-
вами.

Создание учетной записи пользователя

1. Войдите в систему из командного ин-
терпретатора.

2. Перейдите в каталог mysql/bin или прос-
то в каталог mysql в зависимости от
операционной системы.

3. Войдите в монитор mysql:

mysql -u имя_пользователя -p

4. Создайте две базы данных (рис. 2.21):

CREATE DATABASE alpacas;
CREATE DATABASE movies;

Хотя мы еще не обсуждали создание баз
данных, вышеприведенный синтаксис
вполне понятен, а при наличии двух де-
монстрационных баз этот пример про-
ще рассматривать.

5. Создайте учетную запись пользователя
с административными правами в базе
alpacas (рис. 2.22):

GRANT SELECT, INSERT, UPDATE, DELETE,
� CREATE, DROP, ALTER, INDEX, FILE ON
� alpacas.* TO llama@localhost
� IDENTIFIED BY 'camel';

Рис. 2.21. Прежде чем добавлять пользователей,
создадим две базы данных с помощью команды
SQL CREATE DATABASE имя_базы_данных

Рис. 2.22. Первый созданный нами пользователь
имеет все права работы с базой данных alpacas

57

Пользователь llama может создавать
и изменять таблицы, добавлять и об-
новлять данные и т.д. в базе alpacas.
В общем, он обладает всеми правами,
кроме создания новых пользователей.
Обязательно укажите для llama пароль
(лучше бы посложнее, чем придуман-
ный мной); также рекомендую ограни-
чить доступ конкретным хостом.

6. Создайте учетную запись пользователя
с доступом только для чтения в обеих
базах данных (рис. 2.23):

GRANT SELECT ON alpacas.* TO
� webuser@'%' IDENTIFIED BY
� 'BroWs1ng';
GRANT SELECT ON movies.* TO
� webuser@'%' IDENTIFIED BY
� 'BroWs1ng';

Пользователь webuser может выбирать
данные из таблиц (выполнять предло-
жения SELECT), но не модифицировать их.
Для создания учетной записи пользовате-
ля, которому разрешено читать содержи-
мое любой базы данных, быстрее было
бы написать GRANT SELECT ON *.* TO
webuser@'%' IDENTIFIED BY 'BroWs1ng';. Но
при этом webuser смог бы осуществлять
выборку и из базы mysql, что вряд ли
покажется разумным. При назначении
прав доступа всегда следует проявлять
консерватизм, оставляя лишь необходи-
мый минимум полномочий.

7. Выйдите из программы mysql:

quit

8. Актуализируйте изменения с помощью
утилиты mysqladmin (рис. 2.24):

bin/mysqladmin -u root -p flush-
� privileges

Только что внесенные изменения не
вступят в силу, пока вы не попросите

Рис. 2.23. Пользователю webuser разрешено
только читать данные из таблиц

Рис. 2.24. Чтобы новые права вступили в силу,
нужно актуализировать их с помощью утилиты
mysqladmin

Пользователи и их права

Эксплуатация MySQL58

MySQL перечитать список пользовате-
лей и прав доступа. Именно для этого
и предназначена вышеприведенная ко-
манда. Того же эффекта можно добить-
ся с помощью команды bin/mysqladmin -
u root -p reload (мы часто будем встре-
чать обе). Если о такой процедуре забы-
ли, добавленный пользователь не может
получить доступ к базе данных. Это
весьма распространенная ошибка.

9. Протестируйте нового пользователя
(рис. 2.25):

bin/mysql -u llama -p alpacas

С помощью этой команды вы сумеете
войти в монитор и приступить к созда-
нию таблиц в базе данных.

Любую базу данных, имя которой начина-
ется с test_, может модифицировать лю-
бой пользователь, имеющий доступ к сер-
веру MySQL. Поэтому называйте таким об-
разом только базы, создаваемые в целях
тестирования.

Если вам не нравится создавать учетные
записи пользователей и назначать им пра-
ва вручную, как я показал выше, попробуй-
те применить утилиту mysqlaccess (это сце-
нарий, написанный на языке Perl), которая
находится в каталоге bin. Более подроб-
ную информацию вы получите, обратив-
шись к руководству по MySQL или набрав
команду mysqlaccess --howto.

Есть даже более «ручной» способ создания
учетной записи пользователя: прямая встав-
ка строк (при выполнении команды
INSERT) в таблицу user и другие таблицы
базы данных mysql. Но лучше предоставить
это более опытным пользователям, кото-
рые понимают отношения между таблица-
ми user, db и прочими.

Актуализировать изменения прав доступа
можно также, набрав команду FLUSH

PRIVILEGES в мониторе mysql.

Рис. 2.25. После того как новому пользователю
даны права, от его имени можно получить доступ
к базе данных из программы mysql

При работе с любой реляционной СУБД
(и с MySQL, в частности) созданию и ис-
пользованию базы данных должна пред-
шествовать разработка ее структуры. Пра-
вильное проектирование базы данных
или, как еще говорят, моделирование дан-
ных необходимо, если вы хотите добить-
ся успеха при длительном хранении ин-
формации и управлении ею. С помощью
процедуры нормализации устраняется из-
быточность и решаются другие пробле-
мы, которые могли бы отрицательно ска-
заться на целостности данных.
Те методы, с которыми вы познакоми-
тесь в настоящей главе, помогут обеспе-
чить «живучесть», производительность
и надежность ваших баз данных. Конкрет-
ный пример, который будет использовать-
ся в последующих главах, связан с уче-
том деловых операций (счетов-фактур
и затрат), однако изложенные принципы
нормализации применимы к любому при-
ложению, где задействованы базы данных.

Проектирование
баз данных 33333

Проектирование баз данных60

Нормализация
Концепцию нормализации разработал со-
трудник фирмы IBM Э. Ф. Кодд (E. F. Codd)
в начале 1970-х годов (он же, кстати, явля-
ется автором самой идеи реляционных баз
данных). Реляционная база данных – это
просто набор данных, организованный
определенным образом. Доктор Кодд сфор-
мулировал несколько правил, именуемых
нормальными формами, которые помогают
ввести такую организацию. В этой главе
я рассмотрю первые три нормальные фор-
мы, поскольку их достаточно для проекти-
рования большинства баз данных.
Перед тем как приступать к нормализации
данных, следует определить цели разраба-
тываемого приложения. Вне зависимости
от того, будете ли вы в деталях обсуждать
эту тему с заказчиком или примете реше-
ние самостоятельно, для построения моде-
ли нужно четко представлять себе, как бу-
дет организован доступ к информации.
Поэтому при чтении данной главы вам
понадобятся, скорее, ручка и бумага, а не
сама СУБД MySQL (еще раз подчеркну, что
принципы проектирования баз данных
применимы к любой СУБД, а не только
к MySQL).
В книгах, посвященных проектированию
баз данных, обычно приводятся примеры,
касающиеся библиотек или фонотек (не
стал исключением и я, когда писал книгу
«PHP Advanced for the World Wide Web:
Visual Quick Pro Guide»), но сейчас я хочу
создать базу, в большей степени ориенти-
рованную на деловые приложения. Ее ос-
новная цель – учет счетов-фактур и за-
трат, но без особого труда она может быть
приспособлена для учета рабочего време-
ни, потраченного на проект, равно как
и для выполнения других задач. В табл. 3.1
приведен предварительный перечень дан-
ных, которые нужно хранить в базе.

Таблица 3.1. Здесь приведена информация,
которую предстоит хранить в базе данных

Элемент данных Пример

Invoice Number 1
(Номер счета)

Invoice Date 4/20/2002
(Дата счета)

Invoice Amount $30.28
(Сумма счета)

Invoive Description Проектирование
(Описание счета) HTML

Date Invoice Paid 5/11/2002
(Дата оплаты счета)

Client Information Acme Industries,
(Информация 100 Main Street,
о клиенте) Anytown, NY, 11111,

(800) 555-1234

Expense Amount $100.00
(Сумма затрат)

Expense Category Контракт с компанией
& Description Web Hosting Fees-
(Категория и описание Annual за хостинг
затрат) сайта

www.DMCinsights.com

Expense Date 1/26/2002
(Дата, когда была
произведена затрата)

Один из лучших способов понять, что за
информация должна храниться в базе, –
это прояснить для себя, какие запросы бу-
дут предъявляться и какие данные следует
вернуть в ответ.

В этой книге я продемонстрирую «ручной»
подход к проектированию базы данных, од-
нако для этой цели существуют специализи-
рованные программы, некоторые из кото-
рых перечислены в приложении 3.

61

Ключи
Ключом называется элемент данных, иден-
тифицирующий строку в таблице (строку
также называют записью). Есть два типа
ключей: первичные и внешние. Первичный
ключ – это уникальный идентификатор,
который должен удовлетворять опреде-
ленным правилам, а именно:

у ключа должно быть значение (он не
может содержать NULL);
это значение должно оставаться посто-
янным (никогда не изменяется);
значения ключей для разных записей
в таблице различны.

Реальный пример первичного ключа – это
номер социального страхования в США.
Хотя я слыхал истории о присвоении оди-
наковых номеров, но принцип состоит
в том, что у каждого человека есть уникаль-
ный номер социального страхования, ко-
торый не изменяется на всем протяжении
его жизни. Номер социального страхова-
ния – это искусственная конструкция, при-
званная идентифицировать людей. Точно
так же и вы зачастую будете сталкиваться
с ситуацией, когда включение в таблицу
искусственного первичного ключа оказы-
вается наилучшим решением.
Внешние ключи представляют в таблице B
первичные ключи из таблицы A. Если есть
база данных movies (кинофильмы) с таб-
лицами movie (фильм) и director (режис-
сер), то первичный ключ таблицы director
будет выступать в роли внешнего в табли-
це movies. О том, как этот механизм ис-
пользуется, мы подробнее поговорим при
рассмотрении процедуры нормализации.

На нынешний момент в MySQL внешние
ключи реализованы только для таблиц
типа InnoDB (подробнее о различных ти-
пах таблиц рассказывается в главе 11),

Ключи

Проектирование баз данных62

а в остальных случаях игнорируются. Та-
ким образом, внешние ключи в MySQL
присутствуют только теоретически, не
принося никакой практической пользы,
хотя в будущих версиях это положение
должно измениться.
База данных accounting пока что выглядит
как единственная таблица, но, чтобы при-
ступить к нормализации, мне придется
выделить хотя бы первичный ключ (внеш-
ние выявятся позже).

Назначение первичного ключа

1. Найдите в таблице все поля, удовлет-
воряющие трем условиям первичного
ключа.
В данном примере единственное поле,
которое является уникальным и имеет
неизменяемое и непустое значение, –
это Invoice Number (Номер счета). По-
метьте это поле сочетанием PK (primary
key, первичный ключ) – рис. 3.1.

2. Если никакого естественного первич-
ного ключа нет, придется добавить ис-
кусственный.

Часто приходится создавать искусствен-
ный первичный ключ, поскольку лучшего
решения не найти. Даже если вы имеете
дело с номерами социального страхования
и стандартными международными номе-
рами книг (ISBN, International Standardized
Book Number), которые безусловно удов-
летворяют всем критериям, создание фик-
тивного поля для формирования первич-
ного ключа иногда более целесообразно.

Рис. 3.1. Первый этап нормализации
базы данных – выделение начального
первичного ключа

База данных accounting
Invoice Number (PK)
Invoice Date
invoice Amount
Invoice Description
Date Invoiced
Client Information
Expense Amount
Expense Category & Description
Expense Date

MySQL допускает наличие только одного
первичного ключа в таблице, хотя он мо-
жет быть образован из нескольких коло-
нок (в данной книге мы эту возможность
рассматривать не станем).

В идеале первичный ключ должен быть це-
лым числом: это обеспечивает максималь-
ную производительность MySQL. Вот еще
одна причина, по которой номер социаль-
ного страхования или ISBN (тот и другой
содержат дефисы) – не лучшие кандидаты
в первичные ключи.

63

Связи
Говоря о связях в базе данных, я имею
в виду то, как данные из одной таблицы
соотносятся с данными из других. Между
таблицами бывают следующие типы свя-
зей: «один к одному», «один ко многим»
и «многие ко многим».
Связь типа «один к одному» означает, что
каждый элемент в таблице A соответству-
ет одному и только одному элементу в таб-
лице B (например, каждый гражданин США
имеет один номер социального страхова-
ния и, наоборот, каждый номер социаль-
ного страхования принадлежит лишь од-
ному гражданину США).
Связь типа «один ко многим» подразуме-
вает, что с одним элементом таблицы A
может соотноситься несколько элементов
таблицы B. Так, слова «мужчина» и «жен-
щина» применимы ко многим людям, но
каждый человек является либо мужчи-
ной, либо женщиной. Связь типа «один
ко многим» чаще всего встречается в ба-
зах данных.
Наконец, связь «многие ко многим» пред-
полагает, что несколько элементов в таб-
лице A сопоставлены с несколькими эле-
ментами таблицы B. Например, альбом
записей может содержать песни несколь-
ких исполнителей и, наоборот, у одного
исполнителя может быть несколько аль-
бомов. Следует по возможности избегать
связей типа «многие ко многим», посколь-
ку они ведут к избыточности данных
и вызывают проблемы с контролем их це-
лостности.
Связи и ключи используются совместно;
обычно ключ в одной таблице соотносит-
ся с некоторым полем в другой, как уже
говорилось выше. Теперь, разобравшись
с уникальными идентификаторами и свя-
зями, давайте приступим к нормализации
базы данных.

Рис. 3.2
Такие линии, помеченные
стрелками, используются
для представления связей
между таблицами
в моделях данных

один к одному

многие ко многим

один ко многим

При моделировании данных применяются
некоторые соглашения для представления
структуры базы, которые будут встречать-
ся на рисунках из этой главы. На рис. 3.2
приведены символы всех трех типов свя-
зей.

В результате проектирования базы данных
создается диаграмма «сущность–связь» (ER-
диаграмма), на которой таблицы представле-
ны прямоугольниками, а связи – символами,
показанными на рис. 3.2.

Термин «реляционная» происходит от анг-
лийского слова relation – «отношение».

Связи

Проектирование баз данных64

Первая нормальная форма
Чтобы база данных находилась в первой
нормальной форме (1НФ), каждая колон-
ка должна содержать ровно одно значение
(часто это свойство называют атомарнос-
тью). Таблица, в одном поле которой со-
держится почтовый адрес, не может счи-
таться приведенной к первой нормальной
форме, поскольку адрес состоит из не-
скольких логических элементов: кварти-
ры, дома, города, штата, почтового индек-
са и, возможно, страны. Не пройдет тест
и поле, содержащее имя с фамилией (хотя
есть люди, отстаивающие ту точку зрения,
что полное имя само по себе атомарно).
Продолжим процедуру нормализации, ис-
следовав ранее предложенную структуру
на предмет совместимости с первой нор-
мальной формой.

Приведение базы данных
к первой нормальной форме

1. Выявите поля, содержащие несколько
элементов данных.
В табл. 3.1 мы находим две колонки, не
соответствующие требованиям первой
нормальной формы: Client Information
(Информация о клиенте) и Expense
Category & Description (Категория и опи-
сание затрат). Поля, содержащие даты,
состоят из дня, месяца и года, но дроб-
ление до такого уровня детализации
уже излишне.

2. Разбейте поля, выявленные на этапе 1,
на отдельные компоненты (рис. 3.3).
Для решения проблемы я разобью поле
Client Information на Client Name (Имя
клиента), Client Street Address (Почто-
вый адрес клиента), Client City (Город
проживания клиента), Client State (Штат,
где проживает клиент), Client Zip (Поч-
товый индекс клиента) и Client Phone

База данных accounting
Invoice Number (PK)
Invoice Date
Invoice Amount
Invoice Description
Date Invoiced
Client Name
Client Street Address
Client City
Client State
Client Zip
Client Phone
Expense Amount
Expense Category
Expense Description
Expense Date

Рис. 3.3. В результате приведения
к первой нормальной форме я разбил
два поля на несколько

65

(Телефон клиента). Далее, вместо поля
Expense Category & Description я органи-
зую два новых: Expense Category (Катего-
рия затрат) и Expense Description (Опи-
сание затрат).

3. Еще раз убедитесь, что созданные на
этапе 2 поля удовлетворяют требова-
ниям первой нормальной формы.

Вторая нормальная форма
База данных находится во второй нор-
мальной форме (2НФ), если она уже при-
ведена к первой нормальной форме (нор-
мализация производится в определенном
порядке) и каждая неключевая колонка
в таблице соотносится только с одним пер-
вичным ключом. Самое очевидное указа-
ние на то, что база данных не приведена
ко второй нормальной форме, – это воз-
можность существования нескольких за-
писей с одинаковыми значениями в неко-
торой колонке. Например, если указывать
для каждого альбома выпустившую его
фирму, это значение будет многократно
повторено в записях об альбомах.
Пристальное изучение базы данных account-
ing (рис. 3.3) вскрывает ряд проблем. Во-пер-
вых, одна и та же информация о клиенте
может быть связана с несколькими счетами
(одному клиенту иногда выставляют много
счетов). Во-вторых, информация о затра-
тах также не связана однозначно со счетом.
Чтобы привести базу ко второй нормаль-
ной форме, мне нужно вынести «проблем-
ные» колонки в отдельные таблицы, где
каждое значение будет представлено толь-
ко один раз. На самом деле нормализа-
цию можно описать как процесс создания
все новых и новых таблиц до тех пор, пока
не будет устранена всякая избыточность.

Вторая нормальная форма

Проектирование баз данных66

Приведение базы данных
ко второй нормальной форме

1. Выявите все поля, которые не соотносят-
ся непосредственно с первичным клю-
чом.
Выше я уже отмечал, что информация
о клиенте и о затратах не связана не-
посредственно со счетом.

2. Создайте новые таблицы (рис. 3.4).
Наиболее логичной представляется мо-
дификация существующей структуры,
которая сводится к созданию отдельных
таблиц Clients (Клиенты), Invoices (Сче-
та) и Expenses (Затраты). На картинке
я создал по одному прямоугольнику для
каждой таблицы, поместив ее имя в за-
головок, а названия колонок располо-
жив ниже.

3. Назначьте первичные ключи из числа
существующих полей или создайте ис-
кусственные ключи (рис. 3.5).
С помощью техники, описанной выше,
добейтесь, чтобы в каждой новой табли-
це имелся первичный ключ. Поскольку
в таблицах Clients и Expenses нет подхо-
дящих уникальных идентификаторов,
придется создать искусственные: Client
ID (Идентификатор клиента) и Expense
ID (Идентификатор затрат). Можно воз-
разить, что значение поля Client Name
(Имя клиента) должно быть уникально
и, стало быть, может претендовать на
роль первичного ключа, но для этой
цели все же лучше использовать це-
лые числа.

4. Повторите действия, описанные в пп. 1–3.

Рис. 3.5. У каждой таблицы в базе данных должен
быть свой первичный ключ, искусственный
(как поле Client ID) или естественный
(как поле Invoice Number)

База данных accounting

Clients

Client ID (PK)
Client Name
Client Street Address
Client City
Client State
Client Zip
Client Phone

Invoices

Invoice Number (PK)
Invoice Date
Invoice Amount
Invoice Description
Date Invoiced

Expenses

Expence ID (PK)
Expense Amount
Expense Category
Expense Description
Expense Date

Рис. 3.4. Для нормализации базы данных следует
вынести избыточную информацию – в данном
случае о клиенте и о затратах – в отдельные
таблицы

База данных accounting

Clients

Client Name
Client Street Address
Client City
Client State
Client Zip
Client Phone

Invoices

Invoice Number (PK)
Invoice Date
Invoice Amount
Invoice Description
Date Invoiced

Expenses

Expense Amount
Expense Category
Expense Description
Expense Date

67

Поскольку я создал таблицы с новыми
первичными ключами, то должен снова
проверить, удовлетворяют ли они тре-
бованиям второй нормальной формы.
В нашем примере нарушение бросает-
ся в глаза: поле Expense Category может
встречаться в разных записях о затра-
тах. Поэтому я создам еще одну табли-
цу Expense Categories (Категории за-
трат) – рис. 3.6.

5. Создайте необходимые внешние клю-
чи, обозначающие связи между табли-
цами (рис. 3.7).

Последний этап приведения ко второй
нормальной форме – включение внешних
ключей и связей, показывающих, как со-
относятся данные в разных таблицах. На-
помню, что первичный ключ в одной таб-
лице, скорее всего, будет внешним в дру-
гой. Если обнаруживается, что первичному
ключу в одной таблице не соответствует
внешний ключ ни в одной другой, вы,
может быть, что-то забыли (хотя и не обя-
зательно).

Еще один способ проверить совместимость
со второй нормальной формой – посмот-
реть на связи между таблицами. В идеале
должны быть только связи «один ко мно-
гим». Таблицы, между которыми существу-
ет связь «многие ко многим», следует ре-
организовать.

Рис. 3.6. Поле Expense Category, бывшее частью
таблицы Expenses, вынесено в отдельную таблицу

База данных accounting

Invoices

Invoice Number (PK)
Invoice Date
Invoice Amount
Invoice Description
Date Invoiced

Clients

Client ID (PK)
Client Name
Client Street Address
Client City
Client State
Client Zip
Client PhoneExpenses

Expense ID (PK)
Expense Amount
Expense Description
Expense Date

Expense Categories

Expense Category ID (PK)
Expense Category

Рис. 3.7. Для новых первичных ключей я добавил
соответствующие внешние ключи и обозначил
связи (обе типа «один ко многим»)

База данных accounting

Invoices

Invoice Number (PK)
Client ID (FK)
Invoice Date
Invoice Amount
Invoice Description
Date Invoiced

Clients

Client ID (PK)
Client Name
Client Street Address
Client City
Client State
Client Zip
Client Phone

Expenses

Expense ID (PK)
Expense Category ID (FK)
Expense Amount
Expense Description
Expense Date

Expense Categories

Expense Category
ID (PK)
Expense Category

Вторая нормальная форма

Проектирование баз данных68

Третья нормальная форма
Говорят, что база данных находится в треть-
ей нормальной форме (3НФ), если она уже
приведена ко второй нормальной форме
и любая неключевая колонка не зависит
ни от каких других неключевых коло-
нок. Иными словами, все поля таблицы,
за исключением ключевых, должны быть
взаимонезависимы.
Если вы правильно выполнили первые два
шага нормализации, то, возможно, на сле-
дующем вообще не придется ничего де-
лать. Однако, если в процессе работы были
произведены какие-то изменения (как оно
часто бывает), то последний этап следует
рассматривать как завершающую провер-
ку. Предположим, что я захотел вместе
с каждым счетом хранить имя контактного
лица и адрес электронной почты (рис. 3.8).
Проблема в том, что эта информация свя-
зана не со счетом, а с клиентом, а значит,
требование третьей нормальной формы не
будет удовлетворено. Правильно было бы
добавить поля в таблицу Clients (рис. 3.9).

Рис. 3.8. Изменение требований к базе данных
может вступить в конфликт с проектом. Так, после
добавления полей Contact Name и Email Address
база перестала быть нормализованной

База данных accounting

Invoices

Invoice Number (PK)
Client ID (FK)
Invoice Date
Invoice Amount
Invoice Description
Date Invoiced
Contact Name
Contact Email Address

Clients

Client ID (PK)
Client Name
Client Street Address
Client City
Client State
Client Zip
Client Phone

Expenses

Expense ID (PK)
Expense Category ID (FK)
Expense Amount
Expense Description
Expense Date

Expense Categories

Expense Category
ID (PK)
Expense Category

База данных accounting

Invoices

Invoice Number (PK)
Client ID (FK)
Invoice Date
Invoice Amount
Invoice Description
Date Invoiced

Clients

Client ID (PK)
Client Name
Client Street Address
Client City
Client State
Client Zip
Client Phone
Contact Name
Contact Email Address

Expenses

Expense ID (PK)
Expense Category ID (FK)
Expense Amount
Expense Description
Expense Date

Expense Categories

Expense Category
ID (PK)
Expense Category

Рис. 3.9. Правильное решение – включить новую
информацию (рис. 3.8) в таблицу Clients

69

После того как вы нарисовали примерную
структуру базы данных на бумаге, можно
создать несколько электронных таблиц,
описывающих проект, или воспользовать-
ся специализированной программой. Такой
файл послужил бы неплохим справочным
руководством для программистов, работаю-
щих над Web-сайтом. Кроме того, его мож-
но было бы представить заказчику по за-
вершении работы над проектом.

Когда MySQL начнет принимать во внима-
ние внешние ключи (данный функционал
разработчики планируют добавить в вер-
сии 4.1), нормализация базы данных при-
обретет еще большее значение, чем сейчас.

Ослабление требований нормализации

Хотя приведение базы данных к тре-
тьей нормальной форме повышает на-
дежность и целостность данных, вовсе
не обязательно нормализовать все без
исключения таблицы, с которыми вы
работаете. Но прежде чем отказывать-
ся от проверенных методик, следует
осознать, что это может иметь плачев-
ные последствия, пусть и не в самом
скором будущем.
Две главных причины ослабить требо-
вания нормализации – это удобство
и производительность. Чем меньше
таблиц в базе, тем проще в них разоб-
раться и манипулировать ими. Кроме
того, операции обновления, выборки
и модификации структуры в полнос-
тью нормализованной базе могут вы-
полняться медленнее. Нормализация
означает, что целостность данных
и масштабируемость для вас важнее
простоты и скорости. Есть, правда,
альтернативные способы повысить
производительность, но мало что мо-
жет помочь при восстановлении дан-
ных, запорченных из-за неправильно-
го проектирования.

Третья нормальная форма

Проектирование баз данных70

Типы данных в MySQL
Идентифицировав все таблицы и колонки
в базе данных, нужно определить тип дан-
ных, хранящихся в каждом поле. Суще-
ствует три основных категории типов, об-
щих практически для всех СУБД:

текст;
числа;
дата и время.

В каждой категории есть несколько раз-
ных типов, причем некоторые из них спе-
цифичны для MySQL. Правильный выбор
типа данных в колонке не только опреде-
ляет, что и как в ней будет храниться, но
и влияет на общую производительность.
В табл. 3.2 перечислено большинство из
имеющихся в MySQL типов; указано,
сколько места занимает каждый, и приве-
дено краткое описание.
У многих типов есть необязательный атри-
бут Length (Длина), ограничивающий раз-
мер данных. В квадратных скобках приве-
дены необязательные параметры, которые
можно указывать после имени типа в круг-
лых скобках; если же параметр заключен
в круглые скобки, то он обязателен. Кроме
того, числовые типы могут иметь модифи-
катор UNSIGNED (при этом поле может содер-
жать только неотрицательные значения)
или ZEROFILL (тогда неиспользованное место
будет заполнено нулями). Если для типа
указан модификатор ZEROFILL, то автомати-
чески предполагается и модификатор
UNSIGNED. Типы данных, описывающие время
и дату, характеризуются собственным по-
ведением, документированным в разделе
www.mysql.com/doc/D/A/DATETIME.html
руководства по MySQL. Как правило, вы
будете использовать только поля типов
DATE и TIME, так что беспокоиться о всячес-
ких тонкостях не придется. У типа данных

71

TEXT есть два расширения со специфичес-
ким поведением: ENUM и SET. Они позволяют
определить множество допустимых значе-
ний. Поле типа ENUM может принимать толь-
ко одно из нескольких тысяч возможных
значений, а поле типа SET – несколько зна-

чений не более чем из 64. Следует иметь
в виду, что типы данных ENUM и SET не поддер-
живаются другими СУБД и их использование
входит в противоречие с правилами норма-
лизации.

Типы данных в MySQL

Таблица 3.2. Основные типы данных в MySQL

Тип Размер Описание

CHAR[длина] Число байтов Поле фиксированной длины от 0 до 255 символов
равное длина

VARCHAR[длина] длина + 1 байт Поле переменной длины от 0 до 255 символов

TINYTEXT длина + 1 байт Строка максимальной длиной 255 символов

TEXT длина + 2 байта Строка максимальной длиной 65 535 символов

MEDIUMTEXT длина + 3 байта Строка максимальной длиной 16 777 215 символов

LONGTEXT длина + 4 байта Строка максимальной длиной 4 294 967 295 символов

TINYINT[длина] 1 байт Целое в диапазоне от –128 до 127 или от 0 до 255,
если указан модификатор UNSIGNED

SMALLINT[длина] 2 байта Целое в диапазоне от –32 768 до 32767 или от 0
до 65535, если указан модификатор UNSIGNED

MEDIUMINT[длина] 3 байта Целое в диапазоне от –8 388 608 до 8 388 607
или от 0 до 16 777 215, если указан модификатор
UNSIGNED

INT[длина] 4 байта Целое в диапазоне от –2 147 483 648 до 2 147 483 647
или от 0 до 4 294 967 295, если указан модификатор
UNSIGNED

BIGINT[длина] 8 байт Целое в диапазоне от –9 223 372 036 854 775 808
до 9 223 372 036 854 775 807
или от 0 до 18 446 744 073 709 551 615,
если указан модификатор UNSIGNED

FLOAT 4 байта Небольшое число с плавающей точкой

DOUBLE 8 байт Большое число с плавающей точкой
[длина,
десятичные знаки]

DECIMAL Число байтов равное Число типа DOUBLE, хранящееся в формате
[длина, длина + 1 или длина + 2 с фиксированной десятичной точкой
десятичные знаки]

DATE 3 байта Дата в формате ГГГГ-MM-ДД (год, месяц, день)

DATETIME 8 байт Дата и время в формате ГГГГ-MM-ДД ЧЧ:MM:СС
(год, месяц, день, часы, минуты, секунды)

TIMESTAMP 4 байта Временной штамп в формате ГГГГММДДЧЧММСС;
допустимый диапазон заканчивается в 2037 году

TIME 3 байта Время в формате ЧЧ:MM:СС

ENUM 1 или 2 байта Перечисление, означающее, что в колонке может
находиться одно из нескольких возможных значений

SET 1, 2, 3, 4 или 8 байт Аналогично ENUM, но в колонке может храниться
более одного значения из нескольких возможных

Проектирование баз данных72

Выбор типа данных

1. Определите, какие колонки будут тек-
стовыми, какие – числовыми, а какие
должны содержать дату.
Обычно эта задача не вызывает затруд-
нений. Выясняется, что такие числовые
данные, как почтовые индексы или де-
нежные суммы, приходится хранить
в текстовом виде, если включать соот-
ветствующие специальные символы
(знак доллара, запятые и дефисы). Од-
нако лучше хранить записи обычных
чисел, а форматированием заняться
там, где это необходимо.

2. Выберите подходящий тип для каждой
колонки.
Для повышения производительности
учтите следующее:
– работа с полями фиксированной дли-

ны (например, типа CHAR) в общем
случае ведется быстрее, чем с полями
переменной длины (например, типа
VARCHAR), но при этом первые занима-
ют больше места. Дополнительную
информацию вы найдете во врезке
«CHAR против VARCHAR»;

– размер любого поля следует выби-
рать минимально возможным, исхо-
дя из того, какое максимальное значе-
ние может в нем храниться. Напри-
мер, если ожидаемое число клиентов
порядка нескольких сотен, то в каче-
стве типа поля Client ID можно выб-
рать UNSIGNED SMALLINT с тремя цифра-
ми (позволяет хранить значения до
999).
Следует учитывать, что при попытке
вставить строку из пяти символов
в поле типа CHAR(2) последние три
символа будут отброшены. Это вер-
но в отношении любого типа с задан-
ной длиной (CHAR, VARCHAR, INT и т.д.).

CHAR против VARCHAR

По поводу преимуществ использова-
ния того или иного из двух типов –
CHAR или VARCHAR – ведутся дискуссии.
Оба хранят строки и предполагают
установку максимальной заданной дли-
ны. Единственное важное различие со-
стоит в том, что все данные, хранящи-
еся как CHAR, всегда будут выводиться
как строка, длина которой равна ши-
рине колонки (приведение осуществ-
ляется за счет добавления пробелов
в конце строки). Напротив, длина строк
VARCHAR будет ровно такой, какая тре-
буется для их записи.
Отсюда два следствия:

колонки VARCHAR занимают меньше
места на диске;
пока вы не используете таблицы типа
InnoDB (более подробно о них рас-
сказывается в главе 11), доступ к ко-
лонкам CHAR осуществляется быст-
рее, чем к VARCHAR.

Впрочем, разница в быстродействии
и «поглощении» дискового простран-
ства может быть столь незначитель-
ной, что нет смысла об этом задумы-
ваться.
Наконец, есть и третье различие, не
слишком существенное: MySQL уда-
ляет лишние пробелы из колонок CHAR
при выборке данных, а из колонок
VARCHAR – при вставке данных.

73

3. Задайте максимальную длину текстовых
и числовых колонок, а также другие ат-
рибуты, к примеру UNSIGNED (табл. 3.3).
Вместо того чтобы объяснять, как и по-
чему я определил типы всех 21 колонок,
я решил свести их в табл. 3.3. У каждого
разработчика своя система предпочте-
ний, но важнейший принцип состоит
в том, чтобы принимать решения на
основе имеющейся информации, а не
пользоваться все время обобщенны-
ми (и неэффективными) типами TEXT и
INT.

У названий многих типов данных есть сино-
нимы: INT и INTEGER, DEC и DECIMAL и т.д.

Значение в поле типа TIMESTAMP записыва-
ется автоматически при выполнении опера-
ций INSERT и UPDATE, даже если явно оно
не указано. Если в таблице есть несколько
полей типа TIMESTAMP, то обновляется
только первое из них.

Тип BLOB, похожий на TEXT, позволяет
хранить в таблице двоичные данные. Его
использование я продемонстрирую в гла-
ве 9.

Типы данных в MySQL

Проектирование баз данных74

Таблица 3.3. При проектировании баз данных
выбору оптимального типа каждого поля часто уделяют недостаточно внимания

Имя колонки Таблица Тип колонки

Invoice Number (Номер счета) Invoices (Счета) SMALLINT(4) UNSIGNED

Client ID (Идентификатор клиента) Invoices SMALLINT(3) UNSIGNED

Invoice Date (Дата счета) Invoices DATE

Invoice Amount (Сумма счета) Invoices DECIMAL(10,2) UNSIGNED

Invoice Description (Описание счета) Invoices TINYTEXT

Client ID (Идентификатор клиента) Clients (Клиенты) SMALLINT(3) UNSIGNED

Client Name (Имя клиента) Clients VARCHAR(40)

Client Street Address Clients VARCHAR(80)

(Почтовый адрес клиента)

Client City (Город проживания клиента) Clients VARCHAR(30)

Client State (Штат, где проживает клиент) Clients CHAR(2)

Client Zip (Почтовый индекс клиента) Clients MEDIUMINT(5) UNSIGNED

Client Phone (Телефон клиента) Clients VARCHAR(14)

Contact Name (Контактное лицо) Clients VARCHAR(40)

Contact Email Address Clients VARCHAR(60)

(Адрес электронной почты)

Expense ID (Идентификатор затрат) Expenses (Затраты) SMALLINT(4) UNSIGNED

Expense Category ID Expenses TINYINT(3) UNSIGNED

(Идентификатор категории затрат)

Expense Amount (Количество затрат) Expenses DECIMAL(10,2) UNSIGNED

Expense Description (Описание затраты) Expenses TINYTEXT

Expense Date (Дата, когда была Expenses DATE

произведена затрата)

Expense Category ID Expense Categories TINYINT(3) UNSIGNED

(Идентификатор категории затрат) (Категории затрат)

Expense Category (Категория затрат) Expense Categories VARCHAR(30)

75

NULL и значения
по умолчанию
Итак, вы уже познакомились с нескольки-
ми атрибутами полей, определяемыми при
выборе типа данных, например UNSIGNED
и ZEROFILL. Есть еще два атрибута, которые
показывают, может ли поле содержать NULL
и каково его значение по умолчанию.
В контексте баз данных и программиро-
вания фраза «значение поля равно NULL»
эквивалентна фразе «поле не имеет значе-
ния». В идеале каждое поле базы данных
должно иметь значение, но на практике
так бывает редко. Если вы все же предпо-
читаете идеальный вариант, добавьте NOT
NULL в описание типа колонки. Например,
первичный ключ можно было бы описать
так:

client_id SMALLINT(3) UNSIGNED NOT NULL

При создании таблицы для некоторых ко-
лонок можно также задать значения по
умолчанию. В тех случаях, когда во многих
записях некоторое поле будет иметь одно
и то же значение, можно сделать его значе-
нием по умолчанию – тогда не нужно бу-
дет указывать его в операторе вставки но-
вой строки, если, конечно, не вставляется
какое-либо другое значение. Вот пример:

gender ENUM('M', 'F') DEFAULT 'F'

В табл. 3.4 отражены соответствующие
изменения.

Первичные ключи не могут содержать
NULL, согласно принципам правильного
проектирования базы данных (да MySQL и
не допустит этого).

Если для колонки типа ENUM указан атри-
бут NOT NULL, то значением по умолчанию
автоматически становится первое из до-
пустимых значений.

На всякий случай подчеркну, что NULL от-
личается от числа 0, от пустой строки ('')
и от пробела (' ').

NULL и значения по умолчанию

Проектирование баз данных76

Таблица 3.4. Для улучшения проекта базы данных
я добавил к описаниям некоторых колонок атрибуты NOT NULL и DEFAULT

Имя колонки Таблица Тип колонки

Invoice Number (Номер счета) Invoices (Счета) SMALLINT(4) UNSIGNED

� NOT NULL DEFAULT 0

Client ID (Идентификатор клиента) Invoices SMALLINT(3) UNSIGNED

Invoice Date (Дата счета) Invoices DATE NOT NULL

Invoice Amount (Сумма счета) Invoices DECIMAL(10,2) UNSIGNED NOT NULL

Invoice Description (Описание счета) Invoices TINYTEXT

Client ID (Идентификатор клиента) Clients (Клиенты) SMALLINT(3) UNSIGNED

� NOT NULL DEFAULT 0

Client Name (Имя клиента) Clients VARCHAR(40) NOT NULL

Client Street Address Clients VARCHAR(80)

(Почтовый адрес клиента)

Client City (Город проживания клиента) Clients VARCHAR(30)

Client State Clients CHAR(2)

(Штат, где проживает клиент)

Client Zip (Почтовый индекс клиента) Clients MEDIUMINT(5) UNSIGNED

Client Phone (Телефон клиента) Clients VARCHAR(14)

Contact Name (Контактное лицо) Clients VARCHAR(40)

Contact Email Address Clients VARCHAR(60)

(Адрес электронной почты)

Expense ID (Идентификатор затрат) Expenses SMALLINT(4) UNSIGNED

(Затраты) � NOT NULL DEFAULT 0

Expense Category ID Expenses TINYINT(3) UNSIGNED

(Идентификатор категории затрат)

Expense Amount (Количество затрат) Expenses DECIMAL(10,2) UNSIGNED NOT NULL

Expense Description (Описание затраты)Expenses TINYTEXT

Expense Date (Дата, когда была Expenses DATE

произведена затрата)

Expense Category ID Expense Categories TINYINT(3) UNSIGNED

(Идентификатор категории затрат) (Категории затрат)

Expense Category (Категория затрат) Expense Categories VARCHAR(30)

77

Индексы
Индексы – это специальный механизм, ко-
торый используется в СУБД для повыше-
ния производительности. Строя над таб-
лицей индексы по некоторым полям, вы
сообщаете MySQL, что на эти поля надо
обратить особое внимание. На самом деле
в целях эффективности программа хранит
индексы в отдельных файлах.
MySQL позволяет построить над каждой
таблицей до 32 индексов, а каждый индекс
может включать до 16 полей. Хотя на пер-
вый взгляд непонятно, зачем нужны мно-
гоколонные индексы, их полезность ста-
новится очевидной, если часто приходит-
ся производить поиск по одному и тому
же набору колонок (например, по имени
и фамилии, городу и штату и т.д.).
С другой стороны, с индексированием не
стоит перебарщивать. Конечно, индексы
ускоряют выборку данных из базы, но зато
замедляют обновление (поскольку изме-
нять приходится не только сами данные,
но и индексы). Лучше всего строить индек-
сы по колонкам, которые:

часто используются в условии WHERE
запроса;
часто используются во фразе ORDER BY
запроса;
имеют много различных значений (ко-
лонки, где встречается много повторяю-
щихся значений, индексировать не сто-
ит).

Отметим, что в MySQL над колонкой, со-
держащей первичный ключ, индекс стро-
ится автоматически.

Индексы

Проектирование баз данных78

В MySQL есть три типа индексов: INDEX,
UNIQUE (применяется, когда все значения
ключа должны быть уникальны) и PRIMARY
KEY (разновидность индекса типа UNIQUE). В
табл. 3.5 приведены индексы, которые
я предлагаю использовать для базы дан-
ных accounting.
Последний атрибут колонки, который час-
то используется в сочетании с индексами, –
это AUTO_INCREMENT. При определении поля с
таким свойством, например:

client_id SMALLINT(3) UNSIGNED
� NOT NULL AUTO_INCREMENT

вы сообщаете MySQL, что при вставке
новой записи в это поле нужно записать
«следующее» значение. Если речь идет
о числовом поле, то «следующим» счи-
тается наименьшее число, превышающее
максимальное значение из тех, что уже на-
ходятся в этой колонке.

Атрибут AUTO_INCREMENT в MySQL эквива-
лентен последовательностям в Oracle.

Использование индексов, построенных по
полям переменной длины, менее эффек-
тивно, да и вообще MySQL с такими полями
всегда работает медленнее, чем с полями
фиксированной длины.

Создаваемому индексу можно присвоить
имя (см. главу 4), а если вы этого не сдела-
ете, то по умолчанию оно будет совпадать
с именем той колонки, по которой стро-
ится индекс.

Таблица 3.5. Для повышения производительности
я добавил в базу accounting несколько
(не очень много) индексов, ускоряющих доступ
к информации

Колонка Тип индекса

Invoice Number PRIMARY KEY

(Номер счета)

Client ID
(Идентификатор клиента) PRIMARY KEY

Expense ID
(Идентификатор затрат) PRIMARY KEY

Expense Category ID
Идентификатор
категории затрат) PRIMARY KEY

Invoice Date
(Дата счета) INDEX

Client Name
(Имя клиента) INDEX или UNIQUE

79

Заключительные этапы
проектирования
Последнее, о чем стоит упомянуть в связи
с проектированием баз данных, – это необ-
ходимость придерживаться некоторых со-
глашений об именовании. Хотя MySQL
позволяет присваивать базам данных, таб-
лицам и колонкам достаточно произволь-
ные имена, я все-таки рекомендую следо-
вать перечисленным ниже правилам (не-
которые из них обязательны):

используйте только алфавитно-циф-
ровые символы;
не употребляйте имен длиннее 64 сим-
волов (это ограничение MySQL);
пользуйтесь для разделения слов сим-
волом подчеркивания;
употребляйте в словах только малень-
кие буквы (а вот это вопрос личных
предпочтений, а не четкое правило);
в именах таблиц употребляйте мно-
жественное число, а в названиях коло-
нок – единственное;
названия колонок, соответствующих
первичным и внешним ключам, завер-
шайте словом id (или ID);
подбирайте смысловые названия коло-
нок;
старайтесь, чтобы имена всех колонок во
всех таблицах различались, за исключе-
нием названий ключевых колонок.

По большей части это мои личные рекомен-
дации, которым, конечно, не обязательно
следовать. Некоторые разработчики пред-
почитают начинать каждое слово в имени
прописными буквами, а не разделять под-
черкиванием (например, ContactName вмес-
то Contact_Name). Другие включают в на-
звание колонки ее тип. Главное, чтобы вы

Заключительные этапы проектирования

Проектирование баз данных80

Таблица 3.6. В окончательном проекте базы данных учтены некоторые соглашения об именовании,
которыми не стоит пренебрегать

Имя колонки Таблица Тип колонки

invoice_id invoices SMALLINT(4) UNSIGNED NOT NULL DEFAULT 0

client_id invoices SMALLINT(3) UNSIGNED

invoice_date invoices DATE NOT NULL

invoice_amount invoices DECIMAL(10,2) UNSIGNED NOT NULL

invoice_description invoices TINYTEXT

client_id clients SMALLINT(3) UNSIGNED NOT NULL DEFAULT 0

client_name clients VARCHAR(40) NOT NULL

client_street clients VARCHAR(80)

client_city clients VARCHAR(30)

client_state clients CHAR(2)

client_zip clients MEDIUMINT(5) UNSIGNED

client_phone clients VARCHAR(14)

contact_name clients VARCHAR(40)

contact_email clients VARCHAR(60)

expense_id expenses SMALLINT(4) UNSIGNED NOT NULL DEFAULT 0

expense_category_id expenses TINYINT(3) UNSIGNED

expense_amount expenses DECIMAL(10,2) UNSIGNED NOT NULL

expense_description expenses TINYTEXT

expense_date expenses DATE

expense_category_id expense_categories TINYINT(3) UNSIGNED

expense_category expense_categories VARCHAR(30)

всюду придерживались единожды выбранно-
го стиля.

В табл. 3.6 приведена окончательная струк-
тура базы данных, которую мы создадим
в следующей главе (переводы названий ко-
лонок и таблиц см. в табл. 3.3, 3.4).

В системе UNIX регистр символов для имен
баз данных и таблиц имеет значение, в от-
личие от системы Windows. В именах коло-
нок прописные и строчные буквы не разли-
чаются на любой платформе.

Строго придерживаясь принципов проекти-
рования баз данных, вы сведете к миниму-
му число ошибок при программировании
интерфейса базы (см. главы 6–8).

Язык SQL (Structured Query Language –
структурированный язык запросов) пред-
назначен специально для взаимодействия
с базами данных. Он используется во всех
сколько-нибудь значимых СУБД, и MySQL –
не исключение.
Язык SQL был создан вскоре после того,
как Э. Ф. Кодд выдвинул свою теорию ре-
ляционных баз данных. Спустя десять лет,
в 1989 году, Национальный институт стан-
дартизации США (ANSI) выпустил пер-
вый стандарт SQL, который получил на-
звание SQL 89. В 1992 году вышел стандарт
SQL2, который и поныне считается акту-
альным (его еще называют SQL92 или прос-
то SQL).
На примере базы данных accounting, спро-
ектированной в предыдущей главе, я про-
демонстрирую все важнейшие возможнос-
ти SQL. Поскольку для взаимодействия
с MySQL этот язык необходим, изложен-
ная в данной главе информация приго-
дится вам и при чтении оставшейся части
книги.

Язык SQL 44444

Язык SQL82

Создание баз данных
и таблиц
Первый наш опыт применения SQL бу-
дет заключаться в создании базы данных.
В главе 2 я без пространных пояснений
уже создал две базы, чтобы показать на
примере, как добавляются пользователи.
Тогда же вы познакомились с командой
GRANT языка SQL. Напомню синтаксис
предложения для создания базы данных:

CREATE DATABASE имя_базы_данных;

Слово CREATE используется также для со-
здания таблиц:

CREATE TABLE имя_таблицы (имя_колонки1
� описание, имя_колонки2 описание, ...);

Как вы видите, после указания имени таб-
лицы внутри скобок определяются ее ко-
лонки – в порядке следования. Описания
колонок отделены друг от друга запятыми.
В конце предложения, используемого для
создания таблицы, можно указать имена
индексов по ней (вы вправе сделать это
позже в отдельной команде).
Для демонстрации предложения CREATE
я создам базу данных accounting и четыре
входящих в нее таблицы, учитывая прави-
ла нормализации, изложенные в главе 3.

Создание баз данных и таблиц

1. Далее в этой главе все предложения SQL
будут вводиться с помощью монитора
mysql. Откройте mysql, применяя синтак-
сис (имя пользователя, пароль и т.д.),
специфичный для вашей операционной
системы и конфигурации, – см. главу 2.

2. Создайте новую базу данных и сделай-
те ее рабочей (рис. 4.2):

CREATE DATABASE accounting;
USE accounting;

Рис. 4.1. Все примеры из этой главы
вводятся с помощью клиента mysql

Рис. 4.2. Первым делом я создаю и назначаю
рабочей базу данных accounting

83

В первой строке создается база данных
(предполагается, что вы вошли в mysql
от имени пользователя, обладающего
правами на создание новых баз дан-
ных). Во второй строке вы сообщаете
MySQL, что далее будете работать с толь-
ко что созданной базой. Напомню, что
в мониторе mysql все предложения долж-
ны завершаться точкой с запятой.
Хотя в языке SQL прописные и строчные
буквы не различаются, лично я привык
записывать зарезервированные слова
SQL прописными буквами, что позво-
ляет легко отличить их от имен баз дан-
ных, таблиц и колонок. Если вам боль-
ше нравится противоположный вари-
ант, пишите зарезервированные слова
строчными буквами.

3. Создайте таблицу invoices (рис. 4.3):

CREATE TABLE invoices (
invoice_id SMALLINT(4) UNSIGNED NOT
� NULL AUTO_INCREMENT,
client_id SMALLINT(3) UNSIGNED,
invoice_date DATE NOT NULL,
invoice_amount DECIMAL(10,2)
� UNSIGNED NOT NULL,
invoice_description TINYTEXT,
PRIMARY KEY(invoice_id),
INDEX(invoice_date)

);

Структура таблицы invoices была разра-
ботана в предыдущей главе. Последова-
тельность перечисления колонок опре-
деляет порядок хранения данных в таб-
лице. Индексы должны быть указаны
в самом конце, когда имя и описание
соответствующей колонки уже известны.
Поскольку mysql не начнет выполнять
запрос, пока не встретит точку с запя-
той, одно предложение SQL можно за-
писывать в нескольких строках, как по-
казано на рис. 4.3.

Рис. 4.3. Монитор mysql позволяет записывать
команды в нескольких строках: так они выглядят
понятнее

Создание баз данных и таблиц

Язык SQL84

При создании таблицы вы можете за-
дать ее тип. Чаще всего используются
типы MyISAM, BDB, InnoDB, temporary
и HEAP. Если тип таблицы не указан,
то по умолчанию MySQL создает таб-
лицу типа MyISAM (это усовершен-
ствованный тип ISAM, который при-
сутствовал в предыдущих версиях).
В главе 11 мы подробнее познакомим-
ся с типом InnoDB.

4. Создайте остальные три таблицы (см.
рис. 4.4):

CREATE TABLE clients (
client_id SMALLINT(3) UNSIGNED
� NOT NULL AUTO_INCREMENT,
client_name VARCHAR(40) NOT NULL,
client_street VARCHAR(80),
client_city VARCHAR(30),
client_state CHAR(2),
client_zip MEDIUMINT(5) UNSIGNED,
client_phone VARCHAR(14),
contact_name VARCHAR(40),
contact_email VARCHAR(60),
PRIMARY KEY(client_id),
INDEX(client_name)

);

CREATE TABLE expenses (
expense_id SMALLINT(4) UNSIGNED
� NOT NULL AUTO_INCREMENT,
expense_category_id TINYINT(3)
� UNSIGNED,
expense_amount DECIMAL(10,2)
� UNSIGNED,
expense_date DATE,
PRIMARY KEY(expense_id)

);

CREATE TABLE expense_categories (
expense_category_id TINYINT(3)
� UNSIGNED NOT NULL AUTO_INCREMENT,
expense_category VARCHAR(30),
PRIMARY KEY(expense_category_id)

);

Рис. 4.4. Об успешном завершении mysql
сообщает, печатая сообщения Query OK

85

Синтаксис создания таблиц все тот же –
изменяются только имена и описания
полей.

5. Проверьте, что таблицы были успешно
созданы (рис. 4.5):

SHOW TABLES;
SHOW COLUMNS FROM invoices;

Детально обсуждать команду SHOW не
имеет смысла; достаточно сказать, что
она выводит имена таблиц в базе дан-
ных или названия и типы колонок ука-
занной таблицы.

Напомню, что базы данных (но не табли-
цы!) можно также создавать с помощью
утилиты mysqladmin:

mysqladmin -u root -p create
� имя_базы_данных

Далее в этой главе я буду исходить из пред-
положения, что вы работаете с клиентом
mysql и уже выбрали базу accounting в ка-
честве рабочей.

Указать рабочую базу данных можно пря-
мо при запуске mysql – тогда не придется
вводить команду USE:

mysql -u root -p имя_базы_данных

Запрос DESCRIBE имя_таблицы аналогичен
команде SHOW COLUMNS FROM имя_таблицы.

Рис. 4.5. Команда SHOW позволяет проверить
наличие таблиц и их структуру

Создание баз данных и таблиц

Язык SQL86

Вставка данных
После того как база данных и таблицы со-
зданы, можно начать заполнять их с по-
мощью команды INSERT. У нее два форма-
та. В первом случае вы явно указываете
имена колонок:

INSERT INTO имя_таблицы (имя_колонки1,
� имя_колонки2, ...)
� VALUES('значение1', 'значение2', ...);

INSERT INTO имя_таблицы (имя_колонки4,
� имя_колонки8)
� VALUES('значениеX', 'значениеY');

Таким способом вы можете добавлять
строки, вводя значения лишь тех колонок,
которые необходимо заполнить. Осталь-
ные колонки будут содержать NULL или
значение по умолчанию, если оно было
задано в описании таблицы. Если же ко-
лонка не может содержать NULL и значение
по умолчанию не определено, то при по-
пытке вставить строку без ввода значения
этой колонки возникнет ошибка.
Во втором случае имена колонок не ука-
зываются вовсе, зато перечисляются зна-
чения каждой из них:

INSERT INTO имя_таблицы VALUES
� ('значение1', NULL, 'значение3', ...);

Применяя второй способ, вы должны ввести
значение для каждой колонки, включая
NULL; к примеру, если в таблице шесть ко-
лонок, то должно быть перечислено шесть
значений. При несовпадении типов дан-
ных или неправильном количестве значе-
ний команда выдает ошибку, поэтому пер-
вый способ вставки записей в общем пред-
почтителен.

87

MySQL также позволяет одновременно
вставлять несколько строк, разделяя за-
писи запятыми:

INSERT INTO имя_таблицы (имя_колонки1,
� имя_колонки4) VALUES('значениеA',
� 'значениеB'),
� ('значениеC', 'значениеD'),
� ('значениеE', 'значениеF');
Однако стандарт ANSI SQL2 не допускает
такой записи.

Вставка записей в таблицу

1. Вставьте новую строку в таблицу ex-
pense_categories (рис. 4.6).
Можно воспользоваться любым из сле-
дующих предложений:

INSERT INTO expense_categories
� (expense_category)
� VALUES('Travel-Hotel');

INSERT INTO expense_categories
� VALUES(NULL, 'Travel-Airfare');
Поскольку в таблице есть всего две ко-
лонки, одна из которых автоинкремент-
ная, использование обоих методов дает
один и тот же результат. По рис. 4.6
видно, что второй запрос MySQL вы-
полняет быстрее, чем первый, хотя
и ненамного.

2. Вставьте несколько значений в табли-
цу expense_categories (рис. 4.7):

INSERT INTO expense_categories VALUES
(NULL, 'Books'),
(NULL, 'Web Hosting'),
(NULL, 'Computer Software');
Мы воспользовались тем, что MySQL
допускает присутствие в одном пред-
ложении INSERT сразу нескольких запи-
сей.

Рис. 4.6. Два способа вставки записей в таблицу

Рис. 4.7. MySQL позволяет вставлять в одно
предложение INSERT сразу несколько записей

Вставка данных

Язык SQL88

3. Повторяйте действия, описанные в пп. 1
и 2, пока таблицы expense_categories и
clients не будут заполнены.
Сейчас я не стану помещать записи
в таблицы invoices и expenses, посколь-
ку они зависят от информации в таб-
лицах expense_categories и clients. Поз-
же мы рассмотрим и эту процедуру.

Если нужно вставить значение, содержа-
щее одиночную кавычку, экранируйте ее
обратной косой чертой:

INSERT INTO users(last_name,
� first_name) VALUES('O\'Malley',
� 'Juan');

Пробелы в конце значения, помещенного
в колонку типа VARCHAR, MySQL автомати-
чески удаляет – это еще одно отклонение
от стандарта ANSI SQL2.

