
В. Ю. КАРА-УШАНОВ

SQL — ЯЗЫК РЕЛЯЦИОННЫХ 
БАЗ ДАННЫХ

Учебное пособие

9 7 8 5 7 9 9 6 1 6 2 2 9

I SBN 579961622 - 7



Министерство образования и науки Российской Федерации
Уральский федеральный университет

имени первого Президента России Б. Н. Ельцина

В. Ю. Кара-Ушанов

SQL — язык реляционных 
баз данных

Учебное пособие

Рекомендовано 
методическим советом УрФУ для студентов, 
обучающихся по направлению подготовки 

230100 «Информатика и вычислительная техника», 
230400 «Информационные системы и технологии»

Екатеринбург
Издательство Уральского университета

2016



УДК 004.43:004.652.4(075.8)
ББК 32.973.2я73
         К21

Реценз енты:
кафедра прикладной информатики Института урбанистики Уральской 
государственной архитектурно-художественной академии (заведующая 
кафедрой кандидат технических наук, доцент Г. Б. Захарова);
кандидат физико-математических наук, доцент В. П. Кондратьев (кафе-
дра «Информационные системы и технологии» Уральского техническо-
го института связи и информатики (филиал Сибирского государствен-
ного университета телекоммуникации и информатики).

Научный редактор — проф., канд. физ.-мат. наук В. И. Рогович

	 Кара-Ушанов, В. Ю.
К21          SQL — язык реляционных баз данных : учебное пособие / В. Ю. Ка-

ра-Ушанов. — Екатеринбург : Изд-во Урал. ун-та, 2016. — 156 с.

ISBN 978-5-7996-1622-9

Учебное пособие предназначено для студентов, изучающих в дисциплинах 
«Базы данных» и «Управление данными» языковые и программные средства соз-
дания баз данных и манипулирования данными. Рассматривается реляционная 
модель данных. Приводятся содержательные определения основных понятий 
из области проектирования реляционных баз данных. Язык SQL изучается на при-
мере версии Access SQL (Microsoft Jet SQL), поскольку учебное пособие рассчи-
тано на начинающего пользователя. Изучаются подмножества SQL: язык опре-
деления данных (DDL), язык манипулирования данными (DML) и язык запросов 
(DQL). Рассматриваются примеры выполнения команд языка SQL и типы запро-
сов к базе данных. Обсуждаются приемы работы и предлагаются контрольные 
задания для самостоятельных занятий.

Библиогр.: 13 назв. Рис. 12. Табл. 16. Прил. 1.
УДК 004.43:004.652.4(075.8)
ББК 32.973.2я73

ISBN 978-5-7996-1622-9	 © Уральский федеральный
	      университет, 2016



3

Введение

К ак известно, для изучения нового языка требуется значи-
тельная затрата сил и времени, поэтому стоит остановиться 
на причинах, которые могут побудить к изучению языка SQL.

SQL (Structured Query Language — язык структурированных запро-
сов) является языком реляционных баз данных, которые уже на про-
тяжении многих лет заслуженно пользуются признанием у разработ-
чиков информационных систем. Сочетание простоты и наглядности 
основных понятий с их строгим математическим обоснованием обе-
спечили широкое распространение реляционных баз данных. SQL — 
это первый и единственный язык работы с базами данных, который 
получил широкое распространение и поддерживается всеми произ-
водителями коммерческих реляционных СУБД.

SQL не является отдельным программным продуктом, подобным 
офисным приложениям, системам программирования или CASE-
системам, его нельзя приобрести в компьютерном магазине. SQL яв-
ляется важнейшим компонентом методологии и технологии реляци-
онных баз данных, неотъемлемой частью реляционной СУБД. Без SQL 
немыслимы разработка и эксплуатация реляционных баз данных.

В составе СУБД SQL выполняет множество функций. Его можно 
использовать в интерактивном режиме по принципу «запрос-ответ». 
SQL является подъязыком баз данных в обстановке прикладной про-
граммы, составленной на языке программирования. SQL — это язык 
запросов в приложениях многопользовательской клиент-серверной 
системы. SQL — это язык администрирования баз данных. Любому 
профессионалу, является ли он квалифицированным пользователем 
базы данных или прикладным программистом или администрато-
ром баз данных, необходимо знать язык SQL. Таким образом, знание 
языка SQL является обязательным для специалиста в области раз-
работки и сопровождения баз данных.



4

Введение

SQL создавался в середине 1970‑х годов сотрудниками фирмы IBM 
как высокоуровневый декларативный язык, основанный на реляци-
онном исчислении. Предложения SQL описывают данные, которые 
необходимо получить, а не определяют способ поиска результата. 
Особенность предложений этого языка состоит в том, что они ориен-
тированы в большей степени на конечный результат обработки дан-
ных, чем на процедуру этой обработки. Исходная версия языка на-
зывалась SEQUEL (Structured English QUEry Language — английский 
структурированный язык запросов) ясно говорит о намерении его ав-
торов создать язык, близкий к естественному. И это им удалось. Ко-
манды SQL выглядят как обычные предложения английского языка, 
что упрощает их изучение и понимание.

Итак, SQL достаточно легок и понятен для освоения.
SQL является реляционным языком. Его осмысленное изучение 

предполагает знакомство с реляционной моделью данных. Основные 
концепции реляционной модели включают определение структуры 
и типов данных, определение множества операций, допустимых над 
элементами структуры данных, и определение правил целостности 
данных, регулирующих допустимые отношения между элементами 
структуры данных. Вследствие популярности реляционной модели 
в публикациях, посвященных методологии проектирования баз дан-
ных, всегда можно найти подробное описание реляционной модели 
(например, в [1–5]). SQL всегда был и остается актуальной проблемой 
методологии проектирования баз данных. На сей счет также имеет-
ся множество публикаций, в том числе учебного характера, как в пе-
чатных изданиях [6–8], так и в электронных ресурсах [9, 10]. Таким 
образом, самостоятельное изучение SQL на основе обширного мето-
дического обеспечения — вполне реальное дело.

Возникнув как фирменный стандарт, SQL по факту приобрел ста-
тус международного языка. Его первая полноценная версия известна 
как стандарт ANSI SQL‑89. Этот стандарт оказался далек от совершен-
ства, имел чрезвычайно общий характер и допускал очень широкое 
толкование. Опыт использования SQL позволил дополнить первый 
стандарт новыми возможностями, необходимыми для реализации 
языка в составе коммерческих СУБД. На этой основе был разрабо-
тан стандарт ANSI SQL‑92, который принято считать истинно реля-
ционным. После его принятия стало возможным говорить про стан-
дартную среду SQL-ориентированной СУБД. В настоящее время этот 



5

Введение﻿

стандарт поддерживается практически всеми современными реляци-
онными СУБД. Хотя конкретные реализации, диалекты SQL, поддер-
живая стандарт в главном, отличаются от него, как правило, в сто-
рону расширения. Начинающему пользователю SQL полезно знать 
возможности стандарта.

Для изучения языка SOL начинающему пользователю предлагает-
ся использовать его диалект Access SQL (Microsoft SQL Jet) в интерак-
тивном режиме, свободном от проблем прикладного программиро-
вания и знания языков программирования. Выбор Access обусловлен, 
главным образом, доступностью и распространенностью этого попу-
лярного программного продукта.



6

Реляционная модель данных

Р еляционная модель была предложена Э. Ф. Коддом 
в 1970 году [1] как средство структуризации данных, осно-
ванное на строгих математических принципах.

Что такое «модель данных» и в частности «реляционная модель 
данных»? Прежде чем давать определение понятию модели данных, 
отметим некоторые коллизии терминологического характера, свя-
занные с термином «модель данных».

Дело в том, что понятие «модель данных» употребляется в двух 
разных контекстах, отличающихся той ролью, которую играет мо-
дель данных в моделировании [11].

Во‑первых, модель данных рассматривается как модель предмет-
ной области, т. е. результат моделирования. И в ней должны быть уч-
тены статические (структурные) и динамические (поведенческие) 
аспекты предметной области. При такой трактовке понятия «модель 
данных» объектом моделирования, строго говоря, являются не дан-
ные вообще, а конкретная база данных. В таком контексте правиль-
нее говорить не о модели данных вообще, а о модели базы данных 
конкретной предметной области.

Во‑вторых, модель данных часто рассматривается как совокуп-
ность инструментальных средств, с помощью которых происходит 
определение и разработка модели данных предметной области как 
результата моделирования. Определение модели данных в таком кон-
тексте выглядит так [2]:

модель данных — это совокупность допустимых структур дан-
ных и операций над ними, поддерживаемая компьютерной сре-
дой (в т. ч. СУБД), для определения логической структуры базы 
данных и динамического моделирования состояний предмет-
ной области.



7

Структура данных

В определении понятия модели данных используется термин «до-
пустимые». Речь идет о том, что реальный мир и его отображение 
в компьютерной среде находятся под влиянием некоторых ограни-
чений (ограничений целостности), которые либо присущи природе 
реальной действительности, либо связаны с отображением модель-
ных представлений в компьютерной среде.

Итак, в определение модели данных [3] в инструментальном смыс-
ле входят:

·	 определение типа структуры данных;
·	 определение ограничений целостности, определяющих допу-

стимые отношения между элементами структуры данного типа;
·	 определение множества операций над данными этого типа.
Это определение модели данных в полной мере применимо и к ре-

ляционной модели данных. Итак, термин «реляционная модель дан-
ных» употребляется как совокупность инструментальных средств.

Структура данных

Любые данные, используемые в моделировании, имеют свои типы 
данных. Какие типы данных поддерживает реляционная модель?

В первом приближении принято различать типы данных простые 
и структурированные [4].

Простые, или атомарные, типы данных не обладают внутренней 
структурой. Данные такого типа называют скалярными. К простым 
типам данных относятся, например, следующие типы:

·	 логический;
·	 строковый;
·	 численный.
Этот список можно расширить и уточнить, добавляя другие типы:
·	 целый;
·	 вещественный;
·	 дата;
·	 время;
·	 денежный;
·	 перечислимый;
·	 интервальный и т. д.



8

Реляционная модель данных

Структурированные типы данных предназначены для задания 
сложных структур данных. Структурированные типы данных кон-
струируются из составляющих элементов, называемых компонента-
ми, которые, в свою очередь, могут обладать структурой. В качестве 
структурированных типов данных особенно распространены следу-
ющие типы данных:

·	 массивы;
·	 записи (структуры).
Общим для структурированных типов данных является то, что 

они имеют внутреннюю структуру. При работе с массивами или 
записями можно манипулировать массивом или записью как с еди-
ным целым (создавать, удалять, копировать целые массивы или 
записи), так с и их компонентами. Для структурированных типов 
данных есть специальные функции — конструкторы типов, позво-
ляющие создавать массивы или записи из элементов более про-
стых типов.

Работая же с простыми типами данных, например с числовыми, 
мы манипулируем ими как неделимыми целыми объектами.

Так вот, реляционная модель требует, чтобы типы используемых 
данных были простыми. Но что значит «простые»?

Для реляционной модели данных тип используемых данных сам 
по себе не важен. Требование, чтобы тип данных был простым, нужно 
понимать так, что в реляционных операциях не должна учитываться 
внутренняя структура данных [4]. Конечно, должны быть описаны 
действия, которые можно производить с данными как с единым це-
лым, например данные числового типа можно складывать, для строк 
возможна операция конкатенации и т. д.

В реляционной модели данных с понятием типа данных тесно связа-
но понятие домена, которое можно считать уточнением типа данных:

домен — это семантическое понятие. Домен можно рассматри-
вать как подмножество значений некоторого типа данных, имею-
щее определенный смысл.

Домен характеризуется следующими свойствами:
·	  имеет уникальное имя;
·	  определен на некотором простом (скалярном) типе данных 

или на другом домене;



9

Структура данных

·	  может иметь некоторое логическое условие, позволяющее опи-
сать подмножество данных, допустимых для данного домена;

·	 может быть задан перечислением множества допустимых эле-
ментов данных;

·	 несет определенную смысловую нагрузку.
Домен и тип данных — это разные понятия. Домен представля-

ет собой подмножество допустимых элементов данных некоторого 
типа, имеющее семантически значимое имя. Отличие домена от под-
множества данных некоторого типа состоит именно в том, что домен 
отражает семантику, определенную предметной областью. Может 
быть несколько доменов, совпадающих как подмножества, но несу-
щих различный смысл. Например, на множестве неотрицательных 
целых чисел могут быть определены домены «табельный номер», 
«стаж», «отпуск», «возраст», но смысл этих доменов будет различным, 
и это будут различные домены.

Понятие домена помогает правильно моделировать предметную 
область, исключая некорректные сравнения семантически разнород-
ных данных. Некорректно, с логической точки зрения, сравнивать 
значения из различных доменов, даже если они имеют одинаковый 
тип. В этом проявляется смысловое ограничение доменов.

Единственным средством структуризации данных в реляционной 
модели является отношение. 

Отношение (по-английски relation, отсюда происходит название 
модели) — это множество со специфическими свойствами.

В теории множеств отношением R  называется подмножество 
декартова произведения множеств Dj:

	R D D D d d d d D d D d Dn n n nН ґ ґјґ = б ј с О Щ О ЩјЩ О1 2 1 2 1 1 2 2{ , , , | } .

Отношение представляет собой множество n‑арных кортежей 
типа б ј сd d dn1 2, , ,  (n — число множеств‑сомножителей Dj). Кортежи 
образуются из элементов множеств Dj по одному из каждого в задан-
ном порядке.

Пример декартова произведения множеств A = {a1, a2} и B =  
= {b1, b2, b3}:

	 A B a b a A b Bi j i jґ = б с О Щ О ={ , | }

	 = б с б с б с б с б с б с{ , , , , , , , , , , , }a b a b a b a b a b a b1 1 1 2 1 3 2 1 2 2 2 3 .



10

Реляционная модель данных

В математике отношение — не более чем абстрактный объект. 
В моделировании данных отношение наполняется содержательным 
смыслом и применяется для определения объектов реальной дей-
ствительности и связей между ними.

В теории данных отношение определено на доменах Dj. Домен 
представляет собой именованное множество элементов данных ска-
лярного типа.

В моделировании данных домен играет роль области определе-
ния атрибутов Aj — спецификаторов свойств моделируемых объек-
тов и связей между ними. Атрибутам как спецификаторам свойств 
сущностей или связей присваиваются семантически значимые име-
на, как правило, в форме существительного. Причем на одном домене 
могут быть определены несколько атрибутов, но любой атрибут мо-
жет быть определен только на одном домене.

Если отношение моделирует тип объекта или тип связи, то его эле-
менты — кортежи — представляют экземпляры объектов или связей.

Наглядным образом отношения является реляционная таблица. 
Отношение, подобно таблице, содержит заголовок и тело. Заголовок 
отношения представлен конечным множеством атрибутов. Атрибу-
ты Aj определены на соответствующих доменах Dj и в заголовке пред-
ставлены своими содержательными именами.

Тело отношения содержит множество кортежей-строк. В  каж-
дом i‑кортеже для каждого j‑атрибута имеется одно единственное 
значение, принадлежащее j‑домену.

Максимальное число строк-кортежей называется кардинальным 
числом (мощностью) отношения. Число столбцов‑атрибутов назы-
вается степенью отношения.

Отношение, точнее, переменная-отношение, имеет имя, допу-
стим R. Атрибуты, определенные на доменах, также имеют имена, на-
пример A1, A2, …, An. Заголовок отношения иначе называется схемой 
отношения. Схема отношения задается именем отношения и именами 
атрибутов R(A1, A2, …, An). Экземпляр отношения, или значение пере-
менной-отношения, образует тело отношения (реляционную таблицу).

Набор взаимосвязанных отношений называется реляционной ба-
зой данных. А набор заголовков (схем) отношений входящих в базу 
данных называется схемой реляционной базы данных.

Манипулируя реляционными таблицами, следует помнить, что та-
блица и отношение — не синонимы. Отношение — это множество 



11

Ограничения целостности

со специфическими свойствами, а таблица — это наглядный образ 
отношения. Табличное представление реляционной базы данных бу-
дет корректно, если иметь в виду правила интерпретации элементов 
таблицы, задающие соответствие между реляционной и табличной 
терминологиями (табл. 1).

Таблица 1
Соотношение реляционной и табличной терминологии

Реляционная модель данных Табличное представление

Отношение Реляционная таблица 

Атрибут Имя столбца

Кортеж Строка реляционной таблицы

Домен Множество допустимых значений для столбца

Степень отношения Число столбцов реляционной таблицы

Мощность отношения Число строк реляционной таблицы

Реляционная база данных Совокупность взаимосвязанных таблиц

Ограничения целостности

Целостность структуры данных является синонимом ее систем-
ности. Обеспечение целостности данных гарантирует их системную 
полноту, адекватность модели данных моделируемой предметной 
области.

Структура базы данных определяется не только составом образу-
ющих ее информационных элементов, но и характером связей меж-
ду ними. Связи соответствуют зависимостям между компонентами 
предметной области. Всякие зависимости представляют собой огра-
ничения на возможные отношения элементов системы.

Ограничения целостности представляют собой условия, кото-
рые определяют допустимые отношения между элементами струк-
туры данных. Для конкретной модели данных эти условия выполня-
ются или не выполняются. Средством спецификации ограничений 
целостности является язык математической логики.



12

Реляционная модель данных

Ограничения целостности данных принято классифицировать.
По происхождению ограничения целостности принято различать:
·	 внутренние, обусловленные особенностью типа структуры 

данных, в частности отношения;
·	 семантические (явные), обусловленные смыслом, значением 

взаимосвязанных данных конкретной предметной области.
По способу контроля целостности данных, который осуществля-

ет реляционная система (СУБД) ограничения целостности, приня-
то различать:

·	 безотлагательные, проверка которых осуществляется непо-
средственно в процессе манипулирования данными;

·	 отложенные, проверка которых совершается по завершении 
всех манипуляций со связанными таблицами.

Внутренние ограничения целостности

Внутренние ограничения целостности данных реляционной модели 
обусловлены свойствами отношения по определению как множества:

·	  у отношения не может быть одинаковых строк-кортежей;
·	  порядок следования кортежей значения не имеет;
·	  порядок следования атрибутов значения не имеет;
·	  все значения атрибутов атомарны (неделимы).
Уникальность строк-кортежей реляционной таблицы является 

следствием определения множества в математике. Действительно, 
тело отношения есть множество кортежей и, как всякое множество, 
не может содержать неразличимые элементы.

Неупорядоченность строк-кортежей также является следствием 
определения множества в математике. Тело отношения есть множе-
ство, а множество не упорядочено. Одно и то же отношение может 
быть представлено разными таблицами, отличающимися порядком 
следования строк. Иными словами, таблицы, отличающиеся только 
порядком следования строк, считаются эквивалентными.

Неупорядоченность атрибутов обусловлена тем обстоятельством, 
что каждый атрибут имеет уникальное имя в пределах отношения 
и порядок атрибутов не имеет значения. Одно и то же отношение 
может быть представлено разными таблицами, в которых столбцы 
идут в различном порядке. Иными словами, таблицы, отличающиеся 



13

Ограничения целостности

только порядком следования столбцов, считаются эквивалентными.
Условие атомарности атрибутов следует из определения реляци-

онной модели. Атрибуты могут быть определены на простых типах 
данных (доменах), для которых в реляционных операциях не долж-
на учитываться внутренняя структура данных.

Итак, из определения внутренних ограничений целостности сле-
дует, что две и более таблиц могут считаться эквивалентными при 
выполнении следующих условий:

·	 таблицы имеют одинаковое количество столбцов;
·	 таблицы содержат столбцы с одинаковыми наименованиями;
·	 столбцы с одинаковыми наименованиями содержат данные 

из одних и тех же доменов;
·	 таблицы имеют одинаковые строки с учетом того, что порядок 

столбцов может различаться.
Внутренние ограничения целостности являются безотлагатель-

ными. Их проверка реляционной СУБД выполняется автоматически.

Семантические ограничения целостности

Семантические ограничения целостности (или семантические ус-
ловия) присущи самой предметной области и их учет основан на по-
нимании смыслового содержания данных. Семантические ограни-
чения целостности не  выводятся. Это свойства данных, которые 
выполняются или не выполняются для рассматриваемого отноше-
ния элементов данных.

Семантические ограничения целостности для каждой предметной 
области будут свои, что представляет трудности для аналитика. Тем 
не менее классификация возможна и полезна. Семантические огра-
ничения целостности различают:

·	 ограничения объектов;
·	 ограничения на ссылки (связи) между объектами.
В реляционном представлении ограничения целостности объек-

тов реализуются в виде ограничений целостности доменов, атрибу-
тов и отношений.

Ограничения ссылочной целостности или ограничения, основан-
ные на связях между отношениями-объектами, проявляются как огра-
ничения целостности реляционной базы данных в целом.



14

Реляционная модель данных

Ограничения целостности домена (атрибута)

Ограничениями целостности домена является определение мно-
жества элементов данных, которые образуют этот домен. В опреде-
ление домена входит определение типа данных, образующих домен, 
а также множество допустимых значений элементов домена. Мно-
жество допустимых значений может быть задано либо перечислени-
ем (списком), либо при помощи порождающего условия, например:

·	  «пол» {мужской, женский};
·	  «фамилия» как множество строк символов длиной не более 20;
·	  «оценка» как множество целых чисел в диапазоне от 2 до 5 и т. д.
Поскольку сами домены никогда не обновляются в процессе функ-

ционирования базы данных, то ограничения целостности доменов 
не проверяются. Обновляются значения атрибутов, определенных 
на доменах. Поэтому проверяются ограничения целостности атри-
бутов на предмет соответствия типу данных или множеству допусти-
мых значений, причем проверяются всегда и немедленно.

Ограничения целостности отношения

Ограничения целостности отношения базируются на понятиях 
функциональных зависимостей атрибутов, потенциальных ключей, 
неопределенных так называемых Null-значениях атрибутов и др.

Зависимости одних атрибутов от других являются очень распро-
страненным типом ограничений. Особое значение имеют зависимо-
сти от так называемых потенциальных ключей. Строки-кортежи от-
ношения соответствуют реальным экземплярам объектов, а реальные 
объекты различимы, идентифицируемы. Это значит, что среди атри-
бутов отношения всегда найдется такое их подмножество (в том чис-
ле хотя бы один или наоборот все), которое однозначно определяет 
любой другой атрибут отношения, а значит, и все отношение в це-
лом. Такие комбинации атрибутов, которые, как говорят, функцио-
нально полно определяют другие атрибуты, а значит, и весь кортеж 
в целом, называются потенциальными ключами отношения.

Потенциальным ключом называется подмножество атрибутов, 
которое функционально полно определяет значение любого атри-
бута.



15

Ограничения целостности

Термин «функциональная зависимость» означает однозначную за-
висимость от ключа. Термин «функционально полная зависимость» 
означает, что никакое подмножество ключа не может выступать 
в роли ключа. Среди потенциальных ключей выбирают по сообра-
жениям простоты манипулирования один первичный ключ, осталь-
ные ключи называются альтернативными.

Основными свойствами потенциального ключа являются:
·	 уникальность — не может быть в отношении двух и более кор-

тежей с одинаковыми значениями ключа;
·	 неизбыточность — никакое подмножество ключа не может вы-

ступать в роли ключа;
·	 обязательность (определенность) — ни при каких условиях 

атрибуты ключа не могут принимать неопределенные (Null) 
значения.

Например, понятие «номер сотрудника» в роли потенциального 
первичного ключа как ограничение означает, что не может быть двух 
и более персон с одинаковыми учетными номерами.

Потенциальный ключ, состоящий из одного атрибута, например 
«номер сотрудника», называется простым. Потенциальный ключ, со-
стоящий из нескольких атрибутов, например «серия паспорта» и «но-
мер паспорта», называется составным. Атрибуты составного ключа 
могут быть неуникальными (допускаются дубли), но составной ключ 
в целом уникален всегда.

В качестве первичного ключа часто используется так называемый 
искусственный ключ, который никак не связан с содержанием дан-
ных. По существу это уникальный, неизменяемый идентификатор 
кортежа (порядковый номер строки реляционной таблицы). Преи-
мущества искусственного ключа перед естественным проявляется 
в случае реструктуризации базы данных на основе связанных таблиц. 
Искусственный ключ всегда бывает один.

Значение Null используется в реляционной модели при решении 
проблемы отсутствующей информации. Null — это не одно и то же, 
что пробелы или числовые нули. Значения Null могут быть как зна-
чения атрибутов, для которых данные неизвестны. Null — значение 
для заданного атрибута может быть разрешено или запрещено.

Поскольку потенциальные ключи фактически служат идентифи-
каторами объектов предметной области, то значения этих иденти-
фикаторов не могут содержать неизвестные значения. В противном 



16

Реляционная модель данных

случае нельзя было бы определить, совпадают или нет два идентифи-
катора. Отсюда следует правило целостности отношений: атрибуты, 
входящие в состав некоторого потенциального ключа, не могут при-
нимать Null-значений.

Ограничения целостности отношений, как и ограничения целост-
ности атрибутов, являются безотлагательными.

Ограничения ссылочной целостности

Бизнес-правила использования данных конкретной предметной 
области выражаются ограничениями ссылочной целостности. По-
следние контролируют корректность реляционной базы данных, об-
разованной несколькими связанными отношениями (таблицами). 
Ограничения ссылочной целостности — это правила, контролирую-
щие корректность связей между отношениями.

Связи между отношениями различают:
·	 по типу зависимости:

—	категориальные, на основе абстракции обобщения;
—	бинарные (в общем случае n‑арные), на основе абстракции 

агрегации;
·	 по силе зависимости:

—	неидентифицирующие;
—	идентифицирующие.

По роли в образовании связи различают родительское отношение 
(parent) и отношение-потомок (child). Связь обычно имеет направ-
ление от родителя к потомку.

Связь между отношениями моделируется при помощи внешне-
го ключа.

Внешний ключ — это атрибут отношения-потомка, доставшийся 
ему по наследству от родительского отношения.

Внешний ключ отношения-потомка — это потенциальный (ча-
сто первичный) ключ родительского отношения, мигрировав-
ший в отношение-потомок и там используемый для моделирова-
ния связи.

По существу, внешний ключ представляет собой ссылку на роди-
тельское отношение.



17

Ограничения целостности

Таким образом, потенциальный ключ родительского отношения 
и внешний ключ отношения-потомка представляют собой атрибуты 
связи. Часто они имеют одинаковые имена, хотя совпадение имен 
необязательно. Важно, чтобы атрибуты связи были определены на од-
ном и том же или совместимых доменах.

Анализ структуры данных ведется на уровне схем отношений, 
при этом фактическое наполнение реляционных таблиц значения 
не имеет.

Бинарная связь со степенью «один ко многим» между родитель-
ским отношением, например, «Отдел» и отношением-потомком «Со-
трудник» (рис. 1) называется неидентифицирующей, если кортежи 
потомка идентифицируются его собственным первичным ключом 
«номер сотрудника», а не ключом связи с родительским отношением 
«номер отдела». При этом внешний ключ отношения-потомка «номер 
отдела» не входит в состав первичного ключа «Сотрудник» и не ис-
пользуется для идентификации его кортежей, а используется только 
для моделирования связи.

Отдел 

Сотрудник 
номер 
сотрудника фамилия дата 

рождения адрес должность зарплата номер 
отдела

номер 
отдела

название 
отдела бюджет

Первичный ключ 

Внешний ключ 

Рис. 1. Неидентифицирующая связь

Бинарная связь со степенью «один ко многим» между родитель-
ским отношением, например, «Проект» и отношением-потомком «За-
дание» (рис. 2) называется идентифицирующей, если кортежи по-
томка идентифицируются не только его собственным первичным 
ключом «номер задания», но и ключом связи с родительским отно-
шением «номер проекта». При этом внешний ключ отношения-по-
томка «номер проекта» входит в состав первичного ключа «Задание» 
и используется не только для моделирования связи с родительским 
отношением, но и для идентификации его кортежей.



18

Реляционная модель данных

номер 
проекта

название 
проекта смета

номер 
задания

номер 
проекта

тема 
задания

срок 
выполнения

Проект 

Задание 

Первичный ключ 

Внешний ключ 

Рис. 2. Идентифицирующая связь

Категориальная связь со степенью «один к одному» на основе обоб-
щения (связь с семантикой «есть» (is a)): «Сотрудник есть Штатный», 
«Сотрудник есть Совместитель», «Сотрудник есть Консультант» — 
осуществляется по атрибуту «номер сотрудника». Обобщающее от-
ношение «Сотрудник» объединяет общие атрибуты, которые насле-
дуются категориями.

Категории «Штатный», «Совместитель», «Консультант» содержат 
отличительные характеристики — атрибуты.

Категориальная связь в реляционном представлении моделиру-
ется при помощи трех (в данном случае) идентифицирующих свя-
зей (рис. 3). При этом внешний ключ каждого отношения-потомка 
«номер сотрудника» играет роль первичного ключа и использует-
ся не только для моделирования связи с родительским отношением, 
но и для идентификации кортежей отношений потомков.

Бинарные связи «многие ко многим» (n‑арные связи в общем слу-
чае) моделируются при помощи дополнительного ассоциативного 
отношения. Отношение «Исполнитель проекта» представляет связь 
между отношениями «Сотрудник» и «Проект» (рис. 4).

Ассоциативное отношение-потомок «Исполнитель проекта» име-
ет двух родителей и связано с ними идентифицирующими связями, 
а в качестве первичного ключа имеет составной ключ, построенный 
из внешних ключей.

Ограничения ссылочной целостности — это ограничения на вы-
полнение корректирующих операций вставки, обновления и удале-
ния данных в связанных отношениях (таблицах). Ссылочная целост-
ность означает одно из двух:

·	 реляционная база данных не должна содержать несогласован-
ных значений внешних ключей, для которых не существует со-



19

Ограничения целостности

ответствующего значения первичного ключа родительского 
отношения;

·	 значение внешнего ключа может быть неопределенным (т. е. 
ни на что не указывать).

номер 
сотрудника фамилия дата 

рождения адрес должность зарплата номер 
отдела

номер 
сотрудника стаж 

номер 
сотрудника ставка 

номер 
сотрудника организация

Сотрудник 

Штатный 

Совместитель 

Консультант 

Первичный ключ 

Внешний ключ 

Внешний ключ 

Внешний ключ 

Рис. 3. Категориальная связь

номер 
сотрудника фамилия дата 

рождения адрес должность зарплата номер 
отдела

номер 
проекта

название 
проекта смета

номер 
сотрудника

номер 
проекта

Сотрудник 

Проект 

Исполнитель проекта 

Первичный ключ 

Первичный ключ 

Внешний ключ Внешний ключ 

Составной первичный ключ 

Рис. 4. Связь «многие ко многим»

Реакция на выполнение корректирующих операций над кортежа-
ми связанных отношений зависит от типа операции (вставка, обнов-



20

Реляционная модель данных

ление или удаление) и от типа связи (идентифицирующая, неиденти-
фицирующая или категориальная) и может осуществляться в виде:

·	 запрета;
·	  каскадирования;
·	  установки в Null.
Для родительского отношения возможны следующие результаты 

корректирующих операций:
·	 при вставке кортежа в родительское отношение возникает но-

вое значение потенциального ключа. Так как допустимо су-
ществование кортежей в родительском отношении, на кото-
рые нет ссылок из отношения-потомка, то вставка кортежа 
в родительском отношении не нарушает ссылочной целост-
ности;

·	 при обновлении кортежа в родительском отношении может 
измениться значение потенциального ключа. Если есть корте-
жи в отношении-потомке, ссылающиеся на обновляемый кор-
теж, то значения их внешних ключей станут некорректными. 
Обновление кортежа в родительском отношении может при-
вести к нарушению ссылочной целостности, если это обновле-
ние затрагивает значение потенциального ключа;

·	 при удалении кортежа в родительском отношении удаляется 
значение потенциального ключа. Если есть кортежи в отноше-
нии-потомке, ссылающиеся на удаляемый кортеж, то значения 
их внешних ключей станут некорректными. Удаление корте-
жей в родительском отношении может привести к нарушению 
ссылочной целостности.

Для отношения-потомка возможны следующие результаты кор-
ректирующих операций:

·	 нельзя вставить кортеж в отношение-потомок, если вставляе-
мое значение внешнего ключа некорректно. Вставка корте-
жа в отношение-потомок может привести к нарушению ссы-
лочной целостности;

·	 при обновлении кортежа в отношении-потомке есть возмож-
ность некорректно изменить значение внешнего ключа. Обнов-
ление кортежа в отношении-потомке может привести к на-
рушению ссылочной целостности;

·	 удаление кортежа в отношении-потомке при условии, что оно 
не является родителем в другой связи, выполняется без про-



21

Ограничения целостности

блем. Удаление кортежа в отношении-потомке не нарушает 
ссылочную целостность.

Итак, к нарушению ссылочной целостности могут привести:
·	 обновление кортежа в родительском отношении;
·	 удаление кортежа в родительском отношении;
·	 вставка кортежа в отношение-потомок;
·	 обновление кортежа в отношении-потомке.
Выбор адекватного способа поддержания целостности при выпол-

нении операций манипулирования данными определяется семанти-
кой связей, бизнес-правилами предметной области.

