2N\
N

NN N
\\\\\\§§\\\\\\
AN \\\\‘ Sy
\\\\\\ \\\\\\ N
N W
N “‘\\\\\\\\ \i\
N

N N
W\

\\\‘\ ,\\‘\\\\\ \\\;\\\\ R
hitthe
Q\\\\\§:§1§3‘:\?\\ \\k\\\\\ S
DA N

7%

/7

Erik Siegel & Adam Retter

www.it-ebooks.info

http://www.it-ebooks.info/

O'REILLY"

eXist

Get a head start with eXist, the open source NoSQL database and application
development platform built entirely around XML technologies. With this
hands-on guide, you'll learn eXist from the ground up, from using this feature-
rich database to work with millions of documents to building complex web
applications that take advantage of eXist's many extensions.

If you're familiar with XML—as a student, professor, publisher, or developer—
you'll find that eXist is ideal for all kinds of documents. This book shows you
how to store, query, and search documents with XQuery and other XML
technologies, and how to construct applications on top of the database
with tools such as eXide and eXist's built-in development environment.

m Manage both data-oriented and text-oriented markup
documents securely

m Build a sample application that analyzes and searches
Shakespeare's plays

m Go inside the architecture and learn how eXist processes
documents

m Learn how to work with eXist's internal development environment

m Choose among various indexes, including a full-text index
based on Apache Lucene

m Dive into eXist's APIs for integrating or interacting with the
database

m Extend eXist by building your own Triggers, Scheduled Tasks,
and XQuery extension modules

Erik Siegel is a content engineer and XML specialist who runs Xatapult consul-
tancy in The Netherlands. He specializes in content design and conversion, XML
schemas and transformations, and eXist and XProc applications.

Adam Retter, Director of Evolved Binary in the UK and a cofounder of eXist
Solutions in Germany, has been a member of the eXist Core Development Team
since 2005. He is also a member of the XML Guild and an Invited Expert to the
W3C XML Query Working Group.

“This book tells you
everything you need
to know to implement
eXist, all the way from
writing your first queries
to building sophisticated

web applications.”

—Priscilla Walmsley
XML consultant and author of XQuery

“FErik Siegel and Adam
Retter have written a
technical tour de force
about the database in
their eponymous book
eXist, one that's both
eminently readable
while still digging deep
into the inner workings
of the database and how

touseit”

—Kurt Cagle
Principal Evangelist at Avalon Consulting

XML/DATABASES

US $44.99 CAN $47.99
ISBN: 978-1-449-33710-0

MR
TN mi

www.it-ebooks.info

Twitter: @oreillymedia
facebook.com/oreilly

http://www.it-ebooks.info/

eXist

Erik Siegel and Adam Retter

Beijing + Cambridge + Farnham - Kaln « Sebastopol - Tokyo [KOAR{S|HNES

www.it-ebooks.info

http://www.it-ebooks.info/

eXist
by Erik Siegel and Adam Retter

Copyright © 2015 Erik Siegel and Adam Retter. All rights reserved.
Printed in the United States of America.
Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com .

Editors: Simon St. Laurent and Allyson MacDonald ~ Proofreader: Rachel Head

Production Editor: Matthew Hacker Indexer: Lucie Haskins

Copyeditor: Rachel Monaghan Interior Designer: David Futato
Cover Designer: Ellie Volckhausen
lllustrator: Rebecca Demarest

December 2014: First Edition

Revision History for the First Edition
2014-12-04: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781449337100 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. eXist, the cover image of a lettered
aragari, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

978-1-449-33710-0
[LST]

www.it-ebooks.info

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781449337100
http://www.it-ebooks.info/

Table of Contents

o] [

1o INtroduction.evveei it
What Is eXist?
eXist Compared to Other Database Systems
History
Competitors
Open Source Competitors
Closed Source, Commercial Competitors
Who Is Using eXist, and for What?
Contributing to the Community
Individuals Using eXist
Organizations Using eXist
Authors Using eXist
Developers Using eXist
Additional Resources

2. Getting Started.cvuviiniiinii ittt i i
Downloading and Installing eXist
Preconditions
Downloading eXist
Things to Decide Before Installing
Installing eXist
Post-Installation Checks
Starting and Stopping eXist with a GUI
Starting and Stopping eXist from the Command Line
A First Tour Around Town
The Dashboard
Playing Around
What’s in Your Database
What’s on Your Disk

—

W O 0 00 Ul W —

— = e e e
AN QN U1

19
19
19
20
20
22
22
23
24
24
24
27
27
28

www.it-ebooks.info

http://www.it-ebooks.info/

The Java Admin Client
Getting Files into and out of the Database
Hello eXist!

Hello Data

Hello XQuery

Hello XSLT

Hello XInclude

Hello XForms

Using eXist 10T, . .oeuieneii ittt ittt i i i e eeennes

Preparations and Basic Application Setup
eXist Terminology
Exporting Documents from eXist
Designing an Application’s Collection Structure and Importing Data
Viewing the Data
Listing the Plays (XML)
Listing with the collection Function
Listing with the xmldb Extension Module
Listing the Plays (HTML)
Analyzing the Plays
Linking the Analysis to the Play Overview
Searching the Plays
Searching Using Straight XQuery
Searching Using an Index
Creating a Log
What's Next?

Yo 1 1 (=T 11| (-3

Deployment Architectures
Embedded Architecture
Client/Server Database Architecture
Web Application Platform Architecture
Storage Architecture
XML Document Storage and Indexing
Binary Document Storage
Efficient XML Processing Architecture
Collections
Documents
Dynamic Level Numbering of Nodes
Dynamic Level Numbering and Updates
Paging and Caching

29
30
31
31
32
33
35
35

39
39
40
40
42
43
45
45
48
48
51
55
56
56
58
60
64

65
67
68
69
70
72
72
76
76
77
79
80
83
85

iv

| Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

5. Working with the Database.coviiiiiiiiiiiiiiiiiiiiiiiiiiiinnens 87

The Database’s Content 87
Help: Where Is My XML? 87
Terminology 88
Properties of Collections and Resources 88
System Collections 90
Addressing Collections, Resources, and Files 91

The XPath Collection and Doc Functions in eXist 93
The collection Function 93
The doc Function 94

Querying the Database Using REST 94
Security 95
GET Requests 95
PUT Requests 97
DELETE Requests 97
POST Requests 98
Ad Hoc Querying 100

Updating Documents 101
eXist’s XQuery Update Extension 102
XUpdate 105

Controlling the Database from Code 107
Specifying Collections and Resources for the xmldb Extension Module 107
Getting Information 108
Creating Resources and Collections 109
Setting Permissions 110
Moving, Removing, and Renaming 110

6. XQueryfor eXist........couuiiiiiiiiiiiiiii it m

eXist’s XQuery Implementation 111
XQuery 1.0 Support 111
XQuery 3.0 Support 112
Other XQuery Extras 116
XQuery Execution 118

Serialization 118
Controlling Serialization 119
Serialization Options 119

Controlling XQuery Execution 123
eXist XQuery Pragmas 123
Limiting Execution Time and Output Size 124
Other Options 124

XQuery Documentation with xqDoc 125

Table of Contents | v

www.it-ebooks.info

http://www.it-ebooks.info/

7. EXtension ModUles. . .o.vuvrininiinieii it it iieineneneeneneneenenenns 127

Types of Extension Modules 127
Extension Modules Written in Java 127
Extension Modules Written in XQuery 128

Enabling Extension Modules 128
Enabling Java Extension Modules 129
Enabling XQuery Extension Modules 130

T {17 133

Security Basics 134
Users 134
Groups 135
Permissions 135
Default Permissions 138

Managing Users and Groups 140
Group Managers 140
Tools for User and Group Management 141

User and Group Management with the Java Admin Client 145
Scenario 145
Creating a Group 145
Creating Users 147
Setting Group Managers 149

Managing Permissions 151
Tools for Permission Management 151
Permission Management with the Java Admin Client 154

Access Control Lists 156
Access Control Entries 157
ACLs by Example 158
Managing ACLs 164

Realms 166
LDAP Realm Module 166
Other Realm Modules 174

Hardening 174
Reducing Collateral Damage 175
Reducing the Attack Surface 177

User Authentication in XQuery 187
xmldb:authenticate 188
xmldb:login 188

Backups 189

9. Building Applications.ovviuiiiiiiiiii ittt 191

Overview 191

vi | Tableof Contents

www.it-ebooks.info

http://www.it-ebooks.info/

10.

Which Technology to Use?
Application Aspects
Getting Started, Quickly?
Where to Store Your Application?
URL Mapping Using URL Rewriting
Anatomy of a URL Rewriting-Based Application
How eXist Finds the Controller
The URL Rewriting Controller’s Environment
The Controller’s Output XML Format
Advanced URL Control
Changing the URL for URL Rewriting
Changing Jetty Settings: Port Number and URL Prefix
The controller-config.xml Configuration File
Proxying eXist Behind a Web Server
Requests, Sessions, and Responses
The request Extension Module
The session Extension Module
The response Extension Module
Application Security
Running with Extra Permissions
Global Error Pages
Building Applications with RESTXQ
Configuring RESTXQ
RESTXQ Annotations
RESTXQ XQuery Extension Functions
Packaging
Examples
The Packaging Format
The Prepare and Finish Scripts
Creating Packages
Additional Remarks About Packages

Other XML Technologies.cvueiiniiiiiiiiiiiiiiieiiieeeieennennnns
XSLT

Embedding Stylesheets or Not

Invoking XSLT with the Transform Extension Module

Passing XSLT Parameters

Invoking XSLT by Processing Instruction

Stylesheet Details
XInclude

Including Documents

Including Query Results

192
192
193
194
194
195
198
199
200
203
205
205
206
207
209
209
211
211
212
214
215
215
216
217
227
227
229
229
233
234
234

237
238
238
240
241
242
243
243
244
245

Table of Contents

www.it-ebooks.info

| vii

http://www.it-ebooks.info/

1.

12.

Error Handling and Fallback
Validation
Implicit Validation
Explicit Validation
Collations
Supported Collations
Specifying Collations
XSL-FO
XForms
XForms Instances
XForms Submissions
betterForm
XSLTForms

BasicIndexing..........coovviiiiiiiiiiiiiiiiii

Indexing Example
Index Types
Structural Index
Range Indexes
NGram Indexes
Full-Text Indexes
Configuring Indexes
Configuring Range Indexes
Configuring NGram Indexes
Maintaining Indexes
Using Indexes
Using the Structural Index
Using the Range Indexes
Using the NGram Indexes
General Optimization Tips
Debugging Indexes
Checking Index Definitions
Checking Index Usage
Tracing the Optimizer

Text Indexing and Lookup.ccovvvvveiiiiinnnenn.
Full-Text Index and KWIC Example

Configuring Full-Text Indexes

Configuring the Search Context

Handling Mixed Content
Maintaining the Full-Text Index

Searching with the Full-Text Index

245
246
246
248
251
251
251
252
254
255
258
263
265

271
272
274
274
274
275
275
275
276
278
278
279
279
279
280
281
281
282
282
283

285
285
286
287
290
291
292

viii

| Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Search Operations 292

Scoring Searches 296
Locating Matches 296
Using Keywords in Context 297
Defining and Configuring the Lucene Analyzer 298
Manual Full-Text Indexing 301
cAntegration.c.i it e e 303
Choosing an API 303
Remote APIs 305
WebDAV 305
REST Server API 319
XML-RPC API 342
XML:DB Remote API 349
RESTXQ 353
XQJ 359
Deprecated Remote APIs 361
Remote API Libraries for Other Languages 363
Local APIs 364
XML:DB Local API 366
Fluent API 369
CT00IS. o 373
Java Admin Client 373
eXide 374
oXygen 375
Connecting with 0Xygen Using WebDAV 376
Natively Connecting with oXygen 377
Ant and eXist 379
Trying the Ant Examples 379
Preparing an eXist Ant Build Script 380
Using Ant with eXist 381

. System Administration.c.covviiiiiiiiiiii i i i 385
Logging 385
JMX 387
Memory and Cache Tuning 389
Understanding Memory Use 390
Cache Tuning 394
Backup and Restore 396
Client-Side Data Export Backup 397
Server-Side Data Export Backup 400
Table of Contents | ix

www.it-ebooks.info

http://www.it-ebooks.info/

16.

A.

B.

Restoring a Clean Database

Emergency Export Tool
Installing eXist as a Service

Solaris

Windows Linux and Other Unix
Hosting and the Cloud

Entic

Amazon EC2

Other Cloud Providers
Getting Support

Community Support

Commercial Support

Advanced TOPICS. .. vveee it iie it cie e e eanaes

XQuery Testing
Versioning
Historical Archiving
Document Revisions
Scheduled Jobs
Scheduling Jobs
XQuery Jobs
Java Jobs
Startup Triggers
Configured Modules Example Startup Trigger
Database Triggers
XQuery Triggers
Java Triggers
Internal XQuery Library Modules
Using the Hello World Module
Types and Cardinality
Function Parameters and Return Types
Variable Declarations
Module Configuration
Developing eXist
Building eXist from Source
Debugging eXist

XQuery Extension Modules.cooovviiiiiiiiiiiiiinnne

REST Server PrOCeSSeS. . v vvvvveteeeeeneeneneneeneneerenenennes

403
404
405
406
407
408
408
408
412
413
415
415

417
417
427
427
428
435
436
438
441
446
448
449
453
457
467
473
474
477
482
483
483
485
488

X

| Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Welcome

Welcome, dear reader, to our book on eXist. Whether you have purchased, begged,
borrowed, or stolen this book, we hope that you find its contents of great use when
applied to solving your information management problems.

While it’s true that eXist has been around for some years now—in fact, for longer
than many of the now popular NoSQL platforms—eXist has continued to innovate
and evolve. eXist, while stable and widely used for many years, has now hit a mile-
stone in its history where it can be considered “battle-worn”—a veteran, if you like
(or as we like to say in software engineering, “mature”). We have considered writing
a book on eXist for the past few years, but we now know that the time is right to share
our knowledge with the world. Welcome eXist 2.0.

Who Is This Book For?

Perhaps we should first answer this question with another question: Who is eXist for?

eXist aims to meet the requirements of a wide user base, and therefore is probably the
most feature-rich product in its class. eXist has been engineered over the years to
meet the needs of users ranging from humanities students and professors undertak-
ing interesting linguistic projects, to large international publishers working with mil-
lions of documents, to developers wishing to rapidly create document- and data-
driven web applications, and most cases in between.

This book aims to meet the needs of a wide audience: from tinkerers, students, pro-
fessors, and information managers right up to software engineers. This book assumes
that you wish to learn and use eXist; if not, you may have bought the wrong book! No
familiarity with eXist is assumed; we start with the basics and progresses to more
complicated topics. This book does not set out to teach XML, XPath, XQuery, XSLT,
XForms, or any of the other XML technologies. While of course you may gain an

Xi

www.it-ebooks.info

http://www.it-ebooks.info/

understanding of them from this book, there are other books and online resources
available that focus on these topics as their raison d'étre. We assume that you have a
working knowledge of, or access to learning resources for, XML technologies.

As always, beginners should start at the beginning, while those who already have
some experience with eXist may find new insights in Chapters 4 to 6 onward. We
hope you will find the book an excellent reference resource.

Should you be looking for books on XML technologies, in our experience and from
the feedback of colleagues and beginners we have met, it is a good idea to have a copy
of XQuery by Priscilla Walmsley (O’Reilly) at hand, as XQuery is the predominant
language used for working with eXist. For further useful resources, see “Additional
Resources” on page 16.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, file- and pathnames, database col-
lections, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program ele-
ments such as variable or function names, module names, data types, environ-
ment variables, statements, and keywords. Also used for commands and
command-line output, database user and group names, and permission modes.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

$EXIST_HOME
While $EXIST_HOME typically follows the Unix-like syntactical expression of
an environment variable, it is used throughout the book to refer to the location
where you have installed eXist, whether that be on a Windows/Linux/Mac or any
other type of system. The corresponding expression for referencing the equiva-
lent environment variable on Windows platforms would be %EXIST_HOME%.

This element signifies a tip or suggestion.

xii | Preface

www.it-ebooks.info

http://bit.ly/ORM_XQuery
http://www.it-ebooks.info/

This element signifies a general note.

This element indicates a warning or caution.

XQuery Filename Conventions

The XQuery specification as published by the W3C does not define a particular
filename extension for XQuery files. The specification, however, does define two dif-
ferent types of XQuery module:

XQuery main module
A main module is defined as having a query body. Simply put, this means that an
XQuery processor can directly evaluate the XQuery code in this file.

XQuery library module
A library module does not have a query body and must start with a module decla-
ration. Again, simply put, this means that an XQuery processor cannot directly
evaluate a library module; rather, the library module must be directly or indi-
rectly imported into a main module.

As a result, there has been a proliferation of different filename extensions used for
XQuery files, including .xq, .xql, .xqm, .xqy, .xql, .xqws, and .xquery. Each XQuery
implementation vendor, and even individual XQuery developers, seem to have their
own ideas about XQuery file naming. Some projects differentiate between main and
library modules by using two different file extensions, but which two is entirely
inconsistent across projects. Other projects opt to use a single file extension and
apply it to both main and library modules. This proliferation of different file exten-
sions can be disorienting and leads to confusion when you’re approaching an existing
code base.

eXist recognizes and supports XQuery files with any of the aforementioned file exten-
sions, and will load and store them correctly into its database as XQuery. However,
we believe that such an accumulation of different file extensions for what is effec-
tively one or two (main and library) types of file is ridiculous and raises the barrier to
truly reusable and portable XQuery code within projects, between projects, and
across XQuery implementations.

Preface | xiii

www.it-ebooks.info

http://www.it-ebooks.info/

This book takes the strong opinion that the following XQuery file extension conven-
tion should be used by at least all users of eXist, if not all XQuery developers:

xq
The .xq filename extension is to be used for all main modules.

xqm
The .xgm extension is to be used for all library modules. The m suffix in the file
extension indicates that the XQuery module starts with a module declaration and
is therefore a library module.

This convention is justified by the following points:

o The ability to differentiate between main modules and library modules at the file
level proves very useful within a large project. Especially if you are new to the
project, you can easily and quickly locate the main entry points of the applica-
tion.

o This is not yet another new convention (standard); this is already the convention
in at least one other project outside of eXist.

o It is backward compatible with various approaches that have been adopted by
eXist community members in the past.

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example
code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “eXist by Erik Siegel and Adam
Retter (O’Reilly). Copyright 2015 Erik Siegel and Adam Retter, 978-1-449-33710-0.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

xiv | Preface

www.it-ebooks.info

mailto:permissions@oreilly.com
http://www.it-ebooks.info/

Accompanying Source Code

Many of the code examples provided in the book and example programs that are
discussed in the book are publicly available from GitHub at https://github.com/eXist-
book, where we currently provide two repositories:

https://github.com/eXist-book/book-code
This encompasses all of the code that accompanies the book (i.e., XQuery, XSL-
FO, XSLT, XForms, XML, Java, and Python), except for the examples discussed
in Chapter 3.

For convenience, build scripts are included so that the majority of examples can
be compiled into an EXPath Package file (see “Packaging” on page 227) that can be
easily deployed into eXist, and the Java projects can be compiled into JAR files
for use with eXist or from the command line.

https://github.com/eXist-book/using-exist-101
This is provided as a reference for the tutorials set out in Chapter 3. It is deliber-
ately kept separate from the other code examples, as we felt that you would bene-
fit more from following the tutorials and entering the code manually while
considering each line of code that you are writing.

This repository is structured as an eXist backup. To restore the backup, see
“Backup and Restore” on page 396.

Getting the Source Code

With either of our two GitHub repositories, to get a copy of the source code you need
to ideally have Git installed. If you do not wish to install Git, it is also possible from
the GitHub repositories to download a ZIP or compressed TAR file of the source
code. However, using Git is recommended, as it will allow you to easily update the
source code in the future, should we make any corrections or additions.

Assuming that you have Git installed (if you are on a Windows platform, we will
assume that you are using Git Shell), from your Unix/Linux/Mac terminal (or your
Windows Git Shell), you can run the following to clone (make a copy of) our
repositories:

$ mkdir exist-book

$ cd exist-book

$ git clone https://github.com/eXist-book/book-code

$ git clone https://github.com/eXist-book/using-exist-101

Preface | xv

www.it-ebooks.info

https://github.com/eXist-book
https://github.com/eXist-book
https://github.com/eXist-book/book-code
https://github.com/eXist-book/using-exist-101
http://git-scm.com/
http://www.it-ebooks.info/

You now have a clone of each repository. In the future, should you wish to pull in any
updates we have made, you can simply run:

$ cd exist-book/book-code
$ git pull

$ cd ../using-exist-101

$ git pull

Building and Deploying
Now let’s look at how you build and deploy the code from the book-code repository.
The book-code repository contains the following top-level folders:

build-parent
This folder contains the build configuration that is inherited by each project.

build-parent-java
This folder contains the build configuration that is inherited by each of the Java
projects.

chapters
This folder contains subfolders for each chapter of the book where example code
is provided.

xml-examples-xar
This folder contains the build configuration for building an EXPath package.

Building everything

We use the Apache Maven build tool for compiling all of the projects that accompany
the book. Therefore, to make the most of the example code that goes along with the
book, you will also need to download and install Maven. Maven, like eXist, requires
Java; if you do not already have Java installed you can download either Java 6 or 7
from http://java.oracle.com. Each pom.xml file that you see in the code is a Maven
project file that describes how to build the code and resolves any dependencies that
are required.

If you wish to build all of the code projects that accompany the book in one step, you
can simply run the following commands from your terminal (or Git Shell on
Windows):

$ cd book-code
$ mvn package
Building the EXPath package

If you wish to build just the EXPath package of the example XQuery, XSLT, XForms,
and XML code that accompanies the book, you can simply enter the xml-examples-

xvi | Preface

www.it-ebooks.info

http://maven.apache.org
http://java.oracle.com
http://www.it-ebooks.info/

xar subfolder and run mvn package. To achieve this, we have used the excellent
EXPath package Maven plug-in written by Claudius Teodorescu, which allows us to
easily create a XAR file from a manifest (see the file xmi-examples-xar/expath-
pkg.assembly.xml) that describes the EXPath package.

The result of the Maven build process is the file exist-book-1.0.xar in the target sub-
folder of xml-examples-xar. You can then deploy the package by either copying it to
$EXIST_HOME/autodeploy, or using the dashboard app as follows:

1. Open up the eXist dashboard in your web browser, log in as admin, and click on
the Package Manager tile.

2. Click on the upload application icon (in the top left of the screen; it looks like a
stack of disks).

3. Browse to and select the exist-book-1.0.xar file and press the Submit button.

After installation, the sample code is available as another tile in the dashboard. It runs
as a simple application that allows you quick access to running the examples.

See “The Dashboard” on page 24 and “Packaging” on page 227 for further information
on working with the dashboard and EXPath packages.

Compiling the Java examples

The Java examples that accompany the book will also be built if you build everything,
and the resultant artifacts will be placed into the target subfolders of each project.
Each Java project example is discussed in detail in the relevant chapter later in the
book. You can also compile the Java projects individually by running mvn package in
the folder of each Java project. For example, if you wanted to build just the REST
Server client examples, you would run:

$ cd book-code/chapters/integration/restserver-client

$ mvn package
Each Java example is designed to both educate and potentially serve as a skeleton for
your own Java projects. By simply changing the groupId and artifactId of the
project’s pom.xml file and including any additional required dependencies, you have
a very quick mechanism to start building your own projects.

It is also worth mentioning that a ZIP or fat JAR file assembly is also created for
many of the Java project examples, and this can be found in the appropriate target
subfolder. A fat JAR file assembly is simply a JAR file that also contains all of the
dependencies of the project, to allow you to have a single file artifact. So, for example,
when you are compiling the restserver-client examples, the following assemblies are
created:

o restserver-client-query/target/restserver-client-query-1.0-example.jar

Preface | xvii

www.it-ebooks.info

https://github.com/claudius108/kuberam
http://www.it-ebooks.info/

o restserver-client-remove/target/restserver-client-remove-1.0-example.jar
o restserver-client-retrieve/target/restserver-client-retrieve-1.0-example.jar

o restserver-client-store/target/restserver-client-store-1.0-example.jar

Safari® Books Online
Safari Books Online is an on-demand digital library that deliv-
1 e ers expert content in both book and video form from the

world’s leading authors in technology and business.

Technology professionals, software developers, web designers,
and business and creative professionals use Safari Books Online as their primary
resource for research, problem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
and education, and individuals.

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams,
Que, Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan
Kaufmann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New
Riders, McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For
more information about Safari Books Online, please visit us online.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/eXist.

To comment or ask technical questions about this book, send email to: bookques-
tions@oreilly.com

For more information about our books, courses, conferences, and news, see our web-
site at http://www.oreilly.com.

xviii | Preface

www.it-ebooks.info

http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/our-library/
http://safaribooksonline.com/
http://bit.ly/eXist
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://www.it-ebooks.info/

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

The authors would like to especially thank Dan McCreary, Chris Wallace, and
Dannes Wessels for reviewing their work.

In addition, they would like to offer their thanks to Ron Van den Branden, Martin
Holmes, Casey Jordan, Kurt Cagle, Paul Kelly, Tobi Krebs, Brois Lehecka, Wolfgang
Meier, Chris Misztur, Dave Pawson, Jens @stergaard Petersen, Phill Ramey, Dmitriy
Shabanov, Luis Tavera, Claudius Teodorescu, Chris Tomlinson, Joern Turner, David
Vonka, Priscilla Walmsley, Michael Westbay, Joe Wicentowski, and Lars Windauer
for their support and feedback.

Preface | xix

www.it-ebooks.info

http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER1
Introduction

What Is eXist?

As it turns out, this is quite a difficult question to answer. The problem lies in the
wide audience that eXist serves. eXist is many things to many people, and thus there
is no single succinct answer.

eXist is an open source piece of software written in Java that is freely available in both
source code and binary form. eXist has always been made available under the Lesser
GNU Public License (LGPL), version 2.1. While eXist makes use of many other open
source libraries itself, all of these are compatible with the LGPL, and eXist eschews
the GPL license in favor of freedom of choice for its users.

eXist was conceived as a native XML database. As a database, its unit of atomicity is
the document, so we could very easily brand it a NoSQL document database. How-
ever, to do so would be to do an injustice to the software, and worse, to all of those
who have contributed to making eXist much more than just a NoSQL database over
the years.

Unlike most NoSQL databases, which each have their own proprietary database
query language, eXist makes use of a standardized query language developed by the
W3C: XML Query Language (XQuery). With a standard query language, you have
the ability to write code that can be used not just on eXist, but on any platform or
processor that supports XQuery. Some of the benefits of XQuery are that it is:

Synergistic
XQuery was carefully designed and evolved over a six-year period by an open
working group with many contributors, meaning that many real industry use
cases were considered during its construction. XQuery has been influenced by

www.it-ebooks.info

http://www.it-ebooks.info/

several previous languages and concepts, such as Perl, Lisp, Haskell, SQL, and
many more.

Easy to use
XQuery was designed to be simple to use and debug, meaning that nonprogram-
mers (given an understanding of their documents) should be able to easily con-
struct queries. Many eXist users work in the humanities and have no formal
computer science background, but are quite comfortable writing complex XQu-
eries to query their documents.

Easy to optimize
The XQuery specification does not detail how an implementation should per-
form query processing, and its developers have given great thought to ensuring
that any implementation can optimize processing of query operations. Likewise,
as a moderate user of XQuery, you can often easily understand why a particular
query is slow and what you may do to improve it.

Easy to index
Join operations in XQuery (e.g., predicates and where clauses) lend themselves
well to index optimization, which eXist exploits to speed up XQuery execution.
eXist provides multiple indexing schemes that the user may configure.

Turing complete
XQuery is more than just a query language: it is in a class of languages known as
Turing complete, which means that it is a complete programming language and
any program can be expressed in it. XQuery is also a functional programming
language, as opposed to a procedural one, meaning that it is generally easier to
construct programs that you can easily understand and that ultimately contain
fewer bugs. In eXist you can build entire applications in just XQuery!

Query first
While XQuery is a programming language, it is designed primarily as a query
language. Therefore, it is much easier to extract just a few elements from large
data collections with XQuery than, say, with XSLT.

More than you realize!
While XQuery is easy to get started with, its functional nature can make it tricky
to work with if you have only procedural programming experience. XQuery can
be incredibly elegant, and we are frequently surprised at how very complex prob-
lems may be solved quite simply in XQuery when considered in a different light.

We should also perhaps mention that eXist is not just for XML documents. You can,
in fact, store any file into the database, and eXist can do some very clever things with
content extraction and metadata with non-XML documents to help you query and
manage those binary formats too.

2 | Chapter1:Introduction

www.it-ebooks.info

http://www.it-ebooks.info/

We could stop there and focus the rest of the book on the database, but you would
really miss out on the good stuff. eXist is also a web server: you can make web
requests directly to the database to store, retrieve, or update XML documents. eXist
achieves this by providing an HTTP REST API that describes the database. It also
provides a WebDAYV interface so that your users can easily drag and drop documents
from their desktops into the database, or open a document for editing.

But wait, there’s more! As eXist evolved over the years it became clear that being able
to store, retrieve, and edit documents via the Web was neat, but also being able to
store XQuery into the database and execute it via a web request from your web
browser meant you could easily construct very powerful web applications directly on
top of the database. eXist of course continued to evolve here, providing new features
for forms, web application packaging, improved security, SQL queries, SSL, and sup-
port for producing and consuming JSON and HTML 5, among other offerings.

So, in summary, what is eXist?

o A NoSQL document database for XML and binary (including text)
o A web server for consuming and serving documents

A document search engine

o A web application platform

o A document creation and capture platform (XForms)

o A data mashup and integration platform

o An embeddable set of libraries for use in your own applications

o And much, much more

eXist Compared to Other Database Systems

Let’s take a moment to discuss some of the main differences between eXist and other
SQL and NoSQL database systems. eXist is:

Document oriented
Unlike traditional RDBMSs (Relational Database Management Systems) such as
Oracle, MySQL, and SQL Server, which are table oriented, eXist is a NoSQL
document-oriented database.

Many other NoSQL document databases (including MongoDB and Apache Cas-
sandra) store JSON documents, whereas eXist stores XML documents. One of
the key advantages of XML over JSON is the ability to handle complex document
structures using mixed content. JSON easily handles data-oriented documents,
while XML easily handles both data-oriented markup and text-oriented

eXist Compared to Other Database Systems | 3

www.it-ebooks.info

http://www.it-ebooks.info/

documents. Another key advantage of XML over JSON is that you can adopt
namespaces to cleanly model different business domains.

Schemaless

RDBMSs and even several NoSQL databases require you to define your data
schema before you can start storing your data. eXist is entirely flexible, and
allows you to store your documents without specifying any schema whatsoever.
It is ideal for business problems that have high-variability data and also helps
developers rapidly prototype and evolve applications. However, schemaless
should not be confused with providing validation of documents. Should you wish,
you can also define a schema in eXist and have eXist enforce that only docu-
ments meeting your schema requirements are stored or updated.

Portable queries

RDBMSs typically use a standardized SQL query language; however, in practice,
apart from the most basic queries it can be hard to run the same SQL queries
across different RDBMS database products. Likewise, most NoSQL systems have
their own proprietary query languages, which are entirely product-specific. eXist
takes a very different approach and provides XQuery and XSLT, which are W3C
standardized query and transformation languages, meaning that with very little
effort you can execute your eXist queries on any other product that provides an
XQuery and/or XSLT processor.

Structured search

Like many database systems, eXist allows you to define different indexes for your
searches. However, combined with the ability to search based on the document
structure, this makes eXist search results more precise than those of almost any
other database when dealing with structured documents such as TEI, DocBook,
and DITA. eXist will consistently have better search metrics (precision and
recall) than search systems that ignore document structure. If findability is high
on your list of desired attributes, then eXist is a great choice.

Forms

Oracle provides Oracle forms for use with its RDBMS. We are not aware of any
NoSQL databases that provide form support for constructing end-user interfaces
that can feed directly into the database. eXist supports XForms (another W3C
standard), which allows you to easily capture user input into XML documents in
the database. Some organizations find that eXist is ideal not just for managing
data collection with forms, but also for entire backend workflows around the
content publishing process.

Application development
Like some RDBMSs and NoSQL databases, eXist is embeddable into your own
applications. However, when you are using eXist as a server, it really becomes an
application platform and offers more than almost any other database system.

4 | Chapter 1:Introduction

www.it-ebooks.info

http://www.it-ebooks.info/

When running eXist as a server, you can develop entire applications in eXist’s
high-level query languages (XQuery and XSLT) without necessarily having to be
a computer scientist or programmer.

Transaction management

Most RDBMSs and many NoSQL databases allow you to control your transac-
tions from within your database queries or API calls. Unfortunately, eXist does
not currently support database-level transaction control. eXist does have transac-
tions internally and uses a database journal to ensure the durability and consis-
tency of your data, but these are not exposed to the user. Transaction control is
high on the list of desirable features for eXist, and some options have already
been explored for the future.

Horizontal scalability and replication

A feature of many RDBMSs and NoSQL database systems is the ability to cluster
database nodes to increase database scalability and capacity. eXist is currently
mostly deployed on single servers. As of this writing, it has no support for auto-
matic sharding of data. eXist has recently gained support for replication in ver-
sion 2.1 through JMS (Java Message Service) message queueing. The replication
feature allows you to have a master/slave database, which is highly available for
reads that may occur from any node, but it is still currently recommended to
send writes to the master node. For further details of the emerging replication
support in eXist, see https://github.com/eXist-db/messaging-replication/wiki.

History

Once upon a time, around the turn of the 21st century, there was a researcher named
Wolfgang Meier working at the Technical University of Darmstadt. He was in need
of a system to analyze and query XML data, and since there was nothing around that
satisfied his needs, he decided to write something himself: eXist.

Starting out in C++, Meier quickly turned to Java, and by the beginning of 2001, a
first version was available. It was based on a relational database backend and, com-
pared to where we are now, very primitive. The functionality was basic and it was
slow on indexing, but yes, it already had some XPath on board. Immediately, some
dictionary research projects started using it.

The next stage was replacing the relational backend with native XML storage. While
this was happening, more and more people started using eXist, and around 2004 the
first commercial projects arrived. The development of eXist has since then mostly
been financed by its users, who needed new functionality and were willing to pay
for it.

Implementing XQuery met some resistance. At that stage, eXist was still mostly an
XML database only. Why would you need something like XQuery if you already have

History | 5

www.it-ebooks.info

https://github.com/eXist-db/messaging-replication/wiki
http://www.it-ebooks.info/

XPath? Luckily (for us), a professor of literature really needed XQuery support and
paid for its implementation. It was embedded in the product by 2005.

During 2005 eXist was going so well that Meier was able to quit his university job and
concentrate on eXist projects only. By that time some other programmers had come
on board, and they constitute what we now know as the original “core programmer
team.” In alphabetical order, they were Pierrick Brihaye, Leif-Joran Olsson, Adam
Retter, and Dannes Wessels.

Up to 2006 the version number was kept to v0.xx, but in 2006 a real v1.0 was
released!

By this time, having previously only communicated via the Internet, the core pro-
grammer team met live for the first time in 2007 in Versailles. One of the first things
they did was to check eXist against the official XQuery test suite, which subsequently
resulted in the current 99%+ compliance score.

The product kept evolving. A major improvement was replacing the existing scheme
for node identifiers with a much better one. As a result of that, limitations on XML
size and structure disappeared. Stability and transaction management were improved
and the Lucene full-text search engine added. From the original research/retrieval
tool, eXist evolved into something we really could call a native XML database.

The XRX (XForms, REST, XQuery) paradigm popped up as a way to create fully
XML-driven applications. eXist was among the first engines that made this possible.
It turned, slowly but surely, into a full-blown application platform.

With version 1.4 of eXist released in 2009, suddenly many more organizations were
using eXist in their production systems day to day. More development effort went
into stabilizing, fixing bugs, and improving reliability. With this, the first “settled
application” problems arrived: it became harder and harder to change anything
without breaking backward compatibility. Consider, for instance, eXist’'s XQuery
update support: an implementation of a draft version of the standard for writing
XQuery statements to update XML. Switching to the final standardized version is vir-
tually impossible because it would break backward compatibility and existing appli-
cations would stop working.

However, the development team did not stop working, and gradually the 2.0 version
as we know it came to life. Release candidates were made available throughout 2012,
containing a large number of major changes and additions to the previous versions:

o Behind the scenes, the XQuery engine and optimizer were improved.
o Support for (large parts of) XQuery 3.0 was added.

o The way the indexes work was redesigned to reduce lock contention, offer modu-
larity, and improve performance.

6 | Chapter1:Introduction

www.it-ebooks.info

http://www.it-ebooks.info/

o Security was reorganized and now works not only a lot faster, but also in a way
most developers are comfortable with (i.e., similar to Unix-like systems).

o The repository manager was added, opening the way to a more modular eXist.
» RESTXQ, a standard for coupling function invocations to URLSs, was added.

o And, of course, numerous other small improvements were made.

The final version 2.0, released in February 2013, was a massive leap forward from 1.4,
representing the culmination of more than three years’ worth of sustained develop-
ment effort. As such, it was not completely without backward compatibility prob-
lems. For instance, existing XQuery applications will have to do something about
their security settings before they can run on the new version. However, that’s not
too hard and is well worthwhile.

Version 2.1 was released shortly after, in July 2013, and consisted mostly of bug fixes
and a new version of eXide. In February 2014, a release candidate of eXist 2.2 was
made available, which—along with the usual bug fixes—included a completely new
range index based on Lucene that offered much improved query times.

It is expected that eXist will keep evolving. The plans are to move more and more
toward a core product with separate modules, enabling adding a la carte functionality
as needed.

Competitors

Now, obviously we are passionate about eXist; otherwise, you would not be reading a
book we have written on the subject. More importantly, though, we are passionate
about open source, and even more so we are concerned with quality software and
using the right tool for the job. Like any other product, eXist has both strengths and
weaknesses, and it would be somewhat misleading if we were not to share the whole
story with you. Pointing out the weaknesses of a software product for which you have
bought a book may not help us sell more books, but we do hope it will help you make
informed decisions.

As eXist has such a wide scope, it is impossible to compare it directly to other prod-
ucts; so, we compare it instead against other native XML databases that also couple
web server and application platform capabilities.

eXist’s competitors can be split into two categories: those that are open source and
freely available, and the closed source, commercial offerings. By no means is what fol-
lows a complete list, but it contains the offerings that we believe are popular and fre-
quently encounter when talking to others.

A further independent comparison is available in the XML database article on
Wikipedia.

Competitors | 7

www.it-ebooks.info

http://en.wikipedia.org/wiki/XML_database#Native_XML_databases
http://en.wikipedia.org/wiki/XML_database#Native_XML_databases
http://www.it-ebooks.info/

Open Source Competitors

Let’s begin with the open source eXist competitors.

BaseX

BaseX is a lightweight native XML database with some application server facilities
written in Java. The project was started in 2005 by Christian Griin at the University
of Konstanz, and BaseX was released as open source in 2007. BaseX promotes ease of
use and provides an easy-to-use GUI frontend also written in Java.

Compared to eXist, BaseX adheres more closely to the W3C XQuery specifications,
achieving 99.9% compliance with the W3C XQuery 1.0 specification (eXist has
99.4%) and implementing the specifications for XQuery Update 1.0 and XQuery Full-
Text. eXist has an older draft implementation of XQuery Update and its own propri-
etary full-text search. eXist, however, has been available for significantly longer, and
thus benefits from many more features, such as XSLT.

BaseX is released under the more liberal BSD license. Commercial support is
available for BaseX from BaseX GmbH, which was founded to support commercial
applications of BaseX.

Sedna

Sedna is a lightweight native XML database without application server capability,
written in C and C++. The origins of Sedna are not well documented, but it appears
to have started around 2003 as a project of the Institute for System Programming at
the Russian Academy of Sciences. Sedna seems to focus on providing core database
services and little more. While it has no REST Server of its own, it can be configured
to work as a module within the Apache HTTP Server.

Compared to eXist, Sedna supports more APIs for different programming languages
directly; eXist mostly assumes that developers will use its REST or RPC APIs, and
leaves language APIs to third-party providers. Sedna reports 98.8% compliance with
the W3C XQuery 1.0 specification; as mentioned previously, eXist has 99.4% compli-
ance. Sedna, like eXist, implements its own proprietary full-text search, and a draft
version of XQuery Update.

Sedna is released under the Apache 2.0 license. There does not appear to be a com-
mercial support offering for Sedna.

Closed Source, Commercial Competitors

Now we’ll take a look at eXist competitors that are closed source and commercially
available.

8 | Chapter1:Introduction

www.it-ebooks.info

http://www.it-ebooks.info/

28.i0

28.i0 is a PaaS (Platform as a Service) for the Zorba open source XQuery processor.
28.io integrates Zorba with MongoDB, supporting the storage and indexing of XML
into MongoDB as its main datastore. The query optimizer leverages the full capabili-
ties of MQL (Mongo Query Language), enabling developers to leverage the expres-
siveness and productivity of XQuery atop a highly scalable store.

In comparison with eXist, 28.i0 focuses on the cloud and manages its database
entirely using XQuery, whereas eXist provides a number of Admin GUI tools and
additional APIs. 28.i0, much like eXist, provides an application server platform ena-
bling you to build entire apps using XQuery. 28.io (through Zorba) has similar com-
pliance to the W3C XQuery 1.0 specification as eXist, but also supports XQuery
Update, XQuery Full-Text, and XQuery Scripting. 28.i0’s main advantage over eXist
is its cloud scaling; eXist’s main advantage is XSLT, XRX, and XForms support.

28.i0 is developed by 28msec. 28msec is based in Zurich, Switzerland, and has strong
research links with ETH Ziirich.

MarkLogic Server

MarkLogic Server is a standalone native XML database server, written in C++, that
provides XQuery and XSLT query and transform capabilities. MarkLogic Server also
has the capability to cluster nodes to scale horizontally, with the additional capability
to pass large batch processing jobs off to Hadoop. MarkLogic distances itself from the
technical marketing of XML and XQuery and instead identifies itself as a NoSQL
database solution for the enterprise.

Compared to eXist, MarkLogic markets itself as being able to handle petabytes of
XML data. eXist can currently scale to hundreds of gigabytes, but this is very much
dependent on the dataset and queries made. MarkLogic lacks a document-
representative REST API, but does provide a REST API for application development.
MarkLogic’s main advantage over eXist is scaling to huge datasets, while eXist’s
advantage is its fast innovation and rich feature set. Both support XSLT, but Mark-
Logic does not support XQuery Update; rather, it provides its own proprietary
functions.

MarkLogic Server is developed by MarkLogic Corporation, based in San Carlos,
California.

Who Is Using eXist, and for What?

The problem with giving something away for free with no questions asked is that you
can never quite be sure:

« How many people are using it

Who Is Using eXist, and for What? | 9

www.it-ebooks.info

http://www.28.io/home
http://www.it-ebooks.info/

o Who the people using it are
o What it is being used for

From the support channels available to eXist users, and as a member of the commu-
nity, you can see that eXist is used by many people for many different purposes, but
their end goals and projects are not always disclosed or clear.

Here we have pulled together a few descriptions of various projects using eXist from
the developers of those projects themselves:

The Tibetan Buddhist Resource Center (TBRC) holds the world’s single largest collec-
tion of Tibetan texts—nearly 10 million scanned pages and over 11,000 Unicode Tibe-
tan texts. TBRC.org provides online access to over 4,000 users via an Ajax client
written in Google Web Toolkit as a front-end to the eXist-db. TBRC has used eXist-db
since 2004 to store the catalog for the texts in the library as well as a knowledge-base of
persons and places that provide a cultural context for Tibetan literature. The integra-
tion of eXist-db with the Lucene full-text indexing has created a powerful framework
with which TBRC.org is able to provide searchable access to the library via compre-
hensive tables of contents in Tibetan and a large collection of texts that have been
input in Unicode in centers around the world. Our production system currently runs
eXist-db 2.1.

—Chris Tomlinson,

Senior Technical Staff Member,
Tibetan Buddhist Resource Center,
Cambridge, Massachusetts

ScoutDragon initially started as a baseball research project by a group of baseball
enthusiasts including writers, agents, scouts, fans, fantasy owners, and even former
players. This group realized a need for original English content, data, and research on
baseball players in Asia.

All data for multiple sports covering multiple sporting leagues is stored in XML docu-
ments within eXist in a schema derived from IPTC’s SportsML, most extensions hav-
ing to do with providing multi-lingual support of players so that information may be
displayed in English, Japanese, Korean, and/or Chinese. XQuery has proven to be a
fantastic language for not just transforming the vast quantities of data to web pages,
but also for data analysis and the generation of sabermetrics-based statistics.

—DMichael Westbay,

Lead Programmer/System Administrator,
ScoutDragon.com,

Japan

Semanta’s core business is metadata in business intelligence. Part of our concern is
parsing metadata from reporting platforms. Many of these reporting platforms supply
their metadata in large XML chunks, which we then need to further process efficiently.
A typical example is our IBM Cognos connector, where we use eXist heavily to extract
details of report structures and data sources. Originally we thought we would only use
eXist for prototyping, but ultimately, we have used embedded eXist in the production

10 | Chapter1: Introduction

www.it-ebooks.info

http://about.tbrc.org/
http://www.semantacorp.com/home.html
http://www.it-ebooks.info/

system; re-writing the connector without eXist’s XQuery turned out to be just too
complicated!

—David Vorika,
Programmer,
Semanta,

Czech Republic

The Centre for Document Studies and Scholarly Editing of the Royal Academy of
Dutch Language and Literature (Ghent, Belgium) develops rich scholarly collections of
textual data, and publishes them as digital text editions and language corpora. From
the start, we have fully embraced open standards and publication technologies. At first,
we started out with the Cocoon XML publication framework, which back then nicely
integrated with eXist (or the other way round) for efficient querying of XML content.
Since the introduction of eXist's MVC framework, we have extended our use of eXist
as a full application server, not only for querying the indexed data, but also driving the
entire application and presentation logic.

The texts we’re querying (or rather, processing) with eXist are mostly document-
centered XML documents that are conformant to the schemas developed by the Text
Encoding Initiative (TEI). Depending on the specific edition project, they are enriched
with metadata such as named entities, editorial annotations, and sometimes highly
specific textual documentation (such as critical apparatuses documenting variation
among text versions). Though our texts are mostly in Dutch, we try to connect and
contribute to methodological good practice emerging in the interesting field that is
Digital Humanities. Some of our exemplar projects include a collection of letters in
relation to the Belgian literary journal Van Nu en Straks; a digital edition comparing
20 versions of De trein der traagheid, a novel by the Belgian novelist Johan Daisne; and
a digital edition of the first Dutch dialect survey in the Flemish region by Pieter Wil-
lems (developed between 1885-1890).

—Ron Van den Branden,

Centre for Scholarly Editing and Document
Studies of the Royal Academy of Dutch Lan-
guage and Literature,

Ghent, Belgium

At the Cluster of Excellence “Asia and Europe in a Global Context,” we use eXist-db to
store our collections of MODS (bibliographical) and VRA (image metadata) records.
We have developed two open source applications for this, Tamboti and Ziziphus,
where our records can be searched and edited. Both applications are built entirely in
XML technologies (XQuery and XForms) using eXist-db and make use of LDAP inte-
gration and detailed user rights management.

—Heidelberg Research Architecture,

Cluster of Excellence “Asia and Europe in a
Global Context,”

The University of Heidelberg,

Heidelberg, Germany

Haptix Games is a video game and interactive application development and publishing
studio, and we have been a Microsoft shop for as long as I can remember. We have

Who Is Using eXist, and for What? |

www.it-ebooks.info

n

http://ctb.kantl.be
http://www.kantl.be
http://www.kantl.be
http://vnsbrieven.org/VNS/
http://edities.ctb.kantl.be/daisne/
http://corpora.ctb.kantl.be/CPWNL/
http://www.asia-europe.uni-heidelberg.de
http://www.haptixgames.com/
http://www.it-ebooks.info/

leveraged C#, MVC, and IIS for user experience; WCF, OData, and BizTalk for mes-
sage exchanges; MSSQL and Entity Framework for storage. That is a lot of acronyms
and even more complexity under the hood. Prototyping a concept usually involved all
above-mentioned technologies, while the final solution release was either expensive,
inflexible, or did not meet client expectations.

With the adoption of eXist-db our development and release workflows have become
highly agile and more competitive. Utilizing eXist-db as a dark-data solution platform
and not just another XML database allowed us to eliminate 80% of our Microsoft code
base just by taking advantage of the built-in web server, low-level data manipulation
using XQuery 3.0, restful data exchange, and native storage capabilities.

—Chris Misztur,
CTO,

Haptix Games,
Chicago, Illinois

easyDITA is an end-to-end solution for collaboratively authoring, managing, and pub-
lishing content using the DITA XML standard. Companies utilize easyDITA to reduce
the cost and time to market to deliver content in a variety of formats and languages. By
leveraging eXist, easyDITA is able to deliver customers exceptional ability to search,
manage, localize, and publish content. eXist’s schemaless design and flexible indexing
system makes it easy to support customizations like reporting, analytics, and new con-
tent models without sacrificing performance or doing major redesigns.

—Casey Jordan,
cofounder,

easyDITA, Jorsek LLC,
Rochester, New York

We [at XML Team Solutions] help media and entertainment companies integrate
sports news and data feeds. These feeds are predominantly XML. We use eXist for two
things:

1. Regulating and preparing vendor web service XML for transmission to clients.
Scheduled jobs access remote web services, preprocess, and pass on XML via
HTTP Client to our main feed processor.

2. API to drive graphics for live television broadcast. API built from RESTXQ pro-
vides live updates of results to broadcaster clients. Currently uses JMS to sync
from one write DB to two load-balanced readers. Also has an XForms “beat the
feed” live score updater which mimics the incoming feed in case feed vendor is
delayed.

We recently delivered a project for BBC Sports to deliver live broadcast information.
eXist met all the requirements for speed, cost, and reliability for an API to deliver up-
to-date scores and statistics to BBC television.

—Paul Kelly,

Director of Software Development,

XML Team Solutions Corp,

Canada

12

Chapter 1: Introduction

www.it-ebooks.info

http://easydita.com/
http://www.it-ebooks.info/

eXist-db is at the core of [the Office of the Historian’s] open government and digital
history initiatives. It powers our public website, allowing visitors to search and browse
instantly through nearly a hundred thousand archival government documents. On the
fly, it transforms our XML documents and query results into web pages, PDFs, ebooks,
and APIs and data feeds. Its support of the high-level XQuery programming language
and its elegant suite of development tools empower me and my fellow historians to
analyze data and answer research questions.

The open source nature of eXist-db has delivered far more value to us than its simply
being “free”; its active, welcoming, expert collaborative user community has helped us
learn, discover eXist-db’s plethora of capabilities, and find the best solutions to our
research and publishing challenges. eXist-db belongs in the toolkit of all digital
humanities, open government, and publishing projects.

—Joe Wicentowski,
Historian,

Office of the Historian,
U.S. Department of State

Contributing to the Community

There is a vibrant and supportive community around the eXist software, whose goal
it is to make using eXist easy for beginners and as painless as possible for advanced
developers. The eXist community prides itself on the agility and quality of its respon-
ses to support requests.

There are many ways to contribute to eXist and the community. You need not be a
crack software engineer; even beginners asking questions on the mailing list can help
others learn from their issues and encourage the developers to simplify or consider
new approaches.

To get in touch with the eXist community, you have several channels available to you:

Email: the eXist-open mailing list
This is the official preferred mechanism, and your best bet for getting a quick
answer. There are also the eXist-development and eXist-commits mailing lists; the
former is used for technical discussion of features and fixes that go into eXist,
and the latter is a feed of any changes made to the source code of eXist.

For further details, see http://sourceforge.net/p/exist/mailman/, http://exist-
open.markmail.org, and http://www.exist-db.org/exist/apps/doc/getting-help.xml.

Stack Overflow: the exist-db tag
While the mailing lists should currently be considered the primary support
mechanism, Stack Overflow is also becoming popular for asking eXist questions.
You can find eXist questions and answers under the exist-db tag.

Contributing to the Community | 13

www.it-ebooks.info

http://history.state.gov
http://sourceforge.net/p/exist/mailman/
http://exist-open.markmail.org
http://exist-open.markmail.org
http://www.exist-db.org/exist/apps/doc/getting-help.xml
http://stackoverflow.com/questions/tagged/exist-db
http://www.it-ebooks.info/

Twitter: @existdb
The Twitter channel is monitored by the core developers of eXist. It’s mostly
used for announcements about eXist, as providing tech support in 140 characters
is tough!

IRC: #existdb on irc.freenode.net
The eXist IRC chat room is for the community, by the community. It can be a
mix of users and developers and is often worth a visit, but getting a response can
really depend on who is awake and logged in.

Individuals Using eXist
As a user of eXist, be sure to do the following:

Ask questions
There are no stupid questions. Importantly, all questions and answers on the
mailing list are archived so that others may learn from them also. Sensibly, you
should search the archive first, to see if your question has already been answered;
if not, or if the answer’s not clear, then ask away!

Report bugs
All software has bugs! eXist is no exception. If you think you have found a bug, it
is probably best to discuss it on the eXist-open mailing list first, and then, if it’s
confirmed, log it in the eXist issue tracker on GitHub.

If you want to report a bug, it’s very important that the developers of eXist
understand how to reproduce what you are seeing; if you can’t describe the prob-
lem and its cause, it’s very hard for the community to help you! Ideally you
should provide a reproducible test case of the absolute minimum steps required
to cause the issue. See “Getting Support” on page 413 for more detail.

Answer questions
As you begin to use eXist, you will start to learn more and more things that other
users may not know. Why not get some good karma back by answering some
questions on the mailing list? After all, it’s a community!

Evangelize
If you're having a great time using eXist, or you are enthralled by some neat fea-
ture, tell your friends, and let us and everyone else know by writing a blog entry
or article.

Organizations Using eXist

Open source developers are often working on a project for “the love of it,” and many
of the developers of eXist contribute much of their time to the project completely
unpaid. Sadly, love for developing open source code with your friends does not nec-

14 | Chapter 1: Introduction

www.it-ebooks.info

https://twitter.com/existdb
irc://irc.freenode.net/existdb
https://github.com/exist-db/exist/issues
http://www.it-ebooks.info/

essarily equate to food or shelter. If you're part of an organization making free use of
eXist, there are a number of ways that you can contribute back to the community:

Sponsor features or bug fixes
Perhaps there is some feature that you wish that eXist had that would really help
your project, or there is a bug that sometimes upsets your system. Your organiza-
tion could financially sponsor a developer from the eXist community to add this
feature or resolve that issue. Sponsoring eXist developers for small or large
projects helps support them in their work on eXist and could provide new or
improved functionality to the community. If you want to give something back
financially but have no specific features or bug fixes in mind, just get in touch via
eXist-open and the community will helpfully propose a project to meet your

budget.

Friday afternoon eXist
If you have developers in your organization, empowering them to spend a small
amount of their paid work time contributing to the development of eXist can
also be a great way to give back to the community. For example, Google allows its
developers to work on open source projects on Friday afternoons and has real-
ized various benefits from this.

Contracts and jobs
Are you looking for someone who is an expert in eXist and XQuery and/or XML
technologies? The eXist-open mailing list can be a great place to advertise. You
will more than likely end up sponsoring one of the contributors to eXist, as they
tend to be the people who really know it inside and out.

Support and maintenance contracts

If you're serious about using eXist in your projects and running production sys-
tems on it, you will more than likely want the support and operational security
afforded by purchasing a support contract for it. eXist Solutions provides a vari-
ety of support contracts and consultancy services for eXist. It was founded by
core developers of eXist and contributes almost all of its resources back into
developing the software. By working with eXist Solutions, you are closely sup-
porting and funding eXist’s development.

Authors Using eXist
If you’re an author using eXist, here’s how you can contribute:

Documentation
eXist has a large set of documentation that accompanies it, but it is by no means
complete or exhaustive. You do not have to be a developer to write documenta-
tion for eXist, and all improvements to the documentation are warmly accepted.

Contributing to the Community | 15

www.it-ebooks.info

http://www.existsolutions.com
http://www.it-ebooks.info/

Developers Using eXist
Developers using eXist can give back in the following ways:

Bugs, patches, and new features

Found a bug? Want to submit a patch or new feature? Why not roll up your
sleeves and get your hands dirty? In the beginning the eXist code base may seem
intimidating in its size, but it’s fairly modular and easy to get around. And if you
have the skills, there is often no quicker way to get something fixed than to do it
yourself, while hopefully learning a few new and interesting things along the way.
Bug reports should be posted to the eXist-development mailing list first, and then
logged in the issue tracker on GitHub. Patches can be submitted by means of a
pull request to the eXist GitHub repository.

For further information about developing eXist, see “Developing eXist” on page
483.

Additional Resources

This section contains additional informational resources. It’s compiled from our per-
sonal preferences and bookshelves, meaning there are many other good sources of
information around. However, this list is a good place to start:

General
o« W3C (World Wide Web Consortium)

The W3C is the body that manages, among other things, the XML standards.
The website is surprisingly easy to use, yet informative.

o W3 Schools

For a quick high-level overview of any W3C standard with practical exam-
ples, try the W3 Schools.

XQuery
o XQuery, by Priscilla Walmsley (O’Reilly, 2007)

This is probably the best XQuery book available in our opinion.
o XQuery wikibook, edited by Dan McCreary et al.

The XQuery wikibook is an excellent resource for XQuery and eXist ,with
the majority of the examples developed for eXist.

o XRX wikibook, edited by Dan McCreary et al.

The XRX wikibook, like the XQuery wikibook, is an excellent resource when
you're building applications atop eXist using REST and XForms.

16 | Chapter 1: Introduction

www.it-ebooks.info

https://github.com/eXist-db/exist/issues/
http://www.w3.org
http://www.w3schools.com
http://bit.ly/ORM_XQuery
http://en.wikibooks.org/wiki/XQuery
http://en.wikibooks.org/wiki/XRX
http://www.it-ebooks.info/

XSLT

XForms

XPath and XQuery Functions and Operators 3.0 (W3C, 2014)

The F+O specification is a great resource for quickly looking up the available
functions and their specification for XQuery, XPath, and even XSLT.

XQuery: The XML Query Language, by Michael Brundage (Addison-Wesley,
2004)

This was a great book at the time it was published; while still relevant, it was
released before the final XQuery 1.0 specification.

XQuery from the Experts: A Guide to the W3C XML Query Language, by Don
Chamberlin et al. (Addison-Wesley, 2004)

Again, this book was released before the final XQuery 1.0 specification, but it
is useful for those who want to know the nitty-gritty details like the formal
underpinnings of the language.

The XQuery Talk mailing list

The xquery-talk mailing list is a great place to ask XQuery questions that are
not specific to eXist-db.

XSLT 2.0 and XPath 2.0: Programmer’s Reference, 4th Edition, by Michael
Kay (Wiley, 2008)

This is the book to have beside your keyboard if you ever want to do any
serious XSLT programming.

XSL-List

The XSL-List is the best place to ask XSL questions and receive help. Note
that it has an excellent archive; we suggest that you search that first for an
answer before asking!

XSLT Questions and Answers—FAQ, curated by Dave Pawson

The XSLT FAQ is an incredible resource that has many answers from those
who were involved in specifying XSLT and those recognized as subject
experts.

XSLT, 2nd Edition, by Doug Tidwell (O’Reilly, 2008)
XSLT Cookbook, 2nd Edition, by Sal Mangano (O’Reilly, 2006).

Also a very handy book to have when you only sporadically program XSLT;
it contains many useful “recipes.”

XForms Tutorial and Cookbook wikibook, edited by Dan McCreary

Additional Resources | 17

www.it-ebooks.info

http://www.w3.org/TR/xpath-functions-30/
http://michaelbrundage.com/xquery/
http://bit.ly/xquery_from_the_experts
http://x-query.com/mailman/listinfo/talk
http://bit.ly/xslt_2-0_xpath_2-0_ref
http://www.mulberrytech.com/xsl/xsl-list/
http://bit.ly/xslt_q_and_a--faq
http://bit.ly/XSLT_2E
http://bit.ly/XSLT_Cookbook
http://en.wikibooks.org/wiki/XForms
http://www.it-ebooks.info/

The XForms wikibook is an excellent resource for XForms examples, espe-
cially as many of the articles are developed against eXist.

o XForms Essentials, by Micah Dubinko (O’Reilly, 2003)

An excellent reference guide to have when you’re working with XForms,
with some good explanations of the W3C XForms specification.

XML Schema
o Definitive XML Schema, by Priscilla Walmsley (Prentice Hall, 2013)

o RELAX NG, by Eric van der Vlist (O’Reilly, 2003)

XSL-FO
o XSL, XSL-FO FAQ, curated by Dave Pawson

The XSL-FO FAQ is in a similar vein to the XSLT FAQ and likewise is an
invaluable resource, with many questions answered by subject experts.

o XSL Formatting Objects: Developer’s Handbook, by Doug Lovell (Sams, 2003)

18 | Chapter 1: Introduction

www.it-ebooks.info

http://bit.ly/XForms_Essentials
http://www.datypic.com/books/defxmlschema/
http://bit.ly/Relax_NG
http://bit.ly/xsl_xsl-fo_faq
http://bit.ly/xsl-fo_dev_handbook
http://www.it-ebooks.info/

CHAPTER 2
Getting Started

This chapter takes you through the first steps in using eXist. It handles subjects like
downloading and installing, starting and stopping, running the examples, and dem-
onstrates some of eXist’s capabilities on a “Hello World” level. In other words, like
the chapter title says, it will get you started.

If you have used eXist before, you may like to skip over this chapter.

Downloading and Installing eXist

This section takes you through the steps necessary for getting eXist up and running
on a standalone development system. That is to say, we keep things simple and don’t
spend time on more advanced subjects such as database security, tuning, perfor-
mance, embedded mode operation, and the like. Those subjects and more are cov-
ered in the chapters to come.

Be aware that installing eXist for production purposes (e.g., as the
engine behind a public website) requires much more thought and
planning. Security, especially, requires attention in those kinds of
more public situations. Also, if you plan to use eXist with some
really huge datasets, you probably need a different setup than that
described here. For information on installing eXist in a server envi-
ronment, see “Installing eXist as a Service” on page 405.

Preconditions

eXist can be installed on almost all versions of Linux, Windows, and Mac OS X. The
deciding factor is whether or not your OS (operating system) supports at least Java
version 1.6 (1.7 is recommended). If it does, then eXist should run.

19

www.it-ebooks.info

http://www.it-ebooks.info/

In order to run the eXist installer, you must have a working JRE (Java Runtime Envi-
ronment) or JDK (Java Development Kit), version 1.6 or newer. The eXist team regu-
larly tests eXist with the Oracle and Open]DK JRE and JDKs, but the community
reports that the IBM JDK (among others) also works.

You can download the Oracle JDK from http://www.oracle.com/technetwork/java/
javase/downloads/index.html.

To check whether you have the right Java version (and have
installed it correctly), open a terminal/command-line window and
type java -version. You should see a message telling you which
version of Java you're running.

Downloading eXist

Downloading eXist is easy. Go to http://www.exist-db.org, navigate to the download
section, pick the right distribution, and download it. For getting started, pick the lat-
est stable distribution. The filename will probably look like eXist-db-setup-<version>-
rev<XXXXX>.jar.

This book was based on the 2.1 release of eXist (eXist-db-setup-2.1-
rev18721.jar), but by the time you read this, a newer version may
be available.

Things to Decide Before Installing

Of course, you can go ahead now and run the installer using the defaults provided.
However, there are probably a number of things you want to decide before firing up
the installer:

Installation directory
Where are you going to install eXist? For a “getting started” installation, this is
not extremely important; you can use the default suggested by the installer or any
other location you like (provided it is writable by the installer).

However, there are a number of reasons why the installation directory matters
more than is usual for a software installation. Firstly, the default for the data
directory (where eXist stores its data) is inside the installation directory, as
described shortly. Secondly, logging and temporary directories are also inside the
installation directory.

Having frequently written locations inside a software installation might be prob-
lematic because security sometimes does not allow this, or it causes performance

20 | Chapter2: Getting Started

www.it-ebooks.info

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.exist-db.org
http://www.it-ebooks.info/

degradation. When you start to do more serious work, make sure the important
locations are included in your backup.

We will refer to the installation directory as $EXIST_HOME throughout this
book.

Data directory
This is the directory where eXist stores the content of its database. The installer
will propose a default that’s inside eXist’s installation directory ($EXIST_HOME/
webapp/WEB-INF/data, to be precise). If you just plan to play around a bit or do
some development work, keep the default. You can always change it later.

However, if things get serious, like on a production server, make sure that this
directory is writable, located on a volume that is sufficiently fast for updates, and
backed up (which is not always the case for program file directories).

Administrator password
The installer will ask you to provide an administrator password. This is not your
operating system’s administrator password, but the initial password used for
eXist’s administrator’s account (called admin). You are strongly encouraged to set
an administrator password on all installations of eXist. If you don’t, eXist will use
an empty password, so anyone who tries an empty password would have full
access to your eXist instance.

Memory settings
The installer allows you to set the amount of memory reserved for eXist’s JVM
and its internal cache. Common settings are shown in Table 2-1.

Table 2-1. eXist installation memory settings

Max memory Cache memory Remarks

512 MB 64 MB Don't go any lower than this, or eXist will not run properly.
1,024 MB 128 MB This is the default setting and is fine for small development use.
2,048 MB 256 MB If your machine has enough memory to spare, then use at least this.

Packages/apps to install
For getting started purposes, we recommend keeping everything checked (this
book assumes that you did!).

Downloading and Installing eXist | 21

www.it-ebooks.info

http://www.it-ebooks.info/

Installing eXist
Start the installer in one of the following ways:

For desktop-driven systems
If Java is set up correctly, on many systems that provide a GUI, double-clicking
the downloaded eXist-db-setup-<version>-rev< XXXXX>.jar file will fire up the
graphical installer.

On all GUI systems, from the command line
Open a terminal/command-line window and enter the following command: java
-jar eXist-db-setup-<version>-rev<XXxxx>.jar (of course, the name of the
file you just downloaded). This will launch the graphical installer.

On non-GUI systems, from the command line
If you are on a system that does not provide a GUI environment—for example, a
remote server—you can entirely install eXist from the terminal. At the terminal/
command-line window, enter the following command: java -jar eXist-db-

setup-<version>-rev<XXXXx>.jar -console (using the name of the file you just
downloaded).

As usual with installers, follow the instructions on the screen to complete the installa-
tion. You’ll be asked to enter the information prepared in the previous section. Let
the installer run its course, and that’s it!

Post-Installation Checks
By default, eXist uses two TCP ports:

Port 8080
This port is used for all the normal HTTP communication.

Port 8443
This port is used for the confidential HTTPS communication. By default, eXist
uses a self-signed certificate, which, while more secure than using no certificate,
should not be considered for production use. You may also see a warning about
the self-signed certificate when accessing this from a web browser.

If one of these ports is used by another application on your system, you either have to
make this other application change its ports or change the port settings for eXist.

The easiest way to find out if something is using these ports is, before starting eXist,
to visit http://localhost:8080/ and https://localhost:8443/. If nothing happens, the ports
are probably free and you can go ahead.

22 | Chapter2: Getting Started

www.it-ebooks.info

http://www.it-ebooks.info/

Changing eXist’s TCP port usage is explained in “Changing Jetty Settings: Port Num-
ber and URL Prefix” on page 205.

This book assumes eXist is running on localhost using the standard
TCP port numbers 8080 and 8443, so you'll see URLs like http://
localhost:8080/... throughout the book.

Starting and Stopping eXist with a GUI

If you're on a system with a GUI, the installer will have created a menu entry and/or a
desktop icon called eXist database. If you're on a command-line-only system, go to
“Starting and Stopping eXist from the Command Line” on page 24.

Clicking the eXist database icon starts eXist and also fires up a little control applica-
tion that should be visible in the system tray (or its equivalent on your system) as a
dotted X. For instance, on a Windows 7 machine it looks like Figure 2-1.

r 2Oy @ 1052 W

Figure 2-1. The eXist control application in a Windows 7 system tray

Clicking it opens a little menu that gives you further control of eXist (like stopping
the server) and lets you do a few other useful things, as shown in Figure 2-2.

Start senver

Stop server

System Configuration

Show Tool Window

Open dashboard
Open eXide
Open Java Admin Client

Open existlog

Quit (and stop server)

Figure 2-2. The menu of the eXist control application

If for some reason this doesn’t work, open a command window in $EXIST HOME
and type java -jar start.jar. This should fire up the control application and the
database. If this works, you're probably best off creating a shortcut or menu entry for
it manually. If still nothing happens, read the next section.

Starting and Stopping eXistwithaGUI | 23

www.it-ebooks.info

http://www.it-ebooks.info/

After starting the database, open your browser and visit http://localhost:8080/exist. If
a nicely tiled screen appears (like in “The Dashboard” on page 24), you've succeeded!

Starting and Stopping eXist from the Command Line

If you don’t want to or can’t work with the GUI niceties, you can also start eXist from
the command line. For this, open up a command-line window and navigate to
$EXIST _HOME/bin. There you'll find several command files in both the Windows
(*.bat versions) and Unix/Linux/Mac (*.sh versions) variants. For starting and stop-
ping, do the following:

startup
This will fire up eXist.

shutdown -p adminpassword
This will stop the running eXist instance. It needs the administrator password.

A First Tour Around Town

This section will give you a quick tour of eXist’s highlights and attractions, including
the user interface and what’s on your disk.

The Dashboard

The home screen of eXist since 2.1, http://localhost:8080/exist, is called the dashboard,
it is a set of tiles linking to various applications and utilities. The initial set shows the
default tiles provided with eXist. You may install additional ones via the Package
Manager, or if you start developing applications of your own with the Packaging Sys-
tem (see “Packaging” on page 227), those can appear here too.

Now, most of the functionality provided through the dashboard—stuff like eXide and
the function documentation—is important, and you will probably use it often. It is
therefore well worth your time to familiarize yourself with the smorgasbord offered
(see Figure 2-3).

24 | Chapter2: Getting Started

www.it-ebooks.info

http://www.it-ebooks.info/

Shutdown

L]
.y L]

o0_ 0

[] L]

o O

9 00

o O
bl . User Manager
Scheduler

»d 0N

betterFORM Demo and
Reference XForms

XQuery Function
Documentation

&

=

Java Admin Client

eXist-db Demo Apps

eXist-db
Documentation

®

»
LAY
[]
.. . L]
Admin Web Application

[eS

ﬁ!i

Package Manager

eXide - XQuery IDE

Figure 2-3. The eXist dashboard

The tiles provided by default are:

Java Admin Client

This tile provides a Java Web Start, a.k.a. JNLP (Java Network Launching Proto-
col), link to eXist’s Java Admin Client application. Use this if you want to access
an eXist installation remotely, from a system that does not have eXist installed.
For local use you're better off starting the Java Admin Client directly (e.g.,
through the control application’s menu, as shown in Figure 2-2). Read more

about the Java Admin Client in “The Java Admin Client” on page 29.

www.it-ebooks.info

AFirst Tour Around Town |

http://www.it-ebooks.info/

JNLP does not work well with all browsers. You might just get
a “Save downloaded file” dialog when pressing this tile.

Admin Web Application
This tile gives access to the original (pre-2.x) administrator web client applica-
tion. There is still some functionality there that has not yet appeared in the new
interface, such as profiling queries and index overview.

Collections
This tile starts a collection browser that enables you to control the contents of the
database.

Shutdown, Backup
These applications do what their titles suggest.

Package Manager
A package is a set of related files that together provide some kind of functionality
—for instance, an application or library. The Package Manager allows you to
manage (view, install, and uninstall) packages in your eXist database. When you
open it, you can see that most of the functionality behind the tiles of the dash-
board is provided by separate packages.

Packages can come from the eXist public repository—you can see the packages
available there by selecting the available option at the top of the Package
Manager—or they can be distributed as separate package files with the exten-
sion .xar.

It is also possible (and even advised!) to design your own applications for use
with the Package Manager and distribute them using .xar package files. You’ll
learn how to do this in “Packaging” on page 227.

User Manager
This tile allows you to control the user population of the eXist database. You can
create, edit, and delete users and groups.

betterFORM Feature Explorer, betterFORM Demos, XSLTForms Demo
eXist has two built-in ways of doing XForms: betterFORM™ and XSLTForms™.
These applications provide you with demos and overviews. Find more informa-
tion in “XForms” on page 254.

eXist-db Demo Apps
This tile is a collection of applications that demonstrate some of eXist’s
capabilities.

26 | Chapter2: Getting Started

www.it-ebooks.info

http://www.it-ebooks.info/

XQuery Function Documentation
This is an application you’ll probably use very often. It provides an overview of
all the functions available and their documentation in both the standard eXist
extension modules and your own XQuery modules. There’s more about modules
in Chapter 7.

eXist-db Documentation App
This app provides access to the eXist documentation.

eXide
eXide is a cool, handy, fully integrated editor for working with XQuery, XML,
and other resources stored in eXist. You can use it for a multitude of activities,
from writing complete applications to fiddling around and experimenting. Don’t
miss it. Find more information in “eXide” on page 374.

Playing Around

If you're like us, at this point you’ll want to play around, try some XQuery, store
some XML, and perform other familiarization rituals. Get your feet wet and splash
around (without going into the deep end). Here is the quick recipe:

Open the dashboard: http://localhost:8080/exist.
Click on the eXide tile.
Click Login and log in as admin with the password set during installation.

Directly type some XQuery and run it.

N

If you want to see what’s in the database, click File->Manage (or press
Ctrl-Shift-M).

6. If you want to save your work or put some related files together, create a collec-
tion for this underneath /db.

What's in Your Database

You can look inside the database using, among others, the Collections app in the
dashboard or the eXist Java Admin Client (see “The Java Admin Client” on page 29).
You’ll see something that looks like a disk directory structure (but of course isn’t). To
explain the terminology, what you might think of inside your database as a directory
is called a collection in XML database geek speak (more about this in “Terminology”
on page 88). Here are the most important collections:

/db
The root collection in the database is always /db. You can’t change this.

AFirst Tour Around Town | 27

www.it-ebooks.info

http://www.it-ebooks.info/

/db/system
This is where eXist stores important configuration information (e.g., about users,
groups, and versioning). You shouldn’t change any of this information by hand
or programmatically, with the exception of what’s inside /db/system/config.

/db/system/config
This collection is used to store the collection-specific configuration for eXist, like
validation, indexes, and triggers. If you look underneath, you’ll find a (partial)
copy of the existing database structure with collection.xconf files here and there.
These (XML) files contain the collection configuration. Read more about this in
“Implicit Validation” on page 246 and “Configuring Indexes” on page 275.

/db/apps/*
These are the root collections for the packages, installed during installation and
manually later. Underneath these is their code and data. If you’re ever going to
write applications yourself (Chapter 9), you'll create your own subcollections
here.

What's on Your Disk

Now let’s look at some interesting and/or important locations on your disk for eXist.

There are rumors on the grapevine that the basic file structure will
change in future versions, so be aware if you use this book with a
later version than 2.1.

$EXIST_HOME/
This is eXist’s home directory.

$EXIST HOME/conf.xml
This is eXist’s main configuration file. If you peek inside (it’s well documented),
you’ll find entries for, for instance, all kinds of default behavior, the location of
the database (in db-connection/@files), cache sizes, the indexer, and the built-in
XQuery modules.

$EXIST_HOME/tools/jetty/etc/jetty.xml
This is the Jetty web server’s configuration file (eXist uses Jetty to communicate
with the world). There are several interesting things you might want to change
using this file, like the TCP port numbers and the default URL prefix exist/.

$EXIST _HOME/webapp/WEB-INF/
This location defines the eXist web application. It holds several important config-
uration files and is the default base location for the database and the logfiles.

28 | Chapter2: Getting Started

www.it-ebooks.info

http://www.it-ebooks.info/

$EXIST_HOME/webapp/ WEB-INF/controller-config.xml
This tells eXist what to do when a request with a certain URL is entered. There’s
more information in “The controller-config.xml Configuration File” on page 206.

$EXIST_HOME/webapp/WEB-INF/data/
This is the default location for eXist’s database (unless you specified somewhere
else during the installation process).

If you peek inside this directory, you’ll find underneath the fs subdirectory all the
non-XML files stored in the database. However, your XML files are not there;
they have seemingly disappeared. Don’t despair: they’re absorbed into the *.dbx
files you see in the root of the database directory. You'll find more information
about this in “Help: Where Is My XML?” on page 87.

You might be tempted to change the non-XML content
underneath the fs subdirectory directly. Don’t do this. It will
ruin the database’s internal administration. Use only the nor-
mal mechanisms for this, like WebDAYV, the dashboard, or the
Java Admin Client tool.

$EXIST_HOME/webapp/WEB-INF/logs/
Here you’ll find several logfiles that can help you find out what’s going on under-
neath eXist’s hood.

The Java Admin Client

Through the eXist controller application (visible in the system tray), you can start the
Java Admin Client. This pops up a small and, admittedly, rather old-fashioned-
looking program. It allows you to do maintenance work on the database like backups
and restores, imports and exports, checking and setting properties, and creating col-
lections. Figure 2-4 shows how it looks on a freshly installed database.

The eXist Client tool is a standard GUI application, and its functionality speaks for
itself.

Most of this tool’s functionality is also present in the new dashboard application, so
there’s a good chance you’ll never need it. However, there are circumstances in which
it can be useful, such as when you’re working on a production server where you don’t
want the dashboard to be present.

AFirst Tour Around Town | 29

www.it-ebooks.info

http://www.it-ebooks.info/

_Io/x]

File Tools Connection Options Help

|al@|Bn|o|E] s

Resource Date Owner Permissions
apps 2013-11-14 1... |[SYSTEM CrWXr-Xr-x
system 2013-11-14 1... |SYSTEM CrWXr-Xr-x

type help or ? for help.
exist:/db>

eXist Admin Client connected - admin@xmldb:exist://localhost:8080/exist/xmlirpc

Figure 2-4. The main screen of the eXist Java Admin Client tool

Getting Files into and out of the Database

eXist is an XML database. Its primary storage concern is XML documents. It can also
hold your XQuery files, and any other resources needed by your application. So how
do you get files in and out of it?

Collections app
Browse to eXist’s Collections application (available through the dashboard). This

allows you to look through the contents of your database and maintain the col-
lections and resources.

eXide

eXist’s built-in native IDE, called eXide, has facilities for uploading and down-
loading files. Click File->Manage (or press Ctrl-Shift-M).

WebDAV
eXist’s WebDAV (Web-based Distributed Authoring and Versioning protocol)
interface allows you to access the contents of the database just like it was any
other file store available to your OS. The address to use is http://localhost:8080/
exist/webdav/db/ or, when your OS requires safe URLs (like Windows 7), https://
localhost:8443/exist/webdav/db/.

30 | Chapter2: Getting Started

www.it-ebooks.info

http://www.it-ebooks.info/

Exactly how to work with a WebDAYV server and which client tool to use is
platform-specific. Some operating systems, like Windows, will allow you to inte-
grate it more or less into the normal file browsing capabilities, while others need
special client tools. Read more about this in “WebDAV” on page 305.

Java Admin Client
eXist’s Java Admin Client tool (see “The Java Admin Client” on page 29) also has
some basic facilities for getting files into and out of the database.

External IDE
Some external IDEs, such as oXygen, provide you with the option to work with
eXist natively. This includes importing/exporting files. Find more information in
“oXygen” on page 375.

Programmatically
Of course, you can import and export files programmatically by writing some
XQuery code that performs what you want on the database. That’s okay within
applications, but a bit cuambersome for now. For more information, see “Con-
trolling the Database from Code” on page 107 and Chapter 13.

Ant
eXist provides a library for the Ant build tool to automate common tasks like
backup/restore or importing a bunch of files. This method is recommended if
you need to repeat batch tasks on your database. There’s more information in
“Ant and eXist” on page 379.

Hello eXist!

This section performs a first exploration of the fundamental mechanisms in eXist;
that is, how you get it to actually do something—store/retrieve/filter information,
show a web page, transform XML, and more. In other words, this section is an exten-
ded “Hello world” example in which, in a (very) shallow way, we touch upon the
important processing features of the platform.

For most of the examples, the output is not shown because we want to encourage you
to try this yourselves using the provided example code. We assume you’ve installed
the example code and know how to access it, as described in “Accompanying Source
Code” on page 15.

Hello Data

In the example code for this book, there is an XML file in /db/apps/exist-book/getting-
started/xmli-example.xml that looks like Example 2-1.

HelloeXist! | 31

www.it-ebooks.info

http://www.it-ebooks.info/

Example 2-1. XML file

<?xml version="1.0" encoding="UTF-8"?>
<Items>
<Item name="Bogus item"sThis is a complete bogus item</Item>
<Item name="Funny item"sHa, ha, very funny indeed!</Item>
</Items>

Accessing data (and also scripts) is done through the eXist REST interface. To see it
in action, fire up your browser and visit http://localhost:8080/exist/rest/apps/exist-
book/getting-started/xml-example.xml.

The result is that you see exactly the file from Example 2-1. Not impressive, maybe,
but hey, this is only the beginning.

The REST interface allows you to directly query this file. For instance, assume you're
interested in the first item only. You can access it by adding a _query parameter:

http://localhost:8080/exist/rest/apps/exist-book/getting-started/
xml-example.xml?_query=//Item[1]

The result will be:

<exist:result xmlns:exist="http://exist.sourceforge.net/NS/exist" exist:hits="1"
exist:start="1" exist:count="1">
<Item name="Bogus item">This is a complete bogus item</Item>
</exist:result>

Because it’s a query, eXist wraps the result in an exist:result element with addi-
tional information in its attributes. There are other query parameters that will let you
limit the size of the result set and even retrieve the results block by block. More infor-
mation about the REST interface can be found in “Querying the Database Using
REST” on page 94.

Hello XQuery

Of course, the main language when you are dealing with eXist is XQuery, which is the
language to access XML databases. Put your XQuery script in a file (or database
document) with the extension .xq. Example 2-2 shows you a basic way to output
some XML.

Example 2-2. Basic XQuery code returning XML
xquery version "3.0";

let $msg := 'Hello XQuery'
return
<results timestamp="{current-dateTime()}">
<message>{Smsg}</message>
</results>

32 | Chapter2: Getting Started

www.it-ebooks.info

http://www.it-ebooks.info/

Now what if you want to show the result as an HTML page instead? That’s called
serialization, and Example 2-3 shows one of the ways to do it.

Example 2-3. Basic XQuery code returning HTML
xquery version "3.0";
declare option exist:serialize "method=html media-type=text/html";

let Smsg := 'Hello XQuery'
return
<html>
<head>
<title> </title>
</head>
<body>
<h3> {current-dateTime()} {$msg}'</h3>
</body>
</html>

XQuery-initiated readers might have noticed that we did not declare the exist name-
space prefix. eXist has most eXist-specific namespace prefixes predeclared for you, so
you don’t have to explicitly mention them in your code.

Hello XSLT

XSLT is built into eXist using (by default) the Saxon XSLT processor. The examples
contain a simple stylesheet to show you how this works. The stylesheet in
Example 2-4 takes the XML from Example 2-1 and turns it into an HTML page.

Example 2-4. Transformation of the example XML into HTML

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform" version="1.0">
<xsl:template match="/">
<html>
<head>
<title>Hello XSLT</title>
</head>
<body>
<h1>Item overview</h1>

<xsl:for-each select="//Item">

<xsl:value-of select="@name"/>:
<xsl:value-of select="."/>

</xsl:for-each>

HelloeXist! | 33

www.it-ebooks.info

http://www.it-ebooks.info/

</body>
</html>
</xsl:template>
</xsl:stylesheet>

To run an XSLT stylesheet over some XML from within XQuery, you need to use an
extension module. Extension modules are, well, extensions to the basic XQuery capa-
bilities. eXist has lots of them, and we devote all of Chapter 7 to the subject. An over-
view (and all function documentation) is accessible through the XQuery Function
Documentation app, available through the dashboard.

Transforming documents with XSLT is done with the transform extension module.
A little XQuery script that performs this transformation is shown in Example 2-5,
and its result in Figure 2-5.

Example 2-5. Using XSLT with the transform extension module

xquery version "3.0";

declare option exist:serialize "method=html media-type=text/html";

transform:transform(
doc("/db/apps/exist-book/getting-started/xml-example.xml"),

doc("/db/apps/exist-book/getting-started/convert-items.xslt"),
O

Item overview

s Bogus item: This is a complete bogus item
s Funny item: Ha, ha, very funny indeed!

Figure 2-5. Result of the XSLT transformation

Notice that the transform extension module was not explicitly declared in the
XQuery script. eXist does this implicitly for you. The third parameter of trans
form:transform, which here is passed an empty sequence, can contain parameters
for the stylesheet.

More about using XSLT transformations within eXist can be found in “XSLT” on
page 238.

34 | Chapter2: Getting Started

www.it-ebooks.info

http://www.it-ebooks.info/

Hello XInclude

eXist can also do XInclude processing for you. This means that on the way out, when
the final results of an XQuery operation are serialized, they are inspected for
xi:include elements. When found, these references are expanded.

An interesting feature of the XInclude processing is that you can also refer to XQuery
scripts. The script is executed and the result included. Example 2-6 demonstrates this.

Example 2-6. XInclude

<?xml version="1.0" encoding="UTF-8"?>

<XIncludeEnvelope xmlns:xi="http://www.w3.0rg/2001/XInclude">
<xi:include href="xinclude-content.xml"/>
<xi:include href="hello-world-1.xq"/>

</XIncludeEnvelope>

hello-world-1.xq is the XQuery script presented in Example 2-3. The included XML
file contains the fragment shown in Example 2-7.

Example 2-7. XML fragment to include with XInclude

<XIncludeContent>This element was included by the XInclude processing
in eXist. Yes!</XIncludeContent>

Now if you retrieve xinclude-envelope.xml from the database, the XInclude references
are resolved, resulting in Example 2-8.

Example 2-8. The result of the XInclude processing

<XIncludeEnvelope xmlns:xi="http://www.w3.0rg/2001/XInclude">
<XIncludeContent>
This element was included by the XInclude processing in eXist. Yes!
</XIncludeContent>
<results timestamp="2013-02-21T13:12:21.399+01:00">
<message>Hello XQuery</message>
</results>
</XIncludeEnvelope>

There are more features to XInclude processing, like fallback instructions and the
ability to pass parameters to XInclude-d XQuery scripts. Read more about this in
“XInclude” on page 243.

Hello XForms

XForms is a W3C standard that defines declaratively the contents of a form on a web
page, its behavior, and its result. It’s neither a thick nor a complicated standard.

HelloeXist! | 35

www.it-ebooks.info

http://www.w3.org/TR/xforms
http://www.it-ebooks.info/

However, trying to fully understand what’s going on, and all the details (like forms
submission), can be challenging!

eXist has two third-party XForms processors built in that you may choose between:
betterFORM and XSLTForms. They allow you to create pages that contain XForms
logic and have them rendered and executed as the XForms specification describes. To
see this in action, take a look at Example 2-9, which will be rendered using
betterForm.

Example 2-9. A simple XForms example

<?xml version="1.0" encoding="UTF-8"?>

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:ev="http://www.w3.0rg/2001/xml-events"
xmlns:xf="http://www.w3.0rg/2002/xforms">

<head>
<title>Hello XForms</title>
<!-- The XForms data model: -->

<xf:model id="xforms-data-model">
<xf:submission action="hello-xforms-submit.xq" id="submit-id"
method="post"/>
<xf:instance xmlns="">
<Data>
<Name/>
<Date/>
</Data>
</xf:1instance>
<xf:bind i1d="NameBind" nodeset="/Data/Name" required="true()"
type="xs:string"/>
<xf:bind 1d="DateBind" nodeset="/Data/Date" required="true()"
type="xs:date" />
</xf:model>
</head>
<l-- -->
<body>
<h1>Hello XForms</h1>
<xf:group>
<xf:input bind="NameBind">
<xf:label>Name</xf:label>
</xf:input>
<xf:input bind="DateBind">
<xf:label>Date</xf:label>
</xf:1input>
<xf:submit submission="submit-id">
<xf:label>Submit</xf:label>
</xf:submit>
</xf:group>
</body>
</html>

36 | Chapter2: Getting Started

www.it-ebooks.info

http://www.it-ebooks.info/

This example will let you fill in a simple form. Notice that because we bound
the /Data/Date field to the data type xs:date, the form will automatically show a
date picker for the date input field! Have a look at the underlying HTML code. As
you can see, betterForm adds lots of functionality to make all this happen.

When you press the submit button (after filling in the values), the posted XML will
show through the hello-xforms-submit.xq page, as Example 2-10 demonstrates.
Example 2-10. Getting the results of an XForm
xquery version "1.0" encoding "UTF-8";
<XFormsResult>

{request:get-data()}

</XFormsResult>

You can find more on XForms in “XForms” on page 254.

HelloeXist! | 37

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3
Using eXist 101

This chapter contains an introduction to actually using eXist to build software. It will
take you by the hand and guide you step by step along the winding XPath roads,
through the XQuery meadows, along some RESTful paths, over the index mountain,
and to many, many other wonderful places—all in a quest for the golden ring of an
understanding that binds it all (which will definitely not be thrown into some vol-
cano by Gollum).

This chapter guides you through building a simple web application that uses, ana-
lyzes, and enables searching of some Shakespeare plays. We start at the very begin-
ning (creating the application’s collections, adding data), and end with a simple but
usable piece of software. Along the way, we will tell you where to find more informa-
tion about the subjects covered. Everything is done natively through eXist; no exter-
nal IDE is required.

To make ourselves clear: the goal of this chapter is not to teach you XQuery. We
assume you have at least a basic understanding of this language, including some
experience with XPath. However, we do try to explain what we’re doing with some of
the XQuery, so if you don’t know any XQuery yet, do not despair!

Preparations and Basic Application Setup

The application we’re going to build needs a set of data to work with. eXist comes
with an example application (one of the eXist-db demo apps, available through the
dashboard) that contains a nice, consistent, and large enough set of example data to
be useful for us. So we’re going to reuse this and, in doing so, show you how to export
and import files.

The tools provided alongside eXist for working with the database’s content (see “The
Dashboard” on page 24) have the ability to copy content from one database collection

39

www.it-ebooks.info

http://www.it-ebooks.info/

to another. For instance, if you look at the database through the dashboard’s collec-
tion browser, you'll find copy and paste facilities. However, sometimes you have to
export and import content from the filesystem, so that’s a good place to start our
quest.

eXist Terminology
To prevent you from getting confused, let’s introduce some eXist terms to you first:

Collections
What you may typically think of as a directory or folder in the filesystem world, is
actually called a collection inside eXist’s database. There are some subtle and
important differences with collections that you will learn about shortly.

Resources
What is called a file in the filesystem world is called a resource inside eXist’s data-
base. Resources can be anything you usually store in a file: images, CSS files,
XQuery scripts, and, of course, XML documents.

Documents
A resource containing well-formed XML is called a document.

See also “Terminology” on page 88.

Exporting Documents from eXist

First, we’re going to export the documents from eXist (afterward, we’ll pretend they
came from somewhere else). If you have a WebDAV connection set up (see “Getting
Files into and out of the Database” on page 30), this is really easy: just drag and drop
the necessary files from the eXist collection to somewhere on your filesystem. If you
don’t (yet) have WebDAV working, you can use the Java Admin Client as follows:

1. Start the Java Admin Client by clicking the eXist application icon in your system
tray (see “Starting and Stopping eXist with a GUI” on page 23) and choose Open
Java Admin Client. You'll see the screen shown in Figure 3-1.

40 | Chapter3:Using eXist 101

www.it-ebooks.info

http://www.it-ebooks.info/

eXist 2.1 Database Login x|

. Username: |admin |
‘So_oc0°

... Password: [|
.....

o "0 e Remore <]

[) []

URL: \xmldD:exist:n’localnosI:BUBUIexistmlrpc
[]ssL

Favourites

Figure 3-1. The opening screen of the Java Admin Client

2. Log in as admin (using the password you set when you installed eXist, as
described in “Downloading and Installing eXist” on page 19) with the URL
xmldb:exist://localhost:8080/exist/xmlrpc.

3. After a successful login, the screen shown in Figure 2-4 appears. Navigate to the
collection apps/demo/data.

4. Select hamlet.xml and click the menu command File->Export a resource to a
file.... Dump it on your disk somewhere. Repeat this for macbeth.xml and
r_and_j.xml (guess what: Romeo and Juliet!).

5. Change the filename of the Romeo and Juliet play from r_and_j.xml to r and
j.xml (replace the underscores with spaces). This will illustrate an important
property of eXist later on.

So now we have three Shakespeare plays in XML markup on our disk. Let’s pretend
these files came from somewhere else and import them into our database.

Preparations and Basic Application Setup | 41

www.it-ebooks.info

http://www.it-ebooks.info/

Designing an Application’s Collection Structure and Importing Data

When you write an application in eXist (or anywhere else), you need a place to store
your code and the accompanying data. Now, in eXist you can design any collection
structure you like, but it is customary to store applications underneath the /db/apps
collection. So, that is where we’re going to put our 101 application.

In this example, we’ll consider our data, the plays, static (immuta-
ble) data. However, most applications also have dynamic data (data
your application creates, updates, uploads, etc.). There is a debate
as to whether (a subcollection of) /db/apps/<yourapp> is a good
location for this data. Some application designers argue that you
should be consistent and keep everything in one place. But storing
your dynamic data somewhere else (e.g., in /db/data/<yourapp>)
has benefits of its own. For instance, you can more easily update
your application’s code without losing the accumulated dynamic
data. We won’t worry about this in our 101 course, but make sure
to give it some thought if you're going to build a real application.

You could use the Java Admin Client again to create the necessary collections and
import the plays (there’s an Import Files button in the toolbar), but let’s check out
another useful tool. Close the Java Admin Client, open a web browser, and follow
these steps:

1. Browse to the dashboard (http://localhost:8080/exist/).

2. Log in as admin (click on “Not logged in” in the upper-left corner).
3. Click on the Collections tile.

4. Navigate to /db/apps.

5

. Create a fresh /db/apps/exist101 collection (the New Collection command is in
the toolbar).

6. Navigate into the /db/apps/exist101 collection and create the /db/apps/exist101/
data collection.

7. Navigate to the /db/apps/exist101/data collection and click “Upload resources” in
the toolbar.

8. Upload the plays we just downloaded into the collection.

The collection browser should now look like Figure 3-2.

42 | Chapter3:Using eXist 101

www.it-ebooks.info

http://www.it-ebooks.info/

e e e st e s S sl e

/db/apps/exist101/data

Name Permissions Oowner Group Last-modified

hamlet.xml —PW-r—r-—- admin dba March 26 2013 16:46:22
macbeth xml ~MW-F--r-- admin dba March 26 2013 13:22:24
rte20and%20j.xml —PW-r—r-—- admin dba March 26 2013 13:22:24

Figure 3-2. The collection browser after we upload the plays

Look at the name of the Romeo and Juliet file. Instead of r and j.xml, it is now called r
%20and%20j.xml. What happened? Well, names of collections and resources inside
eXist are always URL-encoded URIs. Reserved characters, according to the URL
encoding rules, are percent-encoded. A space character is one of these, so that
explains the %20 codes. More about this can be found in “Use URIs” on page 91. We’'ll
come back to how to handle these names later.

Viewing the Data

Let’s pretend for a moment we did not have the data on our disk before we imported
it into the database. Instead of viewing a file on disk, how can we view XML (and
other) resources stored in eXist?

The easiest and most versatile way of working with stored data is through an editor
that is connected with eXist. Luckily for us, eXist has a built-in IDE, eXide, which we
can use to view and edit files as follows:

1. Browse to the dashboard (http://localhost:8080/exist/).

2. If you're not already logged in, log in as admin (click on “Not logged in” in the
upper-left corner).

3. Click on the “eXide - XQuery IDE” tile. eXide will open in a new browser win-
dow or tab.

4. Click Open, navigate to /db/apps/existl0l/data, and open hamlet.xml
(Figure 3-3).

ViewingtheData | 43

www.it-ebooks.info

http://www.it-ebooks.info/

File Edit Navigate Buffers Application XML Help Login

[New | Bl New XQuery | E>Open | [Save % Close | » Run | Check QEEEOUGEIEENGICRNGEEREPAN v

Outline

new-document 1* hamlet.xml

1892.</P>

he present king.</BIRSONE>

GRS e

L R e S

Qo

« XML Qutput v Live Preview [»

Figure 3-3. Hamlet opened in eXide

Alternatively, you can view the XML file in a browser through eXist’s REST interface
(see “Querying the Database Using REST” on page 94). Simply visit http://localhost:
8080/exist/rest/db/apps/exist101/data/hamlet.xml.

But wait, it’s not working! You should get an error message about a shakes.xs! style-
sheet not being found. Crime doesn’t pay: it’s our punishment for being a data thief!
The problem is that the XML files we started with were part of an application and
were coupled to an XSL stylesheet by a processing instruction. This stylesheet, meant
to create an HTML version of the play, was not copied by us and therefore, alas,
could not be found. There’s more about using XSLT via processing instructions in
“Invoking XSLT by Processing Instruction” on page 242.

Fear not; the problem is easily solved. Open hamlet.xml (again) in eXide and look at
the first line. It begins with:

<?xml-stylesheet href="shakes.xsl" type="text/xsl"?>

Remove this processing instruction using eXide, save the file, and try the URL again.
You should now see hamlet.xml in all its XML glory.

44 | Chapter3: Using eXist 101

www.it-ebooks.info

http://www.it-ebooks.info/

If you feel bold enough, you could also try this: do not remove the processing instruc-
tion (or use one of the other files) and copy the shakes.xsl file from /db/apps/demo/
data to /db/apps/exist101/data, like we did with the plays. When you now open the
document in your browser (with the URL given before), you’ll see a nicely rendered
HTML page.

Listing the Plays (XML)

Let’s write our first XQuery script and have it find out which plays we have in
the /db/apps/exist101/data collection. For now we’ll return the result as an XML frag-
ment, and in the next section we’ll create a nice-looking HTML page from this. There
is more than one way to do this (where have I heard that line before?), and we’ll show
you a few.

First, perform the following preparations:

1. Browse to the dashboard (http://localhost:8080/exist/).

2. If you're not already logged in, log in as admin (click on “Not logged in” in the
upper-left corner).

3. Click on the “eXide - XQuery IDE” tile. eXide will open in a new browser win-
dow or tab.

4. Click on New XQuery. A new tab opens with an empty XQuery script.
5. Click Save and save the script as /db/apps/exist101/playlist.xq.

Listing with the collection Function

In our first version of the solution, we will use the XPath collection function to iter-
ate over all the resources in our data collection. Enter the following code and press
Run:

for Sresource in collection("/db/apps/exist101/data")

return

base-uri($resource)

The collection function returns a sequence of documents (document-node items)
for all the resources found in the given collection and its subcollections (for details,
see “The collection Function” on page 93). The XPath base-urti function returns the
URI for a document-node, which in eXist is the path leading to the resource.

Running this should return (in the bottom window) a list with the plays, including
each one’s full path in the database.

Turning this list of strings into a well-formed XML fragment is simple:

Listing the Plays (XML) | 45

www.it-ebooks.info

http://www.it-ebooks.info/

<plays>
{
for S$resource in collection("/db/apps/exist101/data")
return <play uri="{base-uri(Sresource)}"/>

}
</plays>

This should return:

<plays>
<play uri="/db/apps/exist101/data/hamlet.xml" />
<play uri="/db/apps/exist101/data/macbeth.xml" />
<play uri="/db/apps/exist101/data/r%20and%20j.xml" />
</plays>
Now let’s tweak this a little more. Later on we’re going to present a list of available
plays to the user, and it would be nice if we could display the name of the document
(without a collection path) and, more importantly, the name of the play.

To get the name of the file, we have to do some string munging on the URI we
already have. For this, XPath’s regular expressions come in handy. Regular expres-
sions are expressions to parse and work with strings. We won’t explain them here
because that would take too much ink (in fact, there are whole books devoted to
them). For now, just accept that the following expression returns the part of a file-
name after the last / character:

replace(base-uri($resource), '.+/(.+)$', '$1')

There is one more thing about the name: we don’t want the URI encodings, like %20,
to show up in them. For this, we use a native eXist function from one of its extension
modules (extension modules are covered in Chapter 7): util:unescape-uri. It needs
two parameters: the name to unescape and the character encoding, which is nowa-
days almost always UTF-8. With this, the full code to get a nicely formatted filename
becomes:

util:unescape-uri(
replace(base-uri($resource), '.+/(.+)$', 'S1'),
'UTF-8'
)
To get the name of the play, we have to dive into the XML of the play itself. It’s
always in the /PLAY/TITLE element, and since we already have the root document-
node, retrieving this is a piece of cake:

$resource/PLAY/TITLE/text()

Using the /text function will ensure we get the result as a text node. If we didn’t use
this, the TITLE element itself would be returned (try it out if you want to).

With all this, our full code becomes what you see in Example 3-1.

46 | Chapter3:Using eXist 101

www.it-ebooks.info

http://www.it-ebooks.info/

Example 3-1. The full code to get the play information

xquery version "3.0";
<plays>
{
for $Sresource in collection("/db/apps/exist101/data")
return
<play uri="{base-uri($resource)}"
name="{util:unescape-uri(replace(base-uri($resource),

toH/(L4)8", "S1M), "UTF-8")3}"s

{
Sresource/PLAY/TITLE/text()
}
</play>
}
</plays>

And, with some slight improvements (using variables to store repeating data), it
looks like Example 3-2.

Example 3-2. Improved version of the code that gets the play information

xquery version "3.0";

<plays>

{
let $data-collection := "/db/apps/exist101/data"
for $Sresource in collection($data-collection)
let Suri := base-uri($resource)
return

<play uri="{Suri}"
name="{util:unescape-uri(replace($uri, ".+/(.+)S",
Hslﬂ)’ HUTF_BH)}||>

{
$resource/PLAY/TITLE/text()
}
</play>
}
</plays>

Don’t forget to save your code. After that, you can also try it from the browser. Try
the URL http://localhost:8080/exist/rest/db/apps/exist101/playlist.xq. You should see
the following:

<plays>
<play uri="/db/apps/exist101/data/hamlet.xml" name="hamlet.xml">
The Tragedy of Hamlet, Prince of Denmark</play>
<play uri="/db/apps/exist101/data/macbeth.xml" name="macbeth.xml">
The Tragedy of Macbeth</play>
<play uri="/db/apps/exist101/data/r%20and%20j.xml" name="r and j.xml">
The Tragedy of Romeo and Juliet</play>
</plays>

Listing the Plays (XML) | 47

www.it-ebooks.info

http://www.it-ebooks.info/

Listing with the xmldb Extension Module

Another way to return a list is by using one of eXist’s extension modules, xmldb (see
“Controlling the Database from Code” on page 107). An extension module contains
functions that perform actions that are difficult or impossible to do in standard
XQuery. eXist has quite a lot of them, and Appendix A lists the most important ones.
If you want to explore the wonderful features that extension modules have to offer,
you can access their documentation through the dashboard’s XQuery Function Doc-
umentation tile.

Instead of the code entered in the previous section, try the following:
xmldb:get-child-resources("/db/apps/exist101/data")

Your result window should now show a list of the play’s resource names (but without
their paths). So, where the collection function returned a document-node sequence,
xmldb:get-child-resources returns a string sequence. To get from a string to inside
the XML (to get the name of the play), we have to resolve a document-node from this
string. For this we use the XPath doc function (see “The doc Function” on page 94).

So, without further ado, Example 3-3 shows a piece of code that returns exactly the
same results as the code in Example 3-2, but by a different means.

Example 3-3. Getting the play information using an extension function

xquery version "3.0";
<plays>
{
let $data-collection := "/db/apps/exist101/data"
for Sresource-name in xmldb:get-child-resources($data-collection)
let Suri := concat($data-collection, '/', S$Sresource-name)
return
<play uri="{Suri}"
name="{util:unescape-uri($resource-name, "UTF-8")}"s>

{
doc($uri)/PLAY/TITLE/text()
}
</play>
}
</plays>

Listing the Plays (HTML)

As a next step, let’s present this information to the user as a nicely formatted HTML
page. For this we have to (you might have guessed) create the HTML ourselves,
including pieces like headers. For now we won’t bother to make it look fancy by using
CSS and the like, but of course you can add that too if you want.

48 | Chapter3: Using eXist 101

www.it-ebooks.info

http://www.it-ebooks.info/

First, let’s set up a basic HTML (or more precisely, XHTML) page without much con-
tent to see how this works. Enter the code in Example 3-4 and save it as
plays-home.xq.

Example 3-4. Basic HTML page code

xquery version "3.0";
<html>
<head>
<meta HTTP-EQUIV="Content-Type" content="text/html; charset=UTF-8"/>
<title> </title>
</head>
<body>
<h1> </h1>
</body>
</html>

Now run it. In the bottom part of the eXide screen, you'll see the same unexciting
piece of XHTML as you entered. Running it from the browser (http://localhost:8080/
exist/rest/db/apps/exist101/plays-home.xq) doesn’t make it look any better. So what’s
missing?

What’s missing here is that you have to tell eXist that this is XHTML and that it
should serialize it as such. There is more than one way to do this (see “Serialization”
on page 118), but the easiest is to add an exist:serialize option in the XQuery prolog
to tell eXist to serialize the query result as XHTML and send it to the browser as an
HTML page and not as a bare piece of XML:

declare option exist:serialize "method=xhtml media-type=text/html";

While we’re changing things anyway, let’s also get rid of the double entry for the
page’s title and put this in a global variable. Example 3-5 shows our improved basic
HTML page.

Example 3-5. Improved version of the basic HTML page code
xquery version "3.0";

declare option exist:serialize "method=xhtml media-type=text/html";
declare variable $page-title := "Our Shakespeare plays";

<html>
<head>
<meta HTTP-EQUIV="Content-Type" content="text/html; charset=UTF-8"/>
<title>{$page-title}</title>
</head>
<body>
<h1>{$page-title}</h1>

Listing the Plays (HTML) | 49

www.it-ebooks.info

http://www.it-ebooks.info/

</body>
</html>

When you run this from within eXide nothing too exciting happens, but when you
try it from the browser, you see the result shown in Figure 3-4.

<« C' ff [localhost:8080/exist/rest/db/apps/exist101/plays-home.xqgl

Our Shakespeare plays

Figure 3-4. The exciting output of our first basic HTML page

OK, now we’re getting somewhere! Now let’s use the output from “Listing the Plays
(XML)” on page 45 to display a list of plays (we’ll use the code with the collection
function here, but the code that uses the xmldb:get-child-resources function is
also fine). With a little copy and pasting, the code in Example 3-6 is constructed
quickly.

Example 3-6. Code for the HTML page that returns a list of plays (plays-home.xq)
xquery version "3.0";

declare option exist:serialize "method=xhtml media-type=text/html";
declare variable $page-title := "Our Shakespeare plays";

let $play-info :=
<plays>
{
for $resource in collection('/db/apps/exist101/data"')
return
<play uri="{base-uri($resource)}"
name="{util:unescape-uri(replace(base-uri($Sresource),
"o/ (L+)8", "61"), "UTF-8")}"s
{

}
</play>

Sresource/PLAY/TITLE/text()

}
</plays>
return

<html>
<head>
<meta HTTP-EQUIV="Content-Type" content="text/html; charset=UTF-8"/>
<title>{$page-title}</title>
</head>
<body>

50 | Chapter3: Using eXist 101

www.it-ebooks.info

http://www.it-ebooks.info/

<h1>{$page-title}</h1>

{
for $play in $play-info/play
return
<lis>{string(Splay)} ({string(Splay/@name)})</1i>
}

</body>
</html>

And in the browser, you should see the output in Figure 3-5.

<« C' A [localhost:8080/exist/rest/db/apps/exist101/plays-home.xgl
Our Shakespeare plays

The Tragedy of Hamlet, Prince of Denmark (hamlet xml)
The Tragedy of Macbeth (macbeth xml)
The Tragedy of Romeo and Juliet (r and j.xml)

Figure 3-5. Our HTML page with a list of plays

Those new to XQuery might wonder why on earth our HTML code (the part that
starts with <html>) is now suddenly underneath a return statement. This is because
we introduced a local variable (let $play-info :=...). Assoon as you do this, your
code becomes an XQuery FLWOR expression and needs a return statement for the
part you want to return.

Analyzing the Plays

Now assume we’re a famous play director and in need of some data about the play.
Among the many, many questions directors struggle with are “Which character has
the most lines?” and “How many actors do I need?” Let’s find out the answers using

XQuery.

Assume we have the document-node for the play’s XML to analyze in a variable called
$play-document. Subproblems to solve for our analysis are:

» We need a list of characters who speak. If you look inside the play’s XML, you’ll
see that everything said is inside a SPEECH element with a SPEAKER subelement.
So, to get a list of different speakers, all you have to do is get all the different val-
ues of SPEECH/SPEAKER and filter them for uniqueness:

distinct-values(Splay-document//SPEECH/SPEAKER)

Analyzingthe Plays | 51

www.it-ebooks.info

http://www.it-ebooks.info/

o To show totals and compute percentages for each speaker, we need the full set of
spoken lines in the play:

let $all-lines := S$Splay-document//SPEECH/LINE

o We need the lines spoken by each speaker. Assuming the name of the speaker is
in $speaker, we can get these with:

$speaker-lines := $play-document//SPEECH[SPEAKER eq $speaker]/LINE

« Given a sequence of LINE elements in a variable $elms (the sequence of LINE ele-
ments we retrieved in one of the previous two bullets), how many words are spo-
ken? A rough but usable approximation for this can be calculated by tokenizing
everything said using whitespace boundaries and couningt/aggregating the
results:

sum($Selms ! count(tokenize(., '"\s+')))
This might need a little further explanation:

— The exclamation mark after the $elms expression is an XQuery 3.0 “bang” or
“simple map” operator (see “The simple map operator” on page 114). It per-
forms the operation on the right for all members of the sequence on the left.