В текущей версии MySQL слово INTO в
предложении INSERT не обязательно.

Рекомендую заключать строковые значе-
ния в одиночные кавычки, а числовые ука-
зывать вообще без кавычек (последнее от-
носится и к NULL).

89

Выборка данных
Итак, теперь в таблицах базы данных есть
несколько записей, и можно приступать
к выборке данных с помощью одной из
самых распространенных команд SQL –
SELECT. Она возвращает набор строк, удо-
влетворяющих заданному критерию.
В простейшем виде запрос выглядит так:

SELECT * FROM имя_таблицы;

Звездочка означает, что вас интересуют
значения во всех колонках. Альтернатив-
ный вариант – явное перечисление имен
колонок, разделяемых запятыми:

SELECT user_id, first_name, last_name
� FROM users;

У последнего способа несколько преиму-
ществ. Первое – это производительность.
Не имеет смысла отбирать данные из ко-
лонок, которые вам не нужны. Второе
преимущество – порядок следования: вы
можете вернуть колонки не в том поряд-
ке, в котором они фактически хранятся
в таблице. Наконец, третье – возможность
«на лету» преобразовать значения, о чем
пойдет речь в главе 5.

Выборка данных из таблицы

1. Выберите все данные из таблицы ex-
pense_categories (рис. 4.8):

SELECT * FROM expense_categories;

По этой простейшей команде выбира-
ются и выводятся на экран значения
всех колонок из всех строк таблицы.

2. Выберите только поля client_id и client_
name из таблицы clients (рис. 4.9).
Вместо того чтобы запрашивать все
поля из таблицы clients, вы можете огра-
ничиться только теми, что вас интере-
суют.

Рис. 4.8. Простой запрос SELECT
возвращает все строки и колонки из таблицы

Рис. 4.9. Можно ограничить объем
запрашиваемой информации, указав имена
интересующих вас колонок

Выборка данных

Язык SQL90

3. Пользуясь информацией, выбранной на
этапах 1 и 2, заполните таблицы expenses
и invoices (рис. 4.10):

INSERT INTO expenses VALUES
(NULL, 3, 19.99, 'Larry Ullman\'s
� "MySQL: Visual QuickStart
� Guide" ','2002-04-20'),
(NULL, 1, 104.50, 'Palmer House
� Hotel, Chicago', '2002-1-26'),
(NULL, 2, 689.90, 'Flight to
� Chicago', '2002-1-26'),
(NULL, 5, 99.99,
� 'Mmmm...software', NULL);

Когда известны первичные ключи
в таблицах expense_categories и clients
(expense_category_id и client_id соот-
ветственно), можно добавлять данные
в две другие таблицы. Поскольку база
данных реляционная, важно, чтобы
записи соотносились друг с другом, то
есть первичный ключ в одной табли-
це совпадал с внешним ключом в дру-
гой. Поэтому, чтобы указать, что код
затрат равен Book (Книга), мы вво-
дим в поле expense_category_id значе-
ние 3. Поддержание таких связей – это
основа основ нормализованных баз
данных.
Заметьте, что в колонку типа DATE мож-
но вводить дату в различных форма-
тах, например 2002-04-07, 20020407 или
2002-4-7 (так обозначается седьмое ап-
реля 2002 года).

Рис. 4.10. После того как значения внешних
ключей в поле expense_category_id стали
известны, можно приступить к заполнению
таблицы expenses

91

4. Повторяйте вышеописанные действия,
пока в каждой таблице базы данных не
окажется достаточно много записей.
В оставшейся части этой главы я буду
выполнять запросы, ориентируясь на
информацию, которая приводилась
в предыдущих примерах. Если вы вве-
ли другие данные (иных клиентов, ка-
тегории затрат и т.д.), учтите разли-
чия в формулировке запросов. Прин-
ципы их составления, впрочем, не за-
висят от конкретных данных, так как
структура базы у нас с вами должна
быть одинакова.

Как ни странно, в предложении SELECT не-
обязательно указывать имена таблиц и ко-
лонок. Соответствующий пример будет при-
веден в следующей главе.

Порядок перечисления колонок в предло-
жении SELECT (если, конечно, вы извлека-
ете не все колонки) определяет и после-
довательность значений в возвращенных
строках. Сравните рис. 4.9 с рис. 4.11.

С помощью предложения SELECT одну ко-
лонку можно выбирать несколько раз, вы-
полняя различные ее преобразования.

В следующих четырех главах будет расска-
зано о более простых способах вставки за-
писей.

Рис. 4.11. При изменении порядка колонок
в запросе SELECT изменяется и порядок
следования возвращаемых данных

Выборка данных

Язык SQL92

Использование условий
Приведенные до сих пор предложения
SELECT выбирали все записи из таблицы.
Если строк немного, это не проблема, но
по мере их увеличения производитель-
ность начнет заметно падать. Чтобы уве-
личить скорость выборки, можно указы-
вать условия в самых разных комбина-
циях. Условия формулируются во фразе
WHERE предложения SELECT и записывают-
ся примерно так же, как в языках про-
граммирования:

SELECT * FROM имя_таблицы WHERE
� имя_колонки = 'значение';
SELECT expense_amount FROM expenses
� WHERE expense_amount >= 10.00;
SELECT client_id FROM clients WHERE
� client_name = 'Acme Industries';

В табл. 4.1 перечислены операторы, чаще
всего употребляемые в условиях запросов.
Ниже в этой главе я продемонстрирую ис-
пользование операторов LIKE и NOT LIKE
(см. раздел «Использование операторов
LIKE и NOT LIKE»), а в главе 11 – примене-
ние оператора REGEX и выполнение полнотек-
стового поиска. Операторы из табл. 4.1 мож-
но употреблять совместно для постановки
сложных условий:

SELECT expense_amount FROM expenses
� WHERE (expense_amount >= 10.00)
� AND (expense_amount <= 20.00);
SELECT * FROM expenses WHERE
� (expense_category_id=1) OR
� (expense_category_id=2);

Чтобы показать, как используются усло-
вия, я выберу из базы более конкретные
данные. Представленные ниже фрагмен-
ты кода иллюстрируют лишь малую часть
возможностей. В этой и последующих
главах вы увидите еще много примеров
условий в предложении SELECT.

Таблица 4.1. Часто употребляемые операторы
MySQL (полный их перечень приведен
в приложении 2)

Оператор Назначение

= Равно

< Меньше

> Больше

<= Меньше или равно

>= Больше или равно

!= Не равно

IS NOT NULL Имеет значение
(в том числе равное
пустой строке или нулю)

IS NULL Не имеет значения

BETWEEN Внутри диапазона

NOT BETWEEN Вне диапазона

OR (также ||) Хотя бы один
из операндов равен true

AND (также &&) Оба операнда равны true

NOT (также !) Условие ложно

93

Выборка данных,
удовлетворяющих условиям

1. Выберите поле expense_description для
каждой записи с типом затрат Book
(рис. 4.12).

SELECT expense_description
� FROM expenses
� WHERE expense_category=3;

Поскольку я знаю, что числовое значе-
ние кода затрат Book в поле expense_
category_id таблицы expense_categories
равно 3, то могу записать показанный
выше запрос. Он вернет поле expense_
description из каждой записи, у которой
в поле expense_category_id значится 3.
Заметьте, что числа не следует заклю-
чать в кавычки ни в условии WHERE, ни
в какой-либо другой части запроса. Если
при заполнении таблиц вы не ввели тип
затрат Book, модифицируйте запрос.

2. Выберите идентификатор, сумму и дату
каждого счета, введенного начиная
с 1 марта 2002 года (рис. 4.13):

SELECT invoice_id, invoice_amount,
� invoice_date FROM invoices WHERE
� invoice_date >= '2002-03-01';

Для дат разрешено применять операто-
ры «больше», «меньше», а также «боль-
ше либо равно» и «меньше либо равно».

Рис. 4.12. В условии из этого запроса
используется значение внешнего ключа
expense_category_id в таблице expenses
для отбора конкретных записей

Рис. 4.13. С полями типа DATE можно обращаться
весьма гибко, в частности сравнивать их

Использование условий

Язык SQL94

3. Выберите из таблицы expenses все за-
писи, где не указана дата (рис. 4.14):

SELECT * FROM expenses WHERE
� expense_date IS NULL;

Условие IS NULL означает «без значения».
Не забывайте, что пустая строка – это
все равно значение, поэтому условию IS
NULL она не удовлетворяет. В этом слу-
чае следовало бы записать

SELECT * FROM expenses WHERE
� expense_date = '';

Как ни странно, в списке отбираемых ко-
лонок необязательно указывать те, кото-
рые упомянуты в условии WHERE:

SELECT invoice_id FROM invoices
� WHERE client_id = 4;
Причина в том, что список колонок пока-
зывает лишь, какие значения возвращать.

Используя операторы IN и NOT IN, вы мо-
жете указать, что значение колонки при-
надлежит или не принадлежит заданному
списку:

SELECT * FROM invoices WHERE
� invoice_date IN ('2002-04-24',
� '2002-04-26', '2002-04-28');

Задавать условия можно не только во
фразе WHERE, но и во фразе HAVING, хотя
я рекомендую сначала освоиться с WHERE.
Подробнее конструкция HAVING рассматри-
вается в документации по MySQL.

В запросах можно выполнять математи-
ческие вычисления с помощью операто-
ров сложения (+), вычитания (-), умноже-
ния (*) и деления (/).

Рис. 4.14. Значение NULL имеет особый смысл
в базах данных, поэтому для сравнения с ним
используются специальные операторы IS NULL
и IS NOT NULL

95

Операторы LIKE и NOT LIKE
С использованием в условиях чисел, дат
и значений NULL все понятно, но вот со
строками дело обстоит сложнее. Для срав-
нения строк на равенство можно написать
такой запрос:

SELECT * FROM users WHERE user_name =
� 'строка';

Однако для менее строгого сравнения тре-
буются дополнительные операторы и спе-
циальные символы. Если, например, вы
хотите найти человека по фамилии Smith,
Smiths или Smithson, то понадобится бо-
лее гибкий запрос. Вот тут-то и приходят
на помощь операторы LIKE и NOT LIKE.
Они применяются по отношению к стро-
кам совместно с двумя метасимволами:
знак подчеркивания (_) соответствует
любому символу, а знак процента (%) –
произвольному числу символов, включая
нулевое. В вышеупомянутом примере за-
прос можно было бы сформулировать так:

SELECT * FROM users WHERE last_name
� LIKE 'Smith%';

Этот запрос вернет все поля тех записей, в
которых поле last_name (фамилия) начи-
нается со строки Smith. Поскольку по
умолчанию прописные и строчные буквы
при поиске не различаются, то будут най-
дены также фамилии, начинающиеся на
Smith.

Использование операторов LIKE и NOT LIKE

1. Выберите всю информацию о клиентах,
для которых полное имя контактного
лица заканчивается на Doe (рис. 4.15):

SELECT * FROM clients WHERE
� contact_name LIKE '%Doe';

Рис. 4.15. Использование предиката LIKE
в сочетании с метасимволами позволяет вести
поиск по неточному совпадению

Операторы LIKE и NOT LIKE

Язык SQL96

Поскольку эта таблица не до конца
нормализована (иначе сведения о кон-
тактном лице были бы разбиты на два
поля: фамилия и имя), то для поиска
фамилии Doe приходится воспользо-
ваться поиском по неточному совпаде-
нию.

2. Выберите имя клиента и сведения о кон-
тактном лице для всех записей, кроме
тех, в которых имя контактного лица –
John, Joe, Joey и т.д. (рис. 4.16).

SELECT client_name, contact_name
� FROM clients WHERE contact_name
� NOT LIKE 'Jo%';
При желании исключить некоторые за-
писи я могу воспользоваться предика-
том NOT LIKE в сочетании с метасимвола-
ми.

Запросы, включающие предикат LIKE, обыч-
но выполняются очень медленно, посколь-
ку в этом случае не всегда возможно ис-
пользование имеющихся индексов. Поэто-
му не злоупотребляйте таким приемом.

Метасимволы можно употреблять как в на-
чале, так и в конце поисковой строки:

SELECT * FROM users WHERE
� user_name LIKE '_Smith%';

Хотя, как правило, предикаты LIKE и NOT
LIKE применяются к строкам, при необхо-
димости можно использовать их и для чис-
ловых колонок.

Если вы хотите использовать знак подчер-
кивания или процента в самой поисковой
строке, то его надо экранировать (поста-
вить впереди символ обратной косой чер-
ты), чтобы система MySQL не спутала его
с метасимволом.

Символ подчеркивания можно использо-
вать более одного раза. Например, по за-
просу LIKE '__' будут найдены строки,
состоящие из любых двух букв.

Рис. 4.16. Предикат NOT LIKE позволяет отобрать
все записи кроме удовлетворяющих критерию
неточного совпадения

97

Операция соединения
Поскольку реляционные базы зачастую
устроены довольно сложно, для извлече-
ния необходимой информации могут по-
надобиться более изощренные запросы,
чем те, что приведены выше. В частности,
нередко приходится выполнять операцию
соединения (join) – подавать запрос к не-
скольким взаимосвязанным таблицам.
В SQL рассматривается несколько типов
соединений, хотя MySQL реализует не все
прописанные в стандарте возможности.
Для пользователей с небольшим опытом
работы двух основных видов соединений
будет достаточно почти во всех случаях.
Самый распространенный вид соединения
называется внутренним (inner или cross
join).

SELECT * FROM invoices, clients
� WHERE invoices.client_id =
� clients.client_id

Это предложение извлекает из таблиц in-
voices и clients все записи, в которых значе-
ния полей invoices.client_id и clients.client_id
совпадают. Другими словами, при выпол-
нении запроса внешний ключ client_id
в таблице invoices будет полностью заменен
информацией о соответствующем клиенте
из таблицы clients. При таком внутреннем
соединении возвращаются лишь те строки,
для которых имеется соответствие (следова-
тельно, записи о клиентах, которым не вы-
ставлен ни один счет, не будут выведены).
При выборке из нескольких таблиц необ-
ходимо квалифицировать именем таб-
лицы (с помощью нотации имя_таблицы.
имя_колонки) имена тех колонок, которые
встречаются более чем в одной таблице.
Это типичная ситуация, поскольку в реля-
ционных базах первичному ключу в одной
таблице часто назначают то же имя, что
и внешнему ключу в связанной таблице.

Операция соединения

Язык SQL98

Второй из рассматриваемых видов – внеш-
нее левое соединение – отличается от внут-
реннего тем, что может возвращать также
записи, не имеющие соответствия. Син-
таксис левого соединения таков:

SELECT *
� FROM invoices LEFT JOIN clients
� ON invoices.client_id =
� clients.client_id;

Обратите внимание, что там, где во внут-
реннем соединении стояла запятая, те-
перь находятся слова LEFT JOIN, а слово
WHERE заменено на ON. Для левого соедине-
ния очень важно, какая таблица указана
первой. В вышеприведенном примере бу-
дут возвращены все записи из таблицы
clients вместе с информацией из таблицы
invoices. Скоро я покажу этот механизм в
действии, и тогда многое станет понятно.
Если таблицы слева и справа от оператора
LEFT JOIN соединяются по колонкам
с одинаковыми именами, то можно про-
ще записать запрос:

SELECT *
� FROM invoices LEFT JOIN clients
� ON USING(client_id);

Использование соединений

1. Выберите сумму и дату выставления
счета, а также имена клиентов для каж-
дого счета (рис. 4.17):

SELECT invoice_amount,
� invoice_date, client_name
� FROM invoices, clients
� WHERE invoices.client_id =
� clients.client_id;

Этот запрос, по сути дела, заменяет зна-
чение поля client_id из таблицы invoices
значением поля client_name из соответ-
ствующей записи таблицы clients.

Рис. 4.17. Запрос с внутренним соединением,
хотя и весьма многословен, извлекает
более полезную информацию из базы данных

99

2. Выберите категорию, дату и сумму каж-
дой затраты (рис. 4.18):

SELECT expense_category,
� expense_amount, expense_date
� FROM expense_categories, expenses
� WHERE expense_categories.
� expense_category_id =
� expenses.expense_category_id;

На примере данного запроса демонстри-
руется тот же принцип, что и на этапе 1.
Поскольку речь идет о внутреннем со-
единении, порядок указания таблиц не
играет роли (результат будет таким же,
если изменить последовательность таб-
лиц на противоположную).

3. Выберите имена всех клиентов и все
счета для каждого клиента (рис. 4.19):

SELECT client_name, invoice_id,
� invoice_amount, invoice_date,
� invoice_description FROM clients
� LEFT JOIN invoices USING(client_id);

Рис. 4.18. Внутренние соединения полезны, когда
есть связь «первичный ключ–внешний ключ»,
как в случае с таблицами expenses
и expense_categories

Рис. 4.19. Для левых соединений точная формулировка играет большую роль,
чем для внутренних. Наличие соответствия необязательно. Сравните этот
результат с рис. 4.20

Операция соединения

Язык SQL100

Этот запрос (с внешним соединением)
извлекает имена всех клиентов и с каж-
дым ассоциирует выставленные ему
счета. Даже если для клиента нет сче-
тов (как, например, для Something Clever
внизу), он все равно выводится. Если бы
в этом примере использовалось внут-
реннее соединение, клиент Something
Clever не был бы отобран.

4. Выберите идентификаторы, суммы, даты
и описания всех счетов, а также имена
соответствующих клиентов (рис. 4.20):

SELECT client_name, invoice_id,
� invoice_amount, invoice_date,
� invoice_description FROM invoices
� LEFT JOIN clients USING (client_id);

Этот запрос отличается от предыдуще-
го только порядком соединения таблиц.
Но результат содержит на одну запись
меньше, так как клиенту Something Cle-
ver не выставлено ни одного счета.

Разрешается соединять более двух таблиц.
Вы можете даже соединить таблицу саму
с собой!

Таблицы соединяются по любым колонкам,
а не только по тем, что выступают в роли
первичных и внешних ключей.

Можно соединять таблицы из разных баз
данных (пользуясь синтаксисом имя_ба-
зы_данных.имя_таблицы.имя_колонки)
при условии, что обе находятся на одном
и том же сервере (делать это по сети не
разрешается).

Соединение, в котором отсутствует усло-
вие WHERE (например, SELECT * FROM

invoices, clients) называется пол-
ным; при этом возвращаются все записи
из обеих таблиц. Если таблицы велики, то
возвращаемых строк может быть черес-
чур много.

Рис. 4.20. Порядок упоминания таблиц в левом соединении влияет на результат.
Вне зависимости от условия отбираются все записи из первой таблицы

101

Сортировка результатов
запроса
Если условие WHERE показывает, какие дан-
ные нужно отобрать, то фраза ORDER BY оп-
ределяет способ упорядочения отобран-
ных данных. Вот как используется эта кон-
струкция:

SELECT * FROM имя_таблицы
� ORDER BY имя_колонки;

SELECT invoice_amount, invoice_date
� FROM invoices ORDER BY invoice_date;

По умолчанию ORDER BY предполагает сор-
тировку в порядке возрастания, то есть
числа располагаются от меньших к боль-
шим, а даты – от ранних к поздним. По-
рядок можно изменить на противополож-
ный, добавив слово DESC:

SELECT expense_description, expense_date �
FROM expenses
� ORDER BY expense_date DESC;

Разрешается сортировать возвращаемые
строки по нескольким колонкам, что бу-
дет продемонстрировано ниже. Важно по-
нимать, что сортировка ведется лишь по
колонкам, включенным в список отбирае-
мых. Если способ сортировки явно не ука-
зан, то данные возвращаются в непред-
сказуемом порядке (обычно в порядке воз-
растания первичного ключа, хотя и не все-
гда).

Сортировка данных

1. Расположите все категории затрат в ал-
фавитном порядке (рис. 4.21):

SELECT * FROM expense_categories
� ORDER BY expense_category;

Рис. 4.21. Команда SELECT с фразой ORDER BY
возвращает строки, отсортированные
по полю expense_category

Сортировка результатов запроса

Язык SQL102

Так как в таблице expenses две колонки,
вывести данные можно четырьмя спо-
собами: сортируя по каждой колонке
в порядке возрастания или убывания.
Приведенный выше запрос возвращает
описания затрат, расположенные по ал-
фавиту (поле expense_category).

2. Упорядочьте счета по клиенту и дате
выставления (рис. 4.22):

SELECT client_id, invoice_date,
� invoice_amount FROM invoices
� ORDER BY client_id ASC,
� invoice_date DESC;

Результат этого запроса отсортирован
по полю client_id, а затем найденные
группы записей с одинаковым значе-
нием отсортированы по полю invoice_
date.

Поскольку MySQL может работать с различ-
ными языками, то строковые данные сорти-
руются так, как принято в языке, выбранном
при установке (по умолчанию это англий-
ский).

Если в колонке, по которой производится
сортировка, есть значения NULL, то соот-
ветствующие строки окажутся в начале
списка результатов при любом способе
упорядочения: как по возрастанию, так и
по убыванию.

Вы можете (и часто будете) использовать
команду ORDER BY в сочетании с условием
WHERE, соединениями и другими конструк-
циями. В таком случае фразу ORDER BY
следует размещать после всех условий:

SELECT invoice_id,
� invoice_amount, invoice_date
� FROM invoices
� WHERE invoice_date >=
� '2002-03-01'
� ORDER BY invoice_date DESC;

Рис. 4.22. При указании в ORDER BY двух колонок
сначала производится сортировка по первой
из них, а затем полученный результат
еще раз сортируется по второй колонке

103

Ограничение размера
результата
В запросе SELECT может также присутство-
вать фраза LIMIT. В отличие от условия
WHERE, которое определяет, какие строки
возвращать, и команды ORDER BY, определя-
ющей способ упорядочения этих строк,
ограничение LIMIT показывает, сколько
строк вернуть. Используется оно так:

SELECT * FROM имя_таблицы LIMIT 10;

SELECT * FROM имя_таблицы LIMIT 10, 20;

В первом примере возвращается не более
10 первых отобранных записей, а во вто-
ром – не более 20 записей, начиная с деся-
той.
Слово LIMIT можно использовать совмест-
но с WHERE и ORDER BY, разместив его в кон-
це запроса:

SELECT * FROM invoices
� WHERE invoice_amount > 100.00
� ORDER BY invoice_amount ASC
� LIMIT 10;

Ограничение LIMIT не уменьшает нагрузку
на сервер базы данных1 (поскольку он все
равно должен отобрать все нужные записи,
а только потом урезать результат), но по-
могает сократить накладные расходы
при передаче результата клиенту. Разуме-
ется, не имеет смысла возвращать те ко-
лонки или строки, в которых вы не заин-
тересованы.

1 Это не совсем так. В документации по MySQL
описаны случаи, когда употребление LIMIT все
же позволяет ускорить выполнение запроса. –
Прим. переводчика.

Ограничение размера результата

Язык SQL104

Ограничение числа возвращаемых строк

1. Выберите счет, выставленный раньше
всех прочих (рис. 4.23):

SELECT * FROM invoices
� ORDER BY invoice_date
� LIMIT 1;

Чтобы вернуть самую раннюю запись,
отсортируйте данные по дате в поряд-
ке возрастания. А чтобы увидеть толь-
ко один счет, ограничьте вывод резуль-
тата с помощью конструкции LIMIT 1.

2. Выберите информацию о двух самых
крупных затратах на наждачную бума-
гу (рис. 4.24):

SELECT expense_amount,
� expense_description
� WHERE expenses.expense_category_id
� =expense_categories.expense_
� category_id AND expense_category =
� 'Sand paper'
� ORDER BY expense_amount DESC
� LIMIT 2;

Запрос кажется довольно громоздким, но
неплохо иллюстрирует изученный мате-
риал. Сначала я определяю, какие колон-
ки возвращать, затем указываю две таб-
лицы, поскольку мне придется их соеди-
нять. Далее задаются условия, определяю-
щие способ соединения таблиц (expenses.
expense_category_id = expense_categories.
expense_category_id) и интересующую
меня категорию затрат (expense_category =
'Sand paper'). Наконец, я сортирую ото-
бранные записи так, чтобы самые крупные
расходы оказались в начале списка, и ог-
раничиваю размер результата двумя
строками. Если в вашей базе данных нет
категории затрат Sand paper (Наждачная
бумага), модифицируйте запрос.

Рис. 4.24. Этот довольно сложный запрос
позволяет извлечь из данных, хранящихся в базе
accounting, весьма полезную информацию

В главе 9 вы узнаете о применении фразы
LIMIT для разбиения результата на стра-
ницы – обычно такой прием использует-
ся в поисковых машинах.

Конструкцию LIMIT x, y чаще всего при-
меняют для формирования страниц ре-
зультата, когда сначала показываются,
к примеру, первые 20 записей, затем сле-
дующие 20 и т.д.

В главе 5 мы изучим последнюю из при-
меняемых в предложении SELECT фраз –
GROUP BY.

Рис. 4.23. Наличие конструкции LIMIT 1
гарантирует, что будет возвращено не более одной
записи, так что вам не придется просматривать
ненужную информацию

105

Обновление данных
Коль скоро в таблицах уже есть какие-то
данные, у вас появляется возможность тем
или иным способом модифицировать их.
Чаще всего необходимость в этом возни-
кает при обнаружении неправильных дан-
ных или когда информация (скажем, фа-
милия или электронный адрес клиента)
изменяется.
Синтаксис обновления колонок выглядит
следующим образом:

UPDATE имя_таблицы
� SET имя_колонки=значение;

В одном предложении можно изменять
сразу несколько колонок:

UPDATE имя_таблицы
� SET имя_колонки1='значение1',
� имя_колонки2='значение2' ...;

Обычно для указания подлежащих обнов-
лению строк применяется условие WHERE;
в противном случае будут изменены все
строки таблицы:

UPDATE имя_таблицы
� SET имя_колонки1='значение1'
� WHERE имя_колонки2='значение2';

Операция обновления, равно как и удале-
ния, – это одна из важнейших причин ис-
пользования первичных ключей. Соответ-
ствующее поле, которое никогда не долж-
но изменяться, может быть отправной точ-
кой в условиях WHERE, когда все остальные
поля могут менять значения.

Обновление данных

Язык SQL106

Обновление записей

Добавьте адрес клиента с именем Galt on
the Hill (рис. 4.25):

UPDATE clients SET client_street =
� '1000 Tuttle Drive', client_city =
� 'Brazilia', client_state = 'IL',
� client_zip = '60000'
� WHERE client_id = 3;

Во время первоначального ввода данных
об этом клиенте я не включил туда адрес-
ную информацию. С помощью предло-
жения UPDATE можно будет восполнить
этот пробел позже.

Ни в коем случае не забывайте включать
условие WHERE в предложение UPDATE,
если не хотите, чтобы изменения затрону-
ли каждую строку таблицы.

Не следует применять команду UPDATE к
первичному ключу, поскольку это поле ни-
когда не должно изменяться. В результате
изменения первичного ключа может нару-
шиться целостность связей с какой-то дру-
гой таблицей.

Рис. 4.25. Команда UPDATE позволяет изменять
существующие данные в таблицах

107

Удаление данных
Вы можете удалить ненужные данные из
базы – для этого предназначена команда
DELETE:

DELETE FROM имя_таблицы
� WHERE имя_колонки=значение;

Учтите, что удаленную запись уже нельзя
восстановить, поэтому перед масштабным
удалением имеет смысл сделать резервную
копию базы. Кроме того, возьмите за пра-
вило включать в предложение удаления
условие WHERE, иначе вы вырежете все стро-
ки из таблицы. Запрос

DELETE FROM имя_таблицы;

полностью очищает таблицу, тем не менее
сохраняя ее структуру. Запрос же TRUNCATE
FROM имя_таблицы сначала удаляет таблицу
(как данные, так и структуру), а затем вос-
станавливает структуру. Конечный резуль-
тат точно такой же, но последний метод
(позаимствованный из СУБД Oracle) быст-
рее и безопаснее.
При удалении записей возникает также
проблема сохранения целостности базы
данных. В таблице invoices базы данных
accounting, рассматриваемой выше, есть
поле client_id. Если удалить запись о кли-
енте, то могут появиться «фантомные»
записи, так как отметки о выставленных
ему счетах будут ссылаться на несуще-
ствующего клиента (по полю client_id).
До тех пор пока в MySQL не будет введе-
на поддержка связей между ключами, эту
проблему необходимо решать вручную.
В общем, удаляя записи, не забывайте
вносить изменения в связанные таблицы.
На следующем примере я объясню, как
следовало бы действовать, если бы перед
вами стояла задача свести все транспорт-
ные затраты в одну категорию.

Рис. 4.26. Для удаления всех категорий затрат,
связанных с транспортными расходами,
сначала расположим имеющиеся категории
в алфавитном порядке

Удаление данных

Язык SQL108

Удаление данных

1. Просмотрите все существующие кате-
гории затрат (рис. 4.26):

SELECT * FROM expense_categories
� ORDER BY expense_category ASC;

Чтобы решить, какие записи объеди-
нять, в последний раз взгляните на всю
таблицу. Следует также записать, какие
значения поля expense_category_id со-
ответствуют категориям транспортных
затрат. В нашем случае это 1, 2 и 18.

2. Удалите три записи из таблицы (см.
рис. 4.27):

DELETE FROM expense_categories
� WHERE expense_category_id = 1 OR
� expense_category_id = 2 OR
� expense_category_id = 18;

Для полной уверенности в том, что уда-
ляются именно ненужные фрагменты,
я указал значения первичных ключей,
хотя мог бы записать запрос и так:

DELETE FROM expense_categories
� WHERE expense_category
� LIKE "Travel-%';

3. Создайте новую категорию затрат Travel
(Поездки):

INSERT INTO expense_categories
� VALUES(NULL, 'Travel');

4. Получите присвоенное категории Travel
значение поля expense_category_id (см.
рис. 4.28):

SELECT expense_category_id
� FROM expense_categories
� WHERE expense_category = 'Travel';

Отметим, что удаление записей из таб-
лицы оставляет «дыры» в последова-
тельности значений первичного клю-
ча. Хотя значения 1, 2 и 18 теперь не за-
няты, следующей записи все равно бу-
дет присвоен идентификатор 21.

Рис. 4.27. После удаления записей просмотрите
таблицу еще раз, чтобы убедиться в том, что
изменения внесены правильно (ср. рис. 4.26)

Рис. 4.28. Следующий шаг – вставить новую
категорию и получить значение ключа для нее

109

5. Обновите таблицу expenses с учетом
внесенных изменений (рис. 4.29):

UPDATE expenses SET
� expense_category_id = 21
� WHERE expense_category_id = 1 OR
� expense_category_id = 2 OR
� expense_category_id = 18;

Поскольку таблица expense_categories свя-
зана с таблицей expenses, нужно отразить
в последней изменения, внесенные в пер-
вую.

Для удаления как данных, так и самой табли-
цы пользуйтесь командой DROP (рис. 4.30):

DROP TABLE имя_таблицы;

Для полного удаления базы данных со
всеми таблицами и информацией пользуй-
тесь предложением

DROP DATABASE имя_базы_данных;

Не забывайте, что при входе в монитор
mysql с указанием параметра --i-am-a-
dummy запрещено выполнять предложения
UPDATE и DELETE без указания условия
WHERE.

Начиная с MySQL версии 4.0 разрешается
применять команду DELETE сразу к несколь-
ким таблицам.

Рис. 4.29. Наконец, следует обновить таблицу
expenses с учетом последних изменений

Рис. 4.30. Для удаления всей базы данных
или только одной таблицы (как ее содержимого,
так и структуры) пользуйтесь командой DROP

Удаление данных

Язык SQL110

Модификация структуры
таблиц
Зарезервированное слово ALTER использу-
ется для модификации структуры таблиц
в базе данных. Обычно под этим понима-
ют добавление, удаление и изменение типа
колонок. Но с помощью ALTER можно так-
же переименовать таблицу, назначить дру-
гой первичный ключ либо изменить со-
став индексов. Хотя при добросовестном
проектировании структура базы данных
должна с самого начала быть правильной,
на практике модификации производятся
довольно часто. Вот как выглядит базо-
вый синтаксис предложения ALTER:

ALTER TABLE имя_таблицы CLAUSE;

Поскольку фраз CLAUSE существует много,
я решил привести наиболее распростра-
ненные в табл. 4.2. Полный перечень вы
найдете в приложении 2.
Для демонстрации команды ALTER я моди-
фицирую таблицу clients, разбив поле
contact_name на два: contact_first_name
и contact_last_name.

Таблица 4.2. Команда ALTER применяется для различных модификаций таблиц

Команда Применение Назначение

ADD COLUMN ALTER TABLE имя_таблицы Добавляет новую колонку
� ADD COLUMN имя_колонки VARCHAR(40) в конец таблицы

CHANGE COLUMN ALTER TABLE имя_таблицы Позволяет изменить тип данных
� CHANGE COLUMN имя_колонки и другие свойства колонки
� имя_новой_колонки VARCHAR(60)

DROP COLUMN ALTER TABLE имя_таблицы Удаляет из таблицы колонку
� DROP COLUMN имя_колонки со всем ее содержимым

ADD INDEX ALTER TABLE имя_таблицы Добавляет индекс по колонке
� ADD INDEX имя_индекса(имя_колонки) с указанным именем

DROP INDEX ALTER TABLE имя_таблицы Удаляет существующий индекс
� DROP INDEX имя_индекса

RENAME AS ALTER TABLE имя_таблицы Изменяет имя таблицы
� RENAME AS новое_имя_таблицы

111

Изменение структуры таблицы

1. Переименуйте поле contact_name (см.
рис. 4.31):

ALTER TABLE clients
� CHANGE COLUMN contact_name
� contact_first_name VARCHAR(15);
Эта команда просто изменяет имя и тип
данных колонки contact_name. Теперь
она называется contact_first_name, и ее
длина равна не 40, а 15 символам. Все
данные в колонке сохранятся, но будут
урезаны до 15 символов.

2. Создайте колонку contact_last_name
(рис. 4.32):

ALTER TABLE clients
� ADD COLUMN contact_last_name
� VARCHAR(25);

Теперь таблица содержит новую колон-
ку, в которой еще нет значений.

Рис. 4.31. Для переименования или изменения
типа колонки применяется команда ALTER TABLE
в сочетании с CHANGE COLUMN

Рис. 4.32. Для добавления новой колонки
в таблицу применяется команда ALTER TABLE
в сочетании с ADD COLUMN

Модификация структуры таблиц

Язык SQL112

3. Обновите контактную информацию
(рис. 4.33):

SELECT client_id, contact_first_name
� FROM clients WHERE
� contact_first_name IS NOT NULL;

UPDATE clients SET contact_first_name
� = 'Jane', contact_last_name =
� 'Doe' WHERE client_id = 1;

Последний шаг – изменить таблицу с уче-
том проделанной работы. Для этого я сна-
чала просмотрю информацию на экране,
а потом выполню команду UPDATE для каж-
дой строки. Этот процесс довольно утоми-
телен – вот еще одна причина, по которой
не стоит модифицировать структуру таб-
лиц после того, как база данных введена
в эксплуатацию.

Поскольку, используя команду ALTER,
можно серьезно запортить базу данных,
рекомендую перед применением ALTER
всегда делать резервную копию базы.

Употреблять слово COLUMN в большинстве
вариантов команды ALTER необязательно.

При добавлении новой колонки в таблицу
можно включить модификатор AFTER имя_
колонки, указывающий, после какой колон-
ки должна находиться создаваемая:

ALTER TABLE clients ADD COLUMN
� contact_last_name VARCHAR(25)
� AFTER contact_first_name;

Рис. 4.33. После модификации структуры таблицы
нужно обновить информацию,
заполнив новую колонку

В MySQL есть несколько десятков встро-
енных функций, призванных облегчить
решение типичных задач. В этой главе
я рассмотрю самые полезные. Если вы уве-
ренно программируете на языках С или
С++, то можете даже написать собствен-
ную функцию (хотя обсуждение подоб-
ной практики выходит за рамки данной
книги).
Рассматриваемые здесь функции по боль-
шей части применяются в запросах для
форматирования и модификации возвра-
щаемых данных. Как и в предыдущей гла-
ве, все упражнения предполагают исполь-
зование монитора mysql. Общие приемы
работы иллюстрируются на примере базы
данных accounting.

Функции MySQL 55555

Функции MySQL114

Функции
для работы с текстом
Для начала я рассмотрю группу функций,
предназначенных для манипулирования
текстовыми и символьными данными.
Большинство их перечислено в табл. 5.1.
Для использования функции надо приме-
нить ее к некоторой колонке, указанной
в запросе, например:

SELECT FUNCTION(имя_колонки)
� FROM имя_таблицы;

Если требуется выбрать несколько коло-
нок, можно записать запрос в таком виде:

SELECT *, FUNCTION(имя_колонки)
� FROM имя_таблицы;

или

SELECT имя_колонки1,
� FUNCTION(имя_колонки2), имя_колонки3 �
FROM имя_таблицы;

Таблица 5.1. Это лишь часть функций, применяемых в MySQL для работы с текстовыми колонками

Функция Применение Назначение

LENGTH() LENGTH(имя_колонки) Возвращает длину строки, хранящейся в колонке

LEFT() LEFT(имя_колонки, x) Возвращает x левых символов из колонки

RIGHT() RIGHT(имя_колонки, x) Возвращает x правых символов из колонки

TRIM() TRIM(имя_колонки) Исключает лишние пробелы из начала и конца
хранимой строки

UPPER() UPPER(имя_колонки) Переводит символы строки в верхний регистр

LOWER() LOWER(имя_колонки) Переводит символы строки в нижний регистр

SUBSTRING() SUBSTRING(имя_колонки, Возвращает число символов из колонки
начало, число) от позиции начало (позиции нумеруются с 0)

115

Хотя регистр символов в именах функций
не различается, я все же буду записывать
их прописными буквами, чтобы отличать
от имен таблиц и колонок. Между именем
функции и открывающей скобкой не долж-
но быть пробелов, хотя внутри скобок
пробелы допустимы.

Форматирование текста

1. Откройте монитор mysql и укажите ра-
бочую базу данных (рис. 5.1):

mysql -u имя_пользователя -p
USE accounting;

Как и в предыдущей главе, в дальней-
шем я буду предполагать, что база дан-
ных accounting уже выбрана.

2. Удалите лишние пробелы из имен кли-
ентов (рис. 5.2):

SELECT TRIM(client_name)
� FROM clients;
Функция TRIM() убирает все символы
пропуска (пробелы, знаки табуляции
и возврата каретки) из начала и конца
строки.

3. Просмотрите коды городов в телефон-
ных номерах клиентов (рис. 5.3):

SELECT RIGHT(LEFT(client_phone,4), 3)
� FROM clients WHERE client_phone
� IS NOT NULL;

Рис. 5.2. Функция TRIM() убирает все лишние
символы пропуска из начала и конца строки

Рис. 5.3. Такое применение функций RIGHT()
и LEFT() позволяет вернуть только наиболее
важную часть значения; то же самое можно
сделать и с помощью функции SUBSTRING()

Функции для работы с текстом

Рис. 5.1. Как и раньше, все примеры
будут выполняться в мониторе mysql
для базы данных accounting

Функции MySQL116

Запрос выглядит пугающе, но на самом
деле я всего лишь последовательно при-
менил две функции. Сначала выбира-
ются все непустые номера клиентов.
Поскольку номер телефона хранится
в виде (123)456-7890, можно быть уве-
ренным, что код города – это символы
со второго по четвертый. Чтобы из-
влечь эту информацию, можно было
бы воспользоваться либо функцией
SUBSTRING(), либо сочетанием функций
LEFT() и RIGHT(). Я выбрал второй спо-
соб, чтобы продемонстрировать, как
комбинируются функции. Таким обра-
зом, сначала будут извлечены первые
четыре символа, а затем первый отрезан.

4. Найдите самое длинное название кате-
гории затрат (рис. 5.4):

SELECT LENGTH(expense_category),
� expense_category
� FROM expense_categories
� ORDER BY LENGTH(expense_category)
� DESC;
По этому запросу отбираются все кате-
гории затрат и их длины, а затем про-
изводится сортировка данных в поряд-
ке убывания длины.

Запрос, подобный приведенному в п. 4 (см.
также рис. 5.4), может быть полезен для
уточнения необходимой длины колонки пос-
ле того, как база данных заполнена.

Большую часть функций MySQL можно ис-
пользовать не только в запросах SELECT, но
и, например, для форматирования вставля-
емых данных в предложениях INSERT.

Функции можно применять не только
к строкам, хранящимся в таблице. Напри-
мер, совершенно корректна такая запись:

SELECT UPPER('makemebig');

Рис. 5.4. Функцию можно использовать
даже во фразе ORDER BY

117

Конкатенация
и псевдонимы
Функция CONCAT() – одна из самых полез-
ных для работы с текстом – заслуживает
того, чтобы отвести ей целый раздел. За-
одно мы обсудим часто используемую
в SQL концепцию псевдонимов. Функция
CONCAT() выполняет операцию конкатена-
ции; так в программировании называется
объединение строк. Внутри скобок вы ука-
зываете различные значения, подлежащие
конкатенации, разделяя их запятыми:

CONCAT(имя_колонки1, имя_колонки2)

Хотя чаще всего функция CONCAT() приме-
няется к колонкам, она позволяет объеди-
нять и строки, заключенные в одинарные
кавычки. Вот как можно получить полное
имя человека из фамилии и имени:

CONCAT(last_name, ', ', first_name)

Поскольку при конкатенации создается
новое значение, нужен какой-то способ со-
слаться на него. Именно здесь и приходят
на помощь псевдонимы. Псевдоним (alias) –
это всего лишь дополнительное символи-
ческое имя, которому предшествует заре-
зервированное слово AS:

SELECT CONCAT(last_name, ', ',
� first_name) AS name FROM users;

В результате из таблицы users будут ото-
браны имена и фамилии всех пользовате-
лей и представлены в виде полного имени,
которое будет называться name. Именно
этот псевдоним используется в програм-
мах для ссылки на возвращенные значе-
ния. Общий синтаксис

SELECT имя_колонки AS псевдоним
� FROM имя_таблицы;

можно применять к любым отбираемым
колонкам, даже если они не модифициро-
вались с помощью функций.

Конкатенация и псевдонимы

Функции MySQL118

Использование конкатенации и псевдонимов

1. Выведите всю информацию об адресе
клиента в одном значении (рис. 5.5):

SELECT client_name,CONCAT
� (client_street, ', ', client_city,
� ', ',client_state, ' ', client_zip)
� AS address FROM clients;

Таким образом CONCAT() собирает всю
адресную информацию в одно аккурат-
но отформатированное поле, названное
address.

2. Выберите все затраты вместе с описа-
нием и названием категории (рис. 5.6):

SELECT expense_amount, expense_date,
� CONCAT(expense_category, ': ',
� expense_description) FROM
� expenses, expense_categories
� WHERE expenses.expense_
� category_id = expense_categories.
� expense_category_id;

В этом запросе я объединил данные
двух таблиц, чтобы просматривать ин-
формацию как о затратах, так и об их
категориях. Конкатенируются две ко-
лонки из разных таблиц.

3. Покажите десять счетов на наиболь-
шие суммы, а также имена и иденти-
фикаторы соответствующих клиентов
(рис. 5.7):

SELECT invoices.*, CONCAT
� (client_name, ' - ',
� clients.client_id)
� AS client_info FROM invoices
� LEFT JOIN clients USING(client_id)
� ORDER BY invoice_amount DESC
� LIMIT 10;

Рис. 5.5. Функция CONCAT() очень полезна
для форматирования результатов запроса

Рис. 5.6. Функции можно применять по-разному,
в том числе и для полей из нескольких таблиц

Рис. 5.7. Функцию CONCAT() и псевдонимы
можно применять в любом запросе,
в частности включающем соединения

119

В этом запросе я выполнил левое со-
единение, отсортировал результат по
колонке invoice_amount и ограничил
результат десятью записями. Функция
CONCAT() применена к имени и иденти-
фикатору клиента.

4. Упростите запрос 2, воспользовавшись
псевдонимами для имен таблиц (рис. 5.8):

SELECT expense_amount, expense_date,
� CONCAT(expense_category, ': ',
� expense_description) FROM
� expenses AS e, expense_
� categories AS e_c WHERE
� e.expense_category_id =
� e_c.expense_category_id;

Этот запрос эквивалентен предыдуще-
му, но за счет псевдонимов имен таб-
лиц он стал проще.

Длина псевдонима не должна превышать
255 символов, прописные и строчные бук-
вы в псевдонимах различаются.

Слово AS, предшествующее псевдониму,
можно опускать, то есть допустима такая
запись:

SELECT имя_колонки псевдоним
� FROM имя_таблицы;

Кроме функции CONCAT() есть еще функ-
ция CONCAT_WS(), где WS означает «with
separators» (с разделителями). Она вызыва-
ется так: CONCAT_WS(разделитель, имя_
колонки1, имя_колонки2, ...). В ре-
зультате между значениями перечисленных
колонок вставляется указанный раздели-
тель.

Рис. 5.8. Я упростил запрос, применив псевдонимы
для имен таблиц. На конечном результате
это не отразилось

Конкатенация и псевдонимы

Функции MySQL120

Функции для работы
с числами
Помимо стандартных математических
действий – сложения, вычитания, умно-
жения и деления – в MySQL есть еще де-
сятка два функций, предназначенных для
форматирования числовых данных и ма-
нипулирования ими (наиболее употреби-
тельные перечислены в табл. 5.2).

Таблица 5.2. Наиболее употребительные функции для работы с числами, не считая тригонометрических
и логарифмических

Функция Применение Назначение

ABS() ABS(имя_колонки) Возвращает абсолютную величину колонки

CEILING() CEILING(имя_колонки) Возвращает наименьшее целое число,
большее либо равное значению в колонке

FLOOR() FLOOR(имя_колонки) Возвращает наибольшее целое число,
меньшее либо равное значению в колонке

FORMAT() FORMAT(имя_колонки, y) Возвращает значение в колонке, представленное числом
с y десятичных знаков, в котором группы из трех цифр
разделены запятыми

MOD() MOD(x, y) Возвращает остаток от деления x на y (один или оба
аргумента могут быть колонками)

RAND() RAND() Возвращает случайное число между 0 и 1,0

ROUND() ROUND(x, y) Возвращает число x, округленное до y десятичных знаков

SIGN() SIGN(имя_колонки) Возвращает индикатор знака аргумента: -1, если
аргумент отрицателен, 0 – если равен нулю и 1 – если
положителен

SQRT() SQRT(имя_колонки) Вычисляет квадратный корень из значения колонки

1 Этот формат зависит от региональных установок
компьютера, на котором выполняется сама СУБД. –
Прим. ред.

Особо хочу отметить функции FORMAT(),
ROUND() и RAND(). Первая (строго говоря,
она применима не только к числам) пред-
ставляет любое число в традиционно при-
нятом формате1. Например, если в базе
указана цена автомобиля 20198.20, то ре-
зультатом вызова FORMAT(car_cost, 2) бу-
дет 20,198.20.

121

Функция ROUND() принимает один аргу-
мент, чаще всего значение колонки, и округ-
ляет его до указанного числа десятичных
знаков. Если второй аргумент (число зна-
ков) не задан, то округление производит-
ся до ближайшего целого. Если указано
больше десятичных знаков, чем имеется
в самом числе, то оставшиеся позиции за-
полняются нулями справа от десятичной
точки.
Функция RAND(), как следует из ее назва-
ния (от англ. random – «произвольный»)
возвращает случайное число из диапазо-
на от 0 до 1.0:

SELECT RAND();

Эта функция может также использоваться
для сортировки отобранных данных
в произвольном порядке:

SELECT * FROM имя_таблицы
� ORDER BY RAND();

Использование функций
для работы с числами

1. Выведите счета, отсортированные по да-
те, форматируя денежные суммы в ва-
люте США (рис. 5.9):

SELECT *, CONCAT('$', FORMAT
� (invoice_amount, 2)) AS amount
� FROM invoices ORDER BY
� invoice_date ASC;

С помощью описанной выше функции
FORMAT() в сочетании с CONCAT() можно
представить любое число как денежную
сумму (например, для вывода на Web-
страницу).

2. Округлите суммы всех затрат до долла-
ра (рис. 5.10):

SELECT ROUND(expense_amount),
� expense_amount FROM expenses;

Рис. 5.9. Применив две функции и надлежащее
форматирование, можно вывести денежные
суммы в привычном виде

Рис. 5.10. Функцию ROUND() удобно
использовать, если вас интересует только
ограниченное число знаков после запятой

Функции для работы с числами

Функции MySQL122

Если функции ROUND() не передан вто-
рой аргумент, то она округляет до бли-
жайшего целого.

3. Дважды отберите имена всех клиентов,
отсортировав их в случайном порядке
(рис. 5.11, 5.12):

SELECT client_id, client_name
� FROM clients ORDER BY RAND();
Хотя применение конструкции ORDER BY
RAND() в такой ситуации вряд ли приго-
дится на практике, но идею вы улови-
ли. Функция RAND() формирует не иде-
альную случайную последовательность,
но для практических целей ее в боль-
шинстве случаев достаточно. Обратите
внимание, что функция RAND() не имеет
аргументов.

Помимо перечисленных выше в MySQL есть
еще тригонометрические, логарифмические
и другие функции.

Функция MOD() дает тот же результат, что
оператор '%':

SELECT MOD(9,2);
SELECT 9 % 2;

Удачный пример использования конструк-
ции ORDER BY RAND() – произвольный вы-
вод одного баннера из группы на Web-стра-
ницу.

Еще раз напомню, что функции можно при-
менять не только к колонкам. Так, абсолют-
но корректны следующие запросы:

SELECT ROUND(34.089, 1);
SELECT SQRT(81);
SELECT ABS(-8);

Рис. 5.11. Результат первого выполнения запроса
со случайной сортировкой

Рис. 5.12. При втором выполнении того же запроса
результаты упорядочены по-другому

123

Функции для работы
с датой и временем
В MySQL реализованы очень гибкие сред-
ства для работы с типами данных DATE
и TIME. Правда, большинство пользовате-
лей из-за недостатка знаний использует их
не в полной мере. Например, MySQL по-
зволяет выполнять вычисления с датами
или возвратить только название месяца.
Многие из имеющихся функций приведе-
ны в табл. 5.3.

Таблица 5.3. В MySQL много функций для работы с датой и временем

Функция Применение Назначение

HOUR() HOUR(имя_колонки) Возвращает только час

MINUTE() MINUTE(имя_колонки) Возвращает только минуту

SECOND() SECONS(имя_колонки) Возвращает только секунду

DAYNAME() DAYNAME(имя_колонки) Возвращает название дня

DAYOFMONTH() DAYOFMONTH (имя_колонки) Возвращает номер дня в месяце

MONTHNAME() MONTHNAME (имя_колонки) Возвращает название месяца

MONTH() MONTH(имя_колонки) Возвращает номер месяца

YEAR() YEAR(имя_колонки) Возвращает год

ADDDATE() ADDDATE(имя_колонки, Возвращает дату, полученную прибавлением
� INTERVAL x тип) x единиц к значению колонки

(см. врезку «Функции ADDDATE() и SUBDATE()»)

SUBDATE() SUBDATE(имя_колонки, Возвращает дату, полученную вычитанием
� INTERVAL x тип) x единиц из значения колонки

(см. врезку «Функции ADDDATE() и SUBDATE()»)

CURDATE() CURDATE() Возвращает текущую дату

CURTIME() CURTIME() Возвращает текущее время

NOW() NOW() Возвращает текущие дату и время

UNIX_TIMESTAMP() UNIX_TIMESTAMP (дата) Возвращает число секунд, прошедших с 1 января
1970 года или от указанной даты

Функции для работы с датой и временем

Функции MySQL124

Итак, возможностей работы с датой и вре-
менем довольно много, и их лучше всего
проиллюстрировать на примерах.

Использование функций
для работы с датой и временем

1. Выведите все счета, выставленные в ап-
реле (рис. 5.13):

SELECT * FROM invoices
� WHERE MONTH(invoice_date) = 4;
По данному запросу будут выведены
все счета, выставленные в апреле – чет-
вертом месяце года. То же самое мож-
но было бы записать иначе:

WHERE MONTHNAME = 'April'

(хотя всегда лучше употреблять в ка-
честве критерия поиска числа, а не стро-
ки).

Рис. 5.13. С помощью функции MONTH() можно
выполнить поиск по колонке, содержащей дату

Функции ADDDATE() и SUBDATE()

Функции ADDDATE() и SUBDATE(), равно как и их синонимы DATE_ADD() и DATE_SUB(),
выполняют вычисления с датами. Порядок их вызова таков:

ADDDATE(дата, INTERVAL x тип)

Здесь дата может быть как литералом, так и значением колонки. Значение x интер-
претируется с учетом типа. Возможны следующие типы: SECOND, MINUTE, HOUR, DAY,
MONTH и YEAR, а также их комбинации: MINUTE_SECOND, HOUR_MINUTE, DAY_HOUR
и YEAR_MONTH.
Чтобы прибавить к дате два часа, нужно написать:

ADDDATE(дата, INTERVAL 2 HOUR)

Чтобы прибавить две недели к дате 2 декабря 2002 года, пишем

ADDDATE('2002-12-31', INTERVAL 14 DAY)

Чтобы вычесть 15 месяцев из даты, пишем

SUBDATE(date, INTERVAL '1-3' YEAR_MONTH)

В последнем запросе мы просим MySQL вычесть один год и три месяца из значения,
хранящегося в колонке date.

125

2. Покажите текущие дату и время (рис.
5.14):

SELECT CURDATE(), CURTIME();

Чтобы получить информацию о теку-
щих дате и времени от сервера MySQL,
следует воспользоваться функциями
CURDATE() и CURTIME(). Перед вами при-
мер запроса, в котором не нужно ука-
зывать имя таблицы.

3. Выведите суммы счетов за последние
шесть месяцев и имена клиентов, кото-
рым выставлены эти счета (рис. 5.15):

SELECT CONCAT('$', FORMAT
� (invoice_amount, 2)) AS amount,
� client_name FROM invoices, clients
� WHERE (invoices.client_id =
� clients.client_id) AND
� (invoice_date BETWEEN
� SUBDATE(CURDATE(), INTERVAL
� 6 MONTH) AND CURDATE());

В этом запросе используется несколько
уже встречавшихся приемов. Во-пер-
вых, соединены две таблицы, чтобы
можно было вместе с суммой счета вы-
вести имя клиента. Во-вторых, сумма
счета преобразована в более привыч-
ный формат. В-третьих, в условии WHERE
есть две части: одна для указания спо-
соба соединения таблиц, а другая – для
выборки счетов, выставленных за пос-
ледние шесть месяцев. Слово BETWEEN
(между) служит для указания диапазо-
на начиная с даты, отстоящей от теку-
щей на шесть месяцев – SUBDATE(CUR-
DATE(), INTERVAL 6 MONTH), и кончая те-
кущей датой – CURDATE(). Тем самым
мы отсекаем авансовые счета (с датой
выставления в будущем).