При обновлении кортежа в родительском отношении возможны:
·	 запрет — не разрешается обновление первичного ключа в кор-

теже, если имеется хотя бы один кортеж в отношении-потом-
ке, ссылающийся на обновляемый кортеж;

·	 каскадирование — разрешается изменять значение первично-
го ключа в кортеже родительского отношения, если в отноше-
нии-потомке есть ссылающиеся на него кортежи. При этом бу-
дут изменены «по каскаду» значения внешних ключей во всех 
кортежах отношений-потомков, ссылающихся на обновляемый 
кортеж;

·	 установка в Null — актуальна для неидентифицирующих свя-
зей, когда внешний ключ отношения-потомка является необя-
зательным атрибутом и может быть определен вне зависимости 
от значения первичного ключа соответствующего кортежа ро-
дительского отношения. В случае обновления первичного клю-
ча в кортеже родительского отношения внешний ключ корте-
жей отношения-потомка может быть установлен в Null.

При удалении кортежа в родительском отношении возможны:
·	 запрет — не разрешается удаление кортежа, если имеется 

хотя  бы один кортеж в  отношении-потомке, ссылающийся 
на удаляемый кортеж;

·	 каскадирование — разрешается удаление кортежа родитель-
ского отношения, если в отношении-потомке есть ссылающи-
еся на него кортежи. При этом будут удалены «по каскаду» все 
кортежи отношений-потомков, ссылающихся на удаляемый 
кортеж;

·	 установка в Null — актуальна для неидентифицирующих свя-
зей, когда внешний ключ отношения-потомка является необя-



22

Реляционная модель данных

зательным атрибутом и может быть определен вне зависимо-
сти от значения первичного ключа соответствующего кортежа 
родительского отношения. В этом случае разрешается удале-
ние кортежа родительского отношения, но во всех кортежах от-
ношения-потомка, ссылающихся на удаляемый кортеж, внеш-
ний ключ может быть установлен в Null.

При вставке кортежа в отношении-потомке возможны:
·	 запрет — не разрешается вставка, если внешний ключ во встав-

ляемом кортеже не соответствует ни одному значению первич-
ного ключа родительского отношения;

·	 установка в Null — актуальна для неидентифицирующих свя-
зей, когда внешний ключ отношения-потомка является необя-
зательным атрибутом и может быть определен вне зависимо-
сти от значения первичного ключа соответствующего кортежа 
родительского отношения. В этом случае разрешается вставка 
кортежа, но в качестве значения внешнего ключа отношения-
потомка следует установить Null-значение.

При обновлении кортежа в отношении-потомке возможны:
·	 запрет — не разрешается обновление, если внешний ключ в об-

новляемом кортеже становится не соответствующим ни одно-
му значению первичного ключа родительского отношения;

·	 установка в Null — актуальна для неидентифицирующих свя-
зей, когда внешний ключ отношения-потомка является необя-
зательным атрибутом и может быть определен вне зависимости 
от значения первичного ключа соответствующего кортежа ро-
дительского отношения. В этом случае разрешается обновить 
кортеж, но в качестве значения внешнего ключа отношения-
потомка следует установить Null-значение.

Операции над отношениями

Доступ к реляционным данным осуществляется при помощи ре-
ляционной алгебры или эквивалентного ему реляционного исчис-
ления. Реляционная алгебра представляет собой набор операторов, 
использующих отношения в качестве операндов и возвращающих 
результат также в виде отношений. Это свойство, называемое зам-



23

Операции над отношениями

кнутостью реляционной алгебры, позволяет в реляционных выра-
жениях использовать вложенные выражения сколь угодно слож-
ной структуры.

Реляционная алгебра состоит из восьми операторов, составляю-
щих две группы по четыре в каждой.

·	 теоретико-множественные:
—	 объединение;
—	 пересечение;
—	 вычитание;
—	 декартово произведение;

·	 реляционные:
—	 проекция;
—	 селекция;
—	 соединение;
—	 деление.

Теоретико-множественные операции объединения, пересечения 
и вычитания имеют ту специфику, что они определены на отноше-
ниях. Это значит, что элементами множеств являются кортежи, при-
чем кортежи должны быть совместимыми по типу.

Совместимыми по типу называются отношения, которые имеют 
одну и ту же структуру (идентичные заголовки), а именно:

·	 каждое отношение имеет одно и то же множество имен атри-
бутов (одну и ту же степень);

·	 одноименные (соответствующие) атрибуты определены на од-
ном и том же домене (должны иметь один и тот же тип и раз-
мер).

Объединение

Объединением двух совместимых по типу отношений R1 и R2 назы-
вается отношение R с тем же заголовком, что и у отношений R1 и R2, 
и телом, состоящим из кортежей, принадлежащих или R1, или R2, или 
обоим отношениям (рис. 5).

Пусть имеются два подмножества: таблица, представляющая спи-
сок сотрудников, работающих в отделе 102 (R1), и список сотрудни-
ков‑инженеров (R2). Оба подмножества должны быть совместимы 
по типу. Тогда результатом объединения этих двух списков будет спи-



24

Реляционная модель данных

сок сотрудников, которые или работают в отделе 102, или являются 
инженерами по должности, или удовлетворяют обоим условиям од-
новременно.

операцииСинтаксис ВеннаДиаграмма

2 R 

1 R 

R 

R R R r r R r R= ∪ = 〈 〉 ∈ ∨ ∈1 2 1 2{ | }

Рис. 5. Операция объединения

Сотрудники-инженеры (R1)

номер 
сотрудника фамилия должность номер отдела

1001 Иванов инженер 101
1002 Петров инженер 102
1004 Волков инженер 101

Сотрудники 102 отдела (R2)

номер 
сотрудника фамилия должность номер отдела

1002 Петров инженер 102
1005 Белов техник 102
1006 Кравцов оператор 102

Сотрудники (R)

номер 
сотрудника фамилия должность номер отдела

1001 Иванов инженер 101
1002 Петров инженер 102
1004 Волков инженер 101
1005 Белов техник 102
1006 Кравцов оператор 102



25

Операции над отношениями

Вычитание

Вычитанием двух совместимых по типу отношений R1 и R2 называ-
ется отношение R с тем же заголовком, что и у отношений R1 и R2, и те-
лом, состоящим из кортежей, принадлежащих отношению R1 (умень-
шаемому) и не принадлежащих отношению R2 (вычитаемому, рис. 6).

операцииСинтаксис ВеннаДиаграмма
}|{ 2121 RrRrrRRR ∉∧∈〉〈=−=

R 1 

R 2

R 

Рис. 6. Операция вычитания

Допустим, исходные данные те же, что и в предыдущем примере, 
и нужно сформировать список сотрудников, которые являются ин-
женерами, но не работают в отделе 102.

Сотрудники-инженеры не из отдела 102

номер 
сотрудника фамилия должность номер отдела

1001 Иванов инженер 101
1004 Волков инженер 101

Пересечение

Пересечением двух совместимых по типу отношений R1 и R2 назы-
вается отношение R с тем же заголовком, что и у отношений R1 и R2, 
и телом, состоящим из кортежей, принадлежащих одновременно обо-
им отношениям R1 и R2 (рис. 7).

}|{ 2121 RrRrrRRR ∈∧∈〉〈== 

операцииСинтаксис ВеннаДиаграмма

2R

1R

RR

RR
R 

Рис. 7. Операция пересечения



26

Реляционная модель данных

Операция пересечения является зависимой и может быть выра-
жена через другие операции:

	 R R R R R R= З = - -1 2 1 1 2( ) .

Допустим, исходные данные те же, что и в предыдущем примере, 
и нужно сформировать список сотрудников, которые являются ин-
женерами и работают в отделе 102.

Сотрудники-инженеры отдела 102

номер 
сотрудника фамилия должность номер отдела

1002 Петров инженер 102

Декартово произведение

Декартовым произведением двух отношений R1 (со степенью n1 
и мощностью k1) и R2 (со степенью n2 и мощностью k2) называется 
отношение R, заголовок которого является сцеплением заголовков 
отношений R1 и R2, а тело состоит из кортежей, являющихся сцепле-
нием кортежей отношений R1 и R2.

Синтаксис операции декартового произведения:

	 R R R r r r R r R= ґ = б с О Щ О1 2 1 2 1 1 2 2{ , } .

Степень отношения R:
	 n n n= +1 2 .
Мощность отношения R:
	 k k k= Ч1 2 .
Таким образом, кортежи декартового произведения представля-

ют собой сцепление кортежей отношений-операндов во всех возмож-
ных сочетаниях.

Само по себе декартово произведение в моделировании данных 
не имеет никакого содержательного смысла, но представляет инте-
рес как источник данных, комбинируемых из нескольких связанных 
отношений.

Допустим, что при описании некоторой предметной области та-
блица «Сотрудники» представляет список сотрудников, а таблица 
«Отделы» — список отделов, где они работают.



27

Операции над отношениями

Сотрудники (R1)

номер 
сотрудника фамилия должность

1001 Иванов инженер
1002 Петров инженер
1003 Смирнов техник

Отделы (R2)

номер 
отдела

название 
отдела

101 ОГК
102 ОГТ

Декартово произведение (R)

номер 
сотрудника фамилия должность номер 

отдела
название 

отдела
1001 Иванов инженер 101 ОГК
1001 Иванов инженер 102 ОГТ
1002 Петров инженер 101 ОГК
1002 Петров инженер 102 ОГТ
1003 Смирнов техник 101 ОГК
1003 Смирнов техник 102 ОГТ

Проекция

Проекцией отношения R1 (A, B, C, D, E) на атрибуты A, C, E, где множе-
ство {A, C, E} является подмножеством полного списка атрибутов заго-
ловка отношения R1 {A, B, C, D, E}, называется отношение R с заголовком 
A, C, E и телом, содержащим кортежи отношения R1 без дублей (рис. 8).

)(,, 1ECA RR π=

операцииСинтаксис

 A B C D E  

R1 

 A C E 

R 

Диаграмма

Рис. 8. Операция проекции



28

Реляционная модель данных

Операция проекция порождает результат как вертикальную вы-
борку, выборку столбцов‑атрибутов реляционной таблицы без ду-
блей строк-кортежей.

Допустим, что из отношения «Сотрудники» формируется как про-
екция отношение «Штатное расписание».

Сотрудники (R1)

номер 
сотрудника фамилия должность зарплата номер 

отдела
1001 Иванов техник 8000 101
1001 Иванов инженер 15000 101
1002 Петров инженер 15000 102
1003 Смирнов техник 8000 101
1003 Смирнов инженер 15000 101
1004 Волков инженер 15000 101

Штатное расписание (R)

должность зарплата
техник 8000
инженер 15000

Селекция

Селекцией отношения R1 по формуле F называется отношение R, 
имеющее тот же заголовок, что и отношение R1, и тело, содержащее 
кортежи отношения R1, которые удовлетворяют истинности логиче-
ского выражения, заданного формулой F (рис. 9).

)( 1F RR σ=

операцииСинтаксис Диаграмма

R1 

R 

Рис. 9. Операция селекции



29

Операции над отношениями

Операция селекция порождает результат как горизонтальную выбор-
ку, выборку строк-кортежей реляционной таблицы, удовлетворяющих 
заданному условию. Ввиду многообразия средств спецификации усло-
вий отбора операция селекции является одной из наиболее распростра-
ненных на практике операций над реляционными таблицами. Напри-
мер, если из списка, заданного отношением-таблицей «Сотрудники» 
(R1), нужно выбрать сотрудников отдела 101, результат можно полу-
чить при помощи операции селекции по условию «номер отдела=101».

Сотрудники отдела 101 (R)

номер 
сотрудника фамилия должность зарплата номер 

отдела
1001 Иванов инженер 15000 101
1003 Смирнов инженер 15000 101
1004 Волков инженер 15000 101

Соединение

Операция соединения отношений, наряду с операциями выбор-
ки и проекции, является одной из наиболее важных реляционных 
операций, так как лежит в основе большинства реальных запросов, 
адресуемых к данным нескольких связанных реляционных таблиц.

Обычно рассматривается несколько разновидностей операции 
соединения.

Наиболее общим является так называемое q-соединение, которое 
формирует результат на основе сцепления кортежей отношений-опе-
рандов, чьи атрибуты связи находятся друг с другом в отношении q 
(=, ≠, >, <, ≥, ≤).

Частным случаем q-соединения является эквисоединение или со-
единение на основе условия равенства атрибутов связи.

Частным случаем эквисоединения является естественное, или вну-
треннее, соединение. Дадим неформальное определение этой важ-
ной операции.

Естественным (внутренним) соединением отношений R1 (A, B, C) 
и R2 (B, C, D) называется отношение R (A, B, C, D), полученное по усло-
вию равенства (эквисоединение) общих (часто одноименных) атри-
бутов связи (B, C), из которого исключаются дубли атрибутов.



30

Реляционная модель данных

Атрибуты связи (B и C в данном примере), принадлежащие раз-
ным отношениям-операндам, могут иметь разные имена, но долж-
ны быть определены на совместимых доменах.

Операция естественного соединения является зависимой и может 
быть выражена через другие операции. Синтаксис операции есте-
ственного соединения:

R R R R RA B C D R B R B R C R C= = ґ( )( )= Щ =1 2 1 21 2 1 2
�� p s, , , . . . . .

Результирующее отношение R состоит из кортежей, которые пред-
ставляют собой сцепление только тех кортежей отношений-операн-
дов R1 и R2, которые содержат совпадающие значения общих атрибу-
тов (B, C), без дублей столбцов.

Допустим в кадровой информационной системе между отноше-
ниями «Сотрудники» (R1) и «Дети» (R2) имеется идентифицирующая 
связь типа «один ко многим». Атрибуты первичных ключей подчер-
кнуты. Семантика связи такова, что не у всех сотрудников могут быть 
дети. Причем у любого сотрудника может быть более одного ребен-
ка. Тогда список сотрудников и их детей может быть получен при по-
мощи естественного соединения.

Сотрудники» (R1)

номер сотрудника фамилия должность номер отдела
1001 Иванов инженер 101
1002 Петров инженер 102
1003 Смирнов техник 101
1004 Волков инженер 101
1005 Белов техник 102
1006 Кравцов оператор 102

Дети (R2)

номер сотрудника имя ребенка дата рождения
1001 Иван 10.04.1998
1001 Татьяна 18.05.2004
1002 Сергей 22.01.1995
1004 Наталья 05.10.2005



31

Операции над отношениями

Здесь атрибутами связи являются атрибуты «Сотрудники.номер 
сотрудника» и «Дети.номер сотрудника», а результатом является от-
ношение «Сотрудники с детьми».

Сотрудники с детьми (R)

номер 
сотрудника фамилия должность номер 

отдела
имя 

ребенка дата рождения

1001 Иванов инженер 101 Иван 10.04.1998
1001 Иванов инженер 101 Татьяна 18.05.2004
1002 Петров инженер 102 Сергей 22.01.1995
1004 Волков инженер 101 Наталья 05.10.2005

В случае, когда для атрибутов, по которым осуществляется сое-
динение, нет совпадающих значений атрибутов связи, между отно-
шениями может быть выполнено внешнее соединение. Внешнее со
единение предполагает формирование результирующего отношения, 
в том числе и из кортежей, которым нет соответствия в одном из от-
ношений-операндов соединения. Различают левое и правое внеш-
нее соединение.

Левым соединением называется соединение, в котором резуль-
тирующее отношение состоит из кортежей, образованных либо сце-
плением кортежей операндов, содержащих совпадающие значения 
общих атрибутов, либо кортежами левого операнда, не имеющими 
совпадающих значений общих атрибутов.

Правым соединением называется соединение, в котором резуль-
тирующее отношение состоит из кортежей, образованных либо сце-
плением кортежей операндов, содержащих совпадающие значения 
общих атрибутов, либо кортежами правого операнда, не имеющими 
совпадающих значений общих атрибутов.

Для обозначения несовпадающих значений кортежей использу-
ется определитель Null.

Результат операции левого соединения зависит от  типа связи 
и роли отношений в качестве левого или правого операнда. В на-
шем примере между отношениями «Сотрудники» и «Дети» имеется 
идентифицирующая связь «один ко многим». По определению иден-
тифицирующей связи в родительском отношении «Сотрудники» до-
пускаются кортежи, которым нет соответствия в отношении-потомке 
«Дети». Если в качестве левого операнда используется родительское 



32

Реляционная модель данных

отношение («Сотрудники»), то левое соединение даст полный спи-
сок всех сотрудников и их отношение к детям.

Все сотрудники (R1)

номер 
сотрудника фамилия должность номер 

отдела
имя 

ребенка дата рождения

1001 Иванов инженер 101 Иван 10.04.1998
1001 Иванов инженер 101 Татьяна 18.05.2004
1002 Петров инженер 102 Сергей 22.01.1995
1003 Смирнов техник 101 Null Null
1004 Волков инженер 101 Наталья 05.10.2005
1005 Белов техник 102 Null Null
1006 Кравцов оператор 102 Null Null

Результат операции правого соединения зависит от типа связи 
и роли отношений в качестве левого или правого операнда. Напри-
мер, между отношениями «Сотрудники» и «Дети» имеется идентифи-
цирующая связь «один ко многим». По определению идентифициру-
ющей связи в отношении-потомке «Дети» не может быть кортежей, 
которым нет соответствия в родительском отношении «Сотрудни-
ки». Если в качестве правого операнда используется отношение- 
потомок («Дети»), то правое соединение даст результат, не отличаю-
щийся от результата естественного соединения.

Сотрудники с детьми (R)

номер 
сотрудника фамилия должность номер 

отдела
имя 

ребенка дата рождения

1001 Иванов инженер 101 Иван 10.04.1998
1001 Иванов инженер 101 Татьяна 18.05.2004
1002 Петров инженер 102 Сергей 22.01.1995
1004 Волков инженер 101 Наталья 05.10.2005

Результат операции правого соединения зависит от типа связи. 
Например, если между отношениями «Отдел» и «Сотрудники» име-
ется неидентифицирующая связь «один ко многим», то по определе-
нию неидентифицирующей связи в отношении-потомке «Сотрудни-
ки» допускаются кортежи, которым нет соответствия в родительском 
отношении «Отдел». Если в таком случае в качестве правого операн-



33

Операции над отношениями

да используется отношение-потомок («Сотрудники»), то правое со-
единение даст полный список сотрудников, в том числе временно 
не приписанных ни к какому отделу (сотрудники, допустим, ликви-
дированного отдела 102).

Отдел (R1)

номер отдела название отдела
101 ОГК

Сотрудники (R2)

номер 
сотрудника фамилия должность номер отдела

1001 Иванов инженер 101
1002 Петров инженер 102
1003 Смирнов техник 101
1004 Волков инженер 101
1005 Белов техник 102
1006 Кравцов оператор 102

Все сотрудники (R)

номер 
отдела название отдела номер 

сотрудника фамилия должность

101 ОГК 1001 Иванов инженер
Null Null 1002 Петров инженер
101 ОГК 1003 Смирнов техник
101 ОГК 1004 Волков инженер
Null Null 1005 Белов техник
Null Null 1006 Кравцов оператор

Деление

Делением отношений R1(A, B, C) и R2 (C) называется отношение 
R(A, B), тело которого содержит кортежи такие, что для всех корте-
жей отношения R2 найдется кортеж в отношении R1.

Операция деления является зависимой и может быть выражена 
через другие операции. Синтаксис операции деления:

R R R R R R RA B A B A B= ё = - ґ -1 2 1 2 1 1p p p, , ,( ) (( ( )) ) .



34

Реляционная модель данных

Результирующее отношение R состоит из кортежей отношения R1, 
определенных на множестве атрибутов (A, B), которые соответству-
ют комбинации всех кортежей отношения R2.

Деление отношений аналогично делению чисел с остатком.
Отношение R1 выступает в роли делимого, отношение R2 выступа-

ет в роли делителя.
Допустим отношение «Исполнитель проекта» (R1) моделирует 

связь «многие ко многим» между отношениями «Сотрудники» и «Про-
екты» (R2). Между родительским отношением «Проект» и отношени-
ем-потомком «Исполнитель проекта» имеется идентифицирующая 
зависимость. Тогда ответ на вопрос, какие сотрудники участвовали 
в работе над всеми проектами, даст отношение «Передовики» (R), по-
лученное при помощи операции деления.

Исполнитель проекта (R1)

номер сотрудника фамилия номер проекта
1001 Иванов 1
1001 Иванов 2
1001 Иванов 3
1002 Петров 1
1002 Петров 3
1003 Смирнов 1
1003 Смирнов 2
1003 Смирнов 3
1004 Волков 2

Проект (R2)

номер проекта
1
2
3

Передовики (R)

номер сотрудника фамилия
1001 Иванов
1003 Смирнов



35

SQL —  
язык структурированных запросов

Введение в SQL

Р азличают два вида языков запросов для реляционной мо-
дели данных.
Алгебраические языки позволяют выразить запросы сред-

ствами специальных операторов над отношениями — операторов 
реляционной алгебры.

Языки реляционного исчисления позволяют описать запросы 
на языке исчисления предикатов — языке математической логики.

Алгебраические языки являются процедурными языками. Языки 
реляционного исчисления относятся к классу декларативных языков, 
т. е. языков более высокого уровня. Эти языки являются абстрактны-
ми языками и в чистом виде не реализованы, но они служат эталоном 
для оценки реальных языков запросов. По своим выразительным воз-
можностям эти языки эквивалентны. Они были предложены в свое 
время автором реляционной модели Коддом для представления ми-
нимальных возможностей любого реального языка запросов реляци-
онной модели. Восемь алгебраических операторов: объединение, пе-
ресечение, вычитание, декартово произведение, проекция, селекция, 
соединение и деление, — введенные Коддом, являются мерой оцен-
ки выразительной силы любого языка баз данных. Реальный язык 
баз данных обладает свойством реляционной полноты, если по сво-
им выразительным возможностям он не уступает реляционной ал-
гебре или реляционному исчислению.

Реальные языки запросов обычно обеспечивают не только реля-
ционную полноту, но и другие возможности, выходящие за пределы 



36

SQL — язык структурированных запросов 

реляционной алгебры или реляционного исчисления. К числу таких 
возможностей обычно относятся следующие операции:

·	 добавление данных;
·	 модификация данных;
·	 удаление данных;
·	 арифметические вычисления и сравнения;
·	 присваивание и отображение;
·	 вычисление функций агрегации, выполняемые над однородны-

ми элементами данных (вычисление количества, суммы, сред-
него, минимального или максимального значения и других).

Наиболее распространенным языком запросов реляционной мо-
дели данных в настоящее время является язык структурированных 
запросов SQL (Structured Query Language).

SQL нельзя отнести к конкретному виду языков. Он содержит 
в себе возможности и языка реляционного исчисления (исчисления 
кортежей), и алгебраического языка и несомненно является реляци-
онно полным.

В силу исторических причин SQL стал стандартным реляционным 
языком и в настоящее время поддерживается практически всеми си-
стемами баз данных. Поэтому каждый специалист по базам данных 
должен быть знаком с ним.

В чистом виде как язык, поддерживающий реляционную мо-
дель, наиболее популярен стандарт языка, известный как SQL/92 
(International Standard Database Language SQL).

Ни один из коммерческих продуктов не поддерживает в полной 
мере стандарт SQL/92. Известные версии этого языка, по образному 
выражению Дейта [2], можно назвать «надмножествами подмножеств» 
языка SQL/92. Другими словами, любая коммерческая система, не под-
держивая некоторые аспекты стандарта, в других отношениях, возмож-
но, превосходит его. Это замечание справедливо и в отношении вер-
сии SQL Microsoft Jet, реализованной в популярной СУБД MS Access.

Язык SQL является языком декларативного типа. В нем отсутству-
ют какие-либо команды управления ходом вычислительного процес-
са типа IF-THEN-ELSE, SWITCH, WHILE, DO-WHILE, FOR, GO TO и др. 
Управление ходом выполнения процесса обработки данных может 
выполняться интерактивно, в результате действий самого пользова-
теля или при помощи процедурных языков программирования высо-
кого уровня. В связи с этим различают две разновидности SQL — ин-



37

Введение в SQL

терактивный и вложенный. По большей части обе формы работают 
одинаково, но используются различно.

Интерактивный SQL используется для функционирования непосред-
ственно в базе данных и реализуется непосредственно при вводе поль-
зователем отдельных команд. При такой форме SQL при вводе команды 
она сейчас же выполнится и вы сможете увидеть результат немедленно.

Вложенный SQL состоит из команд SQL внедренных внутрь про-
грамм, написанных на процедурных языках программирования высо-
кого уровня, что делает программы более мощными и эффективными. 
Однако при таком способе управления процессом обработки данных 
приходится иметь дело со структурой SQL и стилем управления, кото-
рый требует некоторых расширений к интерактивному SQL. На практи-
ке существуют два основных способа использования SQL в программах:

·	 внедрение SQL-операторов в исходный текст программы с по-
следующей ее компиляцией и компоновкой;

·	 использование интерфейса прикладного программирования, 
специализирующегося на работе с базами данных.

В учебном пособии, рассчитанном на неподготовленного поль-
зователя SQL, ограничимся интерактивной формой языка. Это даст 
возможность обсуждать команды и результаты их выполнения, не за-
ботясь о том, как они связаны с помощью интерфейса с другими язы-
ками. Интерактивный SQL — это наиболее полезная для непрограм-
мистов форма. Все, что вы узнаете относительно интерактивного SQL, 
в основном применимо и к вложенной форме.

В соответствии со стандартом SQL выразительные возможности 
языка распределены по шести типам подмножеств команд:

·	 язык определения данных (Data Definition Language — DDL), 
представлен инструкциями CREATE, ALTER, DROP;

·	 язык манипулирования данными (Data Manipulation Language — 
DML), представлен инструкциями INSERT, UPDATE, DELETE;

·	 язык запросов данных (Data Query Language — DQL), представ-
лен многофункциональной командой SELECT;

·	 язык управления данными (Data Control Language — DCL), пред-
ставлен командами GRANT (предоставление привилегий) и RE-
VOKE (отмена привилегий);

·	 язык обработки транзакций (Transaction Processing Language — 
TPL), включает команды BEGIN (начать транзакцию), COMMIT 
(завершить транзакцию), ROLLBACK (откатить транзакцию);



38

SQL — язык структурированных запросов 

·	 язык управления курсором (Cursor Control Language — CCL) пред-
назначен для выполнения операций с отдельными строками од-
ной или нескольких таблиц, представлен командами DECLARE 
CURSOR, OPEN, CLOSE, FETCH INTO, DROP CURSOR.

К сожалению, эти подмножества не используются повсеместно 
во всех реализациях. Они подчеркиваются ANSI и полезны на кон-
цептуальном уровне. В частности, интерактивный Microsoft Jet SQL, 
реализованный в популярной СУБД MS Access, поддерживает толь-
ко первые три подмножества.

Определение данных в SQL

Рассмотрим терминологию SQL. В языке SQL поддерживаются та-
кие термины, как таблица, столбец, строка, вместо реляционных тер-
минов — отношение, атрибуты, кортежи.

Связь терминов реляционной модели данных, SQL и Access пред-
ставлена в табл. 2.

Таблица 2
Соответствие терминов

Реляционная модель SQL Access
Отношение Таблица (Table) Таблица
Атрибут Столбец (Column) Поле
Кортеж Строка (Row) Запись

База данных в SQL представляет собой набор взаимосвязанных 
таблиц. При этом различают базовые таблицы и таблицы-представ-
ления. Базовая таблица (TABLE) — это основной структурный эле-
мент базы данных. Ей соответствуют реальные хранимые данные. 
Концептуальная модель базы данных представляет собой совокуп-
ность взаимосвязанных базовых таблиц. Представление (VIEW) яв-
ляется виртуальной таблицей, которая выглядит как реально суще-
ствующая таблица. Представление не содержит собственных данных, 
в нем скомбинированы данные из одной или нескольких связанных 
базовых таблиц. Средством наполнения таблицы-представления яв-
ляются запросы, в которых реализуются информационные потреб-
ности пользователей базы данных. С помощью представления реа-



39

Определение данных в SQL

лизуются локальные представления (внешняя модель данных) базы 
данных, используемые в прикладных программах или запросах поль-
зователей. Сразу необходимо отметить, что концепция представле-
ний в версии SQL Microsoft Jet по умолчанию не поддерживается.

Средством эффективного доступа к хранимым данным являют-
ся индексы (INDEX). При помощи индексов осуществляется доступ 
к данным, упорядоченным по определенным критериям. В качестве 
критерия упорядочения могут использоваться один или несколько 
столбцов таблицы. Наглядным образом индекса является таблица, 
первый столбец которой содержит значения индексируемых полей, 
а второй — ссылки на соответствующие строки. При создании базо-
вых таблиц автоматически создаются индексы по первичному клю-
чу, по альтернативным ключам и по внешним ключам.

Действующим на данный момент стандартом языка SQL являет-
ся принятая Американским национальным институтом стандартов 
(American National Standards Institute — ANSI) версия SQL‑92. Фирмы-
разработчики СУБД при реализации языка SQL могут вносить в него 
расширения, но обязаны реализовать базовый набор команд ANSI SQL.

Процессор обработки данных Microsoft Jet является составной ча-
стью Access и выполняет инструкции Access SQL (SQL Microsoft Jet), 
который отличается от ANSI SQL существенно [12] (как правило, на-
стольные СУБД, совместимые со стандартом SQL, реализуют не все 
инструкции ANSI SQL).

Язык SQL Microsoft Jet почти соответствует стандарту ANSI SQL‑89. 
В реализацию языка SQL для Microsoft Jet 4.x (начиная с  версии 
Microsoft Access 2000) внесены несколько расширений, которые при-
ближают его к стандарту ANSI SQL‑92 и Transact-SQL — диалекту язы-
ка SQL для Microsoft SQL Server. Для того чтобы обеспечить совме-
стимость с предыдущими версиями Microsoft Jet, эти расширения 
можно использовать только в специальном режиме — ANSI SQL‑92.

Основные различия языков SQL Microsoft Jet и ANSI SQL состоят 
в следующем [12]:

·	 они имеют разные наборы зарезервированных слов и типов 
данных;

·	 разные правила применимы к оператору Between… And, ис-
пользуемому для определения условий выборки записей;

·	 подстановочные знаки ANSI и Microsoft Jet, которые использу-
ются в операторе Like, взаимно исключают друг друга;



40

SQL — язык структурированных запросов 

·	 язык Jet SQL обычно предоставляет пользователю большую сво-
боду, например разрешается группировка и сортировка по вы-
ражениям;

·	 язык Jet SQL позволяет использовать более сложные выраже-
ния.

Типы данных языка SQL ядра базы данных Microsoft Jet включа-
ют следующие основные типы данных [12] (табл. 3).

Таблица 3
Типы данных SQL Microsoft Jet

Тип данных Размер Описание

BINARY 1 байт 
на символ

В таком поле могут быть сохранены данные 
любого типа. Преобразование данных (напри-
мер, в текст) не производится. От способа вво-
да данных в бинарное поле зависит способ вы-
вода выходных данных

BIT 1 байт Значения «Да» и «Нет», а также поля, содержа-
щие только одно из двух возможных значений

TINYINT 1 байт Целое число от 0 до 255

MONEY 8 байт
Масштабируемое целое число в диапазоне  
от –922 337 203 685 477,5808
до 922 337 203 685 477,5807

DATETIME 
(см. DOUBLE) 8 байт Даты и время, относящиеся к годам 

с 100 по 9999

UNIQUEIDENTIFIER 128 бит Уникальный идентификационный номер, ис-
пользуемый для удаленного вызова процедур

REAL 4 байт

Значения обычной точности с плавающей за-
пятой в диапазоне от –3,402823E38
до –1,401298E‑45 для отрицательных значе-
ний, от 1,401298E‑45 до 3,402823E38 для поло-
жительных значений и 0

FLOAT 8 байт

Значения двойной точности с плавающей за-
пятой в диапазоне от –1,79769313486232E308 
до –4,94065645841247E‑324 для отрицатель-
ных значений и от 4,94065645841247E‑324 
до 1,79769313486232E308 для положительных 
значений и 0

SMALLINT 2 байт Короткое целое число в диапазоне от –32 768 
до 32 767

INTEGER 4 байт Длинное целое число в диапазоне 
от –2 147 483 648 до 2 147 483 647



41

Определение данных в SQL

Тип данных Размер Описание

DECIMAL 17 байт

Точный числовой тип данных, включающий 
значения от 10^28–1 до –10^28–1. Мож-
но определить как точность (1–28), так и мас-
штаб (точность определена как 0). Точность 
и масштаб по умолчанию составляют 18 и 0 со-
ответственно

TEXT 2 байт 
на символ От 0 до 2,14 Гбайт

IMAGE По требо-
ванию

От 0 до 2,14 Гбайт. Используется для объектов 
OLE

CHARACTER 2 байт 
на символ От 0 до 255 символов

Типы данных ANSI SQL, эквивалентные им типы данных языка SQL 
Microsoft Jet и допустимые синонимы приведены ниже [12] (табл. 4).