You could have done this in several other (and probably more customary)
ways (e.g., using a FLWOR expression), but this seemed a useful way to intro-
duce one of the new XQuery 3.0 capabilities.

— The tokenize function tokenizes (breaks up) strings on boundaries given by a
regular expression. The regular expression '\s+' signifies a sequence of
whitespace characters, so that gives us the words (more or less, sometimes
punctuation gets in the way, but let’s forget about that for now).

— We’re not interested in the words themselves but only in how many there are.
So we simply count them.

— The outer sum function sums the numeric results of what’s inside, returning
the total of all words spoken in the elements in $elms.

As a last step, let’s put this functionality into a local function (because we’re going to
use it twice in our code: once for the full play and once for every speaker):

declare function local:word-count($elms as element()*) as xs:integer

{

sum(Selms ! count(tokenize(., '\s+')))

b

Now let’s put this all together and create a page that shows us the results of our analy-
sis (just for Hamlet) in a table. The code for this is shown in Example 3-7.

52 | Chapter3: Using eXist 101

www.it-ebooks.info

http://www.it-ebooks.info/

Example 3-7. Code to analyze Hamlet
xquery version "3.0";

declare option exist:serialize "method=xhtml media-type=text/html";
declare variable $page-title as xs:string := "Play analysis";
declare variable $play-uri as xs:string := "/db/apps/exist101/data/hamlet.xml";

declare function local:word-count($elms as element()*) as xs:integer
{
sum(Selms ! count(tokenize(., "\W+")))

};

let $play-document := doc($play-uri)

let Splay-title := string($play-document/PLAY/TITLE)

let S$speakers := distinct-values($Splay-document//SPEECH/SPEAKER)
let $all-lines := $play-document//SPEECH/LINE

let $all-word-count := local:word-count($all-lines)

return
<html>

<head>
<meta HTTP-EQUIV="Content-Type" content="text/html; charset=UTF-8"/>
<title>{$page-title}</title>

</head>

<body>
<h1>{Spage-title}: {Splay-title}</hi>
<p> {count($all-1lines)}</p>
<p> {$all-word-count}</p>
<p> {count($speakers)}</p>

<table border="1">

<tr>
<th> </th>

<th> </th>
<th> </th>
<th> </th>
</tr>
{
for $speaker in S$Sspeakers
let $speaker-lines :=
$play-document//SPEECH[SPEAKER eq $speaker]/LINE
let $speaker-word-count := local:word-count($speaker-lines)
let $speaker-word-perc :=
($speaker-word-count div $all-word-count) * 100
order by $speaker
return
<tr>
<td>{$speaker}</td>
<td>{count(Sspeaker-1lines)}</td>
<td>{$speaker-word-count}</td>
<td>{format-number($speaker-word-perc, "0.00")}%</td>
</tr>

Analyzingthe Plays | 53

www.it-ebooks.info

http://www.it-ebooks.info/

}
</table>
</body>
</html>

Save this code as analyze-play.xq. In the browser (http://localhost:8080/exist/rest/db/
apps/exist101/analyze-play.xq), the result looks like Figure 3-6.

Play analysis: The Tragedy of Hamlet, Prince of Denmark
Total lines: 4014
Total words: 29549
Total speakers: 35

Speaker Lines|Words|| Perc
All 4 11 0.04%
BERNARDO 38 220 0.74%
CORNELIUS 1 10 0.03%
Captain 12 84 0.28%
Danes 3 13 0.04%
FRANCISCO 10 54 0.18%
First Ambassador 6 40 0.14%
First Clown 93 ||733 |2.48%
First Player 52 (365 |1.24%
First Priest 13 |90 0.30%
First Sailor 5 39 0.13%
GUILDENSTERN 53 (339 |1.15%
Gentleman 24 176 0.60%
Ghost 95 ||677 ||2.29%
HAMLET 1495 ||11542 |[39.06%
HORATIO 201 (2049 |6.93%
WTINGS T ATTITTS 5N Angn 12 Q104

Figure 3-6. Partial output of the analysis for Hamlet

Well, that wasn’t too hard, was it? The analysis itself was almost laughably easy; most
of the code is actually dedicated to creating a nicely formatted page.

As you might have noticed, we used a different approach here than
in Example 3-6. There, we first created an XML fragment and later
used it to create the HTML. In the analysis page, we put the
FLWOR expressions directly inside the HTML. This was done
intentionally, to show you two different approaches.

54 | Chapter3: Using eXist 101

www.it-ebooks.info

http://www.it-ebooks.info/

By the way: maybe you shouldn’t go for the role of Hamlet—almost 1,500 lines with
11,500 words is a lot to learn by heart. And have mercy on the director: finding and
directing 35 actors is not exactly a walk in the park!

Linking the Analysis to the Play Overview

At this moment our application still consists of two different pages: an overview and
an analysis page for Hamlet. So how can we tie these together and use the analysis
page for every play?

To do this, we first need to link from our overview to our analysis page and pass the
URI of the play to analyze in the link. Go back to our basic home page (Example 3-6)
and change the line starting with <11> as follows:

{string($play)} ({string(Splay/@name)})
analysis

</1i>
The a element (that produces an HTML link) links to the analysis page and passes the
URI of the play in the uri parameter. The encode-for-urti function is necessary here
because the URI passed contains characters that are misinterpreted if we pass them
straight: encode-for-uri creates % encodings for them, e.g., %2F for a slash (/)
character.

An interesting phenomenon occurs when you use this technique
for Romeo and Juliet. Remember, the URI for this play already con-
tains URI-escaped characters (the spaces in the resource name: r
%20and%20j.xml). Passing this URI through the encode-for-urt
function means the URI will become double URI encoded! The
resource name is passed as r%2520and%2520j.xml.

The second thing we have to do is change our analysis page to retrieve the URI in the
uri parameter and act on this. For this, change the declaration of the $play-uri vari-
able to:

declare variable $play-uri as xs:string := request:get-parameter('uri', ());

request:get-parameter is an extension function from the request extension module
(see “The request Extension Module” on page 209) that returns the value of a parameter
passed in the URL (or of a control in an HTML form—driven request). The second
parameter, which in this example is the empty sequence (), can be used to pass a
default value.

After making these changes you can analyze not only Hamlet, but all three of the
plays (and assuming you can provide the data, then many more). Neat, isn’t it?

Linking the Analysis to the Play Overview | 55

www.it-ebooks.info

http://www.it-ebooks.info/

Searching the Plays

The next two enhancements add search functionality to our little play application.
One uses straight XQuery (actually as an example of how not to do it), and the other
uses eXist’s full-text indexing capabilities.

Searching Using Straight XQuery

Let’s assume we need to search the plays for certain words or phrases. A first naive
approach could be to use just straight XQuery. The searching is not hard at all. For
instance, try the following surprisingly short code snippet, which searches all the
plays for the word fantasy (and adds a play attribute to tell us which play the results
came from):

for $line in

collection('/db/apps/exist101/data')//SPEECH/LINE[contains(., 'fantasy')]
return

<LINE play="{base-uri($line)}">{string($line)}</LINE>

This shows that Hamlet is three times as fantastic as Romeo and Juliet, and there’s no
fantasy in Macbeth (for the Shakespearians: that was a joke):

<LINE play="/db/apps/exist101/data/hamlet.xml">
Horatio says 'tis but our fantasy,</LINE>
<LINE play="/db/apps/exist101/data/hamlet.xml">
Is not this something more than fantasy?</LINE>
<LINE play="/db/apps/exist101/data/hamlet.xml">
That, for a fantasy and trick of fame,</LINE>
<LINE play="/db/apps/exist101/data/r%20and%20j.xml">
Begot of nothing but vain fantasy,</LINE>

Although the searching itself is simple to program, we do need some code to tie it all
together. First, add a search form to the main page. Reopen plays-home.xq
(Example 3-6) and add the following lines between the and </body> closing
elements:

<h3>Search using XQuery:</h3>

<form method="POST" action="search-1.xq">
<input type="text" name="searchphrase" size="40"/>
<input type="submit" value="Search!"/>

</form>

When you reopen the page in your browser (http://localhost:8080/exist/rest/db/apps/
exist101/plays-home.xq) you'll see a nice little search form with a Search! button.

Now we have to create an XQuery script that does something with the search request
and displays the results. Open a new XQuery file in eXide, save it as search-1.xq, and
enter the code shown in Example 3-8.

56 | Chapter3: Using eXist 101

www.it-ebooks.info

http://www.it-ebooks.info/

Example 3-8. Search page that uses straight XQuery
xquery version "3.0";

declare option exist:serialize "method=xhtml media-type=text/html";
declare variable $page-title := "Search results with XQuery";
declare variable $searchphrase := request:get-parameter("searchphrase", ());

<html>

<head>
<meta HTTP-EQUIV="Content-Type" content="text/html; charset=UTF-8"/>
<title>{Spage-title}</title>

</head>

<body>
<h1>{$page-title}</h1>
<p> {$searchphrase}"</p>

{

for $line in collection("/db/apps/exist101/data")//SPEECH/LINE
[contains(., $searchphrase)]

return

{string(root($line)/PLAY/TITLE)}

<i>{string($line)}</i>

}

</body>

</html>

When you now enter fantasy as a search phrase and press Search!, the result shown in

Figure 3-7 should appear.

L C' A [localhost:8080/exist/rest/db/apps/exist101/search-1.xql

Search results with XQuery

Search phrase: "fantasy”

* from: The Tragedy of Hamlet, Prince of Denmarl
Horatio says 'tis but our fantasy,

* from: The Tragedy of Hamlet, Prince of Denmarl
Is not this something more than fantasy?

* from: The Tragedy of Hamlet, Prince of Denmarl
That, for a fantasy and trick of fame,

* from: The Tragedy of Romeo and Juliet
Begot of nothing but vain fantasy,

Figure 3-7. Results of searching the plays for “fantasy”

Searching the Plays

www.it-ebooks.info

57

http://www.it-ebooks.info/

Well, that’s not a bad result for a fairly minimal amount of code. But, we can do
better:

o This solution doesn’t scale well. Searching like this works by comparing the
query string with each word in the text: all LINE elements are string-searched for
the search phrase. When you get more and more data, the searches will become
slower and slower.

o It searches for literal strings, which means it’s case-sensitive and will also return
results where the search phrase is part of a word (e.g., searching for faun will also
return lines with fauna).

o It cannot handle search expressions (e.g., searching for lines with fantasy and
Macbeth).

So, let’s add a second search facility with some enhancements.

Searching Using an Index

An index in a database is comparable to the index in a book: it allows you to quickly
find something based on an index key. Although useful and often even necessary,
using indexes is not without disadvantages: it slows down creating and updating data
and consumes (a little bit of) disk space. However, indexes make searching much
faster, especially for large collections of documents.

eXist supports several types of indexes, which we will elaborate on in Chapters Chap-
ter 11 and Chapter 12. In this example we’re going to use a full-text index.

To illustrate things, let’s first add all the code before creating the index. Again, we
have to change plays_home.xq and add a new search form. Reopen plays-home.xq
(Example 3-6) and add the following lines right before the closing </body> element:

<h3>Search using index:</h3>

<form method="POST" action="search-2.xq">
<input type="text" name="searchphrase" size="40"/>
<input type="submit" value="Search!"/>

</form>

Now create search-2.xq, as shown in Example 3-9. It’s almost the same as search-1.xq
(Example 3-8), so copy, paste, and fiddle is probably a good option here.

Example 3-9. Search page that uses indexed search

xquery version "3.0";

declare option exist:serialize "method=xhtml media-type=text/html";

declare variable $page-title := "Search results with XQuery using full-text index";
declare variable $searchphrase := request:get-parameter("searchphrase", ());

58 | Chapter3: Using eXist 101

www.it-ebooks.info

http://www.it-ebooks.info/

<html>
<head>
<meta HTTP-EQUIV="Content-Type" content="text/html; charset=UTF-8"/>
<title>{$page-title}</title>

</head>
<body>
<h1>{$page-title}</h1>
<p> {$searchphrase}"</p>

{
for $line in collection("/db/apps/exist101/data")//SPEECH/LINE
[ft:query(., $searchphrase)]
return

{string(root($line)/PLAY/TITLE)}

<i>{string($line)}</1i>
</1i>
}

</body>
</html>

Its main difference from search-1.xq is the way the search expression is formulated:
collection('/db/apps/exist101/data')//SPEECH/LINE[ft:query(., S$searchphrase)]

The ft:query function looks for an index on the elements in its first argument. How-
ever, since this index is not yet there, the result set will currently still be empty (which
we can easily prove by searching on fantasy using the indexed search). So, let’s define
this index.

Index definitions (and some other content) are kept in what is best described as a
“shadow” database collection structure underneath /db/system/config. If you go there
(using, for instance, the collection browser of the dashboard), you'll see parts of the
main database collection structure there too, starting with /db.

To add our play index definition, create the collection /db/system/config/db/apps/
exist101/data. In this collection create an XML document called collection.xconf with
the contents shown in Example 3-10.

Example 3-10. The index definition collection.xconf document

<collection xmlns="http://exist-db.org/collection-config/1.0">
<index xmlns:tei="http://www.tei-c.org/ns/1.0">
<lucene>
<text qname="LINE"/>
</lucene>
</index>
</collection>

Searching the Plays | 59

www.it-ebooks.info

http://www.it-ebooks.info/

We’re almost done. After defining a new collection, you’ll have to reindex. Use the
collection browser to go to /db/apps/exist101/data and click “Reindex collection” (the
second button from the left). This will take a few seconds. After this initial reindex
you’ll never have to do any manual maintenance again; eXist now knows the index
and will keep it up to date for you when the dataset changes.

Our indexed search is ready to go. Try it by searching on fantasy again, and you
should now see the same results as in our straight XQuery search (Figure 3-7).

So, have we gained anything? Yes, we have!

o Search on FANTASY: the search is now case-insensitive.

o Search on fantasy horatio. You’ll get a long list with lines in which one or both of
the two words are present.

o Search on fantasy AND horatio. Now there is only one line: the only one with
both words.

« But perhaps most importantly: this search is faster (although you might not
notice on modern hardware with this small dataset), and it scales! Add more
plays, and it will stay fast.

This was the just tip of the iceberg in terms of what you can do with indexes. For
example, in “Full-Text Index and KWIC Example” on page 285, you'll learn about sort-
ing by relevance and how to use eXist’s “keywords in context” feature to highlight the
matching words in the search results. Adding such capabilities to our eXist 101 appli-
cation is not difficult once you have progressed further through the book, and we’ll

leave this to you as an independent exercise.

Creating a Log

The last capability we’'re going to add to our application is having it maintain a log-
file, showing you how you can update the database from XQuery. Since we’ll proba-
bly want to use this feature from more than one XQuery script, we’re going to put the
code for it into an XQuery module and show you a little about modularization. While
testing, we’ll also run into some interesting security problems and show you how to
solve them.

By way of preparation, create the collection /db/apps/exist101/log to hold our log
information.

We require our logging to write strings to a logfile and add a timestamp. If the logfile
does not exist, it should be created. The logfile should be easy to use and callable
from all our existing XQuery scripts without code duplication.

60 | Chapter3: Using eXist 101

www.it-ebooks.info

http://www.it-ebooks.info/

This functionality calls for a design that uses an XQuery module. The module should
contain an XQuery function that performs the logging. To make it easy to use, this
function must return zilch (a.k.a. the empty sequence in XPath lingo), so we can sim-
ply call it from anywhere without influencing our output. Example 3-11 is a module
that does exactly this. Create this module and save it as /db/apps/exists101/log-
module.xqm.

Example 3-11. The logging module log-module.xqm

xquery version "3.0" encoding "UTF-8";

module namespace x101log = "http://www.exist-db.org/book/namespaces/exist101"; (1]

declare function x101log:add-log-message($message as xs:string)

{

}s

(2]

as empty-sequence() (2]

O let $logfile-collection := "/db/apps/exist101/log"

let $logfile-name := "exist101-log.xml"

let $logfile-full := concat($logfile-collection, '/', $logfile-name)
O et S$logfile-created :=

if(doc-available($Slogfile-full))then
Slogfile-full
else
xmldb:store($logfile-collection, $logfile-name, <eXist101-Log/>)

return 6

update insert
<LogEntry timestamp="{current-dateTime()}">{$message}</LogEntry>
into doc($logfile-full)/*

The module namespace definition at the top defines the code as an XQuery
module. A module must have a namespace, and it’s customary to use some-
thing that starts with a URL you own (to avoid name clashes). What comes
after that is up to you. Don’t let the starting http:// fool you: it’s just a string
without any further special meaning.

We declare a function that returns empty-sequence()?. In other words: noth-
ing.

O00 The first three let statements in the function simply define the logfile’s loca-

(6]

tion, name, and full name.

let $logfile-created := ... checks whether or not the logfile exists. If not,
it uses the xmldb:store extension function to create a new logfile with an
empty <eXist101-Log/> root element. If the logfile already exists, it simply
emulates the return value of xmldb: store by returning the logfile’s name.

(reatingalog | 61

www.it-ebooks.info

http://www.it-ebooks.info/

Have a look at the rest of the code. We never actually use this $logfile-
created variable, so if eXist did lazy evaluation (computing values only when
needed), the logfile would never get created. Lucky for us, eXist always evalu-
ates variable assignments from top to bottom, which we exploit here to allow
side effects. Read more about this in “XQuery Execution” on page 118.

@ The return part of the function’s FLWOR expression contains an eXist update
insert statement that inserts a LogEntry element, with a timestamp and the
given text, as a child of the root element of our logfile. An update statement
always returns an empty sequence, so that takes care of our required empty
return value. More about eXist XQuery update functionality can be found in
“Updating Documents” on page 101.

Let’s call this logging function from our home page. To do this, first add the follow-
ing import module statement at the top of plays-home.xq (see Example 3-6), directly
after the xquery version "3.0"; declaration:

import module namespace x101log=
"http://www.exist-db.org/book/namespaces/exist101"
at "log-module.xgm";
Now plays-home.xq “knows” about the logging module. To call the logging function,
add the following line directly before the let $play-info :=... part (don’t forget the
finishing commal!):

x101log:add-log-message('Visited plays-home'),

Let’s test our changes. You might be logged in as admin, but to make a point we
would like you to do this without being logged in. Please log out and close your
browser, reopen it, and run plays-home.xq by visiting http://localhost:8080/exist/
rest/db/apps/exist101/plays-home.xq. Oops—you get an error stating, “Write permis-
sion is not granted on the Collection.” Why is that?

eXist has a strict security system. When you're logged in as admin you can do any-
thing, but when you’re not it’s a different game. All access to collections and resour-
ces must abide by the strict eXist security rules, which look, not at all by accident,
remarkably like those in a Unix environment.

To view the relevant security settings, open the collection browser in the dashboard
and navigate to /db/apps/exist101. The permissions on your log collection (db/apps/
exist101/log) should read crwxr-xr-x (that is, if you haven’t changed any defaults).
You'll find a complete explanation of what this means in Chapter 8. For now, we’ll
focus on what’s important for us.

When you visit eXist without being logged in, you’re using a built-in account called
guest. This is, as we can see, not the owner or the group the collection belongs to, so

62 | Chapter3: Using eXist 101

www.it-ebooks.info

http://www.it-ebooks.info/

the relevant security settings are the last three characters of the permissions: r-x. This
means anybody can list and open the collection, but not write to it. Let’s change this
so we can at least write to the collection and create our logfile.

Use the collection browser or the Java Admin Client to set the permissions to crwxr -
xrwx—that is, set the Write permission for Other. Figure 3-8 shows how this looks in
the collection browser.

Collection Browser

Resource:

Internet Media Type:
Created:

Last Modified:

Owner: admin

Group: dba

Base Permissions

Permission Read Write Execute
User v v 2
Group v - v

Other v v v
Access Control List

| Target | Subject Access Read Write Execute

Add Access Control Entry...

Close Save

Figure 3-8. Changing the permissions of the log collection

After that, log out and close your browser (to stop being admin), open it again, and
revisit the plays-home.xq page. This should now run smoothly. Look inside the log
collection, and there it is: our exist101-log.xml document. It contains something like:

<eXist101-Log>
<LogEntry timestamp="2013-04-09T20:51:27.205+02:00">Visited plays-home

</LogEntry>

</eXist101-Log>

And yes, every time you revisit the plays-home.xq page, a new LogEntry element is
added. I'll leave it up to you to add the logging code to the other pages of our small
but beautiful application.

The x permission on a collection means something different than
the x permission on a resource. For a resource it means execute
rights, and this is important for XQuery scripts. Try this out by, for
instance, revoking the x permissions on our plays-home.xq file.
You should now get a security warning when you try to run it.

(reatingalog | 63

www.it-ebooks.info

http://www.it-ebooks.info/

What's Next?

Although we could go on (and on and on), this is the end of our 101 course. We hope
it gave you at least a taste of what’s possible, and some pointers on how to start out
with eXist. There is still much more to learn (that’s why there are chapters after this
one)! Here are some suggestions for further exploration:

Explore eXist’s extension modules’ functionality using the information in Chap-
ter 7 and through the dashboard’s XQuery Function Documentation browser.

Tighten security to a specific set of users with the information in Chapter 8.

Change our little demo application into a real one using RESTXQ or URL rewrit-
ing. This will give you much more control over the URLs needed to visit the
pages, security, error handling, and so on. More information can be found in
Chapter 9.

Explore other index types and settings, as described in Chapters Chapter 11 and
Chapter 12.

Use one of the other supported XML technologies from Chapter 10—for
instance, creating a PDF version of our analysis report with XSL-FO.

Integrate the application with the rest of the world using the technologies
described in Chapter 13.

But most of all, remember to have fun!

64

Chapter 3: Using eXist 101

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4
Architecture

In this chapter we look in detail at how eXist is constructed and how it processes your
XML documents and executes your XQueries. This information should be consid-
ered advanced, so if you are a beginner you may want to skip to another chapter.
However, for those wishing to master eXist, this information can be invaluable in
helping you understand how to use it efficiently.

eXist is a large software project that has evolved over the last 13+ years, and is written
predominantly in the Java programming language. Although extensions and add-ons
to eXist are often written in pure XQuery and/or XSLT, the main body of eXist is
written in Java.

Regardless of how you decide to deploy and use eXist, its architecture (see Figure 4-1)
remains largely the same, with various optional components depending on your use.

65

www.it-ebooks.info

http://www.it-ebooks.info/

Java Admin Dashboard)
Client | App eXide

(A v }.Z S&
RXML{DEH XQuery
emote :
LB PuisSOAP | weboav || URL | [ResTapt | SO | Resmxo
: XML-RPC Rewrite
Fluent API Local API T
HTTP
\
Database Interface
(A 4
Broker Pool
Security Manager
Native Broker
\ 4 K
XQuery and XSLT
y
XQuery XQuery [f=———-— 1
Update Extensions fefo
XSLT XUndat
Engine pdate
XQuery Engine
Storage and Indexes :
-
A 4
Transaction Manager
Document Collection
Index Manager
Log Manager
l(\lGramIr&%e;((FTIdndgé) (Collllectti_on Saobre) Co(llecgion
= Structural ngram.dbx words.dbx (ollections.dbx ache
Zll=|| & fartb) ||k ot DOM Fil
22|z ahe (dom.dbx)
= 2 s
g z || = BTreeStore BFile
2 = U
=0 | =
_E g g BTree Cache
- BTree

o

Figure 4-1. Complete high-level diagram of eXist’s architecture

66

Chapter 4: Architecture

www.it-ebooks.info

http://www.it-ebooks.info/

Each connection from an API to eXist is a single thread that interacts with the broker
pool, which is configured with a number of brokers (20 by default). Each broker is a
thread that interacts with the database, and represents a database request; this might
be a database update operation (add/delete/store/update) or a query operation
(XPath, XQuery, or XSLT). If you connect to eXist and all the brokers are busy, your
request will pause until a broker becomes available to service your request. Figure 4-2
shows this broker architecture.

eXist
eXist Core
API Broker Broker) 0 i Storage
Pool uery 9
) Engine
A A Y

User/Application h 4 0" I ‘d' ~

Request . uery ndex
d [Triggers] [Extensions] [Extensions)

Figure 4-2. eXist’s broker architecture

If you are using eXist directly embedded within your own applica-
tion, then you are responsible for deciding the threading model for
interacting with the broker pool.

The number of brokers available in the broker pool is configurable
in $EXIST_HOME/conf.xml, in the attribute located by the
XPath /exist/db-connection/pool/@max. You should configure the
number of brokers to be slightly higher than the expected number
of concurrent connections to eXist from your users.

Deployment Architectures

eXist offers many options for deployment. These options have informed the architec-
ture of eXist, and your deployment scenario will determine how much or how little of
eXist you use and how the components of eXist are interconnected. eXist has three
main faces—the first you may see only if your interaction with eXist is as a software
developer, while the second two you may also see if you are an eXist user:

An embedded native XML database library
eXist can be compiled as a set of libraries that can be directly embedded into
your own application running on a JVM (Java Virtual Machine). In this instance
you talk directly to eXist via Java function calls. See “XML:DB Local API” on
page 366 and “Fluent API” on page 369.

Deployment Architectures | 67

www.it-ebooks.info

http://www.it-ebooks.info/

A native XML database server
eXist can be deployed as a native XML database server, allowing you to store and
manage both XML and binary documents and perform queries upon these docu-
ments across a network. This approach is similar to a classic client/server net-
worked database architecture.

A web application platform
Building upon the preceding item, eXist offers so many web-oriented features
and capabilities that they deserve mentioning in their own right. You can build
entire web applications by writing very simple and powerful high-level web
application code in XQuery, XForms, and XSLT, and eXist will provide the
HTTP glue to serve these up as complete web applications.

Embedded Architecture

If you choose to embed eXist directly in your own application (see “Local APIs” on
page 364), eXist operates as any other third-party library would; that is, you make func-
tion calls in your application upon the classes that make up eXist in order to perform
various operations. When eXist is embedded in your application, you have two local
APIs to choose from—either the XML:DB Local API (see “XML:DB Local API” on
page 366) or the Fluent API (see “Fluent API” on page 369).

It is also possible to directly call eXist’s internal API functions;
however, this is strongly discouraged, as you are then responsible
for the correct locking and transaction management of resources,
which is nontrivial to achieve correctly. In addition, these API
functions are subject to change at any time.

Embedding eXist within your application (as shown in Figure 4-3) can be a suitable
choice if you wish to release a convenient standalone application to your users that
has advanced XML processing and query facilities.

e \

JVM

f eXist

XMLDB |
Custom Local APl |~

[eXist Core

v

Application

Fluent API

,
.]
A
v
y

User/Application
Request

r
\

Figure 4-3. JVM-embedded eXist architecture

68 | Chapter4: Architecture

www.it-ebooks.info

http://www.it-ebooks.info/

The downside to embedding eXist within your own application
rather than connecting to it as a server is a lack of isolated con-
cerns. When eXist is embedded in a developer application, it runs
within the same JVM instance, and thus the memory and resources
available to the JVM are shared between both eXist and the devel-
oper’s application. Should a fault or design error exist within the
developer’s application, this could potentially easily exhaust the
resources or memory available to the JVM instance. This results in
a lockup of the application and unpredictable behavior that is
beyond the control of eXist. Such unpredictable behavior is not
desirable when you’re operating a database system, as it can lead to
stability issues and possibly data corruptions.

Client/Server Database Architecture

There is no fixed pattern for running eXist as a database server, as eXist offers many
different options; however, for the purposes of illustration we will assume that the
database server architecture is akin to a classic client/server networked database. In
the client/server networked database, users typically connect to a database server with
a fat client application and/or communicate with the database server from custom
applications by opening connections to the database across the network. In this
architecture we will exclude the more web-oriented aspects of eXist, as they are more
applicable to the next section, “Web Application Platform Architecture” on page 70.

In the client/server database architecture, eXist is deployed to a central server and

users are given access to the database by both the WebDAV and XML:DB Remote

APIs (Figure 4-4). The WebDAV API allows users to directly manipulate documents

in the database from their operating system’s file explorer, just as if the files were in

local folders on their computers (see “WebDAV” on page 305). The XML:DB Remote

API, on the other hand, allows users to connect to eXist from the Java Admin Client

GUI (see “XML:DB Remote API” on page 349), from which they can manage the data-
base and perform queries upon it. If you enable the XML:DB Remote API, XML-RPC

(see “XML-RPC API” on page 342) also has to be enabled as a prerequisite, so applica-
tion developers are free to develop applications that can talk to the database pro-

grammatically using one or a combination of the WebDAV, XML:DB, or XML-RPC

protocols.

Deployment Architectures | 69

www.it-ebooks.info

http://www.it-ebooks.info/

JWM

f eXist

A

XML:DB
Remote API
R
A
4

—
XML-RPC |
API v N ~ 7

\. J

User Request \7l>| webDAV |¢—»| eXist Core
(WebDAV or Java
Admin Client)

v

,
L

Application Request
(WebDAV, XML:DB, or
XML-RP()

Figure 4-4. eXist client/server database architecture

Web Application Platform Architecture

When developing a web application, you typically have two domains of code: server-
side and client-side. Server-side code is executed on the web application server itself
(in this case, eXist), while client-side code is executed by the client (typically a web
browser).

eXist can serve as a complete web application platform whereby your applications are
developed in one or more of the following server-side XML languages: XQuery,
XSLT, XProc, and XForms.

Upon receiving a web request from a client, eXist processes your server-side code and
generates a response containing the results of the processing (which may even
include further client-side code) for the client. The response sent to the client could
be anything, but typically will be in one or more of these formats: HTML5, XHTML,
XML, JSON, XForms, CSS, or a variety of binary formats (e.g., images for display in a

page).

To understand how to develop web applications with eXist, see Chapter 9. When
eXist is deployed as a web application platform there are many components that you
may or may not wish to use, depending on your web application; however, it is rec-
ommended (as described in “Reducing the Attack Surface” on page 177) that you dis-
able those that you are not using. Regardless of your application, if you wish to use
eXist as a web application platform, it will require the use of a Java web application
server, and here you have two main choices for deployment:

70 | Chapter4: Architecture

www.it-ebooks.info

http://www.it-ebooks.info/

Jetty™ (default)
eXist ships with the Jetty Java web application server. This can be used with very
little effort and is the recommended approach, as it is well understood and sup-
ported by the eXist community and developers. See “Starting and Stopping eXist
with a GUI” on page 23.

WAR file and third-party Java web application server

eXist can be built and deployed as a WAR file to your choice of Java web applica-
tion server (e.g., Apache Tomcat, GlassFish, JBoss Application Server, etc.). This
can work well if your organization is already heavily invested in a particular tech-
nology. However, it is recommended that you run eXist solely in its own web
application server; otherwise, it will potentially be competing for resources with
other applications in the same server. See “Building eXist from Source” on page
485.

Either way—whether you use the built-in Jetty or a third-party Java web application
server—the web application platform architecture of eXist remains much the same
(see Figure 4-5).

Java Application Server
(e.g., Jetty/other)

eXist
' M) () (M)
REST Server |«

N
P ———

> SOAP Server |«

O
S

RESTXQ |«

\ 4

v

XForms Filter
A
v

v

| S —
! SE—
WebDAV |« .
_ eXist Core

v

Servlet Request
K
v

XQueryURLRewrite

)
XML:DB |
- Remote APl |~
User/Application R —
HTTP Request y

A 4

A4

r—‘—\
XML-RPC

API -
| ——
S
Axis SOAP |«
\ ‘ \, J \. J

A 4
A\ 4

A 4
\ 4

\ J

Figure 4-5. eXist web application platform architecture

Deployment Architectures | 71

www.it-ebooks.info

http://eclipse.org/jetty/
http://tomcat.apache.org
http://glassfish.java.net/
http://jbossas.jboss.org/
http://www.it-ebooks.info/

Figure 4-5 should be interpreted as depicting that only the REST
Server and SOAP Server services of eXist are directly manipulata-
ble by the XQuery URL Rewrite facility (see “URL Mapping Using
URL Rewriting” on page 194). However, it also shows that RESTXQ
can be coupled with the XForms Filter; while this is indeed the case
and may be desirable, it is not enabled by default in eXist (but may
be configured easily).

Storage Architecture

So far we have mostly been looking at the high-level architecture of eXist depending
on the type of application you wish to build with it. You should at least have a cur-
sory understanding of how eXist structures its resources into collections from read-
ing Chapter 3. We will now look much more closely at the storage architecture of
eXist, as you may be wondering, “What happens when I actually store a document
into eXist?”

XML Document Storage and Indexing

When given an XML document, eXist first takes the document and parses it (while
validating it if requested), and then extracts all of the information from the document
and stores it while also indexing the document’s key features (see Figure 4-6).

eXist does not store your XML documents as a series of XML files
on disk, as this is not an efficient storage format for database oper-
ations.

eXist stores an XML document by taking the information making
up the document and separating it into distinct parts that are then
stored in a series of optimized binary files on disk. This process is
transparent to users; they can always ask eXist for the XML docu-
ment they originally stored, and the complete document will be
reconstituted and presented to them as it was.

The indexes that eXist builds from your XML documents during storage enable you
to later perform fast and efficient queries against the documents in the database. The
structural index employed by eXist is fixed, but additional indexes are configurable
by the users depending on their query requirements; see “Configuring Indexes” on
page 275 for index configuration details.

72 | Chapter4: Architecture

www.it-ebooks.info

http://www.it-ebooks.info/

Start Storing XML
Document

Replaces
Existing
Document?

Yes

No
A

Fire
beforeReplaceDocument
Triggers

Fire
beforeCreateDocument
Triggers

Prepare to Remove
Existing Document

v

Parse and
Validate

!

Is
Document
Valid?

Yes

/" Document
, Triggers

Parse

Replaces
Existing
Document?,

Yes

/" Document
/ Triggers)) /

No

Fire
afterReplaceDocument
Triggers

Fire
afterCreateDocument
Triggers

Stored XML
Document

Figure 4-6. XML storage high-level process

Storage Architecture

www.it-ebooks.info

http://www.it-ebooks.info/

The following steps occur when eXist stores an XML document into a collection in
the database (see Figure 4-7).

XML
Document
eXist Storage and Indexing Architecture
Storage Subsystem
—
Collection ;[Collection Store Persistent DOM Symbols Table
1 'l[collections.dbx] [dom.dbx] [symbols.dbx]
“\‘ 7'y 7'y
f_"_\ \‘\\ \ J
™ / /
Sso Document
G k—[,» Triggers
\ 4
Indexer f)
Index Subsystem)
— | Pluggable Index Modules
. Index (1 ()
"1 Controller NGram Index Sort Index
[ngram.dbx] [sort.dbx]
[N
L S Iy . i
Structural Index Lucenlﬁ gg)l(l—Text Statistics Index
[structure.dbx] (lucene/] [stats.dbx]
Spatial Index FT Index
[HSQLDB] [words.dbx]
L J \ J
Figure 4-7. eXist XML storage and indexing architecture

74 | Chapter4: Architecture

www.it-ebooks.info

http://www.it-ebooks.info/

. Either a beforeCreateDocument or a beforeUpdateDocument event is raised with
each document trigger configured on the target collection.

. The validation phase begins. The parser begins parsing the XML document with
validation (if requested) and dispatches events as it moves through the
document.

. If any document triggers are configured on the target collection, each of these
will receive the events from the parser in turn. This effectively allows the docu-
ment triggers to interrupt the parse and hence fail the validation phase, which
will abort storing the document.

. If the parse succeeded, the validation phase is complete. If the parse failed, the
process of storing the document is aborted and an error is reported.

. The parser begins parsing the XML document and dispatches events as it moves
through the document.

. If any document triggers are configured on the target collection, each of these
will receive the events from the parser in turn before they are then passed on to
the indexer. This effectively allows the document triggers to dynamically modify
the document should they wish.

. The indexer receives the events from the parser (or document triggers, if config-
ured) and performs a number of steps:

a. It extracts symbols from the event (e.g., the qualified name of an element) and
places them in the symbols table if they are not already present. The symbols
table file is SEXIST_HOME/webapp/WEB-INF/data/symbols.dbx.

b. For each node from the event, it substitutes names for symbols, and then
stores the node details into the persistent DOM. Elements and attributes are
placed into a B+-tree index, while other nodes are stored into pages in the per-
sistent DOM. The B+-tree index maps nodes to their values located in the
pages. The persistent DOM file is $EXIST _HOME/webapp/WEB-INF/data/
dom.dbx.

c. It forwards each event to the index controller.

. The index controller passes each event through an indexing pipeline. The index-
ing pipeline always starts with the structural index (which is mandatory in eXist),
then follows any pluggable index modules that a user has configured on the target
collection (see “Configuring Indexes” on page 275 and “Configuring Full-Text
Indexes” on page 286). The structural index file is $SEXIST_HOME/webapp/WEB-
INF/data/structure.dbx.

. The target collection adds an entry for the newly stored XML document to itself
in the collection store. The collection store file is $EXIST _HOME/webapp/WEB-
INF/data/collections.dbx.

Storage Architecture | 75

www.it-ebooks.info

http://www.it-ebooks.info/

10. Either an afterCreateDocument or an afterUpdateDocument event is raised with
each document trigger configured on the target collection.

Binary Document Storage

When given a binary document (i.e., any document that is not XML), eXist stores a
copy of it in a shadow of its collection hierarchy on disk under the folder
$EXIST_HOME/webapp/WEB-INF/data/fs; it also stores a copy of the document
metadata (e.g., database permissions, owner, group, and created date) into the collec-
tion store for the target collection. See Figure 4-8.

Whilst eXist does indeed store the contents of your binary docu-
ments as a series of files on disk, you should not manually change
the files in the SEXIST_HOME/webapp/WEB-INF/data/fs folder, as
eXist will be unaware of the changes that you have made. Any
changes to this folder could cause the database to lose integrity for
binary resources and could lead to stability issues.

While the storage of binary documents into eXist is relatively sim-
ple (i.e., the content is maintained in files on disk and additional
metadata is maintained in eXist’s collection store), you can go fur-
ther by making use of eXist’s binary content extraction facilities
(see contentextraction) to enable indexing and search of binary
documents.

Efficient XML Processing Architecture

There are several crosscutting concerns of eXist’s architecture that focus on efficient
XML processing and storage; we will take a look at a couple of the more significant
ones next. These topics are certainly advanced and may be skipped if you are not
interested in eXist’s internals.

There are three levels of granularity that eXist is concerned with:

Collection
An arbitrary grouping of XML and binary documents

Document
Either an XML document or a binary document

Node
The nodes within XML documents (i.e., elements, attributes, text, etc.)

76 | Chapter4: Architecture

www.it-ebooks.info

http://www.it-ebooks.info/

Start Storing Binary
Document

Replaces
Existing
Document?,

Yes No
Fire Fire
beforeReplaceDocument beforeCreateDocument
Triggers Triggers
Prepare to Remove
Existing Document

!

Store
Document /&

Replaces
Existing
Document?

Yes 0

v
Fire Fire
afterReplaceDocument afterCreateDocument
Triggers Triggers
Stored Binary '\
Document /™

Figure 4-8. Binary storage high-level process

Collections

A collection in eXist is very similar to a folder in a filesystem. It groups a number of
related XML and/or binary documents together. Each collection in eXist has a name
and is identified by a URI. A collection stores its own metadata, and also all of the
metadata of all of the documents present in that collection, as you can see in
Table 4-1.

Efficient XML Processing Architecture | 77

www.it-ebooks.info

http://www.it-ebooks.info/

Table 4-1. Collection metadata properties

Metadata property Description

URI The URI of the collection in the database
(reated Date The date and time the collection was created
Permissions

Owner The owner user of the collection

Group The owner group of the collection

Mode The security mode of the collection (e.g., rwxr -xr - x)

Access Control List The access control list for the collection

In eXist collections are identified by a hierarchical URI scheme, and are in fact hier-
archical containers (Figure 4-9). That is to say, a collection inherits all documents
from any subcollections, and the configuration of a collection is applied to all subcol-
lections, unless it is explicitly overridden by a subcollection. If you request a collec-
tion in eXist, you receive all of the documents in that collection, but if that collection
has subcollections, you also receive all of the documents from all of the subcollections
of that collection, and so on.

¥ |l db
¥ [books
¥ [] history
<3 a_short_history_of_nearly_everything.xmil
% berlin_1945.png
<> berlin_1945.xml
¥ [] sci-fi
> 2001_a_space_odyssey.xml
<> solent_green.xml
¥ [films
e brazil.xml
<> metropolis.xml
<> moonrise_kingdom.xml
<> the_day_the_earth_stood_still.xml

Figure 4-9. Example collection hieracrhy

Collections in eXist always start from the root collection, named db, with the
corresponding URI /db. In the example hierarchy shown in Figure 4-9 we can see the
following collections:

78 | Chapter4: Architecture

www.it-ebooks.info

http://www.it-ebooks.info/

db /db

books /db/books
history /db/books/history
sci-fi - /db/books/sci-fi
films /db/films

Careful organization of your documents into collections in eXist can vastly improve
query performance. It is sensible to organize your documents into collections based
on the queries that you will want to make of them; typically this is also the way that
your organization logically thinks about documents and their meaning.

Organizing documents into collections and querying only those collections that are
relevant reduces the amount of documents that eXist must interrogate during a
query, and hence this approach lends itself to more efficient processing. In
Figure 4-9, for example, you might want to answer queries about all history books; by
querying just the /db/books/history collection, you ensure that you are not querying
any documents that you already know are irrelevant. You can also answer queries
about all books by querying the /db/books collection, as this will query each of its sub-
collections recursively.

Documents

Documents are the basic unit that you work with in eXist, and they come in two
forms: XML documents and binary documents. eXist is not particularly fussy about
how you organize your information into documents; whether you choose to use sev-
eral large documents or many smaller documents, eXist will happily store your data.
However, your data architecture is an important concern for your business and appli-
cations, so here are some concerns that you should consider when deciding on docu-
ment granularity:

Locking

When a document is being read, it is read locked, which means that any incom-
ing updates to the document will be blocked. If you have a few large documents
and your system is not mostly concerned with reads, this can introduce conten-
tion for the document. If you instead have several smaller documents, they can
be read and updated independently. Likewise, when you are updating a docu-
ment, it is write locked. If you have several smaller documents rather than a few
large documents, several updates can take place independently.

Efficient XML Processing Architecture | 79

www.it-ebooks.info

http://www.it-ebooks.info/

In addition, your own application may require you to explicitly lock
documents—for example, to stop two users in an XForms application from
simultaneously editing the same document.

Retrieval

Users retrieving documents directly by URI may not wish to retrieve an entire
large document if they are concerned only with a small portion of its informa-
tion. To a certain extent, you can mitigate this by placing a virtual URI space
over the database by using XQuery with URL rewriting or RESTXQ, which then
just returns a specific portion of the document. However, using URL rewriting or
RESTXQ adds complexity, so if your data architecture doesn’t require this, things
will be much simpler for you without them.

All that being said, we advise you to make decisions about document granularity
based on your domain model. Most importantly, ask yourself, “What do we think of
as a document?” Typically the technology concerns can be solved later.

Each document in eXist has a filename and a URI, the latter of which is made up of
the collection URI and the filename of the document. Documents, like collections,
also maintain a small set of metadata, as Table 4-2 shows.

Table 4-2. Document metadata properties

Metadata property Description

The filename of the document in the database

Name
(reated Date The date and time the document was created
Last Modified Date The date and time the document was last modified
Internet Media Type The Internet media type of the document
Permissions
Owner The owner user of the document
Group The owner group of the document
Mode The security mode of the document (e.g., rwxr -xr -x)

Access Control List The access control list for the document

Dynamic Level Numbering of Nodes

You have already seen in “XML Document Storage and Indexing” on page 72 that
while, as a user of eXist, you are working with XML documents (and the nodes from
those documents), eXist itself does not work with the textual XML document you
provided it, but rather with computationally-optimized model of that document.

XML documents themselves are constructed from nodes, and at the very core of
everything that eXist does with nodes is DLN (dynamic level numbering). DLN ena-

80 | Chapter4: Architecture

www.it-ebooks.info

http://www.it-ebooks.info/

bles eXist to efficiently identify both a node and its structural relationship to other
nodes.

Each node from an XML document is given a DLN identifier. DLN identifiers are
hierarchical in nature and borrow concepts from the Dewey Decimal Classification
system. Each DLN identifier assigned to a node starts with the identifier of the parent
node and concludes with a number for the node under consideration, which indi-
cates its position among its siblings.

DLN identifiers are unique within a document, which allows for easy identification of
a node. They also have some additional structural properties that are very useful:

« They include the ID of the parent node.

o By virtue of the IDs being hierarchical, you also have the ID of every ancestor
node.

« Given two DLN IDs, you can determine the structural relationship between two
nodes.

Here are some examples of how the DLN identifiers on the nodes shown in
Figure 4-10 can easily be used to perform structural joins in eXist and answer queries
without your needing to examine the nodes and traverse node relationships
themselves:

Root
By looking at the first level of any node identifier, we find its root node. For
example, if you take the node identifier for the text node “Apple,” which is
1.1.1.1, and look at the first number before the first period, you can see that the
root identifier is 1, and the node with the identifier 1 is the element “Shopping.”

Ancestors
By looking at all parts of a node identifier from left to right, excluding the last
part, we can find all ancestors of that node. For example, if you take the node
identifier for the text node “Apple,” which is 1.1.1.1, and work backward from
right to left looking at the parent, then the parent of the parent, and so on until
you reach the root, you will find the ancestor nodes “Name” (1.1.1), “Fruit”
(1.1), and “Shopping” (1).

Parent
By looking at the parent identifier levels of any node identifier, we can find its
parent node. For example, if you take the node identifier for the element “Quan-
tity,” which is 1.2.2, and look at the identifier all the way up to the last period,
you will see that the parent identifier is 1.2, and the node with the identifier 1.2
is the element “Vegetable.”

Efficient XML Processing Architecture | 81

www.it-ebooks.info

http://en.wikipedia.org/wiki/Dewey_Decimal_Classification
http://www.it-ebooks.info/

Child
By looking at the identifiers of any two nodes, we can determine if one is the
child of the other. Given the identifiers for the element “Name,” which is 1.2.1,
and for the text node “Potato,” which is 1.2.1.1, because the identifier for
“Potato” has as a prefix the identifier for “Name” and has one extra level in its
identifier, we can tell that it is a child of “Name.” We can also tell that it is the
first child of “Name” from the last level of its identifier.

Siblings

By looking at the identifiers of any two nodes, we can determine if they are sib-
lings. Given the identifier for the element “Name,” which is 1.2.1, and for the
element “Quantity,” which is 1.2.2, because their identifiers have the same num-
ber of levels and have the same prefix we can tell that the node with identifier 1.2
(“Vegetable”) is their parent. We can also tell that “Name” is the preceding sib-
ling of “Quantity” because its last level has the lower identifier number of 1;
“Quantity” is numbered 2, and therefore must be the following sibling of
“Name.”

Common ancestor
By looking at the common prefix of any two node identifiers, we can find their
common ancestor node. For example, if you take the node identifier for the text
node “Potato,” which is 1.2.1.1, and the node identifier for the text node “8,”
which is 1.2.2.1, and examine them from left to right, you will find that the
common prefix is 1.2, and the node with the identifier 1.2 is the element
“Vegetable.”

<Shopping>

<Fruit> 1]
<Name>Apple</Name>

</Fruit>

<Vegetable>
<Name>Potato</Name> Fruit
<Quantity>8</Quantity> 11.1]

</Vegetable>

</Shopping>

Vegetable
.2]

Quantity
[1.2.2]

A 4

Name
[1.17]
“Apple” “Potato”

[1.1.1.1] [1.21.7] 1221]

Figure 4-10. A simple XML document and the corresponding DLN model

82 | Chapter4: Architecture

www.it-ebooks.info

http://www.it-ebooks.info/

eXist provides some extensions that allow you to view the DLN
identifiers assigned to nodes, and also to retrieve nodes by their
DLN identifiers. See the util:node and util:node-by-id func-
tions in util. eXist also provides the add-exist-1id serialization
option, which inserts the DLN identifiers into attributes on each
element of a document or node when you retrieve it from eXist; see
“Serialization” on page 118.

DLN helps eXist perform efficient queries of XML documents, as often eXist can cal-
culate the sets of nodes involved in an XPath expression by performing computations
using just their DLN identifiers.

Should you choose to retrieve nodes from eXist using DLN identi-
fiers, you should be aware that DLN identifiers are not guaranteed
to be stable. After you update a document by replacing it or using
the XQuery update extension or XUpdate, it is likely that some of
the nodes in the document will have different identifiers.

Dynamic Level Numbering and Updates

So far we have looked at DLN within a fixed document, but it can also be useful to
understand how the DLN identifiers on nodes in a document may change if that
document is updated. There are three ways in which an XML document in eXist may
be updated:

Replacement
In this instance the node identifiers are not updated; rather, the original docu-
ment is deleted and a new document is stored, and they just happen to have the
same URI within the database.

XUpdate
An XUpdate document may be processed against one or more documents; this
could lead to the insertion, deletion, or modification of nodes in the documents.
These modifications will lead to identifier changes.

The XQuery update extension

Similarly to XUpdate documents, XQuery update statements may be processed
against one or more documents, which could lead to the insertion, deletion, or
modification of nodes in the documents. These modifications will lead to identi-
fier changes. The difference between this mechanism and XUpdate is that all
operations from a single XUpdate document will occur within the same database
transaction, while each XQuery update statement will be executed in its own
transaction.

Efficient XML Processing Architecture | 83

www.it-ebooks.info

http://www.it-ebooks.info/

When a document is modified, we want to preserve the integrity of the conceptual
model of hierarchical identifiers that have previously been assigned to nodes in the
document. However, we need only concern ourselves with insertions between exist-
ing nodes, because:

o Insertions as the last following sibling or insertions as a new only child can be
assigned new DLN identifiers without our needing to change any existing identi-
fiers to maintain integrity.

» Modifications to existing nodes (e.g., renaming) do not change their identifiers.

o Deletions do not break the integrity of our model. It does not matter if sibling
1.2 is followed by sibling 1.4 because 1.3 was deleted, as long as higher numbers
indicate the order.

If we could not maintain our existing identifiers on insertion, we would have to re-
number all of the nodes in the document, which would be a very computationally
expensive exercise. In fact, this is exactly what eXist used to do before it implemented
DLN. Luckily, DLN provides a mechanism whereby we don’t need to renumber exist-
ing nodes but can still perform insertions: subvalue identifiers.

If we consider the case where we have two elements called “Name” and “Quantity”
with the identifiers 1.2.1 and 1.2.2, respectively, we could insert a new sibling ele-
ment named “Cost” between them by using subvalues. As shown in Figure 4-11, the
new element “Cost” would have the identifier 1.2.1/1. The /1 indicates the subvalue;
that is, “Cost” follows “Name” (1.2.1) but precedes “Quantity” (1.2.2).

Shopping
(1]

Fruit
[1.1]

Vegetable
[1.2]

Quantity
[1.2.2]

\ 4
Nam Name Cost
[111] [1.2.1] [1.21/1]

“Apple” “Potato”
[11.00] [121.1]

“0.84"
[1211.1]

ug
[1.2.2.1]

Figure 4-11. A simple XML document and the corresponding DLN model after update

84 | Chapter4: Architecture

www.it-ebooks.info

http://www.it-ebooks.info/

While subvalues give us the ability to perform fast updates and still query documents,
comparing subvalue DLN identifiers against non-subvalue DLN identifiers is more
costly. For this reason, eXist will occasionally trigger the background defragmentation
of a document that has had significant updates made to it. The defragmentation
effectively renumbers all of the nodes in the document, removing the subvalues.

The fragmentation of documents occurs when XQuery update or
XUpdate expressions are executed against XML documents. After
the evaluation of an XQuery running XQuery update expressions
or an XUpdate document, the updated documents will be checked
for fragmentation. If they exceed the allowed fragmentation limit
set in $EXIST HOME/conf.xml, then they will be queued for
defragmentation. Defragmentation happens in the background in
the database, but during defragmentation a document is locked
against further writes!

Paging and Caching

Several of the core database files (dom.dbx, structure.dbx, and collections.dbx) that are
kept on disk are organized into pages of 4 KB. A page is simply a contiguous region
that is read or written in an atomic operation. Rather than randomly seeking and
reading individual bytes as required, mechanical rotational storage systems (such as
hard disks) are much faster at larger linear reads and writes. However, pages them-
selves are not necessarily always in the order that you need to answer a query; as
such, good random-access speed is still a requirement of the filesystem and underly-
ing storage system.

The size of a page in eXist is configurable in $EXIST _HOME/
confxml via the attribute indicated by the XPath /exist/db-
connection/@pageSize. This should be aligned with the block size of
your filesystem; today 4 KB is typically correct. You can also
experiment with setting this to a multiple of the block size when
testing for the optimal performance of eXist with your data. How-
ever, be aware that you can only change the page size before creat-
ing a database (i.e., with no .dbx files in $EXIST_HOME/webapp/
WEB-INF/data).

The persistent on-disk DOM (dom.dbx) and collections (collections.dbx) files are split
into two parts, a data section and an index section (which is a B+ tree). The data sec-
tion contains the node or document and collection metadata, while the index section
ensures the quick lookup of collections, documents, and nodes. The structural index
(structure.dbx) file is literally just an index and has no data section to its file.

Efficient XML Processing Architecture | 85

www.it-ebooks.info

http://www.it-ebooks.info/

In any database system, aside from network I/O, disk I/O is always the slowest com-
ponent. For example, at the time of writing, suppose you want to read 1 MB of data
from disk. It typically takes 32 times as long just to locate the data on the disk as it
does to read it from memory. To then actually read the data from disk takes 80 times
as long as it does to read it from memory. Therefore, it is highly desirable to optimize
any database system to avoid disk I/O as much as possible, and eXist is no exception.

Access to all database files in eXist that make use of paging is performed through spe-
cific page caches. The job of the caches is to keep frequently accessed data in mem-
ory, to avoid having to retrieve it from disk. eXist has separate caches for the data and
index sections of its files. The caches in eXist are LRU (Least Recently Used) caches,
so pages are evicted from the caches (under various circumstances) based on the time
they were last accessed. In particular, the caches for the index sections (B+ tree) dis-
tinguish between pages that contain internal (nonleaf) nodes and leaf nodes. Since
internal nodes are likely to be accessed more frequently, they are assigned a higher
priority and are not evicted from the cache before related leaf nodes.

Caches grow (up to a maximum limit) and shrink automatically as required. If a
cache is thrashing (i.e., pages are frequently replaced), it will request more memory
from the cache manager. Providing the cache manager has memory available, extra
memory will always be granted to a requesting cache. Exactly how and when a cache
grows is specific to each cache implementation. For example, the data section cache
of the persistent on-disk DOM will never grow, because it is very unlikely that the
same page will be frequently accessed over a short, finite duration; therefore, the
cache size is fixed to 256 pages (typically 1 MB when you’re using 4 KB pages).
Conversely, the collection cache attempts to calculate the memory required by the
metadata of each collection, and tries to fill itself with the metadata of the hottest col-
lections. During periods of low database activity, the cache manager may decide to
reclaim space from the caches so that it can quickly be reallocated in the future.

Caches in eXist are configured to use an explicit maximum amount
of memory, which is subtracted from the maximum memory made
available to eXist (the JVM’s -Xmx maximum memory setting).

All caches (except the collection cache) share a single caching space
in memory. The size of this caching space is configurable in
$EXIST_HOME/conf.xml via the attribute indicated by the XPath /
exist/db-connection/@cacheSize. The collection cache (for collec-
tions.dbx) has its own caching space in memory and may likewise
be configured in the same file at the XPath /exist/db-connection/
@collectionCache.

For information on how to tune eXist’s memory and cache settings for your database,
see “Cache Tuning” on page 394.

86 | Chapter4: Architecture

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5
Working with the Database

At its core, eXist is an XML database. It stores XML efficiently and makes fast query-
ing possible. Besides XML, it is also capable of storing other file types. Although in its
default configuration it doesn’t do much with them besides storing and retrieving,
this capability is useful when you are building applications with eXist.

This chapter is about eXist’s database: what’s in it, how it’s structured, how you
access and update its content, and (of course) how you query it.

The Database’s Content

In this section we will dive into the contents of the database.

Help: Where Is My XML?

Superficially, when you're accessing the database using a WebDAV client, eXist’s
database looks like a filesystem: you’ll see directories and files, and you can work with
them directly as you would in any other filesystem.

Of course, under the surface things look very different. XML files are “ripped apart”
(or “shredded”), indexed, and stored in a way that makes searching, indexing, and
retrieval efficient. You can see this in action when you store a file in the database and
reopen it: the indentation after reopening will probably look different. This is because
the document was not stored as is, but rather as a tree structure according to the
XML data model. The document was likely recreated using different indentation
rules than those with which the original was created.

Related to this is one of the most frequently asked questions from eXist newcomers:
“Where is my XML?” People look in the database storage directory $EXIST HOME/
webapp/WEB-INF/data/ (if the installation defaults were used) and see a bunch of

87

www.it-ebooks.info

http://www.it-ebooks.info/

*.dbx files. The stored XML is nowhere in sight. What makes things even more con-
fusing is that stored non-XML files (binaries and queries) can be found in the fs
subdirectory.

So where is the XML? Don’t worry. Although you can’t find it as a file, the XML
document is stored inside the *.dbx files. eXist ensures that you can access the XML
as though it is still a file and access and query it in an efficient way.

If you're interested in how eXist performs this trick, please refer to Chapter 4.

Terminology
Let’s define some important terminology:

Collections
As noted previously, what is called a directory in a filesystem is called a collection
inside eXist’s database. When you use, for instance, the WebDAYV interface to
look inside the database, you'll see no difference.

The reason it is called a collection is linked to the definition of the XPath collec
tion function. This function retrieves documents from something it calls a col-
lection, but the XPath specification does not say exactly what this collection
concept actually is. eXist uses an internal directory-like structure as the basis for
its collections. Read more about this in “Collections” on page 77 and “The collec-
tion Function” on page 93.

Resources
What is called a file in a filesystem is called a resource inside eXist’s database.
Resources can be anything you usually store in a file: images, CSS files, XQuery
scripts, and, of course, XML documents.

Documents
A resource containing a (well-formed) XML document is called a document.

Properties of Collections and Resources

Anything stored in the database has several properties attached. You can view and
change these properties using, for instance, Java Admin Client tool (see Figure 5-1).

88 | Chapter5: Working with the Database

www.it-ebooks.info

http://www.it-ebooks.info/

_Io/x]

Resource: controller.xql
Internet Media Type: application/xquery
Created: 21-feb-2013 9:15:57
Last Modified: 21-feb-2013 9:37:39
Owner: admin III
Group: dba III
Base Permissions

Permission Read Write Execute

User v v] v] -

Group v] L] b |

Other v] [] V] hd
Access Control List

Target Subject Access Read Write Execute

Add Access Control Entry...

Figure 5-1. Viewing and modifying properties using Java Admin Client tool

Alternatively, you can work with the collection and resource properties through the
dashboard’s collection browser or from within eXide. You can also view or change
these properties programmatically from XQuery code with functions from eXist’s
xmldb extension module. See more about this in “Controlling the Database from
Code” on page 107.

On the Client tool’s Properties screen, you’ll see all of the following for the selected
resource:

Internet Media Type
The Internet media type of a resource is first set by eXist when the resource is
created, based on its content and/or file extension. However, if you create resour-
ces with the xmldb extension module (see “Controlling the Database from Code”
on page 107) you have the option to control this yourself.

The Database’s Content | 89

www.it-ebooks.info

http://www.it-ebooks.info/

After creation, you can change the Internet media type of a resource program-
matically. However, you can’t turn a non-XML resource into an XML one, or
vice versa.

Collections do not have an Internet media type.

The Internet media type of a resource (when not set explicitly) is
determined from the configuration file $EXIST HOME/mime-
types.xml. This file maps file extensions to Internet media types (or
MIME types, as they used to be known) and tells eXist when to
treat a file as XML instead of binary data.

Created and Last Modified
Resource have both created and last modification date and time, however collec-
tions only have a created date and time.

Owner, Group, Base Permissions, and Access Control List
The security settings for this resource. Find more information about this in
Chapter 8.

System Collections

The database’s collection /db/system contains eXist system-specific information.
Most of the information underneath this collection is maintained by eXist itself and
there is usually no need for a “normal” user to access it, because there are extension
functions for this.

For instance, in /db/system/security/exist/accounts you'll find user information, and
by querying the resources found there you could create a list of registered users and
the user groups they participate in. However, we definitely advise against doing this!
eXist does not guarantee that these files nor the format of their content will remain
stable in the future. Rather, this is internal configuration information and as such is
potentially subject to change without notice whenever a new version of eXist is
released. The preferred alternative is to instead use the appropriate functions from
the Security Manager and/or the xmldb extension modules, which should remain sta-
ble.

There is one important exception to this rule: the /db/system/config collection must
be used to configure important properties for collections such as: indexes, triggers,
and validation. Underneath /db/system/config you'll find a partial copy of the data-
base’s collection structure with collection.xconf resources in some of them. We’ll give
you more information about this in the chapters to come.

90 | Chapter5: Working with the Database

www.it-ebooks.info

http://www.it-ebooks.info/

Addressing Collections, Resources, and Files

To work with documents and collections stored in the database, you need to be able
to address them, point to them, and know their names. There are several ways to do
this. Extra care should be taken when your resource and/or collection names contain
spaces or special (e.g., accented) characters.

Use URIs

There is one extremely important thing you should be aware of when addressing
resources and collections inside eXist’s database: eXist uses URL-encoded URIs for
naming. This means that all reserved characters, according to the URL encoding rules
(for more information, see http://tools.ietf.org/html/rfc3986#page-12), must be
percent-encoded!

For instance:

o A document that shows up as an example.xml in the WebDAV browser must be
addressed programmatically as an%20example.xml.

« A document in the collection /db/my app (test)/test.xml must be addressed
with /db/my%20app%20%28test%29/test.xml.

o When you request a list of documents inside a collection (with the function

xmldb:get-child-resources), the names returned are URIs, and as such they
are URL-encoded.

If you are not extremely careful with this, your application will
quickly become a mess. Always distinguish internally between
names (useful for displaying document/collection names to the
user) and URIs (useful for addressing the documents/collections).

Conveniently, eXist contains standard functions to transform a name into a URI, and
vice versa:

xmldb:decode-uri
Decodes a URI into a name; that is, it changes all percent-encoded characters
into their UTF-8 equivalent characters.

xmldb:encode-uri
Encodes a name into a URT; that is, it checks for reserved characters and changes
them into the equivalent URL percent-encoding.

The Database’s Content | 91

www.it-ebooks.info

http://tools.ietf.org/html/rfc3986#page-12
http://www.it-ebooks.info/

Unfortunately, xmldb:encode-uri does not check for the optional
xmldb:exist:// database prefix (see “XMLDB URIs” on page 92) and
erroneously encodes xmldb:exist:///a/b/c into xmldb%3Aexist
%3A/a/b/c, which is probably not what you want.

Relative versus absolute paths

Using relative paths in eXist can be confusing. To help clarify when to use relative
versus absolute paths, we have to distinguish between two situations:

Paths in a static context
These are paths resolved at compile time—for instance, an XQuery import mod
ule at clause, or an xsl:include or xsl:import in an XSLT stylesheet. These
paths are resolved, as expected, against the location of the code that does the
import or include. We strongly advise using relative paths here because it makes
moving your code around much easier.

Paths in a dynamic context
These are paths resolved at run time—for instance, in code like doc(" /db/myapp/
data/data.xml"). These paths are resolved using what is called the base collec-
tion of a query. How this base collection is determined unfortunately depends on
the way the query came to life. The rules are difficult to remember, confusing,
and subject to change as eXist evolves over time.

Because the invocation of a query matters, a relative path is not guaranteed to
always work the same way. So, our advice is to use absolute paths for addressing
collections and resources in code whenever possible.

XMLDB URIs

Instead of writing a direct path to a database resource, such as /db/mycollection/
test.xml, you can use a so-called XMLDB URI. For this, add the prefix xmldb:exist://
in front of the resource, as in xmldb:exist.///db/mycollection/test.xml. (Note that there
are now three slashes after xmldb:exist:.) Used like this, both notations are equivalent
and point to the same document. It’s a matter of preference which one to use: the
XMLDB URI is somewhat longer but more specific, and therefore you might con-
sider it more self-documenting. It is worth noting that when using the Java Admin
Client to execute queries in embedded mode, you have to use the XMLDB URI. Like-
wise, when writing XQuery using oXygen with eXist, depending on the version, you
may also need to use the XMLDB URI for eXist to recognize module import sources.

92 | Chapter5: Working with the Database

www.it-ebooks.info

http://www.it-ebooks.info/

Accessing files

If you want to access a file on the filesystem (not in the database), use the file:// prefix,
as in:

doc("file:///home/erik/test.xml")
To manipulate the filesystem, eXist has a file extension module.

In contrast to what you might expect, this module does not use the
file:// prefix syntax.

The XPath Collection and Doc Functions in eXist

The XPath collection function is defined as returning a sequence of (usually docu-
ment) nodes. The doc function is defined as returning document-node, or the empty
sequence if it cannot find the document indicated by the passed URI Both use a URI
as a parameter. These are important functions for XML databases because they allow
you to easily address subsets of your database content for further inspection or pro-
cessing. The XPath standard defines their behavior as implementation-dependent, so
we need to know how eXist handles them.

The collection Function

The collection function in eXist returns the set of resources residing in the collec-
tion identified by its URI parameter, including those in its subcollections, recursively.
In other words, it will return a sequence containing all resources underneath a certain
collection path in the database. If you want only the resources in the collection itself
(without those in subcollections) you can use the extension function xmldb:xcollec
tion instead.

Now, maybe to your surprise, collection returns not only the XML documents
found, but all resources. To illustrate this, assume we have a collection called /db/test
in which there are two files: test.xml (an XML file) and test.pdf (a PDF file). Now run
the following query:

for $doc in collection("/db/test")

return
base-uri($doc)

The result will be /db/test/test.xml and /db/test/test.pdf.

Of course, besides getting their URIs with the base-uri function, you won’t be able
to do much with the non-XML nodes returned by collection. However, getting a

The XPath Collection and Doc Functionsin eXist | 93

www.it-ebooks.info

http://www.it-ebooks.info/

list of all resources can be quite useful in some cases—for instance, for showing the
user a list of available content.

You can also use functions from the xmldb extension module for
iterating over the contents of collections. Read more about this in
“Controlling the Database from Code” on page 107.

You can easily check whether a node points to an XML document by calling
exists($doc/*), where $doc is a member of a sequence returned by collection as
in the preceding example. This will only return true for XML documents.

Remember, the behavior of the collection function is
implementation-defined. This means that your XQuery’s calls to
fn:collection may not behave the same on different platforms,
which can introduce issues for code portability.

The doc Function

If you know (or have computed) the URI to an XML document, the easiest and most
straightforward way to address its content is using the XPath doc function. For exam-

ple:

let Sdocumenturi := "/db/myapp/contents.xml"
for $item in doc($documenturi)//Item
return ...

An interesting (and sometimes useful) behavior of the doc function in eXist is that
when it gets passed the URI of a nonexistent or non-XML document, it silently
returns the empty sequence (without throwing an error).

Querying the Database Using REST

The simplest and most often used way to access the database’s content is using eXist’s
REST (a.k.a. REST-style or RESTful) interface. It allows you to query the database by
firing HTTP requests at it. You can do this programmatically from another applica-
tion or, for GET requests, by hand using a web browser. This section will examine
eXist’s REST interface at a fairly basic level; a more thorough explanation (from a sys-
tem integration point of view) can be found in “REST Server API” on page 319.

By default, to access the REST interface for a standard eXist setup, start the URLs
with:

http://localhost:8080/exist/rest/

94 | Chapter5: Working with the Database

www.it-ebooks.info

http://www.it-ebooks.info/

You might be rightfully worried now about how your URLs are
going to look when you’re building an application in eXist. The /
exist/rest looks awful! Don’t worry: you can tune the URLSs to your
liking; Chapter 9 explains how to do this.

The database operations are, like in a true REST interface, mapped to the HTTP
request methods GET, PUT, DELETE, and POST. Most often used is GET.

Security

Of course, everything you do through the REST interface is subject to the strict secu-
rity rules of eXist. For instance, if you're not allowed to see a file (that is, you have no
read permission), it will not show up when you request the contents of the containing
collection in a GET request.

The default identity when you’re firing a request through this interface is the limited
guest account. HTTP authentication is supported to change identity (see, for
instance, http://www.httpwatch.com/httpgallery/authentication/).

Even with eXist’s strict security in place, allowing REST access on a production server
can be scary: it is a powerful tool with lots of opportunities for misuse or inadvertent
damage. You can turn it off completely, which is probably something you’d want to
do on production servers (unless you really need direct REST access). See “Disabling
direct access to the REST Server” on page 180 for more information.

GET Requests

HTTP GET requests are the workhorses for accessing data and for XQuery scripts.
Using GET requests is probably the most convenient way to execute queries stored in
the database and/or retrieve XML and other contents from it: you can simply do it
from your web browser.

For an HTTP GET request, eXist examines the remainder of the URL (by default the
part after /exist/rest) and reacts in one of the following ways:

o If a _query URL parameter is present (see the following), it will use this as the
XQuery to execute and will return its result.

o If the remainder of the URL points to a collection, it will return an XML frag-
ment describing its content. For instance:

<exist:result xmlns:exist="http://exist.sourceforge.net/NS/exist">
<exist:collection name="/db/test"
created="2012-09-13T08:18:02.35+02:00"
owner="guest"
group="guest" permissions="rwxr-xr-x"s
<exist:resource name="test.xml"

Querying the Database Using REST | 95

www.it-ebooks.info

http://www.httpwatch.com/httpgallery/authentication/
http://www.it-ebooks.info/

created="2012-09-13708:18:25.088+02:00"
last-modified="2012-09-13T08:18:25.088+02:00" owner="guest"
group="guest" permissions="rw-rw-rw-"/>
<exist:resource name="test.pdf"
created="2012-09-13T08:18:29.9+02:00"
last-modified="2012-09-13708:18:29.9+02:00" owner="guest"
group="guest" permissions="rw-rw-rw-"/>
</exist:collection>
</exist:result>
o If the remainder of the URL points to a file (XML or otherwise), the contents of
the file are returned using the Internet media type stored in the database.

o If the remainder of the XML points to an XQuery script (Internet media type
application/xquery) with execute permission, it will be executed and the results
returned.

A GET request accepts the following parameters:

_xsl=xsl-stylesheet-reference | no
Applies an XSLT stylesheet to the result of getting an XML resource or executing
an XQuery script. The path is considered an internal database path, unless it con-
tains an external URI (e.g., starts with http://). Setting this parameter to no disa-
bles all stylesheet processing.

Applying an XSLT stylesheet in this manner always changes the
response’s Internet media type to text/html.

_indent=yes | no
Specfies whether to indent (pretty-print) the returned XML. The default is yes.

_encoding=character-encoding
Indicates the character encoding to use. The default is UTF-8.

_query=XQuery-expression
Executes the given XQuery expression on the result.

_howmany=number-of-items
When you pass a query by the _query parameter and the result is a sequence,
specifies how many items to return from the sequence. The default is 10.

96 | Chapter5: Working with the Database

www.it-ebooks.info

http://www.it-ebooks.info/

_start=starting-position
When you pass a query by the _query parameter and the result is a sequence,
specifies at which position to start returning results from the sequence. The
default is 1.

_wrap=yes | no
Indicates whether returned query results (and collection contents) should be
wrapped in an exist:result root element (the namespace prefix exist is bound
to the namespace http://exist.sourceforge.net/NS/exist). The default is
yes for collection contents and queries passed in the _query parameter, and no
otherwise.

_source=yes | no
Indicates whether the query should display its source code. You must explicitly
allow this by adding the name of the query file to $EXIST_HOME/descriptor.xml
in the allow-source section (and then restart eXist for the changes to take
effect).

PUT Requests

HTTP PUT requests can be used to store or update documents in the database. The
remainder of the URI (the part after /exist/rest) is used as the target location of the
document.

As an example of how to do this, we will use eXist’s own httpclient extension mod-
ule to store an XML document into the database:

let SURI :=
"http://localhost:8080/exist/rest/db/apps/exist-book/data/put-example.xml'
return
httpclient:put(xs:anyURI(SURI), <new-file-by-rest-put/>, false(), ())

Be aware that this is an example to show you how to use HTTP
PUT. If you want to store a document into the database from your
own XQuery program, it is more efficient to avoid the HTTP over-
head and use xmldb:store instead (see “Creating Resources and
Collections” on page 109).

DELETE Requests

An HTTP DELETE request does exactly what its name implies: it deletes the collection
or resource pointed to by the remainder of the URL (the part after /exist/rest) from
the database. The returned HTTP status code will indicate whether the deletion was
successful.

Querying the Database Using REST | 97

www.it-ebooks.info

http://www.it-ebooks.info/

POST Requests

HTTP POST requests can be used for three distinct purposes:

o If the remainder of the URI (the part after /exist/rest) references an XQuery pro-
gram stored in the database, it will be executed.

o If the body of the POST request is a valid XUpdate document, the XUpdate pro-
cessor will be invoked to update the database. An explanation of how this works
and the XUpdate XML format is described in “XUpdate” on page 105.

o If the body of the POST request is XML and uses the http://exist.source
forge.net/NS/exist namespace, it is interpreted as a so-called extended query
request. These can be used to post complex XQuery scripts that are too large or
too unwieldy to pass in a _query parameter of a GET request. The result will be
wrapped in an exist:result element. The XML format for extended query
requests is described in “Extended query request XML format” on page 99.

For example, let’s fire an HTTP POST request containing an extended query request at
our own database using the eXist httpclient extension module:

let SURI := 'http://localhost:8080/exist/rest/doesnotmatter’
let Squery := 'for $1 in 1 to 10 return <Result index="{$i}"/>'
let Srequest :=
<query xmlns="http://exist.sourceforge.net/NS/exist" start="3" max="3">
<text>{Squery}</text>
</query>
return
httpclient:post(xs:anyURI(SURI), Srequest, false(), ())

The result will be something like:

<httpclient:response xmlns:httpclient="http://exist-db.org/xquery/httpclient"
statusCode="200">
<httpclient:headers>
<httpclient:header name="Date" value="Mon, 17 Sep 2012 12:45:02 GMT"/>
<httpclient:header name="Set-Cookie"
value="JSESSIONID=4mpvajj2ez99sa2ik31kzjvq;Path=/exist"[>
<httpclient:header name="Expires" value="Thu, 01 Jan 1970 00:00:00 GMT"/>
<httpclient:header name="Content-Type" value="application/xml;
charset=UTF-8"/>
<httpclient:header name="Transfer-Encoding" value="chunked"/>
<httpclient:header name="Server" value="Jetty(7.5.4.v20111024)"/>
</httpclient:headers>
<httpclient:body mimetype="application/xml; charset=UTF-8" type="xml">
<exist:result xmlns:exist="http://exist.sourceforge.net/NS/exist"
exist:hits="10"
exist:start="3" exist:count="3">
<Result index="3"/>
<Result index="4"/>
<Result index="5"/>

98 | Chapter5: Working with the Database

www.it-ebooks.info

http://www.it-ebooks.info/

</exist:result>
</httpclient:body>
</httpclient:response>
The major part of the output is generated by the httpclient:post function. For the
result of our extended query POST request, look at the contents of the
httpclient:body element. Notice that since the request returns a sequence and we
specified a start position and length of 3, we get the third through fifth elements of

the sequence only.

Extended query request XML format

An extended query request has the following format:
<query xmlns = "http://exist.sourceforge.net/NS/exist"

start? = integer
max? = integer

cache? = "yes" | "no"
session-i1d? = string >
text
properties?
</query>

o start contains the index (counting from 1) of the first item to be returned.

o max is the maximum number of items to return. Together with start, it allows
you to control which part of the results you’ll see.

o Setting cache to yes will have the query start a session. The session ID will be
returned in the result (in the exist:session attribute on the exist:result ele-
ment) and must be passed in the session-1id attribute on subsequent requests.

« session-1id allows you to pass a previously created session identifier.

The text element is used to pass the query. You will most likely want to enclose its
contents in a CDATA section (<text><<![CDATA[...]]></text>) to avoid XML
parsing errors.

The properties element can be used to set serialization properties like indenting and
character encoding:

<properties>
<property name = string
value = string >*
</properties>

A list of serialization properties can be found in “Serialization Options” on page 119.

Querying the Database Using REST | 99

www.it-ebooks.info

http://www.it-ebooks.info/

Ad Hoc Querying

There are several ways to query the database on a more “ad hoc” basis; that is, not
really to create applications with, but rather to explore and experiment.

Querying using eXide

To query using eXide, simply fire up eXide from the dashboard, type your query in
an empty document, and click Run (or press Ctrl-Return), as shown in Figure 5-2.

:-"I -'.' I File Edit MNavigate Buffers Application XQuery Help Login

o, I e i

e 3 %e. [New | B New XQuery | & Open Save | % Close | P Run | v Check [EIEHNGEREPSIERY v 3
o .

Outline

new-document 1%

_new__1

“ XML Output v Live Preview »

10

Figure 5-2. Ad hoc querying in eXide

Querying using the eXist Client tool

eXist’s Java Admin Client tool can be used to query the database too. Click on the
binoculars icon and the XQuery dialog will open, as Figure 5-3 shows.

100 | Chapter5: Working with the Database

www.it-ebooks.info

http://www.it-ebooks.info/

=

F’Quer}rlnput |
History: |1. for $d in 1 to 10 return $d -
for §d in 1 to 10 return $d|. =

~ |
[4] i Iy

Context:|rdb | - |Display max.:| 1 UUH‘
XML : Trace

Lim == B I = AT) B S L

[y
=

[l

[4] i] [»

Found 10 items. Compilation: 6ms, Execution: 9ms Line: 1 Column:28

Figure 5-3. The XQuery dialog in eXist’s Java Admin Client tool

You can type queries (or open them from files), view the results, and even get a trace
of their execution.

Updating Documents

A database wouldn’t be of much use if you couldn’t update its contents. Of course,
you can always replace complete documents with new, updated ones, but for larger
documents that’s not very efficient. Therefore, XML databases—and eXist is no
exception—provide mechanisms to update specific nodes within XML documents
directly.

A document update in eXist has a relatively large overhead. It creates a transaction,
updates the XML, and updates the relevant indexes. This makes updating expensive.
For this reason, try to do as much as possible in a single update. For instance,

Updating Documents | 101

www.it-ebooks.info

http://www.it-ebooks.info/

creating a node and then adding its attributes all in separate updates is not a good
idea. So, try to avoid this (we’ll get to the exact syntax later):

let $Selm as element() := doc('/db/Path/To/Some/Document.xml"')/*
return (

update insert <NEW/> into $elm,

update insert attribute x { 'y' } into $Selm/*[last()],

update insert attribute a { 'b' } into $Selm/*[last()]
)

Instead, create the node with its attributes as an XML fragment first and update your
document in one go:

let Selm as element() := doc('/db/Path/To/Some/Document.xml"')/*
return
update insert <NEW x="y" a="b"/> into S$elm

Or:

let Selm as element() := doc('/db/Path/To/Some/Document.xml"')/*

let Snew-element as element() := <NEW x="y" a="b"/>
return
update insert $new-element into S$elm
Also be aware that updating documents is not done in isolation. Updating something
that another running XQuery script is using at the same time may lead to unanticipa-
ted results.

eXist has two mechanisms to directly update XML documents:

The eXist XQuery update extension
This is an eXist-specific extension to XQuery (based on an early draft of the
XQuery update specification) that allows you to write XQuery statements that
alter the database. This is the preferred mechanism for performing in-place
updates.

XUpdate
You specify your desired alterations to the database in an XML document using
the XUpdate syntax, and then pass it to the XUpdate processor to have them
applied. The XUpdate specification is no longer maintained and so using this
mechanism is discouraged, but it’s still present mainly for backward compatibil-
ity reasons.

eXist's XQuery Update Extension

eXist defines its own XQuery language constructs to update documents in the data-
base. These language constructs follow a proposal from Patrick Lehti.

To get a feeling for it, here is an example of an XQuery update adding a log message
to an XML logfile:

102 | Chapter5: Working with the Database

www.it-ebooks.info

http://www.w3.org/TR/xquery-update-10/
http://www.sedna.org/progguide/ProgGuidesu6.html
http://www.it-ebooks.info/

update insert <LogEntry> </LogEntry> into
doc('/db/logs/mainlog.xml"')/*
The following (somewhat more complicated) example makes sure that the number of
messages does not exceed 10, and that the most recent message is on top:
let $document := doc('/db/logs/mainlog.xml")
let $Snewentry := <LogEntry> </LogEntry>
return
update delete $document/*/LogEntry[position() ge 10],
if (exists(Sdocument/*/LogEntry[1]))
then update insert $newentry preceding $document/*/LogEntry[1]
else update insert $newentry into $document/*
All eXist XQuery update statements start with the keyword update, followed by an
update action. Available actions are delete, insert, rename, replace, and value.

The return type of an update statement is always the empty sequence ().

An eXist update statement can only be used to update persistent XML documents
stored in the database. It cannot be used to update temporary documents or docu-
ment fragments stored in memory. For example, the following code fragment is ille-
gal and will result in an error:

(: This is invalid: :)

let $document as document-node() := <Root><a/></Root>

return
update insert into $document/*

You can use eXist’s update statements anywhere in your XQuery main code or func-
tion bodies. However, take care when using them inside a FLWOR expression return
statement. Update statements take effect immediately, and changing the structure
your query is looping over may lead to some unexpected results!

update delete
update delete simply deletes nodes. Its syntax is:

update delete expri

where expri1 is an XQuery expression resolving to any kind of node. All nodes in
expr1 will be deleted by this statement.

Note that you cannot delete document root elements with update delete.

update insert
update insert inserts content into an element node. Its syntax is:

update insert exprl [into | following | preceding] expr2

Updating Documents | 103

www.it-ebooks.info

http://www.it-ebooks.info/

where expri1 is an XQuery expression resolving to the content sequence to insert, and
expr2 is an XQuery expression resolving to the content sequence to insert info. It
must resolve to one or more element nodes. If it contains more than one element
node, the insertion takes place for all of them.

Where to insert is determined by the keywords into, following, and preceding:

into
Appends the content in expr1 after the last child element node of expr2

following
Inserts the content in expr1 immediately after the element node expr2

preceding
Inserts the content in expr1 immediately before the element node expr2

update rename
update rename renames nodes. Its syntax is:
update rename exprl as expr2

Here, expr1 is an XQuery expression resolving to element or attribute nodes. These
are the nodes to rename. expr2 is an XQuery expression. From the result of this
expression, the string value of the first item is used as the new name.

Note that you cannot rename document root elements using update rename. Only
nodes with a parent element node can be renamed.

update replace
update replace replaces element, attribute, or text nodes. Its syntax is:
update replace exprl with expr2

where expri is an XQuery expression resolving to a single element, attribute, or text
node, and expr2 is an XQuery expression. Rules and treatment depend on the type of
expri:

o When expr1 is an element node, expr2 must be an element node too.
o When expri is an attribute or text node, the value of expr1i is replaced by the
concatenated string value of expr2.
As an example of the second case, the following update statement replaces the value
of the name attribute on the root element of the given document with aaabbb:

update replace doc('/db/test/test.xml')/*/@name with
<a>aaa<bsbbb

104 | Chapter5: Working with the Database

www.it-ebooks.info

http://www.it-ebooks.info/

Note that you cannot replace document root nodes using update replace. Only
nodes with a parent element node can be replaced.

update value
update value updates the content of nodes. Its syntax is:
update value exprl with expr2

Its functionality is equivalent to update replace, but it updates only values, not
nodes.

XUpdate

XUpdate is an older mechanism to change the contents of the database in an indirect
way. You first specify the required changes in an XML document using the XUpdate
syntax. You then pass this document to an XUpdate processor that applies them. The
full XUpdate specification can be found at http://xmldb-org.sourceforge.net/xupdate/
xupdate-wd.html. Using the XUpdate mechanism is mostly discouraged, but it’s still
there for backward compatibility.

In Example 5-1, the XUpdate document inserts a log message in a logfile, before any
existing ones.

Example 5-1. XUpdate document

let S$xupdate-specification :=
<xupdate:modifications version="1.0" xmlns:xupdate="http://www.xmldb.org/xupdate"s
<xupdate:insert-before select="/Log/LogEntry[1]" >
<LogEntry> </LogEntry>
</xupdate:insert-before>
</xupdate:modifications>
let Supdate-count := xmldb:update('/db/logs', $xupdate-specification)
return
<p> {Supdate-count}</p>

XUpdate XML format

An XUpdate document is an XML document that contains one or more XUpdate
XML fragments. An XUpdate XML fragment always uses the namespace http://
www.xmldb.org/:

<modifications xmlns = "http://www.xmldb.org/xupdate"

version = "1.0">
(insert-before | insert-after | append | update | remove)*
</modifications>

o The version attribute always has the fixed value "1.0".

Updating Documents | 105

www.it-ebooks.info

http://xmldb-org.sourceforge.net/xupdate/xupdate-wd.html
http://xmldb-org.sourceforge.net/xupdate/xupdate-wd.html
http://www.it-ebooks.info/

Inside a modifications element, you can specify the updates using certain XML ele-
ments (all of these elements have a select attribute that must contain an XPath
expression evaluating to a node set):

insert-before, insert-after
Inserts content before or after the node(s) specified in the select attribute

append
Appends content as a child of the node(s) specified in the select attribute

update
Updates the contents of the node(s) specified in the select attribute

remove
Removes the node(s) specified in the select attribute

To specify new content, you can use a direct XML fragment as shown in Example 5-1
or use one of the following constructions (all elements in the http://
www . xmldb.org/xupdate namespace):

element name="...
Creates an element node.

attribute name="...
Creates an attribute node. The contents of the element will become the attribute’s
value.

text
Creates a text node. The contents of the element will become the node’s value
(a.k.a. the text).

The original XUpdate specification also mentions processing-
instruction, comment, and using variables with variable and
value-of. This is not supported in eXist.

Executing XUpdate

To execute an XUpdate document, eXist contains the following XQuery extension
function:

xmldb:update($collection-uri as xs:string, Smodifications as node())
as xs:integer

Here, $collection-urti is the collection the XUpdate is applied to. Notice that this is
a collection, so the XUpdate is performed against all documents in the collection (and
any subcollections, recursively). Make sure your XUpdate specification targets the

106 | Chapter5: Working with the Database

www.it-ebooks.info

http://www.it-ebooks.info/

right XML document(s) and/or design your collection structure carefully to constrain
this.

$modifications contains your XUpdate document.

The function returns the number of updates applied.

Controlling the Database from Code

Learning how to control the database from XQuery code is important because when
writing an application, sooner or later you’ll want to create or delete documents and
collections, change their properties, interrogate them, and so on. It’s all part of the
game.

Most functions for controlling the database are in eXist’s xmldb extension module. To
find the exact details of these functions, refer to the online eXist module documenta-
tion in the XQuery Function Documentation app in the dashboard. In this section,
we will provide you with an overview.

This subject is somewhat dependent on that of security. For instance, if you try to
create a document but the parent collection doesn’t allow the current user to do so,
you have a problem. Also, after you’ve created something you’ll probably want to set
its security properties (owner, group, permissions), right? Security is a big subject and
is handled in depth in Chapter 8. This section provides you only with the basic infor-
mation of how to work with the various security-related settings, not their meaning.
In general, eXist’s security system closely mimics that of UNIX systems.

Specifying Collections and Resources for the xmldb Extension Module

The xmldb extension module is somewhat fickle in how it handles addressing collec-
tions and resources:

o A collection must always be passed as a URL-escaped URI (of type xs:string),
as specified in “Use URIs” on page 91. For instance:

xmldb:get-child-resources("/db/new%20collection")

o A resource name can be passed as a URL-escaped URI, but surprisingly also as a
normal, nonescaped string. Therefore, the following function calls are equivalent:

xmldb:size("/db/new%20collection", "new document.xml")

xmldb:size("/db/new%20collection", "new%20document.xml")

Controlling the Database from Code | 107

www.it-ebooks.info

http://www.it-ebooks.info/

Accessing external databases using extended XMLDB URIs

The XMLDB extension function collection parameters all accept an extended syntax
for the XMLDB URTIs, as described in “XMLDB URIs” on page 92:

xmldb:exist://username:password@server:port/exist/xmlrpc/db/...

You can use this to access remote servers and update their databases directly.

Getting Information

There are many functions in eXist’s xmldb extension module that can provide you
with information about the database’s content. Here is an overview of the most
important ones:

xmldb:last-modified, xmldb:size, xmldb:get-mime-type
Retrieve the basic properties of a resource.

Most xmldb functions take two parameters—a collection and a
document URI—but xmldb:get-mime-type is an exception (for
unknown reasons). It takes the full URI to the document as its
input.

Additionally, you should note that xmldb:size will not give you
the exact size of an XML resource, but an estimate based on the
number of database pages the document occupies.

xmldb:get-owner, xmldb:get-group, xmldb:get-permissions
Retrieve the security settings for a collection or resource.

Permissions are returned as integer values; the function xmldb:permissions-to-
string turns these into something more readable. It is strongly recommended
instead to use the newer sm:get-permissions function from the Security Mod-
ule instead.

xmldb:get-child-collections, xmldb:get-child-resources
Provide you with sequences of the child collections or resources of a given parent
collection. You can use these functions to traverse and inspect the database’s col-
lection/resource structure. Example 5-2 is a little XQuery program that displays
the database’s content. It uses a recursive function to traverse the collection tree,
which is a pattern you'll see quite often in XQuery code.

Example 5-2. Traversing and displaying the database structure
xquery version "1.0" encoding "UTF-8";

declare option exist:serialize "method=html media-type=text/html indent=no";

108 | Chapter5: Working with the Database

www.it-ebooks.info

http://www.it-ebooks.info/

declare function local:traverse-collection($collection as xs:anyURI,
$indent as xs:integer) as element(p)*

{
for $sub-collection in xmldb:get-child-collections($collection)
return
(
<p style="margin-left: {$indent}pt">{Ssub-collection}</p>,
local:traverse-collection(xs:anyURI(concat($Scollection, '/',
$sub-collection)), $indent + 10),
for $Sdocument in xmldb:get-child-resources($collection)
return
<p style="margin-left: {$indent + 5}pt">{Sdocument}</p>
)
}
<body>
{
local:traverse-collection(xs:anyURI('/db/apps/exist-book'), 0)
}
</body>

Creating Resources and Collections
For creating resources and collections, the following functions are available:

xmldb:create-collection
As its title implies, it creates a new collection in the database. It will return the
path to the new collection when successful, or the empty sequence otherwise.

xmldb:store
Creates a new resource, storing some data passed as a parameter. It will return
the path to the new resource when successful, or throw an error when
unsuccessful.

Specifying what to store is quite flexible: you can pass data directly (for instance,
as an XML fragment or a string), and it will be stored as the new resource. How-
ever, when the data is passed as type xs:anyURI, this is taken as the URI fo the
data and eXist will try to read it from there.

There are two variants for this function: one where eXist will try to guess the
Internet media type of the data to store, and one where you can explicitly specify
this.

xmldb:store-files-from-pattern
Bulk-loads files from the filesystem. There are several variants of this function
that allow you more or less control over what is stored.

Controlling the Database from Code | 109

www.it-ebooks.info

http://www.it-ebooks.info/

Setting Permissions

Every collection or resource that you create will be assigned the current user, group,
and default security permissions. That might not be what you want, so it’s quite com-
mon to change these after creating a collection or resource. Of course, there might
also be other situations where you have to change some security setting. You can use
the following functions to do this:

xmldb:set-collection-permissions, xmldb:set-resource-permissions
Change the user, group, and/or permissions for a collection or resource.

Notice that permissions must be passed in as integer values. The function
xmldb:permissions-to-string might be of help here.

While the xmldb:set-collection-permissions and xmldb:set-
resource-permissions functions are still available, they are in fact
deprecated by the newer sm:chmod and sm:chown functions in the
Security Manager module (see “Executing XQuery functions” on
page 153).

Moving, Removing, and Renaming

The following functions can be used to move, rename, and remove collections and
resources:

xmldb:move
Moves collections and resources from one location (parent collection) to another

xmldb:rename
Renames collections or resources

xmldb:remove

Removes (deletes) collections or resources

Be warned, removing collections or resources is permanent: there
is no such thing as a trash can collection in eXist!

110 | Chapter5: Working with the Database

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6
XQuery for eXist

Most of your work using eXist will be done in the XQuery programming language.
This chapter covers what is and is not supported. It will also describe some eXist
XQuery specifics, like controlling serialization and available pragmas.

eXist's XQuery Implementation

Currently, 2.0+ versions of eXist support almost the full XQuery 1.0 specification (as
eXist has done for years) and quite a lot of XQuery 3.0. This section will provide you
with the details.

XQuery 1.0 Support

eXist implements almost all of the full XQuery 1.0 specification, with the following
exceptions:

o eXist’s XQuery processor does not support the schema import and schema vali-
dation features. This is perfectly reasonable as they are defined as optional in the
XQuery specification (validate and import schema). The database does not
store type information along with the (values of) nodes; consequently it cannot
know the typed value of a node and has to assume xs:untypedAtomic. This is
compliant with the behavior defined by the XQuery specification.

» You cannot specify a data type in an element or attribute test. eXist suports the
node test element(test-node), but the test element(test-node, xs:integer)
results in a syntax error.

m

www.it-ebooks.info

http://www.w3.org/TR/xquery/
http://www.it-ebooks.info/

The absence of the features does not mean that eXist is not type-
safe; it is, very much so. It only means that type checking based on
schema imports is not implemented.

eXist tested its implementation against the official XQuery Test Suite (XQTS version
1.0.2). Of the more than 14,000 tests, it passed over 99%.

eXist does not yet type-check the name of an element or attribute.
So, strangely enough, you can write let $elm as element(a) :=
 and eXist will find it absolutely OK, although this is a relaxa-
tion from the XQuery specification. The advice is not to use name
tests in element or attribute data type specifications, though. So,
use element() or attribute() instead of element(a) or
attribute(b), since specifying a name implies type checking that
alas never occurs.

XQuery 3.0 Support

New since version 2.0 is eXist’s support for XQuery 3.0. As of writing, this specifica-
tion had reached Proposed Recommendation status and several partial implementa-
tions were available.

To enable the XQuery 3.0 support, start your XQuery program with:
xquery version "3.0";

XQuery 3.0 is a relatively new and probably not yet very well known standard. There-
fore, the support eXist offers is handled in somewhat more detail next. For the exact
details, please refer to the standard.

XPath 3.0 functions

Many of the extra functions defined in XPath and XQuery 3.0 are implemented.
Among them are some very useful ones, like format-dateTime.

An exact list of what is available and what isn’t can be found with the XQuery Func-
tion Documentation browser in the dashboard. Browse the http://www.w3.org/
2005/xpath-functions module.

try/catch

The XQuery 3.0 try/catch mechanism allows you to catch errors raised during exe-
cution. These can be errors raised by the XQuery engine (meaning your code did
something wrong), or errors you've explicitly raised with the error function. The

112 | Chapter 6: XQuery for eXist

www.it-ebooks.info

http://www.w3.org/TR/xquery-30/
http://www.w3.org/TR/xquery-30/
http://www.it-ebooks.info/

following example shows a try/catch usage example that sets a variable to -1 if a
division-by-zero error occurs:

let $result as xs:decimal :=
try
{

$something div $something-else

}

catch err:FOAROOOL { -1 }
This example tests for a very specific error, which is good, because we would like a
warning when something unexpectedly goes wrong. If you want to test for all errors
that can occur, change the err:FOARG001 into an *.

If you want to test for a specific error condition but don’t know its
code, probably the easiest way to find it is to force the error and
copy the error code reported back into the XQuery.

Inside the catch operand you have access to information about the error through a
number of implicitly declared variables—$err:code, $err:line-number,
Serr:column-number, Serr:description, $err:value, $err:module, and $err:addi
tional. Please refer to the XQuery 3.0 specification for full details.

switch expression

The XQuery 3.0 switch expression implements that which in other languages is often
called a case expression or, in XSLT, an xsl:choose. This example was copied from
the XQuery 3.0 specification:

switch ($animal)
case "Cow" return "Moo"
case "Cat" return "Meow"
case "Duck" return "Quack"
default return "What's that odd noise?"

Higher-order functions

A higher-order function is a function that takes another function as a parameter or
returns a function. The normal use case for this is mapping or filter functions. Here is
an example:

declare function local:map-example($func, Slist) { (1]
for $item in $list
return
Sfunc($item)
b

eXist's XQuery Implementation | 113

www.it-ebooks.info

http://www.it-ebooks.info/

let $f := upper-case#l (2]
return
local:map-example($f, ("Hello", "world!")) (3]

© We first define a function, local:map, that runs the function passed in its first
parameter, $func, over all members of its second operand, $1ist.

® We then assign the upper-case function to $f. The #1 after the function name
means that we want the upper-case function with only one parameter (in case
there are more).

© Finally, we call local:map with our function and some input strings. It returns
the expected HELLO WORLD!.

Higher-order functions is a serious subject in its own right and includes topics such
as: inline and partial functions, closures, currying, and more. For further informa-
tion, you can refer to the XQuery 3.0 specification and to this excellent eXist wiki
article.

The simple map operator

The XQuery 3.0 bang operator ! (or simple map operator, as it is officially called) can
be seen as a shorthand for simple FLWOR expressions. It applies the right-hand
expression to each item in the sequence gained from evaluating the left-hand expres-
sion. For instance:

(1 to 10) ! . + 1
is the same as:

for $1 in (1 to 10) return $i1 + 1

The string concatenation operator

The string concatenation operator || is a shorthand replacement for the concat
function: it concatenates strings. For example, the following expression will be true:

'Hello '|| 'world' eq concat('Hello ', 'world')

Annotations

XQuery 3.0 allows annotations for functions and variables. This is used, for instance,
to make them private (visible only in the enclosing module) or public:

declare variable Smyns:only-i-can-see-this := 'secret';
declare

function myns:do-something-public() {

114 | Chapter 6: XQuery for eXist

www.it-ebooks.info

http://atomic.exist-db.org/blogs/eXist/HoF
http://atomic.exist-db.org/blogs/eXist/HoF
http://www.it-ebooks.info/

(: some function body here:)

}

Within eXist, annotations are also used for RESTXQ (see “Building Applications with
RESTXQ” on page 215).

Serialization

eXist now supports the new XQuery 3.0 manner of controlling serialization. For
instance, this:

declare namespace output = "http://www.w3.0rg/2010/xslt-xquery-serialization";
declare option output:method "xml";
declare option output:media-type "text/xml";

is exactly the same as (eXist’s incumbent nonstandard mechanism):
declare option exist:serialize "method=xml media-type=text/xml";

The options supported are the same also. More about serialization and the full list of
options supported can be found in “Controlling Serialization” on page 119.

The group by cause

eXist has had an order by clause for its FLWOR expressions since 2006. Unfortu-
nately, this was not compatible with the XQuery 3.0 group by clause, and so it was
replaced in the 2.0 release with the official version. Here is an example:

let $data as element()* := (
<item> </item>,
<item> </item>,
<item> </item>,
<item> </item>,
<item> </item>

)

return
<GroupedItems>
{
for $item in $data
group by Skey := upper-case(substring($item, 1, 1))
order by S$key
return
<Group key="{Skey}">
{Sitem}
</Group>
}

</GroupedItems>

The fruits are grouped and sorted based upon the uppercased first characters of their
names. This returns:

eXist's XQuery Implementation | 115

www.it-ebooks.info

http://www.it-ebooks.info/

<GroupedItems>
<Group key="A">
<item>Apples</item>
<item>Apricots</item>
</Group>
<Group key="B">
<item>Bananas</item>
<item>Brambles</item>
</Group>
<Group key="P">
<item>Pears</item>
</Group>
</GroupedItems>

Other XQuery Extras

Beside eXist’s support for XQuery 1.0 and the majority of XQuery 3.0, it also has a
few interesting features which are currently specific to its XQuery implementation.

The map data type proposed for XQuery 3.1

The map data type in eXist is essentially a key/value lookup table. Keys must be
atomic values (e.g., xs:string, xs:integer, xs:date, etc.). Values can be anything
from a simple numbers to complete XML documents. Here is a basic example of cre-
ating and using a map:

let Smapl := map {

"t o= 1,
"b" := <XML> <i> </i></XML>
} return

($map1("a"), $map1("b"))
This will return:

1
<XML>this is <i>cool</i></XML>

Working programmatically with maps is possible through the map extension module.
This module allows you to do everything from checking for the existence of keys up

to constructing maps on the fly. Please refer to the online function documentation
for more information.

Maps are immutable, like any other XQuery variables. So, changing
a map using the functions from the map extension module (e.g.,
calling map: remove) will create a new map.

There is also an article about maps on the eXist wiki.

116 | Chapter 6: XQuery for eXist

www.it-ebooks.info

http://exist-db.org/exist/apps/fundocs/index.html?
http://atomic.exist-db.org/blogs/eXist/XQueryMap
http://www.it-ebooks.info/

Java binding

eXist allows you to make arbitrary calls to Java libraries using the so-called Java bind-
ing. For example:

declare namespace javasystem="java:java.lang.System";
declare namespace javamath="java:java.lang.Math";

javasystem:getenv('JAVA_HOME'),

javamath:sqrt(2)
For security reasons, the Java binding is disabled by default. If you want to use it, edit
$EXIST _HOME/conf.xml, search for the enable-java-binding attribute, set its value
to "yes", and restart eXist for the change to take effect.

There are some specifics you need to know about when using the Java binding:

o If the function name in XQuery contains a hyphen, the hyphen is removed and
the character following it is converted to uppercase. So, a call in XQuery to to-
string will call the Java method toString.

« Java constructors can be called using the new function.

o eXist adds a generic type, object, to its data-model, which is used for all Java
objects.

o Instance methods of a class (methods that work on a specific object, like most of
the Java methods) must get the object reference as their first parameter.

o When a method returns an arrayj, it is converted to a sequence and you can iter-
ate over it using a FLWOR expression.

Here is an example that will return a list containing the names of all files and subdir-
ectories in the $EXIST HOME directory:

declare namespace javafile="java:java.io.File";

let $fobject as object := javafile:new(system:get-exist-home())
return
for $file in javafile:list(Sfobject)
return
$file

If you only want to get a list of files and directories, it is probably
easier to use the file extension module instead of the Java bind-
ing.

eXist's XQuery Implementation | 117

www.it-ebooks.info

http://www.it-ebooks.info/

XQuery Execution

There are some details you should be aware of regarding XQuery execution in eXist.
These include:

Transaction boundaries
eXist is transactional only during updates to the database; that is, a single update
either succeeds or fails atomically, not something in between, even if a crash
occurs in the middle of the operation.

eXist is not transactional during the execution of a full XQuery script (like some
other XQuery engines are). An XQuery script does not run in isolation, and
updates made by it or by concurrently running neighbor scripts will immediately
be visible. However, you can group updates into a single transaction; see the
exist:batch-transaction pragma in “eXist XQuery Pragmas” on page 123.

Evaluation of expressions
eXist does not lazily evaluate expressions. For instance, a series of let expres-
sions will all be evaluated, from top to bottom, even if some of the variables are
never used again.

The reasoning behind this has to do with side effects, which XQuery officially
doesn’t have, but which (as we all know) in a real-world program are a necessity.
For instance, when you have a function that adds to a logfile, you want it exe-
cuted even if you don’t do anything with its return value.

As a consequence, be careful computing expensive values that might never be
used. It’s better to either defer this until you really need them (e.g., nesting them
inside an if-then-else structure) or do something along the lines of:

let Sexpensive-value :=
if (...decide-whether-value-is-really-needed...)
then compute-value...
else ()

Serialization

Although it may seem as though eXist works directly with XML, as in “text with a lot
of angle brackets,” it does not. Internally, XML is represented as an efficient tree-
structured data type. Only on the way out, in the final step, are the angle brackets
added and the XML displayed once again as we know it. This process of changing the
internal representation into something suitable for the outside world is known as
serialization.

Controlling serialization is important: sometimes you may want XML, while at other
times you want HTML and/or JSON. You may perhaps also want to set the Internet
media type explicitly, or control indentation.

118 | Chapter 6: XQuery for eXist

www.it-ebooks.info

http://www.it-ebooks.info/

For the XSLT programmers among us who think this sounds familiar: you're right. In
XSLT, serialization is controlled likewise through the xs1:output element.

Controlling Serialization

There are a number of ways you can control serialization from within your XQuery
scripts:

option exist:serialize
You can control serialization by adding a declare option exist:serialize
statement to the XQuery prolog. For instance:
declare option exist:serialize
"method=html media-type=text/html indent=no";

The contents of the exist:serialize option are a whitespace-separated list of
name/value pairs, as described inthe following section. You do not have to define
the exist namespace prefix. eXist automatically binds this to the appropriate
http://exist.sourceforge.net/NS/exist namespace.

util:get-option, util:declare-option
These extension functions allow you to inspect and set the value of an XQuery
script option programmatically. For instance, setting the serialization options
can be done with:

util:declare-option("exist:serialize",
"method=html media-type=text/html indent=no")

XQuery 3.0 serialization settings
eXist now also supports the standard XQuery 3.0 way of controlling serialization.
This is described in “Serialization” on page 115.

Serialization Options

This section will list all the serialization options that eXist supports.

General serialization options

The more general serialization options closely mimic the options of the same name
available on the XSLT xs1l:output command:

method=xml|microxml|xhtml|html5|text]|json
Sets the principal serialization method.

The microxml method produces MicroXML as opposed to full XML. You can
find out more about MicroXML from the W3C MicroXML Community Group.

Serialization | 119

www.it-ebooks.info

http://www.w3.org/community/microxml/
http://www.it-ebooks.info/

The xhtml method makes sure that only the short form is used for elements that
are declared empty in the XHTML specification. For instance, a br element is
always returned as
. In addition, if you omit the XHTML namespace from
your XML, you can have the XHTML serializer inject it for you by setting the
serialization option enforce-xhtml=yes.

If you specify the text method, only the atomized content of elements is
returned: for example, <foo>this is content</foo> will return this is con
tent. Namespaces, attributes, processing instructions, and comments are
ignored.

For JSON and JSONP serialization options, see “JSON serialization” on page 121.

media-type=...
Indicates the Internet media type of the output. This is used to set the HTTP
Content-Type header if the query is running in an HTTP context.

encoding=...
Specifies the character encoding used for serialization. The default is the encod-
ing set in the XQuery declaration at the top of the program. If that is not set, the
default is UTF-8.

indent=yes|no
Indicates whether the output should be indented.

omit-xml-declaration=yes|no
Specifies whether the XML declaration (<?xml version="1.0"?>) at the top of
the output should be omitted.

doctype-public=... doctype-system=...
When at least one of these is present, a doctype declaration is included at the top
of the output.

enforce-xhtml=yes|no
Forces all output to be in the XHTML (http://www.w3.0rg/1999/xhtml)
namespace.

Post-processing serialization options

eXist can do post-processing of the XQuery result by processing xi:include ele-
ments and <?xml-stylesheet?> processing instructions referencing XSLT style-
sheets. You can control this with the following options:

expand-xincludes=yes|no
Indicates whether the serializer should process any xi:include elements (see
“XInclude” on page 243). The default is yes.

120 | Chapter 6: XQuery for eXist

www.it-ebooks.info

http://www.it-ebooks.info/

process-xsl-pi=yes|no
Indicates whether the serializer should process any <?xml-stylesheet
type="text/xsl" href="..."?> processing instructions (see “Invoking XSLT
by Processing Instruction” on page 242). The default is yes.

eXist-specific serialization options

eXist-specific options include the following:

add-exist-id=element|all
If you output elements that come from the database, eXist will add an attribute
exist:id to them, showing the internal node identifier of each element. Setting
this option to element will show only the node identifier of the top-level element;
setting it to all will show all node identifiers.

There are functions in the util extension module to work with these identifiers.

highlight-matches=both|elements|attributes|none
When querying text with the full-text or NGram extensions, the query engine
tracks the exact position of all matches inside text content. The serializer can
later use this information to mark those matches by wrapping them into an
exist:match element. Find more information about this in “Locating Matches”
on page 296.

JSON serialization

JSON (JavaScript Object Notation) is a lightweight data-interchange format. eXist
has a JSON serializer built in that you can enable by setting the serialization method
to json (see “General serialization options” on page 119). There is one related seriali-
zation option:

jsonp=...
Produces JSONP (JSON with padding) output by wrapping the JSON output in
the named function. For example, specifying jsonp=abc causes the output to be
wrapped in the JavaScript function abc like so: abc({"hello": "world"}). This
can be useful when you’re working around same-origin policies in some web
browsers.

It is also possible to set the JSONP function dynamically by calling the function
util:declare-option and passing in the function name; for example,
util:declare-option("exist:serialize", "method=json jsonp=myFunction
Name").

Here is a summary of how eXist performs the JSON serialization (see also the wiki
entry on this subject):

Serialization | 121

www.it-ebooks.info

http://www.json.org/
http://atomic.exist-db.org/blogs/eXist/JSONSerializer
http://www.it-ebooks.info/

o The root element is absorbed: <root>A</root> becomes "A".
o Attributes are serialized as properties, with the attribute name and its value.

o An element with a single text child becomes a property whose value is the text
child: <e>text</e>becomes {"e": "text"}.

o Sibling elements with the same name within a parent element are added to an
array: <A>12 becomes { "b" : ["1", "2"] }.

« In mixed-content nodes, text nodes are dropped.

o If an element has attribute and text content, the text content becomes a property:
1becomes { "A" : { "a" : "b", "#text" : "1" } }.

o An empty element becomes null: <e/> becomes {"e": null}.

o An element with name <json:value> is serialized as a simple value, not an
object: <json:value>my-value</json:value> becomes "my-value".