Рис. 5.14. Функции CURDATE() и CURTIME()
возвращают соответственно текущие дату
и время. Функция NOW() возвращает одно
значение, содержащее как дату, так и время

Рис. 5.15. Здесь функция CURDATE()
используется для указания диапазона дат

Функции для работы с датой и временем

Функции MySQL126

Формат даты и времени
Есть еще две функции, относящиеся к дате
и времени; возможно, ими-то вы и будете
чаще всего пользоваться. Это DATE_FORMAT()
и TIME_FORMAT(). Они в какой-то мере пере-
крываются: DATE_FORMAT() может формати-
ровать одновременно дату и время, а вот
TIME_FORMAT() – только время. Порядок
вызова таков:

SELECT DATE_FORMAT(имя_колонки,
� 'форматирование') AS псевдоним
� FROM имя_таблицы;

Параметр форматирование может включать
специальные символы, предваряемые зна-
ком процента, вместо которых подставляют-
ся те или иные компоненты даты. В табл. 5.4
перечислены чаще всего употребляемые
символы форматирования. Их можно ис-
пользовать в любом сочетании вместе
с произвольными текстовыми вкрапле-
ниями, например знаками препинания.
Предположим, в колонке the_date хранит-
ся значение 2002-04-30 23:07:45 (30-е апре-
ля 2002 года, 23 часа 7 минут 45 секунд).
Его можно отформатировать следующи-
ми способами:

как время – 11:07:45 PM (post meridiem –
пополудни):

DATE_FORMAT(the_date, '%r')

как время без секунд – 11:07 PM:

DATE_FORMAT(the_date, '%l:%i:%p')

как дату – April 30th, 2002:

DATE_FORMAT(the_date, '%M %D, %Y')

Таблица 5.4. Символы форматирования,
применяемые в функциях DATE_FORMAT()
и TIME_FORMAT()

Символ Значение Пример

%e Число дня месяца 1-31

%d Число дня месяца 01-31

с двумя цифрами

%D Число дня 1st-31st

с суффиксом

%W День недели Sunday-

Saturday

(воскресенье-
суббота)

%a Сокращенное Sun-Sat

название дня
недели

%c Число месяца 1-12

%m Число месяца 01-12

с двумя цифрами

%M Название месяца January-

December

(январь-
декабрь)

%b Сокращенное Jan-Dec

название месяца

%Y Год 2002

%y Последние 02

две цифры года

%l Час 1-12

%h Час с двумя 01-12

цифрами

%k Час в 24-часовом 0-23

измерении

%H Час в 24-часовом 00-23

измерении, с двумя
цифрами

%i Минуты 00-59

%S Секунды 00-59

%r Время 8:17:02 PM

%T Время в 24-часовом 20:17:02

измерении

%p Сокращение AM AM или PM
(ante meridiem,
до полудня) или PM
(post meridiem,
пополудни)

127

Форматирование даты и времени

1. Выведите текущие дату и время в форма-
те Месяц ДД, ГГГГ – ЧЧ:ММ (рис. 5.16):

SELECT DATE_FORMAT(NOW(),
� '%M %e, %Y - %l:%i');
С помощью функции NOW(), которая воз-
вращает текущие дату и время, я могу
поэкспериментировать с различными
способами форматирования.

2. Выведите текущее время в 24-часовом
измерении (рис. 5.17):

SELECT TIME_FORMAT(CURTIME(), '%T');

Функцию DATE_FORMAT() можно приме-
нять для одновременного форматирова-
ния даты и времени (или только даты),
но если нужно отформатировать лишь
время, то следует обратиться к функции
TIME_FORMAT(). Ее можно применять как к
значению, содержащему только время
(например, CURTIME()), так и к значению,
содержащему дату и время (например,
NOW()).

3. Выберите все затраты, отсортировав их
по дате и сумме и представив дату в фор-
мате День недели (сокращенное название)
День месяца (сокращенное название) Год
(рис. 5.18):

SELECT DATE_FORMAT(expense_date,
� '%a %b %e %Y') AS the_date,
� CONCAT('$', FORMAT(expense_
� amount,2)) AS amount FROM expenses
� ORDER BY expense_date ASC,
� expense_amount DESC;

Это лишь один пример того, как с по-
мощью функций форматирования мож-
но изменить внешний вид результатов
выполнения запроса.

Рис. 5.16. Использование нескольких символов
форматирования в функции DATE_FORMAT()

Рис. 5.17. При форматировании времени без даты
надо пользоваться функцией TIME_FORMAT()

Рис. 5.18. Функция DATE_FORMAT()
не оказывает влияния на NULL

Формат даты и времени

Функции MySQL128

Функции шифрования
В MySQL есть несколько встроенных фун-
кций шифрования и одна функция де-
шифрования. Вы уже встречались с функ-
цией PASSWORD(), применяемой для шифро-
вания паролей пользователя:

INSERT INTO users(user_id,
� username, user_pass())
� VALUES(NULL, 'строка',
� PASSWORD('пароль'));

Функция ENCRYPT() аналогична PASSWORD() –
она тоже возвращает зашифрованную стро-
ку, но принимает дополнительный аргу-
мент для параметризации алгоритма шиф-
рования:

INSERT INTO users(user_id, username,
� user_pass())
� VALUES(NULL, 'строка',
� ENCRYPT('пароль', 'аргумент'));

Функция ENCRYPT() пользуется функцией
crypt() из стандартной библиотеки UNIX,
поэтому на других платформах может от-
сутствовать. В MySQL есть также функция
DES_ENCRYPT(), применяемая на SSL-соедине-
ниях.
Функции PASSWORD() и ENCRYPT() возвра-
щают зашифрованную строку, не подда-
ющуюся расшифровке. Это существенно
повышает безопасность, поскольку за-
шифрованные с помощью PASSWORD()
и ENCRYPT() пароли не могут быть восста-
новлены в исходном виде. Если необхо-
димо шифровать информацию так, что-
бы позже ее можно было дешифровать,
пользуйтесь функциями ENCODE()

и DECODE(). Они также могут принимать
дополнительный аргумент для парамет-
ризации шифрования:

INSERT INTO users(user_id, username,
� user_ssn())

129

VALUES(NULL, 'строка',
� ENCODE('123-45-6789', 'аргумент'));
SELECT имя_пользователя,
� DECODE(user_ssn, 'аргумент')
FROM users WHERE user_id=8;

Шифрование и дешифрование данных

1. Создайте новую таблицу users (рис. 5.19):

CREATE TABLE users (
user_id INT UNSIGNED NOT NULL
AUTO_INCREMENT,

user_pass CHAR(16),
user_name TINYBLOB,
PRIMARY KEY (user_id)
);

Поскольку ни в одной из существую-
щих таблиц ничего шифровать не нуж-
но, я решил создать новую таблицу
users. Она содержит три поля: user_id,
user_pass и user_name. Во втором из них
будет храниться пароль пользователя,
зашифрованный функцией PASSWORD().
Поскольку эта функция всегда возвра-
щает строку длиной 16 символов, тип
поля – CHAR(16). Поле user_name будет
зашифровано с помощью функции EN-
CODE(), так что в дальнейшем его можно
расшифровать. Функция ENCODE() воз-
вращает двоичное значение, которое не-
обходимо сохранять в колонке типа BLOB.

2. Вставьте новую запись о пользователе
(рис. 5.20):

INSERT INTO users
VALUES(NULL, PASSWORD('larryPASS'),
ENCODE('larryeullman', 'w1cKet'));

Я добавил в таблицу новую запись, вос-
пользовавшись функцией PASSWORD() для
шифрования пароля (larryPASS) и функ-
цией ENCODE() с дополнительным пара-
метром w1cKet для шифрования имени
пользователя (larryeullman).

Рис. 5.19. Таблица users, необязательно
являющаяся частью базы данных accounting,
используется для демонстрации шифрования и
дешифрования

Рис. 5.20. При сохранении данные шифруются

Функции шифрования

Функции MySQL130

3. Выберите информацию о пользователе
(рис. 5.21):

SELECT user_id FROM users
� WHERE (user_pass =
� PASSWORD('larryPASS'))
� AND (DECODE(user_name, 'w1cKet') =
� 'larryeullman');

Если некоторое значение было сохра-
нено с помощью функции PASSWORD(),
то для сравнения его с другим значени-
ем понадобится применить PASSWORD()
еще раз. Так, во время регистрации по-
сетителя вы шифруете введенный им
пароль и при следующей попытке вхо-
да в систему сравниваете результат шиф-
рования только что введенного пароля со
значением, хранимым в базе. Если зна-
чения совпали, пользователь ввел пра-
вильный пароль, иначе предложение
SELECT возвращает пустой результат
(рис. 5.22).
Значение, сохраненное функцией EN-
CODE(), можно дешифровать функцией
DECODE() при условии, что в обоих слу-
чаях указан один и тот же аргумент для
параметризации шифрования.

При использовании функций ENCRYPT(),
ENCODE() и DECODE() в программах хра-
ните параметризующий шифрование ар-
гумент в безопасном месте.

Раздел справочного руководства, посвя-
щенный функциям шифрования, находит-
ся на Web-странице www.mysql.com/doc/M/
i/Miscellaneous functions.html.

Можно рекомендовать применение функ-
ции PASSWORD() для шифрования инфор-
мации, которую никогда не придется про-
сматривать (например, паролей и, возможно,
имен пользователей). Функцию ENCODE()
стоит использовать для хранения инфор-
мации, требующей защиты и вместе с тем
просмотра в исходном виде: номеров
кредитных карточек, номеров социально-
го страхования, возможно адресов и т.п.

Рис. 5.21. При выборке данные дешифруются

Рис. 5.22. Функция PASSWORD() предполагает
различение символов в разном регистре,
так что при вводе пароля строчными буквами
вместо прописных результат выборки
будет пустым

131

Агрегатные функции
Для группировки результатов запроса
применяется фраза GROUP BY. Ее назначение
– сгруппировать возвращенные строки в
блоки. Например, чтобы сгруппировать
все счета по идентификатору клиента, нуж-
но отправить серверу такой запрос:

SELECT * FROM invoices
� GROUP BY client_id;

Возвращенные данные представляют со-
бой агрегированную информацию, а не
просто отдельные записи. Поэтому если
раньше вы получали семь накладных для
одного клиента, то применение GROUP BY
вернет их как одну запись. Я не обсуждал
эту концепцию раньше, потому что обыч-
но GROUP BY используется в сочетании с од-
ной из нескольких агрегатных функций,
перечисленных в табл. 5.5.

Таблица 5.5. Агрегатные функции обычно используются в сочетании с фразой GROUP BY

Функция Применение Назначение

MIN() MIN(имя_колонки) Возвращает наименьшее значение в колонке

MAX() MAX(имя_колонки) Возвращает наибольшее значение в колонке

SUM() SUM(имя_колонки) Возвращает сумму всех значений в колонке

COUNT() COUNT(имя_колонки) Подсчитывает число строк

Агрегатные функции

Функции MySQL132

Вместе с предложением GROUP BY команды
SELECT можно применять фразы WHERE,
ORDER BY и LIMIT. Общая структура запроса
выглядит так:

SELECT имена_колонок FROM имя_таблицы
� WHERE условие GROUP BY имя_колонки
� ORDER BY имя_колонки LIMIT x;

Группировка данных

1. Найдите счет с наибольшей суммой
(рис. 5.23):

SELECT MAX(invoice_amount)
� FROM invoices;

Поскольку функция MAX() возвращает
наибольшее значение в колонке, это
простейший способ достичь нужного
результата. А можно было бы посту-
пить и так:

SELECT invoice_amount
� FROM invoices
� ORDER BY invoice_amount DESC
� LIMIT 1.

2. Определите суммарные затраты по каж-
дой категории (рис. 5.24):

SELECT SUM(expense_amount),
� expense_category
� FROM expenses LEFT
� JOIN expense_categories
� USING (expense_category_id)
� GROUP BY expense_categories.
� expense_category_id;

Для решения задачи сначала соедините
две таблицы, чтобы включить в резуль-
тат название категории затрат. Затем все
затраты группируются по идентифика-
тору категории, и величины в каждой
группе суммируются. MySQL возвра-
щает таблицу из двух колонок, где за-
писаны общая сумма и название катего-
рии.

Рис. 5.23. Функция MAX() выполняет группировку,
даже если фраза GROUP BY явно не указана

Рис. 5.24. Функцию SUM() в сочетании с фразой
GROUP BY можно использовать для суммирования
полей записей в группах с одним и тем же
значением поля expense_category_id

133

3. Выясните, сколько счетов выставлено
каждому клиенту (рис. 5.25):

SELECT COUNT(*) AS num, client_name
� FROM invoices LEFT JOIN clients
� USING (client_id)
� GROUP BY clients.client_id
� ORDER BY num DESC;

Если нужно узнать, сколько записей
в той или иной категории, на помощь
придет сочетание функции COUNT()
с фразой GROUP BY. Я применил COUNT()
к каждой колонке (*), но мог бы с тем
же успехом указать только колонку
invoice_id. Сгруппированные резуль-
таты можно отсортировать, как и лю-
бые другие.

4. Измените запрос 2 так, чтобы в резуль-
татах было показано, сколько записей
о затратах составило вычисленную сум-
му (рис. 5.26):

SELECT COUNT(*), SUM(expense_amount),
� expense_category FROM expenses LEFT
� JOIN expense_categories
� USING(expense_category_id)
� GROUP BY expense_categories.
� expense_category_id;

Здесь я снова воспользовался функци-
ей COUNT(), чтобы посчитать число за-
писей в каждой группе. В одном запро-
се может присутствовать несколько аг-
регатных функций.

Вы уже видели, что у значения NULL есть
ряд особенностей. Вам будет интересно уз-
нать, что команда GROUP BY сводит в одну
группу все строки, содержащие в указан-
ном поле NULL.

Функция COUNT() подсчитывает только
строки, не содержащие NULL в указанном
поле.

Рис. 5.25. Функция COUNT() возвращает
количество записей в каждой группе,
сформированной по команде GROUP BY
(в данном случае группировка производится
по полю client_id)

Рис. 5.26. Включив функцию COUNT() в запрос,
показанный на рис. 5.24, я могу помимо всего
прочего узнать, сколько записей оказалось
в каждой категории

Для того чтобы освоиться с фразой GROUP
BY и агрегатными функциями, потребуется
некоторое время. MySQL выдаст сообщение
об ошибке, если вы введете синтаксически
некорректный запрос. Поэкспериментируйте
с монитором mysql, пока не разберетесь,
как правильно формулировать запросы.

Агрегатные функции

Функции MySQL134

Прочие функции
Прежде чем закончить эту главу, я упомяну
еще две функции, которые нельзя отнести
ни к одной из рассмотренных выше катего-
рий. Первая из них – LAST_INSERT_ID() –
очень важна для работы с реляционными
СУБД; вторая – DISTINCT() – позволяет
уточнить состав возвращаемых данных.
Функция LAST_INSERT_ID() возвращает
значение автоинкрементного поля, уста-
новленное в результате выполнения по-
следнего предложения INSERT. Например,
в таблице expense_categories из базы дан-
ных accounting поле expense_category_id
определено как целое без знака, не содер-
жащее NULL. Кроме того, оно назначено
первичным ключом и объявлено автоин-
крементным. Это означает, что при по-
пытке вставить NULL в данное поле MySQL
автоматически запишет туда следующее
по порядку значение, а LAST_INSERT_ID()
его вернет. Затем полученный результат
можно использовать в качестве значения
внешнего ключа при вставке записи в свя-
занную таблицу:

SELECT LAST_INSERT_ID();

Функция DISTINCT() используется для
устранения дубликатов и обычно при-
меняется к колонке:

SELECT DISTINCT(имя_колонки)
� FROM имя_таблицы;

Часто DISTINCT() употребляют в сочетании с
фразой GROUP BY, чтобы включить в группу
только уникальные записи и, возможно,
посчитать их.

Путаница с функцией LAST_INSERT_ID()

Часто считают, что функция LAST_
INSERT_ID() возвращает значение по-
следнего вставленного в таблицу поля
независимо от того, как это было сде-
лано. Такое суждение неверно. Функ-
ция возвращает последнее значение,
вставленное в том же сеансе связи с сер-
вером, в котором она была вызвана.
К примеру, если с базой данных одно-
временно соединились десять сценари-
ев и три монитора mysql, вставили
в таблицу новую строку, а затем за-
просили значение автоинкрементно-
го поля, то каждый из них получит
значение, соответствующее своему се-
ансу.

135

Использование функции LAST_INSERT_ID()

1. Вставьте нового пользователя в табли-
цу users (рис. 5.27):

INSERT INTO users
� VALUES(NULL, PASSWORD('D\'oh'),
� ENCODE('homerjsimpson', 'w1cKet'));

Работая с функциями шифрования,
позаботьтесь о том, чтобы при вставке
каждой строки использовались одна
и та же функция и один и тот же пара-
метризующий аргумент, иначе вам бу-
дет трудно восстановить данные в ис-
ходном виде.

2. Выберите идентификатор только что
вставленного пользователя (рис. 5.28):

SELECT LAST_INSERT_ID();

Эта команда возвращает всего одно чис-
ло, равное значению первичного ключа,
вставленного вместо NULL на этапе 1.

Рис. 5.27. Для проверки функции
LAST_INSERT_ID() я добавлю пользователя
в таблицу users

Рис. 5.28. Функция LAST_INSERT_ID()
возвращает одно число, соответствующее
последнему предложению INSERT

Прочие функции

Функции MySQL136

Использование функции DISTINCT()

1. Перечислите разных клиентов, которым
были выставлены счета (рис. 5.29):

SELECT DISTINCT(invoices.client_id),
� client_name FROM invoices, clients
� WHERE invoices.client_id =
� clients.client_id;

По этому запросу каждый клиент вы-
водится только один раз – независимо
от того, сколько ему было выставлено
счетов.

2. Подсчитайте, скольким различным кли-
ентам были выставлены счета (рис. 5.30):

SELECT COUNT(DISTINCT(client_id))
� FROM invoices;

Если COUNT() сочетается с DISTINCT(), то
при подсчете будут учтены только уни-
кальные значения.

Функция LAST_INSERT_ID() возвращает
то же самое значение, что и функция PHP
mysql_ insert_id().

При вставке сразу нескольких записей функ-
ция LAST_INSERT_ID() возвращает значе-
ние, присвоенное автоинкрементному полю
в первой вставленной записи.

В MySQL есть и другие функции, например
DATABASE(). Так, запрос SELECT DATABASE();
вернет имя базы данных, с которой вы
в настоящий момент работаете.

Функция USER(), употребляемая в контек-
сте SELECT USER();, возвращает имя поль-
зователя, от имени которого вы работаете.

Рис. 5.29. Функция DISTINCT() в определенном
отношении напоминает агрегатные функции:
она тоже группирует записи

Рис. 5.30. Использование DISTINCT()
в сочетании с COUNT() позволяет вывести число
уникальных значений в колонке

Для работы с MySQL используются раз-
личные языки, в том числе Perl, Java, C,
C++ и Python, но чаще других – язык
PHP. Сообщество его пользователей по-
стоянно расширяется (одна из наиболее
веских причин в том, что исходный текст
PHP открыт), а тесная интеграция с My-
SQL еще больше увеличивает популяр-
ность этого продукта.
Поддержка MySQL встроена в PHP по
умолчанию начиная с версии 4. Послед-
няя версия (на момент написания этой
книги – 4.2) предоставляет целый ряд воз-
можностей, ориентированных именно на
MySQL, и включает поддержку MySQL
вплоть до версии 4.0. В этой главе предпо-
лагается, что вы используете версию PHP
4.0 или старше.
Данная глава рассчитана на несколько ка-
тегорий пользователей: знакомых с PHP,
но еще не работавших с MySQL; знако-
мых и с PHP, и с MySQL, но желающих
освежить свои базовые знания; наконец,
незнакомых с PHP и желающих узнать,
как ведется взаимодействие с MySQL.
Мы продолжим работу с базой данных
accounting и создадим на PHP интерфейс
для управления затратами. Полученные
знания позволят вам без труда создать
аналогичный интерфейс для управления
счетами.

MySQL и PHP 66666

MySQL и PHP138

Соединение с MySQL
и выбор базы данных
Прежде всего, следует установить соедине-
ние с сервером MySQL. В PHP для этого
предназначена функция mysql_connect():

$db_connection = mysql_connect(имя_хоста,
� имя_пользователя, пароль);

Параметры имя_пользователя и пароль –
это имя и пароль одного из пользовате-
лей, зарегистрированных в базе данных
mysql (см. главу 2). В качестве имени хоста
обычно указывается localhost, хотя это и
не обязательно.
В переменной $db_connection хранится
ссылка на созданное соединение. Большин-
ство функций PHP для работы с MySQL
принимают ее в качестве необязательно-
го аргумента, а если он не задан, автома-
тически используют открытое соедине-
ние.
После того как связь с MySQL установле-
на, нужно выбрать рабочую базу данных.
В мониторе mysql для этой цели исполь-
зовалось предложение USE имя_базы_данных,
а в PHP тот же эффект достигается вызо-
вом функции mysql_select_db():

mysql_select_db(имя_базы_данных);

Чтобы показать, как устанавливается со-
единение с MySQL, я создам специальный
файл, который можно будет включать во
все PHP-сценарии, работающие с MySQL.

Установление соединения
и выбор базы данных

1. Создайте в своем любимом текстовом
редакторе новый PHP-документ (см.
листинг 6.1). Начните со строки

<?php

Листинг 6.1. Файл mysql_connect.inc будет
использоваться во всех остальных сценариях
для установления соединения с базой данных
<?php

<?php

// ***** mysql_connect.inc *****

// ***** Листинг 6.1 *****

// Автор: Larry E. Ullman

// MySQL: Visual QuickStart Guide

// Контактный адрес:

mysql@DMCinsights.com

// Дата создания: 7 мая 2002 года

// Дата последней модификации:

// 7 мая 2002 года

// Файл содержит информацию о доступе

// к базе данных accounting.

// Здесь же устанавливается соединение

// с MySQL и выбирается база данных.

// Информация, относящаяся к конкретной

// базе данных:

DEFINE (DB_USER, "имя_пользователя");

DEFINE (DB_PASSWORD, "пароль");

DEFINE (DB_HOST, "localhost");

DEFINE (DB_NAME, "accounting");

// Подключиться к MySQL:

$db_connection = mysql_connect

� (DB_HOST, DB_USER, DB_PASSWORD);

// Выбрать базу данных:

mysql_select_db (DB_NAME);

?>

139

2. Добавьте комментарий:

// ***** mysql_connect.inc *****
// ***** Листинг 6.1 *****
// Автор: Larry E. Ullman
// MySQL: Visual QuickStart Guide
// Контактный адрес:
// mysql@DMCinsights.com
// Дата создания: 7 мая 2002 года
// Дата последней модификации:
// 7 мая 2002 года
// Файл содержит информацию
// о доступе к базе данных accounting.
// Здесь же устанавливается
// соединение с MySQL и выбирается
// база данных.

По большей части я постараюсь воздер-
живаться от комментирования отдель-
ных фрагментов, но сейчас хотелось бы
особо подчеркнуть эти строки, чтобы
вы поняли, как можно документиро-
вать конфигурационный файл. Кроме
того, для удобства я буду включать имя
файла и номер листинга в коммента-
рии к каждому сценарию (чтобы про-
ще было давать ссылки).

3. Определите имя хоста, имя и пароль
пользователя, а также имя базы дан-
ных в виде констант:

DEFINE (DB_USER, "имя_пользователя");
DEFINE (DB_PASSWORD, "пароль");
DEFINE (DB_HOST, "localhost");
DEFINE (DB_NAME, "accounting");

Я предпочитаю представлять такого
рода информацию в виде констант из
соображения безопасности (тогда их
невозможно будет случайно изменить),
но, вообще говоря, это необязательно.
Так или иначе, вынесение указанных
параметров в отдельный файл позво-
ляет отделить их от кода функций. Это
удобно, хотя опять же вы вправе по-
ступить по-другому.

Соединение с MySQL и выбор базы данных

MySQL и PHP140

4. Установите соединение с MySQL:

$db_connection = mysql_connect
� (DB_HOST, DB_USER, DB_PASSWORD);

Если функции mysql_connect() удалось
подключиться к MySQL, то она возвра-
тит ссылку на открытое соединение.
Эта ссылка запоминается в переменной
$db_connection, хотя нигде в сценариях я
не буду ее явно использовать.

5. Выберите рабочую базу данных:

mysql_select_db (DB_NAME);

Здесь вы сообщаете MySQL, к какой базе
данных будут обращены запросы. Если
не указать ее, то в других сценариях воз-
никнут проблемы, хотя, когда приложе-
ние работает сразу с несколькими база-
ми, заранее выбирать одну из них в гло-
бальном плане не имеет особого смысла.

6. Закройте сценарий и сохраните файл,
присвоив ему имя mysql_connect.inc:

?>

Я предпочитаю расширение .inc, и это
нормально, если только файл сохраня-
ется вне каталога, доступного из Сети
(см. п. 7). При желании можете сохра-
нить документ и с расширением .php.

7. Загрузите файл на сервер в корневой
каталог Web-приложений (рис. 6.1).
Поскольку данный документ содержит
конфиденциальную информацию о до-
ступе к MySQL, следует обеспечить бе-
зопасное хранение файла. Лучше всего
поместить его в каталог, являющийся
прямым родителем каталога Web-при-
ложения, или в такое место, которое
недоступно из Сети. Если это невоз-
можно, присвойте файлу расширение
.php и поместите в каталог, защищен-
ный паролем.

Рис. 6.1. Если в качестве корневого каталога
для всех Web-документов выступает html
(то есть именно туда ведет адрес
www.dmcinsights.com), конфигурационные
файлы следует хранить вне его

Если при вызове функции mysql_connect()
вы получаете сообщение о том, что функ-
ция не определена, это означает, что при
компиляции PHP не была включена под-
держка MySQL.

В PHP есть также функция mysql_pconnect(),
устанавливающая постоянное соединение
с MySQL. Но ее использование заставляет
пересмотреть архитектуру всего приложе-
ния, так как способ работы с подобными со-
единениями довольно-таки специфичен.

Если в сценарии mysql_connect.inc моди-
фицировать строки DEFINE(), то его мож-
но будет использовать и в других проектах.

141

Простые запросы
Успешно соединившись с сервером и вы-
брав рабочую базу данных, вы можете при-
ступать к выполнению запросов. Это мо-
гут быть как простые команды вставки,
обновления и удаления, так и сложные
выборки из нескольких таблиц, возвраща-
ющие более одной строки. В любом случае
используется функция PHP mysql_query():

$query_result = mysql_query($query);

Переменная $query_result содержит ссылку
на результат выполнения запроса, то есть
указатель на данные, возвращенные
MySQL.
Последние два этапа сценария предпола-
гают освобождение ресурсов, захваченных
в результате выполнения запроса, и закры-
тие соединения с сервером:

mysql_free_result($query_result);

mysql_close();

В первой строке освобождается память, вы-
деленная под хранение результатов запроса.
Во второй строке закрывается соединение,
открытое функцией mysql_connect(). Ни
один из этих вызовов не является обяза-
тельным, так как PHP и MySQL автомати-
чески освободят ресурсы и закроют соеди-
нение по завершении работы сценария, но
включение данных строк считается «хоро-
шим тоном» в программировании.
Чтобы продемонстрировать всю процеду-
ру, я создам PHP-страницу, которая вы-
водит форму и обрабатывает введенную
в нее информацию. Назначение такой
страницы – реализовать добавление но-
вых категорий затрат в базу данных.

Простые запросы

MySQL и PHP142

В этой книге я буду следовать рекомен-
дациям XHTML, поэтому код может не-
сколько отличаться от того, к чему вы
привыкли. Впрочем, для изложения ма-
териала это не имеет существенного
значения. В заголовке страницы значит-
ся Add An Expense Category (Добавле-
ние категории затрат).

3. Начните раздел PHP-кода:

<?php

4. Проверьте, была ли форма отправлена:

if (isset($HTTP_POST_VARS['submit']))
{

Выполнение простых запросов

1. Создайте в редакторе новый PHP-доку-
мент (листинг 6.2).

2. Начнем со стандартного пролога HTML-
кода:

<!DOCTYPE html PUBLIC "-//W3C//DTD
� XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/2000/REC-

� xhtml1-20000126/DTD/xhtml1-
� transitional.dtd">

<html xmlns="http://www.w3.org/
� 1999/xhtml">

<head>

<title>Add An Expense Category</title>

</head>

<body>

Листинг 6.2. Эта PHP-страница позволяет добавлять записи в базу данных с помощью браузера

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/2000/REC-xhtml1-20000126/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<title>Add An Expense Category</title>

</head>

<body>

<?php

// ***** add_expense_category.php *****

// ***** Листинг 6.2 *****

// Этот сценарий выводит форму для вставки записей в таблицу

// expense_categories и обрабатывает введенные данные

if (isset($HTTP_POST_VARS['submit'])) { // Если форма отправлена, обработать ее.

// Проверить, все ли обязательные поля заполнены.

if (strlen($HTTP_POST_VARS['expense_category']) > 0) {

// Включить файл с данными о соединении с MySQL:

require_once ("../mysql_connect.inc");

143

// Создать запрос:

$query = "INSERT INTO expense_categories VALUES (NULL,

 '{$HTTP_POST_VARS['expense_category']}')";

// Выполнить запрос:

$query_result = mysql_query ($query);

// Вывести сообщение об удачном или ошибочном завершении:

if ($query_result) {

echo 'The category has been added!';

} else {

echo 'The category could not be added!';

}

// Освободить ресурсы и закрыть соединение с базой данных:

mysql_close();

} else { // Напечатать сообщение, если категория не введена:

echo 'You forgot to enter the category!';

}

} else { // Если форма не отправлена, вывести ее.

// Для упрощения ввода выйти из режима интерпретатора PHP:

?>

Add a new category to the expense_categories table:

<form action="add_expense_category.php" method="post">

<input type="text" name="expense_category" size="30" maxlength="30" />

<p />

<input type="submit" name="submit" value="Submit!" />

</form>

<?php

} // Конец главного условного оператора.

?>

</body>

</html>

Листинг 6.2. Эта PHP-страница позволяет добавлять записи в базу данных с помощью браузера (окончание)

Простые запросы

MySQL и PHP144

Данная страница обеспечивает выпол-
нение сразу двух операций: вывода
HTML-формы и обработки введенных
в нее данных. Поэтому я написал один
большой условный оператор, который
решает, что именно нужно делать, ос-
новываясь на наличии или отсутствии
значения у переменной окружения sub-
mit. С этой техникой мы будем сталки-
ваться постоянно.

5. Проверьте, все ли обязательные поля
заполнены:

if (strlen($HTTP_POST_VARS['expense_
� category']) > 0) {

Я не хочу, чтобы сценарий вставлял ка-
тегории затрат с пустым названием, по-
этому сначала проверяю, введено ли
что-нибудь в поле expense_category. Как
правило, все поля базы данных, кото-
рые не могут содержать NULL (за исклю-
чением первичных ключей), следует
проверять на наличие значения. Кон-
троль введенных в форму данных –
важнейшее условие безопасности ва-
шей базы!

6. Включите файл, содержащий инфор-
мацию о соединении с сервером:

require_once ("../mysql_connect.inc");

В этой строке в сценарий включается
содержимое файла mysql_connect.inc,
а следовательно, устанавливается со-
единение с сервером и выбирается база
данных. Возможно, вам придется изме-
нить путь к включаемому файлу – это
зависит от того, где вы его сохранили.

7. Сформулируйте и выполните запрос:

$query = "INSERT INTO
� expense_categories VALUES
(NULL, '{$HTTP_POST_VARS['expense_
� category']}')";

$query_result = mysql_query ($query);

145

Сам запрос аналогичен рассмотрен-
ным в главе 4. Записав его текст в пе-
ременную, вы передаете ее функции
mysql_run(), которая отправляет за-
прос серверу MySQL.

8. Напечатайте то или иное сообщение:

if ($query_result) {
echo 'The
� category has been added!';

} else {

echo '
� The category could not be added!
� ';

}

Переменной $query_result присваивает-
ся ссылка на данные, возвращенные
MySQL. Ее можно использовать как ин-
дикатор успешности выполнения опе-
рации (The category has been added –
«Категория была добавлена», The cate-
gory could not be added – «Категорию не
удалось добавить»). В данном случае
можно было бы сэкономить одну стро-
ку кода, написав

if (mysql_query($query)) {

9. Закройте соединение с базой данных:

mysql_close();

Хотя закрывать соединение с базой не-
обязательно, это всегда стоит делать
(если, конечно, подключение больше
не понадобится). Для вышеприведен-
ного запроса вызывать функцию mysql_
free_result() не нужно, так как он не
возвращает никаких строк.

10. Закончите первую ветку условного опе-
ратора и откройте вторую:

} else {
echo 'You
� forgot to enter the category!
� ';

Простые запросы

MySQL и PHP146

}

} else { // Если форма не отправлена,
 � вывести ее.

Здесь завершается часть сценария, по-
священная обработке введенных дан-
ных. Далее приступим к выводу формы.

11.Создайте HTML-форму:

?>

Add a new category to the
� expense_categories table:

<form action="add_expense_
� category.php" method="post">

<input type="text" name="expense_
� category" size="30"
� maxlength="30" />
<p />

<input type="submit" name="submit"
� value="Submit!" />

</form>

Я решил сделать форму максимально
простой. Заметьте, что имя поля в HTML-
форме в точности совпадает с именем
колонки в таблице базы данных. Это
не строгое предписание, но вероятность
ошибок благодаря этому уменьшается.
Кроме того, поскольку вывод и обра-
ботку формы осуществляет одна и та
же страница, в атрибуте action нахо-
дится имя данного сценария. Вы мог-
ли бы внести небольшое усовершен-
ствование, включив в форму несколь-
ко полей для ввода наименовании ка-
тегории затрат. Тогда можно было бы
за один раз выполнить несколько опе-
раций вставки.

147

12. Завершите сценарий:

<?php

}

?>

</body>

</html>

13. Сохраните файл под именем add_ ex-
pense_category.php.
Я предпочитаю длинные, содержатель-
ные имена файлов. Вы можете выбрать
любое другое название, но не забудь-
те соответственно изменить атрибут
action в тэге <form>.

14. Протестируйте сценарий, обратившись
к нему из браузера (рис. 6.2–6.4).
После того как работа сценария завер-
шилась, вы можете проверить занесен-
ные в таблицу данные с помощью мо-
нитора mysql.

Рис. 6.2. Простая форма, выведенная сценарием
add_expense_category.php, позволяет добавлять
записи в таблицу expense_categories

Рис. 6.3. Сценарий выводит сообщение
об успешном добавлении новой категории

Рис. 6.4. Сценарий выводит сообщение
о неправильно заполненной форме

Простые запросы

MySQL и PHP148

В PHP не нужно заканчивать текст запроса
точкой с запятой, как в мониторе mysql. Это
типичная, хотя и безвредная ошибка.

Если в поле формы введен вопроситель-
ный знак, его следует экранировать симво-
лом обратной косой черты перед вставкой
записи в базу. В противном случае символ
? будет принят за разделитель значений
колонок (подробнее об этом рассказыва-
ется ниже, во врезке «Волшебные кавыч-
ки» из раздела «Безопасность»).

Создавать переменную $query необязатель-
но: можно сразу передать текст запроса
как аргумент функции mysql_query().
Однако по мере усложнения запросов ста-
нет трудно обходиться без отдельной пе-
ременной.

Массив $HTTP_POST_VARS

Из соображений безопасности я вос-
пользовался массивом $HTTP_POST_VARS,
предоставляемым PHP, вместо того
чтобы напрямую ссылаться на поля
формы. Разница состоит в том, что
вместо $expense_category я пишу $HTTP_
POST_VARS['expense_category'], а это
значит, что при формулировании за-
проса следует употреблять {$HTTP_POST_
VARS['expense_category']}, чтобы PHP
правильно подставил значение. Исполь-
зовать массив $HTTP_POST_VARS можно
в случае, когда форма отправлена мето-
дом POST (методу GET соответствует мас-
сив $HTTP_GET_VARS).
Поскольку PHP развивается в направ-
лении ограниченного использования
глобальных переменных, то програм-
мисты должны отдавать предпочтение
именно этой новой технике. При рабо-
те с PHP версии 4.1 и старше можно
пойти еще дальше и воспользоваться
суперглобальными массивами $_POST и
$_GET, которые аналогичны массивам
$HTTP_POST_VARS и $HTTP_GET_VARS, но
имеют глобальную область действия.

149

Выборка данных
В предыдущем разделе я продемонстриро-
вал простой запрос к базе данных MySQL.
К простым относятся запросы, начинаю-
щиеся со слов INSERT, UPDATE, DELETE и ALTER.
Их общая черта в том, что они возвраща-
ют не данные, а только признак успешно-
го или ошибочного завершения. В проти-
воположность этому, запрос на выборку
(SELECT) возвращает набор строк, для обра-
ботки которого в PHP предусмотрены до-
полнительные функции.
Главная из них – функция
mysql_fetch_array()

которая возвращает по одной строке ре-
зультата выборки в виде массива. Обычно
она вызывается в цикле до тех пор, пока
еще есть данные. Типичная конструкция
выглядит так:

while ($row = mysql_fetch_
� array($query_result)) {

// Сделать что-то со строкой $row.

Функция принимает дополнительный па-
раметр, указывающий тип возвращаемо-
го массива: ассоциативный, индексиро-
ванный или смешанный. Ассоциативный
массив позволяет ссылаться на значения
колонок по имени, а индексированный –
по числовому индексу (индекс первой
колонки равен 0). Значениями парамет-
ра могут быть константы, перечисленные
в табл. 6.1.
Чтобы продемонстрировать, как обраба-
тываются результаты выполнения запро-
са, я создал сценарий, добавляющий но-
вую запись о затратах в базу. Выпадаю-
щий список, содержащий названия ка-
тегорий затрат, будет создан на основе
содержимого таблицы expense_categories.
Общая структура сценария очень похожа
на add_expense_category.php.

Таблица 6.1. Передача одной из этих констант
в качестве параметра функции
mysql_fetch_array() определяет способ
возврата прочитанной из базы информации

Константа Пример

MYSQL_ASSOC $row['column']

MYSQL_NUM $row[0]

MYSQL_BOTH $row[0] или $row['column']

Выборка данных

MySQL и PHP150

Извлечение данных

1. Создайте в редакторе новый PHP-доку-
мент (листинг 6.3).

2. Начните со стандартного пролога HTML-
кода. В заголовке страницы значится
Enter An Expense (Ввести затрату):

<!DOCTYPE html PUBLIC "-//W3C//DTD
� XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/2000/REC-

� xhtml1-20000126/DTD/xhtml1-
� transitional.dtd">

<html xmlns="http://www.w3.org/
� 1999/xhtml">

<head>

<title>Enter An Expense</title>

</head>

<body>

Листинг 6.3. Сценарий add_expense_category.php извлекает данные из таблицы expense_categories для
создания выпадающего списка

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/2000/REC-xhtml1-20000126/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<title>Enter An Expense</title>

</head>

<body>

<?php

// ***** add_expense.php *****

// ***** Листинг 6.3 *****

// Эта страница выводит форму для вставки записей в таблицу expenses

// и обрабатывает введенные в нее данные.

// Включить файл с данными о соединении с MySQL:

require_once ("../mysql_connect.inc");

if (isset($HTTP_POST_VARS['submit'])) { // Если форма была отправлена, обработать ее.

// Проверить, заполнены ли обязательные поля:

if (isset($HTTP_POST_VARS['expense_category_id']) AND

 (strlen($HTTP_POST_VARS['expense_amount']) > 0) AND

 (strlen($HTTP_POST_VARS['expense_description']) > 0)) {

// Создать запрос:

$query = "INSERT INTO expenses VALUES (NULL,

� {$HTTP_POST_VARS['expense_category_id']}, '" .

� addslashes($HTTP_POST_VARS['expense_amount']) . "', '" .

� addslashes($HTTP_POST_VARS['expense_description']) . "', NOW())";

151

Листинг 6.3. Сценарий add_expense_category.php извлекает данные из таблицы expense_categories
для создания выпадающего списка (окончание)

// Вывести сообщение об удачном или ошибочном завершении:

if (mysql_query ($query)) {

 echo 'The expense has been added!';

} else {

 echo 'The expense was not entered into the table!

 � ';
}

} else { // Напечатать сообщение, если поле, обязательное для заполнения,

 // осталось пустым.

 echo 'You missed a required field!';

}

} else { // Если не было отправки, вывести форму.

echo 'Enter an expense:

<form action="add_expense.php" method="post">

Expense Category: <select name="expense_category_id">';

// Вывести категории затрат:

$query_result = mysql_query ('SELECT * FROM expense_categories ORDER BY expense_category');

while ($row = mysql_fetch_array ($query_result, MYSQL_NUM)) {

echo "<option value=\"$row[0]\">$row[1]</option>\n";

}

// Очистка (необязательно):

mysql_free_result($query_result);

mysql_close();

// Завершить создание формы:

echo '</select><p />

Expense Amount: <input type="text" name="expense_amount" size="10" maxlength="10" /><p />

Expense Description: <textarea name="expense_description" rows="5" cols="40">

� </textarea> <p />

<input type="submit" name="submit" value="Submit!" />

</form>';

} // Конец главного условного оператора.

?>

</body>

</html>

Выборка данных

MySQL и PHP152

3. Начните раздел PHP-кода и включите
туда файл, обеспечивающий соедине-
ние с MySQL:

<?php

require_once ("../mysql_connect.inc");

Поскольку доступ к базе необходим
в обеих частях сценария (при выводе
формы и обработке введенных дан-
ных), этот файл стоит включить сразу,
а не после проверки условия, как в пре-
дыдущем примере.

4. Проверьте основное условие:

if (isset($HTTP_POST_VARS['submit']))
{

Как и раньше, этот оператор решает,
что будет делать сценарий: выводить
форму или обрабатывать ее.

5. Проверьте, заданы ли обязательные
поля:

if (isset($HTTP_POST_VARS['expense_
� category_id']) AND (strlen($HTTP_
� POST_VARS['expense_amount']) > 0)
� AND (strlen($HTTP_POST_VARS
� ['expense_description']) > 0)) {

Здесь проверяются три поля: expense_
category_id, expense_amount и expense_
description. Последние два представле-
ны полями ввода, для которых функ-
ция isset может вернуть true, даже
если значение не задано; поэтому сле-
дует посмотреть, положительна ли дли-
на значения.

6. Сформулируйте запрос:

$query = "INSERT INTO expenses
� VALUES (NULL, {$HTTP_POST_VARS
� ['expense_category_id']}, '" .
� addslashes($HTTP_POST_VARS
� ['expense_amount']) . "', '" .
� addslashes($HTTP_POST_VARS
� ['expense_description']) . "',
� NOW())";

153

Он отличается от того, что вы видели
в листинге 6.2: здесь я воспользовался
функцией addslashes(), автоматически
экранирующей все символы, из-за ко-
торых могут возникнуть проблемы.
Мы еще затронем эту тему в дальней-
шем, но уже сейчас я хочу познакомить
вас с данной техникой.

7. Выполните запрос:

if (mysql_query ($query)) {

echo 'The
expense has been added!
';

} else {

echo 'The
expense was not entered
into the table!';
}

The expense has been added – «Запись
о затрате была добавлена».
The expense was not entered into the table
– «Запись о затрате не была введена в
таблицу».
Выше я говорил, что выполнить за-
прос можно прямо в условии, что по-
зволяет сэкономить строчку кода.

8. Завершите первую ветвь главного услов-
ного оператора:

} else {
echo 'You
missed a required field!
';

}

} else {

You missed a required field – «Вы пропу-
стили поле, обязательное для заполне-
ния».

Если хотите сделать сценарий более про-
фессиональным, можете добавить код,

Выборка данных

MySQL и PHP154

который информирует пользователя о том,
какие именно поля не заполнены.
9. Приступите к выводу HTML-формы:

echo 'Enter an expense:

<form action="add_expense.php"
� method="post">

Expense Category: <select
� name="expense_category_id">';

Выпадающий список expense_category_id
создается из значений, хранящихся в ба-
зе данных. Но, прежде чем обращаться к
базе, нужно вывести начало тэга SELECT.

10.Сгенерируйте выпадающий список на
основе результатов выборки из табли-
цы expense_categories:

$query_result = mysql_query
� ('SELECT * FROM expense_categories
� ORDER BY expense_category');

while ($row = mysql_fetch_array
� ($query_result, MYSQL_NUM)) {

echo "<option value=\"$row[0]\">
� $row[1]</option>\n";
}

Процедура преобразования таблицы
в выпадающий список делится на три
этапа:
– создается и выполняется запрос;
– выбираются возвращенные данные;
– для каждой возвращенной строки пе-

чатается тэг <option>.
В рассматриваемом случае я решил вы-
брать из таблицы все записи, отсортиро-
вав их по колонке expense_category. Фра-
за ORDER BY в запросе определяет порядок
следования пунктов выпадающего спис-
ка. Функции mysql_fetch_array() переда-
ется параметр MYSQL_NUM, позволяющий
обращаться к строкам по индексу.

155

11. Освободите ресурс и закройте соедине-
ние с базой данных:

mysql_free_result($query_result);

mysql_close();

Поскольку запрос возвращает данные,
перед закрытием соединения я освобо-
дил память, обратившись к функции
mysql_free_result().

12. Завершите HTML-форму:

echo '</select><p />

Expense Amount: <input type="text"
� name="expense_amount" size="10"
� maxlength="10" /><p />

Expense Description: <textarea
� name="expense_description" rows="5"
� cols="40"></textarea> <p />

<input type="submit" name="submit"
� value="Submit!" />

</form>';

Таким образом выпадающий список
закрывается, и в форму добавляются
еще два поля ввода. Убедитесь, что имя
кнопки submit написано так же (и с ис-
пользованием того же регистра), как
в условии главного ветвления.

13. Завершите сценарий:

}

?>

</body>

</html>

Выборка данных

MySQL и PHP156

14.Сохраните сценарий в файле с именем
add_expense.php, загрузите его на Web-
сервер и протестируйте в браузере
(рис. 6.5, 6.6).
Чтобы увидеть результат работы функ-
ции mysql_fetch_array() в цикле while,
просмотрите в браузере исходный текст
сгенерированной страницы (рис. 6.7).

На сайте www.dmcinsights.com/mysql есть
дополнительные примеры, не вошедшие
в книгу. Один из них содержит текст опре-
деляемой пользователем функции, которая
упрощает создание выпадающих списков
на основе табличных данных.

Функция mysql_fetch_row(), с которой вам,
возможно, приходилось встречаться, эквива-
лентна mysql_fetch_array($query_link,
MYSQL_NUM).

Функция mysql_fetch_assoc() эквива-
лентна mysql_fetch_array($query_link,

MYSQL_ ASSOC).

В PHP есть также функция mysql_fetch_
object() для извлечения результатов за-
проса. Она возвращает строку как объект.

Рис. 6.5. Сценарий представляет данные
из таблицы expense_categories
в виде выпадающего списка, откуда
пользователь выбирает категорию затрат

Рис. 6.6. Если не возникло ошибок,
то после добавления записи о затрате
выводится подтверждающее сообщение

Рис. 6.7. Просмотр HTML-кода страницы с рис. 6.5
показывает, как PHP сгенерировал
выпадающий список

157

Применение функции
mysql_insert_id()
Когда дело доходит до первичных и внеш-
них ключей, могут возникнуть некоторые
сложности. Ради поддержания целостно-
сти связи первичный ключ для одной таб-
лицы (например, expense_categories) сле-
дует создать до вставки соответствующей
записи в другую таблицу (expenses). В гла-
ве 5 вы уже видели, что в мониторе mysql
для получения только что созданного пер-
вичного ключа (автоинкрементного поля)
используется функция LAST_INSERT_ID().
В PHP ее аналогом служит функция mysql_
insert_id():

$id = mysql_insert_id();

При разработке приложения для работы
с реляционной базой данных часто прихо-
дится писать сценарии типа add_expense.
php, в которых первичный ключ из одной
таблицы (expense_categories) связывается
с внешним ключом из другой (expenses).
Однако, если при добавлении записи о за-
тратах указана еще не существующая кате-
гория затрат, новый первичный ключ (зна-
чение поля expense_category_id) необходи-
мо создать до использования его в качестве
внешнего (в новой записи о затратах). Ниже
будет показано, как действовать в таких си-
туациях.
Чтобы продемонстрировать применение
функции mysql_insert_id(), я модифици-
рую страницу, которая выводит и обра-
батывает форму для ввода информации
о затратах. Как и раньше, я создам выпада-
ющий список, содержащий названия всех
имеющиеся категорий затрат, но также пре-
доставлю пользователю возможность со-
здать новую категорию, не закрывая фор-
му. Вновь созданная категория будет добав-
лена в базу, а ее первичный ключ будет вы-
ступать в роли внешнего в таблице expenses.

Применение функции mysql_insert_id()

MySQL и PHP158

Применение функции mysql_insert_id()

1. Откройте в редакторе файл add_expense.
php (см. листинг 6.3).

2. В первой ветви условного оператора
(листинг 6.3, строка 23) измените за-
прос (см. листинг 6.4) на

$query = "INSERT INTO expenses
� VALUES (NULL, ";

Окончательный запрос аналогичен тому,
что вы видели в листинге 6.3, но напи-
сан с учетом возможности ввода новой
категории затрат. В этой строке начи-
нается построение запроса.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/2000/REC-xhtml1-20000126/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<title>Enter An Expense</title>

</head>

<body>

<?php

// ***** add_expense2.php *****

// ***** Листинг 6.4 *****

// Эта страница выводит форму для вставки записей в таблицу expenses

// и обрабатывает введенные в нее данные.

// Включить файл с данными о соединении с MySQL:

require_once ("../mysql_connect2.inc");

if (isset($HTTP_POST_VARS['submit'])) { // Если форма была отправлена, обработать ее.

// Проверить, заполнены ли обязательные поля:

if (isset($HTTP_POST_VARS['expense_category_id']) AND

 (strlen($HTTP_POST_VARS['expense_amount']) > 0) AND

 (strlen($HTTP_POST_VARS['expense_description']) > 0)) {

 // Начало запроса:

 $query = "INSERT INTO expenses VALUES (NULL, ";

 // Была ли введена новая категория?

 if (strlen($HTTP_POST_VARS['expense_category']) > 0) {

Листинг 6.4. В более развитой версии сценария add_expense2.php пользователь может либо выбрать
категорию затрат из списка, либо самостоятельно ввести ее название

159

Листинг 6.4. В более развитой версии сценария add_expense2.php пользователь может либо выбрать
категорию затрат из списка, либо самостоятельно ввести ее название (продолжение)

 // Создать второй запрос:

$query2 = "INSERT INTO expense_categories VALUES (NULL, '" .

 addslashes($HTTP_POST_VARS['expense_category']) . "')";

// Выполнить второй запрос и проверить результат:

if (mysql_query ($query2)) {

echo 'The expense category has been added!

 �
';
$query .= mysql_insert_id() . ", ";

} else {

echo 'The expense category was not entered into the table!

�
';

$problem = TRUE;

}

 } else { // Конец проверки ввода новой категории.

 $query .= "{$HTTP_POST_VARS['expense_category_id']}, ";

 }

 // Закончить построение запроса:

 $query .= "'" . addslashes($HTTP_POST_VARS['expense_amount']) .

 "', '" . addslashes($HTTP_POST_VARS['expense_description']) .

 "', NOW())";

 // Были обнаружены ошибки?

 if (!$problem) {

// Напечатать сообщение об успешном выполнении операции или ошибке:

if (mysql_query ($query)) {

echo 'The expense has been added!';

} else {

echo 'The expense was not entered into the table!

 � ';
}

 } else { // Если была ошибка:

echo 'The expense was not entered into

� the table because the expense_category could not be added!';

 }

} else { // Напечатать сообщение о том, что категория не задана:

 echo 'You missed a required field!';

}

Применение функции mysql_insert_id()

MySQL и PHP160

} else { // Если форма не была отправлена, вывести ее.

echo 'Enter an expense:

<form action="add_expense2.php" method="post">

Expense Category: <select name="expense_category_id">';

// Вывести категории затрат:

$query_result = mysql_query ('SELECT * FROM expense_categories

ORDER BY expense_category');

while ($row = mysql_fetch_array ($query_result, MYSQL_NUM)) {

echo "<option value=\"$row[0]\">$row[1]</option>\n";

}

mysql_free_result($query_result);

mysql_close();

// Закончить вывод формы:

echo '</select>

or

Enter a new expense category: <input type="text"

name="expense_category" size="30" maxlength="30" />

Expense Amount: <input type="text" name="expense_amount" size="10"

� maxlength="10"/><p />

Expense Description: <textarea name="expense_description" rows="5" cols="40">

� </textarea> <p />

<input type="submit" name="submit" value="Submit!" />

</form>';

} // Конец главного условного оператора.

?>

</body>

</html>

Листинг 6.4. В более развитой версии сценария add_expense2.php пользователь может либо выбрать
категорию затрат из списка, либо самостоятельно ввести ее название (окончание)

161

3. Добавьте новую категорию затрат, если
она введена:

if (strlen($HTTP_POST_VARS
� ['expense_category']) > 0) {

$query2 = "INSERT INTO
� expense_categories VALUES
� (NULL, '" . addslashes ($HTTP_
� POST_VARS['expense_category']) .
� "')";

if (mysql_query ($query2)) {
echo 'The
� expense category has been added!
�
';
$query .= mysql_insert_id() . ", ";

} else {

echo 'The
� expense category was not entered
� into the table!
';

$problem = TRUE;

}

} else {

$query .= "{$HTTP_POST_VARS
['expense_category_id']}, ";

}

Здесь применяется та же техника, что
в сценарии add_expense_category.php (лис-
тинг 6.2). Сначала проверяется, была ли
введена категория затрат. Если да, то
в таблицу expense_categories вставляется
новая запись, и с помощью функции mysql_
insert_id() вы получаете значение ее пер-
вичного ключа с целью его последующе-
го использования в главном запросе. Так-
же выводится сообщение об успешном
или неудачном выполнении запроса: The
expense has been added – «Запись о затрате
была добавлена»; The expense was not
entered into the table – «Запись о затрате
не была введена в таблицу».

Применение функции mysql_insert_id()

MySQL и PHP162

Если новая категория затрат не вводилась,
то в главный запрос будет включено зна-
чение поля формы expense_category_id,
соответствующее выбранной из списка
категории.

4. Завершите главный запрос:

$query .= "'" . addslashes($HTTP_
POST_VARS['expense_amount']) .
"', '" . addslashes($HTTP_POST_
VARS['expense_description']) .
"', NOW())";

5. Проверьте, были ли ранее ошибки,
и, если нет, выполните запрос:

if (!$problem) {

if (mysql_query ($query)) {

echo 'The
� expense has been added!
� ';

} else {

echo 'The
� expense was not entered into the
� table!';

}

} else {

echo 'The
� expense was not entered into the
� table because the expense_category
� could not be added!';

}

The expense has been added – «Запись
о затрате была добавлена».
The expense was not entered into the
table – «Запись о затрате не была введе-
на в таблицу».

163

The expense was not entered into the table
because the expense_category could not be
added – «Запись о затрате не была вве-
дена в таблицу, поскольку невозможно
добавить категорию затрат».
Переменная $problem, установленная на
этапе 3, равна TRUE, если сценарий не
смог добавить новую категорию затрат
(в таком случае не следует вставлять и
запись о затрате). В остальных отноше-
ниях эта часть сценария ничем не отли-
чается от того, что вы делали раньше.

6. Добавьте в форму поле ввода expense_
category:

Enter a new expense category:

<input type="text" name="expense_
� category" size="30"
� maxlength="30" />

Помимо добавления нового поля в фор-
му я внес в HTML-код еще одно измене-
ние – включил маркированный список,
чтобы пользователь четко видел две воз-
можности: выбрать существующую кате-
горию затрат или ввести новую.

7. Сохраните файл, загрузите его на Web-
сервер и протестируйте в браузере (рис.
6.8–6.11).
Я решил назвать этот файл add_expense2.
php, чтобы отличать его от предыдуще-
го. Поэтому соответствующим образом
изменено значение атрибута action
в тэге <form>.

Рис. 6.8. Форма стала более «дружественной»,
так как пользователю не нужно сначала создавать
категорию затрат, а потом уже вводить запись
о затрате

Рис. 6.9. Два сообщения показывают, что сценарий
успешно выполнил вставку обеих записей в базу

Применение функции mysql_insert_id()

MySQL и PHP164

Функцию mysql_insert_id() следует
вызывать сразу же после выполнения ко-
манды INSERT, прежде чем вы начнете
любой другой запрос.