Таблица 4
Типы данных стандартного SQL и SQL Microsoft Jet

Тип данных 
ANSI SQL

Тип данных 
SQL Micro-
soft Access

Синоним
Тип данных 

Microsoft SQL 
Server

BIT, BIT VARYING BINARY 
VARBINARY, 
BINARY VARYING 
BIT VARYING

BINARY, VARBI-
NARY

Не поддерживается BIT BOOLEAN, LOGICAL, LOGI-
CAL1, YESNO BIT

Не поддерживается TINYINT INTEGER1, BYTE TINYINT
Не поддерживается COUNTER AUTOINCREMENT —
Не поддерживается MONEY CURRENCY MONEY
DATE, TIME, 
TIMESTAMP DATETIME DATE, TIME DATETIME

Не поддерживается UNIQUEIDEN-
TIFIER GUID UNIQUEIDENTI-

FIER
DECIMAL DECIMAL NUMERIC, DEC DECIMAL

REAL REAL SINGLE, FLOAT4, IEEESIN-
GLE REAL

DOUBLE PRECI-
SION, FLOAT FLOAT DOUBLE, FLOAT8, IEEE-

DOUBLE, NUMBER FLOAT

Окончание табл. 3



42

SQL — язык структурированных запросов 

Тип данных 
ANSI SQL

Тип данных 
SQL Micro-
soft Access

Синоним
Тип данных 

Microsoft SQL 
Server

SMALLINT SMALLINT SHORT, INTEGER2 SMALLINT
INTEGER INTEGER LONG, INT, INTEGER4 INTEGER

INTERVAL Не поддержи-
вается

Не поддержива-
ется

Не поддерживается IMAGE LONGBINARY, GENERAL, 
OLEOBJECT IMAGE

Не поддерживается TEXT LONGTEXT, LONGCHAR, 
MEMO, NOTE, NTEXT TEXT

CHARACTER, CHAR-
ACTER VARYING, 
NATIONAL CHAR-
ACTER, NATIONAL 
CHARACTER VARY-
ING

CHAR 

TEXT (n), ALPHANUMER-
IC, CHARACTER, STRING, 
VARCHAR, CHARAC-
TER VARYING, NCHAR, NA-
TIONAL CHARACTER, NA-
TIONAL CHAR, NATIONAL 
CHARACTER VARYING, NA-
TIONAL CHAR VARYING 

CHAR, 
VARCHAR, 
NCHAR, 
NVARCHAR

Ядро базы данных Microsoft Jet SQL в  основном совместимо 
с ANSI‑89 Level 1. Однако некоторые возможности языка запросов 
ANSI SQL не реализованы в Microsoft Jet SQL. Режим ANSI‑89 являет-
ся настройкой по умолчанию для новой базы данных Microsoft Access 
в формате файла 2002–2003, 2007, 2010.

В ANSI‑92 имеются новые зарезервированные слова, правила 
синтаксиса и подстановочные знаки, расширяющие возможности 
создания запросов и использования команд SQL. Этот режим бли-
зок к спецификации ANSI‑92 уровня 1, но не является совместимым 
с ANSI‑92 уровня 1. В данном режиме запроса содержится больше 
синтаксиса ANSI, а подстановочные знаки удовлетворяют специ-
фикации SQL.

Использование ANSI‑92 SQL может потребоваться, если предпо-
лагается будущее развитие приложения до проекта Microsoft Access 
и требуется разработать запросы, которые будут выполняться с ми-
нимальными изменениями в базе данных Microsoft SQL Server.

Для настройки режима совместимости с более совершенной вер-
сией стандарта ANSI‑92 SQL для текущей базы данных рекомендует-
ся выполнить следующие действия:

Окончание табл. 4



43

Описание учебного проекта

1.	 «Запустить» MS Access.
2.	 Создать пустую базу данных.
3.	 В левом верхнем углу окна нажать кнопку <Office>.
4.	 В диалоговом окне нажать кнопку <Параметры Access>.
5.	 В диалоговом окне «Параметры Access» в списке слева выбрать 

«Конструкторы объектов».
6.	 В разделе «Конструктор запросов» в опции «Синтаксис для SQL 

Server (ANSI 92)» установить флажок «эта база данных».
7.	 Нажать кнопку <OK>.

Описание учебного проекта

При знакомстве с языком SQL в качестве примера предметной об-
ласти рассмотрим в упрощенном виде организацию учебного процес-
са в вузе. Прежде всего, следует напомнить, что реализации проекта 
базы данных предшествует большая аналитическая работа, которая 
выполняется на этапах инфологического и даталогического проекти-
рования. На основании анализа семантики данных предметной об-
ласти разрабатывается ее информационная модель, которая затем 
отображается в компьютерную среду с учетом структурных и проце-
дурных возможностей СУБД реляционного типа. Разработка структу-
ры базы данных, в том числе разработка структуры каждой таблицы, 
определение свойств атрибутов, установление зависимостей между 
ними, назначение ключевых атрибутов, установление связей между 
таблицами, является результатом продолжительной аналитической 
работы [13]. Генерация схемы базы данных, независимо от того вы-
полняется ли она с помощью SQL или используются другие инстру-
ментальные возможности СУБД, возможна лишь тогда, когда прора-
ботаны особенности структуры данных предметной области.

Допустим, что нашу предметную область можно описать в терми-
нах понятий (сущностей): «факультет», «кафедра», «сотрудник» (в том 
числе «преподаватель», «инженер», «заведующий кафедрой»), «спе-
циальность» (направление), «студент», «учебная дисциплина», «эк-
замен».

Пусть в нашей учебной предметной области действуют следую-
щие семантические условия или бизнес-правила.



44

SQL — язык структурированных запросов 

Ри
с.

 1
0.

 М
од

ел
ь 

«с
ущ

но
ст

ь-
св

яз
ь»

 п
ре

дм
ет

но
й 

об
ла

ст
и 

«У
че

бн
ы

й 
пр

оц
ес

с»

Ру
ко

во
ди

т 
/

П
од

чи
ня

ет
ся

P
П

ре
дс

та
вл

ен
а

П
ро

ве
ря

ет
ся

 н
а

П
ри

ни
ма

ет

С
да

ет

Z
Z

Z

Вк
лю

ча
ет

Го
то

ви
т 

по

С
ос

то
ит

 и
з

Ве
де

т

И
зу

ча
ет

 /
И

зу
ча

ет
ся

С
от

ру
дн

ик
.д

ол
ж

но
ст

ь

Д
ис

ци
пл

ин
а

ко
д

на
зв

ан
ие

 (A
K

1.
1)

ис
по

лн
ит

ел
ь.

ш
иф

р 
(F

K
)

об
ъе

м

За
в_

ка
фе

др
ой

та
б_

но
м

ер
 (F

K
)

ст
аж

И
нж

ен
ер

та
б_

но
м

ер
 (F

K
)

сп
ец

иа
ль

но
ст

ь

К
аф

ед
ра

ш
иф

р

аб
бр

ев
иа

ту
ра

 (F
K

)

П
ре

по
да

ва
те

ль
та

б_
но

м
ер

 (F
K

)

зв
ан

ие
ст

еп
ен

ь

С
от

ру
дн

ик
та

б_
но

м
ер

ф
ам

ил
ия

до
лж

но
ст

ь
за

рп
ла

та
на

ча
ль

ни
к.

та
б_

но
м

ер
 (F

K
)

ш
иф

р 
(F

K
)

С
пе

ци
ал

ьн
ос

ть
но

м
ер

на
пр

ав
ле

ни
е 

(A
K

1.
1)

ш
иф

р 
(F

K
)

С
ту

де
нт

ре
г_

но
м

ер

но
м

ер
 (F

K
)

ф
ам

ил
ия

Ф
ак

ул
ьт

ет
аб

бр
ев

иа
ту

ра

на
зв

ан
ие

 (A
K

1.
1)

Э
кз

ам
ен

ко
д 

(F
K

)
ре

г_
но

м
ер

 (F
K

)
та

б_
но

м
ер

 (F
K

)
да

та

ау
ди

то
ри

я
оц

ен
ка



45

Описание учебного проекта

Вуз состоит из факультетов (рис. 10). Каждый факультет имеет уни-
кальный идентификатор-аббревиатуру и название. Работа на факуль-
тете организована по кафедрам. Каждая кафедра также имеет уни-
кальный шифр и название и может быть приписана только к одному 
факультету (неидентифицирующая связь «Состоит из»).

Коллектив кафедры образуют сотрудники. Уникальным идентифи-
катором сотрудника в пределах вуза является его табельный номер. 
Сотрудники могут работать только на одной кафедре (неидентифици-
рующая связь «Включает») и выполнять обязанности в роли преподава-
телей, инженеров или заведующих кафедрами (категориальная связь).

Каждый сотрудник кафедры имеет одного непосредственного на-
чальника из числа сотрудников кафедры (рекурсивная унарная связь 
«Руководит/Подчиняется»).

Кафедра может готовить специалистов по нескольким специаль-
ностям (направлениям), причем по каждой специальности осущест-
вляется подготовка только на одной кафедре (неидентифицирующая 
связь «Готовит по»). Каждая специальность имеет уникальный номер.

По каждой специальности обучаются несколько студентов. Каж-
дый студент данной кафедры может обучаться только по одной спе-
циальности (неидентифицирующая связь «Представлена»). Уникаль-
ной характеристикой персоны студента в пределах вуза является его 
регистрационный номер.

По любой специальности предполагается изучение многих дис-
циплин. Любая дисциплина имеет уникальный код и название. Ис-
полнителем учебной дисциплины может быть только одна кафедра 
(неидентифицирующая связь «Ведет»). Причем любую дисциплину 
кафедра-исполнитель может вести на многих специальностях (связь 
«многие-ко-многим» «Изучает/Изучается»).

По результатам обучения студенты сдают экзамены по опреде-
ленной дисциплине конкретному преподавателю в конкретное вре-
мя и получают оценки. При этом каждый студент сдает экзамены 
по нескольким дисциплинам, любой преподаватель может принимать 
экзамены по нескольким дисциплинам и, наконец, по любой дисци-
плине могут принимать экзамены разные преподаватели у разных 
студентов (тернарная связь «Сдает–Принимает–Проверяется на»).

Структура данных предметной области в виде информационных эле-
ментов (сущностей) и связей между ними может быть систематизиро-
вана в образе ее инфологической (информационной) модели (рис. 10).



46

SQL — язык структурированных запросов 

Обычно для наименования объектов базы данных SQL по тради-
ции базы данных используется латиница. Имея в виду учебный харак-
тер пособия, воспользуемся возможностью SQL Microsoft Jet и будем 
именовать объекты базы данных на русском языке. Ключевые сло-
ва SQL можно набирать строчными или прописными буквами. В де-
монстрационных примерах для наглядности ключевые слова будем 
набирать прописными буквами.

Для работы в режиме интерактивного SQL в MS Access необходи-
мо выполнить следующие действия1:

1.	 «Запустить» MS Access.
2.	 Настроиться на режим совместимости с ANSI‑92 SQL.
3.	 Создать файл базы данных (или открыть уже созданную базу 

данных).
4.	 Перейти в режим «Конструктора запросов».
5.	 Закрыть диалоговое окно «Добавление таблицы».
6.	 Перейти в интерактивный режим SQL.
7.	 Набрать текст SQL-команды.
8.	 Запустить команду (запрос) на исполнение и в случае коррект-

ности результата сохранить запрос под оригинальным именем 
для отчета.

Для закрепления навыков конструирования SQL-инструкций пред-
лагается:

·	 познакомиться с форматом SQL-инструкции;
·	 разобраться с демонстрационными примерами;
·	 выполнить предлагаемые задания.
При работе с печатным вариантом учебного пособия демонстра-

ционные примеры являются всего лишь иллюстрациями принципов 
построения SQL-инструкций. При работе с электронным вариантом 
учебного пособия текст SQL-инструкции примера можно перенести 
через буфер обмена в текстовый редактор SQL-режима «Конструкто-
ра запросов» и выполнить запрос.

1 Предполагается, что пользователь владеет навыками работы в среде MS Access.



47

Язык определения данных

Язык определения данных

Создание таблиц

Для описания новой таблицы, ее полей и индексов использует-
ся инструкция CREATE TABLE, которая имеет следующий обобщен-
ный формат.

CREATE TABLE <имя таблицы>
	  (<список элементов базовой таблицы>);
Здесь и далее в отличие от круглых скобок, которые являются эле-

ментами синтаксиса языка, угловые скобки <> обозначают метасим-
волы, квадратные скобки [] обозначают необязательные элементы, 
фигурные скобки {} обозначают альтернативу. Элементы списка пе-
речисляются через запятую.

Элементами списка могут быть:
·	 определение столбца;
·	 определение ограничения целостности.
Определение столбца имеет следующий формат:
<имя столбца> <тип> [(<размер>)] [NOT NULL]
Если для поля установлено свойство NOT NULL, то поле обязатель-

но должно содержать допустимые данные. Например:
шифр Text (5) NOT NULL
Определение ограничения целостности имеет такой формат:
CONSTRAINT <имя индекса> <ограничение>
Ограничения целостности бывают следующих типов:
·	 первичный ключ;
·	 альтернативный (уникальный) ключ;
·	 внешний ключ.
Для каждого типа ключа создается индекс.
Первичный ключ может быть составным. Определение первично-

го ключа — не более одного на таблицу:
PRIMARY KEY (<список имен столбцов>)
Здесь <список имен столбцов> — имена одного или нескольких 

столбцов, которые следует назначить ключевыми. По определению 
они не могут принимать значение NULL.

Альтернативные ключи могут быть составными. Альтернативных 
ключей может быть несколько. Определение альтернативного ключа:



48

SQL — язык структурированных запросов 

UNIQUE (<список имен столбцов>)
Здесь <список имен столбцов> — имена одного или нескольких 

столбцов, которые следует включить в альтернативный ключ (уни-
кальный индекс).

Внешние ключи могут быть составными. Внешних ключей может 
быть несколько. Определение внешнего ключа:

FOREIGN KEY (<список имен столбцов внешнего ключа>)
REFERENCES <внешняя таблица> (<список имен столбцов первич-

ного ключа внешней таблицы>)
[ON DELETE <опция>]
[ON UPDATE <опция>]

Здесь <список имен столбцов> — имена одного или нескольких 
столбцов, включенных во внешний ключ, которые содержат ссылки 
на столбцы потенциального (часто первичного) ключа другой внеш-
ней таблицы.

<опция>={CASCADE|SET NULL} — реакция на нарушение ограни-
чения ссылочной целостности при выполнении корректирующих 
операций. Умолчанием является RESTRICT — запрет на выполне-
ние операций, ведущих к нарушению ссылочной целостности. Аль-
тернативы: CASCADE — изменение «по каскаду» значений внешних 
ключей во всех кортежах таблиц-потомков, ссылающихся на обнов-
ляемый кортеж родительской таблицы, SET NULL — присваивание 
внешнему ключу таблицы-потомка значения «не определено» (NULL).

Допустим, что на этапах, предшествующих использованию SQL, 
все характеристики реляционных таблиц (имена таблиц, имена 
столбцов, их свойства, зависимости между ними, первичные, альтер-
нативные, внешние ключи) уже определены. Спецификации струк-
туры реляционной базы данных (даталогическая модель) приведе-
ны в табл. 5–152.

Все таблицы базы данных должны быть созданы и заполнены с уче-
том порядка их старшинства. Первой создается таблица «Факультет».

2 В спецификации некоторых таблиц намеренно внесены ошибки, для того что-
бы впоследствии продемонстрировать возможности модификации структуры та-
блиц средствами языка SQL.



49

Язык определения данных

Таблица 5
Структура таблицы «Факультет»

Номер Имя Домен (тип) NULL Примечание
1 аббревиатура TEXT (3) Запрещено Первичный ключ
2 название TEXT (50) Запрещено Альтернативный ключ

П р и м е р  1 .  Создать таблицу «Факультет».
CREATE TABLE Факультет
(аббревиатура TEXT (3) NOT NULL,
название TEXT (50) NOT NULL,
CONSTRAINT ПК_Факультет PRIMARY KEY (аббревиатура),
CONSTRAINT АК_Факультет UNIQUE (название));

Таблица 6
Структура таблицы «Кафедра»

Номер Имя Домен (тип) NULL Примечание
1 шифр TEXT (20) Запрещено Первичный ключ
2 название TEXT (50) – Альтернативный ключ
3 фак TEXT (2) – Внешний ключ

П р и м е р  2 .  Создать таблицу «Кафедра».
CREATE TABLE Кафедра
(шифр TEXT (8) NOT NULL, название TEXT (50) NOT NULL, фак TEXT (4),
CONSTRAINT ПК_Кафедра PRIMARY KEY (шифр),
CONSTRAINT АК_Кафедра UNIQUE (название),
CONSTRAINT Кафедра_Факультет FOREIGN KEY (фак)
REFERENCES Факультет (аббревиатура)
ON UPDATE CASCADE
ON DELETE SET NULL);
В этом примере выбрана реакция ON UPDATE CASCADE на об-

новление первичного ключа в родительской таблице «Факультет», 
что представляется естественным для нашей предметной области. 
Изменение аббревиатуры факультета можно распространить на до-
чернюю таблицу «Кафедра». Стратегия ON DELETE CASCADE вряд ли 
будет уместна: удаление строки в родительской таблице «Факультет» 
не должно повести за собой серию удалений в таблице-потомке «Ка-
федра». Стратегия ON DELETE SET NULL выбрана потому, что ликви-
дация факультета (удаление строки в таблице «Факультет») не долж-



50

SQL — язык структурированных запросов 

на сопровождаться ликвидацией его кафедр. Как возможный вариант 
реакции на это событие — перевод соответствующих кафедр в нео-
пределенное промежуточное состояние, в котором внешний ключ 
«факультет» таблицы «Кафедра» принимает значение NULL.

Анализ семантики данных, подобный тому, что был использован 
в спецификации ограничений ссылочной целостности таблицы «Ка-
федра», может быть формализован и в случае других таблиц.

Другие таблицы могут быть созданы по образцу. При создании 
таблиц следует учитывать порядок их старшинства. В первую оче-
редь создаются родительские таблицы, затем таблицы-потомки, со-
держащие ссылки на них. В нашем случае порядок создания таблиц 
должен быть такой:

·	 «Факультет»;
·	 «Кафедра»;
·	 «Сотрудник»;
·	 «Специальность»;
·	 «Дисциплина»;
·	 «Заявка»;
·	 «Зав_кафедрой»;
·	 «Инженер»;
·	 «Преподаватель»;
·	 «Студент»;
·	 «Экзамен».

Таблица 7
Структура таблицы «Сотрудник»

Номер Имя Домен (тип) NULL Примечание
1 таб_номер TEXT (3) Запрещено Первичный ключ
2 шифр TEXT (8) – Внешний ключ
3 фамилия TEXT (20) – –
4 должность TEXT (20) – –
5 зарплата MONEY – –
6 шеф TEXT (3) Запрещено Внешний ключ

П р и м е р  3 .  Создать таблицу «Сотрудник».
CREATE TABLE Сотрудник
(таб_номер TEXT (3) NOT NULL,
шифр TEXT (8),
фамилия TEXT (20),



51

Язык определения данных

должность TEXT (20),
зарплата MONEY,
шеф TEXT (3),
CONSTRAINT ПК_Сотрудник PRIMARY KEY (таб_номер),
CONSTRAINT Сотрудник_Сотрудник FOREIGN KEY (шеф)
REFERENCES Сотрудник (таб_номер)
ON UPDATE CASCADE
ON DELETE SET NULL,
CONSTRAINT Сотрудник_Кафедра FOREIGN KEY (шифр)
REFERENCES Кафедра (шифр)
ON UPDATE CASCADE
ON DELETE SET NULL);

З а д а н и е .  Создайте остальные таблицы базы данных в указан-
ной последовательности по образцу. Заданная последовательность 
обеспечит корректность ссылок между таблицами.

Таблица 8
Структура таблицы «Специальность»

Номер Имя Домен (тип) NULL Примечание
1 номер TEXT (8) Запрещено Первичный ключ
2 направление TEXT (50) Запрещено Альтернативный ключ
3 шифр TEXT (20) – Внешний ключ

П р и м е р  4 .  Создать таблицу «Специальность».
CREATE TABLE Специальность
(номер TEXT (8) NOT NULL,
направление TEXT (50) NOT NULL,
шифр TEXT (8),
CONSTRAINT ПК_Специальность PRIMARY KEY (номер),
CONSTRAINT АК_Специальность UNIQUE (направление),
CONSTRAINT Специальность_Кафедра FOREIGN KEY (шифр) REF-

ERENCES Кафедра (шифр)
ON UPDATE CASCADE
ON DELETE SET NULL);



52

SQL — язык структурированных запросов 

Таблица 9
Структура таблицы «Дисциплина»

Номер Имя Домен NULL Примечание
1 код TEXT (6) Запрещено Первичный ключ
2 объем SMALLINT – –

П р и м е р  5 .  Создать таблицу «Дисциплина».
CREATE TABLE Дисциплина
(код TEXT (6) NOT NULL,
объем SMALLINT,
CONSTRAINT ПК_Дисциплина PRIMARY KEY (код));

П р и м е р  6 .  Создать таблицу «Заявка». Эта таблица является ас-
социативной и моделирует связь типа «многие-ко-многим» между та-
блицами «Специальность» и «Дисциплина». Действительно, с одной 
стороны, на любой специальности предполагается изучение многих 
дисциплин. С другой стороны, любая дисциплина может быть постав-
лена для многих специальностей. По общему правилу построения 
таких таблиц первичный ключ образуется из внешних ключей свя-
зи ассоциативной таблицы со связуемыми таблицами. Таким обра-
зом, между ассоциативной таблицей и связуемыми таблицами уста-
навливаются идентифицирующие связи со всеми их особенностями 
в отношении контроля ссылочной целостности.

Таблица 10
Структура таблицы «Заявка»

Номер Имя Домен (тип) NULL Примечание

1 номер TEXT (8) Запрещено Первичный ключ
Внешний ключ

2 код TEXT (6) Запрещено Первичный ключ
Внешний ключ

CREATE TABLE Заявка
(номер TEXT (8) NOT NULL,
код TEXT (6) NOT NULL,
CONSTRAINT ПК_Заявка PRIMARY KEY (номер, код),
CONSTRAINT Заявка_Дисциплина FOREIGN KEY (код)
REFERENCES Дисциплина (код),



53

Язык определения данных

CONSTRAINT Заявка_Специальность FOREIGN KEY (номер)
REFERENCES Специальность (номер));

В таблице «Заявка» по определению идентифицирующей связи 
действует правило запрета на обновление и удаление строк в роди-
тельских таблицах. Оно подразумевается по умолчанию, и поэтому 
явно ограничения ссылочной целостности задавать не нужно.

Таблица 11
Структура таблицы «Зав_кафедрой»

Номер Имя Домен (тип) NULL Примечание

1 таб_номер TEXT (3) Запрещено Первичный ключ
Внешний ключ

2 стаж SMALLINT – –

П р и м е р  7 .  Создать таблицу «Зав_кафедрой».
CREATE TABLE Зав_кафедрой
(таб_номер TEXT (3) NOT NULL,
стаж SMALLINT,
CONSTRAINT ПК_Зав_кафедрой PRIMARY KEY (таб_номер),
CONSTRAINT Зав_кафедрой_Сотрудник FOREIGN KEY (таб_но-

мер) REFERENCES Сотрудник (таб_номер)
ON UPDATE CASCADE
ON DELETE CASCADE);

В этом примере и некоторых последующих на удаление строки 
в таблице «Сотрудник» выбрана стратегия CASCADE, потому что 
по определению категориальной связи строка в родительской таблице 
и в таблице-потомке представляют один и тот же экземпляр объекта.

Таблица 12
Структура таблицы «Инженер»

Номер Имя Домен (тип) NULL Примечание

1 таб_номер TEXT (3) Запрещено Первичный ключ
Внешний ключ

2 специальность TEXT (20) – –



54

SQL — язык структурированных запросов 

П р и м е р  8 .  Создать таблицу «Инженер».
CREATE TABLE Инженер
(таб_номер TEXT (3) NOT NULL,
специальность TEXT (20),
CONSTRAINT ПК_Инженер PRIMARY KEY (таб_номер),
CONSTRAINT Инженер_Сотрудник FOREIGN KEY (таб_номер) REF-

ERENCES Сотрудник (таб_номер)
ON UPDATE CASCADE
ON DELETE CASCADE);

З а д а н и е .  Таблицы базы данных «Преподаватель», «Студент», 
«Экзамен» создайте самостоятельно.

Таблица 13
Структура таблицы «Преподаватель»

Номер Имя Домен (тип) NULL Примечание

1 таб_номер TEXT (3) Запрещено Первичный ключ
Внешний ключ

2 звание TEXT (10) – –
3 степень TEXT (10) – –

Таблица 14
Структура таблицы «Студент»

Номер Имя Домен (тип) NULL Примечание
1 рег_номер TEXT (6) Запрещено Первичный ключ
2 номер TEXT (8) – Внешний ключ
3 фамилия TEXT (20) – –

Таблица 15
Структура таблицы «Экзамен»

Номер Имя Домен (тип) NULL Примечание

1 код TEXT (6) Запрещено Первичный ключ
Внешний ключ

2 рег_номер TEXT (6) Запрещено Первичный ключ
Внешний ключ

3 таб_номер TEXT (6) Запрещено Первичный ключ
Внешний ключ

4 дата DATE Запрещено Первичный ключ
5 аудитория TEXT (3) – –
6 оценкаl REAL – –



55

Язык определения данных

В таблице «Экзамен» по определению идентифицирующей связи 
действует правило запрета на обновление и удаление строк в роди-
тельских таблицах. Оно подразумевается по умолчанию, и поэтому 
явно ограничения ссылочной целостности задавать не нужно.

В результате созданная в MS Access схема базы данных будет иметь 
вид, представленный на рис. 11.

Рис. 11. Исходная схема базы данных

Модификация структуры таблицы

После того как таблица создана, можно в любое время (даже если 
таблица заполнена) изменить ее структуру. Для модификации струк-
туры таблицы предназначена инструкция ALTER TABLE, которая име-
ет следующий формат:

ALTER TABLE <имя таблицы>
{ADD {COLUMN<имя столбца> <тип> [(<размер>)] [NOT NULL]
|CONSTRAINT <имя индекса> <ограничение>}
|DROP {COLUMN <имя столбца> |CONSTRAINT <имя индекса>}};



56

SQL — язык структурированных запросов 

Инструкция ALTER TABLE дает возможность добавить (ADD) или 
удалить (DROP) один столбец (COLUMN) или одно ограничение це-
лостности (CONSTRAINT) в виде индекса. Метасимволы имеют тот же 
смысл, что и в команде CREATE TABLE. Метасимвол <ограничение> 
может быть представлен спецификацией или первичного ключа, или 
альтернативного ключа, или внешнего ключа. Для репетиции выпол-
ните нижеследующие примеры.

П р и м е р  9 .  Переименовать поле «фак» таблицы «Кафедра» 
на «факультет».

ALTER TABLE Кафедра ADD COLUMN факультет TEXT (4);
ALTER TABLE Кафедра DROP CONSTRAINT Кафедра_Факультет;
ALTER TABLE Кафедра DROP COLUMN фак;
ALTER TABLE Кафедра ADD CONSTRAINT Кафедра_Факультет FOR-

EIGN KEY (факультет) REFERENCES Факультет (аббревиатура)
ON UPDATE CASCADE ON DELETE SET NULL);

В этом примере первая команда ALTER TABLE добавляет новое 
поле «факультет». Вторая — удаляет индекс, ассоциированный с внеш-
ним ключом «фак», который моделирует связь с таблицей «Факуль-
тет». Третья — удаляет столбец «фак». И, наконец, четвертая — при-
сваивает столбцу «факультет» статус внешнего ключа, восстанавливая 
тем самым связь с таблицей «Факультет» и контроль ограничения ссы-
лочной целостности.

П р и м е р  1 0 .  Добавить новое поле «название» — альтернатив-
ный ключ таблицы «Дисциплина».

ALTER TABLE Дисциплина ADD COLUMN название TEXT (20);
ALTER TABLE Дисциплина ADD CONSTRAINT АК_Дисциплина 

UNIQUE (название);

З а д а н и е .  В таблице «Дисциплина» создать поле «исполнитель», 
определенное на домене TEXT (8) — внешний ключ для связи с та-
блицей «Кафедра» по полю «шифр» («кафедра читает курс»). В каче-
стве ограничения ссылочной целостности по связи между таблицами 
«Дисциплина» и «Кафедра» задайте стратегию ON UPDATE CASCADE 
ON DELETE SET NULL. Изменение шифра кафедры-исполнителя в та-
блице «Кафедра» будет передано по каскаду в таблицу-потомок «Дис-



57

Язык определения данных

циплина» и приведет к изменению внешнего ключа «исполнитель». 
Удаление строки родительской таблицы «Кафедра» не должно при-
вести к удалению соответствующих строк.

После модификации структуры окончательный вариант схемы 
реляционной базы данных для предметной области «Кафедра» будет 
выглядеть, как на рис. 12.

Рис. 12. Схема реляционной базы данных

Удаление таблицы

Созданную и заполненную таблицу можно удалить при помощи 
инструкции DROP TABLE.

DROP TABLE <имя таблицы>;

Перед удалением таблицы ее следует закрыть. При удалении та-
блицы, имеющей связанные с ней таблицы-потомки, в принципе 
возможны два исхода. Удаление родительской таблицы будет запре-
щено, пока не удалены все ее таблицы-потомки. Если разрешено ка-



58

SQL — язык структурированных запросов 

скадирование, то удаление родительской таблицы повлечет за собой 
удаление и всех ее таблиц-потомков. В SQL Microsoft Jet реализует-
ся первый случай.

П р и м е р  1 1 .  Удалить таблицу «Экзамен». Ее удаление не долж-
но повлечь за собой проблемы в отношении других связанных с ней 
таблиц.

DROP TABLE Экзамен;
После удаления таблицы «Экзамен» восстановите ее при помощи 

соответствующей сохраненной команды (SQL запроса) CREATE TABLE.

Язык манипулирования данными

Реальные языки манипулирования данными в реляционном пред-
ставлении должны, как минимум, обладать свойством реляционной 
полноты, т. е. обеспечивать выполнение восьми реляционных опера-
торов (объединение, пересечение, вычитание, декартово произведе-
ние, проекция, селекция, соединение и деление), введенных Коддом. 
Эти операторы лежат в основе всего многообразия запросов‑выбо-
рок. Однако реальные языки обычно обеспечивают не только реля-
ционную полноту, но и другие возможности, выходящие за пределы 
реляционной алгебры или реляционного исчисления:

·	 добавление данных;
·	 модификация данных;
·	 удаление данных;
·	 арифметические вычисления и сравнения;
·	 присваивание и отображение;
·	 вычисление функций агрегации, выполняемые над однородны-

ми элементами данных (вычисление количества, суммы, сред-
него, минимального или максимального значения и др.).

В связи с этим запросы, с которыми можно обращаться к базе дан-
ных, принято разделять на два класса:

·	 Корректирующие запросы — запросы на добавление (IN-
SERT), удаление (DELETE) и изменение (UPDATE) данных, ко-
торые образуют подмножество SQL — язык манипулирования 
данными. Это весьма значительные по своим последствиям за-



59

Язык манипулирования данными

просы, так как их реализация приводит к изменению храни-
мой в базе данных информации.

·	 Запросы-выборки (SELECT)  — запросы, осуществляющие 
только извлечение информации из одной или нескольких свя-
занных таблиц и представление ее в виде виртуальной (не су-
ществующей на самом деле) таблицы. Структура такого рода 
таблицы определяется локальным представлением о предмет-
ной области конечного пользователя базы данных в контексте 
запроса. Запросы на основе команды SELECT иногда выделя-
ют в подмножество SQL — язык запросов. В данной главе рас-
смотрим подмножество языка манипулирования данными.

База данных одной и той же предметной области может быть пред-
ставлена в виде одной таблицы (так называемого «универсального 
отношения») или в виде совокупности связанных таблиц. Выбор за-
висит от соотношения частот обращения к базе данных с корректи-
рующими запросами или с запросами-выборками. Для первых пред-
почтительнее совокупность связанных таблиц. В теории баз данных 
есть на этот счет специальная методология, называемая нормализа-
цией баз данных3. Для запросов‑выборок предпочтительнее исполь-
зование одной таблицы. В учебной базе данных используются толь-
ко нормализованные таблицы.

Ввод (добавление) данных в таблицу

Новые данные можно добавлять в таблицу вручную или с помо-
щью другой таблицы, используемой в качестве источника данных. 
Ввод данных в реляционную таблицу выполняется под контролем  
ссылочной целостности. Поэтому ввод данных в родительскую табли-
цу должен предшествовать вводу данных в таблицу-потомок.

Запрос на добавление одной записи выполняется при помощи ин-
струкции INSERT INTO:

INSERT INTO <имя таблицы> [(<список имен столбцов приемника>)]
VALUES (<cписок значений>);

3 Обсуждение этой проблемы выходит за рамки данного учебного пособия.



60

SQL — язык структурированных запросов 

Списки столбцов и значений должны быть согласованы по типу, 
по количеству и по порядку следования. Список имен столбцов мо-
жет отсутствовать, если он полный и согласован со списком значений.

П р и м е р  1 2 .  Заполнить таблицу «Факультет» фактическими 
данными при помощи команды INSERT по образцу:

INSERT INTO Факультет (аббревиатура, название)
VALUES ('ит', 'Информационные технологии');
Команду INSERT INTO следует повторить три раза (по числу строк), 

каждый раз с новыми значениями вводимых данных.