Sometimes it is necessary to ensure that a certain property is serialized as an array,
even if there’s only one corresponding element in the XML input, you can use the
attribute json:array="true|false" for this.

By default, all values are strings. If you want to output a literal value—for example, to
serialize a number—use the attribute json:literal="true".

The JSON prefix json should be bound to the namespace http://www. json.org. As
an example, here is some XML:

<Root xmlns:json="http://www.json.org"s
<Items>
<Item id="1">Bananas</Item>
<Item>CPU motherboards</Item>
</Items>
<Items >
<Item json:array="yes">Bricks</Item>
</Items>
<Mixed>This i1s <i>mixed</i> content</Mixed>
<Empty/>
<Literal json:literal="yes">1</Literal>
</Root>

And here is its JSON serialization:

{ "Items" : [{ "Item" : [{ "id" : "1", "#text" : "Bananas" },
"CPU motherboards"] }, {"Item" : ["Bricks"] }1,
"Mixed" : { "i" : "mixed" }, "Empty" : null, "Literal" : 1 }

In addition to the JSON serializer in eXist, which attempts to convert XML into
JSON with as little effort from the developer as possible, there are three other XQuery
modules that enable you to work with JSON. The first two modules—JSON XQuery

122 | Chapter 6: XQuery for eXist

www.it-ebooks.info

http://www.it-ebooks.info/

(see json) and JSONP XQuery (see jsonp)—work in much the same way as the JSON
serializer. The third module, XQJSON (see xqjson), which was written by John Snel-
son and adapted by Joe Wictenowski, is the newest JSON addition to eXist; it allows
you to serialize XML to JSON as well as parse JSON back into XML so that you can
round-trip your data.

Controlling XQuery Execution

There are several mechanisms which give you control over the execution of your
XQuery scripts.

eXist XQuery Pragmas

With XQuery pragmas, you can set implementation-specific options for parts of your
code. The general syntax is:

(# pragmaname #) {
(: Your XQuery code block :)

}

eXist has the following pragmas:

exist:batch-transaction
Provides a way to combine multiple updates on the database into a single trans-
action. Only works for updates done through eXist’s XQuery update extension.
For example:

(# exist:batch-transaction #) {
update delete $document/*/LogEntry[position() ge 10],
update insert Snew-entry preceding $document/*/LogEntry[1]
}

exist:force-index-use
Useful for debugging index usage (see Chapters Chapter 11 and Chapter 12).
Will raise an error if there is no index available for the given XQuery expression.
This can help you to check whether indexes are correctly defined.

exist:no-index
Prevents the use of indexes on the given XQuery expression. Useful for debug-
ging or for curiosity purposes (“How long does my query take without
indexes?”). Also, sometimes it is more efficient to run without indexes than with
—for instance, when a search isn’t very selective.

exist:optimize
Enables optimization for the given XQuery expression. If you’ve turned optimi-
zation off (with declare option exist:optimize "enable=no";, as discussed

Controlling XQuery Execution | 123

www.it-ebooks.info

http://www.it-ebooks.info/

in “Serialization Options” on page 119), you can turn it on again for specific
expressions with this pragma.

exist:timer
Measures the time it takes to execute the XQuery expressions within the
pragma—for instance, (# exist:timer #) { count(//TEST) }.

To see the timer, you need to enable tracing in the $EXIST _HOME/log4j.xml
configuration file (set <priority value="trace"/> for the root logger). You'll
see an entry like this in the $EXIST _HOME\webapp\WEB-INF\logs\exist.log file:

2012-09-12 15:01:29,846 [eXistThread-31] TRACE (TimerPragma.java [after]:63)
- Elapsed: 171ms. for expression: count([root-node]/descendant::{}TEST)

Limiting Execution Time and OQutput Size

You can control execution time and query output size by adding the correct declare
option exist:... statement to the XQuery prolog:

declare option exist:timeout "time-in-msecs"
Indicates the maximum amount of time (specified in milliseconds) that a query
is allowed to execute for. If this is exceeded, an error will be raised.

declare option exist:output-size-limit "size-hint";
Defines a limit on the maximum size of created document fragments. This limit
is an estimation, specified in terms of the accumulated number of nodes con-
tained in all generated fragments. If this is exceeded, an error will be raised.

Other Options

Here are some miscellaneous options you can set by adding a declare option
exist:... statement to the XQuery prolog:

declare option exist:implicit-timezone "duration";
Specifies the implicit time zone for the XQuery context as defined in the XQuery
standard. More information is available at http://www.w3.org/TR/xquery/#dt-
timezone.

declare option exist:current-dateTime "dateTime";
If for some reason you don’t want to use your operating system’s date/time, you
can specify your own using this option (it is merely there to enable some of the
XQuery test suite cases to run).

declare option exist:optimize "enable=yes|no";
Use this to disable the query optimizer in eXist (the default is yes, of course).
This is linked to the exist:optimize pragma; see “eXist XQuery Pragmas” on
page 123.

124 | Chapter 6: XQuery for eXist

www.it-ebooks.info

http://www.w3.org/TR/xquery/#dt-timezone
http://www.w3.org/TR/xquery/#dt-timezone
http://www.it-ebooks.info/

XQuery Documentation with xqDoc

xqDoc is an effort to standardize XQuery documentation in a similar vein to how
JavaDoc has for Java. xqDoc works by reading specialized comments you insert into
your XQuery code. A parser can then use these to extract additional information
about your module, its (global) variables, and its functions. This information could
then, for example, be used to display details about a module to the user. The eXist
function browser is a good example of an implementation which uses xqDoc to ach-
ieve exactly that.

Here is an example of a little module containing xqDoc information:

xquery version "1.0" encoding "UTF-8";

(:~

Example module with xqDoc information

@version 1.0
@author Erik Siegel
:)

module namespace xquerydoc="http://www.exist-db.org/book/XQueryDoc";

(:~

Example dummy function

@param $in The input to the function
:)
declare function xquerydoc:test($in as xs:string+) as xs:string
{

'"Dummy '

};

All comments starting with (:~ are parsed by the xqDoc parser. Keywords in these
comments start with an @ character. The exact syntax can be found on the xqDoc
website.

eXist has an inspect extension module to work with xqDoc. The functions in this
module return an XML representation of the module’s content, including possible
annotations by the xqDoc comments. For instance, running inspect:inspect on the
preceding example module returns:

<module uri="http://www.exist-db.org/book/XQueryDoc" prefix="xquerydoc"s
<description> Example module with xgDoc information </description>
<author> Erik Siegel </author>
<version> 1.0 </version>
<variable name="xquerydoc:global" type="xs:string" cardinality="exactly one"/>
<function name="xquerydoc:test"
module="http://www.exist-db.org/book/XQueryDoc">
<argument type="xs:string" cardinality="one or more" var="in">
The input to the function</argument>
<returns type="xs:string" cardinality="exactly one"/>

XQuery Documentation withxqDoc | 125

www.it-ebooks.info

http://xqdoc.org
http://xqdoc.org
http://xqdoc.org
http://www.it-ebooks.info/

<description> Example dummy function </description>
</function>
</module>

From this XML you could easily create any required HTML or PDF documentation.

eXist does not support the full xqDoc specification. If you need some specific xqDoc
feature, please run some tests to see if it is present.

126 | Chapter 6: XQuery for eXist

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7
Extension Modules

eXist has a large number of extension modules built in that allow you to do lots of
wonderful things that you can’t do with straight XQuery, such as manipulating the
database’s content, inspecting an HTTP request, encrypting/decrypting data, and
performing XSLT transformations. This chapter will provide you with an overview of
the module mechanism in general. An overview of the available modules can be
found in Appendix A.

Types of Extension Modules

Extension modules come in two flavors, which you need to be aware of because they
behave differently in eXist. The module descriptions in Extension Module Descrip-
tions will tell you the module type. We will also explain how to find out the module
type yourself in “Enabling Extension Modules” on page 128.

Extension Modules Written in Java

Extension modules written in Java are fully integrated into eXist. You don’t even have
to put an import module statement in your XQuery code to be able to use them. Most
of the eXist core functionality you use regularly is Java-backed (e.g., xmldb, request,
transform, response, and util).

For instance, when you want to find out the eXist home directory by calling
system:get-exist-home, you can simply do this in your code without an import
module statement for the system module. However, it is generally considered good
practice to have this explicitly set out, so you may choose to add, for example:

import module namespace system="http://exist-db.org/xquery/system";

127

www.it-ebooks.info

http://www.it-ebooks.info/

Not all of the available Java modules are enabled by default. Even worse, some of
them are not even built in (compiled and linked) to the default eXist configuration!

How to find out which are built in and/or enabled, and what to do about it is covered

in “Enabling Java Extension Modules” on page 129. Writing your own extension mod-
ules in Java is covered in “Internal XQuery Library Modules” on page 467.

If you use eXide, oXygen, or another eXist-aware IDE, there is a
very easy way to find out whether a Java-based extension module is
enabled. While editing an XQuery script, type the prefix of the
module and press the shortcut keys that pop up autocompletion
suggestions (usually Ctrl-space bar). If a list of functions appears,
the module is enabled.

Extension Modules Written in XQuery

Some extension modules are written in XQuery. To use them, you need to explicitly
import the module by placing an import module statement in your XQuery code.
You need not specify the at clause because eXist already knows where to find them.

For instance, to use the KWIC (see “Using Keywords in Context” on page 297) exten-
sion module, you would add the following to your XQuery prolog:

import module namespace kwic="http://exist-db.org/xquery/kwic";

XQuery-based modules can be disabled too. However, in contrast to Java-based mod-
ules, this only means eXist doesn’t know their location and you have to add an at
clause to your import module statement if you still want to use them. Read more
about this in “Enabling XQuery Extension Modules” on page 130.

Enabling Extension Modules

This section will tell you how to enable an extension module. There are two files/
locations that are important here:

$EXIST _HOME/conf.xml
Search this file for the builtin-modules element. Within you’ll find module ele-
ments, some of which are commented out. As you might have guessed, enabling
a module here means removing the comment from the appropriate module ele-
ment (and restarting eXist).

The module elements also show you the type of the module (Java or XQuery).
Java modules have a class attribute. For instance:

<module uri="http://exist-db.org/xquery/xmldb"
class="org.exist.xquery.functions.xmldb.XMLDBModule" />

But XQuery modules have a src attribute:

128 | Chapter7: Extension Modules

www.it-ebooks.info

http://www.it-ebooks.info/

<module uri="http://exist-db.org/xquery/kwic"
src="resource:org/exist/xquery/lib/kwic.xql" />
If there is a resource: prefix it indicates that the module is located within a
package inside one of eXist’s JAR files.

$EXIST_HOME/extensions/build.properties
For some Java modules (and some additional features), you have a choice of
whether to include them in the eXist build. The default settings for this are in
$EXIST _HOME/extensions/build.properties. More information can be found in
the next section.

Enabling Java Extension Modules

To use a Java extension module, two conditions must be met:

o It must be part of the eXist build. You can determine this as follows:

— Open $EXIST _HOME/extensions/build.properties (this is a text file, not an
XML document), and see if the module or feature you want to use is men-
tioned there. For instance, the memcached extension module has this line:

include.module.memcached = false

— If your module is not mentioned in build.properties, you don’t have to worry
about it being part of the build; that will always be the case.

— If your module is mentioned in build.properties and its include.module entry
is set to true, it will be part of the build.

— If your module is mentioned in build.properties and its include.module is set
to false, it will not be part of the build. To enable it, you will have to change
this and rebuild eXist. The following subsection explains how to do this.

— If you (or somebody else working on the same eXist installation) has already
changed some of the settings in build.properties, there will be a
local.build.properties file also. Settings in this file override the settings in
build.properties, so you have to check this too.

o It must be enabled in the built-in modules list in $EXIST_HOME/conf.xml. To
determine this, do the following:

— Open $EXIST HOME/conf.xml and search for the modules list in the
builtin-modules element.

— If the child module element for the module you’re looking for is commented
out, the module is disabled. Remove the comment and restart eXist to
enable it.

Enabling Extension Modules | 129

www.it-ebooks.info

http://www.it-ebooks.info/

Rebuilding eXist

If you've found out that the module you needed was not part of the eXist build
because its include.module entry was set to false in $EXIST_HOME/extensions/
build.properties, here is how to change it:

1. Install (if it’s not on your system already) the Java SE JDK—that is, the develop-
ment kit, not the runtime environment. For instructions and downloads, refer to
http://www.oracle.com/technetwork/java/javase/overview/index.html.

2. Make sure you have an environment variable called JAVA_HOME pointing to the
root directory of your Java installation. If it does not exist, create it.

3. If you haven’t done so before, copy $EXIST HOME/extensions/build.properties
to local.build.properties (in the same directory).

4. Edit local.build.properties and set the include.module entry for the module you
want to enable to true (for instance, include.module.xslfo = true).

5. Stop eXist.

6. Open a command window, navigate to $EXIST HOME, and issue the appropri-
ate build command:
o On Unix-based systems: . /build.sh extension-modules

o On Windows-based systems: build.bat extension-modules

The build will run. If you examine the output you should see some messages
scroll by regarding your module.

7. Since eXist is still stopped at this point, enable the corresponding module element
in the built-in modules list in $EXIST _HOME/conf.xml now.

8. Restart eXist.

Now the module is enabled. This not only means that you can use its functions from
within your XQuery code, but also that it should show up in the eXist function docu-
mentation browser (after a regeneration).

Enabling XQuery Extension Modules

An XQuery extension module is not so different from an XQuery module that you
could write yourself. The real difference is that the extension modules are a part of
the main eXist distribution and are included in one of eXist’s JAR files that is present
on the classpath. Paths to a resource on the classpath in $EXIST _HOME/conf.xml are
prefixed with resource:, like so:

<module uri="http://exist-db.org/xquery/kwic"
src="resource:org/exist/xquery/lib/kwic.xql" />

130 | Chapter7: Extension Modules

www.it-ebooks.info

http://www.oracle.com/technetwork/java/javase/overview/index.html
http://www.it-ebooks.info/

The manifest difference between an XQuery extension module provided on the class-
path and your own extension modules is that eXist already knows where to find
them, so you don’t have to add an at clause to the import module statement when
using a provided module. So, to use the kwic module, you can write:

import module namespace kwic="http://exist-db.org/xquery/kwic";

However, if you want to, you can also specify it in full, in which case the built-in
modules list in $EXIST _HOME/conf.xml is not even used:

import module namespace kwic="http://exist-db.org/xquery/kwic"
at "resource:org/exist/xquery/lib/kwic.xql";
Specifying an XQuery-based module in the built-in modules list only tells eXist
where to find it, nothing more. It actually has nothing to do with enabling or disa-
bling a module, since you can always reference it using an explicit at clause.

By the way, this also means that you can add your own modules to the built-in mod-
ules list by specifying their full paths; for example:

<module uri="http://www.mycompany.org/modules/helper"
src="xmldb:exist:///db/myapp/lib/helper.xq" [>
However, the advice is not to do this. Keep the built-in modules list for, well, the
built-in modules, and don’t litter it with your own stuff, as it will make upgrading in
the future more tedious. In any case, changes to the built-in modules list only take
effect after a restart.

Enabling Extension Modules | 131

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8
Security

eXist integrates a comprehensive and flexible security subsystem within the core of
the database that cascades up through each API and web server. It is impossible to
access any resource or collection within eXist without authorization or access rights
being granted to the resource.

eXist at its simplest uses classic username and password credentials for authentica-
tion. The essence of its security model was very much inspired by the Unix permis-
sions model. Permissions are applied at a resource level, and each resource and
collection in the database must have Unix-style permissions assigned to it; these are
validated when the resource or collection is accessed.

The Unix-style security model in eXist is adequate for many applications, but it does
not scale well when you have hundreds of users with different roles. While you can
solve this by creating many groups containing many permutations of user accounts,
this quickly becomes unmanageable, and if you cannot understand your own security
model you have little chance of asserting its integrity. For larger uses, eXist supports
ACLs (access control lists), which allow you to place many modes for different users
and groups onto the same document or collection (see “Access Control Lists” on page
156). eXist does not yet natively implement RBAC (role-based access control), but it’s
not too hard to add this at your application layer as an organization of ACLs.

eXist’s Security Manager also permits pluggable modules that provide an
authentication realm, and through this mechanism eXist can authenticate against
external providers to better integrate with your existing infrastructure. eXist provides
a default internal realm in which user and group credentials are stored in a set of
XML documents within a special collection in the database, /db/system/security/exist.

133

www.it-ebooks.info

http://www.it-ebooks.info/

Security Basics

The basic authentication model in eXist follows the Unix model of having users and
groups of users. eXist does not support groups of groups. Each resource and collec-
tion in the database is assigned an owner user, group, and mode. The mode describes
the access permissions that the owner, user group, and other users have to that
resource or collection.

User and group names in eXist are case-sensitive, so, for example,
the username James is not the same as james.

Out of the box, eXist’s internal authentication realm provides you with some default
users and groups to get you started.

Users
Table 8-1 outlines the default users provided with eXist out of the box.

Table 8-1. Default users

Username Description

guest The guest user represents unauthenticated users. Until a user authenticates with eXist, she is a guest. It is
possible to allow users access to some resources as guest without authentication; this is particularly useful for
serving content to web users without them having to log in to your website. The guest user has a default auto-
set password of guest, although you should never need it.

admin The admin user is the default dba (database administrator) user for eXist, and will be the first user that you log
in as after installing eXist. By default, the admin user's password is empty.

SYSTEM The SYSTEM account is used internally by eXist processes to modify resources in the database and manage the
database. Even eXist has to authenticate itself! You cannot authenticate as the SYSTEM user, and eXist cannot
function without that account.

You really should consider setting a strong password for the admin
user to secure the system, either during or immediately after instal-
ling eXist. What constitutes a strong password? Well, that’s hard to
explain simply, and advice tends to change over time, but this web-
site can help you generate strong passwords: http://strongpassword
generator.com. If you’re more security conscious, check out https://
www.grc.com/passwords.htm.

Each user in eXist must belong to at least one group, and may belong to many
groups. If a user is a member of many groups, then the default group for ownership

134 | Chapter 8: Security

www.it-ebooks.info

http://strongpasswordgenerator.com
http://strongpasswordgenerator.com
https://www.grc.com/passwords.htm
https://www.grc.com/passwords.htm
http://www.it-ebooks.info/

of resources or collections created by a user is that user’s primary group. The primary
group, by default, is the first group that a user is added to, but this can be reconfig-
ured later as the user is added to further groups.

For those wishing to operate a secure environment, it is recom-
mended that you create your own admin user with a different user-
name and place it in the dba group. You can then log out and log in
as your new admin user and disable the default admin user account
through the Java Admin Client’s User Manager.

Groups
Table 8-2 outlines the default groups that eXist provides out of the box.

Table 8-2. Default groups

Group Description
name
guest The guest group can be thought of as a group representing unauthenticated users. It is really present to

support the guest user.

dba The database administrator (dba) group is all-powerful: if you are in this group, then there is nothing that
you cannot do with eXist. This is akin to the root/toor /wheel group in a lot of Unix systems, or the
Administrators group in Windows systems.

You should give great consideration to adding a user to the dba
group. Often, you need only a single user in the dba group. It is
better to create your own admin groups that have more limited per-
missions on resources in the database.

In addition, you should never attempt to delete the guest or dba
groups from eXist, as they are required for the proper functioning
of the system. If you wish to prevent anonymous access to eXist,
you can disable the guest account, using the same method
described in the hint for the admin user in the previous section.

Permissions

As well as an owner user and group, each resource and collection in eXist has a per-
missions mode, which is expressed in the same way in eXist as in Unix systems. The
mode is made up of three user classes:

o Owner user

o Owner group

Security Basics | 135

www.it-ebooks.info

http://www.it-ebooks.info/

o Other users

Each class consists of three mode bits (or flags, if you like) that describe whether read
(r), write (w), and/or execute (x) access is permitted for that class.

In Figure 8-1, we can see that the owner user class of the /db collection has read,
write, and execute access; the owner group class has just read and execute access; and
the other users class also has just read and execute access.

/db rwx

-—

-X
RY
&

-
>

{

Yo,
D, {

Figure 8-1. Example permission classes on the /db collection

So what do these read, write, and execute bits mean? Well, they are interpreted differ-
ently for resources and collections, as outlined in Table 8-3.

Table 8-3. Mode bits in eXist

Bit Meaning

Resources

Read The user class has read access to the content and metadata of the resource.

Write The user class has write access to the content and metadata of the resource.

Execute If the resource is an XQuery module, then it can be executed by the user class.? If it is not an XQuery module,
then this bit is ignored.

Collections

Read The user class may fist the contents of the collection.

Write The user class may write to the collection; this includes adding and deleting resources or subcollections to and
from this collection.

Execute The user class may open this collection.

*Currently in eXist 2.0 and 2.1, both execute and read access are required (not just
execute access) in order for a user to execute a stored XQuery module. This limita-
tion persists because the XQuery interpreter in eXist operates entirely within the per-
missions of the user invoking the XQuery; in future versions of eXist it is likely that
this limitation will be lifted.

136 | Chapter 8: Security

www.it-ebooks.info

http://www.it-ebooks.info/

If a user class does not have execute permission on a collection,
then the collection is closed to it, and the user(s) in question may
neither list the collection’s contents, nor read or write documents
in that collection.

If you unset the read bit on a collection and set the execute bit, this
allows a user or group to read resources in the collection, but not to
list the contents of the collection. In effect, users can only access a
resource in that collection if they know the resource’s name in
advance and have appropriate permissions on it. If the collection is
accessed from the REST Server, it effectively disables collection
listings.

Internally in eXist, the mode is held as a series of binary bits, but they are typically
represented in one of two ways: either as an octal number or as a mode string (as you
have just seen). eXist supports both approaches and provides assistance for convert-
ing from one to the other (see Table 8-4).

Table 8-4. Mode bits

Character representation Octal number representation Binary representation

Read (r) 04 100
Write (w) 02 010
Execute (x) 01 001

When octal numbers are used, the sum of each user class is placed side by side. For
example, rwxrwxrwx would equate to:

04 +02 +01 =07

for each user class (i.e., 0777). As another example, 0744 would equate to rwxr--r--.

eXist provides XQuery functions for converting between integer and octal values in
the Util module (see util), while several of the security functions in eXist can use
either octal or character representations as arguments.

Security Basics | 137

www.it-ebooks.info

http://www.it-ebooks.info/

If you are browsing the database contents through either the Java
Admin Client or the dashboard Collections app, then you may
notice that some permissions strings are prefixed with either a c or
- character. The c prefix stands for collection and the - prefix
stands for resource (i.e., not a collection). This is similar to per-
forming an ls -la command on a Unix-like system, except that
whereas there d denotes a directory, eXist has collections instead of
directories and therefore uses c, not d. Likewise, if you see a + char-
acter on the end of a permission string when browsing the data-
base, this implies that the permission incorporates an access
control list (see “Access Control Lists” on page 156).

Default Permissions

eXist will apply a default set of permissions to the database when it is first created,
and then also to new resources and collections as they are created by users in the
database (see Table 8-5).

Table 8-5. Default permissions

Thing Owneruser Owner group Mode

/db SYSTEM dba rwxr-xr-x (0755)
/db/system SYSTEM dba rwxr-xr-x(0755)
/db/system/config ~ SYSTEM dba rwxr-xr-x (0755)
/db/system/plugins ~ SYSTEM dba rwxrwx- - - (0770)
/db/system/security SYSTEM dba rwxrwx- - - (0770)
New resource Logged-in user Logged-in user's primary group 0666 - umask®

New collection Logged-in user Logged-in user's primary group 0777 - umask

User mask - - 022

“The concept of the umask, or user mask, will be explained in the following section.

You might be asking yourself, if the /db collection is only writable
by the SYSTEM user by default, how is it that the admin user, which
eXist creates by default, can write to the database?

The answer is that the admin user is a member of the dba group,
which is all-powerful. The permissions mode is not checked for dba
users.

You may be wondering why some of eXist’s collections have a default permissions
mode of 0775 and others have a permissions mode of 0770. Put simply, the collec-

138 | Chapter 8: Security

www.it-ebooks.info

http://www.it-ebooks.info/

tions with mode 0770 have higher security concerns—for example, the configuration
of security realms, user accounts, and groups is kept under the /db/system/security
collection, and it is undesirable to allow non-dba users access to this collection.

User masks

In eXist-db, user accounts can be assigned a mask, just like in Unix; this is known as a
umask. The umask adjusts the permissions applied to new resources and collections
created by that user. The effective permissions applied at creation time are calculated
by taking the default permissions and subtracting the umask of the user creating the
resource or collection.

The default umask in eXist is 022, but this is configurable for each user account.
Table 8-6 shows some examples of how the effective permissions are calculated when
a new resource or collection is created.

Table 8-6. Effective default permissions
For Permissions umask Applied permissions
New resource 0666 (default) 022 (default) 0666 - 022 = 0644

(rw-r--r--)

New collection 0777 (default) ©22 (default) ©777-022=0755

(rwxr-xr-x)

So what does this all mean? Quite simply, that by default:

« For new resources, the owner can only read and write (this prevents accidentally
granting execution permission on XQuery resources to unintended users). The
group and other users can only read the resource.

o For new collections, the owner can open the collection, list the contents, and add
or remove resources and subcollections. The group can open the collection and
list the contents, but cannot add or delete. Other users, similar to group users,
can open the collection and list the contents, and also cannot add to or delete
from it.

Security Basics | 139

www.it-ebooks.info

http://www.it-ebooks.info/

As the default resource permissions are 0666, and with the default
umask applied they are 0644, XQueries that you store into the
database are not executable by default. This is an intentional deci-
sion by the eXist developers, made for two reasons: 1) it follows the
Unix security model; and 2) database administrators should be
aware of which XQueries are executable and by whom, thus forcing
them to enable execution of an XQuery encourages such a mindset.

Many users ask, “How can I set all XQueries to be executable?”
This is achieved relatively easily by creating an XQuery (which you
can run once) that uses the functions in the xmldb XQuery module
to enumerate the XQueries stored in the database, and the Security
Manager XQuery module to set the permissions of those XQueries
(see xmldb and sm in Appendix A).

Managing Users and Groups

In eXist the creation of users and groups is also restricted by permissions, and there
are differences between the required permissions for each. Table 8-7 shows who is
able to make modifications to users and groups.

Table 8-7. Permissions to modify principals

Action User modification requirement Group modification requirement

(reation - Member of the dba group « Member of the dba group

Modification Either: Either:

« Target user
+ Group manager

+ Member of the dba group
« Member of the dba group

Deletion Either: Either:

- Target user « Group manager

« Member of the dba group « Member of the dba group

Group Managers

When a group is created in eXist it has a single member, which is the user who cre-
ated it. A group is typically used to model collaboration between users on resources
in the database. As you build up more and more users and groups, it becomes neces-
sary to share the administration of these groups of users.

140 | Chapter 8: Security

www.it-ebooks.info

http://www.it-ebooks.info/

eXist extends the Unix model for user groups, and introduces the concept of group
managers. Members of a group in eXist may be promoted to managers of that group;
in fact, the first member of any group (i.e., the creating user) is automatically set up
as the first group manager.

Group managers share control of the group, and may perform several actions upon
the group:

o Adding or removing members to or from the group, including other group
managers

 Promoting or demoting members of the group to or from group managers

» Modifying the metadata of the group

o Deleting the group, and therefore removing all members from the group

As group managers maintain complete control of the group and its
membership, it is important that they all share the same trust rela-
tionship. If you were a group manager, it would be inadvisable to
promote someone else to a group manager if you did not trust her,
as she could effectively remove you and take control of the group.

Tools for User and Group Management

So now that you have a good grounding in the basic security concepts involved in
eXist, how do you actually apply these by creating and managing users and groups?

In eXist there are often several ways to achieve the same goal, depending on how you
want to approach the problem. Security configuration is no exception: there are at
least five possible ways to manage users and groups in eXist.

Using the Java Admin Client

eXist ships with an admin client application written in Java (see “The Java Admin
Client” on page 29) that provides an excellent user management facility to make
working with users and groups simple. This is the tool we will focus on in “User and
Group Management with the Java Admin Client” on page 145. The User Manager is
available via the Tools menu in the Java Admin Client, as you can see in Figure 8-2.

Managing Users and Groups | 141

www.it-ebooks.info

http://www.it-ebooks.info/

eXist Admin Client
File Tools Connection Options Help
Am - |: ‘
o2 B0 alE] &4 [R[88
Resource Date Owner Croup Permissions
apps Thu Dec 27 1... SYSTEM dba CIWXF-Xr-X
system Thu Dec 27 1... SYSTEM dba CIWXF-Xr-X
8 00 User Manager
'm Groups |
User Full Name Description
SYSTEM SYSTEM System Internals
admin admin System Administrator
guest guest Anonymous User
type help or 7 £
exist:/db>
| Close | | Create
eXist Admin Client

Figure 8-2. The Java Admin Client User Manager

Using the User Manager web app

eXist provides a User Manager app out of the box as part of its dashboard (see
Figure 8-3). This app provides identical functionality to the User Manager in the Java
Admin Client and looks almost identical. We have chosen not to focus on this, as
having such web apps installed may be undesirable in a production server environ-
ment (see “Removing preinstalled EXPath packages” on page 184).

142 | Chapter 8: Security

www.it-ebooks.info

http://www.it-ebooks.info/

800 * Dashboard x \ L] |

€« C | [} localhost:8080/exist/apps/dashboard/index.html gl =B

User Manager

Users Groups

Refresh

'Full Name Description
SYSTEM System Internals

admin System Administrator
guest Anonymous User

Close Create

Figure 8-3. The dashboard User Manager app

Executing XQuery functions

eXist provides an XQuery module called the Security Manager. This module has
many functions that can be called from your own XQuery modules for programmati-
cally managing security within the database; see sm.

Modifying the security collection

All user and group information in eXist is kept in a series of XML documents within
the database (see Figure 8-4). The system collection /db/system/security contains all
user and group configuration for all authentication realms known to eXist. The eXist
internal authentication realm stores its data in /db/system/security/exist, which has
two subcollections: accounts and groups. Unsurprisingly, each XML document in
these collections represents a single user or group within the system.

Managing Users and Groups | 143

www.it-ebooks.info

http://www.it-ebooks.info/

eXist Admin Client
File Tools Connection Options Help

I E T S IR Y
Resource Date Owner Group Permissions
removed Thu Dec 27 1... SYSTEM dba CIWXPWX=——
admin.xml ___[SatJan 05 14-_[SySTEM ______Idba _______ Lrwxrwx——___|
guest.xml & O O admin.xml
File
[B@&] [BX]

i<account xmlns="http://exist-dl g/Configuration” id="1048574">.
<password>{RIPEMD160}nBGFpcXp/FRhEAiXfujl1SLI1TE=</password>.
<digestPassword>91£9f01546c21c55bd4£8£122673a84856aT1ale</digestPassword>.
<group name="dba"/>.
<expired>false</expired>.
<enabled>true</enabled>.
<umask>022</umask>.
<metadata key="http://exist-db.org/security/description">System Administrator</metadata>
<metadata key="http://axschema.org/namePerson’>admin</metadata>.
<name>admin</name>.

\</account>.

Jaccounts/admin.xmlfrom xmldb:exist:f {localhost:8080/exist/xmlrpc Line: 3 Column:78

exist:/db/system/security/exist/accounts>

eXist Admin Client connected - admin@xmldb:exist:/ [localhost:B080/exist...

Figure 8-4. Example of the XML document for the eXist admin user

eXist has a dynamic configuration system, which means that when you modify user
or group information, the XML documents in the relevant collection are updated,
and vice versa; that is, if you were to modify these XML documents, the system would
load the changes to the users and groups immediately. Modifying these documents
directly is generally discouraged, as their syntax is subject to change at any time, and
any mistakes made in the syntax could upset the stability of the system or your ability
to access it. However, while this approach is not generally recommended, when used
carefully, it does provide a convenient mechanism for those accessing eXist via Web-
DAV (see “WebDAV” on page 305) to create, modify, and delete users and groups sim-
ply by adding, updating, or removing XML documents in these collections. Should
you opt for this approach, you must ensure that you do not change the id attribute of
an account or group, as these are internal pointers within eXist. In addition, if you
create a new account or group, you must be certain that you assign it the next free
account or group ID.

Using the APIs: XML-RPC, XML:DB, and SOAP

eXist has several APIs for programmatically connecting to the database remotely (or
even within an embedded JVM, if you're using XML:DB) and managing users and
groups. The use of these APIs is discussed more thoroughly in Chapter 13.

144 | Chapter 8: Security

www.it-ebooks.info

http://www.it-ebooks.info/

User and Group Management with the Java Admin Client

In this section we provide a practical walkthrough and explanation of creating a
group and subsequently a user. We also deal with group membership and group
managers.

Scenario

In our fictitious organization, Ficto Ltd., a new team has been formed to manage con-
tent about animal welfare, which Ficto wishes to store, transform, and publish as part
of its veterinary journal. The team is expected to grow in the near future. We need to
add new accounts for the four team members, James Smith, Joe Brown, Helen Finkle,
and Laura Laurence. Laura and James are in charge of the new team.

We will create a security group for the team, create accounts for each member of the
team, and set up James and Laura as group managers, so that they can add any future
team members to the group.

Creating a Group
First, we need to create our group for the Animal Welfare Content Team.

Launch the Java Admin Client, log in to the database, open the Tools menu, and
select Edit Users (Figure 8-5).

8 00 eXist Aj
File Connection Optic
A Query ®F [
T Edit Users e

apps | Edit Triggers 38T HE
VSR Edit Policies 30 I

Enter service mode
Exit service mode

Backup
Restore

Figure 8-5. Launching the User Manager

Once in the User Manager, click the Groups tab. Then you can either right-click on
an existing group in the list to get a pop-up menu and click the New Group menu
item, or simply click the Create button at the bottom of the User Manager
(Figure 8-6).

User and Group Management with the Java Admin Client | 145

www.it-ebooks.info

http://www.it-ebooks.info/

8 00 User Manager

Croup Description
dba Database Administrators
guest Anonymous Users

New Group...

Edit Group...
Remove Group

| Close | | Create |

Figure 8-6. Accessing the New Group dialog

When the New Group dialog appears, you need to complete the form and click the
Create button. Keep the name of the group simple and remember that group names
are case-sensitive in eXist. We recommend that you use short group names in lower-
case. Regardless of the scheme you decide on, you cannot use punctuation or white-
space when naming a group.

As with the User Manager dialog, you can right-click on the Group Members list to
add and remove group members and also to promote or demote them to or from
group managers (Figure 8-7). By default, the creator of the group will be a member
and manager of the group he creates.

8 00 New Group
Group name: |aniwe| |
Description: |Animal Welfare Content Team |

Group Members:

Username Croup Manager
admin)
| Add Group Member... |
| Close | | Create |

- —
Figure 8-7. Creating a group

146 | Chapter 8: Security

www.it-ebooks.info

http://www.it-ebooks.info/

Once you have completed the form, click the Create button. The group will be cre-
ated and you will be returned to the User Manager Groups list.

You can associate simple descriptive metadata (such as a descrip-
tion or email address) with groups and accounts in eXist, which
can be useful for searching or managing them. The User Manager
in the Java Admin Client and the dashboard both limit the meta-
data to just a description (and a name for accounts), but you can
set and retrieve additional metadata properties using the XQuery
functions in the Security Manager module, as discussed in sm.

Creating Users

Now we need to create user accounts for each member of the Animal Welfare Con-
tent Team and add them to the group we created for the team.

From the User Manager, click the Users tab; and then either right-click on an existing
user in the list to get a pop-up menu and click the New User menu item, or simply
click the Create button at the bottom of the User Manager (Figure 8-8).

8 00

User Manager

!!@ Groups |

Full Name

User Description

SYSTEM e

admin

Edit User...

System Internals
System Administrator
Anonymous User

guest
Remove User

| Close | | Create |

"
Figure 8-8. Accessing the New User dialog

When the New User dialog appears, you need to complete the form and click the
Create button. Keep the name of the user simple and remember that user account
names are case-sensitive in eXist. We recommend that you use short usernames in
lowercase. Regardless of the scheme you decide on, you cannot use punctuation or
whitespace when naming a user.

From the New User dialog you can see a list of available groups of which the user can
become a member (providing you have permission to add her to the group). For the
purposes of this scenario, we need to add the new user to our newly created group
called aniwel (Figure 8-9).

User and Group Management with the Java Admin Client | 147

www.it-ebooks.info

http://www.it-ebooks.info/

8 00 New User

User name: |jsmith |

Full name: |]ames Smith |

Description: |Animal Welfare Team Manager |

Password: |uuu |

Confirm password: |uuu |

|| Account is disabled
umask: 0022 LE]

™ Create personal user group

Available Groups: Member of Groups:
aniwel
guest
=
[Close] [Create]

Figure 8-9. Creating a user

Once you have completed the form, click the Create button. The user will be created
and you will be returned to the User Manager Users list.

You should now repeat this process to create the other three users described in “Sce-
nario” on page 145. The complete list is shown in Figure 8-10.

148 | Chapter 8: Security

www.it-ebooks.info

http://www.it-ebooks.info/

8 00 User Manager

!!@ Groups |
User Full Name Description
SYSTEM SYSTEM System Internals
admin admin System Administrator
guest guest Anonymous User
hfinkle Helen Finkle Animal Welfare Team Author
jbrown Joe Erown Animal Welfare Author
Jjsmith James Smith Animal Welfare Team Manager
llaurence Laura Laurence Animal Welfare Team Administrator
| Close | [Create]

N _______________&
Figure 8-10. List of created users

When you’re creating a new user, the default option is to create a
personal group for that user. This creates a group with the same
name as the user, and sets the user as both a member and group
manager of that group. This personal group is then also the default
group for that user, which means that should the new user add a
resource or collection to the database, the owner group of that
resource or collection will be the user’s personal group. Such an
approach helps users avoid adding resources to the database and
accidentally granting unintended access to other users of a differ-
ent group.

When you are creating a new user, it is always recommended to
also create the personal group.

Setting Group Managers

Finally, we need to set up the managers of the Animal Welfare Content Team as
managers of the group that we created for the team.

From the User Manager, click the Groups tab, and then select the aniwel group in
the list. Next, right-click on the aniwel group to get a pop-up menu and click the Edit
Group menu item (Figure 8-11).

User and Group Management with the Java Admin Client | 149

www.it-ebooks.info

http://www.it-ebooks.info/

8 00 User Manager
Croup Description
laniwel ___lAnima| Welfare Content Team
dba New Group... ase Administrators
guest ous Users
_hfinkle Remove Group | group for _hfinkle
jbrown L lal group for jbrown
Jjsmith Personal group for jsmith
llaurence Personal group for llaurence
[Close | | Create |

Figure 8-11. Accessing the Edit Group dialog

When the Edit Group dialog appears, you need to promote jsmith and 1laurence to
group managers of the aniwel group. Select the target group member in the list, and
then right-click on the group member. Then click the Group Manager menu item
(Figure 8-12).

8 00 Edit Group: aniwel
Group name: aniwel
Description: Animal Welfare Content Team

Group Members:

Username Croup Manager
admin ™
hfinkle o
jbrown I
jsmith ™
llaurence .,
Add Group Member...
GCroup Manager
| Remove Group Member
[Add Group Member... |

[Close | | save |

Figure 8-12. Promoting group members to group managers

Once you have completed the changes to the group members, click the Save button.
The group will be updated and you will be returned to the User Manager Groups list.
You have now successfully created the users and groups and set up the group manag-
ers required in “Scenario” on page 145.

150 | Chapter 8: Security

www.it-ebooks.info

http://www.it-ebooks.info/

Managing Permissions

When resources are added to the database, the owner of those resources is the user
adding the resources, the group of those resources is the primary group of the user
adding the resources, and the mode is calculated from default permission modes sub-
ject to the user’s umask, as described in “User masks” on page 139.

You may modify the permissions of a resource in the database at any time provided
you have the appropriate rights to modify the permissions of that resource. Table 8-8
shows the ownership and group membership requirements for modifying the per-
missions of a collection or resource.

Table 8-8. Requirements to modify permissions

Action Collection modification requirement Resource modification requirement
Change owner « Member of the dba group « Member of the dba group
Change group Either: Either:
« Owner and member of the destination group - Owner and member of the destination group
+ Member of the dba group + Member of the dba group
Change mode Either: Either:
« Owner « Owner
« Member of the dba group « Member of the dba group

Tools for Permission Management

As with managing users and groups, there are a number of approaches to managing
permissions in eXist.

Using the Java Admin Client

The Java Admin Client (see “The Java Admin Client” on page 29) provides an excel-
lent facility for modifying the permissions of collections and resources in the data-
base. This is the tool we will focus on in “Permission Management with the Java
Admin Client” on page 154. The “Resource properties” option on the File menu in the
Java Admin Client opens the permissions management screen shown in Figure 8-13.

Managing Permissions | 151

www.it-ebooks.info

http://www.it-ebooks.info/

800 eXist Admin Client |

File T 00lS | e D e s

Resource: apps
Internet Media Type: N/A
Created: Dec 27, 2012 7:47:05 PM
Last Modified: N/A

Owner: SYSTEM
Group: dba

Base Permissions

Permission | Read Write Execute
User))
Group))
Other))

type help o Access Control List
exist:/db>

Target Subject Access Read Execute

[Add Access Control Entry...]

Figure 8-13. The Java Admin Client’s Resource Properties dialog

Using the collection browser web app

eXist provides a collection browser app out of the box as part of its dashboard. This
app has a Resource Properties dialog that provides identical functionality to the
Resource Properties dialog in the Java Admin Client and looks almost identical (see
Figure 8-14).

152 | Chapter 8: Security

www.it-ebooks.info

http://www.it-ebooks.info/

YT s

4 > € calhasr 0RO existiapps dashhaard inges el o g

x
Collection Browser

Resource: script1.xqy

Internet Media Type: application/xquery
Created:November 14 2013 16:32:09

Last Modified:November 16 2013 13:41:27

admin -

Owner:admin

Group:dba

Base Permissions

Parmission - _Read Write |Execute -~ _ Special
User 4 = v SetUID
Group F) P e SetGID

Other F} P v Sticky
Access Control List
Target Subject Access Read Write Execute
USER guest ALLOWED & e
GROUP guest DENIED el
Add Access Cortrol Entry...

Close Save

Figure 8-14. The Resource Properties dialog of the dashboard’s collection browser app

Executing XQuery functions

eXist provides an XQuery module called xmldb (see xmldb). This module provides
functions that allow you to retrieve the created and last-modified timestamps of
resources, and allows you to retrieve or set the Internet media type of a resource.

Likewise, the previously mentioned Security Manager XQuery module provides func-
tions for retrieving the permissions and changing the owner user, group, and mode
of a resource (see sm).

Using the XML-RPC or XML:DB API

eXist’'s XML-RPC (see “XML-RPC API” on page 342) and XML:DB (see “XML:DB
Remote API” on page 349) APIs allow you to programmatically connect to the database
remotely (or even within an embedded JVV, if you're using XML:DB) and retrieve
and modify the permissions of a resource. The use of these APIs is discussed more
thoroughly in Chapter 13.

Using the eXist Ant tasks

eXist provides a series of tasks that can be used with Apache Ant, the basics of which
are covered in “Using Ant with eXist” on page 381. These tasks allow you to change
permissions (chmod), change ownership (chown), and add, edit, and remove users and
groups.

Managing Permissions | 153

www.it-ebooks.info

http://www.it-ebooks.info/

The Ant tasks can be an excellent choice in a security-constrained environment, as
they may be executed directly on the server console and thus do not require any
external XML:DB network access to the host. You may, of course, also choose to exe-
cute these against a remote eXist server; however, that will have an impact on your
security model, as you will also need to allow the XML:DB protocol across the net-
work between your client and server.

Permission Management with the Java Admin Client

Modifying permissions in eXist is relatively simple with the Java Admin Client. First,
you must select a resource or collection in the resource list by clicking on it; then you
simply open the File menu and click the “Resource properties” menu item to display
the Resource Properties dialog (see Figure 8-15).

8 00 eXist Admin ¢

i#l[8 Tools Connection Options
Store files/directories %8S @
Create collection BN =

Create blank document #B =

Remove #D
Copy #C
Move #M
Rename #R

Export a resource to file ... ¥#E

Reindex collection #1
Resource properties H#P
Quit #Q

|

Figure 8-15. Accessing the “Resource properties” menu item

The Resource Properties dialog (Figure 8-16) allows you to change the permission
mode applied to the resource using a convenient grid of checkboxes so that you need
not remember how to describe the mode in octal format.

154 | Chapter 8: Security

www.it-ebooks.info

http://www.it-ebooks.info/

8 00 Properties

Resource: katzen.xml

Internet Media Type: application/xml

Created: Jan 5, 2013 9:56:10 PM

Last Modified: Jan 5, 2013 9:56:10 PM

Owner: admin III
Group: adam III

Base Permissions

Permission | Read Write Execute
User ™ J
Group ™ O O
Other ™ O O

Access Control List

Target Subject Access Read Write Execute

| Add Access Control Entry... |

| Close | | Save |

"
Figure 8-16. Resource Properties dialog

The Access Control List and Add Access Control Entry sections of
the Resource Properties dialog are covered in “Access Control
Lists” on page 156 and can be safely ignored for the moment.

You may also modify the owner or group of the resource by clicking the button
labeled with an ellipsis (...) next to the name of the current owner or group. When
modifying the owner or group of a resource, you will be presented with an autocom-
pleted entry field that will only permit you to choose an existing user or group,
respectively (see Figure 8-17).

Managing Permissions | 155

www.it-ebooks.info

http://www.it-ebooks.info/

8 00 Change Owner...

User name: [adam iv]
admin _|
SYSTEM

— guest ’

Figure 8-17. Change Owner dialog

Access Control Lists

Access control lists (ACLs) are an advanced permissions model that builds upon the
basic Unix-style user and group permissions model that eXist uses. Each resource or
collection in eXist may have an ACL in addition to its standard Unix-style permis-
sions of owner, group, and mode.

ACLs are a very new feature in eXist, and familiarity with ACLs is certainly not a pre-
requisite to being able to understand and make use of eXist. ACLs are available to
complement the basic permissions model when it does not provide quite enough for
you. The main advantage of ACLs, when used correctly, is greater flexibility in con-
trolling access to resources. The ACLs in eXist were inspired by those in the Network
File System v4 (NFSv4) and Zettabyte File System (ZFS), and while they are much
simpler than those in their progenitors, should you choose to use them you must
clearly understand the evaluation order of ACLs when combined with eXist’s Unix-
style permissions.

Consider the following scenario: you have a group of 100 users who need to have
access to two different collections: CollectionA and CollectionB. Using the Unix-style
permissions, you would simply create a new security group, GroupA, add all 100 users
to the group, and give that group access to (using an appropriate mode) both Collec-
tionA and CollectionB and their subresources.

Now suppose that later you are asked to restrict CollectionA so that all but 10 mem-
bers of the group can access it. This means that you now have to create a second
group, GroupB, containing only 90 of the 100 users and change the permissions on
CollectionA and its subresources. You now have two groups, GroupA and GroupB,
where GroupB is applied to CollectionA and GroupA is applied to CollectionB. Ninety
users are in both GroupA and GroupB, and GroupA also has an extra 10 users in it. This
quickly becomes a bit of a mess to manage, and so far you have only been asked to
make a single change to the security of the system!

Rather than duplicating 90 of the 100 users from GroupA into GroupB, you could sim-
ply have used ACLs. Creating a group of the 10 users for whom you want to remove

156 | Chapter 8: Security

www.it-ebooks.info

http://www.it-ebooks.info/

access to CollectionA would allow you to add an access control entry (ACE; dis-
cussed in the next section) to the ACL for CollectionA, which would prevent that
group from accessing it. This is much easier to manage.

Of course, most things that can be done with ACLs can also be done by subdividing
permissions—that is, by creating new groups, adding users to them, and applying
them with specific modes to individual resources and collections. However, the prob-
lem with that approach is that, with even a fairly simple system, you can quickly end
up with a vast proliferation of small groups that are not only hard to name, but also
hard to manage because you will need to remember why you applied these subdivi-
ded groups of users to various resources and collections.

When eXist evaluates the permissions of a resource or collection to
determine whether to allow or deny access, the ACL is evaluated
before its Unix-style permissions. If the ACL is empty, or does not
explicitly allow or deny access, then the Unix-style permissions are
evaluated.

Simply put, the ACL can override the Unix-style permissions,
which is where its power is derived from.

Access Control Entries

Access control lists are composed of access control entries. The ACL of a resource or
collection is considered empty if it has no ACEs; otherwise, it may have up to 255
ACEs. When you consider that each ACE may reference a group of users, this gives
you a lot of scope for assigning permissions to resources.

An ACE is made up of several fields that describe the access rights to the resource to
which the ACL belongs, as shown in Table 8-9.

Table 8-9. ACE fields

ACE field Description

Target type Indicates to the ACE whether the ID is that of a USER or GROUP.
ID The identifier of the target; that is, the ID of the user or group.
Access type The type of access applied to the target, either ALLOWED or DENIED.

Mode The access mode of the target to the resource or collection. Three octets (e.g., rwx).

So, as we can see from the table, the nice thing about ACEs in ACLs is that they not
only allow (ALLOWED) us to grant access to a resource or collection, but they also allow
us to explicitly deny (DENIED) access.

The ordering of ACEs in an ACL is critically important.

Access Control Lists | 157

www.it-ebooks.info

http://www.it-ebooks.info/

The ACEs in an ACL are evaluated in order from the start of the list to the bottom of
the list. The first ACE in an ACL that both matches a user directly (or indirectly, as a
member of a group) and matches the requested access mode will be applied, and the
evaluation of permissions will halt.

Consider an ACL with two ACEs in the following order:

1. Prevents a group of users (GroupA) from accessing a resource

2. Allows a user (UserA) from that group (GroupA) access to the resource

Once the ACL is applied, the user UserA will not be allowed access to the resource. If
you want that user to have access to the resource, you should swap the order of the
ACEs in the ACL.

ACLs by Example

It is perhaps easiest to explain ACLs by giving some concrete examples of how they
might be used, and explaining the results of various configurations.

Allowing additional access

With the Unix-style permissions in eXist, you can only control access to a resource
by the owner, a group of users, and all other users who are not the owner or within
that group of users.

Imagine that you work for a small organization in the publishing industry. You have
a security group of users who are content editors already configured in eXist, and that
group has write access to many collections in the database, where each collection rep-
resents a different journal. However, one day, one of the editors is in an accident and
will be away from the office for several weeks. During this time Bob Smith has to pick
up that editor’s work on the Medical Neuroscience Journal.

Currently, the Medical Neuroscience Journal collection is configured as follows:

Collection Owner Group Mode

/db/journals/review/medical-neuroscience admin editors rwxrwx---

So how do we allow Bob Smith to do his temporary editing work on the medical-
neuroscience collection? There are several possible approaches:
o We could add Bob Smith to the editors group.

Unfortunately, we may then have unintentionally given him access to other jour-
nal collections in the database, causing a security risk!

158 | Chapter 8: Security

www.it-ebooks.info

http://www.it-ebooks.info/

o We could create a new group called editorsAndBobSmith, add all the existing
members of editors to the new group, add Bob Smith to the group, and then
change the group applied to the medical-neuroscience collection from editors to
editorsAndBobSmith.

We have not caused any security issues here, but this seems like quite a lot of
work and is quite messy! Not to mention, we would have to undo these changes
when the original content editor returned.

o As Bob Smith is an exception to the rule encoded in the permissions of the col-
lection, we could add an ACE to the ACL for the medical-neuroscience collection
that allows Bob Smith access to that collection.

This is most likely the simplest approach, and arguably the easiest to manage
over time.

Let’s see how the configuration for the Medical Neuroscience Journal might look if we
solved this problem using an ACL:

Collection

/db/journals/review/medical-neuroscience

ACL Target type ID Access type Mode
ACE:0 USER bobsmith ALLOWED rwx

Unix-style permissions
Owner Group Mode

admin editors rwxrwx---

When Bob Smith tries to access the medical-neuroscience collection, eXist checks the
collection’s ACL, iterating through each ACE in turn until it finds one that matches
Bob Smith. In this case the first ACE matches the user bobsmith and allows Bob
Smith access to the collection with the mode rwx, allowing Bob to go about his tem-
porary job.

When one of the other existing editors tries to access the medical-neuroscience collec-
tion, eXist still has to check the collection’s ACL. If, after iterating through each ACE
in turn it has not found one that matches the editor by user account or group, and so
it falls through to the Unix-style permissions and find the editor in the editors
group, allowing her access with the mode rwx.

Access Control Lists | 159

www.it-ebooks.info

http://www.it-ebooks.info/

Restricting access

This example is in some ways the inverse of the previous, but in addition it applies a
different mode in the ACL than in the Unix-style permissions to solve a more com-
plex problem.

This time at our small publishing organization, one of our editors has been misbe-
having and not rigorously checking articles from an academic institution that he used
to be involved with before accepting them to be published. The editor in question,
Jason Green, has thus been placed on review and is no longer allowed to make edits
to the Nanotechnology Journal; he is expected to just review the journal manually and
propose changes by email to another editor for review first.

Currently, the Nanotechnology Journal collection is configured like so:

Collection Owner Group Mode

/db/journals/review/nanotechnology admin editors rwxrwx---

We could reconfigure this collection with an ACL to prevent Jason Green from
changing the collection, while still allowing him the ability to view the collection.
Such a configuration for the nanotechnology collection could look like this:

Collection

/db/journals/review/nanotechnology

ACL Target type ID Access type Mode
ACE0 USER jasongreen DENIED -w-

Unix-style permissions
Owner Group Mode

admin editors rwxrwx---

When Jason Green tries to access the nanotechnology collection, eXist checks the col-
lection’s ACL, iterating through each ACE in turn until it finds one that matches
Jason Green. In this case the first ACE matches the user jasongreen, so from here
one of two things happens:

« If Jason Green is trying to write to the collection (add or remove a document),
then the ACE forbids him from doing that, and he will not be allowed access.

o If Jason Green is trying to execute (open) and/or read (the contents of) the col-
lection, then the ACE does not forbid him from doing that, as it only denies write
access to the collection. This ACE does not match the access request, so we fall

160 | Chapter 8: Security

www.it-ebooks.info

http://www.it-ebooks.info/

through to the Unix-style permissions, which allow those in the editors group
read and execute access to the collection. As Jason is still an editor, he is allowed
access.

When one of the other existing editors tries to access the nanotechnology collection,
eXist still has to check the collection’s ACL. If, after iterating through each ACE in
turn it has not found one that matches the editor by user account or group (which it
won’t, unless he is Jason Green), so it falls through to the Unix-style permissions and
find the editor in the editors group, allowing him access with the mode rwx.

Allowing and restricting access

This example tries to combine aspects of the two previous examples to show a more
complex and comprehensive ACL configuration.

This time at our small publishing organization, there are several new developments:

o There has been a recruitment drive, and a number of trainees have been
recruited, some of whom will become editors. Management has decided that
these trainees should only have read access to the system while they learn the
ropes of the job. However, all trainees should have read access to any part of the
system, so that they can easily learn more about the organization’s business.

o The organization wishes to give read-only access to the printers of the journals so
that they can pull the updated content directly from the system.

« Bob Ling at the printing organization will be allowed to modify the journal con-
tent to make stylistic changes for a better printed result.

This configuration is illustrated in Figure 8-18.

Figure 8-18. Venn diagram of required permissions for the nanotechnology collection

We'll use the nanotechnology collection configured in the previous section as a start-
ing point:

Access Control Lists | 161

www.it-ebooks.info

http://www.it-ebooks.info/

Collection

/db/journals/review/nanotechnology

ACL Targettype ID Access type Mode
ACE:0 USER jasongreen DENIED -w-

Unix-style permissions
Owner Group Mode

admin editors rwxrwx---

We can modify this configuration to suit our evolving needs. First we create a group
called trainees, which will contain all of our newly recruited trainees. We also add
our trainees to the groups for the roles that they will eventually fulfill (e.g., editors).
We then add an ACL to prevent members of the trainees group from changing the
collection, while still allowing them the ability to view the collection. Such a configu-
ration for the nanotechnology collection could look like this:

Collection

/db/journals/review/nanotechnology

ACL Targettype ID Access type Mode
ACE:0 USER jasongreen DENIED -w-
ACE:1 GROUP trainees ALLOWED r-x
ACE:22 GROUP trainees DENIED -W-

Unix-style permissions
Owner Group Mode

admin editors rwxrwx---

The new ACE at index 1 that we have added allows all trainees read access to the col-
lection. The new ACE at index 2 prohibits any trainee from writing to the collection.
While without this trainees who are not editors would not be able to write to the col-
lection, this ensures that all trainees, including any user who is in both the trainees
group and the editors group, cannot write to the collection (otherwise they would
be able to, due to eventual fall through to the Unix-style permissions). This works
because the ACL is evaluated before the Unix-style permission, so any user in both
groups will be denied write access due to his membership in the trainees group.
Neat, right?

162 | Chapter 8: Security

www.it-ebooks.info

http://www.it-ebooks.info/

The mode in an ACE is explicit rather than implicit. This means
that an unset bit in the ACE mode (indicated by the - character) is
not considered as either ALLOWED or DENIED, so processing moves to
the next ACE in the ACL or finally falls through to the Unix-style
permissions. When an ACE is checked, for it to be applied, it must
match both the target and the requested access mode.

Finally, we need to create a group for all of the users at the printer that will need read
access to the system; let’s call it printers. We then add all our printer users to that
group. Next, we add two more ACEs to the ACL on the nanotechnology collection.
The first will permit Bob Ling, who is in the printers group, his extra write access,
and the second will allow anyone in the printers group (including Bob Ling) read
access. The updated configuration for the nanotechnology collection now looks like:

Collection

/db/journals/review/nanotechnology

ACL Target type ID Access type Mode
ACE0 USER jasongreen DENIED -w-
ACE:1 GROUP trainees ALLOWED r-x
ACE22 GROUP trainees DENIED -W-
ACE:33 USER bobling ALLOWED -w-
ACE:4 USER printers ALLOWED r-x

Unix-style permissions

Owner Group Mode

admin editors rwxrwx---

When Bob Ling tries to write to the nanotechnology collection, he will be allowed
access by the ACE at index 3; when he tries to read the collection, he will be allowed
access by the ACE at index 4 because he is also a member of the printers group.

When another member of the printing staff (who is not Bob Ling) tries to read the
collection, she will be allowed access by the ACE at index 4; if she tries to write the
collection, she will fall through to the Unix-style permission, which prohibits anyone
apart from the admin or a member of the editors group from writing to the collec-
tion. As this member satisfies neither of these requirements, she will be denied access.

Access Control Lists | 163

www.it-ebooks.info

http://www.it-ebooks.info/

Managing ACLs

When resources or collections are added to the database, they start with an empty
ACL. Accordingly, only the Unix-style permissions are in effect. However, you may
add and remove ACEs to an ACL of a resource or collection at any time, providing
you have the appropriate permissions to do so. Table 8-10 shows which users are per-
mitted to modify the ACL of a collection or resource.

Table 8-10. Permissions to modify ACL

Action Collection modification requirement Resource modification requirement
Add, Update, Either: Either:
Remove ACE
« Member of the dba group « Member of the dba group
- Owner of the collection with write access on « Owner of the resource with write access on
the collection the resource

The same tools described in “Tools for Permission Management”
on page 151 for managing permissions also provide the facilities
for managing ACLs.

ACL management with the Java Admin Client

Once you've opened the Resource Properties dialog of the Java Admin Client, as
described in “Permission Management with the Java Admin Client” on page 154, you
can access the ACL for the resource. As order of ACEs in an ACL is significant, right-
clicking on an existing ACE allows you not only to modify that ACE or remove it, but
also to move it up or down in the ACL and to insert a new ACE before or after the
selection (Figure 8-19).

164 | Chapter 8: Security

www.it-ebooks.info

http://www.it-ebooks.info/

8 00 Properties

Resource: nanotechnology

Internet Media Type: N/A

Created: Jan 6, 2013 2:42:21 PM

Last Modified: N/A

Owner: admin III
Group: editors III

Base Permissions

Permission | Read Write Execute
User))
Group))
Other 0 0 0

Access Control List

Target Subject Access Read Write Execute
USER jasongreen DENIED J [J
GROUP trainees ALLOWED ™ O ™
GROUP trainees DENIED O ™ O
USER bobling ALLOWED] 4]]

Insert ACE before...

GROUP__ [orinters JALIOWED | & | @ | & |
Insert ACE after...

i |

|- Move ACE up
Move ACE down

o

Remove ACE | Close | | Save |

"
Figure 8-19. ACL management in the Java Admin Client

Clicking either the Add Access Control Entry button, the “Insert ACE before” menu
item, or the “Insert ACE after” menu item will display a new dialog that allows you to
configure the fields of a new ACE (see Figure 8-20).

Access Control Lists | 165

www.it-ebooks.info

http://www.it-ebooks.info/

800 Create Access Control Entry

Target: USER 5
Username: | - |
Group: v
Access: | ALLOWED %
Permission
Read Write Execute
O O O
| Close | | Create |

Figure 8-20. Creating an ACE in the Java Admin Client

Realms

As previously mentioned, the Security Manager in eXist permits pluggable modules
that provide an authentication realm to the system. eXist comes with a default built-
in internal realm that authenticates users and groups whose details are stored in a set
of protected XML documents in the database.

In addition to the built-in internal realm, some more complex realm modules are
available; these allow integration with authentication systems external to eXist. Each
module is expected to provide a single authentication realm. You enable the configu-
ration of these modules by modifying the following document in the database: /db/
system/security/config.xml. When multiple realms are configured, eXist will always
consult its internal realm first, and then each additional realm in the order in which
they are configured in the config.xml document. eXist’s internal realm cannot be dis-
abled, as it is required for the correct functioning of the system; however, you need
not keep any user accounts in it apart from the built-in accounts of SYSTEM, admin,
and guest that ship with eXist.

LDAP Realm Module

The Lightweight Directory Access Protocol (LDAP) realm module allows you to
authenticate users of eXist against an LDAP directory. While traditionally LDAP was
used in larger organizations for centralized user management, Microsoft’s Active
Directory (AD) technology (among other technologies) is built upon it.

The LDAP module in eXist is very flexible and can be configured to authenticate
against almost any LDAP directory server, including domain controllers within a
Microsoft Active Directory domain configuration. The LDAP module is shipped with

166 | Chapter 8: Security

www.it-ebooks.info

http://www.it-ebooks.info/

eXist by default, so if you wish to use it simply add its realm configuration to the
security configuration in /db/system/security/conf.xml.

LDAP itself does not impose a structure on any particular directory system; rather, it
allows you to create a directory structure of your own devising. Products like Red Hat
IPA (Identity, Policy, and Audit) and Microsoft Active Directory typically impose a
common proprietary structure on an LDAP directory implementation. The LDAP
module is flexible enough to cope with any directory structure, but this flexibility
comes at a price—namely, that the configuration of the LDAP module is more com-
plicated than that of other such modules in eXist. However, it should not be too diffi-
cult for those familiar with LDAP.

The configuration options available for the LDAP module are comprehensive, so we
will examine each and provide some explanation. We will also provide an example
configuration for integrating with Microsoft Active Directory.

The current design of the LDAP module causes eXist to cache
LDAP account credentials in the /db/system/security/ldap
collection.

This has a few implications that you should be aware of:

o A copy of your LDAP password will be kept securely
(RIPEMD-160 hashed), which may or may not meet the secu-
rity requirements of your organization.

o If a user is deleted or disabled in the LDAP directory, he will
still have access to eXist until his cached credentials are man-
ually removed from eXist.

LDAP configuration options

The configuration is specified in an LDAP realm configuration inside the security
XML configuration file. An XML Schema 1.1 schema is provided with eXist for
checking your LDAP configuration structure; you can find it in $EXIST HOME/
extensions/security/ldap/ldap-realm.xsd. An example for Microsoft Active Directory
is provided in “LDAP configuration for Microsoft Active Directory” on page 172.

All configuration options in Table 8-11 are mandatory unless otherwise stated.

Realms | 167

www.it-ebooks.info

http://www.it-ebooks.info/

Table 8-11. Explanation of LDAP configuration options by category

Configuration
option name

context (LDAP
context
configuration)

principals-

are-case-
insensitive

authentication

use-ssl

url

domain

search (LDAP search
configuration)

base

default-
username

Description

This can be either true or false.

eXist itself is case-sensitive for security principals (i.e., usernames and group names), but your LDAP
directory may not be case-sensitive (e.g., Active Directory is not). If your LDAP directory is not case-
sensitive, then you should set this to true to ease interoperability.

This can be either none, simple, or strong:

none

No authentication is required before making queries of the LDAP server.

simple
Basic username and password authentication, sent in plain text across the network. This can be
improved by using SSL.

strong

This is unsupported at this time in eXist.

This can be either true or false. It's optional, and defaults to false.

The URL of your LDAP server (e.g., Ldap: //dir.mydomain.com:389, or for SSL ldaps://
dir.mydomain.com:636). For Active Directory, use the address of one of the domain controllers
or the AD itself.

The domain name that your LDAP directory describes (e.g., mydomain. com).

The base of the LDAP context to search. Allows you to restrict the scope of searches within your LDAP
directory to a specific distinguished name (e.g., dc=dir,dc=mydomain-ever,dc=com).

Otherwise, if you wanted to, say, limit the search scope to just the office of engineers within your
directory for your organization, you'd do so with ou=engineers,ou=offi
ces,dc=dir,dc=mydomain,dc=com.

In LDAP parlance, dc stands for domain component and ou for organization unit.
The default username, used if eXist needs to attach to the directory to perform a query for a system

task it is carrying out. Typically the username of the user authenticating with eXist will be used
instead of this. This account need only have minimal read access to the directory server.

168 | Chapter 8: Security

www.it-ebooks.info

http://www.it-ebooks.info/

Configuration
option name

context (LDAP
context
configuration)

default-
password

account (LDAP
account search and

property mapping
configuration)

search-filter-
prefix

search-
attribute

Description

The default password, used with the default username.

The prefix to use when searching the LDAP directory. This should indicate the class of a user within
the LDAP directory.

For example, with Active Directory you would use the value objectClass=user. eXist would
then construct an LDAP search string like (& (objectClass=user)(name=value)), where
name will be substituted by the actual LDAP attribute indicated by a search-attribute and
value will be substituted by the criteria of the thing you are trying to find.

Trying to retrieve the user account for Bob Smith (bsmith) from Active Directory would, for
example, cause eXist to produce the LDAP search string (&(objectClass=user)(SAMAC
countName=bsmith)).

As an LDAP directory can come in any shape, eXist needs to know how to address certain properties
of the user account in the directory. The search-attribute maps an account property that eXist
can understand to an LDAP directory property.

eXist requires search-attribute for the following account properties:

eXist account Map to (description)
property
objectSid The property that holds a SID (Unique Security Identifier) for the account.

primaryGroupID The property that holds the ID of the user account’s primary group
membership.

name The property that holds the username of the account (i.e., the name used
tolog in).

dn The property that holds the LDAP directory DN (distinguished name) of
the account.

member0f The property that holds the list of groups that this account is a member
of.

Realms | 169

www.it-ebooks.info

http://www.it-ebooks.info/

Configuration
option name

context (LDAP
context
configuration)

metadata-
search-
attribute

whitelist

Description

eXist supports the notion of storing and retrieving metadata about a user account, and provides some
support for searching for accounts using these metadata properties. For the purposes of LDAP, this
metadata is read-only. However, if you want seamless integration with such functionality in eXist,
then there are a number of properties that you must map to properties of the accounts in your LDAP
directory.

eXist currently supports the following metadata properties, all of which may be retrieved, but only
some of which are used for search. We would recommend you configure at least the properties that
are used for searching:

http://axschema.org/namePerson Yes
http://axschema.org/namePerson/first Yes
http://axschema.org/namePerson/last Yes

http://axschema.org/namePerson/friendly ~ No
http://axschema.org/contact/email No
http://axschema.org/contact/country/home No
http://axschema.org/pref/language No
http://axschema.org/pref/timezone No
http://exist-db.org/security/description No

An optional whitelist of LDAP user accounts that are permitted access to eXist. The blacklist is
always evaluated before the whitelist. If awhitelist is provided, a user must appear in the
list to get access to eXist; otherwise, she will be denied access via LDAP.

170 | Chapter 8: Security

www.it-ebooks.info

http://www.it-ebooks.info/

group (LDAP group
search and property
mapping
configuration)

Configuration
option name

context (LDAP
context
configuration)

blacklist

Description

An optional blacklist of LDAP user accounts that are forbidden access to eXist. If a user is not in the
blacklist and awhitelist is not provided, then he is given access via LDAP; otherwise, he is
further checked against the whitelist.

search-filter-
prefix

search-
attribute

The prefix to use when searching the LDAP directory. This should indicate the class of a group within
the LDAP directory.

For example, with Active Directory you would use the value objectClass=group. eXist would
then construct an LDAP search string like (& (objectClass=group)(name=value)), where
name will be substituted by the actual LDAP attribute indicated by a search-attribute and
value will be substituted by the criteria of the thing you are trying to find.

Trying to retrieve the user group editors from Active Directory would, for example, cause eXist to
produce the LDAP search string (&(objectClass=group) (sAMAccountName=edi
tors)).

As an LDAP directory can come in any shape, eXist needs to know how to address certain properties
of the user group in the directory. The search-attribute maps a group property that eXist can
understand to an LDAP directory property.

eXist requires search-attribute for the following group properties:

eXist group Map to (description)

property

objectSid The property that holds a SID (Unique Security Identifier) for the group.

name The property that holds the name of the group.

dn The property that holds the LDAP directory DN (distinguished name) of the
group.

member The property that holds the list of members (i.e., user accounts) of this

group.

Realms | 171

www.it-ebooks.info

http://www.it-ebooks.info/

Configuration Description
option name

context (LDAP
context
configuration)

metadata- eXist supports the notion of storing and retrieving metadata about a group. For the purposes of LDAP,

sear'ch - group metadata is currently unsupported. However, it is likely that this may be implemented in

attribute future versions of eXist if demand arises.

whitelist An optional whitelist of LDAP groups that are permitted access to eXist. The blacklist is always
evaluated before the whitelist. If awhitelist is provided, a group must appear in the list to
get access to eXist; otherwise, its members will be denied access via LDAP.

blacklist

An optional blacklist of LDAP groups that are forbidden access to eXist. If a group is not in the black
listand awhitelist is not provided, then its members are given access via LDAP; otherwise,
they are further checked against the whitelist.

transformation
(transformations

applied to LDAP to
aid integration)

add-group This optional transformation allows you to automatically add each LDAP user to a group known to

eXist from another realm (e.g., its internal realm).

For example, you could create a group in eXist called businessUsers and have all LDAP users
automatically added to this group, and they would be granted access to any collections or resources
that you have permitted the businessUsers group access to.

LDAP configuration for Microsoft Active Directory

Before attempting to configure eXist to authenticate with your Active Directory, it is
highly recommended that you discuss this with your network administrators. In any
case, they will need to provide you with the username and password for a low-
privileged account to use in the default-username and default-password parts of
the realm configuration.

It is also recommended that you first use a tool like Apache Directory Studio to
ensure that you can connect to your Active Directory using LDAP with the username
and password provided for the low-privileged account by your network administra-
tor. Apache Directory Studio is a particularly good choice, as not only is it very easy
to use and functional, but it is written in Java and uses the same underlying LDAP
libraries that eXist will use to connect to your LDAP directory.

172 | Chapter 8: Security

www.it-ebooks.info

http://directory.apache.org/studio/
http://www.it-ebooks.info/

Remember that if you are using SSL, the LDAP port for your
Active Directory connection will most likely be 636 and the scheme
is ldaps://; if you are not using SSL, then it is most likely 389 with
the scheme 1dap:// (as shown in Example 8-1).

Example 8-1 shows an example configuration.

Example 8-1. Security Manager configuration with an LDAP realm for Microsoft
Active Directory

<security-manager xmlns="http://exist-db.org/Configuration"
xmlns:xsi="http://www.w3.0rg/ 2001/XMLSchema-instance"s
<authentication-entry-point>/authentication/login</authentication-entry-point>
<realm 1d="LDAP" version="1.0" principals-are-case-insensitive="true">
<context>
<authentication>simple</authentication>
<use-ssl>false</use-ssl> (1)
<url>ldap://ad.mydomain.com:389</url> (2]
<domain>ad.mydomain.com</domain> (3]
<search>
<base>ou=mygroup,dc=ad,dc=mydomain,dc=com</base> (4]
<default-username>account@ad.mydomain.com</default-username> (5]
<default-password>XXXXXXX</default-password> (6]
<account>
<search-filter-prefix>objectClass=user</search-filter-prefix>
<search-attribute key="objectSid">objectSid</search-attribute>
<search-attribute key="primaryGroupID">primaryGroupID
</search-attribute>
<search-attribute key="name'">sAMAccountName</search-attribute>
<search-attribute key="dn"s>distinguishedName</search-attribute>
<search-attribute key="memberOf"s>memberOf</search-attribute>
<metadata-search-attribute
key="http://axschema.org/namePerson">name
</metadata-search-attribute>
<metadata-search-attribute
key="http://axschema.org/namePerson/last">sn
</metadata-search-attribute>
<metadata-search-attribute
key="http://axschema.org/namePerson/first">givenName
</metadata-search-attribute>
<metadata-search-attribute
key="http://axschema.org/contact/email">mail
</metadata-search-attribute>
</account>
<group>
<search-filter-prefix>objectClass=group</search-filter-prefix>
<search-attribute key="member"s>member</search-attribute>
<search-attribute key="objectSid">objectSid</search-attribute>
<search-attribute key="name'">sAMAccountName</search-attribute>
<search-attribute key="dn">distinguishedName</search-attribute>

Realms | 173

www.it-ebooks.info

http://www.it-ebooks.info/

</group>
</search>
</context>
</realm>
</security-manager>

@ trueif you are using SSL, or false otherwise.

© The network host name of either the Active Directory domain or a domain con-
troller within the domain, and the TCP port to talk to the Active Directory LDAP
server on; TCP port 389 is usual, or 636 if you are using SSL.

The fully qualified Active Directory domain name.

The LDAP search base for your Active Directory, typically an organization unit
followed by the Active Directory domain name components.

O The username of an Active Directory account, which may connect to the LDAP
server and interrogate the LDAP store.

O The password of the Active Directory account being used.

Other Realm Modules

eXist also has authentication modules for OpenID and OAuth, but these are relatively
new and not yet completely integrated into the eXist Security Manager. They are
almost certainly not ready for production use; however, if you do need OpenID or
OAuth support, they could serve as a starting point for further development or dis-
cussion with the eXist community.

The source code for these modules can be found in $EXIST HOME/extensions/secu-
rity. It is expected that these modules will be further developed in the near future and
added to a subsequent release of eXist.

Hardening

The topic of hardening focuses on taking a standard eXist installation and modifying
its defaults to make it more resilient to would-be intrusion. As eXist ships, it is in
pretty good shape from a security perspective, but it also needs to be usable by a wide
array of people for a variety of tasks, so some flexibility is afforded; there are several
additional things that can be done to increase the security of your installation. This
information is most pertinent if you are running an eXist server and providing access
to others, for example as a website or web services.

174 | Chapter 8: Security

www.it-ebooks.info

http://www.it-ebooks.info/

Now, we certainly do not want our wonderful eXist server to be compromised by “the
bad guys,” and the eXist developers have gone to a lot of effort to try to ensure that
eXist maintains the integrity and security of your data. However, you should never
consider any computer system completely secure from intruders. As computer secu-
rity expert Gene Spafford once said:

The only truly secure system is one that is powered off, cast in a block of concrete, and

sealed in a lead-lined room with armed guards.
With that in mind, we take a somewhat pessimistic view in this chapter and concede
that your system could indeed be compromised. However, we explain how you can
reduce the chances of this happening, and, should it happen, how you can limit the
damage caused. The advice herein should be seen as a guide, and should not be sub-
stituted for the latest professional security advice. Certainly, there is always more that
can be done.

Reducing Collateral Damage

Should your eXist-db installation be compromised, you want to limit the amount of
damage that can be done by the intruder to the underlying server on which eXist is
installed. One of the most effective ways to do this is to run eXist under an unprivi-
leged service account that is created for this sole purpose.

The unprivileged account should have absolutely no login rights to your server or
network. Further, the account should not be a member of any security groups on
your server, apart from a personal group of which it is the only member.

The $EXIST HOME folder and all directories and files therein should be owned by a
secure system user, and the personal group of the unprivileged account should have
only the access permissions to the files in $EXIST HOME that it needs.

Typically, the personal group will need read access to all files in $EXIST HOME and
only write access to the following folders:

o $EXIST _HOME/webapp/WEB-INF/data (configured in $EXIST _HOME/
conf.xml)

o $EXIST_HOME/webapp/WEB-INF/logs (configured in $EXIST_HOME/
conf.xml)

o $EXIST _HOME/tools/wrapper/bin (for just .pid and .status files)

o $EXIST _HOME/tools/wrapper/logs (configured in $EXIST HOME/tools/wrap-
per/conf/wrapper.conf)

o $EXIST_HOME/tools/jetty/logs (configured in $EXIST HOME/tools/jetty/etc/
jetty.xml)

Hardening | 175

www.it-ebooks.info

http://www.it-ebooks.info/

o $EXIST_HOME/tools/jetty/tmp (configured in $EXIST _HOME/tools/jetty/etc/
jetty.xml)

o $EXIST_HOME/tools/jetty/work (configured in $EXIST HOME/tools/jetty/etc/
webdefault.xml)

In addition, the personal group will need read and write access to the folder contain-
ing the .pid file if you are using the service wrapper (see $EXIST_HOME/tools/wrap-
per/bin/exist.sh) and the temporary folder used by your system’s JVM (this varies
depending on the JVM vendor, the version, and the operating system).

Depending on which operating system you installed eXist on, there are slightly differ-
ent approaches to configuring eXist to run under an unprivileged account. We will
assume that you have created the unprivileged account and set the permissions on
the $EXIST_HOME folder and its contents correctly.

Linux platforms

The recommended way to run eXist as a service (system daemon) on Linux is using
the Java Service Wrapper shipped in $EXIST HOME/tools/wrapper and discussed in
“Windows Linux and Other Unix” on page 407. If you are not taking that approach, we
will assume that you know enough about Linux to complete the configuration your-
self. If you are using the Java Service Wrapper, then you simply need to change the
file $EXIST_HOME/tools/wrapper/bin/exist.sh by uncommenting the following line
in that file and setting it to your unprivileged account (replace existsrv with the cor-
rect user):

RUN_AS_USER=existsrv

You will also need to ensure that this user has execute access on $EXIST _HOME/
tools/wrapper/bin/exist.sh, as this will be called when the system service is started. It is
also worth remembering that when installing the Java Service Wrapper, you must
perform this as a user who has root access, either through sudo or directly, as the
wrapper will install files into /etc.

Solaris platforms

eXist ships with support for the Solaris SMF (Service Management Framework); see
“Solaris” on page 406. The documentation provided in the $EXIST _HOME/tools/
Solaris/README.txt file explains in detail how you can trivially configure the user
account and group that eXist runs under.

Windows platforms

Providing that you opted to install eXist as a service during installation, you are
already running eXist using the Java Service Wrapper integrated with Windows Serv-
ices. If you did not install eXist as a service, you can do this by either using the appro-

176 | Chapter 8: Security

www.it-ebooks.info

http://www.it-ebooks.info/

priate icon in the eXist group on the Start menu, or following the instructions in
“Windows Linux and Other Unix” on page 407.

By default the eXist service will run under the user account that you used to install
eXist. Once you have set up your unprivileged account and the necessary permis-
sions, you can reconfigure the service to run under your unprivileged account by
opening the Services Manager, locating eXist-db in the Windows Services list, and
editing its properties (double-click on the service). Go to the Log-On tab, change the
setting from Local System Account to This Account, and specify the details of the
unprivileged account that you created.

Reducing the Attack Surface

eXist comes as a very full-featured product with many things enabled by default, and
several of these features are delivered as network services. In its default configuration
eXist presents a rather large surface that an outside intruder could attempt to exploit.
Fortunately, eXist is very configurable, and we can reduce the chance of an attack
vector being found by disabling various features and services that eXist provides.

Disabling extension modules

eXist ships with extension modules, and many of these are enabled by default. These
modules provide additional functionality to eXist in one of three areas:

o XQuery functions
o Security realms

o Indexing

Whatever the functionality, these extension modules have to be enabled in a two-step
process. First, they have to be compiled into the eXist release, and second, they have
to be enabled in eXist’s configuration file (SEXIST_HOME/conf.xml) or in the Secu-
rity Manager configuration (/db/system/security/config.xml).

While these extension modules provide a wealth of features, they are useful for differ-
ent reasons and for different projects. It is unlikely that you will need to make use of
many of these extension modules, and thus it is recommended that you only enable
the extension modules that you absolutely require for your project. If you do not
know if you are using an extension module, then most likely you are not.

To disable an extension module that was previously enabled, you can optionally
remove its compiled code from your eXist installation (if you opted to install the
source code); then you must disable it in eXist’s configuration file.

Hardening | 177

www.it-ebooks.info

http://www.it-ebooks.info/

Before changing eXist’s configuration, you should always make

sure that you have a recent and valid backup of your eXist database

and its current configuration. “Backup and shutdown” on page 382
A explains how to create backups.

To remove the code of a compiled extension module, you need to edit the
$EXIST_HOME/extensions/local.build.properties file (if you do not have this file, you
should create it from a copy of $EXIST _HOME/extensions/build.properties), find the
appropriate include entry, and change it from true to false. Next, make sure that
eXist is not running, and then run the following commands from the $EXIST HOME
directory:

$./build.sh clean
$./build.sh

This will recompile eXist in place, without the extension module(s) that you disabled
in the build.properties file.

The preceding examples are for Unix-like platforms. If you are on a
Windows platform, you should replace .sh with .bat, and you
need not worry about the ./ part of the command.

To disable an XQuery or indexing extension module, you can simply modify
$EXIST_HOME/conf.xml and comment out the extension module that you wish to
disable. This file itself is well documented within, and the process should be self-
explanatory. The configuration only takes effect at startup, so you should do this
when eXist is not running, or you will need to restart eXist for the changes to take
effect. To disable a Security Realm extension module, you need to remove its realm
configuration from the /db/system/security/config.xml XML document in the data-
base; it is then recommended that you immediately restart eXist.

Performing an audit of both $EXIST _HOME/extensions/build.properties and
$EXIST_HOME/conf.xml and disabling unused modules is always recommended
before deploying a public or production instance of eXist.

There are several extension modules, listed in Table 8-12, that are of higher risk than
others, and you should fully understand the implications of using them. With suit-
able precaution and understanding, it is perfectly fine to use these modules, but you
should be aware of what an attacker could attempt with them.

178 | Chapter 8: Security

www.it-ebooks.info

http://www.it-ebooks.info/

Table 8-12. Security-sensitive XQuery extension modules

XQuery
extension
module

Cache module

Counter module

File module

FTP module(s)

HTTP module(s)

JNDI module

Mail module

Memcached

module

Session module

SQL module

Util module

Security implications of use

A user could potentially store a large quantity of information into the cache. This would exhaust the
memory available to the JVM used by eXist and could cause the database to crash.

A user could create many counters on disk, filling the available disk space of the server and thereby
potentially crashing eXist or the underlying server.

You have to be a user in the dba group in eXist to use the functions in the File module. However, should a
user be able to obtain dba privileges, he will be able to read/write anywhere in the filesystem that the
account under which the eXist server is running can read/write. Potentially, he could delete the .dbx files
that make up your database, download data or sensitive files, or fill up your server’s disk space.

The EXPath FTP module could allow a user to retrieve documents from remote sources by URI; you can
reduce or alleviate this risk by using sensible firewall and network settings. This module could also
potentially be used to launch a Denial of Service (DoS) attack against a remote service.

eXist and EXPath HTTP module could allow a user to retrieve documents from remote sources by URI; you
can reduce or alleviate this risk by using sensible firewall and network settings (e.g., forced transparent
proxy). These modules could also potentially be used to launch a Do$ attack against a remote service.

A user could potentially gain access to external JNDI sources, depending on how the authentication of the
INDI sources is configured by the container (e.g., Jetty, Tomcat, etc.).

The Mail module could allow a user to send email either via a local sendmail or via a remote SMTP host.
This could be used to send SPAM or launch a DoS attack against a remote SMTP server. Consequently, a
local sendmail should not be used and remote SMTP servers should be secured appropriately to avoid such
attacks.

A user could potentially store a large quantity of information into a Memcached instance, which could
affect the stability of that instance and the server on which it resides.

A user could potentially store a large quantity of information into her session. This would exhaust the
memory available to the JVM used by eXist and could cause the database to crash.

A user could potentially open many connections against a remote SQL database, which could affect its
ability to respond and, in effect, cause a Do$ attack.

A user could use the util:serialize function to create many files on disk, filling the available disk
space of the server and therefore potentially crashing eXist or the underlying server.

A user could use the util:wait function to pause the current database broker for a long period. If this
was done across many connections, the available brokers could rapidly be exhausted, effectively causing a
DoS attack on eXist.

Hardening | 179

www.it-ebooks.info

http://www.it-ebooks.info/

XQuery Security implications of use

extension
module

XPath and A user could use the fn:doc function to retrieve documents from the filesystem to which the user under
XQuery Functions which the eXist server is running has read access. There is also the potential to download documents from
and Operators remote sources by URI. You can reduce or alleviate this risk by using sensible firewall and network
module settings. This module could also potentially be used to launch a DoS attack against a remote service.

Disabling the Java binding from XQuery

eXist provides a feature called Java binding (see “Java binding” on page 117 for fur-
ther details) that allows Java code to be written inside XQuery code and executed by
eXist’s XQuery processor. This is undoubtedly a very powerful feature that could
prove useful where an XQuery developer wishes to perform some task that is not pos-
sible in XQuery and for which no extension functions are provided. However, in the
wrong hands, it gives an attacker access to a programming language that has a rich
standard library.

By default, eXist is shipped with the Java binding disabled. You can configure this in
$EXIST _HOME/conf.xml by changing the value of the enable-java-binding
attribute on the xquery configuration element to either yes or no. It is highly recom-
mended that the Java binding remain disabled. If you require additional functionality
that XQuery does not provide, you should consider writing an extension module for
XQuery in Java that encapsulates just the functionality that you require (see “Internal
XQuery Library Modules” on page 467).

Disabling direct access to the REST Server

While it is recommended that you disable various XQuery modules and Java binding
if you’re not using their functionality, what can you do to limit what anonymous web
users can exploit when you do require such functionality?

One possibility is to limit the ability for eXist’s REST Server to directly receive web

requests, including XQuery submissions that would otherwise be processed dynami-

cally. Disabling this capability still allows you to place main modules and associated

library modules written in XQuery into the database as binary documents and have

them executed via URI calls, but access to database resources is instead controlled by

XQuery URL Rewrite (see “URL Mapping Using URL Rewriting” on page 194). Such a
restriction prevents anonymous and authenticated users from directly accessing data-

base resources or sending in XQueries via eXist’s REST Server, unless you permit it

within your own XQuery controller.

To remove the REST Server’s ability to directly receive web requests, you can modify
the parameter hidden in $EXIST_HOME/webapp/WEB-INF/web.xml:

180 | Chapter 8: Security

www.it-ebooks.info

http://www.it-ebooks.info/

<init-param>
<param-name>hidden</param-name>
<param-value>true</param-value>
</init-param>
Changing this parameter means that the REST Server will not directly receive
requests; rather, it will only receive requests forwarded from an XQuery controller
(see “URL Mapping Using URL Rewriting” on page 194). You can then choose to filter
such requests in your own XQuery controller.

Disabling network services and APIs

eXist provides several network services and APIs that are enabled by default; how-
ever, it is quite likely that you will not require all of those services in a production
environment. Which services you require will depend on your application, but you
should disable any that are not required by your application and/or users. You do so
by commenting out the servlet, filter, filter-mapping, and listener declara-
tions in $EXIST _HOME/webapp/ WEB-INF/web.xml, as well as any servlet mappings
to them in $EXIST _HOME/webapp/WEB-INF/controller-config.xml. See Table 8-13.

Table 8-13. eXist’s network service components

Servlet Provides Impact of disabling
org.exist.http.servlets. Initializes all logging eXist will not be able to log any messages.?
Logdjinit services for eXist
org.exist.xmlrpc. XML-RPC and XML:DB Will remove the ability to connect with the Java
RpcServlet Remote APIs; removes Admin Client, as this uses the XML:DB Remote API.
RPC and XML:DB Remote May remove the ability to shut down or back up
access eXist if you use shutdown.sh or backup.sh, as these
use the Java Admin Client library.
It may be appropriate to disable this, depending
on your environment and deployment of eXist.
org.exist.http.servlets. REST Server and SOAP Removes the REST Server and the ability to
EXistServlet Server navigate the database automatically by URI and
execute XQueries stored in the database by URI.
Removes the ability to create SOAP web services of
XQuery modules.
org.exist.management.client. JMXinformation over Removes the ability to retrieve JMX information
IMXServiet HTTP as XML over HTTP as XML (see “JMX" on page 387).

It is typically recommended to disable this APl in
production, or restrict access at a reverse proxy or
firewall.

Hardening | 181

www.it-ebooks.info

http://www.it-ebooks.info/

Servlet Provides

org.exist.webdav. WebDAV access to the
MiltonWebDAVServlet elist database
org.exist.http.servlets. Ability to execute XQuery
XQueryServet main modules stored in
files in eXist's
SEXIST_HOME/
webapp folder
org.exist.http.urlrewrite. Disables XQuery-based
XQueryURLRewrite URL rewriting
org.exist.http.servlets. XSLT transformations for
XSLTServlet XQuery URL rewriting
org.apache.axis.trans SOAP APl access to the
port.http. eXist database
AxisServlet
AdminServlet
org.exist.atom.http. Atom API access to the
AtomServlet eXist database
org.exist.exten EXQuery RESTXQ
sions.exquery.restxq.impl. framework
RestXqServlet

Impact of disabling

Disables WebDAV access to eXist.

It is common to disable this APl in a production
web environment, or restrict access at a reverse
proxy or firewall.

Disables execution of XQuery from the filesystem.

This should be disabled, as it is now deprecated
and has been superseded by the REST Server.

If you are not using XQuery URL rewriting with the
REST Server or the eXist dashboard app, or you are
using RESTXQ, then this can be disabled.

If you disable this, you will need to translate the
servlet mappings from SEXIST_HOME/webapp/
WEB-INF/controller-config.xml to SEXIST_HOME/
webapp/WEB-INF/web.xml as the URL rewriting
controller is then no longer responsible for
mapping URIs.

Disables XSLT transformations from XQuery URL
rewriting.

If you are not using XSLT transformations through
forwarding in your XQuery URL Rewrite
controller.xql, then this can be disabled.

If you have disabled XQuery URL rewriting, then
this should also be disabled.

Disables eXist's SOAP API.

If you are not making use of eXist's SOAP AP, then
both of these servlets should be disabled.

Disables eXist's Atom API.

If you are not making use of eXist's Atom API, then
this should be disabled.

Disables the RESTXQ framework.

If you are not using the RESTXQ framework in your
XQuery modules, then this should be disabled.

182 | Chapter 8: Security

www.it-ebooks.info

http://www.it-ebooks.info/

Servlet Provides Impact of disabling

org.exist.webstart. Java WebStart of Java Disables the ability to download the Java Admin

InlpServiet Admin Client Client from eXist as a Java WebStart application.

If you are not allowing remote users to download
the Java Admin Client for eXist from your eXist
server via Java WebStart, then this should be

disabled.
org.directwebremoting.serv XForms support through Disables server-side XForms support through
let. the betterForm engine betterForm.
DwrServlet If you are not using XForms or are using

XSLTForms or another XForms rendering engine,
then you should disable these servlets, the filter,
and the listener.

de.betterform.agent.web.serv
let.

XFormsPostServlet
FormsServlet
XFormslnspectorServiet
ResourceServiet
ErrorServiet
BfServletContextListener

de.betterform.agent.web.fil
ter.

XFormsFilter

“Disabling the logging service is not recommended.

Disabling autodeployment of EXPath packages

eXist provides a mechanism to autodeploy applications, extension libraries, and data
provided as EXPath packages to the database at startup time. Any EXPath package
placed in the $EXIST _HOME/autodeploy folder will be loaded into the database at
startup time.

While this is not a threat from within eXist, should someone compromise the user
account under which you run the eXist server, he could potentially place a malicious
package into the autodeploy folder that would be loaded the next time the database
was restarted. Such a package might contain XQuery scripts that perform further
nefarious actions, and these could potentially be invoked remotely.

You can disable the autodeploy folder by commenting out the AutoDeploymentTrig
ger line in $EXIST _HOME/conf.xml. For example:

<!-- trigger class="org.exist.repo.AutoDeploymentTrigger"/ -->

Hardening | 183

www.it-ebooks.info

http://www.it-ebooks.info/

Subsequent to disabling the AutoDeploymentTrigger, you can also delete the
$EXIST_HOME/autodeploy folder.

Removing preinstalled EXPath packages

By default, eXist ships with a number of EXPath packages providing libraries and
applications that are installed by the autodeployment mechanism the first time eXist
is started. These packages are excellent in a development environment, but less desir-
able in a production environment. Of particular concern are the dashboard and
eXide applications, which provide facilities for remotely administering eXist through
web pages.

If you have started eXist before disabling the autodeployment mechanism, as
described in the previous section, you may remove these applications from a running
eXist instance by executing the following XQuery (for example, from the Java Admin
Client):

xquery version "1.0";

import module namespace repo = "http://exist-db.org/xquery/repo";

(i~
: This XQuery removes the preinstalled EXPath packages
: that ship with eXist 2.1

:)

declare variable $local:preinstalled-pkgs := (
"http://exist-db.org/apps/shared",
"http://exist-db.org/apps/dashboard",
"http://exist-db.org/apps/eXide"

);

for $pkg in $local:preinstalled-pkgs return (
repo:undeploy($pkg),
repo:remove($pkg)

)

Securing eXist's network services

All of the network services and APIs discussed in “Disabling network services and
APIs” on page 181 rely on an underlying Java application server to actually connect
them to incoming network requests. eXist uses the Jetty application server by default,
but can be deployed into any Java application server of your choosing.

eXist ships with Jetty, servicing incoming HTTP and XML-RPC requests on TCP
port 8080 and HTTPS and XML-RPC over SSL requests on TCP port 8443. This con-
figuration is held in the Jetty configuration file $EXIST HOME/tools/jetty/etc/
jetty.xml.

184 | Chapter 8: Security

www.it-ebooks.info

http://www.it-ebooks.info/

In a production environment, it is recommend that you disable the non-SSL interface
and just use the SSL interface. By default eXist is configured with a temporary SSL
certificate that serves to provide the encryption of a connection, but not verification
of the server. If your users will connect directly to eXist by HTTPS or XML-RPC over
SSL, then it is recommended that you generate or purchase your own genuine SSL
certificate. The mechanics of SSL, SSL certificates, and configuring Jetty for custom
certificates are considered beyond the scope of this book, and good online resources
on these topics already exist, including Jetty’s own documentation.

While we do not believe that “security through obscurity” adds any real security to a
system, layering of protective mechanisms is always sensible. So, should you wish,
you can also modify the TCP port numbers that eXist uses in the aforementioned
Jetty configuration file.

Should you change the TCP port numbers (or disable the non-SSL
protocols) that eXist uses, it is recommended that you also update
the $SEXIST_HOME/client.properties file. This is used by both the
Java Admin Client and backup and restore scripts to connect to
eXist when they are executed on the same server.

Reverse proxying

Reverse proxying is the process of placing a reverse proxy server between eXist and
the client. The reverse proxy server receives a request from the client, creates a new
request to eXist, and then returns the result it receives to the client (see Figure 8-21).
The reverse proxy server may also add some optimization services such as caching,
response compression, and load balancing.

Client

Internet <+—>

i)

N
N

Firewall Reverse Proxy eXist

Figure 8-21. A reverse proxy network

Hardening | 185

www.it-ebooks.info

http://wiki.eclipse.org/Jetty/Howto/Configure_SSL
http://www.it-ebooks.info/

While there are many good arguments for using reverse proxying in production envi-
ronments, we will focus on the security aspect here. Many firewalls are capable of
restricting access to a server for specific ports and protocols, but few firewalls operate
at the application layer. A reverse proxy operates at the HTTP application layer (in
this case), which means that it can filter based on characteristics of the HTTP
requests.

The main security concerns for the reverse proxy server are:

Hiding the existence and characteristics of eXist from the client

The client should only see the reverse proxy server. Should this be a malicious
client and try to exploit the server directly, it will be exploiting the reverse proxy
server and not eXist. Another concern, perhaps, is to allow the reverse proxy
server to map an application or documents you have in eXist into your website’s
URI space, so that it is not obvious to attackers that part of your website is run-
ning in an application server (eXist)—for example, proxying the public URI
http://www.mywebsite.com/widgets/ to the private URI http://my-exist-server:
8080/ exist/apps/widgets/.

Controlling (and limiting) access to eXist by the client
This allows you to limit which HTTP requests will reach eXist based on various
criteria such as URI, headers, and cookies. A useful example is to limit access to
the URIs /exist/xmlrpc and /exist/webdav, while allowing access to /exist/apps
from your web users.

There are many options for reverse proxy servers, but two of the most popular ones
are the Apache HTTP Server Project (Apache httpd) and Nginx. Apache httpd is a
large, feature-rich, and very popular web server, an example of whose use is described
in “Proxying eXist Behind a Web Server” on page 207. Nginx (shown in Example 8-2) is
a modern, very lightweight, and incredibly fast web server. It is perfect if you are
looking for a reverse proxy for eXist because it is much simpler to install and config-
ure than Apache httpd, lending it a smaller attack surface.

Example 8-2. Nginx configuration for reverse proxying eXist

proxy_set_header Host Shost; (1)

proxy_set_header X-Real-IP $remote_addr; (2]
proxy_set_header X-Forwarded-For Sproxy_add_x_forwarded_for; (3]
proxy_set_header nginx-request-uri S$request_uri; (4)

server {

listen 80; (5)
server_name .mywebsite.com; (6]
charset utf-8;
access_log /srv/www/vhosts/mywebsite.com/logs/access.log;
location / {
proxy_pass http://localhost:8080/exist/rest/db/mywebsite.com/; Q

186 | Chapter 8: Security

www.it-ebooks.info

http://httpd.apache.org
http://wiki.nginx.org/Main
http://www.it-ebooks.info/

}

@ The first line, the proxy_set_header directive, takes the host header from the
HTTP request sent from the client and sets it in the new HTTP request that
Nginx sends to eXist. This can be useful for informing eXist which virtual host it
is servicing.

OO These proxy_set_header directives set new headers in the HTTP request that
Nginx sends to eXist. eXist automatically uses these when behind a reverse proxy
to understand the request from the client correctly.

O This proxy_set_header directive sets a new header in the HTTP request that
Nginx sends to eXist, which allows a user in an XQuery to find the original URI
requested by the client using request:get-header("nginx-request-uri").

OO0 Requests to any URI that starts *.mywebsite.com on TCP port 80 (standard
HTTP) will be proxied.

@ Matched URIs are forwarded to the collection /db/mywebsite.com in eXist via the
REST Server, so http://www.mywebsite.com/documents/2012 would be forwarded
to http://localhost:8080/exist/rest/db/mywebsite.com/documents/2012.

User Authentication in XQuery

eXist provides an extension module of XQuery functions, called the Security Manager
module, for handling security concerns programmatically. This module, discussed in
the entry for sm in Appendix A, allows you to manipulate users, groups, and group
managers, and also to manage both resource and collection permissions. However,
the Security Manager module has a major intentional omission: if you wish to
authenticate users in your own XQuery modules (perhaps in response to a login
form), you can’t do so through this module; rather, you have to use the xmldb module
(see the entry for xmldb in Appendix A).

It may seem strange that authentication and login in XQuery are provided by the
xmldb module and not the Security Manager module. The reason for this is that the
Security Manager module is a relatively new addition to eXist. The developers felt
that the login and authentication mechanisms from XQuery could be improved, and
unfortunately it was not possible to accomplish this work before eXist 2.1 was
released. It is likely that new and improved authentication and login mechanisms will
be added to the Security Manager module in the future, deprecating those in the
xmldb module.

User Authentication in XQuery | 187

www.it-ebooks.info

http://www.it-ebooks.info/

xmldb:authenticate

The xmldb:authenticate function allows you to validate that a user has access to a
collection in the database. The function takes three arguments: a collection URI, the
username of a user, and the corresponding password of that user. It then performs
two distinct steps:

1. It attempts to authenticate the user, using her username and password, with the
Security Manager.

2. Tt attempts to open the collection given in the collection URI argument; that is to
say, it verifies whether the authenticated user has execute access to the collection.

If either of the two steps fails, the function returns false; if both steps succeed in suc-
cession, then the function returns true.

This function is basic, but can be useful when you want to authenticate a user but do
not wish to perform actions on that user’s behalf.

xmldb:login

The xmldb:login function takes the same arguments as the xmldb:authenticate
function and performs exactly the same steps. Assuming those steps succeed, it then
performs two additional steps:

1. Tt changes the user account of the XQuery that called the function to be that
described by the username passed to the function. Subsequently, the calling
XQuery has the same access rights to resources and collections in the database as
the newly logged-in user.

2. If the XQuery is operating in an HTTP context (i.e., executed via the REST
Server, SOAP Server, or XQuery Servlet), then the logged-in user is cached in the
HTTP session, if one exists (you can control creation of the session by calling the
four-argument version of xmldb:login or using the session:create function
explicitly). Subsequent XQuery invocations from within the same HTTP session
will reuse the cached user from this login until the session is invalidated or the
user logs out.

The login function is very useful when you want to present a user with a login form,
authenticate him, and subsequently allow him to access and manipulate database
resources and collections with the permissions he has previously been allocated.

188 | Chapter 8: Security

www.it-ebooks.info

http://www.it-ebooks.info/

You may be wondering how to control user logout after a user has
logged into eXist. You have three options for this, each of which
involves manipulating the user’s HI'TP session:

1. Remove the cached user credentials attribute from the HTTP
session by calling
session:remove-attribute("_eXist_xmldb_user").

2. Clear all attributes of the user’s HTTP session by calling
session:clear().

3. Invalidate the user’s HTTP session by calling session:invalid
ate(). Invalidating the user’s session means that you will have
to create a new session if you wish to store further attributes in
the session.

For further details on how HTTP sessions are managed, see the
entry for session in Appendix A.

Backups

While the reasons for performing backups are not solely related to security but also to
disaster recovery, the importance of backups cannot be stressed enough. First, ensure
that you have backups, and secondly, ensure that you can restore your system from
them! Whatever approach you take, backups should be something that you perform
frequently, test regularly, and have confidence in as your last line of defense. For fur-
ther information, see “Backup and Restore” on page 396.

Backups | 189

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER9
Building Applications

eXist is a great platform not only for storing and querying XML data, but also for
building web applications. Returning pages in (X)HTML is a breeze, since XHTML is
XML and XML is eXist’s bread and butter. Conveniently, because your data is in
XML and the programming language is XML-aware, there is no “impedance”
between the layers (data storage, processing, presentation). Piece of cake, isn’t it?

Well, maybe a marketing department (if one existed) would try to sell you this high-
tech fairy tale. But as we all know, programming is hard work, whatever your envi-
ronment or toolset. Silver-bullet environments don’t exist.

However, that being said, eXist does represent an excellent platform on which to
build web applications. For applications that work with XML (or can be redesigned to
work with XML), increases in development speed and decreases in code base size are
often realized when compared to undertaking the same projects in Java or PHP for
example. It’s not a panacea, but it can certainly help you in specific situations.

Overview

A web application is an application that is accessed over the Internet (or an intranet)
and uses a web browser as its client. URLs passed from the browser are mapped to
something on the server (a static page, a script that accesses a database, a CSS file, an
image, etc.). Together this constitutes some meaningful functionality to the applica-
tion’s users, such as accounting, playing games, or making friends. An application
residing on a server typically consists of multiple files/resources. Some of these are
scripts that, once executed, do something like querying or updating a database. Oth-
ers are static, like CSS files and images. Another category is internal data, which is not
shown directly to the user but used internally for configuration, lookup tables, and
more.

191

www.it-ebooks.info

http://www.it-ebooks.info/

Which Technology to Use?

Somewhat confusing perhaps is that eXist has two very different technologies for
mapping URLs in HTTP requests to functionality (e.g., executing XQuery or XSLT
code or retrieving a particular resource). They are URL rewriting and RESTXQ:

o URL rewriting works by intercepting every HTTP request and passing it first
through a centralized controller XQuery script that you provide. This script
decides what to do with the request and either passes it on to another specific
XQuery script, performs a redirect, or rejects it. Read more about this in “URL
Mapping Using URL Rewriting” on page 194.

o RESTXQ works with XQuery 3.0 function annotations that tell eXist the function
that must be executed when certain HTTP requests come along. Read more
about this in “Building Applications with RESTXQ” on page 215.

URL rewriting is the older and more mature of the two. RESTXQ is younger and eas-
ier to use, but might not provide all the necessary functionality yet. The approaches
cannot be mixed!

So, which one to choose? RESTXQ is probably the simpler approach to get started
with, and also the more platform-independent choice. However, there are some limi-
tations in RESTXQ at the moment:

o RESTXQ allows little nondeclarative access to the HTTP request: the eXist HTTP
request module is not supported.

o RESTXQ has no session (in other words, the eXist session module is not sup-
ported).

o There is no support for processing HTTP multipart requests or responses in
RESTXQ.

Therefore, you can handle more advanced tasks with URL rewriting (currently).
However, few people need such advanced functionality, and missing features are
likely to be added to RESTXQ in the near future.

Application Aspects

A web application is a multifaceted thing, and there are many aspects you have to
deal with to make everything run smoothly. This is the case for all web technologies,
and eXist is no exception. What are the eXist-specific aspects we have to talk about?
In this chapter, we’ll explore the following topics:

Where to store your files/resources
Older versions of eXist gave you the choice of storing the application’s files/
resources in the database or on the filesystem. Although the option of using the

192 | Chapter9: Building Applications

www.it-ebooks.info

http://www.it-ebooks.info/

filesystem still exists, using the database is absolutely preferred. See “Where to
Store Your Application?” on page 194.

The URL rewriting mapping mechanism
How does the URL rewriting mechanism map HTTP requests to functionality?
See “URL Mapping Using URL Rewriting” on page 194.

Cleaning up URLs for URL rewriting
Up to now we have only seen ugly URLs like http://localhost:8080/exist/rest/db/
myapp/. For a real application, you probably want to change these into some-
thing like http://www.myapp.com/. How to achieve this with URL rewriting is
described in “Changing the URL for URL Rewriting” on page 205.

Requests, sessions, and responses
Inside your application you’ll want to inspect the requests, keep data alive
between requests, and control the server’s responses. Information about this can
be found in “Requests, Sessions, and Responses” on page 209.

Security for applications
How to handle the user base and add an extra layer of security using eXist’s
native mechanisms is described in “Application Security” on page 212.

Global error pages
How to create specific pages that handle HTTP 400 (bad request), 404 (not
found), and other response error codes is explained in “Global Error Pages” on
page 215.

Using RESTXQ
RESTXQ is substantially different from URL rewriting. You can read more about
it in “Building Applications with RESTXQ” on page 215.

Packaging
How to use the eXist packaging mechanism to easily distribute your application
is described in “Packaging” on page 227.

Getting Started, Quickly?

This chapter will teach you the basic mechanisms for eXist applications: how they
work and how to customize them to your needs. However, this might be too much
information if you want to write an application quickly and are not really interested
in what lies underneath.

In that case, we advise you to use eXide’s (eXist’s internal IDE’s) application frame-
work. This allows you to quickly set up small- to medium-sized applications without
any fuss. Please refer to “eXide” on page 374 for more information.

Overview | 193

www.it-ebooks.info

http://www.it-ebooks.info/

Where to Store Your Application?

A real-world application consists of data, which for eXist is always stored in the data-
base, and the application itself, which consists of many files—not only (XQuery)
scripts but also images, stylesheets, static HTML pages, and more. In times past (v1.4
and before), eXist gave you a choice of where to store these files: either in the filesys-
tem (underneath a subdirectory of $EXIST _HOME/webapp/myapp) or in the
database.

Although the option to use the filesystem for your application is still supported, it has
been deprecated for some time and should not be used. Security and deployment are
the major drivers for this, and additionally, applications stored in the database are
part of standard database backups. The database’s security system lets you tag certain
resources for general usage and others for use by specific users and/or groups. This
provides an extra layer of security on top of what is built into the application logic.
Deployment on a live database is a breeze; a simple backup/restore does the trick. If
you need more functionality, packaging mechanisms are available (see “Packaging”
on page 227). There are several tools that make working with resources in the database
feel almost exactly like working with files on the filesystem (as you’ll read about in
Chapter 14). RESTXQ (see “Building Applications with RESTXQ” on page 215) only
works from within the database. The only remaining issue is version control, but with
a bit of scripting that can be solved too (for instance, using eXist Ant scripting, as
described in “Ant and eXist” on page 379).

So, develop your application in the database and reap the benefits of the security and
deployment mechanisms offered. Do not use the filesystem (any longer).

URL Mapping Using URL Rewriting

URL mapping is all about providing meaningful URLs to your users and keeping
them consistent. For instance, in a wiki, you might want the user to visit a subject
with a URL like http://.../wiki/subjectname. But, of course, there will not be an
XQuery script for every subject. Likely, there will be a single script handling all sub-
jects based on some parameter, like in http://.../wiki/handlepage?subject=subject-
name.

eXist’s oldest and most mature mechanism for mapping URLs to functionality is
called URL rewriting. URL rewriting works by intercepting the HTTP request and
passing control to a single entry point. This entry point is an XQuery script, always
called controller.xql. Because it is XQuery, you can do whatever you want in it. It
must return an XML fragment that describes what eXist should do next.