Функция mysql_insert_id() возвращает
0, если в таблице, куда вставлялась запись,
нет автоинкрементных колонок.

Напомню, что числа в запросах SQL не сле-
дует заключать в кавычки. Поэтому значе-
ние поля expense_category_id включено
в запрос без кавычек. Однако значение поля
expense_amount все же закавычено, так как
его источник – поле формы, куда пользо-
ватель по ошибке может ввести нецифро-
вые символы.

Рис. 6.10. Новая категория затрат не введена...

Рис. 6.11. ...поэтому сценарий работает так же,
как предыдущий

165

Обработка ошибок
Обработка ошибок необходима в любом
сценарии, но особую важность она при-
обретает при работе с базами данных. Вот
наиболее распространенные ошибки:

невозможность установить соединение
с базой данных;
невозможность выбрать рабочую базу
данных;
сбой при выполнении запроса;
запрос не вернул результатов.

По мере накопления опыта вы поймете,
когда возникают такого рода ошибки, но
их немедленное обнаружение в сценарии
поможет вам существенно сократить вре-
мя отладки. Чтобы сценарий выдавал по-
лезную информацию об ошибках, приме-
няйте функции mysql_error() и mysql_
errno(). Первая из них возвращает словес-
ное описание ошибки, а вторая – ее число-
вой код.
Наряду с этими функциями в PHP есть
еще два средства, имеющих отношение
к обработке ошибок: символ @ и функция
die(). Если перед именем любой функции
находится символ @, то будут подавлены
все сообщения об ошибках и предупреж-
дения, выдаваемые ею. Функция же die()
немедленно завершает выполнение сце-
нария и посылает браузеру строку, пере-
данную ей в качестве аргумента. Вот как
эти механизмы обычно применяются:

$db_connection = mysql_connect
� (DB_HOST, DB_USER, DB_PASSWORD)
� or die(mysql_error());

$query_result = @mysql_query($query);

Можно порекомендовать применение die()
в тех случаях, когда успешное выполнение
той или иной операции (например, соеди-
нения с сервером и выбора базы данных)

Обработка ошибок

MySQL и PHP166

является необходимым условием дальней-
шей работы сценария. Символ @ стоит упо-
треблять тогда, когда функция может завер-
шиться с ошибкой, но из-за этого не обяза-
тельно прекращать работу сценария.

Порядок обработки ошибок

1. Откройте в редакторе файл mysql_ con-
nect.inc (листинг 6.1).

2. Измените код для установления соеди-
нения (строка 20), включив в него функ-
ции die() и mysql_error() – см. листинг
6.5:

$db_connection = mysql_connect
� (DB_HOST, DB_USER, DB_PASSWORD)
� or die ('Could not connect to
� MySQL: ' . mysql_error());

Could not connect to MySQL – «Не уда-
лось соединиться с MySQL».
Поскольку функции die() может быть
передана в качестве аргумента любая
строка, вы можете формулировать со-
общение об ошибке по своему усмот-
рению. Я просто воспользовался функ-
цией mysql_error(), но мог бы, напри-
мер, добавить HTML-разметку.

3. Измените код для выбора рабочей базы
данных, добавив функцию обработки
ошибок:

mysql_select_db (DB_NAME) or
� die ('Could not select the
� database: ' . mysql_error());

Could not select the database – «Не
удалось выбрать базу данных».

4. Сохраните файл и загрузите его на Web-
сервер.
Чтобы было проще ссылаться на новую
версию файла, я назвал его mysql_ con-
nect2.inc.

Листинг 6.5. В новую версию файла
mysql_connect.inc включены различные
механизмы обработки ошибок

<?php

// ***** mysql_connect.inc *****

// ***** Листинг 6.5 *****

// Автор: Larry E. Ullman

// MySQL: Visual QuickStart Guide

// Контактный адрес:

// mysql@DMCinsights.com

// Дата создания: 7 мая 2002 года

// Дата последней модификации:

// 7 мая 2002 года

// Файл содержит информацию о доступе

// к базе данных accounting.

// Здесь же устанавливается соединение

// с MySQL и выбирается база данных.

// Информация, относящаяся к конкретной

// базе данных:

DEFINE (DB_USER, "имя_пользователя");

DEFINE (DB_PASSWORD, "пароль");

DEFINE (DB_HOST, "localhost");

DEFINE (DB_NAME, "accounting");

// Установить соединение с MySQL:

$db_connection = mysql_connect (DB_HOST,

� DB_USER, DB_PASSWORD) or

 die ('Could not connect to MySQL:

 � ' . mysql_error());

// Выбрать базу данных:

mysql_select_db (DB_NAME) or

 die ('Could not select the database:

 � ' . mysql_error());

?>

167

5. Проверьте, к чему привела модифика-
ция, изменив значения констант DB_USER,
DB_PASSWORD, DB_HOST или DB_NAME на заве-
домо некорректные и попытавшись об-
ратиться к какой-либо странице (рис.
6.12–6.14).

В приложении 1 распространенные ошиб-
ки MySQL рассматриваются подробнее. Там
же приводятся типичные причины их воз-
никновения.

Быть может, лучший метод отладки PHP-
сценариев, обращающихся к серверу MySQL,
заключается в том, чтобы выполнять запро-
сы в мониторе mysql с целью контроля ре-
зультатов.

Рис. 6.12. Если бы ошибки не обрабатывались,
даже самая простая из них привела бы
к выдаче многочисленных сообщений
и возврату искаженной страницы

Рис. 6.13. При использовании конструкции or
die() выводится не столь пугающая и более
информативная страница

Рис. 6.14. Если выбор рабочей базы данных
не состоялся, пользователь увидит
простое сообщение об ошибке,
и выполнение сценария прервется

Обработка ошибок

MySQL и PHP168

Безопасность
В контексте PHP вопрос безопасности баз
данных сводится к следующему:

защита информации о доступе к базе;
контроль информации, записываемой
в базу.

Для решения первой проблемы следует
обезопасить сценарий, содержащий пара-
метры соединения. Выше в этой главе
я уже упоминал некоторые способы безо-
пасного хранения файла mysql_connect.inc.
Наилучший, хотя и не всегда реализуе-
мый на практике способ, – поместить
файл вне корневого каталога Web-доку-
ментов (рис. 6.1). Тогда браузер в прин-
ципе не сможет получить к нему доступ.
Вторую проблему можно решать по-раз-
ному. Во-первых, я уже объяснял, что сле-
дует использовать массив $HTTP_POST_VARS
(или $HTTP_GET_VARS, $_POST, $_GET), а не
глобальные переменные. Во-вторых, до-
пускается употребление регулярных вы-
ражений (этот механизм в книге не рас-
сматривается) для проверки правильнос-
ти данных, полученных от пользователей.
В-третьих, выше шла речь о применении
к полученным данным функции addsla-
shes(), которая экранирует недопустимые в
запросе символы (того же эффекта можно
добиться за счет механизма, описанного во
врезке «Волшебные кавычки»). И наконец,
начиная с версии PHP 4.0.3 предусмотрено
использование функции mysql_ es-

cape_string():

$data = mysql_escape_string($data);

Она работает аналогично addslashes() –
и должна применяться ко всем текстовым
полям формы, – но в большей степени
ориентирована на базы данных.

Волшебные кавычки

Механизм «волшебных кавычек» (воз-
можность автоматически экраниро-
вать некоторые символы) многократ-
но изменялся в ходе эволюции PHP.
Это удобное средство для обработки
символов одиночных и двойных ка-
вычек в данных, полученных из HTML-
формы. Но для поощрения «сознатель-
ного» программирования в последних
версиях PHP этот механизм по умолча-
нию отключен, так что вы должны са-
мостоятельно вызывать одну из функ-
ций:

addslashes()

или
mysql_escape_ string()

Выяснить, какую тактику применять,
вы можете, запустив любой из выше-
описанных сценариев и введя в тек-
стовое поле строку, содержащую сим-
вол одиночной кавычки. Если при вы-
полнении запроса возникает ошибка,
то механизм «волшебных кавычек»
отключен, и экранировать эти знаки
придется своими силами. Если же
в данных появляются повторяющие-
ся символы обратной косой черты,
это значит, что и добавление «волшеб-
ных кавычек» обеспечено, и функция
addslashes() / mysql_escape_string() вы-
звана. Следовательно, от чего-то одного
нужно отказаться.

169

Чтобы продемонстрировать действие этой
функции, равно как и еще одного приема,
я написал сценарий, позволяющий пользо-
вателю редактировать запись о затратах.

Применение функции mysql_escape_string()

1. Создайте в текстовом редакторе новый
PHP-документ, начав его со стандартно-
го HTML-пролога (листинг 6.6). В заго-
ловке страницы значится Edit An Ex-
pense (Редактировать данные о затрате):

<!DOCTYPE html PUBLIC "-//W3C//DTD
� XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/2000/

� REC-xhtml1-20000126/DTD/
� xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/
� 1999/xhtml">

<head>

<title>Edit An Expense</title>

</head>

<body>

Листинг 6.6. Последний в этой главе сценарий реализует улучшенный контроль безопасности
за счет применения функции mysql_escape_string(). Кроме того, здесь демонстрируется
выполнение команды UPDATE

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/2000/REC-xhtml1-20000126/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<title>Edit An Expense</title>

</head>

<body>

<?php

// ***** edit_expense.php *****

Безопасность

MySQL и PHP170

Листинг 6.6. Последний в этой главе сценарий реализует улучшенный контроль безопасности
за счет применения функции mysql_escape_string(). Кроме того, здесь демонстрируется
выполнение команды UPDATE (продолжение)

// ***** Листинг 6.6 *****

// Эта страница выводит и обрабатывает форму для редактирования записей

// в таблице expenses. Входным параметром для нее служит идентификатор

// затраты eid (expense_id).

// Включить файл с данными о соединении с MySQL:

require_once ("../mysql_connect.inc");

if (isset($HTTP_POST_VARS['submit'])) { // Если форма была отправлена,

 // обработать ее.

 // Проверить, заполнены ли обязательные поля:

 if ((isset($HTTP_POST_VARS['expense_category_id']) OR

 (strlen($HTTP_POST_VARS['expense_category']) > 0)) AND

 (strlen($HTTP_POST_VARS['expense_amount']) > 0) AND

 (strlen($HTTP_POST_VARS['expense_description']) > 0)) {

 // Начало запроса:

 $query = "UPDATE expenses SET ";

 // Была ли введена новая категория?

 if (strlen($HTTP_POST_VARS['expense_category']) > 0) {

 // Создать второй запрос:

 $query2 = "INSERT INTO expense_categories VALUES (NULL,

 ' {$HTTP_POST_VARS['expense_category']}')";

 // Выполнить второй запрос и проверить результат:

 if (mysql_query ($query2)) {

 echo ' The expense category has
 � been added!
';
 $query .= "expense_category_id=" . mysql_insert_id() . ", ";

 } else {

 echo 'The expense category was not

 entered into the table!
';

 $problem = TRUE;

 }

 } else { // Конец проверки ввода новой категории.

 $query .= "expense_category_id={$HTTP_POST_VARS ['expense_category_id']}, ";

 }

 // Закончить построение запроса:

171

2. Начните раздел PHP-кода и включите
файл, который обеспечивает соедине-
ние с MySQL:

<?php

require_once ("../mysql_connect.inc");

Если вы переименовали файл mysql_
connect.inc из предыдущего раздела, ука-
жите его текущее имя.

Листинг 6.6. Последний в этой главе сценарий реализует улучшенный контроль безопасности
за счет применения функции mysql_escape_string(). Кроме того, здесь демонстрируется
выполнение команды UPDATE (продолжение)

 $query .= "expense_amount='" .

 � mysql_escape_string($HTTP_POST_VARS['expense_amount']) .

 � "', expense_description='" .
 � mysql_escape_string($HTTP_POST_VARS['expense_description']) .

 � "', expense_date='" .
 � mysql_escape_string($HTTP_POST_VARS['expense_date']) .

 � "' WHERE expense_id={$HTTP_POST_VARS['expense_id']}'";

 // Были обнаружены ошибки?

 if (!$problem) {

 // Выполнить запрос:

 $query_result = mysql_query ($query);

 // Напечатать сообщение об успешном завершении операции

 // или ошибке:

 if (mysql_affected_rows() == 1) {

echo 'The expense has been edited!';

 } else {

echo 'The expense was not edited!';

 }

 } else { // Если была ошибка:

echo 'The expense was not edited because

� the expense category could not be added!';

 }

 } else { // Напечатать сообщение о том, что категория не задана:

Безопасность

3. Создайте условный оператор, опреде-
ляющий, надо ли выводить или обра-
батывать форму:

if (isset($HTTP_POST_
� VARS['submit'])) {

MySQL и PHP172

 echo 'You missed a required field!';

 }

} else { // Если форма не была отправлена, вывести ее.

 // Создать запрос:

 $query = "SELECT * FROM expenses WHERE expense_id = {$HTTP_GET_VARS['eid']} LIMIT 1";

 // Выполнить запрос:

 $query_result = @mysql_query ($query);

 // Извлечь и напечатать результаты:

 $row = @mysql_fetch_array ($query_result, MYSQL_ASSOC);

 @mysql_free_result($query_result);

 echo 'Edit this expense:

 <form action="edit_expense.php" method="post">

 Expense Category: <select name="expense_category_id">';

 // Вывести категории затрат:

 $query_result2 = mysql_query ('SELECT * FROM expense_categories ORDER BY

 � expense_category');
 while ($row2 = mysql_fetch_array ($query_result2, MYSQL_NUM)) {

 if ($row2[0] == $row['expense_category_id']) {

 echo "<option value=\"$row2[0]\" selected=\"selected\">$row2[1]</option>\n";

 } else {

 echo "<option value=\"$row2[0]\">$row2[1]</option>\n";

 }

 }

 @mysql_free_result($query_result2);

 mysql_close();

 // Закончить вывод формы:

 echo '</select>

 or

 Enter a new expense category: <input type="text"

 name="expense_category" size="30" maxlength="30" />

 Expense Amount: <input type="text" name="expense_amount" value="' .

 � $row['expense_amount'] . '" size="10" maxlength="10" /><p />

 Expense Date: <input type="text" name="expense_date" value="' .

 � $row['expense_date'] . '" size="10" maxlength="10" /><p />

Листинг 6.6. Последний в этой главе сценарий реализует улучшенный контроль безопасности
за счет применения функции mysql_escape_string(). Кроме того, здесь демонстрируется
выполнение команды UPDATE (продолжение)

173

 Expense Description: <textarea name="expense_description" rows="5" cols="40">' .

 � stripslashes($row['expense_description']) . '</textarea><p />

 <input type="submit" name="submit" value="Submit!" />

 <input type="hidden" name="expense_id" value="' . $HTTP_GET_VARS['eid'] . '" />

 </form>';

} // Конец главного условного оператора.

?>

</body>

</html>

Листинг 6.6. Последний в этой главе сценарий реализует улучшенный контроль безопасности
за счет применения функции mysql_escape_string(). Кроме того, здесь демонстрируется
выполнение команды UPDATE (окончание)

4. Проверьте, заполнены ли обязательные
поля:

if ((isset($HTTP_POST_VARS
� ['expense_category_id']) OR
� (strlen($HTTP_POST_VARS['expense_
� category']) > 0)) AND
� (strlen($HTTP_POST_VARS['expense_
� amount']) > 0) AND
� (strlen($HTTP_POST_ VARS['expense_
� description']) > 0)) {

Этот код аналогичен написанному
в сценарии add_expense.php за одним
исключением: здесь требуется выпол-
нение хотя бы одного из условий isset
($HTTP_POST_VARS['expense_category_

id']) или strlen($HTTP_POST_VARS ['ex-
pense_category']) > 0). Если категория
затрат выбрана из списка, то истинно
первое условие, а если введена новая –
то второе.

5. Начните формирование запроса:

$query = "UPDATE expenses SET ";

Безопасность

MySQL и PHP174

Поскольку форма предназначена для ре-
дактирования существующей записи, то
запрос начинается с команды UPDATE,
а не INSERT. Остаток этой части сцена-
рия (и вся следующая) не содержат ни-
чего нового.

6. Проверьте, введено ли название новой
категории затрат, и действуйте по си-
туации:

if (strlen($HTTP_POST_VARS
� ['expense_category']) > 0) {

$query2 = "INSERT INTO expense_
� categories VALUES (NULL,
� '{$HTTP_POST_VARS['expense_
� category']}')";

if (mysql_query ($query2)) {

echo 'The
� expense category has been
� added!
';

$query .= "expense_category_id=" .
� mysql_insert_id() . ", ";

} else {
echo 'The
� expense category was not
� entered into the table!
�
';

$problem = TRUE;

}

} else { // Конец проверки ввода
� новой категории.

$query .= "expense_category_id=
� {$HTTP_POST_VARS
� ['expense_category_id']}, ";
}

The expense category has been added! –
«Категория затрат была добавлена».
The expense category was not entered

into the table! – «Категория затрат не
была введена в таблицу».

175

Одно из отличий от предыдущего сце-
нария заключается в том, что запись
предложения вставки – INSERT INTO имя_
таблицы VALUES('значение1', 'значение2'
...), а предложения обновления – UPDATE
имя_таблицы SET имя_колонки1=

'значение1', имя_колонки2='значение2', ... В
этом фрагменте изменяется значение
поля expense_category_id в таблице ex-
penses.

7. Завершите формирование запроса:

$query .= "expense_amount='" .
� mysql_escape_string($HTTP_POST_
� VARS['expense_amount']) .
� "', expense_description='" .
� mysql_escape_string($HTTP_POST_VARS
� ['expense_description']) .
� "', expense_date='" .
� mysql_escape_string($HTTP_POST_VARS
� ['expense_date']) . "' WHERE
� expense_id={$HTTP_POST_VARS
� ['expense_id']}";

8. Выполните запрос:

if (!$problem) {

$query_result = mysql_query
� ($query);

if (mysql_affected_rows() == 1) {

echo 'The
� expense has been edited!
� ';

} else {

echo 'The
� expense was not edited!
� ';

}

The expense has been edited! – «Запись о
затрате была отредактирована». The
expense was not edited! – «Запись о за-
трате не была отредактирована».

Безопасность

MySQL и PHP176

В этом примере я решил воспользовать-
ся функцией mysql_affected_rows(),
которая возвращает число строк, об-
новленных предыдущим запросом. Эта
функция полезна при выполнении за-
просов типа UPDATE, ALTER, DELETE и INSERT.

9. Завершите условные операторы:

} else {
echo 'The
� expense was not edited because
� the expense category could not
� be added!';
}

} else {
echo 'You
� missed a required field!
� ';

}

The expense was not entered into the table
because the expense_category could not be
added – «Запись о затрате не была вве-
дена в таблицу, поскольку невозможно
добавить категорию затрат».
You missed a required field – «Вы пропу-
стили поле, обязательное для заполне-
ния».
На этом заканчивается часть сценария,
посвященная обработке формы и об-
новлению базы данных. В оставшейся
части выводится форма для редакти-
рования записи о затратах.

10.Выберите запись из базы:

$query = "SELECT * FROM expenses
� WHERE expense_id =
� {$HTTP_GET_VARS['eid']} LIMIT 1";
$query_result = @mysql_query
� ($query);
$row = @mysql_fetch_array
� ($query_result, MYSQL_ASSOC);

@mysql_free_result($query_result);

177

Для того чтобы отредактировать запись,
надо сначала выбрать ее из базы дан-
ных. Лучше всего обратиться к ней по
первичному ключу (expense_id). В дан-
ном сценарии предполагается, что зна-
чение ключа передается в поле формы
eid. Поскольку я извлекаю только од-
ну запись, нет необходимости в цик-
ле while. По завершении запроса ассо-
циативный массив $row будет содер-
жать всю информацию из записи о за-
тратах.

11.Выведите HTML-форму:

echo 'Edit this expense:

<form action="edit_expense.php"
� method="post">

Expense Category: <select name=
� "expense_category_id">';

Edit this expense – «Редактировать за-
пись о затрате».

12.Создайте выпадающий список:

$query_result2 = mysql_query
� ('SELECT * FROM expense_categories
� ORDER BY expense_category');
while ($row2 = mysql_fetch_array
� ($query_result2, MYSQL_NUM)) {
if ($row2[0] == $row['expense_
� category_id']) {
echo "<option value=\"$row2[0]\"
� selected=\"selected\">$row2[1]</
� option>\n";
} else {
echo "<option value=\"$row2[0]\"
� >$row2[1]</option>\n";
}

}

@mysql_free_result($query_result2);

mysql_close();

Безопасность

MySQL и PHP178

Этот фрагмент кода несколько слож-
нее, чем в сценарии add_expense.php,
так как требуется выделить в списке
категорию, указанную в записи о затра-
тах. Для этого подойдет обычный услов-
ный оператор, который добавляет ат-
рибут selected в тэг <option>.

13. Завершите HTML-форму:

echo '</select>

or

Enter a new expense category:
� <input type="text" name=
� "expense_category" size="30"
� maxlength="30" />

Expense Amount: <input type="text"
� name="expense_amount" value="' .
� $row['expense_amount'] . '"
� size="10" maxlength="10" /><p />

Expense Date: <input type="text"
� name="expense_date" value="' .
� $row['expense_date'] . '" size=
� "10" maxlength="10" /><p />

Expense Description: <textarea
� name="expense_description"
� rows="5" cols="40">' .
� stripslashes($row['expense_
� description']) . '</textarea><p />

<input type="submit" name="submit"
� value="Submit!" />

<input type="hidden" name=
� "expense_id" value="' .

$HTTP_GET_VARS['eid'] . '" />

</form>';

}

Enter a new expense category – «Добавить
новую категорию затрат».

179

Для полей ввода из HTML-формы мож-
но указать начальное значение в атри-
буте value тэга <input>. Начальное значе-
ние областей ввода указывается между
тэгами <textarea> и </textarea>. Первич-
ный ключ записи следует сохранить в
скрытом поле, чтобы сценарий «знал»,
какую именно запись обновлять.

14. Завершите сценарий и html-страницу:

?>

</body>

</html>

15. Сохраните сценарий в файле edit_ex-
pense.php, загрузите его на Web-сервер
и протестируйте в браузере (рис. 6.15–
6.17).

Для тестирования сценария необходимо
дописать в конец URL строку вида ?eid=x,
где x – значение поля expense_id в записи
таблицы expenses, подлежащей редакти-
рованию.

Функция mysql_real_escape_string() про-
изводит экранирование с учетом языка –
это еще одно преимущество по сравнению
с addslashes().

То, что вы узнали в последних двух разде-
лах, можно применить и к сценариям, на-
писанным ранее, дабы улучшить контроль
данных и обработку ошибок.

С сайта книги вы можете загрузить сце-
нарий browse_expenses.php, позволяю-
щий просмотреть все записи о затратах и
вызвать сценарий edit_expense.php для
редактирования любой из них.

Рис. 6.15. Первоначально в записи не была задана
дата. Теперь это упущение можно исправить
с помощью формы редактирования

Рис. 6.16. Как и во всех сценариях,
представленных в этой главе,
об успешном завершении работы
информирует стандартное сообщение

Рис. 6.17. Сценарий edit_expense.php,
как и add_expense.php, позволяет сразу ввести
новую категорию затрат

Безопасность

Задолго до того как язык PHP стал играть
ведущую роль в разработке Web-прило-
жений, программисты уже использовали
язык Perl (Practical Extraction and Reporting
Language – язык построения и печати от-
четов) как для решения административ-
ных задач, так и для Web-программирова-
ния. Perl разработал Ларри Уолл (Larry
Wall) примерно 20 лет назад, и с тех пор
этот язык приобрел большую популяр-
ность как средство написания CGI-сцена-
риев (Common Gateway Interface – единый
шлюзовой интерфейс) для динамических
HTML-страниц.
Материал этой главы рассчитан на различ-
ные категории читателей. Первая из них –
пользователи, владеющие языком Perl, но
до сих пор не имевшие дела с MySQL. Вто-
рая – пользователи Perl, уже работавшие

MySQL и Perl 77777
с MySQL и желающие углубить свои зна-
ния. Наконец, данную главу могут изучить
разработчики, не владеющие Perl, но стре-
мящиеся узнать, как можно организовать
взаимодействие MySQL и Perl (особенно
если сравнить этот язык с PHP или Java).
Perl работает практически в любой опера-
ционной системе, включая UNIX, Windows
и Macintosh. Хотя на Perl можно писать
CGI-сценарии, все примеры из этой главы –
обычные программы, не предназначенные
для исполнения Web-сервером. Я покажу,
как инсталлировать дополнительные мо-
дули Perl для поддержки MySQL, предпо-
лагая, что на вашем компьютере установ-
лена версия не ниже 5.004.

181

Установка Perl
с поддержкой MySQL
на платформу Windows
Хотя изначально язык Perl создавался без
учета Windows, программирование в этой
среде на Perl не вызывает никаких труднос-
тей благодаря продукту ActivePerl, кото-
рый бесплатно распространяется компани-
ей ActiveState на сайте www.activestate.com
(рис. 7.1). ActivePerl – это полнофункцио-
нальный дистрибутив Perl, который легко
устанавливается на любую платформу Win-
dows.
Помимо Perl для взаимодействия с MySQL
вам понадобятся модули DBI и DBD. В со-
став дистрибутива ActivePerl входит ме-
неджер пакетов программ (Programmer’s
Package Manager – PPM), который упроща-
ет задачу установки модулей из архива ре-
сурсов, относящихся к Perl (Comprehensive
Perl Archive Network – CPAN). Единствен-
ное требование для инсталляции всех ни-
жеописываемых продуктов – наличие со-
единения с Internet.

Рис. 7.1. Добрые люди из компании ActiveState
(www.activestate.com) поддерживают ActivePerl –
наиболее распространенный дистрибутив Perl
для Windows

Установка Perl с поддержкой MySQL на платформу Windows

MySQL и Perl182

Порядок установки Perl с поддержкой MySQL
на платформу Windows

1. Загрузите последнюю версию ActivePerl
с сайта www.activestate.com.
При установке ActivePerl на Windows
2000 или XP нужно загрузить только
пакет для инсталлятора Windows In-
staller (файл с расширением .msi). Что
касается других ОС, мастер загрузки
перечислит относящиеся к ним требо-
вания. На момент написания этой кни-
ги последней была версия ActivePerl 5.6.1.

2. Запустите загруженную программу,
дважды щелкнув по ее иконке мышью
(рис. 7.2).
Программа установки предложит вы-
полнить несколько шагов, подсказывая
в некоторых местах, что делать дальше.
Если не хотите лишней головной боли,
то лучше всего согласитесь с настройка-
ми по умолчанию.
На этом инсталляция ActivePerl в ва-
шей системе завершена. Теперь оста-
лось установить модули для работы
с базой данных.

3. Запустите сеанс DOS.
Это можно сделать разными способа-
ми – в частности, щелкнуть по меню
Start (Пуск), выбрать пункт Run (Вы-
полнить) и ввести строку cmd в появив-
шейся форме, после чего нажать кла-
вишу Enter (Return).

4. Проверьте, успешно ли был установ-
лен Perl, для чего введите команду

perl -v

и нажмите Enter (Return) – рис. 7.3.
Вашему вниманию будут представлены
версия Perl и ряд других сведений.

Рис. 7.2. Мастер установки ActivePerl будет
направлять вас в процессе установки Perl

Рис. 7.3. Если компонент ActivePerl был
установлен нормально, после ввода команды
perl -v
вы должны увидеть такое сообщение

183

5. В ответ на приглашение системы введи-
те команду ppm (рис. 7.4).
Эта команда запускает менеджер паке-
тов, входящий в состав ActivePerl. Вы
должны увидеть приглашение PPM>.

6. Установите модуль DBI (рис. 7.5):

install DBI

Получив подтверждение команды ин-
сталлировать пакет, PPM загрузит и уста-
новит все необходимые файлы.

7. Установите модуль для работы с MySQL
(рис. 7.6):

install DBD-MySQL

После инсталляции пакета DBI необхо-
димо установить модули для конкрет-
ных баз данных; DBD-MySQL – один
из них. В Perl-сценариях для соедине-
ния с базой данных используется ком-
бинация модулей DBI и DBD.

8. Выйдите из PPM, введя команду quit
и нажав клавишу Enter (Return).

Имеются также версии ActivePerl для опера-
ционных систем Linux и Solaris, хотя чаще
всего этот продукт используется именно на
платформах Windows.

Если вам нужна дополнительная информа-
ция о Perl и CPAN, посетите соответственно
сайты www.perl.com и www.cpan.org.

Если вы намереваетесь писать на Perl CGI-
сценарии, выполните в PPM команду
install CGI1.

Находясь в PPM, вы можете узнать, какие
модули установлены в вашей системе: для
этого достаточно выполнить команду
query (после действий, описанных в п. 4).

Рис. 7.4. Менеджер пакетов PPM упрощает
установку дополнительных модулей Perl

Рис. 7.5. Пользуясь PPM, установите сначала
модуль DBI, реализующий общую инфраструктуру
для доступа к базам данных

Рис. 7.6. Чтобы из Perl-сценария можно было
обращаться к базе данных MySQL, необходимо
установить модуль DBD-MySQL

1 Модуль CGI.pm уже входит в состав дистрибути-
ва ActivePerl, поэтому устанавливать его нет необ-
ходимости. – Прим. переводчика.

Установка Perl с поддержкой MySQL на платформу Windows

MySQL и Perl184

Установка Perl
с поддержкой MySQL
на платформы UNIX
и Mac OS X
Подобно PHP, язык Perl уже предустанов-
лен в большинстве UNIX-подобных сис-
тем, включая Mac OS X. Кроме Perl для
доступа к MySQL понадобится несколько
дополнительных модулей, в первую оче-
редь DBI и DBD-MySQL. Текущие версии
этих модулей, а также модуля Data-Dumper
можно найти на странице www.mysql.com/
downloads/api-dbi.html.
Есть два варианта установки:

воспользоваться CPAN;
собрать и установить модули самосто-
ятельно.

Первый способ гораздо проще и хорошо
знаком всем пользователям Perl. Поэтому
ниже я покажу, как собирать и инсталли-
ровать модули вручную. Все инструкции
предполагают, что на вашем компьютере
установлены клиентские библиотеки My-
SQL и, конечно же, сам Perl.

Порядок установки Perl с поддержкой MySQL

1. Войдите в систему как пользователь root:

su root

Для выполнения нижеописанных дей-
ствий требуются полномочия админи-
стратора.

2. Загрузите с вышеупомянутой страни-
цы три необходимых модуля: Data-
Dumper, DBI и Msql-Mysql.
На сайте MySQL находятся последние
версии файлов, которые также можно
загрузить с сайта www.cpan.org.

Perl на платформе Mac OS X

Perl, как и PHP, входит в комплектацию
Mac OS X и не требует предваритель-
ной активации. Поскольку для само-
стоятельного построения и установки
модулей требуются определенный
опыт и дополнительные инструменты,
находящиеся на диске Mac OS X De-
veloper’s CD-ROM, я рекомендую на-
чинающим программистам на этой
платформе взять уже собранные вер-
сии из архива CPAN.
Архив CPAN создавался как упорядо-
ченная система для решения опреде-
ленного вида задач. В числе прочего
CPAN содержит средства установки
требуемых вам модулей (иными сло-
вами, способен обновляться).
Для доступа к CPAN запустите прило-
жение Terminal и введите следующую
команду:
perl -MCPAN -e shell

При первом заходе на CPAN вам при-
дется ответить на несколько вопросов,
большинство которых касается уста-
новок по умолчанию. Открыв CPAN,
установите несколько пакетов, в том
числе Bundle::libnet, DBI и DBD::mysql.
Для инсталляции любого пакета набе-
рите команду install имя_пакета.

185

3. Переместите загруженные файлы в под-
ходящий каталог (рис. 7.7).
Можете либо воспользоваться коман-
дой mv, либо в графическом файловом
менеджере перетащить файлы в вы-
бранный каталог (зависящий от того,
как установлен язык Perl на вашей ма-
шине). Я отвел для этой цели папку
/Library/Perl/darwin.

4. Распакуйте все три файла (рис. 7.8):

tar zxf Data-Dumper-2.101.tar.gz
tar zxf DBI-1.18.tar.gz
tar zxf Msql-Mysql-modules-
� 1.2216.tar.gz

Команда tar развернет каждый файл
в отдельный каталог. При необходимос-
ти измените имена сжатых файлов,
если вы загрузили другие версии.

5. Войдите в каталог Data-Dumper:

cd Data-Dumper-2.101

6. Выполните сценарий Makefile.pl (см.
рис. 7.9):

perl Makefile.pl
make

Для сборки любого стандартного моду-
ля нужно сначала выполнить сценарий
Makefile.pl, а затем запустить команду
make.

7. Выполните команды тестирования
и установки модуля (рис. 7.10):

make test
make install

Внимательно следите за ходом выполне-
ния команды make test. Если при тести-
ровании не выявлено никаких ошибок
или обнаружены только несущест-
венные, вы можете переходить к уста-
новке модуля. В противном случае

Рис. 7.7. Установка дополнительных модулей
в стандартный каталог Perl (он может зависеть
от вашей операционной системы)

Рис. 7.8. Прежде чем начинать сборку модуля,
нужно развернуть дистрибутив
с помощью команды tar

Рис. 7.9. Первые два этапа сборки любого
модуля – выполнение сценария Makefile.pl
и команды make

Рис. 7.10. Если команда make test завершилась
успешно, можно запускать make install

Установка Perl с поддержкой MySQL на платформы UNIX и Mac OS X

MySQL и Perl186

сообщения об ошибках должны под-
сказать вам, что необходимо изменить.
Начинающему пользователю следует
иметь в виду, что тесты разрабатывались
для разных платформ, поэтому некото-
рые из них могут завершаться с ошиб-
кой при выполнении в системе, на кото-
рую не рассчитаны. Это нормально и не
является причиной для паники.

8. Повторите процедуру для установки
модуля DBI.
Успешно собрав модуль Data-Dumper,
выполните действия, описанные в пп.
5–7, для инсталляции DBI.

9. Еще раз повторите те же операции для
установки модуля Msql-Mysql (рис. 7.11).
Обратите внимание, что сценарий Make-
file.pl для этого модуля более сложен –
он требует ответа на несколько вопро-
сов, в том числе:
– какой драйвер устанавливать (для

mSQL, MySQL или оба);
– где находятся библиотеки MySQL

(или mSQL);
– каково имя тестовой базы данных;
– каковы имя хоста, имя и пароль поль-

зователя.
Сценарий предлагает варианты по умол-
чанию для большинства вопросов, но
вы должны быть уверены в правильно-
сти своих ответов, особенно если уста-
новка MySQL производится нестандарт-
ным образом. В самом конце сценарий
попытается установить соединение с ба-
зой данных, чтобы проверить возмож-
ность доступа из Perl к MySQL.

Рис. 7.11. Сценарием Makefile.pl, входящим
в состав дистрибутива Msql-Mysql, предусмотрен
ряд вопросов, касающихся конфигурации

Чтобы проверить, не включена ли уже в
вашу установку Perl поддержка MySQL, на-
берите команду perldoc DBD::mysql.

В поставку Red Hat Linux уже включен мо-
дуль DBI для Perl. Установить драйвер для
MySQL можно из RPM-пакета или из CPAN.

На сайте MySQL имеется список рассылки,
специально посвященный модулю Msql-
Mysql. Если у вас возникнут проблемы, мо-
жете поискать решение там. Но, прежде чем
отправлять новое сообщение, познакомьтесь
с архивами.

187

Тестирование Perl и MySQL
Прежде чем подробно объяснять, как уста-
навливается соединение с MySQL из Perl-
сценария, я хочу предложить вам одно не-
большое упражнение. Рассматриваемый
ниже сценарий иллюстрирует мой стиль
написания программ на Perl в этой главе.
Кроме того, с его помощью мы проверим,
что поддержка MySQL установлена.
Хотя эту главу ни в коей мере нельзя счи-
тать заменой полноценному учебнику по
языку Perl, я все же вкратце расскажу об
основных частях простого Perl-сценария.
Даже программисты, ранее работавшие
на других языках (к примеру, PHP), смогут,
следуя этим инструкциям, писать не слиш-
ком сложные программы на Perl. Кроме
того, в следующих разделах предполага-
ется, что вы владеете нижеприведенной
информацией, и потому она не будет ком-
ментироваться повторно.

Написание простого Perl-сценария

1. Откройте в текстовом редакторе новый
документ (листинг 7.1).
Поскольку Perl-сценарии – это обыч-
ные текстовые файлы, выбор редакто-
ра не имеет значения.

2. Включите строку, начинающуюся с сим-
волов #! (для пакета ActivePerl на плат-
форме Windows это лишнее):

#!/usr/bin/perl

Эта строка говорит операционной систе-
ме, что для интерпретации файла нужен
язык Perl. После символов #! должен
быть указан полный путь к интерпрета-
тору perl на вашем компьютере. Имей-
те в виду, что помимо каталога
/usr/bin Perl часто устанавливается в ка-
талог /usr/local/bin. При использовании
пакета ActivePerl на платформе Windows
эту строку можно вообще опустить.

Листинг 7.1. Этот простой Perl-сценарий проверяет
наличие драйвера MySQL

#!/usr/bin/perl

Листинг 7.1, 'test.pl'

Включить используемые модули.

use strict;

use DBI;

Создать массив @drivers.

my @drivers = DBI->available_drivers();

Напечатать имя каждого драйвера.

foreach (@drivers) {

 print $_ . "\n";

}

Тестирование Perl и MySQL

MySQL и Perl188

3. Задайте режим строгой проверки:

use strict;

Команда use strict включает режим
строгой проверки, который почти не
замедляет работу сценария. Я буду ис-
пользовать ее всюду в этой главе. Ос-
новное последствие этой директивы –
необходимость объявлять переменные
до их использования (см. п. 5).
Для программистов, незнакомых с Perl,
отмечу, что в этом языке каждая стро-
ка, кроме строки #! и управляющих
конструкций, должна завершаться точ-
кой с запятой. Однострочные коммен-
тарии начинаются со знака # и продол-
жаются до конца строки.

4. Включите модуль DBI:

use DBI;

Эта строка будет присутствовать во всех
сценариях из данной главы, поскольку
сообщает сценарию о необходимости
включить модуль DBI, необходимый
для взаимодействия с MySQL.

5. Объявите и инициализируйте перемен-
ную:

my @drivers = DBI->available_drivers();

Массив @drivers будет содержать все
драйверы баз данных в этой установке
Perl, о которых «знает» модуль DBI. Их
находит метод available_drivers()
класса DBI. Слово my необходимо в ре-
жиме strict, иначе компилятор выдаст
ошибку.

6. Переберите весь массив и напечатайте
имя каждого драйвера:

foreach (@drivers) {
 print $_ . "\n";
}

189

Эта конструкция обходит все элементы
массива @drivers. Внутри цикла на те-
кущий элемент ссылается специальная
переменная $_. Оператор print распеча-
тывает ее значение, а затем выводит
символ перехода на новую строку (\n).

7. Сохраните сценарий в файле test.pl.
В этой главе я буду использовать для
Perl-сценариев расширение .pl.

8. Измените права доступа к файлу из
командной строки (рис. 7.12):

chmod u+x test.pl;

В операционных системах UNIX и Mac
OS X необходимо сообщить ОС о том,
что файл должен быть исполняемым:
введя команду chmod, вы добавляете пра-
во на исполнение (x) для всех пользова-
телей (u). В системе Windows этого не
требуется.

9. Запустите файл на исполнение.
В Windows:
– введите команду perl C:\путь\к\

test.pl в сеансе DOS и нажмите кла-
вишу Enter (Return)
или

– дважды щелкните по названию фай-
ла test.pl в программе Windows Ex-
plorer (впрочем, этот метод я не реко-
мендую).

В системах UNIX и Mac OS X:
– введите команду ./test.pl и нажми-

те клавишу Enter (Return) – рис. 7.13
или

– введите команду perl /путь/к/test.pl
и нажмите Enter (Return).

Рис. 7.12. Чтобы сделать файл исполняемым
(то есть для его запуска достаточно будет ввести
команду ./имя_файла.pl), нужно изменить
права доступа к нему

Рис. 7.13. После запуска сценария на экране
появляется перечень драйверов DBI, которые
теперь можно использовать при работе с Perl

Тестирование Perl и MySQL

MySQL и Perl190

Имейте в виду: чтобы первый способ
сработал, сценарий должен начинаться
со строки #!, а файл – быть исполняе-
мым. Для второго способа не требует-
ся ни то, ни другое.
Каким бы образом вы ни запустили
сценарий, в списке имен драйверов
должна присутствовать строка mysql
(рис. 7.13). Она подтверждает возмож-
ность подключиться к MySQL из Perl.

Чтобы проверить правильность синтакси-
са, не выполняя сценарий, введите коман-
ду perl -c /путь/к/файлу.pl.

Если вы собираетесь использовать Perl для
разработки Web-приложений, то знайте, что
для сервера Apache есть модуль mod_perl1.
Если вы будете работать именно с ним, то
следует включать модуль Apache::DBI, а не
просто DBI. Также вам понадобится модуль
CGI.

1 Использовать модуль mod-perl для разработки
Web-приложений на Perl не обязательно, хотя он
намного увеличивает скорость выполнения сцена-
рия за счет того, что сохраняет в памяти его от-
компилированное представление, а не компили-
рует при каждом обращении заново (и это не
единственное его достоинство). Того же эффекта
можно добиться, используя модуль Apache mod-
fcgi. – Прим. переводчика.

191

Соединение с MySQL
Когда вы убедитесь, что сможете заста-
вить Perl-сценарий работать и что модуль
DBI для MySQL установлен, самое время
приступить к написанию сценариев для
доступа к базе данных. Прежде всего не-
обходимо установить соединение с серве-
ром:

$dbh = DBI->connect('DBI: mysql:
� имя_базы_данных:имя_хоста',
� 'имя_пользователя', 'пароль',
� {RaiseError => 1});

Первый аргумент – DBI:mysql:имя_базы_
данных:имя_хоста – обычно называют име-
нем источника данных и иногда присваи-
вают переменной $dsn, которую и переда-
ют методу connect. Значения имя_пользова-
теля и пароль – это имя и пароль поль-
зователя MySQL, зарегистрированного
в базе данных mysql. Наконец, фрагмент
{RaiseError => 1} определяет способ изве-
щения об ошибках (см. врезку «Обработ-
ка ошибок»). В модуле DBI реализована
мощная система диагностики ошибок,
и такой способ обеспечивает наилучший
способ обращения к ней. Результат вы-
полнения метода DBI->connect() присваива-
ется переменной $dbh (описателю базы
данных), которая будет использоваться
в остальных частях сценария. Обратите
внимание, что в Perl имя базы данных ука-
зывают при соединении с сервером MySQL.
По завершении работы с базой данных
необходимо вызвать метод disconnect()
для разрыва установленного соединения:

$dbh->disconnect();

Обработка ошибок в Perl
Если задан параметр RaiseError, то
при возникновении ошибки в MySQL
драйвер вызовет функцию die(),
которая печатает сообщение и немед-
ленно завершает сценарий1. Если же
задан параметр PrintError, то сообще-
ние печатается, но сценарий продол-
жает работу. Для использования ре-
жима PrintError следует написать та-
кое предложение:

$dbh = DBI->connect('DBI:mysql:
� имя_базы_данных:имя_хоста',
� 'имя_пользователя', 'пароль',
� {RaiseError => 1});

Альтернативный способ – примене-
ние конструкции or exit(). Сценарий
при этом прекращает работу, но у вас
остается возможность самостоятель-
ной обработки ошибок.
Метод DBI->err() возвращает код
ошибки, а метод DBI->errstr() – ее
словесное описание. Оба метода ссы-
лаются на ошибку, обнаруженную при
самом последнем обращении к базе.

1 На самом деле функция die() не завершает про-
грамму, а «поднимает» исключение, которое сцена-
рий может перехватить и обработать с помощью
оператора eval. В режиме же PrintError воз-
никновение ошибки индицируется кодом воз-
врата, который необходимо проверять после
каждого вызова метода, обращающегося к базе
данных. – Прим. переводчика.

Соединение с MySQL

MySQL и Perl192

В первом Perl-сценарии я воспользуюсь
вышеописанными приемами для того,
чтобы просто установить и разорвать со-
единение с базой данных. После того как
сценарий заработает, мы сможем присту-
пить к исполнению запросов.

Подключение к MySQL

1. Откройте в текстовом редакторе новый
документ.

2. Введите строку #! (листинг 7.2):

#!/usr/bin/perl

3. Включите модуль DBI и установите ре-
жим строгой проверки:

use DBI;
use strict;

4. Установите соединение с MySQL:

my $dbh = DBI->connect('DBI:mysql:
� accounting', 'имя_пользователя',
� 'пароль', {RaiseError => 1});

В этом примере я воспользуюсь базой
данных accounting, разработанной ра-
нее. Замените имя_пользователя и пароль
именем и паролем пользователя, имею-
щего полномочия для доступа к базе на
вашем сервере.

5. Введите сообщение об успешном соеди-
нении:

if ($dbh) {
print "Successfully connected to
� the database! \n";

}

Листинг 7.2. Этот сценарий проверяет,
возможно ли установить соединение с MySQL

#!/usr/bin/perl

Листинг 7.2, 'mysql_connect.pl'

Включить используемые модули:

use DBI;

use strict;

Установить соединение с базой данных:

my $dbh = DBI->connect('DBI:mysql:

� accounting', 'имя_пользователя',

� 'пароль',
 {RaiseError => 1});

Сообщить об удавшейся попытке

установить соединение:

if ($dbh) {

 print "Successfully connected to the

 � database! \n";
}

Разорвать соединение:

$dbh->disconnect;

193

Переменная $dbh содержит ссылку на
объект, представляющий подключение
к базе данных. Ее можно проверить,
чтобы узнать, было ли установлено со-
единение. Поскольку был выбран ре-
жим RaiseError, в случае неудачи сце-
нарий будет завершен, так что выво-
дить сообщение о невозможности со-
единиться не нужно.

6. Закройте соединение:

$dbh->disconnect;

Это важный шаг, поскольку в данный
момент освобождаются ресурсы, захва-
ченные MySQL и Perl.

7. Сохраните сценарий в файле mysql_
connect.pl, при необходимости изме-
ните права доступа к нему и запусти-
те сценарий (рис. 7.14, 7.15).
Исходя из предположения, что ранее
написанная программа test.pl заверши-
лась успешно, результат работы дан-
ного сценария зависит исключительно
от наличия или отсутствия полномо-
чий указанного пользователя на доступ
к базе. Проверьте это в первую очередь,
если выдается ошибка.

В Perl нельзя устанавливать постоянные со-
единения с MySQL (в отличие от PHP), если
только сценарий не работает под управле-
нием Apache-модуля mod-perl.

В имени источника данных (Data Source
Name, DSN) слово mysql должно быть
записано строчными буквами, а имя хоста
можно опускать, если оно совпадает
с localhost.

Рис. 7.14. Если у вас есть надлежащие полномочия
на доступ к базе, вы увидите такое сообщение

Рис. 7.15. Если полномочий недостаточно,
то появится сообщение об ошибке,
и сценарий аварийно завершит работу

Соединение с MySQL

MySQL и Perl194

Простые запросы
Теперь вы знаете, как соединиться с MySQL,
и можете заняться выполнением запросов
к базе данных. Есть два вида запросов:
возвращающие записи (то есть запросы
SELECT) и все остальные (ALTER, CREATE,
UPDATE и DELETE). Запросы первого типа
сложнее, поэтому их рассмотрение мы от-
ложим до следующего раздела. А сейчас
я покажу, как выполнять простые запро-
сы с помощью метода do():

$query = $dbh->do("запрос");

Метод do() принадлежит объекту $dbh,
представляющему базу данных и создан-
ному в результате установления соедине-
ния. Если не было ошибки, метод возвра-
щает число строк, затронутых при выпол-
нении запроса (в тех случаях, когда это
имеет смысл).
Для примера я напишу Perl-сценарий, ко-
торый будет добавлять новых пользова-
телей в базу accounting. Напомню, что
в главе 5 описывалось включение в эту
базу таблицы users; при заполнении ее по-
лей используются функции PASSWORD()
и ENCODE().

Выполнение простых запросов

1. Откройте в текстовом редакторе новый
файл и введите стандартный пролог
Perl-сценария (листинг 7.3):

#!/usr/bin/perl

use DBI;
use strict;

2. Запросите имя нового пользователя:

print "Enter the new username: ";
my $username = <STDIN>;

Enter the new username – «Введите имя
нового пользователя».

195

#!/usr/bin/perl

Листинг 7.3, ' add_user.pl'

Включить используемые модули.

use DBI;

use strict;

Запросить информацию о пользователе.

print "Enter the new username: ";

my $username = <STDIN>;

print "Enter the password: ";

my $pass1 = <STDIN>;

print "Confirm the password: ";

my $pass2 = <STDIN>;

Проверить, что оба введенных пароля совпадают.

while ($pass1 ne $pass2) {

print "The passwords you entered did not match! Try again!\n";

print "Enter the password: ";

$pass1 = <STDIN>;

print "Confirm the password: ";

$pass2 = <STDIN>;

}

Соединиться с базой данных.

my $dbh = DBI->connect(' DBI:mysql:accounting' , ' имя_пользователя' , ' пароль' ,
 {RaiseError => 1});

Выполнить запрос к базе.

my $sql = "INSERT INTO users (user_pass, user_name) VALUES

 � (PASSWORD(' $pass1'), ENCODE(' $username' , ' w1cKet'))";
my $query = $dbh->do ($sql);

Сообщить о результате.

if ($query == 1) {

print "The user has been added! \n";

} else {

print "The user could not be added! \n";

}

Разорвать соединение.

$dbh->disconnect;

Листинг 7.3. Сценарий add_user.pl добавляет в базу данных новые записи

Простые запросы

MySQL и Perl196

Имя и пароль нового пользователя чи-
таются из стандартного ввода <STDIN>.
Введенное значение присваивается пе-
ременной $username.

3. Запросите пароль:

print "Enter the password: ";
my $pass1 = <STDIN>;
print "Confirm the password: ";
my $pass2 = <STDIN>;

Enter the password – «Введите пароль».
Confirm the password – «Подтвердите па-
роль».
Чтобы защититься от случайных оши-
бок при вводе пароля, вы просите ввес-
ти его дважды, а затем сравниваете зна-
чения.

4. Проверьте, совпадают ли оба введен-
ных пароля:

while ($pass1 ne $pass2) {
print "The passwords you entered
� did not match! Try again!\n";
print "Enter the password: ";
$pass1 = <STDIN>;
print "Confirm the password: ";
$pass2 = <STDIN>;

}

The passwords you entered did not match!
Try again! – «Введенные вами пароли
не совпадают! Повторная попытка!».
В этом цикле проверяется, что оба вве-
денных пароля идентичны. Если это не
так, выводится сообщение об ошибке,
и пользователю предоставляется воз-
можность еще раз набрать оба значе-
ния. Процедура повторяется до тех пор,
пока пароли не совпадут.

197

5. Установите соединение с базой данных:

my $dbh = DBI->connect('DBI:mysql:
� accounting', 'имя_пользователя',
� ' пароль',{RaiseError => 1});

6. Создайте запрос и отправьте его серверу:

my $sql = "INSERT INTO users
� (user_pass, user_name) VALUES
� (PASSWORD('$pass1'),
� ENCODE('$username' , 'w1cKet'))";
my $query = $dbh->do ($sql);

Этот запрос почти совпадает с приве-
денным в главе 5, только в него под-
ставляются не фиксированные, а вве-
денные пользователем значения полей.
Текст запроса передается методу do().

7. Напечатайте сообщение о результате
выполнения запроса:

if ($query == 1) {
print "The user has been added! \n";

} else {
print "The user could not be
� added! \n";

}

The user has been added! – «Добавлена
запись о новом пользователе».
The user could not be added – «Запись о
новом пользователе не удалось доба-
вить».
Метод do() возвращает число затро-
нутых строк для таких запросов, как
INSERT, UPDATE или DELETE. Это число
присвоено переменной $query; если оно
равно 1, то вставлена ровно одна за-
пись, а значит, все в порядке.

8. Закройте соединение с базой данных:

$dbh->disconnect;

Простые запросы

MySQL и Perl198

Рис. 7.16. Сценарий выведет три вопроса,
а после ответа на них добавит запись
о новом пользователе в базу данных

Рис. 7.17. Если два введенных пароля
не совпадают, сценарий предложит
ввести их еще раз

9. Сохраните сценарий в файле add_user.pl,
при необходимости измените права
доступа к нему и запустите сценарий
(рис. 7.16, 7.17).

Не ставьте в конце SQL-запроса точку с за-
пятой, как это принято в мониторе mysql.

Чтобы не возникло путаницы с различными
видами кавычек в запросе, пользуйтесь опе-
ратором qq{}, который закавычивает всю
фразу, правильно обрабатывая при этом
одиночные и двойные кавычки:

$query = qq{UPDATE имя_таблицы
� SET имя_колонки='значение'
� WHERE имя_колонки='другое_
� значение'}

В целях повышения безопасности можете
воспользоваться регулярными выражения-
ми для контроля корректности данных, вве-
денных пользователем.

Вышеупомянутый оператор qq{} не экра-
нирует символы одиночной и двойной ка-
вычки в значениях, полученных из стандарт-
ного ввода. Вы должны сделать это сами,
например с помощью регулярных выраже-
ний.

199

Выборка данных
Извлечение результатов запроса к MySQL
в Perl-сценариях чуть сложнее, чем выпол-
нение простых запросов. Начнем с того,
что сама отправка запроса серверу – это
двухступенчатый процесс, состоящий из
вызова методов prepare() и execute().

$query = $dbh->prepare("SQL-запрос");

Результат, возвращенный методом pre-
pare(), присваивается переменной, кото-
рую я назвал $query (часто ее называют
также $sth, от statement handle – «описа-
тель предложения»). Прежде чем вызы-
вать метод execute(), надо удостоверить-
ся в успешном завершении операции pre-
pare(). Простейший способ – использова-
ние функции defined():

if (defined($query)) {
$query->execute();

} else {
print "Could not execute the query!\n";

}

Could not execute the query! – «Не удалось
выполнить запрос».
После выполнения запроса можно из-
влечь его результаты с помощью метода
fetchrow_array(). Он возвращает каждую
запись в виде массива, который индекси-
руется начиная с 0 (см. также врезку «Как
сослаться на колонку по ее имени»):

while (@row = $query->fetchrow_
� array()) {

print "$row[1]\n";
}

Если колонка содержит NULL, то Perl вернет
значение undef, поэтому стоит снова приме-
нить функцию defined() для того, чтобы
проверить полученное значение перед
тем, как его использовать. Отметим, од-
нако, что для пустых строк функция
defined() возвращает 1, а не 0.

Как сослаться на колонку по ее имени

Метод fetchrow_array() – самый эф-
фективный и распространенный спо-
соб извлечения результатов запроса,
но у него есть существенный недоста-
ток: он не позволяет ссылаться на ко-
лонки по имени. Впрочем, есть и дру-
гие возможности.
Первая и самая простая из них – вос-
пользоваться методом fetchrow_ hash-
ref(). Работает он так же, как fetchrow_
array(), но допускает обращение к ко-
лонкам по имени:

while (@row = $query->fetchrow_
� hashref()) {

print "$row->{'имя_колонки'}\n";

}

К сожалению, этот метод действует го-
раздо медленнее, чем fetchrow_array().
Есть и другой вариант. Если вы точно
знаете, сколько колонок будет возвра-
щено и в каком порядке, то можете
присвоить их значения переменным:

while (($имя_колонки1,
� $имя_колонки2, $имя_колонки3) =
� $query->fetchrow_array())) { ...