Данные для наполнения таблицы «Факультет»

Аббревиатура Название
ит Информационные технологии
ен Естественные науки
фм Физико-математический

Другой формат команды INSERT формирует вводимые данные как 
результат подзапроса на добавление строк из другой таблицы.

INSERT INTO <имя таблицы-приемника> [(<список имен столбцов 
приемника>)] [IN <внешняя_база_данных>]

SELECT <список имен столбцов источника>
FROM <источник> [IN <внешняя_база_данных>];

Здесь: 
·	 <список имен столбцов приемника> — имена столбцов табли-

цы-приемника для добавления данных;
·	 <список имен столбцов источника> — имена столбцов или од-

ной таблицы, или нескольких таблиц, или результата соедине-
ния таблиц;

·	 <внешняя_база_данных> — полный путь к внешней базе дан-
ных;

·	 <источник> — имена таблицы или таблиц, откуда вставляют-
ся данные; это может быть имя отдельной таблицы или резуль-
тат операции соединения, а также сохраненный запрос.



61

Язык манипулирования данными

П р и м е р  1 3 .  Заполнить по образцу при помощи инструкции 
INSERT таблицу «Кафедра» фактическими данными из таблицы «Ка-
федра» в базе данных (файле) Кафедра.mdb, размещенной в папке 
«Мои документы»:

INSERT INTO Кафедра SELECT * FROM Кафедра IN 'Кафедра.mdb';

Данные для наполнения таблицы «Кафедра»
шифр название факультет

вм Высшая математика ен
ис Информационные системы ит
мм Математическое моделирование фм
оф Общая физика фм
пи Прикладная информатика ит
эф Экспериментальная физика фм

З а д а н и е .  Остальные таблицы заполните или «вручную» 4, или 
из внешних текстовых файлов, соблюдая порядок старшинства та-
блиц. Для импорта данных в базу данных MS Access из текстовых фай-
лов воспользуйтесь следующим алгоритмом:

1.	 Закрыть целевую таблицу, если она открыта.
2.	 На вкладке «Внешние данные» в группе «Импорт» выбрать 

иконку «Импорт текстового файла».
3.	 В диалоге «Внешние данные — Текстовый файл» найти и вы-

брать по имени текстовый файл — источник данных.
4.	 В диалоге «Внешние данные — Текстовый файл» выбрать ва-

риант «Добавить копию записей в конец таблицы», выбрать 
из списка целевую таблицу и нажать <OK>.

5.	 В диалоге на первом шаге мастера «Импорт текста» выбрать 
«с разделителями» и нажать <Далее>.

6.	 На втором шаге выбрать разделитель полей «точка с запятой» 
и нажать <Далее>.

7.	 На третьем шаге убедиться, что данные импортируются в це-
левую таблицу, и нажать <Готово>.

8.	 На четвертом шаге без сохранения шагов импорта нажать <За-
крыть>.

Результаты выполнения запросов на добавление контролируйте 
визуально.

4 Пример наполнения таблиц фактическими данными приведен в приложении.



62

SQL — язык структурированных запросов 

З а д а н и е .  Добавить в таблицу «Студент» данные о новом сту-
денте: «рег_номер» = '11111', «номер»= '11.11.11', «фамилия»= 'Один-
цов О. О.' (вставить строку). Объясните причину неудачи.

З а д а н и е .  Добавить в таблицу «Специальность» данные о но-
вой специальности: «номер»= '11.11.11', «название»='Новая специ-
альность', «шифр»='ис' (вставить строку).

Обновление данных

Инструкция UPDATE создает запрос на обновление, который из-
меняет значения столбцов указанной таблицы на основе заданного 
условия отбора:

UPDATE <имя таблицы>
SET <имя столбца1>=<выражение1>,
[<имя столбца2>=<выражение2>,...<имя столбцаN>=<выражениеN>]
[WHERE <условие>];

Все строки, удовлетворяющие условию отбора во фразе WHERE, 
или все строки, если WHERE опущено, обновляются в соответствии 
с присваиваниями <имя столбца>=<выражение> во фразе SET.

Условие отбора во фразе WHERE может быть задано не только 
в виде логического выражения, порождающего истинностное зна-
чение, но и так называемым подзапросом.

П р и м е р  1 4 .  Увеличить зарплату инженерам на 10 %:
UPDATE Сотрудник SET зарплата = 1.1*зарплата
WHERE должность='инженер';

П р и м е р  1 5 .  Заменить в таблице «Студент» фамилию студен-
та с данным номером на новую фамилию. Компоненты команды UP-
DATE могут быть заданы как параметры динамически в процессе вы-
полнения запроса. Например, «рег_номер» = 10101, «фамилия» = 
Сергеева Н. Н.:

UPDATE Студент SET фамилия = [Введите новую фамилию]
WHERE рег_номер = [Введите номер студента];



63

Язык манипулирования данными

П р и м е р  1 6 .  Попробуйте изменить в таблице «Экзамен» номер 
студента (например, '10101') на '11111' и объясните причину неудачи:

UPDATE Экзамен SET рег_номер ='11111' WHERE рег_номер = 
'10101';

Невозможно обновить в одном запросе более одной таблицы.
Обновление ключевых столбцов в связанных таблицах порождает 

проблему сохранения целостности в переходном состоянии.
Результаты выполнения запросов на обновление контролируйте 

визуально.

З а д а н и е .  Инженеров кафедры «Информационные системы» 
(шифр ='ис') перевести в подчинение сотрудника с табельным но-
мером 201 (столбец «шеф»). Для конъюнкции двух условий исполь-
зовать оператор AND.

З а д а н и е .  Увеличить объем преподавания информатики 
на 20 часов.

З а д а н и е .  Преподавателю с таб_номером = 102 присвоить зва-
ние профессора.

З а д а н и е .  Перевести студента с  заданным номером («рег-
номер») на специальность с заданным номером («номер»). Компо-
ненты команды UPDATE задать параметрически.

Удаление данных

Инструкция DELETE создает запрос на удаление строк, которые 
удовлетворяют условию отбора во фразе WHERE:

DELETE FROM <имя таблицы> [WHERE <условие>];

Команда DELETE удаляет из таблицы строки целиком, а не отдель-
ные столбцы, поэтому список столбцов не указывается.

Если фраза WHERE опущена, DELETE удалит все строки таблицы. 
Однако сама таблица удалена не будет, в этом отличие команды DE-
LETE от команды DROP. Условие отбора во фразе WHERE может быть 



64

SQL — язык структурированных запросов 

задано не только в виде логического выражения, порождающего ис-
тинностное значение, но и так называемого подзапроса.

П р и м е р  1 7 .  Удалить из таблицы «Специальность» строку о спе-
циальности с «номером» 111111:

DELETE FROM Специальность
WHERE номер='11.11.11';
Результаты выполнения запросов на удаление контролируйте ви-

зуально.

З а д а н и е .  Удалить из таблицы «Специальность» строку о специ-
альности («номер») '09.03.03'. Объяснить причину неудачи.

Язык запросов

База данных представляет собой информационную модель пред-
метной области и предназначена для удовлетворения информаци-
онных запросов пользователей, работающих в этой предметной об-
ласти. После того как база данных будет наполнена содержательной 
информацией, к ней можно обращаться с запросами. Запрос-выбор-
ка представляет собой спецификацию условий манипулирования дан-
ными, в результате которого создается то или иное представление 
о хранимой в базе данных информации. База данных является объ-
ектом коллективного пользования, и каждый запрос выражает ин-
дивидуальное, локальное представление пользователей о структуре 
информации моделируемой предметной области.

Выборка данных по запросу осуществляется при помощи много-
функциональной команды SELECT. Полный ее формат содержит мно-
жество спецификаторов ее действия. Основной результат выполне-
ния операции можно выразить в виде фразы SELECT-FROM-WHERE. 
В команде задаются:

·	 само действие SELECT;
·	 источник данных FROM;
·	 условие отбора (факультативно) WHERE.



65

Язык запросов

В общем случае инструкция SELECT имеет следующий формат:
SELECT [<спецификатор результата>] <список элементов>
FROM <ссылка на источник данных>
[WHERE.<условие отбора строк>]
[GROUP BY <список полей группировки строк>]
[HAVING <условие отбора групп>]
[ORDER BY <список полей сортировки строк>]
Порядок следования предложений команды SELECT имеет прин-

ципиальное значение и должен соответствовать указанному выше. 
Рассмотрим синтаксис команды по частям.

Здесь и далее в отличие от круглых скобок, которые являются эле-
ментами синтаксиса языка, угловые скобки <> обозначают метасим-
волы, квадратные скобки [] обозначают необязательные элементы, 
фигурные скобки {} обозначают альтернативу.

Инструкции SELECT не изменяют данные в базе данных. При ее 
выполнении ядро базы данных Microsoft Jet находит указанную та-
блицу или таблицы, извлекает заданные столбцы, выделяет строки, 
соответствующие условию отбора, и сортирует или группирует ре-
зультирующие строки в указанном порядке.

Фраза SELECT в обобщенном виде содержит:
SELECT [<спецификатор результата>] <список элементов>;
Здесь 
<спецификатор результата>={ALL|DISTINCT|DISTINCTROW|TOP n}
ALL  (умолчание) 	 — вывод всех строк;
DISTINCT	� — исключаются записи, которые содержат по-

вторяющиеся комбинации значений в выбран-
ных полях;

DISTINCTROW	� — опускает данные, основанные на целиком по-
вторяющихся записях, а не отдельных повторя-
ющихся полях. DISTINCTROW влияет на резуль-
тат только в том случае, если в запрос включены 
не все поля из анализируемых таблиц. Преди-
кат DISTINCTROW игнорируется, если запрос 
содержит только одну таблицу или все поля 
всех таблиц запроса.

TOP n	� — возвращает n записей, находящихся в нача-
ле результирующего списка строк.

<список элементов> не может быть пустым.



66

SQL — язык структурированных запросов 

Элементы списка перечисляются через запятую. Элементами спи-
ска могут быть:

·	  [<имя таблицы>.]* — все поля таблицы;
·	  [<имя таблицы>.]<имя столбца> [AS <псевдоним>];
·	 скалярное выражение — вычисляемое значение;
·	 константа;
·	 ссылка на функцию агрегации (статистическую функцию);
·	 подзапрос.
Фраза FROM в общем виде содержит
FROM <ссылка на источник данных>
В качестве ссылки на источник данных могут использоваться:
·	 имя таблицы;
·	 список имен таблиц;
·	 соединение двух и более таблиц;
·	 подзапрос.
Предложение FROM должно присутствовать в каждой инструк-

ции SELECT.
Порядок следования имен таблиц, если их несколько, значения 

не имеет.
В некоторых случаях в качестве разных источников данных есть 

необходимость использовать одну и ту же таблицу. В этом случае ис-
пользуются так называемые псевдонимы таблицы по следующей схеме:

SELECT <псевдоним1>.*, <псевдоним2>.*
FROM <имя таблицы1> AS <псевдоним1>,
            <имя таблицы2> AS <псевдоним2>;

Простые запросы

Выборка столбцов (проекция)

Минимальный формат инструкции SELECT включает список имен 
столбцов и имя таблицы-источника данных. Для отбора всех полей та-
блицы можно использовать символ звездочка (*). В этом случае в вы-
борке будут представлены все столбцы, причем в таком порядке следо-
вания, в котором они были заданы в структуре таблицы. Если нужно 
вывести не все столбцы, а только некоторые, или изменить их порядок 
следования, то столбцы должны быть заданы в списке SELECT явно.



67

Язык запросов

П р и м е р  1 8 .  Вывести все поля таблицы «Сотрудник»:
SELECT *
FROM Сотрудник;

Результат выполнения запроса из примера 18

таб_номер шифр фамилия должность зарплата шеф

101 пи Прохоров П. П. зав.кафедрой 35 000,00 р. 101

102 пи Семенов С. С. преподаватель 25 000,00 р. 101

105 пи Петров П. П. преподаватель 25 000,00 р. 101

153 пи Сидорова С. С. инженер 15 000,00 р. 102

201 ис Андреев А. А. зав.кафедрой 35 000,00 р. 201

202 ис Борисов Б. Б. преподаватель 25 000,00 р. 201

241 ис Глухов Г. Г.  инженер 20 000,00 р. 201

242 ис Чернов Ч. Ч. инженер 15 000,00 р. 202

301 мм Басов Б. Б. зав.кафедрой 35 000,00 р. 301

302 мм Сергеева С. С. преподаватель 25 000,00 р. 301

401 оф Волков В. В. зав.кафедрой 35 000,00 р. 401

402 оф Зайцев З. З. преподаватель 25 000,00 р. 401

403 оф Смирнов С. С. преподаватель 15 000,00 р. 401

435 оф Лисин Л. Л. инженер 20 000,00 р. 402

501 вм Кузнецов К. К. зав.кафедрой 35 000,00 р. 501

502 вм Романцев Р. Р. преподаватель 25 000,00 р. 501

503 вм Соловьев С. С. преподаватель 25 000,00 р. 501

601 эф Зверев З. З. зав.кафедрой 35 000,00 р. 601

602 эф Сорокина С. С. преподаватель 25 000,00 р. 601

614 эф Григорьев Г. Г.  инженер 20 000,00 р. 602

З а д а н и е .  Вывести некоторые поля таблицы «Сотрудник» 
(«шифр», «должность» и «зарплата»).

П р и м е р  1 9 .  Вывести список ставок кафедр как проекцию (вы-
борку некоторых столбцов без дублей строк) таблицы «Сотрудник» 
на атрибуты «шифр», «должность» и «зарплата». Для выполнения про-
екции используется спецификатор DISTINCT.



68

SQL — язык структурированных запросов 

SELECT DISTINCT шифр, должность, зарплата
FROM Сотрудник;

Результат выполнения запроса из примера 19

шифр должность зарплата

вм зав.кафедрой 35 000,00 р.

вм преподаватель 25 000,00 р.

ис зав.кафедрой 35 000,00 р.

ис инженер 16 500,00 р.

ис инженер 22 000,00 р.

ис преподаватель 25 000,00 р.

мм зав.кафедрой 35 000,00 р.

мм преподаватель 25 000,00 р.

оф зав.кафедрой 35 000,00 р.

оф инженер 22 000,00 р.

оф преподаватель 15 000,00 р.

оф преподаватель 25 000,00 р.

пи зав.кафедрой 35 000,00 р.

пи инженер 16 500,00 р.

пи преподаватель 25 000,00 р.

эф зав.кафедрой 35 000,00 р.

эф инженер 22 000,00 р.

эф преподаватель 25 000,00 р.

З а д а н и е .  Выполнить проекцию таблицы «Экзамен» на атрибу-
ты «код» и «таб_номер» (по какой дисциплине кто экзаменует).

Выборка строк по условию (селекция)

Предложение WHERE определяет, какие записи из таблиц, пере-
численных в предложении FROM, следует включить в результат вы-
полнения инструкции SELECT, UPDATE или DELETE.

Фраза WHERE в общем виде:
WHERE <условие отбора строк>



69

Язык запросов

В спецификации условия отбора могут использоваться любые ком-
бинации констант, литералов, функций, имен полей, а также опера-
торов, порождающие истинностное значение:

·	 операции сравнения;
·	 оператор Between <значение1> And <значение2>;
·	 оператор Like <шаблон>;
·	 оператор In (<список значений>);
·	 оператор инверсии NOT <выражение>;
·	 оператор конъюнкции <выражение1> AND <выражение2>;
·	 оператор дизъюнкции <выражение1> OR <выражение2>;
·	 подзапрос.
Ядро базы данных Microsoft Jet отбирает записи, соответствую-

щие условиям, перечисленным в предложении WHERE. Если не за-
давать предложение WHERE, запрос возвращает все строки таблицы.

Предложение WHERE не является обязательным. Однако если оно 
присутствует, то должно следовать после предложения FROM.

Имена полей, которые содержат пробелы или знаки препинания, 
необходимо заключать в квадратные скобки ([]).

Аргументы условия отбора задаются как литералы. Литералы пред-
ставляют собой константы, которые используются в SQL-командах. 
Существуют различные формы литералов в зависимости от типа дан-
ных, которые поддерживает конкретная версия SQL. Литералы число-
вых типов данных задаются как обычно в виде чисел, литералы строк 
символов заключаются в апострофы (например, должность = 'пре-
подаватель'). Литералы даты следует заключать в знаки номера (#) 
и представлять в американском формате, даже если американская 
версия ядра базы данных Microsoft Jet не используется. Например, 
дата «10 мая 1996» записывается как #5/10/96#.

Предложение WHERE может содержать до 40 выражений, связан-
ных логическими операторами, такими как And и Or.

При построении условий отбора могут использоваться арифмети-
ческие, логические операторы и операторы сравнения.

Если выражение содержит несколько операторов, то значения 
компонентов выражения рассчитываются в определенном порядке. 
Такой порядок называют порядком старшинства или приоритетом 
операторов.

Если выражение содержит операторы разных типов, то первыми 
выполняются арифметические операции, следом за ними — опера-



70

SQL — язык структурированных запросов 

ции сравнения, а последними — логические операции. Все операто-
ры сравнения имеют равный приоритет, т. е. выполняются в поряд-
ке их расположения в выражении слева направо. Арифметические 
и логические операторы выполняются в порядке их расположения 
в табл. 16.

Таблица 16
Операторы, определенные над данными в SQL

Арифметические Сравнения Логические
Возведение в степень (^) Равняется (=) Not
Изменение знака (–) Не равняется (<>) And
Умножение и деление (*,/) Меньше (<) Or
Целое деление (\) Больше (>) Xor
Деление по модулю (Mod) Меньше или равняется (<=) Eqv
Сложение и вычитание (+, –) Больше или равняется (>=) Imp
Слияние строк (&) Like

Is

Стоящие рядом в выражении операторы умножения и деления вы-
полняются слева направо. В таком же порядке выполняются стоящие 
рядом операторы сложения и вычитания. Операторы внутри круглых 
скобок всегда выполняются раньше, чем операторы вне скобок. По-
рядок выполнения операторов, стоящих внутри скобок, определяет-
ся старшинством операторов.

Оператор конкатенации (слияния строк) (&) не является арифме-
тическим оператором, однако по порядку старшинства он следует сра-
зу за арифметическими операторами и перед операторами сравнения.

Оператор Like, равный по старшинству остальным операторам 
сравнения, выделяется в самостоятельный тип оператора сравне-
ния с образцом.

Оператор Is является оператором сравнения ссылок на объект. 
Этот оператор не выполняет сравнение объектов или их значений; он 
проверяет только, указывают ли две разные ссылки на один объект.

Спецификация условия отбора строк используется в самой распро-
страненной реляционной операции — операции селекции.

П р и м е р  2 0 .  Вывести все данные о  сотрудниках-инже-
нерах. Выполнить селекцию таблицы «Сотрудник» по  условию 
«должность»='инженер'.



71

Язык запросов

SELECT *
FROM Сотрудник
WHERE должность=’инженер’;

Результат выполнения запроса из примера 20

таб_номер шифр фамилия должность зарплата шеф

153 пи Сидорова С. С. инженер 15 000,00 р. 102

241 ис Глухов Г. Г.  инженер 20 000,00 р. 201

242 ис Чернов Ч. Ч. инженер 15 000,00 р. 202

435 оф Лисин Л. Л. инженер 20 000,00 р. 402

614 эф Григорьев Г. Г.  инженер 20 000,00 р. 602

П р и м е р  2 1 .  Вывести все данные, а также как вычисляемое 
данное годовую зарплату («зарплата»*12) тех сотрудников (таблица 
«Сотрудник»), чья годовая зарплата не меньше 300 000 руб.

SELECT таб_номер, шифр AS кафедра, фамилия, должность, зар-
плата, шеф, зарплата*12 AS [годовая зарплата]

FROM Сотрудник
WHERE зарплата*12>=300000;

Результат выполнения запроса из примера 21

таб_ 
номер

ка-
фе-
дра

фамилия должность зарплата шеф годовая 
зарплата

101 пи Прохоров П. П. зав.кафедрой 35 000,00 р. 101 420 000,00 р.

102 пи Семенов С. С. преподаватель 25 000,00 р. 101 300 000,00 р.

105 пи Петров П. П. преподаватель 25 000,00 р. 101 300 000,00 р.

201 ис Андреев А. А. зав.кафедрой 35 000,00 р. 201 420 000,00 р.

202 ис Борисов Б. Б. преподаватель 25 000,00 р. 201 300 000,00 р.

301 мм Басов Б. Б. зав.кафедрой 35 000,00 р. 301 420 000,00 р.

302 мм Сергеева С. С. преподаватель 25 000,00 р. 301 300 000,00 р.

401 оф Волков В. В. зав.кафедрой 35 000,00 р. 401 420 000,00 р.

402 оф Зайцев З. З. преподаватель 25 000,00 р. 401 300 000,00 р.

501 вм Кузнецов К. К. зав.кафедрой 35 000,00 р. 501 420 000,00 р.

502 вм Романцев Р. Р. преподаватель 25 000,00 р. 501 300 000,00 р.



72

SQL — язык структурированных запросов 

таб_ 
номер

ка-
фе-
дра

фамилия должность зарплата шеф годовая 
зарплата

503 вм Соловьев С. С. преподаватель 25 000,00 р. 501 300 000,00 р.

601 эф Зверев З. З. зав.кафедрой 35 000,00 р. 601 420 000,00 р.

602 эф Сорокина С. С. преподаватель 25 000,00 р. 601 300 000,00 р.

П р и м е р  2 2 .  Вывести данные об  инженерах данной ка-
федры. Шифр кафедры задать параметрически (например, 
«шифр»='ис'). Выполнить селекцию таблицы «Сотрудник» по усло-
вию «должность»='инженер' и «шифр»= [Введите шифр кафедры] 
(использовать оператор AND).

SELECT *
FROM Сотрудник
WHERE должность='инженер' AND шифр= [Введите шифр кафедры];

Результат выполнения запроса из примера 22

таб_номер шифр фамилия должность зарплата шеф

241 ис Глухов Г. Г.  инженер 22 000,00 р. 201

242 ис Чернов Ч. Ч. инженер 16 500,00 р. 202

З а д а н и е .  Вывести список сотрудников данной кафедры. Шифр 
кафедры задать параметрически.

З а д а н и е .  Вывести список дисциплин, которые ведет данная 
кафедра. Шифр кафедры (столбец «исполнитель») задать параме-
трически.

З а д а н и е .  Вывести список сотрудников данной кафедры, чья 
зарплата менее заданной величины. Шифр кафедры и граничную 
величину зарплаты задать параметрически. Использовать опера-
тор AND.

В условии выборки могут использоваться операторы Between, 
Like, In.



73

Язык запросов

Селекция на основе Between… And

Оператор Between… And определяет принадлежность значения 
выражения (в частности, столбца реляционной таблицы) указанно-
му диапазону и имеет следующий формат:

<выражение> [NOT] Between <значение1> And <значение2>

Если значение выражения или анализируемого столбца попада-
ет в диапазон, задаваемый аргументами «значение1» и «значение2» 
(включительно), оператор Between… And возвращает значение 
True; в противном случае возвращается значение False. Логический 
оператор NOT позволяет проверить противоположное условие (что 
выражение находится за пределами диапазона, заданного с помо-
щью аргументов «значение1» и «значение2»). Порядок следования 
границ диапазона значения не имеет. Более того, границы могут со-
впадать. Оператор Between… And можно применять к данным тех 
типов, для которых понятие диапазона имеет смысл. Границы диа-
пазона могут быть заданы параметрически.

П р и м е р  2 3 .  Вывести из таблицы «Сотрудник» данные о со-
трудниках, имеющих зарплату в диапазоне, заданном параметриче-
ски (например, от 15 000 до 20 000). Запрос оформить как выборку 
с Between… And.

SELECT *
FROM Сотрудник
WHERE зарплата Between [от] And [до];

Результат выполнения запроса из примера 23

таб_номер шифр фамилия должность зарплата шеф

153 пи Сидорова С. С. инженер 16 500,00 р. 102

242 ис Чернов Ч. Ч. инженер 16 500,00 р. 202

403 оф Смирнов С. С. преподаватель 15 000,00 р. 401

З а д а н и е .  Вывести из таблицы «Экзамен» все данные о резуль-
татах сдачи экзаменов в диапазоне заданных дат. Запрос оформить 
как параметрический с Between… And.



74

SQL — язык структурированных запросов 

Селекция на основе Like

Оператор Like используется для сравнения строкового выраже-
ния с образцом в выражении SQL:

<выражение> Like <шаблон>

Оператор Like исследует анализируемое выражение, в том числе 
значение столбца, на совпадение с заданным шаблоном (образцом 
сравнения) с точностью до символов шаблона. В качестве символов 
шаблона стандарта ANSI SQL могут использоваться, например:

·	  % — любая последовательность символов;
·	 _ (подчеркивание) — один любой символ.
Оператор Lke применим только к данным текстового типа.
Для образца можно задавать полное значение (например, Like 

'Иванов') или использовать символы шаблона для поиска диапазона 
значений (например, Like 'Ив %', здесь «Ив» — первые буквы, % — 
любые комбинации любых символов).

П р и м е р  2 4 .  Вывести данные о сотрудниках (таблица «Сотруд-
ник»), чья фамилия начинается на «С».

SELECT *
FROM Сотрудник
WHERE фамилия Like 'С %';

Результат выполнения запроса из примера 24

таб_номер шифр фамилия должность зарплата шеф

102 пи Семенов С. С. преподаватель 25 000,00 р. 101

153 пи Сидорова С. С. инженер 16 500,00 р. 102

302 мм Сергеева С. С. преподаватель 25 000,00 р. 301

403 оф Смирнов С. С. преподаватель 15 000,00 р. 401

503 вм Соловьев С. С. преподаватель 25 000,00 р. 501

602 эф Сорокина С. С. преподаватель 25 000,00 р. 601

Шаблон оператора Like может быть задан параметрически, как 
в следующем примере.



75

Язык запросов

П р и м е р  2 5 .  Вывести данные о сотрудниках (таблица «Сотруд-
ник») по первым буквам фамилии (например, по одной букве «Б»).

SELECT *
FROM Сотрудник
WHERE фамилия Like [Введите первые буквы фамилии]&'%';
Здесь первые буквы фамилии задаются параметрически, а осталь-

ные могут быть любыми.

Результат выполнения запроса из примера 25

таб_номер шифр фамилия должность зарплата шеф

202 ис Борисов Б. Б. преподаватель 25 000,00 р. 201

301 мм Басов Б. Б. зав.кафедрой 35 000,00 р. 301

З а д а н и е .  Вывести данные о сотрудниках (таблица «Сотруд-
ник») по первым буквам названия должности. Запрос оформить как 
параметрический запрос.

Селекция на основе In

Оператор In проверяет, попадает ли значение выражения или ана-
лизируемого столбца в список «разрешенных» значений:

<выражение> [NOT] In (<список значений>)

Если «выражение» содержится в списке значений, оператор In 
возвращает значение True; в противном случае возвращается зна-
чение False. С помощью логического оператора NOT можно прове-
рить обратное условие (что «выражение» не принадлежит списку 
значений).

П р и м е р  2 6 .  Вывести из таблицы «Дисциплина» данные о дис-
циплинах базового цикла {математика, физика, информатика}. За-
прос оформить как выборку с In.

SELECT *
FROM Дисциплина
WHERE название In ('математика', 'физика', 'информатика');



76

SQL — язык структурированных запросов 

Результат выполнения запроса из примера 26

код объем название заявитель исполнитель
101 320 математика пи вм
102 160 информатика пи пи
103 160 физика ис оф

П р и м е р  2 7 .  Вывести из таблицы «Студент» данные о студен-
тах, обучающихся по специальностям факультета «Информацион-
ные технологии», т. е. с «номерами» из списка {09.03.02, 09.03.03, 
38.03.05}. Запрос оформить как выборку с In.

SELECT *
FROM Студент
WHERE номер In ('09.03.02', '09.03.03', '38.03.05');

Результат выполнения запроса из примера 27

рег_номер номер фамилия
10101 09.03.03 Николаева Н. Н.
10102 09.03.03 Иванов И. И.
20101 09.03.02 Андреев А. А.
80101 38.03.05 Макаров М. М.
80102 38.03.05 Яковлев Я. Я.
20102 09.03.02 Федоров Ф. Ф.
10103 09.03.03 Крюков К. К.

З а д а н и е .  Вывести из таблицы «Сотрудник» данные о сотрудни-
ках, работающих на кафедрах факультета «Естественные науки», т. е. 
с «шифрами» из списка {оф, вм}. Запрос оформить как выборку с In.

Сортировка строк

Предложение ORDER BY сортирует записи, полученные в резуль-
тате запроса, в порядке возрастания или убывания на основе значе-
ний указанных имен столбцов.

Фраза ORDER BY в общем случае имеет вид
ORDER BY <имя столбца1> [{ASC|DESC}]
[,<имя столбца2> [{ASC|DESC}]] [, …]];



77

Язык запросов

В запросе на сортировку записей должны быть выполнены следу-
ющие условия:

·	 сортировка может выполняться по одному или нескольким 
столбцам;

·	 порядок сортировки определяется порядком следования столб-
цов в  списке ODER BY: сначала по  первому столбцу, затем 
по второму и т. д.;

·	 столбцы в списке ODER BY должны быть представлены своими 
именами с указанием спецификатора способа сортировки;

·	 столбцы в списке сортировки должны быть явно или не явно 
(в виде *) присутствовать в списке фразы SELECT;

·	 сортировка может выполняться по возрастанию или по убыва-
нию значений столбцов сортировки;

·	 для сортировки по возрастанию используется спецификатор 
ASC (умолчание); для сортировки по убыванию — специфи-
катор DESC.

Предложение ORDER BY является необязательным. Однако оно 
необходимо для отображения данных в порядке сортировки.

При включении поля Memo или объекта ActiveX в предложение 
ORDER BY возникает ошибка. Ядро базы данных Microsoft Jet не под-
держивает сортировку по полям этих типов.

Предложение ORDER BY является последним элементом инструк-
ции SQL.

П р и м е р  2 8 .  Вывести из таблицы «Сотрудник» данные о сотруд-
никах в алфавитном порядке шифров кафедр («шифр» ASC) и по убы-
ванию зарплаты («зарплата» DESC).

SELECT *
FROM Сотрудник
ORDER BY шифр, зарплата DESC;

Результат выполнения запроса из примера 28

таб_номер шифр фамилия должность зарплата шеф
501 вм Кузнецов К. К. зав.кафедрой 35 000,00 р. 501
503 вм Соловьев С. С. преподаватель 25 000,00 р. 501
502 вм Романцев Р. Р. преподаватель 25 000,00 р. 501
201 ис Андреев А. А. зав.кафедрой 35 000,00 р. 201



78

SQL — язык структурированных запросов 

таб_номер шифр фамилия должность зарплата шеф
202 ис Борисов Б. Б. преподаватель 25 000,00 р. 201
241 ис Глухов Г. Г.  инженер 22 000,00 р. 201
242 ис Чернов Ч. Ч. инженер 16 500,00 р. 202
301 мм Басов Б. Б. зав.кафедрой 35 000,00 р. 301
302 мм Сергеева С. С. преподаватель 25 000,00 р. 301
401 оф Волков В. В. зав.кафедрой 35 000,00 р. 401
402 оф Зайцев З. З. преподаватель 25 000,00 р. 401
435 оф Лисин Л. Л. инженер 22 000,00 р. 402
403 оф Смирнов С. С. преподаватель 15 000,00 р. 401
101 пи Прохоров П. П. зав.кафедрой 35 000,00 р. 101
105 пи Петров П. П. преподаватель 25 000,00 р. 101
102 пи Семенов С. С. преподаватель 25 000,00 р. 101
153 пи Сидорова С. С. инженер 16 500,00 р. 102
601 эф Зверев З. З. зав.кафедрой 35 000,00 р. 601
602 эф Сорокина С. С. преподаватель 25 000,00 р. 601
614 эф Григорьев Г. Г.  инженер 22 000,00 р. 602

З а д а н и е .  Вывести из таблицы «Студент» данные о студентах, 
упорядоченные по возрастанию номеров специальностей («номер») 
и в алфавитном порядке фамилий («фамилия»). Запрос оформить как 
выборку с ORDER BY.

Группировка строк

Однородные в определенном отношении строки реляционной та-
блицы могут быть объединены в группы. Предложение GROUP BY 
объединяет записи с одинаковыми значениями в указанном списке 
столбцов в одну группу.

Фраза GROUP BY в общем случае имеет следующий вид:
GROUP BY <список столбцов группировки строк>

Если в списке столбцов указано не одно поле, то создаются вло-
женные группы — подгруппы, подподгруппы и т. д. по числу элемен-
тов списка.

В запросе на группировку записей должны быть выполнены сле-
дующие условия:



79

Язык запросов

·	 группировка может выполняться по одному или нескольким 
столбцам;

·	 порядок группировки определяется порядком следования 
столбцов в списке GROUP BY (сначала по первому столбцу, за-
тем по второму и т. д.);

·	 список полей группировки в предложении GROUP BY и список 
элементов предложения SELECT должны быть согласованы;

·	 в списке SELECT можно использовать только те поля, по кото-
рым выполняется группировка, а также вычисляемые поля, на-
пример на основе статистических функций: COUNT, SUM, AVG, 
MAX, MIN и др.