194 | Chapter9: Building Applications

www.it-ebooks.info

http://www.it-ebooks.info/

Anatomy of a URL Rewriting-Based Application

This section will take you through the anatomy of a mini demo application that uses
URL rewriting. Although tiny, it shows you the important components and
characteristics.

The demo application is part of the example code for this book; if you have installed
that correctly you can start it with this URL (don’t forget the terminating slash):
http://localhost:8080/exist/apps/exist-book/building-applications/mini-application/.

Don’t let the URL format annoy you. We'll talk about creating
more user-friendly URLs soon, in “Changing the URL for URL
Rewriting” on page 205.

You should see something like Figure 9-1.

Mini Application Home Page

What's vour name? Go
Powered by:

e’ istdb

Figure 9-1. The home screen of our example mini application

Notice that the URL visible in your browser changed and now ends in /home. It
brings up a page generated by an XQuery script, but strangely enough, the URL
doesn’t end in .xq.

Typing your name and pressing Submit brings up a similar “Hello <name>" screen;
nothing particularly fancy is going on. So what makes this a typical eXist URL rewrit-
ing application?

A URL rewriting—based application has a central XQuery script as a single point of
entrance for all requests. This is always called controller.xql and located in the root
collection of your application. For Example 9-1, it is in /db/apps/exist-book/building-
applications/mini-application/controller.xql.

URL Mapping Using URL Rewriting | 195

www.it-ebooks.info

http://www.it-ebooks.info/

Example 9-1. The URL rewriting controller code for the example application
xquery version "1.0" encoding "UTF-8";

(:~
: Example URL Rewriting Controller
:)

(: External variables available to the controller: :)
declare variable $exist:path external;

declare variable $exist:resource external;

declare variable $exist:controller external;

(: Other variables :)
declare variable $Shome-page-url := "home";

(: Function to get the extension of a filename: :)
declare function local:get-extension($filename as xs:string) as xs:string {
let $name := replace($filename, ".*[/\\1([*/\\]+)$", "$1")

return
if(contains($name, "."))
then replace($name, ".*\.([7\.]+)$", "$1")
else ""

};

(: If there is no resource specified, go to the home page.
This is a redirect, forcing the browser to perform a redirect. So this request
will pass through the controller again... :)
if($exist:resource eq "")then
<dispatch xmlns="http://exist.sourceforge.net/NS/exist">
<redirect url="{Shome-page-url}"/>
</dispatch>

(: Check if there is no extension. If not, assume it is an XQuery file and forward
to this. Because we use forward here, the browser will not be informed of the
change and the user will still see a URL without a .xq extension. :)

else if (local:get-extension(Sexist:resource) eq "")then

<dispatch xmlns="http://exist.sourceforge.net/NS/exist">
<forward url="{concat($exist:controller, $exist:path, ".xg")}"/>
</dispatch>

(: Anything else, pass through: :)
else
<ignore xmlns="http://exist.sourceforge.net/NS/exist">
<cache-control cache="yes"/>
</ignore>

This example is intended to give you a first rough idea about what’s going on. We’re
going to talk about URL rewriting in detail later, but here are some important
characteristics:

196 | Chapter9: Building Applications

www.it-ebooks.info

http://www.it-ebooks.info/

 Notice that the result of the script is always an XML fragment in an eXist-specific
namespace. This fragment determines what eXist will do next—for instance,
redirect the browser to another page, or silently (and invisibly to the user) for-
ward to some other URL. The examples here are quite simple, but you can do
some amazingly complex things, like pipelining results through XLST stylesheets.

« The top of the script declares a number of external variables. eXist uses these to
pass important information about the call to the script.

o There is a function that extracts the extension part from a filename (e.g., xg from
home.xq), by using a regular expression. This is, of course, not unique to URL
rewriting, but you’ll often see regular expressions in a controller.xql inspecting
parts of the URL.

o The main part of the script examines the request by inspecting the external vari-
ables. The first if clause determines if the URL contains a resource name. If not,
it redirects the browser to the home page. This causes a browser redirect (visible
because the URL visible in your browser changes). So again, an HTTP request
travels through our URL rewriting controller, but now with /home appended.

o The second if clause checks whether the resource part of the URL has an exten-
sion (like .xgq or .png). If not, it assumes that it is an XQuery script and forwards
the request, invisibly to the browser, to an XQuery script in the database. So, for
example, the second time around, after /home has been appended to the URI,
home is interpreted as home.xq, and therefore home.xq is called.

o The last else is a catchall that passes on the full URL to the appropriate handler,
necessary for displaying images and more.

You’ll also want to look at the security settings of the application files. You can view
these by, for instance, using eXist’s Java Admin Client:

o Other users have execute permissions for controller.xql. This will always be the
case for a URL rewriting controller, because it is the general entry point to your
application. Otherwise, this is the error message you’ll see:

Subject 'guest' does not have '-------- x' access to resource
' /db/apps/exist-book/building-applications/mini-application/controller.xql’

o For our application, other users have execute permissions for other XQuery files
too, so anybody can use them.

o Other users also have execute permissions for the images subcollection. If you
were to revoke this permission, the browser would not be able to load the eXist
logo.

URL Mapping Using URL Rewriting | 197

www.it-ebooks.info

http://www.it-ebooks.info/

o Finally, other users have read permissions to view the eXist logo in the images/
existdb.png file. This makes it viewable by everyone.

For more restricted applications, you could limit these execute and other permissions
to certain database users and/or groups. It’s easy to provide the user with a login page
that changes its database identity, allowing you to fine-tune access. See “Application
Security” on page 212 for more about this.

Our last comment on this example involves inspecting the request and passing
parameters. When you have a look at the code of the hello.xq file, you can see that it
calls the eXist extension function request:get-parameter to read the name of the
person invoking the request:

<p> <i>{request:get-parameter('personname', '?')}</i></p>

The request extension module can get you a lot more information; see “The request
Extension Module” on page 209.

How eXist Finds the Controller

To test a URL controller, you can use the URL http://localhost:8080/exist/apps/<path-
toyourapp>, as in the beginning of the previous section. We’ll do a sneak preview
here of information to come (in “The controller-config.xml Configuration File” on
page 206) to make sure you understand how this works and how eXist finds the
controller:

eXist has a configuration file called $EXIST _HOME/webapp/WEB-INF/controller-
config.xml. In it are entries like this:
<root pattern="/apps" path="xmldb:exist:///db/apps"/>

When you request a page that starts with http://localhost:8080/exist/apps/, the follow-
ing happens:

o Jetty recognizes the eXist prefix /exist and passes control to the eXist main
servlet.

o This servlet sees a URL starting with /apps. It tries to match this with an entry in
controller-config.xml.

o If a match is found, the value of its path attribute is used to try to locate a con-
troller. So, in this case, eXist will first look for a controller in xmldb:exist:///db/
apps/controller.xql.

o If no match is found, it uses the rest of the URL to try to find the controller. It
starts at the most specific path and works backward until it finds a controller.

198 | Chapter9: Building Applications

www.it-ebooks.info

http://www.it-ebooks.info/

So, for instance, a URL ending with /apps/myapp/a/b/c.xq will have eXist looking
for a controller.xql file in /db/apps/myapp/a/b, /db/apps/myapp/a, and finally
in /db/apps/myapp (where it will most probably be).

o If eXist does not find a controller, it uses the URL as a path into the database and
tries to find a matching resource.

Only one controller will be applied to a given request. It is not possible to pass con-
trol from one controller to another (or back to the same).

However, be aware that when your controller asks for a redirect (using the redirect
element, as discussed in “Redirecting the request” on page 201), the browser will fire a
new request and the whole circus of finding and possibly running a controller will
start again. This creates the potential for redirect loops, so be careful!

The URL Rewriting Controller’s Environment

The URL rewriting controller in controller.xql gets information about the request
through five external variables. You do not need to explicitly declare them, but if you
do it should look like this:

declare variable $exist:path external;
declare variable $exist:resource external;
declare variable $exist:controller external;
declare variable $exist:prefix external;
declare variable $exist:root external;

Besides using the special controller external variables, you can also
use the functions in the request extension module (see “The
request Extension Module” on page 209) to find out more about the
request and the URL.

If you want to play with these variables, the collection /db/apps/exist-book/building-
applications/show-controller-variables contains an example that passes the values of
the external variables to the show-controller-variables.xq script, which displays them
on an HTML page.

You can use this little application to inspect the values of the URL rewriting control-
ler’s external variables. Use your browser to visit http://localhost:8080/exist/apps/
exist-book/building-applications/show-controller-variables/<any-path-you-like>, and
the values of the variables will be displayed.

Here are the definitions of the variables. For the examples, we assume you have
browsed to http://localhost:8080/exist/apps/exist-book/building-applications/show-
controller-variables/a/b/c.xq:

URL Mapping Using URL Rewriting | 199

www.it-ebooks.info

http://www.it-ebooks.info/

Sexist:path
The part of the URL after the part that led to the controller. For example:
a/b/c.xq.

$exist:resource
The part of the URL after the last / character, usually pointing to a resource. For
example: c.xq.

$exist:controller
The part of the URL leading from the prefix (see below) to the controller script.
For example: /exist-book/building-applications/show-controller-variables.

Sexist:prefix
The URL prefix that caused the URL rewriting controller to become active. This
is defined in the controller-config.xml configuration file. For example: /apps.

$exist:root
The root path used for finding the controller, as defined in the controller-
config.xml configuration file. This path can be on the filesystem or in the data-
base. In our example it is xmldb:exist:///db.

Figure 9-2 summarizes all this.

Becomes controller variable Becomes controller variable
$exist:prefix $exist:root

controller-config.xml

<root pattern="/apps" path="xmldb:exist:///db"/>

Mat|ches ’. Used to search for the controller

—
http://localhost:8080/exist/apps/exist-book/building-applications/show-controller-variables/a/b/c.xq
~— —~— -

Makes Jetty trigger eXist

Becomes controller variable

$exist:controller Becomes controller variable

$exist:resource

Figure 9-2. Going from a URL to controller variables

The Controller’s Qutput XML Format

A URL rewriting controller must output an XML fragment. This fragment deter-
mines what eXist will do next.

200 | Chapter9:Building Applications

www.it-ebooks.info

http://www.it-ebooks.info/

Ignoring the request

If you don’t want the controller to do anything and simply pass the request on for
normal processing, either output nothing or use an ignore element. Skipping any
URL rewriting is mostly used for “miscellaneous” requests, like for images or style-
sheets. The format is:

<ignore xmlns="http://exist.sourceforge.net/NS/exist">
cache-control?
</ignore>
Cache control is explained in “URL rewrite caching” on page 202. When a request is
ignored, cache control is usually on.

Redirecting the request

If you want the controller to redirect the client to another URL, use a dispatch ele-
ment with a redirect child element. This will cause the client to issue a new request,
potentially triggering the controller again. The format is:

<dispatch xmlns="http://exist.sourceforge.net/NS/exist">
redirect
cache-control?

</dispatch>

The redirect element is defined as:
<redirect url = string >

Cache control is explained in “URL rewrite caching” on page 202.

Forwarding the request

If you want the request forwarded to a specific resource on the server, use a dispatch
element with a forward child. The format is:

<dispatch xmlns="http://exist.sourceforge.net/NS/exist">
<forward url = string
servlet? = string (2]
absolute? = "yes" | "no"
method? = "POST" | "GET" | "PUT" | "DELETE" > (4)
(add-parameter | set-attribute | clear-attribute | set-header)*
</forward>
</dispatch>

O url directs the request to a new request path. This is equivalent to directly
requesting this path, but without a controller present.
A relative path will be resolved relative to the original request path.

An absolute path will be resolved relative to the path that triggered the controller.
For example, if the original URL started with http://localhost:8080/exist/apps/...

URL Mapping Using URL Rewriting | 201

www.it-ebooks.info

http://www.it-ebooks.info/

and a forward was done to /ui/login.xq, the resulting request would be to http://
localhost:8080/exist/apps/ui/login.xq.

® servlet passes control to another servlet. Read more about this in “Advanced
URL Control” on page 203.

© Ifabsolute is set to "yes", interpret the url attribute as a path on the filesystem,
relative to the $EXIST HOME/webapp directory, even when the controller is
stored in the database. The default is "no".

For instance, <forward url="/extra/admin.xq/" absolute="yes"/> will for-
ward control to $EXIST_HOME/webapp/extra/admin.xq.

O nmethod sets the HTTP method to use when passing the request to the next step in
a pipeline. More about pipelines can be found in “Advanced URL Control” on
page 203. The default is "POST".

A forward element can contain the following additional children:
o The add-parameter element lets you add or override a request parameter:

<add-parameter name = string
value = string />

o The set-attribute element sets a request attribute:

<set-attribute name = string
value = string />

You can inspect request attributes through eXist’s request extension module.
There’s more about request attributes and how they differ from parameters in
“The request Extension Module” on page 209.

o The clear-attribute element clears a request attribute:
<clear-attribute name = string />

In rare circumstances this is necessary when constructing a pipeline. Read more
about pipelines in “Advanced URL Control” on page 203.

o The set-header element sets an HT'TP header field:

<set-header name = string
value = string />

URL rewrite caching

You can enable URL rewrite caching by adding a cache-control child element to the
dispatch element:

202 | Chapter9:Building Applications

www.it-ebooks.info

http://www.it-ebooks.info/

<cache-control cache = "yes" | "no" />

Setting the cache attribute to "yes" adds an entry for the dispatch rule to an internal
map and prevents the controller from being triggered again for the input URL. For
instance:

<dispatch xmlns="http://exist.sourceforge.net/NS/exist">
<redirect url="home"/>
<cache-control cache="yes"/>

</dispatch>

URL rewrite caching has nothing to do with HTTP caching; only
the dispatch rule is cached, not the response.

Advanced URL Control

URL rewriting is capable of more than just passing on or redirecting a request. It can
also pass on the results of a forwarded request to a pipeline (a.k.a. sequence or view)
of additional processing steps (usually XQuery and/or XSLT scripts).

The most common use case for this is probably the Model-View-Controller or MVC
pattern, separating the application logic from its presentation. In the case of URL
rewriting, controller.xgl is the controller in the MVC pattern. Then we create an
XML document, describing the contents of the response (but not its presentation).
This becomes the model in the MVC pattern. Subsequent processing steps add the
presentation to this, usually by transforming it to (X)HTML. This is the view in the
MVC pattern.

URL rewriting allows you to specify such actions in the XML fragment output of the
URL rewriting controller. To do this, add a view element after the forward element,
containing the additional processing steps.

Here is a simple example of such an XML fragment. You can see this example in
action by browsing to http://localhost:8080/exist/apps/exist-book/building-
applications/views/:

<dispatch xmlns="http://exist.sourceforge.net/NS/exist">
<forward url="{concat($exist:controller, "/createmodel.xq")}"/>
<view>
<forward servlet="XSLTServlet">
<set-attribute name="xslt.stylesheet"
value="{concat(Sexist:root, $exist:controller, "/xslt/viewl.xslt")}"/>
</forward>
</view>
</dispatch>

URL Mapping Using URL Rewriting | 203

www.it-ebooks.info

http://www.it-ebooks.info/

In this example, the request is first passed to the createmodel.xq script. This creates
some XML that is subsequently passed to the viewl.xsI XSLT stylesheet for transfor-
mation into HTML.

Another example uses two stylesheets in a pipeline:

<dispatch xmlns="http://exist.sourceforge.net/NS/exist">
<forward url="{concat(Sexist:controller, "/createmodel.xq")}"/>
<view>
<forward servlet="XSLTServlet">
<set-attribute name="xslt.stylesheet"
value="{concat(Sexist:root, Sexist:controller, "/xslt/view2a.xslt")}"/>
</forward>
<forward servlet="XSLTServlet"s
<set-attribute name="xslt.stylesheet"
value="{concat(Sexist:root, Sexist:controller, "/xslt/view2b.xslt")}"/>
</forward>
</view>
</dispatch>
This will first create XML by calling createmodel.xq. This is passed to the view2a.xslt
XSLT stylesheet and processed into something else. Finally, the view2b.xslt XSLT

stylesheet which transforms it into HTML.

We pass the name of the stylesheet by setting the xslt.stylesheet request attribute.
Notice that we do a bit of filename juggling there: concat($exist:root, $exist:con
troller, "/xsl/viewl.xslt"). This is necessary because stylesheets are expected to
be on the filesystem by default. To execute stylesheets from the database, we have to
explicitly prepend their paths with xmldb:exist:///db/, and $exist:root starts
with this. You can, of course, hardcode this, but eXist passes enough information in
the controller variables to build this path dynamically, which somewhat isolates you
from possible changes in future.

eXist has multiple servlets, but the one that is useful in this scenario is the XSLT serv-
let, named XSLTServlet. It is controlled by means of the following attributes:

xslt.stylesheet
The path and name of the XSLT stylesheet to execute. By default, the filesystem is
used. If you want to use a stylesheet stored in the database, prepend this value
with xmldb:exist:///db/.

xslt.user, xslt.password
The username and password of a database user, used during execution of the
XSLT script when it accesses the database.

xslt.*
Any other attributes starting with xslt. will be passed as stylesheet parameters.
For instance, an attribute called xslt.extra will be available to the stylesheet as

204 | Chapter9:Building Applications

www.it-ebooks.info

http://www.it-ebooks.info/

global parameter $xslt.extra. Not all XDM types are supported, so it’s best to
limit yourself to strings.

Changing the URL for URL Rewriting

We've only seen ugly URLs for referencing our application so far, like:

http://localhost:8080/exist/rest/db/myapp/
For a resource stored in the database underneath /db/myapp

http://localhost:8080/exist/apps/building-applications/
For an application with a URL rewriting controller stored in the database under-

neath /db/apps/myapp

It’s time to clean up our act and make way for nice URLs like http://localhost/myapp
that use port 80 and don’t need the /exist prefix—or even better, use a DNS name like
http://www.myapp.com/.

Changing the URL has everything to do with how eXist processes a URL:

o The Jetty web server is the main receiver of the request. It listens on a certain
TCP port (by default, 8080) for HTTP requests. It examines the request and,
based on its URL, passes it on to a servlet. The default configuration tells Jetty
that all requests (with a URL starting with /exist) should be passed to the
XQueryUrlRewrite servlet, serving as the central entry point.

o The XQueryUrlRewrite servlet matches the remainder of the URL (the part
after /exist) to entries in the mapping file $EXIST _HOME/webapp/WEB-INF/
controller-config.xml. This tells XQueryUr1lRewrite what to do: look for a URL
rewriting controller somewhere or pass it directly to another servlet.

o If a URL rewriting controller is involved, it inspects the URL and passes control
for further processing (or tells the browser to redirect to another page).

We talked about this last step first (see “URL Mapping Using URL Rewriting” on
page 194), because it’s so crucial for understanding how applications work in eXist.
Now we’re going to talk about the first two stages.

Changing Jetty Settings: Port Number and URL Prefix

The Jetty settings determine the TCP port number used (by default, 8080) and the
prefix of the URL (by default, /exist). These settings are configured in
$EXIST_HOME/tools/jetty/etc/jetty.xml.

Change TCP port number
To change the TCP port number eXist listens on, find the following entries,
change the port numbers, and restart eXist:

Changing the URL for URL Rewriting | 205

www.it-ebooks.info

http://www.it-ebooks.info/

<SystemProperty
name="jetty.port" default="8080"/>

<SystemProperty
name="jetty.port.ssl" default="8443"/>

Be aware that the second entry appears twice!

On Unix and Linux systems, only a process running under the
root user’s account can open ports beneath 1024. While web
servers typically operate on port 80 and/or 443, as discussed in
Chapter 8, it is better to run eXist as an unprivileged user (see
“Hardening” on page 174) and instead reverse proxy eXist
through an existing web server (see “Reverse proxying” on
page 185).

URL prefix
To remove the /exist URL prefix, find the entry <Set name="contextPath">/
exist</Set>, change its value to /, and restart eXist.

The controller-config.xml Configuration File

The next step eXist takes is examining the remainder of the URL (the part after the
URL prefix, if any). This is done by the XQueryUr1Rewrite servlet using the entries in
the $EXIST_HOME/webapp/WEB-INF/controller-config.xml file.

If you want to, you can change the location of the controller-
config.xml file, even to somewhere inside the database. This can be
beneficial for security or backup reasons.

Open $EXIST_HOME/webapp/WEB-INF/web.xml and search for
the entry that mentions controller-config.xml. It should look like

<param-value>WEB-INF/controller-config.xml</param-values>.
Change this to, for instance, <param-value>xmldb:exist:///db/
controller-config.xml</param-value> and store your
controller-config.xml in the /db database collection. Restart eXist.

Example 9-2 is a simplified and annotated version of this file.

Example 9-2. Example controller-config.xml file

<configuration xmlns="http://exist.sourceforge.net/NS/exist">

<!-- Forward URLs starting with rest or servlet to the REST servlet: -->
<forward pattern="/(rest|servlet)/" servlet="EXistServlet"/>
<!-- Patterns starting with /apps should look for a URL rewriting controller: -->

<root pattern="/apps" path="xmldb:exist:///db/apps"/>
<!-- My url www.myapp.com should map to my application stored underneath

206 | Chapter9:Building Applications

www.it-ebooks.info

http://www.it-ebooks.info/

/db/myapp in the database: -->
<root server-name="www.myapp.com" pattern="/*"
path="xmldb:exist:///db/apps/myapp/"/[>
<!-- Anything else, pass on to the XQueryServlet for default executing
from the filesystem: -->
<forward pattern=".*\.(xq|xql|xqy|xquery)$" servlet="XQueryServlet"/>
</configuration>

The content of the controller-config.xml file must be in the http://exist.source
forge.net/NS/exist namespace. The format is:

<configuration xmlns="http://exist.sourceforge.net/NS/exist">
(forward | root)+
</configuration>
What happens is that all entries in the controller-config.xml file are examined from
top to bottom. If the remainder of the URL (the part after /exist) matches with a
pattern attribute (which is a regular expression), this entry is used.

o A forward element passes control directly to a given servlet:

<forward pattern = string
servlet = string />

o A root element triggers the URL rewriting controller:

<root pattern = string
server-name? = string
path = string />
The path attribute tells eXist where to look for the URL rewriting controller, as
explained in “How eXist Finds the Controller” on page 198. The default location
is within the filesystem, but if you want it to point to a location in the database,
start its value with xmldb:exist:///db/.

When a server-name attribute is present (e.g., server-name="www.myapp.con"),
this must match also, allowing you to associate a DNS name with your
application.

Proxying eXist Behind a Web Server

Another way of cleaning the URLs is by running eXist behind another web server, as
a proxy. This web server—we’ll use Apache as an example—catches requests for
eXist, passes them on, and sends the responses back to the user.

Although this sounds like a bit of a detour, it is actually quite useful in certain
situations:

Changing the URL for URL Rewriting | 207

www.it-ebooks.info

http://www.it-ebooks.info/

Sometimes you're running on a server in a mixed environment. Besides the eXist
application there can be other applications active, based on PHP, CGI, Perl, and
more. The easiest way to handle this is to use a workhorse like Apache and proxy
eXist behind Apache.

Apache is more flexible in configuration than Jetty + eXist and contains more
functionality as a web server.

System managers are probably more used to running Apache as a frontend than
Jetty. They have things like tools and scripts hanging around and know the com-
mands by heart. Keep them happy!

Apache is used more than Jetty, so there are lots of third-party tools for things
like analyzing web traffic.

There is more than one way to handle this, but here is a recipe for proxying an eXist
application behind Apache:

1.

Leave the Jetty settings at the defaults (i.e., TCP port 8080 and a URL prefix
of /exist).

. Adapt the controller-config.xml file so that the URL to your application points to

the right collection (or directory). For example:

<root server-name="www.myapp.com" pattern=".*"
path="xmldb:exist:///db/myapp/" />

3. Enable the mod_proxy module in Apache.

. Add the configuration shown in Example 9-3 to Apache (this is a minimal exam-

ple; you’ll probably want to add logging and other functionality).

Example 9-3. Apache configuration for proxying eXist
<VirtualHost *:80>
ServerAdmin your-admin-email@your-domain.com

The URLs for this application:
ServerName www.myapp.nl
ServerAlias myapp.com
ProxyRequests Off
<Proxy *>

Order deny,allow

Allow from all
</Proxy>

ProxyPass / http://www.myapp.nl:8080/exist/
ProxyPassReverse / http://www.myapp.nl:8080/exist/

208

| Chapter9: Building Applications

www.it-ebooks.info

http://www.it-ebooks.info/

Cookies must be adapted to allow the session mechanism to work:
ProxyPassReverseCookiePath /exist /
ProxyPassReverseCookieDomain localhost myapp.com

RewriteEngine on
RewriteRule ALC*)S /81 [PT]

</VirtualHost>

There was another example of proxying earlier in the book (using the Nginx web
server), which focused on security; see “Reverse proxying” on page 185.

Requests, Sessions, and Responses

An entry to a web application starts with a request from a web client. A request con-
sists of a URL but might also contain, for example, parameters or an uploaded file. In
between requests you probably want to keep information for the current user in a
session. The answer to a request is called a response, and there are several things you
might want to control here too.

To work with requests, sessions, and responses, eXist uses extension modules. This
section will provide you with an overview of the functionality found in these modules
(for the full details, please refer to the function documentation browser). Along the
way we’'ll reveal some tips and tricks.

The request Extension Module

All details about an incoming HTTP request can be accessed through the request
extension module. This module is really just a very simple XQuery wrapper around
the underlying HttpServletRequest Java class that eXist handles for you. For
instance:

o request:get-uri will give you the original URI as received from the client.

o There are other functions for inspecting details, like request:get-remote-port
for checking the TCP port number.

o The functions request:get-parameter-names and request:get-parameter give
you access to the request parameters.

o request:get-cookie-names and request:get-cookie-value let you access the
data stored in cookies.

Requests, Sessions, and Responses | 209

www.it-ebooks.info

http://docs.oracle.com/javaee/6/api/javax/servlet/http/HttpServletRequest.html
http://www.it-ebooks.info/

Request parameters and attributes

If you browse the functions of the request extension module, you might notice that
both request parameters and attributes are mentioned:

o A request parameter is a name/value pair that was passed in from the client—for
instance, as part of the URL or as an input field of an HTML form. Parameter
values are always strings.

o A request attribute is a name/value pair that was set on the server. This was most
likely done by the URL controller (see “URL Mapping Using URL Rewriting” on
page 194), but if needed you can do it anywhere in your code using the
request:set-attribute function. Attribute values can be anything from simple
strings to complex XML fragments.

Request attributes are useful for internal communication between parts of your
application code when processing a request. They are also used by some internal
mechanisms as parameters to servlets (for an example of this, see “Advanced
URL Control” on page 203).

Uploading files

The request extension module can also be used for uploading files to the server. For
example, assume you want to upload a binary file to your server and store this in the
database. The page that offers this functionality must contain a form with encoding
type multipart/form-data, as in this HTML fragment:

<form enctype="multipart/form-data" method="post" action="uploadl-process.xq">
<p>Upload binary file:
<input type="file" size="80" name="FileUpload"/>

<input type="submit"/>
</p>
</form>
Access to the uploaded file is via the request:get-uploaded-file-data function.
You can store the result in the database by using the xmldb:store function, as in this
XQuery fragment:
let $stored-file as xs:string? := xmldb:store($store-collection, $store-resource,
request:get-uploaded-file-data($field-name), 'application/octet-stream')
This returns the path of the file as stored in the database. Other functions that might
be of interest here are request:get-uploaded-file-name for getting the original file
name and request:get-uploaded-file-size for getting the size of the file (and
optionally rejecting it if it is too large).

210 | Chapter9:Building Applications

www.it-ebooks.info

http://www.it-ebooks.info/

The session Extension Module

A session represents the interaction with a server for a specific client over a period of
time. You may store data in the session that is available across requests for the same
client. Each client may have a distinct session with the server. A session is accessed
with the session extension module. This module is really just a very simple XQuery
wrapper around the underlying HttpSession Java class that eXist handles for you.
Some usage hints:

o A session must be created with the session:create function. Lots of other func-
tions that do something with a session create it implicitly for you, but it can
never hurt to create it explicitly with session:create. If the session already
exists, the call is ignored.

o A session can hold attributes that are name/value pairs. Attribute values can be
anything from simple strings to complex XML fragments. Use the functions
session:set-attribute and session:get-attribute to work with these.

o Sessions invalidate automatically after not being accessed for a certain amount of
time. You can control this interval using the session:get-max-inactive-
interval and session:set-max-inactive-interval functions.

The response Extension Module

You control the response to a request via the response extension module. This mod-
ule is really just a very simple XQuery wrapper around the underlying
HttpServletResponse Java class that eXist handles for you. Useful functionality here
includes:

o Setting cookies with the response:set-cookie function

o Explicitly setting response headers and the overall status code with the
response:set-header and response:set-status-code functions

o Redirecting the client to another page with response:redirect-to

o Streaming data directly to the output with the response:stream and
response:stream-binary functions (useful for creating download functionality,
as described next)

Creating “download XML file” functionality

Creating a download function for an XML file, in which the browser asks you where
to store it instead of displaying it, is not as easy as it may sound. You have to trick the

Requests, Sessions, and Responses | 211

www.it-ebooks.info

http://docs.oracle.com/javaee/6/api/javax/servlet/http/HttpSession.html
http://docs.oracle.com/javaee/6/api/javax/servlet/http/HttpServletResponse.html
http://www.it-ebooks.info/

browser into believing the file is not XML. The following code fragment forces an
XML download:

response:stream-binary(
util:string-to-binary(
util:serialize(<Hello/>, 'method=xml"),
'"UTF-8'
)J
'application/octet-stream',
"download.xml'

)

o An XML fragment (here, simply <Hello/>) is forced into a string via
util:serialize.

o This string is then forced into binary data via util:string-to-binary.

 This is passed to response:stream-binary with an Internet media type set to
application/octet-stream.

o A filename (in this example, download.xml) is passed as the preferred filename
for storage (the user can change this).

As a result, the browser sees a binary response, which it cannot display. It therefore
asks the user where it should be stored.

Application Security

Unless you're creating a fully public website, your application will have to deal with
security. Such functionality may include creating and maintaining a user base, man-
aging login and logout, and restricting access to parts of the application to certain
user groups.

The usual way to implement this for an eXist application is to concentrate the secu-
rity checks in the central controller (see “URL Mapping Using URL Rewriting” on
page 194). The controller can check the user’s identity, restrict access, map URLs to
different pages based on the user’s credentials, and more. Because the controller han-
dles it all, your other code can be relatively security-code-free and concentrate on
what it should be doing.

To make this all happen you need some kind of user/group administration system,
and you might be tempted to set up one of your own—just some XML file with users,
passwords, and additional information. There are several functions that take care of
this, allowing users to log in and storing the identity of the current user in the ses-
sion. The application can work with this information when pages are requested to
allow or deny access.

212 | Chapter9:Building Applications

www.it-ebooks.info

http://www.it-ebooks.info/

However, we strongly advise against this approach. eXist already has an excellent
security system that allows you to create users, log them in, organize them in groups,
restrict access to scripts and data based on their credentials, and so on. This security
system and how to work with it are described in detail in Chapter 8.

If you base your application’s security on top of eXist’s security, you have to write,
debug, and maintain less code. It also creates two levels of security:

 Your controller or other parts of your application can work with eXist’s security
settings through functions in the xmldb and securitymanager extension mod-
ules. This allows for programmatically asking questions like “Is this user allowed
to execute this XQuery module?” or “Is the current user allowed to see this data?”
If not, you could redirect the user to the appropriate error or login page.

« On top of that, eXist takes guard. So, if your application is flawed and tries to
access a nonauthorized page or data file, this is simply not allowed.

Therefore, our advice is to base your application’s security on top of eXist’s security.
Here are some tips and tricks:

o Create at least one specific user group for your application, and make all the
application’s users a member of this group. Nonpublic pages and data should be
accessible by members of this group only. You can extend this mechanism with
multiple user groups if your application needs more fine-grained authorization.

o When you log somebody in, check whether this user is a member of the right
user group(s) first! Sometimes you have multiple applications running on the
same server, and you don’t want users of Application A being able to log in to
Application B (and running into trouble afterward because the security settings
won’t allow them to do anything).

Here is little login function that checks whether a user is part of a list of user
groups before attempting the login:

declare function local:login(
Suser-groups as xs:string*,
Suser as xs:string,
Spassword as xs:string
) as xs:boolean
{
let Susers-in-groups as xs:string* :=
for $group in Suser-groups return xmldb:get-users($group)
return
if(empty(Suser-groups) or (Suser = Susers-in-groups)) then
xmldb:login('/db', Suser, $password, true())
else
false()
b

Application Security | 213

www.it-ebooks.info

http://www.it-ebooks.info/

o A handy function for checking the access rights of the current user for a certain
resource or collection is sm:has-access. You can check against a partial mode
string like r-x or x. For instance:

if(sm:has-access('/db/myapp/securepage.xq', 'r-x')) then
(: forward to this page :)

else
(: redirect to error page :)

o There is no explicit logout function. The safest way to log out is to return the cur-
rent user’s identity back to guest and to invalidate the session:

xmldb:login('/db', 'guest', 'guest'),
session:invalidate()

Running with Extra Permissions

You’ve set up an application and paid special attention to security, so when a user
runs an XQuery, it runs with minimum permissions and is not allowed to access
those parts of the database that it doesn’t need to. However, suddenly you realize this
user has to create/update the user base, a global logfile, or some other part of the
database you don’t want to make accessible in normal circumstances. What to do?

This is a frequently occurring problem. Luckily, eXist allows you to switch to another
user for a single XQuery statement (which can, of course, also be a function call, so
you can do whatever complicated stuff you like).

The function call for this is in eXist’s system extension module:

system:as-user($username as xs:string, S$password as xs:string?,
$code-block as item()*) as item()*
system:as-user runs $code-block with the credentials of the given user. It returns
whatever $code-block returns.

So, you set up a user with enough privileges and run the offending command with
system:as-user. For example, the following creates a new user group called
appusers with a member erik:

let Screate-group-result := system:as-user('privuser', 'verysecret',
xmldb:create-group('appusers', 'erik'))

As you probably have noticed, this creates a new security problem: you’ll have to pro-
vide the system:as-user function with the username and password of a privileged
user, so this data must be defined somewhere in your XQuery code or read from a
data file. Unfortunately, there is not (yet) a watertight solution for this. The best you
can do now is store this information somewhere in the database and set the security
measures for the resource as tight as possible.

214 | Chapter9:Building Applications

www.it-ebooks.info

http://www.it-ebooks.info/

Global Error Pages

When something goes wrong, eXist generates an error page with the appropriate
HTTP status code—for instance, a page with status 500 for an XQuery script that
contains an error, or a status 404 for a nonexistent resource. You might want to pre-
vent the user from seeing this and redirect these error responses to some kind of
“Oops, sorry” page.

Unfortunately, eXist has no means of defining these kinds of error pages on an appli-
cation level. You can only define them at the Jetty level, making them global for the
full eXist instance.

To add an error page, edit the $EXIST _HOME/webapp/WEB-INF/web.xml file and
add the following XML fragment as a child of the root web-app node:

<error-page>
<error-code>http-error-code</error-code> (1)
<location>uri-to-error-page</location> (2]
</error-page>

© The error-code element contains the integer HTTP status code you want to
catch (e.g., 500 or 404).

® The location element contains the URL to the page you want to display if such
an error pops up. This must be the part of a valid eXist URL that comes after /
exist. For instance: /rest/db/central/page404.xq.

So, if your web.xml file contains:

<error-page>
<error-code>404</error-code>
<location>/rest/db/central/page404.xq</location>
</error-page>
all responses with an HTTP 404 status code will be forwarded to the page404.xq
script.

Note that you have to restart eXist for the changes to take effect.

Building Applications with RESTXQ

RESTXQ is a standard developed by the EXQuery community that allows you to
declare interactions between HTTP requests and XQuery functions. RESTXQ takes a
very different approach from that of XQuery URL rewriting in eXist, instead using
XQuery 3.0 annotations to declare your HTTP intentions within function declara-
tions. XQuery functions that declare RESTXQ annotations are known as resource
functions due to the fact that they expose some sort of resource over HTTP.

Global ErrorPages | 215

www.it-ebooks.info

http://www.exquery.org
http://www.it-ebooks.info/

RESTXQ was inspired by the JAX-RS specification JSR-311. RESTXQ attempts to be
nondisruptive by allowing you to annotate existing functions, which will then
become HTTP-aware in a web-enabled XQuery processor or continue to work fine in
a standalone processor. While XQuery URL rewriting is specific to eXist, RESTXQ
attempts to create a standard XQuery 3.0 approach to servicing HTTP requests with
XQuery, thereby allowing you to execute your XQuery web applications on any
RESTXQ-compatible XQuery processor.

RESTXQ is a relatively young project: an implementation for eXist started in early
2012, and a beta version became part of eXist 2.0. Progress is still being made toward
a final RESTXQ 1.0 version, but it is already very usable in eXist and many people are
doing so. There are also implementations available in BaseX, Zorba, and MarkLogic.

RESTXQ offers great potential, and need not be solely limited to HTTP in the future;
ultimately, RESTXQ might enable XQuery URL rewriting and the REST Server to be
reimplemented in XQuery as a set of resource functions. Documentation for
RESTXQ is fairly limited at the moment, and the best source of information is most
likely Chapter 4 of the paper “RESTful XQuery” from the conference proceedings of
XML Prague 2012.! Next, we will demonstrate how to make use of the features of
RESTXQ, and you’ll find a more complete example of using it in “RESTXQ” on page
353.

Configuring RESTXQ

RESTXQ monitors the eXist database, and when XQueries are stored that contain
RESTXQ annotations, RESTXQ is configured to route matching HTTP requests to
the identified resource functions. RESTXQ accomplishes this monitoring by means
of a trigger, which is enabled by default on all database collections via the collection
configuration in /db/system/config/db/collection.xconf. You may enable or disable
RESTXQ monitoring by adding its trigger configuration to or removing it from the
configuration for a specific collection. For more details, see “System Collections” on
page 90 and “Database Triggers” on page 449.

1 Adam Retter, “RESTful XQuery: Standardised XQuery 3.0 Annotations for REST,” XML Prague 2012—Con-
ference Proceedings (2012): 91-123.

216 | Chapter9:Building Applications

www.it-ebooks.info

http://archive.xmlprague.cz/2012/files/xmlprague-2012-proceedings.pdf
https://jsr311.java.net/
http://exquery.github.io/exquery/exquery-restxq-specification/restxq-1.0-specification.html
http://www.it-ebooks.info/

RESTXQ maintains a registry of resource functions that it has
detected. In eXist this registry is persisted on disk in the file
$EXIST _HOME/webapp/WEB-INF/data/restxq.registry. You can
see the list of known resource functions by looking in this file or by
executing the XQuery function rest:resource-functions. While
the format of this file is plain text, it is not recommended that you
modify the file manually. However, removing this file when eXist is
not running can be a good way to clear out the RESTXQ registry
during development and testing.

When eXist starts up, RESTXQ reads its registry of known resource functions by
means of a startup trigger (see “Startup Triggers” on page 446), which is enabled
globally by default in $EXIST_HOME/conf.xml. Disabling this startup trigger along
with removing references to RESTXQ from all collection configuration documents
effectively disables RESTXQ in eXist.

All RESTXQ resource functions are relative to an implementation-
defined base URI. In eXist, the default base URI is typically /restxq
(i.e., http://localhost:8080/exist/restxq). You may reconfigure the
base URI by making changes to the forward pattern for Rest
XgServlet in $EXIST_HOME/webapp/WEB-INF/controller-
config.xml. If you wish to map this into an existing domain space,
one option would be to use reverse proxying, as described in
“Proxying eXist Behind a Web Server” on page 207 and “Reverse
proxying” on page 185. This would, for example, allow you to map
http://www.something.com/customer/1234 on to http://localhost:
8080/exist/restxq/customer/1234 (assuming that you have a
resource function with a path annotation like %rest:path("/
customer/{s$id}")).

RESTXQ Annotations

RESTXQ defines a set of XQuery 3.0 annotations that, when added to an XQuery
function, produce a resource function. This resource function can service an HTTP
request and return an HTTP response. The exact mechanics of marshaling and
demarshaling HTTP to XQuery are implementation-specific; RESTXQ just defines
how various HTTP properties should be mapped into and out of an XQuery func-
tion. RESTXQ annotations can be used on any XQuery function; that is, functions in
a main module or library module.

RESTXQ provides two classes of XQuery 3.0 annotations for use on resource
functions:

Building Applications with RESTXQ | 217

www.it-ebooks.info

http://www.it-ebooks.info/

Constraint annotations
Constraint annotations identify and limit the scope of HTTP requests that may
be processed by a resource function. Constraint annotations allow you to specity,
for example, the URI, HTTP method, and Internet media types that your func-
tion is interested in processing.

Parameter annotations
Parameter annotations extract properties of an HTTP request (matching the
constraint annotations) and inject the values as parameters to your resource
function. Parameter annotations allow you to extract parameters from the URI
query, HTTP header, HTTP cookie, and P0OSTed HTML forms.

HTTP method constraint annotations

A resource function may have one or more method constraint annotations. A method
constraint annotation constrains the HTTP methods that a resource function may
process. RESTXQ currently supports the HTTP methods GET, HEAD, POST, PUT, and
DELETE. See Example 9-4.

Example 9-4. Simple resource function that services all incoming GET requests
xquery version "3.0";

module namespace ex = "http://example/restxqg/1";

import module namespace rest = "http://exquery.org/ns/restxq";

declare
%rest:GET @
function ex:not-found() {
<result>The requested page could not be found!</result>

i

©® A RESTXQ resource constraint annotation for the HTTP method GET.

The XQuery in Example 9-4 is perhaps the simplest example of using RESTXQ; it will
simply return a response for any HTTP GET request to eXist’s RESTXQ Server.

By storing the XQuery anywhere in the database and granting it execute rights, you
may then access it by requesting by HTTP GET any URI under http://localhost:8080/
exist/restxq. For example, using cURL:

$ curl -v http://localhost:8080/exist/restxq/any/thing/at/all
results in:

* About to connect() to localhost port 8080 (#0)
* Trying ::1...
* Adding handle: conn: 0x7f8091007200

218 | Chapter9: Building Applications

www.it-ebooks.info

http://www.it-ebooks.info/

Adding handle: send: 0

Adding handle: recv: 0

Curl_addHandleToPipeline: length: 1

- Conn 0O (0x7f8091007200) send_pipe: 1, recv_pipe: 0
Connected to localhost (::1) port 8080 (#0)

GET /exist/restxg/any/thing/at/all HTTP/1.1
User-Agent: curl/7.32.0

Host: localhost:8080

Accept: */*

E I R I

HTTP/1.1 200 OK @

Date: Sun, 20 Oct 2013 13:01:17 GMT

Set-Cookie: JSESSIONID=bzhhe8x66jgblwremvc814vah;Path=/exist
Expires: Thu, 01 Jan 1970 00:00:00 GMT

Content-Type: application/xml (2]

Transfer-Encoding: chunked

Server Jetty(8.1.9.v20130131) is not blacklisted

< Server: Jetty(8.1.9.v20130131)

* AN AN NN AN ANV V V V V

* Connection #0 to host localhost left intact
<result>The requested page could not be found!</result> (3]

@ Note the HTTP response is 200 OK. This is not ideal for when we do not find a
document; 404 Not Found would be more appropriate!

© The response media type is application/xml, which is the default of RESTXQ.

© The result of the XQuery function.

Example 9-4 has some shortcomings, in that it only handles HTTP GET requests, it
returns the wrong HTTP status code when a document is not found, and it assumes
that the client wants an XML response when a document is not found. Example 9-5
shows an improved version.

Example 9-5. Simple resource function that creates an HTML response
xquery version "3.0";
module namespace ex = "http://example/restxq/2";

import module namespace rest = "http://exquery.org/ns/restxq";
declare namespace output = "http://www.w3.0rg/2010/xslt-xquery-serialization";

declare
%rest:GET @
%rest:HEAD
%rest:POST
%rest:PUT
%rest:DELETE
%output:method("html5") (2]

Building Applications with RESTXQ | 219

www.it-ebooks.info

http://www.it-ebooks.info/

function ex:not-found() {
(O
<rest:response>
<http:response status="404"/> (4]
</rest:response>

<html> O
<head><title>Document not found!</title></head>
<body>
<p>Sorry, we could not find the document that you requested :-(</p>
</body>
</html>
)

@ We declare that we wish to process all supported HTTP methods.

©® We use an output annotation to specify that the body of the response should be
serialized as HTML5. Output annotations are part of the RESTXQ specification
and simply provide an annotation syntax for the XSLT and XQuery 3.0 Serializa-
tion specification.

© We start a sequence, which allows us to control the response from RESTXQ and
provide a response body.

We declare that the HT'TP response code should be set to 404 Not Found.

Note the comma that separates the first item in the sequence, which controls the
RESTXQ response, from our response body (the second item in the sequence).

0@ We construct an HTML document for our response body.

Example 9-5 addresses the problems of Example 9-4 by handling all methods and
explicitly defining properties of the HTTP response. We can store it into the data-
base, replacing the first example, and then access it by requesting any URI (by any
HTTP method) under http://localhost:8080/exist/restxq. For example, using cURL:

$ curl -v -X POST http://localhost:8080/exist/restxq/any/thing/at/all

results in:
* About to connect() to localhost port 8080 (#0)
* Trying ::1...
* Adding handle: conn: 0x7f947b007200
* Adding handle: send: 0
* Adding handle: recv: 0
* Curl_addHandleToPipeline: length: 1
* - Conn O (0x7f947b007200) send_pipe: 1, recv_pipe: 0
*

Connected to localhost (::1) port 8080 (#0)

220 | Chapter9:Building Applications

www.it-ebooks.info

http://www.w3.org/TR/xslt-xquery-serialization-30/
http://www.w3.org/TR/xslt-xquery-serialization-30/
http://www.it-ebooks.info/

POST /exist/restxg/any/thing/at/all HTTP/1.1
User-Agent: curl/7.32.0

Host: localhost:8080

Accept: */*

HTTP/1.1 404 Not Found @
Date: Sun, 20 Oct 2013 13:29:14 GMT
Set-Cookie: JSESSIONID=1dkpikriw2zdbrdjfycz9qtaa;Path=/exist
Expires: Thu, 01 Jan 1970 00:00:00 GMT
Content-Type: text/html;charset=UTF-8 (2]
Transfer-Encoding: chunked
Server Jetty(8.1.9.v20130131) is not blacklisted
< Server: Jetty(8.1.9.v20130131)
<
<!DOCTYPE html> ©
<html> @
<head>
<title>Document not found!</title>
</head>
<body>
<p>Sorry, we could not find the document that you requested :-(</p>
</body>
</html>
* Connection #0 to host localhost left intact

* AN AN ANAN AN ANV V V V V

The HTTP response is now 404 Not Found, as declared in our rest:response.

The response media type is text/html, which is set by RESTXQ by default when
an HTML output serialization is declared.

©® The HTML5 doctype has been inserted by the HTML5 output serializer, as
declared by our output:method annotation.

O The response body aspect of the sequence results from our XQuery function.

So far, each of the examples that we have looked at has used simple HTTP requests,
but what happens when a POST or PUT request is received that contains a request
body? If you wish to extract the body of the HTTP request, you can declare this
intention on POST and PUT methods by specifying the name of the function parameter
that the body should be injected into. See Example 9-6.

Example 9-6. Resource function extracting a request body

xquery version "3.0";

module namespace ex = "http://example/restxq/3";

import module namespace rest = "http://exquery.org/ns/restxq";

Building Applications with RESTXQ | 221

www.it-ebooks.info

http://www.it-ebooks.info/

declare
%rest:POST("{$body}") @
function ex:echo(S$Sbody) { (2]
<received>{$body}</received> (3]

3

O We declare that we wish to process only HTTP POST requests, and that any
request body should be extracted and injected into the function parameter
named Sbody.

® This parameter will be set to the value of the request body declared when
invoked by RESTXQ.

© The request body will be output as part of the response.

By storing the XQuery anywhere in the database and granting it execute rights, you
may then access it by requesting by HT'TP POST any URI under http://localhost:8080/
exist/restxq. For example, given the following simple XML file:

<test>123</test>
using cURL to POST the XML file:

$ curl -X POST -H 'Content-Type: application/xml' -d @/tmp/test.xml
http://localhost:8080/exist/restxq/something

results in:

<received>
<test>123</test> (1)
</received>

© Note that the content of test.xml has been received by the server and placed
inside the received element for the response by our XQuery function.

When extracting the HTTP request body for a POST or PUT,
RESTXQ will attempt to automatically process the request body
and provide the correct data type for you. The process for automat-
ically converting the request body is as follows:

1. Is there an HTTP Content-Type header indicating that the
content is of a binary type (looked up in $EXIST_HOME/
mime-types.xml)? If so, return an xs:base64Binary value of
the request body.

2. Try to parse the request body as XML; is it XML? If so, return
it as a document-node() value.

3. Return the body as an xs:string.

222 | Chapter9:Building Applications

www.it-ebooks.info

http://www.it-ebooks.info/

URI path constraint annotation

A resource function may have a path constraint annotation, %rest:path, as shown in
Example 9-7. A path constraint annotation constrains the URI path of an HTTP
request that a resource function may process. The URI path may itself contain tem-
plates that are extracted and injected as parameters to the function. A URI path con-
straint may not be used by itself; it always requires at least one HTTP method
constraint annotation to also be present on the resource function. The URI path is
always relative to the base URI of the RESTXQ Server (see “Configuring RESTXQ”
on page 216).

Example 9-7. Resource function saying hello with URI templating

xquery version "3.0";

module namespace ex = "http://example/restxqg/4";
import module namespace rest = "http://exquery.org/ns/restxq";
declare

%rest:GET

%rest:path("/hello/{Sname}") (1]
function ex:say-hello($name) {

<greeting>Hi there {$name}!</greeting> ©
1

© We declare that we wish to only process paths that start with /hello followed by a
path segment template, which should be extracted and injected into the function
parameter $name.

® This parameter will be set to the value of the URI template declared by
%rest:path when invoked by RESTXQ.

© The value of the path segment will be output as part of the response.
This simple example declares the URI path to service, extracts a single URI segment
using templating, and returns a result showing the value extracted from the URI.

By storing the XQuery anywhere in the database and granting it execute rights, you
may then access it by an HTTP GET to the URI http://localhost:8080/exist/restxq/hello/
myName. For example, using cURL:

$ curl http://localhost:8080/exist/restxq/hello/Liz
<greeting>Hi there Liz!</greeting>

Note the name has been extracted from the URI; changing the last segment of the
URI changes the greeting!

Building Applications with RESTXQ | 223

www.it-ebooks.info

http://www.it-ebooks.info/

URI paths may be much more complicated and have several templates within them;
for example:

%rest:path("/country/{Scountry-code}/organization/{Sorg-id}/person/{$person-id}")

Consumes constraint annotation

A resource function may be constrained by the media types of HTTP requests that it
is willing to process. You can achieve this by using one or more consumes constraint
annotations, %rest:consumes (see Example 9-8). If no consumes constraint annota-
tions are present on a resource function, then the function is assumed to process all
content types. Consumes constraint annotations make the most sense in the context
of POST and PUT requests, where you wish to control the POSTed/PUTed resources that
your resource function processes. A consumes annotation is compared against the
Content-Type header from an incoming HTTP request.

Example 9-8. Resource function restricting request processing by Content-Type

xquery version "3.0";

module namespace ex = "http://example/restxq/5";
import module namespace rest = "http://exquery.org/ns/restxq";
declare

%rest:POST("{Sbody}")

%rest:consumes("application/xml", "text/xml") (1]
function ex:echo($body) {

<received>{$body}</received>

}s

© We declare that we wish to only process incoming HTTP requests that have a
Content-Type of either application/xml or text/xml. You may specify as many
media types as you wish within a consumes constraint annotation, or use multi-
ple consumes constraint annotations.

Produces constraint annotation

The produces constraint annotation, %rest:produces (see Example 9-9), is the
counterpart to the consumes constraint annotation: a resource function may be con-
strained by the media types that a client is willing to accept in an HTTP response. If
no produces constraint annotations are present on a resource function, then the
function is assumed to create a response that is compatible with any client. Produces
constraint annotations are used for content negotiation scenarios, where the client
informs the server which media types it accepts. A produces constraint annotation is
compared against the Accept header from an incoming HTTP request.

224 | (Chapter9:Building Applications

www.it-ebooks.info

http://www.it-ebooks.info/

Example 9-9. Resource function restricting request processing by Accept

xquery version "3.0";

module namespace ex = "http://example/restxq/6";
import module namespace rest = "http://exquery.org/ns/restxq";
declare

("{$body}")

("application/xml", "text/xml")
("application/xml") (1)
function ex:echo(S$body) {
<received>{$body}</received>

}

© We declare that we wish to only process incoming HTTP requests that will
accept a response of type application/xml. You may specify as many media
types as you wish within a produces constraint annotation, or use multiple pro-
duces constraint annotations.

Parameter annotations

RESTXQ provides four different parameter annotations; however, their behavior is
almost identical. It is the source of the parameter extraction that is the main differ-
ence. The annotations are:

Query parameters
%rest:query-param extracts a parameter from the URI query string of the HTTP
request. The value extracted may be an empty sequence (if the parameter is not
present) or a sequence of one or more values, as it is possible to have URI query
parameters with the same name and different values.

Header parameters
%rest:header-param extracts a parameter from an HTTP header of the HTTP
request. The value extracted may be an empty sequence (if the header is not
present), or the value of the header.

Cookie parameters
%rest:cookie-param extracts a parameter from a cookie in the HTTP header of
the HTTP request. The value extracted may be an empty sequence (if the cookie
is not present), or the value of the cookie.

Form field parameters
%rest:form-param extracts a parameter from a POSTed or GETed HTML form, so
this can only be used in combination with %rest:POST and/or %rest:GET. The
value extracted may be an empty sequence (if the form field is not present) or a

Building Applications with RESTXQ | 225

www.it-ebooks.info

http://www.it-ebooks.info/

sequence of one or more values, as it is possible to have form fields with the same
name and different values!

All of the parameter annotations have the same two forms:

o %rest:source-param(parameter-name,function-parameter-reference)

o %rest:source-param(parameter-name,function-parameter-reference,
default-value)

The second form allows you to specify a default value to be injected into the named
function parameter in case no matching parameter is available in the HTTP request
(see Example 9-10).

Example 9-10. Resource function extracting request parameters

xquery version "3.0";

module namespace ex = "http://example/restxq/7";
import module namespace rest = "http://exquery.org/ns/restxq";
declare

%rest:GET

%rest:path("/hello") (1)

%rest:query-param("name", "{$name}", "stranger") (2]
function ex:say-hello($name) {

<greeting>Hi there {$name}!</greeting> @
1

© We declare that we wish to only process paths that end with /hello relative to the
RESTXQ base URI.

® We declare that we wish to extract the value of the name URI query parameter
and, if it is not available, to use the default value stranger. We declare that the
value should be injected into the function parameter $name.

© This parameter will be set to the value of the URI query parameter declared by
%rest:path when invoked by RESTXQ.

O The value of the URI query parameter will be output as part of the response.

By storing the XQuery anywhere in the database and granting it execute rights, you
may then access it by an HTTP GET to the URI http://localhost:8080/exist/restxq/hello.
For example, using cURL:

curl -v http://localhost:8080/exist/restxq/hello

226 | Chapter9:Building Applications

www.it-ebooks.info

http://www.it-ebooks.info/

results in:
<greeting>H1 there stranger!</greeting>

Note that the default value of stranger is provided in the response because we did
not specify a name URI query parameter.

Alternatively, the following:

curl -v http://localhost:8080/exist/restxq/hello?name=Adam
results in:

<greeting>H1 there Adam!</greeting>

A more complete example of using RESTXQ can be seen in “RESTXQ” on page 353.

RESTXQ XQuery Extension Functions

RESTXQ attempts to take a minimal approach to providing extensions to XQuery, so
it currently defines only three external XQuery functions:

rest:base-uri() as xs:anyURI
Returns the base URI of the RESTXQ Server

rest:uri() as xs:anyURI
Returns the URI of the HTTP request that led to the resource function being
invoked

rest:resource-functions() as document-node(element(rest:resource-
functions))
Returns an XML document describing the resource functions that are known to
the RESTXQ Server

Packaging

Once an application or library is finished, there is often a need to distribute it to oth-
ers. For instance, something for the public should be easily distributable to and
installable by everyone who wants to download and use it. Likewise more often than
not, private applications need some kind of distribution too—for instance, moving
from a development server to the test server, and after that to production.

To aid in this, eXist can work with packages. A package is an application (or library)
bundled into a single archive ZIP file, together with machine-processable informa-
tion on how to distribute and install it. You can work with packages through eXist’s
Package Repository, a core component of eXist since version 2.0. The Package Reposi-
tory can install/uninstall, update, and launch packages.

Packaging | 227

www.it-ebooks.info

http://www.it-ebooks.info/

eXist also contains an extension module, for use from within your XQuery scripts for
working with the repository (see repo). Most of the time, however, you will work
with the Package Repository through its user interface, the Package Manager
(Figure 9-3), which is available through the dashboard.

&j @ all T installed © available show details [
My betterFORM Feature Explorer
1
'E Version: 1.1
- XSLTForms Files ‘
,'."".o'- Version: 565
eXist-db Demo Apps \
Version: 0.2.5
e g? Shared Resources: jquery, dojo, ace .. \
.;"'.‘-'. Version: 0.2.2
e et XSLTForms Demo \
.,‘."".o'-. Version: 0.1.2
T | XQuery Function Documentation ﬁ
«|]

Figure 9-3. The eXist Package Manager

This whole packaging idea is based on the EXPath packaging system. This specifica-
tion was designed to work across different XQuery implementations and is targeted
at managing extension libraries (including XQuery, Java, or XSLT code modules).
eXist extends this by adding a facility for the automatic deployment of entire applica-
tions into the database.

eXist packages come in two categories:

Applications
An application is anything with a web interface. It will produce a tile on the
dashboard and will start when the user clicks the tile.

228 | Chapter9:Building Applications

www.it-ebooks.info

http://expath.org/modules/pkg/
http://www.it-ebooks.info/

Library packages
Library packages contain data, libraries, or resources used by other packages.
They can also contain Java JAR files to load into eXist’s classpath.

You might not have realized it, but you've used the result of the packaging system
already quite intensively: most dashboard applications are packages. When you
browse through the list of installed packages, you'll likely recognize some of them
from the dashboard.

Examples

We need not provide you with extensive examples of packages in this section,
because there are many practical examples already in existence that you can learn
from:

o The example code for this book is distributed as a package, and you can look
inside the package file or at the installed version in the database (in the /db/apps/
exist-book collection) to see how it is structured. Besides examples of all the pack-
aging configuration files, there is some interesting code in the installer subcollec-
tion also.

o The directory $EXIST HOME/webapp/ WEB-INF/data/expathrepo holds the
unpacked files of each installed package and is a good source of varied examples.

The Packaging Format

An eXist/EXPath package is a ZIP archive file, containing all the package’s resources
in directories which follow their collection structure. The file extension is, by conven-
tion, not .zip but .xar.

The root of the archive contains some packaging configuration files:

expath-pkg.xml
The standard EXPath descriptor file. It contains information on things like the
package’s name, version, and dependencies. See “The expath-pkg.xml file” on
page 230.

repo.xml
The eXist-specific deployment descriptor file. It contains additional metadata
and controls how the package will be deployed into the database. See “The
repo.xml file” on page 231.

exist.xml
An eXist adaptation for loading extension modules written in Java. For more
information about this, refer to the Package Repository documentation (available
through the dashboard’s Function Documentation browser).

Packaging | 229

www.it-ebooks.info

http://www.it-ebooks.info/

The expath-pkg.xml file

The eXist-specific version of the EXPath descriptor file expath-pkg.xml is as follows.
The full definition of expath-pkg.xml offers some further options, but these are cur-
rently ignored by eXist:

<package xmlns = "http://expath.org/ns/pkg" o
name = uri
abbrev = string (3]
version = string (4]
spec = "1.0" > (5]
title
dependency*
xquery*
</package>

O An expath-pkg.xml file is an XML document whose content is in the http://
expath.org/ns/pkg namespace.

name is a URI which is used to globally and uniquely identify the package.

abbrev contains a short abbreviation for the package. Since the Package Manager
uses this for filename creation, it is best to choose something without spaces
and/or punctuation characters.

O version contains the version number or name of the package. To allow the Pack-
age Manager to work with this to its fullest extent, you should use what is called
the semantic version number format: x.y.z (where x, y, and z are integers; e.g.,
1.2.3). See also the upcoming description of the dependency element.

@ spec is the version of the EXPath specification and always contains, for now, 1.0.
The child elements of the package root element are:

title
The title element contains a descriptive title of the package. This is what will be
displayed to the user in the dashboard.

dependency

The dependency element defines other packages that this package is
dependent on:

<dependency package = uri

version = string
OR
semver = string
OR

230 | Chapter9:Building Applications

www.it-ebooks.info

http://www.it-ebooks.info/

semver-min = string
semver-max = string
/>
The package attribute holds the URI of a package that this package depends
upon (the value of the necessary package’s name attribute from its
expath-pkg.xml).

You can specify the version in one of three ways:

o Define the absolute version of the dependency with the version attribute.

o Define the version of the dependency in semantic version number format
(x.y.z) using the semver attribute. This allows the packaging system, for
instance, to select the highest version within a release (e.g., semver="1.2"
will satisfy all versions starting with 1.2, like 1.2.3,1.2.16, etc.).

o Use one or both of the semver-min and semver-max attributes to set the min-
imum and maximum version number of the dependency using semantic ver-
sion number format (x.y. z).

Using the semantic version number format is highly recommended.

xquery
Use the xquery child element to register one or more library modules with eXist.
These modules then become globally available for your XQuery scripts, and your
code or other packages can use them without knowing where they are stored. In
other words, you don’t have to use the at clause within the import module decla-
ration for this module in your XQuery script’s prolog:
<xquery>
<namespace>namespace of xquery module</namespace>
<file>filename without path of xquery module</file>
</xquery>
For a package library module like this, the XQuery module itself must be stored
in the /content subdirectory of the package.

The repo.xml file

The repo.xml file contains additional metadata which eXist uses to determine how to
install and present the package:

<meta xmlns = "http://exist-db.org/xquery/repo" > (1)
description
author+
website
status
license
copyright
type 9

Packaging | 231

www.it-ebooks.info

http://www.it-ebooks.info/

target (4]

prepare (5]

finish

permissions (6]
</meta>

A repo.xml file is an XML document whose content is in the http://exist-
db.org/xquery/repo namespace.

Child elements description, author, website, status, license, and copyright
contain additional (string-type) metadata about the package.

The type childelement tells eXist what kind of package this is. It contains either
the value library or the value application.

The target child element tells eXist where to store the package in the database.
This must be a relative path, and eXist prepends this with the root collection
where the repository manager stores installed packages. This is, by default, /db/
apps. So, a package with <target>xyz</target> specified in repo.xml will be
stored in /db/apps/xyz.

If you want to change this root directory, you can find its defi-
nition in $EXIST _HOME/conf.xml: <repository root="/db/
apps"/>.

The prepare and finish child elements can contain the name of an XQuery
script that runs before and after the package is installed, respectively. Further
information about these scripts can be found in the next section.

Allowed values are either empty (no script), or a relative filename (relative to the
root of the package). In the past, usually these scripts were called pre-install.xql
and post-install.xql and stored in the root of the package, but you're free to devi-
ate from this convention, and we would now recommend using the .xq file exten-
sions instead (see “XQuery Filename Conventions” on page 13).

The permissions child element sets for which user and under which permissions
the package is loaded:

<permissions user = string
password = string
group = string
mode = string />

« user, password, and group define the ownership of the loaded package files.

232

| Chapter9: Building Applications

www.it-ebooks.info

http://www.it-ebooks.info/

« mode defines the permissions on the loaded files in permission string format (e.g.,
rw-rw-r--). For XQuery files, the x permission will be automatically set in
addition.

In most cases you'll want your package loaded under admin privileges. Since the
Package Manager runs as admin anyway, you don’t have to specify the admin
password. So, the usual contents of the permissions element are:

<permissions user="admin" password="" group="dba" mode="rw-rw-r--"/>

The Prepare and Finish Scripts

In repo.xml, in the prepare and finish child elements, you can define two optional
XQuery scripts that run directly before (preinstall) and directly after (post-install) a
package is installed. Typical tasks for these scripts could include:

o Installing indexing or other definitions in a collection.xconf resource under-
neath /db/system/config. There are two approaches you can take:

— Do this in the preinstall script (before loading the data). The data will then be
indexed on load.

— Do it in the post-install script and programmatically reindex (using the exten-
sion function xmldb:reindex). This is how the package for the book’s exam-
ple files works. There is some generic code for this in the /db/apps/exist-book/
installer/installer.xgqm module that could be reused in other packages if so
desired.

o Creating users and groups for your application (or checking whether they exist).

o Creating data collections and resources outside the application’s collection
structure.

Both the pre- and the post-install scripts can make use of some external variables
whose values will be provided by eXist during execution. The variables available for
you to declare in your query’s prolog are:

declare variable $home external;
declare variable $dir external;
declare variable $target external;

Shome
The directory where eXist is installed (i.e., $EXIST_HOME)

sdir
The directory containing the unpacked version of your packages .xar file

Packaging | 233

www.it-ebooks.info

http://www.it-ebooks.info/

Starget
The collection where your package will be installed

The pre- and post-install scripts can be difficult to debug as their output is not visible
to the end user, and errors are logged only when they are very severe (which usually
isn’t the case). The advice here is to test them standalone (as much as possible) before
you try them out as part of a package install. If you need to see what your scripts are
doing, consider writing some XML to the database from your script to act as a logfile
during execution, or make frequent calls to util: log.

Creating Packages

A .xar file is a ZIP file, so it’s easy enough to create one manually, simply: create the
right directory structure and contents on disk, and then zip it all up.

However, you'll probably create your package when developing inside/with eXist. So,
the collection structure, the code, and the data will initially be inside eXist. To man-
ually create a package, you'll have to export it all to disk, zip it, and so on. Not exactly
impossible; just boring, repetitious work.

There is an easier solution to this, from the dashboard, start eXide. In eXide, open
one of the resources in your package’s home directory (e.g., /db/apps/mypackage/
repo.xml). Choose the menu option Application—>Download App, and voild, you are
presented with your package.

Additional Remarks About Packages

Packages must be developed in such a way that they’re independent of their final
location in the database. So, your application’s code must be able to find out where it
is (the path to itself). There are two ways to achieve this:

e You can use the extension function system:get-module-load-path. Unfortu-
nately for our purposes, this function returns a collection path with the string
embedded-eXist-server prefixed, for instance:

xmldb:exist://embedded-eXist-server/db/apps/myapp/installer/
installer.xgm
To turn this into a usable collection path, you can use this regular expression
code:
replace(system:get-module-load-path(),
'"A(xmldb:exist://)?(embedded-eXist-server)?(.+)$"', '$3')
This code will work even if this strange string should disappear in a future
release.

234 | Chapter9:Building Applications

www.it-ebooks.info

http://www.it-ebooks.info/

o You can also search the repository manager’s root collection for the right pack-
age. Here is an example that returns the path to the book example application:

declare namespace expath="http://expath.org/ns/pkg";

let Sdescriptor := collection(repo:get-root())
//expath:package[@name eq "http://www.exist-db.org/exist-book"]
return
util:collection-name($descriptor)

Packaging | 235

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10
Other XML Technologies

In previous chapters we have focused on eXist combined with XQuery, with only lip
service paid to other XML technologies. But eXist is a full-blown XML application
platform and has many other interesting and useful technologies available. One of its
greatest strengths is the ability to mix and match different approaches, using the right
technology for the problem at hand.

This chapter delves into technologies such as XSLT, XSL-FO, XInclude, XML valida-
tion, collations, and XForms and explains how to use them in eXist.

We do not explain the technologies themselves; that is to say, this
chapter does not contain crash courses on XSLT, Xlnclude,
XForms, and so on. Rather, we assume that if you need one of the
aforementioned technologies, you already know how to use it (or
are able to learn how elsewhere). Only the relationship with eXist is
explained. If you need more information about the technologies
themselves, please refer to “Additional Resources” on page 16.

A notable missing technology in this chapter is XProc. Although eXist does contain
some support for using XProc pipelines, this is still rather experimental and subject
to change. There is a connector to the open source XProc processor XML Calabash
available; see xmlcalabash.

As of early 2014, there is an XProc module under development, but
this will not run on eXist v2.1. You’ll need to wait for v2.2 (or use
the development branch from GitHub) to be able to use it.

237

www.it-ebooks.info

http://xmlcalabash.com/
http://www.it-ebooks.info/

XSLT

XQuery is a powerful language, but there are tasks that can be solved just as well with
XSLT, and sometimes even more easily. For instance, for complex XML transforms
you can either use XQuery (with typeswitch constructions) or XSLT. Whether
transformations are more easily achieved in XQuery or XSLT is a contentious issue,
with many experts firmly preferring one over the other. Fortunately eXist supports
both, so you may decide for yourself which you find easier. The most basic examples
of using XSLT in eXist can be found in “Hello XSLT” on page 33.

For executing XSLT, eXist 2.1 uses Saxon HE (Home Edition) version 9.4.0.7 by
default. If you need to upgrade to Saxon’s commercial PE (Professional Edition) or
EE (Enterprise Edition), you can replace the existing Saxon libraries in
$EXIST_HOME/lib/endorsed with their respective PE or EE counterparts and the
accompanying license file. If you need a different XSLT processor, you can configure
it in $EXIST _HOME/conf.xml.

An important consequence of using an external XSLT processor (and not one that is
truly part of the eXist core) is that XSLT scripts run in isolation from the rest of the
environment. The documents the XSLT processor works on are passed wholesale, but
their database context (most importantly, indexes) is lost. No index-based query opti-
mization is performed. So, be careful in designing the interaction between XQuery
and XSLT: it’s best to leave the querying to your XQuery scripts and use XSLT for
transformation only.

Embedding Stylesheets or Not

Stylesheets can be fully embedded in your XQuery code. Example 10-1 shows an
XQuery script that runs an embedded stylesheet for checking the XSLT system prop-
erty information (and can find out whether the Saxon version changed in the eXist
version you're using).

Example 10-1. Get the XSLT processor information
xquery version "1.0" encoding "UTF-8";
declare option exist:serialize "method=html media-type=text/html indent=no";
declare variable $page-title as xs:string := "XSLT processor information";
declare variable $xslt as document-node() := document {
<xsl:stylesheet version="2.0" xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"

xmlns:fn="http://www.w3.0rg/2005/xpath-functions"
exclude-result-prefixes="#all">

238 | Chapter 10: Other XML Technologies

www.it-ebooks.info

http://www.saxonica.com
http://www.it-ebooks.info/

<xsl:variable name="SystemProperties" as="xs:string+"
select="("'xsl:vendor',
'xsl:vendor-url',
'xsl:product-name',
'xsl:product-version')"/>
<xsl:template match="/">
<XsltInfo>
<xsl:for-each select="$SystemProperties"s>
<Info property="">
<xsl:value-of select="system-property(.)"/>
</Info>
</xsl:for-each>
</XsltInfo>
</xsl:template>

</xsl:stylesheet>

b
<html>
<head>
<meta HTTP-EQUIV="Content-Type" content="text/html; charset=UTF-8"/>
<title>{Spage-title}</title>
</head>
<body>
<h1>{$page-title}</h1>

{
for $info in transform:transform(<dummy/>, S$xslt, ())//Info
return
{string($info/@property)} = {string($info)}</1i>
}

</body>
</html>

Note the double curly braces in the XSLT stylesheet in <Info prop
erty="">. This is because we want to use the XSLT attribute-value
template mechanism here, but if we use a single curly brace,
XQuery kicks in and tries to interpret the contents as an XQuery
expression. You can work around this by using double curly
braces, which are passed as single curly braces to the XML docu-
ment we're defining.

We embedded the XSLT stylesheet in our XQuery script here to show you how this
works. This is useful for small scripts, but if your XSLT is longer, it is better to store it
in a resource of its own and reference it (see “Invoking XSLT with the Transform
Extension Module” on page 240 for details). There are also other advantages to not
embedding XSLT within your XQuery:

XSLT | 239

www.it-ebooks.info

http://www.it-ebooks.info/

o Most XML IDEs provide content suggestion/completion when editing XSLT
stylesheets (e.g., by proposing elements or showing function declarations). If you
write your stylesheet embedded in an XQuery script, the IDE most likely cannot
provide such help due to the mixed-content model.

o When your code becomes sufficiently complex, you will probably want to test the
stylesheet separately from the surrounding XQuery code. This is much easier
when the stylesheet is a separate resource; for example, you may want to use
XSpec to execute your stylesheet against a series of behavior-driven development
(BBD)-style tests.

o When your stylesheet is separate, it is possible to run it through an XSLT debug-
ger when you are trying to diagnose a problem. Such a debugger is available for
Saxon in the oXygen XML Editor.

o Separate XSLT stylesheets can often have their compiled form cached, making
repeated invocations faster.

Invoking XSLT with the Transform Extension Module

Performing XSLT transformations from your XQuery code can be done with eXist’s
transform extension module. For instance:

transform:transform(
<input><text>hello XSLT</text></input>,
'xmldb:exist:///db/myapp/convertinput.xslt',
<parameters><param name="type" value="basic"/></parameters>
)
The first argument is the node tree to transform; the second is the URI or document
element of the stylesheet. The third parameter passes the external parameter
type=basic to the stylesheet (which you can reference in the XSLT with a global
<xsl:param name="type"/>).

The transform extension module offers two approaches for doing a transformation:

transform:stream-transform
Directly streams the result of the transformation to the output stream, returning
the empty sequence (). It is most commonly used as the final transformation
step for converting XML into HTML.

The only thing you’ll see in your output is the output of transform:stream-
transform; everything else is ignored. So, this is usually the last statement in a
script.

240 | Chapter 10: Other XML Technologies

www.it-ebooks.info

https://code.google.com/p/xspec/
http://saxonica.com/
http://www.oxygenxml.com
http://www.it-ebooks.info/

transform:stream-transform works only from within the
REST Server; it does not work in a RESTXQ context. See
“Building Applications with RESTXQ” on page 215.

transform:transform
Passes the result of the transformation back to you as a node tree.

All functions have the same parameter list:

S$node-tree as node()*
The node tree to transform.

At present eXist relies on an external XSLT processor, so the
node tree has to be serialized to a byte stream, passed to the
XSLT processor, and reparsed before it can be processed. This

4 adds some overhead to the transformation and can have an
impact when you’re using XSLT on very large documents
from eXist.

Sstylesheet as item()
The stylesheet to apply. This can be either a node tree containing a valid XSLT
stylesheet, or a URI referencing an XSLT stylesheet. URIs to stylesheets residing
in the database must be specified as XMLDB URIs (ie., start with
xmldb:exist://).

When you’re passing stylesheets by URISs, the stylesheet is cached, speeding up
performance of the invocations that follow.

Sparameters as node()
Optional parameters for the stylesheet, as described in the next section.

$serialization-options as xs:string (optional)
Optional serialization options to apply to the result. Must be in the same format
as the exist:serialize option (refer to “Serialization” on page 115).

There is one additional serialization option: xinclude-path. This specifies the
base path for expanding XIncludes (if any). More information about XInclude
can be found in “XInclude” on page 243.

Passing XSLT Parameters

You can pass (string) parameters to your stylesheet by constructing an XML frag-
ment as follows and passing it as the third argument to the transform function:

XSLT | 241

www.it-ebooks.info

http://www.it-ebooks.info/

<parameters>
<param name="parl" value="value of parl"/>
<param name="par2" value="value of par2"/>
<!-- ...any further parameters -->
</parameters>

You reference these in your stylesheet by specifying global parameters with the same
names. For instance:

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"s>
<xsl:param name="par1"/>
<xsl:param name="par2"/>
<xsl:template match="/">
<p>Values passed were <xsl:value-of select="$parl"/>
and <xsl:value-of select="$par2"/></p>
</xsl:template>
</xsl:stylesheet>

There are two special parameters defined:

exist:stop-on-error
If this parameter is present and set to yes, an XQuery error is generated if the
XSLT processor reports an error.

exist:stop-on-warning
If this parameter is present and set to yes, an XQuery error is generated if the
XSLT processor reports a warning.

Most errors emitted by the XSLT processor are of the category fatal and will stop
the processing anyway.

Invoking XSLT by Processing Instruction

Another way of invoking XSLT is by adding a <?xml-stylesheet type="text/xsl"
href="..."?> processing instruction at the top of your output. The href attribute
should contain a reference to an XSLT stylesheet. Relative names are taken from the
location of the originating XML.

Although normal use for this processing instruction is for triggering client-side XSLT
processing (in the browser), in an eXist context it triggers server-side XSLT process-
ing. This means the client will see the output of the transformation.

There is a nice example of this in the eXist demo application. If you look in /db/apps/
demo/data, you'll find some Shakespeare plays marked up in XML. At the top of
these XML files is the processing instruction <?xml-stylesheet href="shakes.xsl"
type="text/xsl"?>. The same collection holds the referenced shakes.xsl document,
which contains an XSLT stylesheet that renders a play in HTML. See this in action by
browsing to, for instance, http://localhost:8080/exist/rest/db/apps/demo/data/
macbeth.xml.

242 | Chapter 10: Other XML Technologies

www.it-ebooks.info

http://www.it-ebooks.info/

Checking for and invoking an XSLT stylesheet by processing instruction is enabled
by default. You can, however, disable it with serialization options; see “Post-
processing serialization options” on page 120.

Stylesheet Details

Here are some final details about using XSLT from within eXist:

o If you get a puzzling Java NullPointerException when trying to transform
something using a URI for the stylesheet, it probably means that the URI was
incorrect.This rather unspecific error message makes it hard to find out why the
code isn’t working. A common mistake here is to forget to start the URI with
xmldb:exist:// when you want to specify a stylesheet in the database!

o The serialization options set in the XSLT stylesheet itself (with xsl:output) will
not be used.

o xsl:include and xsl:import work as expected. Relative filenames are resolved
against the location of the stylesheet.

o The XPath doc function in a stylesheet works as expected: it loads a document.
Relative paths are resolved against the location of the stylesheet (not the location
of the calling XQuery file). Like in XQuery, doc silently returns an empty
sequence, (), when the referenced document is not an XML file.

o The collection function does not behave as you would expect: it does not
return any direct information about the collections in the database. It can, how-
ever, be used as Saxon intended it. For more information about this, please refer
to the Saxon documentation.

e You can use the XSLT xs1:result-document instruction to create files on the fil-
esystem only; writing to the database (with an XMLDB URI) results in an error.
Relative paths are resolved against $EXIST HOME (so <xsl:result-document
href="test.xml"> will result in a file $EXIST HOME/test.xml, which is proba-
bly not where you want an output file to be written).

XInclude

By default, eXist performs XInclude processing during the serialization phase. In a
nutshell, this means that xi:include elements are replaced with what they refer to
(the namespace prefix xi must be bound to the namespace http://www.w3.org/
2001 /XInclude). XInclude is an official W3C standard.

XlInclude is primarily intended for reusing XML or XHTML code fragments. There-
fore, a use case for XInclude is an application that outputs pages with a fixed menu

XIndude | 243

www.it-ebooks.info

http://saxonica.com
http://www.w3.org/TR/xinclude/
http://www.it-ebooks.info/

and navigation bar: you can insert the XHTML code for these parts using XInclude.
However, in eXist more complicated scenarios are also possible, like including the
output of XQuery scripts, or partial documents.

A first simple XInclude example can be found in “Hello XInclude” on page 35.

XInclude processing is switched on by default. If you want to turn it off, you can do
so by using serialization options; see “Post-processing serialization options” on page
120.

eXist’s implementation of the XInclude standard is not complete. Its limitations are:

o You can’t use it to include raw text. Only XML is supported.

» XPointers are restricted to XPath. Additional features, like points and ranges, are
not supported.

Including Documents

Including a document is easy—just add a reference to it in the href attribute, as in
the following examples:

<xi:include href="includethisxml.xml"/>

<xi:include href="file:///file/from/filesystem.xml" />

<xi:include href="http://somewhere.com/xmlfeed" />
If you don’t include a scheme (like http:// or file://), the document is included
using the same scheme as the master document (either database or filesystem). Rela-
tive paths are resolved from the location of the master document.

You can limit the output of the include by using an xpointer attribute holding a
limited XPointer expression. eXist supports two constructions:

Node identifier
If you only specify the identifier of a node, the output will be limited to that
node. An identifier can be set by an xml:1id attribute or an attribute that is
marked as type ID by an attached DTD. For instance, if we have the document:
<Lines>
<Line xml:1d="L1"sLine 1</Line>

<Line xml:id="L2">Line 2</Line>
</Lines>

Specifying the XInclude as <xi:include href="..." xpointer="L1"/> (assum-
ing the href is correct) will only include the first Line element.

XPath
The other construction supported is passing an XPath expression with the so-
called xpointer scheme. Here are some examples:

244 | Chapter 10: Other XML Technologies

www.it-ebooks.info

http://www.w3.org/TR/WD-xptr
http://www.it-ebooks.info/

<xi:include href="includethisxml.xml" xpointer="xpointer(//Line[1])"/>
<xi:include href="file:///file/from/filesystem.xml"
xpointer="xpointer(//customer[@id eq '123'])"/>

Including Query Results

If the href attribute references an XQuery script stored in the database, the script will
be executed and the results included.

The executing script can get information about the master document with two vari-

ables (you don’t have to explicitly declare them as external unless you wish to):

$xinclude:current-doc
The name of master document without the collection path

S$xinclude:current-collection
The collection for the master document

These variables are implicitly declared by the XInclude processor.
This means that if you want to use the same script outside of the
XlInclude context, you can’t use (reference) them!

Passing your own parameters is also possible. For instance, when you have an XIn-
clude that looks like this:

<xi:include href="script.xq?pari=abcdef"/>

you can reference the parl parameter in your script as $parl by declaring it as an
external variable:

declare variable $parl external;

Limiting the output by using XPointer, as when including documents, is not possible
for XQuery results.

Error Handling and Fallback

If you try to include a resource that doesn’t exist, an error will be generated. You can
prevent this by specifying an xi:fallback element:
<xi:include href="includethisxml.xml">

<xi:fallback><p>XML not found!</p></xi:fallback>
</xi:include>

XIndude | 245

www.it-ebooks.info

http://www.it-ebooks.info/

Validation

Validation involves checking an XML document against a grammar document, like a
DTD (document type definition) or an XML schema, and determining whether it
conforms to this grammar. eXist can validate documents in two ways:

Implicit validation
Validates an XML document when it is stored into the database. Any parsing
error stops the document from being stored.

Explicit validation
Validates documents from within XQuery code, using the validation extension
module.

Implicit Validation

Implicit validation is (if turned on) performed when a document is being stored into
the database. eXist will search for an appropriate grammar document, validate the
incoming XML document against it, and reject or accept the incoming document
based on the validation results. You can turn implicit validation on or off for the full
database or specific collections.

Implicit validation is useful when you want to make absolutely sure that all the stored
content is valid. However, some interesting limitations apply:

o Implicit validation can only be performed using XML schemas or DTDs, and not
for instance with RELAX NG.

o The catalogs used for finding the grammar documents are globally defined for
the entire database. There is no way to use a specific catalog for a particular col-
lection or application.

o You cannot specify that a certain collection should only accept documents vali-
dating against a specific grammar. The only thing you can specify is that the
documents must be valid according to the global set of grammar documents
available in the catalog. So, a scenario forcing a collection to hold, for instance,
only DocBook files is not possible with this mechanism.

This makes implicit validation a somewhat coarse-grained mechanism. However,
there are use cases where it can help make your application more robust, for instance,
when your database is serving a single application and all data files must validate
against a specific set of XML schemas or DTDs.

246 | Chapter 10: Other XML Technologies

www.it-ebooks.info

http://www.it-ebooks.info/

Controlling implicit validation

To turn implicit validation on or off for the full database, you have to edit the
$EXIST _HOME/conf.xml configuration file (and restart eXist afterward). Search for
the following fragment:

<validation mode="no">
<entity-resolver>
<catalog uri="..."/>
</entity-resolver>
</validation>

The mode attribute determines whether implicit validation is on or off. It can have
one of the following three values:

no
Implicit validation is off.

yes
Implicit validation is on. All XML documents are validated and rejected if they
do not pass. If an appropriate XML schema or DTD cannot be found (see “Speci-
fying catalogs for implicit validation” on page 247), the document is rejected also.

auto
Implicit validation is applied only when an appropriate XML schema or DTD
can be found. Otherwise, the document is accepted.

To tune implicit validation for a specific collection (and its subcollections), you have
to do the following:

1. The database has a system collection, /db/system/config. Repeat the database col-
lection structure here, leading up to the collection for which you want to specify
the implicit validation. So, when you want to turn on implicit validation for /db/
myapp/data, create the collection /db/system/config/db/myapp/data.

2. Create an XML file here called collection.xconf with the following contents:

<collection xmlns="http://exist-db.org/collection-config/1.0">
<validation mode="..."/>
</collection>

3. Fill in the appropriate value for the mode attribute, as described earlier.

Specifying catalogs for implicit validation

The validation element in the $EXIST _HOME/conf.xml file also contains the URIs
of the catalog files that eXist uses for implicitly validating documents. A catalog file
specifies:

Validation | 247

www.it-ebooks.info

http://www.it-ebooks.info/

o Mappings from system or public IDs to DTD grammar documents

« Mappings from namespaces to XML schema grammar documents

eXist works with v1.0 OASIS catalog files. For an example, have a look at the default
eXist catalog file in $EXIST_HOME/webapp/WEB-INF/catalog.xml.

Catalog files must be specified in the $EXIST HOME/conf.xml file as in this example:

<validation mode="no">
<entity-resolvers>
<catalog uri="${WEBAPP_HOME}/WEB-INF/catalog.xml"/>
<catalog uri="xmldb:exist:///db/myapp/myapp-catalog.xml"/>
</entity-resolver>
</validation>

All urti attributes must point to valid OASIS catalog files:

« By default, the catalogs are on the filesystem. Use an XMLDB URI (like in the
second catalog element in the preceding example) to specify a catalog that is
stored in the database.

o You can use ${EXIST_HOME} to point to $EXIST HOME and ${WEBAPP_HOME} to
point to $EXIST_HOME/webapp.

Explicit Validation

Explicit validation allows you to perform validation from your code using the valida
tion extension module. eXist provides three different parsers for this:

JAXP
This parser (called JAXP because internally it uses the Java javax.xml.parsers
interface) validates documents using Xerces2. XML schemas (v1.0) and DTDs
are supported through Xerces. Implicit validation uses the JAXP validator.

JAXV
This parser (called JAXV because internally it uses the Java java.xml.valida
tion interface) validates documents using the validation facility built into the
Java standard library. Only XML schemas are supported.

Jing
This validation is based upon James Clark’s Jing parser. It supports XML

Schema, RELAX NG (both full and compact), Schematron (v1.5), and
Namespace-based Validation Dispatching Language (NVDL).

This leaves you with the problem of which one to use. If you are unsure, the general
advice is to use JAXP for XML schema— and DTD-based validation and Jing for all
other types.

248 | Chapter 10: Other XML Technologies

www.it-ebooks.info

https://www.oasis-open.org/committees/entity/spec-2001-08-06.html
http://xerces.apache.org/xerces2-j/
https://code.google.com/p/jing-trang/
http://nvdl.org/
http://www.it-ebooks.info/

Performing explicit validation

You can perform explicit validation using the functions from the validate extension
module. This module has separate functions for all three parsers (JAXP, JAXV, and
Jing).

There are also generic validation functions that try to select the best parser for you,
based on the type of grammar document that you provide. We'll describe these
generic functions here; the functions for the specific parsing types are more or less
the same. For specifics, please refer to the online XQuery function documentation.

There are two generic validation functions:

validation:validate
This will validate your input document and return true or false depending on
the result.

validation:validate-report
This will validate your input document and return an XML fragment describing
the result. Use this if, for instance, you have to provide detailed feedback to the
end user about the validity of some input.

These functions will choose a parser based on the type of grammar document: if this
is a DTD or XML schema, the JAXP (Xerces) parser is used, otherwise Jing is used.

These functions do not produce the correct results for XML where
the root element is not in a namespace. In that case, use the specific
functions instead (e.g., validation:jing-report).

Both functions have the following arguments:

$instance as item()
This is the input document to validate. You can specify either a URI (data type
xs:anyURI), an element, or a document node.

Sgrammar as xs:anyURI
This argument is optional. It is used to determine the grammar document. Speci-
fying the grammar in $grammar can be done in one of four ways:

« If you don’t specify $grammar, the catalogs defined for implicit validation
(see “Specitying catalogs for implicit validation” on page 247) are used.

o If the Sgrammar URI ends with .dtd (DTD), .xsd (XML Schema), .rng
(RELAX NG), .rnc (RELAX NG Compact), .sch (Schematron), or .nvdl
(NVDL), it is assumed to reference a grammar document of that type.

Validation | 249

www.it-ebooks.info

http://exist-db.org/exist/apps/fundocs/index.html?
http://www.it-ebooks.info/

o If the $Sgrammar URI ends with .xml it is assumed to be an OASIS catalog file,
which is used to further determine the grammar document.

o If the Sgrammar URI ends with a /, it is assumed to be the name of a collec-
tion. eXist will search for an appropriate grammar in that collection and its
subcollections.

The report returned by validation:validate-report for a valid document will look
like this:

<report>
<status>valid</status>
<namespace>http://myapp.com/namespace</namespace>
<duration unit="msec">51</duration>

</report>

For an invalid document, it will contain one or more error messages. For example:

<report>
<status>invalid</status>
<namespace>http://myapp.com/namespace</namespace>
<duration unit="msec">6</duration>
<message level="Error" line="10" column="29">

cvc-complex-type.2.4.a: Invalid content was found ...

</message>

</report>

Grammar management in the JAXP (Xerces) parser

This applies to the JAXP (Xerces) parser type only: to speed up validation, grammar
documents are loaded, compiled, and held in the cache. This is usually fine, but there
might be situations where you want a little bit more control over this (for instance,
when you’re developing grammars).

eXist provides the following XQuery functions for working with the grammar cache:

validation:clear-grammar-cache
Clears the grammar cache and returns the number of deleted grammars

validation:pre-parse-grammar
Parses one or more XML schema documents or DTDs and adds them to the
grammar cache

validation:show-grammar-cache
Returns an XML fragment describing the contents of the grammar cache

250 | Chapter 10: Other XML Technologies

www.it-ebooks.info

http://www.it-ebooks.info/

Collations

Collations are the mechanism used for comparing strings. By specifying a collation,
you can make comparing strings language-specific (a.k.a. locale-specific). For
instance, in a default comparison of 'né' with 'ni', 'ni' comes first, because the
Unicode code for an & is greater than the Unicode code for an i. However, if you
compare these words with a collation for a language that uses diacriticals (like Dutch,
German, or French), things get reversed because the & is treated like an e.

Supported Collations

eXist supports the following collations:

http://www.w3.0rg/2005/xpath-functions/collation/codepoint
This is the default collation that uses the Unicode code points. Internally, the
basic Java string comparison and search functions are used.

http://exist-db.org/collation?lang=...&strength=...&decomposition=...
Or for short: ?lang=...&strength=...&decomposition=... (the strength and
decomposition parameters are optional). This specifies a language-specific
collation:

o The lang parameter selects the language using an ISO 639-1 language code
like en, en-US, de, nl-NL, or fr.

You can find out which languages are supported by calling the util:colla
tions extension function.

o The strength parameter value must be one of primary, secondary,
tertiary, or identical.

o The decomposition parameter value must be one of none, full, or

standard.

What exactly these parameters do is a deep and rather separate subject that we’re
not going to handle here. It has to do with the way Unicode is built up, and can-
onization of Unicode accented characters. Most likely, if you don’t know what
this is about, you probably don’t need to. A good place to start looking for more
information is the Unicode site.

Specifying Collations
There are several ways to work with collations:

 You can specify a default collation for your XQuery script in its prolog:

Collations | 251

www.it-ebooks.info

http://www.unicode.org/
http://www.it-ebooks.info/

declare default collation "?lang=de-DE";

o The FLWOR expression’s order by clause has a collation keyword for specify-
ing the collation:
for Sw in $list-of-words
order by $w collation "http://exist-db.org/collation?lang=nl-NL"
return

Sw

o Several functions have collation arguments—for instance, contains and
ends-with.

Lots of standard string functions, like contains and ends-with,

accept an optional third collation parameter. Although you can

certainly use this functionality, it may stop the expression from
. being optimized and indexes from being exploited!

XSL-FO

XSL Formatting Objects (XSL-FO) is an XML vocabulary to transform XML into
formatted media, often PDF. To turn XSL-FO XML into PDF you need an XSL-FO
formatter (or renderer), such as the open source Apache FOP or a commercial one
like Antenna House Formatter or RenderX XEP. eXist has the ability to connect
directly with several XSL-FO renderers. Our examples will use the open source
Apache FOP formatter, but they should work for any formatter supported by eXist.

eXist has standard connectors for the Apache FOP, RenderX, and
Antenna House formatters. You can change formatters by placing
the JAR files in $EXIST_HOME/lib/user and changing the pro-
cessor adapter within the definition of the XSLFOModule module
configuration in $EXIST_HOME/conf.xml.

It is also possible to add support for any third-party FO processor
to eXist by writing a simple SAX adapter in Java that implements
org.exist.xquery.modules.xslfo.ProcessorAdapter and mak-
ing it available on the classpath (e.g, adding it to
$EXIST_HOME/lib/user).

Usually, an (XML) application that wants to present something in PDF creates, from
some data source, the XSL-FO XML. This can be done by XSLT, XQuery, or any
other way you like. The resulting XSL-FO document is then passed to the XSL-FO

252 | Chapter 10: Other XML Technologies

www.it-ebooks.info

http://www.w3.org/TR/xsl/#fo-section
http://xmlgraphics.apache.org/fop/
http://antennahouse.com/product.htm
http://www.renderx.com/tools/xep.html
http://www.it-ebooks.info/

formatter for final processing. If your XSL-FO document doesn’t contain any errors,
a PDF is produced.

Performing the final XSL-FO transformation is trivial. We assume here that the XSL-
FO document creation is already complete and that the final XSL-FO document is
available from somewhere in the database. The following example transforms this
document to PDF and displays it in your browser:

let $xsl-fo-document as document-node() := doc('some-xsl-fo.xml')
let $Smedia-type as xs:string := 'application/pdf'
return

response:stream-binary(

xslfo:render($xsl-fo-document, Smedia-type, ()),

$media-type,

'output.pdf’

)

The xslfo:render function does the trick: it transforms the XSL-FO instructions
into a (binary, xs:base64binary) PDF document and returns this. This is picked up
by response:stream-binary, which sends it to your browser. Because the Internet
media type is set to application/pdf, it will (hopefully) show up as a nicely format-
ted PDF document. There is an example in the accompanying source code (see
“Accompanying Source Code” on page 15) that does exactly this.

The parameters for the xs1fo:render function are:

Sdocument as node()
The XSL-FO document to render.

Smime-type as xs:string
The requested output’s Internet media type. In most cases this will be applica
tion/pdf. Please refer to your XSL-FO formatter’s documentation to find out if
other Internet media types are supported also.

Sparameters as node()
Parameters to pass to the formatter. The format, a parameter element with param
children, is exactly the same as that used for passing parameters to an XSLT
transformation (see “Passing XSLT Parameters” on page 241). Recognized ren-
dering parameters are author, title, keywords, and dpt.

$config-file as node() (optional)
An optional formatter configuration file. Please refer to your XSL-FO formatter’s
documentation for more information about this.

XSL-FO | 253

www.it-ebooks.info

http://www.it-ebooks.info/

XForms

XML Forms (XForms) is an XML standard developed by the W3C to provide the
next generation of forms for the Web: it splits apart the data model from the presen-
tation of that data model, so that you may focus on each independently. XForms are a
major component of XRX web application architectures.

XForms are not freestanding expressions; rather, they must be embedded into a host
document. Originally, XForms were expected to become the forms for XHTML 2.0.
While the XHTML 2.0 Working Group has expired and XHTML 2.0 has been super-
seded by HTML5 and its XHTML expression, the XForms standard is still being
actively developed and of course may be embedded into HTML5 documents as an
alternative or complement to HTML forms.

You may be wondering when you would consider using XForms instead of HTML
forms. Our advice would be to use XForms when you need to collect anything more
than a couple of trivial fields. XForms can provide automated validation and correc-
tion hinting of form values and enable you to collect your form responses into a com-
plex, structured XML document that can be saved directly into eXist and/or further
processed with XQuery or XSLT. One of the great advantages of XForms is that the
same form that is used for collecting data can later be used to edit that data (when
provided with the collected XML document as its instance). Another advantage is
that if your forms need to perform calculations, either for display or within an
instance for submission (such as calculating totals in a spreadsheet), XForms pro-
vides clever dependency rules that enable these values to be automatically recalcula-
ted when a dependency in the graph changes.

There are two main classes of XForms processors:

Server-side processors

A server-side XForms processor renders XForms markup into another form
(such as HTML, CSS, or JavaScript) on demand, when a request for a form is
made to the server. The main advantage of the server-side approach is that you
only transmit a rendered representation of the XForm to the client; you don’t
need to transmit all of the data of the model behind the form. Server-side pro-
cessors often blur the strict client/server boundary, as the JavaScript (or other
code) that some of them generate on the server in fact often runs on the client.

Client-side processors
A client-side XForms processor instead typically operates inside a web browser,
as either a plug-in or a JavaScript library. When the browser receives XForms
markup, the XForms processor modifies the page DOM to enable the browser to
render the XForm as intended and handle interactions and events. The main
advantages of the client-side approach are that you do not require any special
server-side processing, and you distribute the processing of forms to the client.

254 | Chapter 10: Other XML Technologies

www.it-ebooks.info

http://www.w3.org/TR/xforms/
https://en.wikipedia.org/wiki/XRX_(web_application_architecture)
http://www.it-ebooks.info/

This chapter is not a comprehensive explanation of XForms itself, but instead is
meant to show how you can use XForms with eXist. For in-depth information about
XForms, check out Micah Dubinko’s book XForms Essentials (O’Reilly) and Dan
McCreary’s XForms wikibook.

eXist provides facilities for both server-side processing through betterForm, which is
embedded in eXist, and client-side processing through XSLTForms, which is avail-
able as an EXPath package for eXist. We will take a look at how each of these may be
configured and used shortly.

At this point it is also worth mentioning the excellent Orbeon Forms. Orbeon is an
open source (LGPL v2.1-licensed) server-side XForms processor that ships with an
embedded eXist instance. There is also a commercial and supported version available.
One of the major features of Orbeon is that it provides a pipeline language called XPL
that enables you to easily create XForms, deliver them over the Web, and then save
the results into eXist. It is also possible to configure Orbeon to use a separate eXist
server instead of its own embedded instance. Orbeon is a separate project that
deserves a book in its own right, so it will not be discussed further here; however, if
you are interested in XForms and eXist, it is well worth evaluating.

XForms Instances

An XForm may have one or more instances within its model; these instances define
the model aspect of the MVC architecture behind XForms. Simply put, each instance
can be considered a standalone XML document that provides data to the form, for
the purposes of display, capture, or influencing behavior. Ultimately, it is usually an
instance (XML document) that is stored into eXist when the user submits the form.
Typically, in a simple XForm the instances are hardcoded as either documents that
have structure but no content, or documents with content that is to be edited; how-
ever, with eXist, you have several ways to make the instance data available to your
form in a more dynamic manner.

Instances and the REST Server

Each instance within the model of an XForm need not be inlined. Rather, an instance
can be retrieved from an external URI—and what better place to retrieve your XML
instance documents from than a native XML database like eXist?

So, rather than constructing your instance inline like so:

<xf:model>
<xf:instance xmlns="">
<company>
<name>eXist Solutions GmbH</name>
<registration>HRB 89454, Amtsgericht Darmstadt</registration>
<vatId>DE273180763</vatId>
<taxNum>007 232 51397 </taxNum>

XForms | 255

www.it-ebooks.info

http://shop.oreilly.com/product/9780596003692.do
https://en.wikibooks.org/wiki/XForms
http://www.betterform.de
http://www.agencexml.com/xsltforms
http://www.orbeon.com
http://www.it-ebooks.info/

</company>
</xf:instance>

</xf:model>

you could instead store your instance document into eXist and construct your
instance like so:

<xf:model>
<xf:1instance xmlns=
src="http://localhost:8080/exist/rest/db/companies/exist-solutions.xml"/>

</xf:model>

While the end result is the same, there are several advantages to be gained from using
the latter approach:

Content reuse
Your instance data can be reused in different applications, and may not necessar-
ily be exclusive to your XForm.

Security
eXist provides an extensive security system and offers authorization and authen-
tication for resources in the database. Therefore, you can separately manage the
security constraints of your data and your forms, which may have different
requirements.

Architecture
While referencing the URL of the instance still provides a static instance, it is a
pattern that we can reuse to provide a dynamic instance instead.

Instances and XQuery

We have seen how you may request an instance from eXist’s REST Server with
XForms rather than inlining the instance content, but up to this point the instances
have been static. Here we look at generating an instance dynamically using XQuery.

Imagine that in the database we have a collection of XML documents (/db/weather),
one for each day, that describes the weather for that day. In our form we may wish to
display some information about today’s weather. By sending a small piece of XQuery
to the REST Server as part of an HTTP GET request, we can retrieve the correct
weather document for our instance. Such a request to the REST Server may look like:

http://localhost:8080/exist/rest/db/weather?_query=
/weather[@date eq current-date()]

256 | Chapter 10: Other XML Technologies

www.it-ebooks.info

http://www.it-ebooks.info/

An XForms instance declaration to retrieve this instance would then look like
Example 10-2.

Example 10-2. Instance retrieval by query submission

<xf:instance xmlns=
src="http://localhost:8080/exist/rest/db/weather?_query=%2Fweather%5B%40date%20eq
%20current-date()%5D&_wrap=no"/>

In the URL used in the xf:instance/@src we need to URL-encode
the query string parameter for the XQuery used to ensure that it is
correctly transmitted. We have also added the parameter wrap=no,
as we want the matched XML document for our instance; other-
wise, by default it would have been wrapped in an exist:result
element by the REST Server!

See “Querying the database” on page 326 for further information on submitting an
XQuery to the REST Server.

Our next example is a reworking of Example 10-2, but rather than sending the
XQuery to the database, it instead relies on the fact that we have already stored the
XQuery into the database. Doing so allows us to later invoke the query from the
REST Server by URI and have it executed.

So, if you were to store the following XQuery into the database at /db/weather.xq:

xquery version "1.0";

collection("/db/weather")/weather[@date eq current-date()]
An XForms instance declaration to retrieve this instance would then look like
Example 10-3:

Example 10-3. Instance retrieval by stored query

<xf:instance xmlns=
src="http://localhost:8080/exist/rest/db/weather.xq"/>

You have now seen how you can bring in instance data dynamically, but this is really
just scratching the surface of what is possible. You can also send parameters to your
stored XQuery to influence the XML it will produce for your instance. For further
information, see “Executing stored queries” on page 335 and “The request Extension
Module” on page 209. As an alternative to stored query execution via the REST
Server, you could retrieve an instance from a URI provided by a RESTXQ resource
function; for further details, see “RESTXQ” on page 353.

XForms | 257

www.it-ebooks.info

http://www.it-ebooks.info/

It is also possible to dynamically calculate the URI from which to
retrieve instance data. Unfortunately, this cannot be done through
the xf:instance directly, as XPath expressions are not allowed in
the src attribute. However, this is possible through clever use of an
xf:submission and event handling to replace instance content, as
described at https://en.wikibooks.org/wiki/XForms/
Read_and_write_with_get_and_put#Discussion.

XForms Submissions

Typically, you will want to store the completed result of your XForm somewhere,
either for posterity or for further processing. The responsibility of an xf:submission
is typically to submit an instance from the model using a method to a resource. Almost
all XForms implementations support submission by HTTP GET, POST, and PUT, which
is a great fit for use with eXist’s REST Server or RESTXQ APIs. Given that, you can
easily have the result of your completed XForm stored into the database.

Submission to the REST Server

It is relatively trivial to design your XForm to store its result into an XML document
in the eXist database, by simply modifying its xf:submission to HITP PUT the
instance into an XML document in a collection within the eXist database.

For example, the xf: submission shown in Example 10-4, when fired, would place the
result of the XForm into the document /db/registration/result.xml within eXist.

Example 10-4. XForms submission to REST Server

<xf:submission id="s-save" method="put"
resource="http://localhost:8080/exist/rest/db/registration/result.xml"
replace="none">
<xf:action ev:event="xforms-submit-error"s
<xf:message>Registration failed. Please fill in valid values.</xf:message>
</xf:action>
<xf:action ev:event="xforms-submit-done">
<xf:message>You have been registered successfully.</xf:message>
</xf:action>
</xf:submission>

Some advantages of this approach are:

Automatic collection creation
As we are doing an HTTP PUT to the REST Server, eXist will create any collec-
tions that do not yet exist but are required to store the document.

258 | Chapter 10: Other XML Technologies

www.it-ebooks.info

https://en.wikibooks.org/wiki/XForms/Read_and_write_with_get_and_put#Discussion
https://en.wikibooks.org/wiki/XForms/Read_and_write_with_get_and_put#Discussion
http://www.it-ebooks.info/

Create or update
If a document with the same URI does not yet exist in the database, it will be cre-
ated. However, if a document with the same URI is already present, it will be
overwritten with the new instance content.

The major disadvantage of this approach is that we can only create a single document
in the database, when it’s likely we’ll want many users to fill out our form and the
results to be stored into the database and/or further processed. Solving this will be
discussed next.

Submission via XQuery

You have seen how you may store the result of an XForm directly into eXist via the
REST Server without having to know anything more than XForms. However, this
approach is quite limited, so we will now look at submission via XQuery to dynami-
cally store and/or post-process the instance content.

By submitting the instance content to a stored XQuery via the REST Server, we have
the full power of XQuery at our fingertips to help us decide how to then store the
document into the database. Of course, we may also do some post-processing and
assert some control over the result of the XForms submission by having the XQuery
return an appropriate HTTP response to the submission. Now we will look at storing
each instance submission into its own document in the database collec-
tion /db/registration.

Say you create the collection /db/registration, and then store the XQuery shown in
Example 10-5 into the database at /db/registration.xq.

Example 10-5. Submission via stored query
xquery version "1.0";

import module namespace request = "http://exist-db.org/xquery/request";
import module namespace xmldb = "http://exist-db.org/xquery/xmldb";

let $doc-db-uri := xmldb:store @
("/db/registration", (2]
0,0
request:get-data() ‘))
return
<stored> ©
<dbUri>{$doc-db-uri}</dbUri>
<uri>http://{request:get-server-name()}:{request:get-server-port()}
{request:get-context-path()}/rest{$doc-db-uri}</uri>
</stored>

© The XQuery function xmldb:store will store a document into a database collec-
tion in eXist.

XForms | 259

www.it-ebooks.info

http://www.it-ebooks.info/

We specify the collection /db/registration as the first argument to xmldb:store,
which is the collection in which to store the document.

Note that the second argument to xmldb:store is the empty sequence; this tells
eXist that we do not know the name of the document we wish to store. eXist will
create a name for the document on our behalf; a random-number generator is
used and the result is encoded into a hexadecimal string for use as the filename.

The function request:get-data will retrieve the body of an incoming HTTP
POST or PUT request; in this case, it will be the instance content from the XForm.

We return to the XForm submission a simple XML document, which, although
we do not act on it in our form here, could be used for instructing the XForm
further.

An XForms submission declaration to submit the instance to this XQuery would then
look like:

<xf:submission id="s-save" method="post"
resource="http://localhost:8080/exist/rest/db/registration.xq"
replace="none">
<xf:action ev:event="xforms-submit-error"s
<xf:message>
Registration failed. Please fill in valid values
</xf:message>
</xf:action>
<xf:action ev:event="xforms-submit-done">
<xf:message>You have been registered successfully.</xf:message>
</xf:action>
</xf:submission>

260

| Chapter 10: Other XML Technologies

www.it-ebooks.info

http://www.it-ebooks.info/

We use the POST method here for our xf:submission instead of the
PUT method used in Example 10-4 as the REST Server in eXist does
not support stored query execution via HTTP PUT.

The disadvantage of the approach in Example 10-5 is that if the same user completes
the form twice or hits Submit twice, you will end up with two XML documents in the
database collection containing (most likely) the same instance content. There are
many different ways to attack this problem, but they all involve being able to identify
the user. Two possible approaches are as follows:

« Have the user add a uniquely identifiable piece of information to a form field.
When the form is submitted, you can check if this information from the instance
is already present in the database; if so, you can fail the submission by returning
an HTTP 403 Forbidden error code (e.g., response:set-set-status-
code(403)).

o Set up authentication and appropriate permissions, and have the user log in via
XQuery before allowing her to access the XForm. In this way a session will be
created on the server. You can use the username to determine if the user has
already created a document in the /db/registration collection. If she already has a
submission in the collection, simply return a 403 Forbidden response to the
form submission.

In combination with this approach, you could generate the XForm using XQuery
(as simply as calling doc). If the user already has a submission in the collection,
instead of showing her the form, you can display a message or redirect the user to
another page.

For further details on calling stored queries via the REST Server, see “Executing
stored queries” on page 335. As an alternative to stored query execution via the REST
Server, you could instead submit an XForm instance to a URI provided by a RESTXQ
resource function, as discussed in “RESTXQ” on page 353.

XForms | 261

www.it-ebooks.info

http://www.it-ebooks.info/

Submission authentication

So far, all of our submission examples that store or update documents in eXist have
ignored the issue of security (or assume that you have manually authenticated).
Unfortunately, support in XForms 1.1 for authentication is terribly lacking. You
should really be able to do basic HTTP authentication at the very least, but there is no
function in XForms to Base64-encode your authentication credentials. There is func-
tion support in XForms for creating digests, so even better, you would hope that you
could perform HTTP digest authentication. Alas, there is no way to handle the chal-
lenge from the server that provides the nonce that you need to reuse as part of your
digest!