Еще одна альтернатива – применить
метод bind_col() для предварительно-
го связывания номеров колонок с име-
нами переменных. Для этого требует-
ся написать больший объем кода, так
что за подробностями отсылаю вас
к документации по модулю DBI.

Выборка данных

MySQL и Perl200

После того как все строки извлечены, сле-
дует закончить запрос:

$query->finish();

В качестве простого примера напишем
Perl-сценарий, который получает на вхо-
де имя базы данных и распечатывает на-
звания всех таблиц в этой базе.

Извлечение результатов запроса

1. Создайте новый Perl-сценарий (лис-
тинг 7.4):

#!/usr/bin/perl

use DBI;
use strict;

Листинг 7.4. Сценарий show_tables.pl выводит перечень таблиц в базе данных

#!/usr/bin/perl

Листинг 7.4, 'show_tables.pl'

Включить используемые модули.

use DBI;

use strict;

Сценарий принимает один аргумент – имя базы данных.

my $database = @ARGV[0];

if (defined($database)) {

 # Установить соединение с базой данных.

 my $dbh = DBI->connect("DBI:mysql:$database", 'имя_пользователя', 'пароль',

 {RaiseError => 1});

 # Сформулировать запрос к базе.

 my $sql = "SHOW TABLES";

 my $query = $dbh->prepare ($sql);

 if (defined($query)) {

 $query->execute();

201

2. Проверьте, введено ли имя базы данных,
к которой нужно будет обращаться:

my $database = @ARGV[0];
if (defined($database)) {

Этот сценарий принимает один аргу-
мент – имя базы данных. Его можно
получить из массива @ARGV и присвоить
переменной $database. Если у перемен-
ной есть значение, можно продолжать
работу.

3. Установите соединение с MySQL и под-
готовьте запрос:

my $dbh = DBI->connect("DBI:mysql:
� $имя_базы_данных",
� 'имя_пользователя', 'пароль',
� {RaiseError => 1});
my $sql = "SHOW TABLES";
my $query = $dbh->prepare ($sql);

Строка соединения в этом сценарии
выглядит несколько иначе, чем рань-
ше, поскольку в качестве имени базы
данных фигурирует значение перемен-
ной. Поэтому пришлось вместо оди-
ночных кавычек использовать двойные,

Листинг 7.4. Сценарий show_tables.pl выводит перечень таблиц в базе данных (окончание)

my @row;

while (@row = $query->fetchrow_array()) {

foreach (@row) {

print "$row[0] \n";

}

}

 }

 $query->finish();

 # Разорвать соединение.

 $dbh->disconnect;

} else {

 print "Please enter a database name when calling this script! \n";

}

Выборка данных

MySQL и Perl202

чтобы Perl-сценарий мог заменить имя
переменной ее значением (интерполи-
ровать переменную).

4. Выполните запрос:

if (defined($query)) {
$query->execute();

Если операция prepare() завершилась
успешно, то переменная $query будет
иметь определенное значение, и вы мо-
жете переходить к выполнению за-
проса.

5. Извлеките и распечатайте каждую за-
пись:

my @row;
while (@row = $query->fetchrow_
� array()) {

foreach (@row) {
print "$row[0] \n";

}

}

Здесь показан самый безопасный метод
получения всех колонок из каждой воз-
вращенной строки. Вы печатаете по од-
ному элементу на строке. Результат
выполнения предложения SHOW TABLES –
набор строк, каждая из которых содер-
жит имя одной таблицы.

6. Завершите запрос и закройте соедине-
ние с базой данных:

}

$query->finish();

$dbh->disconnect;

7. Завершите основную ветвь условного
оператора:

} else {
print "Please enter a database
� name when calling this
� script! \n";

}

203

Если пользователь забыл указать имя
базы данных, сценарий печатает соот-
ветствующее сообщение: Please enter a
database name when calling this script! –
«Пожалуйста, введите имя базы данных
при обращении к этому сценарию».

8. Сохраните сценарий в файле show_
tables.pl, при необходимости измените
права доступа к нему и запустите сцена-
рий командой ./show_tables.pl имя_ба-
зы_данных или perl show_tables.pl имя_
базы_данных (рис. 7.18, 7.19).
Напомню, что у сценария должны быть
полномочия на доступ к указанной базе
данных. Поэтому проще всего в методе
connect() ввести имя и пароль пользова-
теля root, так как он имеет доступ ко
всем базам.

Поскольку вышеописанный запрос возвра-
щает строки, состоящие всего из одной ко-
лонки, цикл while можно упростить:

while (@row = $query-
>fetchrow_array()) {

print "$row[0] \n";
}

В Perl нельзя узнать, сколько записей
вернуло предложение SELECT, не пере-
брав их все. Но можно для этой цели вос-
пользоваться функцией COUNT(), имею-
щейся в MySQL.

Если вы работаете с таблицами, поддержи-
вающими транзакции (например, типа
InnoDB), то можете воспользоваться сред-
ствами поддержки транзакций, реализован-
ными в модуле DBD::mysql начиная с вер-
сии 1.2216. За подробностями обратитесь
к документации по MySQL.

Зарезервированное слово undef в Perl
означает то же самое, что и NULL в SQL: от-
сутствие какого бы то ни было значения.

Рис. 7.18. Сценарий show_tables.pl распечатывает
имена всех таблиц в указанной базе данных
(в этом примере – accounting)

Рис. 7.19. Если у сценария есть полномочия
на доступ к базе данных, он распечатает имена
таблиц без какой-либо модификации

Выборка данных

MySQL и Perl204

Значения
автоинкрементного поля
В главе 5 я рассказал о функции LAST_
INSERT_ID(), применяемой для получения
значения автоинкрементного поля в послед-
ней вставленной записи. В главе 6 была
продемонстрирована функция PHP mysql_
insert_id(), служащая той же цели. В Perl
можно использовать такую конструкцию:

$query = $dbh->do("INSERT INTO
� имя_таблицы (имя_колонки1, имя_колонки2)
� VALUES(значение1, 'значение2')");

$insert_id = $dbh->{'mysql_insertid');

Давайте модифицируем сценарий add_
user.pl так, чтобы он возвращал иденти-
фикатор только что добавленного поль-
зователя.

Получение значения
автоинкрементного поля

1. Откройте в текстовом редакторе файл
add_user.pl (см. листинг 7.3).

2. После выполнения запроса (строка 31)
добавьте такую строку (листинг 7.5):

my $user_id = $dbh->{'mysql_insertid'};
При вставке записи о пользователе
в таблицу для поля user_id указывает-
ся значение NULL. Поскольку для этого
поля задан атрибут AUTO_INCREMENT, то
MySQL вместо NULL заносит в него сле-
дующее по порядку целое число. Сце-
нарий получает это значение и записы-
вает в переменную $userid.

Листинг 7.5. Сценарий add_user2.pl
извлекает значение автоинкрементного поля
из только что вставленной в таблицу users записи

#!/usr/bin/perl

Листинг 7.5, 'add_user2.pl'

Включить используемые модули:

use DBI;

use strict;

Запросить информацию о пользователе:

print "Enter the new username: ";

my $username = <STDIN>;

print "Enter the password: ";

my $pass1 = <STDIN>;

print "Confirm the password: ";

my $pass2 = <STDIN>;

Проверить, что оба введенных пароля

совпадают:

while ($pass1 ne $pass2) {

print "The passwords you entered did

� not match! Try again!\n";

print "Enter the password: ";

$pass1 = <STDIN>;

print "Confirm the password: ";

$pass2 = <STDIN>;

}

Соединиться с базой данных:

my $dbh = DBI->connect('DBI:mysql:

� accounting', 'имя_пользователя',

� 'пароль',

{RaiseError => 1});

Выполнить запрос к базе:

my $sql = "INSERT INTO users (user_pass,

� user_name) VALUES

� (PASSWORD('$pass1'),

� ENCODE('$username',

� 'w1cKet'))";

my $query = $dbh->do ($sql);

205

Листинг 7.5. Сценарий add_user2.pl
извлекает значение автоинкрементного поля
из только что вставленной в таблицу users записи
(окончание)

Получить идентификатор пользователя

user_id:

my $userid = $dbh->{'mysql_insertid'};

Сообщить о результате:

if ($query == 1) {

print "User number $userid has been

� added! \n";

} else {

print "The user could not be added! \n";

}

Разорвать соединение.

$dbh->disconnect;

3. Проверив успешность выполнения пре-
дыдущей операции, распечатайте иден-
тификатор, присвоенный новому поль-
зователю:

print "User number $userid has been
� added! \n";
В этом примере использование иденти-
фикатора сводится просто к его печа-
ти.
User number $userid has been added! –
«Пользователь номер $userid был до-
бавлен».

4. Сохраните сценарий в файле add_user2.pl,
измените права доступа и запустите сце-
нарий на исполнение (рис. 7.20).

Получить значение автоинкрементного поля
можно и следующим образом:

$query->{'insertid'}.

Рис. 7.20. Сценарий add_user2.pl возвращает
идентификатор нового пользователя

Значения автоинкрементного поля

MySQL и Perl206

Безопасность
Начиная с версии MySQL 3.22 появилась
возможность хранить в конфигурацион-
ном файле информацию, которая автома-
тически используется клиентами MySQL
и функциями API. Эта процедура не толь-
ко проще, но и безопаснее ручного ввода
значений.
Модули Msql-Mysql (начиная с версии
1.2009) позволяют использовать один из
таких конфигурационных файлов, что-
бы не «зашивать» информацию о досту-
пе к базе непосредственно в сценарий.
Для этого нужно добавить в имя источ-
ника данных строку:

mysql_read_default_file=имя_файла

Например, вот как могла бы выглядеть
модифицированная строка соединения:

$dbh=DBI->connect("DBI:mysql:

� имя_базы_данных;mysql_read_
� default_file=
� /путь/к/.my.cnf', $user, $password);

В таком случае значения переменных $user
и $password будут прочитаны из конфигу-
рационного файла, который, надо пола-
гать, хранится в безопасном месте.
В MySQL есть много различных конфигу-
рационных файлов, используемых для
разных целей (см. табл. 7.1). Коротко го-
воря, любой параметр, который может
быть указан в командной строке при за-
пуске приложения (например, --database
или --host), можно сохранить и в конфи-
гурационном файле. Отмечу, что MySQL
читает конфигурационные файлы в том
порядке, в котором они перечислены
в табл. 7.1; при этом значения, прочитан-
ные позже, замещают те, что были прочи-
таны раньше (другими словами, пароль,
обнаруженный в пользовательском фай-
ле .my.cnf, замещает пароль, хранящийся

207

в глобальном файле my.cnf). Кроме того,
параметры, заданные в командной стро-
ке, имеют больший приоритет, чем хра-
нящиеся в файле.

Использование конфигурационного файла

1. Создайте в редакторе новый документ
(листинг 7.6):

Мой конфигурационный файл.

Комментарии начинаются со знака #,
как в Perl-сценариях.

2. Запишите имя и пароль, которыми бу-
дет пользоваться клиент MySQL:

[client]

user=имя_пользователя

password=пароль

Заголовок раздела [client] говорит
о том, что следующие строки относят-
ся ко всем клиентским приложениям,
включая монитор mysql и любой Perl-
сценарий. Заключать имя и пароль поль-
зователя в кавычки не надо.

3. Сохраните файл под названием:
– ~/.my.cnf – для платформ UNIX и Mac

OS X (вместо символа ~ подставьте
путь к вашему начальному каталогу);

Листинг 7.6. Конфигурационный файл будет
использоваться всеми клиентами MySQL,
так что больше не надо хранить имя и пароль
пользователя в тексте сценария

Мой конфигурационный файл

[client]

user=имя_пользователя

password=пароль

Таблица 7.1. Сервер MySQL, стандартные клиентские приложения и даже Perl-сценарии
могут пользоваться указанными конфигурационными файлами для хранения значений параметров

Имя файла Платформа Содержимое

/etc/my.cnf UNIX и Mac OS Глобальные параметры

<DATADIR>/my.cnf UNIX и Mac OS Параметры сервера (<DATADIR> – это каталог,
где хранятся данные MySQL)

~/.my.cnf UNIX и Mac OS Пользовательские параметры (вместо символа ~
указывается начальный каталог пользователя)

windows-system-directory\my.ini Windows Глобальные параметры

C:\my.cnf Windows Глобальные параметры

Безопасность

MySQL и Perl208

– C:\my.cnf, C:\WINNT\my.ini или
C:\WINDOWS\my.ini – для платфор-
мы Windows (имя диска и путь к сис-
темному каталогу измените в соот-
ветствии с тем, где на вашем компью-
тере установлена система Windows).

При сохранении следите за тем, чтобы
не затереть уже имеющийся конфигу-
рационный файл, который иногда бы-
вает скрытым. Например, приложение
WinMySQLAdmin в Windows могло уже
создать файл my.ini. Кроме того, на
платформах UNIX и Mac OS X не за-
будьте указать начальную точку в име-
ни файла.

4. Измените права доступа к файлу:

chmod 600 .my.cnf

В системах UNIX и Mac OS X эта ко-
манда разрешает доступ к файлу толь-
ко его владельцу.
Теперь, подготовив конфигурацион-
ный файл, я могу повысить безопас-
ность сценария, исключив из него имя
и пароль пользователя.

5. Откройте в редакторе файл mysql_ con-
nect.pl (листинг 7.2).

6. Определите две новые переменные (лис-
тинг 7.7):

my $user;
my $password;

Поскольку ранее вы установили режим
строгой проверки, эти переменные дол-
жны быть объявлены до первого ис-
пользования. Сценарий прочтет их зна-
чения из конфигурационного файла.

Листинг 7.7. Сценарий mysql_connect2.pl
стал более безопасным и переносимым,
поскольку в нем больше не «зашиты»
имя и пароль пользователя

#!/usr/bin/perl

Листинг 7.7, 'mysql_connect2.pl'

Включить используемые модули:

use DBI;

use strict;

Соединиться с базой данных:

my $user;

my $password;

my $dbh = DBI->connect('DBI:mysql:

� accounting;mysql_read_default_file=

/Users/lullman/.my.cnf', $user,

� $password, {RaiseError => 1});

Сообщить об успешном установлении

соединения:

if ($dbh) {

print "Successfully connected

� to the database! \n";

}

Разорвать соединение:

$dbh->disconnect;

209

Вы должны изменить строку так, чтобы
она ссылалась на файл, который был
создан на этапе 3. Можно использовать
как абсолютное (например, /users/
lullman/.my.cnf), так и относительное
(например, ../.my.cnf) имя. Символ ~
(тильда) означает, что конфигурацион-
ный файл следует искать в начальном
каталоге пользователя, от имени кото-
рого исполняется сценарий.

7. Изменим строку соединения, указав
в ней имя конфигурационного файла:

my $dbh = DBI->connect('DBI:mysql:
� accounting;mysql_read_default_file=
� /Users/lullman/.my.cnf', $user,
� $password, {RaiseError => 1});

8. Сохраните файл (рекомендую переиме-
новать его в mysql_connect2.pl) и запус-
тите на своем сервере (рис. 7.21).

9. Если хотите, повторите действия, опи-
санные в пп. 5–8, для всех созданных
ранее Perl-сценариев.

Созданный конфигурационный файл будет
использоваться всеми клиентскими прило-
жениями MySQL, а не только Perl-сценари-
ями.

Чтобы Perl-сценарий автоматически читал
конфигурационный файл, хранящийся в ва-
шем начальном каталоге (в системах UNIX
и Mac OS X), можно применить такую конст-
рукцию: mysql_read_default_file=$ENV

{HOME}/.my.cnf.

Подробнее о конфигурационных файлах
рассказывается на странице
www.mysql.com/doc/O/p/Option files.html.

Рис. 7.21. Сценарий, устанавливающий
соединение, работает так же, как и раньше,
но он стал более безопасным

Безопасность

За последние несколько лет Java стал од-
ним из самых популярных языков про-
граммирования – во многом из-за своей
платформенной независимости. Java мож-
но использовать для создания аплетов,
работающих в составе Web-страниц, для
написания JSP-страниц (Java Server Pages),
а также для разработки автономных при-
ложений.
Доступ к базам данных программы на язы-
ке Java всегда обеспечивается при помощи
стандарта JDBC (Java DataBase Connecti-
vity). Поэтому, если код написан надлежа-
щим образом и следует стандарту SQL,
Java-приложение можно легко переносить
между разными платформами и разными
СУБД.

MySQL и Java 88888
В двух предыдущих главах я уже подчер-
кивал, что не ставлю себе задачей научить
читателя программированию на том или
ином языке, хотя и буду объяснять, как
и с какой целью написаны приведенные
в книге сценарии. Изучив эти примеры,
начинающий пользователь сможет напи-
сать простое Java-приложение. Но основ-
ное внимание будет обращено на примене-
ние JDBC и драйвера MM.MySQL для вза-
имодействия с СУБД MySQL. В самом ру-
ководстве по MySQL эта тема практически
не освещается, но вы можете обратиться
к документации по JDBC и MM.MySQL
(в приложении 3 приведены соответству-
ющие ссылки).

211

Установка поддержки Java
для MySQL
Для доступа к базе данных MySQL из при-
ложения на языке Java необходимы:

Java SDK версии 1.1 или старше (вклю-
чающей JDBC);
пакет MM.MySQL.

Установка самой среды разработки Java
в книге не рассматривается, но для средне-
го пользователя это не слишком сложная
задача. Большинству пользователей будет
достаточно издания Java 2 Platform, Stan-
dard Edition (J2SE), которое можно загру-
зить с сайта http://java.sun.com. Пользова-
тели Mac OS X получают все преимуще-
ства тесной интеграции Java с операцион-
ной системой (система Mac OS X версии
10.1.5 поставляется с версией J2SE версии
1.3.1). В Windows эта технология поддер-
живалась на некоторых стадиях эволюции
системы.
В настоящем разделе я покажу, как вклю-
чить драйвер MM.MySQL в вашу инстал-
ляцию Java.

Порядок установки драйвера MM.MySQL

1. Загрузите текущую версию MM.MySQL
с сайта http://mmmysql.sourceforge.net
(рис. 8.1).
В настоящее время Марк Мэтьюc (Mark
Matthews), создатель этого драйвера,
выложил на сайт версию 2.0.14 в виде
jar-файла.

2. Распакуйте загруженный файл с по-
мощью одного из следующих прило-
жений:
– jar xvf /путь/к/файлу.jar (из команд-

ной строки);
– StuffIt (Macintosh);
– WinZip (Windows).

Рис. 8.1. Драйвер MM.MySQL находится
на сайте SourceForge.net наряду с тысячами
других проектов с открытым исходным кодом

Установка поддержки Java для MySQL

MySQL и Java212

Расширение .jar говорит о том, что файл
представляет собой Java-архив, который
нужно распаковать. Можно сделать это
с помощью программы jar, входящей
в комплект Java, или множества других
приложений-архиваторов.
На момент написания этой книги драй-
вер MM.MySQL распространялся в виде
одного большого jar-файла. После его
раскрытия вы обнаружите еще один jar-
файл – это, собственно, и есть драйвер.
Наличие двух архивов может стать ис-
точником путаницы, но, к счастью,
в имени дистрибутивного файла есть
фраза «you-must-unjar-me» (меня надо
распаковать).

3. Переместите драйвер туда, где он дол-
жен находиться (рис. 8.2):

cp mm.mysql-2.0.14-bin.jar /путь/к

� /папке

Вместо командной строки можно вос-
пользоваться приложением Windows
Explorer или любым другим файловым
менеджером.
На самом деле точное местонахождение
драйвера не так важно. Главное, чтобы
приложение могло его найти. Обычно
используются следующие пути:

– C:\java

– C:\Program Files\j2sdk1.4.01\lib\ext
– /usr/local/lib/mysql

– <JAVA_HOME>/jre/lib/ext

Подойдет любой из этих вариантов. По-
следний ссылается на корневой каталог
инсталляции Java на вашем компьюте-
ре. Еще одна альтернатива – поместить
драйвер в тот же каталог, где находятся
использующие его сценарии.

Рис. 8.2. JDBC-драйвер должен находиться
в определенном месте. Переменную CLASSPATH
также следует подредактировать

213

4. Добавьте путь к файлу в переменную
окружения CLASSPATH (рис. 8.3):

java set CLASSPATH=/путь/к/

� mm.mysql-2.0.14-bin.jar

Если вы решили воспользоваться дво-
ичной версией драйвера, то вышеупо-
мянутая команда сообщит виртуаль-
ной машине Java, где искать драйвер.
Можно было бы также задать путь
к классам в момент запуска сценария.
А если драйвер находится в том же ка-
талоге, что и сценарий, или в подката-
логе lib/ext корневого каталога Java,
то шаг 4 можно вовсе пропустить.

При развертывании Web-приложения по-
местите JDBC-драйвер (jar-файл) в каталог
WEB-INF/lib.

На время разработки можно также пользо-
ваться исходными файлами классов, со-
ставляющих mm.mysql, добавив каталог org
и его содержимое к переменной CLASSPATH
вместо файла mm.mysql-2.0.14-bin.jar.

Можно указывать несколько путей к клас-
сам (обычно так и делается), отделяя один
от другого точкой с запятой.

Записывая команды, имена классов и фай-
лов, не забывайте, что в языке Java пропис-
ные и строчные буквы различаются.

Рис. 8.3. Установка переменной CLASSPATH
необходима для того, чтобы приложение
могло найти драйвер

Установка поддержки Java для MySQL

MySQL и Java214

Соединение
с базой данных
Перед началом работы с JDBC неплохо
убедиться, что соединение с базой данных
устанавливается успешно. Часто это са-
мый длительный этап во всей процедуре.
Для начала укажите, что вы хотите исполь-
зовать классы для работы с SQL:

import java.sql.*;

Затем, если вы применяете менеджер драй-
веров JDBC, определите, какой драйвер ис-
пользовать:

Class.forName("org.gjt.mm.mysql.Driver");

Теперь можно устанавливать соединение
с базой данных, пользуясь классом Driver-
Manager:

Connection con=DriverManager.

� getConnection(url,

� "имя_пользователя", "пароль");

Значением переменной url должна быть
строка в формате jdbc:протокол:подпро-
токол, содержащая имя базы данных, имя
хоста и другую информацию. В нашем
случае протокол – это mysql, а подпротокол
включает имя хоста, номер порта и имя
базы данных, например:

jdbc:mysql://[имя_хоста][:порт]

� /имя_базы_данных

В квадратные скобки здесь заключены не-
обязательные параметры.
Так, для соединения с базой данных test
без указания хоста значение url записыва-
ется следующим образом:

jdbc:mysql:///test

Если вы хотите указать имя хоста и порт,
напишите:

jdbc:mysql://localhost:3306/test

215

В конце сценария по завершении взаимо-
действия с MySQL следует закрыть соеди-
нение с базой данных и освободить ресур-
сы методом close():

con.close();

Установление соединения с MySQL

1. Создайте новый Java-класс в текстовом
редакторе или в среде разработки (лис-
тинг 8.1).

Листинг 8.1. Простой Java-класс для установления соединения с базой данных MySQL

import java.sql.*;

public class Connect {

 public static void main(String argv[]) throws Exception {

 Connection con = null;

 try {

 String url = "jdbc:mysql:///test";

 Class.forName("org.gjt.mm.mysql.Driver");

 con = DriverManager.getConnection(url, "", "");

 if (con != null) {

 System.out.println("A database connection has been established!");

 }

 }

 finally {

 if(con != null) {

 try {

 con.close();

 } catch(Exception e) {

 System.out.println(e.getMessage());

 }

 }

 }

 }

}

Соединение с базой данных

MySQL и Java216

Писать Java-сценарии можно практичес-
ки в любом текстовом редакторе. Ну а
если у вас есть специализированная
среда разработки для кодирования,
компиляции и запуска Java-программ,
тем лучше!

2. Включите классы sql и определите соб-
ственный класс:

import java.sql.*;

public class Connect {

public static void main(String

� argv[]) throws Exception {

Наше первое приложение будет назы-
ваться Connect и состоять только из од-
ного метода main. В дальнейшем я буду
использовать аналогичные конструк-
ции.

3. Инициализируйте переменную класса
Connection:

Connection con = null;

Переменная con принадлежит классу
java.sql.Connection, импортированному
вместе с прочими директивой import
java.sql.*. Здесь con присваивается на-
чальное значение null.

4. Установите соединение с базой данных
test:

try {

String url = "jdbc:mysql:///test";

Class.forName("org.gjt.mm.mysql.

� Driver");

con = DriverManager.get

� Connection(url, "", "");

Во второй строке определяется пере-
менная url, содержащая строку соеди-
нения. В третьей строке указывается,
какой драйвер загрузить, а в последней
осуществляется попытка установить
соединение и записать ссылку на него

217

в ранее объявленную переменную con.
Здесь я не указываю ни имени хоста,
ни имени и пароля пользователя. Это
имеет смысл, если MySQL на вашем
компьютере разрешает доступ к базе
данных test анонимному пользовате-
лю без пароля с любого хоста – иначе
в данной точке приложение завершит-
ся с ошибкой, поэтому вам придется
подкорректировать текст.

5. Напечатайте сообщение, если соедине-
ние было установлено:

if (con != null) {

System.out.println("A database

� connection has been

� established!");

}

A database connection has been estab-
lished! – «Соединение с базой данной
установлено».
Вообще-то этот код можно считать из-
лишним, поскольку при возникнове-
нии ошибки соединения с базой дан-
ных будет возбуждено исключение.
С другой стороны, стоит как-то отме-
тить, что подключение осуществилось.

6. Завершите предложение try и весь класс:
}

finally {

if(con != null) {

try {

con.close();

} catch(Exception e) {

System.out.println

� (e.getMessage());

}

}

}

}

}

Соединение с базой данных

MySQL и Java218

С точки зрения MySQL, единственно
важная часть в данном фрагменте – try
{ con.close(); }. Здесь закрывается со-
единение. Если по какой-то причине
сделать этого не удастся, будет напеча-
тано сообщение об ошибке.

7. Сохраните сценарий в файле Connect.
java.
Правила Java требуют, чтобы имя фай-
ла в точности совпадало с именем со-
держащегося в нем класса.

8. Откомпилируйте файл Connect.java. Это
можно сделать двумя способами:
– набрать команду javac /путь/к/Con-

nect.java;
– воспользоваться средой разработки

для компиляции класса.
9. Выполните программу Connect (рис. 8.4,

8.5). Здесь тоже есть две возможности:
– открыв каталог, в котором находит-

ся файл Connect.java, набрать коман-
ду java Connect.java;

– воспользоваться средой разработки
для исполнения класса.

Если вы не добавили путь к драйверу
в переменную CLASSPATH, не поместили
драйвер в тот же каталог, где находит-
ся файл Connect.java, и вообще никоим
образом не сообщили виртуальной ма-
шине, где искать драйвер, нужно будет
указать его местонахождение непосред-
ственно при запуске программы. Для
этого предназначена такая команда:

java -cp .;/путь/к/mm.mysql-

� 2.0.14-bin.jar Connect

Имя org.gjt.mm.mysql.Driver ссылает-
ся на файлы классов драйвера, которые
находятся в подкаталоге org/gjt/mm/mysql
папки дистрибутива пакета MM.MySQL.

Рис. 8.4. Если приложение завершилось успешно,
на экране появляется такое сообщение

Рис. 8.5. Если программа Connect не смогла
соединиться с базой данных, выводится
сообщение об ошибке – в данном случае Access
denied for user ... (Пользователю ... доступ
запрещен)

Иногда при указании строки localhost
в качестве имени хоста Java заменяет ее на
IP-адрес хоста (например, 192.168.1.1 или
127.0.0.1), что может привести к конфлик-
там полномочий, хранящихся в базе дан-
ных MySQL.

В строку url можно включать дополни-
тельные параметры в следующем формате:

jdbc:mysql:///

test?имя_переменной1=

� значение1&имя_переменной2=значение2

Например:

jdbc:mysql:///test?user=

� John&password=Javaman

219

Простые запросы
Успешно установив соединение с базой
данных, можно приступать к взаимодей-
ствию с ней. Для начала выполним про-
стой запрос, изменяющий базу данных, но
не возвращающий строк. В эту категорию
попадают запросы, начинающиеся со слов
INSERT, ALTER, CREATE, DELETE и UPDATE.
Выполнение простого запроса делится на
два этапа. Сначала создается переменная,
представляющая предложение запроса,
а затем с помощью этой переменной он
выполняется. Типичный код выглядит
следующим образом:

Statement stmt;

stmt = con.createStatement();

stmt.executeUpdate("DELETE FROM

� tablename WHERE column='value'");

stmt.close();

Метод createStatement() создает откры-
тый канал, через который запрос переда-
ется серверу. Метод executeUpdate() отсы-
лает запрос, а метод close() освобождает
ресурсы, выделенные запросу. В качестве
примера я напишу приложение, которое
получает аргументы из командной строки
и заполняет таблицу clients в базе данных
accounting.

Выполнение простого запроса

1. Создайте в текстовом редакторе или
среде разработки для Java новое прило-
жение (листинг 8.2):
import java.sql.*;

public class Insert {

public static void main(String

� args[]) throws Exception {

Начало этого сценария отличается от того,
что вы видели в листинге 8.1, только име-
нем класса: Insert вместо Connect.

Простые запросы

MySQL и Java220

2. Инициализируйте переменные:

Connection con = null;

Statement stmt = null;

Листинг 8.2. Java-класс Insert принимает три аргумента в командной строке и интерпретирует их
как имя клиента, имя и фамилию контактного лица в новой записи таблицы clients

import java.sql.*;

// Листинг 8.2 "Insert.java"

public class Insert {

 public static void main(String args[]) throws Exception {

 Connection con = null;

 Statement stmt = null;

 try {

 String url = "jdbc:mysql:///accounting";

 Class.forName("org.gjt.mm.mysql.Driver");

 con = DriverManager.getConnection(url, "имя_пользователя", "пароль");

 stmt = con.createStatement();

 stmt.executeUpdate("INSERT INTO clients (client_name, " +

 contact_first_name, contact_last_name) VALUES ('" +

 args[0] + "', '" + args[1] + "', '" + args[2] + "')");

 System.out.println("The values were added to the database!");

 }

 catch (SQLException e) {

 e.printStackTrace();

 }

 finally {

 if (con != null) {

 try {

 con.close();

 stmt.close();

 } catch(Exception e) {

 System.out.println(e.getMessage());

 }

 }

 }

 }

}

221

Помимо переменной, представляющей
соединение, для выполнения простого
запроса нужна переменная типа State-
ment.

3. Установите соединение с базой данных
accounting:

try {

String url = "jdbc:mysql:///

� accounting";

Class.forName("org.gjt.mm.mysql.

� Driver");

con = DriverManager.

� getConnection(url,

� "имя_пользователя", "пароль");

По сравнению с предыдущим сценари-
ем нужно внести три очень важных из-
менения: указать имя базы данных
accounting вместо test, а также поме-
нять имя и пароль пользователя. Не
забывайте, что данный пользователь
должен обладать правами на соедине-
ние с базой данных accounting и на ее
модификацию.

4. Выполните запрос INSERT:
stmt = con.createStatement();

stmt.executeUpdate("INSERT INTO

� clients (client_name,

� contact_first_name, contact_

� last_name) VALUES ('" + args[0]

� + "', '" + args[1] + "', '"

� + args[2] + "')");

System.out.println("The values were

� added to the database!");

Первый шаг – создание переменной
stmt методом createStatement() объек-
та con. Затем текст запроса передается
в качестве аргумента методу execute-
Update() объекта stmt. В данном случае
я указываю в запросе имя клиента, а
также имя и фамилию контактного
лица. Все эти значения были заданы в

Простые запросы

MySQL и Java222

командной строке при запуске прило-
жения. Для доступа к ним используют-
ся переменные args[0], args[1]

и args[2], переданные средой исполне-
ния методу main() класса Insert.
The values were added to the database! –
«Значения добавлены в базу данных».

5. Завершите предложение try и перехва-
тите возможные исключения:

}

catch (SQLException e) {

e.printStackTrace();

}

Код в блоке catch сообщает об ошибках
MySQL, произошедших во время вы-
полнения запроса. По способу исполь-
зования и полученному результату это
аналогично команде System.out.println
(e.getMessage()) в классе Connect.

6. Завершите класс:
finally {

if (con != null) {

try {

con.close();

stmt.close();

} catch(Exception e) {

System.out.println

� (e.getMessage());

}

}

}

}

}

Одно дополнение по сравнению с пре-
дыдущим листингом: помимо соедине-
ния con здесь закрывается также предло-
жение stmt. При этом освобождаются
ресурсы, захваченные приложением.

223

7. Сохраните текст программы в файле
Insert.java.

8. Откомпилируйте файл Insert.java.
Для запуска приложения выполните
действия, описанные в предыдущем раз-
деле, но не забудьте указать в команд-
ной строке необходимые параметры
(имя клиента, имя и фамилию контакт-
ного лица):

java -cp .;/путь/к/mm.mysql-

� 2.0.14-bin.jar Insert

� имя_клиента контакт1 контакт2

Если значение аргумента должно содержать
пробелы, заключите его в кавычки (рис. 8.6).

Рис. 8.6. Из Java-программы можно добавлять
записи в базу данных, указав значения полей
в командной строке

Простые запросы

MySQL и Java224

Выборка данных
Для реализации запроса, возвращающего
данные из базы, потребуется чуть более
сложная программа.
Прежде всего, теперь для выполнения за-
проса следует вызвать метод executeQuery(),
а не executeUpdate(). Этот метод возвраща-
ет объект класса ResultSet, с помощью ко-
торого можно получить доступ к каждой
из выбранных строк. Проще всего сделать
это в цикле while, пользуясь методом next()
для перехода к следующей записи:

while (results.next()) {

// Как-либо обработать результаты.

}

В ходе обработки результатов можно запи-
сать значения колонок в переменные соот-
ветствующих типов. Так, метод getInt()
извлекает целочисленное значение, а метод
getString() – текстовое. Тот и другой при-
нимают в качестве аргумента имя или но-
мер колонки (нумерация начинается с 1).

while (rs.next()) {

int key = rs.getInt("номер_колонки");

String value = rs.getString

� ("строковое_имя_колонки")

}

225

Извлечение данных

1. Создайте в текстовом редакторе или
среде разработки для Java новое прило-
жение (листинг 8.3):

import java.sql.*;

public class Select {

public static void main(String

args[]) throws Exception {

2. Инициализируйте переменные:

Connection con = null;

Statement stmt = null;

ResultSet rs = null;

Листинг 8.3. Класс Select выполняет простой запрос к базе и выводит результаты

import java.sql.*;

// Листинг 8.3 'Select.java'

public class Select {

 public static void main(String args[]) throws Exception {

 Connection con = null;

 Statement stmt = null;

 ResultSet rs = null;

 try {

 String url = "jdbc:mysql:///accounting";

 Class.forName("org.gjt.mm.mysql.Driver");

 con = DriverManager.getConnection(url, "имя_пользователя", "пароль");

 stmt = con.createStatement();

 rs = stmt.executeQuery("SELECT client_id, client_name

 � FROM clients LIMIT 5");

 while (rs.next()) {

 int key = rs.getInt("client_id");

 String value = rs.getString("client_name");

 System.out.println(key + ": " + value + "\n");

 }

 }

Выборка данных

MySQL и Java226

 catch (SQLException e) {

 e.printStackTrace();

 }

 finally {

 if (rs != null) {

 try {

 rs.close();

 } catch (SQLException e) {

 e.printStackTrace();

 }

 }

 if (stmt != null) {

 try {

 stmt.close();

 } catch (SQLException e) {

 e.printStackTrace();

 }

 }

 if (con != null) {

 try {

 con.close();

 } catch (SQLException e) {

 e.printStackTrace();

 }

 }

 }

 }

}

Листинг 8.3. Класс Select выполняет простой
запрос к базе и выводит результаты (окончание)

В этом приложении появляется новая
переменная rs типа ResultSet. Она ис-
пользуется для доступа к результатам
запроса.

3. Установите соединение с базой данных
accounting:

try {

String url = "jdbc:mysql:///

� accounting";

Class.forName("org.gjt.mm.mysql.

� Driver");

con = DriverManager.

getConnection(url,

� "имя_пользователя", "пароль");

Как и раньше, не забудьте, что указан-
ный пользователь должен иметь права
на соединение с базой данных и осу-
ществление выборки из нее.

4. Выполните запрос SELECT:

stmt = con.createStatement();

rs = stmt.executeQuery("SELECT

� client_id, client_name

� FROM clients LIMIT 5");

И в этом случае сначала методом create-
Statement() объекта con создается пере-
менная stmt. Но затем текст запроса
передается методу executeQuery(), а не
executeUpdate(). Данный демонстраци-
онный фрагмент позволяет извлечь
пять записей о клиентах. Естественно,
вы можете передать на выполнение
любой запрос, совместимый со стан-
дартом SQL92.

5. Распечатайте возвращенные данные:

while (rs.next()) {

int key = rs.getInt("client_id");

String value = rs.getString

� ("client_name");

 System.out.println(key + ": " +

� value + "\n");

}

227

В этом цикле мы извлекаем каждую из
отобранных записей (их не должно
быть больше пяти), а затем с помощью
методов getInt() и getString() выво-
дим из записи значения целой и стро-
ковой колонок соответственно. Имена
колонок задаются явно.

6. Завершите предложение try и перехва-
тите возможные ошибки:

}

catch (SQLException e) {

e.printStackTrace();

}

7. Завершите класс и освободите все ре-
сурсы:

finally {

if (rs != null) {

try {

rs.close();

} catch (SQLException e) {

e.printStackTrace();

}

}

if (stmt != null) {

try {

stmt.close();

} catch (SQLException e) {

e.printStackTrace();

}

}

if (con != null) {

try {

con.close();

} catch (SQLException e) {

e.printStackTrace();

}

}

}

}

}

Выборка данных

MySQL и Java228

К освобождению ресурсов следует от-
носиться с особым вниманием, если
речь идет о запросах типа SELECT. И чем
сложнее запрос, тем более это существен-
но. В конце программы производится
попытка закрыть результирующий на-
бор, объект Statement и объект Connec-
tion (в указанном порядке), если ранее
им были присвоены значения.

8. Сохраните текст в файле Select.java и за-
пустите приложение (рис. 8.7).

Начиная с версии JDBC 2.0 результирую-
щий набор можно прокручивать как вперед –
методом next(), так и назад – методом
previous().

Методы getInt() и getString() работа-
ют быстрее, если ссылаться на колонки по
их номеру, а не по имени.

Для получения информации о конкретной
колонке (имени, типе данных и т.д.) можно
воспользоваться методом getMetaData().

Рис. 8.7. Класс Select выполняет запрос
и выводит результаты

229

Использование
файлов свойств
В этой главе я жестко «зашивал» в код каж-
дого приложения имя базы данных, а так-
же имя и пароль пользователя. Такое ре-
шение вполне допустимо, но не является
идеальным ни с точки зрения стиля про-
граммирования, ни с точки зрения безо-
пасности.
Поэтому я познакомлю вас еще с одной
концепцией – применением файла свойств,
который во многом напоминает конфи-
гурационный файл, знакомый програм-
мисту на PHP, а также файл .my.cnf, ис-
пользуемый Perl-сценариями: в нем со-
держатся параметры приложения. При из-
менении любого из них, например имени
базы данных или пароля, достаточно от-
редактировать только файл свойств, а не
каждый сценарий. А для программистов
на Java еще более важно, что в этом случае
не нужно перекомпилировать классы.
Файл свойств – это обычный текстовый
файл со строками вида имя=значение.
Обычно ему присваивается расширение
.properties.
Написав файл свойств, вы можете полу-
чить доступ к нему с помощью класса
ResourceBundle (из пакета java.util):

ResourceBundle bundle =

� ResourceBundle.getBundle

� ("имя_файла_свойств");

String name = bundle.getString

� ("имя_параметра");

Замечу, что имя файла свойств указывает-
ся без расширения.
Теперь я создам простой файл свойств для
всех сценариев, приведенных в этой гла-
ве, а кроме того, модифицирую сценарий
Connect.java так, чтобы он читал парамет-
ры из этого файла.

Использование файлов свойств

MySQL и Java230

Использование файла свойств

1. Создайте в редакторе новый текстовый
документ (листинг 8.4).

2. Присвойте значения свойствам Driver,
URL, User и Password:

Driver=org.gjt.mm.mysql.Driver

URL=jdbc:mysql:///accounting

user=имя_пользователя

password=пароль

В файле свойств будут храниться че-
тыре параметра (можете при желании
включить в URL имя хоста). Обратите
внимание, что значения параметров не
заключаются в кавычки.

3. Сохраните текст в файле Accounting.
properties.
Лучше сохранять файл свойств в том
же каталоге, где находится использую-
щий его сценарий.
Коль скоро файл свойств создан, я при-
меню его в сценарии Connect.java.

4. Откройте файл Connect.java (листинг
8.1) в текстовом редакторе или в среде
разработки для Java.

5. Импортируйте классы из пакета java.
util после строки, содержащей коман-
ду импорта классов для работы с база-
ми данных:

import java.util.*;

Класс ResourceBundle находится в паке-
те java.util. Если импортировать па-
кет целиком, этот класс можно будет
применять для считывания значений
из внешнего источника.

6. Измените название класса:

public class Connect2 {

Эта операция не обязательна – я вос-
пользовался ей для удобства.

Листинг 8.4. В файле свойств хранятся параметры
приложения

Driver=org.gjt.mm.mysql.Driver

URL=jdbc:mysql:///accounting

user=имя_пользователя

password=пароль

231

7. Измените соответствующую строку ис-
ходного файла, присвоив значение пе-
ременной класса ResourceBundle:

ResourceBundle bundle =

� ResourceBundle.getBundle

� ("Accounting");

Переменная bundle будет нужна для
доступа к информации, хранящейся
в файле свойств.

Листинг 8.5. Модифицированный сценарий Connect.java (переименованный в Connect2.java),
в котором не «зашиты» параметры соединения

import java.sql.*;

import java.util.*;

// Листинг 8.5 "Connect2.java"

public class Connect2 {

 public static void main(String args[]) throws Exception {

 Connection con = null;

 ResourceBundle bundle = ResourceBundle.getBundle("accounting");

 try {

 String url = bundle.getString("URL");;

 Class.forName(bundle.getString("Driver"));

 con = DriverManager.getConnection(url, bundle.getString("user"),

 bundle.getString("password"));

 if (con != null) {

 System.out.println("A database connection has been established!");

 }

 }

 finally {

 if (con != null) {

 try { con.close(); }

 catch(Exception e) { }

 }

 }

 }

}

Использование файлов свойств

MySQL и Java232

8. Модифицируйте предложение try так,
чтобы читать значения из файла свойств:

try {

String url = bundle.getString

� ("URL");

Class.forName(bundle.getString

� ("Driver"));

con = DriverManager.

� getConnection(url,bundle.

� getString("User"), bundle.

� getString("Password"));

if (con != null) {

System.out.println("A database

� connection has been

� established!");

}

}

A database connection has been estab-
lished! – «Соединение с базой данных
установлено».
Здесь используются прочитанные из
файла, а не «зашитые» значения: имя
драйвера, URL, имя и пароль пользова-
теля. При такой структуре сценарий
без изменений будет работать на раз-
ных платформах и с разными базами
данных – достаточно лишь отредакти-
ровать файл свойств.

9. Сохраните модифицированный текст
в файле Connect2.java, откомпилируйте
и запустите его на выполнение (рис. 8.8).

Если вы не изменили имя класса, то текст
следует сохранить в файле Connect.java.
В любом случае файл свойств должен на-
ходиться там же, где файл сценария.

Описанное выше применение класса Re-
sourceBundle – не самое удачное реше-
ние. Было бы лучше вместо него восполь-
зоваться классом Properties, но этот
способ более сложен.

Рис. 8.8. Сценарий Connect2 отличается
от своего предшественника (рис. 8.4) только
источником значений параметров соединения

В этой главе – последней из тех, которые
посвящены программированию, – я пока-
жу некоторые специальные приемы рабо-
ты с MySQL из программ на разных язы-
ках. В предыдущих главах речь шла о ба-
зовых способах взаимодействия с MySQL
программ на языках PHP, Perl и Java, а сей-
час мы поговорим скорее об общих прин-
ципах программирования баз данных, не-
жели о специфике MySQL: обсудим сохра-
нение и выборку двоичных данных, созда-
ние простейшей поисковой машины, гене-
рирование страниц результатов и вопросы
безопасности.
Продемонстрированные в настоящей гла-
ве методы раскрывают, как мне кажется,
наиболее типичные подходы к решению
вышеупомянутых задач. Скорее всего, вы
выработаете для себя несколько иные при-
емы, но изучение приведенного материала
даст вам общее представление о теорети-
ческих основах.
В каждом примере будет использоваться
один из рассмотренных выше языков (в ос-
новном PHP и Perl), но вам не составит
труда реализовать описанные идеи на лю-
бом другом языке. (Если позволит время
и будет достаточно много заявок, я разме-
щу на сайте www.dmcinsights.com/mysql
версии примеров и на других языках.)

Методы
программирования
баз данных

99999

Методы программирования баз данных234

Хранение и выборка
двоичных данных
Очень часто приходится слышать вопрос
о том, как хранить и извлекать двоич-
ные данные в MySQL. К двоичным дан-
ным можно отнести изображения, файлы
в формате PDF и многое другое. Двоич-
ные данные противопоставляются базо-
вым текстовым и числовым данным, ко-
торые обычно хранятся в базе. Для хра-
нения двоичных данных следует завести
колонку типа BLOB1.

CREATE TABLE имя_таблицы(

id INT UNSIGNED NOT NULL AUTO_INCREMENT,

binary_item BLOB

);

MySQL поддерживает поля типа BLOB
разных размеров: TINYBLOB (маленький),
MEDIUMBLOB (средний) и BLOB (обычный),
хотя в стандарте SQL они не определены.
На самом деле тип BLOB – это то же самое,
что тип TEXT, только первый чувствителен
к регистру, а второй – нет.
Определив поле, в котором могут хра-
ниться двоичные данные, вы можете по-
местить туда значение при помощи функ-
ции LOAD_FILE, а выбрать значение – при
помощи команды SELECT:

INSERT INTO имя_таблицы SET

� image=LOAD_FILE('/путь/к/файлу.ext')

SELECT image FROM имя_таблицы

Другой способ – прочитать двоичный файл
из программы и сохранить его в базе дан-
ных. Для примера я создам PHP-сцена-
рий, который загружает файл, указанный
в форме, и отображает его на Web-стра-
нице. Предполагается, что вы работаете

1 BLOB – Binary Large OBject (большой двоичный
объект). – Прим. переводчика.

Следует ли хранить двоичные данные
в базе?

Среди разработчиков баз данных не
стихают споры о том, следует ли хра-
нить двоичные данные в базе. Пред-
лагаемая альтернатива состоит в том,
чтобы сам файл хранился в файловой
системе сервера, а в базе находилось
только его имя. У каждого метода есть
как достоинства, так и недостатки.
С одной стороны, хранение двоичных
данных в базе позволяет делать их ре-
зервную копию вместе со всеми осталь-
ными данными. Кроме того, для их
выборки не нужно никаких полно-
мочий, кроме права доступа к базе.
С другой стороны, для хранения и вы-
борки двоичных данных нужно пи-
сать дополнительный код; при этом
возможно некоторое снижение про-
изводительности.
В конечном счете решение зависит от
разработчика и нужд конкретного
приложения, но сам факт, что MySQL
предоставляет выбор, не может не ра-
довать. Рекомендую попробовать оба
подхода и самостоятельно решить, ка-
кой для вас предпочтительнее.

235

с версией PHP 4.2 – последней на момент
написания этой книги. При использова-
нии более ранних версий, возможно, при-
дется изменить имена некоторых перемен-
ных.

Хранение и извлечение двоичных данных

1. Создайте таблицу со следующей струк-
турой (рис. 9.1):

CREATE TABLE images (

image_id INT(10) UNSIGNED NOT NULL

� AUTO_INCREMENT,

image BLOB,

image_type VARCHAR(10) NOT NULL,

KEY image_id(image_id)

);

Для примера я организовал новую таб-
лицу images в базе данных test. Если вы
решите изменить структуру этой таб-
лицы, то должны будете соответствую-
щим образом модифицировать запро-
сы в приведенном ниже PHP-сценарии.

2. Создайте в текстовом редакторе новый
PHP-сценарий (листинг 9.1):

<!DOCTYPE html PUBLIC "-//W3C//DTD �

XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/2000/

 � REC-xhtml1-20000126/DTD/

 � xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/

� 1999/xhtml">

<head>

 <title>Storing Images in MySQL

 � </title>

</head>

<body>

<?php

Заголовок страницы – Storing Images in
MySQL («Сохранение изображений
в MySQL»).

Рис. 9.1. Перед написанием примера
я создал таблицу, пользуясь монитором mysql

Хранение и выборка двоичных данных

Методы программирования баз данных236

На этой странице используется комби-
нация XHTML и PHP для отображения
формы и обработки загруженного фай-
ла. Выше приведен стандартный пролог
XHTML, за которым следует открываю-
щий тэг PHP.

3. Проверьте, была ли форма отправлена:

if (isset($_POST['submit'])) {

Листинг 9.1. Сценарий store_binary.php предоставляет пользователю возможность выбрать изображение,
которое требуется сохранить в базе данных

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/2000/REC-xhtml1-20000126/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<title>Storing Images in MySQL</title>

</head>

<body>

<?php

// ***** store_binary.php *****

// ***** Листинг 9.1 *****

// Этот сценарий сохраняет изображение в базе данных.

if (isset($_POST['submit'])) { // Если форма была отправлена...

// Информация о доступе к базе данных:

DEFINE (DB_USER, "имя_пользователя");

DEFINE (DB_PASSWORD, "пароль");

DEFINE (DB_HOST, "localhost");

DEFINE (DB_NAME, "test");

// Установить соединение с MySQL:

$db_connection = mysql_connect (DB_HOST, DB_USER, DB_PASSWORD) or

� die ('Could not connect to MySQL: ' . mysql_error());

// Выбрать базу данных:

mysql_select_db (DB_NAME) or die ('Could not select the database: '

� . mysql_error());

// Прочитать загруженный файл:

$image = addslashes(fread(fopen($_FILES['имя_файла']['временное_имя'],

� "r"), $_FILES['имя_файла']['размер']));

237

Поскольку один и тот же сценарий осу-
ществляет и вывод формы, и ее обра-
ботку, мы должны выяснить, что имен-
но нужно делать, – для этого и предна-
значен главный условный оператор. Его
первая ветвь выполняется, когда форма
отправлена (следовательно, POST-пере-
менная submit имеет значение).
Для пущей безопасности здесь можно
было бы проверить, действительно ли
загружен файл (ведь можно отправить
форму, не указав его).

Листинг 9.1. Сценарий store_binary.php предоставляет пользователю возможность выбрать изображение,
которое требуется сохранить в базе данных (окончание)

// Сформировать запрос:

$query = "INSERT INTO images VALUES (0, '$image', '{$_FILES['имя_файла']['тип']}')";

// Выполнить запрос и сообщить о результате:

if (mysql_query ($query)) {

 echo 'Image number ' . mysql_insert_id() . ' has been stored!';

} else {

 echo 'The image could not be stored in the database! ' . mysql_error();

}

// Закрыть соединение с базой данных:

mysql_close();

} else { // Вывести форму:

?>

<form action="store_binary.php" method="post"

 enctype="multipart/form-data">

<input type="hidden" name="MAX_FILE_SIZE" value="200000" />

Select a file to upload: <input type="file" name="имя_файла" />

<input type="submit" name="submit" value="Submit!" />

</form>

<?php

}

?>

</body>

</html>

Хранение и выборка двоичных данных

Методы программирования баз данных238

4. Установите соединение с базой данных:

DEFINE (DB_USER, "имя_пользователя");

DEFINE (DB_PASSWORD, "пароль");

DEFINE (DB_HOST, "localhost");

DEFINE (DB_NAME, "test");

$db_connection = mysql_connect

� (DB_HOST, DB_USER, DB_PASSWORD)

� or die ('Could not connect to

� MySQL: ' . mysql_error());

mysql_select_db (DB_NAME) or die

� ('Could not select the

� database: ' . mysql_error());

Если вы изучили главу 6, эта процедура
вам уже знакома. Сообщение об ошиб-
ке звучит так: Could not select the data-
base – «Не удалось выбрать базу дан-
ных». При желании можете поместить
все параметры соединения в отдель-
ный конфигурационный файл и вклю-
чить его.

5. Прочитайте загруженный файл с изоб-
ражением в строку:

$image =

� addslashes(fread(fopen($_FILES

� ['имя_файла']['временное_имя'],

� "r"), $_FILES['имя_файла']

� ['размер']));

Это самая важная строка во всем сцена-
рии. Здесь загруженный файл (на кото-
рый мы ссылаемся как на $_FILES ['имя_
файла']['размер']) считывается в строко-
вую переменную $image. Файл сначала
открывается функцией fopen(). Откры-
тый файл считывается функцией
fread(), которой в качестве числа бай-
тов, подлежащих чтению, передается
размер всего файла, а затем пропуска-
ется через функцию addslashes().

239

6. Отправьте запрос базе данных и сооб-
щите о результате выполнения:

$query = "INSERT INTO images VALUES

� (0, '$image', '{$_FILES

� ['имя_файла'] ['тип']}')";

if (mysql_query ($query)) {

echo 'Image number ' .

� mysql_insert_id() .

� ' has been stored!';

} else {

echo 'The image could not be

� stored in the database! ' .

� mysql_error();

}

Этот очень простой запрос всего лишь
вставляет новую запись в таблицу ima-
ges. В качестве значений полей указаны 0,
вместо которого в автоинкрементный
первичный ключ будет записано оче-
редное значение; строка $image, содержа-
щая собственно данные; наконец, тип
изображения, извлеченный из MIME-
типа загруженного файла. Можно было
бы также сохранить в базе размеры изоб-
ражения в пикселях.
Image number ... has been stored – «Изо-
бражение номер ... было сохранено».
The image could not be stored in the data-
base! – «Изображение не удалось сохра-
нить в базе данных».
По-настоящему осторожный програм-
мист мог бы перед попыткой вставки
проверить, что переменная $image име-
ет значение (то есть файл был успеш-
но прочитан).

Хранение и выборка двоичных данных

Методы программирования баз данных240

7. Закройте соединение с базой данных
и завершите главный условный опера-
тор, добавив ветвь для вывода формы:
mysql_close();

} else {

?>

<form action="store_binary.php"

� method="post" enctype=

� "multipart/form-data">

<input type="hidden" name=

� "MAX_FILE_SIZE" value=

� "200000" />

Select a file to upload: <input

� type="file" name="имя_файла" />

<input type="submit" name="submit"

� value="Submit!" />

</form>

<?php

}

В коде формы стоит отметить значение
тэга action (он ссылается на тот же са-
мый сценарий), тип кодировки enctype
(только такой тип позволяет загружать
файлы) и имя загружаемого файла –
оно должно совпадать с указанным
в коде обработки формы.
Следует также задать значение парамет-
ра MAX_FILE_SIZE равным максимально-
му приемлемому для вас размеру фай-
ла. В моем примере будут успешно со-
храняться файлы размером до 97 Кб.

8. Завершите сценарий:

?>

</body>

</html>

9. Сохраните текст сценария в файле store_
binary.php, загрузите его на Web-сервер
и протестируйте в браузере (рис. 9.2, 9.3).

Рис. 9.2. При помощи этой HTML-формы
пользователь выбирает на своем диске файл,
который будет загружен в базу

Рис. 9.3. После того как изображение сохранено,
сценарий сообщает, какой идентификатор ему
присвоен. При выборке изображения из базы
понадобится указать это число

241

10. Создайте еще один PHP-сценарий (лис-
тинг 9.2).