Предложение GROUP BY является необязательным.
Итоговые значения не рассчитываются, если инструкция SELECT 

не содержит статистической функции SQL.
Значения Null, которые находятся в полях, заданных в предложе-

нии GROUP BY, группируются и не опускаются. Однако статистиче-
ские функции SQL не обрабатывают значения Null.

Если столбец, включенный в предложение GROUP BY, не является 
данным типа Memo или объекта ActiveX, то это предложение может 
содержать ссылку на любой столбец, перечисленный в предложении 
FROM, даже если этот столбец не включен в инструкцию SELECT при 
условии, что инструкция SELECT содержит, по крайней мере, одну 
статистическую функцию SQL. Ядро базы данных Jet не поддержи-
вает группировку полей МЕМО или объекта ActiveX.

П р и м е р  2 9 .  Сформировать список кафедр и их должностей 
путем вывода из таблицы «Сотрудник» шифров кафедр («шифр») 
и должности сотрудников («должность»), сгруппировав их по этим 
атрибутам.

SELECT шифр, должность
FROM Сотрудник
GROUP BY шифр, должность;

Результат выполнения запроса из примера 29

шифр должность
вм зав.кафедрой
вм преподаватель



80

SQL — язык структурированных запросов 

шифр должность
ис зав.кафедрой
ис инженер
ис преподаватель
мм зав.кафедрой
мм преподаватель
оф зав.кафедрой
оф инженер
оф преподаватель
пи зав.кафедрой
пи инженер
пи преподаватель
эф зав.кафедрой
эф инженер
эф преподаватель

З а д а н и е .  Вывести из таблицы «Студент» под заголовком «но-
мера специальностей» номера специальностей, сгруппировав строки 
по этому атрибуту. Запрос оформить как выборку с GROUP BY.

Вычисляемые выражения и статистические функции SQL

В списке элементов предложения SELECT могут использоваться 
данные, которые отсутствуют в реляционных таблицах, но которые 
могут быть вычислены по формулам в виде выражений.

Статистические функции SQL (AVG, Count, MIN, MAX, StDev, StDevP, 
SUM, Var, VarP) представляют собой частный случай вычисляемых дан-
ных. Вызов статистической функции имеет следующий формат:

Функция (выражение)

Аргумент «выражение» является строковым выражением, которое 
определяет столбец, содержащий числовые данные для вычисления 
среднего значения, или выражение, выполняющее вычисления с дан-
ными из этого поля. Операнды аргумента «выражение» могут вклю-
чать имя столбца таблицы, константу или функцию (последняя мо-
жет быть внутренней или определяться пользователем, но не может 
быть другой статистической функцией SQL).



81

Язык запросов

Результат вычисления статистической функции может быть огра-
ничен условием, задаваемым в предложении WHERE.

Ф у н к ц и я  C o u n t
Функция Count вычисляет количество записей, возвращаемых за-

просом.
Count (выражение)

Подсчитывать можно любые данные, включая текстовые.
Функцию Count используют для подсчета количества записей в ба-

зовом запросе. Хотя аргумент-выражение допускает выполнение вы-
числений над столбцом, функция Count возвращает только количе-
ство записей независимо от того, какие данные содержатся в этих 
записях.

Функция Count не подсчитывает записи со значениями Null, если 
только аргумент-выражение не содержит подстановочный знак звез-
дочки (*). Если используются знаки звездочки, то функция Count вы-
числяет общее количество записей, включая те, которые содержат 
пустые столбцы. Функция Count (*) работает значительно быстрее 
функции Count (<имя столбца>).

П р и м е р  3 0 .  Вывести из таблицы «Студент» количество сту-
дентов (Count (*)) как поле с заголовком «количество студентов».

SELECT Count (*) AS [количество студентов]
FROM Студент;

Результат выполнения запроса из примера 30

количество студентов

12

Если в аргументе-выражении задано несколько столбцов, функ-
ция Count подсчитывает запись только в том случае, если хотя бы 
одно из полей не содержит значение Null. Если все указанные поля 
содержат значения Null, то запись не подсчитывается. Для разделе-
ния имен полей используется символ (&).



82

SQL — язык структурированных запросов 

Ф у н к ц и я  AV G
Функция AVG применяется только к числовым данным и вычис-

ляет арифметическое среднее набора чисел, содержащихся в указан-
ном столбце выражения-аргумента.

AVG (выражение)

Среднее значение, вычисленное функцией AVG, является число-
вым значением (сумма значений, деленная на их количество).

Функция AVG не включает в вычисления поля со значениями Null.

Ф у н к ц и и  M I N ,  M A X
Функции MIN и MAX применяются как к числовым, так и нечис-

ловым данным и возвращают минимальное и максимальное значе-
ния из набора значений, содержащихся в указанном столбце выра-
жения-аргумента:

Min (выражение)
Max (выражение)

Функции Min и Max используются для определения наименьшего 
и наибольшего значений из столбца на основе выборки или группи-
ровки. Например, можно применить эти функции для возврата наи-
меньшей и наибольшей стоимости доставки. Если не указан способ 
группировки, то используется вся таблица.

П р и м е р  3 1 .  Вычислить значение минимальной, максималь-
ной и средней зарплаты сотрудников.

SELECT MIN (зарплата) AS [минимальная зарплата], MAX (зар-
плата) AS [максимальная зарплата], AVG (зарплата) AS [средняя зар-
плата]

FROM Сотрудник;

Результат выполнения запроса из примера 31

минимальная зарплата максимальная зарплата средняя зарплата

15 000,00 р. 35 000,00 р. 26 200,00 р.



83

Язык запросов

Ф у н к ц и я  S U M
Функция SUM применяется только к числовым данным и возвра-

щает сумму набора значений, содержащихся в заданном выражении-
аргументе.

SUM (выражение)

Функция SUM выполняет суммирование значений в столбце. Функ-
ция SUM пропускает записи со столбцами, содержащими значения Null.

П р и м е р  3 2 .  Вычислить сумму ежемесячных зарплат сотруд-
ников‑инженеров.

SELECT SUM (зарплата) AS [сумма зарплат инженеров]
FROM Сотрудник
WHERE должность='инженер';

Результат выполнения запроса из примера 32

сумма зарплат инженеров

99 000,00 р.

Ф у н к ц и и  S t D e v ,  S t D e v P
Функции StDev, StDevP возвращают смещенное и несмещенное 

значения среднего квадратического отклонения, вычисляемого по на-
бору значений, содержащихся в указанном столбце запроса.

StDev (выражение)
StDevP (выражение)

Функции StDevP и StDev вычисляют величину смещенного и несме-
щенного среднего квадратического отклонения.

Если базовый запрос содержит меньше двух записей (или не со-
держит записей для функции StDevP), то эти функции возвращают 
значение Null (что означает невозможность вычисления среднеква-
дратичного отклонения).

П р и м е р  3 3 .  Вывести из таблицы «Сотрудник» среднюю зарпла-
ту (AVG (зарплата)) и ее среднее квадратическое отклонение (StDev 
(зарплата)) как поля с заголовками «Средняя зарплата» и «Среднее 
квадратическое отклонение».



84

SQL — язык структурированных запросов 

SELECT AVG (зарплата) AS [средняя зарплата], StDev (зарплата) 
AS [среднее квадратическое отклонение]

FROM Сотрудник;

Результат выполнения запроса из примера 33

средняя зарплата среднее квадратическое отклонение

26 200,00 р. 6659,77714183796

Ф у н к ц и и   V a r ,  V a r P
Функции Var, VarP возвращают значения смещенной и несмещен-

ной дисперсии, вычисляемой по набору значений, содержащихся 
в указанном столбце запроса:

Var (выражение)
VarP (выражение)

Функции VarP и Var вычисляют значение смещенной и несмещен-
ной дисперсии.

Если базовый запрос содержит меньше двух записей, то функ-
ции Var и VarP возвращают значение Null (что означает невозмож-
ность вычисления дисперсии).

Статистические функции (функции группирования) часто исполь-
зуются в запросах группирования для вычисления интегральных ха-
рактеристик групп.

П р и м е р  3 4 .  Вывести из таблицы «Сотрудник» шифр кафедры 
(«шифр»), среднюю зарплату (AVG (зарплата)) и количество сотруд-
ников (Count (зарплата)) на каждой кафедре как данные с соответ-
ствующими заголовками.

SELECT шифр AS кафедра, AVG (зарплата) AS [средняя зарплата], 
Count (зарплата) AS [количество сотрудников]

FROM Сотрудник
GROUP BY шифр;

Результат выполнения запроса из примера 34

кафедра средняя зарплата количество сотрудников
вм 28 333,33 р. 3
ис 24 625,00 р. 4



85

Язык запросов

кафедра средняя зарплата количество сотрудников
мм 30 000,00 р. 2
оф 24 250,00 р. 4
пи 25 375,00 р. 4
эф 27 333,33 р. 3

З а д а н и е .  Вывести из таблицы «Сотрудник» штатное расписа-
ние кафедр, т. е. «шифр», «должность», «зарплату» и «количество ста-
вок» (Count (зарплата)), сгруппировав строки по этим полям.

З а д а н и е .  Вывести из таблицы «Экзамен» номера студентов 
(«рег_номер»), количество сданных экзаменов (Count (оценка)) 
и средний балл (AVG (оценка)) для каждого студента как поля с со-
ответствующими заголовками.

Выборка групп

Если для отбора строк, например подлежащих группировке, ис-
пользуется предложение WHERE, то для отбора групп применяется 
предложение HAVING.

Предложение HAVING определяет, какие сгруппированные записи 
отображаются при использовании инструкции SELECT с предложени-
ем GROUP BY. Фраза HAVING в общем случае имеет следующий вид:

HAVING <условие отбора групп>

В качестве условия отбора групп могут использоваться:
·	 операции сравнения;
·	 оператор Between <значение1> And <значение2>;
·	 оператор Like <шаблон>;
·	 оператор In (<список значений>);
·	 оператор инверсии NOT <выражение>;
·	 оператор конъюнкции <выражение1> AND <выражение2>;
·	 оператор дизъюнкции <выражение1> OR <выражение2>;
·	 подзапрос.
Предложение HAVING является необязательным. Без предложе-

ния GROUP BY не используется.
Предложение HAVING похоже на предложение WHERE, которое 

определяет, какие записи должны быть отобраны.



86

SQL — язык структурированных запросов 

После того как записи будут сгруппированы с помощью предло-
жения GROUP BY, предложение HAVING отберет те из полученных 
групп записей, которые удовлетворяют условиям отбора, указанным 
в предложении HAVING.

Предложение HAVING может содержать до 40 выражений, связан-
ных логическими операторами, такими как And и Or.

П р и м е р  3 5 .  Вывести из таблицы «Сотрудник» название ка-
федры («шифр»), среднюю зарплату (AVG (зарплата)) и количество 
сотрудников (Count (зарплата)) только на тех кафедрах, где средняя 
зарплата превышает заданную границу (например, 25000).

SELECT шифр AS кафедра, AVG (зарплата) AS [средняя зарплата], 
Count (зарплата) AS [количество сотрудников]

FROM Сотрудник
GROUP BY шифр
HAVING AVG (зарплата)> [Введите границу];

Результат выполнения запроса из примера 35

кафедра средняя зарплата количество сотрудников
вм 28 333,33 р. 3
мм 30 000,00 р. 2
пи 25 375,00 р. 4
эф 27 333,33 р. 3

З а д а н и е .  Вывести из таблицы «Экзамен» номера студентов 
(«рег_номер»), количество сданных экзаменов (Count (оценка)) 
и средний балл (AVG (оценка)) как поля с соответствующими заго-
ловками для тех студентов, у которых средний балл не меньше за-
данного. Запрос оформить со спецификатором условий отбора групп 
HAVING.

Запросы к связанным таблицам

Во всех ранее рассмотренных примерах демонстрировались раз-
нообразные средства спецификации простых запросов. Все рассмо-
тренные приемы построения простых запросов могут быть исполь-
зованы не только в чистом виде, но и во всех возможных сочетаниях 



87

Язык запросов

друг с другом. Рассмотренные типы запросов можно назвать просты-
ми, поскольку все они использовали в качестве источника данных 
одну таблицу. В реальных информационных задачах гораздо чаще за-
просы адресуются не к одной, а к нескольким связанным таблицам, 
которые представляют все разнообразие данных конкретной пред-
метной области.

В реальных задачах выборка данных осуществляется из несколь-
ких связанных между собой таблиц.

В SELECT предложении выборки из связанных таблиц могут при-
сутствовать одноименные столбцы. Во избежание неопределенности 
одноименные столбцы в такого рода запросах должны упоминаться 
с префиксом (через точку) в виде имени соответствующей таблицы: 
<имя таблицы>.<имя столбца>. Если нет проблемы относительно про-
исхождения столбца, имя таблицы можно не указывать.

Декартово произведение

В декартовом произведении выводятся все возможные комбина-
ции строк-кортежей перемножаемых таблиц, даже такие, которые 
не имеют смысла в моделируемой предметной области.

П р и м е р  3 6 .  Вывести декартово произведение таблиц «Фа-
культет» и «Кафедра».

SELECT Факультет.*, Кафедра.*
FROM Факультет, Кафедра;

Здесь спецификация типа «Кафедра.*» означает «все поля табли-
цы Кафедра».

Результат выполнения запроса из примера 36

аббреви-
атура Факультет.название шифр Кафедра.название факуль-

тет

ит Информационные тех-
нологии пи Прикладная инфор-

матика ит

ен Естественные науки пи Прикладная инфор-
матика ит



88

SQL — язык структурированных запросов 

аббреви-
атура Факультет.название шифр Кафедра.название факуль-

тет

фм Физико-математический пи Прикладная инфор-
матика ит

ит Информационные тех-
нологии ис Информационные 

системы ит

ен Естественные науки ис Информационные 
системы ит

фм Физико-математический ис Информационные 
системы ит

ит Информационные тех-
нологии оф Общая физика ен

ен Естественные науки оф Общая физика ен
фм Физико-математический оф Общая физика ен

ит Информационные 
технологии вм Высшая математика ен

ен Естественные науки вм Высшая математика ен
фм Физико-математический вм Высшая математика ен

ит Информационные тех-
нологии мм Математическое 

моделирование фм

ен Естественные науки мм Математическое 
моделирование фм

фм Физико-математический мм Математическое 
моделирование фм

ит Информационные 
технологии эф Экспериментальная 

физика фм

ен Естественные науки эф Экспериментальная 
физика фм

фм Физико-математиче-
ский эф Экспериментальная 

физика фм

З а д а н и е .  Вывести декартово произведение трех таблиц «Ка-
федра», «Специальность» и «Студент».

Естественное соединение

В запросах выборки из связанных таблиц предложение SELECT 
задает структуру выборки; предложение FROM — источник данных, 
предложение WHERE — как минимум, условие соединения.



89

Язык запросов

Условие соединения может иметь следующий формат:
<имя таблицы1>.<имя столбца1>
<оператор>
<имя таблицы2>.<имя столбца2>

Здесь оператор — это один из операторов сравнения.
Важным частным случаем соединения является так называемое эк-

висоединение — соединение по условию равенства столбцов, по ко-
торым устанавливается связь между таблицами.

П р и м е р  3 7 .  Вывести эквисоединение таблиц «Кафедра» 
и «Специальность».

SELECT Кафедра.*, Специальность.*
FROM Кафедра, Специальность
WHERE Кафедра.шифр=Специальность.шифр;

Результат выполнения запроса из примера 37

Кафе-
дра.

шифр
название

фа-
куль-

тет
номер направление

Специ-
альность.

шифр

ис Информацион-
ные системы ит 09.03.02

Информационные 
системы и техноло-
гии

ис

ис Информацион-
ные системы ит 38.03.05 Бизнес-информа-

тика ис

мм
Математиче-
ское моделиро-
вание

фм 01.03.04 Прикладная мате-
матика мм

пи Прикладная 
информатика ит 09.03.03 Прикладная инфор-

матика пи

эф
Эксперимен-
тальная фи-
зика

фм 14.03.02 Ядерные физика 
и технологии эф

Важной разновидностью соединения является так называемое 
естественное соединение, или эквисоединение без дублей одноимен-
ных столбцов (полей).

Операция естественного (внутреннего) соединения лежит в ос-
нове большинства выборок из  связанных таблиц. Если таблицы  



90

SQL — язык структурированных запросов 

<имя таблицы1> и <имя таблицы2> связаны по столбцам <имя столб-
ца1> и <имя столбца2>, то условие соединения может быть задано 
во фразе WHERE в запросе с обобщенным форматом:

SELECT <список элементов>
FROM <имя таблицы1>, <имя таблицы2
WHERE <имя таблицы1>.<имя поля1>=<имя таблицы2>.<имя 

поля2>;

П р и м е р  3 8 .  Вывести данные о том, на каких кафедрах гото-
вят специалистов по тем или иным направлениям (специальностям). 
Запрос выполнить на основе естественного соединения таблиц «Ка-
федра» и «Специальность».

SELECT факультет, Кафедра.шифр, название, номер, направление
FROM Кафедра, Специальность
WHERE Кафедра.шифр=Специальность.шифр;

Реализация этого запроса дает ответ на вопрос о том, по каким 
специальностям, на каких кафедрах и на каких факультетах обучают.

Результат выполнения запроса из примера 38

факультет шифр название номер направление

ит ис Информационные 
системы 09.03.02 Информационные си-

стемы и технологии

ит ис Информационные 
системы 38.03.05 Бизнес-информатика

фм мм Математическое мо-
делирование 01.03.04 Прикладная матема-

тика

ит пи Прикладная инфор-
матика 09.03.03 Прикладная информа-

тика

фм эф Экспериментальная 
физика 14.03.02 Ядерные физика и тех-

нологии

З а д а н и е .  Вывести данные о том, на каких факультетах и ка-
федрах, по каким специальностям обучаются студенты. Запрос вы-
полнить как естественное соединение таблиц «Кафедра», «Специаль-
ность» и «Студент».



91

Язык запросов

Запрос на соединение можно выполнить также при помощи спе-
циальной инструкции SQL INNER JOIN.

Условие соединения содержится в предложении FROM:
SELECT <список элементов>
FROM <имя таблицы1> INNER JOIN <имя таблицы2
ON <имя таблицы1>.<имя столбца1>=<имя таблицы2>.<имя столб-

ца2>;

Операцию INNER JOIN можно использовать в любом предложе-
нии FROM. Это самые обычные типы связывания. Они объединяют 
записи двух таблиц, если связующие столбцы обеих таблиц содержат 
одинаковые значения.

Попытка объединить данные Memo или объекта ActiveX приведет 
к возникновению ошибки.

Обязательным условием корректного соединения является со-
вместимость типов столбцов, по которым осуществляется связь. До-
пускается объединение двух числовых полей подобных типов, на-
пример поле счетчика с полем типа «Длинное целое». Однако нельзя 
объединить типы полей «С плавающей точкой (4 байт)» и «С плава-
ющей точкой (8 байт)».

Операции INNER JOIN могут быть вложенными; в таком случае 
используйте следующий синтаксис:

SELECT <список элементов>
FROM <имя таблицы1> INNER JOIN
(<имя таблицы2> INNER JOIN [(]<имя таблицы3>
[INNER JOIN [(]<имя таблицаN> [INNER JOIN …)]
ON <имя таблицы3>.<имя столбца3> = <имя таблицыN>.<имя 

столбцаN>)]
ON <имя таблицы2>.<имя столбца2> = <имя таблицы3>.<имя 

столбца3>)
ON <имя таблицы1>.<имя столбца1> = <имя таблицы2>.<имя 

столбца2>;

П р и м е р  3 9 .  Вывести данные о том, на каких кафедрах гото-
вят специалистов по тем или иным направлениям (специальностям). 
Запрос выполнить на основе естественного соединения таблиц «Ка-
федра» и «Специальность» при помощи INNER JOIN.



92

SQL — язык структурированных запросов 

SELECT факультет, Кафедра.шифр, название, номер, направление
FROM Кафедра INNER JOIN Специальность
ON Кафедра.шифр=Специальность.шифр;

Результат выполнения запроса из примера 39

факультет шифр название номер направление

ит ис Информационные 
системы 09.03.02 Информационные 

системы и технологии

ит ис Информационные 
системы 38.03.05 Бизнес-информатика

фм мм Математическое 
моделирование 01.03.04 Прикладная математика

ит пи Прикладная инфор-
матика 09.03.03 Прикладная информатика

фм эф Экспериментальная 
физика 14.03.02 Ядерные физика 

и технологии

З а д а н и е .  Вывести данные о том, на каких факультетах и ка-
федрах, по каким специальностям обучаются студенты. Запрос вы-
полнить как естественное соединение таблиц «Кафедра», «Специаль-
ность» и «Студент» на основе команды INNER JOIN.

Естественное соединение является средством интеграции семан-
тически связанных данных из разных таблиц и в сочетании с услови-
ями проекции и селекции широко используется в запросах-выборках.

П р и м е р  4 0 .  Вывести из таблиц «Кафедра» и «Сотрудник» дан-
ные о факультетах, кафедрах, должностях и фамилиях заведующих 
кафедрами

SELECT факультет, Кафедра.шифр, должность, фамилия
FROM Кафедра, Сотрудник
WHERE Кафедра.шифр=Сотрудник.шифр AND должность= ‘зав.

кафедрой’;

Результат выполнения запроса из примера 40

факультет шифр должность фамилия
ит пи зав.кафедрой Прохоров П. П.
ит ис зав.кафедрой Андреев А. А.
фм мм зав.кафедрой Басов Б. Б.



93

Язык запросов

факультет шифр должность фамилия
ен оф зав.кафедрой Волков В. В.
ен вм зав.кафедрой Кузнецов К. К.
фм эф зав.кафедрой Зверев З. З.

П р и м е р  4 1 .  Вывести из таблиц «Кафедра», «Специальность» 
и «Студент» данные о студентах, которые обучаются на данном фа-
культете (например, «ит»).

SELECT факультет, Кафедра.шифр, Специальность.номер, рег_но-
мер, фамилия

FROM Кафедра, Специальность, Студент
WHERE Кафедра.шифр=Специальность.шифр AND
Специальность.номер=Студент.номер AND
факультет= [Введите аббревиатуру факультета];

Результат выполнения запроса из примера 41

факультет шифр номер рег_номер фамилия
ит пи 09.03.03 10101 Николаева Н. Н.
ит пи 09.03.03 10102 Иванов И. И.
ит пи 09.03.03 10103 Крюков К. К.
ит ис 09.03.02 20101 Андреев А. А.
ит ис 09.03.02 20102 Федоров Ф. Ф.
ит ис 38.03.05 80101 Макаров М. М.
ит ис 38.03.05 80102 Яковлев Я. Я.

П р и м е р  4 2 .  Вывести из таблиц «Кафедра», «Специальность» 
и «Сотрудник» данные о выпускающих кафедрах (факультет, шифр, 
название, фамилию заведующего). Выпускающей считается та кафе-
дра, на которую есть ссылки в таблице «Специальность».

SELECT DISTINCTROW факультет, Кафедра.шифр AS [выпускаю-
щая кафедра], название, фамилия AS [заведующий кафедрой]

FROM Кафедра, Специальность, Сотрудник
WHERE Кафедра.шифр=Сотрудник.шифр AND
Кафедра.шифр=Специальность.шифр AND
должность=’зав.кафедрой’;



94

SQL — язык структурированных запросов 

Результат выполнения запроса из примера 42

факуль-
тет

выпускающая 
кафедра название заведующий 

кафедрой
ит пи Прикладная информатика Прохоров П. П.
ит ис Информационные системы Андреев А. А.
фм мм Математическое моделирование Басов Б. Б.
фм эф Экспериментальная физика Зверев З. З.

В данном примере используется спецификатор результата 
DISTINCTROW, который позволяет избавиться от дублей строк, фор-
мируемых из связанных таблиц.

З а д а н и е .  Вывести все данные о преподавателях: «Сотрудник.
таб_номер», «шифр», «фамилия», «должность», «зарплата», «звание», 
«степень» — как запрос на естественное соединение таблиц «Сотруд-
ник» и «Преподаватель», связанных категориальной связью.

З а д а н и е .  Вывести данные о том, какие дисциплины препода-
ют разным специальностям. Вывести «Специальность.номер», «Спе-
циальность.шифр», «Дисциплина.код», «Дисциплина.название». За-
прос оформить как естественное соединение таблиц «Специальность» 
и «Дисциплина», связанных ассоциативной таблицей «Заявка».

Рассмотрим важный частный случай соединения — соединение 
таблицы самой с собой. Такой случай может встретиться при реали-
зации рекурсивной связи.

Допустим, что для каждого сотрудника нужно вывести номер и фа-
милию его непосредственного начальника. И рядовой сотрудник, 
и его непосредственный начальник представлены в одной и той же 
таблице «Сотрудник». Соединение по рекурсивной связи позволяет 
коррелировать информацию из разных строк одной и той же табли-
цы и комбинировать ее для вывода. Для реализации такого соеди-
нения одна и та же таблица должна дважды упоминаться во фразе 
FROM. Для того чтобы различать эти два разные ее вхождения во фра-
зе FROM одна и та же таблица «Сотрудник» должна быть представ-
лена своими разными псевдонимами. Введение псевдонимов позво-
ляет оперировать одной и той же таблицей как разными таблицами. 
Для того чтобы различать эти разные ее вхождения, таблица должна 
быть представлена (хотя бы в одном случае) своими псевдонимами 



95

Язык запросов

(«Сотрудник1» в данном примере). Введение псевдонимов позволя-
ет оперировать одной таблицей как разными таблицами.

П р и м е р  4 3 .  Вывести в запросе для каждого сотрудника но-
мер и фамилию его непосредственного руководителя.

SELECT Сотрудник.шифр, Сотрудник.таб_номер, Сотрудник.фа-
милия, Сотрудник1.таб_номер, Сотрудник1.фамилия

FROM Сотрудник, Сотрудник Сотрудник1
WHERE Сотрудник1.таб_номер=Сотрудник.шеф;

В данном примере «шеф» — это имя роли атрибута «таб_номер», 
который в одной и той же таблице играет роль первичного ключа 
и внешнего ключа по рекурсивной связи.

З а д а н и е .  Вывести данные («факультет», «Кафедра.шифр», «Ка-
федра.название», «код», «Дисциплина.название», «объем») о кафедрах 
и читаемых ими курсах. Запрос оформить на основе естественного 
соединения таблиц «Кафедра» и «Дисциплина» по полям «Кафедра.
шифр» и «Дисциплина.исполнитель». Здесь «исполнитель» — имя 
роли, которую играет атрибут «шифр» в таблице «Дисциплина».

Результат выполнения запроса из примера 43

шифр Сотрудник.
таб_номер

Сотрудник. 
фамилия

Сотрудник1.
таб_номер

Сотрудник1. 
фамилия

пи 101 Прохоров П. П. 101 Прохоров П. П.
пи 102 Семенов С. С. 101 Прохоров П. П.
пи 105 Петров П. П. 101 Прохоров П. П.
пи 153 Сидорова С. С. 102 Семенов С. С.
ис 201 Андреев А. А. 201 Андреев А. А.
ис 202 Борисов Б. Б. 201 Андреев А. А.
ис 241 Глухов Г. Г.  201 Андреев А. А.
ис 242 Чернов Ч. Ч. 202 Борисов Б. Б.
мм 301 Басов Б. Б. 301 Басов Б. Б.
мм 302 Сергеева С. С. 301 Басов Б. Б.
оф 401 Волков В. В. 401 Волков В. В.
оф 403 Смирнов С. С. 401 Волков В. В.
оф 402 Зайцев З. З. 401 Волков В. В.



96

SQL — язык структурированных запросов 

шифр Сотрудник.
таб_номер

Сотрудник. 
фамилия

Сотрудник1.
таб_номер

Сотрудник1. 
фамилия

оф 435 Лисин Л. Л. 402 Зайцев З. З.
вм 501 Кузнецов К. К. 501 Кузнецов К. К.
вм 502 Романцев Р. Р. 501 Кузнецов К. К.
вм 503 Соловьев С. С. 501 Кузнецов К. К.
эф 601 Зверев З. З. 601 Зверев З. З.
эф 602 Сорокина С. С. 601 Зверев З. З.
эф 614 Григорьев Г. Г.  602 Сорокина С. С.

Рассмотрим применение DISTINCTROW. DISTINCTROW опускает 
данные, основанные на целиком повторяющихся записях, а не от-
дельных повторяющихся столбцах. DISTINCTROW влияет на результат 
только в том случае, если в запрос включены не все столбцы из анали-
зируемых таблиц. Предикат DISTINCTROW игнорируется, если запрос 
содержит только одну таблицу или все столбцы всех таблиц запроса.

П р и м е р  4 4 .  Вывести список студентов, сдавших хотя бы один 
экзамен. По правилам соединения студенты, не сдававшие экзаме-
ны, в выборке представлены не будут.

SELECT Студент.рег_номер, Студент.фамилия
FROM Студент INNER JOIN Экзамен
ON Студент.рег_номер = Экзамен.рег_номер;

Результат выполнения запроса из примера 44

рег_номер фамилия
10101 Николаева Н. Н.
10101 Николаева Н. Н.
10101 Николаева Н. Н.
10101 Николаева Н. Н.
10102 Иванов И. И.
10102 Иванов И. И.
20101 Андреев А. А.
20101 Андреев А. А.
20102 Федоров Ф. Ф.
30101 Бондаренко Б. Б.
30101 Бондаренко Б. Б.



97

Язык запросов

рег_номер фамилия
30102 Цветков К. К.
30102 Цветков К. К.
50101 Сергеев С. С.
50102 Кудрявцев К. К.
80101 Макаров М. М.
80101 Макаров М. М.
80101 Макаров М. М.
80102 Яковлев Я. Я.
80102 Яковлев Я. Я.

В результате будут представлены дублируемые данные о тех сту-
дентах, которые сдали более одного экзамена.

П р и м е р  4 5 .  Чтобы избавиться от дублей строк, комбинируе-
мых из связанных таблиц, следует применить DISTINCTROW.

SELECT DISTINCTROW Студент.рег_номер, Студент.фамилия
FROM Студент INNER JOIN Экзамен
ON Студент.рег_номер = Экзамен.рег_номер;

Результат выполнения запроса из примера 45

рег_номер фамилия

10101 Николаева Н. Н.

10102 Иванов И. И.

20101 Андреев А. А.

30101 Бондаренко Б. Б.

30102 Цветков К. К.

80101 Макаров М. М.

80102 Яковлев Я. Я.

20102 Федоров Ф. Ф.

50101 Сергеев С. С.

50102 Кудрявцев К. К.

Рассмотрим комбинированный пример группировки строк, обра-
зованных из связанных таблиц.



98

SQL — язык структурированных запросов 

П р и м е р  4 6 .  Вывести (из таблиц «Студент» и «Экзамен») учет-
ные номера («рег_номер»), фамилии («фамилия») студентов, а также 
количество сданных экзаменов (поле с именем «количество экзаме-
нов» на основе функции COUNT (оценка)) и средний балл для каж-
дого студента (поле с именем «средний балл» на основе функции AVG 
(оценка)) только для тех студентов, у которых средний балл не мень-
ше заданного (например, 4).

SELECT Студент.рег_номер, фамилия, COUNT (оценка) AS [коли-
чество экзаменов], ROUND (AVG (оценка),2) AS [средний балл]

FROM Студент  INNER JOIN Экзамен ON Студент.рег_
номер=Экзамен.рег_номер

GROUP BY Студент.рег_номер, фамилия
HAVING AVG (оценка)>= [Введите граничную оценку];
Функция ROUND округляет значение своего первого аргумента 

до числа десятичных знаков, задаваемого вторым аргументом.

Результат выполнения запроса из примера 46

рег_номер фамилия количество экзаменов средний балл

10101 Николаева Н. Н. 4 4,25

10102 Иванов И. И. 2 4

30102 Цветков К. К. 2 4,5

50101 Сергеев С. С. 1 5

80101 Макаров М. М. 3 4,67

80102 Яковлев Я. Я. 2 4

З а д а н и е .  Вывести из таблиц «Кафедра» и «Сотрудник» шифр 
(«шифр»), название («название») кафедр, а также среднюю зарплату 
и количество сотрудников с соответствующими заголовками только для 
тех кафедр, у которых средняя зарплата не меньше заданного значения.

В некоторых случаях может потребоваться исключение отдельных 
строк из групп (с помощью предложения WHERE) перед применени-
ем условия к группам в целом (с помощью предложения HAVING).

Предложение HAVING аналогично предложению WHERE, но при-
меняется только к группам в целом (т. е. к строкам в результирующем 
наборе записей, представляющим группы), тогда как предложение 
WHERE применяется к отдельным строкам. Запрос может одновре-
менно содержать и предложение WHERE, и предложение HAVING. 



99

Язык запросов

В этом случае запрос выполняется следующим образом. Сначала пред-
ложение WHERE применяется ко всем отдельным строкам в табли-
цах, представлениях или функциях, включенным в область схемы. 
В группировке участвуют только строки, удовлетворяющие усло-
вию в предложении WHERE. Затем предложение HAVING применяет-
ся к строкам в результирующем наборе записей, которые создаются 
после группировки. В запросе выводятся только те группы, которые 
удовлетворяют условиям в предложении HAVING. Допускается при-
менение предложения HAVING только к столбцам, которые входят 
в предложение GROUP BY или в статистическую функцию.