At present there is only one mechanism in XForms that is not eXist-specific and can
be reliably used to authenticate with eXist (see Example 10-6). That mechanism
involves your passing your username and password in clear text as part of the submis-
sion resource URI. Obviously, sending this information in clear text is not at all ideal!
If you are using the betterForm processor because the processing happens on the
server side, this information will never leave your server. However, it is still not ideal,
so for a betterForm-specific solution, see the next section. If you are using the
XSLTForms processor, this information will be sent in clear text, but there is an alter-
native option covered in “XSLTForms” on page 265.

Example 10-6. Statically coded authentication

<xf:submission id="s-save" method="put"
resource="http://username:password@localhost:8080/exist/rest/db/registration
/result.xml" replace="none"/>

Perhaps slightly better is that through the use of an xf:resource element in the
xf:submission, you could dynamically encode the username and password into the
URI from form fields that the user has completed and that are present in an instance.
See Example 10-7.

Example 10-7. Constructed authentication from form

<xf:submission id="s-save" method="put" replace="none"s
<xf:resource
value="concat('http://', instance('auth')/Username,
':', instance('auth')/Password,
'@localhost:8080/exist/rest/db/registration/result.xml')"/>

</xf:submission>

262 | Chapter 10: Other XML Technologies

www.it-ebooks.info

http://www.it-ebooks.info/

betterForm

betterForm is an open source (BSD and Apache2 licensed) server-side XForms 1.1
processor written in Java. To say that betterForm only runs on the server side would
be unfair; the majority of the processing happens server-side, but the server also gen-
erates JavaScript and HTML5 (or XHTML) for the web browser to represent your
XForm UL All UI interaction in the browser and subsequent incremental updating is
processed by JavaScript with Ajax calls back to the server.

betterForm comes already bundled with eXist, and thus there is no installation or
configuration required to start immediately working with XForms using betterForm
and eXist. It really could not be simpler!

How does this work, you ask? The simple explanation is that betterForm acts as a fil-
ter between eXist and all HTTP traffic. If betterForm detects that eXist is returning
an XML document that contains an XForm, it will transparently intercept this and
replace the XForm with an HTML form, CSS, and JavaScript. Likewise, when the
form Ul is interacted with, or instances need to be submitted or updated, betterForm
intercepts these requests to eXist and takes care of processing the state of the XForm
before passing the request on to eXist.

By default eXist and betterForm are configured such that any documents stored into
the database that are delivered over the URI /exist/apps can be intercepted and pro-
cessed by betterForm. Remember that the URI /exist/apps is mapped onto the collec-
tion /db/apps by the XQuery URL rewriting controller (see “The controller-
config.xml Configuration File” on page 206). Therefore, any documents containing
XForms stored into the database collection /db/apps (or a subcollection of it) and
requested by a URI starting with /exist/apps will be processed by betterForm.

Additional Tips for Working with betterForm

Here are some hints and tips for working with betterForm effectively:

* You can change the URI path that betterForm post-processes by adjusting the
XFormsFilter url-pattern in $EXIST _HOME/webapp/WEB-INF/web.xml, after
which you must restart eXist for the change to take effect. For example:

<filter-mapping>
<filter-name>XFormsFilter</filter-name>
<url-pattern>/apps/*</url-pattern>
</filter-mapping>

o Should you wish to entirely disable betterForm post-processing, you may do so
by changing filter.1ignoreResponseBody to true in $EXIST HOME/webapp/
WEB-INF/betterform-config.xml, after which you must restart eXist for the
change to take effect. For example:

XForms | 263

www.it-ebooks.info

http://www.it-ebooks.info/

<property name="filter.ignoreResponseBody" value="false"/>

« If you wish to see what your XForm is doing within betterForm, you can enable
the betterForm debugger. This will add an additional toolbar to your rendered
XForms page, allowing you to introspect the host document, instances, and
events. To enable the debugger, set betterform.debug-allowed to true in
$EXIST_HOME/webapp/WEB-INF/betterform-config.xml, after which you must
restart eXist for the change to take effect. For example:

<property name="betterform.debug-allowed"

value="true"
description="1if true enables debug bar and event log viewer"/>

In addition, if you wish to monitor betterForm on the server and how it pro-
cesses your XForms host documents, you can find its logfile in $EXIST_HOME/
webapp/WEB-INF/logs/betterform.log.

« Since version 2.1 of eXist, betterForm has provided an eXist connector. This con-
nector may be used when you are running betterForm embedded in eXist. The
connector enables betterForm to participate in the current user session of eXist.
Instead of using http:// in the scheme of your URIs for talking to eXist, you can
instead use exist:// and remove the hostname, port, and context from the
URIs. For example, if you previously used http://localhost:8080/exist/
rest/db/registration.xq as the URI for the src of your instance, you could
now instead use exist://db/registration.xq.

There are many excellent betterForm examples at http://demo.betterform.de/exist/
apps/betterform/dashboard.html. In particular, the Feature Explorer is useful for any-
one learning XForms, regardless of whether you are using betterForm.

The source code of a small XForm for capturing details of someone using betterForm
is provided at chapters/other-xml-technologies/better-form/test-xform.xhtml in the
book-code Git repository (see “Getting the Source Code” on page 15).

To use the example, simply store the better-form/test-xform.xhtml document into
the /db/apps collection in eXist. You can then display the form in a web browser by
calling the document from eXist’s REST Server using a URI like http://localhost:8080/
exist/apps/test-xform.xhtml. If all goes well, you should see the result of the XForm
(after being processed by betterForm) rendered in your web browser (see
Figure 10-1).

264 | Chapter 10: Other XML Technologies

www.it-ebooks.info

http://demo.betterform.de/exist/apps/betterform/dashboard.html
http://demo.betterform.de/exist/apps/betterform/dashboard.html
http://demo.betterform.de/exist/apps/betterform/reference/FeatureExplorer.xhtml
http://www.it-ebooks.info/

i; ! ; H @ localhost:B0B0/exist/apps /test-xform.xhtml

First name: Last Name:

email:
|An email address should be|

telephone:

—Mailing Address
Address Line:

| Insert Row | | Delete Row]

Settlement:

County:
|

Postal Code:

Save

Host Document Model:C1 :: Instance:C2 Model:C1 :: Instance:template

=

Figure 10-1. Address XForm with betterForm (debug mode)

XSLTForms

XSLTForms is an open source (LGPL v2.1-licensed) client-side XForms 1.1 pro-
cessor written in XSLT 1.0 and JavaScript. XSLTForms relies on your web browser to
execute the XSLT and JavaScript code that will translate your XForm XML into
HTML that the browser can render and handle interactions and events for.

XForms | 265

www.it-ebooks.info

http://www.it-ebooks.info/

While XSLTForms is described as a client-side processor and this is
most often how it is deployed, it is entirely possible to process the
XSLT part of XSLTForms server-side with eXist. You can do so
either by using an XSLT transformation function from XQuery
(see “XSLT” on page 238), or by using URL rewriting (see http://
www.exist-db.org/exist/apps/doc/xforms.xml#D1.2.5.3). As these
topics are covered elsewhere, they will not be discussed further
here

To install XSLTForms with eXist, you must install the EXPath package provided for
use with eXist via the eXist dashboard. Visit http://localhost:8080/exist/apps/dash-
board/ on your machine, and then install XSLTForms by clicking the Package Man-
ager app and selecting Install for the XSLTForms Files package (see Figure 10-2).

Installing the XSLTForms Files package will download and extract the XSLTForms
EXPath package into a new database collection at /db/apps/xsltforms.

Once the XSLTForms Files package is installed into eXist, you may simply store your
XForm host document into the database (typically, if it is an HTML document, you
should use the .xhtml extension to ensure it is delivered to the web browser with an
application/xml Content-Type) and add the following processing instruction to the
top of it:
<?xml-stylesheet

href="http://localhost:8080/exist/apps/xsltforms/xsltforms.xsl"

type="text/xsl"?>
As opposed to the absolute URI used in the preceding processing instruction, you
may use a relative URIL For example, if you had stored your XForm into a subcollec-
tion of /db, you might use the following processing instruction:

<?xml-stylesheet href="../apps/xsltforms/xsltforms.xsl" type="text/xsl"?>

266 | Chapter 10: Other XML Technologies

www.it-ebooks.info

http://www.exist-db.org/exist/apps/doc/xforms.xml#D1.2.5.3
http://www.exist-db.org/exist/apps/doc/xforms.xml#D1.2.5.3
http://www.it-ebooks.info/

I

Package Manager

% © all© installed ® available show details
‘ ‘ Size: 3170k
g EXPath File Transfer Client Module Implemen‘rotio?\
_;.‘-'.-, Version: 1.1.2
Size: 273k
g Stanford Named Entity Recognition for eXist \
.5-.‘-'.-, Version: 0.2
Size: 61023k
AtomicWiki \
Version: 0.5
Size: 1914k
tgse” % XSLTForms Files \
.5-.'-'-,_ Version: 565
Size: 191k
EXPath Cryptographic Module Demos \
—0 Version: 0.2.6
Size: 52k
‘ nos eXist-db Demo Apps \

Figure 10-2. Package Manager: installing the XSLTForms Files package

Additional Tips for Working with XSLTForms

Here are some hints and tips for working with XSLTForms effectively:

o By default, when directly requesting an XForms host document from the REST
Server, eXist will attempt to process XML stylesheet processing instructions
server-side. You should be able to disable this in $EXIST _HOME/conf.xml by
changing the enable-xsl attribute on the serializer config element (in fact,
the default in eXist is to disable this), but the setting does not seem to currently
affect behavior in eXist 2.1. Alternatively, you may manually disable server-side
processing on a per-request basis via the REST Server by adding ?_xsl=no to the
URI of your XForm.

Likewise, should you wish to generate your XForm using an XQuery, you need to
instruct the serializer not to expand the processing instruction when it serializes
your XQuery by adding the following option to the prolog of the XQuery:

declare option exist:serialize
"method=xhtml media-type=text/xml process-xsl-pi=no";

XForms | 267

www.it-ebooks.info

http://www.it-ebooks.info/

o eXist is configured such that betterForm will automatically try to render any
XForm content serialized from eXist that was accessed via the /exist/apps URI of
the REST Server. To disable this behavior, see “betterForm” on page 263.

o If you wish to see what your XForm is doing in XSLTForms, you can add this
processing instruction below the xml-stylesheet processing instruction in your
XForm host document:

<?xsltforms-options debug="yes"?>

This will enable the XSLTForms debugger, after which launching the Profiler can
be a useful tool for viewing the current state of your model instances (via the
built-in Instance Viewer).

o eXist includes an authentication mechanism that is not specific to XForms but
will work for XSLTForms served from eXist. The approach is for you to create an
XQuery that logs users into eXist using xmldb:login. A user must visit this
XQuery before being served the XForm host document from eXist. In this way
the browser is furnished with an HTTP cookie representing the current user’s
logged-in session, and any submissions subsequently performed by an XForm
within the same session will have the same access rights to the database as that
user would. With this mechanism, there is no need to encode a username and
password into the resource URI of the xf:submission!

Once you have XSLTForms installed and configured, you can simply store your
XForms host documents into the database (typically as XHTML documents) and
request them via the REST Server.

The source code of a small XForm for capturing details of someone using
XSLTForms is provided at chapters/other-xmi-technologies/xslt-forms/test-
xform.xhtml in the book-code Git repository (see “Getting the Source Code” on page
15).

To use the example, simply install and configure XSLTForms as described previously
and then store the xslt-forms/test-xform.xhtml document into the /db collection. You
can then display the form in a web browser by calling the document from eXist’s
REST Server using a URI like http://localhost:8080/exist/rest/db/test-xform.xhtml?
_xsl=no. If all goes well, you should see the result of the XForm (after being processed
by XSLTForms) rendered in your web browser with the XSLTForms debugger
enabled, as shown in Figure 10-3.

268 | Chapter 10: Other XML Technologies

www.it-ebooks.info

http://www.it-ebooks.info/

Ig ! E - @ localhost:B080/exist/rest/db/test-xform.xhtml?_xsl=no
XF: po d by
}) Debug Mode (se65) W3~ 1.:'"'& XSLTForms

Profiler || Trace Log

- agenceXML at Balisage 2013: "My document object model can do more than yours"
(Latest Build: r580: Comments support in XML instances)

Pressl F1 Imtogglemude

First name: [Last Name:|
email:
telephone:| |

—Mailing Address
Address Line: | |

Insert Row [Delete Row
Settlement: |
County:| |
Postal Code:| |

[save |

0 -> Dispatching event xforms-model-construct on

13 -> Dispatching event xforms-model-construct-done on
0 -> Dispatching event xforms-model-construct on

2 -> Dispatching event xforms-model-construct-done on
70 -> Dispatching event xforms-ready on

0 -> Dispatching event xforms-ready on

T —
Figure 10-3. Address XForm with XSLTForms (debug mode)

XForms | 269

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11
Basic Indexing

This chapter will take you into the mysterious and sometimes puzzling world of
database indexes. As soon as your dataset starts growing and performance starts
degrading as a result, indexes become a necessity.

Just for a moment let’s imagine that there are no indexes. This would mean that every
XPath request must be resolved by brute force. So, for a query like //line[@author
eq "erik"], the full document(s) node tree(s) must be traversed to try to find line
elements with an author attribute that matches the value erik. You can probably see
that on a large dataset this could be an intensive, and ultimately a slow, operation. If
you further imagine running many of these queries on demand by your users in par-
allel, things can only get worse!

Of course, indexes come with a cost of their own: when XML documents are created
or updated, the corresponding indexes must be updated too. However, this is gener-
ally not a problem. For most (but not all) applications, updating is a much rarer event
than querying, and the short time lags created by updating the indexes go unnoticed.

Large databases, XML or otherwise, rarely scale well without indexes. Performance
degradation as the dataset grows could be linear, or often worse. Therefore, defining
and tuning indexes is well worth the effort, and often a necessity.

Besides the indexes mentioned here and in Chapter 12, there is also
an index that supports explicit ordering, known as the sort index.
Since this works differently to the indexes described here, it is han-
dled separately in sort.

27

www.it-ebooks.info

http://www.it-ebooks.info/

Indexing Example

For an introduction to the world of indexing, examine the code that accompanies the
book (see “Accompanying Source Code” on page 15)in the folder chapters/indexing,
or in the /db/apps/exist-book/indexing collection if you have installed the XAR pack-
age. The data subcollection contains two XML data files with some old Encyclopedia
Britannica entries. The contents of these files are exactly the same, with the exception
that one is in the tel namespace and the other is not.

For a look at the index definitions for these files, open /db/system/config/db/apps/
exist-book/indexing/data/collection.xconf:

<collection xmlns="http://exist-db.org/collection-config/1.0">
<index xmlns:tei="http://www.tei-c.org/ns/1.0">
<create gname="tel:name" type="xs:string"/>
<ngram gname="tei:p"/>
<lucene>
<text gname="teil:p"/>
</lucene>
</index>
</collection>

This file defines three indexes on data in the /db/apps/exist-book/indexing/data
collection:

o A range index on all tei:name elements in this collection. A range index optimi-
zes searches on the content of elements and attributes.

o An NGram index on all tei:p elements in this collection. An NGram index opti-
mizes searches on substrings within the contents of elements and attributes.

o A full-text index on all tei:p elements in this collection. Full-text indexes opti-
mize searches on words and phrases within the contents of elements and
attributes.

How this works exactly and what index type to use when are handled in this and the
next chapter. The effect, however, of these definitions is that the data in the tet-
namespaced file is indexed, but the (same) data without a namespace is not. This
allows us to easily run the same query over the indexed and nonindexed data and
compare the results.

The test-indexes.xq script does exactly this. It runs a number of queries over the con-
tents of the two files and outputs the results as an XML fragment.

272 | Chapter 11: Basic Indexing

www.it-ebooks.info

http://www.it-ebooks.info/

To show the differences between indexed and nonindexed searches
more clearly (on modern, fast hardware), all searches are repeated
multiple times. If your system is slower or faster than our test sys-
tem, then it could be that the search is too slow or too fast for you.
You can change the number of iterations performed at the top of
the script.

Here is the code fragment that performs the test of the range index:

{

let Sstarttime as xs:time := util:system-time()
let Sresult := for $1 in 1 to $repeats-range

return

for Sn in doc($doc-with-indexes)//tei:name[. eq $phrase-range] return $n

let Sendtime as xs:time := util:system-time()
return

<Result type="1indexed"

time="{seconds-from-duration(Sendtime - S$starttime)}s"/>

let Sstarttime as xs:time := util:system-time()
let Sresult := for $1 in 1 to $repeats-range

return

for $n in doc($doc-without-indexes)//name[. eq Sphrase-range] return $n

let Sendtime as xs:time := util:system-time()
return

<Result type="non-indexed"

time="{seconds-from-duration(Sendtime - S$starttime)}s"/>

Notice that we use util:system-time, not fn:current-time, to
get the start and end time of a piece of code. The XQuery specifica-
tion states that the value of current-time is deterministic through-
out the execution of an XQuery. This means that it will not change
during execution. As we want to measure the difference between
two times to determine how long the query took, we instead use
util:system-time, which is nondeterministic and will always
return the point in time. It is worth noting that all of the date/time
functions within the XPath and XQuery Functions and Operators
specification are deterministic.

If you look at the output from one of our systems for this fragment, the differences
between the indexed and nonindexed versions are rather dramatic:

<Result type="indexed" time="0.011s"/>
<Result type="non-indexed" time="0.782s"/>

Performance with an index is a factor of 71 times faster, and the difference will likely
only increase as more data is added to the system!

Indexing Example | 273

www.it-ebooks.info

http://www.w3.org/TR/xpath-functions-30
http://www.w3.org/TR/xpath-functions-30
http://www.it-ebooks.info/

Index Types

Out of the box, eXist has a number of predefined index types available. This section
will tell you what they are and what they are used for. This is important, because you
have to choose the right tool for the job to get the best results. Configuring and using
these indexes is handled in the sections to come.

You can change the available index types (on the Java level), and even add your own.
However, that’s an advanced subject and not discussed here. Please refer to the online
documentation if you want to know more about this.

Structural Index

eXist’s structural index keeps track of the tree structure of nodes in all XML docu-
ments stored in the database. It indexes all elements and attributes, so that when you
do a query like //title, it can quickly find all of the appropriate title elements.
Indexing is done with the qualified name (or QName) of a node: both the namespace
and the local name are used.

The structural index also automatically indexes identifier attributes. These are
attributes called xml:1d or attributes explicitly marked as of type ID in an attached
DTD.

The structural index is used for resolving nearly all XPath and XQuery expressions.
You can’t configure or disable it, it is an integral part of eXist.

Range Indexes

Although the structural index allows eXist to find nodes by name quickly, it doesn’t
do anything with the actual values of the nodes (except @xml:id). So, a query
like //author[@name="erik'] will be able to find author elements that have a name
attribute quickly, but after that will still have to use brute force to compare the value
of the name attribute with 'erik'. When the database becomes large and the queries
more complex, performance will degrade rapidly.

Range indexes come to the rescue here: these indexes work on the values of nodes,
not their names. The optimizer will use them when you do a =, >, <, etc., comparison
in your XPath expression. They are also used for string comparisons within functions
like contatins and even for regular expression lookups with the matches function.

Range indexes are also useful for nonstring comparisons. You can define the index to
treat the indexed value as, for instance, xs:double, xs:integer, or xs:dateTime (val-
ues that cannot be cast as the specified type are ignored when the index is being cre-
ated). This makes a query like //article[@price gt 100.0] with an xs:double
range index on the price attribute very efficient.

274 | Chapter 11: Basic Indexing

www.it-ebooks.info

http://exist-db.org/exist/apps/doc/devguide_indexes.xml
http://exist-db.org/exist/apps/doc/devguide_indexes.xml
http://www.it-ebooks.info/

Without an index on the price attribute, the syntax for this XPath
has to be //article[xs:double(@price) gt 100.0]. However,
for the index to work, do not add type conversions like xs:double.
Because of the index, type conversions are implicit. Adding one
will actually prevent the index from working.

NGram Indexes

NGram indexes are used to make exact substring searches efficient. For example, if
you often do things like searching for 'def' in 'abcdefghij', an NGram index can
help make this perform faster. NGram indexes retain whitespace and punctuation
and are case-insensitive (index=INDEX=Index). To use an NGram index, you need
the functions from the ngram extension module. Read more about this in “Using the
NGram Indexes” on page 280.

NGram indexes are called “NGram” because values are split into tokens of #n charac-
ters, the so-called n-grams (for background information, see the Wikipedia "n-gram”
article). For eXist » is 3 by default, which, in our experience, provides the best com-
promise between index size and performance. If needed, you can change the value of
n in SEXIST_HOME/conf.xml (search for n="3").

If all your substring searches are looking for words (whitespace-
separated), you're better off using a full-text index, as described
next. However, some non-European languages don’t separate their
words with whitespace; this is where the NGram index comes in
handy.

Full-Text Indexes

eXist’s full-text indexing capabilities allow you to search the text in your documents
for words and phrases using a query language with features like wildcards, fuzzy
matches, and Boolean expressions. When they are used in combination with eXist’s
“keywords in context” (KWIC) capabilities, results can be displayed in an attractive
manner, highlighting the found words within a fragment of surrounding text.

Full-text indexes in eXist are implemented via Lucene, a fast, efficient, and customiz-
able full-text indexer.

Since full-text indexing is a detailed subject, it is handled separately in Chapter 12.

Configuring Indexes

Configurable indexes (i.e., all but the structural index) are defined at the collection
level. This means that specific indexes can be defined for all XML documents in a
certain collection (and any subcollections).

Configuring Indexes | 275

www.it-ebooks.info

http://en.wikipedia.org/wiki/N-gram
http://en.wikipedia.org/wiki/N-gram
http://lucene.apache.org/core/
http://www.it-ebooks.info/

To define indexes for a specific collection (and its subcollections), you need to do the
following:

1. The database has a system collection /db/system/config. Under here, you create a
collection path that reflects the path from the database root (/db) to the collec-
tion that holds the data you wish to index. For instance, if you wanted to create
indexes for /db/myapp/data, you would create the collection /db/system/
config/db/myapp/data.

2. Create an XML file there called collection.xconf with the following basic contents:

<collection xmlns="http://exist-db.org/collection-config/1.0">
<index>
<!-- Index definitions here -->
</index>
</collection>

All elements in the collection.xconf file must be in the http://exist-db.org/
collection-config/1.0 namespace.

3. Add the index definitions as children of the index element (details covered
shortly, and for full text in Chapter 12).

4. If there’s already data in the collection, don’t forget to reindex! See “Maintaining
Indexes” on page 278 for details.

Configuring Range Indexes

You may define range indexes by adding create elements to the index configuration
in collection.xconf. For instance:
<collection xmlns="http://exist-db.org/collection-config/1.0">
<index xmlns:ns1="http://mynamespace"s
<create gname="nsl:article" type="xs:string"/>
<create gname="@price" type="xs:double"/>
</index>
</collection>
This creates a string-type range index on every article element (in the http://myna
mespace namespace) and a double-precision floating-point range index on every
price attribute, for every document in the collection (and subcollections).

The create element must be a direct child of the index element. It takes the form:

<create gname = xs:QName
type = xs:QName />

where:

276 | Chapter 11:Basic Indexing

www.it-ebooks.info

http://www.it-ebooks.info/

« gname holds the qualified name (local name with an optional namespace prefix)
of the element or attribute to index. An attribute must be prefixed with an at
sign (@).

« type contains the data type of the element/attribute to index, expressed as an
XML schema data type. The supported types are xs:string, xs:integer, xs:dec
imal, xs:boolean, xs:dateTime, and all their subtypes.

If the value of the type attribute is invalid, the index configuration
is silently ignored! However, a warning indicating the problem is
written to the $EXIST HOME/webapp/WEB-INF/logs/exist.log
logfile.

Indexing Specific Nodes

There is a second format for defining range indexes: using a path instead of a gname
attribute (e.g., <create path="//nsl:article/@price" type="xs:double"/>). The
path attribute can contain a limited form of XPath expression to specify the nodes to
index; only element and attribute (with @) names, the // and / axes, and the wildcard
* operator are allowed. Predicates are not allowed.

At first sight, this looks like it’s leading to more efficient indexes as you provide the
indexer with a more targeted set of elements/attributes to index, which should in turn
lead to smaller and therefore faster indexes.

Unfortunately, these kinds of indexes make life extremely hard for the query opti-
mizer. An index like this is only valid in certain contexts, and since optimization is
done at compile time, when the context is frequently not yet known, most optimiza-
tion techniques cannot be applied.

Therefore, our strong advice is to stick to range indexes based on qualified names and
not use context-dependent indexing. In most cases, the indexes will be larger but the
queries will still be faster!

Range indexing is done on the text values of the defined nodes. For example, assume
you have a range index defined on title elements and the XML contains:

<title>Books written by <author>Joe Dumb</author></title>

The title range index will be on the concatenated text nodes of title, "Books writ
ten by Joe Dumb".

Range indexes are on the defined node only, though, not on their children. This
means that in the preceding example there is no index on the author element.

Configuring Indexes | 277

www.it-ebooks.info

http://www.it-ebooks.info/

Expressions like //title[author='Joe Dumb'] are evaluated without using any
index. Luckily, nothing stops you from defining an index on both title and author.

Configuring NGram Indexes

You can define NGram indexes by adding ngram elements to the index configuration
in collection.xconf. For instance:

<collection xmlns="http://exist-db.org/collection-config/1.0">
<index xmlns:nsi1="http://mynamespace"s>
<ngram gname="ns1:article"/>
<ngram gname="@price"/>
</index>
</collection>
This creates an NGram index on every article element (in the http://mynamespace
namespace) and on every price attribute, for every document in the collection (and
subcollections).

The ngram element must be a direct child of the index element. It takes the following
form:

<ngram qname = QName [>

where gname holds the qualified name (local name with an optional namespace pre-
fix) of the element or attribute to index. An attribute must be prefixed with an @.

Maintaining Indexes

Once they are defined, eXist automatically keeps all indexes up to date. Adding or
updating documents will automagically update all relevant indexes.

The only time you explicitly have to reindex is when you add or change an index def-
inition for an existing collection. Luckily, this is easy. There are several ways to do
this:

From the eXist client
Start eXist’s Java Admin Client, select the right collection, and choose the menu
command File—>“Reindex collection.”

From the dashboard’s collection browser
Open the dashboard, start the collection browser, select the right collection, and
click the toolbar command “Reindex collection.”

From XQuery code
Use the extension function xmldb: reindex, passing it the URI of the collection to
reindex. Upon completion, it will return true or false.

278 | Chapter 11: Basic Indexing

www.it-ebooks.info

http://www.it-ebooks.info/

Using Indexes

Once they are defined, eXist tries to use the indexes as efficiently as possible, often by
silently optimizing XPath expressions. You can also use them by explicitly calling cer-
tain extension functions. This section will tell you how to get the most out of your
indexes.

Using the Structural Index

The structural index is a core part of eXist and cannot be avoided, even if you want
to. However, the way it is implemented, as an index of qualified names, leads to some
surprising effects. Being aware of this can help you write more efficient code.

When eXist evaluates a query like //title/author, it performs two lookups in the
structural index: all title elements and all author elements (in the full database!). It
then performs a structural join between these sets to determine which author ele-
ments are children of title elements. Because of the way internal node identifiers
are built up (see “Dynamic Level Numbering of Nodes” on page 80), this is extremely
efficient.

As a consequence, some of the common wisdom about XPath may not hold true for
eXist. For instance, more specific queries like /a/b/c/d/e are often presented in text-
books as being more efficient than //e, but since every step in an XQuery expression
would cause eXist to perform a join, the fewer steps the better. In eXist, //e or /a//e
is more efficient than /a/b/c/d/e.

The structural index is also used for looking up identifiers with the id function (find-
ing nodes with a matching xml:id attribute or with a matching attribute that is
explicitly marked as of type ID in an attached DTD).

Using the Range Indexes

Range indexes are used automatically to optimize queries. For this to work, the fol-
lowing conditions must be met:

o The data type of the range index must match the data type used in the query.

For instance, assume you have a range index of data type xs:integer defined on
attribute customerid. A query //Customer[@customerid eq '3456'] will not
use this index because your query uses string comparison. To make use of the
index, you need to rewrite this as //Customer [@customerid eq 3456].

Using Indexes | 279

www.it-ebooks.info

http://www.it-ebooks.info/

When you have an index of the xs:double data type, make sure
your queries actually use doubles. Don’t write //Article[@price
gt 100], but //Article[@price gt 100.0].

+ The query must not depend on the current context item.

For instance, a range index on id attributes will not be used in queries like //
Article[@id eq ../@refid].

Indexes of the xs:string type are also used for queries that include the XPath func-
tions contains, starts-with, and ends-with. However, substring searches like this
are not very efficient with a range index. If you do this frequently, use an NGram
index instead (and don’t forget to use the special ngram extension functions discussed
in the next section to exploit those indexes).

When you're using range indexes, if you perform a query over

multiple collections and not all collections are indexed, or they are

in different indexes, eXist takes the first available index and only
4 uses this. Matches outside this index are ignored.

For instance, assume you have a range index defined on collec-
tion /db/myapp/a but not on /db/myapp/b. Performing a query
over collection('/db/myapp') will return matches from /db/
myapp/a only!

Using the NGram Indexes

NGram indexes are not applied automatically in general comparisons; instead, you
need to use the functions from the ngram extension module to exploit them.

For instance, assume there is an NGram index on Text elements. An NGram query
for 'eXist indexes' might look like this:

//Text[ngram:contains(., 'eXist indexes')]
Remember that NGram indexes are case-insensitive. This means

that all ngram extension functions are case-insensitive too, in con-
trast to their XPath counterparts!

The ngram extension module includes the following functions:

ngram:contains, ngram:ends-with, ngram:starts-with
These work the same way as their XPath counterparts (albeit case-insensitive).

280 | Chapter 11:Basic Indexing

www.it-ebooks.info

http://www.it-ebooks.info/

ngram:wildcard-contains
This allows searching for substrings using a limited regular expression syntax.
Please refer to the function documentation for details.

General Optimization Tips

To round off this section, here are some general tips to help you make the most of
eXist’s optimization techniques and indexes:

Prefer short paths
Because of the way the structural index works, queries like /a/b/c/d are slower
than //d.

Prefer XPath filters over FLWOR where clauses
Don’t use for $n in //e where @id eq 1. Rewrite this as for $n in //e[@id
eq 1]. eXist is much better at rewriting and optimizing predicates than where
clauses.

Reduce the search space as early as possible
If you have an XPath query with multiple predicates, like //Text[contains(.,
'eXist')][@id eq 1], you should put the most restrictive one first. So in this
case (assuming identifiers are unique), //Text[@ld eq 1][contains(.,
'eXist')] will most likely perform better.

Use multiple XPath predicates instead of the and operator
Writing //Text[@id eq 1][contains(., 'eXist')] is better than //Text[@ld
eq 1 and contains(., 'eXist')]. The XQuery optimizer will try to do this
rewriting trick for you, but helping it by explicitly using multiple predicates
won’t hurt.

Use a union operator instead of an or operator
An expression like //Text[@ld eq 1 or contains(., 'eXist')] performs bet-
ter when rewritten as //Text[@id eq 1] | //Text[contains(., 'eXist')].

In all cases, of course, watch out for overdoing it. It’s no use rewriting simple queries
that are already fast and/or work on small datasets. Also, try to remember the old
software engineering gem: maintaining code is usually more expensive than creating
it. Manually rewriting a query to squeeze out every last millisecond of performance
can easily obfuscate its meaning.

Debugging Indexes

Applying indexes can feel a bit unnerving: you've defined them and all seems to be
working, but is this really the case? Are your queries as efficient as you would like
them to be? This can be a hard thing to test, because during development you may

Debugging Indexes | 281

www.it-ebooks.info

http://www.it-ebooks.info/

not have enough data at hand to really see if an index makes any difference at all. To
help you with this, eXist has several ways to ascertain that your indexes are correctly
defined and applied.

When operations designed to exploit indexes don’t seem to be
working as you would expect them to, you can of course always
look in the eXist logfiles for any messages regarding the indexes.

Checking Index Definitions

An index definition is set up in the appropriate collection.xconf file (see “Configuring
Indexes” on page 275). To find out if the index is correctly defined (and you didn’t,
for instance, make any syntactical mistakes), open the dashboard’s Admin Web
Application and select the Browse - Indexes page. There you’ll find an overview of all
the defined indexes per collection. Find your collection in this list and check if the
intended indexes are shown.

For instance, the indexes in the collection for our indexing example (see “Indexing
Example” on page 272) look like Figure 11-1.

5. /db/eXist-book/Basiclndexing/data (View xconf file)

Item Indexed Index Instances Show Index Keys By
tei:name Range QName (xs:string) 4050 Node
tei:p NGram QMame 855 OMame, Node

Figure 11-1. Viewing the index definitions in the Admin Web Application

The links underneath Show Index Keys By provide you with an overview of all the
keys in the index. If you want a fast but database-wide list of index keys for a given

QName, choose “QName.” If you want a collection-specific list of index keys, choose
“Node.”

You might want to check the number of instances in the index. If
this is less than you expect, did you perhaps forget to reindex the
collection after defining the index?

Checking Index Usage

You can check whether an index is used in query optimizations by using the Tooling
- Query Profiling page of the Admin Web Application. Click Enable Tracing and

282 | Chapter 11:Basic Indexing

www.it-ebooks.info

http://www.it-ebooks.info/

then run your queries that you expect to benefit from the defined indexes. Finally,
come back to the admin interface, click Disable Tracing, and go to the Indexes tab.
You should see something like Figure 11-2.

Index Usage Stats

Source Index Optimization Calls Elapsed time in sec.
test-indexes.xqgl [45:49] range Mo index 500 4.395
test-indexes.xgl [37:50] ngram Full 500 0.493
test-indexes.xqgl [18:55] range Full 100 0.004

Figure 11-2. Index usage output

The most interesting entries here are probably the ones marked “No index.” Double-
check these to make sure this value is indeed what you expect, and if not, try to fix
them using the information in “Using Indexes” on page 279.

There is an option on the Query Profiling page called “Write additional info to log.”
If you select this, additional tracing information regarding indexes is written to
$EXIST_HOME/webapp/ WEB-INF/logs/profile.log.

Tracing the Optimizer

If you need to investigate the details of what the optimizer is doing, you can enable
tracing log output. This will give you a detailed list of all the (normally invisible)
decisions and optimizations made.

To enable tracing, change eXist’s root logging level to trace by opening
$EXIST_HOME/log4j.xml and searching for the root element (probably at the bot-
tom of the file). You should see something like this:

<root>
<priority value="info"/>
<appender-ref ref="exist.core"/>
</root>

Change the priority to <priority value="trace"/>, restart eXist, and rerun the
scripts you want to examine. The $EXIST_HOME/webapp/WEB-INF/logs/exist.log

file should now contain lots of detailed information regarding your queries and their
optimizations.

Don’t forget to reset the priority to <priority value="info"/> (and restart) after
you’re done; otherwise, the logfile will quickly fill up your disk!

Debugging Indexes | 283

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12
Text Indexing and Lookup

Besides the “basic” indexing capabilities, as explained in Chapter 11, eXist also sup-
ports full-text indexes based on the Apache Lucene text search-engine library. Lucene
allows eXist to offer search capabilities like looking for words near each other or
words like other words, using Boolean text comparison operators, and more. Full-
text indexes allow you to do much more with your content than you can do using
straight XPath expressions.

If your application needs to support searches based on human input, such as search-
ing documentation or the like, full-text indexes can really help. But things get even
better: on top of the full-text index searches, eXist offers keywords in context (KWIC)
functionality. This makes it extremely easy to display the results of your searches in
context, showing the search results within the surrounding text. We’ll examine this
further in “Using Keywords in Context” on page 297.

Full-Text Index and KWIC Example

The examples for this book include a simple full-text search example. This example
searches, using the full-text index, over some ancient Encyclopedia Britannica entries.
Important components of the example are:

o A full-text index on tei:p elements, defined in /db/system/config/db/apps/exist-
book/indexing/data/collection.xconf:

<collection xmlns="http://exist-db.org/collection-config/1.0">
<index xmlns:tei="http://www.tei-c.org/ns/1.0">

<!-- other indexes -->

<lucene>
<text gname="tei:p"/>

285

www.it-ebooks.info

http://lucene.apache.org/core/
http://www.it-ebooks.info/

</lucene>
</index>
</collection>

o An extremely simple HTML form that allows you to enter a search expression,
in /db/apps/exist-book/indexing/search-demo.xq

o A script that uses this expression to perform a search, in /db/apps/exist-book/
indexing/search-demo-result.xq

If you look at the code in search-demo-result.xq that actually performs the search and
displays the results, there is surprisingly little there:

{
for $hit in doc(Sdoc-with-indexes)//tei:p[ft:query(., $search-expression)] (1)
let $score as xs:float := ft:score($hit)
order by $score descending
return (
<p>Score: {$score}:</p>,
kwic:summarize($hit, <config width="40"/>) (3]
)
}

© First we do a full-text query using the ft:query function on tei:p elements. This
works because we have a Lucene index defined on these elements.

® Then we get the score for every search result using ft:score. This returns a
floating-point number. The higher the number, the more relevant Lucene thinks
the match is. We order the results by score, resulting in the most relevant first.

© The kwic:summarize function has the ability to summarize the search results
with a bit of text before and after the actual match; the second parameter speci-
fies that this must be 40 characters. It outputs an HTML fragment with span ele-
ments with different CSS classes for the trailing part, the match, and the leading
part of the output. You can use this to create pretty layouts for the search results
(as attempted in the example).

If you run the example and search on, for instance, distinguish, the results look like
Figure 12-1.

Configuring Full-Text Indexes

Configuring a full-text index is done in the same collection.xconf document we used
for the other indexes. For more information on where to locate such a document and
its basic syntax, please refer to “Configuring Indexes” on page 275.

286 | Chapter 12: Text Indexing and Lookup

www.it-ebooks.info

http://www.it-ebooks.info/

Search Demo Result
Search expression: distinguish
Results:

Score: 2.088339:

The term is also used to the civil from the ecclesiastical authority i1 ...

Score: 1.3052119:

Two main tendencies the recent development: on the one hand the ...

Figure 12-1. Example output for a search on “distinguish”

The full-text index definition is a child of the index element and, as is true of every-
thing in a collection.xconf file, it is in the http://exist-db.org/collection-
config/1.0 namespace. It has the following structure:

<lucene>

analyzer*

text+

(inline | ignore)*
</lucene>

o The optional analyzer element allows you to change the analyzer class(es)
Lucene uses to analyze the text and/or pass it parameters. This is an advanced
topic, explained in “Defining and Configuring the Lucene Analyzer” on page 298.

o The text element defines which elements/attributes Lucene creates an index for.
See more about this in “Choosing the correct context” on page 288.

o The inline and ignore elements are important when you’re indexing mixed
content. They can be defined either globally (as a child of lucene) or for a spe-
cific text element. Read more about this in “Handling Mixed Content” on page
290.

Configuring the Search Context

The lucene/text element defines the context for the full-text index. This is usually
an element, but could just as well be an attribute. It has the following structure:

<text gname = string | match = string
boost? = float
analyzer? = NCName >
(inline | ignore)*
</text>

Configuring Full-Text Indexes | 287

www.it-ebooks.info

http://www.it-ebooks.info/

« gname is the qualified name of the element or attribute (if you start it with an @
character) for which you want the text to be indexed. It can have a namespace
prefix (which must, of course, be defined).

Examples of gname usage are gname="teil:p", gname="mytextelement", and
gname="@title".

o With match you can define the search context using a limited XPath-like expres-
sion. Only the / and // operators are allowed, plus the wildcard * to match an
arbitrary element.

For instance, match="//tei:div/*" will put a full-text index on all direct child
elements of tei:div.

You may use either a gname or a match attribute, but not both:

o The boost attribute gives you the ability to influence the scoring of matches dur-
ing indexing. It multiplies the default search score with this floating-point value.
There’s more about search scores in “Scoring Searches” on page 296.

o analyzer allows you to change the Lucene analyzer class for this index. This is
explained in “Defining and Configuring the Lucene Analyzer” on page 298.

Additionally, you can define how inline elements must be treated for this particular
index using nested inline and/or ignore elements. This is explained in “Handling
Mixed Content” on page 290.

Choosing the correct context

Defining the correct context for your full-text index is critical. For example, take the
following XML fragment:

<Text>
<Heading>eXist index configuration</Heading>
<Content>eXist index configuration is done in
the collection.xconf file</Content>
</Text>

Assume we’ve indexed this with the following index configuration in collection.xconf:

<lucene>
<text gname="Text"/>
</lucene>
Passed to the indexer is the text value of the nodes identified by the gname attribute.
So, in this example the indexer will see "eXist index configuration eXist index
configuration is done in the collection.xconf file". This is linked to the
Text element only; Lucene preserves no knowledge about the child elements of Text.

288 | Chapter 12: Text Indexing and Lookup

www.it-ebooks.info

http://www.it-ebooks.info/

If you use this configuration, the following query will return the expected Text
elements:

//Text[ft:query(., 'index')]

However, the following query will return nothing (i.e., an empty sequence) because
Lucene has no index on Heading elements:

//Text[ft:query(Heading, 'index')]

Searching only within the contents of headings is often desirable, so you may in fact
want this to work. Luckily, nothing stops you from defining two overlapping indexes:

<lucene>
<text gname="Text"/>
<text gname="Heading"/>
</lucene>

Here is another useful example. Assume we’ve marked up filenames separately, as in:

<Text>
<Heading>eXist index configuration</Heading>
<Content>eXist index configuration is done in the
<Filename>collection.xconf</Filename> file</Content>
</Text>

To give the user the option to search within the full text or within either the filenames
only, we define two indexes:

<lucene>
<text gname="Text"/>
<text gname="Filename"/>
</lucene>

Now the following two queries will return the same Text element, even though the
search context for the second one is much narrower:

//Text[ft:query(., 'collection.xconf')]
//Text[ft:query(Filename, 'collection.xconf')]
Search context and performance

Full-text indexing is an expensive operation and can have a huge impact on the per-
formance of storing and updating documents, so use it wisely.

It's important not to define full-text indexes too broadly. For instance, a classical mis-
take is defining your full-text indexes as:

<text match="//*" [>

This will create an index on all elements anywhere in your document. That may
sound simple and attractive, but it will cost you dearly in terms of performance.
Remember that the index is created over the text contents of a node, so an index on
the root element will index all text in the document. The same is true for all other

Configuring Full-Text Indexes | 289

www.it-ebooks.info

http://www.it-ebooks.info/

elements, so every piece of text is indexed multiple times. Depending on how deeply
the text is nested in the document, this may be slow and create a huge number of
index files.

So, the best strategy for full-text indexes is to define them as narrowly as you can.
And be careful using wildcards, because they can quickly get out of hand!

Handling Mixed Content

You can decide how to handle mixed content by using the inline and ignore ele-
ments. These elements can appear globally (as children of the lucene element) or per
index (as children of the text element). inline also has an effect on how Lucene
treats whitespace. They have the following format:

<inline qname = string />

<ignore gname = string />
gname holds the qualified name (with an optional namespace prefix) of the inline ele-
ment.

Inline content and whitespace

By default, Lucene treats inline elements as token separators, which may or may not
be what you want. For instance, assume we have an XML fragment like:

<p>This is unclear.</p>

Because of the b inline element, Lucene will see this as "This is un clear." (notice
the space between un and clear)—probably not what you intended! To address this,
use an index definition like:

<lucene>
<text gname="p">
<inline gname="b"/>
</text>
</lucene>

Or, if the b element is always an inline element in all other elements of the collections
documents:

<lucene>
<text gname="p"/>

<!-- other text indexes -->

<inline gname="b"/>
</lucene>

290 | Chapter 12: Text Indexing and Lookup

www.it-ebooks.info

http://www.it-ebooks.info/

Ignoring inline content

You can tell eXist to completely ignore inline content by using the ignore element.
This is useful when, for instance, your content contains editorial notes like:

<p>Columbus discovered Finland in 1492
<note>I don't think the year is correct, could someone check this?</note></p>

Ignoring the note elements within the p elements can be done with:

<lucene>
<text gname="p">
<ignore gname="note"/>
</text>
</lucene>

Or, when note should be ignored in all documents in the collection:

<lucene>
<text gname="p"/>
<!-- other text indexes -->
<ignore gname="note"/>
</lucene>

An ignore element only ignores descendants of the indexed element. This means that
a seemingly contradictory index definition like this one is perfectly valid:

<lucene>
<text gname="p"/>
<text gname="note"/>
<ignore gname="note"/>
</lucene>

With this definition, the following query would return nothing:
//p[ft:query(., 'check this')]
But an editor searching on notes within paragraphs would get a result by using:

//p[ft:query(note, 'check this')]

Maintaining the Full-Text Index

Basic maintenance of the full-text index is the same as for the other indexes (see
“Maintaining Indexes” on page 278): once defined, eXist maintains them
automatically for the most part. But when you create a new one or change a configu-
ration, you have to reindex manually.

In previous versions of eXist it was necessary to call ft:optimize
now and then for optimal performance. This is no longer the case.

Maintaining the Full-Text Index | 291

www.it-ebooks.info

http://www.it-ebooks.info/

Searching with the Full-Text Index

Using the full-text index to search for words and phrases is done through the exten-
sion functions in the lucene extension module (see ft). The default namespace prefix
for this module is ft.

Basic Search Operations

The basic function for using full-text indexes is ft:query. We've already seen some
examples of its use in “Full-Text Index and KWIC Example” on page 285. Its full def-
inition is:

ft:query($nodes, $query, [$options])

where:

S$nodes
Contains the node set to search.

$query
Contains the search query. If this is a string, it is assumed to be in Lucene’s native
query syntax (described in the next section). For more complex queries, you may
provide an XML fragment as described in “The full-text query XML specifica-
tion” on page 293.

Soptions
An optional parameter that contains additional query options. See “Additional
search parameters” on page 295.

Lucene’s native query syntax

Lucene has a native query syntax for defining full-text searches. Its full definition can
be found at http://lucene.apache.org/core/3_6_1/queryparsersyntax.html. Here are
some examples:

o exist database searches for text with the terms exist and/or database. This is
equivalent to writing exist OR database.

 You can use wildcards like data* for multiple unknown characters, or database?
for a single unknown character.

o If you want to search on a phrase (multiple words), use quotes: "exist data
base".

e You can also do a proximity searche. "exist database"~10 means that the
words “eXist” and “database” must occur within 10 words of each other.

292 | Chapter 12: Text Indexing and Lookup

www.it-ebooks.info

http://lucene.apache.org/core/3_6_1/queryparsersyntax.html
http://www.it-ebooks.info/

o For a fuzzy search (words like the search term), add a tilde character at the end,
as in database-~.

o Add a + in front of words and phrases that must occur. +exist database means
the text must include the word exist but may include the word database.

o Adda - in front of words and phrases that should not occur in the text.
 Boolean operators (AND, OR, and NOT) are supported.

» You can group expressions using parentheses.

The full-text query XML specification

The ft:query function also accepts an XML fragment that allows you to build a
query using Lucene’s internal API indirectly. The XML is transformed into an inter-
nal representation used by Lucene and then executed. This fragment takes the follow-
ing form:

<query>

(term | wildcard | regex | phrase | near | bool)+

</query>
All subelements accept an optional boost attribute of type xs:float to specify a
boost value for the score (see “Scoring Searches” on page 296). The query element can
contain the following subelements:

o The term element defines a single term to search for. The following example
searches for text containing exist and/or database:
<query>
<term>exist</term>
<term>database</term>
</query>
o The wildcard element is the same as the term element but can contain a wild-
card * or ? operator. To search for all text with words starting with data, use:
<query>
<wildcard>data*</wildcard>
</query>

o The regex element contains a regular expression used for the search.

o The phrase element searches for a group of terms in the correct order. It can con-
tain text (which is tokenized into terms), or a number of term child elements.
The following two examples are equivalent:

<query>
<phrase>exist database</phrase>
</query>

Searching with the Full-Text Index | 293

www.it-ebooks.info

http://www.it-ebooks.info/

<query>
<phrase>
<term>exist</term>
<term>database</term>
</phrase>
</query>

o With the near element, you can build even more specific phrase queries. Its syn-
tax is:

<near slop? = integer

ordered? = "yes" | "no" >
#PCDATA | (term | first | near)+
</near>

— The optional slop attribute allows you to define the “slop” for the matching.
Slop is the maximum number of other words between the words searched
upon.

— The optional ordered attribute defines whether or not the terms must be in
the defined order. The default is "yes".

— If the near element contains character data, this is tokenized. The effect is the
same as using the phrase element with character data.

— Instead of tokenized character data, you can use nested term elements.

— The first element allows you to search against the start of the text. It has an
optional end attribute to specify the maximum distance (in words) allowed
from the start of the text:

<first end? = integer >

#PCDATA | (term | near)+
</first>

— To allow even more complex search expressions, you can nest near elements
within one another, or within first elements.

For instance, the following expression will search for nodes with the word exist
somewhere in the first 4 words of the text and the word database within 10 other
words from this:
<query>
<near slop="10">
<first end="4">exist</first>
<term>database</term>
</query>

o The bool element allows you to combine the other elements into a Boolean
expression. For this, all elements accept an occur = "must" | "should" |
"not" attribute:

294 | Chapter 12: Text Indexing and Lookup

www.it-ebooks.info

http://www.it-ebooks.info/

— "must" means that this part of the query must be matched.

— "should" means that this part of the query should be matched, but doesn’t
necessarily need to be.

— "not" means that this part of the query must not be matched.

For instance, searching for text that contains the term exist but not the term
database can be expressed by:
<query>
<bool>
<term occur="must">exist</term>
<term occur="not">database</term>
</bool>
</query>

Additional search parameters

The optional third parameter to ft:query contains an XML fragment that sets a
number of miscellaneous parameters for the search operation (all elements are
optional):
<options>
<default-operator> or | and </default-operator>?
<phrase-slop> integer </phrase-slop>?
<leading-wildcard> yes | no </leading-wildcard>?
<filter-rewrite> yes | no </filter-rewrite>?
</options>

o The default-operator element sets the default operator with which multiple
terms are combined. The default is or.

o The phrase-slop element sets the maximum distance (measured in words)
between terms within phrases. The default is @.

o The leading-wildcard element sets whether the wildcard characters * and ? are
allowed as the first character of a wildcard expression. The default is no.

o The filter-rewrite element determines how terms are expanded for wildcard
or regular expression searches. If set to yes, Lucene will use a filter to preprocess
matching terms. If set to no, all matching terms will be added to a single Boolean
query, which is then executed. This may generate a “too many clauses” exception
when applied to large datasets. The default is yes.

Searching with the Full-Text Index | 295

www.it-ebooks.info

http://www.it-ebooks.info/

Scoring Searches

Lucene tries to attach a relevance score to the search results. This is always a positive
floating-point number. The higher the number, the more relevant Lucene thinks the
result is. You can retrieve the score for a search result by calling the ft:score func-
tion. Here is an example:

for S$hit in doc('/db/myapp/doc.xml')//p[ft:query(., 'exist database')]
let $score as xs:float := ft:score($Shit)
order by S$score descending
return
(: results code here :)

How exactly Lucene computes these scores is a complex topic in its own right; you
can read more about the specifics of Lucene’s approach here: http://
lucene.apache.org/core/3_6_1/scoring.html. In many cases, the specifics are not
important; it is enough to trust that the Lucene score is a good approximation of
what we, mere humans, consider relevant.

Locating Matches

When you perform a full-text search like //p[ft:query(. 'database')], the results
you get are the matching p elements. Some applications, however, need to know
where in the text of the resulting elements the actual matches were. For example, if
you offer a documentation search, it would be nice to show in the results which
pieces of text matched the query.

Although used mostly for full-text search results, locating matches
also works for NGram search results.

To enable this, eXist not only returns the results of the query, but also invisibly
remembers where the matches were. Nothing happens if you don’t use this informa-
tion, but if you need it, it’s there.

As an example, let’s assume we’ve done a full-text query on the word database that
resulted in a single p element:

<p>eXist is a native XML database.</p>

To find out where the matches were, you can call the extension function util:expand
on the search result. This will wrap the matches in exist:match elements (the exist
namespace prefix is bound to http://exist.sourceforge.net/NS/exist). A call to
util:expand on this search result would therefore return:

296 | Chapter 12: Text Indexing and Lookup

www.it-ebooks.info

http://lucene.apache.org/core/3_6_1/scoring.html
http://lucene.apache.org/core/3_6_1/scoring.html
http://www.it-ebooks.info/

<p>eXist is a native XML <exist:match
xmlns:exist="http://exist.sourceforge.net/NS/exist">
database</exist:match>.</p>

By default, util:expand will also expand any XIncludes (xi:include elements; see
“XInclude” on page 243) in the search result. If you don’t want XInclude expansion,
you can specify an optional second argument to the function, which accepts serializa-
tion parameters (as defined in “Serialization Options” on page 119) that you can use
to control this.

Using Keywords in Context

As we saw in the previous section, eXist remembers where the matches were for full-
text (and NGram) queries. This allows you to use a feature called “keywords in con-
text,” or KWIC, that can show these matches to the user, surrounded by limited parts
of the text. If you followed the example explained in “Full-Text Index and KWIC
Example” on page 285, you've seen this in action already.

You can generate KWIC output using the kwic extension module. This is an XQuery
module, and thus (as fully explained in Chapter 7) you’ll have to import it explicitly
in your query’s prolog:

import module namespace kwic="http://exist-db.org/xquery/kwic";

If you look at the documentation for the kwic module, you'll see lots of functions;
most of these, however, are internal.

The easiest way to use the kwic module is by calling kwic:summarize on a search
result. This will return the matches, surrounded with customizable chunks of text, in
HTML, ready for display. To find out where these matches are, it uses the match
locating functionality as explained in “Locating Matches” on page 296. We’ve already
seen this in action, in the example at the beginning of this chapter.

The full definition of the kwic:summarize function is:
kwic:summarize($search-result, $options)

The Soptions parameter accepts a small XML fragment that allows you to customize
the function’s behavior:
<config width = integer

table? = "yes" |
1ink? = string />

no

« width (mandatory) tells KWIC how much text (expressed in characters) to keep
before and after the match.

o Omitting table or setting it to "no" causes the output to be wrapped in a p
element:

Using Keywords in Context | 297

www.it-ebooks.info

http://www.it-ebooks.info/

<p>
<span class="previous"s... text before the
match
 and after the match...

</p>
Setting table to "yes" causes the output to be returned in an HTML table row
format:
<tr>
<td class="previous"s... text before the </td>

<td class="hi"s>match</td>
<td class="following"> and after the match...</td>
</tr>

o If you specify 1ink, the match will be enclosed in an a element with the value of

this attribute as its target. For example, specifying link="otherpage" will change
the output for the match to:

<a href="otherpage"smatch

Defining and Configuring the Lucene Analyzer

Lucene allows its users to specify how text is analyzed. Analyzers are Java classes,
with each one defining a different way of tokenizing and/or filtering text. There are
several prebaked analyzers available. If you're indexing a language other than English,
it might be worthwhile to change the analyzer to one especially tailored for your lan-
guage. Other reasons might include changing the list of stopwords (words ignored by
the analyzer).

A list of available analyzers can be found in the Lucene JavaDocs the list of direct
subclasses here tells you which analyzers are available.

By default, eXist uses the standard analyzer org.apache.lucene.analysis.stan
dard.StandardAnalyzer. Although called “standard,” it is actually an English ana-
lyzer (and contains a list of the most-often-used English stopwords).

You can define and configure a different Lucene analyzer in the Lucene definition of
the collection.xconf document, as explained fully in “Defining and Configuring the
Lucene Analyzer” on page 298. The analyzer element defines the Lucene analyzer
to use:

<analyzer class = string (1)
id? = NCName > ©
param*
</analyzer>

298 | Chapter 12: Text Indexing and Lookup

www.it-ebooks.info

http://lucene.apache.org/core/3_6_1/api/all/org/apache/lucene/analysis/Analyzer.html
http://www.it-ebooks.info/

© class holds the name of the Java class to use for tokenizing and filtering the text;
for instance, "org.apache.lucene.analysis.WhitespaceAnalyzer".

© id defines the identifier for this analyzer. This is for referencing the analyzer (in

text elements using the analyzer attribute). If you don’t specify an id, this
changes the default analyzer.

An analyzer definition can contain parameters to pass to the analyzer using param
elements. These parameters are passed to the constructor of the analyzer class:

<param name = string
type? = string
value? = string >
value*
</param>

« name is the name of the parameter.

o type is the (Java) type of the parameter. Several types are currently supported:

java.lang.String
A string that may be either a literal value, the name of a class, or the fully
qualified name of an enumeration value, depending on the parameter con-
text.

java.io.File
A path to a file on the filesystem; it must be in the appropriate Java path syn-
tax for the operating system in use.

java.util.Set

Assumed to be a set of java.lang.String. When this is used, we can pro-
vide multiple values; for example:

<param name="stopwords" type="java.util.Set">
<value>and</value>
<value>or</value>
<value>the</value>
<value>a</value>
<value>an</value>
<value>this</value>
<value>there</value>
</param>

java.lang.Integer (or int)
An integer.

java.lang.Boolean (or boolean)
A Boolean.

Defining and Configuring the Lucene Analyzer | 299

www.it-ebooks.info

http://www.it-ebooks.info/

java.lang.reflect.Field
Used to reference a static field from another class. For example, if there were
a static field named STOPWORDS in the class org.something. text.Common:

<param
name="stopwords"
type="java.lang.reflect.Field"
value="org.something.text.CommonStopWords" />

When no type is specified, the default is assumed to be java.lang.String.

o value contains the value of the parameter, using either the <param name="a"
value="b"/> or the <value>a</value> form (when type is a java.util.Set).

If the parameters need more than one value, use embedded value elements instead of
the value attribute (not both).

A simple example of changing the analyzer would be to tell Lucene that the text we’re
going to index is in Dutch:

<lucene>
<analyzer class="org.apache.lucene.analysis.nl.DutchAnalyzer"/>
<text gname="p"/>

</lucene>

For a more advanced example of defining analyzers and passing parameters, we use
the ability of the standard analyzer to define a set of stopwords (as mentioned, these
are words to be ignored, like the, a, an, etc.). The following example changes the
default analyzer and passes it a set of stopwords in a text file:

<lucene>
<analyzer class="org.apache.lucene.analysis.standard.StandardAnalyzer"s
<param
name="stopwords"
type="java.io.File"
value="/usr/local/exist/webapp/WEB-INF/data/stopwords.txt"/>
</analyzer>
<text gname="p"/>
</lucene>

Now assume you need some other element indexed also, but with a much more limi-
ted set of stopwords. This could be accomplished by:

<lucene>

<analyzer class="org.apache.lucene.analysis.standard.StandardAnalyzer"s

<param name="stopwords" type="java.io.File"
value="/usr/local/exist/webapp/WEB-INF/data/stopwords.txt"/>

</analyzer>

<analyzer id="a2"
class="org.apache.lucene.analysis.standard.StandardAnalyzer"s>
<param

name="stopwords"

300 | Chapter 12: Text Indexing and Lookup

www.it-ebooks.info

http://www.it-ebooks.info/

type="java.il0.Set">
<value>the</value>
<value>a</value>
<value>an</value>
</param>

</analyzer>

<text gname="p"/>

<text gname="h1" analyzer="a2"/>

</lucene>

Now the h1 element is indexed with the stopwords the, a, and an only.

Manual Full-Text Indexing

There is yet another way to use the Lucene full-text indexer inside eXist. You can
manually (through your own XQuery code) create an index associated with a
resource in the database. You can then use this index to query the contents of this
resource. Interestingly enough, the resource does not have to be an XML document,
s0, in conjunction with the contentextraction extension module (see contentex
traction), you can create indexes to search binary content!

Here is how it works:

1. For some resource in your database (XML or otherwise), extract (or create) the
text fragments you want to index. For instance, assume we have an XHTML
document for which we want to index all the p and h3 elements. We also want to
be able to search the p and h3 elements separately.

2. Create an XML fragment with root element doc in which you list all these text
fragments and add them to so-called fields. A field can be seen as a subindex on a
document, so in our case we create two fields: one for the h3 elements, called
headers, and one for the p elements, called paras. Here is the code that does this:

declare namespace xhtml="http://www.w3.0rg/1999/xhtml";

let Sresource := '/db/path/to/your/xhtml/document'’
let $index-def :=
<doc>
{
for Sheader in doc(Sresource)//xhtml:h3
return
<field name="headers" store="yes">{ string($header) }</field>
}
{
for $para in doc(Sresource)//xhtml:p
return
<field name="paras" store="yes">{ string($para) }</field>
}
</doc>

Manual Full-Text Indexing | 301

www.it-ebooks.info

http://www.it-ebooks.info/

3.

Call the ft:index function to create the index for this specific resource:
ft:index(Sresource, $index-def)

Now Lucene creates an index with two subindexes (fields). It indexes all the text
fragments passed in the doc/field elements and stores this information, together
with the indexed text (because the store attribute is set to "yes").

If you don’t store the text (by setting the store attribute to "no"), the text is
indexed but cannot be retrieved. The only thing you can do with an index
without stored text is find out whether or not a certain phrase is present; you
can’t get its context.

. Using such an index is done via the extension function ft:search. The search

expression passed must contain the field name as a prefix. So, for instance, to
search the paragraphs for the word eXist, you would do something like this:

ft:search($resource, 'paras:eXist')
Which would return an XML fragment like:

<Indexing file="/db/path/to/your/xhtml/document">
<results>
<search uri="/db/path/to/your/xhtml/document" score="0.5260675">
<field name="paras">Please use
<exist:match xmlns:exist="http://exist.sourceforge.net/NS/exist">
eXist</exist:match>
for storing your information. You know why!
</field>
</search>
</results>
</Indexing>

Information about the meaning of the score attribute can be found in “Scoring
Searches” on page 296.

An interesting use case for this manual index creation is that of indexing binary con-
tent. You do so by first extracting the content from the binary resource using the
contentextraction extension module (see contentextraction), then creating an
index for it as just described. The book’s sample code contains a short example of
how to do this in the chapters/indexing/index-binary.xq file (or in the /db/apps/exist-
book/chapters/indexing/index-binary.xq file if you have installed the XAR package).
There is also an interesting article about content extraction and binary resource
indexing available on the eXist wiki.

302

| Chapter 12: Text Indexing and Lookup

www.it-ebooks.info

http://atomic.exist-db.org/blogs/eXist/ContentExtraction
http://www.it-ebooks.info/

CHAPTER 13
Integration

eXist provides many APIs, each of which allow you to integrate or interact with eXist
in a different manner. Multiple APIs are provided in the hope that at least one of
them is already supported fin the system or application that the developer or user
wishes to integrate with eXist.

eXist provides two classes of API:

Local APIs
These are intended for when a developer wishes to embed eXist as a library
within his own application running on the JVM.

Remote APIs
These are intended for when eXist is run as a server and a user or application
wishes to make requests to eXist. All of the remote APIs are developed as layers
atop HTTP. There is nothing to stop you from using a remote API from the same
machine that eXist is running on.

We have found that the majority of eXist users are interested in the remote class of
API, as they wish to use eXist as a database server and/or a web application server, so
we will focus on the remote APIs first.

Choosing an API

As you are about to see, eXist offers many options for integration with existing sys-
tems and programming languages. Choosing the right one can be confusing, so we
have produced the flowchart in Figure 13-1 to help you with your decision.

303

www.it-ebooks.info

http://www.it-ebooks.info/

Choosing an
API

For Use by
authors or
editors?

Yes

WebDAV

Yes

No

Embedding
eXistin
Java app?

Do You Also
Need to Access
eXist Servers?

Yes
+ No '\I’
XML:DB APIs Fluent API

Solely Using
eXist from

Yes Java?

Only Need
to Execute

XQuery? No

Yes

v

No

Battle-Worn
or State-of-
the-Art?

Battle-worn State-of-the-art

v v
REST Server API RESTXQ

Figure 13-1. Flowchart to help you choose an API for integration

304 | Chapter 13:Integration

www.it-ebooks.info

http://www.it-ebooks.info/

The last choice in this flowchart—battle-worn or state-of-the-art?—may need some
clarification. By way of explanation, the REST Server API is stable and has been
around for some years, with many organizations frequently using it. So, if you have a
short-term project in mind that needs to be delivered immediately on a solid technol-
ogy base, this is probably the correct choice for you. Conversely, the RESTXQ frame-
work is relatively new and easier to use, but while there are several organizations
already using it, it is still very much under development. Many believe that RESTXQ
will eventually replace the REST Server API, as it offers a superset of that
functionality.

Remote APIs

There are many remote APIs available for eXist, and in addition it is possible to
develop your own RESTful HTTP APIs using XQuery with either the REST Server
API (see “REST Server API” on page 319) or RESTXQ (see “RESTXQ” on page 353).

Which API you should use depends on many factors, but if your concern is users
manipulating documents we would recommend the WebDAV API (see the next sec-
tion) for its simplicity and ease of use. Likewise, if you want to quickly build a simple
REST API, RESTXQ (see “RESTXQ” on page 353) could be a good candidate. If you are
serious about building a stable bridge with eXist, you should study each option avail-
able to you in this chapter before making a decision, as each has its advantages and
disadvantages.

WebDAV

Web Distributed Authoring and Versioning (WebDAYV) is an IETF standard (RFC
4918) that focuses predominantly on the distributed authoring of documents. The
name can be somewhat confusing, because while versioning was initially a considera-
tion, it was perceived as too complicated and shelved. Versioning was later added as
an extension to WebDAYV in IETF standard RFC 3253. However, versioning with
WebDAV does not seem to have been widely adopted and is not yet supported in
eXist.

While eXist has had WebDAYV support for several years, its interoperability with
some WebDAV clients was less than perfect. eXist 2.0 added a complete rewrite of
the WebDAV server based on the excellent Milton Java WebDAV Server Library.
Milton does a great job of ensuring compatibility with almost all WebDAYV clients.
For a list of compatible WebDAV clients, see http://milton.io/guide/m2/docs/
compat.html.

WebDAYV is most useful for those who wish to work at the document level (for exam-
ple, content authors). It is very simple to create and edit documents, and also to man-
age them by organizing them into folders (collections in eXist) or removing old

Remote APIs | 305

www.it-ebooks.info

http://tools.ietf.org/rfc/rfc4918.txt
http://tools.ietf.org/rfc/rfc4918.txt
http://tools.ietf.org/rfc/rfc3253.txt
http://milton.io/
http://milton.io/guide/m2/docs/compat.html
http://milton.io/guide/m2/docs/compat.html
http://www.it-ebooks.info/

documents. Many operating systems and other tools have WebDAV support built in,
so making use of WebDAYV in eXist will come naturally to many—the client is the
same as the file manager on your computer (e.g., Microsoft Windows Explorer, Mac
OS X Finder, and Gnome Nautilus on Linux).

Connecting to eXist using WebDAYV with the 0Xygen XML Editor
is covered in “Connecting with oXygen Using WebDAV” on page
376.

The base URI of the WebDAYV Server in eXist on a default installation is http://local-
host:8080/exist/webdav/db/, or for secure access, https://localhost:8443/exist/webdav/
db/.

Using WebDAV from Microsoft Windows

Microsoft Windows has had WebDAV support built in since Windows 98 was
released. Here we will show you how to use WebDAV from Windows 7 with eXist
2.1.

Windows 7 has some mandatory security restrictions around
WebDAV access. This means that Windows 7 will not work with
eXist by default, as basic authentication is disabled. However, you
A can re-enable basic authentication for WebDAV in Windows 7 by
modifying a registry setting; you do so from the command prompt
(you must have Administrator rights) by executing the following:
reg add HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet
\Services\WebClient\Parameters /v BasicAuthLevel
/t REG_DWORD /d 2
When prompted to overwrite the existing value, type yes and press
Return. You may have to restart your PC for the changes to take
effect.

Further details can be found in the Microsoft Knowledge Base arti-
cle 841215.

Follow these steps to map a drive to eXist WebDAV from Windows Explorer:

1. First open Windows Explorer, and then press the Alt key on the keyboard once
to reveal the menu. Choose Tools>“Map network drive” as shown in
Figure 13-2.

306 | Chapter 13:Integration

www.it-ebooks.info

http://support.microsoft.com/kb/841215
http://support.microsoft.com/kb/841215
http://www.it-ebooks.info/

()= » Libreries + [43 |[Search Libraries
Ele Edit View

Qrganize v Map network drive...

Disconnect network drive...

I Favorites
Bl Desktop

QOpen Sync Center... .
Id arrange them by falder, date, and other properties.

Folder options...

& Downloads
%l Recent Places B Documents b Music
<o Library <&, Library
Librari
ﬂ@';”es | Pt H Videos
ocuments Lil F

g Library Library

J’ Music = =

[&5] Pictures

B Videos

& Homegroup

1 Computer
&, Local Disk ()
9 aretter (\\WWBOXSVR]

€ Network

A 4 jtems
1»—¢IJ

Figure 13-2. Windows Explorer: select the “Map network drive” menu item

. Next, you need to choose a Windows drive letter to map to the eXist database.
You then also need to add in the URI of the eXist server and its WebDAV API.
Typically, this takes the form http://<myserver>:8080/exist/webdav/db/. If you are
running eXist on your own Windows PC, you can replace <myserver> with local-
host. Ensure that the checkbox “Connect using different credentials” is checked,
and if you wish the connection to be available after restarting or shutting down
your PC, ensure that the “Reconnect at logon” checkbox is checked. Finally, click
Finish. See Figure 13-3.

Remote APIs | 307

www.it-ebooks.info

http://www.it-ebooks.info/

l\;} % Map Metwork Drive

What network folder would you like to map?

Specify the drive letter for the connection and the folder that you want to connect to:

Drive: ’X: -]

Folder: http:_a'_a'localh0st:SOSU_a'aista'webda\f_a'db_a1 - Browse...

Example: \\server\share

[¥] Reconnect at logon
Connect using different credentials

Connect to a Web site that vou can use to store your documents and pictures,

Figure 13-3. Windows Explorer Map Network Drive dialog

3. Finally, you need to provide the username and password of your eXist user
account. If you have just set up eXist or will be the only user, you can use the
default built-in admin user and the password that you set during the installation
of eXist. See Figure 13-4.

Windows Security @

Connect to localhost
Connecting to localhost

Remember my credentials

[ok][cancal |

Figure 13-4. Connect using your eXist WebDAV username and password

4. You can now access the eXist database via the Windows drive letter that you
chose in step 2. As far as Windows is concerned, eXist is just another filesystem,
and you can use any Windows application to read and write documents in eXist.

308 | Chapter 13:Integration

www.it-ebooks.info

http://www.it-ebooks.info/

You can also create/move/delete collections in this manner, as they appear to
Windows Explorer as regular folders. See Figure 13-5.

QQ [» Com... » db (Wlacalhost@B080\DavWWWRoot \existiw... b + [¢ ||| search db A\locathost
Organize v & Open ~ New folder = 0 @
> Y Favorites Mame Date modified Type
apps 29/01/2013 13:26 File folder
> [Libraries system 08/01/2013 22:38 File folder
= some-document 29/03/2013 14:20 XML Document
> ¥ Homegroup
48 Computer
> &, Local Disk ()
> G aretter (WVBOXSVR) (H:)
b G db (\localhost@80804\DavWWWRoot\exist\webdav) ()
> ‘i Network
< | [[
some-document Date modified: 29/03/2013 14:20 Date created: 29/03/2013 14:20
XML Document Size: 4,00 KB Offline availability: Not available

Figure 13-5. Windows Explorer with WebDAV connection to eXist

Using WebDAV from Mac 0S X

Apple’s Mac OS X has always had WebDAYV support built in. Here we will show you
how to use WebDAYV from Mac OS X (in our example, we used OS X Mountain Lion
[10.8.3]) with eXist 2.1.

Follow these steps to mount eXist WebDAYV from the Finder:

1. Open the Finder, and, from the Go menu, select the menu item “Connect to
Server” (or press Command-K). See Figure 13-6.

Remote APIs | 309

www.it-ebooks.info

http://www.it-ebooks.info/

® Finder File Edit View j&:}| Window Help
Select Startup Disk on Desktop {31
El All My Files {+38F
7 Documents {30
B3 Desktop {+¥#D
& Downloads HL
% Home {+3H
B Computer f+3C
@ AirDrop {+3R
™ Network 38K
Applications {r3A
& Utilities fwU
Recent Folders >
Go to Folder... ORC
Connect to Server... 8K

Figure 13-6. Mac OS X Finder: select the “Connect to Server” menu item

. Next, you need to enter the URI of the eXist server and its WebDAV API. Typi-
cally this takes the form http://<myserver>:8080/exist/webdav/db/. If you are run-
ning eXist on your own Mac, you can replace <myserver> with localhost. Finally,
click Connect. See Figure 13-7.

8 00 Connect to Server
Server Address:
http://localhost: 8080/ exist/webdav/db/ |+]]| @~
Favorite Servers:
(?) Remove Browse | Connect |

Figure 13-7. Mac OS X Finder “Connect to Server” dialog

3. Finally, you need to provide the username and password of your eXist user

account. If you have just set up eXist or will be the only user, you can use the

| Chapter 13: Integration

www.it-ebooks.info

http://www.it-ebooks.info/

default built-in admin user and the password that you set during the installation
of eXist. See Figure 13-8.

Enter your name and password for the server
"localhost”.

Connect as: () Guest
(*) Registered User

Name: |admin |

Password: |u-u| |

[EI Remember this password in my keychain

| Cancel | [Connect]

Figure 13-8. Connect using your eXist WebDAV username and password

. You can now access the eXist database from the Finder and your other Mac
applications just as if it were a networked filesystem. It appears in the Finder
panel as localhost (or the name of your server) under the Shared items. You can
now use any Mac application to read and write documents in eXist. You can also
create/move/delete collections in this manner, as they appear to the Finder as
regular folders. See Figure 13-9.

Remote APIs | 311

www.it-ebooks.info

http://www.it-ebooks.info/

e o0o £ db

EIERFEINIINE - ECERi oSO (a
Back Getlnfo New Folder View Action Dropbox Arrange Share Search
FAVORITES Name 4| Date Modified Size Kind
> . _
g Dropbox (] apps 18 Feb 2013 17:59 Folder
<3 some-document.xml 23 Feb 2013 17.06 50 bytes XML Document
[=] Desktop » [system 18 Feb 2013 17:59 - Folder
ﬁj aretter
@ Documents
) Downloads
J7 Music
Pictures
@ AirDrop
SHARED
[localhost &
] db

Figure 13-9. Finder with WebDAV connection to eXist

Using WebDAV from Linux

There are many different distributions of Linux available, some of which have GUI
desktop environments and some of which do not. As covering them all would proba-
bly take a book in itself, we will cover just two approaches here that are suitable for a
large proportion of users.

Using WebDAV from GNOME Nautilus. If you are using a GNOME 2- or GNOME 3-
based Linux desktop environment such as CentOS, RHEL, Linux Mint, or Ubuntu,
then you most likely have Nautilus or a derivative of it available to you. Nautilus, like
Windows Explorer and the Mac OS X Finder, provides an easy mechanism for
mounting WebDAYV folders.

Follow these steps to mount eXist WebDAV from Nautilus:
1. First, locate the “Connect to Server” menu item in Nautilus (under the Places

menu, as shown in Figure 13-10) and click it. In CentOS and RHEL (for our
examples, we used CentOS 6.5), there is also a shortcut from the desktop menu.

312 | Chapter 13: Integration

www.it-ebooks.info

http://www.it-ebooks.info/

« % Applications System @ @ ‘_/

Home Folder
Desktop
Documents
[E@] Music
Pictures
Videos
Downloads

Computer

Network

B Connect to a remote computer or shared disk
org-exjsu—

Recent Documents

Figure 13-10. CentOS 6: select the “Connect to Server” menu item

2. Next, you need to enter the URI of the eXist server and its WebDAV API. Typi-
cally, this takes the form http://<myserver>:8080/exist/webdav/db/. If you are
running eXist on your Linux PC, you can replace <myserver> with localhost. You
will also need to provide a username. If you have just set up eXist or will be the
only user, you can use the default built-in admin user. Finally, click Connect (see

Figure 13-11).

] Connect to Server x
Service type: | WebDAV (HTTP) =
Server: [Iocalhost]

Optional information:

Port: (8080 |
Folder: [existiwebdavfdbf]
User Name: [admin]

Add bookmark

Bookmark name: [exist WebDAV|]

| Help | | cancel || Connect |

Figure 13-11. CentOS 6 “Connect to Server” dialog

www.it-ebooks.info

Remote APIs

313

http://www.it-ebooks.info/

You can also add a bookmark for the WebDAV connection if
you wish; this will enable to you to reconnect easily in the
future from your bookmarks.

3. Finally, you need to provide the password of your eXist user account. If you are

using the built-in admin user and have just set up eXist, the password will be the
same as the one that you set during the installation of eXist. See Figure 13-12.

Enter password for exist

Password: [-----]

() Forget password immediately

® [Remember password until you logout|

) Remember forever

| Cancel || Connect ‘

Figure 13-12. Connect using your eXist WebDAV password

. You can now access the eXist database from Nautilus and your other GNOME

applications just as if it were a networked filesystem. It appears in the Nautilus
panel as WebDAYV on localhost (or the name of your server) under the Places
items. If you have a Places menu on your desktop, it will also appear there. You
can now use any GNOME application to read and write documents in eXist. You
can also create/move/delete collections in this manner, as they appear to Nautilus
as regular folders. See Figure 13-13.

314

| Chapter 13: Integration

www.it-ebooks.info

http://www.it-ebooks.info/

™ Applications Places System e} @ _./ Fri Mar 29, 4:46 PM]

db - File Browser
Eile Edit View Go Bookmarks Tabs Help

2 3 Bl mE #a

‘ %‘ ‘ | dav H exist H webdav Hdh‘ ©, 50% @ |ListView 5
3¢ | Name v | Size Type Date Modified
b [Ed apps -- folder Wed 06 Feb 2013 02:03:35 PM GMT
b [system -- folder Wed 06 Feb 2013 02:02:23 PM GMT
[File System @| some-document.xml 4.0 KB XML document Fri 29 Mar 2013 04:45:18 PM GMT
Network a

DAV on & Trash
Ihost @ Documents
@ Music
Pictures
Videos
(& Downloads
[0 exist WebDAV

3 items

Figure 13-13. CentOS 6: Nautilus with WebDAV connection to eXist

Using WebDAV with FUSE. If you do not have a GNOME desktop environment or want
to be able to use eXist via WebDAV from non-GNOME applications, then another
option is to use FUSE and davfs2 together. FUSE is typically installed already in most
modern Linux distributions.

You can install davfs2 in Debian-based distributions (e.g., Ubuntu and Mint) by run-
ning the following from a terminal:

sudo apt-get install davfs2

Likewise, you can install davfs2 in distributions with RPM package managers (e.g.,
RHEL, CentOS, SLES and openSUSE) via RPMForge by running the following from
a terminal:

sudo rpm -Uhv
http://pkgs.repoforge.org/rpmforge-release/
rpmforge-release-0.5.3-1.el6.rf.x86_64.rpm
sudo yum install fuse-davfs2

The RPMForge release used here is for RHEL/CentOS 6 x64; you
can find details of the correct RPMForge for your distribution at
http://repoforge.org/use/.

Once you have davfs2 installed, you can mount the eXist WebDAYV folder (as shown
in Figure 13-14):

Remote APIs | 315

www.it-ebooks.info

http://fuse.sourceforge.net/
http://savannah.nongnu.org/projects/davfs2
http://repoforge.org/use/
http://www.it-ebooks.info/

sudo mount -t davfs -ousername=admin
http://localhost:8080/exist/webdav/db/ /mnt/eXist

Figure 13-14. Linux davfs2 FUSE mount to eXist WebDAV

If the folder /mnt/eXist does not exist on your system, you need to
either create it or choose another empty folder to which you have
access to act as the mount point.

You can now access the eXist database from any Linux application just as if it were a
networked filesystem. You can use any Linux application to read and write docu-
ments in eXist. You can also create/move/delete collections in the same way as you
would any other folder, as they appear to Linux as regular folders on a filesystem.

This is a very simple example, and you should be aware that davfs2
maintains a cache of file changes that is periodically flushed. In
particular, the cache is flushed when the filesystem is unmounted,
so you should aim to unmount the filesystem before shutting down
the eXist server. davfs2 has many configuration options, so it’s a
good idea to consult the manpage (man davfs2.conf) if you plan
on making serious use of this tool.

Using WebDAV from Java

There are many ways in which you could connect to eXist using WebDAV from Java,
but unless you really want to spend all your time building a WebDAYV client it is per-
haps more pragmatic to use an existing library to assist you. There are several avail-
able libraries for Java that offer WebDAYV client features, but here we’ll look briefly at
using the Milton client library to talk to eXist from Java. At the time of writing the
latest version of Milton was version 2.4.2.5, and the version of Java used was 1.6.

There are just three main objects that you need to understand in the Milton client
library to make WebDAYV requests to eXist: Hosts, Resources, and Paths.

316 | Chapter 13:Integration

www.it-ebooks.info

http://milton.io/
http://www.it-ebooks.info/

Host
In Milton, the Host object holds all of the details needed to make connections to
the WebDAYV server. To access eXist, at minimum you will need to provide:

Server
The hostname or IP address of the eXist server that you wish to connect to.
If you are running your WebDAV client on the same machine as eXist, then
you may use either localhost or 127.0.0.1.

Port
The TCP port that the eXist server you wish to connect to is listening on. If
you have not reconfigured this setting in eXist, it will be 8086 by default.

RootPath
The path on the eXist server to the WebDAV server endpoint. If you have
not reconfigured this setting in eXist, it will be exist/webdav/db by default.

Username
The username of a valid user account in eXist that you wish to connect to
eXist as. If you have a newly installed eXist, you may use the admin account.

Password
The password that accompanies the aforementioned username. If you are
using the admin account of a newly installed eXist, the password will be
whatever you defined during the installation, or otherwise the empty string.

Milton provides a convenient HostBuilder class to help you construct your host
(see Example 13-1).

Example 13-1. Constructing a suitable Milton Host object for eXist

HostBuilder builder = new HostBuilder();
builder.setServer("localhost");
builder.setPort(8080);
builder.setRootPath("exist/webdav/db");
builder.setUser("admin");
builder.setPassword("my-admin-password ");

Host host = builder.buildHost();

Resource
In Milton, the Resource object represents a resource on the WebDAYV server. In
Milton terms, this is one of the following:

Folder
A folder resource in Milton is equivalent to a collection in eXist.

Remote APIs | 317

www.it-ebooks.info

http://www.it-ebooks.info/

File
A file resource in Milton is equivalent to a resource in eXist. Milton does not
differentiate between XML files and binary files in eXist; to Milton they are
all just files.

From a host we can retrieve resources, and we can use those resources to find
subresources (see Example 13-2).

Example 13-2. Retrieving a resource from eXist using Milton

final Resource resource = host.child("my-collection");
if(resource != null) {
if(resource instanceof Folder) {
//resource is a Folder, i.e. collection in eXist
final Folder folder = ((Folder)resource);

//TODO you do something with the Folder here

} else if(resource instanceof File) {
//resource is a File, i.e. resource in eXist
final File file = ((File)resource);

//TODO you do something with the File here

3
}

Path
In Milton, the Path object encapsulates a path to a resource. The path may be
either absolute from the root path, or relative to an existing resource.

We can construct paths that are relative to other paths and then execute opera-
tions relating to those paths (see Example 13-3).

Example 13-3. Creating the collection /db/my-collection/apples/pears in eXist with
Milton

Path rootPath = host.path();
Path pathPears = Path.path(rootPath, "my-collection/apples/pears");
Folder pears = host.getOrCreateFolder(pathPears, true);

Examples. The source code of two small complete examples of using Milton from Java
to store a file and retrieve a file is included in the folder chapters/integration/webdav-
client of the book-code Git repository (see “Getting the Source Code” on page 15).

To compile the examples, enter the webdav-client folder and run mvn package.
You can then execute the StoreApp example like so:

java -jar webdav-client-store/target/webdav-client-store-1.0-example.jar

318 | Chapter 13: Integration

www.it-ebooks.info

http://www.it-ebooks.info/

This shows the available arguments for using the StoreApp.

A complete example of using the application might look like the following, which
would upload the file /tmp/large.xml to the collection /db/my-new-collection in eXist:

java -jar webdav-client-store/target/webdav-client-store-1.0-example.jar
localhost 8080 /tmp/large.xml /db/my-new-collection admin

You can execute the RetrieveApp example like so:
java -jar webdav-client-retrieve/target/webdav-client-store-1.0-example.jar

This shows the available arguments for using the RetrieveApp.

A complete example of using the application might look like the following, which
would download the resource /db/some-document.xml to the file in the current direc-
tory named some-document.xml:

java -jar webdav-client-retrieve/target/webdav-client-retrieve-1.0-example.jar
localhost 8080 /db/some-document.xml admin > some-document.xml

REST Server API

The REST Server in eXist offers a REST-like API that enables you to both manipulate
the contents of the database and also send queries to be executed against the contents
of the database. This section looks at the REST Server API in detail and also provides
information for programmers who may like to integrate with eXist. If you are looking
to get started with the REST Server, then you should first read “Querying the Data-
base Using REST” on page 94.

In addition, and perhaps more interestingly, the REST Server API allows you to pre-
store XQuery (and XProc) resources into the database and then execute them by
calling them by URI. The entire HTTP request and response are made available to
your XQuery, enabling you to determine processing dynamically in your XQuery
based on parameters of the HTTP request and create your own HTTP response. This
mechanism allows you to build complete and versatile web applications in XQuery;
see “Executing stored queries” on page 335 and Chapter 9 for further details. For a com-
plete illustration of the operations provided by the REST Server, see Appendix B.

There are many tools, programming languages, and libraries that allow you to inter-
act with a REST API (including web browsers, to a limited extent), but in these exam-
ples we will show you how to use cURL. We'll also provide some simple examples in
Java in “Using the REST Server API from Java” on page 339.

Retrieving collections and documents

The base URI of the REST Server in eXist on a default installation is http://localhost:
8080/exist/rest/db.

Remote APIs | 319

www.it-ebooks.info

http://curl.haxx.se/
http://www.it-ebooks.info/

The /db on the end of the URI indicates the root collection in the database. When the
REST Server receives an HTTP GET request (e.g., a typical request from a web
browser such as Firefox or Chrome) for a collection URI in the database, it will by
default produce a listing of the resources and subcollections in that collection in
XML, as seen in Figure 13-15.

You can disable the collection listing provided by the REST Server;
see “Disabling direct access to the REST Server” on page 180.

€ = € ([localhost:8080/exist/rest/db Qg =

This XML file does not appear to have any style information associated with it. The document tree is shown below.

v<exist:result xmlns:exist="http://exist.sourceforge.net/NS/exist">
v<exist:collection name="/db" created="2014-10-04T22:03:25.391+01:00" owner="SYSTEM"
group="dba" permissions="rwxr-xr-x">
<exist:collection name="test" created="2014-10-04T22:03:29.884+01:00" owner="SYSTEM"
group="dba" permissions="rwxr-xr-x"/>
<exist:collection name="system" created="2014-10-04T22:03:25.393+01:00" owner="SYSTEM"
group="dba" permissions="rwxr-xr-x"/>
</exist:collection>
</exist:result>

Figure 13-15. Browsing the REST Server API with the Chrome web browser

When accessing a collection from the REST Server, rather than listing the collection
contents, you can present a document (or anything, really) instead by executing an
XQuery known as a default document. You can enable default documents by adding
mappings in SEXIST_HOME/descriptor.xml and then restarting eXist.

For example, if you wanted to remove the default collection listing response provided
by the REST Server when accessing the collection /db/products, you could add the fol-
lowing mapping to the maps section of SEXIST_HOME/descriptor.xml:

<map path="/db/products" view="/db/products/default.xq"/>

then, instead of the collection listing, the result of executing the XQuery /db/products/
default.xq would be returned.

Of course, manipulating the descriptor.xml configuration file is not the only solution
available, but it is simple. If you require something more complex, you can make use
of the full power of eXist’s XQuery URL rewriting (see “URL Mapping Using URL
Rewriting” on page 194).

320 | Chapter 13:Integration

www.it-ebooks.info

http://www.it-ebooks.info/

You can use cURL to make a GET request to eXist, by specifying -X GET to the curl
command and then the URI. For example, the following cURL command would
return a listing of the /db/apps collection in the database, as shown in Figure 13-16:

curl -X GET http://localhost:8080/exist/rest/db/apps

Figure 13-16. Browsing the REST Server API with cURL

The default HTTP request method in cURL is GET, so you can
actually omit the -X GET parameter for conciseness if you wish.

Just as with retrieving a collection, you can retrieve the content of a resource in the
database by appending its name to the collection in the request URI. For example, the
following cURL command retrieves the resource some-document.xml from the collec-
tion /db:

curl http://localhost:8080/exist/rest/db/some-document.xml

If you wish to redirect the output from cURL to a file, you can use
the -o argument (e.g., -o myfile.xml). Also, if you wish to see the
HTTP request and response details as well as the content of the
response, you may also provide the -v argument to cURL for ver-
bose output.

Remote APIs | 321

www.it-ebooks.info

http://www.it-ebooks.info/

XSL transformation. The serializer used by the REST Server also processes any XSL
processing instructions declared in an XML document before returning the result to
you. You can control this behavior by appending the _xs/ parameter in the query part
of the URL. You can also exploit this parameter to specify your own stylesheet at call
time, as Table 13-1 shows.

Table 13-1. _xsl query parameters

XSL parameter value Explanation

no Disables the processing of XSL processing instructions.
yes Enables the processing of XSL processing instructions.
uri You may provide a URI to an XSL stylesheet that you wish to apply. The URI can be a database URI

(e.g., /db/my-stylesheet.xslt).

The default behavior of whether XSL processing instructions are
processed or not by the serializer is configurable in
$EXIST_HOME/conf.xml at the attribute indicated by the
XPath /exist/serializer/@enable-xsl.

For example, to apply the XSL transformation at /db/my-stylesheet.xslt when retriev-
ing /db/some-document.xml, you could use the following cURL command:

curl http://localhost:8080/exist/rest/db/some-document.xml
?_xsl=/db/my-stylesheet.xslt
If you just want to know the size of a document, or when a docu-
ment or collection was last modified, you can use the HEAD method
instead of GET. This returns just some basic metadata in the HTTP
response headers instead of the resource content or collection
listing.

Storing a document

You may store an XML or binary document into a collection in eXist via the REST
Server API, by submitting the content of the document you wish to store as the body
of a PUT request. You should also specify the Internet media type in the HTTP
Content-Type header of your request. If the collection you are PUTing the document
into does not allow execute and write access by other users, then you will also need to
provide a username and password for an account that does have such access.

For example, the following cURL command will store the XML document /tmp/my-
doc.xml into the collection /db/docs/personal:

322 | Chapter 13:Integration

www.it-ebooks.info

http://www.it-ebooks.info/

curl -1 -X PUT

-H 'Content-Type: application/xml'
--data-binary @/tmp/my-doc.xml
http://aretter:12345@localhost:8080/exist/rest/db/docs/personal/my-doc.xml

Its parameters are explained in Table 13-2 and its output illustrated in Figure 13-17.

Table 13-2. cURL parameters for storing a document

cURL parameters Explanation

PUTing a document into eXist does not return any content. You will know if the PUT
succeeds by examining the HTTP response code; success is indicated by the code 201

-i

-X PUT

-H 'Content-Type:

application/xml'

--data-binary

@/tmp/
my-doc.xml

http://aretter:
12345@localhost:8080/
exist/rest/db/docs/
personal/my-doc.xml

Created. The -1 parameter causes cURL to show the HTTP response headers

(including the HTTP response code).

The -X parameter allows you to specify the HTTP request method.

In this example the method of the request is PUT, as we want to PUT the new

resource in the database.

eXist needs to know the Internet media type of the resource you are PUTing so it can
store it correctly. The -H parameter allows you to specify an HTTP request header. We

can inform eXist of the Internet media type by setting the Content-Type header.

In this example, we use the Internet media type for an XML document.

This parameter allows you to send binary data in the body of the request.

In this example we want to send an XML document; the @indicates that the data

should be read from the file /tmp/my-doc.xml.

The final parameter is always the target URI of the request.

In this instance, we are making the request on the /db/docs/personal collection, where
we want to store the data into a resource named my-doc.xml. We also specify the

username aretter and password 12345 of an account in eXist that has execute
and write access to store the document.?

If you do not have execute and write access to store the resource indicated by the

URI of the request, you will receive an HTTP response code of 401 Unauthorized.

www.it-ebooks.info

Remote APIs

323

http://www.it-ebooks.info/

Figure 13-17. Storing a document via the REST Server API with cURL

If you specify a collection that does not exist, eXist will automati-
cally create the necessary collection hierarchy for you.

Once the document is stored, you can retrieve it by doing an HTTP GET on the
resource URT; for example:

curl http://localhost:8080/exist/rest/db/docs/personal/my-doc.xml

Likewise, if you wish to see it listed in its collection, you can retrieve the collection’s
contents by doing an HTTP GET on the collection URI; for example:

curl http://localhost:8080/exist/rest/db/docs/personal

Deleting collections and documents

You may delete collections and documents in eXist via the REST Server API, by sub-
mitting DELETE requests whose URIs indicate the collections or documents you wish
to remove. If the parent collection of the document or collection you are DELETEing
does not allow execute and write access by other users, then you will also need to pro-
vide a username and password for an account that does have execute and write
access.

For example, the following cURL command will delete the XML document my-
doc.xml from the collection /db/docs/personal:

curl -1 -X DELETE
http://aretter:12345@localhost:8080/exist/rest/db/docs/personal/my-doc.xml

Its parameters are explained in Table 13-3 and its output illustrated in Figure 13-18.

324 | Chapter 13:Integration

www.it-ebooks.info

http://www.it-ebooks.info/

Table 13-3. cURL parameters for deleting a document

cURL parameters Explanation

-1 DELETEing a document from eXist does not return any content. You will know if the DELETE
succeeds by examining the HTTP response code; success is indicated by the code 200 OK. The
-1 parameter causes CURL to show the HTTP response headers (including the HTTP response
code).

-X DELETE The -X parameter allows you to specify the HTTP request method.

In this example, the method of the request is DELETE, as we want to DELETE the resource
or collection from the database.

http://aretter: The final parameter is always the URI of the request.

12345@locathost: In this instance, we are making the request on the /db/docs/personal collection, where we
8080/exist/ want to delete the resource named my-doc.xml. We also specify the username (aretter) and
rest/db/docs/ password (12345) of an account in eXist that has execute and write access on the collection,
personal/my- 50 we are able to delete the document.

doc.xml

Figure 13-18. Deleting a document via the REST Server API with cURL

The mechanism for deleting a collection is exactly the same as that for deleting a
document, except the URI should indicate the collection path in the database and not
the document path. For example, the following cURL command will delete the collec-
tion personal from the parent collection /db/docs:

curl -1 -X DELETE http://aretter:12345@localhost:8080/exist/rest/db/docs/personal

If you delete a collection, you remove the collection and all docu-
ments within it.

Remote APIs | 325

www.it-ebooks.info

http://www.it-ebooks.info/

Querying the database

There are two approaches for sending XQueries to the REST Server API to be exe-
cuted against the database: HTTP GET and HTTP POST. Both approaches offer very
similar functionality and results; however:

o HTTP GET is most suitable for small and short XQuery or XPath expressions.
You may send these expressions in the query part of the URL using the _query
parameter. The path part of the URI indicates the context upon which to query
the database (i.e., a collection or document), unless the context is set manually in
XQuery through the fn:doc or fn:collection functions.

o HTTP POST is suitable for XQuery main modules. You may send the main mod-
ule inside an XML document that describes the query in the body of the request.

Imagine that you have a collection of XML documents (/db/people) in eXist that con-
tain details about people. Each document in the collection represents a single person,
and among other things contains that person’s name and date of birth (see
Example 13-4).

Example 13-4. XML document for a person

<?xml version="1.0" encoding="UTF-8"?>
<person>
<name>
<first-name>John</first-name>
<family-name>Smith</family-name>
</name>
<born>
<date>1974-05-16</date>
<location>
<settlement>Tiverton</settlement>
<country>United Kingdom</country>
</location>
</born>
<residence>
<location>
<address-1line>123 High Street</address-line>
<settlement>Cullompton</settlement>
<county>Devon</county>
<country>United Kindom</country>
</location>
</residence>
<contact>
<telephone type="mobile">+44 7777 123456</telephone>
<email>john.smith@johnsmith.com</email>
</contact>
</person>

326 | Chapter 13:Integration

www.it-ebooks.info

http://www.it-ebooks.info/

Let’s look at how we would send an XQuery to the REST Server API to retrieve the
names of all the people in the collection. Our XQuery might look like Example 13-5.

Example 13-5. XQuery to retrieve names of all people in the collection
xquery version "1.0";

/person/name

HTTP GET queries. To send the XQuery in Example 13-5 to the REST Server API using
the simple HTTP GET approach, we can ignore the XQuery version declaration, as
eXist will default to XQuery 1.0. However, as we are going to place the XQuery into
the _query parameter in the URL, we should first URL-encode the XQuery to escape
any URL-sensitive characters. If you are doing these operations from a programming
language, there is most likely a library function already available for URL encoding;
otherwise, if you are using cURL or sending the queries manually, you can use a sim-
ple URL encoder like URL Encode/Decode.

Our URL-encoded XQuery becomes:

%2Fperson%2Fname

We can now send this XQuery to the REST Server API using the following cURL
command:

curl "http://localhost:8080/exist/rest/db/people?_query=%2Fperson%2Fname"
which could result in a response similar to:

<exist:result xmlns:exist="http://exist.sourceforge.net/NS/exist"
exist:hits="3" exist:start="1" exist:count="3">
<name>
<first-name>John</first-name>
<family-name>Smith</family-name>
</name>
<name>
<first-name>George</first-name>
<family-name>Baker</family-name>
</name>
<name>
<first-name>Barbara</first-name>
<family-name>Jones</family-name>
</name>
</exist:result>

By default the REST Server API wraps the result of our XQuery in an exist:result
element; this provides us with a container for our data and some metadata about the
number of results found by the query (exist:hits) and the number of results imme-
diately returned (exist:start and exist:count). In this case, we can see that the

Remote APIs | 327

www.it-ebooks.info

http://www.url-encode-decode.com/
http://www.it-ebooks.info/

query found 3 hits in total, and returned the results starting from index 1 and count-
ing up to index 3. The use of start and count should become clearer when we look at
paging shortly. The format of the XML result wrapper is documented in “wrap XML
grammar” on page 540.

If you do not want eXist to return your data in an exist:result element, you can
turn off wrapping using _wrap=no, as in the following cURL command:

curl "http://localhost:8080/exist/rest/db/people
?_wrap=no&_query=%2Fperson%2Fname"

However, you should note that the XQuery we wrote will return a sequence of name
elements, so the result of the call to the REST Server API will not be a valid XML
document if you turn off wrapping. To resolve this, you could introduce a wrapper
element in your own XQuery, as in:

xquery version "1.0";

<names>{
/person/name
}</names>

After URL encoding, we can now send this XQuery to the REST Server API using the
following cURL command:

curl "http://localhost:8080/exist/rest/db/people
?_wrap=no&_query=%3Cnames%3E%7B%0A++++%2Fperson%2Fname%0A%7D%3C%2Fnames%3E"

which could result in a response similar to:

<names>
<name>
<first-name>John</first-name>
<family-name>Smith</family-name>
</name>
<name>
<first-name>George</first-name>
<family-name>Baker</family-name>
</name>
<name>
<first-name>Barbara</first-name>
<family-name>Jones</family-name>
</name>
</names>

So far, we have just sent very simple queries to the REST Server. While placing the
XQuery in the query parameter of the URL sent to the REST Server API works for
small XQueries, it does not scale particularly well because:

o We have to URL-encode the XQuery that we wish to send, which makes it
unreadable.

328 | Chapter 13:Integration

www.it-ebooks.info

http://www.it-ebooks.info/

o The URL string becomes longer as the XQuery becomes longer, and URL encod-
ing compounds this problem. Some HTTP clients and servers have limitations
on the length of the URLSs they can handle!

A better approach than using HTTP GET queries for anything more than the simplest
XQueries is to use HTTP POST queries instead. The main advantage of HTTP GET
queries is that you can easily send them from any web browser’s address bar, and this
advantage is negated as the queries get more complex. That said, there are plug-ins
for several browsers that enable you to send more complex requests, such as Postman
for Google Chrome and HttpRequester for Mozilla Firefox.

HTTP POST queries. When sending XQueries via HTTP POST to the REST Server API,
we need to place them in an XML document that contains the XQuery and any
parameters for the REST Server or XQuery itself. Let’s look at how we would send
our simple query using HTTP POST:

<query xmlns="http://exist.sourceforge.net/NS/exist">

<text>
<![CDATA[

xquery version "1.0";
/person/name

11>
</text>
</query>
We place the XQuery itself inside a CDATA section so as to avoid having to escape any
XML-sensitive characters in our XQuery. We can now POST the XML document con-
taining the XQuery to the REST Server API using the following cURL command:

curl -X POST -H 'Content-Type: application/xml'
--data-binary @/tmp/person-name.xml
http://localhost:8080/exist/rest/db/people
The result of this query is exactly the same as that of the equivalent HTTP GET exam-
ple earlier, but it is much easier to send larger queries using HTTP POST. Table 13-4
explains the cURL parameters used here.

Remote APIs | 329

www.it-ebooks.info

http://bit.ly/postman_rest_client
https://addons.mozilla.org/en-US/firefox/addon/httprequester/
http://www.it-ebooks.info/

Table 13-4. cURL parameters for sample HTTP POST query

cURL parameters Explanation

-X The -X parameter allows you to specify the HTTP request method.

POST In this example the method of the request is POST, as we want to POST the

XML document containing the XQuery to the REST Server.

-H 'Content-Type: eXist needs to know the Internet media type of the resource you are POSTing so
applica itcan decide how to process it. The -H parameter allows you to specify an HTTP
tion/xml' request header, and we can inform eXist of the Internet media type by setting the

Content-Type header.

In this example, because the XQuery is embedded in an XML document, we use
the Internet media type for an XML document.

--data-binary The - -data-binary parameter allows you to send binary data in the body of
@/tmp/ the request.

person-nanme.xnl In this example we want to send an XML document; the @ indicates that the data

should be read from the file /tmp/person-name.xml.

http://localhost:8080/ The final parameter is always the URI of the request.

exist/rest/db/people In this instance, we are setting the context of the XQuery as the collection /db/

people.

Now, let’s also look at how we would construct a version of our simple query where
the results are not wrapped by the REST Server using HTTP POST. To achieve this, we
simply add the same wrap parameter as before, but this time implemented as an
attribute to the query element:

<query xmlns="http://exist.sourceforge.net/NS/exist" wrap="no">

<text>
<![CDATA[

xquery version "1.0";

<names>{
/person/name
}</names>

11>
</text>
</query>

REST Server parameters and paging results. So far we have looked at just the query and
wrap parameters available in the REST Server API for queries sent via either HTTP
GET or HTTP POST. There are several other parameters available—which are all docu-

330 | Chapter 13:Integration

www.it-ebooks.info

http://www.it-ebooks.info/

mented in “REST Server Parameters” on page 531—but a common use case is to be able
to break the results of your query into smaller pages of results, so we will examine
how to achieve that here.

The REST Server provides a mechanism whereby you can send it an XQuery and
have it cache the results of that query. It will provide you with a session identifier,
which you can then use in subsequent requests to pull back subsets of those results
(i.e., pages).

For this example, let’s imagine that we have added many more documents about peo-
ple to our /db/people collection, and that this time we wish to find the average age of
people in each settlement. We know that there will be lots of results as our people live
all over the world, so we want to return the results ordered by age ascending; more
importantly, however, so as not to overwhelm the end user we want to present the
results in pages of 10 results at a time.

Let’s consider the XQuery that we might wish to POST to the REST Server API to ach-
ieve this. Apart from it being a more complex XQuery, note that the cache="yes",
start="1", and max="10" attributes are set on the query element. The cache attribute
instructs the REST Server to return a session identifier for the result set generated by
the query. In addition, start instructs the REST Server to return results from the
cached set starting at position 1, and max instructs the server to return up to a maxi-
mum of 10 results from the cached set:

<?xml version="1.0" encoding="UTF-8"?>
<query xmlns="http://exist.sourceforge.net/NS/exist"
cache="yes" start="1" max="10">
<text>
<![CDATA[
xquery version "1.0";

for $settlement in distinct-values(/person/residence/location/settlement)

let $Saverage-age := avg(
/person[residence/location/settlement eq $settlement]/born/(year-from-date(
current-date()) - year-from-date(xs:date(./date))))

order by $average-age ascending

return

<settlement>
<name>{S$settlement}</name>
<average-age>{$average-age}</average-age>
</settlement>

11>
</text>
</query>
We send our more complex query to the REST Server API in exactly the same way as
our simpler query, using this cURL command:

Remote APIs | 331

www.it-ebooks.info

http://www.it-ebooks.info/

curl -X POST -H 'Content-Type: application/xml'
--data-binary @/tmp/settlement-average-name.xml
http://localhost:8080/exist/rest/db/people

which could result in a response that starts with the element:

<exist:result xmlns:exist="http://exist.sourceforge.net/NS/exist"
exist:hits="567" exist:start="1" exist:count="10" exist:session="23">
We have omitted the entire response body for brevity, but the important thing to
note here is that the REST Server has executed our POSTed XQuery and found 567
results (hits attribute), and it is returning the first 10 results (indicated by the start
and count attributes). In addition, the results have been cached and will be accessible
in the future using the session identifier 23 (session attribute).

So, we have returned our first page of 10 results, but how do we get our second page
of results? We send almost the same request as before, but this time on the query
element we want to set the session attribute to the session identifier that we were
given by the response of the first request and increase the value of the start attribute,
so we end up with the following request:

<?xml version="1.0" encoding="UTF-8"?>
<query xmlns="http://exist.sourceforge.net/NS/exist"
session="23" cache="yes" start="11" max="10">
<text>
<![CDATA[
xquery version "1.0";

for $settlement in distinct-values(/person/residence/location/settlement)

let $Saverage-age := avg(
/person[residence/location/settlement eq $settlement]/born/(year-from-date(
current-date()) - year-from-date(xs:date(./date))))

order by $average-age ascending

return

<settlement>
<name>{S$settlement}</name>
<average-age>{$average-age}</average-age>
</settlement>

11>
</text>
</query>

which we send to the REST Server by:

curl -X POST -H 'Content-Type: application/xml' --data-binary
@/tmp/settlement-average-name.page2.xml
http://localhost:8080/exist/rest/db/people

332 | Chapter 13:Integration

www.it-ebooks.info

http://www.it-ebooks.info/

This results in a response that starts with the element:

<exist:result xmlns:exist="http://exist.sourceforge.net/NS/exist"
exist:hits="567" exist:start="11" exist:count="10" exist:session="23">

Again, we have omitted the entire response body for brevity, but the important thing
to note here is that the REST Server is now returning the second page of results—that
is, 10 results (count attribute) starting from position 11 (start attribute) in the
cached result set.

We include the actual query in each request we send, in case the
cached query result set has expired and the query has to be recom-
puted. This way, we know that we will always get the response,
whether it’s served from the cache or calculated. To retrieve further
pages, simply repeat the second query, adjusting the start
attribute each time.

Updating the database

You may update nodes within documents in eXist via the REST Server API, by
POSTing XUpdate documents to the URI that indicates the collection or document
context within the database to update. In addition, you may manually specify individ-
ual operations against other documents or collections in your XUpdate documents
by using the XQuery fn:doc or fn:collection functions. If the document you are
updating does not allow write access by other users, then you will also need to pro-
vide a username and password for an account that does have write access.

Let’s look at how we would apply an XUpdate document to the document /db/some-
document.xml in eXist via the REST Server API:

<hello/>

This XUpdate document will insert an element called name with the text Adam into
each hello element that it finds:

<?2xml version="1.0" encoding="UTF-8"?>
<xupdate:modifications version="1.0"
xmlns:xupdate="http://www.xmldb.org/xupdate">
<xupdate:append select="/hello">
<name>Adam</name>
</xupdate:append>
</xupdate:modifications>

The following cURL command would apply the XUpdate document stored at /tmp/
add-name.xupdate to the XML document /db/some-document.xml in eXist:

curl -X POST -H 'Content-Type: application/xml'
--data-binary @/tmp/add-name.xupdate
http://aretter:12345@localhost:8080/exist/rest/db/some-document.xml

Remote APIs | 333

www.it-ebooks.info

http://www.it-ebooks.info/

Its parameters are explained in Table 13-5, and Figures 13-19 and 13-20 show how to
perform and confirm the action, respectively.

Table 13-5. cURL parameters for HTTP POST XUpdate

cURL parameters Explanation

-X The -X parameter allows you to specify the HTTP request method.

POST In this example the method of the request is POST, as we want to POST the

XUpdate document to the REST Server.

-H 'Content-Type: eXist needs to know the Internet media type of the resource you are POSTing so it
applica candecide how to process it. The -H parameter allows you to specify an HTTP
tion/xml' request header, and we can inform eXist of the Internet media type by setting the

Content-Type header.

In this example, because XUpdate is XML, we use the Internet media type for an
XML document.

--data-binary The - -data-binary parameter allows you to send hinary data in the body of
@/tmp/ the request.

add-name.xupdate In this example we want to send an XUpdate document; the @ indicates that the

data should be read from the file /tmp/add-name.xupdate.

http://aretter: The final parameter is always the URI of the request.