11. Проверьте, включен ли в URL иденти-
фикатор изображения:

if (isset($_GET['i'])) {

Листинг 9.2. Сценарий view_image.php (см. рис. 9.4)

<?php

// ***** view_image.php *****

// ***** Листинг 9.2 *****

// Этот сценарий выводит изображение, хранящееся в базе данных.

if (isset($_GET['i'])) { // Если есть номер изображения, вывести его.

// Информация о доступе к базе данных:

DEFINE (DB_USER, "имя_пользователя");

DEFINE (DB_PASSWORD, "пароль");

DEFINE (DB_HOST, "localhost");

DEFINE (DB_NAME, "test");

// Установить соединение с MySQL:

$db_connection = mysql_connect (DB_HOST, DB_USER, DB_PASSWORD) or

� die ('Could not connect to MySQL: ' . mysql_error());

// Выбрать базу данных:

mysql_select_db (DB_NAME) or die ('Could not select the database: ' . mysql_error());

// Извлечь само изображение и информацию о нем:

$query = "SELECT image, image_type FROM images " . "WHERE image_id={$_GET['i']}";

if ($query_result = mysql_query ($query)) {

 $image = mysql_fetch_array($query_result);

 header ("Content-type: $image[1]");

 echo $image[0];

}

// Закрыть соединение с базой данных:

mysql_close();

}

?>

Хранение и выборка двоичных данных

Методы программирования баз данных242

Адрес этой страницы записывается
в виде view_image.php?i=x, где x – иден-
тификатор изображения, присвоенный
ему при сохранении в базе. Данный
оператор как раз и проверяет, указан
ли идентификатор в URL.

12.Установите соединение с базой данных:

DEFINE (DB_USER, "имя_пользователя");

DEFINE (DB_PASSWORD, "пароль");

DEFINE (DB_HOST, "localhost");

DEFINE (DB_NAME, "test");

$db_connection = mysql_connect

� (DB_HOST, DB_USER, DB_PASSWORD)

� or die ('Could not connect to

� MySQL: ' . mysql_error());

mysql_select_db (DB_NAME) or die

� ('Could not select the

� database: ' . mysql_error());

Could not connect to MySQL – «Не удалось
соединиться с MySQL».
Could not select the database – «Не уда-
лось выбрать базу данных».

13.Извлеките изображение из базы дан-
ных:

$query = "SELECT image, image_type

� FROM images WHERE

� image_id={$_GET['i']}";

if ($query_result = mysql_query

� ($query)) {

$image = mysql_fetch_array

� ($query_result);

header ("Content-type: $image[1]");

 echo $image[0];

}

Этот запрос возвращает само изображе-
ние и информацию о его типе по значе-
нию поля image_id (полученному из па-
раметра i, переданного в запросе). Если

243

запрос выполнен успешно, то перемен-
ной $image присваивается массив. Затем
с помощью функции header() вы инфор-
мируете браузер о типе отправленных
данных, для чего посылаете ему MIME-
тип, хранящийся в базе. Ну и напоследок
отправляете само изображение.

14. Завершите сценарий:

mysql_close();

}

?>

15. Сохраните текст сценария в файле view_
image.php, загрузите его на Web-сервер
и протестируйте в браузере (рис. 9.4).
Не забудьте дописать в конец URL иден-
тификатор изображения:

www.someaddress.com/view_image.php?i=1

Чтобы вы могли сохранить двоичный
объект в базе данных MySQL, соответству-
ющий файл должен находиться непос-
редственно на сервере (удаленная загруз-
ка невозможна).

Пользователь MySQL, выполняющий функ-
цию LOAD_FILE(), должен иметь полно-
мочие FILE (это одна из причин, по кото-
рым я воспользовался другим методом).

Сценарий view_image.php можно исполь-
зовать для размещения изображения в лю-
бом месте Web-страницы. Для этого доста-
точно добавить в нужное место тэг .

Если при загрузке или сохранении
изображения в базе происходит ошибка,
проверьте его размер (он должен быть
меньше 100 000 байт). Если изображе-
ние показывается в браузере только час-
тично, измените тип колонки на BLOB
большего размера.

Рис. 9.4. Сценарий view_image.php
извлекает изображение из базы данных
и посылает его браузеру

Хранение и выборка двоичных данных

Методы программирования баз данных244

Создание
поисковой машины
Один из самых полезных аспектов хране-
ния информации в базе данных – это воз-
можность осуществлять поиск. Поиско-
вые машины (например, Google) приме-
няются, главным образом, в Internet, но
и в обычных приложениях и операцион-
ных системах могут принести пользу.
После того как информация помещена
в базу данных, превратить последнюю
в поисковую машину можно двумя спо-
собами:

воспользоваться полнотекстовыми ин-
дексами и полнотекстовым поиском;
вручную написать необходимые запро-
сы к базе данных.

Для крупных приложений с большими
объемами данных полнотекстовая индек-
сация предпочтительнее. Мы обсудим эту
тему в главе 11, а сейчас я продемонстри-
рую, как с помощью Perl можно постро-
ить простую поисковую машину.

Создание поисковой машины

1. Создайте базу данных (рис. 9.5):

CREATE DATABASE movies_db;

USE movies_db;

CREATE TABLE directors(

 director_id SMALLINT(5) UNSIGNED

 � NOT NULL AUTO_INCREMENT,
 first_name VARCHAR(20),

 last_name VARCHAR(40),

 PRIMARY KEY(director_id),

 KEY last_name(last_name)

);

CREATE TABLE movies(

movie_id INT(10) UNSIGNED NOT NULL

� AUTO_INCREMENT,

 title VARCHAR(100),

Рис. 9.5. Для примера я создал базу данных
movies_db

245

 director_id SMALLINT(4),

 PRIMARY KEY(movie_id)

);

В этом примере работа ведется с базой
movies_db, к которой мы будем обра-
щаться и впоследствии.

2. Заполните таблицы (рис. 9.6).
Если база данных еще пуста, добавьте
в нее хотя бы несколько записей с по-
мощью команды INSERT.
Итак, база данных подготовлена, и мы
приступаем к написанию Perl-сценария,
который принимает от пользователя до
двух слов и ищет их в базе данных
movies_db.

3. Создайте в текстовом редакторе новый
Perl-сценарий (листинг 9.3):

#!/usr/bin/perl

use DBI;

use strict;

Рис. 9.6. Для выполнения поиска
надо сначала ввести какие-то данные

Листинг 9.3. Perl-сценарий search_movies.pl показывает, как реализовать простую поисковую машину

#!/usr/bin/perl

Листинг 9.3, 'search_movies.pl'

Включить используемые модули:

use DBI;

use strict;

Соединиться с базой данных:

my $user;

my $password;

my $dbh = DBI->connect('DBI:mysql:movies_db;' .

 mysql_read_default_file=/Users/lullman/.my.cnf',

 $user, $password, {RaiseError => 1});

Если соединение установлено, выполнить запрос:

if ($dbh) {

Создание поисковой машины

Методы программирования баз данных246

4. Установите соединение с базой данных:

my $user;

my $password;

my $dbh = DBI->connect ('DBI:mysql:

� movies_db;mysql_read_default_

� file=/Users/lullman/.my.cnf',

� $user, $password, {RaiseError =>

� 1});

Листинг 9.3. Perl-сценарий search_movies.pl показывает,
как реализовать простую поисковую машину (продолжение)

 # Получить ключевые слова:

 print "Enter a keyword to be searched: ";

 my $term1 = <STDIN>;

 print "Enter a second keyword to be searched: ";

 my $term2 = <STDIN>;

 # Создать предложение SQL:

 my $sql = "SELECT CONCAT(directors.first_name, ' ', " . "directors.last_name)

 � AS Director, title AS Title " . "FROM directors, movies " .

 � "WHERE directors.director_id=movies.director_id";

 # Добавить к предложению SQL ключевые слова:

 if (length($term1) > 1) {

 chop($term1);

 $sql .= " AND ((directors.last_name LIKE '%$term1%' OR " .

 � " directors.first_name LIKE '%$term1%' OR " .

 � " movies.title LIKE '%$term1%')";

 if (length($term2) > 1) {

 chop($term2);

 $sql .= " AND (directors.last_name LIKE '%$term2%' OR " .

 � "directors.first_name LIKE '%$term2%' OR " .

 � "movies.title LIKE '%$term2%')";

 }

 $sql .= ")";

 }

 # Выполнить запрос:

 my $query = $dbh->prepare ($sql);

 my @row;

 my $n;

 if (defined($query)) {

247

Согласно рекомендациям, приведенным
в главе 7, информация о доступе к базе
данных будет храниться в файле .my.cnf.
Если хотите, можете «зашить» эти зна-
чения непосредственно в код.

5. Начните главный условный оператор:

if ($dbh) {

Если соединение удалось установить,
сценарий продолжает работу.

6. Получите ключевые слова, по которым
нужно произвести поиск:
print "Enter a keyword to be

� searched: ";

my $term1 = <STDIN>;

 print "\n";

 $query->execute();

 for ($n=0; $n < $query->{'NUM_OF_FIELDS'}; $n++) {

 print @{$query->{'NAME'}}[$n];

 print "\t";

 }

 print "\n";

 while (@row = $query->fetchrow_array()) {

 foreach (@row) {

 print "$_ \t";

 }

 print "\n";

 }

 } else {

 print "The query was not executed because MySQL reported " . DBI->errstr() . ".

 � \n";

 }

 print "\n";

 # Завершить запрос и закрыть соединение с базой данных:

 $query->finish();

 $dbh->disconnect;

} else {

 print "Could not connect to the database! \n";

}

Листинг 9.3. Perl-сценарий search_movies.pl показывает,
как реализовать простую поисковую машину (окончание)

Создание поисковой машины

Методы программирования баз данных248

print "Enter a second keyword

� to be searched: ";

my $term2 = <STDIN>;

Enter a keyword to be searched – «Введи-
те ключевое слово для поиска».
Enter a second keyword to be searched –
«Введите второе ключевое слово для по-
иска».
Таким образом пользователю дается
возможность ввести до двух ключевых
слов, поиск которых будет вестись в таб-
лицах directors (режиссеры) и movies
(фильмы). Можете усложнить сцена-
рий, изменив входные данные (напри-
мер, позволив пользователю указать
таблицу или колонку, где должен осу-
ществляться поиск).

7. Начните SQL-запрос:

my $sql = "SELECT CONCAT

� (directors.first_name, ' ',

� directors.last_name) AS

� Director, title AS Title

� FROM directors, movies

� WHERE directors.director_id=

� movies.director_id";

Этот запрос вернет фамилию режиссера
и название фильма из каждой записи,
удовлетворяющей критерию поиска. С
помощью слова AS я изменил названия
колонок на псевдонимы Director (ре-
жиссер) и Title (название). В дальнейшем
вы увидите, для чего это нужно.

8. Добавьте к запросу ключевые слова:

if (length($term1) > 1) {

chop($term1);

$sql .= " AND ((directors.

� last_name LIKE '%$term1%'

� OR directors.first_name

� LIKE '%$term1%' OR

� movies.title LIKE

� '%$term1%')";

249

 if (length($term2) > 1) {

chop($term2);

$sql .= " AND (directors.

� last_name LIKE

� '%$term2%' OR

� directors.first_name

� LIKE '%$term2%' OR

� movies.title LIKE

� '%$term2%')";

}

$sql .= ")";

}

В базе данных movies_db есть три поля,
где в принципе можно производить по-
иск: directors.first_name (режиссеры.имя),
directors.last_name (режиссеры.фами-
лия) и movies.title (фильмы.название).
К каждому полю применено условие LIKE
'%ключевое_слово%'. Также будем счи-
тать, что если введены два слова, то по-
исковому запросу удовлетворяют толь-
ко записи, содержащие оба.
При построении запроса вы сначала
проверяете, заданы ли оба ключевых
слова (не предполагая, что пользова-
тель вообще что-то ввел), а затем от-
брасываете последний символ каждо-
го, если он совпадает с символом воз-
врата каретки. После этого остается
добавить нужные условия в уже сфор-
мированный запрос.
Эта часть сценария и лежит в основе по-
исковой машины. Тут вам предоставля-
ется большой простор для различных
изменений и улучшений. Можно, на-
пример, ограничить поиск конкретны-
ми колонками, разрешить ввод более
двух ключевых слов или изменить ло-
гику поиска, то есть соединять условия
связкой OR (ИЛИ) либо AND (И) по ука-
занию пользователя.

Создание поисковой машины

Методы программирования баз данных250

9. Выполните запрос и выведите результа-
ты:

my $query = $dbh->prepare ($sql);

my @row;

my $n;

if (defined($query)) {

print "\n";

$query->execute();

for ($n=0; $n < $query->

� {'NUM_OF_FIELDS'}; $n++) {

print @{$query->{'NAME'}}[$n];

print "\t";

 }

print "\n";

while (@row = $query->

� fetchrow_array()) {

foreach (@row) {

print "$_ \t";

}

print "\n";

}

} else {

print "The query was not

� executed because MySQL

� reported " . DBI->errstr() .

� ". \n";

}

print "\n";

Логика вывода результатов мало отлича-
ется от того, что мы делали в сценарии
browse_table.pl из главы 7 (рис. 7.4). Я
лишь слегка изменил формат, но все ос-
тальное вам уже знакомо.
The query was not executed because MySQL
reported – «Запрос не был выполнен из-
за ошибки MySQL».

251

10. Освободите ресурсы MySQL и завер-
шите сценарий:

$query->finish();

$dbh->disconnect;

} else {

print "Could not connect to the

� database! \n";

}

Could not connect to the database! – «Не
удалось соединиться с базой данных».
Ветвь else выполняется, если не удалось
установить соединение с базой данных
(см. проверку переменной $dbh).

11. Сохраните сценарий в файле search_
movies.pl (в том же каталоге, где нахо-
дится файл .my.cnf, если вы им пользо-
вались) и протестируйте его (рис. 9.7,
9.8).

Одно из преимуществ полнотекстового по-
иска состоит в том, что он возвращает ре-
зультаты, отсортированные по релевант-
ности.

Для повышения эффективности поиска по
строковым колонкам постройте индексы по
этим колонкам1.

Рис. 9.7. По ключевому слову steven найдены все
фильмы, снятые Стивеном Содербергом (Steven
Soderbergh) и Стивеном Спилбергом (Steven
Spielberg). Здесь же могли бы упоминаться
фильмы, в названии которых есть имя Steven,
а также снятые режиссером по фамилии Stevens

Рис. 9.8. Поиск по двум ключевым словам
возвращает меньше записей

1 Это не приведет к повышению эффективности,
если в предикате LIKE указывать аргумент, начи-
нающийся с метасимвола, например LIKE

'%Stevens%'. Если же аргумент начинается с
обычного символа (LIKE 'Stevens%'), некоторое
ускорение действительно возможно. – Прим. пе-
реводчика.

Создание поисковой машины

Методы программирования баз данных252

Разбиение результатов
поиска на страницы
Если вы имеете дело не с маленькими ба-
зами данных, предложения SELECT подчас
возвращают десятки, сотни, а то и тысячи
строк. Вы вряд ли захотите, чтобы все они
отображались одновременно при выводе
результатов (на Web-страницу или иным
способом). Обычно в таких случаях отчет
о результатах разбивается на страницы,
скажем, по 25 записей.
Существуют два способа разбиения на
страницы – выбор того или иного вари-
анта зависит от используемого языка про-
граммирования и потребностей приложе-
ния:

некоторой переменной присваивается
ссылка на объект-запрос и передается
между страницами (см. врезку «Ис-
пользование ссылки на запрос»);
запрос для формирования каждой стра-
ницы выполняется заново, причем но-
мера начальной и конечной записей
меняются (с помощью слова LIMIT).

Для большинства целей второго способа
достаточно, и я продемонстрирую его на
примере PHP-сценария. Он будет показы-
вать все записи о фильмах в базе данных
movies_db, отсортированные по названию.

Использование ссылки на запрос

Если язык программирования позво-
ляет не закрывать соединение с базой
данных при каждом запуске сценария
(то есть поддерживает постоянные
соединения), можно применить более
простой подход.
Обычно результаты запроса представ-
ляют собой объект, который можно
присвоить переменной. Записи из ре-
зультирующего набора выбираются
в цикле методом этого объекта. Но
если такой объект может существо-
вать и после завершения работы сце-
нария, то его можно передавать меж-
ду страницами и, следовательно, из-
бежать повторного запроса к базе.

253

Формирование страницы результатов

1. Создайте и заполните базу данных mo-
vies_db (рис. 9.9).
Если вы уже сделали это (см. п. 1 пре-
дыдущей инструкции), можете либо
пропустить этот шаг, либо добавить
новые записи – и чем больше, тем лучше.

2. Создайте в текстовом редакторе новый
PHP-сценарий (листинг 9.4). Заголовок
страницы – Browse the Movie Titles (Вес-
ти поиск по названиям фильмов):

<!DOCTYPE html PUBLIC "-//W3C//DTD �

XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/2000/REC-

� xhtml1-20000126/DTD/xhtml1-

� transitional.dtd">

<html xmlns="http://www.w3.org/

� 1999/xhtml">

<head>

<title>Browse the Movie Titles

� </title>

</head>

<body>

<?php

Рис. 9.9. Чтобы в полной мере
продемонстрировать разбиение на страницы,
я добавлю в базу данных еще несколько записей

Листинг 9.4. Этот PHP-сценарий показывает, насколько просто разбить результат на страницы

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/2000/REC-xhtml1-20000126/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<title>Browse the Movie Titles</title>

</head>

<body>

<?php

// ***** browse_movies.php *****

// ***** Листинг 9.4 *****

// Этот сценарий формирует страницы перечня фильмов в базе movies_db.

Разбиение результатов поиска на страницы

Методы программирования баз данных254

Листинг 9.4. Этот PHP-сценарий показывает, насколько просто разбить результат
на страницы (продолжение)

// Число записей на странице:

$display_number = 5;

// Информация о соединении с базой данных:

DEFINE (DB_USER, "имя_пользователя");

DEFINE (DB_PASSWORD, "пароль");

DEFINE (DB_HOST, "localhost");

DEFINE (DB_NAME, "movies_db");

// Установить соединение с MySQL:

$db_connection = mysql_connect (DB_HOST, DB_USER, DB_PASSWORD) or

 die ('Could not connect to MySQL: ' . mysql_error());

// Выбрать базу данных:

mysql_select_db (DB_NAME) or

 die ('Could not select the database: ' . mysql_error());

// Определить общее число записей:

if (isset($_GET['np'])) {

 $num_pages = $_GET['np'];

} else {

 $query = "SELECT CONCAT(directors.first_name, ' ', " .

 "directors.last_name) AS Director, title AS Title " .

 "FROM directors, movies " .

 "WHERE directors.director_id=movies.director_id " .

 "ORDER BY movies.title ASC";

 $query_result = mysql_query ($query) or die (mysql_error());

 $num_records = @mysql_num_rows ($query_result);

 if ($num_records > $display_number) {

 $num_pages = ceil ($num_records/$display_number);

 } else {

 $num_pages = 1;

 }

}

// Определить номер первой записи на странице:

if (isset($_GET['s'])) {

 $start = $_GET['s'];

} else {

 $start = 0;

}

255

3. Задайте число записей на одной страни-
це:

$display_number = 5;

Мне удобно представить это число как
значение переменной. Тогда для изме-
нения размера страницы придется мо-
дифицировать только одну строку, хотя
само значение встречается в тексте сце-
нария несколько раз.

4. Установите соединение с базой данных:

DEFINE (DB_USER, "имя_пользователя");

DEFINE (DB_PASSWORD, "пароль");

DEFINE (DB_HOST, "localhost");

DEFINE (DB_NAME, "movies_db");

// Выбрать и вывести результаты:

$query = "SELECT CONCAT(directors.first_name, ' ', " .

 "directors.last_name) AS d, title " .

 "FROM directors, movies " .

 "WHERE directors.director_id=movies.director_id " .

 "ORDER BY movies.title ASC LIMIT $start, $display_number";

$query_result = mysql_query ($query) or die (mysql_error());

// Вывести все записи:

while ($row = mysql_fetch_array ($query_result, MYSQL_ASSOC)) {

echo "{$row['d']} <i>{$row['title']}</i>
\n";

}

// При необходимости сформировать ссылки на другие страницы:

if ($num_pages > 1) {

 echo '<hr width="50%" align="left" />';

 // Определить, какая страница текущая:

 $current_page = ($start/$display_number) + 1;

 // Если текущая страница не первая, добавить кнопку Previous (Предыдущая):

 if ($current_page != 1) {

 echo '<a href="browse_movies.php?s=' .

 ($start - $display_number) . '&np=' . $num_pages .

 '">Previous ';

 }

Листинг 9.4. Этот PHP-сценарий показывает, насколько просто разбить результат
на страницы (продолжение)

Разбиение результатов поиска на страницы

Методы программирования баз данных256

$db_connection = mysql_connect

� (DB_HOST, DB_USER, DB_PASSWORD)

� or die ('Could not connect to

� MySQL: ' . mysql_error());

mysql_select_db (DB_NAME) or

� die ('Could not select the

� database: ' . mysql_error());

Could not connect to MySQL – «Не удалось
соединиться с MySQL».
Could not select the database – «Не уда-
лось выбрать базу данных».
Можно было бы поместить эту инфор-
мацию и в отдельный конфигурацион-
ный файл.

// Вывести номера всех страниц:

 for ($i = 1; $i <= $num_pages; $i++) {

 if ($i != $current_page) {

 echo '<a href="browse_movies.php?s=' .

 (($display_number * ($i - 1))) . '&np=' . $num_pages . '">' .

 $i . ' ';

 } else {

 echo $i . ' ';

 }

 }

 // Если страница не последняя, добавить кнопку Next (Следующая):

 if ($current_page != $num_pages) {

echo '<a href="browse_movies.php?s=' . ($start + $display_number) .

 '&np=' . $num_pages . '">Next ';

 }

}

// Освободить ресурсы:

mysql_free_result($query_result);

mysql_close();

?>

</body>

</html>

Листинг 9.4. Этот PHP-сценарий показывает, насколько просто разбить результат
на страницы (окончание)

257

5. Определите, сколько страниц понадо-
бится для вывода всех записей:

if (isset($_GET['np'])) {

$num_pages = $_GET['np'];

} else {

$query = "SELECT CONCAT

� (directors.first_name, ' ', " .

� "directors.last_name) AS

� Director, title AS Title " .

� "FROM directors, movies " .

� "WHERE directors.director_id=

� movies.director_id " .

� "ORDER BY movies.title ASC";

$query_result = mysql_query

� ($query) or die

� (mysql_error());

$num_records = @mysql_num_rows

� ($query_result);

 if ($num_records >

� $display_number) {

$num_pages = ceil

� ($num_records/

� $display_number);

} else {

$num_pages = 1;

}

}

Первым делом необходимо выяснить,
сколько всего записей и, стало быть,
сколько страниц понадобится для их
вывода. Если в URL есть параметр np
(общее число страниц), то эта величи-
на уже была вычислена раньше, так
что снова обращаться к ней нет нуж-
ды. Если же параметр np отсутствует,
его придется вычислить.
Чтобы узнать число страниц, мы один
раз запрашиваем базу данных и под-
считываем, сколько возвращено строк.
Если их больше, чем помещается на
страницу, то полученное значение де-
лится на размер (высоту) страницы

Разбиение результатов поиска на страницы

Методы программирования баз данных258

и результат округляется до ближайше-
го большего целого. В противном слу-
чае будет достаточно одной страницы.

6. Определите номер первой записи на
странице:

if (isset($_GET['s'])) {

$start = $_GET['s'];

} else {

$start = 0;

}

В самом запросе мы воспользуемся фра-
зой LIMIT для выборки $display_number
записей. Но сначала нужно выяснить,
какое именно значение указать первым
для параметра LIMIT: 0 (начать с первой
записи) или что-то другое. Если в URL
есть параметр s (номер начальной запи-
си), то он и будет использоваться
в запросе. В противном случае мы пред-
полагаем, что начинать надо с самой
первой записи.

7. Выведите все записи на данной странице:

$query = "SELECT CONCAT

� (directors.first_name, ' ', " .

� "directors.last_name) AS d,

� title " . "FROM directors,

� movies " . "WHERE directors.

� director_id=movies.director_id " .

� "ORDER BY movies.title ASC LIMIT

� $start, $display_number";

$query_result = mysql_query

� ($query) or die (mysql_error());

while ($row = mysql_fetch_array

� ($query_result, MYSQL_ASSOC)) {

echo "{$row['d']} <i>

� {$row['title']}</i>
\n";

}

259

Этот запрос в точности совпадает с тем,
что использовался для определения
числа записей и страниц, если не счи-
тать фразы LIMIT, как раз и позволяю-
щей выбрать именно те записи, кото-
рые должны быть выведены на данную
страницу. Так, при просмотре первой
страницы пользователь увидит записи
1–5 (результат применения LIMIT 0,5).
Для второй страницы будет использо-
ваться ограничение LIMIT 5,5, для треть-
ей – LIMIT 10,5 и т.д.
Помимо выполнения запроса в этой час-
ти сценария производится вывод дан-
ных в очень простом формате.

8. Начните формировать ссылки на дру-
гие страницы результатов:

if ($num_pages > 1) {

echo '<hr width="50%"

� align="left" />';

$current_page = ($start/

� $display_number) + 1;

Если для представления результата тре-
буется несколько страниц, то нужно вы-
вести ссылки, позволяющие пользова-
телю перемещаться между страницами.
В данном случае мы сформируем ссыл-
ки на предыдущую и следующую стра-
ницу, а также номера всех возможных
страниц. Для вычисления номера теку-
щей страницы я прибавляю 1 к частно-
му от деления первой записи на число
записей. Например, для первой записи
$start равно 0, а $display_number равно 5.
Тогда $start / $display_number + 1 = 1.
Для четвертой страницы $start равно 15
(это четвертая группа из пяти записей),
а $display_number по-прежнему равно 5.

Разбиение результатов поиска на страницы

Методы программирования баз данных260

9. Создайте ссылку Previous (Предыду-
щая):

if ($current_page != 1) {

echo '<a href="browse_

� movies.php?s=' . ($start -

� $display_number) . '&np=' .

� $num_pages . '">Previous

� ';

}

Если текущая страница – не первая, то
мы размещаем ссылку на предыдущую
страницу. Ссылка имеет вид browse_
movies.php?s=x&np=y, где s – номер пер-
вой записи на странице, а np – общее
число страниц. Значение x вычисляется
на основе номера текущей страницы
и ее размера (проще говоря, начало пре-
дыдущей страницы отстоит от начала
текущей на $display_number записей).
Величина y равна уже известному к это-
му моменту полному числу страниц.

10. Сгенерируйте ссылки на номера стра-
ниц:

for ($i = 1; $i <= $num_pages;

� $i++) {

if ($i != $current_page) {

echo '<a href="browse_

� movies.php?s=' .

� (($display_number *

� ($i - 1))) . '&np=' .

� $num_pages . '">' .

� $i . ' ';

} else {

echo $i . ' ';

}

}

Чтобы пользователь мог сразу перей-
ти на любую страницу списка филь-
мов, ссылки формируются на каждую
из них. Для этого в цикле от 1 до чис-
ла страниц создаются ссылки на каж-
дую страницу, кроме текущей (ведь

261

ссылаться на ту страницу, где мы уже
находимся, не имеет никакого смыс-
ла). Значение параметра s равно про-
изведению $i - 1 на размер (высоту)
страницы. Для второй страницы $i – 1
равно 1, а после умножения на 5 полу-
чаем 5, то есть вторая страница будет
начинаться со второй группы из пяти
записей.

11. Сформируйте ссылку Next (Следую-
щая):

if ($current_page != $num_pages) {

echo '<a href="browse_movies.

� php?s=' . ($start +

� $display_number) . '&np=' .

� $num_pages . '">Next ';

}

Ссылка Next будет присутствовать на
каждой странице, кроме последней.

12. Завершите условный оператор, закрой-
те соединение и HTML-страницу:

}

mysql_free_result($query_result);

mysql_close();

?>

</body>

</html>

13. Сохраните сценарий в файле browse_
movies.php, загрузите его на Web-сер-
вер и протестируйте в браузере (см.
рис. 9.10–9.12).

Рис. 9.10. При первом обращении пользователя
к сценарию browse_movies.php выводятся
информация о пяти фильмах, отсортированных
по названиям, и ссылки на другие страницы

Рис. 9.11. Страница открывается при щелчке
по ее номеру

Рис. 9.12. На последней странице нет ссылки Next,
а на первой – ссылки Previous (см. рис. 9.10)

Разбиение результатов поиска на страницы

Методы программирования баз данных262

Безопасность
базы данных
Безопасность – это важная тема, которую
нельзя обойти вниманием. База данных
ценна, только если содержит корректные
данные, а это в немалой степени зависит от
мер предосторожности, принятых вами
при разработке приложений.
Безопасность базы данных в контексте
программирования подразумевает три усло-
вия. Во-первых, нужно правильно распре-
делить полномочия, так чтобы сценарии,
которые должны осуществлять только вы-
борку, исполнялись от имени пользователя,
имеющего лишь право SELECT, а уж никак
не от имени root. Во-вторых, следует на-
дежно хранить имена и пароли пользова-
телей. В-третьих, введенные пользовате-
лями данные надлежит проверять перед
их записью в базу. Последнее касается не
только безопасности, но и целостности
данных.
В табл. 9.1 приведены различные функ-
ции и операторы PHP и Perl, так или ина-
че связанные с безопасностью. Возможно,
для проверки введенной пользователями
информации лучше всего применять ре-
гулярные выражения, но это тема доволь-
но сложная – явно не для начинающих
разработчиков.

Таблица 9.1. Некоторые из наиболее распространенных средств повышения безопасности приложений
для работы с базами данных

Функция Язык Назначение

addslashes() PHP Экранирует некоторые символы

ereg() PHP Применяет регулярное выражение к данным

is_numeric() PHP Проверяет, является ли значение числом

mysql_escape_string PHP Экранирует символы в строке из расчета на MySQL

s// Perl Применяет регулярное выражение к данным

q{} Perl Используется для экранирования одиночных кавычек

263

В следующем примере будет показано,
как можно использовать регулярные вы-
ражения в Perl для экранирования оди-
ночных кавычек. Если хотите узнать под-
робнее о регулярных выражениях, обра-
титесь к главе 11 или сами поищите нуж-
ные материалы в Internet.

Повышение безопасности Perl-сценария

1. Откройте файл search_movies.pl в тек-
стовом редакторе.
Один из недостатков прежней версии
сценария (см. листинг 9.3) состоит в том,
что он аварийно завершается, когда поль-
зователь вводит ключевое слово, содер-
жащее апостроф (рис. 9.13). MySQL вы-
дает ошибку потому, что нарушается
баланс одиночных кавычек в запросе.

2. После строки 28 в исходном сценарии
добавьте такую строку (см. листинг 9.5):

$term1 =~s/'/\\'/g;

Это пример применения регулярных
выражений в Perl. Смысл его в том,
что каждая одиночная кавычка в зна-
чении переменной $term1 экранирует-
ся, то есть заменяется последовательно-
стью \\'. Два знака \ нужны потому,
что сам символ косой черты является
специальным, поэтому первая косая
черта экранирует вторую.

Рис. 9.13. Первоначальная версия сценария
search_movies.pl завершается с ошибкой,
если в ключевом слове есть апостроф

Безопасность базы данных

Методы программирования баз данных264

3. После строки 32 в исходном сценарии
добавьте такую строку:

$term2 =~s/'/\\'/g;

Здесь то же самое регулярное выраже-
ние применяется ко второму ключево-
му слову.

4. Сохраните файл (я назвал новую вер-
сию search_movies2.pl) и протестируй-
те его (рис. 9.14).

Чтобы экранировать двойные кавычки в клю-
чевых словах, воспользуйтесь такими регу-
лярными выражениями:

$term1 =~s/"/\\"/g;

$term2 =~s/"/\\"/g;

Рис. 9.14. В результате применения
регулярных выражений сценарий стал работать
более корректно (ср. рис. 9.13)

Листинг 9.5. В модифицированной версии сценария search_movies.pl
устранена причина возникновения ошибок SQL из-за неэкранированных одиночных кавычек

#!/usr/bin/perl

Листинг 9.5, 'search_movies2.pl'

Включить используемые модули:

use DBI;

use strict;

Установить соединение с базой данных:

my $user;

my $password;

my $dbh = DBI->connect('DBI:mysql:movies_db;' .

 mysql_read_default_file=/Users/lullman/.my.cnf',

 $user, $password, {RaiseError => 1});

Если соединение установлено, выполнить запрос:

if ($dbh) {

 # Получить ключевые слова:

 print "Enter a keyword to be searched: ";

 my $term1 = <STDIN>;

 print "Enter a second keyword to be searched: ";

 my $term2 = <STDIN>;

 # Создать предложение SQL:

 my $sql = "SELECT CONCAT(directors.first_name, ' ', " .

 "directors.last_name) AS Director, title AS Title " .

265

Листинг 9.5. В модифицированной версии сценария search_movies.pl устранена причина
возникновения ошибок SQL из-за неэкранированных одиночных кавычек (продолжение)

 "FROM directors, movies " .

 "WHERE directors.director_id=movies.director_id";

 # Добавить к предложению SQL ключевые слова:

 if (length($term1) > 1) {

 chop($term1);

 $term1 =~s/'/\\'/g;

 $sql .= " AND ((directors.last_name LIKE '%$term1%' OR " .

 " directors.first_name LIKE '%$term1%' OR " .

 " movies.title LIKE '%$term1%')";

 if (length($term2) > 1) {

 chop($term2);

 $term2 =~s/'/\\'/g;

 $sql .= " AND (directors.last_name LIKE '%$term2%' OR " .

 "directors.first_name LIKE '%$term2%' OR " .

 "movies.title LIKE '%$term2%')";

 }

 $sql .= ")";

 }

 # Выполнить запрос:

 my $query = $dbh->prepare ($sql);

 my @row;

 my $n;

 if (defined($query)) {

 print "\n";

 $query->execute();

 for ($n=0; $n < $query->{'NUM_OF_FIELDS'}; $n++) {

 print @{$query->{'NAME'}}[$n];

 print "\t";

 }

 print "\n";

 while (@row = $query->fetchrow_array()) {

 foreach (@row) {

 print "$_ \t";

 }

 print "\n";

 }

 } else {

 print "The query was not executed because MySQL reported " .

 DBI->errstr() . ". \n";

 }

 print "\n";

Безопасность базы данных

Методы программирования баз данных266

Листинг 9.5. В модифицированной версии сценария search_movies.pl устранена причина
возникновения ошибок SQL из-за неэкранированных одиночных кавычек (окончание)

Завершить запрос и закрыть соединение с базой данных:

 $query->finish();

 $dbh->disconnect;

} else {

 print "Could not connect to the database! \n";

}

Теперь, когда вы постигли науку установ-
ки и запуска MySQL, создания баз данных
и даже написания приложений на языках
PHP, Perl и Java, пора приступить к изуче-
нию практики администрирования базы
данных. Администрирование подразуме-
вает несколько аспектов, начиная от ре-
зервного копирования и кончая повыше-
нием безопасности и производительнос-
ти. К счастью, MySQL – настолько надеж-
ный продукт, что обслуживания почти не
требуется, но если проблемы все же воз-
никнут, они, как правило, легко решаются.
Демонстрацию различных приемов я буду
проводить на примере операционных сис-
тем Windows 2000, Mac OS X и Red Hat
Linux. Вы узнаете, что в новых версиях My-
SQL задачи, для которых раньше нужны
были отдельные утилиты (например, mysql-
dump), теперь можно решить с использо-
ванием монитора mysql, при помощи спе-
циальных команд SQL. В таких случаях,
прежде всего, будет рассматриваться спе-
циализированное приложение, а во врез-
ках вы найдете информацию о командах
SQL.

Администрирование
MySQL 1010101010

Администрирование MySQL268

Файлы данных MySQL
По мере наполнения базы данных инфор-
мацией все большую актуальность при-
обретает регулярное создание резервных
копий. MySQL хранит всю информацию,
в совокупности составляющую базу дан-
ных (как структуру, так и сами данные)
в файлах на диске сервера. В зависимости
от операционной системы, дистрибутива
и конфигурационных параметров эти фай-
лы обычно располагаются в следующих
местах:

C:\mysql\data;
/usr/local/mysql/data;
/usr/local/var;
/var/lib/mysql.

Если вы не знаете, где на вашем компьюте-
ре размещаются файлы данных, откройте
каталог с исполняемыми файлами MySQL –
это может быть, например, /usr/local/mysql/
bin или C:\mysql\bin – и запустите следую-
щую команду, указав имя пользователя
root и соответствующий пароль (рис. 10.1):

mysqladmin -u root -p variables

В этом каталоге MySQL создает подката-
логи для каждой базы данных, а уже внут-
ри них – файлы базы данных. Например,
если ваша база называется alpacas, то со-
ответствующие ей файлы окажутся в ка-
талоге C:\mysql\data\alpacas. Каждая табли-
ца представлена тремя файлами (рис. 10.2):

файл имя_таблицы.FRM содержит опи-
сание структуры таблицы: имена и типы
колонок и т.п.;
файл имя_таблицы.MYD содержит дан-
ные, хранящиеся в таблице;
файл имя_таблицы.MYI содержит по-
строенные над таблицей индексы.

Рис. 10.1. Команда mysqladmin variables
выводит список параметров MySQL, в том числе
значение переменной datadir, указывающей
на каталог с данными

Рис. 10.2. Файлы базы данных – по три
для каждой таблицы – хранятся в каталоге,
который называется так же, как сама база

269

Так хранятся все таблицы типа MyISAM.
По умолчанию MySQL создает именно та-
кие таблицы; ISAM – это сокращение от
Indexed Sequential Access Method (индексно-
последовательный метод доступа). В прин-
ципе для создания резервной копии доста-
точно просто скопировать все файлы базы.

Порядок копирования каталога с данными

1. Остановите сервер MySQL одной из
следующих команд (рис. 10.3):
– mysqladmin -u root -p shutdown (UNIX/

Mac OS X);
– NET STOP mysql (Windows, система

MySQL запущена как сервис);
– /etc/rc.d/init.d/mysql stop (Red Hat

Linux).
Эти методы останова сервера рассмат-
ривались в главе 2. Для запуска утили-
ты mysqladmin вы должны перейти
в соответствующий каталог (например,
/usr/local/mysql/bin или C:\mysql\bin),
имя которого зависит от конфигура-
ции системы.
Перед копированием файлов базы очень
важно остановить сервер, чтобы исклю-
чить возможность модификации фай-
лов во время копирования.

2. Скопируйте файлы в новое место (см.
рис. 10.4):

cd /путь/к/mysql

tar -cvf /путь/к/месту_назначения

� /data.tar data

cd /путь/к/месту_назначения/

tar -xf data.tar

Рис. 10.3. При копировании файлов вручную
следует предварительно остановить сервер MySQL

Рис. 10.4. В системах UNIX и Mac OS X
для копирования файлов данных
можно воспользоваться командой tar

Файлы данных MySQL

Администрирование MySQL270

Эти команды будут работать в системах
UNIX и Mac OS X (Windows предусмат-
ривает копирование файлов с помощью
программы Windows Explorer.) Вторая
команда создает архив, содержащий все
файлы из каталога data, и сохраняет его
в целевом каталоге. Четвертая команда
разворачивает архив, помещая находя-
щиеся в нем файлы в текущий каталог.
Остальные две строки предназначены
для перехода в каталог; измените пути
в соответствии с конфигурацией вашей
системы.
Для выполнения этих операций обыч-
но нужны полномочия суперпользова-
теля root.

3. Восстановите «личность» владельца фай-
лов (рис. 10.5):

chown -R mysql data/*

Чтобы сервер MySQL мог производить
запись в базу данных, необходимо из-
менить владельца скопированных фай-
лов. Поскольку сервер mysqld обычно
запускается от имени пользователя my-
sql, каталог data тоже должен принад-
лежать именно ему. Можно указать од-
новременно владельца и группу коман-
дой chown -R mysql.mysql.
Приведенные выше команды будут ра-
ботать в большинстве операционных
систем. В Windows вы должны щелк-
нуть правой кнопкой по каталогу и уста-
новить права доступа во всплывающем
окне (его вид зависит от версии Win-
dows). А вообще-то, учитывая, как ра-
ботает система разграничения доступа
в Windows, можете не возиться с этим.

4. Запустите MySQL.

Рис. 10.5. Последний этап резервного копирования –
восстановление надлежащего владельца

При перемещении файлов базы данных
в каталог, где уже есть одноименные фай-
лы (то есть находится база данных с таким
же именем), следует сначала удалить или
переименовать старые файлы.

В главном каталоге данных обычно тоже
есть файлы, используемые MySQL. Это про-
токолы (ошибок и пр.). Подробнее о них бу-
дет рассказано ниже в этой главе.

Для безопасного резервного копирования
данных база должна быть заблокирована
(об этом пойдет речь в главе 11). В качестве
альтернативы можно остановить сервер
mysqld, как показывает вышеприведенный
пример.

271

Резервное копирование
базы данных
Есть и другой способ резервного копиро-
вания – использование утилиты mysql-
dump, входящей в состав MySQL. Вместо
того чтобы копировать файл, mysqldump
формирует файл, содержащий команды
создания и заполнения таблиц. У этого
метода есть еще одно преимущество – он
позволяет легко перенести базу на другую
операционную систему и даже в другую
СУБД.
Утилита mysqldump вызывается следую-
щим образом:

mysqldump [флаги] имя_базы_данных

Флаги можно не задавать вовсе. Чаще все-
го используются такие:

--add-drop-table включает в выходной
файл код для удаления таблицы перед
ее созданием;
-d показывает, что нужно вывести толь-
ко структуру базы, но не сами данные;
-t показывает, что нужно вывести толь-
ко данные, но не структуру базы;
-T позволяет указать каталог, в кото-
ром размещаются выходные файлы.

Последний флаг особенно полезен, так как
в противном случае mysqldump направит
весь вывод на экран, что не очень удобно.
Например, следующая команда создаст
в каталоге C:\backup по два файла для каж-
дой таблицы из указанной базы:

mysqldump -u root -p -T C:\backup

� имя_базы_данных

В принципе проще и безопаснее всего вы-
звать утилиту mysqldump с флагом --opt.
Это предполагает установку стандартного
набора параметров и создание одного боль-
шого файла вместо множества малень-
ких. В этом случае вы должны указать имя

Эквивалент в языке SQL, часть 1

В последних версиях MySQL можно
выполнять резервное копирование (как
это делает утилита mysqldump) непо-
средственно из монитора mysql. Вот
какая команда для этого предназна-
чена:
BACKUP TABLE имя_таблицы TO '/путь

� /к/каталогу'

Этот запрос записывает в указанный
каталог все данные из таблицы в виде
файлов с расширениями .FRM, .MYD
и .MYI. Можно сделать копии сразу
нескольких таблиц, перечислив их
имена через запятую.
Еще одну возможность предоставляет
команда SELECT INTO:
SELECT * INTO

� OUTFILE '/путь/к/каталогу
� /имя_файла.txt'
� FROM имя_таблицы
Таким образом можно создать и более
специализированный запрос, резуль-
таты которого выводятся в файл. Но
при этом сохраняются только данные
без структуры таблицы.
Применяя SQL для резервного копи-
рования, следует иметь в виду, что
у MySQL должны быть права для со-
здания файлов в указанном каталоге,
а пользователь, пытающийся выпол-
нить такой запрос, должен иметь пол-
номочие FILE (кстати, это означает, что
проводить подобную операцию лучше
всего непосредственно на сервере).
С учетом всего вышесказанного вы,
возможно, предпочтете пользоваться
утилитой mysqldump.

Резервное копирование базы данных

Администрирование MySQL272

файла, содержащего резервную копию, а не
имя каталога.

mysqldump --opt имя_базы_данных

� >/путь/к/файлу.sql

Давайте решим практическую задачу –
сделаем резервную копию базы данных
accounting, с которой мы работали на про-
тяжении всей книги.

Использование утилиты mysqldump

1. Войдите в систему, используя команд-
ный интерпретатор.

2. Перейдите в каталог mysql/bin (или
просто mysql, в зависимости от опе-
рационной системы):

cd /usr/local/mysql (UNIX)
cd C:\mysql\bin (Windows)

3. Создайте файл – резервную копию базы
данных accounting (рис. 10.6). Для этого
наберите

mysqldump -u root -p --opt

� accounting > /tmp/

� accounting.sql

или

bin/mysqldump -u root -p --opt

� accounting > /tmp/

� accounting.sql

Эта команда выведет в файл /tmp/ac-
counting.sql последовательность команд
SQL, воссоздающих структуру и дан-
ные всех таблиц из базы accounting.
Если вы работаете с Windows, можете
выбрать какой-нибудь другой каталог,
например C:\backup (убедитесь пред-
варительно, что он существует).
Хотя для запуска mysqldump необяза-
тельно быть пользователем root, право
доступа к копируемой базе у вас долж-
но быть.

Рис. 10.6. При запуске утилиты mysqldump
с флагом --opt создается один текстовый файл,
содержащий копию всей базы

273

4. Сделайте резервную копию базы дан-
ных accounting в виде нескольких фай-
лов (рис. 10.7):

mysqldump -u root -p -T /tmp

� /accounting

При наличии флага -T создается по два
текстовых файла для каждой таблицы:
имя_таблицы.sql содержит команды для
воссоздания структуры, а имя_табли-
цы. txt – команды для заполнения дан-
ными.

5. Просмотрите содержимое каталога /tmp
(рис. 10.8):

ls /tmp

В этом каталоге теперь есть большой
файл accounting.sql, содержащий копию
всей базы, а также несколько файлов
с расширениями .txt и .sql, представля-
ющих отдельные таблицы.

Не забывайте, что для использования ути-
литы mysqldump должен работать процесс
mysqld.

Чтобы познакомиться с результатами рабо-
ты mysqldump, откройте какой-нибудь файл,
созданный этой программой, в текстовом
редакторе.

Если вы часто пользуетесь утилитой mysql-
dump, то имеет смысл прочитать посвящен-
ный ей раздел руководства, чтобы лучше
узнать обо всех ее возможностях.

Вы можете сделать резервные копии всех
имеющихся баз, воспользовавшись коман-
дой

mysqldump --opt --all-databases

� > /путь/к/файлу.sql

Одно из достоинств утилиты mysqldump за-
ключается в том, что вы можете планировать
ее регулярный запуск в удобное для вас вре-
мя с помощью программы cron (в UNIX
и Mac OS X) или соответствующего сервиса
в Windows.

Рис. 10.7. Запуск утилиты mysqldump с флагом -
T отличается от запуска с флагом --opt тем, что
создается не один, а несколько файлов

Рис. 10.8. Теперь в каталоге /tmp находятся
две различных копии базы данных accounting

Резервное копирование базы данных

Администрирование MySQL274

Командные файлы
Во всех примерах, рассматриваемых выше,
запросы выполнялись непосредственно
в мониторе mysql. Но MySQL позволяет
посылать серверу запросы, не входя в мо-
нитор и не пользуясь API. Для этого пред-
назначен так называемый пакетный ре-
жим. Вместо того чтобы набирать запросы
вручную, вы можете поместить их в тек-
стовый файл, а затем подать его на вход
клиенту mysql:

bin/mysql -u имя_пользователя -p <

� '/путь/к/файлу.txt'

Поскольку вы, скорее всего, хотите адре-
совать запросы конкретной базе данных,
укажите ее имя с помощью флага -D:

bin/mysql -u имя_пользователя -p -D

� имя_базы_данных < '/путь/к/файлу.txt'

В качестве примера я выполню посред-
ством клиента mysql предложения SQL для
создания таблиц в базе данных accounting
(записанные в файл – см. предыдущий
раздел).

Использование командных файлов

1. Создайте новую базу данных accounting
(рис. 10.9):

mysqladmin -u root -p create

� accounting2;

Поскольку при попытке создать табли-
цу с уже существующим именем воз-
никнут проблемы, вам придется снача-
ла создать новый экземпляр базы accoun-
ting. Если не хотите изменять уже име-
ющуюся базу с таким именем, назовите
новую базу accounting2.
Если вы запускали утилиту mysqldump
с флагом --add-drop-tables, то SQL снача-
ла удалит все таблицы, а затем воссоз-
даст их заново (пустыми).

Рис. 10.9. Чтобы попрактиковаться
в использовании командных файлов,
не изменяя существующую базу данных,
создайте новую с помощью утилиты mysqladmin

275

2. Создайте таблицу expenses (рис. 10.10):

bin/mysql -u root -p -D accounting2

� < '/tmp/expenses.sql'

Файл expenses.sql, созданный утилитой
mysqldump, содержит команду CREATE
TABLE expenses... . Подача этого файла
на вход mysql избавляет вас от необхо-
димости набирать команду вручную.

3. Создайте таблицу expense_categories
(рис. 10.11):

bin/mysql -u root -p -D accounting2

� < '/tmp/expense_categories.sql'

Для создания очередной таблицы ис-
пользуется та же команда, что и выше,
только указано другое имя файла.

4. Создайте остальные таблицы (рис. 10.12):

bin/mysql -u root -p -D accounting2

� < '/tmp/invoices.sql'

bin/mysql -u root -p -D accounting2

� < '/tmp/clients.sql'

bin/mysql -u root -p -D accounting2

� < '/tmp/users.sql'

Наконец-то все таблицы созданы – те-
перь можно приступать к их заполне-
нию. Для этого пригодится утилита my-
sqlimport (см. следующий раздел).

Еще одно полезное свойство пакетного ре-
жима mysql состоит в том, что запуск коман-
ды можно планировать с помощью cron
(UNIX) или аналогичного сервиса в Windows.

Чтобы наблюдать за результатом исполне-
ния командного файла, включите в команд-
ную строку конвейер | more. Следующая
команда будет постранично выводить ре-
зультаты на экран (для перехода к очеред-
ной странице нажимайте клавишу пробела,
а для прекращения работы – клавишу Q):

bin/mysql -u имя_пользователя -p

� < '/путь/к/файлу.txt' | more

Рис. 10.10. Чтобы создать таблицу expenses,
не вводя заново команды SQL, воспользуйтесь
командным файлом, созданным утилитой
mysqldump

Рис. 10.11. Точно так же выполняются
остальные командные файлы...

Рис. 10.12. ...и так до тех пор, пока не будут
созданы все таблицы

Командные файлы

Если вы хотите сохранить протокол рабо-
ты командного файла в другом файле, пе-
ренаправьте стандартный вывод. Так, ко-
манда

bin/mysql -u имя_пользователя -p

� < '/путь/к/входному_файлу.txt' >

� '/путь/к/выходному_файлу.txt'

сохранит протокол в файле /путь/к/вы-
ходному_файлу.txt.

Администрирование MySQL276

Импорт данных
Итак, делать резервную копию базы вы
умеете. Теперь надо бы научиться восста-
навливать базу из имеющейся копии. Если
вы скопировали все файлы из каталога
mysql/data, то, поместив их обратно, вос-
стано вите информацию (это было показа-
но в разделе «Файлы данных MySQL»).
Если же для копирования вы пользовались
утилитой mysqldump, то выполнить об-
ратную операцию поможет утилита mysql-
import, которая помещает данные из тек-
стового файла в таблицу.
Утилита mysqlimport вызывается следую-
щим образом:

mysqlimport -u имя_пользователя -p

� имя_базы_данных '/путь/к/файлу.sql'

При этом предполагается, что, во-первых,
таблица, куда вставляются данные, уже
существует, а во-вторых, текстовый файл
с данными называется так же, как таблица.
В качестве примера я продемонстрирую
импорт данных в базу accounting, для ко-
торой в предыдущем разделе была созда-
на резервная копия.

Порядок использования утилиты mysqlimport

1. Войдите в систему, используя команд-
ный интерпретатор.

2. Перейдите в каталог mysql/bin (или my-
sql, в зависимости от операционной сис-
темы):
cd /usr/local/mysql (UNIX)
cd C:\mysql\bin (Windows)

Эквивалент в языке SQL, часть 2

Импортировать данные в базу можно
многими способами: например, вы-
звать утилиту mysqlimport, восполь-
зоваться командными файлами или
выполнить команды SQL из монито-
ра mysql. В последнем случае пригодят-
ся две команды SQL: RESTORE

и LOAD DATA.
Команда RESTORE противоположна
BACKUP и применяется для восстановле-
ния таблицы из файлов. Вот ее синтак-
сис:

RESTORE TABLE имя_таблицы

� FROM 'путь/к/каталогу'

Команда RESTORE, как и BACKUP, может
завершиться неудачно, если MySQL не
имеет прав для копирования файла из
одного каталога в другой (например, из
/tmp в /usr/local/mysql/data/accounting).
Команда LOAD DATA INFILE противопо-
ложна команде SELECT ... INTO OUTFILE:

LOAD DATA INFILE '/путь/к/файлу.txt'

� INTO TABLE имя_таблицы

Для выполнения LOAD DATA вам нужно
полномочие FILE, а если вы собирае-
тесь загружать файл с клиентской ма-
шины на удаленный сервер, то мони-
тор mysql следует запускать с флагом
--local-infile.

277

3. Импортируйте записи в таблицу expen-
ses (рис. 10.13):

mysqlimport -u root -p accounting2

� '/tmp/expenses.txt'

Эта команда считывает записи из фай-
ла expenses.txt (созданного утилитой
mysqldump) и вставляет их в таблицу
expenses.

4. Импортируйте данные в другие табли-
цы (рис. 10.14):

mysqlimport -u root -p accounting2

� '/tmp/expense_categories.txt'

mysqlimport -u root -p accounting2

� '/tmp/invoices.txt'

mysqlimport -u root -p accounting2

� '/tmp/clients.txt'

mysqlimport -u root -p accounting2

� '/tmp/users.txt'

Подкорректируйте команды, если вы
выгружали базу в другой каталог, и по-
мните, что всякий раз вам придется вво-
дить пароль пользователя root.

Вышеописанные действия можно упрос-
тить, воспользовавшись командным фай-
лом accounting.sql, который содержит все
необходимые команды SQL. Но тогда вы бы
не познакомились с утилитой mysqlimport!

Утилита mysqlimport – это всего лишь ре-
ализация команды LOAD DATA INFILE без
использования монитора mysql.

Чтобы гарантированно очистить таблицу
перед вставкой новых записей, вызовите
mysqlimport с флагом -d.

Рис. 10.13. Утилита mysqlimport импортирует
в таблицу данные, которые содержит
текстовый файл, в формате с разделителями –
символами табуляции

Рис. 10.14. Утилита mysqlimport информирует
о результатах выполнения каждой операции,
выводя число добавленных записей
или сообщение об ошибке

Импорт данных

Администрирование MySQL278

Обслуживание
базы данных
В задачи администратора, помимо резерв-
ного копирования, входит контроль це-
лостности данных. Любой файл на серве-
ре может быть запорчен, и файлы базы
данных – не исключение. (Действительно,
в ранних версиях Linux была ошибка, из-
за которой файлы MySQL повреждались.)
Чтобы проверить и при необходимости
восстановить запорченные файлы, вос-
пользуйтесь утилитой myisamchk:

myisamchk [флаги] имя_файла_таблицы

Эта программа отличается от рассмотрен-
ных выше, в частности, тем, что в качестве
аргумента указывается физическое имя
файла, содержащего индексы, например:

/usr/local/mysql/data/имя_базы_данных/�

имя_таблицы.MYI

или

C:\mysql\data\имя_базы_данных\

� имя_таблицы.MYI

Кроме того, myisamchk работает только
с таблицами типа MyISAM (о других ти-
пах таблиц рассказывается в главе 11).
У программы myisamchk три основных
параметра:

-a – анализировать таблицу;
-r – «ремонтировать» таблицу;
-e – выполнить «капитальный ремонт».