П р и м е р  4 7 .  Предположим, что таблицы «Студент» и «Экза-
мен» объединяются для создания запроса, в котором определяется 
количество экзаменов и средний балл для каждого студента. Требу-
ется получить результат только для определенных студентов данной 
специальности (например, 09.03.03). Информация о специально-
стях размещается в таблице «Специальность». Кроме того, требует-
ся отображать результаты только в том случае, когда средний балл 
не меньше заданной величины (например, 4). Первое условие зада-
ется с помощью предложения WHERE, в котором будут отброшены 
все студенты не той специальности еще до расчета групповых функ-
ций. Для второго условия требуется предложение HAVING, посколь-
ку это условие базируется на результатах группировки и обработки 
данных. Инструкция SQL может выглядеть так:

SELECT Специальность.номер, Студент.рег_номер, фамилия, 
COUNT (оценка) AS [количество экзаменов], ROUND (AVG (оцен-
ка),2) AS [средний балл]

FROM Специальность INNER JOIN
(Студент INNER JOIN Экзамен ON Студент.рег_номер=Экзамен.

рег_номер) ON Специальность.номер = Студент.номер
WHERE Специальность.номер = [Введите номер специальности]
GROUP BY Специальность.номер, Студент.рег_номер, фамилия
HAVING AVG (оценка)>= [Введите граничную оценку];

Результат выполнения запроса из примера 47

номер рег_номер фамилия количество экзаменов средний балл
09.03.03 10101 Николаева Н. Н. 4 4,25
09.03.03 10102 Иванов И. И. 2 4



100

SQL — язык структурированных запросов 

В этом примере используется соединение трех таблиц: «Специаль-
ность», «Студент» и «Экзамен». Первые две предназначены для фор-
мирования комбинированных данных, подлежащих группировке. Та-
блица «Экзамен» используется для вычисления групповых функций.

В соответствии с порядком старшинства в первую очередь отсеи-
ваются данные, не удовлетворяющие условию отбора строк во фразе 
WHERE. Затем производится группировка оставшихся строк в груп-
пы по условию, заданному во фразе GROUP BY, и фильтрация групп 
по условию их отбора во фразе HAVING.

П р и м е р  4 8 .  Условие предыдущего примера дополнить тре-
бованием сортировки по алфавиту фамилий студентов. В результате 
получится многофункциональный запрос-выборка, в котором пред-
ставлены все фразы команды SELECT.

SELECT Специальность.номер, Студент.рег_номер, фамилия, 
COUNT (оценка) AS [количество экзаменов], ROUND (AVG (оцен-
ка),2) AS [средний балл]

FROM Специальность INNER JOIN
(Студент INNER JOIN Экзамен ON Студент.рег_номер=Экзамен.

рег_номер) ON Специальность.номер = Студент.номер
WHERE Специальность.номер = [Введите номер специальности]
GROUP BY Специальность.номер, Студент.рег_номер, фамилия
HAVING AVG (оценка)>= [Введите граничную оценку]
ORDER BY фамилия;

Результат выполнения запроса из примера 48

номер рег_номер фамилия количество 
экзаменов

средний 
балл

09.03.03 10102 Иванов И. И. 2 4
09.03.03 10101 Николаева Н. Н. 4 4,25

Фраза ORDER BY применяется в последнюю очередь. Результат 
предыдущего примера упорядочивается в соответствии со специфи-
кацией условия сортировки.



101

Язык запросов

Запросы с подзапросами

Подзапрос представляет собой вложенный запрос или SELECT-
FROM-WHERE предложение, которое вложено в такое же SELECT-FROM-
WHERE предложение. Допускается произвольная глубина вложений. 
В выборке с подзапросом различают объемлющий запрос и вложенный 
запрос — подзапрос. Существуют следующие типы подзапросов [3].

По способу получения результата различают подзапросы:
·	 простой;
·	 коррелированный.
По виду результата различают подзапросы:
·	 скалярный (возвращает одно единственное значение, выбира-

емое на пересечении одного столбца с одной строкой);
·	 строковый (возвращает множество значений нескольких столб-

цов таблицы, но в виде одной строки);
·	 табличный (возвращает множество значений из одного или 

нескольких столбцов таблицы, размещенные более чем в од-
ной строке).

К подзапросам применяются следующие правила [3].
1.	 В подзапросе нельзя использовать фразу ORDER BY.
2.	 Список в предложении SELECT подзапроса должен состоять 

из имен столбцов или из составленных из них выражений.
3.	 По умолчанию имена столбцов в подзапросе относятся к та-

блице, имя которой указано в его предложении FROM. Одна-
ко допускается ссылаться и на столбцы таблицы объемлюще-
го запроса, используя составные имена.

4.	 Если подзапрос является операндом операции сравнения, то за-
прос должен указываться в правой части этой операции.

Простые подзапросы

Простые подзапросы характеризуются тем, что они формально 
никак не связаны с содержащими их внешними запросами. В случае 
запроса с простым подзапросом сначала выполняется полностью под-
запрос, а затем его результат используется в объемлющем запросе.

Подчиненный запрос можно использовать вместо выражения 
в  списке полей инструкции SELECT или в  предложениях WHERE 
и HAVING, а также FROM.



102

SQL — язык структурированных запросов 

С к а л я р н ы й  п о д з а п р о с
Скалярный подзапрос возвращает одно единственное значение, 

выбираемое на пересечении одного столбца с одной строкой.

П р и м е р  4 9 .  Вывести данные из таблицы «Сотрудник» о кол-
легах, работающих на той же кафедре, что и сотрудник с заданным 
номером (например, «таб_номер»=101).

SELECT Сотрудник.* FROM Сотрудник
WHERE шифр = (SELECT шифр FROM Сотрудник
WHERE таб_номер= [Введите табельный номер]);

Результат выполнения запроса из примера 49

таб_номер шифр фамилия должность зарплата шеф

101 пи Прохоров П. П. зав.кафедрой 35 000,00 р. 101

102 пи Семенов С. С. преподаватель 25 000,00 р. 101

105 пи Петров П. П. преподаватель 25 000,00 р. 101

153 пи Сидорова С. С. инженер 15 000,00 р. 102

В этом примере сначала в подзапросе определяется шифр кафе-
дры, на которой работает конкретный сотрудник, а затем в объем-
лющем запросе производится выборка сотрудников, работающих 
на той же кафедре.

Отметим, что ссылка на таблицу «Сотрудник» во вложенном под-
запросе означает не то же самое, что ссылка на таблицу «Сотрудник» 
во внешнем запросе. В действительности, два имени «Сотрудник» обо-
значают различные состояния одной и той же таблицы. Чтобы этот 
факт стал явным, полезно использовать псевдонимы, например «Со-
трудник1» и «Сотрудник2».

П р и м е р  5 0 .  В условии предыдущего примера использовать 
псевдонимы одной и той же таблицы.

SELECT * FROM Сотрудник Сотрудник1
WHERE Сотрудник1.шифр =
    (SELECT Сотрудник2.шифр FROM Сотрудник Сотрудник2
    WHERE Сотрудник2.таб_номер= [Введите табельный номер]);
Здесь «Сотрудник1» и «Сотрудник2» — произвольные псевдони-

мы таблицы «Сотрудник», определяемые во фразе FROM и исполь-



103

Язык запросов

зуемые как явные уточнители во фразах SELECT и WHERE. Напом-
ним, что псевдонимы определены лишь в пределах одного запроса. 
При том же значении параметра («таб_номер») результат должен со-
впасть с результатом предыдущего примера.

З а д а н и е .  Вывести данные из таблицы «Студент» о студентах, 
которые обучаются по той же специальности, что и студент с задан-
ным номером (столбец «рег_номер»).

П р и м е р  5 1 .  Из таблицы «Специальность» выполнить как за-
прос с подзапросом выборку шифра кафедры и названия специаль-
ности, по которой обучается студент с данным номером (например, 
10101 из таблицы «Студент»).

SELECT шифр, направление FROM Специальность
WHERE номер= (SELECT номер FROM Студент
WHERE рег_номер = [Введите номер студента]);

Результат выполнения запроса из примера 51

шифр направление
пи Прикладная информатика

З а м е ч а н и е . SQL избыточен. Этот же результат может быть по-
лучен при помощи операции соединения. Это общее правило. Выбор 
способа формулировки запроса — дело вкуса автора.

П р и м е р  5 2 .  Из таблицы «Специальность» выполнить с по-
мощью операции соединения запрос-выборку шифра кафедры и на-
звания специальности (направления), по которой обучается студент 
с данным номером (например, 10101 из таблицы «Студент»).

SELECT шифр, направление FROM Специальность, Студент
WHERE Студент.номер = Специальность.номер
AND рег_номер = [Введите номер студента];
Подзапрос может содержать другой, вложенный подзапрос. При-

чем допускается любая глубина вложенности.

П р и м е р  5 3 .  Из таблицы «Кафедра» выполнить как множе-
ственный (трехуровневый) запрос с подзапросом выборку аббреви-



104

SQL — язык структурированных запросов 

атуры факультета и названия кафедры, где обучается студент с задан-
ным номером (например, 10101 из таблицы «Студент»).

SELECT факультет, название
FROM Кафедра
WHERE шифр=
    (SELECT шифр
    FROM Специальность
    WHERE номер=
      (SELECT номер
      FROM Студент
      WHERE рег_номер = [Введите номер студента]));

Результат выполнения запроса из примера 53

факультет название
ит Прикладная информатика

В этом примере самый глубокий подзапрос формирует номер спе-
циальности, по которой обучается конкретный студент. Полученный 
результат передается в подзапрос следующего уровня, где определя-
ется шифр кафедры, на которой обучают по данной специальности. 
Шифр кафедры передается внешнему запросу и там используется 
для определения факультета и названия кафедры, где учится студент.

З а д а н и е .  Из таблицы «Факультет» выполнить как множествен-
ный (трехуровневый) запрос с подзапросом выборку аббревиатуры 
и названия факультета, где работает сотрудник с заданным табель-
ным номером. Задействовать три таблицы: «Факультет», «Кафедра» 
и «Сотрудник».

Условие поиска единственного значения может быть задано не так 
просто, как в предыдущих примерах, а весьма сложным логическим 
выражением, включающим функции агрегации, логические опера-
торы и т. д.

П р и м е р  5 4 .  Вывести данные из таблицы «Сотрудник» о сотруд-
никах, чья зарплата больше, чем средняя зарплата всех сотрудников.

SELECT * FROM Сотрудник
WHERE зарплата> (SELECT AVG (зарплата) FROM Сотрудник);



105

Язык запросов

Результат выполнения запроса из примера 54

таб_номер шифр фамилия должность зарплата шеф

101 пи Прохоров П. П. зав.кафедрой 35 000,00 р. 101

201 ис Андреев А. А. зав.кафедрой 35 000,00 р. 201

301 мм Басов Б. Б. зав.кафедрой 35 000,00 р. 301

401 оф Волков В. В. зав.кафедрой 35 000,00 р. 401

501 вм Кузнецов К. К. зав.кафедрой 35 000,00 р. 501

601 эф Зверев З. З. зав.кафедрой 35 000,00 р. 601

Та б л и ч н ы й  п о д з а п р о с  с   I N
Если подзапрос порождает множество значений, то в предложе-

нии WHERE объемлющего запроса могут быть использованы специ-
фикаторы IN, ANY и ALL.

Оператор IN проверяет анализируемый столбец в данной стро-
ке на предмет вхождения его значения в список «разрешенных» зна-
чений. Список «разрешенных» значений может быть сформирован 
в подзапросе.

П р и м е р  5 5 .  Вывести данные из таблицы «Сотрудник» о сотруд-
никах, работающих на кафедрах заданного факультета (например, «ит»).

SELECT *
FROM Сотрудник
WHERE шифр IN (SELECT шифр FROM Кафедра
                                WHERE факультет= [Введите аббревиатуру 
                                факультета]);

Результат выполнения запроса из примера 55

таб_номер шифр фамилия должность зарплата шеф

101 пи Прохоров П. П. зав.кафедрой 35 000,00 р. 101

102 пи Семенов С. С. преподаватель 25 000,00 р. 101

105 пи Петров П. П. преподаватель 25 000,00 р. 101

153 пи Сидорова С. С. инженер 15 000,00 р. 102

201 ис Андреев А. А. зав.кафедрой 35 000,00 р. 201

202 ис Борисов Б. Б. преподаватель 25 000,00 р. 201

241 ис Глухов Г. Г.  инженер 20 000,00 р. 201

242 ис Чернов Ч. Ч. инженер 15 000,00 р. 202



106

SQL — язык структурированных запросов 

В этом примере подзапрос формирует множество значений для 
столбца «шифр» — множество шифров кафедр заданного факульте-
та — и передает его объемлющему запросу. Внешний запрос форми-
рует список сотрудников, которые работают на кафедрах, чьи шиф-
ры входят в список, сформированный подзапросом.

З а м е ч а н и е . Запрос с подзапросом IN в общем случае может 
быть заменен равносильным ему запросом на основе операции сое-
динения. Это общее правило.

П р и м е р  5 6 .  Предыдущий запрос «Вывести данные о сотруд-
никах, работающих на кафедрах заданного факультета» реализовать 
при помощи операции соединения.

SELECT Сотрудник.*
FROM Сотрудник, Кафедра
WHERE Кафедра.шифр = Сотрудник.шифр
AND факультет= [Введите аббревиатуру факультета];
Этот запрос при тех же исходных данных даст результат, анало-

гичный результату предыдущего примера.

П р и м е р  5 7 .  Вывести данные из таблицы «Студент» о студен-
тах, обучающихся по специальностям заданного факультета (напри-
мер, «ит»). Запрос оформить как запрос с трехуровневым запросом с IN 
к таблицам «Кафедра» для выборки «шифров» кафедр заданного фа-
культета и «Специальность» для выборки «номеров» специальностей.

SELECT * FROM Студент
WHERE номер IN
(SELECT номер FROM Специальность
WHERE шифр IN
(SELECT шифр FROM Кафедра
WHERE факультет = [Введите аббревиатуру факультета]));

Результат выполнения запроса из примера 57

рег_номер номер фамилия
10101 09.03.03 Николаева Н. Н.
10102 09.03.03 Иванов И. И.
20101 09.03.02 Андреев А. А.



107

Язык запросов

рег_номер номер фамилия
80101 38.03.05 Макаров М. М.
80102 38.03.05 Яковлев Я. Я.
20102 09.03.02 Федоров Ф. Ф.
10103 09.03.03 Крюков К. К.

В этом примере самый глубокий подзапрос формирует список 
шифров кафедр заданного факультета и передает его подзапросу сле-
дующего уровня. Подзапрос второго уровня формирует список номе-
ров специальностей, по которым обучаются студенты кафедр данно-
го факультета. Список номеров специальностей передается внешнему 
запросу и там используется для выборки студентов, обучающихся 
по этим специальностям.

З а д а н и е .  Вывести все данные из таблицы «Специальность» 
о специальностях, студенты которых изучают и сдают экзамены по за-
данной дисциплине. Запрос оформить как запрос с трехуровневым 
запросом с IN к таблицам «Экзамен» для выборки «рег_номеров» 
студентов, которые сдавали экзамены по дисциплине, заданной ее 
«кодом», и к таблице «Студент» для выборки «номеров» специально-
стей, по которым обучаются студенты, сдававшие экзамены по дан-
ной дисциплине.

П о д з а п р о с  с   A L L
Если в условии отбора сравнение должно иметь значение «исти-

на» для каждого (всех) значения, вырабатываемого подзапросом, 
то в предложении WHERE нужно использовать предикат ALL.

Подзапрос с ALL в общем случае имеет следующую структуру:
SELECT A FROM T1
WHERE A <оператор сравнения>
ALL (SELECT B FROM T2);

Запрос возвращает список тех значений столбца A, для которых 
оператор сравнения истинен для всех значений столбца B.

П р и м е р  5 8 .  Вывести данные из таблицы «Сотрудник» о со-
трудниках, чья зарплата меньше, чем у всех сотрудников кафедры, 
заданной ее шифром (например, «вм»).



108

SQL — язык структурированных запросов 

SELECT *
FROM Сотрудник
WHERE зарплата< ALL
(SELECT зарплата FROM Сотрудник
WHERE шифр= [Введите шифр кафедры]);

Результат выполнения запроса из примера 58

таб_номер шифр фамилия должность зарплата шеф
153 пи Сидорова С. С. инженер 16 500,00 р. 102
241 ис Глухов Г. Г.  инженер 22 000,00 р. 201
242 ис Чернов Ч. Ч. инженер 16 500,00 р. 202
403 оф Смирнов С. С. преподаватель 15 000,00 р. 401
435 оф Лисин Л. Л. инженер 22 000,00 р. 402
614 эф Григорьев Г. Г.  инженер 22 000,00 р. 602

В этом примере подзапрос формирует список зарплат сотрудни-
ков данной кафедры. Объемлющий запрос формирует список сотруд-
ников, чья зарплата меньше зарплаты всех сотрудников, в том числе 
самого низкооплачиваемого, данной кафедры. Действует принцип 
«меньше меньшего».

В этом варианте запроса наименьшая зарплата сотрудников кафе-
дры «Высшая математика» («вм») составляет 25 000 р. Поэтому в ре-
зультирующей таблице мы увидим список сотрудников, чья зарплата 
еще меньше. Если на других кафедрах есть самые низкооплачивае-
мые сотрудники, результирующая таблица будет пустой.

З а д а н и е .  Вывести список дисциплин из таблицы «Дисципли-
на», чьи «объемы» больше, чем у всех дисциплин, читаемых кафе-
дрой, заданной ее шифром.

П о д з а п р о с  с   A N Y
Если в условии отбора сравнение должно иметь значение «исти-

на» хотя бы для одного любого из значений, вырабатываемых подза-
просом, то в предложении WHERE нужно использовать предикат ANY.

Подзапрос с ANY в общем случае имеет следующую структуру:
SELECT A FROM T1
WHERE A <оператор сравнения>
ANY (SELECT B FROM T2);



109

Язык запросов

Запрос возвращает список тех значений столбца A, для которых 
оператор сравнения истинен для любого значения столбца B.

П р и м е р  5 9 .  Вывести данные из таблицы «Сотрудник» о со-
трудниках, чья зарплата меньше, чем у любого сотрудника кафедры, 
заданной ее шифром (например, «вм»).

SELECT *
FROM Сотрудник
WHERE зарплата< ANY
(SELECT зарплата FROM Сотрудник
WHERE шифр= [Введите шифр кафедры]);

Результат выполнения запроса из примера 59

таб_номер шифр фамилия должность зарплата шеф
102 пи Семенов С. С. преподаватель 25 000,00 р. 101
105 пи Петров П. П. преподаватель 25 000,00 р. 101
153 пи Сидорова С. С. инженер 16 500,00 р. 102
202 ис Борисов Б. Б. преподаватель 25 000,00 р. 201
241 ис Глухов Г. Г.  инженер 22 000,00 р. 201
242 ис Чернов Ч. Ч. инженер 16 500,00 р. 202
302 мм Сергеева С. С. преподаватель 25 000,00 р. 301
402 оф Зайцев З. З. преподаватель 25 000,00 р. 401
403 оф Смирнов С. С. преподаватель 15 000,00 р. 401
435 оф Лисин Л. Л. инженер 22 000,00 р. 402
502 вм Романцев Р. Р. преподаватель 25 000,00 р. 501
503 вм Соловьев С. С. преподаватель 25 000,00 р. 501
602 эф Сорокина С. С. преподаватель 25 000,00 р. 601
614 эф Григорьев Г. Г.  инженер 22 000,00 р. 602

В этом примере подзапрос формирует список зарплат сотрудников 
данной кафедры. Объемлющий запрос формирует список сотрудни-
ков, чья зарплата меньше зарплаты любого, в том числе самого вы-
сокооплачиваемого, сотрудника данной кафедры. Действует прин-
цип «меньше большего».

В этом варианте запроса самая высокая зарплата у заведующего 
кафедрой «Высшая математика» («вм») и составляет 35 000 р. Поэ-
тому в результирующей таблице мы видим список сотрудников, чья 
зарплата меньше. На других кафедрах есть сотрудники, чья зарпла-



110

SQL — язык структурированных запросов 

та достаточно высока (например, заведующие кафедрами), так что 
результирующая таблица не будет пустой.

З а д а н и е .  Вывести список дисциплин из таблицы «Дисципли-
на», чьи «объемы» больше, чем у любой дисциплины, читаемой ка-
федрой, заданной ее шифром.

П о д з а п р о с  в   H AV I N G
Подзапрос может использоваться не  только во  фразе WHERE, 

но и во фразе HAVING как условие отбора групп.

П р и м е р  6 0 .  Вывести список студентов, чей средний балл ниже 
или равен среднему баллу, полученному студентом, заданным его ре-
гистрационным номером (например, «рег_номер»=10102).

SELECT Студент.рег_номер, фамилия,
COUNT (оценка) AS [количество экзаменов],
ROUND (AVG (оценка),2) AS [средний балл]
FROM Студент INNER JOIN Экзамен
ON Студент.рег_номер=Экзамен.рег_номер
GROUP BY Студент.рег_номер, фамилия
HAVING AVG (оценка)<=
(SELECT AVG (оценка)
FROM Студент INNER JOIN Экзамен
ON Студент.рег_номер=Экзамен.рег_номер
WHERE Студент.рег_номер= [Введите номер студента]);

Результат выполнения запроса из примера 60

рег_номер фамилия количество экзаменов средний балл

10102 Иванов И. И. 2 4

20101 Андреев А. А. 2 3,5

20102 Федоров Ф. Ф. 1 3

30101 Бондаренко Б. Б. 2 3,5

50102 Кудрявцев К. К. 1 3

80102 Яковлев Я. Я. 2 4



111

Язык запросов

Коррелированные подзапросы

Рассмотренные в предыдущем разделе примеры представляют со-
бой простые подзапросы. В случае выборки с простым подзапросом 
вложенный подзапрос выполняется в первую очередь и независимо 
от объемлющего запроса. Значение, которое вырабатывает простой 
подзапрос, является общим для всех переменных-кортежей во внеш-
нем запросе. Результат, который вырабатывается простым подзапро-
сом, используется просто как операнд условия отбора предложения 
WHERE внешнего запроса.

Особую разновидность подзапросов составляют коррелированные 
подзапросы. В случае коррелированного подзапроса сначала внеш-
ний запрос вырабатывает какое-то значение переменной-кортежа, 
а затем внутренний подзапрос для этого отдельного значения выра-
батывает свой результат. Таким образом, в коррелированном подза-
просе внутренний подзапрос вырабатывает результат (каждый раз 
свой) в зависимости от значения переменной-кортежа, передавае-
мого ему внешним запросом.

П р и м е р  6 1 .  Вывести все данные о сотрудниках с максималь-
ной зарплатой на каждой кафедре.

SELECT Сотрудник.*
FROM Сотрудник
WHERE зарплата=
(SELECT Max (зарплата)
FROM Сотрудник Сотрудник1
WHERE Сотрудник.шифр=Сотрудник1.шифр);

Результат выполнения запроса из примера 61

таб_номер шифр фамилия должность зарплата шеф

101 пи Прохоров П. П. зав.кафедрой 35 000,00 р. 101

201 ис Андреев А. А. зав.кафедрой 35 000,00 р. 201

301 мм Басов Б. Б. зав.кафедрой 35 000,00 р. 301

401 оф Волков В. В. зав.кафедрой 35 000,00 р. 401

501 вм Кузнецов К. К. зав.кафедрой 35 000,00 р. 501

601 эф Зверев З. З. зав.кафедрой 35 000,00 р. 601



112

SQL — язык структурированных запросов 

В данном примере в  запросе и  подзапросе используется одна 
и та же таблица «Сотрудник». Для того чтобы сделать более ясной 
связь коррелированного подзапроса с внешним запросом, в данном 
примере наряду с самой таблицей «Сотрудник» во внешнем запросе 
используется ее псевдоним «Сотрудник1» в подзапросе.

Внешний запрос передает в  подзапрос каждый раз одно зна-
чение атрибута «шифр» (название кафедры) по связи Сотрудник.
шифр=Сотрудник1.шифр.

Внутренний подзапрос определяет максимальную зарплату MAX 
(зарплата) для группы сотрудников данной кафедры.

Внешний запрос сравнивает значение «зарплата» текущей стро-
ки таблицы с максимальным значением и в случае совпадения вы-
водит строку в выборку.

Весьма распространенным случаем использования коррелирован-
ных подзапросов является запрос данных из таблиц, связанных ассоци-
ативной связью (в том числе бинарной связью «многие ко многим»). 
В нашем примере — это таблицы «Специальность» и «Дисциплина», 
связанные ассоциативной таблицей «Заявка».

П р и м е р  6 2 .  Вывести данные о специальностях (таблица «Спе-
циальность»), для которых читается дисциплина, заданная ее кодом 
(например, информатика с «кодом»=102). Запрос оформить как за-
прос с коррелированным подзапросом по таблицам «Специальность» 
и «Заявка».

SELECT *
FROM Специальность
WHERE [Введите код дисциплины] IN
(SELECT код
FROM Заявка
WHERE Специальность.номер=Заявка.номер);

Результат выполнения запроса из примера 62

номер направление шифр
09.03.03 Прикладная информатика пи
09.03.02 Информационные системы и технологии ис
14.03.02 Ядерные физика и технологии эф



113

Язык запросов

В этом примере внешний запрос из  каждой строки таблицы 
«Специальность» передает в подзапрос каждый раз одно значение 
столбца «номер» (номер специальности) по связи Специальность.
номер=Заявка.номер.

Внутренний подзапрос формирует список кодов дисциплин, по ко-
торым для данной специальности читаются разные курсы.

Внешний запрос проверяет, есть ли в этом списке интересующая 
нас дисциплина, и в случае положительного результата выводит стро-
ку таблицы «Специальность» в выборку.

З а д а н и е .  Вывести данные о дисциплинах (таблица «Дисципли-
на»), которые читаются для специальности, заданной ее «номером» 
(например, «Прикладная информатика» с «номером»=09.03.03). За-
прос оформить как запрос с коррелированным подзапросом по та-
блицам «Дисциплина» и «Заявка».

Коррелированный подзапрос может использоваться не только 
во фразе WHERE, но и в списке предложения SELECT как вычисляе-
мое данное.

П р и м е р  6 3 .  Для каждого студента вывести его регистрацион-
ный номер («рег_номер»), фамилию, а также количество сданных эк-
заменов и средний балл по результатам сдачи. Этот пример уже рас-
сматривался как пример запроса на группировку. Здесь предлагается 
другой вариант его выполнения.

SELECT рег_номер, фамилия,
(SELECT Count (оценка) FROM Экзамен
WHERE Студент.рег_номер=Экзамен.рег_номер) AS [количество],
(SELECT ROUND (AVG (оценка),2) AS [средний балл] FROM Экзамен
WHERE Студент.рег_номер=Экзамен.рег_номер) AS [средний балл]
FROM Студент;

Результат выполнения запроса из примера 63

рег_номер фамилия количество экзаменов средний балл
10101 Николаева Н. Н. 4 4,25
10102 Иванов И. И. 2 4
20101 Андреев А. А. 2 3,5



114

SQL — язык структурированных запросов 

рег_номер фамилия количество экзаменов средний балл
30101 Бондаренко Б. Б. 2 3,5
30102 Цветков К. К. 2 4,5
30103 Петров П. П. 0
80101 Макаров М. М. 3 4,67
80102 Яковлев Я. Я. 2 4
20102 Федоров Ф. Ф. 1 3
50101 Сергеев С. С. 1 5
50102 Кудрявцев К. К. 1 3
10103 Крюков К. К. 0

В данном примере внешний запрос передает в подзапрос значе-
ние столбца «рег_номер» (регистрационный номер конкретного сту-
дента) по связи Студент.рег_номер=Экзамен.рег_номер.

В подзапросе по существу выполняется группировка строк табли-
цы «Экзамен» для очередного студента. Подзапрос определяет один 
раз количество сданных экзаменов, другой раз средний балл по ре-
зультатам сдачи экзаменов этим студентом и передает их объемлю-
щему запросу как вычисляемое данное в список предложения SELECT.

Внешний запрос выводит результаты подзапроса как вычисляе-
мые данные.

З а д а н и е .  Для каждой кафедры вывести ее шифр («шифр»), 
название, а также количество сотрудников и среднюю зарплату. За-
прос оформить как запрос с коррелированным подзапросом в спи-
ске фразы SELECT.

Подзапросы с квантором EXISTS

Квантор EXISTS (существует) — понятие, заимствованное из фор-
мальной логики. В языке SQL предикат с квантором существования 
представляется выражением EXISTS (SELECT * FROM …).

EXISTS может принимать значение «истина» или «ложь» в зави-
симости от результата, вырабатываемого подзапросом. EXISTS опре-
деляет условие, которое зависит от результата подзапроса в целом, 
а не от отдельного значения, вырабатываемого подзапросом. Выра-
жение EXISTS (SELECT * FROM …) считается истинным только тог-
да, когда результат вычисления SELECT * FROM … является непустым 



115

Язык запросов

множеством, т. е. когда существует какая-либо запись в таблице, ука-
занной во фразе FROM подзапроса, которая удовлетворяет условию 
WHERE подзапроса.

Подзапрос с EXISTS — это коррелированный подзапрос, т. е. его 
значение проверяется для каждого кортежа объемлющего запроса.

З а м е ч а н и е . Запрос с подзапросом на основе EXISTS может быть 
заменен равносильным ему запросом на основе операции соединения.

П р и м е р  6 4 .   Вывести данные о сотрудниках (таблица «Со-
трудник»), работающих на данном факультете (например, «ит»).

SELECT * FROM Сотрудник
WHERE EXISTS
(SELECT * FROM Кафедра
WHERE Кафедра.шифр=Сотрудник.шифр
AND факультет= [Введите аббревиатуру факультета]);

Результат выполнения запроса из примера 64

таб_номер шифр фамилия должность зарплата шеф

101 пи Прохоров П. П. зав.кафедрой 35 000,00 р. 101

102 пи Семенов С. С. преподаватель 25 000,00 р. 101

105 пи Петров П. П. преподаватель 25 000,00 р. 101

153 пи Сидорова С. С. инженер 16 500,00 р. 102

201 ис Андреев А. А. зав.кафедрой 35 000,00 р. 201

202 ис Борисов Б. Б. преподаватель 25 000,00 р. 201

241 ис Глухов Г. Г.  инженер 22 000,00 р. 201

242 ис Чернов Ч. Ч. инженер 16 500,00 р. 202

В данном примере внешний запрос передает в подзапрос значе-
ние столбца «шифр» для конкретного сотрудника (шифр кафедры) 
по связи Кафедра.шифр=Сотрудник.шифр.

Внутренний подзапрос определяет, работает ли очередной сотруд-
ник на интересующем нас факультете. Если это так, то подзапрос 
формирует непустой результат (соответствующую строку из табли-
цы «Кафедра»), EXISTS принимает значение «истина» и объемлющий 
запрос выводит информацию о сотруднике. В противном случае это-
го не происходит.



116

SQL — язык структурированных запросов 

Как уже отмечалось, вследствие избыточности SQL, тот же ре-
зультат может быть получен при помощи запроса на основе соеди-
нения таблиц.

П р и м е р  6 5 .  Вывести данные о сотрудниках (таблица «Сотруд-
ник»), работающих на данном факультете (например, «ит»).

SELECT * FROM Сотрудник, Кафедра
WHERE Кафедра.шифр=Сотрудник.шифр
AND факультет= [Введите аббревиатуру факультета];
При тех же исходных данных результат запроса должен выглядеть 

так, как показано в таблице примера 64.

З а д а н и е .  Выполнить как запрос с EXISTS вывод данных о сту-
дентах (таблица «Студент»), обучающихся по специальностям (табли-
ца «Специальность») кафедры, заданной ее шифром (например, «пи»).

З а д а н и е .  Выполнить как запрос с EXISTS вывод данных о сту-
дентах (таблица «Студент»), сдававших экзамен (таблица «Экзамен») 
по дисциплине, заданной ее кодом (например, по информатике с «ко-
дом»=102).

Подзапросы в операциях манипулирования данными

Подзапросы могут использоваться не только в командах выборки 
данных, но и в командах манипулирования данными (удаления и об-
новления), там где действие команды обусловлено фразой WHERE.

Рассмотрим пример запроса на удаление с простым подзапросом.

П р и м е р  6 6 .  Удалить результаты сдачи экзамена по информа-
тике («код»=102) с оценкой 2 для студентов заданной специальности.

DELETE FROM Экзамен
WHERE код = [Введите код дисциплины]
AND оценка =2 AND рег_номер IN
(SELECT рег_номер FROM Студент
WHERE номер = [Введите номер специальности]);

В данном примере подзапрос формирует список регистрационных 
номеров студентов, обучающихся на данной специальности. Этот ре-



117

Язык запросов

зультат передается в объемлющий запрос и в конъюнкции с други-
ми условиями готовит выборку строк таблицы «Экзамен», подлежа-
щих удалению.

Рассмотрим пример запроса на удаление с коррелированным под-
запросом.

П р и м е р  6 7 .  Удалить результаты сдачи экзаменов тех студен-
тов, чей средний балл меньше заданного.