12?45@1°ca1h05t :8080/ In this instance, we are processing the XUpdate against the document /db/some-
exist/rest/db/some- document.xml. We also specify the username (aretter) and password (12345) of
document.xnl an account in eXist that has write access to modify the document.

Figure 13-20. Retrieving a document after XUpdate via the REST Server API with
cURL

334 | Chapter 13:Integration

www.it-ebooks.info

http://www.it-ebooks.info/

For further information about XUpdate, see the XUpdate 1.0 Specification and
“XUpdate” on page 105.

XUpdate is just one mechanism for updating documents in eXist.
As an alternative, you can make use of the XQuery update exten-
sion in your XQueries (see “eXist’s XQuery Update Extension” on
page 102), which of course may be sent to the REST Server or
invoked by the REST Server as stored queries, as described next.

Executing stored queries

Perhaps the most interesting and flexible feature of the REST Server API is that it
allows you to invoke stored XQuery and XProc by making HTTP requests. This
means that you can potentially write complex XQueries split across several main and
library modules, store them into the database, and have them react to requests made
to the REST Server API. This facility, coupled with eXist’s extensions for XQuery,
enables you to easily build your own HTTP/REST APIs in XQuery, or even entire
web applications.

When working with stored queries and the REST Server API, it is very likely that you
will want to use at least the request and response XQuery extension modules in
your XQueries to work with the HTTP request and response. You can find more
details on these in “The request Extension Module” on page 209 and “The response
Extension Module” on page 211, respectively. Building web applications using this
approach (among others) is discussed in Chapter 9, but for the purposes of integra-
tion we will demonstrate a simple example here.

Supplied alongside this chapter is the XQuery file chapters/integration/rest-stored-
query/image-api.xq in the book-code Git repository (see “Getting the Source Code” on
page 15) that, when stored into the database and subsequently called via the REST
Server API, will deliver a simple custom REST API for manipulating images. To use
the XQuery as well as store it into the database (for example, in the /db collection),
you also need to ensure: 1) that the image-api.xq file has execute access within the
database by the calling user so that it may be executed; 2) that the collection /db/
images exists and is writable by the calling user; and 3) that the image XQuery exten-
sion module is enabled in $EXIST_HOME/conf.xml. The custom REST API provides
the following three image manipulation functions:

o Store a JPEG image received over HTTP into the database.
o Retrieve a stored image from the database.

o Retrieve a thumbnail representation of an image from the database.

Let’s now look at the XQuery code in detail, and how it performs each of these
functions.

Remote APIs | 335

www.it-ebooks.info

http://xmldb-org.sourceforge.net/xupdate/xupdate-wd.html
http://www.it-ebooks.info/

Store a JPEG image received over HTTP into the database. The API provided by the image-
api.xq file allows you to send an HTTP POST to it via the REST Server API to store a
JPEG image. In your HTTP request, if you set the Content-Type to image/jpeg and
include the content of a JPEG image in the body of the request, it will be stored into
the database and image-api.xq will return a Location and identifier in the HTTP
response for the image.

When you make the following request with cURL:

curl -1 -X POST -H 'Content-Type: image/jpeg' -data-binary @/tmp/cats.jpg
http://localhost:8080/exist/rest/db/image-api.xq

the code in our image-api.xq stored query handles it as follows:

if(request:get-method() eq "POST")then (1)
if(request:get-header("Content-Type") eq "image/jpeg")then (2]
let $db-path := local:store-image(request:get-data()) 6},
Suri-to-resource := concat(
request:get-uri(),
substring-after(Sdb-path, $local:image-collection)) (4]

return
(
response:set-status-code($response:CREATED) ‘3,
response:set-header("Location", Suri-to-resource) (3,
<identifier>{
substring-after($db-path, concat($local:image-collection, "/"))
}</identifier> @
)

else
response:set-status-code($response:BAD-REQUEST) (&)

@ We examine the request to see if it is an HTTP POST request, using the
request:get-method function.

® We check that the Content-Type header was set to image/jpeg, as we only want
to work with JPEG images in this example; if not, skip to ©.

© We call the function local:store-image on the body of the POST request, which
we obtained using the request:get-data function. This function has been omit-
ted for brevity, but all you need to know right now is that it stores the image into
the database, and returns a path to the image in the database.

O We create a URI for our newly stored image, based on the current URI of our
API, which we can find by using request:get-uri and some substring of the
path to the image in the database.

336 | Chapter 13:Integration

www.it-ebooks.info

http://www.it-ebooks.info/

© We want to be good REST citizens, so we set the response status to 201 Created,
as we have just created the resource given to us in the database.

O When creating a resource, REST calls for the Location header in the response to
be set with a URI to the new resource, so we do that.

©@ As an added bonus, we also return an identifier for the created resource in the
body of the response; this identifier may then be used in subsequent requests to
the API.

O If the Content-Type of the request was not image/jpeg, we do not wish to pro-
cess the request, so we set the response status to 400 Bad Request.

Retrieve a stored image from the database. The API provided by the image-api.xq file
allows you to send an HTTP GET to it via the REST Server API to get a previously
stored image. In your HTTP request, if the URI includes an identifier of an image
previously stored by the API, then it will return the content of that image.

When you make the following request with cURL (28068cd4-4817-4f81-
ae19-5ad2c945186a. jpg is the identifier of the image returned by the API when we
stored it in the previous section):

curl http://localhost:8080/exist/rest/db/image-api.xq
/28068cd4-4817-4f81-ael19-5ad2c945186a.jpg

the code in our image-api.xq stored query handles it like so:

else if(request:get-method() eq "GET")then (1)
(: NOTE: thumbnail part is dealt with in the next section! :)

else if(matches(
request:get-uri(),
concat(".*/", $local:uuidv4-pattern, "\.jpg$")
))then @
let $image-name := tokenize(request:get-uri(), "/")[last()] G’,
$image := local:get-image($image-name)
return
if(not(empty($image)))then ()
response:stream-binary($image, "image/jpeg", $image-name) @
else
(
response:set-status-code($response:NOT-FOUND), Q
<image-not-found>{$image-name}</image-not-found>

)

© We examine the request to see if it is an HTTP GET request, using the
request:get-method function.

Remote APIs | 337

www.it-ebooks.info

http://www.it-ebooks.info/

We examine the URI after calling request:get-urti to see if it contains the iden-
tifier of an image.

We extract the identifier of the image from the URIL

We call the function local:get-image with the identifier of the image ($image-
name). This function has been omitted for brevity, but all you need to know right
now is that it retrieves an image previously stored into the database; otherwise
(i.e., if there is no image with that identifier in the database), it returns an empty
sequence.

We test if we have an image from the database for the identifier.

We have an image, so we return it in the HTTP response by calling the
response:stream-binary function.

Otherwise, there was no image in the database matching the identifier, so we set
the response status to 404 Not Found and return an explanation in the body of
the response.

Retrieve a thumbnail representation of an image from the database. The API provided by
the image-api.xq file allows you to send an HTTP GET to it via the REST Server API to
get a thumbnail of a previously stored image. If the URI in your HTTP request
includes an identifier of an image previously stored by the API prefixed by thumb
nail/, it will return a thumbnail representation of that image. The image-api.xq file
will generate the thumbnail on the fly, store it into the database, and return it; if the
same thumbnail is requested a second time, the API serves it from the database rather
than regenerating it.

To see this in action, make the following request with cURL:

curl http://localhost:8080/exist/rest/db/image-api.xq/
thumbnail/28068cd4-4817-4f81-ae19-5ad2c945186a. jpg

The thumbnail/ URI segment has been inserted before the identi-
fier of the image—compare this to the URI used in the previous
section.

The code in our image-api.xq file for handling this request is actually very similar to
that for retrieving an image, except for a few minor changes. Therefore, we will only
really examine the differences:

338

| Chapter 13: Integration

www.it-ebooks.info

http://www.it-ebooks.info/

else if(request:get-method() eq "GET")then
if(matches(
request:get-uri(),
concat(".*/thumbnail/", $local:uuidv4-pattern, "\.jpgs") @

))then
let $image-name := tokenize(request:get-uri(), "/")[last()],
$image := local:get-or-create-thumbnail($image-name)
return

if(not(empty($image)))then
response:stream-binary(
$image,
"image/jpeg",
concat("thumbnail-", $image-name)

)

else

(
response:set-status-code($Sresponse:NOT-FOUND),
<image-not-found>{$image-name}</image-not-found>

)

© This is similar to retrieving an image, except as well getting as the identifier of
the image we also check the request URI for the prefix thumbnail/.

® This is similar to retrieving an image, except we now call the function
local:get-or-create-thumbnail instead of the function local:get-image.

While the rest-stored-query/image-api.xq example shows how you can simply con-
struct your own APIs atop the REST Server API, there is a great deal more that you
can achieve, such as URL rewriting and directly producing web pages in HTML. For
further details, see Chapter 9.

Using the REST Server API from Java

There are several good HTTP client libraries available for Java, including
java.net.URLConnection in the standard Java library, but unfortunately for us, most
of them take a somewhat low-level approach to HTTP, which means that you often
need to build abstractions on top of them when using REST over HTTP. So instead,
we will look at the Jersey client library, which is specifically designed for talking to
REST Servers over HTTP—where the central abstraction is a resource. Jersey is an
implementation of JAX-RS that enables you to easily construct REST services using
Java annotations. However, it also has a client library that is very simple and elegant,
and is well suited for communicating with the eXist REST Server API. At the time of
writing, the latest Jersey version was 1.17.1.

There are just a few concepts that you need to understand in the Jersey client library
beyond existing REST principles (such as GET, PUT, POST, and DELETE). In Jersey, we
work with three kinds of objects:

Remote APIs | 339

www.it-ebooks.info

http://jersey.java.net
http://www.it-ebooks.info/

Client

The Client object manages the underlying connection to the HTTP Server and
any configuration required for that connection. The Client also allows you to
construct WebResource objects. As it is mostly likely that we will want to
authenticate with eXist when we manipulate resources via the REST Server API,
we will actually make use of the Apache HTTP client integration for Jersey, as
this allows us to provide authentication credentials. See Example 13-6.

Example 13-6. Constructing a suitable Client object for communicating with eXist
using Jersey

//set up authentication
final CredentialsProvider credentialsProvider = new BasicCredentialsProvider();
credentialsProvider.setCredentials(AuthScope.ANY,

new UsernamePasswordCredentials("admin", "my-admin-password"));

final DefaultApacheHttpClient4Config config =
new DefaultApacheHttpClient4Config();
config.getProperties().put(
ApacheHttpClient4Config.PROPERTY_CREDENTIALS_PROVIDER, credentialsProvider);

//construct the client
final Client client = ApacheHttpClient4.create(config);

WebResource

A WebResource object indicates a resource on the REST Server (although it may
not exist yet) that is addressable by a URIL. You may construct as many WebRe
source objects as you wish from a single client; you then perform actions on
these resources, such as PUT or GET. See Example 13-7.

Example 13-7. Constructing a Jersey WebResource object for communicating with
eXist

final String uri = "http://localhost:8080/exist/rest/db/some-document.xml";

final WebResource resource = client.resource(uri);

ClientResponse

Once you have a WebResource object, you can make a request to the server. Jersey
offers some easy-to-use facilities to allow you to serialize/deserialize Java objects
for the request/response as XML using JAXB. However, to keep things simple, we
will just consider the raw response object that Jersey can provide from any
request: the ClientResponse. The ClientResponse object allows you access to all
of the HTTP responses sent from the REST Server, including all headers and
bodies. See Example 13-8.

340

| Chapter 13: Integration

www.it-ebooks.info

https://jaxb.java.net/
http://www.it-ebooks.info/

Example 13-8. Performing an HTTP header request against eXist with Jersey

final ClientResponse response = resource.head(ClientResponse.class);
final Status responseStatus = response.getClientResponseStatus();
if(responseStatus == Status.OK) {

System.out.println(uri + “ exists on the server.”);
} else {

System.err.println(uri + “ does not exist on the server!”);

}

Examples. The source code of four small complete examples of using Jersey from Java
—to store a file, retrieve a file, query the database, and remove a file—is included in
the folder chapters/integration/restserver-client of the book-code Git repository (see
“Getting the Source Code” on page 15).

To compile the examples, enter the restserver-client folder and run mvn package.

Store example. You can then execute the StoreApp example using this command:
java -jar restserver-client-store/target/restserver-client-store-1.0-example.jar
This shows the available arguments for using the StoreApp.

A complete example of using the application might look like the following, which
would upload the file /tmp/large.xml to the collection /db/my-new-collection in eXist:

java -jar restserver-client-store/target/restserver-client-store-1.0-example.jar
localhost 8080 /tmp/large.xml /db/my-new-collection admin
Retrieve example. You can execute the Retrieve App example like so:

java -jarrestserver-client-retrieve/target/
restserver-client-retrieve-1.0-example.jar

This shows the available arguments for using the RetrieveApp.

A complete example of using the application might look like the following, which
would download the resource /db/my-new-collection/large.xml to the file in the cur-
rent directory named large.xml:

java -jar restserver-client-retrieve/target/
restserver-client-retrieve-1.0-example.jar localhost 8080
/db/my-new-collection/large.xml admin > large.xml

Query example. You can execute the QueryApp example like so:
java -jar restserver-client-query/target/restserver-client-query-1.0-example.jar

This shows the available arguments for using the QueryApp.

Remote APIs | 341

www.it-ebooks.info

http://www.it-ebooks.info/

A complete example of using the application might look like the following, which
would find the family names of all of the people in all of the documents in the collec-
tion /db/my-new-collection in the database:

java -jar restserver-client-query/target/
restserver-client-query-1.0-example.jar localhost 8080
"for \$person in //person return \S$person/family" /db/my-new-collection admin

On non-Windows platforms, you must escape the $ character used
in XQuery for variables when sending the query in a command line
from the terminal by prefixing with a \ character. If you do not
escape this symbol, the shell interpreter will try to interpret them as
environment variables, which will result in an invalid XQuery and
therefore an HTTP 400 Bad Request response from the REST
Server APL

Remove example. You can execute the RemoveApp example like so:

java -jar restserver-client-remove/target/
restserver-client-remove-1.0-example. jar

This shows the available arguments for using the RemoveApp.

A complete example of using the application might look like the following, which
would remove the collection /db/my-new-collection from the database:

java -jar restserver-client-remove/target/
restserver-client-remove-1.0-example.jar localhost 8080
/db/my-new-collection admin

XML-RPCAPI

RPC (Remote Procedure Call) allows you to call API functions in eXist from other
processes; these calls are performed over HTTP. The XML aspect of the XML-RPC
protocol indicates that the RPCs and their responses are encoded into XML docu-
ments, and it is these documents that are sent back and forth between eXist and the
third-party process.

XML-RPC is a standardized protocol, with the XML documents used in requests and
responses being well defined and documented by the XML-RPC specifications. How-
ever, the definitions of the functions available from eXist that you use in your RPC
calls, their parameters, and their return types naturally differ from those in any other
XML-RPC implementation. The base URI of the XML-RPC server in eXist on a
default installation is http://localhost:8080/exist/xmlrpc.

There is nothing to stop you from using eXist’s XML-RPC API from any application
(such as cURL) that can, at a minimum, HTTP POST XML documents to eXist and

342 | Chapter 13:Integration

www.it-ebooks.info

http://www.xmlrpc.com
http://www.it-ebooks.info/

process the XML document responses. However, eXist's XML-RPC API was never
really designed to be used in this way. Thus, the contents of the XML documents for
performing XML-RPC operations with eXist are not well documented. As it is a sim-
ple protocol of just XML over HTTP, though, if you are so inclined you can reverse-
engineer it by reading the XML-RPC specification and studying the interface for
eXist’s XML-RPC API functions (in the org.exist.xmlrpc.RpcApi Java class, and
the associated RpcApi JavaDoc). In fact, that is exactly the aim of this chapter. Rather
than try to explain the entirety of eXist's XML-RPC AP]J, in which there are over 122
available functions, we explain the methodology and tools needed to make use of this
APL

Another option available to you is to use a network sniffing tool such as Wireshark to
examine XML-RPC network traffic sent to and from eXist. For example, let’s take a
look at the first XML-RPC request made by eXist’s Java Admin Client after you click
Login. This traffic was captured using Wireshark:

POST /exist/xmlrpc HTTP/1.1 (1)

Content-Type: text/xml (2]

User-Agent: Apache XML RPC 3.1.3 (Sun HTTP Transport)
Authorization: Basic YWRtaWde ©

Cache-Control: no-cache

Pragma: no-cache

Host: localhost:8080 @

Accept: text/html, image/gif, image/jpeg, *; q=.2, */*; q=.2
Connection: keep-alive

Content-Length: 273

<?xml version="1.0" encoding="UTF-8"?>
<methodCall xmlns:ex="http://ws.apache.org/xmlrpc/namespaces/extensions">
<methodName>existsAndCanOpenCollection</methodName>
<params>
<param>
<value>/db</value> (6]
</param>
</params>
</methodCall>

Shows that this is just an HTTP POST to /exist/xmlrpc

Shows that we are just sending XML in the body of the request, which is exactly
what we would expect for XML-RPC

© Shows that we are authenticating with the server using basic authentication (e.g.,
our encoded admin username and password)

O Shows the server we are HTTP POSTing to—that is, localhost port 8080

Remote APIs | 343

www.it-ebooks.info

https://github.com/eXist-db/exist/blob/eXist-2.1/src/org/exist/xmlrpc/RpcAPI.java
http://exist-db.org/api/org/exist/xmlrpc/RpcAPI.html#method_summary
http://www.wireshark.org
http://www.it-ebooks.info/

© Shows the name of the Java function in eXist that we are calling—that is, exist
sAndCanOpenCollection

O Shows that we are sending a single parameter value to the function—that is, /db

From the preceding Wireshark output we can infer that we are calling a function
(also known as a method) in eXist using XML-RPC. That function will check for the
existence of the collection /db in the database and verify that the authenticated user
has permission to open that collection.

Let’s now look at the response to that request sent back to the client from eXist:

HTTP/1.1 200 OK @

Date: Wed, 08 May 2013 10:31:16 GMT

Set-Cookie: JSESSIONID=omgOpklOxdvf1i261v33z86ri1;Path=/exist
Expires: Thu, 01 Jan 1970 00:00:00 GMT

Content-Length: 287

Content-Type: text/xml (2]

Server: Jetty(8.1.9.v20130131)

<?xml version="1.0" encoding="UTF-8"?>
<methodResponse xmlns:ex="http://ws.apache.org/xmlrpc/namespaces/extensions">
<params>
<param>
<value>
<boolean>1</boolean> (3]
</value>
</param>
</params>
</methodResponse>

Shows that our request was successful (200 OK)

Shows that we are receiving just XML in the body of the response, which is
exactly what we would expect for XML-RPC

© Shows that the function we called returned a single parameter whose Boolean
value is 1—that is, true

From the preceding Wireshark output we can infer both that our function call was
successful and that our function returned a positive result for the parameters pro-
vided to it. In this case, that means that the /db collection does indeed exist and that
our authenticated user has permission to read that collection.

Let’s compare this to the Java definition of the existsAndCanOpenCollection func-
tion in eXist’s XML-RPC API that was just called by our XML-RPC request:

/**

* Determines whether a Collection exists in the database

344 | Chapter 13:Integration

www.it-ebooks.info

http://www.it-ebooks.info/

* and whether the user may open the collection
*

* @param collectionUri The URI of the collection of interest
*

* @return true if the collection exists and the user can open 1it,

* false 1f the collection does not exist
*

* @throws PermissionDeniedException
* If the user does not have permission to open the collection
*/
boolean existsAndCanOpenCollection(final String collectionUri)
throws EXistException, PermissionDeniedException;

The definition of the Java function existsAndCanOpenCollection should come as no
surprise after seeing the XML-RPC dumps produced by Wireshark. We can clearly
see that the method name, parameters, and method response in the XML-RPC docu-
ments match the Java definition. This means you can look at any Java function
defined in eXist's XML-RPC API and with relative ease infer what the XML-RPC
document to call it and the response that you will get back should look like.

But wait—as previously mentioned, the XML-RPC API in eXist was not designed
with the idea in mind that developers would directly send and receive XML docu-
ments to and from it. Rather, as XML-RPC is a standardized protocol, it was
intended to allow any developer to use an XML-RPC client library from her pro-
gramming language of choice to talk to eXist. An XML-RPC client library makes life
much easier for developers, as they can simply make standard function calls in their
programming language, and the XML-RPC client will take care of serializing these to
XML, sending them to the XML-RPC server API (i.e., eXist) over HTTP, receiving
the responses, deserializing the XML back into the various primitives and objects
defined in their programming language, and returning these results as those of the
function calls they initially made.

So, you may be wondering why we briefly studied the raw wire protocol of XML-RPC
if there are client libraries that we can use to avoid this. Well, in practice there are
many XML-RPC libraries available for many different programming languages, but
they are in various states of maturity. Understanding the underlying XML-RPC pro-
tocol itself (which is relatively simple) gives us a great tool for gaining insight when
debugging communication problems with eXist using XML-RPC. For reference, the
Linux Documentation Project has an excellent page on using XML-RPC from various
programming languages, complete with practical examples.

Using the XML-RPC client API from Java

There are several options available for XML-RPC libraries in Java. eXist itself makes
use of the Apache XML-RPC library, both for its XML-RPC server and as its underly-
ing client in the Java Admin Client for remote connections. Here, though, we will
look at the Redstone XML-RPC library, as it is much smaller, simpler, and in many

Remote APIs | 345

www.it-ebooks.info

http://www.tldp.org/HOWTO/XML-RPC-HOWTO/index.html
http://www.tldp.org/HOWTO/XML-RPC-HOWTO/index.html
http://xmlrpc.sourceforge.net/
http://www.it-ebooks.info/

ways easier to use than the Apache library. At the time of writing, the latest version
was 1.1.1.

The Redstone XML-RPC library offers two methods of use to a client (as does the
Apache library):

Classic XML-RPC client API (Example 13-9)
Basically, you tell the client about the server method and the parameters that you
wish to send, and then make a call to that method with the client against the
server. The client returns an object, which you then interrogate and cast to get
your result.

Example 13-9. Redstone classic XML-RPC client

final URL url = new URL("http://localhost:8080/exist/xmlrpc");
final XmlRpcClient rpc = new XmlRpcClient(url, true);

final Object result = rpc.invoke(
"existsAndCanOpenCollection", new Object[] { "/db" });

Dynamic proxy XML-RPC client API (Example 13-10)

This is a much more modern approach than the classic one and much easier to
use. Basically, your server defines a Java interface (i.e., the interface
org.exist.xmlrpc.RpcAPI for eXist), and you make a copy of that interface to
your client application. You then ask the XML-RPC library to create a proxy to
the server using that interface. The client gives you a standard Java object, which
implements the interface. You can then use this Java object just like any other,
and all the client/server communication is hidden from you. When you call a
function on the object, the client takes care of all of the communication with the
server and returns the result.

Example 13-10. Redstone dynamic proxy XML-RPC client
final URL url = new URL("http://localhost:8080/exist/xmlrpc");
final RpcAPI rpc = (RpcAPI)XmlRpcProxy.createProxy(

url, "Default", new Class[] { RpcAPI.class }, true);

final Boolean result = rpc.existsAndCanOpenCollection("/db");

346 | Chapter 13:Integration

www.it-ebooks.info

http://www.it-ebooks.info/

In the dynamic proxy approach, calling the RPC method is much
simpler because the interface forms the code contract as opposed
to naming the method (with a string), providing an arbitrary num-
ber of arguments in an array, and receiving an untyped result in
the nonproxy approach. As the functions, the number of argu-
ments, their types, and the type of the result are known statically at
compile time, it’s much harder to make mistakes when you call the
API—any mistake will prevent your client program from compil-
ing.

The only serious advantage of the classic XML-RPC approach over
a dynamic proxy approach from Java is that with the classic
approach, you do not need to copy the Java interface (and any of its
dependencies) from the server to the client application.

Examples. The source code of two small complete examples of using the Redstone
XML-RPC library from Java (to store a file and retrieve a file) is included in the folder
chapters/integration/xmlrpc-client of the book-code Git repository (see “Getting the
Source Code” on page 15). One example demonstrates the classic XML-RPC
approach, while the other demonstrates the dynamic proxy approach.

To compile the examples, enter the xmlirpc-client folder and run mvn package.

Classic store example. You can then execute the StoreApp example like so:
java -jar xmlrpc-client-store/target/xmlrpc-client-store-1.0-example.jar
This shows the available arguments for using the StoreApp.

A complete example of using the application might look like the following, which
would upload the file /tmp/large.xml to the collection /db/my-new-collection in eXist:

java -jar xmlrpc-client-store/target/xmlrpc-client-store-1.0-example.jar
localhost 8080 /tmp/large.xml application/xml /db/my-new-collection admin

The XML-RPC StoreApp example takes an extra parameter com-
pared to the StoreApp examples for other APIs, as specifying the
Internet media type of the resource is mandatory for uploading
files via eXist’s XML-RPC APIL You may use application/xml for
XML documents; for anything else, if you do not know the Internet
media type it is recommended that you use application/octet-
stream, which will store the document into eXist as an untyped
binary resource.

Proxy store example. The proxy store example is externally exactly the same as the
classic store example; its implementation just varies as described previously.

Remote APIs | 347

www.it-ebooks.info

http://www.it-ebooks.info/

You can execute the ProxyStoreApp example like so:

java -jar xmlrpc-proxy-client-store/target/
xmlrpc-proxy-client-store-1.0-example.jar

This shows the available arguments for using the ProxyStoreApp.

A complete example of using the application might look like the following, which
would upload the file /tmp/large.xml to the collection /db/my-new-collection in eXist:
java -jar xmlrpc-proxy-client-store/target/
xmlrpc-proxy-client-store-1.0-example.jar localhost 8080

/tmp/large.xml application/xml
/db/my-new-collection admin

Using the XML-RPC client API from Python

As XML-RPC is such a prevalent and well-supported protocol, we felt that a simple
example for a non-Java programming language might be beneficial to those of you
who are not familiar with Java. We have created a direct port of the dynamic proxy
XML-RPC example into Python, the source code of which is included in the file
chapters/integration/xmlrpc-client/StoreApp.py of the book-code Git repository.

Python has a built-in XML-RPC library called xmlrpclib, which is very simple to use
(see Example 13-11). It works on the principle of dynamic proxies, but as Python is
more relaxed in its compilation here than Java, you will not see compile-time errors if
you try to call an RPC method that does not exist. This is because Python has no
knowledge at compile time of the RPC methods made available by eXist, as you have
not needed to provide it an interface like you do with Java. The version of Python
used was 2.7.2.

Example 13-11. Python dynamic proxy XML-RPC client
import xmlrpclib

rpc = xmlrpclib.ServerProxy("http://localhost:8080/exist/xmlrpc")

result = rpc.existsAndCanOpenCollection("/db")
print "Collection exists and we can open it: %s" % result

Python XML-RPC proxy store example. The source code of a small example of using
XML-RPC from Python to store a file is included in the folder chapters/integration/
xmlirpc-client of the book-code Git repository (see “Getting the Source Code” on page
15).

The Python store example is externally exactly the same as the Java dynamic proxy
example, and can be found in the StoreApp.py file. You can execute the Python Store-
App example like so:

348 | Chapter 13:Integration

www.it-ebooks.info

http://www.it-ebooks.info/

python StoreApp.py

A complete example of using the application might look like the following, which
would upload the file /tmp/large.xml to the collection /db/my-new-collection in eXist:

python StoreApp.py localhost 8080
/tmp/large.xml application/xml
/db/my-new-collection admin

XML:DB Remote API

The XML:DB API was developed by the XML:DB Initiative in the early 2000s with
the goal of creating a common standardized API for communicating with XML data-
bases. While the API is no longer actively developed, it arguably fulfilled its goal and
gained adoption from several XML database vendors. The XML:DB API is really just

a set of Java interfaces that a vendor must implement. eXist either implements these
as function calls on its internal API for local embedded use (see “XML:DB Local API”
on page 366), or—more interestingly here for its remote use—uses its XML-RPC imple-
mentation (see “XML-RPC API” on page 342) for network communication.

The main advantage of the XML:DB API is that it provides a complete Java client
library that you can use seamlessly from your Java applications without concern for
how the network communication with the eXist server is achieved. In practice there
is not much of a semantic difference between this and using a dynamic proxied XML-
RPC client approach. Whether you should use the XML:DB API or an XML-RPC
dynamic proxied client API really comes down to a matter of choice with regard to
the style of code that you wish to write. We feel that using the XML-RPC approach
offers greater flexibility, as you have full access to the API underlying the XML:DB
API; also the XML:DB API is becoming more limited due to its stagnation.

The downside of the XML:DB API is that it is only easily usable from Java, unless you
are willing to reverse-engineer the XML-RPC messages sent by the XML:DB API and
produce your own client library for a different programming language.

The base URI of the XML:DB Remote API server in eXist on a
default installation is xmldb:exist://localhost:8080/exist/xmlrpc.
Even though the URI scheme is xmldb, the URI points to eXist’s
XML-RPC server, and the XML-RPC server itself uses HTTP.
Thus, XML:DB (as far as eXist is concerned) is really just more
XML-RPC performed over HTTP.

Using the XML:DB Remote API from Java

eXist provides a remote client library implementation of the XML:DB API, which can
be used from your own Java applications. If you wish to use it from your own appli-

Remote APIs | 349

www.it-ebooks.info

http://xmldb-org.sourceforge.net/index.html
http://www.it-ebooks.info/

cations, you need to make sure the libraries listed in Table 13-6 are available on your
classpath.

Table 13-6. Dependencies for eXist remote XML:DB Java applications

Library Description

SEXIST_HOME/lib/core/xmldb.jar XML:DB AP! library.

SEXIST_HOME/exist.jar eXist core.

Contains the eXist XML:DB client library implementation.

SEXIST_HOME/lib/core/xmirpc-client-3.1.3.jar -~ Apache XML-RPC Client library.

Dependency of eXist’s XML:DB client library.

SEXIST_HOME/lib/core/xmirpc-common-3.1.3jar -~ Apache XML-RPC common code.

Dependency of the Apache XML-RPC client library.

SEXIST_HOME/lib/core/commons-io-2.4.jar Apache Commons 1/0 library.

Dependency of eXist’s XML:DB client library.

There are just four main concepts that you need to understand in the XML:DB API
to make XML:DB requests to eXist:

Drivers

The XML:DB API makes use of drivers so that the same API can be used by dif-
ferent vendors, and each vendor just needs to provide a driver. eXist provides the
Driver class org.exist.xmldb.DatabaseImpl (see Example 13-12).

Example 13-12. Registering eXist’s XML:DB driver
final Class<Database> db(Class =

(Class<Database>) Class.forName("org.exist.xmldb.DatabaseImpl");
final Database database = dbClass.newInstance();

database.setProperty("create-database", "true");

DatabaseManager.registerDatabase(database);

Collections

A Collection in the XML:DB API maps onto a collection in the eXist database.
Collections are the primary means for interacting with the XML:DB APL
Accessing a Collection requires authentication, after which all subsequent oper-
ations on that collection and any subresources or subcollections of that Collec
tion use the same credentials. Administrative and query services can also be
retrieved from a Collection. See Example 13-13.

350

| Chapter 13: Integration

www.it-ebooks.info

http://www.it-ebooks.info/

Example 13-13. Accessing a remote XML:DB collection

Collection collection =
DatabaseManager.getCollection(
"xmldb:exist://localhost:8080/exist/xmlrpc/db",
"admin", "");

Resources
A Resource in the XML:DB API maps onto a document in the eXist database.
eXist’s implementation of the XML:DB API allows you to work with both its
XML and binary documents. See Example 13-14.

Example 13-14. Retrieving a Resource from an XML:DB remote collection
Resource resource = collection.getResource("some-document.xml");

Services
A Service in the XML:DB API allows you to perform extended operations
against the database. The XML:DB API provides services for collection manage-
ment, XPath/XQuery, and XUpdate services. In addition, eXist provides some
eXist-specific XML:DB services for user management, database instance manage-
ment, and index queries. You retrieve a Service from a connection to a Collec
tion by specifying its name and version. See Example 13-15 and Table 13-7.

Example 13-15. Obtaining a query service from an XML:DB remote collection

XPathQueryService queryService =
collection.getService("XPathQueryService", "1.0");

Table 13-7. eXist XML:DB services

Service name(s) Java class (org.exist.xmldb) Description

XPathQueryService RemoteXPathQueryService XML:DB XPath Service. In

XQueryService eXist, XQuery is also offered.

CollectionManagementService RemoteCollectionManagementSer XML:DB Collection

CollectionManager vice Management Service.

XUpdateQueryService RemoteXUpdateQueryService XML:DB XUpdate Service.

UserManagementService RemoteUserManagementService eXist User Management
Service extension for
XML:DB.

Remote APIs | 351

www.it-ebooks.info

http://www.it-ebooks.info/

Service name(s) Java dass (org.exist.xmldb) Description

DatabaselInstanceManager RemoteDatabaseInstanceManager eXist Database Instance
Management Service
extension for XML:DB.

IndexQueryService RemoteIndexQueryService eXist Index Query Service
extension for XML:DB.

With the XML:DB API in eXist, you are responsible for cleaning
up after yourself!

That is to say, if you open a collection, you must close the collection
when you are finished with it; likewise, if you open a resource, you
must free that resource when you are finished with it.

You can close a collection by calling its close method, and you can
free a resource by casting it to an org.exist.xmldb.EXistRe
source and calling its freeResources method.

Examples. The source code of four small complete examples of using the XML:DB
Remote API from Java—to store a file, retrieve a file, query the database, and remove
a file—are included in the folder chapters/integration/xmldb-client of the book-code
Git repository (see “Getting the Source Code” on page 15).

To compile the examples, enter the xmldb-client folder and run mvn package.

Store example. You can then execute the StoreApp example like so:
java -jar xmldb-client-store/target/xmldb-client-store-1.0-example.jar

This shows the available arguments for using the StoreApp.

A complete example of using the application might look like the following, which
would upload the file /tmp/large.xml to the collection /db/my-new-collection in eXist:

java -jar xmldb-client-store/target/xmldb-client-store-1.0-example.jar
localhost 8080 /tmp/large.xml true /db/my-new-collection admin

The XML:DB StoreApp example takes an extra parameter com-
pared to the StoreApp examples for other APIs, as the API requires
you to know if you are storing an XML or binary document. You
may use true for XML documents, and false for binary
documents.

Retrieve example. You can execute the Retrieve App example like so:

java -jar xmldb-client-retrieve/target/xmldb-client-retrieve-1.0-example.jar

352 | (Chapter 13:Integration

www.it-ebooks.info

http://www.it-ebooks.info/

This shows the available arguments for using the RetrieveApp.

A complete example of using the application might look like the following, which
would download the resource db/my-new-collection/large.xml to the file in the cur-
rent directory named large.xml:

java -jar xmldb-client-retrieve/target/xmldb-client-retrieve-1.0-example.jar
localhost 8080 /db/my-new-collection/large.xml admin > large.xml

Query example. You can execute the QueryApp example like so:
java -jar xmldb-client-query/target/xmldb-client-query-1.0-example.jar
This shows the available arguments for using the QueryApp.

A complete example of using the application might look like the following, which
would find the family names of all of the people in all of the documents in the collec-
tion /db/my-new-collection in the database:

java -jar xmldb-client-query/target/xmldb-client-query-1.0-example.jar
localhost 8080 "for \$person in //person return \Sperson/family"
/db/my-new-collection admin

On non-Windows platforms, you must escape the $ character used
in XQuery for variables when sending the query in a command line
from the terminal by prefixing with a \ character. If you do not
escape this symbol, the shell interpreter will try to interpret them as
environment variables, which will result in an invalid XQuery and
therefore an org.exist.xmldb.XMLDBException response from the
XML:DB server APL

Remove example. You can execute the RemoveApp example like so:
java -jar xmldb-client-remove/target/xmldb-client-remove-1.0-example.jar
This shows the available arguments for using the RemoveApp.

A complete example of using the application might look like the following, which
would remove the collection /db/my-new-collection from the database:

java -jar xmldb-client-remove/target/xmldb-client-remove-1.0-example.jar
localhost 8080 /db/my-new-collection admin

RESTXQ

RESTXAQ itself is not an API; rather, it is a framework that enables you to build your
own APIs. The beauty of this is that you can construct small and elegant application-
specific APIs for the Web or internal purposes using REST over HTTP.

Remote APIs | 353

www.it-ebooks.info

http://www.it-ebooks.info/

“Building Applications with RESTXQ” on page 215 covers the specifics of building
REST APIs with RESTXQ, so we will not repeat those here. For the purposes of inte-
grating your custom RESTXQ REST APIs with other applications or processes, the
main requirement is a decent HTTP client, for which we refer you back to the infor-
mation in “REST Server API” on page 319.

With RESTXQ the developer declares a series of HTTP request constraints against an
XQuery function by use of XQuery 3.0 annotations; the function with constraints is
then known as a resource function. When eXist receives an incoming HTTP request it
checks all of the known resource functions to see if the HTTP request could be serv-
iced by one of them; if so, the function is executed, and parameters from the HTTP
request may be extracted and injected into the function call as parameters to that
function. The resource function is then (apart from user-defined processing) respon-
sible for constructing an appropriate HT TP response.

For comparison with the REST Server API, we include with this chapter the XQuery
file restxq-stored-query/image-api.xqm, which is a port of the rest-stored-query/image-
api.xq file, discussed in “Executing stored queries” on page 335. We hope that this
will aid you in recognizing the different coding styles for using RESTXQ and stored
queries with the REST Server API.

To use the RESTXQ version of image-api.xq, you simply need to store it into any col-
lection in the database for which RESTXQ is enabled (by default, this is all database
collections apart from those of specific applications in subcollections of /db/apps that
have chosen to disable RESTXQ). Also, you need to ensure that: 1) the calling user
has execute access within the database to the image-api.xqm file, so that it may be
executed; 2) the collection /db/images exists and is writable by the calling user; and 3)
the Image XQuery extension module is enabled in $EXIST HOME/conf.xml.

Recall from “Executing stored queries” on page 335 that the custom image-api REST
API performs these three functions:

o Stores a JPEG image received over HTTP into the database

o Retrieves a stored image from the database

o Retrieves a thumbnail representation of an image from the database

Let’s now look at the XQuery code in detail, and how it performs each of these
functions.

Store a JPEG image received over HTTP into the database

The API provided by the image-api.xqm file allows you to send an HTTP POST to it
via the RESTXQ API to store a JPEG image. In your HTTP request, if you set the
Content-Type to image/jpeg and include the content of a JPEG image in the body of

354 | Chapter 13:Integration

www.it-ebooks.info

http://www.it-ebooks.info/

the request, it will be stored into the database and image-api.xqm will return a Loca
tion and identifier in the HTTP response for the image.

Consider the following example, where we use cURL to make a request to a RESTXQ
resource function that stores a JPEG image into the database:

curl -1 -X POST -H 'Content-Type: image/jpeg' --data-binary @/tmp/cats.jpg
http://localhost:8080/exist/restxq/image

Let’s look at how the code in our image-api.xgm stored query handles this request:

declare
%rest:POST"(“{$image-data}") (2]
%rest:path("/image") (3]
%rest:consumes("image/jpeg") (4]
function ii:store-image($image-data) { (5)
let $image-name := util:uuid() || ".jpg"
let $db-path :=
xmldb:store($ii:image-collection, $image-name, $image-data,
"image/jpeg") ©
let $uri-to-resource := rest:uri() || "/" || $image-name @
return

(
<rest:response> (8]
<http:response status="{$1i1:HTTP-CREATED}"> (o]
<http:header name="Location" value="{$uri-to-resource}"/>
</http:response>
</rest:response>

<identifier>{$image-name}</identifier> ®
b

We declare that we are only interested in processing HT'TP POST requests.

We request to have the body of the POST request extracted into the function
parameter $image-data.

© We declare that we are only interested in processing HTTP requests that have a
URI (relative to the RESTXQ API) of /image.

O We declare that we are only interested in consuming HTTP requests that have a
Content-Type of image/jpeg.

© The $image-data will receive the body of the HTTP POST when the function is
executed, as we declared in ©.

Remote APIs | 355

www.it-ebooks.info

http://www.it-ebooks.info/

We call the function xmldb:store on the body of the POST request. This function
stores the image into the database, and returns a path to the image in the data-
base.

We construct a public, dereferenceable URI to the stored image. Of particular
interest here is the call to rest:urt, which gives us the absolute URI of the exe-
cuting resource function.

The response of the function will be a sequence, where the first item will instruct
RESTXQ about the HTTP response and the second item will be the body of the
HTTP response.

We instruct RESTXQ to set the HTTP response code to 201 Created and add an
HTTP header declaring a URI to the location of the stored image.

As an added bonus, we also return an identifier for the created resource in the
body of the response; this identifier may then be used in subsequent requests to
the APIL.

Retrieve a stored image from the database

The API provided by the image-api.xqm file allows you to send an HTTP GET to it via
the RESTXQ API to get a previously stored image. If the URI in your HTTP request
includes an identifier of an image previously stored by the API, then it will return the

content of that image.

Consider the following example, where we use cURL to make a request to a RESTXQ

resource function that returns an image from the database:

curl http://localhost:8080/exist/rest/db/image/
24a85a52-5031-4bac-8843-4c7e7701905b. jpg

24a85a52-5031-4bac-8843-4c7e7701905b. jpg is the identifier of
the image returned by the API when we stored it in the previous
section.

Let’s look at how the code in our image-api.xqm stored query handles this request:

declare
o
%rest:path("/image/{$image-name}") @
%rest:produces("image/jpeg") (3)
%output:method("binary") (4)
function ii:get-image-rest($image-name) { (5]
let $image := ii:get-image($image-name) (6]

356 | Chapter 13:Integration

www.it-ebooks.info

http://www.it-ebooks.info/

return
if(not(empty($image)))then
Simage
else
<rest:response>
<http:response status="{$11:HTTP-NOT-FOUND}"> (8]
<http:header name="Content-Type" value="application/xml"/>
</http:response>
</rest:response>

}

We declare that we are only interested in processing HTTP GET requests.

We declare that we are only interested in processing HTTP requests that have a
URI (relative to the RESTXQ API) starting with /image and followed by any path
segment, which should be extracted into the function parameter $image-name.

© We declare that we are only interested in consuming HTTP requests that can
accept a response with Content-Type image/jpeg.

O We declare that we would like any body returned by our resource function to be
serialized to the HTTP response as binary.

© The $image-name will receive the value of a path segment from the URI when the
function is executed, as we declared in ??2.

O We call the function ii:get-image with the identifier of the image ($image-
name). This function has been omitted for brevity, but all you need to know right
now is that it retrieves an image previously stored into the database; otherwise
(i.e., if there is no image with that identifier in the database), it returns an empty
sequence.

© We have an image, so we return it from the resource function to be serialized to
the HTTP response.

O Alternatively, if there was no image in the database matching the identifier, we
set the response status to 404 Not Found.

Retrieve a thumbnail representation of an image from the database

The API provided by the image-api.xqm file allows you to send an HTTP GET to it via
the RESTXQ API to get a thumbnail of a previously stored image. If the URI in your
HTTP request includes an identifier of an image previously stored by the API pre-
fixed by thumbnail/, it will return a thumbnail representation of that image. The
image-api.xgm file will generate the thumbnail on the fly, store it into the database,

Remote APIs | 357

www.it-ebooks.info

http://www.it-ebooks.info/

and return it; if the same thumbnail is requested a second time, the API serves it from
the database rather than regenerating it.

Consider the following example, where we use cURL to make a request to a RESTXQ
resource function to return an image thumbnail:

curl http://localhost:8080/exist/restxq/image/thumbnail/
24a85a52-5031-4bac-8843-4c7e7701905b. jpg

Observe the thumbnail/ before the identifier of the image, in com-
parison to the URI used in “Retrieve a stored image from the data-
base” on page 356.

The code in our image-api.xgm file for handling this request is actually very similar to
that for retrieving an image, except for a few minor changes. Therefore, we will only
really examine the differences here:

declare

("/image/thumbnail/{$image-name}") (1)
%rest:produces("image/jpeg")
%output:method("binary")

function iil:get-or-create-thumbnail($image-name) {

let $thumbnail-image-name := "thumbnail-" || $image-name, (2]
S$thumbnail-db-path := $ii:image-collection || "/" || $thumbnail-image-name
return

(: does the thumbnail already exist in the database? :)

if(util:binary-doc-available($thumbnail-db-path))then
(: yes, return the thumbnail :)
ii:get-image($thumbnail-image-name)

else
(: no, does the original image of which we want a
thumbnail exist in the database? :)
let $image := ii:get-image($Simage-name)
return
if(not(empty($Simage)))then
(: yes, create the thumbnail :)
let Sthumbnail :=
image:scale($image, (400, 200), "image/jpeg"),
$thumbnail-db-path :=
xmldb:store(
$ii:image-collection,
Sthumbnail-1image-name,
Sthumbnail,
"image/jpeg")
return
Sthumbnail

358 | Chapter 13: Integration

www.it-ebooks.info

http://www.it-ebooks.info/

else
<rest:response>
<http:response status="{$11:HTTP-NOT-FOUND}">
<http:header name="Content-Type"
value="application/xml" />
</http:response>
</rest:response>

};

© This is similar to our code for retrieving an image, except as well as the identifier
of the image we declare that we are only interested in URI paths that also have
a /thumbnail segment.

@ Instead of retrieving an image, we now create or retrieve a thumbnail. The details
of this are out of scope here, and the code is not too difficult to understand; the
main point of interest is the call to the extension image:scale, which will
actually generate the thumbnail image.

Hopefully, you will agree that the RESTXQ version is simpler and easier to under-
stand than the REST Server API version. For example, in this specific example we
have not had to handle unwanted requests and return an HTTP 400 Bad Request or
HTTP 406 Method Not Allowed, as the RESTXQ API takes care of that for us.

XQJ

XQJ is a standardized Java API developed by the JCP (Java Community Process) as
JSR-225. A JSR (Java Specification Request) is centered solely on Java, and thus the
API is not really suitable for direct use in other programming languages. The imple-
mentation of the XQJ server in eXist is really just a few extensions to eXist’s REST
Server, with any XQJ client expected to communicate using HTTP via the REST
Server APL If you like the XQJ API but do not like Java, then theoretically there is
nothing to stop you from implementing an XQJ-like client in any language, and it
should not be too difficult providing you understand the REST Server API.

XQJ JSR-225 focuses solely on XQuery: it allows you to send an XQuery to the server,
have it executed, and receive the results. It also allows you to prepare XQuery expres-
sions that can be parameterized and executed later (similar to prepared statements in
JDBC). While XQJ does not directly provide any facilities for managing documents
or the database, it is possible to achieve similar functionality by using eXist’s XQuery
xmldb extension module (see the entry for xmldb in Appendix A).

eXist has chosen only to implement a server API for use by XQJ; it does not provide
an XQJ client implementation. This is mainly because there is an excellent and freely
available XQJ client implementation from Charles Foster at http://www.xqj.net,
which you may use in your own Java programs.

Remote APIs | 359

www.it-ebooks.info

http://bit.ly/jsr_225
http://www.xqj.net
http://www.it-ebooks.info/

There are just four main concepts that you need to understand in the XQJ API to
make requests to eXist—data sources, connections, expressions, and result sequences:

XQDataSource

The data source provides the main driver of XQJ and defines how you connect to
the server. With the net.xqj.exist.ExistXQDataSource implementation from
xqj.net, you need to set two properties to be able to connect to eXist (see
Example 13-16):

serverName
This is the hostname or IP address of the eXist server that you wish to con-
nect to. If you are running your XQJ client on the same machine as eXist,
you may use either localhost or 127.0.0.1.

port
This is the TCP port that the eXist server you wish to connect to is listening
on. If you have not reconfigured this setting in eXist, it will be 8080 by
default.

Example 13-16. Setting up the XQDataSource for connecting to eXist

final XQDataSource xgqs = new ExistXQDataSource();
xqs.setProperty("serverName", "localhost");
xqgs.setProperty("port", "8080");

XQConnection

The connection represents an XQJ-connected session with the server and is
obtained from the data source. When requesting the connection from the data
source, you should provide your username and password for accessing eXist. The
eXist XQJ implementation uses REST, so there is no persistent connection;
rather, HTTP calls are made as needed by the XQConnection object. However,
you should always call close on the XQConnection object to clean up any
retained objects. See Example 13-17.

Example 13-17. Opening an authenticated XQConnection to eXist

XQConnection connection = dataSource.getConnection("admin", "mypassword");

XQExpression

The expression represents an XQuery expression that may be sent to the server
and executed. It is also possible to use XQPreparedExpression if you wish to exe-
cute the same expression multiple times with different parameters (e.g., external
variable bindings).

360

| Chapter 13: Integration

www.it-ebooks.info

http://www.it-ebooks.info/

XQResultSequence
As a result of executing an XQExpression or XQPreparedExpression, a result
sequence is generated that may be iterated over to retrieve results from the
server.

Examples

The source code of a simple example of using the xgj.net XQJ API from Java to query
the database is included in the folder chapters/integration/xqj-client of the book-code
Git repository (see “Getting the Source Code” on page 15).

To compile the example, enter the xgj-client folder and run mvn package.

Query example. You can then execute the QueryApp example like so:
java -jar xqj-client-query/target/xqj-client-query-1.0-example.jar
This shows the available arguments for using the QueryApp.

A complete example of using the application might look like the following, which
would find the family names of all of the people in all of the documents in the collec-
tion /db/my-new-collection in the database:

java -jar xqj-client-query/target/xqj-client-query-1.0-example.jar localhost 8080
"for \$person in //person return \$person/family" /db/my-new-collection admin

On non-Windows platforms, you must escape the $ character used
in XQuery for variables when sending the query in a command line
from the terminal by prefixing with a \ character. If you do not
escape this symbol, the shell interpreter will try to interpret them as
environment variables, which will result in an invalid XQuery and
therefore an XQJException: XQJQS001 - Invalid XQuery syntax
response from the XQJ APL

Deprecated Remote APIs

From eXist 2.0 onward, several APIs that were available in previous versions are now
deprecated. These APIs have been deprecated either because the eXist developers felt
that they were infrequently used by the community, because they had been replaced
by more modern APIs, or because the contributors of these APIs no longer supported
them. We'll look at a few of them here.

Atom Servlet

The Atom Servlet in eXist provides an implementation of the IETF Atom syndication
format and publishing protocol. The Atom Servlet was originally written in Java, but

Remote APls | 361

www.it-ebooks.info

http://www.it-ebooks.info/

its developers felt that a newer implementation written in XQuery would not only
offer better support, but also be easier to maintain.

Currently the Atom Servlet is still present in eXist, but if you are not already using it,
we would advise you not to start! An Atom API implemented in XQuery is already
under development and should hopefully be released in the near future as a replace-
ment for the Atom Servlet.

SOAP API

Since eXist 0.8, the Axis and Admin Servlets have provided a rudimentary SOAP API
for eXist. The Axis Servlet provides retrieval and query services, while the Admin
Servlet provides services for storing and removing documents and collections. Both
Servlets are implemented with what is now quite an old version of Apache Axis, and
use the RPC-encoded form of SOAP. Around late 2006 it was widely expected that
the SOAP API written in Java would be replaced by XQuery web services imple-
mented for the SOAP Server (see “SOAP Server” on page 362), but unfortunately that
work was never completed.

The use of SOAP today is often considered bloated and convoluted, and hence is
often much discouraged in favor of REST. The SOAP API in eXist was deprecated
with the release of eXist 2.0. Instead, it is recommended to use either the RESTXQ
API, the REST Server AP, or the XML-RPC API. If enough interest in SOAP appears
again from the community, it is most likely that a new SOAP implementation will be
developed based on XQuery 3.0 annotations influenced by JAX-WS, in a similar fash-
ion to RESTXQ (see “RESTXQ” on page 353).

For Microsoft .NET developers there is still something of an
advantage in using the SOAP API because of the wizard-driven
web service client proxy generation tools offered by Microsoft Vis-
ual Studio. While we would suggest using the REST API if you are
investing in eXist-db in the medium to long term, the SOAP API
can be the easiest and fastest route to a working application
for .NET developers in the short term.

SOAP Server

The SOAP Server was developed in 2006 as a mechanism for transparently wiring
SOAP requests and responses to XQuery functions. The SOAP Server automatically
generates WSDL (Web Services Description Language) for an XQuery library module
and marshals and demarshals the function parameters and results from and into a
SOAP envelope. The SOAP Server attempted to deliver both RPC and Document Lit-
eral forms of SOAP web services transparently.

362 | Chapter 13:Integration

www.it-ebooks.info

http://jax-ws.java.net/
http://www.it-ebooks.info/

The SOAP Server was a useful experiment in enabling XQuery to deliver enterprise-
style web services, but it was always underdeveloped and never lived up to its poten-
tial to replace the SOAP API (discussed in the previous section). The SOAP Server is
still available in eXist 2.0, but it has been deprecated for some time and it is not rec-
ommended for production use. If you wish to provide SOAP web services from
XQuery, it is recommended that you either build on top of RESTXQ (see “RESTXQ”
on page 353) and manage the SOAP envelopes and WSDL generation yourself, or
collaborate with the eXist community to build a successor.

Remote API Libraries for Other Languages

While many of the APIs discussed in this chapter are programming language—agnos-
tic, the majority of our examples are provided in Java. There are also various other
APIs, libraries, and bindings to make working with eXist from languages other than
Java easier.

Please note that these are third-party, open source community offerings, and as such
they are not maintained by the eXist project, nor have we personally assessed the
quality of these offerings. Rather, we include a list of them for completeness and to
act as signposts for you.

Community APIs for eXist by programming language

o JavaScript

existdb-node by Wolfgang Meier
Connects to eXist via its REST API

o Perl

XML-ExistDB by Mark Overmeer
Connects to eXist via its XML-RPC API

PheXist by Oscar Celma
Connects to eXist via its SOAP API. Also available for PHP

o Python

pyexist by Samuel Abels
Connects to eXist via its REST API

EULexistdb by the Digital Programs and Systems Software Team of Emory Univer-
sity Libraries
Connects to eXist via its XML-RPC API. Can also be used in conjunction
with Django

Remote APIs | 363

www.it-ebooks.info

https://github.com/wolfgangmm/existdb-node
http://search.cpan.org/~markov/XML-ExistDB-0.12/
http://query-exist.sourceforge.net/
https://github.com/knipknap/pyexist
https://pypi.python.org/pypi/eulexistdb
https://github.com/emory-libraries/eulexistdb
https://github.com/emory-libraries/eulexistdb
http://www.it-ebooks.info/

zopyx.existdb for Plone by Andreas Jung
Connects to eXist via its REST API. An eXist plug-in for Plone CMS

o PHP

php-eXist-db-Client by CuAnnan
Connects to eXist via its XML-RPC API

PheXist by Oscar Celma
Connects to eXist via its SOAP API. Also available for PHP

« Ruby

eXist API by Jenda Sirl
Connects to eXist via its XML-RPC API

rb_exist by Miquel Sabaté Sola
Connects to eXist via its REST API. It was inspired by pyexist

e Scala

XQuery for Scala by Dino Fancellu
Connects to eXist via its XQJ API

Local APIs

A local API enables you to embed eXist into your own Java application by placing the
eXist libraries and configuration files in the classpath of your application and making
function calls to eXist via one of its local APIs. When eXist is embedded in your
application, both your own application’s code and eXist’s application code run within

the same JVM process.

While there is nothing to stop you from calling eXist’s own classes and functions
directly, this is strongly discouraged and not officially supported by the eXist devel-
opment team. Rather, you are advised to use one of the two available local APIs,

described in “XML:DB Local API” on page 366 and “Fluent API” on page 369.

So, which local API should you use? There are a few factors to consider:

o Do you want to be able to switch your application between local and remote
eXist instances? If so, then use the XML:DB API, as it is a single API to learn that

o If you will only ever use eXist locally in embedded operations, then the Fluent

supports either local or remote eXist servers.

API provides a more modern and simpler API for working with eXist.

364

| Chapter 13: Integration

www.it-ebooks.info

https://pypi.python.org/pypi/zopyx.existdb
https://plone.org/
https://github.com/CuAnnan/php-eXist-db-Client
http://query-exist.sourceforge.net/
http://rubygems.org/gems/eXistAPI
https://github.com/sirljan/eXistAPI
https://github.com/mssola/rb_exist
https://github.com/fancellu/xqs
http://www.it-ebooks.info/

When you embed eXist into your own application, because eXist
shares the same JVM process and memory space as your applica-
tion, should your application exhaust the memory available to the
JVM or crash, this can affect the integrity of your eXist database.
Take care when creating and freeing resources within your applica-
tion and when exiting the JVM.

Whichever local API you choose, one challenge when embedding eXist into your
own application is ensuring that you have all of the dependencies and configuration
files that eXist relies on bundled with your application and available on the classpath.
To a certain extent, the libraries bundled with eXist that you will also need to bundle
with your application will depend on which features of eXist you wish to use, but at
an absolute minimum you will need the runtime dependencies listed in Table 13-8.

Table 13-8. Minimum dependencies for embedding eXist 2.1 in your own
application

Library Description

SEXIST_HOME/exist jar Contains the eXist core implementation.
SEXIST_HOME/start.jar Contains the eXist startup helpers.
Dependency of eXist core.
SEXIST_HOME/lib/core/xmldb.jar XML:DB API library.
SEXIST_HOME/lib/core/commons-io-2.4.jar Apache Commons /0 library.

Dependency of eXist's XML:DB client library and eXist core.

SEXIST_HOME/lib/core/pkg-repo.jar EXPath PKG Repository library.

Dependency of eXist core.

SEXIST_HOME/lib/core/commons-pool-1.6.jar Apache Commons Pool library.
Dependency of eXist's XML:DB client library.

SEXIST_HOME/lib/core/quartz-2.1.6.jar Quartz Scheduler library.

Dependency of eXist core.

SEXIST_HOME/lib/core/gnu-crypto-2.0.1-min.jar GNU Crypto minimum library.

Dependency of eXist core.

SEXIST_HOME/lib/core/commons-codec-1.7.1.jar ~ Apache Commons Codec library.

Dependency of eXist core.

Local APIs | 365

www.it-ebooks.info

http://www.it-ebooks.info/

Library Description

SEXIST_HOME/lib/core/antlr-2.7.7.jar Antlr Parser Generator library.
Dependency of eXist core.

SEXIST_HOME/lib/core/log4j-1.2.17 jar Log4) logging library.
Dependency of eXist core.

SEXIST_HOME/lib/endorsed/xercesimpl-2.11.0.jar ~ Apache Xerces2 XML Parser library.

Dependency of eXist core.

SEXIST_HOME/lib/endorsed/xml-resolver-1.2jar ~ Apache XML Commons Resolver library.

Dependency of eXist core.

SEXIST_HOME/tools/aspectj/lib/aspectrt-1.7.1.jar ~ Aspect) AOP library.

Dependency of eXist core.

SEXIST_HOME/lib/optional/servlet-api-3.0.jar Java Servlet API.

Dependency? of eXist core.
SEXIST_HOME/conf.xml eXist’s configuration file.

SEXIST_HOME/log4j.xml eXist's log4j logging configuration file.

*An accidental requirement of eXist 2.0 and 2.1, which will no longer be needed as a
dependency for embedded operation in future versions.

XML:DB Local API

Unlike the XML:DB Remote API, which sends data back and forth across the net-
work to eXist using the XML-RPC protocol, the Local API instead talks directly to
eXist’s internal Java API through function calls within the same JVM process. It is
relatively trivial to switch your code between the local and remote modes of opera-
tion of the XML:DB API, so if you want to learn a single API and are unsure of which
to choose or wish to use both local and remote modes, it can be a good choice. In
addition, as the XML:DB API is standardized, you could potentially use it to talk to
other XML document systems as well as eXist.

In addition to the runtime dependencies set out in Table 13-8, you will also need the
one in Table 13-9.

366 | Chapter 13:Integration

www.it-ebooks.info

http://www.it-ebooks.info/

Table 13-9. Additional dependency for using the XML:DB Local API

Library Description Scope

SEXIST_HOME/lib/core/xmirpc- Apache XML-RPC client library. Runtime

dient-3.1.3 jar Dependency of eXist's XML:DB API, even when using XML:DB local mode!

The XML:DB Local API is almost identical to the XML:DB Remote API (see
“XML:DB Remote API” on page 349), so we will only discuss where it differs from
the Remote API. Therefore, reading “XML:DB Remote API” on page 349 first should
be considered a requirement for understanding the Local API. Differences you need
to be aware of are:

Collections
Conceptually, collections in the Local API are exactly the same as in the Remote
APIL the only difference is the URI format that you use to access them. As the
database is running in the same JVM there is no remote server, so you need not
provide the server name, port, or endpoint in the URI. Instead, you just need the
collection path. See Example 13-18.

Example 13-18. Opening an XML:DB local collection to eXist

Collection collection =
DatabaseManager.getCollection("xmldb:exist://db", "admin", "");

Database shutdown
When you first access an embedded database collection, an eXist embedded data-
base is automatically started for you. To maintain database consistency, you are
responsible for cleanly shutting down the eXist database either before your appli-
cation terminates or when you have finished with the database inside your appli-
cation. See Example 13-19.

Example 13-19. Shutting down eXist with the XML:DB Local API

final DatabaseInstanceManager manager =

(DatabaseInstanceManager) coll.getService("DatabaseInstanceManager", "1.0");
try {

coll.close();
} finally {

manager .shutdown();

}

Local APIs | 367

www.it-ebooks.info

http://www.it-ebooks.info/

Here’s a tip: to ensure that the database is always shut down
during normal operation of your application, it is recom-
mended that you set up and tear down the database using a
try/finally block. That is to say, all of your database interac-
tion should take place inside an encapsulating try block, and
your final collection close and subsequent Database Instance
Manager shutdown call should both happen inside the same
finally block that corresponds to the initial try block. See
Example 13-20.

Example 13-20. Ensuring clean shutdown when using the XML:DB Local API

Collection coll = null;
try {
coll =
DatabaseManager.getCollection("xmldb:exist:///db" username, password);

//T0DO all of your database interaction code is called from here

} finally {
if(coll != null) {
final DatabaseInstanceManager manager =
(DatabaseInstanceManager) coll.getService(
"DatabaseInstanceManager", "1.0");

try {
coll.close();

} finally {
manager.shutdown();

}

}
}
Example

The source code of a small example of using the XML:DB Local API from Java to
store a file, query the database, and remove a file is included in the folder chapters/
integration/xmldb-embedded of the book-code Git repository (see “Getting the Source
Code” on page 15).

To compile the example, enter the xmldb-embedded folder and run mvn package.

XML:DB local example. You can then execute the ExampleApp example like so:
java -jar xmldb-embedded-example/target/xmldb-embedded-example-1.0-example.jar
This shows the available arguments for using the ExampleApp.

A complete example of using the application might look like the following:

368 | Chapter 13: Integration

www.it-ebooks.info

http://www.it-ebooks.info/

java -jar xmldb-embedded-example/target/xmldb-embedded-example-1.0-example.jar
/db/my-new-collection /tmp/test.xml "//thing" admin

Given the preceding arguments, the example application would perform the follow-
ing steps:
1. Start up the embedded eXist database.

2. Get a reference to the collection /db/my-new-collection in eXist (the collection
will be created if it does not already exist).

3. Upload the file /tmp/test.xml to the collection /db/my-new-collection in eXist
(again, the collection will be created if it does not already exist).

4. Execute the query //thing against the /db/my-new-collection collection, and
print the results.

5. Remove the /db/my-new-collection/test.xml file.

6. Shut down the eXist database.

Fluent API

The Fluent API was developed by PiotrKaminski and contributed to the eXist project
in 2007. The Fluent API has the goal of making it much simpler to use eXist from
within your own Java applications as an embedded database. It follows the design
principle of a Fluent interface, which should make Java code interacting with eXist
more readable. The current best source of Fluent API documentation is within the
Fluent API JavaDocs.

The Fluent API, just like the XML:DB Local API, talks directly to eXist’s internal Java
API through function calls within the same JVM process.

In addition to the runtime dependencies set out in Table 13-8, you will also need the
one listed in Table 13-10.

Table 13-10. Additional dependency for using the Fluent API
Library Description Scope

SEXIST_HOME/lib/extensions/exist-fluent.jar - Fluent API Library ~Compile

There are just four main concepts that you need to understand in the Fluent API to
interact with eXist:

Databases
The Fluent API makes use of Database to represent a distinct connection by a
user to an embedded eXist instance. Connecting to a database requires authenti-
cation, after which all subsequent operations on that database and its folders or

Local APIs | 369

www.it-ebooks.info

http://fluent.exist-db.org
http://en.wikipedia.org/wiki/Fluent_interface
http://fluent.exist-db.org/javadoc/
http://www.it-ebooks.info/

documents use the same credentials. Typically, you will work with a single Data
base instance. See Example 13-21.

Example 13-21. Starting an eXist embedded instance with the Fluent API

Database.startup(new File("conf.xml"));
Database db = Database.login("admin", "");

Folders

A Folder in the Fluent API maps onto a collection in the eXist database. Folders
are the primary means for interacting with the Fluent API. From a folder you
may manage subfolders and documents. See Example 13-22.

Example 13-22. Getting a Folder reference from the Fluent API

Folder folder = db.getFolder("/db");

Documents

A Document in the Fluent API maps onto a document in the eXist database. The
Fluent APT allows you to work with both eXist's XML and binary documents.
Binary documents will be of type org.exist.fluent.Document, and XML docu-
ments are of a subtype of that, org.exist.fluent.XMLDocument. See
Example 13-23.

Example 13-23. Retrieving a Document from the Fluent API

Document doc = folder.documents().get("some-document.xml");

QueryServices

A QueryService in the Fluent API allows you to execute XQueries against fold-
ers or documents in the database. A QueryService may be retrieved from a data-
base, a folder, or a document object (if you want finer-grained control over the
query context). The result of executing a query with the QueryService is an
instance of org.exist.fluent.ItemList, which you may iterate over to obtain
individual org.exist.fluent.Item instances, from which you may then retrieve
a result value. See Example 13-24.

Example 13-24. Querying a folder with the Fluent API
ItemList results = folder.query.all("//my-node");

for(Item result : results) {
System.out.println(result.value);

}

370

| Chapter 13: Integration

www.it-ebooks.info

http://www.it-ebooks.info/

Example

The source code of a small example of using the Fluent API from Java to store a file,
query the database, and remove a file is included in the folder chapters/integration/
fluent-embedded of the book-code Git repository (see “Getting the Source Code” on

page 15).

This example is a direct port of the XML:DB Local API example from the previous
section, and hopefully will allow you to easily compare the code of the two
approaches and decide which you prefer.

To compile the example, enter the fluent-embedded folder and run mvn package.

Fluent APl example. You can then execute the ExampleApp example like so:

java -jar fluent-embedded-example/target/fluent-embedded-example-1.0-example.jar
This shows the available arguments for using the ExampleApp.
A complete example of using the application might look like the following:

java -jar fluent-embedded-example/target/fluent-embedded-example-1.0-example.jar
/db/my-new-collection /tmp/test.xml "//thing" admin

Given the preceding arguments, the example application would perform the follow-
ing steps:
1. Start up the embedded eXist database.

2. Get a reference to the folder (collection) /db/my-new-collection in eXist (the
folder will be created if it does not already exist).

3. Upload the file /tmp/test.xml to the folder /db/my-new-collection in eXist (again,
the folder will be created if it does not already exist).

4. Execute the query //thing against the /db/my-new-collection folder, and print
the results.

5. Remove the /db/my-new-collection/test.xml file.

6. Shut down the eXist database.

Local APIs | 371

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 14
Tools

Working with eXist often means working with various tools that help ease develop-
ment. For instance, writing code in an integrated development environment (IDE)
like eXide or oXygen is far easier than hacking in Notepad or vi. Other tools, such as
the eXist Ant extensions, are useful for automating tasks.

This chapter explores some of the common tools that you can use to work with eXist.
Undoubtedly there are many more, so be warned: our personal preferences are shin-
ing through!

Java Admin Client

eXist comes with a small program called the Java Admin Client. It allows you to do
maintenance work on the database like backups and restores, imports and exports,
checking and setting properties, creating collections, and more. It’s a standard Java
Swing GUI application and its functionality mostly speaks for itself.

The Java Admin Client has a lot of functionality hidden under-
neath right mouse clicks, which is very useful to know if you can’t
immediately figure out how to do things.

The Java Admin Client has already popped up in this book in several places. See, for
instance, “The Java Admin Client” on page 29, and “User and Group Management
with the Java Admin Client” on page 145.

373

www.it-ebooks.info

http://www.it-ebooks.info/

eXide

One of the additional packages you can install in your eXist installation is eXide
(Figure 14-1). eXide is a complete development environment for working with eXist.
You can do a lot with eXide, from editing a single file (as long as it’s stored in the
database) to creating and maintaining complete applications.

File Edit MNavigate Buffers Application XQuery XML Help Login

[Mew [New XQuery | B> Open | B Save | % Close | & Run [REGEEERISIE M|

Outline new-document 1* hello-world-1.xq

w3 gv.

xguery version 3

:= 'Hello XQuery"

ults timestamp="{current-dateTime (}}">
<message>{Sm

</results>

R T TS S
§

™ [db/apps/exist-book/getting-started/hello-world-1.xq

L) XML Qutput v Live Preview [[{ »
<results timestamp="2014-10-07T16:11:42.111+02:00">
<message>Hello XQuery</message>
</fresults>

Figure 14-1. The eXide IDE

Some interesting features of eXide are:

Application outline
The lefthand pane shows you an outline of your application/module and lets you

jump to a declaration with a single click.

Content completion
Type the beginning of what you want (e.g., a function name or a variable) and
press Ctrl-Space (or Cmd-Space on a Mac) to see a list of possible completions.

374 | Chapter 14: Tools

www.it-ebooks.info

http://www.it-ebooks.info/

Refactoring
Highlight a block of code and press Ctrl-Shift-X (or Cmd-Ctrl-X on a Mac) to
extract the block into a function. You can also extract a code block into a variable
by pressing Ctrl-Shift-E (or Cmd-Ctrl-E on a Mac).

Quick function navigation
Put your cursor in a function name and press Ctrl-F3 (or Cmd-F3 on a Mac) to
go to its definition, even if it’s in another module.

Inserting code snippets
There is a variety of easily inserted code snippets available. For instance, type
for-return and press Ctrl-Space (or Cmd-Space on a Mac). A basic for $item
in $inseq return $item code snippet will pop up. Press Tab to select all the
variables in this template one by one, so you can easily replace them with your
own code (press Esc to stop this behavior). You'll find the available code snippets
in /db/apps/eXide/templates/snippets.xml.

Working with applications
The Application menu gives you access to working with complete applications.
You can create a shiny new one from a template, synchronize it with a version on
disk, download it into an eXist package file (see “Packaging” on page 227), and
more.

One of the features of eXide is that you can jump-start development of an applica-
tion. Choose “New application” from the Application menu and fill in the forms, and
eXide will generate an application framework for you. If you've installed the eXist
documentation package, information about this is available at http://localhost:8080/
exist/apps/doc/development-starter.xml.

The generated applications use what is called the HTML Templating Framework. This
framework lets you separate out:
o The page template (the surrounding HTML code that defines the fixed parts of
the page)
o The body of the page
o The code that generates the dynamic parts of the page
For further information, all of this is documented in http://localhost:8080/exist/

apps/doc/templating.xml on your local installation, or in the eXist documentation
online.

oXygen

The oXygen XML Editor is likely the most popular XML IDE in professional XML
circles. It provides extensive support for editing XML and related files in general;

oXygen | 375

www.it-ebooks.info

http://demo.exist-db.org/exist/apps/doc/templating.xml
http://demo.exist-db.org/exist/apps/doc/templating.xml
http://www.oxygenxml.com
http://www.it-ebooks.info/

adds features like visual editing of schemas and author mode (for those who don’t
want to see angle brackets); and can connect to databases, both SQL and NoSQL,
including eXist. While oXygen is a commercial product, you can request a free trial
license to try it out before purchasing.

A large proportion of this book was actually written and edited using oXygen version
15.0. As these things go, the information here might already be outdated because a
newer version of 0Xygen may have been released since this book’s publication. If you
can’t relate what we say here to what you see on your screen, please refer to the corre-
sponding oXygen documentation.

Connecting with oXygen Using WebDAV

The most basic way of connecting oXygen with eXist is by using WebDAV. It allows
you to work with the collections and resources in the database as if they were directo-
ries and files on the filesystem. To open a WebDAV connection, do the following:

1. Go to the Options—>Preferences menu and look for the Data Sources section.
You'll see something like Figure 14-2.

in
[ype fiter text Q. Dpata Sources
4 Saxen-HE/PE/EE 2 @ on wizards
Advanced
Create eXist-db XML connection
Debugger
Profiler Data Sources
FO Processors pr— I =
XFath 10BC-0DBC Bridge Generic JDBC
Custom Engines MysQL (Outdated) Generic JDBC
Import l\WebDAV FTP WebDAV (S)FTP
XL Signing Certicotes
4 Data Sources
Table Filters
4 swn
Working copy
Diff
Messages
. i + a4 My %
4 Files Comparison .
Appearance
4 Directories Comparison Browsable [Name | URL |
Appearance
Archive
Plugins
External Tools
Menu Shortcut Keys
File Types
Open/Find Resource
Custom Editor Variables
4 Network Connection Settings
Proxy + A Mx|[t3
F;:(PS)MEDDAV Limit the number of cells [2000
SSH Maximum number of children for container nodes [200
XML Structure Outline
Views
Messages |
< Tree Editor o Restore Defaufts
2 cancel Apply

Figure 14-2. The virgin oXygen Data Sources dialog

376 | Chapter14: Tools

www.it-ebooks.info

http://oxygenxml.com/documentation.html
http://oxygenxml.com/documentation.html
http://www.it-ebooks.info/

2. Click the + icon under the Connections table and fill in the dialog, choosing
WebDAV (S)FTP as the data source. The URL to use in a default installation is
http://localhost:8080/exist/webdav/db/. When you’re developing, it’s probably
easiest to connect as the admin user, as shown in Figure 14-3.

il

Name: |eXist WebDav

Data Source: |WebDAV (S)FTP RS
Connection Details

WebDAV/FTP URL: |http:,",I’Iocalhost:SDSD,"e)dstftrJebda\.r,"db,"

User: |admin

Password: I::================|

? 0K I Cancel

Figure 14-3. Configuring a WebDAV connection in 0Xygen

3. Click the OK button on all dialogs and open the Data Source Explorer (the Win-
dow—>Show View—>Data Source Explorer menu item). And hey presto! There is
your eXist database, exposed to you in all its beautiful detail.

Natively Connecting with oXygen

Besides going in through WebDAYV, you can also connect oXygen to eXist natively.
This gives you many benefits, like the ability to get lists of available extension module
functions in your editor, validate queries with eXist (eXist’'s XQuery dialect is
checked, not straight XQuery), and even execution of XQuery files directly from
within the editor.

Setting up a native connection with eXist is extremely simple:
1. Go to the Options—>Preferences menu and look for the Data Sources section.

Refer back to Figure 14-2.

2. Click the link at the top of the dialog box labeled “Create eXist-db XML
connection.”

oXygen | 377

www.it-ebooks.info

http://www.it-ebooks.info/

3. For a default setup (see Figure 14-4), you only have to change the user to admin
and fill in the password. Then click the OK button.

% Create eXist-db XML connection x|

Host: |I0ca|host

Port: 8080

User: |admin

Password: I**************

eXist Admin Client JWS: |e)<jstfwebstar‘tfe)dst.jnlp

Libraries: I C:\Users\erik\AppData\Roaming\com.oxygenxml\eXistdb j =

This local directory will be used to store libraries downloaded from server.

[~ Use a secure HTTPS connection (S5L)

? 0K I Cancel

Figure 14-4. Adding an eXist-db XML connection to oXygen

As you can see when you’re back on the Data Sources setup screen, oXygen cre-
ated not only a data source for eXist but also an accompanying connection. So,
we’re ready to go!

4. Click the OK button on all dialogs and open the Data Source Explorer (the Win-
dow—>Show View—>Data Source Explorer menu item). And there it is: your
native eXist connection, also called eXist-db localhost.

Now, this looks like you’ve opened another WebDAV connection to eXist. However,
a native connection allows you to do much more (in describing this, we assume you
know the basics of 0Xygen, like creating validation and transformation scenarios; if
not, refer to its excellent help facilities):

o As soon as you've created an eXist connection, you'll notice your XQuery editor
has become more intelligent: for instance, type xmldb: and press Ctrl-Space, and
the list of eXist XMLDB XQuery extension module functions pops up.

e You can validate an XQuery file using the eXist validator instead of the Saxon
one used by default in 0Xygen. This gives you the benefit of the validator know-
ing, for instance, all eXist XQuery extension functions and so it will not show
your file as invalid when it makes use of those. To do this, open an XQuery file
and create a validation scenario that uses the eXist native connection you just
created as its validation engine (see Figure 14-5).

378 | (Chapter 14: Tools

www.it-ebooks.info

http://www.it-ebooks.info/

ﬂ

Name |eX\st validation

Storage: { Global Options Project Options

URL of the file to validate File type Validation engine |Automatic vali... | Schema

${currentFileURL} XQuery Document |eXist-db localhost

+ ¥ Add | Remave |
? oK I Cancel |

Figure 14-5. Creating a validation scenario for use with eXist

o To execute an XQuery script directly from oXygen, create a transformation sce-
nario that uses your eXist connection as its transformer. Transform the XQuery
script using this scenario and it will run inside eXist, returning the results to
oXygen.

Ant and eXist

Many Java programmers know the Ant build tool. It is used for automating build
processes, including maintenance work like creating files and directories, as well as
creating zip files.

eXist contains a library that extends Ant so you may work with the database from
inside your Ant scripts. This is useful for automating common tasks like backups,
restores, and data import/export. More advanced capabilities include running XQu-
eries and user management.

For simple scripts, Ant and the eXist Ant extensions are sufficient. However, if you
need more complicated functionality, like iterating over collections and resources,
you also need Ant-Contrib, a library containing generic extensions for common Ant
functionality.

Trying the Ant Examples

There is an example build.xml script in the folder chapters/tools of the book-code Git
repository (see “Getting the Source Code” on page 15). It contains several targets that
illustrate what you can do with Ant and eXist together. To try it, do the following:

AntandeXist | 379

www.it-ebooks.info

http://ant.apache.org
http://ant-contrib.sourceforge.net/
http://www.it-ebooks.info/

1. Make sure you have Ant installed and that the ant command is in your path
(type ant -version to check).

2. Open the build.xml file and check if the properties listed under the heading BASE
INFORMATION apply to your situation. You will have to change at least the admin
password property for the examples to work.

3. Open a command window and navigate to the directory where you stored the
build.xml file.

4. The command ant -p will give you an overview of the targets defined.

5. ant targetname will execute a target (e.g., ant ListMainCollections).

Preparing an eXist Ant Build Script

If you would like to use the eXist Ant extensions inside your Ant build script, follow
these steps:

1. Define the http://exist-db.org/ant namespace. The recommended name-
space prefix is xdb. The easiest way to do this is to add the namespace definition
to the root project element of your Ant build file (usually called build.xml):

<project xmlns:xdb="http://exist-db.org/ant">

2. Before you use the extension in your build script, you must tell Ant where it can
find the eXist extension libraries. The following code example assumes that on
the operating system level the EXIST_HOME environment variable is set and points
to the directory where you have installed eXist:

<property environment="Env"/>
<fail unless="Env.EXIST_HOME">Environment variable EXIST_HOME not set
</fail>

<path id="classpath.core"s>
<fileset dir="S${Env.EXIST_HOME}/lib/core"s
<include name="*.jar"/>
</fileset>
<pathelement path="${Env.EXIST_HOME}/exist.jar"/>
<pathelement path="${Env.EXIST_HOME}/exist-optional.jar"/>
<pathelement path="S${Env.EXIST_HOME}"/>
</path>

3. If you want to use Ant-Contrib as well, add the following code:

<taskdef resource="net/sf/antcontrib/antlib.xml">
<classpath>
<pathelement
location="$EXIST_HOME/tools/ant/lib/ant-contrib-1.0b3.jar"/>

380 | Chapter 14: Tools

www.it-ebooks.info

http://www.it-ebooks.info/

</classpath>
</taskdef>

All eXist’s Ant tasks share the following attributes, so you might want to put the val-
ues in Ant properties:

uri
This must be an XMLDB URI (see “XMLDB URIs” on page 92) that points to the
database and collection you want to work with. For example, to point to the
main /db collection for a default eXist installation:

xmldb:exist://localhost:8080/exist/xmlrpc/db

user and password
The credentials of the eXist user for accessing the database. You will most likely
want to use an account with admin privileges. If you don’t specify these
attributes, the default guest account will be used.

failonerror
Whether or not an error should stop the build script (default: true).

The first three attributes are the most important ones. For example, at the top of the
build.xml file in the accompanying book example code, you'll find properties defined
for them:

<property name="BaseUri" value="xmldb:exist://localhost:8080/exist/xmlrpc/db"/>
<property name="Username" value="admin"/>
<property name="Password" value="secret"/>

Using Ant with eXist

The eXist Ant extension contains a large number of tasks to work with the database.
We’re not going to list them all here as they are already well documented in the eXist
online documentation. Instead, we will leave you with a few tantalizing examples. All
examples given assume the preparations described in the previous section are in the
script also. These will not be repeated in every listing.

Basic example: Listing the main collections

The following basic (and probably un-useful) example serves as the “Hello World”
into the Ant extension—it lists the collections on the /db level:

<target name="ListMainCollections" description="Lists all collection in /db">
<xdb:list uri="${BaseUri}"
user="${Username}" password="${Password}" collections="true"
outputproperty="Collections"/>
<echo>Main collections: ${Collections}</echo>
</target>

AntandeXist | 381

www.it-ebooks.info

http://exist-db.org/exist/apps/doc/ant-tasks.xml
http://www.it-ebooks.info/

Backup and shutdown
This target creates a full backup of your database, zips it, and then shuts down eXist:

<target name="BackupShutdown"
description="Back up the full database and shut down"s

<delete dir="backup"/>

<mkdir dir="backup"/> (1]

<xdb:backup uri="${BaseUri}"

user="${Username}" password="${Password}" dir="backup"/> @

<zip destfile="backup.zip" basedir="backup"/> (3]

<delete dir="backup"/> (4]

<xdb:shutdown uri="${BaseUri}" user="${Username}" password="${Password}"/> (5]
</target>

From top to bottom, this code does the following:

© Makes sure we have an empty backup directory by first deleting and then (re)cre-
ating it.

® Makes eXist back up into this directory. If you look inside after the backup you’ll
find a directory/file structure much like your database’s collection/resource
structure. Added are __contents__.xml files that contain important eXist proper-
ties (like security settings).

© Zips this directory into a backup.zip file (this is easier to handle, and you can
restore directly from such a ZIP file).

O Removes the backup directory (since everything is in the ZIP now)

©® Shuts down eXist.

The preceding example performs a full database backup, but you can just as easily
make partial backups—for instance, from your extremely important project collec-
tion. Simply have the uri attribute point to the right collection, like so:

<xdb:backup uri="${BaseUri}/apps/myimportantproject" ...

Of course, there is also an xdb:restore task that lets you restore a backup. This task
can use a backup ZIP file directly (no need to unpack it first).

Create separate backups for all subcollections

The following example shows you how to iterate over lists returned by some of eXist’s
Ant tasks using the Ant-Contrib extension. It extends the previous example by not
creating a full backup, but a separate backup of each subcollection of /db:

<target name="SeparateBackups"

description="Make separate backups of all subcollections of /db">
<xdb:list uri="${BaseUri}" user="${Username}" password="${Password}"

382 | (Chapter 14: Tools

www.it-ebooks.info

http://www.it-ebooks.info/

collections="true" outputproperty="SubCollections"/>
<echo>Subcollections to backup: ${SubCollections}</echo>
<foreach list="${SubCollections}" param="SubCollection"
target="BackupCollection"/>
</target>

<target name="BackupCollection"s
<echo>Backup of /db/${SubCollection}</echo>
<property name="BackupTempDir" value="backup-${SubCollection}"/>
<delete dir="${BackupTempDir}"/>
<mkdir dir="${BackupTempDir}"/>
<xdb:backup uri="${BaseUri}/${SubCollection}" user="${Username}"
password="${Password}" dir="${BackupTempDir}"/>
<zip destfile="backup-${SubCollection}.zip" basedir="${BackupTempDir}"/>
<delete dir="${BackupTempDir}"/>
</target>

Ant-Contrib’s foreach task iterates over a comma-separated list of values and then
calls the BackupCollection task for each one of them.

Run an XQuery from Ant

You can run an XQuery script from within Ant and return the results in a property.
For instance:

<target name="RunXQuery" description="Run an XQuery from Ant"s
<xdb:xquery uri="${BaseUri}" user="${Username}" password="${Password}"
outputproperty="QueryOutput" query="system:get-exist-home()"/>
<echo>Query result: ${QueryOutput}</echo>
</target>

This little task will run the query in the query attribute and, in this case, return the
home directory of eXist. If your query gets more complicated, it will probably be eas-
ier to store it in a separate file and run it from there. You can accomplish this using
the standard Ant loadfile task:

<loadfile property="XQueryScript" srcFile="myscript.xq"/>

<xdb:xquery uri="${BaseUri}" user="${Username}" password="${Password}"
outputproperty="QueryOutput" query="${XQueryScript}"/>

Antand eXist | 383

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 15
System Administration

When you’re using eXist day to day and eventually deploying it into a production
environment, there are several topics that are useful to understand, both for those in
a developer role and (even more so) for those in a system administration or DevOps
role. In this chapter, we’ll look at some of the tools provided by or used with eXist
that aid in ensuring stable and performant operation.

Logging

eXist uses Apache log4j as its mechanism for logging information and issues. Log4j
provides a logging hierarchy that is configurable without changing the eXist code.
Understanding how log4j works and how to configure it can help you get the most
out of your eXist logfiles. Log4j provides several levels of logging. When eXist wishes
to log a message, it decides at which level to log the message, and your log4j configu-
ration then decides how that message is handled. The levels that log4j provides and at
which eXist logs various messages are displayed in Table 15-1, with the most fine-
grained at the top.

Table 15-1. Log4j logging levels

Level Description

Trace Used for tracing the execution of complex parts of the eXist code. It is very unlikely that you will need to receive log
messages at this level, unless debugging a serious issue.

Debug Similar to Trace, but less fine-grained. Again, it is very unlikely that you will need to receive log messages at this
level unless you are investigating an issue with eXist.

Info Used for logging status information about eXist for the information of users and system administrators. This is the
default logging level in eXist.

385

www.it-ebooks.info

http://logging.apache.org/log4j/1.2/
http://www.it-ebooks.info/

Level Description

Warn Used for reporting unexpected or nonoptimal behavior that is noncritical; that is, your operation or query will most
likely still perform correctly.

Error Used for reporting errors while performing a database or query operation. These messages indicate that something
failed and the user or system administrator may need to take action.

Fatal Used for reporting critical failures within eXist. Rarely used in eXist, but can report a corruption in the database or an
index.

Levels in log4j are inherited upward, meaning that logging at the most fine-grained
Trace level will log all message levels (i.e., also the Debug, Info, Warn, Error, and
Fatal levels); likewise, logging at the Info level would actually log messages from the
Info, Warn, Error, and Fatal levels.

In eXist the log4j configuration file is $EXIST _HOME/log4j.xml, and it is configured
to log at the Info level by default. If you wish to adjust this, you can change the prior-
ity levels in the log4j configuration file as follows:

<root>
<priority value="debug"/>
<appender-ref ref="exist.core"/>
</root>
Log4j allows you to direct log messages from different parts of the database to
different receivers. By default, in eXist all of the receivers are files, and the logfiles are
written into the directory $EXIST _HOME/webapp/WEB-INF/logs. See Table 15-2.

Table 15-2. eXist logfiles

Logfile Description

exist.log The main logfile of eXist; all messages that are not directed to any of the other logfiles end up here. It
contains details of the database server, the database and index status and health, and XQuery execution.

xacml.log The logfile for the XACML (eXtensible Access Control Markup Language) engine in eXist. XACML support in
eXist is deprecated.

xmidb.log The logfile for XML:DB APl operations; typically these log messages also appear in exist./og.

urlrewrite.log The logfile for the XQuery URL rewriting engine. When you are developing XQuery apps that use URL
rewriting, it can be useful to study both exist.log and this file when you have issues.

profile.log If you switch on XQuery profiling using util:enable-profiling or the profiling pragma, the results of
the profiling can be logged to this file at the Trace level. This approach is deprecated in favor of the profiling
tool in the Admin Web Application (see “Checking Index Usage” on page 282).

scheduler.log This file logs messages related to scheduled tasks in eXist. These include the database flush-to-disk tasks and
also your own XQuery or Java scheduled jobs. If you are having trouble running your own scheduled jobs, this
is the place to look for feedback.

386 | Chapter 15: System Administration

www.it-ebooks.info

http://www.it-ebooks.info/

Logfile Description

ehcache.log ~ When using Ehcache with eXist, the Ehcache log messages are redirected to this file. Ehcache in eXist at this
time is not recommended for general use.

betterform.log When using betterFORM as your XForms engine in eXist, the log messages of betterFORM are redirected to
this logfile. It can be useful for assisting in developing and debugging XForms applications.

restxq.log If you are using RESTXQ in eXist, then all operations of the RESTXQ framework and server are logged here,
including any issues with compiling your XQuery. Note that when your XQuery runs, any log messages it
produces will be sent to exist.log.

backup.log All log messages related to creating database backups or restoring database backups are written to this file.

mdStorage.log If you are using the new metadata storage module, then any log messages generated by this module will
be written to this file. For more information on the metadata module, see metadata.

The logfiles in eXist are all plain text, so you may view them with any plain-text edi-
tor. If you prefer a GUI tool with colored highlighting of the log levels, then Apache
Chainsaw may be worth a look.

On Unix/Linux/Mac systems, you can monitor log messages by
tailing and following the appropriate logfile. For example:

tall -f SEXIST_HOME/webapp/WEB-INF/logs
On Windows systems, you can configure log4j to log to the Win-
dows Event Log if you wish by using org.apache.log4j.nt.NTE

ventLogAppender. See the log4j documentation for the exact
configuration details.

JMX

Java Management Extensions (JMX) is a Java technology that allows an application to
expose monitoring information and management options to other applications. eXist
acts as a JMX server and can service requests from any JMX client. At present, eXist
mainly exposes monitoring information and very little in the way of management
services via JMX. To use eXist with JMX, you must enable and configure JMX via
options passed to the JVM when you start eXist.

If you are using either $EXIST_HOME/startup.sh or $EXIST_HOME/startup.bat for
starting eXist, you can just pass the additional -j argument with a TCP port number
for the JMX server to listen on. For example:

SEXIST_HOME/startup.sh -j 1099

IMX | 387

www.it-ebooks.info

http://logging.apache.org/chainsaw/
http://logging.apache.org/chainsaw/
http://www.it-ebooks.info/

When you enable JMX using the -j setting in eXist, it disables JMX
authentication and does not transport JMX over SSL. Thus, this
approach should be used only in a secure, controlled environment!
A It is perfectly possible to use eXist’s JMX with authentication and
SSL. For details of the JVM options, refer to the JMX documenta-
tion and make the necessary changes to either $EXIST _HOME/bin/
batch.d/check_jmx_status.bat on Windows, or
$EXIST_HOME/bin/functions.d/jmx-settings.sh on other platforms.

You can then connect using any JMX client, such as the simple command-line client
provided with eXist or JConsole (which is provided with your JDK and shown in
Figure 15-1). The eXist documentation for JMX is itself very reasonable, and rather
than reproduce it here, we recommend you consult it for further information.

8 00 JConsole: New Connection

New Connection

(_J Local Process:

Name PID

288
sun.tools.jconsole.)JConsole 10428
org.netbeans.Main --cachedir /Users/aretter/Librar... 1770
start.jar jetty 10420

@ Remote Process:
[localhost: 1099
Usage: <hostname>:<port> OR service;jmx:<protocol>:<sap>

| e (N e

Username: Password:

| Connect | | Cancel |

Figure 15-1. Connecting to eXist’s JMX server using JConsole

When you are browsing eXist with JConsole, it is not always obvi-
ous how to view the monitoring information. As Figure 15-2
shows, you need to select the collection of attributes from the navi-
gation tree under the service that you are interested in.

388 | Chapter 15: System Administration

www.it-ebooks.info

http://docs.oracle.com/javase/6/docs/technotes/guides/management/agent.html
http://docs.oracle.com/javase/6/docs/technotes/guides/management/agent.html
http://www.exist-db.org/exist/apps/doc/jmx.xml
http://www.it-ebooks.info/

[JoN] Java Monitoring & Management Console
Connection Window Help
8 00 pid: 44857 start.jar jetty
| Overview | Memory | Threads | Classes | VM Summary cli=
» [JMImplementation rAttribute values
» [com.sun.management Name Value
» [java.lang Fails 7
» [java.nio Fl!eName dom.dbx
Hits 215
» |] java.util.logging Size 64
» || org.exist.management Type ETREE
¥ [org.exist.management.exist Used 7
» @ CacheManager
¥ [CacheManager.Cache
» | collections.dbx
¥ | dom.dbx
v @ BTREE
>
b @ DATA
» | ngram.dbx
» |l sort.dbx
» | structure.dbx
b | values.dbx
» |l words.dbx
» @ CollectionCacheManager
» @ Database
» @ DiskUsage
» @ ProcessReport S
» |] org.exist.management.exist.tasks |ﬁ|
A

Figure 15-2. Examining eXist’s cache utilization using JConsole

Memory and Cache Tuning

The total memory available to eXist is set through the Java JVM’s -Xmx setting. This
setting determines the maximum heap size available to a Java application when a
JVM is started. If a Java application attempts to use more memory than is available, it
receives the dreaded OutOfMemoryError from the JVM. While an application may not
crash immediately, it is more than likely impossible to continue running successfully
after receiving an OutOfMemoryError!

In eXist, all memory is allocated on the heap, so it is important to ensure that you
have enough memory allocated for your database. It is very difficult for us to guide
you in establishing the best -Xmx setting, as every dataset and query workload is dif-
ferent. If you used the eXist installer, then you will have configured the maximum
memory available to eXist during installation (see “Things to Decide Before Instal-
ling” on page 20). If you did not use the installer, the -Xmx setting will be present in
the script that you use to start up eXist.

Memory and Cache Tuning | 389

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding Memory Use

As well as maintaining the stability of your database, ensuring you have enough
memory available also has an impact on the performance of your queries. If there is
not enough memory available, then queries may run slowly as old objects are
garbage-collected by the JVM. Because your database size and query profiles may
change over time, it is important to monitor eXist’s memory use. Unfortunately,
monitoring a JVM process with tools provided by your operating system (such as
taskmgr.exe on Windows or top on Unix/Linux) rarely gives you a detailed under-
standing of Java memory usage. However, there are several tools available for moni-
toring memory use of a JVM and eXist.

Web Admin Status

The somewhat antiquated Web Admin Application shipped with eXist provides a
quick overview at the bottom of its status page, which you can access from http://local
host:8080/exist/admin/admin.xql?panel=status (see Figure 15-3).

O 00O = exist Daabase Administre

« C' [localhost:8080/exist/admin/admin.xql?panel=status Qe ?g% =
cache 4
o Running " -)
Jobs File encoding: UTF-8
J
« Home ava
» Logout Vendor: Oracle Corporation
Version: 1.7.0_25
Implementation: Java HotSpot(TM) 64-Bit Server VM
. . Installation: /Library/Java/JavaVirtualMachines/jdk
Logged in as: admin

Temp file path: /Users/aretter/NetBeansProjects/exist

Memory Usage

Max. Memory: 1013632K
Current Total: 126912K

Free: 74922K
T —

Figure 15-3. eXist Web Admin Status page

At first glance, the memory status reported by the Web Admin Status page may look
confusing. This is in part because it is a direct reflection of how Java reports and allo-
cates its memory; however, once you understand how to interpret it, it is relatively

390 | Chapter 15: System Administration

www.it-ebooks.info

http://localhost:8080/exist/admin/admin.xql?panel=status
http://localhost:8080/exist/admin/admin.xql?panel=status
http://www.it-ebooks.info/

simple. These figures are the result of calling some XQuery functions from eXist’s
system module; to understand how to interpret these, see “XQuery” on page 391.

XQuery

eXist provides three XQuery functions that may be used to interrogate the JVM in its
system extension module (see system). The functions are:

system:get-memory-max
Reports the maximum memory available to the JVM running eXist (i.e., the value
of the -Xmx setting).

system:get-memory-free
Reports memory that is allocated, but free and available for reuse.

system:get-memory-total
Reports the currently allocated memory within the JVM. This is made up of both
memory that is in use and memory that is free for reuse. Subtracting
system:get-memory-free from this tells you exactly how much memory eXist is
using.

The following simple XQuery reports on the memory status:

xquery version "3.0";

declare function local:human-units(Sbytes) {
let Sunit := if(Sbytes > math:pow(1024, 3)) then
(math:pow(1024, 3), "GB")
else if(Sbytes > math:pow(1024, 2)) then
(math:pow(1024, 2), "MB")

else
(1024, "KB")
return
format-number($Sbytes div $unit[1], ".00") || " " || Sunit[2]
b
<memory>
<max>{local:human-units(system:get-memory-max())}</max>
<allocated>
<in-use>{
local:human-units(
system:get-memory-total()
- system:get-memory-free()
)
}</in-use>

<free>{local:human-units(system:get-memory-free())}</free>
<total>{local:human-units(system:get-memory-total())}</total>
</allocated>
<available>{
local:human-units(

Memory and Cache Tuning | 391

www.it-ebooks.info

http://www.it-ebooks.info/

system:get-memory-max()
- system:get-memory-total()
- system:get-memory-free()

)
}</available>
</memory>

The figures of interest here are really max and available. These report how much
memory eXist may use in total before it receives an OutOfMemoryError and the
amount of remaining memory available to eXist, respectively, while allocated gives
a breakdown of the current memory use.

VisualVM

VisualVM is a truly excellent GUI tool (built with the NetBeans platform) that allows
you to connect to any JVM and peer inside it to see exactly what is happening. Visu-
alVM can provide a great deal of information about a running JVM; however, as this
is not a book on VisualVM, we will just look at the memory statistics that it can
provide.

If you have a modern JDK (version 7 or later) from Oracle, then VisualVM is pro-
vided with it; otherwise, VisualVM may be available as a package for your system or
can be downloaded from https://visualvm.java.net. Once you have VisualVM
installed, you start it by simply running the jvisualvm command.

If you are running VisualVM on the same machine as eXist, VisualVM can directly
connect to any local Java process. Thus, upon starting Visual VM, you will see a list of
running Java processes, from which you can simply select org.exist.start.Main
(see Figure 15-4).

Conversely, if you wish to connect to a remote eXist instance with VisualVM, you
can either install jstatd on your eXist server and then connect remotely using Visu-
alVM, or connect remotely from Visual VM via JMX (see “JMX” on page 387).

Java Mission Control

Java Mission Control (JMC), which is built on the Eclipse rich client platform and
shown in Figure 15-5, is another project that in some ways is similar to Visual VM. It
was added to Oracle’s JDK in JDK 7 update 40 (quite some time after VisualVM).
While it is likely that VisualVM will be adopted in the OpenJDK in the future, it is
unlikely that the same will happen for JMC, as it contains technology from what was
previously known as JRockit and is not open source. Therefore, JMC can be consid-
ered proprietary to Oracle JDKs at present.

392 | Chapter 15: System Administration

www.it-ebooks.info

https://visualvm.java.net
http://docs.oracle.com/javase/7/docs/technotes/tools/share/jstatd.html
http://www.it-ebooks.info/

e 0e Java VisualvM

a
5
-} &
| Applications @ [)| & orgexiststart Main (pid 20542) £
v | [Overview [E Threads g Sampler | © Profiler |
& VisualVM
org.exist.start.Main (pid 20542) C org.existstart.Main (pid 20542)
& Remote Monitor M cru ™ Memory ™ Classes [Threads
55 VM Coredumps
(] snapshots Uptime: 16 hrs 51 min 45 sec | PerformGC | | Heap Dump |
(<] /[Heap | PermGen x
CPU usage: 0.2% GC activity: 0.0% Size: 134,414,336 8 Used: 48,301,448 B
100% Max: 1,073,741,824 B
125 MB:
80
100 MB:
0%
75 MB-
- /L/,
50 MB-
20%. 25 MB-
0
103100 103130 103200 1032 103030 103100 103130 103200

1032

[CPU usage B GC activity HHeap size B Used heap

Classes

x| | Threads x
Total loaded: 6,442 shared loaded: 0 Live: 34 Daemon: 16
Total unloaded: 0 Shared unloaded: 0 Live peak: 34 Total started: 46

6,000

4,000

2,000

10:30:30 10:31:00 103130 10:32:00 1032 103030 10:31.00 10:31:30 1032:00 1032
E Total loaded classes B Shared loaded classes

ELive threads B Daemon threads

Figure 15-4. VisualVM inspecting eXist memory use

JMC includes a facility called the Java Flight Recorder (JFR) that can record and
report information about events emitted by the JVM and applications running on the
JVM. At present, as JFR is very new technology, eXist does not emit any specific
events, but much can be gathered from the standard events emitted by the JVM itself.

As with VisualVM, JMC can monitor local or remote JVMs (through the use
of TMX).

If you have Oracle JDK 7u40 or later installed, you can start JMC simply by running
the jmc command from the bin folder of the JDK.

Memory and Cache Tuning | 393

www.it-ebooks.info

http://www.it-ebooks.info/

Oracle Java Mission Control P

JUsersaretter/NetBeansProjects fexist-git/bin/../start jar jetty (15204) 33 =
= Overview @
3 /Users/aretter/NetBeansProjects /exist
3 ~ Dashboard =S @R
P (X Flight Recorder (Last attempt failed
» ¥ The JuM Running Mission Control Used Java Heap Memory JVM CPU Usage Live Set + Fragmentation
» %2 [1.6.0_29] Local (280) % H=t
» ¥ [1.6.0_29)] Local (282) %) b
b 9 com.installdj.runtime.launcher.Maclay | B S
’ T
=
-a ‘ 0 %
wdfo . . . i
= Now: 87.95 MB Max: 285.62 MB Now: 0.15% Max: 5.69% No value yet
~ Processor o @R
N 100%: @ Wl Machine CPU Usage
Runtime o ™ [C]ivM CPu Usage
6%
a0 N
2%
vV
s . : . : . : : : :
15:13:30 15:13:42 15:13:54 15:14:06 15:14:18
G .
+ Memory oS @R
100%: @ [JUsed Physical Memory (%)
s0% & [l Used Java Heap (%)
6%
4
2%
%
15:13:30 15:13:42 15:13:54 15:14:06 15:14:18
R
Overview | [Server Information|

Figure 15-5. Java Mission Control inspecting eXist

Cache Tuning

When the database is operating optimally, all caches will be completely filled with
data relevant to the most frequent node retrievals (and therefore query results). For
further background on how caching works in eXist, “Paging and Caching” on page 85
is recommended preliminary reading. As eXist attempts to fill the entire cache space,
and this memory is taken away from the memory available to the rest of eXist,
administrators must be careful not to allocate caches that are sized in such a way that
they starve the rest of eXist of memory; this potentially leads to out-of-memory
errors and database crashes.

As Figure 15-6 shows, it is recommended that the combined size of the general cache
(cacheSize) and collections cache (collectionCache) should not exceed one-third
of the total memory available to eXist, unless you are working in environments where
the total memory is greater than 8 GB. Even then, you should take care to ensure that
eXist is not memory-starved by its caches. A large cache does not automatically result
in better performance!

394 | Chapter 15: System Administration

www.it-ebooks.info

http://www.it-ebooks.info/

eXist Total Memory

General Cache

Figure 15-6. How eXist’s caches take from memory available to eXist

The collections cache should be large enough to keep the metadata
of frequently queried collections in memory. The default cache set-
tings in eXist are far too conservative for all but local development
with small datasets. To determine if increasing the collections
cache size will make a difference for you, you can record the time it
takes to execute the simple query collection("/db")/someRootE
lem before and after changing the size. Remember that you must
restart eXist after changing any memory or cache settings in order
for them to take effect!

A common warning sign that a cache in eXist has become too small (due to more
intensive querying or storing and querying a larger dataset) is a sudden drop in query
performance and/or a noticeable increase in disk I/O when you’re uploading large
sets of documents into the database. This is caused by cache thrashing; increasing the
memory available to the Cache Manager and restarting eXist may resolve the issue.

When testing query performance, remember that a query may be
slower the first time it runs, as the relevant pages may not yet be
cached in memory. When testing performance or profiling a query
in eXist, you should run it several times and average the best run-
times to eliminate both cache warm-up times and JVM JIT
compilation.

You can view the real-time behavior of the caches in eXist by either connecting to
eXist using a JMX client such as JConsole, which is provided with the JVM (see
“IMX” on page 387), or from an XML feed of the JMX output by accessing the URI
http://localhost:8080/ exist/status/.

Memory and Cache Tuning | 395

www.it-ebooks.info

http://www.it-ebooks.info/

During normal operation, the reported number of cache hits should always exceed
the misses (fails) by an order of magnitude. Remember that the caches need to warm
up by filling before you will see the optimum cache hits! You can determine cache
capacity by comparing the reported cache size against the used size of the cache. If
the number of cache misses starts approaching the number of cache hits, it is a sure
sign that the cache size needs to be increased.

Backup and Restore

One of the most important aspects of managing any database system is to ensure that
you have a robust backup policy in place. Should your server fail from a hardware or
software issue, it is often essential that you can rebuild the server and restore a
backup of your data. eXist provides two different types of backup:

Data copy
This is simply a copy of all files from eXist's data folder (typically
$EXIST_HOME/webapp/ WEB-INF/data) to some other location. The data must
always be copied when the database is in a consistent state, and the files are not
being written to. You can do this either manually (including via a system schedu-
ler such as cron on Unix systems or as a Windows scheduled task) when the
database is shut down, or automatically by using eXist’s scheduler.

The eXist scheduled job org.exist.storage.DataBackup can be enabled in
$EXIST_HOME/conf.xml and will attempt to create a copy of the database every
time it is run; it will also ensure that the database is in a consistent state when it is
run by switching into protected mode.

Data export
This is an export of the database, which means that all XML documents are seri-
alized from the binary database files back into individual XML files, and a copy is
made of all binary documents. A data export is a serialized copy of the database
collection hierarchy and may target either a destination folder or a ZIP file.

On some combinations of operating system and JRE, eXist
may have trouble creating data export backups to ZIP files that
are larger than 4 GB. In this scenario, it is recommended that
you export to a destination folder instead of a ZIP file.

While the data copy variety of backup is always performed server-side, the data
export backup may be performed either client-side or server-side.

396 | Chapter 15: System Administration

www.it-ebooks.info

http://www.it-ebooks.info/

Client-Side Data Export Backup

When backups are executed by a client of the database over the network, the database
is not switched to protected mode. This means that the database may be accessed and
modified during the backup. While individual documents will be consistent at the
time of serialization, consistency across documents is not guaranteed! The advantage
here is that the database continues functioning normally and servicing users while
the backup is occurring, but the backup is not a snapshot of the database at a single
point in time. The other disadvantage is that a client-side backup will not attempt to
back up documents or collections that may be damaged in some way; rather, they will
be skipped. Client-side backups are always initiated via the XML:DB API. For more
rigorous backup options, see “Server-Side Data Export Backup” on page 400.

Java Admin Client backup

The Java Admin Client (see “Java Admin Client” on page 373) provides a convenient
way to perform a client-side data export backup of the database. The Java Admin Cli-
ent allows you to choose the collection hierarchy to back up. By choosing the /db
collection, you can back up the entire database, which includes all users and collec-
tion configurations (indexes, triggers, etc.). Alternatively, you may choose just to
back up a specific data collection hierarchy. You can open the Backup dialog in the
Java Admin Client either from the toolbar, by clicking the Backup icon, or by select-
ing the Tools—>Backup menu item (see Figure 15-7).

eXist Admin Client
File Tools Connection Options Help

= = -
a2 B 5 e &d] (68
Resource Date Owner Group Permissions
apps 2013-11-14 ... SYSTEM dba CPWXI=Xr-X
system 2013-11-14 ... SYSTEM dba CAWXT=Xr=Xx
scriptl.xqy 2013-11-16 ... admin dba ~PWSIWSIWE+

800 Create Backup

Collection: | /db

Target: |,fUsers,‘alet[el,ﬂDeskmp,‘eXisI—backup.ZOlB122?.zip{ | | Select |

[cancet | | oK |

type help or 7 for help.
exist:/db>

|eXisl Admin Client connected - admin@xmldb:exist:/ /localhost:8080/exist/...

Figure 15-7. Java Admin Client Backup dialog

Backup and Restore | 397

www.it-ebooks.info

http://www.it-ebooks.info/

Restoring a backup with the Java Admin Client is even simpler: you just need to open
the Restore Backup dialog by clicking the Restore icon or choosing the
Tools—>Restore menu item, and then selecting the previous backup that you created.

Command-line backup

Command-line scripts for performing a client-side data export backup (and restore)
of the database are provided with eXist in the form of the $EXIST_HOME/bin/
backup.sh file (for Unix, Linux, and Mac platforms) and $EXIST _HOME/bin/
backup.bat file (for Windows platforms). These scripts take several arguments, which
are demonstrated in Example 15-1 and explained in Table 15-3.

Example 15-1. Backing up the entire database (in ZIP format) from the command line

SEXIST_HOME/bin/backup.sh --user admin --password some-password --backup /db
--destination /export/backups/exist-db.201312271159.z1p

Table 15-3. Command-line backup arguments

Argument Description Mandatory/optional
-uor--user The username for connecting to the database. Typically, must be a Mandatory, but if
dba user when performing a backup. omitted, the default

username admin is
used

-por --password The password for the user connecting to the database. Mandatory, unless the
user does not have a
password

-bor - -backup The collection hierarchy to back up (e.q., /db). Mandatory

-dor-- The destination for the backup. Either a folder path, or a filename Mandatory

destination ending with .zjp to create a ZIP file backup.