Я советую запускать myisamchk -a часто,
а myisamchk –r – время от времени или
в случае, когда это рекомендует сделать
myisamchk -a. При возникновении серьез-
ных проблем запустите команду myisamchk
-e, которая обеспечивает более тщатель-
ную проверку, но и работает дольше. Ис-
пользуемый флаг и периодичность запуска

Эквивалент в языке SQL, часть 3

И снова вы можете воспользоваться
средствами языка SQL вместо специа-
лизированной утилиты. Для быстро-
го анализа таблицы введите предло-
жение

CHECK TABLE имя_таблицы;

В отличие от myisamchk этот запрос
применим к таблицам типа MyISAM
и InnoDB.
Уровень тщательности контроля мож-
но изменить, выполнив команду

CHECK TABLE имя_таблицы EXTENDED;

Если команда CHECK TABLE сообщает
о наличии проблемы, воспользуйтесь
командой

REPAIR TABLE имя_таблицы EXTENDED;

279

утилиты зависят от активности обраще-
ний к вашей базе и от того, как часто изме-
няются ее структура или данные.

Порядок использования утилиты myisamchk

1. Войдите в систему, используя команд-
ный интерпретатор.

2. Сделайте резервную копию базы, как
описывалось выше.
При выполнении прямых операций над
файлами базы данных с помощью ути-
литы myisamchk всегда стоит заранее
сохранить все, что возможно. Для ре-
зервного копирования вы вправе при-
менить любой из рассмотренных выше
подходов.

3. Проведите ускоренный анализ табли-
цы expenses (рис. 10.15):

myisamchk -a /usr/local/mysql/data/

� accounting/expenses.MYI

Таким образом проверяется таблица
expenses из базы данных accounting.
В зависимости от операционной сис-
темы и конфигурации может потре-
боваться также указание флагов -u имя_
пользователя -p (чтобы соединение
с MySQL было установлено от имени
пользователя root).

4. При обнаружении ошибок «отремонти-
руйте» таблицу (рис. 10.16):

myisamchk -r /usr/local/mysql/data/

� accounting/expenses.MYI

Иными словами, если при запуске
с флагом -a утилита myisamchk диа-
гностировала ошибки (как показано на
рис. 10.15), исправьте их, запустив ее
же с флагом -r.

Рис. 10.15. Утилита myisamchk
сообщает о состоянии таблиц типа MyISAM

Рис. 10.16. Если myisamchk сообщает об ошибках,
следует вновь запустить эту утилиту
для «ремонта» таблицы

Обслуживание базы данных

Администрирование MySQL280

5. Повторите действия, описанные в пп. 3–
4, применительно к другим таблицам
(рис. 10.17):

myisamchk -a /usr/local/mysql/data/

� accounting/*.MYI

Чтобы проанализировать сразу все
таблицы в базе, воспользуйтесь мета-
символом *. При этом myisamchk по-
следовательно проверит каждую таб-
лицу. Если будут найдены ошибки, за-
пустите ту же утилиту с флагом -r или
-e для поврежденных таблиц.

6. Перезагрузите сервер (рис. 10.18).
Это гарантирует, что mysqld воспримет
проделанные исправления.

В более ранних версиях MySQL использо-
вались таблицы типа ISAM, которые были
представлены файлами с расширениями
.ISM и .ISD. Такие таблицы следует прове-
рять утилитой isamchk, а не myisamchk.

При запуске myisamchk с флагом -d вы-
водится статистическая информация о таб-
лицах. Если вы увидите большое число
удаленных блоков, выполните команду
myisamchk -r.

Для запуска утилиты myisamchk с целью
проверки всех таблиц во всех базах данных
наберите предложение myisamchk [фла-
ги] /путь/к/данным/*/*.MYI.

Как и любую другую программу, myisamchk
можно регулярно запускать с помощью пла-
нировщика cron или аналогичного сервиса
в Windows.

Рис. 10.17. Для проверки всех таблиц из базы
укажите *.MYI в качестве имени файла

Рис. 10.18. После устранения ошибок в таблицах
сервер следует перезагрузить

281

Повышение
производительности
При проектировании MySQL изначально
ставилась задача создать быструю и на-
дежную базу данных. И все-таки имеют-
ся дополнительные способы повышения
производительности.
Очевидный путь – модернизировать аппа-
ратные средства сервера. Потенциально
«узким местом» может быть скорость со-
единения между клиентом и сервером (на-
пример, через Internet). Быстродействие
процессора, объем оперативной памяти
и типы дисков – все это влияет на произ-
водительность MySQL. Поскольку MySQL
главным образом читает и записывает ин-
формацию в файлы на диске, медленно
работающая аппаратура способна сущест-
венно затормозить эти процессы.
Второй способ «подстегнуть» СУБД связан
с настройкой mysqld. Варьировать можно,
например, следующие параметры:

key_buffer (объем памяти, выделяемой
для индексов);
max_connections (сколько соединений
разрешается устанавливать одновре-
менно);
table_cache (буфер для хранения таб-
лиц).

Более подробные сведения об этих и дру-
гих параметрах можно найти в докумен-
тации по MySQL. Не забывайте, что все
параметры, заданные для программы safe_
mysqld, без изменения передаются демону
mysqld.
Третья возможность повышения произво-
дительности – регулярный запуск утилиты
myisamchk. Помимо анализа и «ремонта»
таблиц (см. предыдущий раздел) ее мож-

Повышение производительности

Администрирование MySQL282

но использовать для их оптимизации, ука-
зав флаг --sort-index. Того же результата
вы достигнете, выполнив команду OPTIMIZE
в мониторе mysql.

Оптимизация таблиц

1. Войдите в монитор mysql и выберите
базу данных accounting:

mysql -u имя_пользователя -p

USE accounting;

На протяжении всей этой главы я под-
черкивал, что многие административ-
ные задачи можно решать как с по-
мощью специализированных утилит,
так и с помощью команд SQL. В нача-
ле этого раздела будет продемонстри-
рован второй подход, а затем я пока-
жу, как сделать то же самое, используя
программу myisamchk.

2. Оптимизируйте таблицу expenses (рис.
10.19):

OPTIMIZE TABLE expenses;

После выполнения этого запроса MySQL
выведет информацию о состоянии таб-
лицы.

3. Выйдите из монитора mysql:

exit

4. Запустите утилиту myisamchk для всех
таблиц (рис. 10.20):

myisamchk --sort-index /usr/local/

� mysql/data/accountinf/*.MYI

Программа myisamchk удобна тем, что
позволяет оптимизировать сразу все
таблицы. Но не забывайте, что она рабо-
тает только с таблицами типа MyISAM.

Рис. 10.19. Оптимизация таблиц выполняется
по команде OPTIMIZE

Рис. 10.20. Оптимизировать сразу все таблицы
и даже все базы данных можно с помощью
утилиты myisamchk

283

Протоколирование
операций MySQL
Любой администратор базы данных дол-
жен быть знаком с файлами протоколов.
В MySQL есть два типа таких файлов: про-
токол ошибок сервера и протокол измене-
ний данных.
Протокол ошибок располагается в ката-
логе данных и называется hostname.err, то
есть обычно речь идет о файле /usr/local/
mysql/data/localhost.err или C:\mysql\data\
mysql.err. Здесь фиксируются все ошибки,
обнаруженные программой, – прежде все-
го, те, что произошли во время запуска
mysqld. Поэтому просмотр протокола
ошибок может существенно упростить
поиск и устранение проблем эксплуата-
ции сервера.
В протоколе изменений фиксируются все
изменения, внесенные в любую базу дан-
ных. Другими словами, полностью отсле-
живаются предложения SQL, приведшие
к модификации структуры или содержа-
ния таблиц. В некотором смысле такой
протокол можно назвать резервной копи-
ей базы данных.

Включение и просмотр протоколов

1. Остановите mysqld.
Поскольку вам предстоит изменить па-
раметры сервера (точнее, включить про-
токолирование изменений), придется
остановить его и запустить заново. Если
вы не помните, как останавливать mysqld,
обратитесь к главе 2.

2. Перезапустите mysqld с флагом --log-
update (рис. 10.21):

./bin/safe_mysqld --user=mysql

� --log-update &

Рис. 10.21. Запуск mysqld с флагом ––log-
update включает режим протоколирования
всех изменений в базах данных

Протоколирование операций MySQL

Администрирование MySQL284

Флаг --log-update сообщает программе
mysqld, что она должна протоколиро-
вать все действия, приведшие к измене-
нию структуры или содержания любой
таблицы во всех базах данных. По
умолчанию этот режим отключен.

3. Войдите в монитор mysql и как-нибудь
измените таблицу accounting (рис. 10.22),
например:

USE accounting;

INSERT INTO expense_categories

VALUES(NULL, 'Employee Benefits');

Сервер mysqld протоколирует только те
запросы, которые приводят к измене-
ниям. Поэтому, чтобы увидеть резуль-
тат, нужно ввести запрос типа INSERT,
UPDATE, DELETE или ALTER (запросы SE-
LECT не протоколируются). Что конкрет-
но вы сделаете, не столь важно.

4. Выйдите из монитора и просмотрите
протокол в текстовом редакторе (рис.
10.23):

exit

vi /usr/local/mysql/data/localhost.001

Рис. 10.22. Чтобы увидеть, как работает протоколирование изменений, выполните какие-нибудь запросы,
модифицирующие базу

Рис. 10.23. В протоколе изменений localhost.001 фиксируются такие запросы,
как USE и INSERT

285

Все протоколы изменений хранятся в ка-
талоге data и называются по принципу
имя_хоста.номер. Первому по поряд-
ку файлу присвоено имя localhost.001.
Просмотреть его вы сможете в любом
текстовом редакторе, например vi (UNIX
или Mac OS X) или Notepad (Windows).
Для выхода из редактора vi наберите
команду :q.

5. Просмотрите файл localhost.err (см.
рис. 10.24):

vi /usr/local/mysql/data/

� localhost.err

Повторите действия, описанные в п. 4,
для просмотра содержимого протоко-
ла ошибок. В нем уже должна быть ка-
кая-то информация.

Не переусердствуйте с протоколами изме-
нений MySQL, так как их ведение снижает
производительность сервера.

Протоколы изменений имеют тенденцию
очень быстро расти, особенно если база дан-
ных активно используется.

Чтобы восстановить состояние базы дан-
ных на основе протокола изменений, вы-
полните его как командный файл:

mysql -u root -p <localhost.001

Рис. 10.24. В протокол ошибок localhost.err
записываются сообщения, выданные сервером

Протоколирование операций MySQL

Администрирование MySQL286

Безопасность
В заключение этой главы я хочу вкратце
осветить некоторые вопросы безопасно-
сти, возникающие при использовании
и администрировании баз данных. На эту
тему уже многое говорилось в предыду-
щих главах, но имеет смысл подытожить
вышеприведенную информацию. Итак,
для обеспечения безопасности пользуй-
тесь следующими советами:

не разрешайте анонимным пользова-
телям подключаться к MySQL;
всегда запрашивайте пароль при под-
ключении;
ограничивайте диапазон IP-адресов,
с которых пользователи могут соеди-
няться с сервером (какие бы неудоб-
ства это ни создавало);
запускайте процесс mysqld не от име-
ни суперпользователя root (в системах
UNIX). Загружать MySQL следует ко-
мандой safe_mysqld --user=имя_пользо-
вателя &. Обычно администраторы со-
здают пользователя mysql специально
для этой цели;
при хранении в базе конфиденциаль-
ной информации, а особенно паролей,
шифруйте ее с помощью функций PASS-
WORD() или ENCODE() – см. главу 5;
выделяйте каждому пользователю ми-
нимальный набор полномочий;
при запуске mysqld (опосредованно
через safe_mysqld) задавайте флаги
--secure и --skip-name-resolve. Смысл
того и другого не вполне очевиден –
пользуйтесь указанными флагами, толь-
ко если хорошо понимаете, для чего они
нужны;
проверяйте данные, которые введены
пользователем, перед их сохранением
в базе;

287

ограничьте пользователя root только
правом доступа с локального компью-
тера;
удалите базу данных test, к которой по
умолчанию может обратиться любой
пользователь;
удаляйте пользователей, которым сле-
дует запретить доступ к данным, по
нижеприведенной схеме.

Лишение пользователя полномочий

1. Войдите в систему, используя команд-
ный интерпретатор.

2. Перейдите в каталог mysql/bin (или
mysql, в зависимости от операцион-
ной системы):
cd /usr/local/mysql (UNIX)
cd C:\mysql\bin (Windows)

3. Войдите в монитор mysql:

mysql -u имя_пользователя -p

4. Отзовите полномочия пользователя
(рис. 10.25):

REVOKE ALL ON MOVIES,*

� FROM webuser@'%';

Таким образом пользователю webuser,
созданному в главе 2, полностью за-
прещается доступ к базе данных movies.
Если у вас нет пользователя или базы
данных с таким именем, откорректи-
руйте предложение в соответствии со
своими настройками.

5. Выйдите из mysql и перезагрузите пол-
номочия с помощью утилиты mysqlad-
min:

exit

mysqladmin -u root -p reload

Рис. 10.25. Команда REVOKE, противоположная
команде GRANT, предоставляет простейшую
возможность отозвать полномочия,
ранее предоставленные пользователю

Безопасность

Администрирование MySQL288

Если вы добавляете или удаляете пользо-
вателя, то изменения вступают в силу
только после перезагрузки полномочий.

6. Проверьте, может ли пользователь по-
лучить доступ к базе данных (рис. 10.26).

Вместо того чтобы выходить из монитора
и перезагружать MySQL, вы можете ввести
в действие новые полномочия с помощью
команды SQL FLUSH PRIVILEGES.

Рис. 10.26. После того как вы отзовете полномочия
пользователя и произведете перезагрузку,
он уже не сможет обратиться к базе данных

В этой главе мы рассмотрим несколько не
связанных друг с другом тем, которые на-
чинающему пользователю MySQL пона-
чалу могут показаться неинтересными.
Однако по мере накопления опыта вы бу-
дете все чаще обращаться к описанным
здесь приемам. Я расскажу о таблицах типа
InnoDB, об использовании транзакций,
о регулярных выражениях и о выполне-
нии полнотекстового поиска.
Некоторые из описываемых технологий
появились в MySQL сравнительно недав-
но или будут иметь полноценную поддерж-
ку только в следующих версиях. Послед-
нее относится к таблицам типа InnoDB,
вместе с которыми в MySQL вошли неко-
торые черты, присущие коммерческим
СУБД. Что касается регулярных выраже-
ний и полнотекстового поиска, то нужда
в них возникает редко, но уж коли назре-
ет, эти возможности оказываются поис-
тине бесценными. Большинство приме-
ров в данной главе не связано с ранее изу-
ченным материалом, а для демонстрации
таблиц типа InnoDB понадобится специ-
альная версия MySQL.

Дополнительная
информация 1111111111

Дополнительная информация290

Использование таблиц типа
InnoDB
MySQL поддерживает таблицы нескольких
разновидностей, в том числе бывшего ког-
да-то стандартным типа ISAM и ставшего
таковым ныне типа MyISAM. Кроме того,
поддерживаются типы InnoDB, BDB (Ber-
keley Database), HEAP и временные табли-
цы. У каждой разновидности свои преиму-
щества и специфические требования. Из
всех перечисленных наиболее важен тип
InnoDB (конечно, после MyISAM), и на
нем стоит остановиться подробнее. Тип
таблиц InnoDB был разработан компанией
Innobase Oy (рис. 11.1). В MySQL эта техно-
логия применяется на нижнем уровне до-
ступа.
Таблицы InnoDB устроены иначе, чем My-
ISAM (они хранятся в одном, а не в двух
файлах), но, что гораздо важнее, они под-
держивают транзакции. О том, что такое
транзакции и почему им уделяется такое
внимание, я расскажу в следующем раз-
деле.
Чтобы создать таблицу типа InnoDB, вы
выполняете обычное предложение CREATE
TABLE, но в конце добавляете фразу TYPE=
InnoDB. Так можно задать любой тип; если
же эта фраза опущена, по умолчанию пред-
полагается тип MyISAM.
Возможность работы с таблицами типа
InnoDB обеспечена в последних версиях
MySQL, а в версии 4 интеграция стала еще
глубже. Я покажу, как создать такие таб-
лицы, и опишу некоторые отличия в эк-
сплуатации MySQL.

Рис. 11.1. Домашняя страница технологии InnoDB
расположена по адресу www.innodb.com

291

Использование таблиц InnoDB

1. Создайте или отредактируйте файл my.
cnf (рис. 11.2):

vi /etc/my.cnf (UNIX или Mac OS X)
Файл my.cnf содержит конфигурацион-
ные параметры, управляющие работой
MySQL. Если он существует, то обычно
находится в каталоге /etc в системах
UNIX или в корневом каталоге диска C:
системы Windows. Открыть my.cnf мож-
но в любом текстовом редакторе. Если
же такого файла нет, следует его создать.
Если на вашем компьютере система
загружается не с диска C:, создайте
файл my.ini в каталоге WINDOWS или
WINNT. Если при установке MySQL
в системе Windows вы пользовались
утилитой WinMySQLAdmin, то може-
те отредактировать файл my.ini прямо
в ней. Не забудьте только по заверше-
нии работы нажать кнопку Save Modi-
fications (Сохранить изменения)!

2. Добавьте в конфигурационный файл
следующие строки (рис. 11.3) и сохра-
ните файл:

[mysqld]

innodb_data_home_dir=/usr/local/

� mysql/data

innodb_data_file_path=innodbdata:20M

Первая строка – [mysqld] – означает,
что следующий за ней фрагмент отно-
сится к приложению mysqld. Вторая
строка сообщает, где будут находиться
таблицы типа InnoDB (измените ее
в соответствии с конфигурацией систе-
мы на вашем компьютере). В третьей
строке указаны имя и размер файла.
Каждая таблица InnoDB хранится в от-
дельном файле под названием имя_ таб-
лицы.FRM, а вся прочая информация
размещается в общем файле innodbdata.

Рис. 11.2. Если на сервере еще нет файла my.cnf,
придется его создать

Рис. 11.3. Тип InnoDB можно использовать, только
если в файле my.cnf (или my.ini) есть эти строки

Использование таблиц типа InnoDB

Дополнительная информация292

Заметьте еще, что системе MySQL необ-
ходимо предоставить право создания
файлов в указанном каталоге. Впрочем,
в отношении стандартного каталога дан-
ных такое право уже действует.

3. Остановите процесс mysqld:

mysqladmin -u root -p shutdown

Поскольку вы изменяете параметры ра-
боты mysqld, выполняющийся процесс
надо завершить. В системах Windows
NT, 2000 и XP, где MySQL функциони-
рует как сервис, можно остановить сер-
вер с помощью иконки-светофора, на-
ходящейся в системном лотке.

4. Запустите mysqld или mysqld-max ко-
мандой
./bin/safe_mysqld --user=mysql &
(UNIX и Mac OS X, см. рис. 11.4)

C:\mysql\bin\mysqld-max --user=mysql
(Windows)

В системах, отличных от Windows, пе-
резапуск mysqld (с помощью safe_
mysqld) после редактирования файла
my.cnf обеспечит использование таб-
лиц InnoDB. В Windows для этой цели
нужно запускать именно сервер my-
sqldmax. В системах семейства Windows
NT понадобится еще добавить флаг
--standalone. (Разумеется, чтобы запус-
тить mysqld-max, следует установить
его из дистрибутива MySQL.)

5. Войдите в монитор mysql и создайте
новую базу данных (рис. 11.5):

mysql -u root -p

CREATE DATABASE movies_db;

USE movies_db;

Эти действия ничем не отличаются от
тех, что вы уже много раз производили

Рис. 11.4. Отредактировав файл my.cnf,
перезапустите сервер, чтобы система MySQL
восприняла изменения

Рис. 11.5. Работа с таблицами типа InnoDB
демонстрируется на примере новой базы данных
movies_db

293

раньше. Вне зависимости от типа таблиц
MySQL создает для каждой базы данных
отдельный каталог, и синтаксис команд
создания и выбора базы не меняется.
Вместо того чтобы использовать сущест-
вующие базы данных, я предлагаю со-
здать новую – для хранения информа-
ции о фильмах.

6. Создайте новую таблицу типа InnoDB
(рис. 11.6):

CREATE TABLE movies (

movie_id INT UNSIGNED NOT NULL

� AUTO_INCREMENT,

title VARCHAR(100),

director_id SMALLINT(4),

PRIMARY KEY (movie_id)

) TYPE=InnoDB;

В таблице movies будут поля title (на-
звание_фильма) и director_id (иденти-
фикатор_режиссера); последнее пред-
ставляет собой внешний ключ в табли-
цу directors (режиссеры). Естественно,
можно было бы включить еще много
полей, но я ограничусь абсолютным
минимумом. После закрывающей скоб-
ки указывается тип таблицы. Если в ва-
шей системе таблицы InnoDB не под-
держиваются, будет выдано сообщение
об ошибке.

7. Создайте вторую таблицу типа InnoDB
(рис. 11.7):

CREATE TABLE directors (

director_id SMALLINT(4) UNSIGNED

� NOT NULL AUTO_INCREMENT,

first_name VARCHAR(20),

last_name VARCHAR(40),

PRIMARY KEY (director_id),

INDEX(last_name)

) TYPE=InnoDB;

Рис. 11.6. Первая таблица типа InnoDB
будет называться movies

Рис. 11.7. Вторая таблица типа InnoDB
будет содержать сведения о режиссерах

Использование таблиц типа InnoDB

Дополнительная информация294

Пока что в таблице directors будут хра-
ниться только имя и фамилия режиссе-
ра. Для повышения производительнос-
ти я добавил индекс по колонке last_
name (фамилия). Можно было бы так-
же построить индекс по колонке title
(название) таблицы movies (фильмы).
Таблицы типа InnoDB можно индекси-
ровать, как любые другие.

8. Посмотрите, что оказалось в каталоге
data (рис. 11.8):

ls -l /usr/local/mysql/data

В системах UNIX и Mac OS X команда
ls показывает содержимое каталога.
В Windows его можно посмотреть в про-
грамме Windows Explorer. Если все про-
шло без ошибок, то должны появиться
файл innodbdata и некоторые специ-
фичные для InnoDB файлы-протоколы.
Кроме того, в каталоге movies_db ока-
жутся файлы directors.frm и movies.frm.

Изменить тип существующей таблицы мож-
но, выполнив команду

ALTER TABLE имя_таблицы TYPE=InnoDB;

Если вы сами собираете MySQL из исход-
ных текстов, то для включения поддержки
InnoDB нужно задать флаг --with-

innodb.

Для таблиц типы InnoDB распознаются
внешние ключи (то есть можно сделать не-
которую колонку внешним ключом) и про-
веряются соответствующие условия. Под-
робнее эта тема освещается в разделе
документации по MySQL на странице
www.mysql. com/doc/S/E/SEC446.html.

Рис. 11.8. Судя по размерам файлов, созданных подсистемой InnoDB
(ib_logfile0, innodbdata и др.), можно сделать вывод, что таблицы
этого типа занимают довольно много места

295

Транзакции в MySQL
Самые надежные СУБД, например Oracle,
поддерживают транзакции, смысл кото-
рых состоит в двухэтапном выполнении
SQL-запросов. Сначала запрос выполня-
ется и анализируются его результаты. Если
в процессе выполнения запросов не про-
изошло ошибок, то результаты фиксиру-
ются, в противном случае откатываются1.
Для таблиц типа InnoDB транзакции под-
держиваются и в MySQL.
Транзакции повышают надежность хра-
нения данных. Если из серии последова-
тельных SQL запросов должны быть вы-
полнены либо все, либо ни одного, то вы
можете быть уверены, что не будет вы-
полнена только часть из них. По сути дела,
транзакции позволяют отменить результа-
ты выполнения операций в базе данных.
Вот почему таблицы с поддержкой тран-
закций более безопасны, их легче восста-
новить в случае порчи. С другой сторо-
ны, транзакции замедляют выполнение
запросов – для поддержки транзакцион-
ности требуется более сложный API.
Чтобы начать транзакцию, используйте
команду SQL BEGIN. После нее следуют
обычные запросы. Если результаты тран-
закции вас устраивают, выполните коман-
ду COMMIT для их фиксации. В противном
случае команда ROLLBACK позволит вернуть
базу данных в исходное состояние. Давай-
те начнем добавлять режиссеров и филь-
мы в базу данных movies_db. Поле direc-
tor_id в таблице movies зависит от поля
director_id в таблице directors; транзакции
гарантируют, что обе таблицы будут кор-
ректно модифицированы.

1 Это весьма вольная трактовка механизма транзак-
ций. Читателю стоит обратиться к более фунда-
ментальным текстам за разъяснениями по данно-
му вопросу. – Прим. переводчика.

Транзакции в MySQL

Дополнительная информация296

Использование транзакций

1. Войдите в монитор mysql:

mysql -u root -p

2. Выберите базу данных с поддержкой
транзакций:

USE movies_db;

Не забывайте, что в текущей версии
MySQL транзакции поддерживаются
только для таблиц типа InnoDB и BDB.

3. Начните транзакцию (рис. 11.9):

BEGIN;

Начиная с этого места каждый запрос
вплоть до команды COMMIT или ROLLBACK
становится частью транзакции.

4. Вставьте записи о новом режиссере
и новом фильме (рис. 11.10):

INSERT INTO directors (first_name,

� last_name) VALUES('Martin',

� 'Scorsese');

INSERT INTO movies(title,

� director_id) VALUES('The Age of

� Innocence', LAST_INSERT_ID());

Поскольку поле director_id связывает
таблицы movies и directors, хотелось бы
убедиться, что обе таблицы обновле-
ны корректно. Именно в таких случа-
ях транзакции позволяют гарантиро-
вать целостность данных.

5. Если оба запроса были выполнены
правильно, зафиксируйте изменения
(рис. 11.11):

SELECT * FROM movies, directors

� WHERE movies.director_id=

� directors.director_id;

COMMIT;

Рис. 11.9. Чтобы начать новую транзакцию,
введите BEGIN; и нажмите клавишу Enter (Return)

Рис. 11.10. В составе транзакции может быть
сколько угодно запросов, в том числе типа
INSERT, UPDATE и DELETE

Рис. 11.11. После ввода команды COMMIT;
результаты транзакции фиксируются

297

С помощью запроса SELECT вы проверя-
ете, правильно ли информация занесе-
на в таблицы. Внутри транзакции все
внесенные изменения видны запросу
SELECT даже до фиксации результатов,
поэтому данный метод срабатывает.

6. Если вы не хотите фиксировать изме-
нения, откатите их (рис. 11.12):

BEGIN;

INSERT INTO movies VALUES(NULL,

� 'Kundun', 1);

SELECT * FROM movies, directors

� WHERE movies.director_id=

� directors.director_id;

ROLLBACK;

Чтобы показать, как происходит откат
транзакции, я сначала добавил запись
о фильме, а затем отменил эту операцию.
Предложение SELECT позволяет увидеть,
что запись была вставлена, но потом
я вместо COMMIT употребил ROLLBACK.
Если снова выполнить тот же самый
запрос SELECT, вы уже не увидите толь-
ко что вставленную запись.

В случае, когда соединение с базой данных
прерывается (в вашем сценарии или в мо-
ниторе mysql), все начатые транзакции от-
катываются автоматически.

Многие команды SQL, в том числе ALTER,
DROP и TRUNCATE автоматически начинают
и завершают транзакцию.

Если при работе с таблицами, поддерживаю-
щими транзакции, вы забудете про команду
BEGIN, все запросы будут выполняться так,
как если бы никаких транзакций не было
(другими словами, после каждого предло-
жения автоматически выполняется COMMIT).

Рис. 11.12. Эта последовательность запросов
показывает, насколько легко отменить результаты
выполнения запросов

Транзакции в MySQL

Дополнительная информация298

Блокировка таблиц
Транзакции позволяют защитить целост-
ность данных, но применимы только к от-
дельным типам таблиц. Для остальных
типов, включая и MyISAM, ограничить
доступ к таблицам на время выполнения
серии запросов можно только путем блоки-
ровки. Для этого служит следующее пред-
ложение:

LOCK TABLES имя_таблицы1 LOCKTYPE,

� имя_таблицы2 LOCKTYPE;

При выполнении этой операции над одной
или несколькими таблицами можно
с помощью параметра LOCKTYPE указать вид
блокировки: READ (на чтение) или WRITE (на
запись). Блокировка на чтение разрешает
всем остальным пользователям только чи-
тать данные из таблицы – иначе говоря,
нельзя изменять ни ее структуру, ни со-
держание. Блокировка на запись запреща-
ет всем, кроме того, кто заблокировал таб-
лицу, читать ее и записывать туда данные.
Важно отметить, что блокировка ассоции-
рована с тем соединением, в котором была
поставлена: если она используется в одном
сеансе работы с клиентом mysql, то для
всех остальных сеансов (от имени клиента
mysql или любой другой программы) до-
ступ к заблокированным таблицам будет
ограничен.
Чтобы разблокировать таблицу, владелец
блокировки должен выполнить команду

UNLOCK TABLES;

для того же соединения, где она была по-
ставлена.
Обычно при работе с MySQL в блокиров-
ках таблиц не возникает необходимости,
хотя в некоторых ситуациях (например,

299

при резервном копировании базы данных
с помощью команд SQL) такое решение
имеет смысл. Другой типичный пример –
немедленное выполнение обновления по
результатам предложения SELECT, когда
важно быть уверенным, что в промежут-
ке между этими операциями информация
не изменяется.

Блокировка таблицы

1. Войдите в монитор mysql:

mysql -u root -p

2. Выберите базу данных accounting:

USE accounting;

Поскольку блокировать таблицы в базе,
поддерживающей полноценные тран-
закции (такой как movies_db), нет ника-
кого смысла, я предлагаю поработать
с базой accounting.

3. Заблокируйте две таблицы (рис. 11.13):

LOCK TABLES expenses READ,

� expense_categories READ;

На время резервного копирования я за-
блокирую таблицы, чтобы никакие из-
менения не вносились (иначе целост-
ность копии будет поставлена под со-
мнение).

4. Запишите таблицы на диск (рис. 11.14):

FLUSH TABLES expenses,

� expense_categories;

Перед тем как произвести резервное
копирование командой BACKUP TABLE,
вам рекомендуется выполнить коман-
ду FLUSH, чтобы кэшированные в памя-
ти данные были записаны в файл на
диске.

Рис. 11.13. Команда LOCK TABLES
предохраняет таблицы от редактирования
другими пользователями на время выполнения
нескольких операций

Рис. 11.14. Перед созданием резервной копии
таблицы следует выполнить команду FLUSH
TABLES

Блокировка таблиц

Дополнительная информация300

5. Выгрузите таблицы (рис. 11.15):

BACKUP TABLE expenses,

� expense_categories TO '/tmp';

В результате выполнения этого запроса
структура и содержание обеих таблиц
будут записаны в каталог /tmp. Ко-
манда BACKUP TABLE применима только к
таблицам типа MyISAM. Подробнее о
резервном копировании баз данных
рассказывается в главе 10.

6. Разблокируйте таблицы (рис. 11.16):

UNLOCK TABLES;

Эта команда разблокирует сразу все
заблокированные таблицы. Не забы-
вайте о ней, иначе остальные пользова-
тели не смогут получить доступ к час-
ти базы!

Вторая команда LOCK TABLES, введенная
для того же соединения, что и предыдущая,
автоматически снимает ранее поставлен-
ные блокировки.

Можно в одном предложении поставить
разнотипные блокировки на разные таб-
лицы:

LOCK TABLES имя_таблицы1 WRITE,

� имя_таблицы2 READ;

Рис. 11.15. Для резервного копирования таблицы
я выполнил команду BACKUP TABLE
прямо из монитора mysql

Рис. 11.16. Последний шаг – снятие блокировок
со всех таблиц для восстановления нормального
режима работы базы данных

301

Полнотекстовый поиск
Начиная с версии 3.23.23 MySQL поддержи-
вает полнотекстовый поиск. Благодаря это-
му вы можете находить отдельные слова,
являющиеся частью значений колонок.
Синтаксис предложения для выполнения
полнотекстового поиска таков:

SELECT * FROM имя_таблицы WHERE

� MATCH(имя_колонки) AGAINST('строка');

В результате будет возвращен набор запи-
сей, отсортированный по релевантности
в порядке убывания. Проще говоря, пер-
выми будут идти записи, в которых стро-
ка string лучше всего соответствует значе-
нию в указанной колонке таблицы. Что-
бы узнать, какова релевантность записи,
сформулируйте запрос так:

SELECT имя_колонки1, MATCH(имя_колонки2)

� AGAINST('строка')FROM имя_таблицы;

Если вы хотите искать записи по несколь-
ким словам, разделите их в запросе про-
белами:

SELECT имя_колонки1, MATCH(имя_колонки2)

� AGAINST('слово1 слово2')

� FROM имя_таблицы;

В этом случае ранг записи, содержащей
оба слова, будет выше, чем записей, со-
держащих только одно из двух слов (хотя
последние тоже считаются удовлетворяю-
щими запросу).
Можно пойти еще дальше, используя бу-
левский режим (начиная с версии MySQL
4.01). При этом вы можете указывать от-
носительные веса каждого из нескольких
слов:

SELECT имя_колонки1, MATCH(имя_колонки2)

� AGAINST('+слово1 слово2' IN BOOLEAN

� MODE) FROM имя_таблицы;

Полнотекстовый поиск

Дополнительная информация302

В булевском режиме словам предшеству-
ют специальные символы (табл. 11.1),
указывающие их относительные веса при
подсчете релевантности.
Если вы решили использовать полнотек-
стовый поиск, не забудьте построить пол-
нотекстовый индекс по соответствующим
колонкам. Вот как это делается:

ALTER TABLE имя_таблицы

� ADD FULLTEXT имя_индекса

� (имя_колонки1, имя_колонки2);

Полнотекстовый поиск важен в тех случа-
ях, когда пользователи хотят искать от-
дельные слова в колонках, как, например,
в поисковых машинах.

Таблица 11.1. Эти символы используются для указания значимости отдельных слов
при полнотекстовом поиске

Символ Значение Пример Интерпретация

+ Слово должно +punk rock Слово punk должно присутствовать
присутствовать обязательно, а rock – необязательно

- Слово не должно +punk -rock Слово punk обязательно должно
присутствовать присутствовать, а слово rock –

отсутствовать

' ' Слова должны присутствовать 'punk rock' Ищется словосочетание punk rock

в указанной последовательности

< Менее важно <punk +rock Слово rock обязательно,
а punk менее важно

> Более важно >punk +rock Слово rock обязательно,
а punk более важно

() Группировка (>punk roll) Слово rock обязательно, а punk и roll
+rock не обязательны, причем punk более

важно, чем roll

~ Уменьшает релевантность +punk ~rock Слово punk обязательно,
(то есть степень соответствия а присутствие rock уменьшает
запросу) релевантность (хотя слово rock

не должно отсутствовать)

* Неточное соответствие +punk +rock* Слова punk и rock обязательны,
(символ употребляется в конце причем слова rocks, rocker, rocking
слова) и т.п. тоже подходят

303

Использование полнотекстового поиска

1. Войдите в монитор mysql:

mysql -u root -p

2. Выберите базу данных accounting:

USE accounting;

3. Убедитесь, что в таблице достаточно
много записей (рис. 11.17).
Добавьте в таблицу (неважно, каким
способом) записи с содержательным
описанием затрат. Польза от полно-
текстового поиска тем ощутимее, чем
больше записей в таблице.

4. Создайте полнотекстовый индекс (см.
рис. 11.18):

ALTER TABLE expenses

� ADD FULLTEXT (expense_description);

Прежде чем выполнять полнотексто-
вый поиск, необходимо создать полно-
текстовый индекс по соответствующим
колонкам.

5. Выполните полнотекстовый поиск по
слову «visual» (визуальный) – рис. 11.19.

SELECT expense_id, expense_description

� FROM expenses WHERE MATCH

� (expense_description)

� AGAINST('visual');

Этот запрос возвращает колонки ex-
pense_id и expense_description из запи-
сей, для которых релевантность слова
«visual» относительно поля expense_
description больше нуля. Иными сло-
вами, выводятся записи, в которых поле
expense_description содержит слово
«visual».

Рис. 11.17. Если в таблице expenses достаточно
много записей, то к ней можно применять
полнотекстовый поиск

Рис. 11.18. Для создания полнотекстового индекса
используется предложение ALTER TABLE

Рис. 11.19. В результате простейшего
полнотекстового поиска будут возвращены
все записи, содержащие указанное слово

Полнотекстовый поиск

Дополнительная информация304

6. Выполните полнотекстовый поиск по
словам «visual» и «guide» (рис. 11.20).

SELECT expense_id, MATCH

� (expense_description) AGAINST

� ('visual guide') AS rel,

� expense_description FROM expenses

� WHERE MATCH(expense_description)

� AGAINST('visual guide');

Этот запрос отличается от предыдущего
по двум причинам. Во-первых, выбира-
ются не только значения полей, но также
и вычисленная релевантность; во-вторых,
в поисковом запросе указаны два слова.
Записи, содержащие оба слова, имеют при-
оритет.

При работе с MySQL версии 4.01 и выше
пользуйтесь полнотекстовыми запросами
в булевском режиме.

При полнотекстовом поиске прописные
и строчные буквы не различаются.

Если искомое слово обнаружено более чем
в половине записей, оно вообще не учиты-
вается, так как считается недостаточно спе-
цифичным.

Рис. 11.20. При выполнении полнотекстового запроса с несколькими словами
первыми возвращаются записи, содержащие все слова (впрочем, записи,
содержащие только одно из них, также удовлетворяют запросу)

305

Регулярные выражения
В главе 4 рассматривалось применение пре-
дикатов LIKE и NOT LIKE для поиска записей,
содержащих в колонке некоторую строку.
Для большей гибкости в искомой строке
можно использовать метасимволы _ (лю-
бой символ) и % (любые символы в неогра-
ниченном количестве). Например:

SELECT * FROM users WHERE first_name

� LIKE 'John%';

Благодаря регулярным выражениям, кото-
рые поддерживает MySQL, можно пойти
в этом направлении существенно дальше.
Регулярные выражения позволяют задать
более сложные образцы для сопоставления
и использовать их в предикатах REGEXP
и NOT REGEXP (или RLIKE и NOT RLIKE):

SELECT * FROM users WHERE first_name

� REGEXP '^(Jo)h?n+.*';

По этому запросу будут найдены имена
John, Johnathon, Jon, Jonathon и т.д., тог-
да как запрос с предикатом LIKE выведет
только слова John и Johnathon. Если вы
раньше не встречались с регулярными вы-
ражениями, то показанный выше образец
может вызвать недоумение, поэтому я под-
робнее остановлюсь на том, как записыва-
ются регулярные выражения.
В определении образца могут присутство-
вать литералы (например, 'a' соответству-
ет единственной букве «a») и специальные
символы в любом сочетании.
Если вы хотите найти строки, начинающие-
ся с ab, используйте регулярное выражение
'^ab.*', то есть литерал ab плюс ноль или
более любых символов (один символ пред-
ставлен точкой). Для поиска строк, со-
держащих слово «color» или «colour»,
подойдет выражение 'col(or)|(our)': лите-
рал col, за которым следует or или our.

Регулярные выражения

Таблица 11.2. При использовании предикатов
REGEX и NOT REGEX в регулярные выражения
могут входить метасимволы

Символ Значение

. Любой символ (один)

q? Ноль или одно повторение q

q* Ноль или более повторений q

q+ По крайней мере одно q

q{x} x повторений q

q{x,} Не менее чем x повторений q

q{,x} Не более чем x повторений q

q{x,y} От x до y повторений q

^q Начинается с q

q$ Заканчивается q

(pqr) Группировка (соответствует pqr)

q|z Альтернатива (или q, или z)

[] Классы символов
(например, [a–z], [0–9])

\ Экранирует метасимвол
(\., * и т.д.)

Дополнительная информация306

Ясно, что самое трудное (в MySQL или
любой другой программе) – научиться
правильно составлять образцы. Подбор
нужного выражения – это зачастую по-
иск компромисса между слишком раз-
мытым и слишком строгим вариантом.

Использование предикатов
REGEX и NOT REGEX

1. Войдите в монитор mysql:

mysql -u root -p

2. Выберите базу данных accounting:

USE accounting;

3. Найдите клиентов с бесплатными номе-
рами телефонов (рис. 11.21):

SELECT client_name, client_phone

� FROM clients WHERE client_phone

� REGEXP '(800)|(888)|(877)';

Бесплатные номера телефонов (в США
и Канаде) имеют код доступа 800, 888
или 877. Приведенное выше регуляр-
ное выражение позволяет отобрать все
такие телефоны по одному запросу.

4. Выберите все корректные адреса элек-
тронной почты контактных лиц (см.
рис. 11.22):

SELECT client_name, contact_first_

� name, contact_email FROM clients
� WHERE contact_email REGEXP
� '[[:alnum:]]+@.*\.[[:alnum:]]{2,3}';

Приведенное регулярное выражение для
распознавания синтаксически коррект-
ных адресов электронной почты доволь-
но простое и слишком «мягкое», но для
экспресс-проверки его вполне достаточ-
но. При желании вы можете составить
более или менее строгое выражение, от-
вечающее вашим потребностям.

Рис. 11.21. Регулярные выражения повышают
гибкость формулирования запросов

Рис. 11.22. Регулярные выражения
также позволяют проконтролировать
корректность данных

При работе с MySQL, как, впрочем, и с лю-
бой другой программой, бывают моменты,
когда хочется биться головой о стенку.
Учитывая это, я включил в данный раздел
описания наиболее типичных ошибок
и способов их исправления. С одной сто-
роны, после того как программа MySQL
запущена, она обычно очень долго рабо-
тает безо всякого вмешательства со сторо-
ны администратора. С другой стороны,
иногда возникают проблемы при попыт-
ке запустить сервер. Прочитав это при-
ложение, вы научитесь преодолевать эле-
ментарные трудности. Более полный пе-
речень возможных проблем и путей их
решения можно найти в руководстве по
MySQL.

приложение
Диагностика
и устранение ошибок

11111

Приложение 1308

Установка MySQL
Не знаю, хорошо это или плохо, но боль-
шинство проблем возникает на этапе уста-
новки программы. Когда вы инсталлиру-
ете и конфигурируете MySQL, пользуй-
тесь следующими советами:

при сборке MySQL из исходных текстов
не забывайте указать параметр --prefix=
/путь/к/mysql;
если MySQL устанавливается впервые,
то есть никаких баз данных еще нет, за-
пустите сценарий mysql_install_db (он
находится в каталоге mysql/scripts), ко-
торый создает таблицы users (пользо-
ватели) и privileges (полномочия) –
рис. П1.1;
при сборке новой версии MySQL из
исходных текстов не забудьте сначала
удалить результаты предыдущей сбор-
ки, выполнив команды rm config.cache
и make clean;
на платформе Windows по возможности
устанавливайте MySQL в каталог
C:\mysql, который выбирается по умол-
чанию.

Подробные сведения о конфигурировании вы
найдете на странице www.mysql.com/doc/C/o/
Compilation problems.html или выведете по
команде ./configure --help (рис. П1.2).

Дополнительная информация о сценарии
mysql_install_db приводится на странице
www.mysql.com/doc/m/y/mysql install db.html.

Удалить информацию о предыдущей сборке
можно одной командой make distclean.

Рис. П1.1. Сценарий mysql_install_db
подготавливает базу данных mysql, необходимую
для предоставления полномочий пользователям

Рис. П1.2. При сборке из исходных кодов
на стадии конфигурирования можно задать
десятки разных параметров

309Диагностика и устранение ошибок

Запуск MySQL
Ниже представлены решения типичных
проблем, которые могут возникнуть при
запуске MySQL:

если MySQL не может найти каталог
с данными, задайте в команде запуска
флаг --basedir=/путь/к/mysql/data;
если вы работаете на платформе Win-
dows, старайтесь устанавливать самые
последние обновления операционной
системы. Так, для работы в системе Win-
dows NT для MySQL требуется Service
Pack 3 (третий пакет исправлений и об-
новлений) или младше;
сообщение о невозможности найти файл
host.frm или mysql.host означает, что
MySQL не может прочитать данные из
таблиц полномочий в базе данных mysql.
Убедитесь, что вы не забыли выполнить
сценарий mysql_install_db и что MySQL
имеет доступ к файлам, составляющим
базу данных mysql.

Для отладки можно запустить MySQL
с флагом --debug (рис. П1.3). В этом слу-
чае будет создан файл mysql.trace, где,
в частности, протоколируются ошибки
(просмотреть этот файл можно в любом
редакторе).

В Windows возникают сложности с запус-
ком MySQL как сервиса, если в пути к ис-
полняемой программе есть пробелы (на-
пример, C:/Program Files/mysql) или какая-
то часть пути слишком длинна.

Чтобы проверить, работает ли MySQL, на-
берите в UNIX и Mac OS X команду ps ax |
grep mysqld (рис. П1.4).

Более подробную информацию, касающую-
ся запуска MySQL, вы найдете на странице
www.mysql.com/doc/P/o/Post-installation.
html.

Рис. П1.3. Использование флага --debug
позволяет выяснить, почему MySQL
не запускается

Рис. П1.4. Команда ps as | grep mysqld
показывает, что safe_mysqld и mysqld работают

Приложение 1310

Доступ к MySQL
Итак, СУБД MySQL успешно установлена
и запущена. Однако попытка получить до-
ступ к базе данных может окончиться не-
удачей. Наиболее важные параметры, зада-
ваемые при установлении соединения, –
имя хоста, имя пользователя и пароль. Для
открытия доступа эти значения должны со-
ответствовать какой-либо записи о пользо-
вателе в базе данных mysql.
Далее MySQL проверяет, имеет ли пользо-
ватель право выполнять те или иные за-
просы к указанной базе данных (см. главу 2).
Но, как правило, проблема заключается
в невозможности установить соединение
с сервером, а не в недостатке прав для вы-
полнения запросов.

Рис. П1.6. Если проблема связана с именем хоста, для начала
сбросьте кэш хостов MySQL при помощи утилиты mysqladmin

Вот как решаются вопросы доступа:
перезагружайте MySQL после измене-
ния полномочий, иначе новые значе-
ния не вступят в силу. Воспользуйтесь
для этой цели утилитой mysqladmin
(рис. П1.5) или выполните в мониторе
mysql команду FLUSH PRIVILEGES;
проверьте правильность пароля. Сооб-
щение
Access denied for user 'root@localhost'
� (Using password: YES)
обычно означает, что указан неверный
пароль – это не единственная, но наи-
более вероятная причина;
при назначении полномочий или обнов-
лении пароля пользуйтесь функцией
PASSWORD();

Рис. П1.5. После изменения состава пользователей или полномочий
запустите утилиту mysqladmin, чтобы новые значения вступили в силу

311Диагностика и устранение ошибок

если вы подозреваете, что доступ за-
прещен с конкретного хоста, попробуй-
те задать другое имя хоста (например,
localhost, если вы работаете на том же
компьютере, что и сервер mysqld). По-
пытайтесь также выполнить команду
mysqladmin flush-hosts (рис. П1.6), запу-
стить mysqld с флагом --skip-name-
resolve или изменить ограничения на
хосты, с которых может работать дан-
ный пользователь;
если для настройки параметров клиент-
ских программ вы применяете файл
.my.cnf, не забудьте просмотреть хра-
нящиеся в нем значения (рис. П1.7).
Также проверьте содержимое глобаль-
ных файлов my.cnf и my.ini;
сообщение Can't connect to ... (номер
ошибки 2002) означает, что СУБД MySQL
либо вообще не запущена, либо запу-
щена не на том сокете или порте, с ко-
торыми пытается соединиться клиент.
Сначала убедитесь, что MySQL работа-
ет, а затем попробуйте выбрать другой
порт или сокет.

Чтобы проверить, работает ли MySQL в сис-
теме Windows NT, воспользуйтесь прило-
жением Task Manager.

Подробнее проблемы с доступом описыва-
ются на странице www.mysql.com/doc/A/c/
Access-denied.html.

Рис. П1.7. Значения параметров в файле .my.cnf
могут повлиять на поведение программ,
обращающихся к MySQL, без вашего ведома

Приложение 1312

Проблемы с mysql.sock
Для справки: mysql.sock – это имя сокета,
с которым соединяются клиенты на плат-
формах UNIX и Mac OS X1 (в Windows ис-
пользуется протокол TCP/IP). Если клиент-
ское приложение, например монитор my-
sql, не сможет найти этот сокет (обычно
он находится в каталоге /tmp), то и соеди-
нение с сервером не установится.
Проблему, как и большинство ей подоб-
ных, часто решают путем перезагрузки
компьютера. Но такой подход, во-пер-
вых, не всегда срабатывает, а, во-вторых,
не является наилучшим. Есть два других
решения: защитить каталог, где находит-
ся сокет, так чтобы его нельзя было уда-
лить, или создать символическую ссыл-
ку на сокет в другом месте.

Как защитить каталог /tmp

1. Зарегистрируйтесь на сервере как поль-
зователь root в приложении Terminal.

2. Добавьте «sticky bit» к правам доступа2

на каталог /tmp (рис. П1.8):

chmod +t /tmp

Добавление этого флага к каталогу озна-
чает, что хранящиеся в нем файлы мо-
гут быть удалены только владельцем
файла или суперпользователем. Одна
из причин, по которым клиенту MySQL

Рис. П1.8. В системах UNIX и Mac OS X
для защиты от удаления файлов в каталоге /tmp
можно использовать команду chmod

1 Только когда клиент работает на той же машине,
что и сервер. В противном случае используется со-
кет TCP/IP на порте 3306 (по умолчанию). – Прим.
переводчика.

2 Установка данного флага в правах доступа к ка-
талогу означает, что пользователи могут удалять
файлы, только если имеют право на запись в них. –
Прим. ред.

313Диагностика и устранение ошибок

не удается найти сокет, заключается
в том, что его случайно удалили другой
пользователь или другая программа.
Данная операция исключает такую ве-
роятность.

3. Перезапустите MySQL.

Как создать символическую ссылку

1. Зарегистрируйтесь на сервере как поль-
зователь root в приложении Terminal.

2. Выясните, где находится сокет mysql.
sock (рис. П1.9):

find / -name "mysql.sock"

По этой команде осуществляется про-
смотр всей файловой системы сервера
в поисках файла mysql.sock. Если он на-
ходится в нестандартном месте, то кли-
ент MySQL не сможет его найти, по-
этому придется создать символичес-
кую ссылку.

3. Создайте символическую ссылку с ре-
ального файла сокета в то место, где он
должен находиться.

ln -s /путь/к/реальному/mysql.sock

� /tmp/mysql.sock

Наличие такой ссылки убедит клиента
MySQL, что сокет mysql.sock находит-
ся в каталоге /tmp.

Чтобы проверить, подходит ли сокет, за-
пустите утилиту mysqladmin с флагом
--socket=/путь/к/сокету.

В некоторых конфигурациях сокет распо-
ложен в каталоге /var/lib/mysql, а не /tmp.

Задать положение сокета можно либо в фай-
ле my.cnf, либо с помощью флага --socket
при запуске mysqld.

Рис. П1.9. Чтобы клиент мог соединиться
с сервером MySQL, он должен найти сокет
mysql.sock

Приложение 1314

Восстановление пароля
пользователя root
Я знаю – такое бывает, сам испытал: при
попытке соединиться с MySQL от имени
пользователя root вы получаете отказ
в доступе! Вы не можете ни вспомнить
старый пароль, ни заставить работать но-
вый. В общем, доступ к MySQL закрыт,
и надежды тают с каждым часом. К счас-
тью, выход из такой ситуации есть: нужно
восстановить пароль пользователя root.
Для восстановления пароля вы запускае-
те MySQL без проверки полномочий. Тог-
да любой человек сможет получить до-
ступ к базе, внести изменения и переза-
пустить MySQL.

Как восстановить пароль пользователя root

1. Остановите сервер MySQL, выполнив
следующую команду от имени супер-
пользователя UNIX или пользователя
mysql:

kill 'cat /путь/к/mysql/data/

� имя_хоста.pid'

Не зная пароля пользователя root, труд-
но остановить MySQL корректным спо-
собом. Если стандартные операции не
дают результата, примените «жесткий»
метод (для UNIX и Mac OS X)1.

2. Запустите mysqld с флагом --skip-grant-
tables (рис. П1.10):

./bin/safe_mysqld --user=mysql

� --skip-grant-tables &

Рис. П1.10. При запуске mysqld с флагом
--skip-grant-tables система проверки
полномочий отключается

1 Пользователи Windows в тех же целях могут вос-
пользоваться Менеджером задач (Task Manager). –
Прим. ред.

315Диагностика и устранение ошибок

Флаг --skip-grant-tables полностью от-
ключает систему проверки полномочий
в MySQL. Хотя это очевидная угроза бе-
зопасности, другого способа восстано-
вить пароль пользователя root не имеет-
ся.

3. Измените пароль пользователя root
с помощью утилиты mysqladmin:

mysqladmin -u root password

� 'новый_пароль'

Эта команда аналогична той, которая
используется при назначении пароля
пользователя root (см. главу 2). Но ста-
рый пароль не запрашивается, так как
проверка полномочий отключена.

4. Снова остановите mysqld (рис. П1.11):

mysqladmin shutdown

Так как сейчас MySQL не проверяет пол-
номочия, то нужно остановить и сно-
ва запустить сервер – команды FLUSH
PRIVILEGES недостаточно.

5. Запустите mysqld обычным образом:

./bin/safe_mysqld --user=mysql &

6. Войдите в монитор mysql, задав имя
и пароль пользователя root:

mysql -u root -p

Чтобы восстановить пароль пользователя
root с помощью клиента mysql, произведите
действия, описанные в пп. 1 и 2, затем вой-
дите в монитор mysql, выберите одноимен-
ную базу данных и выполните команду
UPDATE user SET password=PASSWORD

('новый_пароль') WHERE user='root'
(рис. П1.12). После этого перезапустите
mysqld стандартным способом.

Рис. П1.11. Если СУБД MySQL была запущена
с отключенной проверкой полномочий,
то для ее останова не надо задавать
имя и пароль пользователя

Рис. П1.12. Чтобы вручную изменить пароль,
откройте базу mysql и выполните предложение
UPDATE с функцией PASSWORD()

Приложение 1316

Восстановление
начального значения
автоинкрементного поля
Возможность автоматически инкремен-
тировать поля таблицы (прежде всего,
первичные ключи) – это очень удобный
способ обеспечить уникальность ключей
индекса. Обычно MySQL прекрасно справ-
ляется с этой задачей, так что вам беспо-
коиться не о чем. Но если удалить запи-
си из конца таблицы, то механизм авто-
инкремента «рассинхронизуется». Допус-
тим, есть десять записей, и вы удаляете
девятую и десятую. Тогда следующая за-
пись получит идентификатор 11, хотя
значение 9 свободно. Чтобы исправить
положение, нужно изменить значение
счетчика автоинкремента1.

Восстановление счетчика автоинкремента

1. Войдите в монитор mysql:

mysql -u имя_пользователя -p

2. Выберите базу данных:

USE имя_базы_данных;

3. Измените соответствующую таблицу
(рис. П1.13):

ALTER TABLE имя_таблицы

AUTO_INCREMENT=9;

Эта команда устанавливает следующее
значение счетчика для автоинкремент-
ного поля по вашему указанию или
просто берет очередное значение по по-
рядку. В данном примере следующим
значением должно быть 9.

1 Обычно нет причин исправлять это положение.
«Дырки» в нумерации никакого вреда не прино-
сят. – Прим. переводчика.

Рис. П1.13. Команду ALTER можно использовать
для изменения значения счетчика автоинкремента

317Диагностика и устранение ошибок

Будьте осторожны

Я завел речь о том, как переустановить
счетчик автоинкремента, поскольку
начинающие пользователи часто зада-
ют такой вопрос. На мой взгляд, быва-
ют ситуации, когда это имеет смысл:
например, вы удалили из таблицы все
записи и хотите снова начать нумера-
цию с 1.
Но, с другой стороны, чрезмерное усер-
дие может нарушить целостность дан-
ных, если, например, автоинкремент-
ной колонке соответствует внешний
ключ в другой таблице. Полезно знать,
как изменить счетчик автоинкремен-
та, но следует помнить и о нежела-
тельных побочных эффектах.