DELETE FROM Экзамен
WHERE [Введите границу среднего балла]>
(SELECT AVG (оценка)
FROM Экзамен Экзамен1
WHERE Экзамен.рег_номер= Экзамен1. рег_номер);

В данном примере в запросе и подзапросе используется одна и та же 
таблица «Экзамен». Для того чтобы отличить эти два разных ее состо-
яния, в данном примере наряду с самой таблицей «Экзамен» во внеш-
нем запросе используется ее псевдоним «Экзамен 1» в подзапросе.

Внешний запрос передает в подзапрос каждый раз одно значение 
столбца «рег_номер» (регистрационный номер конкретного студен-
та) по связи Экзамен.рег_номер=Экзамен1.рег_номер.

Внутренний подзапрос вычисляет средний балл по результатам 
всех экзаменов данного студента и передает его внешнему запросу.

Внешний запрос сравнивает введенное граничное значение средне-
го балла со средним баллом данного студента и в случае положительно-
го результата удаляет соответствующую строку из таблицы «Экзамен».

Рассмотрим пример запроса на обновление с простым подзапросом.

П р и м е р  6 8 .  Перепоручить ведение дисциплины, заданной ее 
«кодом», для специальности, заданной ее «номером», кафедре, задан-
ной ее шифром в качестве исполнителя («исполнитель»).

UPDATE Дисциплина SET исполнитель = [Введите шифр кафе-
дры-исполнителя]

WHERE код= [Введите код дисциплины] AND заявитель IN
(SELECT Кафедра.шифр
FROM Кафедра INNER JOIN Специальность
ON Кафедра.шифр=Специальность.шифр
WHERE номер = [Введите номер специальности]);



118

SQL — язык структурированных запросов 

В данном примере в подзапросе используется соединение таблиц 
«Кафедра» и «Специальность» для того, чтобы были доступны шифр 
выпускающей кафедры и номер специальности, а результатом явля-
ется шифр выпускающей кафедры («заявитель»), которая готовит 
специалистов по заданной специальности. В объемлющем запросе 
результат подзапроса в конъюнкции с кодом дисциплины определя-
ет условие, которому должна удовлетворять дисциплина, подлежа-
щая переадресации на нового исполнителя.

Рассмотрим пример запроса на обновление с коррелированным 
подзапросом.

П р и м е р  6 9 .  Перевести студентов, чей средний балл больше 
заданного значения, на специальность с заданным номером.

UPDATE Студент SET номер = [Введи номер специальности]
WHERE [Введите границу среднего балла]<
(SELECT AVG (оценка) FROM Экзамен
WHERE Студент.рег_номер=Экзамен.рег_номер);

Внешний запрос, адресованный к таблице «Студент», передает 
в подзапрос каждый раз одно значение столбца «рег_номер» (реги-
страционный номер конкретного студента) по связи Студент.рег_
номер=Экзамен.рег_номер.

Внутренний подзапрос вычисляет средний балл по результатам 
всех экзаменов данного студента и передает его внешнему запросу.

Внешний запрос сравнивает введенное граничное значение сред-
него балла со средним баллом данного студента и в случае положи-
тельного результата обновляет номер специальности студента.

Теоретико-множественные операции

В языке SQL можно использовать обычные операции над множе-
ствами — объединение, пересечение и вычитание, позволяющие ком-
бинировать результаты выполнения двух и более запросов в единую 
результирующую таблицу. На таблицы, которые могут комбиниро-
ваться с помощью теоретико-множественных операций, накладыва-
ются определенные ограничения, упоминавшиеся ранее. В частно-
сти, таблицы-операнды должны быть совместимы по типу, т. е. иметь 



119

Язык запросов

одинаковую структуру. Контроль за соблюдением этого требования 
возлагается на разработчика запросов.

Запрос на объединение UNION

Операция UNION создает запрос на объединение, который объ-
единяет результаты нескольких независимых запросов или таблиц. 
В одной операции UNION можно объединить результаты нескольких 
запросов, таблиц и инструкций SELECT. Наиболее общий формат ко-
манды имеет следующий вид:

[TABLE] <запрос1> UNION [ALL] [TABLE] <запрос2>;
Здесь <запросN> — инструкция SELECT, имя сохраненного за-

проса или имя сохраненной таблицы, перед которым стоит зарезер-
вированное слово TABLE.

Все запросы, включенные в операцию UNION, должны отбирать 
одинаковое число идентичных столбцов; при этом операнды долж-
ны быть соразмерны.

Несколькими операциями UNION можно объединить любое чис-
ло предложений SELECT.

П р и м е р  7 0 .  Вывести из таблицы «Сотрудник» номера («таб_
номер»), фамилии, должности и шифры кафедр сотрудников, кото-
рые работают на заданной кафедре (например, с шифром «пи») или/и 
работают на заданной должности (например, «инженер»).

SELECT таб_номер, фамилия, должность, шифр FROM Сотрудник
WHERE шифр= [Введите шифр кафедры]
UNION
SELECT таб_номер, фамилия, должность, шифр FROM Сотрудник
WHERE должность= [Введите должность];

Результат выполнения запроса из примера 70

таб_номер фамилия должность шифр
101 Прохоров П. П. зав.кафедрой пи
102 Семенов С. С. преподаватель пи
105 Петров П. П. преподаватель пи
153 Сидорова С. С. инженер пи
241 Глухов Г. Г.  инженер ис



120

SQL — язык структурированных запросов 

таб_номер фамилия должность шифр
242 Чернов Ч. Ч. инженер ис
435 Лисин Л. Л. инженер оф
614 Григорьев Г. Г.  инженер эф

В этом примере одно множество представлено сотрудниками за-
данной кафедры («Прикладная информатика» с шифром «пи»), а вто-
рое — сотрудниками заданной должности — «инженер». Как видно, 
в соответствии с определением операции объединения в выборке 
представлены или сотрудники заданной кафедры, или сотрудники 
заданной должности, или сотрудники, удовлетворяющие обоим ус-
ловиям.

В качестве операндов операции объединения могут использовать-
ся не только отдельные, но и связанные таблицы.

П р и м е р  7 1 .  Вывести из таблицы «Сотрудник» номера («таб_
номер»), фамилии и должности сотрудников, которые работают на за-
данной кафедре (например, с шифром «пи») или/и являются инжене-
рами (таблица «Инженер») по заданной специальности (например, 
«программист»).

SELECT Сотрудник.таб_номер, фамилия, должность, шифр, спе-
циальность

FROM Сотрудник LEFT JOIN Инженер ON Инженер.таб_номер = 
Сотрудник.таб_номер

WHERE шифр= [Введите шифр кафедры]
UNION SELECT Сотрудник.таб_номер, фамилия, должность, шифр, 

специальность
FROM Сотрудник LEFT JOIN Инженер ON Инженер.таб_номер = 

Сотрудник.таб_номер
WHERE специальность= [Введите специальность];

Результат выполнения запроса из примера 71

таб_номер фамилия должность шифр специальность
101 Прохоров П. П. зав.кафедрой пи
102 Семенов С. С. преподаватель пи
105 Петров П. П. преподаватель пи
153 Сидорова С. С. инженер пи электроник



121

Язык запросов

таб_номер фамилия должность шифр специальность
242 Чернов Ч. Ч. инженер ис программист
614 Григорьев Г. Г.  инженер эф программист

Левое соединение LEFT JOIN здесь используется для того, чтобы 
в выборке можно было увидеть специальности сотрудников‑инжене-
ров, а также сотрудников, работающих на заданной кафедре, но не яв-
ляющихся инженерами заданной специальности.

З а д а н и е .  Выполнить запрос на объединение (на основе коман-
ды UNION): вывести данные о дисциплинах (таблица «Дисциплина»), 
для которых исполнителем является кафедра, заданная ее шифром, 
или/и о дисциплинах, объем которых превышает заданную величину.

Запрос на пересечение

Не все диалекты SQL (в том числе SQL Microsoft Jet) поддерживают 
непосредственно операции пересечения и вычитания. Специальной 
инструкции для выполнения пересечения в рассматриваемой версии 
SQL нет. Но операция может быть выполнена на основе других ин-
струкций. Запрос на пересечение может быть выполнен нескольки-
ми способами. В наиболее распространенном способе используется 
предикат — квантор EXISTS.

Рассмотрим пример операции пересечения, определенного 
на множестве сотрудников данной кафедры и множестве сотрудни-
ков данной должности.

П р и м е р  7 2 .  Вывести из таблицы «Сотрудник» номера («таб_
номер»), фамилии, должности и шифры кафедр сотрудников, кото-
рые работают на заданной кафедре (например, с шифром «пи») и при 
этом работают на заданной должности (например, «инженер»).

SELECT таб_номер, фамилия, должность, шифр
FROM Сотрудник
WHERE шифр = [Введите шифр кафедры] AND
EXISTS (SELECT * FROM Сотрудник Сотрудник1
WHERE Сотрудник.таб_номер = Сотрудник1.таб_номер
AND должность= [Введите должность]);



122

SQL — язык структурированных запросов 

Результат выполнения запроса из примера 72

таб_номер фамилия должность шифр
153 Сидорова С. С. инженер пи

Подзапрос на основе EXISTS всегда является коррелированным. 
Если объемлющий запрос и подзапрос обращаются к одной и той же 
таблице (например, «Сотрудник», как в нашем случае), то для отли-
чия этих ее разных состояний в подчиненном запросе следует ис-
пользовать псевдоним таблицы (например, «Сотрудник1») для ссыл-
ки на ту же таблицу, указанную в объемлющем запросе по условию 
связи Сотрудник.таб_номер = Сотрудник1.таб_номер.

Как видно из вышеприведенной таблицы, в соответствии с опре-
делением операции пересечения в выборке представлены сотрудни-
ки, удовлетворяющие обоим условиям.

В качестве операндов операции пересечения могут использовать-
ся результаты соединения таблиц.

П р и м е р  7 3 .  Выполнить запрос на пересечение: вывести из та-
блицы «Сотрудник» табельные номера («таб_номер»), фамилии, долж-
ности, шифры кафедр и специальности сотрудников, которые рабо-
тают на заданной кафедре (например, с шифром «пи») и являются 
инженерами (таблица «Инженер») по заданной специальности (на-
пример, «электроник»).

SELECT Сотрудник.таб_номер, фамилия, должность, шифр, спе-
циальность

FROM Сотрудник INNER JOIN Инженер
ON Инженер.таб_номер = Сотрудник.таб_номер
WHERE шифр= [Введите шифр кафедры] AND
        EXISTS (SELECT * FROM Инженер
                      WHERE Инженер.таб_номер = Сотрудник.таб_номер
                                AND специальность= [Введите специальность]);

Результат выполнения запроса из примера 73

таб_номер фамилия должность шифр специальность
153 Сидорова С. С. инженер пи электроник

Естественное соединение INNER JOIN здесь используется для того, 
чтобы в выборке можно было увидеть специальности сотрудников‑ин-



123

Язык запросов

женеров. Сотрудников, работающих на заданной кафедре, но не явля-
ющихся инженерами заданной специальности по определению опе-
рации пересечения не может быть.

З а д а н и е .  Выполнить запрос на пересечение (на основе преди-
ката EXISTS): вывести данные о дисциплинах (таблица «Дисципли-
на»), для которых заявителем является кафедра, заданная ее шиф-
ром и при этом объем которых превышает заданную величину.

Запрос на вычитание

Специальной инструкции для выполнения разности в рассматри-
ваемой версии SQL нет. Но операция может быть выполнена на осно-
ве других инструкций. Запрос на вычитание может быть выполнен 
несколькими способами. Наиболее распространенный использует 
предикат — квантор NOT EXISTS.

Рассмотрим пример операции вычитания, определенной на мно-
жестве сотрудников данной кафедры и множестве сотрудников дан-
ной должности.

П р и м е р  7 4 .  Выполнить запрос на вычитание: вывести из та-
блицы «Сотрудник» номера («таб_номер»), фамилии, должности 
и шифры кафедр сотрудников, которые работают на заданной кафе-
дре (например, с шифром «пи»), но не являются сотрудниками задан-
ной должности (например, «инженер»).

SELECT таб_номер, фамилия, должность, шифр
FROM Сотрудник
WHERE шифр = [Введите шифр кафедры] AND
                   NOT EXISTS (SELECT * FROM Сотрудник Сотрудник1
                        WHERE Сотрудник.таб_номер = Сотрудник1.таб_номер
                                   AND должность= [Введите должность]);

Результат выполнения запроса из примера 74

таб_номер фамилия должность шифр
101 Прохоров П. П. зав.кафедрой пи
102 Семенов С. С. преподаватель пи
105 Петров П. П. преподаватель пи



124

SQL — язык структурированных запросов 

Замечание, сделанное по поводу использования псевдонима та-
блицы в подзапросе на основе EXISTS в примере операции пересече-
ния, будет справедливо и в данном случае.

В рассмотренном примере множество сотрудников заданной ка-
федры является уменьшаемым, а множество сотрудников заданной 
должности является вычитаемым. В соответствии с определением 
операции вычитания в выборке представлены сотрудники, работаю-
щие на заданной кафедре, но не являющиеся инженерами по долж-
ности.

В качестве операндов вычитания могут использоваться результа-
ты соединения таблиц.

П р и м е р  7 5 .  Выполнить запрос на вычитание: вывести из та-
блицы «Сотрудник» номера («таб_номер»), фамилии, должности, 
шифры кафедр и специальности сотрудников‑инженеров, которые 
работают на заданной кафедре (например, с шифром «пи»), но не яв-
ляются инженерами (таблица «Инженер») по заданной специально-
сти (например, «программист»).

SELECT Сотрудник.таб_номер, фамилия, должность, шифр, спе-
циальность

FROM Сотрудник INNER JOIN Инженер
ON Инженер.таб_номер=Сотрудник.таб_номер
WHERE шифр= [Введите шифр кафедры] AND
           NOT EXISTS (SELECT * FROM Инженер
           WHERE Инженер.таб_номер = Сотрудник.таб_номер
                           AND специальность= [Введите специальность]);

Результат выполнения запроса из примера 75

таб_номер фамилия должность шифр специальность
153 Сидорова С. С. инженер пи электроник

В рассмотренном примере множество сотрудников заданной ка-
федры является уменьшаемым, а множество сотрудников‑инжене-
ров заданной специальности является вычитаемым. В соответствии 
с определением операции вычитания в выборке представлены со-
трудники, работающие на заданной кафедре, но не являющиеся ин-
женерами по заданной специальности.



125

Язык запросов

З а д а н и е .  Выполнить запрос на вычитание (на основе предика-
та NOT EXISTS): вывести данные о дисциплинах (таблица «Дисципли-
на»), для которых исполнителем является кафедра, заданная ее шиф-
ром, но при этом объем которых не превышает заданную величину.

В отличие от операций объединения и пересечения операция вы-
читания не является коммутативной, т. е. имеет значение, какое мно-
жество является уменьшаемым, а какое вычитаемым.

П р и м е р  7 6 .  Выполнить запрос на вычитание: вывести из та-
блицы «Сотрудник» номера («таб_номер»), фамилии, должности 
и шифры кафедр сотрудников, которые являются сотрудниками за-
данной должности (например, «инженер»), но не работают на задан-
ной кафедре (например, с шифром «пи»).

SELECT таб_номер, фамилия, должность, шифр
FROM Сотрудник
WHERE должность= [Введите должность] AND
      NOT EXISTS (SELECT * FROM Сотрудник Сотрудник1
                 WHERE Сотрудник.таб_номер = Сотрудник1.таб_номер
                                  AND шифр= [Введите шифр кафедры]);

Результат выполнения запроса из примера 76

таб_номер фамилия должность шифр
241 Глухов Г. Г.  инженер ис
242 Чернов Ч. Ч. инженер ис
435 Лисин Л. Л. инженер оф
614 Григорьев Г. Г.  инженер эф

Замечание, сделанное по поводу использования псевдонима та-
блицы в подзапросе на основе EXISTS в примере операции пересече-
ния, будет справедливо и в данном случае.

В рассмотренном примере множество сотрудников заданной долж-
ности является уменьшаемым, а множество сотрудников заданной 
кафедры является вычитаемым. В соответствии с определением опе-
рации вычитания в выборке представлены сотрудники-инженеры, 
не работающие на заданной кафедре.

В качестве операндов операции вычитания могут использовать-
ся результаты соединения таблиц.



126

SQL — язык структурированных запросов 

П р и м е р  7 7 .  Выполнить запрос на вычитание: вывести из та-
блиц «Сотрудник» и «Инженер» номера («таб_номер»), фамилии, 
должности, шифры кафедр и специальности сотрудников‑инжене-
ров, которые являются инженерами по заданной специальности (на-
пример, «программист»), но не работают на заданной кафедре (на-
пример, с шифром «пи»).

SELECT Сотрудник.таб_номер, фамилия, должность, шифр, спе-
циальность

FROM Сотрудник INNER JOIN Инженер ON Инженер.таб_номер 
= Сотрудник.таб_номер

WHERE специальность= [Введите специальность] AND
      NOT EXISTS (SELECT * FROM Сотрудник
               WHERE Инженер.таб_номер = Сотрудник.таб_номер AND
                     шифр= [Введите шифр кафедры]);

Результат выполнения запроса из примера 77

таб_номер фамилия должность шифр специальность
614 Григорьев Г. Г.  инженер эф программист
242 Чернов Ч. Ч. инженер ис программист

В рассмотренном примере множество сотрудников‑инженеров 
заданной специальности является уменьшаемым, а множество со-
трудников заданной кафедры является вычитаемым. В  соответ-
ствии с определением операции вычитания в выборке представле-
ны сотрудники-инженеры, работающие по заданной специальности, 
но не на заданной кафедре.

З а д а н и е .  Выполнить запрос на вычитание (на основе преди-
ката NOT EXISTS): вывести данные о дисциплинах (таблица «Дисци-
плина»), объем которых превышает заданную величину, но при этом 
для которых заявителем не является кафедра, заданная ее шифром.



127

Представления

Представления

Представление — это виртуальная таблица, которая сама по себе 
не существует, но для пользователя выглядит таким образом, как 
будто она существует. В противоположность этому базовая табли-
ца — это реальная таблица, каждой строке которой соответству-
ют хранимые данные. Представление не поддерживается своими 
собственными физическими хранимыми данными. Вместо этого 
в каталоге таблиц хранится определение, оговаривающее, из каких 
столбцов и строк других таблиц оно должно быть сформировано при 
реализации SQL-предложения на получение данных из представле-
ния или на модификацию таких данных.

Для чего нужны представления? Самая важная причина — это 
обеспечение логической независимости данных. Если физическая 
независимость данных обеспечивает независимость от изменений 
физической структуры базы данных, то логическая независимость 
обеспечивает независимость пользовательских программ от изме-
нения логической структуры базы данных при ее реструктуризации. 
Кроме того, представления дают возможность различным пользова-
телям по-разному видеть одни и те же данные, возможно, даже в одно 
и то же время. Это особенно ценно при работе различных катего-
рий пользователей с единой интегрированной базой данных. Поль-
зователям предоставляют только интересующие их данные в наибо-
лее удобной для них форме (окно в таблицу или в любое соединение 
любых таблиц).

Наконец, от определенных пользователей могут быть скрыты неко-
торые данные, невидимые через предложенное им представление. Та-
ким образом, принуждение пользователя осуществлять доступ к базе 
данных через представления является простым, но эффективным ме-
ханизмом для управления санкционированием доступа.

Представления можно создавать и удалять. Соответствующие ко-
манды относятся к подмножеству языка определения данных.



128

SQL — язык структурированных запросов 

Создание представлений

Обобщенный синтаксис команды создания представления име-
ет следующий вид

CREATE VIEW <имя представления>
	 [<список имен столбцов представления>]
	 AS <подзапрос>
	 [WITH CHECK OPTION];

Здесь подзапрос, следующий за AS, является определением данно-
го представления, не исполняется, а просто сохраняется в каталоге.

Необязательная фраза WITH CHECK OPTION (с проверкой) указы-
вает на то, что для операций INSERT и UPDATE над этим представле-
нием должна осуществляться проверка, обеспечивающая удовлетво-
рение WHERE фразы подзапроса.

Список имен столбцов может быть пустым, в этом случае пред-
ставление наследует имена столбцов из подзапроса. Список имен 
столбцов должен быть обязательно определен лишь в двух случаях:

а)	 когда хотя бы один из столбцов подзапроса не имеет имени (соз-
дается с помощью выражения, SQL-функции или константы);

б)	 два или более столбцов подзапроса имеют одно и то же имя.
Если же список отсутствует, то представление наследует имена 

столбцов из подзапроса, при этом список столбцов представления 
и список элементов предложения SELECT должны совпадать по ко-
личеству, по порядку следования и по типу.

Как обычно, подзапрос не может включать ни команду UNION, 
ни фразу ORDER BY.

Инструкция SELECT, определяющая представление, не должна со-
держать каких-либо параметров.

Имя представления не должно совпадать с именем таблицы.
Если запрос, определенный инструкцией SELECT, является обнов-

ляемым, то представление также может обновляться. В противном 
случае оно предназначено только для чтения.

С учетом этих ограничений любая таблица, выборка которой 
может быть осуществлена с помощью предложения SELECT, может 
быть определена как представление. Рассмотрим конкретные ва-
рианты:

1. Представление может быть создано с вычислением арифмети-
ческого выражения.



129

Представления

П р и м е р  7 8 .  Сформировать как представление данные о годо-
вых зарплатах сотрудников.

CREATE VIEW Годовая_зарплата_сотрудников ([табельный но-
мер], фамилия, [годовая зарплата])

AS SELECT таб_номер, фамилия, зарплата*12
FROM Сотрудник;

Представление «Годовая_зарплата_сотрудников»

табельный номер фамилия годовая зарплата
101 Прохоров П. П. 420 000,00 р.
102 Семенов С. С. 300 000,00 р.
105 Петров П. П. 300 000,00 р.
153 Сидорова С. С. 198 000,00 р.
201 Андреев А. А. 420 000,00 р.
202 Борисов Б. Б. 300 000,00 р.
241 Глухов Г. Г.  264 000,00 р.
242 Чернов Ч. Ч. 198 000,00 р.
301 Басов Б. Б. 420 000,00 р.
302 Сергеева С. С. 300 000,00 р.
401 Волков В. В. 420 000,00 р.
402 Зайцев З. З. 300 000,00 р.
403 Смирнов С. С. 180 000,00 р.
435 Лисин Л. Л. 264 000,00 р.
501 Кузнецов К. К. 420 000,00 р.
502 Романцев Р. Р. 300 000,00 р.
503 Соловьев С. С. 300 000,00 р.
601 Зверев З. З. 420 000,00 р.
602 Сорокина С. С. 300 000,00 р.
614 Григорьев Г. Г.  264 000,00 р.

В этом примере столбец представления «годовая зарплата» проду-
цируется на основе вычисления арифметического выражения.

2. Представление может формироваться на основе функции агре-
гации.

П р и м е р  7 9 .  Сформировать как представление данные о ме-
сячном фонде зарплаты сотрудников.



130

SQL — язык структурированных запросов 

CREATE VIEW Месячный_фонд_зарплаты_сотрудников ([фонд зар-
платы])

AS SELECT Sum (зарплата)
FROM Сотрудник;

Представление «Месячный_фонд_зарплаты_сотрудников»

фонд зарплаты
524 000,00 р.

3. Представление может формироваться как проекция базовой 
таблицы.

П р и м е р  8 0 .  Сформировать как представление список шиф-
ров кафедр и должностей работающих на них сотрудников.

CREATE VIEW Должности_сотрудников (кафедра, должность)
AS SELECT DISTINCT шифр, должность
FROM Сотрудник;

Представление «Должности_сотрудников»

кафедра должность
вм зав.кафедрой
вм преподаватель
ис зав.кафедрой
ис инженер
ис преподаватель
мм зав.кафедрой
мм преподаватель
оф зав.кафедрой
оф инженер
оф преподаватель
пи зав.кафедрой
пи инженер
пи преподаватель
эф зав.кафедрой
эф инженер
эф преподаватель



131

Представления

В этом примере производится выборка столбцов таблицы «Сотруд-
ник» без дублей строк. Имена столбцов представления «Должности_
сотрудников» «кафедра» и «должность» соответствуют столбцам вы-
борки «шифр» и «должность» из базовой таблицы «Сотрудник».

З а д а н и е .  Сформировать представление «Номера_студентов» 
как проекцию таблицы «Экзамен» на столбец «рег_номер». В списке 
должны быть представлены в единственном экземпляре регистраци-
онные номера студентов, сдававших экзамены.

4. Представление может быть сформировано на основе простой 
операции селекции по условию.

П р и м е р  8 1 .  Сформировать представление с именем «Инже-
неры_вуза» на основе таблицы «Сотрудник» как выборку сотрудни-
ков, чья должность должна быть 'инженер'.

CREATE VIEW Инженеры_вуза ([табельный номер], кафедра, фа-
милия, должность, зарплата, начальник)

AS SELECT *
FROM Сотрудник
WHERE должность='инженер';

Представление «Инженеры_вуза»

табельный 
номер

кафе-
дра фамилия долж-

ность зарплата началь-
ник

153 пи Сидорова С. С. инженер 16 500,00 р. 102
241 ис Глухов Г. Г.  инженер 22 000,00 р. 201
242 ис Чернов Ч. Ч. инженер 16 500,00 р. 202
435 оф Лисин Л. Л. инженер 22 000,00 р. 402
614 эф Григорьев Г. Г.  инженер 22 000,00 р. 602

З а д а н и е .  Сформировать представление с именем «Препода-
ватели_вуза» на основе таблицы «Сотрудник» как выборку сотруд-
ников, чья должность может быть или 'преподаватель' или 'зав.ка-
федрой'.



132

SQL — язык структурированных запросов 

5. Основанием для формирования представления может быть за-
прос на группировку данных.

П р и м е р  8 2 .  Сформировать как представление с именем «Гуп-
пировка_сотрудников» результат группировки сотрудников по кафе-
драм с представлением агрегатных характиристик «средняя зарплата» 
и «количество сотрудников». Имен, которые могли бы наследовать-
ся от второго и третьего столбцов подзапроса, нет. Поэтому имена 
соответствующих столбцов представления должны быть заданы яв-
ным образом.

CREATE VIEW Гуппировка_сотрудников (кафедра, [средняя зар-
плата], [количество сотрудников])

AS SELECT шифр, AVG (зарплата), Count (зарплата)
FROM Сотрудник
GROUP BY шифр;

Представление «Гуппировка_сотрудников»

кафедра средняя зарплата количество сотрудников
вм 28 333,33 р. 3
ис 24 625,00 р. 4
мм 30 000,00 р. 2
оф 24 250,00 р. 4
пи 25 375,00 р. 4
эф 27 333,33 р. 3

В отличие от предыдущих примеров представление «Группиров-
ка_сотрудников» не является просто подмножеством базовой табли-
цы «Сотрудник». Оно представляет собой некоторый результат ста-
тистической обработки базовой таблицы.

З а д а н и е .  Сформировать представление «Группировка_студен-
тов_по_специальностям» со столбцами « [номер специальности]», 
«[количество студентов]» на основе запроса на группировку строк 
таблицы «Студент» по столбцу «номер» с вычислением агрегатной 
функции Count (рег_номер).



133

Представления

6. Представление может быть сформировано на основе результа-
та соединения базовых таблиц.

П р и м е р  8 3 .  Сформировать представление с именем «Инже-
неры» на основе естественного соединения базовых таблиц «Сотруд-
ник» и «Инженер» по столбцам связи «таб_номер». Имена столбцам 
представления присвоить по предлагаемому в примере образцу.

CREATE VIEW Инженеры ([табельный номер], кафедра, фамилия, 
должность, специальность, зарплата, начальник)

AS SELECT Сотрудник.таб_номер, шифр, фамилия, должность, спе-
циальность, зарплата, шеф

FROM Сотрудник, Инженер
WHERE Сотрудник.таб_номер=Инженер.таб_номер;

Представление «Инженеры»

та-
бель-
ный 

номер

ка-
фе-
дра

фамилия долж-
ность

специаль-
ность зарплата

на-
чаль-
ник

614 эф Григорьев Г. Г.  инженер программист 22 000,00 р. 602
153 пи Сидорова С. С. инженер электроник 16 500,00 р. 102
241 ис Глухов Г. Г.  инженер электроник 22 000,00 р. 201
242 ис Чернов Ч. Ч. инженер программист 16 500,00 р. 202
435 оф Лисин Л. Л. инженер электроник 22 000,00 р. 402

З а д а н и е .  Сформировать представление «Выпускающие_кафе-
дры» на основе внутреннего соединения базовых таблиц «Кафедра» 
и «Специальность» по столбцу связи «шифр». Результатом соедине-
ния будут данные только о тех кафедрах, на которых открыты специ-
альности (о выпускающих кафедрах). В списке имен столбцов пред-
ставления предусмотреть столбцы «кафедра», «название», « [номер 
специальности]», «направление», соответствующие столбцам соеди-
ненных таблиц: «шифр», «название», «номер», «направление».

7. Представление может быть определено на основе выборки по за-
просу с подзапросом.

П р и м е р  8 4 .  Сформировать представление с именем «Сотруд-
ники_факультета» на основе запроса с простым подзапросом. В под-



134

SQL — язык структурированных запросов 

запросе на основе таблицы «Кафедра» по аббревиатуре факультета 
(столбец «Кафедра.факультет) сформировать список шифров кафедр 
факультета, заданного явно по столбцу «факультет»='ит'. В объемлю-
щем запросе произвести выборку всех данных о сотрудниках, у ко-
торых «шифры» попадают в список «шифров» кафедр данного фа-
культета. Список имен столбцов представления задать по образцу 
демонстрационного примера.

CREATE VIEW Сотрудники_факультета ([табельный номер], [ме-
сто работы], фамилия, должность, зарплата, начальник)

AS SELECT *
FROM Сотрудник
WHERE шифр IN (SELECT шифр FROM Кафедра
WHERE факультет='ит');

Представление «Сотрудники_факультета»

табель-
ный но-

мер

место 
работы фамилия должность зарплата

на-
чаль-
ник

101 пи Прохоров П. П. зав.кафедрой 35 000,00 р. 101
102 пи Семенов С. С. преподаватель 25 000,00 р. 101
105 пи Петров П. П. преподаватель 25 000,00 р. 101
153 пи Сидорова С. С. инженер 16 500,00 р. 102
201 ис Андреев А. А. зав.кафедрой 35 000,00 р. 201
202 ис Борисов Б. Б. преподаватель 25 000,00 р. 201
241 ис Глухов Г. Г.  инженер 22 000,00 р. 201
242 ис Чернов Ч. Ч. инженер 16 500,00 р. 202

З а д а н и е .  Сформировать представление с именем «Студенты_
кафедры» на основе запроса с простым подзапросом. В подзапро-
се на основе таблицы «Специальность» по шифру кафедры (столбец 
«Специальность.шифр) сформировать список номеров специально-
стей кафедры, заданной явно по столбцу «шифр»= 'пи'. В объемлю-
щем запросе произвести выборку всех данных о студентах, у которых 
«номера» попадают в список «номеров» специальностей данной ка-
федры. В списке имен представления задать столбцы: «регистраци-
онный номер», «фамилия», «специальность».



135

Представления

Удаление представлений

Представление удаляется из базы данных при помощи следую-
щей команды:

DROP VIEW <имя представления>;

В результате выполнения этой команды уничтожается и само пред-
ставление, и все представления, определенные с его использованием.

П р и м е р  8 5 .  Удалить представление «Месячный_фонд_зар-
платы_сотрудников»

DROP VIEW Месячный_фонд_зарплаты_сотрудников;
Представление будет также уничтожено при удалении базовой та-

блицы, лежащей в его основе.

Операции над представлениями

Представления можно использовать, как и базовые таблицы, для 
создания производных представлений.

П р и м е р  8 6 .  Сформировать представление с именем «Инже-
неры_Прикладной_информатики» как выборку виртуальной табли-
цы (представления) «Инженеры_вуза», удовлетворяющую условию 
«кафедра»='пи'.

CREATE VIEW Инженеры_Прикладной_информатики
AS SELECT *
FROM Инженеры_вуза
WHERE кафедра='пи';

Представление «Инженеры_Прикладной_информатики»

табель-
ный но-

мер

ка-
фе-
дра

фамилия должность зарплата
на-

чаль-
ник

153 пи Сидорова С. С. инженер 16 500,00 р. 102

З а д а н и е .  Сформировать представление с именем «Преподава-
тели_Прикладной_информатики» как выборку виртуальной табли-



136

SQL — язык структурированных запросов 

цы (представления) «Преподаватели_вуза», удовлетворяющую усло-
вию «кафедра»='пи'.

На основе представлений, также как и базовых таблиц, можно соз-
давать запросы-выборки. При этом операции выборки данных над 
представлением преобразуются в эквивалентные операции над ле-
жащей в его основе базовой таблицей. Общий принцип формирова-
ния такого рода запросов состоит в том, чтобы SELECT-предложение 
такого обобщенного запроса было бы допустимым правилами язы-
ка SQL предложением.

Для иллюстрации процесса слияния запроса на основе представле-
ния с определяющим его запросом рассмотрим следующий пример.

П р и м е р  8 7 .  Из  таблицы-представления «Инженеры_вуза» 
сформировать список инженеров, работающих на кафедре «Инфор-
мационные системы» по условию «кафедра»='ис'.