-oor --option Any additional options for the backup client that are needed to Optional

connect to the eXist server. For example, if using SSL: -oss1-
enable=true

-ouri=xmldb:exist://local
host:8443/exist/xmlrpc.

When you’re restoring a backup from the command line, the same scripts take
slightly different arguments, as you can see in Example 15-2 and Table 15-4.

Example 15-2. Restoring a database backup (in ZIP format) from the command line

SEXIST_HOME/bin/backup.sh --user admin --password some-password
--restore /export/backups/exist-db.201312271159.zip

398 | Chapter 15: System Administration

www.it-ebooks.info

http://www.it-ebooks.info/

Table 15-4. Command-line restore arguments

Argument Description Mandatory/optional
-uor--user The username for connecting to the database. Typically, must be a Mandatory, but if omitted,
dba user when performing a backup. the default username
admin is used
-por--password The password for the user connecting to the database. Mandatory, unless the user
does not have a password
-ror--restore The location of the backup to restore. Either a folder path, or a Mandatory
filename ending with .zip to restore a ZIP file backup.
-Por--dba- The password of the admin user in the database backup that you Mandatory, if the backup
password are restoring. includes the
collection /db/system/
security/exist
-oor--option Any additional options for the backup client that are needed to Optional

connect to the eXist server. For example, if using SSL: -oss1-
enable=true

-ouri=xmldb:exist://local
host:8443/exist/xmlrpc.

Ant backup task

You can use the Ant extension tasks for eXist (see “Using Ant with eXist” on page
381) for performing client-side data export backup and restore of the database.

Once you have the Ant extensions configured in your Ant script (typically build.xml),
then you can configure the Ant backup extension using the Ant code shown in
Example 15-3. Its parameters are listed in Table 15-5.

Example 15-3. Backing up the entire database with Ant
<xdb:backup user="admin" password="some-password"

uri="xmldb:exist://localhost:8080/exist/xmlrpc/db"
dir="/export/backups/exist-db.201312271206.zip" />

Table 15-5. Ant backup task parameters

Parameter Description

user The username for connecting to the database. Typically, must be a dba user when performing a backup.
password The password for the user connecting to the database.

urt The XML:DB API URI to the database collection that you wish to back up. For example, xmldb:exist://
localhost:8080/exist/xmlrpc/db would back up the entire database, while xmldb:exist://
localhost:8080/exist/xmlrpc/db/my-collection would back up the /db/my-collection
collection hierarchy.

dir The destination for the backup. Either a folder path, or a filename ending with .zip to create a ZIP file backup.

Backup and Restore | 399

www.it-ebooks.info

http://www.it-ebooks.info/

Conversely, you can configure the Ant restore extension using the Ant code shown in
Example 15-4. Its parameters are outlined in Table 15-6.

Example 15-4. Restoring a database backup with Ant
<xdb:restore user="admin" password="some-password"

uri="xmldb:exist://localhost:8080/exist/xmlrpc"
file="/export/backups/exist-db.201312271206.zip" />

Table 15-6. Ant restore task parameters

Parameter Description Mandatory/optional
user The username for connecting to the database. Typically, must be a Mandatory
dba user when restoring a backup.
password The password for the user connecting to the database. Mandatory
urt The XML:DB API URI to the database server (e.g., xmldb:exist:// Mandatory
localhost:8080/exist/xmlrpc/db).
dir The location of the backup to restore if it is a folder. Mandatory, if the restore source
is a folder
file The location of the backup to restore if it is a ZIP file. Mandatory, if the restore source
is a ZIP file
restorePass The password of the admin user in the database backup that you are ~ Mandatory, if the backup
word restoring. includes the collection /db/
system/security/exist

Server-Side Data Export Backup

Server-side backups in eXist are always performed by the eXist Scheduler (see
“Scheduled Jobs” on page 435), which executes the backup as a system task. Whether
the job is scheduled in advance as a one-oft or repeatable operation, or is triggered
directly at some point, it will always be managed by the Scheduler.

System tasks always ensure that the database is in protected mode. This means that
the database is in a consistent state because all pending transactions have completed,
the database journal has been flushed to persistent storage, and the system task will
execute in isolation, which blocks and queues all incoming transactions until the task
has finished executing.

As a server-side backup is executed in protected mode, the database is unavailable for
general use while the backup is performed. Server-side backups initially perform a
consistency and sanity check against the database, and this information is used to
inform the backup content. The consistency and sanity check can detect problems in
the database storage and still allow collections and documents that may have become
damaged to be exported in the backup, thus ensuring the most rigorous backup of
your data.

400 | Chapter 15: System Administration

www.it-ebooks.info

http://www.it-ebooks.info/

Documents that still exist in the database but through some issue
have become detached from a collection—and so are effectively
invisible—may still be exported as part of the backup content.
These documents will be placed into the special collection /db/
lost_and_found. Details of the consistency check are logged into
the same folder as the destination of the backup.

Scheduled backups

If you wish to create a scheduled backup—either as a one-off task or a periodic opera-
tion—you can configure this in eXist’s configuration file ($EXIST _HOME/conf.xml)
within the scheduler element indicated by the XPath /exist/scheduler, by enabling
and configuring the org.exist.storage.ConsistencyCheckTask scheduled job (see
Example 15-5 and Table 15-7). For more information on scheduling jobs and the job
configuration syntax, see “Scheduling Jobs” on page 436. This configuration has to be
set before the eXist server is started, or you have to restart eXist after making
changes. If you wish to schedule a new backup job without restarting eXist, you can
do so using the XQuery scheduler extension module (see scheduler). Any sched-
uled backup will back up the entire database.

Example 15-5. Scheduled backup configuration: daily 1 a.m., fortnightly incremental
backup

<job type="system" name="daily-backup" class="org.exist.storage.ConsistencyCheckTask"
cron-trigger="0 0 01 * * 2?">

<parameter name="output" value="/export/backups"/>

<parameter name="backup" value="yes"/[>

<parameter name="incremental" value="yes"/>

<parameter name="incremental-check" value="yes"/>

<parameter name="max" value="14"[>
</job>

Table 15-7. Scheduled consistency check and backup job parameters

Parameter Description Mandatory/
optional
output The destination folder for the logfiles of the Consistency Check task; if Mandatory

performing a backup, also the location for backup files. If you're using a
relative path, it is interpreted relative to SEXIST_HOME/webapp/WEB-INF/

data.
backup After the consistency check, should a backup of the database be performed? Optional, default is
Either yes or no. no
incremental If performing a backup, should a full backup or an incremental backup (just ~ Optional, default is

documents that have changed since the last backup) be performed? Either no
yes for an incremental backup, or no for a full backup.

Backup and Restore | 401

www.it-ebooks.info

http://www.it-ebooks.info/

Parameter Description Mandatory/

optional

incremental- If performing an incremental backup, should a consistency check be Optional, default is
check performed first? Disabling the Consistency Check task for incremental yes

backups can lead to faster backup times, but has the downside of creating a

less rigorous backup of the database. Either yes or no.
max The maximum number of incremental backups before another full backup Optional, default is 5

should be created.
zip Should the backup be written to a ZIP file? Either yes for a ZIP file or no for ~ Optional, default is

a full folder export. yes

Backups from XQuery

It is also possible to almost immediately request a server-side data export backup of
the database on an ad hoc basis from XQuery, by triggering the Consistency Check
system task. We describe this as almost immediately because, as you may recall from
earlier, server-side backups are always scheduled, and the database may need to finish
processing any other current requests before it can enter protected mode to perform
the backup. You can trigger the Consistency Check system task from XQuery by
using the system:trigger-system-task function (see Example 15-6). For further
details of the system XQuery extension module, see system. The function takes the
same parameters as described in Table 15-7.

Example 15-6. Triggering a full server-side data export backup from XQuery

let $parameters :=
<parameters>
<param name="output" value="/export/backups"/>
<param name="backup" value="yes"/>
<param name="incremental" value="no"/>
<param name="z1ip" value="no"/>
</parameters>
return
system:trigger-system-task("org.exist.storage.ConsistencyCheckTask", $parameters)

Conversely, you can restore a database backup from XQuery by calling the sys
tem:restore function, as Example 15-7 shows.

Example 15-7. Restoring a backup from XQuery
system:restore("/export/backups/full20131228-1035", "some-password", "some-password")

Dashboard Backup app

Recently, a simple backup application has been added to the eXist dashboard that
allows you to see previously created backups, and also to trigger a new immediate

402 | Chapter 15: System Administration

www.it-ebooks.info

http://www.it-ebooks.info/

backup (see Figure 15-8). The backend of this application is written in XQuery and
uses the same underlying functions as discussed in the previous section.

800 /[oushboard = %
&« @ | [localhost: 8080,/ exist/apps /dashboard /index.html Q| ¥, =
admin -
x
2% O
Name Created Incremental
full20131227-1027.zip 2013-12-27T10:27:58.107Z no
full20131227-1030.zip 2013-12-27T10:30:00.1492 no
full20131227-1035.zip 2013-12-27T10:35:00.1192 no
full20131227-1040.zip 2013-12-27T10:40:00.1042 no
full20131227-1045.zip 2013-12-27T10:45:00.116Z no
full20131227-1050.zip 2013-12-27T10:50:00.0932 no
full20131227-1055.zip 2013-12-27T10:55:00.0922 no
full20131227-1100.zip 2013-12-27T11:00:00.0972 no
| Zip (Don't use for database with more than 4gb)
| Incremental
Trigger Backup

Figure 15-8. Dashboard Backup application

Restoring a Clean Database

When you are restoring a backup of a database in eXist, documents and collections in
the existing database (before the restore is performed) are not overwritten unless they
also exist in the backup that is being restored. This behavior is intentional, as it allows
you to back up individual collection hierarchies and manage them independently.
You can then choose to restore different collection hierarchies at different times.

If you wish to start with an empty database and then restore your backup so that the
database contains only the data of your backup, then you need to first shut down
eXist and remove the database files. Remember, this will cause you to lose all of your
data! To remove the database, simply delete all the files and folders (excluding
README, RECOVERY, and export) from your eXist data directory and journal direc-
tory: unless you have reconfigured this, they are one and the same directory, and
located at $EXIST_HOME/webapp/WEB-INF/data. When you then restart eXist you
will have an empty database, and you may restore your backup as normal.

Backup and Restore | 403

www.it-ebooks.info

http://www.it-ebooks.info/

Emergency Export Tool

The eXist database storage subsystem is designed in such a way that it should protect
the integrity of your data during the vast majority of hardware or software failures.
However, sometimes in the real world unexpected and unexplained events do take
place. After a crash, when restarting, eXist will try to recover if necessary by examin-
ing its database journal. Under rare circumstances, however, eXist may not be able to
automatically recover, at which point it will refuse to start up to avoid causing further
damage to the database.

Should eXist refuse to start, there are two steps that you must take. First and most
importantly, assuming that your data is important to you, you must ensure that you
have a recent copy of your database. If you do not have a recent backup, then you can
use the Emergency Export tool to examine the consistency of the database and create
a backup (see Figure 15-9).

800 Consistency Check and Repair

File

” [] Incremental backup [| Direct access | | Create ZIP

DB Configuration: |jusr,ﬂIocal,fexist,fconf.xml | | Select |

Output Directory: |,fexpon,ﬂbackups,ﬂexist—emergency—expon | | Change |

[|
Messages

Figure 15-9. Emergency Export tool GUI

You must ensure that eXist is completely shut down (even if it
refused to start properly) before running the Emergency Export
tool, because the tool is independent of eXist and accesses the data-
base files directly.

404 | Chapter 15: System Administration

www.it-ebooks.info

http://www.it-ebooks.info/

You can start the Emergency Export tool as a GUI tool by executing:
java -jar SEXIST_HOME/start.jar org.exist.backup.ExportGUI

Alternatively, you can run the Emergency Export tool as a command-line utility
without the GUI by executing:

java -jar SEXIST_HOME/start.jar org.exist.backup.ExportMain

When run from the command line, the Emergency Export tool has a number of
parameters that may be specified (these are also mirrored in the GUI); these are
detailed in Table 15-8.

Table 15-8. Emergency Export tool command-line arguments

Argument Description

-dor--dir The destination folder for the logfiles of the Consistency Check task; if performing an export
(backup), also the location for exported files.

-cor--config The SEXIST_HOME/conf.xml config file for the eXist instance you wish to perform the emergency
export on.
-Dor --direct Uses a more aggressive approach to directly access nodes in the database without examining

some indexes. Can be useful if there is also index corruption!
-x or - -export Performs a full data export backup from the database files.

-ior--incremental If performing an export, and an existing backup is present in the destination folder, this specifies
that only an incremental backup will be performed.

-nor - -nocheck Skips performing a consistency check, and just attempts to export all data.

-zor--zip If performing an export, then this indicates that the database content should be exported to a ZIP
file as opposed to a folder.

If the first step was to ensure that you have a backup of your data, then the second
step is obviously to seek support in getting your database server running again.

If you have a complete backup of your database and are certain that all your data is
present, you can simply restore the backup to a clean database, as discussed in the
previous section. If you do not have a complete backup of your database and are hav-
ing trouble recovering your data or restarting eXist, then you should refer to “Getting
Support” on page 413. Obviously, if you have Consistency Check reports available from
running the Emergency Export tool, then you should consider submitting the most
relevant of these as part of your supporting documentation when requesting assis-
tance.

Installing eXist as a Service

In “Downloading and Installing eXist” on page 19 we looked at installing eXist in a
development or desktop environment, through use of the eXist installer. In this sec-
tion we look at how you install eXist into a server environment, where eXist is config-

Installing eXist as a Service | 405

www.it-ebooks.info

http://www.it-ebooks.info/

ured to integrate with your operating system’s service management, so that eXist is
started and stopped correctly when your server powers up or shuts down.

When you are installing eXist into a server environment that is servicing real users,
one of your major concerns should be security, so we would suggest Chapter 8 as pre-
requisite reading.

Regardless of your operating system, you first need to place a copy of the eXist distri-
bution onto your server, which you can do using either:

o The eXist IzPack installer, as discussed in “Downloading and Installing eXist” on
page 19, and typically running it in headless (non-GUI) mode, as shown in
“Installing eXist” on page 22. If you are using a Windows server or X graphics
environment, then you may instead opt to use the GUI mode.

o The source code, and compiling either the develop branch if you want the abso-
lute bleeding edge of eXist development, or one of the release tags (such as
eXist-2.1) if you want a stable release. This is discussed in “Building eXist from
Source” on page 485.

You may, of course, place eXist anywhere you wish on your system, but it is common
for eXist to be installed into C:\Program Files\eXist on Windows systems and /usr/
local/exist or /opt/exist on Linux/Unix/Mac systems.

Solaris

We will discuss installing eXist as a service on the Solaris operating system first, as
the approach for service management on Solaris is unique, whereas the same tool is
used for all other supported platforms.

Since version 10, Solaris has included a facility called the Service Management
Framework (SMF), which is responsible for starting and stopping all services on the
system and reporting on service errors. To a certain extent, SMF can also be config-
ured to automatically restart failing service trees as part of Solaris’s predictive self-
healing technologies.

eXist can be installed into Solaris’s SMF and be controlled through the standard
Solaris service management commands: svccfg, svcadm, and svcs. eXist has been
tested with SMF on Solaris 10 and 11, OpenSolaris, and Openlndiana, but it is likely
it will also work with any Illumos-based distribution that uses SMF and provides Java
1.6 or newer.

Manifests and service scripts for SMF are shipped with eXist and provided in the
$EXIST _HOME/tools/Solaris folder. As comprehensive documentation for integrat-
ing eXist with SMF is already provided in the file $EXIST HOME/tools/Solaris/
README.txt, we will not attempt to reproduce it here.

406 | Chapter 15:System Administration

www.it-ebooks.info

http://bit.ly/predictive_self-healing_tech
http://bit.ly/predictive_self-healing_tech
http://www.it-ebooks.info/

Windows Linux and Other Unix

eXist ships with a third-party tool from Tanuki Software called the Java Service
Wrapper. eXist uses the open source GPLv2 version of the Java Service Wrapper,
which is written in C and Java. The C component provides native integration with
specific operating systems, while the Java component provides abstractions atop the
C component to allow you to use the same configuration and management options
across all platforms.

eXist provides configuration files and scripts for the Java Service Wrapper that allow
you to easily install eXist as a service on any platform that the tool supports—i.e.,
Windows, Linux (x86), and Mac OS X. The Java Service Wrapper can also support
IBM AIX (PPC), z/OS, z/Linux, FreeBSD (x86), HPUX, and Linux (PPC, ARM) by
way of a Delta Pack that can be downloaded from the Tanuki Software website. While
the Java Service Wrapper also supports Solaris, eXist provides its own solution for the
Solaris platform, as discussed in “Solaris” on page 406.

A preconfigured Java Service Wrapper ships with eXist and is provided in the
$EXIST_HOME/tools/wrapper folder. Before installing eXist as a service, you should
consider the access rights that eXist has to your system and the security concerns of
running eXist as a service, as discussed in “Reducing Collateral Damage” on page
175.

To install eXist as a service on Windows platforms, you can execute the following
command from a Windows console (cmd.exe):

C:\> %EXIST_HOME%\tools\wrapper\bin\install.bat

After successful installation as a service on Windows, eXist will show up in the Win-
dows Services as “eXist Native XML Database.”

To install eXist on Linux, Mac OS X, and other Unix platforms, you can execute the
following command from a terminal as root or an equally privileged user:

SEXIST_HOME/tools/wrapper/bin/install.sh

After successful installation as a service, eXist will be installed as the named service
eXist-db. You should then be able to manage the service with your platform’s service
management tools. On Linux this would typically be the service and/or chkconfig
commands; for example, running service eXist-db status should report the run-
ning status of eXist.

When you are installing on Linux, if your distribution uses the
Upstart event-based startup system (e.g., Ubuntu, Linux Mint,
ChromeQOS, RHEL/CentOS 6, Scientific Linux, and Oracle Linux),
you should edit $EXIST HOME/tools/wrapper/bin/install.sh before
running it and set the flag USE_UPSTART to true.

Installing eXist as a Service | 407

www.it-ebooks.info

http://wrapper.tanukisoftware.com
http://wrapper.tanukisoftware.com
http://www.it-ebooks.info/

Hosting and the Cloud

The eXist developers are often asked what is needed to host eXist on a third-party
server and where users can find hosting companies or cloud providers that support
or enable eXist to be used. The basic requirements from a hosting provider are the
same as those needed to run eXist on your own computer or server: you simply need
a system that offers a JRE (or JDK, if you wish to build eXist from source code) of at
least version 6, and allows you remote console access to install eXist.

Unfortunately, full access to a remote host (physical or virtualized) usually comes at a
higher cost than shared application server solutions where you can just upload some
PHP or ASP code. However, eXist should be viewed as an application server platform
in its own right, as it offers far more functionality and convenience through XQuery,
XSLT, XProc, and XForms than lower-level programming languages such as PHP or
ASP, which must also be coupled with database access to even begin to approach
what eXist offers. In this section, we will examine some of the options available for
hosting eXist.

Entic

Entic is a virtual private server (VPS) provider in San Jose, California that has pro-
vided the VPSes that have powered the eXist Solutions website and Adam Retter’s
own websites since 2008.

Entic provides very reasonably priced Solaris zones. These are billed monthly,
depending on the resources allocated to them. With Entic you purchase a pool of
RAM, CPU, and disk space, which you can then allocate between as many or as few
VPSes as you wish. The VPSes can be dynamically allocated and resized on the fly
from the Entic website with zero downtime.

eXist has support for running within the Service Management Framework (SMF) of
Solaris systems (see $EXIST_HOME/tools/SolarissREADME.txt). Entic was initially
chosen for eXist due to eXist’s excellent performance on Sun (now Oracle) JVMs
running on Sun Solaris atop Sun x64 servers. Whether this performance metric still
stands remains to be tested.

Two final points in favor of Entic are that it’s directly connected to the Internap
Internet backbone, therefore providing plenty of low-latency bandwidth, and that its
support staff are fantastic, being both personal and very flexible in their approach.

Amazon EC2

Amazon is probably the largest and best known of all the cloud providers and offers a
plethora of services, including virtual machines. Amazon’s Elastic Compute Cloud

408 | Chapter 15: System Administration

www.it-ebooks.info

http://entic.net
http://existsolutions.com/
http://www.internap.com/
http://www.internap.com/
http://www.it-ebooks.info/

(or EC2, as it is better known) is a cloud computing platform where virtual machines
can easily be created and destroyed.

EC2 supports a wide choice of operating systems, including Solaris, various Linux
distributions (including EC2’s own Amazon Linux), FreeBSD, NetBSD, and Win-
dows. Amazon EC2 virtual machine instances are created from Amazon machine
images (AMIs), which contain the operating system and any preinstalled software. A
wide variety of AMIs are available from the AWS Marketplace. The cost of running a
virtual machine on EC2 is typically calculated by the hour and depends on four main
factors:

Instance sizing
Amazon offers a variety of virtual machine instance sizes. Some are optimized
for CPU processing, others for large memory use, and still others for storage and
I/O performance. Which to use with eXist will depend entirely on your use of
eXist, the database size, and the queries that you are performing. It is entirely fea-
sible with EC2 to start on one type of instance, and then at a later stage create an
image of your virtual machine and migrate to a larger or smaller instance as
necessary.

Instance location
Amazon has several data centers located in the US, South America, Europe, and
Asia. Amazon charges differently depending on which data center you wish to
run your instance in. The cheapest data center is usually on the East Coast of the
US, but it may make more sense to locate your servers closer to your customers
to reduce latency, or you may be required to stay within a political region to
comply with governmental data protection laws.

On-demand or reserved instances
If you are running servers on EC2 for production purposes or over a longer time
frame than a few weeks, it could be cheaper to prepurchase reserved CPU com-
pute hours rather than paying EC2’s on-demand rate.

Software
Depending on the AMI that you choose to use to create your virtual machine
instance, there may be an extra cost associated with provided and/or preconfig-
ured software packages.

One of the nice things about EC2 is that it provides a free tier. If you qualify, then the
free tier gives you access to a micro virtual machine instance for one year that you can
use for gaining experience and also for trying out different software on EC2. The cur-
rent t2.micro instance at the time of writing provides:

o Linux (Amazon, Red Hat, or SLES) or Windows

Hosting and the Cloud | 409

www.it-ebooks.info

http://aws.amazon.com/ec2/
https://aws.amazon.com/marketplace
http://www.it-ebooks.info/

o One vCPU (equivalent to one Hyper-Thread of an Intel Xeon processor operat-
ing at 2.5 GHz burstable to 3.3 GHz)

« 1 GB of RAM
o 30 GB of Elastic block storage

o Basic security group firewall

It is entirely possible to install and run eXist (and even compile it) on the EC2 free-
tier micro instance; this has been tested with Amazon Linux, but other operating sys-
tems should also work. Obviously the free tier is not going to allow you to run a huge
or busy eXist service, but for very small applications, low-traffic websites, or experi-
mentation it is perfectly fine.

Make sure to correctly configure your EC2 instance types, and be
aware of the associated costs! If you are expecting to use the free
tier, we would recommend that you verify you are actually receiv-
ing the service for free. Amazon’s free-tier arrangement is subject
to change, and we cannot be held responsible for unexpected costs
incurred from using EC2.

eXist AMI

You may be wondering how you install eXist onto an Amazon EC2 instance. For
your convenience, Adam Retter has created an EC2 AMI that can be used for easily
starting your own eXist server on Amazon EC2. The AMI is based on Amazon Linux
with eXist 2.1 and NGINX installed. It is available from the AWS Marketplace free of
charge /TBD: https://aws.amazon.com/marketplace/seller-profile/
ref=dtl_pcp_sold_by?id=7a9e551e-66bf-4093-bf25-a34318b5fec5.

eXist Solutions is planning to make available Amazon EC2 AMIs
for eXist LTS (Long-Term Support edition), but these are not yet
available (see “Commercial Support” on page 415).

Installation. eXist has been cloned directly from its GitHub repository into /usr/local/
exist and compiled using OpenJDK 7. eXist has been configured so that it stores its
database files and journal into /exist-data. This means that should you wish to, at any
point in the future you can easily update to a newer version of eXist from GitHub and
recompile because the application code and its data are stored in separate directory
trees.

Service. eXist has been configured to be started and stopped when the instance starts
and stops; it has been integrated into the system upstart via eXist’s Java Service

410 | Chapter 15: System Administration

www.it-ebooks.info

https://github.com/eXist-db/exist
http://www.it-ebooks.info/

Wrapper integration. If you wish to start or stop eXist, you can run sudo service
eXist-db start or sudo service eXist-db stop.

eXist will run under the exist user account on the machine, and the folders /usr/
local/exist and /exist-data must have appropriate read/write permissions for the
exist user. By default, these are set up and configured correctly for you. If you want
to access or modify files in those folders, it is best to su to the exist user.

eXist has been configured to listen on the standard 8080 TCP port, but for security
the EC2 firewall has been enabled to allow access to the machine instance only on
ports 80 (HTTP) and 22 (SSH). Thus, if you want to access eXist from the Web, be
aware that it has been proxied behind the Nginx web server on port 80, as described
in “Reverse proxying” on page 185. The Nginx configuration file is located at /etc/
nginx/nginx.conf. It is currently configured to forward just the REST Server interface;
however, commented out in that same file is an example of forwarding the RESTXQ
Server interface. If you wish to start or stop Nginx, you can run sudo service nginx
start or sudo service nginx stop.

Administering. As only the REST Server is accessible from the Web on the EC2
instance, you may wonder how you can work with your eXist server and administer it
using all of the functionality that you are used to. The answer is to forward a TCP
port from your own development/admin machine to your eXist server when you
need to get at the full eXist server. You can do so by making use of port tunneling in
SSH.

For example, consider the following OpenSSH client command:

ssh -1 ~/ec2-keys/aretter.pem -L8181:localhost:8080
ec2-user@ec2-107-22-152-27.compute-1.amazonaws.com

This command would connect by SSH to your EC2 instance (in this example, the
EC2 host is ec2-107-22-152-27.compute-1.amazonaws.com) and forward the TCP
port 8181 on your local machine to port 8080 (the port that eXist is listening on) on
the remote EC2 instance. This means that you can use the hostname localhost and the
port 8181 on your local machine to connect to the remote eXist using your web
browser, the Java Admin Client, WebDAYV, and so on.

The eXist admin user password for the EC2 instance that you cre-
ate, will be set to the ID of your instance the first time it is run. It is
strongly recommended that your first task should be to change
this!

The SSH command shown is for Unix, Linux, and Mac systems, but you can achieve
the same result from Windows systems using an SSH client for Windows (e.g.,
PuTTY, shown in Figure 15-10).

Hosting and the Cloud | 411

www.it-ebooks.info

http://www.chiark.greenend.org.uk/~sgtatham/putty/
http://www.it-ebooks.info/

@ PuTTY Cenfiguration =]
Category:
=)- Teminal - Options controling SSH port forwarding
ge;fboard Port forwarding
F:atures || [Local ports accept connections from other hosts
- Window [Remote ports do the same (S5H-2 only)
. Appearance Forwarded ports:
- Behaviour
. Translation L8181 localhost:8080
- Selection
... Col
° o.urs Add new forwarded port:
[=I- Connection
.. Data E Source port 213
Destination localhost:3080
@ Local () Remote () Dynamic
@ Auto @ IPv4) IPvE
[COpen] [Cancel

Figure 15-10. Port tunneling with PuTTY on Windows

Other Cloud Providers

There are literally hundreds of hosting and cloud providers out there, each offering
different server infrastructures, resources, and pricing models. It would take far too
much time to evaluate them all for use with eXist. The good news, however, is that
many of these platforms provide either complete virtual servers or Java application
containers in which eXist can be installed. To round off this section, we will mention
just two more cloud providers that we think are interesting and offer something
special.

GreenQloud

GreenQloud is based in Iceland, as are its data centers, and this enables its cloud ser-
vice to be powered by 100% renewable energy. Energy is taken from hydroelectric
and geothermal power sources, and GreenQloud’s servers are cooled by the local nat-
urally cold air. GreenQloud’s compute and storage clouds offer seriously green
options, and its innovative dashboard application allows you to closely monitor your
energy use, savings, and carbon footprint.

Although they have comparable price points, depending on your server require-
ments, GreenQloud can be cheaper than Amazon EC2. Amazon EC2 offers far more
storage than almost any other cloud provider, but with GreenQloud you get more
RAM and CPU. GreenQloud also offers an API that is compatible with Amazon’s

412 | Chapter 15: System Administration

www.it-ebooks.info

http://greenqloud.com/
http://www.it-ebooks.info/

EC2 API so that you can easily migrate from EC2 to GreenQloud, or more easily run
a hybrid mixed cloud if you don’t want to keep all your eggs in one basket.

eXist operates perfectly well in the GreenQloud environment, and if Earth-friendly
credentials are important to your business it is an excellent choice. Evolved Binary
Ltd is currently evaluating GreenQloud for its virtualized servers.

Digital Ocean

Digital Ocean is a relatively new cloud provider based in New York City. Apart from
services that offer great value for money when compared to Amazon EC2 and others,
it offers two features of particular interest for eXist users.

The first is that all of Digital Ocean’s servers provide 100% Solid State Disk (SSD)
storage, which is great news for databases such as eXist where SSD can dramatically
improve performance when data is accessed from disk.

The second feature is Digital Ocean’s built-in support for Docker. Docker is an appli-
cation container technology, which means that any application, such as eXist, pack-
aged via Docker can be deployed onto any physical, virtual, or cloud service that
supports Docker. Digital Ocean allows you to spin up new machines using Docker
applications. As there is also already support for Docker on Amazon EC2, it would be
really interesting to see a Docker container for eXist that could then be used to
deploy eXist to almost anywhere.

Getting Support

Even though you have an excellent book available on the topic, sometimes when

you're working with eXist—either as a developer, a system administrator, or some-
where in between—you may need to seek additional support by asking a question,
reporting and getting a fix for a bug, or requesting help to understand a particular
feature. You have two main options for getting support with eXist: community or
commercial.

Whether you look to the community for support or seek some sort of commercial
support arrangement, when you’re reporting problems or a bug, there are several
pieces of supporting information that you should consider submitting with your
request:

o Include the exact version of eXist that you are using—either the release version
number or, if you're using a version compiled from source code, the Git commit
revision number. You can obtain the Git revision by running the command git
show --summary -abbrev-commit.

o Indicate which operating system you are using, and the version, (e.g., Windows
XP Service Pack 3a). Also include whether the operating system is 32-bit or

Getting Support | 413

www.it-ebooks.info

http://www.digitalocean.com/
http://www.docker.io/
http://www.it-ebooks.info/

64-bit. Specify the vendor, version, and CPU architecture of the Java JRE or JDK
that you are using as well. The Java version can be obtained by running the com-
mand java -version, and vendor information by examining the java.vm prop-
erties when running java -XshowSettings:properties -version.

Be sure to report how much memory is available to the operating system, includ-
ing how much is allocated to eXist (i.e., the -Xmx setting), and how much is allo-
cated to the general cache and to the collections cache in $EXIST HOME/
conf.xml.

When reporting errors or bugs with eXist, make sure to include any pertinent
WARN- or ERROR-level log messages from the logfiles, in particular
$EXIST_HOME/webapp/ WEB-INF/logs/exist.log.

If you believe that eXist has frozen in some way (deadlock/livelock) and is not
correctly responding to incoming requests, then a thread dump of the eXist pro-
cess can be invaluable to the developers. You can obtain a thread dump through
one of several methods, such as:

— Using the jstack tool that comes with your JRE. For example, by running
jstack -1 51617 > exist-jstack.txt, where 51617 is the process ID (PID)
of eXist, you can get a file exist-jstack.txt containing a thread dump. You can
find out the PID of eXist by running the command jps.

— By sending the QUIT signal using the kill command on Unix/Linux/Mac
systems. For example, by running kill -s QUIT 19241 > exist-dump.txt,
where 19241 is the PID of eXist, you can get a file exist-dump.txt containing a
thread dump.

If the JVM running eXist has crashed, then a file whose name starts with
hs_err_pid will be created. You should keep a copy in case it’s requested by the
eXist developers when you’re reporting a problem. Ultimately, you may be asked
to send a copy to the JRE/JDK vendor if the file reveals a bug in the JVM.

Remember, when reporting bugs, you need to be able to explain how to repro-
duce the issue to the community. If a developer cannot reproduce your issue
easily, then it becomes hard or impossible for her to assist you. This is particu-
larly important when reporting problems with your XQuery scripts. You should
be concerned with creating an absolutely minimal example XQuery script that
isolates and reproduces the problem you are experiencing. The easier you can
make it for a developer to reproduce your issue, the more likely you will be to get
a quick fix. Simply sending several thousand lines of XQuery code and saying
that there is a problem somewhere will most likely not result in a solution to your
problem anytime soon!

414

| Chapter 15: System Administration

www.it-ebooks.info

http://docs.oracle.com/javase/7/docs/technotes/tools/share/jstack.html
http://www.it-ebooks.info/

Community Support

As discussed in “Contributing to the Community” on page 13, eXist has an excellent
open source community, with developers and users supporting each other. Should
you have a problem you need help with, we would recommend first looking for a sol-
ution in an existing report in the eXist mailing list archive, and if you do not find
anything there, then posting to the eXist-open mailing list.

If you believe you have found a bug in eXist, it is good practice to discuss it on the
mailing list, and to have it confirmed. Once you have a confirmed bug, or if you have
a new feature request, then we would encourage you to log it in the GitHub issue
tracker for eXist. In this manner, issues are accounted for and managed publicly.

Commercial Support

Commercial support for eXist is available from eXist Solutions. eXist Solutions com-
prises many of the core developers of eXist and contributes the vast majority of its
resources and funding back into advancing the eXist open source project.

eXist Solutions offers an LTS (Long Term Support) version of eXist, which is a stable
version supported for at least two years, with significant bug fixes and new features
backported from newer versions of eXist. With the LTS version of eXist, you can also
purchase a commercial support contract that allows your organization to email or tel-
ephone eXist Solutions staff directly when the need arises. While there are several
ready-made support contracts available, eXist Solutions is always happy to provide a
custom-tailored contract for your organization’s needs.

It is also worth mentioning that eXist Solutions can provide developers to assist you
should you need additional resources when building your eXist applications, and
consultancy services to help improve and/or tune your eXist applications for produc-
tion use.

Getting Support | 415

www.it-ebooks.info

http://exist-open.markmail.org/
http://sourceforge.net/p/exist/mailman/
https://github.com/exist-db/exist/issues
https://github.com/exist-db/exist/issues
http://www.existsolutions.com
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 16
Advanced Topics

This chapter introduces some of the more advanced things that can be done with
eXist, such as scheduled tasks, triggers, and internal modules. Many, although not all,
of the examples in this chapter are developed in Java as plug-ins to eXist. We do not
attempt to teach Java in any way in this chapter; rather, where the examples are in
Java, we have tried to make them simple, self-explanatory, and easily usable so that
even those without Java experience can learn from and make use of them. However,
some programming experience will undoubtedly assist you.

If you wish to extend and use additional external libraries for the
Java projects in this chapter whose code is deployed into
$EXIST _HOME/lib/user, be aware that if eXist also uses the same
libraries (consult the files in the subfolders of $EXIST HOME/Iib),
you must ensure that you use exactly the same versions of the libra-
ries as provided with eXist. To achieve this, you must set the cor-
rect version on the dependency in your pom.xml file, and also set
the scope of the dependency to provided. This is required because
your Java code will be running in the same JVM as eXist and there-
fore uses the same class loader; in this manner of operation, it is
only possible to have a single version of a specific class.

XQuery Testing

Creating tests to assert the correctness of your code and to prevent regressions in the
future can be desirable for many reasons. Over the last decade there has been a seri-
ous focus within software engineering to provide better testing tools for program-
mers. There have also been a number of testing philosophies and methodologies
developed, such as test-driven development (TDD) and behavior-driven develop-

417

www.it-ebooks.info

http://www.it-ebooks.info/

ment (BDD), which provide guidance on how to deliver robust and well-tested soft-
ware.

Many programming languages offer various integrated or third-party tools and libra-
ries for facilitating the structured testing of applications. While XQuery is a very
high-level functional language, it should certainly not be considered exempt from
good testing practices. Thus far, there have been many attempts at creating frame-
works for testing XQuery modules and functions, including XTC, XQUT, XSpec,
XRay, and Unit Module. Most of these frameworks are, unfortunately,
implementation-specific, due to the current lack of reflective capabilities in XQuery.
There are many different types of tests that can be constructed, but all of the XQuery
test frameworks to date have focused on the unit testing type of tests. Unit tests are
designed to allow you to assert the behavior of a small unit of code, ideally in isola-
tion from the rest of the system. In this chapter, we will also focus on writing unit
tests in XQuery.

For many years eXist has provided an XQuery testing mechanism within its own test
suite to its core developers, allowing them to write tests in XQuery to assert the cor-
rect behavior of eXist. Called XQuery Test Runner, it was never particularly designed
with the needs of other XQuery implementations or developers in mind, and it
proved somewhat clunky as test suite descriptions had to be written in a separate file
using a specific XML DSL.

As of version 2.1 eXist now officially provides XQSuite, a unit test framework
designed to be used by any XQuery developer and in such a way that it could be
implemented by any XQuery 3.0 vendor. XQSuite provides a standard set of XQuery
3.0 function annotations that set up test parameters and make assertions about the
results. One of the most interesting characteristics of XQSuite is that it allows you to
place your tests directly onto the function you wish to test. Should you wish, how-
ever, you can also choose to keep your tests separate from your code (in a different
module), by creating wrapper functions that have the XQSuite annotations that sim-
ply call your functions under test. Even if you do choose to place the XQSuite annota-
tions onto the functions under test, your code is still potentially portable to platforms
other than eXist, as the XQuery 3.0 specification states that if an implementation
does not understand an annotation, it can just ignore it.

Perhaps the best way to learn how to use XQSuite is to look at some examples. The
examples used here are supplied in the chapters/advanced-topics/xquery-testing folder
of the book-code Git repository (see “Getting the Source Code” on page 15). Imagine
that you have an XQuery library module for producing identifiers, as shown in
Example 16-1 (see the file id.xqm).

418 | Chapter 16: Advanced Topics

www.it-ebooks.info

http://www.exist-db.org/exist/apps/doc/xqsuite.xml
http://www.it-ebooks.info/

Example 16-1. Simple module for producing identifiers (id.xqm)
xquery version "3.0";

module namespace id = "http://example.com/record/id";

import module namespace util = "http://exist-db.org/xquery/util";

declare variable $1d:ERR-PRESENT := xs:QName("id:ERR-PRESENT");

declare function id:insert(Srecord as element(record)) as element(record) {
if(Srecord/id)then
fn:error($1d:ERR-PRESENT, "<id> 1s already present in record!", $record/id)
else
<record>
{
Srecord/@*,
<id>{id:generate()}</id>,
Srecord/node()
}
</record>

};

declare function id:generate() as xs:string {
let $id := id:random()
return
if(exists(collection("/db/records")/record/id[. eq $id]))then
id:generate()
else
$id
b
declare function id:random() as xs:string {
codepoints-to-string(

((1 to 8) ! util:random(26))
U (L[. 1t 10] + 48, .[. ge 10] + 87)

};

Let’s first write some test cases for the function id:insert. Here are three things that

leap to mind that we might like to write test cases for:

o If we send it a document that already has an id element, it raises the
i1d:ERR-PRESENT.

error

o If we send it a document without an id element, it adds an id element for us with

some sort of identifier.

XQuery Testing

www.it-ebooks.info

| 419

http://www.it-ebooks.info/

o If we send it a document without an id element, it adds an id element for us with
some sort of identifier; otherwise, the result document is indiscernible from the
original.

That is to say, it has the same descendant nodes (we check this as the function is
really creating a copy of the input and modifying it).

Arguably, the second and third test cases just described have some
overlap and could be merged into one. However, having two sepa-
rate tests gives us more granularity in understanding the problems
if or when tests fail. For instance, it is entirely possible that the sec-
ond test case could pass while the third test case fails, which tells us
the issue is with copying the descendant nodes and not with the
generation of the id element. Writing fine-grained tests that allow
you to quickly discover where bugs or regressions occur can help
expedite bug fixes.

Let’s now look at how we might write our first test case, which was:

If we send it a document that already has an id element, it raises the error id:ERR-
PRESENT.

We will begin by modifying the id:insert function by adding some XQSuite anno-
tations (see the file id-1.xgm), as shown in Example 16-2.

Example 16-2. id.xqm with first test case (id-1.xqm)
xquery version "3.0";
module namespace id = "http://example.com/record/id";

import module namespace util = "http://exist-db.org/xquery/util";
declare namespace test = "http://exist-db.org/xquery/xgsuite";

declare variable $1d:ERR-PRESENT := xs:QName("id:ERR-PRESENT");

declare
%test:args("<record><id>existing</id></record>") (1)
%test:assertError("id:ERR-PRESENT") (2]
function id:insert(Srecord as element(record)) as element(record) {

if($record/id)then

fn:error($1d:ERR-PRESENT, "<id> is already present in record!", $record/id)
else

<record>

{
Srecord/@*,

420 | Chapter 16: Advanced Topics

www.it-ebooks.info

http://www.it-ebooks.info/

<id>{id:generate()}</id>,

Srecord/node()
}
</record>
¥
(: Unchanged remaining code omitted for brevity... :)

O The %test:args annotation provides values to the function’s arguments when
the test case is run. If your function takes more than one argument, you can sup-
ply them one after another—for example, %test:args("argl", '"arg2",
"argN").

©® The %test:assertError annotation asserts that, for the previously provided
args, the function must throw the error (code) that is named—in this case,
i1d:ERR-PRESENT.

OK, so now we have seen how to annotate our function with some parameters for
our test case and an assertion about the expected result of executing that function
using those parameters. However, we have not yet run our test case—so how can we
actually have eXist execute our test case and return a report of whether it succeeded
or failed? Well, of course, we have to write another little bit of XQuery! We'll create
an XQuery main module so we can directly execute it, and from this XQuery we will
invoke XQSuite against the functions in our XQuery library module, id-1.xgm. Such
an XQuery main module is known as a test runner (see the file test-runner.xq) and is
demonstrated in Example 16-3.

Example 16-3. Test runner XQuery (test-runner.xq)
xquery version "3.0";

import module namespace inspect = "http://exist-db.org/xquery/inspection"; (1)
import module namespace test = "http://exist-db.org/xquery/xgsuite" at
"resource:org/exist/xquery/lib/xqsuite/xqsuite.xql";

let $Smodules := (
xs:anyURI("/db/apps/exist-book/chapters/advanced-topics/xquery-testing/id-1.xgm")
) ©
let $functions := $modules ! inspect:module-functions(.) (4)
return
test:suite(S$functions) (5)

© We import the eXist XQuery inspection module, so that we can reflectively find
all the functions in our module we wish to test.

XQueryTesting | 421

www.it-ebooks.info

http://www.it-ebooks.info/

® We import the XQSuite test framework XQuery module, so that we can subse-
quently run our test suite.

© We prepare a sequence of URIs of all modules that we are interested in testing.
You can add more modules to this sequence if you wish.

O We call inspect:module-functions for each module we wish to test, to get a list
of all functions in all our modules.

© We call test:suite, passing in all the functions. XQSuite will operate only on
those functions that have XQSuite annotations, so we need not worry specifically
about which functions we pass in.

Running the test runner should yield an xUnit result document that looks something
like:

<testsuites>
<testsuite package:”http://example.com/record/id”‘)
timestamp="2014-07-02T17:55:43.747+01:00"
failures="0" @
tests="1" ©
time="P70.0235"> @

<testcase name="insert" class="id:insert"/>

</testsuite>
</testsuites>

© Note that the package name used in the xUnit output matches the namespace of
our module under test.

©® Here we can see how many of our tests failed. In this case there were 0 failures,
so everything must have passed (succeeded).

©® Here we can see the total number of tests run. In this case there was 1 test run.
The number of tests passed is calculated by passed = tests - failures; there-
fore, there was 1 passed test.

O Here you can see the time taken to run a specific test suite. This can be useful for
measuring performance loss or gains when refactoring code.

Great! Now we have one test case that we can run that helps us prove the correctness
of our code and guard against regressions. What if we want more than one test case
per function? Let’s now look at how we would add our second test case, which was:

422 | Chapter 16: Advanced Topics

www.it-ebooks.info

http://www.it-ebooks.info/

If we send it a document without an id element, it adds an id element for us with
some sort of identifier.

We again modify our id:insert function to insert the additional test case (see the
file id-2.xqm), as shown in Example 16-4.

Example 16-4. id.xqm with two test cases (id-2.xqm)

declare
%test:args("<record><id>existing</id></record>")
%test:assertError("id:ERR-PRESENT")
%test:args("<record/>") (1]
%test:assertXPath("Sresult/exists(id)") (2]
%test:assertXPath("not(Sresult/empty(id))") (3]
function id:insert(Srecord as element(record)) as element(record) {
if(Srecord/id)then
fn:error($id:ERR-PRESENT, "<id> is already present in record!", $record/id)
else
<record>

{
$record/@*,
<id>{id:generate()}</1d>,
$record/node()

}

</record>

}s

@ We have added a second %test:args annotation to our function for our second
test case. Every %test:args or set of %test:arg annotations, delimited by one or
more assert annotations, forms a distinct test case.

@O For this test case we have two assertions—first that the result contains an element
id, and second that the i1d has some child content. You may have as many asser-
tions about the result of the function for each test case as you wish.

In this test case we are using %test:assertXPath instead of %test:assertError,
as before. %test:assertXPath allows us to evaluate an arbitrary XPath expres-
sion against the Sresult of the function.

Finally, let’s look at how we would add our final test case, which was:

If we send it a document without an id element, it adds an id element for us with
some sort of identifier; otherwise, the result document is indiscernible from the origi-
nal.

We again modify our id:insert function to add the final test case (see the file
id-3.xqm), as shown in Example 16-5.

XQueryTesting | 423

www.it-ebooks.info

http://www.it-ebooks.info/

Example 16-5. id.xqm with three test cases (id-3.xqm)

declare
%test:args("<record><id>existing</id></record>")
%test:assertError("id:ERR-PRESENT")

%test:args("<record/>")
%test:assertXPath("Sresult/exists(id)")
%test:assertXPath("not($result/empty(id))")

%test:args("<record a='1's><childl>textl</childi></record>") (1]
%test:assertXPath("Sresult/exists(id)") (2]
%test:assertXPath("$result/@a eq '1'") (3)
%test:assertXPath("local-name((Sresult/child::element())[1]) eq 'id'") (4)
%test:assertXPath("local-name(($result/child::element())[2]) eq 'childl'") @
%test:assertXPath("$result/childl/text() eq 'text1'") @
function id:insert($record as element(record)) as element(record) {
if(Srecord/id)then
fn:error($1d:ERR-PRESENT, "<id> is already present in record!", $record/id)
else
<record>
{
Srecord/@*,
<id>{id:generate()}</id>,
Srecord/node()
}
</record>

3

(1] We set the argument for the function for our test case to be an XML element
that contains both attributes and descendant nodes, as we want to make sure
the result is properly constructed.

(2] This is the same assertion as from our last test case, to ensure that an id ele-
ment is added to the record.

O0OO0 These are several assertions to ensure that the record element returned by
the function contains all of the nodes in the same order that the record ele-
ment provided them as the argument to the function.

Executing our test runner again (test-runner.xq) now produces an xUnit result docu-
ment similar to the following:

<testsuites>
<testsuite package="http://example.com/record/id"
timestamp="2014-07-02T18:26:29.784+01:00"
failures="0" tests="3" time="PT0.0645"> @
<testcase name="insert" class="id:insert"/> (2]
<testcase name="insert" class="id:insert"/> (3]
<testcase name="insert" class="id:insert"/> (4]

424 | Chapter 16: Advanced Topics

www.it-ebooks.info

http://www.it-ebooks.info/

</testsuite>
</testsuites>

© We can now see that all three of our test cases are executing.

200 Unfortunately, at present XQSuite shows the same name for all of our test cases.

We have now written our three test cases for our id:insert function, but what about
the 1d:generate and id:random functions? Well, of course, we could write some fur-
ther test cases for these using XQSuite annotations—but wait a minute, maybe there
are some difficulties in testing these functions! These two functions have in fact been
written to illustrate problems that can arise in writing test cases.

First, let’s consider the issues with the id:random function. This function, as its name
implies, will return something random each time it is called (in this instance, an
eight-character alphanumeric string). This function exhibits a trait known as nonde-
terministic behavior, which means that each time the function is called, it may pro-
duce a different result. This makes testing harder, as in this case we cannot make
assertions about the exact return value of the function using the XQSuite annotation
%test:assertEquals. Instead, we can only make generalizations such as “The result
must be a string of 8 characters” and “The result can only contain the characters a to
z and 0 to 9.” Unfortunately, this nondeterminism is spread throughout our identi-
fier’s module, as each function eventually calls id:random. We could solve this in
some test frameworks in other languages by introducing mocks that would effectively
replace the underlying call to util:random with some static value, which we could
then use as the basis for assertions about the deterministic results of our tests—that
is, asserting that our algorithm for encoding from numbers into a charset is entirely
correct. Regrettably, XQSuite does not yet support function mocks.

So, what about testing our id:generate function? Well, again, we have the nondeter-
minism problems of id: random, but here they are amplified by the contents of a data-
base collection because the database itself is in a mutable state, which can lead to even
worse nondeterministic results. Again, if only function mocking were supported, we
could provide a deterministic substitute for the database collection.

There are also other potential problems with how id:generate is
implemented and would be used in a multiuser system, but we will
leave that as a mental exercise for the reader.

However, all is not lost! If we were to change our id:generate function to take a path
to a collection as an argument rather than the currently hardcoded one, perhaps we
could create a fest collection and prime it with deterministic data for our test case,
before we run it. Afterward, when we are done with the test data, we would be courte-

XQueryTesting | 425

www.it-ebooks.info

http://www.it-ebooks.info/

ous and remove our test collection, as is good practice. Indeed, we can do such a
thing by providing custom setup and teardown functions that run before and after
our test functions, respectively. To declare a function as a setup or teardown func-
tion, you can use the %test:setUp and %test:tearDown annotations. So let’s look
briefly at a refactored id:generate function with test cases (see the file id-4.xqm), as
shown in Example 16-6.

Example 16-6. Refactored id.xqm to inject collection path (id-4.xqm)

declare
%test:setUp (1]
function id:_test-setup() {
xmldb:create-collection("/db", "test-records"),
xmldb:store("/db/test-records", (), <record><id>12345678</1d></record>),
xmldb:store("/db/test-records", (), <record><id>abcdefgh</id></record>)
I

declare
%test:tearDown @

function id:_test-teardown() {
xmldb:remove("/db/test-records")

3

declare
%test:args("/db/test-records") (3]
%test:assertXPath("$result ne '12345678'") (4]
%test:assertXPath("$result ne 'abcdefgh'") (5)
function id:generate(Srecords-collection as xs:string) as xs:string { (6]
let $id := id:random()
return
if(exists(collection(Srecords-collection)/record/id[. eq $id]))then
id:generate(Srecords-collection)
else
$id
1

(1] The %test:setUp annotation will cause the id: test-setup function to be
executed once before each function under test.
In this instance, we create the test data collection /db/test-records and place two
records in it containing the ids 12345678 and abcdefgh.

(2] The %test:tearDown annotation will cause the id:_test-teardown function to

be executed once after each function under test.

In this instance, we clean up the test data we created in the before step by
removing the collection /db/test-records.

426 | Chapter 16: Advanced Topics

www.it-ebooks.info

http://www.it-ebooks.info/

©® We inject the test data collection /db/test-records into our function under test
as an argument.

Q@0 We make assertions that the function should never return the ids of the
records in the test data collection.

Note that this is quite a brittle set of test assertions, as the ids are generated
randomly, so we may never hit the edge cases. Hopefully, though, it shows you
what is possible.

O Our newly refactored function now accepts the path to the records collection as
a parameter, which allows us to use our test data collection when testing, and
the real collection otherwise.

We have really only scratched the surface of both the larger topic of testing and the
specifics of XQSuite here, but hopefully we’ve provided enough information to start
you thinking about testing and XQuery code quality. XQSuite provides several other
annotations that allow you to pass parameters in different ways and make different
types of assertions about the results of a function. For further information, consult
the XQSuite documentation.

Versioning

eXist provides two simple versioning mechanisms, which, while not applicable to all
use cases, can be useful to those who wish to track the revision history of certain
types of documents. Both mechanisms can be configured on a per-collection hierar-
chy basis, which enables you to switch versioning on and off for various document
collections within your database.

Historical Archiving

The historical archival facility will make an archival copy of any document before it is
deleted or overwritten. The archival copy will be placed into a mirror of the collection
tree under the archival collection /db/history by default.

While this is not versioning in the strictest sense, it can be valid for many applica-
tions. Arguably, you could also achieve basic versioning, if all updates to a document
are performed by the user as document replacements. However, the real purpose of
this facility is to effectively make documents immutable for archival purposes.

Historical archiving is implemented in a document trigger written in Java called
org.exist.collections.triggers.HistoryTrigger. For more information on data-
base triggers and configuring them, see “Database Triggers” on page 449. If you wish to
configure the HistoryTrigger for a collection in your database, you need to add the

Versioning | 427

www.it-ebooks.info

http://exist-db.org/exist/apps/doc/xqsuite.xml
http://www.it-ebooks.info/

following to the triggers section of your collection’s configuration document (col-
lection.xconf):

<triggers>
<trigger class="org.exist.collections.triggers.HistoryTrigger"s>

<!--
Collection to store the archival copies in;
if omitted, then the collection /db/history
is used.

-->
<parameter name="root" value="/db/system/archival"/>
</trigger>

</triggers>
Archival copies will be stored into a mirror of their original collection path within the
archival collection. In addition, a collection is created for each document using its
name, and the archival copy is stored within this collection using a timestamp for its
name that reflects the previous last-modified date of the document.

Document Revisions

The document revision versioning mechanism in eXist is much more comprehensive
than the historical archiving mechanism (described in the previous section).

However, you should note that it is not well suited to large collections of data-centric
XML or binary documents; rather, it is designed with human editors in mind and for
use with modest collections of XML documents. For example, if you are working as
part of a team with published articles or humanities texts, then the versioning mecha-
nism may be useful for you, but if you are streaming gigabytes of server log data into
eXist it may not scale to your needs.

The versioning mechanism in eXist works well enough for many cases, but while
eXist knows the version history of your documents, there is little support from XML
editor tools that connect to eXist to expose this information to the end user. eXist
does provide some basic tools for you to visually examine the version history of docu-
ments and also to interrogate this from XQuery, but these tools are rudimentary at
best. If you wish to use the versioning mechanism in a larger enterprise, you might
want to consider building your own tools atop the XQuery functions that eXist
exposes.

The document revision versioning mechanism has two main parts:

o The versioning actions are implemented in a document trigger written in Java
called org.exist.collections.triggers.VersioningTrigger. For more infor-
mation on database triggers and configuring them, see “Database Triggers” on
page 449.

428 | Chapter 16: Advanced Topics

www.it-ebooks.info

http://www.it-ebooks.info/

o Version write conflict avoidance is implemented in a serialization filter written in
Java called org.exist.versioning.VersioningFilter. The use of the filter is
optional, but it potentially stops two users from editing the same document out-
side of eXist and overwriting each other’s changes.

When the VersioningTrigger is configured on a collection, it will store information
about revisions to documents within that collection hierarchy in a mirrored collec-
tion hierarchy, under /db/system/versions. Specifically, the version trigger performs
the following operations on various document events:

o The first time a document is changed:

— Before it is changed, a copy will be made and stored into the appropriate mir-
rored collection within /db/system/versions; it will have the same filename as
the original but with the additional suffix .base. This is known as the docu-
ment base revision.

— After it is changed, a document describing the differences from the document
base revision to the new revision is also stored into the appropriate mirrored
collection within /db/system/versions; it will have the same filename as the
original but with an additional ordinal suffix indicating the revision number.
This is known as a diff document. These documents use an XML format that is
specific to eXist. For binary documents we can only say that one document
replaced another, so we also store a copy of the new binary document with the
ordinal suffix and an additional .binary suffix. For XML documents the diff
document also describes node-level insertion, deletion, and append opera-
tions; a change is modeled as a delete and insert.

o The 1+n time a document is changed:

— After it is changed, like the first time it is changed, a document describing the
differences from the document base revision to the new revision is again
stored into the versions collection, with an ordinal suffix (and if it is a binary
document, then that is likewise stored again with the .<ordinal>.binary suf-
fix). Just as before, this is known as a diff document; however, it is worth not-
ing that every diff is between the current document and its document base
revision, not the most recent revision.

Diff documents are absolute rather than incremental. The
advantage of this is that it is very simple to understand the
changes from the original document to the current docu-
ment. The downside, however, is that diff documents
become increasingly large over time, and you have to
replay each diff independently to see the changes over
time (which repeats many operations).

Versioning | 429

www.it-ebooks.info

http://www.it-ebooks.info/

o When a document is copied or moved, the behavior just described is applied to
the destination document (assuming it is also in a versioned collection).

For example, say we have the collection /db/actors for which we have enabled the
VersioningTrigger, and we have a document stored in that collection called
michael-rennie.xml, which looks similar to:

<actor>
<name>
<given>Michael</given>
<family>Rennie</family>
</name>
<born>1909</born>
<desceased>1971</desceased>
<abstract>The British actor Michael Rennie worked as a car salesman and factory
manager before he turned to acting.</abstract>
</actor>

Ah, but then we realize that we have spelled deceased wrong in our element, and
decide to update the document to fix this. Subsequently, we then see the documents
shown in Figure 16-1 in the collection /db/system/versions/db/actors.

8 00 eXist Admin Client
File Tools Connection Options Help

i B CEE
o2 G068 &|d [/
Resource Date Owner Croup Permissions
michael-rennie.xml.1 2014-03... SYSTEM dba —FW-r==r-=
michael-rennie.xml.base 2014-03... SYSTEM dba —FW-r==r--

exist:/db> cd "system"

exist:/db/system> cd "versions"
exist:/db/system/versions> cd "db"
exist:/db/system/versions/db> cd ['actors"”
exist:/db/system/versions/db/actors>

Figure 16-1. Versioning trigger, first revision documents

While the michael-rennie.xml.base document is just a copy of the original XML docu-
ment, the michael-rennie.xml.1 document is the diff document, whose ordinal suffix

immediately indicates to you that it is the first revision. The content of the document
looks like:

<v:version xmlns:v="http://exist-db.org/versioning"s
<v:properties>
<v:document>michael-rennie.xml</v:document>
<v:user>admin</v:user>

430 | Chapter 16: Advanced Topics

www.it-ebooks.info

http://www.it-ebooks.info/

<v:date>2014-03-09T14:59:18.954Z</v:date>
<v:revision>l</v:revision>
</v:properties>
<v:diff>
<v:delete event="start" ref="1.3"/>
<v:append ref="1.3">
<v:end name="deceased"/[>
</v:append>
<v:delete event="end" ref="1.3"/>
<v:insert ref="1.3">
<v:start name="deceased"/>
</v:insert>
</v:diff>
</v:version>

As expected, the diff document clearly shows the rename as a process of deleting the
element with the incorrect name and then replacing it with a new one with the cor-
rect name.

Finally, let’s update the document by adding some extra information to the abstract
element. Following the update, we then see the documents shown in Figure 16-2 in
the collection /db/system/versions/db/actors.

8 00 eXist Admin Client
File Tools Connection Options Help

i B CEE :
o2 G068 &|d [/
Resource Date Owner Croup Permissions
michael-rennie.xml.1 2014-03... SYSTEM dba —FW-r==r-=
michael-rennie.xml.2 2014-03... SYSTEM dba —FW-r==r--
michael-rennie.xml.base 2014-03... SYSTEM dba —FW-r==r-=

exist:/db> cd "system"

exist:/db/system> cd "versions"
exist:/db/system/versions> cd “db"|
exist:/db/system/versions/db> cd "actors"
exist:/db/system/versions/db/actors>

Figure 16-2. Versioning trigger, second revision documents

There is now a second diff document (michael-rennie.xml.2), and if we examine it, its
content should look something like this:

<v:version xmlns:v="http://exist-db.org/versioning">
<v:properties>
<v:document>michael-rennie.xml</v:document>
<v:user>admin</v:user>
<v:date>2014-03-09T15:15:28.342Z</v:date>
<v:revision>2</v:revision>

Versioning | 431

www.it-ebooks.info

http://www.it-ebooks.info/

</v:properties>
<v:diff>
<v:delete event="start" ref="1.3"/>
<v:append ref="1.3">
<v:end name="deceased"/>
</v:append>
<v:delete event="end" ref="1.3"/>
<v:delete ref="1.4.1"/>
<v:insert ref="1.3">
<v:start name="deceased"/>
</v:insert>
<v:insert ref="1.4.1">The British actor Michael Rennie worked as a car
salesman and factory manager before he turned to acting. A meeting
with a Gaumont-British Studios casting director led to Rennie's first
acting job - that of stand-in for Robert Young in Secret Agent
(1936), directed by Alfred Hitchcock.</v:insert>
</v:diff>
</v:version>

We can see that the second diff document contains both the changes we made in this
revision (i.e., updated text in the abstract element) as well as all changes from previ-

ous revisions. This is because, as previously mentioned, each diff document is
between the current document and the document base revision.

If you wish to configure the VersioningTrigger for a collection in your database,
you need to add the following to the triggers element within your collection’s con-
figuration document (collection.xconf):

<triggers>
<trigger class="org.exist.versioning.VersioningTrigger"s

<!--

whether to try and avoid
write conflicts on versioned
documents.

Set to 'false' to avoid write conflicts,
or 'true' to ignore write conflicts and
overwrite the later revision.

-->

<parameter name="overwrite" value="false"/>
</trigger>

</triggers>

It is worth noting that you can also interrogate document revisions from XQuery by
using the versioning XQuery module, as discussed in versioning.

432 | Chapter 16: Advanced Topics

www.it-ebooks.info

http://www.it-ebooks.info/

Write conflict avoidance

Being able to edit a document and have a history of revisions created for you is all
well and good, but what happens if multiple people start editing the document at the
same time, and all wish to save their changes independently?

When two users open the same document—which is, say, at revision 1—and then
make changes, when the first user saves the document he is effectively creating revi-
sion 2. What should happen when the second user attempts to save her update of
revision 1? Mitigating the issue of revision 2 being overwritten with a new version
based on revision 1 is known in eXist as write conflict avoidance.

As most XML editor clients that connect to eXist have no awareness of resource ver-
sioning within eXist, if you enable write conflict avoidance, eXist solves that problem
by prohibiting later revisions from being overwritten by updates to earlier revisions.
Figure 16-3 attempts to show how eXist solves this.

As shown in Figure 16-3, write conflict avoidance comes in two parts:

1. The versioning trigger can be configured to avoid changes being overwritten by
changes to an earlier revision. However, the versioning trigger can respond only
to changes that it knows about. As the changes are potentially coming from a
third-party client application, we need some mechanism to identify revisions
within the documents that are being accessed; this is where the versioning filter
comes in.

2. The versioning filter can be configured to add versioning attributes to the root
element of any document that is retrieved from eXist and is from a collection
that has the versioning trigger enabled on it. When this document is sent back to
eXist, the versioning trigger will see the versioning attributes on the root ele-
ment, act on them, and, if there is no conflict, remove them before storing the
document into the database. If there is a conflict, it will reject the operation and
prohibit the document from being stored.

If you wish to enable write conflict avoidance, you need to set the overwrite parame-
ter on the versioning trigger to false in the collection configuration document (col-
lection.xconf), enable the versioning filter in eXist’s configuration file
($EXIST_HOME/conf.xml), and then restart eXist. To enable the versioning filter,
make sure the following definition is present and uncommented in the serializer
element of the configuration file:

<custom-filter class="org.exist.versioning.VersioningFilter"/>

Versioning | 433

www.it-ebooks.info

http://www.it-ebooks.info/

Versioning Versioning Database
User A User 8 Filter Trigger Storage
[} | I [} [}
[}] 1 [} [}
[! GET /db/actors/michael.xml ! N
|] |
- ' < | DATA michael.xml g
5] =2 | £
= = . S
= | E tLatestRevision() =
g 1 £ getLatestRevision »|S
= | - I z
U = S
& ! Zle revision=1
[} | L
| DATA Michael.xml (@revision=1) | = : !
_ 1]]
E— N ey
: — GET /db/actors/micheal.xml N
| | | e
| — 1 n
: = 5l DATA mlclhael.xml g
! = 2] S
! = £ getLatestRevision() R
| S —
1 =) = 1 18
: & 2| revision=1
' DATA michael.xml | &= ' —
1 | (@revision=1) | 2]]
[} < | |
1 T T 1 1
T ! POST michael.xml (@revision=1) ! o
1]] i g
| |] i
H " fireBeforeTriggers() | 5
]] <€ g
[}] [
1] retun | S
[} | P N
-] I |
= | 1 L:IStore
s : l B
8 |] = | fireAfterTriggers()
2 | | >
A : : createDiff(@revision=2)
! ! < Store
: : return |
1 1 T T
< X Return OK !
-~ 1 1 1
L | . | 1
1] POST michael.xml (@revision=1) 1 N
[} 1) L
' £ | | fireBeforeTriggers() | £
: - : g5 :
! 8 ! | mowr S
| 2 | = "e
wvn
| _ | ReturnFAILED | <
1 «
| N : : N
| [} | | |

Figure 16-3. Write conflict avoidance between two users operating on the same ver-
sioned document

434 |

Chapter 16: Advanced Topics

www.it-ebooks.info

http://www.it-ebooks.info/

Once the versioning filter is enabled, if you request a versioned document from the
database you will see three additional attributes on its root element: v:revision,
v:key, and v:path. For example:

<actor xmlns:v="http://exist-db.org/versioning" v:revision="2"
v:key="144a903cec62" v:path="/db/actors/michael-rennie.xml">
<name>
<given>Michael</given>
<family>Rennie</family>
</name>
<born>1909</born>
<deceased>1971</deceased>
<abstract>The British actor Michael Rennie worked as a car salesman
and factory manager before he turned to acting. A meeting with a
Gaumont-British Studios casting director led to Rennie's first acting
job - that of stand-in for Robert Young in Secret Agent (1936),
directed by Alfred Hitchcock.</abstract>
</actor>

While adding the versioning attributes to the root element of the document is not
ideal, it is really the only way that eXist can attempt to ensure that this information is
preserved during a round-trip of the document out of the database, into a client edi-
tor, and back out again. The versioning attributes, however, are in their own name-
space and so hopefully will not interfere with your document.

If you are making use of the versioning filter, you must not remove
the versioning attributes from the document if you plan to store it
back into eXist in the same location, or you risk losing previous
changes from the revision history!

Scheduled Jobs

eXist has a scheduler built into its core that enables you to schedule jobs to be exe-
cuted at some point(s) in the future. Internally eXist wraps the Quartz scheduler, but
it exposes a much simpler interface to the user and allows jobs to interact with the
database. You can write your jobs in either XQuery or Java. XQuery jobs are simpler
to implement ,while Java jobs give you more control over how the job is executed.
There are two types of job that can be executed by the scheduler:

User jobs
This is the standard job type that users will typically implement in either XQuery
or Java. User jobs may execute concurrently, and the same job may overlap with
a previously scheduled execution if it is long-running.

System task jobs
System task jobs are solely for executing system tasks and may only be imple-
mented in Java. System tasks execute when the database is switched into pro-

Scheduled Jobs | 435

www.it-ebooks.info

http://quartz-scheduler.org/
http://www.it-ebooks.info/

tected mode; no other transactions are permitted. System task jobs do not execute
concurrently due to the restrictions on system tasks, and they cannot overlap
with a previously scheduled execution. eXist makes use of the system task job
both to schedule its synchronization task, which flushes the database journal to
persistent storage, and to execute scheduled backups.

Scheduling Jobs

You can schedule jobs by setting up their configuration with the scheduler in eXist’s
configuration file ($EXIST_HOME/conf.xml): you add jobs to the scheduler element
indicated by the XPath /exist/scheduler. Remember that changes to the configuration
file are only read when eXist is started.

So, what can you do if you want to schedule a job to run immedi-
ately, without restarting eXist?

Simply, you must add it to $SEXIST_HOME/conf.xml so that it is
persisted across restarts, and also submit it using the scheduler

XQuery extension module (see scheduler) so that it is scheduled
immediately without needing to restart.

Enabling the scheduler XQuery Extension Module

The scheduler XQuery extension module (see scheduler) in eXist is not compiled or
enabled by default. To enable it, you need to:

1. Stop eXist.
2. Set 1include.module.scheduler to true in $EXIST HOME/extensions/
build.properties.

3. Recompile eXist’s extension modules in place (see “Building eXist from Source”
on page 485). Make sure to use the extension-modules Ant target!

4. Enable the module in eXist’s configuration file ($EXIST_HOME/conf.xml) by
uncommenting the line <module uri="http://exist-db.org/xquery/schedu
ler" class="org.exist.xquery.modules.scheduler.SchedulerModule"/>.

5. Start eXist.

Table 16-1 lists the scheduled job arguments.

436 | Chapter 16: Advanced Topics

www.it-ebooks.info

http://www.it-ebooks.info/

Table 16-1. Scheduled job arguments

Argument

type

class

xquery

name

unschedule-
on-exception

cron-trigger

period

delay

repeat

Description

The type of the job to schedule. Either system for system task jobs or
user for user jobs.

Used for specifying the fully qualified class name of your Java class that
implements either org.exist.scheduler.UserJavaJob or
org.exist.storage.SystemTask.?

Used for specifying the database path to an XQuery if you have
implemented your scheduled job in XQuery. The syntax uses the simple
database path (e.g., /db/my-collection/my-job.xq).

When scheduling an XQuery job, you can provide a friendly name for the
scheduled job, but it must be unique across all scheduled jobs. Java jobs
implement their own name function.

When you're executing an XQuery job, if the job causes some sort of
exception it can be unscheduled so that it does not run again in the
future. Must be either yes or no.

A description of when the scheduled job is run, using a cron-like syntax.
For the exact syntax, see http://www.quartz-scheduler.org/documenta
tion/quartz-1.x/tutorials/crontrigger.

A period in milliseconds defining the frequency after any delay with
which the job is run.

A startup delay in milliseconds after which the scheduled job is first run.
If unspecified, the job will be executed immediately after eXist has
initialized.

The number of times to repeat execution of the job. If unspecified, the
job will be executed periodically indefinitely.

Mandatory/optional

Mandatory.

Mandatory if job is
implemented in Java.

Mandatory if job is
implemented in XQuery.

Optional if XQuery job, and
otherwise ignored. The
default is the name of the
XQuery file.

Optional if XQuery job, and
otherwise ignored. The
default is yes.

Mandatory, or use
period instead.
Mandatory, or use cron-
trigger instead.
Optional; use with

period.

Optional; use with
period.

“Your Java class must be available on eXist’s classpath, which you typically accom-
plish by placing your JAR and any JAR dependencies into $EXIST _HOME/lib/user.

You may view the currently scheduled and executing jobs either by using the Schedu-
ler dashboard application (Figure 16-4) or by executing the scheduler:get-
scheduled- jobs XQuery extension function.

www.it-ebooks.info

Scheduled Jobs | 437

http://www.quartz-scheduler.org/documentation/quartz-1.x/tutorials/crontrigger
http://www.quartz-scheduler.org/documentation/quartz-1.x/tutorials/crontrigger
http://www.it-ebooks.info/

© 00 /[pashboard %

€ & C [localhost:8080/exist/apps/dashboard/index.htm| Q

g
o
]

admin -

Running XQueries Running Jobs Scheduled Jobs

id group triggerExj triggerState running
FileLockHeartBeat:
/Users/aretter/NetBeansProjects/exist- eXist.interi 10100 NORMAL SCHEDULE]

Jjoew/webapp/WEB-INF/data/dbx_dir.Ick
FileLockHeartBeat:

/Users/aretter/NetBeansProjects/exist- eXist.interi 10100 NORMAL SCHEDULE|
Jjoew/webapp/WEB-INF/data/journal.lck

REST_TimeoutCheck eXist.User 2000 NORMAL SCHEDULE|
Sessions.Check eXist.Secu 20000 NORMAL SCHEDULE|
Sync eXist.Syste 2500 NORMAL SCHEDULE]

Figure 16-4. Dashboard Scheduler application, showing scheduled jobs

XQuery Jobs

Writing user jobs in XQuery that are executed periodically by the scheduler is not
much different from writing normal XQuery. The scheduler can execute only
XQuery main modules—that is, it cannot directly call a specific XQuery function—
but this should not be a problem as you can always write a one-line XQuery main
module that acts as a wrapper for your library function.

Sometimes you need to be able to parameterize an XQuery that the scheduler will
execute, perhaps with some configuration settings. The scheduler fits well with the
standard mechanism for passing external configuration into XQuery, which is to use
variable declarations with external binding. In the configuration of the XQuery
scheduled job, you may set parameters, each of which will attempt to bind to the
equivalently named external variable declared in your XQuery. By default, the exter-
nal variables are expected to be bound to the local namespace of the XQuery and use

438 | Chapter 16: Advanced Topics

www.it-ebooks.info

http://www.it-ebooks.info/

the binding prefix local. If you wish to change this, you can use the special parame-
ter bindingPrefix in the configuration of the XQuery scheduled job.

Scheduled weather retrieval (XQuery)

Supplied alongside this chapter is an XQuery file called weather.xq, in the chapters/
advanced-topics folder of the book-code Git repository (see “Getting the Source Code”
on page 15). This XQuery has been designed as a simple example of what you can
achieve with a scheduled XQuery job. The XQuery simply connects to a public web
service and downloads the current weather for a particular city, parses the results,
and stores them into the database. By scheduling this XQuery, you can build up a
dataset of weather over time, which you can then later query to understand how the
weather changed.

To use the example, you must store the query into the database (for example, at /db/
weather.xq), set it as executable by the guest user, create a collection for storing
weather data, and make that writable by the guest user. You then need to add the
scheduled job configuration shown in Example 16-7 to $EXIST _HOME/conf.xml and
restart eXist.

Example 16-7. Scheduled configuration for the weather example

<job type="user" xquery="/db/weather.xq" name="hourly-weather"
cron-trigger="0 0 0/1 * * ?">
<parameter name="city" value="Exeter"/>
<parameter name="country" value="United Kingdom"/>
<parameter name="weather-collection" value="/db/weather"/>
</job>

This scheduler configuration will cause the XQuery /db/weather.xq to be executed
every hour.

Alternatively, you could schedule it using the scheduler:schedule-xquery-cron-
job XQuery extension function, as shown in Example 16-8.

Example 16-8. Immediate scheduling for the weather example

scheduler:schedule-xquery-cron-job(
"/db/weather.xq",
"0 0 0/1 % * 2",
"hourly-weather",
<parameters>
<param name="city" value="Exeter"/>
<param name="country" value="United Kingdom"/>
<param name="weather-collection" value="/db/weather"/>
</parameters>

Scheduled Jobs | 439

www.it-ebooks.info

http://www.it-ebooks.info/

The code for the weather.xq scheduled weather web service query is listed in
Example 16-9.

Example 16-9. The weather web service scheduled query (weather.xq)
xquery version "3.0";

import module namespace http = "http://expath.org/ns/http-client";
import module namespace util = "http://exist-db.org/xquery/util";
import module namespace xmldb = "http://exist-db.org/xquery/xmldb";
declare namespace wsx = "http://www.webserviceX.NET";

(: Configuration :)

declare variable $local:city external; (1]

declare variable $local:country external; (2]
declare variable $local:weather-collection external; (3]

let Swebservice := "http://www.webservicex.net/globalweather.asmx/GetWeather",
Surl := Swebservice || "?CityName=" || encode-for-uri($local:city) ||
"&CountryName=" || encode-for-uri($local:country) ,

Sresult := http:send-request(<http:request href="{Surl}" method="get"/>) (5)
return

let $doc := if($result[1]/@status eq "200" and S$result[2]/wsx:string) then (6]
(: reconstruct XML, the webservice provides it as a string
for some reason! :)

util:parse($result[2]/wsx:string/text()) (7]
else
(: record failure :)

<failed at="{current-dateTime()}">{$result}</failed> (&)
return
let Sstored := xmldb:store($local:weather-collection, (), $doc) (9]

return
(: log that we ran! :)
util:log("debug", "Stored hourly weather to: " || $stored) ©®

000 These externally bound variables are filled by the parameters to the scheduled
job configuration.

O We prepare the full URL for the weather web service call.

O We make a call to the weather web service using the EXPath HTTP Client
extension module (see http).

440 | Chapter 16: Advanced Topics

www.it-ebooks.info

http://www.it-ebooks.info/

We check whether the web service call succeeded or failed.
If the web service call succeeded, we extract the weather data.
If the web service call failed, we prepare some failure data.

We store the result into the database.

& 6 06 © o

We write a message to the logfile indicating that the task ran to completion.

While you are typically interested in the final computed result of
your XQuery, when your query is running within the scheduler
there is nowhere for the result to be implicitly sent to. If you wish

4 to understand or retain the result of your query, you are responsi-
ble for either explicitly storing it into the database from the query
using the xmldb:store XQuery extension function or writing it to
a logfile using the fn:trace or util:log XQuery functions.

Java Jobs

As noted previously, if you wish to write a scheduled job in Java, you can implement
either a user job or a system task job. For each option, eXist provides appropriate
interfaces and abstract classes to assist in your implementation. Once you have
implemented the appropriate class, you need to place your compiled class onto
eXist’s classpath, which you typically do by placing a JAR file of your code and any
dependent JAR files into $EXIST_HOME/lib/user. Remember that you may have to
restart eXist for the JVM class loader to see your new JAR files!

When writing a Java job, you must be careful to return any brokers
that you borrow from the broker pool you are provided with and
ensure that you release any locks that you have taken on collections
A or resources. Failure to do so can reduce the connections available
to the database and leave resources inaccessible until eXist is
restarted. It is strongly recommended to use the Java try/catch/
finally pattern to release any acquired resources in the finally
block. In addition, you should be aware that you cannot keep state
in member variables of your Job class across invocations; instead,
you should keep any nontransient state in a singleton (remember
to synchronize access where needed) or store it into the database.

Java user job

Most often, developers will want to implement user jobs, which you do by extending
the abstract class org.exist.scheduler.UserJavaJob. When extending this class,

Scheduled Jobs | 441

www.it-ebooks.info

http://en.wikipedia.org/wiki/Singleton_pattern
http://www.it-ebooks.info/

you must implement the following job naming, defined in org.exist.schedu
ler.JobDescription:

/**
* Set the name of the job.

* After being set, the job should return this name.
*

* @param name The job's new name
*/
public String getName();

/**
* Get the name of the job.

* If a name has not yet been set, you must create one!
*

* @return The job's name
*/
public void setName(final String name);
These functions simply round-trip the name of the job. The job’s name itself must be
unique across all job instances. For Java jobs, you simply need to create an initial
name and then return that each time get is called, or store the incoming name when
set is called and then return that.

You also need to provide the actual work of the job in the form of implementing the
abstract function defined in org.exist.scheduler.UserJavaJob:

/**
* The actual work/task of the scheduled job.
* This function is called each time the job is executed by the scheduler
* according to its schedule.
*
* @param brokerpool The database BrokerPool.

* @param params Any parameters passed to the job, or null otherwise.
*

* @throws JobException You may throw a JobException to control the

* cleanup of the job and affect rescheduling in case of a problenm.

*/

public abstract void execute(BrokerPool brokerpool, Map<String, ?> params)
throws JobException;

When your code is executing, should you encounter a problem or exception, you
must catch it, and if you wish to end processing you may throw an org.exist.sched
uler.JobException. The JobException class takes an enumerated value of type
org.exist.scheduler.JobException.JobExceptionAction, which controls how the
job is aborted by the scheduler and whether its schedule should be adjusted. The

available job exception actions when aborting a running job are outlined in
Table 16-2.

442 | Chapter 16: Advanced Topics

www.it-ebooks.info

http://www.it-ebooks.info/

Table 16-2. Job exception actions

Action Description

JOB_ABORT Instructs the scheduler to stop the current job. It may still be executed in the future according to its
schedule.

JOB_ABORT_THIS Instructs the scheduler to stop the current job. It also removes from the scheduler the schedule that
triggered this job.

JOB_ABORT_ALL Instructs the scheduler to stop the current job. It also removes from the scheduler the schedule that
triggered this job and all other schedules that refer to this job.

JOB_REFIRE Instructs the scheduler to stop the current job. It also reschedules the job for immediate execution.
The schedule that triggered this job remains scheduled.

Scheduled weather retrieval (Java). An example class implementing UserJavaJob called
exist.book.example.scheduler.user.WeatherJob is supplied with this chapter in
the folder chapters/advanced-topics/scheduler-java-job/weather-user-java-job-example
of the book-code Git repository (see “Getting the Source Code” on page 15). The
example is an indirect port of the XQuery code in Example 16-9, and hopefully serves
as a good comparison while showing that it is much simpler to implement a user job
for the scheduler in XQuery than in Java (when possible). The example uses the Jer-
sey client library for talking to the public weather web service.

To compile the example, enter the scheduler-java-job folder and run mvn package;
the Java user job example can be found in the subfolder weather-user-java-job-
example.

To deploy the WeatherJob to eXist, you need to create the collection /db/weather
(with write access by the guest user), stop eXist, and copy all of the files from
scheduler-java-job/weather-user-java-job-example/target/weather-user-java-job-
example-1.0-assembly to $EXIST_HOME/lib/user. You can then schedule the Weather
Job class to run hourly in $EXIST _HOME/conf.xml by adding the following job
definition to the scheduler configuration before restarting eXist:

<job type="user" class="exist.book.example.scheduler.user.WeatherJob"
name="hourly-weather" cron-trigger="0 0 0/1 * * 2">
<parameter name="city" value="Exeter"/>
<parameter name="country" value="United Kingdom"/>
<parameter name="weather-collection" value="/db/weather"/>
</job>

As an alternative to adding the WeatherJob to eXist’s configuration file, you could
schedule nonpersistently by executing the following XQuery:

scheduler:schedule-java-cron-job(
"exist.book.example.scheduler.user.WeatherJob",

Scheduled Jobs | 443

www.it-ebooks.info

http://www.it-ebooks.info/

"9 0 0/1 * * 2",
"hourly-weather",
<parameters>
<param name="city" value="Exeter"/>
<param name="country" value="United Kingdom"/>
<param name="weather-collection" value="/db/weather"/>
</parameters>

)

Java system task job

It is unlikely that most developers will ever implement system task jobs, as you can
meet the vast majority of use cases by instead implementing a user job. However,
should you want to implement a scheduled system task job in Java, you do not
actually need to implement the scheduler job aspect. Instead, you can just implement
org.exist.storage.SystemTask, as eXist provides a generic system task job

org.exist.scheduler.impl.SystemTaskJobImpl that enables any system task to be
scheduled.

Remember that when your system task runs, you have exclusive
access to the database, as the database will be in protected mode.
All other operations will be blocked until your task completes.

4 Accordingly, you should ensure that your task executes quickly and
efficiently!

When implementing org.exist.storage.SystemTask, you must implement the fol-
lowing configuration functions:

Called to configure the system task.

Enables you to configure your system task!

Note: If the system task is managed by the scheduler,
this happens before scheduling.

*
*
*
*
*
* @param config A reference to the parsed in-memory

* representation of eXist's configuration file SEXIST_HOME/conf.xml.
* @param properties A property set containing any parameters passed

* to the scheduled job.

*

*

*

*

@throws EXistException You may throw this to abort configuration of
the system task. If the task is managed by the scheduler,
it will not be scheduled.

void configure(Configuration config, Properties properties)
throws EXistException;
/**
* Indicates whether a checkpoint should be generated
* before the execute function is called. A checkpoint
* guarantees that any outstanding changes are flushed to

444 | Chapter 16: Advanced Topics

www.it-ebooks.info

http://www.it-ebooks.info/

* persistent storage.
*

* @return true if a checkpoint should be generated, false otherwise
*/
boolean afterCheckpoint();
You also need to provide the actual work of the system task job in the form of imple-
menting the function:
/**
* Called when the system task i1s executed in protected mode.

* Constitutes the work unit of the system task.
*

* @param broker A database broker that can be used to access the database.
*

* @throws ExistException You may throw this to indicate an error and abruptly
* abort executing of the system task. If the task is managed by the

* scheduler, this will not affect its future schedule.

*/

void execute(DBBroker broker) throws EXistException;

System tasks do not need to acquire locks on collections and docu-

ments, as they are operating in protected mode—in fact, they

should not attempt to do so! Invalid management of locks in a sys-
. tem task can lead to deadlock situations.

If you wish to acquire collections and documents without locks,
you can wuse the getCollection(XmldbURI) method on
org.exist.storage.DBBroker and then subsequently the collec
tionIteratorNoLock(DBBroker) and iteratorNoLock(DBBroker)
methods on org.exist.collections.Collection.

Database stats scheduled system task. An example class implementing SystemTask
called exist.book.example.scheduler.system.StatsSystemTask is supplied in the
folder chapters/advanced-topics/scheduler-java-job/stats-system-task-example of the
book-code Git repository (see “Getting the Source Code” on page 15). The example
simply generates statistics about the current content of the database and stores them
into a new document in a configured database collection. When the system task is
scheduled, this allows you to build a collection of statistics about the content of the
database over time, which could potentially be used by other XQueries to generate
reports and/or graphs about database usage. The use of a system task here allows us
to guarantee that our statistics represent the exact state of the database at a particular
point in time, due to execution happening while the database is in protected mode.

To compile the example, enter the scheduler-java-job folder and run mvn package;
the system task job example can be found in the subfolder stats-system-task-example.

Scheduled Jobs | 445

www.it-ebooks.info

http://www.it-ebooks.info/

To deploy the StatsSystemTask to eXist, you need to create the collection /db/stats
(the permissions are not important, as each system task will be executed as the SYS
TEM user), stop eXist, and copy all of the files from scheduler-java-job/stats-system-
task-example/target/stats-system-task-example-1.0-assembly to $EXIST _HOME/lib/
user. You can then schedule the StatsSystemTask class to run hourly in
$EXIST_HOME/conf.xml by adding the following job definition to the scheduler con-
figuration before restarting eXist:

<job type="system" class="exist.book.example.scheduler.system.StatsSystemTask"
name="hourly-stats" cron-trigger="0 0 0/1 * * 2?">
<parameter name="stats-collection" value="/db/stats"/>
</job>

As an alternative to adding the StatsSystemTask to eXist’s configuration file, while
you cannot schedule immediately using the XQuery scheduler extension module,
you can instead trigger the system task for almost immediate execution by using the
system:trigger-system-task function from the XQuery system extension module
(see system):

system:trigger-system-task(
"exist.book.example.scheduler.system.StatsSystemTask",
<parameters>
<param name="stats-collection" value="/db/stats"/>
</parameters>

While you cannot directly schedule a system task for execution
from XQuery, a possible workaround is to create a stub XQuery in
the database that simply calls system:trigger-task, and then
schedule the execution of that XQuery using either
scheduler:schedule-xquery-cron-job or schedule-xquery-
periodic-job.

Startup Triggers

Startup triggers are a very simple mechanism that enable you to implement a Java
class that has exclusive access to the database during the database’s startup process. A
startup trigger is executed as the final phase, after the database server has initialized
but before it is made available for general use.

You may be wondering what you would use a startup trigger for. Typically, they are
used for performing computed configuration or adjustments to the database when it
is started. To illustrate their use, let’s briefly look at the three startup triggers that
eXist provides for use during normal database startup:

446 | Chapter 16: Advanced Topics

www.it-ebooks.info

http://www.it-ebooks.info/

Autodeployment
The trigger org.exist.repo.AutoDeploymentTrigger is used to install any new
EXPath packages into the database that have been placed into $EXIST_HOME/
autodeploy. This ensures that the latest packages are available when the database
is started.

Message receiver
For the emerging database replication support in eXist, the trigger
org.exist.replication. jms.subscribe.MessageReceilverStartupTrigger
starts a JMS listener to listen to any incoming replication requests.

RESTXQ
The RESTXQ implementation in eXist uses the trigger org.exist.exten
sions.exquery.restxq.impl.RestXqStartupTrigger to load its resource func-
tion registry from the file $EXIST HOME/webapp/WEB-INF/data/
restxq.registry. This is done so that the RESTXQ implementation can reregister
those resource functions that were previously registered before eXist was restar-
ted. This ensures that resource functions remain available across database
restarts. For further details, see “Configuring RESTXQ” on page 216.

Note that startup triggers are executed synchronously, and thus their executing will
block the database startup. Depending on your use of eXist, you might want to avoid
delaying the database startup any more than necessary. Startup triggers are effectively
executed in protected mode, as there is only a single database broker available and it
is provided to your startup trigger; hence, no other transactions will be taking place
against the database while the triggers are executing. Just as with system tasks (see
“Java system task job” on page 444), you need not worry about locking collections or
resources.

When creating your own startup trigger, you must implement the execute method
defined in org.exist.storage.StartupTrigger:

/**
Synchronously execute a task at database startup before the database
is made available to connections.

Remember, your code within the execute function will block the database
startup until it completes!

Any RuntimeExceptions thrown will be ignored and database startup
will continue. Database startup cannot be aborted by this trigger!

Note: If you want an asynchronous trigger, you could use a future in your
implementation to start a new thread; however, you cannot access the
sysBroker from that thread as it may have been returned to the broker
pool. Instead, if you need a broker, you may be able to do something
clever by checking the database status and then acquiring a new broker
from the broker pool. If you wish to work with the broker pool you must

* 0% kX %X Ok Xk Xk X X F X *

Startup Triggers | 447

www.it-ebooks.info

http://www.it-ebooks.info/

* obtain this before starting your asynchronous execution by calling
* sysBroker.getBrokerPool().
*
* @param sysBroker The single broker available during database startup.
* @param params A parameter map of keys/values that provide any parameters
* given to the startup trigger configuration in SEXIST_HOME/conf.xml.
*/
public void execute(final DBBroker sysBroker,
final Map<String, List<? extends Object>> params);

Once you have your implementation, you need to place your compiled class onto
eXist’s classpath; this is typically done by placing a JAR file of your code and any
dependent JAR files into $EXIST_HOME/lib/user. Remember that you may have to
restart eXist for the JVM class loader to see your new JAR files!

Configured Modules Example Startup Trigger

An example class implementing StartupTrigger called exist.book.example.star
tuptrigger.ConfiguredModulesStartupTrigger is supplied in the folder chapters/
advanced-topics/startup-trigger of the book-code Git repository (see “Getting the
Source Code” on page 15). The example examines all of the available XQuery exten-
sion modules written in Java that are configured in eXist (via $EXIST HOME/
conf.xml), extracts some details about each module, and stores all of the details into a
document in the database at a configured location. The example is rather contrived
and may be of little practical use; however, it clearly shows how to implement a
startup trigger that both examines eXist’s configuration and writes a document into
the database, which are useful and common tasks in their own right!

While the code inside a startup trigger executes in a manner akin to protected mode
(i.e., there are no other transactions happening at the same time), the task performed
by the ConfiguredModulesStartupTrigger need not necessarily be executed in this
manner. This is because the available configured modules never change while eXist is
running; they only change when we adjust eXist’s configuration file and restart eXist.

To compile the example, enter the startup-trigger folder and run mvn package.

To deploy the ConfiguredModulesStartupTrigger to eXist, you need to stop eXist
and copy all of the files from startup-trigger/target/configured-modules-startup-
trigger-1.0-assembly to $EXIST_HOME/lib/user. You can then configure the Config
uredModulesStartupTrigger class in $EXIST HOME/conf.xml by adding the
following job definition to the startup trigger’s configuration before restarting eXist:

<trigger
class="exist.book.example.startuptrigger.ConfiguredModulesStartupTrigger"s
<parameter name="target" value="/db/modules-summary.xml"/>
</triggers>

448 | Chapter 16: Advanced Topics

www.it-ebooks.info

http://www.it-ebooks.info/

Database Triggers

Database triggers in eXist are considerably different from the startup triggers we
looked at in the previous section, and in many respects are similar to triggers found
in relational database systems. Database triggers (or just triggers, as we will refer to
them going forward) in eXist allow actions to be carried out in response to events
before, during, or after various document and collection operations. You can imple-
ment triggers that can intercept and either reject, change, or take additional steps
when an action is performed on the database.

For example, say you have two collections of documents, and that in one collection
you wish to store (and update) documents that meet some criteria set out in docu-
ments in the other collection. If the documents do not meet these criteria, they
should not be stored or updated. Such cross-document and even cross-collection val-
idation can easily be achieved with a trigger. In this example, you would implement a
trigger and configure it on the target collection. Your trigger would perform checks
against the criteria collection before a new document was stored or an existing docu-
ment updated. If those criteria were not met, it could return an error or throw an
exception to abort the store or update operation.

Database triggers in eXist offer a huge amount of power to the developer, but remem-
ber that the trigger is called once for each operation that it is configured to listen for
and is a blocking operation. Any trigger will have an impact on the time it takes to
complete the requested database operation, so developers should try to avoid per-
forming lengthy operations in triggers.

So what can you do if you have a lengthy operation (perhaps
because it is computationally complex, or you need to talk to sev-
eral external systems) that you wish to perform as a trigger, but you
cannot afford the performance hit to that database operation?

Well, you could instead consider performing your database opera-
tions on a staging collection, using a scheduled job (see “Scheduled
Jobs” on page 435) to carry out the task asynchronously in the
background, and moving resources to a live collection periodically.

While you are most likely interested in creating your own triggers, eXist provides
several triggers out of the box. It is useful to mention these, as you may wish to study
them as examples:

XML CSV extraction
The trigger src.org.exist.collections.triggers.CSVExtractingTrigger
offers the facility to split the text node of an element into multiple subelements
during document storage. For example, you could transform the following
element:

Database Triggers | 449

www.it-ebooks.info

http://www.it-ebooks.info/

<value key="product_model">SomeName |SomeCode12345</value>
into:
<value key="product_model">
<product_name>SomeName</product_name>

<product_code>SomeCode12345</product_code>
</value>

The trigger takes two parameters:
separator

The character or string that separates the text values that you wish to split
into multiple element text values.

path
An expression similar to a simple XPath expression, and a list of extractions
to perform. You may provide as many path parameters as you wish.

For example, for you to achieve the preceding example split, the collection con-
figuration for the CSV extracting trigger would look like:

<collection xmlns="http://exist-db.org/collection-config/1.0">

<triggers>
<trigger class="org.exist.collections.triggers.CSVExtractingTrigger"s
<parameter name="separator" value="|"/>

<parameter name="path"s
<xpath>/content/properties/value[@key eq "product_model"]</xpath>
<extract index="0" element-name="product_name"/>
<extract index="1" element-name="product_code" />
</parameter>
</triggers>
</triggers>
</collection>

History
The trigger org.exist.collections.triggers.HistoryTrigger can be used to

create an archive copy of a resource before it is deleted or overwritten. For
details, see “Versioning” on page 427.

Replication
For the emerging database replication support in eXist, the trigger
org.exist.replication.jms.publish.ReplicationTrigger publishes details of
all database operations to a JMS topic.

RESTXQ
The RESTXQ implementation in eXist uses the trigger org.exist.exten
sions.exquery.restxq.impl.RestXqTrigger to compile XQuery modules after
they are stored into the database. It then examines the compiled XQuery for
resource functions, and any it finds are registered with the RESTXQ resource

450 | Chapter 16: Advanced Topics

www.it-ebooks.info

http://www.it-ebooks.info/

registry so that they may respond to incoming HTTP requests. By default this is
configured for the entire database by means of being present in the collection
configuration for /db. For further details, see “Configuring RESTXQ” on page
216.

Streaming Transformations for XML (STX)
STX is an alternative mechanism to XSLT that was designed specifically for per-
forming transformations on a stream of XML events.

The trigger org.exist.collections.triggers.STXTransformerTrigger allows
you to transform documents with STX transformation sheets when they are
stored or updated. For details of the STX transformation sheet language, see the
STX specification.

The STX transformer trigger relies on the Joost implementation of STX, so to use
STX you need to download Joost 0.9.1 and place the joost.jar file into
$EXIST _HOME/lib/user before restarting eXist. The trigger takes a single param-
eter, src, which points to your STX transformation sheet. This may be either a
path to a document in the database, or a URI from which the STX transforma-
tion sheet can be downloaded.

For example, the collection configuration for the STX transformer trigger may
look like:

<collection xmlns="http://;exist-db.org/collection-config/1.0">
<triggers>
<trigger class="org.exist.collections.triggers.STXTransformerTrigger">
<parameter name="src" value="/db/my-transformation.stx"/>
</trigger>
</triggers>
</collection>

Versioning
The resource versioning facility in eXist uses the trigger org.exist.version
ing.VersioningTrigger to support creating diffs of resources and tracking the
revision history of documents. See “Versioning” on page 427.

XQuery trigger
The XQuery trigger, while itself written in Java, acts as a bridge to XQuery and is
implemented in the org.exist.collections.triggers.XQueryTrigger class.

Upon receiving an event, it calls an appropriate function in a configured XQuery.
Its purpose is to allow developers to implement their own triggers in XQuery as
an easier alternative to Java. It is described in detail in “XQuery Triggers” on
page 453.

Triggers in eXist may be implemented in either XQuery or Java. Implementing the
triggers in XQuery is much simpler, but there are some operations that can currently

Database Triggers | 451

www.it-ebooks.info

http://stx.sourceforge.net/
http://stx.sourceforge.net/documents/spec-stx-20070427.html
http://joost.sourceforge.net/
http://www.it-ebooks.info/

only be implemented in Java. You can implement trigger actions before or after data-
base operations performed for both documents and collections in either XQuery or
Java, but you can only modify documents or examine the content of documents dur-
ing store or update operations by using Java triggers.

Triggers that take action on database operations for documents are called document
triggers; likewise, those that act on collection actions are called collection triggers.
Triggers that modify documents or examine them as they are being stored are called
document filtering triggers. Triggers are configured on a per-collection basis in the
collection’s configuration document (collection.xconf), and like all aspects of collec-
tion configuration (see “Configuring Indexes” on page 275 for related detail), triggers
are inherited or overridden from their parent collection.

As triggers are configured in collection configuration documents,
and these are inherited downward or overridden, if you define trig-
gers in a collection configuration document—for example, on the
collection /db/a/b—then any triggers defined in collection configu-
ration documents on /db/a or /db will not be inherited by /db/a/b.
If you define your triggers in a collection configuration document,
you must also include any other triggers that you wish to use.

For example, the RESTXQ trigger is defined in the collection con-
figuration for /db. Thus, if you define your own triggers in any
other collection configuration documents and wish to use RESTXQ
in those collections, you will also need to include a definition for
the RESTXQ trigger in your lower-level collection configuration
documents.

Whether implementing a trigger in XQuery or Java, you are required to implement a
function for each event that you wish to act before or after. You may only reject
changes to the database during before actions. Your function, which must follow a
naming convention (see Table 16-3 and Table 16-4 for documents and collections,
respectively), will be called each time that event occurs within the database.

Table 16-3. Naming convention for document trigger events
Event XQuery function name Java function name
(reate document before-create-document beforeCreateDocument
after-create-document afterCreateDocument
Update document before-update-document beforeUpdateDocument

after-update-document afterUpdateDocument

Update document metadata n/a beforeUpdateDocumentMetadata
n/a afterUpdateDocumentMetadata
Copy document before-copy-document beforeCopyDocument

452 | Chapter 16: Advanced Topics

www.it-ebooks.info

http://www.it-ebooks.info/

Event XQuery function name Java function name

after-copy-document afterCopyDocument
Move document before-move-document beforeMoveDocument

after-move-document afterMoveDocument
Delete document before-delete-document beforeDeleteDocument

after-delete-document afterDeleteDocument

Table 16-4. Naming convention for collection trigger events

Event XQuery function name Java function name

(reate collection before-create-collection beforeCreateCollection
after-create-collection afterCreateCollection

Copy collection before-copy-collection beforeCopyCollection
after-copy-collection afterCopyCollection

Move collection before-move-collection beforeMoveCollection
after-move-collection afterMoveCollection

Delete collection before-delete-collection beforeDeleteCollection

after-delete-collection afterDeleteCollection

XQuery Triggers

When implementing an XQuery Trigger in eXist, you have two main options:

o Store the XQuery into an XQuery library module in the database and reference it
by URI in a parameter to the XQueryTrigger called url in the collection
configuration.

o Write the XQuery code into a parameter to the XQueryTrigger called query in
the collection configuration.

While both options are available to the developer, we would advise taking the first
approach and storing your XQuery code for your trigger into the database. This is the
approach we will cover in this chapter. This enables you to store your code separately
from your configuration, which means that you can reuse this trigger in multiple col-
lection configurations. In addition, it means that you can test your trigger code inde-
pendently by writing an XQuery that imports your trigger module and calls your
functions.

Database Triggers | 453

www.it-ebooks.info

http://www.it-ebooks.info/

Storing an invalid XQuery trigger library module into the database
may cause any collections for which it is configured to reject all
database operations. This is because eXist will attempt to execute
the query for each database operation, and an exception will be
raised if the query is invalid, which will reject the operation.

Consequently, it is often better not to store your XQuery trigger
into the same collection as that on which you are configuring the
trigger. Otherwise, should you make a mistake in your trigger code,
you may be unable to save your updated trigger. This problem
occurs when you store an invalid XQuery trigger that is listening to
the before-update-document event; it will attempt to execute the
invalid query when you try to save your fixed trigger code, and as
the existing query is invalid, it will reject your update. To resolve
this you need to deconfigure the trigger in the appropriate collec-
tion configuration document, fix the trigger XQuery code, and
then re-enable the trigger in the collection’s configuration.

To implement an XQuery trigger you need to simply implement one or more of the
functions named in Tables 16-3 and 16-4. Your implementation of each of these
functions must currently reside in the namespace http://exist-db.org/xquery/
trigger.

If you are placing your XQuery trigger in a stored XQuery library module, it is rec-
ommended that your module have its own namespace, with the trigger functions just
calling your own functions (see Example 16-10). The majority of these functions take
a single argument, $uri (of type xs:anyURI), which provides you with the URI of the
document or collection that has caused the trigger event to fire. The exceptions are
the functions for copying and moving collection; these instead take two parameters,
$src and $dst (both of type xs:anyURI), which describe the source and destination
URIs, respectively, of the database operation on the collection. Table 16-5 lists the
parameters for the XQuery trigger configuration.

Table 16-5. Parameters for the XQuery trigger configuration

Parameter Description Mandatory/optional
query You can directly place your XQuery code in this parameter. Mandatory, unless
using url
url You can provide a URI to your XQuery library module in the database that Mandatory, unless
implements one or more functions from the http://exist-db.org/ using query

xquery/trigger namespace.

This approach is preferred over using the query parameter.

454 | Chapter 16: Advanced Topics

www.it-ebooks.info

http://www.it-ebooks.info/

Parameter Description Mandatory/optional

bindingPre If you wish to pass any parameters as external variables into your XQuery, you Mandatory if passing
fix need to declare the prefix of the namespace (declared in your XQuery) that they ~ parameters to external
should be bound to. variables

anything You may pass any other parameter to your XQuery and it will be bound to the Optional
equivalently named external variable (in the namespace indicated by binding
Prefix), which is declared in your XQuery.

You will find an example of a simple XQuery trigger implemented in an XQuery
library module in the file chapters/advanced-topics/simple-example-trigger.xqm of the
book-code Git repository (see “Getting the Source Code” on page 15), and in
Example 16-10. The trigger simply writes an entry to eXist’s logfile to record the fact
that the trigger function was called when a new document was stored into a collec-
tion in the database.

Example 16-10. Simple XQuery trigger implemented in an XQuery library module
module namespace et = "http://example/trigger"; (1]

declare namespace trigger = "http://exist-db.org/xquery/trigger"; (2]
import module namespace util = "http://exist-db.org/xquery/util";

declare variable $et:log-level external; (3]
declare function trigger:after-create-document($uri as xs:anyURI) { (4]

et:log(("XQuery Trigger called after document '", Suri, "' created.")) ()
b

declare function et:log($msgs as xs:string+) (6] {
util:log(Set:1log-level, $msgs)
b

© Namespace binding prefix of the XQuery library module.

® Import of the XQuery trigger namespace, so that you may implement trigger
functions in this namespace.

© External variable will be bound to a parameter named log-level declared in the
trigger configuration within the collection configuration document.

O Your implementation of the after-create-document function. This must be in
the trigger namespace!

© Call to your module’s functions that provide the actual processing.

Database Triggers | 455

www.it-ebooks.info

http://www.it-ebooks.info/

O Implementation of your business logic.

Example 16-10 shows how to implement a simple XQuery library module that imple-
ments the after-create-document function that eXist will call when a document is
stored into a collection on which the trigger has been configured. The collection con-
figuration for that example might look like:
<collection xmlns="http://exist-db.org/collection-config/1.0">
<triggers>
<trigger class="org.exist.collections.triggers.XQueryTrigger"s
<parameter name="url"
value="xmldb:exist:///db/simple-example-trigger.xqm"/> (1]
<parameter name="bindingPrefix"
value="et"/[>

<parameter name="log-level" value="INF0"/> (3]
</trigger>
</triggers>
</collection>

© The URI to the XQuery library module in the database that provides the XQuery
trigger

® The binding prefix, which must be the same as the XQuery library module’s
namespace prefix

© A parameter that is passed into the XQuery library module by binding to the
external variable named $example:log-level

To install the example:

1. Store the XQuery trigger into the database in a document located at /db/simple-
example-trigger.xqm.

2. Create the collection /db/test-trigger.
3. Create the collection /db/system/config/db/test-trigger.

4. Store the collection configuration document (see the preceding code block) into
the database in a document located at /db/system/config/db/test-trigger/collec-
tion.xconf. This configures the trigger on the /db/test-trigger collection.

To test the example:

1. Store any document into /db/test-trigger.

2. Check the logfile $EXIST_HOME/webapp/WEB-INF/logs/exist.log. If everything
succeeded you should see a message in the log that looks similar to:

456 | Chapter 16: Advanced Topics

www.it-ebooks.info

http://www.it-ebooks.info/

2014-01-14 11:10:44,561 [eXistThread-30] INFO (LogFunction.java [eval]:150) -
(Line: 14 /db/simple-example-trigger.xqm) XQuery Trigger called after
document '/db/test- trigger/blah3.xml' created.

A more complicated example that shows how to react to multiple trigger events and
send email notifications is provided in the file chapters/advanced-topics/journal-
notification-trigger.xqm of the book-code Git repository.

Java Triggers

When implementing database triggers in Java for eXist, you need to implement the
appropriate Java interfaces for the events that you wish to handle (see Figure 16-5).
The events are split between document events and collection events, as described in
Tables 16-3 and 16-4. The interface for document events is org.exist.collec
tions.triggers.DocumentTrigger, while the interface for collection events is
org.exist.collections.triggers.CollectionTrigger. It is perfectly possible to
implement both interfaces in a single class if you wish to respond to both types of
events.

Omitted from the interfaces DocumentTrigger and Collection
Trigger are two methods, prepare and finish. These functions
are deprecated and can safely be ignored; in fact, they were
removed after the eXist 2.1 release. They provide the old infra-
structure for triggers and have been replaced by the before* and
after* functions.

Once you have implemented the appropriate class you need to place your compiled
class onto eXist’s classpath, which you typically do by placing a JAR file of your code
and any dependent JAR files into $EXIST HOME/lib/user. Remember that you may
have to restart eXist for the JVM class loader to see your new JAR files!

When writing triggers in Java, you can assume that any Documen
tImpl or Collection objects that you are given are already locked.
However, if you open any other documents or collections you must
be sure to lock them correctly and, most importantly, to release
those locks when you are done with them. Failure to do so could
lead to deadlocks in eXist. It is strongly recommended to use the
Java try/catch/finally pattern to release any acquired locks in
the finally block.