Тот же результат достигается с помощью
утилиты myisamchk:

myisamchk --set-auto-increment

Как и большинство запросов SQL, предло-
жение ALTER ... AUTO_INCREMENT можно
выполнить из программы.

В предыдущем примере вместо 9 вы мог-
ли бы использовать любое целое положи-
тельное число по своему усмотрению.

Приложение 1318

Если запрос возвращает
странный результат
С этой проблемой сталкиваются многие
пользователи MySQL, особенно при до-
ступе к базе из программ на языках PHP,
Perl или Java. Непонятно почему запрос
вдруг возвращает неожиданные результа-
ты. Начинающие разработчики могут ре-
шить, что это ошибка программы, но чаще
всего дело в самом запросе.
Для отладки сложных запросов выполни-
те следующие действия:
1. Если SQL-запрос строит программа, рас-

печатайте его, чтобы точно знать, что же
передается серверу для исполнения.

2. Если можно, выполните этот запрос
с помощью другого инструмента, на-
пример монитора mysql.

3. Воспользуйтесь предложением EXPLAIN,
чтобы посмотреть, как MySQL обра-
батывает запрос (рис. П1.14). Подроб-
нее команда EXPLAIN рассматривается в
документации по MySQL.

4. Измените запрос так, чтобы выбирались
лишь колонки, упомянутые в условии
WHERE, а все остальное временно удалите.

5. Перепишите запрос так, чтобы он стал
максимально простым. Постепенно
усложняйте его, пока не поймете, что
именно приводит к ошибке.

Рис. П1.14. Команда EXPLAIN показывает, что MySQL делает для выполнения запроса

Диагностика и устранение ошибок

Это приложение задумано как краткий
справочник по SQL и MySQL. Здесь собра-
ны все таблицы, встречающиеся в книге,
причем некоторые из них дополнены но-
вым материалом. Здесь же разъясняется
терминология и приводятся перечни функ-
ций. Материал сгруппирован по темам
и в основном организован так же, как во
всей книге. Отсутствующую информацию
и самые свежие сведения о новых версиях
ищите в руководстве по MySQL.

приложение
Справочник
по SQL и MySQL

22222

Приложение 2320

Основы языка SQL
Разработчики MySQL стремились обеспе-
чить полную поддержку стандартов ANSI
SQL92 и SQL99, но все же допустили неко-
торые отступления в интересах произво-
дительности. В этом разделе речь пойдет
о стандартном языке SQL, а в следующих
мы остановимся на некоторых особеннос-
тях MySQL. В табл. П2.1 представлены
наиболее употребительные команды SQL.
Ниже приведены некоторые примеры за-
просов:

CREATE DATABASE имя_базы_данных;

создает новую базу данных;
CREATE TABLE имя_таблицы
� (имя_колонки1 определение_колонки1,
� имя_колонки2 определение_колонки2);

создает новую таблицу, структура ко-
торой задана определениями колонок;
DELETE FROM имя_таблицы
� WHERE имя_колонки = 'x';
удаляет из таблицы все строки, где
в указанной колонке находится значе-
ние x;
DROP TABLE имя_таблицы;
удаляет таблицу вместе со всеми дан-
ными;
DROP DATABASE имя_базы_данных;
удаляет базу данных вместе со всеми
таблицами;
INSERT INTO имя_таблицы
� VALUES('x', 'y', 'z');
вставляет новую строку в указанную
таблицу и заполняет колонки значени-
ями x, y, z. Такая запись приемлема,
лишь если число значений в точности
равно числу колонок в таблице;

Таблица П2.1. Наиболее употребительные
команды SQL

Команда Использование

ALTER Модификация структуры
таблицы

CREATE Создание таблицы или базы
данных

DELETE Удаление записей из таблицы

DROP Удаление таблиц и баз данных

INSERT Добавление записей в таблицу

SELECT Выборка информации
из базы данных

SHOW Вывод сведений о структуре
таблицы или базы данных

UPDATE Обновление записей в таблице

321Справочник по SQL и MySQL

INSERT INTO имя_таблицы (имя_колонки1,
� имя_колонки3)
� VALUES('x', 'y');
вставляет в указанную таблицу новую
строку, записывая в первую колонку
значение x, а в третью – значение y. Та-
кая запись приемлема, если указанные
колонки существуют;
INSERT INTO имя_таблицы
� VALUES('x', 'y', 'z'), ('a', 'b', 'c');
вставляет в таблицу две строки. Это
расширение, введенное в MySQL; в дру-
гих СУБД оно, скорее всего, работать не
будет;
SELECT * FROM имя_таблицы;
выбирает из таблицы все строки и все
колонки;
SELECT имя_колонки1, имя_колонки2
� FROM имя_таблицы;
выбирает две указанные колонки из
каждой записи;
UPDATE имя_таблицы
� SET имя_колонки = 'x';
записывает в указанную колонку каж-
дой записи таблицы значение x.

Приложение 2322

SELECT * FROM имя_таблицы
� ORDER BY имя_колонки1 ASC,
� имя_колонки2 DESC;
возвращает все записи таблицы, отсор-
тированные сначала по первой колонке
в порядке возрастания, а затем – по вто-
рой в порядке убывания;
SELECT * FROM имя_таблицы LIMIT 10;
возвращает первые десять записей из
таблицы;
SELECT * FROM имя_таблицы LIMIT 100, 50;
возвращает записи таблицы со 101 по
150.

Один запрос может содержать несколь-
ко фраз. Они могут просто ссылаться на
некоторую колонку по имени, а могут
в сочетании со скобками и операторами
образовывать более сложные условия.
В табл. П2.3 перечислены операторы и пре-
дикаты, которые часто употребляются
в предложении WHERE.

Команда ALTER
Практически любую команду SQL можно
использовать в разных контекстах, но ко-
манда ALTER, наверное, самая многоликая.
Ее общее назначение – изменять струк-
туру таблицы: переименовывать, добав-
лять, удалять или модифицировать колон-
ки. В табл. П2.2 перечислены некоторые
наиболее употребительные формы коман-
ды ALTER. Обратите внимание, что любая
форма начинается с фразы ALTER TABLE.

Предложения

Во многих запросах и, прежде всего,
в предложениях SELECT, UPDATE и DELETE
употребляются фразы, призванные огра-
ничить или модифицировать множество
строк, на которые распространяется дей-
ствие запроса. Чаще всего встречаются
фразы WHERE, GROUP BY, ORDER BY и LIMIT. Вот
несколько примеров:

SELECT * FROM имя_таблицы
� ORDER BY имя_колонки DESC;

возвращает все записи таблицы, отсор-
тированные по указанной колонке в по-
рядке убывания;

Таблица П2.2. Команда ALTER TABLE применяется для изменения структуры существующей таблицы

Фраза Пример Назначение

ADD COLUMN ADD COLUMN имя_колонки Добавляет новую колонку
� VARCHAR(40) после всех остальных

CHANGE COLUMN CHANGE COLUMN имя_колонки Позволяет изменить тип данных,
� имя_новой_колонки VARCHAR(60) атрибуты и имя колонки

DROP COLUMN DROP COLUMN имя_колонки Удаляет колонку с ее содержимым

ADD INDEX ADD INDEX имя_индекса Строит новый индекс
� (имя_колонки) по указанной колонке

DROP INDEX DROP INDEX имя_индекса Удаляет существующий индекс

RENAME AS RENAME AS новое_имя_таблицы Изменяет имя таблицы

323Справочник по SQL и MySQL

Таблица П2.3. Операторы и предикаты, которые в сочетании со скобками
могут служить для создания сложных выражений в SQL-запросах

Оператор Назначение

+ Сложение

- Вычитание

* Умножение

/ Деление

% Остаток от деления

= Равно

< Меньше

> Больше

<= Меньше или равно

>= Больше или равно

!= Не равно

% Означает любые несколько символов (используется в сочетании с LIKE)

_ (знак подчеркивания) Означает любой единичный символ (используется в сочетании с LIKE)

IS NOT NULL Имеет значение (в том числе равное пустой строке или нулю)

IS NULL Не имеет значения

BETWEEN Внутри диапазона

NOT BETWEEN Вне диапазона

IN Принадлежит списку значений

NOT IN Не принадлежит списку значений

OR (также ||) Хотя бы один из операндов равен true

AND (также &&) Оба операнда равны true

NOT (также !) Условие ложно

OR NOT (также ^) Один из операндов равен true

LIKE Значение сопоставляется с образцом

NOT LIKE Значение не сопоставляется с образцом

REGEXP Значение сопоставляется с образцом в виде регулярного выражения

NOT REGEXP Значение не сопоставляется с образцом в виде регулярного выражения

MATCH AGAINST Значение содержит указанные слова

Приложение 2324

Административные
команды SQL
Помимо команд для манипулирования
данными в SQL есть команды, предна-
значенные исключительно для управле-
ния базой данных в целом (см. главу 10
и табл. П2.4).

Таблица П2.4. Команды SQL, предназначенные для решения административных задач

Команда Пример Назначение

ANALYZE ANALYZE TABLE имя_таблицы Исследует таблицы типа MyISAM и BDB

BACKUP BACKUP TABLE имя_таблицы Сохраняет структуру и данные таблицы типа
� TO '/путь/к/резервному/каталогу' MyISAM в виде текстовых файлов

CHECK CHECK TABLE имя_таблицы Проверяет таблицы типа MyISAM и InnoDB

FLUSH FLUSH PRIVILEGES Актуализирует изменения привилегий,
произведенные в базе mysql

OPTIMIZE OPTIMIZE TABLE имя_таблицы Повышает эффективность доступа
к фрагментированной таблице типа MyISAM
или BDB

REPAIR REPAIR TABLE имя_таблицы «Ремонтирует» поврежденные таблицы
типа MyISAM

RESTORE RESTORE TABLE имя_таблицы Восстанавливает таблицу типа MyISAM
� FROM '/путь/к/резервному/каталогу' из текстовых файлов, созданных командой

BACKUP

SHOW SHOW GRANTS FOR имя_пользователя Выводит информацию
о полномочиях указанного пользователя

325Справочник по SQL и MySQL

Права доступа в MySQL
Встроенная в MySQL система проверки
прав доступа определяет, кто и что может
делать в конкретной базе данных. База дан-
ных mysql, которая создается в процессе
установки сценарием mysql_install_db, со-
держит информацию о пользователях, па-
ролях, хостах и базах данных. Там же хра-
нятся сведения о том, какие действия (то
есть какие команды SQL) разрешено вы-
полнять каждому пользователю в каждой
базе. В табл. П2.5 приведены варианты
прав доступа. Содержимое колонки «Роль»
характеризует уровень подготовки и ответ-
ственности пользователя, которому предо-
ставляется то или иное право: читатель

(разрешено только просматривать запи-
си), менеджер (разрешено добавлять и об-
новлять записи), администратор БД (раз-
решено создавать базы данных), админис-
тратор MySQL (отвечает за сервер и уста-
новленную на нем систему MySQL). Это
условная классификация, придуманная
мной для того, чтобы вы легко определя-
ли, как следует назначать права. Обычно
каждому пользователю следует предостав-
лять лишь те полномочия, которые ему бе-
зусловно необходимы для работы.

Таблица П2.5. Список прав доступа, которые можно назначать пользователям MySQL

Право Роль Применимо к...

SELECT Читатель ...таблицам

ALTER Менеджер ...таблицам

DELETE Менеджер ...таблицам

INSERT Менеджер ...таблицам

UPDATE Менеджер ...таблицам

CREATE Администратор БД ...базам данных, таблицам и индексам

DROP Администратор БД ...базам данных, таблицам

FILE Администратор БД ...файлам на сервере

INDEX Администратор БД ...таблицам

GRANT Администратор MySQL ...базам данных, таблицам

PROCESS Администратор MySQL ...серверу MySQL

RELOAD Администратор MySQL ...серверу MySQL

SHUTDOWN Администратор MySQL ...серверу MySQL

Приложение 2326

Типы данных в MySQL
Выбор правильного типа колонок – одно из
важных условий построения качественной
и быстрой базы данных. В табл. П2.6–П2.8
перечислены различные строковые, число-
вые и иные типы данных вместе
с указанием места, необходимого каждому
типу на диске. В описании колонки следу-
ет всегда указывать наиболее эффектив-
ный (то есть занимающий меньше места)
тип, принимая во внимание наибольшее
значение, которое может храниться в ко-
лонке.
Я не стал включать тип BLOB (Binary Large
OBject – большой двоичный объект) в со-
став строковых, хотя технически он почти
не отличается от типа TEXT; единственная
разница в том, что BLOB подразумевает
различение прописных и строчных букв,
а TEXT – нет. Тип BLOB отнесен к другой ка-
тегории, так как он обычно использует-
ся для хранения двоичных данных.

Кроме того, следует отметить, что типы
MEDIUMINT, SET, ENUM, а также типы BLOB
и TEXT разных размеров специфичны для
MySQL и не описаны в стандарте SQL. То
же самое относится к атрибутам AUTO_
INCREMENT, UNSIGNED и ZEROFILL.
И наконец, определяя тип колонки, не за-
бывайте, что любая колонка может иметь
атрибут NULL или NOT NULL, что целочислен-
ные колонки могут иметь атрибут UNSIGNED
(БЕЗ ЗНАКА), а любые числовые колонки
– атрибут ZEROFILL (С ЗАПОЛНЕНИЕМ
НУЛЯМИ). Начиная с версии MySQL 4.0.2
атрибут UNSIGNED применим и к колонкам
с плавающей точкой.

Таблица П2.6. Типы данных, применяемые для колонок, в которых хранятся строковые данные

Тип Размер Описание

CHAR[длина] Число байтов Поле фиксированной длины от 0 до 255 символов
равное длина

VARCHAR[длина] длина + 1 байт Поле переменной длины от 0 до 255 символов

TINYTEXT длина + 1 байт Строка длиной не более 255 символов

TEXT длина + 2 байта Строка длиной не более 65 535 символов

MEDIUMTEXT длина + 3 байта Строка длиной не более 16 777 215 символов

LONGTEXT длина + 4 байта Строка длиной не более 4 294 967 295 символов

327Справочник по SQL и MySQL

Таблица П2.8. Если в колонке хранятся нечисловые и нетекстовые данные,
то следует выбрать один из прочих типов, предоставляемых MySQL

Тип Размер Описание

DATE 3 байта Дата в формате ГГГГ-MM-ДД

DATETIME 8 байт Дата и время в формате ГГГГ-MM-ДД ЧЧ:MM:СС
(год, месяц, день, часы, минуты, секунды)

TIMESTAMP 4 байта Временной штамп в формате ГГГГMMДДЧЧMMСС;
допустимый диапазон – до 2037 года

TIME 3 байта Время в формате ЧЧ:MM:СС

YEAR 1 байт Год в формате ГГ или ГГГГ

ENUM 1 байт или 2 байта Перечисление, означающее, что в колонке может
находиться одно из нескольких допустимых значений

SET 1, 2, 3, 4 или 8 байт Аналогично ENUM, но в колонке может храниться
более одного из нескольких допустимых значений

TINYBLOB длина + 1 байт Двоичные данные длиной до 255 символов

BLOB длина + 2 байта Двоичные данные длиной до 65 535 символов

MEDIUMBLOB длина + 3 байта Двоичные данные длиной до 16 777 215 символов

LONGBLOB длина + 4 байта Двоичные данные длиной до 4 294 967 295 символов

Таблица П2.7. При выборе типа числовой колонки нужно прежде всего понять,
будут ли в ней храниться только целые числа или также и вещественные

Тип Размер Описание

TINYINT[длина] 1 байт Целое число в диапазоне от –128 до 127 или от 0
до 255, если указан модификатор UNSIGNED

SMALLINT[длина] 2 байта Целое число в диапазоне от –32 768 до 32 767
или от 0 до 65 535, если указан модификатор
UNSIGNED

MEDIUMINT[длина] 3 байта Целое число в диапазоне от –8 388 608
до 8 388 607 или от 0 до 16 777 215,
если указан модификатор UNSIGNED

INT[длина] 4 байта Целое число в диапазоне от –2 147 483 648
до 2 147 483 647 или от 0 до 4 294 967 295,
если указан модификатор UNSIGNED

BIGINT[длина] 8 байт Целое число в диапазоне
от –9 223 372 036 854 775 808
до 9 223 372 036 854 775 807
или от 0 до 18 446 744 073 709 551 615,
если указан модификатор UNSIGNED

FLOAT[длина, десятичные знаки] 4 байта Небольшое число с плавающей точкой

DOUBLE[длина, десятичные знаки] 8 байт Большое число с плавающей точкой

DECIMAL[длина, десятичные знаки] длина + 1 байт Число типа DOUBLE, хранящееся в виде
или длина с фиксированной десятичной точкой
+ 2 байта

Приложение 2328

Функции MySQL
Форматирование результатов запроса на
стороне сервера увеличивает ценность воз-
вращаемых данных и позволяет сокра-
тить объем программирования на стороне
клиента. Для этой цели в MySQL предна-
значены встроенные функции, о которых
шла речь в главе 5. В табл. П2.9 приведены
функции для работы со строковыми дан-
ными. В табл. П2.10 перечислено боль-
шинство функций для работы с числами,

в табл. П2.11 – функции для работы с дата-
ми, а в табл. П2.12 – параметры формати-
рования для функций DATE_FORMAT() и TIME_
FORMAT(). В табл. П2.13 собраны агрегатные
функции, а в табл. П2.14 – все прочие, не
вошедшие ни в одну из вышеупомянутых
категорий. Почти все функции применимы
как к значениям колонок, так и к литералам
(например, SELECT ROUND(3.142857, 2)).

Таблица П2.9. Функции для работы с текстовыми данными

Функция Пример использования Назначение

LEFT() LEFT(имя_колонки, x) Возвращает x символов, начиная с первого

LENGTH() LENGTH(имя_колонки) Возвращает длину строки, хранящейся
в указанной колонке

LOCATE() LOCATE(подстрока, строка) Возвращает позицию первого вхождения
подстроки в строку

LOWER() LOWER(имя_колонки) Преобразует строку к нижнему регистру

LTRIM() LTRIM(имя_колонки) Исключает лишние пробелы в начале
хранимой строки

REPLACE() REPLACE(имя_колонки, Возвращает значение колонки после замены
� найти, заменить) всех вхождений строки найти на строку

заменить

RIGHT() RIGHT(имя_колонки, x) Возвращает x символов, начиная с конца

RTRIM() RTRIM(имя_колонки) Исключает лишние пробелы в конце хранимой
строки

STRCMP() STRCMP(имя_колонки1, Возвращает 0, если строки совпадают, -1 – если
� имя_колонки2) строка в первой из указанных колонок меньше

строки во второй колонке, и 1 – в противном
случае

SUBSTRING() SUBSTRING(имя_колонки, Возвращает число символов из указанной
� начало, число) колонки от позиции начало (позиции

нумеруются с 0)

TRIM() TRIM(имя_колонки) Исключает лишние пробелы в начале и в конце
хранимой строки

UPPER() UPPER(имя_колонки) Преобразует строку к верхнему регистру

329Справочник по SQL и MySQL

Таблица П2.10. Некоторые из функций MySQL для работы с числами,
не считая тригонометрических и еще более экзотических

Функция Пример использования Назначение

ABS() ABS(имя_колонки) Возвращает абсолютную величину указанной колонки

CEILING() CEILING(имя_колонки) Возвращает наименьшее целое число,
большее либо равное значению в колонке

FLOOR() FLOOR(имя_колонки) Возвращает наибольшее целое число,
меньшее либо равное значению в колонке

FORMAT() FORMAT(имя_колонки, y) Возвращает значение в колонке, отформатированное
в виде числа с y десятичных знаков, причем группы
из трех цифр разделены запятыми

LEAST() LEAST(x,y,z...) Возвращает наименьшее число в списке аргументов

GREATEST() GREATEST(x,y,z...) Возвращает наибольшее число в списке аргументов

MOD() MOD(x,y) Возвращает остаток от деления x на y (один или оба
аргумента могут быть колонками)

POWER() POWER(x,y) Возвращает результат возведения x в степень y

RAND() RAND() Возвращает случайное число между 0 и 1,0

ROUND() ROUND(x,y) Возвращает число x, округленное до y десятичных
знаков

SIGN() SIGN(имя_колонки) Возвращает индикатор знака аргумента:
-1, если аргумент отрицателен, 0 – если равен 0,
и 1 – если положителен

SQRT() SQRT(имя_колонки) Вычисляет квадратный корень из значения колонки

Таблица П2.11. В MySQL много функций для выполнения арифметических действий с датами
и форматирования даты и времени

Функция Пример использования Назначение

HOUR() HOUR(имя_колонки) Возвращает только час

MINUTE() MINUTE(имя_колонки) Возвращает только минуту

SECOND() SECONS(имя_колонки) Возвращает только секунду

DAYNAME() DAYNAME(имя_колонки) Возвращает название дня

DAYOFMONTH() DAYOFMONTH(имя_колонки) Возвращает номер дня в месяце

MONTHNAME() MONTHNAME(имя_колонки) Возвращает название месяца

MONTH() MONTH(имя_колонки) Возвращает номер месяца

YEAR() YEAR(имя_колонки) Возвращает год

ADDDATE() ADDDATE(имя_колонки, Возвращает дату, полученную прибавлением
� INTERVAL x тип) x единиц к значению колонки (см. врезку

«Функции ADDDATE() и SUBDATE()» в главе 5)

SUBDATE() SUBDATE(имя_колонки, Возвращает дату, полученную вычитанием
� INTERVAL x тип) x единиц из значения колонки (см. врезку

«Функции ADDDATE() и SUBDATE()» в главе 5)

Приложение 2330

Таблица П2.11. В MySQL много функций для выполнения арифметических действий с датами
и форматирования даты и времени (окончание)

Функция Пример использования Назначение

CURDATE() CURDATE() Возвращает текущую дату

CURTIME() CURTIME() Возвращает текущее время

NOW() NOW() Возвращает текущие дату и время

UNIX_ Возвращает число секунд, прошедших
� TIMESTAMP() UNIX_TIMESTAMP (дата) с 1 января 1970 года или от указанной даты

Таблица П2.12. Специальные символы форматирования даты и времени,
применяемые в функциях DATE_FORMAT() и TIME_FORMAT()

Символ Значение Пример

%e Порядковый номер дня месяца 1–31

%d Порядковый номер дня месяца с двумя цифрами 01–31

%D Порядковый номер дня с суффиксом 1st–31st (1-е – 31-е)

%W День недели Sunday–Saturday

(воскресенье–суббота)

%a Сокращенное название дня недели Sun–Sat

%c Порядковый номер месяца 1–12

%m Порядковый номер месяца с двумя цифрами 01–12

%M Название месяца January–December

(январь–декабрь)

%b Сокращенное название месяца Jan–Dec

%Y Год 2002

%y Последние две цифры года 02

%l Час 1-12

%h Час с двумя цифрами 01-12

%k Час в 24-часовом измерении 0-23

%H Час в 24-часовом измерении с двумя цифрами 00-23

%i Минуты 00-59

%S Секунды 00-59

%r Время 8:17:02 PM

%T Время в 24-часовом измерении 20:17:02

%p Сокращение AM (до полудня) или PM (пополудни) AM или PM

331Справочник по SQL и MySQL

Другие справочные
материалы
В табл. П2.15 показано, как представлены
в коде специальные символы. Обратив-
шись к табл. П2.16, вы научитесь задавать
степень важности слов в булевском режи-
ме полнотекстового поиска. В табл. П2.17
приведены некоторые метасимволы, упо-
требляемые в регулярных выражениях.

Таблица П2.14. Функции для выполнения различных операций – от шифрования до конкатенации

Функция Пример использования Назначение

CONCAT() CONCAT(имя_колонки1, Сводит все аргументы в одну строку
� '-', имя_колонки2)

CONCAT_WS() CONCAT_WS(символ, Сводит все аргументы в одну строку,
� имя_колонки1, имя_колонки2) разделяя их указанным символом

DATABASE() DATABASE() Возвращает имя текущей рабочей базы данных

ENCODE() ENCODE('строка', 'аргумент') Возвращает зашифрованную строку,
которую можно восстановить в исходном виде

ENCRYPT() ENCRYPT('строка', 'аргумент') Возвращает строку, зашифрованную
с помощью аргумента (требует наличия
функции crypt из стандартной библиотеки UNIX)

DECODE() DECODE('строка', 'аргумент') Возвращает расшифрованную строку

LAST_INSERT_ID() LAST_INSERT_ID() Возвращает последнее значение
автоинкрементной колонки

PASSWORD() PASSWORD('строка') Возвращает зашифрованную строку

USER() USER() Возвращает имя пользователя
в текущем сеансе

Таблица П2.13. Агрегатные функции обычно используются в сочетании с фразой GROUP BY

Функция Пример использования Назначение

AVG() AVG(имя_колонки) Возвращает среднее значение в колонке

COUNT() COUNT(имя_колонки) Подсчитывает число строк

COUNT(DISTINCT) COUNT(DISTINCT имя_колонки) Подсчитывает число различных значений
в колонке

MIN() MIN(имя_колонки) Возвращает наименьшее значение в колонке

MAX() MAX(имя_колонки) Возвращает наибольшее значение в колонке

SUM() SUM(имя_колонки) Возвращает сумму всех значений в колонке

Таблица П2.15. Для вставки некоторых
специальных символов в базу данных
их необходимо экранировать

Символ Описание

\' Одиночная кавычка

\" Двойная кавычка

\\ Обратная косая черта

\n Символ новой строки

\r Перевод каретки

\t Табуляция

\% Символ процента

_ Символ подчеркивания

Приложение 2332

Таблица П2.16. Начиная с версии MySQL 4 можно выполнять полнотекстовый поиск в булевском
режиме, применяя специальные символы

Символ Значение Пример Интерпретация

+ Слово должно +punk rock Слово punk должно присутствовать
присутствовать обязательно, а rock – необязательно

- Слово не должно +punk -rock Слово punk обязательно должно
присутствовать присутствовать, а слово rock –

отсутствовать

'' Слова должны 'punk rock' Ищется фраза punk rock
встречаться в указанной
последовательности

< Менее важно <punk +rock Слово rock обязательно,
а punk менее важно

> Более важно >punk +rock Слово rock обязательно,
а punk более важно

() Группировка (>punk roll) +rock Слово rock обязательно, а punk и roll
необязательны, но punk более важно,
чем roll

~ Уменьшает релевантность +punk ~rock Слово punk обязательно, а присутствие
(то есть степень rock уменьшает релевантность
соответствия запросу) (хотя слово rock не должно

отсутствовать)

* Неточное соответствие +punk +rock* Слова punk и rock обязательны, причем
(символ употребляется слова rocks, rocker, rocking и т.п. тоже
в конце слова) подходят

Таблица П2.17. При использовании предикатов REGEX и NOT REGEX
в регулярные выражения могут входить метасимволы

Символ Значение

. Любой символ (один)

q? Ноль или одно повторение q

q* Ноль или более повторений q

q+ По крайней мере одно q

q{x} x повторений q

q{x,} Не менее чем x повторений q

q{,x} Не более чем x повторений q

q{x,y} От x до y повторений q

^q Начинается с q

q$ Заканчивается q

(pqr) Группировка (соответствует pqr)

q|z Альтернатива (или q, или z)

[] Классы символов (например, [a–z], [0–9])

\ Экранирует метасимвол (\., * и т.д.)

Справочник по SQL и MySQL

Поскольку ни одна книга не может рас-
сказать обо всем на свете и со временем
утрачивает актуальность, я предпочитаю
включать в свои работы перечень полез-
ных ресурсов. Здесь вы найдете главным
образом ссылки на Web-сайты, которые,
на мой взгляд, заслуживают внимания,
а также на другие книги и списки рассылки.
По всем вопросам, касающимся MySQL,
обращайтесь прежде всего на официаль-
ный сайт www.mysql.com. Возможно, вто-
рым источником информации станет для
вас домашняя страница этой книги –
www.DMCinsignts.com/mysql. Сайт созда-
вался специально для поддержки книги,
там вы найдете:

дополнительные ссылки на Web-ресур-
сы (при последнем подсчете их было
около 200);
примеры сценариев, не вошедшие в кни-
гу;
дополнительные учебные руководства
(по мере их написания);
форум для обсуждения этой книги;
перечень опечаток (если таковые со вре-
менем обнаружатся).

приложение
Ресурсы

Все ресурсы, упомянутые в этой главе, как
мне кажется, будут полезными среднему
читателю. Упоминание того или иного ре-
сурса не следует расценивать как рекламу;
не нужно также считать, что это лучший
источник информации по данной теме.

33333

Приложение 3334

MySQL
Первейший и самый авторитетный ресурс
по MySQL – это руководство, опублико-
ванное на сайте компании-разработчика
(www.mysql.com) в различных форматах.
В основной онлайновой версии возможен
контекстный поиск, тогда как другой ва-
риант содержит комментарии читателей,
к которым иногда не мешает обратиться.
Я также храню у себя на диске копии руко-
водств для тех версий MySQL, которыми
пользуюсь (поскольку материалы, опуб-
ликованные на сайте, всегда относятся
к текущей версии, небесполезно сохранять
и старые варианты).
Если поиск в руководстве по MySQL ниче-
го не дал, стоит обратиться к нескольким
спискам рассылки, посвященным MySQL
(официальной конференции в USENET не
существует). Списки посвящены разным
темам, в числе которых:

объявления;
общие вопросы;
Java;
Windows;
ODBC;
C++;
Perl.

Все эти списки, за исключением объявле-
ний, доступны в виде дайджестов (корот-
ких сводок). Подписавшись на такую рас-
сылку, вы будете ежедневно получать два
больших письма вместо полусотни ма-
леньких. Подобные списки ведутся на раз-
ных языках (см. www.mysql.com/doc/M/a/
Mailing-list.html).

Рис. П3.1. Чтобы получить информацию по MySQL
из списков рассылки, оформите подписку
или изучите архивы

335Ресурсы

Еще один сайт, посвященный MySQL, –
http://lists.mysql.com (рис. П3.1). Здесь
можно проводить поиск по архивам спис-
ков рассылки. Прежде чем отправлять
свой вопрос, имеет смысл поискать ответ
на него в архивах (и, конечно же, в руко-
водстве) – иначе вы рискуете получить
отповедь от постоянных подписчиков.
На сайте датской компании Bit By Bit (www.
bitbybit.dk/mysqlfaq) – рис. П3.2 – есть
несколько хороших ресурсов по MySQL,
включая список часто задаваемых вопро-
сов (FAQ), который поддерживает Карс-
тен Педерсен (Carsten Pedersen).Рис. П3.2. На сайте Bit By Bit много информации,

полезной для начинающего разработчика
на MySQL

Приложение 3336

Приложения сторонних
фирм для MySQL
На сайте MySQL приведен список различ-
ных приложений и инструментальных
средств для MySQL – от простых сценариев
до развитых интерфейсов (см. www.mysql.
com/downloads/contrib.html).
В главе 3 я упоминал о специализирован-
ных приложениях для разработки схем баз
данных. К их числу относятся, например,
программы DeZign (www.datanamic.com/
dezign/index.html) – рис. П3.3 – и Table-
designer (www.tabledesigner.com). Хотя та-
кого рода приложения могут быть написа-
ны в расчете на конкретные СУБД, это не
мешает применять их и для MySQL.
Простой и в то же время мощный инстру-
мент администрования – приложение php-
MyAdmin, созданное талантливыми про-
граммистами из компании phpWizard.net
(www.phpwizard.net). Для работы вам по-
требуется наличие Web-сервера с PHP, зато
вы получите возможность взаимодейство-
вать с MySQL из Web-браузера, а не из мо-
нитора mysql (рис. П3.4).
Наконец, программа MySQL Manager от
компании EMS (http://ems-hitech.com/
mymanager/) – недорогой и всеобъем-
лющий инструмент администрирования
MySQL.

Рис. П3.3. Программа DeZign от компании
Datanamic помогает проектировать схемы
баз данных (отношения «сущность–связь»)

Рис. П3.4. Программа phpMyAdmin от фирмы
phpWizard.net – прекрасное средство работы
с MySQL

337Ресурсы

Язык SQL
Поскольку язык SQL используется как
в MySQL, так и в других СУБД, ему посвя-
щено огромное количество ресурсов. Хотя
руководства по стандартному SQL не на-
учат вас, как реализовать максимум воз-
можностей, предоставляемых MySQL, пред-
ставление об основах технологии у вас
все-таки сложится. Вот лишь несколько
онлайновых руководств по языку SQL:

курс SQL – www.sqlcourse.com;
W3Schools.com – www.w3schools.com/
sql/default.asp (рис. П3.5);
«A Gentle Introduction to SQL», введе-
ние в SQL – www.sqlzoo.net (рис. П3.6);
курс SQL, часть 2 – www.sqlcourse2.com.

Во многих книжных магазинах продают-
ся книги по языку SQL. Я рекомендую две
из них: Judith S. Bowman, «The Practical SQL
Handbook» и Martin Gruber, «Mastering
SQL»1. Впрочем, книги, целиком посвя-
щенные SQL, изобилуют информацией,
необходимой разве что профессиональ-
ным разработчикам приложений для баз
данных. В довершение всего, вы обнару-
жите, что MySQL не поддерживает многое
из того, что описано в книгах по стандарт-
ному языку SQL.

1 Эти книги вышли на русском языке: Грабер М. SQL.
Описание SQL92, SQL99 и SQLJ. – М.: Лори, 2001;
Боуман Дж. С., Эмерсон С. Л., Дарновски М. Прак-
тическое руководство по SQL. Изд. 4-е. – М.: Виль-
ямс, 2002.

Рис. П3.5. На сайте W3Schools размещено много
онлайновых руководств, в том числе и по MySQL

Рис. П3.6. На сайте Эндрю Камминга
(Andrew Cumming) «A Gentle Introduction to SQL»
язык обсуждается на уровне, доступном
начинающему разработчику

Приложение 3338

Общие вопросы
теории баз данных
Множество сайтов и книг, посвященных
общим вопросам баз данных, пригодится
и при работе с MySQL. В частности, стоит
упомянуть SearchDatabase (www.searchdata
base. com) и виртуальную библиотеку Web-
разработчика (http://wdvl.internet.com/
Authoring/DB/Relational).
Среди других сайтов, имеющих отноше-
ние к MySQL, отмечу следующие:

ANSI – www.ansi.org. Здесь можно най-
ти стандарт SQL;
InnoDB – www.innodb.com. Сайт фирмы,
разработавшей таблицы типа InnoDB;
Sleepycat – www.sleepycat.com (рис. П3.7).
Сайт фирмы, разработавшей таблицы
типа Berkeley DB (BDB).

Есть книга, где рассматриваются все во-
просы проектирования баз данных – на-
чиная с того, нужна ли вам база данных
вообще, и заканчивая определением типов
колонок (Michael J. Hernandez, «Database
Design for Mere Mortals»).

Рис. П3.7. Компания Sleepycat разработала
и сопровождает таблицы типа BDB,
которые можно использовать в MySQL

339Ресурсы

Язык PHP
В главе 6 было показано, как обращаться
к базе данных MySQL из PHP-сценария.
Технология PHP настолько популярна, что
ей посвящены десятки сайтов. Вот некото-
рые наиболее известные и полезные:

домашняя страница PHP (рис. П3.8) –
www.php.net. Здесь вы найдете офици-
альное руководство и многое другое;
Zend – www.zend.com (рис. П3.9). Сайт
содержит множество статей и приме-
ров кода;
PHPBuilder – www.phpbuilder.com. Это
замечательный сайт, где есть учебные
руководства, форумы и примеры про-
грамм.

Рис. П3.8. PHP.net – официальная страница
языка PHP

Рис. П3.9. На сайте Zend.com предоставлена
разносторонняя поддержка технологии PHP

Приложение 3340

Язык Perl
В главе 7 был продемонстрирован доступ
к MySQL из Perl-сценариев. Ниже пере-
числено несколько сайтов, где можно най-
ти дополнительную информацию:

www.perl.com – официальная страница
Perl;
www.cpan.org – сетевой архив матери-
алов по Perl (рис. П3.10). Здесь пред-
ставлены, в частности, модули для ра-
боты с MySQL;
ActiveState (www.activestate.com) – от-
сюда можно загрузить продукт Active-
Perl, представляющий собой дистрибу-
тив Perl для Windows;
http://dbi.perl.org – документация по
технологии доступа к базам данных DBI
(рис. П3.11). Там же есть ссылки на раз-
личные ресурсы, посвященные Perl DBI.

Рис. П3.10. Для доступа к базам данных MySQL
из Perl понадобятся некоторые модули
из архива CPAN

Рис. П3.11. В документации по DBI есть материалы,
касающиеся как Perl, так и общих вопросов
по базам данных

341Ресурсы

Язык Java
В главе 8 речь шла об использовании драй-
вера JDBC для доступа к MySQL из про-
грамм на языке Java. Вот несколько ссылок
на ресурсы по этой теме:

http://java.sun.com – домашняя страни-
ца языка Java (рис. П3.12);
http://java.sun.com/products/jdbc – до-
машняя страница технологии JDBC;
http://mmmysql.sourceforge.net – стра-
ница, посвященная драйверу JDBC для
MySQL;
http://javaboutique.internet.com – раз-
личные статьи и примеры программ на
Java;
http://www.javaworld.com (рис. П3.13) –
разнообразные руководства и приме-
ры кода;
страница JDBC-драйвера Caucho, www.
caucho.com/projects/jdbc-mysql – аль-
тернативы драйверу mm.mysql.

Рис. П3.12. Компания Sun, разработавшая
и поддерживающая язык Java, публикует
документацию по нему на своем сайте

Рис. П3.13. Сайт JavaWorld – прекрасный ресурс
для программистов на Java любого уровня

Приложение 3342

Безопасность
Тема безопасности баз данных заслужива-
ет отдельной книги. Когда речь идет об их
защите, устаревшую информацию можно
считать просто-напросто непригодной.
Лучший способ не отстать от жизни – по-
стоянно следить за статьями, появляющи-
мися на нижеперечисленных сайтах:

www.mysql.com/doc/G/e/General secu-
rity.html (рис. П3.14) – специальный
раздел документации по MySQL, по-
священный безопасности;
CERT, www.cert.org. Организация, свя-
занная с Университетом Карнеги Мел-
лон, публикует отчеты о различных
вопросах безопасности в Internet;
сайт SecurityFocus – www.securityfocus.
com. Представлены материалы по бе-
зопасности, касающиеся главным об-
разом систем Windows и UNIX. Здесь
же появляются извещения об ошибках
и вирусах, о которых разработчики долж-
ны знать;
сайт Insecure.org – www.insecure.org. Вам
предлагается трактовка вопросов безо-
пасности с точки зрения хакера. Акцент
сделан главным образом на ОС UNIX.
Кроме того, здесь вы найдете различные
инструментальные средства;
www.tripwire.org – программа с откры-
тым исходным кодом Tripwire работа-
ет на вашем компьютере и следит за
критически важными файлами. В на-
стоящее время существует только вер-
сия для систем UNIX;
OpenSSH – www.openssh.org: бесплат-
ное приложение, обеспечивающее бе-
зопасную работу по протоколам telnet
и FTP;
PuTTY – www.chiark.greenend.org.uk/
~sgtatham/putty: бесплатный популяр-
ный клиент SSH для Windows.

Остается добавить, что в MySQL версии 4.0
предусмотрена возможность работы по
протоколу SSL (Secure Socket Layer – слой
защищенных сокетов) для установления
безопасного соединения с базой данных.
В руководстве описано, как добиться того же
результата с помощью SSH (Secure SHell –
защищенная оболочка). Оба подхода за-
служивают внимания в случаях, когда важ-
на безопасная передача данных.

Рис. П3.14. Раздел документации по MySQL,
касающийся безопасности, должен прочесть
каждый пользователь

343Ресурсы

Прочие ресурсы
Напоследок я предложу вашему внима-
нию несколько ресурсов, не попадающих
ни в одну из вышеперечисленных катего-
рий. Разработчики, которые используют
систему Mac OS X (а я ее большой поклон-
ник), должны знать о сайтах:

http://developer.apple.com предоставля-
ет разработчикам поддержку для сис-
тем компании Apple (рис. П3.15);
Entropy – www.entropy.ch.

Сайт E-gineer (www.e-gineer.com) – это пре-
красный источник информации об уста-
новке MySQL и других программ.
Уже неоднократно упоминавшийся сайт
SourceForge.net (www.sourceforge.net) ре-
кламируют как самое большое в мире хра-
нилище программ с открытым исходным
кодом – и тому есть веские основания. На
этом сайте разрабатываются и размеща-
ются тысячи самых разных технологий,
в том числе JDBC-драйвер mm.mysql.
Developer Sched (www.devsched.com) – ре-
сурс, посвященный общим вопросам раз-
работки программ. Здесь публикуются
статьи о различных языках программиро-
вания и технологиях.
Сайт WebMonkey (www.webmonkey.com)
очень похож на Developer Sched, но шире
по тематике.
Если вас заинтересовали движение в под-
держку открытых исходных кодов и про-
екты типа MySQL, загляните на сайт www.
opensource.org.

Рис. П3.15. Сайт Apple Developer Connection –
необходимый ресурс для более опытных
пользователей системы Mac OS X

предметный
указатель

А

Автоинкрементирование 316
Административные команды SQL 324
Администрирование 267

импорт данных 276
каталог с данными 269
командные файлы 274
лишение полномочий 287
обслуживание базы данных 278
повышение производительности.
См. Производительность
пользователь root.
См. root, пользователь
протоколирование операций
MySQL 283
резервное копирование
базы данных 271
файлы данных 268

Анонимные пользователи 286
Атомарность 64

Б

Базы данных
BDB (Berkeley DB) 338
test 287
блокировка 270
восстановление 276, 285
выбор рабочей 138, 140
доступ из сценария 191
и поисковые машины 244
именование 79

нормальные формы (первая, вторая,
третья) 64, 65, 68
обработка ошибок 165
обслуживание 278
показ текущей 136
права доступа 55
проектирование 59
резервное копирование 271
ресурсы 338
связи 63
создание 82
соединение

Java 214
Perl 191
PHP 138

удаление 109
Безопасность

администрирование 286
и Perl 263
и константы 139
ресурсы 342
техника программирования 262

Блокировка
баз данных 270
таблиц 298

Булевский режим 301

В

Внешние ключи 61
и вторая нормальная форма 67
и реляционные базы данных 157

345Предметный указатель

и соединение таблиц 97
и таблицы типа InnoDB 294
поддержание целостности данных 90

Внутреннее соединение 97
«Волшебные кавычки» 168

Д

Данные
вставка 86
выборка 89, 234
группировка 132
двоичные 234
дешифрование 129
импорт 276
моделирование 59
обновление 195
проверка 262, 286
резервное копирование 269
сортировка 101
удаление 107
хранение 234
форматирование 126
целостность 262
шифрование 129

Двоичные
данные 234
файлы 34

Двоичный дистрибутив MySQL 31
Драйверы

available_drivers(), метод 188
Caucho, домашняя страница 341
JBDC 211, 341, 343
MM.MySQL 211, 341

З

Записи 61
вставка 86
выборка 89
импорт 276
обновление 105
ограничение числа 103
редактирование 177

«Заплаты». См. Патчи
Запорченные файлы 278

Запуск MySQL 40
в системе

Linux 40
Mac OS X 309
Windows 42

типичные проблемы 309
Значения по умолчанию 75

И

Именование, соглашения 79
Импорт данных 276
Индексы 77

и атрибут AUTO_INCREMENT 78
и запросы с предикатом LIKE 96
и поиск 251
и полномочия 325
и таблицы типа InnoDB 294
типы 78

К

Кавычки. См. Символы
Каталог с данными 268, 309
Классы

Java 215
java.util 230
ResourceBundle 230

Команды
ALTER TABLE 302
BACKUP TABLE 270, 299
BEGIN 295
chmod 270, 313
COMMIT 295
CREATE DATABASE 82
CREATE TABLE 82, 290
DROP DATABASE 109
DROP TABLE 109
edit 52
FLUSH PRIVILEGES 288
FLUSH TABLES 298
GRANT 55
grep 309
INSERT 58, 73, 86
ls 273
LOAD DATA 277

MySQL346

LOCK TABLES 298
make install 185
make test 185
mysqld 44
perl -v 182
quit 52, 53
RESTORE 277
REVOKE 286
ROLLBACK 295
SELECT 322
SHOW 85
tar 269
TRUNCATE 107
UNLOCK TABLES 298, 300

Командные файлы 274
Комментарии 44, 139
Конкатенация 117
Конфигурация MySQL 34

проблемы 308

М

Массивы 148, 149
$_GET 148, 168
$_POST_ 148, 168
$HTTP_GET_VARS 148, 168
$HTTP_POST_VARS 148, 161, 162
@ARGV 201
@drivers 188

Методы
available_drivers() 188
bind_col() 199
close() 219
createStatement() 219, 221, 226
do() 194, 197
execute() 199
executeQuery() 224, 226
executeUpdate() 219, 221, 224, 226
fetchrow_array() 199
fetchrow_hashref() 199
GET 148
next() 224
POST 148
prepare 199
previous() 228

Н

Нормализация 60
Нормальные формы

вторая 65
первая 64
третья 68

О

Образцы 305
Операторы 92, 322

LIKE и NOT LIKE 95
Ошибки 165

Access denied 310
обработка 165
соединения 311

П

Пакетный режим 274
Пароли

Java 217
Perl 196
восстановление 314
защита 286
и безопасность 262
и соединение с базой данных 286, 310
пользователей 55
пользователя root 26, 314
шифрование 128

Патчи 38
Первичные ключи 61

и значение NULL 75
именование 79
и обновление 105

Переменные
$_ 189
$dbh 191
$dsn 191
$image 238

Поисковые машины 244
Полнотекстовый поиск 301
Пользователи

анонимные 286
имена и пароли 55

347Предметный указатель

показ текущего 136
права доступа 54, 262, 287, 310, 325
создание учетной записи 56

Права доступа (полномочия) 54, 325
и копирование файлов 270
и резервное копирование 270

Приложения. См. также Утилиты
DeZign 336
mysqld 42
mysqld-max 42
mysqld-nt 42
mysqld-nt-max 42
mysqld-opt 42
phpMyAdmin 336
для Web 190
Tabledesigner 336
сторонних фирм для MySQL 336

Проверка данных 262, 286
Производительность

оптимизация таблиц 282
повышение 281

Протокол
изменений 283
ошибок 283, 284

Протоколирование 283
Псевдонимы 117

Р

Расширения имен файлов
.ISD 280
.ISM 280
.jar 212
.pl 189

Регулярные выражения 263, 305
Резервное копирование

базы данных 271
и полномочия 270
с помощью команд SQL 270
таблиц 299

Реляционная база данных 14

С

Связи 63
Символические ссылки 313

Символы
" (двойная кавычка)

«волшебные кавычки» 168
и числовые значения 93
отсутствие 53
экранирование 264

' (одиночная кавычка)
«волшебные кавычки» 168
и строковые значения 88
отсутствие 53
экранирование 263

\ (обратная косая черта) 263
% (символ множественного
соответствия) 305
_ (символ одиночного
соответствия) 305

Соединения
и пароли 286
ошибки 311
параметр max_connections 281
с базой данных

Java 214
Perl 191
PHP 138

Сокеты 312
Строки

и кавычки 88
и регулярные выражения 305
считывание изображений в строках 238
типы данных 326

Т

Таблицы
блокировка 298
восстановление 276
временные 290
вставка данных 277
изменение типа 294
оптимизация 282
очистка 277
разблокировка 298, 300
резервное копирование 270, 299
ремонт 278
соединение 97

MySQL348

типа
BDB 290, 296
InnoDB 290
ISAM 290
MyISAM 269, 278, 282

Текст
поиск 301
форматирование 70

Типы
данных 70

BIGINT 327
BLOB 327
CHAR 326
DATE 327
DATETIME 327
DECIMAL 327
DOUBLE 327
ENUM 327
FLOAT 327
INT 327
LONGBLOB 327
LONGTEXT 326
MEDIUMBLOB 327
MEDIUMINT 327
MEDIUMTEXT 326
SET 327
SMALLINT 327
TEXT 326
TIME 327
TIMESTAMP 327
TINYBLOB 327
TINYINT 327
TINYTEXT 326
YEAR 327
выбор 72
строковые 326
числовые 327

таблиц 84
Транзакции 295

У

Установка
MySQL 21

проблемы 308

поддержки
Java 211
Perl 181

Утилиты
jar 212
myisamchk 278
mysqldump 271

Ф

Файл свойств 229
Файлы

innodbdata 295
my.cnf 291, 311
восстановление 278
данных 268
запорченные 278
командные 274
копирование 268
свойств 229

Форматирование
данных 328
даты и времени 328

Фразы
BETWEEN 125
GROUP BY 131
HAVING 94
LIMIT 103, 258
ORDER BY 101
WHERE 92

Функции
MySQL

ABS() 329
AVG() 330
CELING() 329
CONCAT() 331
CONCAT_WS() 331
COUNT() 330
DATABASE() 331
DECODE() 331
ENCODE() 286, 331
ENCRYPT() 331
FLOOR() 329
FORMAT() 329
GREATEST() 329

349Предметный указатель

header() 243
LAST_INSERT_ID() 331
LEAST() 329
LEFT() 328
LENGTH() 328
LOCATE() 328
LOWER() 328
LTRIM() 328
MAX() 330
MIN() 330
MOD() 329
PASSWORD() 286, 310, 331
POWER() 329
RAND() 329
REPLACE() 328
RIGHT() 328
ROUND() 329
RTRIM() 328

A

ActiveState, Web-сайт 340
ANALYZE, команда 324
AND, связка 250
ANSI (Национальный институт
стандартизации США) 80

Web-сайт 338

B

BDB, тип таблиц 290, 296, 338
Bit By Bit, Web-сайт 335

C

Caucho, драйвер JDBC 341
CERT, Web-сайт 342
chmod, команда 313
chown, команда 270
CLASSPATH, переменная 213
close(), метод 219
CPAN, Web-сайт 340
createStatement(), метод 219, 221, 226

SIGN() 329
SQRT() 329
STRCMP() 328
SUBSTRING() 328
SUM() 330
TRIM() 328
UPPER() 328
USER() 331

PHP
addslashes() 238, 263
ereg() 263
is_numeric() 263
mysql_escape_string() 263
q{} 263
s// 263

Х

Хосты 310

D

DBI, Web-сайт с документацией 340
DeZign, приложение 336
DriverManager, класс 214

E

ereg(), функция 263
executeQuery(), метод 224, 226
executeUpdate(), метод 219, 221, 224, 226

F

fetchrow_array(), метод 199
fopen(), функция 238
fread(), функция 238

G

GET , метод 148
getInt(), метод 224, 227, 228
getMetaData(), метод 228
getString(), метод 224, 227, 228
grep, команда 309

MySQL350

I

InnoDB
Web-сайт 338
тип таблиц 290

innodbdata, файл 295
Insecure.org, Web-сайт 342
is_numeric(), функция 263
ISAM, тип таблиц 280, 290

J

J2SE (Java 2 Platform, Standard Edition) 211
jar, программа 212
Java, язык программирования 210

SDK 211
выборка данных 224
выполнение запросов 219
домашняя страница 341
классы 215
ресурсы 341
соединение с базой данных 214
установка поддержки для MySQL 211

java.util, пакет 230
Javaboutique, Web-сайт 341
JavaWorld, Web-сайт 341
JDBC (Java DataBase Connectivity),
стандарт 210

DriverManager, класс 214
домашняя страница 341
драйвер 211, 341, 343

JSP (Java Server Pages) 210

K

key_buffer, параметр 281

L

Linux, операционная система
ActivePerl 183
установка MySQL 29

M

Mac OS, операционная система
Apple Developer Connection, сайт 343
и J2SE 211

проблемы при старте MySQL 309
ресурсы 343

max_connections, параметр 281
MAX_FILE_SIZE, параметр 240
MIME, типы 239
MM.MySQL, драйвер 211, 341
my.cnf, файл 291, 311
MyISAM, тип таблиц 269, 278, 282
myisamchk, утилита 278
MySQL

MySQL Manager, программа 336
mysql.sock 312
mysqladmin, утилита 268
mysqldimport, утилита 276
mysqldump, утилита 271
диагностика и устранение ошибок 307
доступ 310
приложения сторонних фирм 336
ресурсы 333
руководство 334
списки рассылки 334
установка. См. Установка MySQL

O

OpenSSH, Web-сайт 342
OR, связка 250

P

Perl, язык программирования
официальная страница 340
программирование

безопасность 263
создание поисковой машины 244

ресурсы 340
PHP, язык программирования

версии 235
официальная страница 339
разбиение результатов поиска
на страницы 252
ресурсы 339

PHPBuilder, Web-сайт 339
phpMyAdmin, программа 337
Properties, класс 232
PuTTY, Web-сайт 342

351Предметный указатель

R

ResourceBundle, класс 230
root, пользователь 26

пароль 49, 314

S

SearchDatabase, Web-сайт 338
SecurityFocus, Web-сайт 342
SourceForge, Web-сайт 343
SQL (Structured Query Language),
структурированный язык запросов 13, 81

административные команды 324
импорт данных 276
обслуживание баз данных 278
операторы и фразы 322
основы 320
резервное копирование 271
ресурсы 337

SSL (Secure Socket Layer), протокол 342
Sticky bit 312

T

table_cache, параметр 281
Tabledesigner, программа и Web-сайт 336
tar, команда 269
Tripwire, Web-сайт 342

U

UNIX, операционная система
запуск MySQL 309
пользователь root 286

W

W3Schools.com, Web-сайт 337
Web-сайты

ActiveState 340
ANSI 338
Apple Developer Connection 343
Bit By Bit 335
Cauchо, страница драйвера JDBC 341
CERT 342
CPAN 340
Developer Sched 343

E-gineer 343
Entropy 343
InnoDB 291, 338
Insecure.org 342
Java, официальная страница 341
Javaboutique 341
JavaWorld 341
JDBC, домашняя страница 341
MySQL Manager 336
OpenSSH 342
Perl, официальная страница 340
PHP, официальная страница 339
PHPBuilder 339
phpWizard 336
PuTTY 342
Search Database 338
Security Focus 342
Sleepycat 338
SourceForge.net 343
SQL Course 337
Tabledesigner 336
Tripwire 342
W3Schools 337
WebMonkey 343
Zend.com 339
введение в SQL 337
движения в поддержку открытых
исходных кодов 343
документация по DBI 340
драйвер MM.MySQL 211, 341
страница данной книги 333

WebMonkey, Web-сайт 343
Windows, операционная система

Windows NT 309
запуск MySQL 309
и J2SE 211
права доступа 270

WinMySQLAdmin, утилита 24, 46

X

XHTML, язык программирования 236

Z

Zebd.com, Web-сайт 339

Ларри Ульман

MySQL

Главный редактор

Перевод с английского Слинкин А. А.

Научный редактор Нилов М. В.

Выпускающий редактор Готлиб О. В.
Верстка Трубачев М. П.

Графика Салимонов Р. В.

Дизайн обложки Дудатий А. М.

Гарнитура «Миниатюра». Печать офсетная.
Усл. печ. л. 28,6. Тираж 3000 экз. Зак. №

Издательство «ДМК Пресс»
Web-сайт издательства: www.dmk-press.ru

Internet-магазин: www.alians-kniga.ru

Мовчан Д. А.
dm@dmk-press.ru

	My SQL
	5-94074-229-7_MySQL
	MySQL_01.pdf
	MySQL_8-end.pdf