SELECT *
FROM Инженеры_вуза
WHERE кафедра='ис';

Результат запроса-выборки на основе представления «Инженеры_вуза»

табельный 
номер

кафе-
дра фамилия долж-

ность зарплата началь-
ник

241 ис Глухов Г. Г.  инженер 22 000,00 р. 201
242 ис Чернов Ч. Ч. инженер 16 500,00 р. 202

Запрос к представлению выполняется следующим образом.
1. Имена столбцов, указанные в списке предложения SELECT за-

проса, транслируются в соответствующие им имена столбцов опре-
деляющего запроса. В результате предложение SELECT приобретает 
следующий вид:

SELECT таб_номер, AS [табельный номер], шифр AS кафедра, фа-
милия, должность, зарплата, шеф

2. Имя представления, указанное в предложении FROM запроса, 
заменяется соответствующим именем базовой таблицы из предло-
жения FROM определяющего запроса.

FROM Сотрудник
3. Предложение WHERE исходного запроса объединяется с пред-

ложением WHERE из определяющего запроса
WHERE кафедра='ис' AND должность='инженер'



137

Представления

4.	 В результате всех перечисленных операций объединенный за-
прос приобретет следующий вид:

SELECT таб_номер AS [табельный номер], шифр AS кафедра, фа-
милия, должность, зарплата, шеф

FROM Сотрудник
WHERE шифр='ис' AND должность='инженер';
Объединенный запрос удовлетворяет правилам SQL. Результат 

его выполнения должен совпасть с результатом, приведенным в та-
блице примера 87.

З а д а н и е .  Сформировать список заведующих кафедрами как 
выборку из таблицы-представления «Преподавтели_вуза», удовлет-
воряющую условию «должность»='зав.кафедрой'.

Обновление представлений

Все обновления, которые выполняются в базовой таблице при по-
мощи команд INSERT, DELETE, UPDATE, немедленно отображаются 
во всех представлениях, обращающихся к этой таблице. Однако об-
ратное не верно, так как не все представления являются обновляе-
мыми.

П р и м е р  8 8 .  Выполнить обновление базовой таблицы «Сотруд-
ник», перевести сотрудника с табельным номером «таб_номер»='242' 
(инженера Чернова Ч. Ч.) на кафедру «Прикладная информатика» 
(«шифр»='пи') в той же должности.

UPDATE Сотрудник SET шифр ='пи'
WHERE таб_номер='242';

П р и м е р  8 9 .  Проверить, как сказалось обновление таблицы 
«Сотрудник» на представлении «Инженеры_вуза».

По результату сравнения базовой таблицы «Сотрудник» и опре-
деленного на ней представления «Инженеры_вуза» видно, что изме-
нение базовой таблицы транслируются в соответствующие измене-
ния представления.



138

SQL — язык структурированных запросов 

Результат обновления базовой таблицы «Сотрудник»

таб_номер шифр фамилия должность зарплата шеф
101 пи Прохоров П. П. зав.кафедрой 35 000,00 р. 101
102 пи Семенов С. С. преподаватель 25 000,00 р. 101
105 пи Петров П. П. преподаватель 25 000,00 р. 101
153 пи Сидорова С. С. инженер 16 500,00 р. 102
201 ис Андреев А. А. зав.кафедрой 35 000,00 р. 201
202 ис Борисов Б. Б. преподаватель 25 000,00 р. 201
241 ис Глухов Г. Г.  инженер 22 000,00 р. 201
242 пи Чернов Ч. Ч. инженер 16 500,00 р. 202
301 мм Басов Б. Б. зав.кафедрой 35 000,00 р. 301
302 мм Сергеева С. С. преподаватель 25 000,00 р. 301
401 оф Волков В. В. зав.кафедрой 35 000,00 р. 401
402 оф Зайцев З. З. преподаватель 25 000,00 р. 401
403 оф Смирнов С. С. преподаватель 15 000,00 р. 401
435 оф Лисин Л. Л. инженер 22 000,00 р. 402
501 вм Кузнецов К. К. зав.кафедрой 35 000,00 р. 501
502 вм Романцев Р. Р. преподаватель 25 000,00 р. 501
503 вм Соловьев С. С. преподаватель 25 000,00 р. 501
601 эф Зверев З. З. зав.кафедрой 35 000,00 р. 601
602 эф Сорокина С. С. преподаватель 25 000,00 р. 601
614 эф Григорьев Г. Г.  инженер 22 000,00 р. 602

Результат обновления представления «Инженеры_вуза»

табельный 
номер

кафе-
дра фамилия долж-

ность зарплата начальник

153 пи Сидорова С. С. инженер 16 500,00 р. 102
241 ис Глухов Г. Г.  инженер 22 000,00 р. 201
242 пи Чернов Ч. Ч. инженер 16 500,00 р. 202
435 оф Лисин Л. Л. инженер 22 000,00 р. 402
614 эф Григорьев Г. Г.  инженер 22 000,00 р. 602

К представлениям также применимы команды INSERT, DELETE, 
UPDATE. Однако далеко не все представления обновляемы. Обновля-
емым считается представление, для которого имеется возможность 
однозначно отобразить его строку или столбец на соответствующую 
строку или столбец его базовой таблицы [3].



139

Представления

В соответствии со стандартом SQL обновляемыми являются пред-
ставления, которые удовлетворяют следующим условиям [3]:

·	 каждый элемент в списке предложения SELECT определяюще-
го запроса представляет собой имя столбца, а не константу, вы-
ражение или агрегатную функцию;

·	 в определении представления не используется спецификатор 
DISTINCT, т. е. из результата определяющего запроса не исклю-
чаются дубли строк;

·	 определяющий запрос не  должен содержать предложений 
GROUP BY и HAVING;

·	 в предложении FROM определяющего запроса указана толь-
ко одна таблица. Данное требование исключает возможность 
обновления любых представлений, построенных на основе со
единения, объединения, пересечения или вычитания таблиц;

·	 предложение WHERE не должно включать никаких подзапро-
сов, которые ссылались бы на таблицу, указанную в предложе-
нии FROM.

Представления являются виртуальными таблицами. Их обновле-
ние по существу сводится к обновлению лежащих в их основе базовых 
таблиц. Поэтому следует признать обновляемым такое представление, 
по спецификации которого можно однозначно определить и обновить 
его базовую таблицу. Из множества рассмотренных нами примеров это-
му требованию удовлетворяет только представление «Инженеры_вуза», 
полученное на основе выборки по условию из единственной таблицы.

Рассмотрим примеры операций добавления, обновления и удале-
ния на примере этого представления. Так как это представление яв-
ляется обновляемым, то выполнение операций INSERT, UPDATE, DE-
LETE не должно нарушать целостности данных, установленных для 
его базовой таблицы.

П р и м е р  9 0 .  Вставить новую строку в таблицу-представле-
ние «Инженеры_вуза», например строку ('000', 'пи', 'Одинцов О. О.', 
'инженер', 10000, '101'). Проверить и убедиться, что фактически эта 
строка вставляется в базовую таблицу «Сотрудник», лежащую в ос-
нове представления.

INSERT INTO Инженеры_вуза ([табельный номер], кафедра, фа-
милия, должность, зарплата, начальник)

VALUES ('000', 'пи', 'Одинцов О. О.', 'инженер', 10000, '101');



140

SQL — язык структурированных запросов 

Результат вставки строки в представление «Инженеры_вуза»

табельный 
номер

кафе-
дра фамилия долж-

ность зарплата началь-
ник

153 пи Сидорова С. С. инженер 16 500,00 р. 102
241 ис Глухов Г. Г.  инженер 22 000,00 р. 201
242 пи Чернов Ч. Ч. инженер 16 500,00 р. 202
435 оф Лисин Л. Л. инженер 22 000,00 р. 402
614 эф Григорьев Г. Г.  инженер 22 000,00 р. 602
000 пи Одинцов О. О. инженер 10 000,00 р. 101

Результат обновления базовой таблицы «Сотрудник» после вставки

таб_номер шифр фамилия должность зарплата шеф
000 пи Одинцов О. О. инженер 10 000,00 р. 101
101 пи Прохоров П. П. зав.кафедрой 35 000,00 р. 101
102 пи Семенов С. С. преподаватель 25 000,00 р. 101
105 пи Петров П. П. преподаватель 25 000,00 р. 101
153 пи Сидорова С. С. инженер 16 500,00 р. 102
201 ис Андреев А. А. зав.кафедрой 35 000,00 р. 201
202 ис Борисов Б. Б. преподаватель 25 000,00 р. 201
241 ис Глухов Г. Г.  инженер 22 000,00 р. 201
242 пи Чернов Ч. Ч. инженер 16 500,00 р. 202
301 мм Басов Б. Б. зав.кафедрой 35 000,00 р. 301
302 мм Сергеева С. С. преподаватель 25 000,00 р. 301
401 оф Волков В. В. зав.кафедрой 35 000,00 р. 401
402 оф Зайцев З. З. преподаватель 25 000,00 р. 401
403 оф Смирнов С. С. преподаватель 15 000,00 р. 401
435 оф Лисин Л. Л. инженер 22 000,00 р. 402
501 вм Кузнецов К. К. зав.кафедрой 35 000,00 р. 501
502 вм Романцев Р. Р. преподаватель 25 000,00 р. 501
503 вм Соловьев С. С. преподаватель 25 000,00 р. 501
601 эф Зверев З. З. зав.кафедрой 35 000,00 р. 601
602 эф Сорокина С. С. преподаватель 25 000,00 р. 601
614 эф Григорьев Г. Г.  инженер 22 000,00 р. 602

З а д а н и е .  Вставить новую строку в  таблицу-представление 
«Преподавтели_вуза», например строку ('000', 'пи', 'Одинцов О. О.', 
'преподаватель', 18000, '101'). Проверить и убедиться, что фактиче-
ски эта строка вставляется в базовую таблицу «Сотрудник», лежащую 
в основе представления.



141

Представления

П р и м е р  9 1 .  В таблице-представлении «Инженеры_вуза» обно-
вить столбец «зарплата» (присвоить значение 20000) в новой строке, 
задав ее по номеру сотрудника («табельный номер»='000'). Прове-
рить и убедиться, что и в этом случае фактически обновляется соот-
ветствующий столбец базовой таблицы «Сотрудник».

UPDATE Инженеры_вуза SET зарплата = [Введите новую зарплату]
WHERE [табельный номер]= [Введите табельный номер сотруд-

ника];

Результат обновления строки в представление «Инженеры_вуза»

табельный 
номер

кафе-
дра фамилия долж-

ность зарплата начальник

153 пи Сидорова С. С. инженер 16 500,00 р. 102
241 ис Глухов Г. Г.  инженер 22 000,00 р. 201
242 пи Чернов Ч. Ч. инженер 16 500,00 р. 202
435 оф Лисин Л. Л. инженер 22 000,00 р. 402
614 эф Григорьев Г. Г.  инженер 22 000,00 р. 602
000 пи Одинцов О. О. инженер 20 000,00 р. 101

Результат обновления базовой таблицы «Сотрудник»

таб_номер шифр фамилия должность зарплата шеф
000 пи Одинцов О. О. инженер 20 000,00 р. 101
101 пи Прохоров П. П. зав.кафедрой 35 000,00 р. 101
102 пи Семенов С. С. преподаватель 25 000,00 р. 101
105 пи Петров П. П. преподаватель 25 000,00 р. 101
153 пи Сидорова С. С. инженер 16 500,00 р. 102
201 ис Андреев А. А. зав.кафедрой 35 000,00 р. 201
202 ис Борисов Б. Б. преподаватель 25 000,00 р. 201
241 ис Глухов Г. Г.  инженер 22 000,00 р. 201
242 пи Чернов Ч. Ч. инженер 16 500,00 р. 202
301 мм Басов Б. Б. зав.кафедрой 35 000,00 р. 301
302 мм Сергеева С. С. преподаватель 25 000,00 р. 301
401 оф Волков В. В. зав.кафедрой 35 000,00 р. 401
402 оф Зайцев З. З. преподаватель 25 000,00 р. 401
403 оф Смирнов С. С. преподаватель 15 000,00 р. 401
435 оф Лисин Л. Л. инженер 22 000,00 р. 402
501 вм Кузнецов К. К. зав.кафедрой 35 000,00 р. 501



142

SQL — язык структурированных запросов 

таб_номер шифр фамилия должность зарплата шеф
502 вм Романцев Р. Р. преподаватель 25 000,00 р. 501
503 вм Соловьев С. С. преподаватель 25 000,00 р. 501
601 эф Зверев З. З. зав.кафедрой 35 000,00 р. 601
602 эф Сорокина С. С. преподаватель 25 000,00 р. 601
614 эф Григорьев Г. Г.  инженер 22 000,00 р. 602

З а д а н и е .  В таблице-представлении «Преподавтели_вуза» обно-
вить столбец «зарплата» (присвоить значение 20000) в новой строке, 
задав ее по номеру сотрудника («табельный номер»= '000'). Прове-
рить и убедиться, что и в этом случае фактически обновляется соот-
ветствующий столбец базовой таблицы «Сотрудник».

П р и м е р  9 2 .  Из таблицы-представления «Инженеры_вуза» уда-
лить вновь введенную строку, задав ее по номеру сотрудника («та-
бельный номер»='000'). Проверить и убедиться, что и в этом случае 
фактически удаляется строка из базовой таблицы «Сотрудник», ле-
жащей в основе представления.

DELETE *
FROM Инженеры_вуза
WHERE [табельный номер]= [Введите табельный номер сотруд-

ника];

Результат удаления строки в представление «Инженеры_вуза»

табельный 
номер

кафе-
дра фамилия должность зарплата началь-

ник
153 пи Сидорова С. С. инженер 16 500,00 р. 102
241 ис Глухов Г. Г.  инженер 22 000,00 р. 201
242 пи Чернов Ч. Ч. инженер 16 500,00 р. 202
435 оф Лисин Л. Л. инженер 22 000,00 р. 402
614 эф Григорьев Г. Г.  инженер 22 000,00 р. 602

Результат обновления базовой таблицы «Сотрудник» после удаления

таб_номер шифр фамилия должность зарплата шеф
101 пи Прохоров П. П. зав.кафедрой 35 000,00 р. 101
102 пи Семенов С. С. преподаватель 25 000,00 р. 101
105 пи Петров П. П. преподаватель 25 000,00 р. 101



143

Индексы

таб_номер шифр фамилия должность зарплата шеф
153 пи Сидорова С. С. инженер 16 500,00 р. 102
201 ис Андреев А. А. зав.кафедрой 35 000,00 р. 201
202 ис Борисов Б. Б. преподаватель 25 000,00 р. 201
241 ис Глухов Г. Г.  инженер 22 000,00 р. 201
242 пи Чернов Ч. Ч. инженер 16 500,00 р. 202
301 мм Басов Б. Б. зав.кафедрой 35 000,00 р. 301
302 мм Сергеева С. С. преподаватель 25 000,00 р. 301
401 оф Волков В. В. зав.кафедрой 35 000,00 р. 401
402 оф Зайцев З. З. преподаватель 25 000,00 р. 401
403 оф Смирнов С. С. преподаватель 15 000,00 р. 401
435 оф Лисин Л. Л. инженер 22 000,00 р. 402
501 вм Кузнецов К. К. зав.кафедрой 35 000,00 р. 501
502 вм Романцев Р. Р. преподаватель 25 000,00 р. 501
503 вм Соловьев С. С. преподаватель 25 000,00 р. 501
601 эф Зверев З. З. зав.кафедрой 35 000,00 р. 601
602 эф Сорокина С. С. преподаватель 25 000,00 р. 601
614 эф Григорьев Г. Г.  инженер 22 000,00 р. 602

З а д а н и е .  Из таблицы-представления «Преподаватели_вуза» 
удалить новую строку, задав ее по номеру сотрудника («табельный 
номер»='000'). Проверить и убедиться, что и в этом случае факти-
чески удаляется строка из базовой таблицы «Сотрудник», лежащую 
в основе представления.

Индексы

Индекс — это упорядоченный (буквенный или числовой) список 
столбцов или групп столбцов в таблице. Таблицы могут иметь боль-
шое количество строк. А так как строки не находятся в каком-нибудь 
определенном порядке, то их поиск по указанному значению может 
потребовать времени.

Скажем, что вы, например, хотите обрабатывать таблицу «Сотруд-
ник» в такой последовательности, чтобы значения в столбце «фами-
лия» располагались в алфавитном порядке. Но на такую сортировку 
записей таблицы требуется определенное время. И чем таблица боль-



144

SQL — язык структурированных запросов 

ше, тем сортировка проходит дольше. Индексы могут оказаться пре-
красным средством экономии времени. Индекс — это подчиненная 
таблица, или таблица поддержки, которая сопровождает свою табли-
цу данных. Каждой строке таблицы данных соответствует определен-
ная строка таблицы индекса. Индекс содержит ссылки на строки та-
блицы в заданном порядке и позволяет получить доступ к строкам 
в соответствующей последовательности.

Индексы могут быть простыми, т. е. задавать порядок доступа 
к данным по одному столбцу, или составными с порядком доступа, 
определяемым последовательностью столбцов в индексе. Упорядо-
чение доступа может задаваться как по возрастанию, так и по убы-
ванию значений индекса.

Индексы могут создаваться только для базовых таблиц, не для 
представлений. Однако при создании представлений могут быть ис-
пользованы индексированные таблицы. Нужные индексы создаются 
заранее в предвидении будущих запросов. Однако решение о их ис-
пользовании принимает не пользователь, а система.

Хотя индексы ускоряют доступ к актуальным данным, замедля-
ют процедуру обновления базовой таблицы при выполнении встав-
ки, обновления или удаления данных. Замедление связано с тем, что 
индексы должны отслеживать все изменения, происходящие с напол-
нением таблиц.

Индексы, подобно базовым таблицам, могут создаваться и унич-
тожаться в любое время. Соответствующие команды относятся к под-
множеству языка определения данных.

Создание индекса выполняется по команде
CREATE [UNIQUE] INDEX <имя индекса> ON <имя базовой табли-

цы> (<имя столбца> [{ASC|DESC}] [, <имя столбца> [{ASC|DESC}], …])
[WITH {PRIMARY | DISALLOW NULL | IGNORE NULL}]
Здесь: <имя индекса> — имя индекса;
<имя базовой таблицы> — имя таблицы, для которой создается индекс;
<имя столбца> — имена столбцов, по которым создается индекс;
[{ASC|DESC}] — необязательный параметр задает способ упорядочения:

· ASC — по возрастанию индекса (умолчание);
· DESC — по убыванию;

[UNIQUE] �— необязательный параметр уникальности индекса огра-
ничивает доступ только к тем строкам, которые имеют 
неповторяющиеся значения индекса;



145

Индексы

PRIMARY	 — присваивает индексу статус первичного ключа;
DISALLOW NULL	� — запрещает значение NULL в столбцах индекса 

новых записей;
IGNORE NULL	� — запрещает включение записей, имеющих значе-

ние NULL в столбцах индекса.

П р и м е р  9 3 .  Создать в таблице «Сотрудник» индекс по алфа-
виту значений столбца «фамилия».

CREATE INDEX Фамилия ON Сотрудник (фамилия);

Уничтожение индекса осуществляется по команде
DROP INDEX <имя индекса>;
Индекс, как и представление, будет также автоматически уничто-

жен при уничтожении его базовой таблицы.



146

Заключение

Р ассмотренные в учебном пособии примеры и рекомендо-
ванные для самостоятельного выполнения задания были 
адресованы начинающему пользователю SQL. Хотелось бы 

надеяться, что они в достаточной степени продемонстрировали, 
сколь богаты и многообразны возможности этого языка. SQL — это 
и язык описания структуры базы данных. Кроме того, с его помо-
щью осуществляется наполнение базы данных содержательной ин-
формацией и манипулирование хранимыми данными. А как мно-
гообразны средства спецификации запросов‑выборок! Это могут 
быть и простые выборки данных, и настраиваемые параметриче-
ские запросы, и запросы на сортировку и группировку данных. Это 
могут быть запросы, адресуемые к связанным таблицам, и запро-
сы с подзапросами.

SQL является самым популярным языком баз данных. Будучи 
непроцедурным языком, он прост в изучении и может использо-
ваться как профессионалами, так и непрофессионалами. Будете ли 
вы разработчиком прикладных программ, администратором базы 
данных или просто квалифицированным пользователем, хорошее 
практическое знание SQL поможет вам взаимодействовать с база-
ми данных.



147

Библиографический список

1.	 Кодд Э. Ф. Реляционная модель данных для больших совместно 
используемых банков данных [Электронный ресурс]/Э. Ф. Кодд; 
пер. с  англ. М. Р. Когаловского//СУБД. 1995. №  1. Режим 
доступа: http://citforum.ru/database/classics/codd/. Загл.  
с экрана.

2.	 Дейт К. Дж. Введение в  системы баз данных: пер с  англ./ 
К. Дж. Дейт. 6‑е изд. Киев; М.; СПб.: Изд. дом «Вильямс», 1999. 
848 с.

3.	 Коннолли Т. Базы данных: проектирование, реализация и со-
провождение. Теория и практика : [пер. с англ.]/Т. Коннол-
ли, К. Бегг, А. Страчан. 2‑е изд. М.: Изд. дом «Вильямс», 2000. 
1120 с.

4.	 Пушников А. Ю. Введение в системы управления базами дан-
ных. Часть 1. Реляционная модель данных [Электронный ре-
сурс]: учеб. пособие/А. Ю. Пушников. Уфа: изд. Башкир. ун-та, 
1999. 108 с. [Электронный ресурс]. Режим доступа: http://www.
citforum.ru/database/dblearn/index.shtml. Загл. с экрана.

5.	 Кириллов В. В. Основы проектирования реляционных баз 
данных [Электронный ресурс]/В. В. Кириллов. СПб.: Изд-во  
С.-Петерб. гос. ин-та точной механики и оптики (техн. ун-т) 
Режим доступа: http://citforum.ru/database/dbguide/. Загл. 
с экрана.

6.	 Грабер М. Введение в SQL/М. Грабер. М.: Лори, 2010. 228 с.
7.	 Дунаев В. В. Базы данных. Язык SQL/В. В. Дунаев. СПб.: 

БХВ‑Петербург, 2006. 288 с.
8.	 Форта Б. SQL за 10 минут/Б. Форта. 4‑е изд. М.: Изд. дом «Ви-

льямс», 2014. 288 с.
9.	 Кириллов В. В. Структуризированный язык запросов (SQL) 

[Электронный ресурс] : учеб. пособие/В. В. Кириллов, 



148

Библиографический список

Г. Ю. Громов. СПб.: Изд-во С.-Петерб. гос. ин-та точной меха-
ники и оптики (техн. ун-т). Режим доступа: http://citforum.
ru/database/sql_kg/index.shtml. Загл. с экрана.

10.	Кузнецов С. Д. Введение в стандарты языка баз данных SQL 
[Электронный ресурс]/С. Д. Кузнецов. Б. м.: Центр информа-
ционных технологий, 1998. Режим доступа: http://citforum.
ru/database/sqlbook/index.shtml. Загл. с экрана.

11.	Когаловский М. Р. Абстракции и модели в системах баз дан-
ных [Электронный ресурс]/М. Р. Когаловский//СУБД. 1998. 
№  4,5. Режим доступа: http://www.osp.ru/dbms/1998/04–
05/13031594/. Загл. с экрана.

12.	MSDN-библиотека. Microsoft Access SQL Reference [Электрон-
ный ресурс]. Режим доступа: http://msdn.microsoft.com/en-
us/library/bb259125 (v=office.12).aspx

13.	Вендров А. М. Проектирование программного обеспечения 
экономических информационных систем : учебник/А. М. Вен-
дров. 2‑е изд., перераб. и доп. [Электронный ресурс]. М.: Финан-
сы и статистика, 2006. 544 с. Режим доступа: http://vernikov.
ru/media/K2/item_attachments/vendorov.pdf. Загл. с экрана.



149

Приложение

Наполнение реляционных таблиц  
учебного проекта

Таблица П1
«Факультет»

аббревиатура название
ен Естественные науки
ит Информационные технологии
фм Физико-математический

Таблица П2
«Кафедра»

шифр название факультет
вм Высшая математика ен
ис Информационные системы ит
мм Математическое моделирование фм
оф Общая физика ен
пи Прикладная информатика ит
эф Экспериментальная физика фм

Таблица П3
«Сотрудник»

таб_номер шифр фамилия должность зарплата шеф
101 пи Прохоров П. П. зав.кафедрой 35 000,00 р. 101
102 пи Семенов С. С. преподаватель 25 000,00 р. 101
105 пи Петров П. П. преподаватель 25 000,00 р. 101
153 пи Сидорова С. С. инженер 15 000,00 р. 102
201 ис Андреев А. А. зав.кафедрой 35 000,00 р. 201
202 ис Борисов Б. Б. преподаватель 25 000,00 р. 201
241 ис Глухов Г. Г.  инженер 20 000,00 р. 201
242 ис Чернов Ч. Ч. инженер 15 000,00 р. 202
301 мм Басов Б. Б. зав.кафедрой 35 000,00 р. 301
302 мм Сергеева С. С. преподаватель 25 000,00 р. 301



150

Приложение

таб_номер шифр фамилия должность зарплата шеф
401 оф Волков В. В. зав.кафедрой 35 000,00 р. 401
402 оф Зайцев З. З. преподаватель 25 000,00 р. 401
403 оф Смирнов С. С. преподаватель 15 000,00 р. 401
435 оф Лисин Л. Л. инженер 20 000,00 р. 402
501 вм Кузнецов К. К. зав.кафедрой 35 000,00 р. 501
502 вм Романцев Р. Р. преподаватель 25 000,00 р. 501
503 вм Соловьев С. С. преподаватель 25 000,00 р. 501
601 эф Зверев З. З. зав.кафедрой 35 000,00 р. 601
602 эф Сорокина С. С. преподаватель 25 000,00 р. 601
614 эф Григорьев Г. Г.  инженер 20 000,00 р. 602

Таблица П4
«Специальность»

номер направление шифр
01.03.04 Прикладная математика мм
09.03.02 Информационные системы и технологии ис
09.03.03 Прикладная информатика пи
14.03.02 Ядерные физика и технологии эф
38.03.05 Бизнес-информатика ис

Таблица П5
«Дисциплина»

код объем название исполнитель
101 320 математика вм
102 160 информатика пи
103 160 физика оф
202 120 базы данных ис
204 160 электроника эф
205 80 программирование пи
209 80 моделирование мм

Окончание табл. П3



151

Наполнение реляционных таблиц учебного проекта 

Таблица П6

«Заявка»

номер код
01.03.04 101
01.03.04 205
01.03.04 209
09.03.02 101
09.03.02 102
09.03.02 103
09.03.02 202
09.03.02 205
09.03.02 209
09.03.03 101
09.03.03 102
09.03.03 103
09.03.03 202
09.03.03 205
14.03.02 101
14.03.02 102
14.03.02 103
14.03.02 204
38.03.05 101
38.03.05 103
38.03.05 202
38.03.05 209

Таблица П7

«Зав_кафедрой»

таб_номер стаж
101 15
201 18
301 20
401 10
501 18
601 8



152

Приложение

Таблица П8
«Инженер»

таб_номер специальность
153 электроник
241 электроник
242 программист
435 электроник
614 программист

Таблица П9
«Преподаватель»

таб_номер звание степень
101 профессор д. т.н.
102 доцент к. ф.-м. н.
105 доцент к. т.н.
201 профессор д. ф.-м. н.
202 доцент к. ф.-м. н.
301 профессор д. т.н.
302 доцент к. т.н.
401 профессор д. т.н.
402 доцент к. т.н.
403 ассистент –
501 профессор д. ф.-м. н.
502 профессор д. ф.-м. н.
503 доцент к. ф.-м. н.
601 профессор д. ф.-м. н.

Таблица П10
«Студент»

рег_номер номер фамилия
10101 09.03.03 Николаева Н. Н.
10102 09.03.03 Иванов И. И.
10103 09.03.03 Крюков К. К.
20101 09.03.02 Андреев А. А.
20102 09.03.02 Федоров Ф. Ф.
30101 14.03.02 Бондаренко Б. Б.
30102 14.03.02 Цветков К. К.



153

Наполнение реляционных таблиц учебного проекта 

рег_номер номер фамилия
30103 14.03.02 Петров П. П.
50101 01.03.04 Сергеев С. С.
50102 01.03.04 Кудрявцев К. К.
80101 38.03.05 Макаров М. М.
80102 38.03.05 Яковлев Я. Я.

Таблица П11
«Экзамен»

дата код рег_номер таб_номер аудитория оценка
05.06.2015 102 10101 102 т505 4
05.06.2015 102 10102 102 т505 4
05.06.2015 202 20101 202 т506 4
05.06.2015 202 20102 202 т506 3
07.06.2015 102 30101 105 ф419 3
07.06.2015 102 30102 101 т506 4
07.06.2015 102 80101 102 м425 5
09.06.2015 205 80102 402 м424 4
09.06.2015 209 20101 302 ф333 3
10.06.2015 101 10101 501 т506 4
10.06.2015 101 10102 501 т506 4
10.06.2015 204 30102 601 ф349 5
10.06.2015 209 80101 301 э105 5
10.06.2015 209 80102 301 э105 4
12.06.2015 101 80101 502 с324 4
15.06.2015 101 30101 503 ф417 4
15.06.2015 101 50101 501 ф201 5
15.06.2015 101 50102 501 ф201 3
15.06.2015 103 10101 403 ф414 4
17.06.2015 102 10101 102 т505 5

Окончание табл. П10



154

Оглавление

Введение. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                            3

Реляционная модель данных . . . . . . . . . . . . . . . . . . . . . . . . . .                         6
Структура данных. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                  7
Ограничения целостности . . . . . . . . . . . . . . . . . . . . . . . . . .                         11

Внутренние ограничения целостности. . . . . . . . . . . . .            12
Семантические ограничения целостности. . . . . . . . . .         13

Операции над отношениями . . . . . . . . . . . . . . . . . . . . . . . .                       22
Объединение. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                  23
Вычитание . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                    25
Пересечение. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                   25
Декартово произведение. . . . . . . . . . . . . . . . . . . . . . . . .                        26
Проекция . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                     27
Селекция. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                      28
Соединение . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                   29
Деление. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                       33

SQL — язык структурированных запросов. . . . . . . . . . . . .            35
Введение в SQL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                   35
Определение данных в SQL. . . . . . . . . . . . . . . . . . . . . . . . . .                         38
Описание учебного проекта. . . . . . . . . . . . . . . . . . . . . . . . .                        43
Язык определения данных . . . . . . . . . . . . . . . . . . . . . . . . . .                         47

Создание таблиц. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                               47
Модификация структуры таблицы. . . . . . . . . . . . . . . . .                55
Удаление таблицы. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                              57

Язык манипулирования данными. . . . . . . . . . . . . . . . . . . .                   58
Ввод (добавление) данных в таблицу . . . . . . . . . . . . . .             59
Обновление данных. . . . . . . . . . . . . . . . . . . . . . . . . . . . .                            62
Удаление данных. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                               63



155

Оглавление

Язык запросов. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                    64
Простые запросы. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                               66
Запросы к связанным таблицам. . . . . . . . . . . . . . . . . . .                  86
Декартово произведение. . . . . . . . . . . . . . . . . . . . . . . . .                        87
Естественное соединение . . . . . . . . . . . . . . . . . . . . . . . .                       88
Запросы с подзапросами . . . . . . . . . . . . . . . . . . . . . . . .                       101
Теоретико-множественные операции. . . . . . . . . . . . .            118

Представления . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                  127
Создание представлений. . . . . . . . . . . . . . . . . . . . . . . .                       128
Удаление представлений. . . . . . . . . . . . . . . . . . . . . . . .                       135
Операции над представлениями . . . . . . . . . . . . . . . . .                135
Обновление представлений . . . . . . . . . . . . . . . . . . . . .                    137

Индексы. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                        143

Заключение. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                       146

Библиографический список . . . . . . . . . . . . . . . . . . . . . . . . .                        147

Приложение. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                       149



Учебное издание

Кара-Ушанов Владимир Юрьевич

SQL — язык реляционных 
баз данных

Редактор И. В. Коршунова
Верстка О. П. Игнатьевой

Подписано в печать 02.02.2016. Формат 70×100/16. 
Бумага писчая. Плоская печать. Гарнитура Charter.

Уч.-изд. л. 7,58. Усл. печ. л. 12,6. Тираж 50 экз. 
Заказ 9

Издательство Уральского университета 
Редакционно-издательский отдел ИПЦ УрФУ
620049, Екатеринбург, ул. С. Ковалевской, 5. 
Тел.: 8(343)375-48-25, 375-46-85, 374-19-41

E-mail: rio@urfu.ru

Отпечатано в Издательско-полиграфическом центре УрФУ
620075, Екатеринбург, ул. Тургенева, 4. 

Тел.: 8(343) 350-56-64, 350-90-13. Факс: 8(343) 358-93-06
E-mail: press-urfu@mail.ru



В. Ю. КАРА-УШАНОВ

SQL — ЯЗЫК РЕЛЯЦИОННЫХ 
БАЗ ДАННЫХ

Учебное пособие

9 7 8 5 7 9 9 6 1 6 2 2 9

I SBN 579961622 - 7