Database Triggers | 457

www.it-ebooks.info

http://www.it-ebooks.info/

(orgAme.sax \ (org.xml.sax.ext \
~\ ~
(<<interface>>) (<<interface>>)
ContentHandler LexicalHandler
+ setDocumentLocator(Locator): void + startDTD(String, String, String): void
+ startDocument(): void + endDTD(): void
+ endDocument(): void + startEntity(String): void
+ startPrefixMapping(String, String): void + endEntity(String): void
+ endPrefixMapping(String): void + startCDATA(): void
+ startElement(String, String, String, Attributes): void + endCDATA(): void
+ endElement(String, String, String): void + comment(char(], int, int): void
+ characters(char(], int, int): void U ’)
+ ignorableWhitespace(char{], int, int): void A
+ processingInstruction(String, String): void
+ skippedEntity(String): void
\l ‘4
A
(org.exist.collections.triggers \
~
(<<interface>> | <<interface>>
DocumentTrigger Trigger
+ beforeCreateDocument(DBBroker, Txn, XmldbURI): void l+ configure(DBBroker, Collection, Map): void J
+ afterCreateDocument(DBBroker, Txn, Documentimpl): void 'y 'y
+ beforeUpdateDocument(DBBroker, Txn, Documentlmpl): void
+ afterUpdateDocument(DBBroker, Txn, Documentimpl): void
+ beforeUpdateDocumentMetadata(DBBroker, Txn, Documentimpl): void
+ afterUpdateDocumentMetadata(DBBroker, Txn, Documentimpl): void
+ beforeCopyDocument(DBBroker, Txn, Documentimpl, XmldbURI): void
+ afterCopyDocument(DBBroker, Txn, Documentimpl, XmldbURI): void
+ beforeMoveDocument(DBBroker, Txn, Documentimpl, XmldbURI): void
+ afterMoveDocument(DBBroker, Txn, Documentlmpl, XmldbURI): void
+ beforeDeleteDocument(DBBroker, Txn, Documentimpl): void
+ afterDeleteDocument(DBBroker, Txn, XmIdbURI): void
+ isValidating(): boolean
+ setValidating(boolean): void
+ getinputHandler(): ContentHandler
+ getOutputHandler(): ContentHandler
+ setOutputHandler(ContentHandler): void
+ getLexicallnputHandler(): LexicalHandler
+ getLexicalOutputHandler(): LexicalHandler
L+ setLexicalOutputHandler(LexicalHandler): void
A
(<<interface>>) (<<interface>>)
FilteringTrigger CollectionTrigger
— outputHandler: ContentHandler -+ beforeCreateCollection(DBBroker, Txn, XmldbURI): void
— lexicalOutputHandler: LexicalHandler + afterCreateCollection(DBBroker, Txn, Collection): void
— collection: Collection + beforeCopyCollection(DBBroker, Txn, Collection, XmldbURI): void
— validating: boolean = true + afterCopyCollection(DBBroker, Txn, Collection, XmldbURI): void
+ beforeMoveCollection(DBBroker, Txn, Collection, XmldbURI): void
getCollection(): Collection + afterMoveCollection(DBBroker, Txn, Collection, XmldbURI): void
\ / -+ beforeDeleteCollection(DBBroker, Txn, Collection): void
L+ afterDeleteCollection(DBBroker, Txn, XmldbURI): void)
. J

Figure 16-5. UML diagram showing Java trigger classes

An instance of your trigger class will be lazily instantiated for each collection it is
configured for. When your trigger class is instantiated, your implementation of the

458 | Chapter 16: Advanced Topics

www.it-ebooks.info

http://www.it-ebooks.info/

configure method from org.exist.collections.triggers.Trigger will be called;
you may use this function to read any parameters from the trigger’s configuration
and set up any initial state in a thread-safe manner. Should you decide to store some
state in member variables of your class, remember that the class instance is per collec-
tion, so the values of these variables will not be globally consistent.

Also be aware that the calls to the trigger methods (e.g., beforeS
toreDocument) are not thread-safe. This means that more than one
thread may be in any, or even all, of the event functions defined in

i your trigger class! If you wish to keep state, it is up to you to man-
age concurrent access to that state appropriately.

As they are simpler to implement than document triggers, we will look first at collec-
tion triggers, which will show you how to implement event functions. We will then
look at document triggers, which have similar event functions and a whole lot more!

Java collection triggers

When you’re implementing Java collection triggers your class must provide imple-
mentations for all of the methods defined in org.exist.collections.trig
gers.Trigger and org.exist.collections.triggers.CollectionTrigger to
compile. However, triggers were designed in such a way that you really need only fill
out those methods that you wish to act upon.

The simplest collection trigger would only provide code for a single method, as
shown in Example 16-11, where we log the username of a user creating a collection.

Example 16-11. Simplest collection trigger
package example;

import org.apache.log4j.Logger;

import org.exist.collections.triggers.CollectionTrigger;
import org.exist.collections.triggers.TriggerException;
import org.exist.storage.DBBroker;

import org.exist.storage.txn.Txn;

import org.exist.xmldb.XmldbURI;

import java.util.List;

import java.util.Map;

public class SimplestCollectionTrigger implements CollectionTrigger { (1]
private final static Logger LOG =
Logger.getLogger(SimplestCollectionTrigger.class);

public void beforeCreateCollection(DBBroker broker, Txn txn, XmldbURI uri) (2]
throws TriggerException {

Database Triggers | 459

www.it-ebooks.info

http://www.it-ebooks.info/

LOG.info("User '" + broker.getSubject().getName() + (3]
"' is creating the Collection '" + uri + "'...");

}

// Omitted: other empty function implementations here...

}

© We must implement the CollectionTrigger interface.

® We provide an implementation of the event method beforeCreateCollection.

© Before the collection indicated by urti is created, we record the event in eXist’s
logfile, attributing it to a specific user.

O We must provide implementations of all the other functions from Collection

Trigger here for the code to compile; however, as we are not using them and
they are easily generated by an IDE, we have omitted them for brevity.

Just like in previous examples, to have the trigger fired on the database events that
you are interested in, you must add it to the collection configuration documents for
those collections that you wish your trigger to act upon. An example configuration
for the SimplestCollectionTrigger would look like:

<collection xmlns="http://exist-db.org/collection-config/1.0">
<triggers>
<trigger class="example.SimplestCollectionTrigger"/>
</triggers>
</collection>

Remember that you must configure your collection triggers on the
parent of the collection for those collection events that you wish
them to be triggered upon. For example, if you want to be made
aware when a new collection is created in /db/myapp/data, then
you must add your trigger to the collection configuration docu-
ment for the collection /db/myapp/data. In this way, if a user were
to create, copy, move, or delete the collection /db/myapp/data/
some-collection, your trigger would receive the event. Likewise, it
would receive the events for any descendant collections—for exam-
ple, /db/myapp/data/some-collection/subcollection—as collection
configuration is inherited!

No delete example collection trigger

An example class implementing CollectionTrigger called exist.book.exam
ple.trigger.collection.NoDeleteCollectionTrigger is supplied in the folder

460 | Chapter 16: Advanced Topics

www.it-ebooks.info

http://www.it-ebooks.info/

chapters/advanced-topics/java-database-trigger/nodelete-collection-trigger-example of
the book-code Git repository (see “Getting the Source Code” on page 15).

The example is designed to show how database operations can be aborted by Java
triggers. The trigger takes a blacklist of collection URIs as a parameter and prevents
those collections from being deleted and optionally from being moved (indicated by
another parameter). The trigger is able to prevent these collections from being
deleted or moved by throwing a TriggerException during the before phase of the
delete or move events, which causes eXist to abort the operation and report the
exception.

To compile the example, enter the java-database-trigger folder and run mvn package.

To deploy the NoDeleteCollectionTrigger to eXist, you need to:

1. Compile the code as described previously, and then copy all of the files from
java-database-trigger/nodelete-collection-trigger-example/target/nodelete-
collection-trigger-example-1.0-assembly to $EXIST _HOME/lib/user.

2. Restart eXist so that it picks up the new JAR files.

3. Create the collections /db/data, /db/data/private, and /db/data/private/
subcollection.

4. Create the configuration collection /db/system/config/db/data.

5. Configure the trigger in a collection configuration document in the database,
which you should locate at /db/system/config/db/data/collection.xconf:

<collection xmlns="http://exist-db.org/collection-config/1.0">
<triggers>
<trigger
class="exist.book.example.trigger.collection.NoDeleteCollectionTrigger">

<!-- whether to also prevent collection moves
for your blacklisted collections -->
<parameter name="treatMoveAsDelete" value="true"/>

<!-- your blacklist: -->
<parameter name="blacklist" value="/db/data/super-secret"/>
<parameter name="blacklist" value="/db/data/private"/>
</trigger>
</triggers>
</collection>

To test the example:

1. Attempt to delete or move the collection /db/data/private/subcollection, /db/data/
private, or /db/data/super-secret; you should find that it is now impossible.

Database Triggers | 461

www.it-ebooks.info

http://www.it-ebooks.info/

2. Check the logfile $EXIST_HOME/webapp/WEB-INF/logs/exist.log. You should
see the NoDeleteCollectionTrigger log messages that look similar to:
2014-01-16 14:18:52,918 [eXistThread-32] INFO

(NoDeleteCollectionTrigger.java [beforeDeleteCollection]:97) -
Preventing deletion of blacklisted collection '/db/ data/private’.

Java document triggers

While our discussion in “Java collection triggers” on page 459 focused on handling
the before and after events for various database operations on collections, here we’ll
look at handling events during the storage of XML documents. This allows us to
modify a document dynamically as it is being stored. Of course, document triggers
still have all of the before and after events that you would expect for database opera-
tions on documents, but implementing them is similar enough to implementing col-
lection triggers that we need not discuss them further here. Document triggers also
give you the ability to perform streaming validation and transformations on docu-
ments.

When you're implementing Java document triggers, your class must provide imple-
mentations for all of the methods defined in org.exist.collections.trig
gers.Trigger and org.exist.collections.triggers.DocumentTrigger to compile.

The DocumentTrigger interface mainly varies from CollectionTrigger in that it also
acts as a SAX (Simple API for XML) event handler by extending org.xml.sax.Con
tentHandler and org.xml.sax.ext.LexicalHandler. With SAX events, your trigger
effectively sits in the middle of a pipeline, receiving SAX events from the parser
(which is reading the document to store) and sending them on to the database for
validation or storage (see Figure 16-6). If you choose to discard some of these events
or generate new events, you are effectively modifying the incoming document for val-
idation or storage.

462 | Chapter 16: Advanced Topics

www.it-ebooks.info

http://www.it-ebooks.info/

XML Store

Document XML Parser Exit startElement

(all startElement Document

Trigger 1 Exit startElement

/T
/ \
Document
\ Triggern 7
\ /

Call superstartElement
Exit startElement

N——

Call super.startElement Validation or
Database

Storage

Figure 16-6. Document trigger SAX pipeline

Having to implement ContentHandler and LexicalHandler brings some complexity
to document triggers, so for convenience eXist offers the abstract class
org.exist.collections.triggers.FilteringTrigger to reduce this. It is recom-
mended that you always extend FilteringTrigger and never directly implement Doc
umentTrigger in your own triggers. FilteringTrigger provides default
implementations of both ContentHandler and LexicalHandler by simply forwarding
the SAX events to either validation or storage. If you are only interested in working
with the before and after document events, by extending FilteringTrigger you need
not ever worry about the SAX events. Conversely, if you are interested in the SAX
events for the purpose of modifying the document, additional validation, or some
other reason, by extending FilteringTrigger you can just override those SAX meth-
ods of interest, while the remainder will be handled correctly.

If you choose to override the SAX event methods in Filtering
Trigger and you still want the event to be passed on to the data-
base for validation or storage, then you must remember to call the
equivalent method on the super class. If you do not call the
method on the super class, your trigger is actually discarding those
events and they will never reach the database!

When dealing with SAX events in a document trigger you must recognize that the
trigger is called twice, once during each of eXist’s two phases of storing a document:

Validation
As the entire document is being parsed, the generated SAX events are sent to
your trigger, which is responsible for swallowing or forwarding them (with or

Database Triggers | 463

www.it-ebooks.info

http://www.it-ebooks.info/

without modifications). When the events are forwarded, they are sent to the vali-
dator, which ensures the resultant document is well formed and valid according
to any configured schemas. If you choose to throw a SAXException (or any Runti
meException) from one of your SAX event handler methods, then you are effec-
tively indicating to eXist that you consider the document to be invalid, which
stops the validation phase and aborts the store process.

Storage

If the validation phase completes, eXist then enters the storage phase. The entire
document is parsed for a second time, and the generated SAX events are again
sent to your trigger, which is responsible for forwarding them (with or without
modifications). When the events are forwarded, they are sent to the database
storage engine, which is responsible for writing the document into the database.
If you choose to throw a SAXException (or any RuntimeException) from one of
your SAX event handler methods, you are signaling to eXist that there was a
problem with the store process, and eXist will abort the store and roll back the
transaction.

You can determine which phase your SAX event handler methods are being called in
by calling the function isvValidating from the super FilteringTrigger class. An
interesting effect of having different validation and storage phases is that you can
modify the document stream in a different manner in each phase. This offers some
interesting possibilities, such as allowing the validation phase to pass, and then
rewriting the document into another form before it is stored.

Consider the startElement method from a fictional implementation of Filtering
Trigger shown in Example 16-12. This example shows you how you can drop ele-
ments, rename elements, and create new elements as the document is being stored.

Example 16-12. Event handling in a filtertrigger

public void startElement(final String namespaceURI, final String localName,
final String gname, final Attributes attributes) throws SAXException {

if(localName.equals("author")) {
//drop an element

} else if(localName.equals("color")) {
//rename an element
super.startElement(namespaceURI, "colour", (2]
qname.replace("color", "colour"), attributes);

} else if(localName.equals("isbn")) {
//encapsulate an element
super.startElement(namespaceURI, "reference", "reference", null); (3]
super.startElement(namespaceURI, localName, gname, attributes);

464 | Chapter 16: Advanced Topics

www.it-ebooks.info

http://www.it-ebooks.info/

} else {
//keep other elements
super.startElement(namespaceURI, localName, gname, attributes); (5]

@ We drop any element that is named author. We achieve the drop simply by not
calling super.startElement.

® We rename any element that is named color to colour. We do so by calling
super.startElement but replacing the element name.

©0 We encapsulate any element that is named isbn (and its following siblings)
inside an element named reference. We do this by calling super.startElement
to start a new element, then calling super.startElement for the current element.

© We keep any other element by simply calling super.startElement for the cur-
rent element.

For the trigger to actually work, though, we must also have a matching endElement
method that balances the start and end of elements; otherwise, we will end up with a
document that is not well formed. Such a matching endElement method implementa-
tion would look like:

public void endElement(final String namespaceURI, final String localName,
final String gname) throws SAXException {

if(localName.equals("author")) {
//drop an element

} else if(localName.equals("color")) {
//rename an element
super.endElement(namespaceURI, "colour",

qgname.replace("color", "colour"));

} else if(localName.equals("isbn")) {
//encapsulate an element
‘,super.endElement(namespaceURI, localName, gname);
e,super.endElement(namespaceURI, "reference", "reference");

} else {
//keep other elements
super.endElement(namespaceURI, localName, gname);

Database Triggers | 465

www.it-ebooks.info

http://www.it-ebooks.info/

00 Note that when you encapsulate an element in another, the order of the gener-
ated events is reversed in the endElement method as compared to the startEle
ment method. In other words, the isbn element has to be ended before the
reference element, as the isbn element was started after the reference element.

Document triggers are incredibly powerful, and here we have barely scratched the
surface of what is possible. However, to further assist you we have included a more
complete example with this book.

Example filtering trigger

An example class extending FilteringTrigger called exist.book.example.trig
ger.document.ExampleFilteringTrigger is supplied in the folder chapters/
advanced-topics/java-database-trigger/filtering-trigger-example of the book-code Git
repository (see “Getting the Source Code” on page 15).

The example is designed to show how you can build a path to the current element
even though you are processing a stream, and you can then use this path to make
decisions about whether to remove an element. The example also shows how to pass
in a significantly more complicated set of configuration parameters to the trigger
from the collection configuration document. These parameters are then used for
keeping a map of elements that should be renamed.

To compile the example, enter the java-database-trigger folder and run mvn package.

To deploy the ExampleFilteringTrigger to eXist, you need to:

1. Compile the code as described previously, and then copy all of the files from
java-database-trigger/filtering-trigger-example/target/filtering-trigger-
example-1.0-assembly to $EXIST_HOME/lib/user.

. Restart eXist so that it picks up the new JAR files.
. Create the collection /db/test-data.
. Create the configuration collection /db/system/config/db/test-data.

U W

. Configure the trigger in a collection configuration document in the database,
which you should locate at /db/system/config/db/test-data/collection.xconf:
<collection xmlns="http://exist-db.org/collection-config/1.0">
<triggers>

<trigger
class="exist.book.example.trigger.document.ExampleFilteringTrigger"s

<!-- paths to elements that should be dropped -->
<parameter name="drop" value="/a/b/c"/>

<!-- map of elements that should be renamed -->

466 | Chapter 16: Advanced Topics

www.it-ebooks.info

http://www.it-ebooks.info/

<parameter name="elements'>
<rename from="d" to="e"/>
<rename from="e" to="d"/>
</parameter>
</trigger>
</triggers>
</collection>

To test the example:

1. Store the following document into /db/test-data:
<a>

<c>should be removed</c>
<c>should also be removed</c>

<c>should not be removed</c>
<d>should be renamed to e</d>
<e>should be renamed to d</e>

2. Open the actual document stored into /db/test-data. You should see that it
instead contains something like the following:
<a>

<c>should not be removed</c>
<e>should be renamed to e</e>

<d>should be renamed to d</d>

Internal XQuery Library Modules

As you know by now, XQuery modules come in two varieties, main modules and
library modules. Main modules can be directly invoked, and execution begins at the
query body. Main modules may import other library modules, but a complete
XQuery may contain only a single main module. Library modules reside in a specific
namespace and contain function and variable declarations grouped by that name-
space. Library modules do not have a query body, and thus there is no way to directly
execute a library module, but frameworks like RESTXQ (see “Building Applications
with RESTXQ” on page 215) and eXist’s SOAP Server (see “SOAP Server” on page
362) are able to map HTTP requests onto specific library module function invoca-
tions.

eXist provides two types of library modules:

Internal XQuery Library Modules | 467

www.it-ebooks.info

http://www.it-ebooks.info/

External
These are library modules written in XQuery. They follow the W3C XQuery
specification for library modules and allow users to easily write modules in
XQuery. For further information, see http://www.w3.0rg/TR/xquery/#dt-library-
module.

Internal

These are library modules written in Java. In these modules, the internals of
XQuery functions and variables are written in eXist’s host programming lan-
guage (Java) but are callable from XQuery as though they were any other XQuery
function or variable. This arguably follows the W3C XQuery specification for
library modules, but deviates slightly as eXist does not require you to explicitly
declare the functions as external functions in XQuery because it is able to per-
form the required static type analysis regardless. For further information, see
http://www.w3.0rg/ TR/xquery/#dt-external-function.

In this chapter we do not look at external modules, as they are not specific to eXist
and there is already a great wealth of material on them, both in this book and other
XQuery learning resources. Instead, we focus here on internal modules and how you
can easily build your own using Java.

So perhaps first we should ask: why would we write a library module in Java as
opposed to XQuery?

There is really only one valid reason to consider:

It cannot be done in XQuery!
You'll need to turn to Java when it is impossible to solve your problem by putting
other XQuery functions together. You most likely want to introduce a new and
unique function. For example, W3C XQuery 1.0 has no functional capability for
sending email, so you may wish to create a function that allows this (in fact, such
an extension function is already included in eXist, as covered in mail).

Conversely, there are many reasons why you should not write a library module in
Java as opposed to XQuery. Here are a few of the important ones:

Not understanding XQuery
It may be tempting to implement something in Java because you have not had as
much experience with XQuery. Generally speaking, this is a bad plan, as you will
be calling this Java from XQuery regardless—your time would most likely be bet-
ter invested in learning more about XQuery. XQuery is really the thing that
makes eXist so powerful, so you would be well advised to get to grips with it.

Performance
When you write an XQuery function to implement a specific piece of business
logic or use case, it may call many other XQuery functions. Often people misun-

468 | Chapter 16: Advanced Topics

www.it-ebooks.info

http://www.w3.org/TR/xquery/#dt-library-module
http://www.w3.org/TR/xquery/#dt-library-module
http://www.w3.org/TR/xquery/#dt-external-function
http://www.it-ebooks.info/

derstand how XQuery is executed in eXist and fear that this long function call
chain is affecting performance, so they produce a single function in Java that can
be called from XQuery, which does it all. In fact, eXist compiles all XQuery code
down to Java function calls and caches the compiled form. It is much more likely
that performance issues are caused by misconfigured indexes or collections. Even
if you do find that some eXist XQuery functions are slow, it would be better to
work on optimizing those so that all XQuery code benefits!

Deadlocks, memory leaks, and death

If you wish to interact with eXist from your own code, doing so from within Java
is much harder than from within XQuery. From within Java, your internal mod-
ule code is running directly inside eXist, so to talk to eXist you need to use its
internal APIs. While this is absolutely possible, you must take great care to lock
and unlock resources appropriately, and to free up any memory that you allocate.
Failure to do so can quickly lock up the database and potentially crash eXist, and
if you mismanage resources and transactions you may even corrupt your
database!

If you still wish to implement an internal module, your implementation needs to
implement the interface org.exist.xquery.InternalModule. As a convenience,
eXist provides the abstract class org.exist.xquery.AbstractModule as a starting
point; this greatly eases implementation.

XQuery is a functional programming language, so its functions—
including those that you implement in your internal modules—
should really not cause side effects. However, sometimes with
XQuery you have to allow side effects to be able to achieve the
desired outcome. For example, the eXist xmldb module’s side
effects allow you to change the state of the database. If you can
avoid it, it is good practice to write your functions as transforma-
tions from their input to their output, without causing side effects!

Implementing a library module typically involves implementing at least two classes.
The first, the module class, contains information about all the functions that the
module provides. The others (one or more) are classes for each function that the
module provides (although functions may also be grouped into classes if desired).
Perhaps the easiest way to explain this is for us to dive straight in at the deep end and
look at some code for our first internal module, a very simple “Hello World” module
that provides a single function to XQuery (see Example 16-13).

Example 16-13. HelloWorld Java XQuery module

public class HelloModule extends AbstractInternalModule { (1)

Internal XQuery Library Modules | 469

www.it-ebooks.info

http://en.wikipedia.org/wiki/Side_effect_(computer_science)
http://www.it-ebooks.info/

protected final static String NS = "http://hello"; (2]
protected final static String NS_PREFIX = "h"; (3]

private final static FunctionDef functions[] = { (4]
new FunctionDef(HelloFunctions.FNS_HELLO_WORLD, HelloFunctions.class) (5]

};

public HelloModule(Map<String, List<? extends Object>> parameters) {
super(functions, parameters); (6]

}

public String getNamespaceURI() {
return NS;

}

public String getDefaultPrefix() {
return NS_PREFIX;
}

public String getDescription() {
return "Simple Hello World module";

}

public String getReleaseVersion() {
return "2.1";

}
@ Our class implements InternalModule by extending AbstractInternalModule.
00O We define a namespace and namespace prefix for our module.
O We define the functions that will form a part of this module.
© We reference a single function, which will be a function of this module. This
shows how modules and their functions are linked together: basically, the mod-

ule has a static array of references to the functions that it provides, and it declares
these by calling the constructor of the super class.

O We call the constructor of the super class, passing in the array of functions that
make up this module.

470 | Chapter 16: Advanced Topics

www.it-ebooks.info

http://www.it-ebooks.info/

© We have to return a string that describes which version of eXist this module
became available in. This is just for documentation purposes and is not further
processed.

To implement the actual “Hello World” function, which will be named hello-world,
we need to extend the abstract class class org.exist.xquery.Function. To assist in
this, eXist provides the abstract subclass org.exist.xquery.BasicFunction, which
makes life much easier by dealing with the necessary mechanics for the XQuery pro-
filer and extracting argument values that are passed to our function from the XQuery
context. Almost all of the internal module functions already implemented in eXist
extend BasicFunction, and we would recommend that you do the same unless you
need more control over processing (which is unlikely in most use cases). So now that
we have seen the preceding internal module implementation, which tells eXist about
our hello-world function, let’s see how we actually implement the function in
Example 16-14.

Example 16-14. HelloWorld Java XQuery function

public class HelloFunctions extends BasicFunction { (1]

private final static QName gnHelloWorld = (2]
new QName("hello-world", HelloModule.NS, HelloModule.NS_PREFIX);

//signature of our XQuery h:hello-world() function
public final static FunctionSignature FNS_HELLO_WORLD = (3]
new FunctionSignature(
qnHelloWorld 0,
"Say \”hello world\”!" 0,
null Q,
new FunctionReturnSequenceType(
Type.DOCUMENT, Cardinality.ONE, "The hello!"
) @
)

//standard constructor, which allows multiple functions to be
//implemented in one class
public HelloFunctions(final XQueryContext context,

final FunctionSignature signature) {

super(context, signature);

}
//called when the xquery function is executed

public Sequence eval(final Sequence[] args, (8]
final Sequence contextSequence) throws XPathException {

final Sequence result;

Internal XQuery Library Modules | 471

www.it-ebooks.info

http://www.it-ebooks.info/

//act on the invoked function name
if(isCalledAs(gnHelloWorld.getLocalName())) { (o)
result = sayHelloWorld(); ®
} else {
throw new XPathException("Unknown function call: " (1]
+ this.getName().toString());
}

return result; ®

}

//Constructs the in-memory XML document:
//* <hello>world</hello>
//@return The in-memory XML document
private Sequence sayHelloWorld() { ®
final MemTreeBuilder builder = new MemTreeBuilder(); @
builder.startDocument();
builder.startElement(new QName("hello", HelloModule.NS, ®
HelloModule.NS_PREFIX), null);
builder.characters("world");
builder.endElement();
builder.endDocument();

return builder.getDocument(); (1}

@ Our class implements org.exist.xquery.Function by extending BasicFunc
tion.

® We define the name of our XQuery function to be hello-world. You should
always define this within the namespace of the internal module.

The standard way of naming functions and variables in
XQuery is to use all lowercase letters and separate terms with a
hyphen.

© Here we define the function signature of our XQuery function, which includes
the name, description (for documentation), any expected parameters, and the
return type. Our function will have the signature h:hello-world() as
xs:string.

O The function signature includes the name of our function. We define the name as
a separate variable for the purposes or referencing it later as a constant—for
example, within the eval function.

472 | Chapter 16: Advanced Topics

www.it-ebooks.info

http://www.it-ebooks.info/

© The textual description of our function.

O Any expected parameters for our function. Our hello-world function does not
take any parameters, so we can use null here.

@ The return type and cardinality of our function. Our hello-world function will
return a single XML document node.

O Any parameters that our functions expect will be passed into the eval function as
an array of Sequence objects.

© Asit is possible to encode more than one XQuery function in a single Java class
that extends BasicFunction, we switch on the name of the function that was
called from XQuery.

® We call our business logic, which generates the “Hello World” XML document.

® If we do not recognize which function was called, we throw an
org.exist.xquery.XPathException. This is really just for completeness and
should not ever be invoked, as eXist should not route unexpected XQuery func-
tion calls to us.

® We return the results of our processing to the XQuery.
® This is our isolated business logic, which will generate our “Hello World” XML.

® We use eXist’s MemTreeBuilder to construct an XML document dynamically in
memory.

® We define the namespace of the XML document that we are producing.

If you’re constructing a custom XML document and there is
otherwise no defined namespace to use, it is considered good
practice to place the nodes of the document into the name-
space of the module as opposed to the default namespace.

® We return the XML document node of our constructed document.

Using the Hello World Module

As mentioned previously, the Java source code implementing the internal module
called exist.book.example.module.internal.HelloModule is supplied in the folder

Internal XQuery Library Modules | 473

www.it-ebooks.info

http://www.it-ebooks.info/

chapters/advanced-topics/internal-module/hello-world-module-example of the book-
code Git repository (see “Getting the Source Code” on page 15). The example covers
both the simple hello-world function just discussed and a more complex say-hello
function, which is described next. It is designed to show how relatively little bespoke
code is required to implement a simple internal module.

To compile the example, enter the internal-module folder and run mvn package.

To deploy the HelloModule to eXist, you need to:

1. Compile the code as previously described, and then copy all of the files from
internal-module/hello-world-module-example/target/hello-world-module-
example-1.0-assembly to SEXIST_HOME/lib/user.

2. Add the following module definition to $EXIST_HOME/conf.xml, in the xquery/
builtin-modules section:

<module uri="http://hello"
class="exist.book.example.module.internal.HelloModule" />

3. Restart eXist so that it picks up the new JAR files.
To test the example:

1. Execute the following XQuery from either eXist’s Java Admin Client (see “Java
Admin Client” on page 373) or eXide (see “eXide” on page 374):

xquery version "1.0";
declare namespace h = "http://hello";

h:hello-world()
2. You should see a result that looks similar to:

<h:hello xmlns:h="http://hello">world</h:hello>

While this example shows you how to write an extension function for XQuery in
Java, it is very basic. To expand on this, we will look next at eXist’s Java model of the
XDM types used in XQuery, and then study an example where we create a function
that takes several parameters using these types and acts upon them.

Types and Cardinality

Where functions take arguments and return values as a result of their computation
(and they should in the functional world), these arguments and return values have
both a type and a cardinality. The type defines the variety of data that can be held (for
example, a string or number), and the cardinality defines how many values of that
type may be present. Types and cardinalities are defined in the W3C XQuery 1.0 and

474 | Chapter 16: Advanced Topics

www.it-ebooks.info

http://www.w3.org/TR/xpath-datamodel/
http://www.it-ebooks.info/

XPath 2.0 Data Model (XDM) specification. If you are an experienced XQuery devel-
oper, you're most likely already familiar with this document; if not, as an imple-
menter of an internal module you should have at least a basic understanding of these
subjects. A very useful summary diagram of the type hierarchy in XQuery is available
in the specification.

When implementing an internal module, you will be working with the XDM types in
Java as opposed to XQuery. eXist has a Java class to model each of those XDM types.
An understanding of how to map from an XDM type as used in XQuery to eXist’s
Java type is essential to enable you to create functions that accept parameters and
return values. All of eXist’s XDM Java types for atomic types are in the package
org.exist.xquery.value. The type mappings are listed in Table 16-6.

Table 16-6. XDM atomic value type mappings

XDM atomic value type eXist's Java class Notes

item Item An interface.

xs:anyAtomicType AtomicValue An abstract class.

xs:untypedAtomic UntypedAtomicValue Internally represented using java.lang.String.
xs:anyURI AnyURIValue Internally represented using java.lang.String.

Provides utility methods for converting to/from
org.exist.xmldb.XmldbURI.

xs:base64Binary BinaryValue Internally represented using java.io.Input
Streamand java.io.OutputStream. Actual
encoding/decoding is lazy, and uses either
Base64BinaryValueType orHexBinaryType,

respectively.

xs:hexBinary

xs:boolean BooleanValue Internally represented using boolean.

xs:dateTime DateTimeValue Internally represented using javax.xml.data
type.XMLGregorianCalendar.

xs:date DateValue

xs:time TimeValue

xs:gDay GDayValue

xs:gMonth GMonthValue

Xs:gMonthDay GMonthDay

xs:gYear GYearValue

xs:gYearMonth GYearMonthValue

xs:duration DurationValue Internally represented using javax.xml.data
type.Duration.

xs:dayTimeDuration DayTimeDurationValue

Internal XQuery Library Modules | 475

www.it-ebooks.info

http://www.w3.org/TR/xpath-datamodel/
http://www.w3.org/TR/xpath-datamodel/#types-hierarchy
http://www.it-ebooks.info/

XDM atomic value type eXist's Java class Notes

xs:yearMonthDuration YearMonthDuration

Value

xs:string StringValue Internally represented using a composition of
java.lang.String, int, and boolean.

xs:normalizedString

xs:language

xs :NMTOKEN

xs :Name

xs :NCName

xs:ID

xs : IDREF

XS:ENTITY

xs :QName QNameValue Internally represented using
org.exist.dom.QName.

xs:float FloatValue Internally represented using float.

xs:double DoubleValue Internally represented using double.

xs:decimal DecimalValue Internally represented using java.math.BigDeci
mal.

xs:integer IntegerValue Internally represented using a composition of

java.lang.BigInteger and int.
xs:nonPositivelInteger
xs:negativelnteger
xs:long
xs:int
xs:short
xs:byte
xs:nonNegativelnteger
xs:unsignedLong
xs:unsignedInt
xs:unsignedShort
xs:unsignedByte

xs:positivelnteger

eXist has two Java implementations of each XDM node type. One is an in-memory
implementation, called Memtree, that solely retains the nodes in memory and is use-
ful for computed node construction. The other is a persistent Document Object
Model (DOM) implementation that represents nodes that are stored in the database.

476 | Chapter 16: Advanced Topics

www.it-ebooks.info

http://www.it-ebooks.info/

The classes of each have mostly the same names but are maintained in different pack-
ages. The Java classes for the in-memory implementation of XDM node types are in
the package org.exist.memtree, while the persistent DOM implementations are in
the package org.exist.dom. See Table 16-7.

Table 16-7. XDM node type mappings

XDM node type eXist's Java class

node NodeImpl

attribute AttrImpl (DOM)/AttributeImpl (memtree)
comment CommentImpl

document DocumentImpl

element ElementImpl

processing-instruction ProcessingInstructionImpl

text TextImpl

While all function parameters in eXist are sequences, the cardinality of these parame-
ters is constrained in the definition of the function signature. eXist provides cardinal-
ity constants that model the occurrence indicators used for function parameters in
the XQuery specification. These cardinality constants are defined in the class
org.exist.xquery.Cardinality (see Table 16-8).

Table 16-8. XQuery occurrence mappings

XQuery occurrence eXist's cardinality constant
indicator

Cardinality.EXACTLY_ONE (when explicitly typed)/Cardinality.ZERO_OR_MORE
(when not explicitly typed)

? Cardinality.ZERO_OR_ONE
* Cardinality.ZERO_OR_MORE
+ Cardinality.ONE_OR_MORE

Function Parameters and Return Types

Now that we have an understanding of how XDM types are implemented by eXist in
Java, we can consider how we might use these to accept parameters to our functions
or return certain result types. When you’re implementing a function for an internal
module, it helps to think of the function as a transformation from an array of sequen-
ces to a sequence. For example, the eval function of your BasicFunction will be
passed a Java array of org.exist.xquery.value.Sequence objects and must either
throw an org.exist.xquery.XPathException or return a Sequence. Sequences are
also described in the XDM specification, and can basically be thought of as collec-

Internal XQuery Library Modules | 477

www.it-ebooks.info

http://www.w3.org/TR/xquery/#doc-xquery-OccurrenceIndicator
http://www.it-ebooks.info/

tions of zero or more atomic values and/or nodes. Each item in the Java array of
Sequence objects represents an individual parameter that was passed to your XQuery
function; even though these are Sequence objects, you will have already declared the
type and cardinality of the parameters for your function in its FunctionSignature
for the internal module.

Now let’s look at defining a function signature for a function that allows one person
to say hello to many other people. This function potentially needs to know:

o The name of the person who is saying hello.
o The names of the people she is saying hello to.

o We could also optionally allow the greeting to be customized so that instead of
saying “Hello,” she could say “Bonjour” or use any other desired form of greet-
ing.

If we imagine the function signature for such an XQuery function, it might look
something like:

h:say-hello(Sgreeter as xs:string, $greeting as xs:string?,
Svisitors as xs:string+) as xs:string+

Such a function could be called like so:

xquery version "1.0";
declare namespace h = "http://hello";

h:say-hello("adam", "Hi" ("Erik", "Simon"))
and we might expect to see a result similar to:
("Adam says Hi to Erik", "Adam says Hi to Simon")

Now that we know what we want our XQuery function to do and we know what the
signature should look like, we need to implement this in our internal module just as
we did before (in Example 16-14) by defining another FunctionSignature:

private final static QName gnSayHello =
new QName("say-hello", HelloModule.NS, HelloModule.NS_PREFIX);

public final static FunctionSignature FNS_SAY_HELLO = new FunctionSignature(
gnSayHello,
"Say \"hello world\"!'",
new SequenceType[] { (1)
new FunctionParameterSequenceType("greeter",

Type.STRING,

Cardinality.EXACTLY_ONE,

"The greeter, i.e. the name of the person that is saying 'hello'."

)s

new FunctionParameterSequenceType('"greeting",

478 | Chapter 16: Advanced Topics

www.it-ebooks.info

http://www.it-ebooks.info/

Type.STRING,
Cardinality.ZERO_OR_ONE,
"An optional greeting, if omitted then 'hello' is used."
),
new FunctionParameterSequenceType("visitors",
Type.STRING,
Cardinality.ONE_OR_MORE,
"The visitors, i.e. the names of the people that the greeter is
+ "saying 'hello' to."

)s

1,
new FunctionReturnSequenceType(Type.DOCUMENT,
Cardinality.ONE,
"The hello!"
)
);

As our new function takes parameters, we define an array of
org.exist.xquery.FunctionParameterSequenceType objects in our Function
Signature. You can see each of the parameters named, its type and cardinality
defined, and a description provided for documentation purposes.

Now that we have written a signature for our function, we can implement the actual
processing of the function. We can do this within the same class of our h:hello-
world function from Example 16-14 by simply checking for a different calling signa-
ture within our eval function, handling the parameters we are interested in, and then
executing our business logic. For example:

public Sequence eval(final Sequence[] args,
final Sequence contextSequence) throws XPathException {

final Sequence result;

//act on the invoked function name
if(isCalledAs(gnHelloWorld.getLocalName())) {
result = sayHelloWorld();

} else if(isCalledAs(gnSayHello.getLocalName())) { (1]
final String greeter = args[0].1itemAt(0).getStringValue(); (2]

final String greeting;
if(args[1].hasOne()) { ©
greeting = args[1].1itemAt(0).getStringValue(); (4]
} else {
greeting = "hello"; (5)
}

final List<String> visitors =
new ArraylList<String>(args[2].getItemCount());

Internal XQuery Library Modules | 479

www.it-ebooks.info

http://www.it-ebooks.info/

final Sequencelterator itVisitors = args[2].iterate(); (6]
while(itVisitors.hasNext()) {
final String visitor = itVisitors.nextItem().getStringValue(); (7]
visitors.add(visitor);

3

result = sayHello(greeter, greeting, visitors); (&)

} else {
throw new XPathException("Unknown function call: " +
this.getName().toString());
}
return result;
}
/**

* Says a greeting to many people
*
* @param greeter The name of the person saying the greeting
* @param greeting The greeting to use
* @param visitors The visitors to say the greeting to
*
* @return A sequence of greetings, one for each visitor
*/
private Sequence sayHello(final String greeter, final String greeting, (9]
final List<String> visitors) throws XPathException {
final Sequence results = new ValueSequence(); (10]

for(final String visitor : visitors) {
final StringValue result =
new StringValue(greeter + " says
results.add(result); ®

+ greeting + " to " + visitor); (1]
}

return results; ®

}

©® We add a switch on the name of our new function.

® From the first Sequence in the array, we extract the first item and get its string
value. This is the value of our greeter parameter. Note that while indexes in
sequences in XQuery start at 1, in Java they start at @.

©® As our second parameter, greeting, is optional, we first check whether an
xs:string value or an empty sequence was given.

O Ifavalue for the greeting parameter was given, we extract it.

480 | Chapter 16: Advanced Topics

www.it-ebooks.info

http://www.it-ebooks.info/

© If an empty sequence was used for the greeting parameter, we fall back to the
default greeting of hello.

©

As our third parameter, visitors, is a sequence of one or more values, we obtain
an iterator over the values.

We iterate over each visitor name from visitors and add it to our list of visitors.
We call our business logic, which generates a greeting for each visitor.

This is our isolated business logic, which will generate our greetings.

& 6 0 ©

We create a new ValueSequence to hold each of the greetings that we wish to
return to the XQuery.

e

We create a new StringValue, which represents an xs:string value to hold each
of our greetings.

We add our greeting to the value sequence.

We return the value sequence, which now contains each of our greetings as
strings. This is then returned to the XQuery by the eval method.

The source code for this example is included in the HelloModule code, as discussed
earlier. To compile and deploy the module, see “Using the Hello World Module” on
page 473. To test the example, execute the following XQuery from either eXist’s Java
Admin Client (see “Java Admin Client” on page 373) or eXide (see “eXide” on page
374):

xquery version "1.0";
declare namespace h = "http://hello";

h:say-hello("Adam", (), ("Elisabeth", "David"))
The result of the query should look similar to:

Adam says hello to Elisabeth

Adam says hello to David
You can experiment with providing different values for the second argument to the
function and observe how the results change.

We have now built an XQuery extension function in Java for our internal module
that can both accept multiple parameters of varying cardinality and return a sequence
of results. Every internal module extension function that is written for XQuery in
eXist follows this same pattern.

Internal XQuery Library Modules | 481

www.it-ebooks.info

http://www.it-ebooks.info/

There are many, many internal modules of extension functions already provided with
eXist, the vast majority of which are described at a high level in Appendix A. When
you are developing your own modules, these are excellent examples from which to
learn. You can find their source code in the folders $EXIST HOME/src/org/exist/
xquery/functions and $EXIST_HOME/extensions/modules/src/org/exist/xquery/
modules.

If you do choose to write your own internal module for eXist, we strongly recom-
mend reading both “Developing eXist” on page 483 and “Debugging eXist” on page 488,
which will assist you with developing and debugging the Java code of your module
running inside eXist.

Variable Declarations

While we have so far focused on defining functions within an internal module, you
can also declare variables that live within the namespace of the internal module. This
is most useful when your module wishes to expose a number of variables to XQuery
that either represent some static constants or confer some configuration information.

You can define variable declarations in the constructor of your module class that
extends AbstractInternalModule by calling the declarevariable method of the
super class. For example, consider a module that provides mathematical constants:

public class MathConstantsModule extends AbstractInternalModule {

protected final static String NS = "https://math/constants";
protected final static String NS_PREFIX = "mc";

public MathConstantsModule(
final Map<String, List<? extends Object>> parameters) {

super(functions, parameters);

final Variable piApprox = (1]

new VariableImpl(new QName("pi", NS, NS_PREFIX)); (2]
piApprox.setValue(new FloatValue(22f / 7f)); (3]
declareVariable(piApprox); (4)

final Variable speedOfLightApprox =
new VariableImpl(new QName("speed-of-light", NS, NS_PREFIX));
speedOfLightApprox.setValue(new FloatValue(1f / 299792458f));
declareVariable(speedOfLightApprox);

//...further variable declarations omitted for brevity

3

//...module body omitted for brevity

482 | Chapter 16: Advanced Topics

www.it-ebooks.info

http://www.it-ebooks.info/

© We create a new variable by instantiating an instance of org.exist.xquery.Vari
ableImpl.

® The variable must, of course, be named, but that name must reside within the
namespace of the internal module.

©® We set the value of the variable.
O We declare the variable within the internal module.

© We again create a variable, set its value, and declare it.

Module Configuration

You have probably noticed by now the parameters argument that is given to your
internal module class’s constructor. So far we have largely ignored this, and we sim-
ply pass it on to the super class’s constructor as required. When you configure eXist
to use your internal module in $EXIST HOME/conf.xml, you can also specify config-
uration parameters inside the module declaration, and these parameters will be
parsed, extracted, and passed in the parameters argument of your module’s con-
structor.

This is a rather simple configuration facility, and is the same used elsewhere for
scheduled tasks (see “Java Jobs” on page 441, “Startup Triggers” on page 446, and
“Java Triggers” on page 457). As well as those other mechanisms, which share the
same configuration semantics, the xslfo module (see xslfo) makes use of such
parameters and serves well as an example of how to do this for your own internal
modules.

Developing eXist

The eXist development community is always open to new contributors, beginners or
experts, from those who just want to fix a typo in the documentation to those who
want to reengineer the core storage of the database. Whatever your level of expertise,
all contributions are treated equally and follow the same process to reach acceptance.
eXist makes use of the fork and pull GitHub model of collaborative development.
Simply put, all contributors follow the same three steps:

1. Fork the eXist Git repository that you are interested in contributing to from
https://github.com/eXist-db to your own GitHub user/organization.
2. Make your changes within your fork (preferably using git-flow).

If you are modifying Java code, you must run eXist’s test suite (see the test entry
in Table 16-9) and check that there are no regressions.

Developing eXist | 483

www.it-ebooks.info

https://help.github.com/articles/using-pull-requests#fork--pull
https://github.com/eXist-db
https://github.com/nvie/gitflow
http://www.it-ebooks.info/

3. When you are happy with your completed changes, you send a pull request via
GitHub.

When you are adding new source code folders or JAR files to eXist,
it is important to make sure that each of the IDE project files is
updated to support your changes before sending a pull request.

Now, to be clear, all pull requests to eXist are evaluated by at least one member of the
eXist CDT (Core Development Team), each of whom has a responsibility to evaluate
and merge pull requests in a timely fashion. Even the members of the CDT are not
exempt from this process; they too must submit their changes by pull request and
have them merged by a (different) member of the CDT. Nothing is ever merged into
eXist without at least two people knowing about it and agreeing that it improves the
status quo. For full details of the development process employed by eXist, see https://
github.com/eXist-db/eXist#contributing-to-exist.

While simple bug fixes and updates are often obvious and easy to develop, more
complicated bug fixes or features should be openly discussed on the eXist-
development mailing-list. There are two main advantages to doing this:

Avoiding duplication
With each contributor communicating his intentions clearly, we can hopefully
avoid any duplication of work, as it is possible otherwise that two people may be
attempting to solve the same problem simultaneously!

Continuity
This ensures that proposed new features complement the community vision for
eXist. It is very unlikely that a new feature would be rejected outright; however,
there are often many ways to approach the same problem, and an open discus-
sion between peers can often bring new insights!

Should you have any pressing development concerns, or need to chase a pull request,
at the time of writing, the eXist CDT comprises Tobi Krebs, Wolfgang Meier, Leif-
Joran Olsson, Adam Retter, Dmitriy Shabanov, Joern Turner, Dannes Wessels, and
Lars Windauer, all of whom should be contactable through the eXist-open and eXist-
development mailing lists. The members of the CDT are not considered special in any
way; they are simply people who have made many contributions to eXist over time
and have a feeling for what eXist means. Anyone is very welcome to join the CDT if
they are willing to invest time to review and merge pull requests in the longer term.

On a more technical level, it is perhaps pertinent to mention here that eXist is written
almost entirely in Java, its XQuery parser is written in ANTLR v2, and it uses the
Apache Ant build system (although there is an embryonic effort underway to migrate

484 | Chapter 16: Advanced Topics

www.it-ebooks.info

https://github.com/eXist-db/eXist#contributing-to-exist
https://github.com/eXist-db/eXist#contributing-to-exist
http://www.antlr2.org/
http://ant.apache.org/
http://www.it-ebooks.info/

to Apache Maven). In addition, many add-ons for eXist (such as the dashboard and
demo applications) are written in HTML, JavaScript, and XQuery. The documenta-
tion for eXist is entirely authored in DocBook v5.

You can use any IDE or other text editor that you wish to when developing eXist, but
for convenience IDE project files can be found for NetBeans, Intelli], and Eclipse
inside $EXIST _HOME.

Each of the IDE projects is configured to build eXist, but note that
the Intelli] build configuration does not compile in the Aspect]
aspects that eXist uses for database and XQuery execution security
enforcement! Therefore, when eXist is run from IntelliJ it will run
with very few security constraints and will not be suitable for test-
ing database operations.

Building eXist from Source

As eXist is an open source project, it is fundamentally important that anyone should
be able to download the source code and compile their own version of it. The devel-
opers of eXist have gone to great lengths to ensure that the build process is simple for
all to use. Anyone can download the source code, compile it, and compare it with a
released version of eXist to make sure they are the same and that some nefarious per-
son or organization has not interfered with the software, which enables transparency.
Another nice outcome of having an easy-to-use build system is that any user can
compile eXist, for the purpose of either having the latest and greatest version in
advance of the next release, or contributing fixes or features back as a developer.

The eXist source code repository was recently moved from its previous home on
SourceForge to GitHub. It is laid out using the git-flow scheme; thus, all of the devel-
opment for the next release of eXist takes place in the develop branch, which is the
default branch for eXist. The master branch represents the latest stable release of
eXist; however, to be certain which version of eXist you will be working with, it is
simpler to use the correct tag. At the time of writing, the latest tagged release of eXist
was eXist-2.1. You will need to have Git installed if you wish to pull the latest
source code directly from GitHub; see http://www.git-scm.com to get an installer for
your platform. From the same website, there are also various GUI clients, such as
SourceTree.app and GitHub Client, available if you prefer a graphical interface. If
you are interested in reading further details on how eXist is developed and even
potentially contributing, see “Developing eXist” on page 483.

Developing eXist | 485

www.it-ebooks.info

http://maven.apache.org/
http://www.docbook.org
http://www.sourceforge.net/projects/exist
https://github.com/eXist-db/exist
http://nvie.com/git-model
http://www.git-scm.com
http://www.it-ebooks.info/

Not all aspects of the eXist project are on GitHub, only the source
code and issue tracker. The mailing lists and downloads of com-
piled releases remain at SourceForge for the time being. Whatever
the infrastructure of the project, links to the latest locations will
always be available from the eXist website.

The eXist source code is built with the Apache Ant build tool. eXist includes a copy
of the Ant runtime in its $EXIST_HOME/lib/tools/ant folder so that you do not need
to separately install it. eXist’s Ant build scripts are just a series of XML files and can
be found in $EXIST_HOME/build.xml and $EXIST_HOME/build/scripts. However,
rather than having you use them directly, eXist provides two executable scripts that
run Ant with the appropriate build scripts: $EXIST_HOME/build.sh (for Unix/
Linux/Mac platforms) and $EXIST_HOME/build.bat (for Windows platforms).

The settings for the build are configurable: take a look at
$EXIST_HOME/build.properties. This is particularly useful when
you are working in a corporate environment behind a proxy server,
as eXist may attempt to download some resources as part of the
build. You can configure this using the proxy settings in

build.properties.

When executing the build script, you can provide one or more targets that describe
which build action(s) you wish to take. There are many build targets available, some
of the most useful of which are described in Table 16-9. The table is followed by
Example 16-15, which demonstrates the typical sequence of building eXist from
source code.

Table 16-9. Useful eXist Ant build targets

Target Description
clean Removes all compiled code. Useful when you wish to do a clean recompile.
clean-all Similar to clean, but also deletes the database.
Use with care!
jar Compiles just the eXist source code into JAR files.
extension- Builds any extension modules that are defined and enabled in SEXIST_HOME/extensions/build.properties.
modules

(an be used by itself to compile in new extension modules to an existing installation.

wrapper Builds the Java Service Wrapper for eXist. See “Windows Linux and Other Unix” on page 407.

486 | Chapter 16: Advanced Topics

www.it-ebooks.info

http://sourceforge.net/p/exist/mailman/
http://sourceforge.net/projects/exist/files/Stable/
http://www.exist-db.org
http://ant.apache.org/
http://www.it-ebooks.info/

Target Description
sign Signs the built JAR files so that they may be used in a security-restricted environment such as Java Web

Start or a restricted application server.

all The default build target. Builds the eXist source code, the Java Service Wrapper, the betterFORM XForms
extension, the extension modules, and EXPath package support.

rebuild A useful shortcut when making changes and rebuilding; calls the targets clean and then all.

dist Builds a distribution of eXist. The result is a folder in SEXIST_HOME/dist that can be distributed to other
machines and installed.

There are also dist-zip and dist-tgz targets, which will create a ZIP file or tarball, respectively,
under SEXIST_HOME/dist for you to distribute to other machines and install.

dist-war (reates a WAR file in SEXIST_HOME/dist that can be deployed to any Java application server, such as
Apache Tomcat.
installer You can create installers for eXist, just like the binary releases provided on SourceForge. On completion

the installers can be found in SEXIST_HOME/installer.

However, this takes a little more effort, as you need to install the supporting tools IzPack 4.3.5 and
Launch4j. The paths to the supporting tools then need to be configured in SEXIST_HOME/
build.properties.

app Similar to installer, but specific to Mac OS X. Creates a self-contained application and packages it
in an Apple disk image (as a .dmg file). On completion, the disk image can be found in SEXIST_HOME/
dist.

There is also an app- signed target, which does the same as app but also signs the application. You
will, however, need a valid Apple developer certificate installed for this to work. For further details, see
https.//developer.apple.com/support/technical/certificates/.

test If you are making modifications to the eXist source code, it is essential to execute the test suite to
ensure that you have not introduced any regressions. The output of the test suite can be found in the
web page report located atSEXIST_HOME/test/junit/html/index.html.

Example 16-15. Typical sequence of building eXist from source code

git clone https://github.com/eXist-db/exist.git (1]
git checkout tags/eXist-2.1 (2]

./build.sh ©

© Clone the eXist source code from GitHub. If you are planning to contribute, you
should first fork the repository and then clone your own fork.

Developing eXist | 487

www.it-ebooks.info

http://izpack.org/
http://launch4j.sourceforge.net/
https://developer.apple.com/support/technical/certificates/
http://www.it-ebooks.info/

® Check out the eXist-2.1 release tag from the repository. You can view all avail-
able tags by running git tag -1.If you wish to track the latest version of eXist,
you need not check out a tag; instead, running git branch -a should show that
you are on the develop branch.

© Build the eXist source code. By default, this builds the all target.

Remember that while it is, of course, possible to make distributions
and installers for eXist from the source code, you can also work
with eXist in place. You do so by checking out the source code,
building it, and then running it directly by using
$EXIST _HOME/bin/startup.sh (or $EXIST_HOME/bin/startup.bat
on Windows), or even installing eXist as a service (see “Installing
eXist as a Service” on page 405). A major advantage of this
approach is that you can easily update to a newer version of eXist
by using Git to pull changes if you are tracking the develop branch,
or by checking out a newer release tag when it becomes available.

Make sure to back up your config and database before switching
branches with Git!

Debugging eXist

If you are using one of the IDEs for which eXist provides project files (NetBeans,
Intelli], and Eclipse), then these projects are already set up to enable you to debug
either the eXist Java Admin Client or the eXist server. It is also worth remembering
that you can debug the Java Admin Client in embedded mode, which can sometimes
provide a simple mechanism for debugging the database core without your needing
to run the full server.

However, if you are not using one of the supported IDEs or wish to debug eXist code
that is running on a remote server, then your only real option is to use the Java
Debugging Wire Protocol (JDWP). It is also worth mentioning that each of the sup-
ported IDEs functions as an excellent debugger when you’re debugging eXist
remotely. JDWP supports using a TCP/IP socket to communicate between the appli-
cation you are debugging and the debugger on all platforms; depending on how it’s
configured, you can also run this across a network. Between the application that you
wish to debug and the debugger, JDWP can work in either direction. That is, you can
start up the JVM running your Java application that you wish to debug as either:

o A JDWP server that will listen for connection requests from a debugger

o A JDWP client that will connect to a remote debugger

488 | Chapter 16: Advanced Topics

www.it-ebooks.info

http://www.it-ebooks.info/

To enable JDWP, where your Java application offers a JDWP server, pass the follow-
ing options to the JVM when you start your Java application:

-agentlib: jdwp=transport=dt_socket,server=y,suspend=n,address=127.0.0.1:4000

To enable JDWP, where your Java application connects using JDWP to a debugger,
pass the following options to the JVM when you start your Java application:

-agentlib: jdwp=transport=dt_socket,server=n,suspend=y,address=127.0.0.1:4005

The suspend parameter may be set to either y or n. When set to y (yes), it will cause
your Java application not to start running within the JVM immediately, but to wait
until a debugger connects to the application in server mode, or the Java application
connects to the debugger in client mode. This can be very useful with applications
like eXist where you may wish to debug the database startup process.

The address parameter will cause the JVM to listen on a specific IP address and TCP
port for JDWP requests in server mode, or to connect to a debugger listening on that
specific address and port in client mode. If you use the localhost address of
127.0.0.1, then the debugger must be running on the same machine. If you wish to
debug across the network, you need to specify the IP address of the server’s network
interface in server mode (or you can omit the IP address entirely to listen on all
server addresses), or the client’s IP address in client mode.

We have discussed the JDWP settings in the context of any Java application, as eXist
can be set up to run in many different ways, and you may need to add these options
to whichever mechanism you are using to start eXist on your local machine or server.
For further details, see http://docs.oracle.com/javase/7/docs/technotes/guides/jpda/
conninv.html#Invocation. However, if you are using the $EXIST HOME/client.sh
and/or $EXIST _HOME/startup.sh scripts to start eXist, then you can simply uncom-
ment the line that starts DEBUG_OPTS near the top of those files to have JDWP enabled
in server mode. Remember that you will have to restart eXist for these changes to
take effect.

Remote debugging with the NetBeans IDE

While any IDE or client that supports JDWP can be used as a debugger against the
Java code that makes up eXist, here we show how you can use the NetBeans IDE to
connect to eXist running as a JDWP server. Before continuing you must start eXist
running as a JDWP server, as discussed earlier.

eXist ships with project files for NetBeans, so you can simply go to the File->Open
Project menu item in NetBeans and select your $EXIST_HOME folder. Once the
project has loaded, you need to attach the NetBeans debugger to the eXist JDWP
server by choosing the Debug— Attach Debugger menu item (see Figure 16-7).

Developing eXist | 489

www.it-ebooks.info

http://docs.oracle.com/javase/7/docs/technotes/guides/jpda/conninv.html#Invocation
http://docs.oracle.com/javase/7/docs/technotes/guides/jpda/conninv.html#Invocation
http://www.it-ebooks.info/

® NetBeans File Edit View Navigate Source Refactor Run JBIIEN Profile Team Tools Window |

[N N:] il Debug Project (eXist-db trunk) #rs [
w1 [d B @ @ [jeuy 2 & | Debug File {385
P EE D E (DO B i oxrs
il Attach Debugger...

Pru)e:ts@l Files ‘ Services | Profiler
v @Eexislfdblmnk

= I

Finish Debugger Session {+F5 @

v [[F Core r
» [<default package>) Pause L

» [org.exist @ Continue F5 |a

Figure 16-7. NetBeans: opening the Attach dialog

This will bring up the Attach dialog box. Assuming that eXist is running on the same
machine as NetBeans and that you have used the default TCP port that eXist’s JDWP
settings are configured for (4000), you should set the following options in the dialog
(see Figure 16-8):

Debugger
Java Debugger (JPDA)

Connector
SocketAttach (Attaches by socket to other VMs)

Transport
dt_socket
Host
localhost
Port
4000
800 Attach
Debugger: | Java Debugger (JPDA) al
Connector: | SocketAttach (Attaches by socket to other VMs) &l
Transport: dt_socket
Host: [localhost |
Port: [4000]
Timeout [ms]: [|
[Hep | [ok | | cancel |

Figure 16-8. NetBeans: the Attach dialog

490 | Chapter 16: Advanced Topics

www.it-ebooks.info

http://www.it-ebooks.info/

After you click the OK button, NetBeans will attempt to connect its debugger to
eXist. All being well, you should initially see a confirmation that the debugger has
connected to eXist and a list of the running threads that make up eXist, as shown in
Figure 16-9.

[-NaNs] eXist-db trunk - NetBeans IDE 8.0 '
Jﬁaﬁ% HE v JOTEHDB G D00 EE&: +Gooer 0

(3| Projects | Files | Services | Profiler |Debugging & [()|
|, "DefaultQuartzscheduler_QuartzSchedulerThread' running
‘DefaultQuartzscheduler_Worker-1' running
‘DefaulQuartzScheduler_Worker-2' running
‘DefaultQuartzscheduler_Worker-3' running
‘DefaultQuartzscheduler_Worker-4' running
*eXistThread-26' running

“eXistThread-27" running

“eXistThread-28" running

‘eXistThread-29" running

‘eXistThread-30" running

“eXistThread-31' running

‘eXistThread-32" running

‘eXistThread-33" running

“eXistThread-34" running

“eXistThread-35" running

*HashSessionScavenger-0' running
*HashSessionScavenger-1' running
*HashSessionScavenger-2' running

‘net.sf.ehcache. CacheManager@a38b17e' running
‘org.eclipse Jetry.utl.RolloverFileOutp utstream' running
*Scanner-0° running

‘Scanner-1' running

e ot Varabie Outnut- Denugger Console € [

*xfTestConfigOneElementinMemory.data’ running Attaching to localhost:4
User program running

fclelatatatetetetatetalataletetalatalateteleate

& % BB e @ B

Figure 16-9. NetBeans: confirmation of attachment and list of running threads

From here you can perform all the typical Java debugging steps, such as setting
break-points in the eXist code, showing variable values, getting stack dumps, and
stepping through the running code, stack frame by stack frame. Java debugging in
itself is a huge and advanced topic ,and we do not presume to teach it here; however,
hopefully if you are an aspiring or advanced Java developer, we have provided you
with the information that you need to get started with debugging eXist’s code base.

Developing eXist | 491

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIXA
XQuery Extension Modules

This appendix provides an overview of the available XQuery extension modules in
eXist.

You might have noticed that in other chapters we’ve often mentioned and described
extension modules. For instance, “Controlling the Database from Code” on page 107
explains in part how to manipulate the database using the xmldb extension module.
This is because we think it is better to describe an extension module within its con-
text as much as possible. However, there are a lot of extension modules we haven’t
covered elsewhere, so we provide an overview here to assist you.

We won’t handle all the extension modules that come with eXist. As is often the case
with open source products, experiments creep in and are not removed. Some of the
modules seem to hold interesting functionality, but documentation is missing. And
some are very specialized and of interest only to a very small group of users. We
therefore took the liberty to describe only those modules that we thought would be of
general interest and for which at least some kind of documentation was available
(often just the information in eXist’s function documentation browser). Apologies to
all module creators whose modules we left out. If you think something we left out
deserves a place in this appendix, please drop us a line and we’ll try to rectify thisin a
future edition of the book.

What we also won’t do here is describe all functions in detail. eXist provides an
online function documentation browser, and we saw no reason to duplicate this
information; it would have made the book too heavy and the information would
probably soon be out of date. What we will do is provide you with a list of modules
available in the version of eXist (2.1) that this book was written for, tell you a little bit
about them, and provide examples when we think it is appropriate.

493

www.it-ebooks.info

http://www.it-ebooks.info/

Extension Modules by Category

This section contains a list of the extension modules discussed here, grouped by cate-
gory. Categorizing is always a bit arbitrary, but hopefully this will you help find the
module/functionality you’re looking for more quickly. The brief descriptions pro-
vided for each module give an indication of what they are used for or contain.

Core

These modules form a core of useful extension functionality that you would not want
to do without when working with XQuery in eXist:

Module Description

file Managing files and directories on the filesystem
http Performing HTTP requests as a client (EXPath)
httpclient Performing HTTP requests as a client (eXist native)
map map data type functions

request Handling HTTP requests

response Controlling the HTTP response

restxq Module for eXist's RESTXQ interface

restxqex Module for eXist's RESTQX resource function registry
session Functions for working with the HTTP session

sm Security Manager functions

system Information about eXist and the system environment

transform XSLT-related functions
util Utility functions
validation Validating XML

xmldb Core module for working with the database

Data Handling

Modules in this category provide additional data handling capabilities to eXist, such
as reading and writing of ZIP files, conversion to JSON, and image handling:

Module Description

compression Handling of ZIP, GZIP, and TAR files

exi Working with EXI (XML binary)

image Performing operations on images stored in eXist
jfreechart Generating charts using the JFreeChart library
json Transforming XML into JSON

494 | Appendix A: XQuery Extension Modules

www.it-ebooks.info

http://www.it-ebooks.info/

Module Description

jsonp Transforming XML into JSONP

zip Accessing resources in ZIP files

xqjson Serializing XML into JSON, and parsing JSON into XML
Data Type Extensions

These modules supply additional functionality for existing data types:

Module Description

datetime Date and time operations
exiftool Extracting EXIF data from binary files
math Mathematical functions
sequences Working with sequences

text Text-searching extension functions

xmldiff Comparing XML documents

Database Functionality

This category of modules enables additional database-related functionality, like cach-
ing, scheduling, and the repository manager:

Module Description

cache Systemwide global cache

counter Persistent counters

metadata Document key/value metadata functions
repo Working with the EXPath repository manager
scheduler Scheduling jobs

versioning Access to versioning extensions

Indexing

These are modules that work with indexes:

Module Description

contentextraction Indexing binary content

ft Querying Lucene’s full-text index
kwic Keywords in context

ngram NGram index—related functions
sort Indexes for efficient sorting

XQuery Extension Modules | 495

www.it-ebooks.info

http://www.it-ebooks.info/

Protocols/Interfaces

These modules enable access to various communication protocols and interfaces
from XQuery code:

Module Description

ftpclient Performing FTP requests as a client

jndi eXist NDI interface

matl Email-related functions

sql Database access using JDBC

Xmpp Access to the XMPP instant messaging protocol
XML Technologies

These modules provide access to additional XML technologies:

Module Description

xmlcalabash Access to the XML Calabash XProc module (experimental)

xslfo Rendering with XSL-FO

XQuery
These are modules that provide additional XQuery-related functionality:

Module Description
inspect Retrieving xqDoc information from XQuery modules

xqdm Retrieving xqDoc information from XQuery modules (XQuery 1.0 only)

Extension Module Descriptions

This section lists all the extension modules and tells you what they’re useful for,
sometimes providing a small example.

Every module starts with a table that has the following information:

Module name
Description
A (very) short description of the module.

496 | Appendix A: XQuery Extension Modules

www.it-ebooks.info

http://www.it-ebooks.info/

Namespace

The namespace for the module, including the preferred prefix. You can, of course,
decide to use a different prefix.

Type/default status

The type of the module (Java or XQuery), and whether it is enabled by default and
(for Java modules) built into eXist. Information about what this means exactly and
how to change it can be found in “Enabling Extension Modules” on page 128.

Class

The Java class name (for Java-based modules) or the location (for XQuery-based
modules) of the module.

cache

Description

Systemwide global cache

Namespace

cache="http://exist-db.org/xquery/cache"

Type/default status

Java; enabled in $EXIST HOME/conf.xml; enabled in $EXIST HOME/extensions/
build.properties

Class

org.exist.xquery.modules.cache.CacheModule

The cache extension module adds a systemwide global cache to eXist. It allows you to
create data that is not only sessionwide (for which you would use the session mod-
ule) but also systemwide. It adds true global variables to eXist, with all the benefits
but also the ugly dangers of global data.

The following example creates a cache (or gets a reference to it if it already exists) and
stores the current date/time in it. The cache:put function returns the previous value,
which we display alongside the new value:

let $Scache := cache:cache('test')
let $previous-value := cache:put('test', 'KEY', current-dateTime())
return

<cache previous="{$previous-value}" now="{cache:get('test', 'KEY')}"/>

If you run this example from different sessions (run it, close your browser, run it
again), you'll find that the value stored is retained: the now value from the first session
is the previous value in the second session.

XQuery Extension Modules | 497

www.it-ebooks.info

http://www.it-ebooks.info/

compression

Description

Handling of ZIP, GZIP, and TAR files

Namespace
compression="http://exist-db.org/xquery/compression"”
Type/default status

Java; enabled in $EXIST HOME/conf.xml; enabled in $EXIST HOME/extensions/
build.properties

Class

org.exist.xquery.modules.compression.CompressionModule
This module allows you to create and read ZIP, GZIP, and TAR compressed files.

Let’s take a ZIP file as example (GZIP and TAR work likewise). You can create a ZIP
file by calling compression:zip and feeding it a sequence of items to compress:

o If such an item is of type xs:anyURI, it is supposed to be the URI of a resource or
a collection. A collection is zipped in its entirety and its directory structure is
mimicked in the ZIP file.

o Ifit’s an entry element, its content is zipped. It takes three attributes:
— The name attribute is used as the path of the resource in the ZIP file.

— The type attribute tells the module how to interpret the contents of the entry
element. Possible values are collection, uri, binary, xml, and text.

— The optional method attribute tells the module whether the resource should be
compressed before being added to the ZIP file (the default) or simply stored
as is. (The latter is useful when, for instance, creating ebook files in ePub for-
mat, which requires a noncompressed Internet media type file.)

Here is an example that zips a part of the book’s examples and adds an extra XML
file:

let $stuff-to-compress as item()+ := (
xs:anyURI('/db/eXist-book/getting-started'),
<entry name="EXTRA/x.xml" type="xml">

<Extra> </Extra>
</entry>
)
let $file-uri := '/some/path/on/your/disk/out.zip'
let $zipfile := compression:zip($stuff-to-compress, true())
return

file:serialize-binary($zipfile, S$file-uri)

498 | Appendix A: XQuery Extension Modules

www.it-ebooks.info

http://www.it-ebooks.info/

contentextraction

Description

Indexing binary content

Namespace
contentextraction="http://exist-db.org/xquery/contentextraction”
Type/default status

Java; enabled in $EXIST HOME/conf.xml; enabled in $EXIST HOME/extensions/
build.properties

Class

org.exist.contentextraction.xquery.ContentExtractionModule

The contentextraction module is an absolute wonder! It allows you to extract text
content from binary resources like Word or PDF files, based on the Apache Tika
toolkit. Everyone who has ever coped with this problem knows how difficult, frustrat-
ing, and time-consuming it can be.

The Tika toolkit supports many formats. For instance, you can feed it an HTML page
and it will output well-formed and valid XHTML. Feed it a text file (in any character
encoding) and it will neatly create paragraphs from it. Other formats supported
include Microsoft Office, Open Document, PDF, ePub, RTF, mbox, and even the tex-
tual/metadata parts of audio, image, and video files (see the Tika website for details).

To use the contentextraction module, insert the following import module state-
ment in the prolog of your XQuery script:

import module namespace content="http://exist-db.org/xquery/contentextraction"
at "java:org.exist.contentextraction.xquery.ContentExtractionModule";

The module has three functions (use the XQuery Function Documentation app from
the dashboard to inspect them). The following code will return the metadata and
contents of a (recognized) binary file:

let $file := 'some/path/to/a/binary/file’

return
content:get-metadata-and-content(util:binary-doc($file))

An interesting use case of contentextraction is, of course, indexing using the full-
text index capabilities of eXist and allowing the user to search binary documents
stored in the database (read more about this in “Manual Full-Text Indexing” on page
301). For indexing large documents the third, somewhat complicated, function,
content:stream-content, comes in handy. There is an interesting content extraction
example in the eXist-db demo apps (available through the dashboard) that uses this.

XQuery Extension Modules | 499

www.it-ebooks.info

http://tika.apache.org
http://tika.apache.org
http://www.it-ebooks.info/

counter

Description

Persistent counters

Namespace
counter="http://exist-db.org/xquery/counter"
Type/default status

Java; enabled in $EXIST HOME/conf.xml; enabled in $EXIST HOME/extensions/
build.properties

Class
org.exist.xquery.modules.counter.CounterModule

This module adds eXist global persistent counters. It allows you to count things and
keep the results across sessions and database restarts.

datetime

Description

Date and time operations

Namespace

datetime="http://exist-db.org/xquery/datetime"

Type/default status

Java; disabled in $EXIST HOME/conf.xml; enabled in $EXIST HOME/extensions/
build.properties

Class

org.exist.xquery.modules.datetime.DateTimeModule

This module has functions for working with dates and times, like parsing strings into
dates, counting days in a month, and creating date/time ranges. It can also format
dates/times into more user-friendly strings. Much of its functionality has already
been superceded by newer (more portable) modules.

exi
Description
Working with EXI (XML binary)

500 | Appendix A: XQuery Extension Modules

www.it-ebooks.info

http://www.it-ebooks.info/

Namespace
exi="http://exist-db.org/xquery/exi"
Type/default status

Java; disabled in $EXIST HOME/conf.xml; enabled in $EXIST HOME/extensions/
build.properties

Class
org.exist.xquery.modules.exi.ExiModule

This module allows encoding and decoding XML into/from the Efficient XML Inter-
change (EXI) format. EXI is a binary format for XML data.

exiftool

Description

Extracting EXIF data from binary files

Namespace
exiftool="http://exist-db.org/xquery/exiftool"
Type/default status

Java; enabled in $EXIST HOME/conf.xml; enabled in $EXIST HOME/extensions/
build.properties

Class
org.exist.exiftool.xquery.ExiftoolModule

This module extracts EXIF data from binary files—for instance, photos shot with a
modern digital camera. It relies, however, on the presence of Perl at /usr/bin/perl.

file

Description

Managing files and directories on the filesystem
Namespace
file="http://exist-db.org/xquery/file"
Type/default status

Java; enabled in $EXIST HOME/conf.xml; enabled in $EXIST HOME/extensions/
build.properties

Class

org.exist.xquery.modules.file.FileModule

XQuery Extension Modules | 501

www.it-ebooks.info

http://www.w3.org/XML/EXI
http://www.w3.org/XML/EXI
http://www.cipa.jp/exifprint/index_e.html
http://www.it-ebooks.info/

This module allows you to work with files and directories on the filesystem (outside
the database). There are functions like file:mkdir, file:move, and file:serialize
(in several variants). You need DBA privileges to use it.

For Windows, passing file and directory names to functions in the
file module can lead to some odd behavior. This only seems to
work when you do not specity the file:// prefix, only use backslashes
as the path separator, and always start the name with a backslash
(e.g., \C:\test\erik\test.xml instead of file://c:/test/erik/test.xml).

ft

Description

Querying Lucene’s full-text index

Namespace
ft="http://exist-db.org/xquery/lucene"
Type/default status

Java; enabled in $EXIST HOME/conf.xml

Class

org.exist.xquery.modules. lucene.LuceneModule

This module provides access to Lucene’s full-text index results. How to do this is
described in “Searching with the Full-Text Index” on page 292.

ftpclient

Description

Performing FTP requests as a client

Namespace
ftpclient="http://exist-db.org/xquery/ftpclient"
Type/default status

Java; disabled in $EXIST _HOME/conf.xml; enabled in $EXIST _HOME/extensions/
build.properties

Class
org.exist.xquery.modules.ftpclient.FTPClientModule

This module allows you to use eXist as a client against an FTP server. You can read
and write (binary) files and get directory listings.

502 | Appendix A: XQuery Extension Modules

www.it-ebooks.info

http://www.it-ebooks.info/

http

Description

Performing HTTP requests as a client (EXPath)
Namespace
http="http://expath.org/ns/http-client"
Type/default status

Java; enabled in $EXIST HOME/conf.xml

Class

org.expath.exist.HttpClientModule

This is a module that allows you to send out HTTP requests according to the EXPath
HTTP Client module specifications (refer to http://www.expath.org/modules/http-
client/ and http://www.expath.org/spec/http-client). The functions expect an XML
fragment that contains the specification of the request and returns an XML fragment
with its results.

For instance, the following example fires an HTTP GET request at the local eXist
REST interface (see “Querying the Database Using REST” on page 94). The result is a
directory listing of /db:

let Shttp-request-data := <request xmlns="http://expath.org/ns/http-client"
method="GET" href="http://localhost:8080/exist/rest/db"/>
return
http:send-request(Shttp-request-data)

The result is another XML fragment that provides you with the result and all the
HTTP properties surrounding this:

<http:response xmlns:http="http://expath.org/ns/http-client"
status="200"
message="0K">
<http:header name="date" value="Tue, 20 Nov 2012 14:49:55 GMT"/>
<http:header name="set-cookie"
value="JSESSIONID=1jkifx0ip6jin6kswi®n96q54;Path=/exist"[>
<http:header name="expires" value="Thu, 01 Jan 1970 00:00:00 GMT"/>
<http:header name="content-type" value="application/xml; charset=UTF-8"/>
<http:header name="last-modified" value="Tue, 25 Sep 2012 08:15:31 GMT"/>
<http:header name="created" value="Tue, 25 Sep 2012 08:15:31 GMT"/>
<http:header name="transfer-encoding" value="chunked"/>
<http:header name="server" value="Jetty(8.1.3.v20120416)"/>
<http:body media-type="application/xml"/>
</http:response>
<exist:result xmlns:exist="http://exist.sourceforge.net/NS/exist">
<exist:collection name="/db" created="2012-09-25T10:15:30.686+02:00"
owner="SYSTEM" group="dba" permissions="rwxr-xr-x"s

XQuery Extension Modules | 503

www.it-ebooks.info

http://www.expath.org/modules/http-client/
http://www.expath.org/modules/http-client/
http://www.expath.org/spec/http-client
http://www.it-ebooks.info/

<exist:collection name="eXist-book" created="2012-09-05T10:03:28+02:00"
owner="admin" group="dba" permissions="rwxr-xr-x"/>
<!-- Etc. -->
</exist:collection>
</exist:result>

eXist also contains an HTTP Client module of its own (see the next section). Both
modules have roughly the same functionality, but if you're ever going to do cross-
platform XQuery programming, the EXPath one is the better choice.

httpclient

Description
Performing HTTP requests as a client (eXist native)

Namespace
httpclient="http://exist-db.org/xquery/httpclient"
Type/default status

Java; enabled in $EXIST HOME/conf.xml; enabled in $EXIST HOME/extensions/
build.properties

Class

org.exist.xquery.modules.httpclient.HTTPClientModule

This module allows you to send out HTTP requests as if eXist were a client. It has
functions like httpclient:put and httpclient:get. All functions return an exten-
sive XML fragment with details of the request’s response. An example of using the
httpclient:post function can be found in “POST Requests” on page 98.

eXist also contains an EXPath-conformant HTTP Client module (see http). Both
modules have roughly the same functionality, but if you're ever going to do cross-
platform XQuery programming, the EXPath one is the better choice.

image

Description

Performing operations on images stored in eXist
Namespace
image="http://exist-db.org/xquery/image"
Type/default status

Java; enabled in $EXIST_HOME/conf.xml; enabled in $EXIST_HOME/extensions/
build.properties

504 | Appendix A: XQuery Extension Modules

www.it-ebooks.info

http://www.it-ebooks.info/

Class

org.exist.xquery.modules.image.ImageModule

This module has functions for performing various operations on images stored in
eXist, like requesting their metadata, width, and height. It can also crop and scale
images and do bulk thumbnail conversions.

Most functions take the image as xs:base64Binary for input. Converting is easy: use
the util:binary-doc function. The following example tells you the height of an
image stored in eXist:

let $image-uri as xs:anyURI := xs:anyURI('/db/some/path/to/an/image/file")

return
image:get-height(util:binary-doc($image-uri))

There is also an example of using this module in “RESTXQ” on page 353.

inspect

Description

Retrieving xqDoc information from XQuery modules
Namespace
inspect="http://exist-db.org/xquery/inspection"
Type/default status

Java; enabled in $EXIST HOME/conf.xml

Class
org.exist.xquery.functions.inspect.InspectionModule

This module allows you to inspect XQuery modules and their xqDoc documentation.
More about this can be found in “XQuery Documentation with xqDoc” on page 125.

jfreechart

Description

Generating charts using the JFreeChart library

Namespace
jfreechart="http://exist-db.org/xquery/jfreechart"
Type/default status

Java; enabled in $EXIST _HOME/conf.xml; enabled in $EXIST_HOME/extensions/
build.properties

XQuery Extension Modules | 505

www.it-ebooks.info

http://www.it-ebooks.info/

Class

org.exist.xquery.modules. jfreechart.JFreeChartModule

This module allows you to create all kinds of beautiful pie, bar, and other fancy charts
using the JFreeChart library.

jndi

Description

eXist JNDI interface

Namespace
jndi="http://exist-db.org/xquery/jndi"
Type/default status

Java; enabled in $EXIST HOME/conf.xml; enabled in $EXIST HOME/extensions/
build.properties

Class
org.exist.xquery.modules. jndi.INDIModule

This module is an interface for XQuery to use the Java Naming and Directory Inter-
face (JNDI).

json

Description

Transforming XML into JSON

Namespace

json="http://www.json.org"

Type/default status

XQuery; enabled in $EXIST HOME/conf.xml

Location

resource:org/exist/xquery/lib/json.xq

This module transforms (data-centric) XML into straightforward JSON. The module
contains a number of functions, but the main entry point is json:xml-to-json. The

rules for the JSON conversion are the same as those used in the JSON Serializer (see
“JSON serialization” on page 121). For an alternative, see also xqjson.

506 | Appendix A: XQuery Extension Modules

www.it-ebooks.info

http://www.jfree.org/
http://www.json.org/
http://www.it-ebooks.info/

jsonp

Description

Transforming XML into JSONP

Namespace

jsonp="http://www.jsonp.org"

Type/default status

XQuery; enabled in $EXIST HOME/conf.xml

Location

resource:org/exist/xquery/lib/jsonp.xq

This module transforms (data-centric) XML into JSON, which is wrapped inside a
named JavaScript function. This usage pattern is known as JSONP. The module con-
tains a number of functions, but the only really useful one is its main entry point,

jsonp:xml-to-jsonp. The first argument is the XML node to convert to JSON, and
the second is the name to use for the JavaScript function wrapper.

kwic

Description

Keywords in context

Namespace

kwic="http://exist-db.org/xquery/kwic"

Type/default status

XQuery; enabled in $EXIST HOME/conf.xml

Location

resource:org/exist/xquery/lib/kwic.xql

This module allows you to easily show fragments of text found in full-text or NGram

search operations. The module is described in “Using Keywords in Context” on page
297.

XQuery Extension Modules | 507

www.it-ebooks.info

http://www.json.org/
http://www.it-ebooks.info/

mail

Description

Email-related functions

Namespace
mail="http://exist-db.org/xquery/mail"
Type/default status

Java; enabled in $EXIST HOME/conf.xml; enabled in $EXIST HOME/extensions/
build.properties

Class

org.exist.xquery.modules.mail.MailModule

This module allows you to send and receive email messages using the Java mail libra-
ries. The following example shows sending a message through a straight SMTP server
(without required authorization):

let Sreceiver-email := 'your@email.address'
let $smtp-server := 'your.smtp.server.address'
let $message :=
<mail>
<from> </from>
<to>{$receiver-email}</to>
<subject> </subject>
<message>
<text> {current-dateTime()}</text>
<xhtml>
<html>
<head>
<title> </title>
</head>
<body>
<hi> </h1>
<p> {current-dateTime()}</p>
</body>
</html>
</xhtml>
</message>
</mail>
let $props :=
<properties>
<property name="mail.smtp.auth" value="false"/>
<property name="mail.smtp.port" value="25"/>
<property name="mail.smtp.host" value="{$smtp-server}"/>
</properties>

let $session := mail:get-mail-session($props)

508 | Appendix A: XQuery Extension Modules

www.it-ebooks.info

http://www.it-ebooks.info/

return
mail:send-email($session, $message)

map
Description

map data type functions

Namespace
map="http://www.w3.0rg/2005/xpath-functions/map"
Type/default status

Java; enabled in $EXIST HOME/conf.xml

Class

org.exist.xquery.functions.map.MapModule

This module supports the map data type, as described in “The map data type proposed
for XQuery 3.1” on page 116.

math

Description

Mathematical functions

Namespace

math="http://exist-db.org/xquery/math"

Type/default status

Java; enabled in $EXIST HOME/conf.xml; enabled in $EXIST _HOME/extensions/
build.properties

Class

org.exist.xquery.modules.math.MathModule

This module includes various mathematical functions like sin, pi, and exp.

This module is now deprecated by the math functions from the
namespace http://www.w3.0rg/2005/xpath-functions/math as
defined by the XPath and XQuery Functions and Operators 3.0
specification.

XQuery Extension Modules | 509

www.it-ebooks.info

http://www.w3.org/TR/xpath-functions-30/
http://www.w3.org/TR/xpath-functions-30/
http://www.it-ebooks.info/

metadata

Description

Document key/value metadata functions
Namespace
md="http://exist-db.org/metadata"

Type/default status

Java; enabled in $EXIST HOME/conf.xml; enabled in $EXIST HOME/extensions/
build.properties

Class

org.exist.storage.md.xquery.MetadataModule

This module incudes functions for associating key/value metadata pairs with a docu-
ment, rerieving key/value pairs associated with documents, and searching for docu-
ments based on key/value pairs.

While useful, the metadata module should be considered highly
experimental and not yet ready for production use.

For example, say you wish to store a key/value pair of metadata for the docu-
ment /db/my-docs/docl.xml. You can do this as follows:

xquery version "1.0";
import module namespace md = "http://exist-db.org/metadata";

md:set-value(doc("/db/my-docs/docl.xml"), "roll-number", 12345)

Each time you set a metadata key/value pair, you are also returned a UUID (univer-
sally unique identifier) that represents the intersection of document, key, and value.

You can find all of the metadata keys set for a document like so:
xquery version "1.0";
import module namespace md = "http://exist-db.org/metadata";

md:keys(doc("/db/my-docs/docl.xml"))

And you can retrieve the document(s) with the metadata key roll-number and the
value 12345 like this:

510 | Appendix A: XQuery Extension Modules

www.it-ebooks.info

http://www.it-ebooks.info/

xquery version "1.0";
import module namespace md = "http://exist-db.org/metadata";

md:document-by-pair("roll-number", "12345")

Other available functions in the metadata module include md:set-value-by-url,
md:uuid, md:uuid-by-url, md:document-by-uuid, md:keys-by-url, md:get-value,
md:get-value-by-url, md:search, and md:delete.

ngram

Description

NGram index-related functions

Namespace
ngram="http://exist-db.org/xquery/ngram"
Type/default status

Java; enabled in $EXIST HOME/conf.xml

Class
org.exist.xquery.modules.ngram.NGramModule

This module supports using an NGram index in XPath queries. Use of this module is
explained in “Using the NGram Indexes” on page 280.

repo
Description

Working with the EXPath repository manager

Namespace

repo="http://exist-db.org/xquery/repo"

Type/default status

Java; enabled in $EXIST HOME/conf.xml

Class

org.exist.xquery.modules.expathrepo.ExpathPackageModule

This module allows you to manage the local EXPath package repository of your eXist
installation. The package repository manages external packages (.xar archives), which

can include everything from third-party XQuery libraries to full applications or other
XML technology functionality.

XQuery Extension Modules | 511

www.it-ebooks.info

http://www.it-ebooks.info/

The module distinguishes between installation and deployment steps. This is because
although the installation process is standardized by the EXPath packaging specifica-
tion, the deployment step is not. It is implementation-defined and specific to eXist-
db. Installation will register a package with the EXPath packaging system, but will not
copy anything into the database. Deployment will deploy the application into the
database as specified by repo.xml.

The packaging mechanism and this module are described in “Packaging” on page
227. Background information is available at http://exist-db.org/exist/apps/doc/
repo.xml.

request

Description

Handling HTTP requests

Namespace
request="http://exist-db.org/xquery/request"
Type/default status

Java; enabled in $EXIST HOME/conf.xml; enabled in $EXIST HOME/extensions/
build.properties

Class
org.exist.xquery.functions.request.RequestModule
This module provides functions to handle an HTTP request in XQuery, like finding

out the URI and the parameters. It is described in “The request Extension Module”
on page 209.

response

Description

Controlling the HTTP response

Namespace
response="http://exist-db.org/xquery/response"
Type/default status

Java; enabled in $EXIST HOME/conf.xml

Class

org.exist.xquery.functions.response.ResponseModule

512 | Appendix A: XQuery Extension Modules

www.it-ebooks.info

http://exist-db.org/exist/apps/doc/repo.xml
http://exist-db.org/exist/apps/doc/repo.xml
http://www.it-ebooks.info/

This module allows you to control the HTTP response in XQuery—for instance, by
setting headers or streaming binary data. It is described in “The response Extension
Module” on page 211.

restxq

Description

Module for eXist’s RESTXQ interface
Namespace
restxq="http://exquery.org/ns/restxq"
Type/default status

Java; enabled in $EXIST HOME/conf.xml; enabled in $EXIST HOME/extensions/
build.properties

Class
org.exist.extensions.exquery.restxq.impl.xquery.RestXgModule

This module supports eXist’s RESTXQ interface. For more information, see “Build-
ing Applications with RESTXQ” on page 215.

restxqex

Description

Module for eXist’s RESTXQ resource function registry

Namespace

restxgex="http://exquery.org/ns/restxq/exist"

Type/default status

Java; enabled in $EXIST HOME/conf.xml; enabled in $EXIST HOME/extensions/
build.properties

Class

org.exist.extensions.exquery.restxq.impl.xquery.exist.ExistRestXgModule

This module is specific to eXist and provides some reporting and control over the
registration of RESTXQ resource functions with eXist’s implementation of the
RESTXQ resource function registry. For more information, see “Building Applica-
tions with RESTXQ” on page 215.

XQuery Extension Modules | 513

www.it-ebooks.info

http://www.it-ebooks.info/

scheduler

Description

Scheduling jobs

Namespace
scheduler="http://exist-db.org/xquery/scheduler"
Type/default status

Java; enabled in $EXIST HOME/conf.xml; enabled in $EXIST HOME/extensions/
build.properties

Class

org.exist.xquery.modules.scheduler.SchedulerModule

The scheduler module allows you to run a job (for instance, an XQuery script) at
regular intervals. For instance, starting a script that will run five times at a 10-second
interval is done with this call (for details, please refer to the module documentation):

scheduler:schedule-xquery-periodic-job('/path/to/your/script.xq', 10000,
'JobName', (), 0, 5)

Jobs can be stopped, paused, and examined. Calling scheduler:get-scheduled- jobs
may surprise you by showing that there are quite a few system jobs running that you
weren’t aware of.

Jobs scheduled with the scheduler module are not persisted across
restarts of the database. If you wish to create persistent scheduled
jobs, you need to add them to the scheduler configuration section
of $EXIST_HOME/conf.xml as well.

If your job doesn’t seem to run or does not behave as you expect,
consult the $EXIST_HOME/webapp/WEB-INF/logs/exist.log file.
For more information on eXist’s scheduler, see “Scheduled Jobs”
on page 435.

sequences

Description

Working with sequences
Namespace

sequences="http://exist-db.org/xquery/sequences"

514 | Appendix A: XQuery Extension Modules

www.it-ebooks.info

http://www.it-ebooks.info/

Type/default status

XQuery; enabled in $EXIST_HOME/conf.xml
Location
resource:org/exist/xquery/lib/sequences.xq

This module includes utility functions for working with sequences like filter and
fold.

session

Description

Functions for working with HTTP sessions
Namespace
session="http://exist-db.org/xquery/session"
Type/default status

Java; enabled in $EXIST HOME/conf.xml

Class

org.exist.xquery.functions.session.SessionModule

The HTTP session is a piece of memory that is allocated by the Java
application server underlying eXist and associated with a series of
requests from a single client. So that the Java application server can
identify each request from a client as belonging to the same ses-
sion, a unique identifier is generated and given to the client. This is
expected to be sent back to the server on each request. This identi-
fier may take the form of an HTTP cookie or a parameter in the
HTTP URL query string; either way, it will be named JSESSIONID.

A session can contain data that is kept alive between requests. Access to a session is
provided through this module. It is described in “The session Extension Module” on
page 211.

sm

Description

Security Manager functions
Namespace

sm="http://exist-db.org/xquery/securitymanager"

XQuery Extension Modules | 515

www.it-ebooks.info

http://www.it-ebooks.info/

Type/default status

Java; enabled in $EXIST HOME/conf.xml

Class

org.exist.xquery.functions.securitymanager.SecurityManagerModule

This module is for managing eXist’s security settings. You can, for instance, check

whether you have access to a resource by calling sm:has-access. More about security
can be found in Chapter 8.

sort

Description

Indexes for efficient sorting

Namespace
sort="http://exist-db.org/xquery/sort"
Type/default status

Java; enabled in $EXIST HOME/conf.xml
Class

org.exist.xquery.modules.sort.SortModule

The sort module lets you create (global, systemwide) indexes to speed up sorting
(with order by clauses) on nodes in FLWOR expressions. This works only for nodes
stored in the database, not nodes in temporary, in-memory XML fragments.

As an example, assume we have an XML document stored in our database that looks
like this:

<NodeSet>
<Node>a</Node>
<Node>B</Node>
<Node>c</Node>
<Node>D</Node>
<Node>e</Node>
<Node>F</Node>

</NodeSet>

Not terribly interesting and not at all difficult or time-consuming to sort, but it serves
the purpose of illustrating how a sort index works. Assume we want to sort the Node
elements based on the uppercase value of their contents, using a sort index. To do
this we first have to create a function that converts the node to sort into an atomic
value. In this case:

516 | Appendix A: XQuery Extension Modules

www.it-ebooks.info

http://www.it-ebooks.info/

declare function local:sort-callback($node as node()) as xs:string {
upper-case(normalize-space($node))

IH
Now we can create the index using this function:

let $node-set as element()+ := doc('/db/path/to/nodeset/document')/*/Node

let $index-id as xs:string := 'SORTINDEX'
let $sort-index := sort:create-index-callback(
$index-1id,
Snode-set,
local:sort-callback#1,
O
)

With this we’ve created a sort index for our nodes with identifier SORTINDEX. The
sort:create-index-callback always returns the empty sequence (). Its fourth
argument can be an XML fragment for specifying the sort order and what to do with
empty values:

<options order? = "ascending" | "descending"
empty? = "least" | "greatest"

Using the created sort index in a FLWOR expression is easy:

for $node in $node-set
order by sort:index($index-id, $node)
return

string($node)

This returns the expected:
aBcbDeF

Once created, a sort index is available globally, systemwide. All queries, in any ses-
sion, can access it. So, if you need sort indexes in your application, it would be best to
create them in some kind of initialization script. If you want to check whether a sort
index exists, use sort:has-index.

sql

Description

Database access using JDBC

Namespace
sql="http://exist-db.org/xquery/sql"
Type/default status

Java; enabled in $EXIST _HOME/conf.xml; enabled in $EXIST_HOME/extensions/
build.properties

XQuery Extension Modules | 517

www.it-ebooks.info

http://www.it-ebooks.info/

Class
org.exist.xquery.modules.sql.SQLModule
This module allows you to access SQL databases from eXist using the Java Database

Connectivity (JDBC) API. Find more information at http://atomic.exist-db.org/
HowTo/SQLDatabases/.

system

Description

Information about eXist and the system environment

Namespace

system="http://exist-db.org/xquery/system"

Type/default status

Java; enabled in $EXIST HOME/conf.xml

Class

org.exist.xquery.functions.system.SystemModule

This module contains several utility functions for working with eXist and the system

environment. For instance, you can use it to get the memory settings, the eXist ver-
sion, and a list of running XQueries, and to shut down the database.

text

Description

Text-searching extension functions

Namespace

text="http://exist-db.org/xquery/text"

Type/default status

Java; enabled in $EXIST HOME/conf.xml

Class

org.exist.xquery.functions.text.TextModule

This module contains several functions for searching in and working with text—for

instance, finding all matches to a regular expression. Many of these functions work
together with the full-text index.

518 | Appendix A: XQuery Extension Modules

www.it-ebooks.info

http://atomic.exist-db.org/HowTo/SQLDatabases/
http://atomic.exist-db.org/HowTo/SQLDatabases/
http://www.it-ebooks.info/

transform

Description

XSLT-related functions

Namespace
transform="http://exist-db.org/xquery/transform"
Type/default status

Java; enabled in $EXIST HOME/conf.xml

Class
org.exist.xquery.functions.transform.TransformModule

This module allows you to perform XSLT transformations within your XQuery code.
It is described in “XSLT” on page 238.

util

Description

Utility functions

Namespace

util="http://exist-db.org/xquery/util"

Type/default status

Java; enabled in $EXIST HOME/conf.xml

Class

org.exist.xquery.functions.util.UtilModule

This module comprises a miscellaneous collection of functions for performing all

sorts of not easily categorized tasks; for instance, creating UUIDs, dynamically setting
XQuery options, and various type conversions.

validation
Description
Validating XML
Namespace

validation="http://exist-db.org/xquery/validation"

XQuery Extension Modules | 519

www.it-ebooks.info

http://www.it-ebooks.info/

Type/default status

Java; enabled in $EXIST HOME/conf.xml

Class
org.exist.xquery.functions.validation.ValidationModule

This module is for validating XML against DTDs, XML schemas and/or RELAX NG
schemas, and Schematron. It is described in “Validation” on page 246.

versioning

Description

Access to versioning extensions

Namespace
versioning="http://exist-db.org/versioning"
Type/default status

XQuery; enabled in $EXIST_HOME/conf.xml; enabled in $EXIST_HOME/extensions/
build.properties

Location
resource:org/exist/versioning/xquery/versioning.xqm
This module provides access to eXist’s versioning extension. This provides basic ver-

sioning capabilities for resources stored in the database. The versioning extension is
described in Chapter 16.

xmlcalabash

Description

Access to the XML Calabash XProc module (experimental)
Namespace

calabash="http://xmlcalabash.com"

Type/default status

Java; enabled in $EXIST HOME/conf.xml; enabled in $EXIST _HOME/extensions/
build.properties

Class
org.exist.xquery.modules.xmlcalabash.XMLCalabashModule

This is an experimental module for running XProc pipelines with the XML Calabash
implementation. It registers a single function called process.

520 | Appendix A: XQuery Extension Modules

www.it-ebooks.info

http://xmlcalabash.com/
http://xmlcalabash.com/
http://www.it-ebooks.info/

This module doesn’t follow the normal pattern for Java modules: it does not register a
default namespace prefix. Youll have to add import module namespace
xmlc="http://xmlcalabash.com"; at the top of your script (which is good practice
anyway) to be able to call xmlc:process.

xmldb

Description

Core module for working with the database

Namespace

xmldb="http://exist-db.org/xquery/xmldb"

Type/default status

Java; enabled in $EXIST HOME/conf.xml

Class

org.exist.xquery.functions.xmldb.XMLDBModule

This module contains all the base functions for working with the database: exploring

the database content, creating collections and resources, logging in, and so on. More
information is available in “Controlling the Database from Code” on page 107.

xmldiff

Description

Comparing XML documents

Namespace
xmldiff="http://exist-db.org/xquery/xmldiff"
Type/default status

Java; enabled in $EXIST HOME/conf.xml; enabled in $EXIST _HOME/extensions/
build.properties

Class
org.exist.xquery.modules.xmldiff.XmlDiffModule

This module allows you to compare two XML documents with the xmldiff:compare
function. It only returns whether the documents are equal (not a difference list).

XQuery Extension Modules | 521

www.it-ebooks.info

http://www.it-ebooks.info/

Xxmpp

Description

Access to the XMPP instant messaging protocol
Namespace
xmpp="http://exist-db.org/xquery/xmpp"
Type/default status

Java; disabled in $EXIST HOME/conf.xml; disabled in $EXIST HOME/extensions/
build.properties

Class
org.exist.xquery.modules.xmpp.XMPPModule

This module is an XQuery interface to the Extensible Messaging and Presence Proto-
col (XMPP) used for instant messaging, chatting, and so on.

xqdm

Description

Retrieving xqDoc information from XQuery modules (XQuery 1.0 only)

Namespace

xqdm="http://exist-db.org/xquery/xqdoc"

Type/default status

Java; enabled in $EXIST HOME/conf.xml

Class

org.exist.xqdoc.xquery.XQDocModule

This is an older implementation of the XQuery documentation system xqDoc, as

described in “XQuery Documentation with xqDoc” on page 125. It only works with
pure XQuery 1.0 modules and does not support XQuery 3.0.

Xgjson

Description

Module for serializing XML into JSON, and parsing JSON into XML.
Namespace

xqjson="http://xqilla.sourceforge.net/1lib/xqjson"

522 | Appendix A: XQuery Extension Modules

www.it-ebooks.info

http://xmpp.org
http://xmpp.org
http://www.it-ebooks.info/

Type/default status

XQuery; installable as an EXPath package.

Location
xmldb:///db/system/repo/xqjson-0.1.5/content/xqjson.xql

This module provides a different approach to conversion to/from JSON by introduc-
ing a custom XML grammar for representing a parsed JSON document. The two
main functions of interest are xqjson:serializejson and xgjson:parse-json. You
can find further details about the module and its XML grammar on the XQJSON Git-
Hub page.

xslfo

Description

Rendering with XSL-FO

Namespace
xslfo="http://exist-db.org/xquery/xslfo"
Type/default status

Java; enabled in $EXIST HOME/conf.xml; enabled in $EXIST HOME/extensions/
build.properties

Class
org.exist.xquery.modules.xslfo.XSLFOModule

This module provides access to eXist’s XSL-FO capabilities. This is described in full
in “XSL-FO” on page 252.

zip

Description

Accessing resources in ZIP files

Namespace
zip="http://expath.org/ns/zip"
Type/default status

Java; enabled in $EXIST HOME/conf.xml
Class

org.expath.exist.ZipModule

XQuery Extension Modules | 523

www.it-ebooks.info

http://www.json.org/
https://github.com/joewiz/xqjson
https://github.com/joewiz/xqjson
http://www.it-ebooks.info/

This module allows you to read resources from ZIP files using the standard EXPath
functions for this; for further information, see http://expath.org/spec/zip.

524 | Appendix A: XQuery Extension Modules

www.it-ebooks.info

http://expath.org/spec/zip
http://www.it-ebooks.info/

APPENDIX B
REST Server Processes

eXist’s REST Server offers a great deal of functionality from a relatively simple APL
This chapter tries to illustrate the various process (decision) flows evaluated by the
REST Server when you make HTTP requests of it, so that you may better understand
their actions. We do this through a series of diagrams linked to the different request

types.

We also examine the optional and mandatory parameters that can be used with the
REST Server to modify requests and responses.

www.it-ebooks.info

http://www.it-ebooks.info/

GET Process Flow

GET Request

Has Session

Parameter? Points to Stored

Resource?

Get Cached No No Yes
Results

URI Path
Points to

XQuery or
XProc Resource?

Has Complled
Query?

No Yes
v v
Compile and Get Cached XProc Stored
Cache Query Query
Yes No
o)
Set Query v L Yes L
» Context to DB Wite Collection Write Error ¥ Write out
Path from URI Listing to to Response Resource
l' Response
— Has Source
Execute Query No Parameter? Yes
XQuery ¥)4

Is XQuery or
XProc Resource?,

Allowed to
Show Source?

Has Cache
Parameter?

Yes

(ache Results

Execute Pipeline

L, (Write Results
to Response

Write XProc rlte Out Source) (Write Errort
Result to of Resouce Response
Response

Figure B-1. Process flow for HTTP GET requests in the REST Server

526 | Appendix B: REST Server Processes

526
www.it-ebooks.info

http://www.it-ebooks.info/

HEAD Process Flow

HEAD Request

URI Path
Points to Stored
Resource?

URI Path
Points to Resource
or Collection?

Has Parent
XQuery Stored
Resource?

No >

Yes

Has Compiled
Query?

No Yes Resource Collection
¥ r ¥ . ¥
Compile and Get Cached Get Resource
(ache Query Query Metadata v
l Get (ollgction
Set Query Set Metadata
» Contextto DB Content-Length
Path from URI Header
AA 4
Execute Query (Set)
— Content-Type
Header
)
Set Created
Header
Set
Last-Modified
Header
v

A4
Write Headers ; Write Error to
(to Response) Write Response (Response)

Figure B-2. Process flow for HITP HEAD requests in the REST Server

REST Server Processes | 527

www.it-ebooks.info

http://www.it-ebooks.info/

PUT Process Flow

Has Parent

PUT Request

URI Path
Points to Stored
Resource?

URI has
Collection and

XQuery Stored
Resource?

Yes

Has Compiled
Query?

Yes

v

f Get Cached)
Query

No

v

Compile and
(ache Query

EE)

Set Query
Context to DB
Path from URI

v

)
Execute Query
R

v

Write results
to Response

No
Resource Paths?

Yes

Get Collection
Path from URI
Path

Collection
Exists?

No

v

Create
Collection(s)

Yes

Get Resource

Path from URI
Path

Get Internet
Media Type for
Resource

XML or Binary
Internet Media
XML

A4

Binary

Store XML
Resource

v Vv

Write Created
Response

¥
Store Binary
Resource
v
Write Error to
Response

Figure B-3. Process flow for HTTP PUT requests in the REST Server

528 | Appendix B: REST Server Processes

www.it-ebooks.info

http://www.it-ebooks.info/

DELETE Process Flow

DELETE
Request

URI Path
Points to Stored
Resource?

URI Path
Points to
Collection?

Has Parent
XQuery Stored
Resource?

No >

Yes

Yes Delete Delete
Resource Collection

Yes No

URI Path
Points to
Resource?

HasCcompiled
Query?

No Yes

v ¥ No
[Compile and] f Get Cached

Cache Query Query

J

(con)
Set Query
Context to DB
Path from URI

h 4

)
Execute Query
~—

v A 2 4

A 4
Write Results Write Error to Write
to Response Response Response

Figure B-4. Process flow for HITP DELETE requests in the REST Server

REST Server Processes | 529

www.it-ebooks.info

http://www.it-ebooks.info/

POST Process Flow

POST Request

URI Path
Points to Stored
Resource?

XQuery or XProc

XQuery or
XProc Resource?

No

Has Form
Encoded Body?

XProc XQuery No Yes
¥
[?o GET
t
Has Completed Has Query eques!
Query? Body?
No
No Yes
* (‘ 3\ H S .
Compile and Get Cached as Session
[e L)] Query forameter? Has XUpdate
J Body?
Set Query
» Contextto DB b o
Path from URI Yes
~ - \ ‘ SeOUpiate
ontext to
|Execute Pipelinel Execute Query [Gegegiﬁ{‘fd] Path from URI

PR N Apply XUpdate
+ 7 HasCache >

bd
| ~ _ Parameter?
S .,
~
~

4

(]

4]
| CacheResults
[}

-——q--" No
A4 v
Write XProc |_. Write Results Write XUpdate Write Error
Result to to Response Result to to Response
Response

Response

Figure B-5. Process flow for HTTP POST requests in the REST Server

530 | Appendix B: REST Server Processes

www.it-ebooks.info

http://www.it-ebooks.info/

The boxes in the flowchart with dotted outlines (“Has cache Parameter?” and “Cache
Results”) indicate that these steps are only considered when an XQuery is POSTed to
the REST Server API, and not when a stored query is invoked using a POST request to
the REST Server API.

REST Server Parameters

Next we detail the parameters available for use when you are making requests to
eXist’s REST Server.

Note that several of the parameters are similar for GET and POST requests. Parameters
are always written lowercase; however, when they are used in the query of a URL for
an HTTP GET request they are also prefixed with an _ (underscore) character.

HTTP GET Parameters

The parameters detailed here can be used in the query string of a URL when you are
performing an HTTP GET.

When placing values into query parameters you may need to URL-
encode them, depending on the HTTP client that you are using.
Many HTTP clients (such as web browsers) will auto-encode the
parameters. If you are using Java’s java.net.URLConnection, how-
ever, you should be aware that it does not auto-encode the parame-
ters, and you will need to encode each value with
java.net.URLEncoder.

Many client and server applications have a limit on the amount of
data that can be placed into the URL query string, so if you are
making complex queries you should consider using POST instead of
GET. For more information, see “HTTP POST Parameters” on page
536.

For clarity, the query parameter values in Table B-1 are shown before encoding.

REST Server Processes | 531

www.it-ebooks.info

http://www.it-ebooks.info/

“pauInyal
buraq synsas [je u1 3nsas A|dwis 1M SNS1 J|GR|IRAR JO JSQWINU 3y} UBY) J3)ealh
Jaquinu e buisq “a1ow 1o T Jo anjea Jabajul ue aq pnoys Jaaweled ayp Jo anjea ay|

‘wisjueyaw buibed e 31ean £]1sea 0} 11831 Y}M UOIRUIGUIO) U]
or=Aueumoy 3>/q/p/=A1anb™; /u01323770> pasn aq os[e ued SIy| *(Swal Jo duaNbas e suinyas K13nb 3y 41) K13nb a3 wouy pauinlal
-Aw/qp/31sa1/1s1x9/0808:1soy1ed0)//:diqy 3 pnoys synsai Auew moy a1edipuj 01 Jar3weled A1anb e yym uoieUIqwod Ul pasp

‘)neap Aq 8- 41N $3sN ISIX3 *(9T - 4.LN “H°3) 3Yr ok

fq papoddns buipodua J3peiey e Jo aweu 3y} 3q pinoys Jaraleled 3y} Jo Inje Yy

9T -41n=bu1podus gapou-Aw//=K1snb™; /uo1123770> "JU3WINIOP |NSal 3y}
-Aw/qp/3s91/351%3/0808:3s0y1ed01//:d33y 10} 13Z1[eu3s 3y Aq pasn 3 pinoys 1ey} buipodua Japeiey ayy Adads 03 pasn aq ue)

*0u J0 S9A J3Y3 3¢ pnoys Jarawesed ay Jo anjeA ay|

‘PI-UO1SSIS-X Japeay asuodsal

dL1H Y2 U1 osje pue ‘ou 0 135 Jou S| J31oweied deam 3y Ji (opS dbed uo Jewwelb X
deim,, 335) 3INQUIIL UOLSSDSP/ITNSDI 1 3S1XD 3y Ul PAUINIAL SI (]| UOISS3S dY |
*s153nbal Juanbasgns ul asn 0} pasu NoA YDIYM ‘gf Loissas e paubisse ale synsal paype)

“J3MRS Y}

U0 AIOWW W01 S)NS3I S} 9AOWAI 01 SA 01 135 J91aweied 9S8 9 3y Yum 1sanbal

J3ypoue axew pnoys nof ‘A1anb payped e yum paysiul a1e nok NuQ “sabed ul synsas

U3 3A31131 LAY} pue “duo A13nb e 31n2axa ApuanIya 01 nof 3)geus 0} siarawesed

Auewmoy pue ‘3Je3S ‘U01SSS Y} Yum sisanbal bujwiopad Ajpuanbasqns

saf=ayded>79>/q/p/=A1anb™; Juo13153770> U3YM [nJasn AJjeadsa st s1y] "Wy Ul K1I3nDYX aY1 Jo SNSI 3y 3YPe) 01 JAAIS
-Aw/qp/31sa1/1s1x2/0808:1soy1ed0)//:diqy 1§34 3y PAsu ued Jajawesed siy} “J9aweled AIaNb e yym uoneuIquIod Ul pasp

9|dwex3 uondusag

ssarpuivivd Lianb TYN 14D d.ILH '1-4 21991

Auewmoy

buipoous

ayoed

REST Server Processes

Appendix B:

532

t-ebooks.info

http://www.it-ebooks.info/

SaA=92>1n0s™ ;Auanbx Aianb-Aw
/U011221102-AW/qp/1S91/1S1X3/0808: 150y 1207 //:d1ay

Or=Aueumoy RIT=31JB1S B/=U01SSdS ¢ /U01123]710D
-Aw/qp/31sa1/1s1x9/0808:1soy1ed0)//:diqy

/=95ed19J” gsaA=ayded yapou
-Aw//=A13nb™ ¢ /qp/1sa1/151x3/08A8:31s0y)1ed01//:da1y

>/q/p/Kisnb™ ¢ [uo1152110>
-Aw/qp/31sa1/1s1x9/0808:1soy1ed0)//:diqy

safA=1uspul gapou-Aw//Kienb™; Juo131237700
-Aw/qp/31sa1/1s1x9/0808:1soy1ed0)//:diqy

9|dwexj

*0u J0 S3A J3YY3 3¢ pnoys Jajawesed ay Jo anjeA ay|

"PalIsaP J1 SISeq 324n0S31-Aq-324N0S3I B UO Pa|qeUd 3q UBD INg ‘X i03disap
/IWOH™1SIX3$ 311 uonenblyuod 3y} ut pajgestp st A)jeuomduny siyy ‘ynejap £g

)1 3JN29X3 URY) Jayyes A13NDY Y3 0 3P0D 32AN0S Y IAIIA)
0} S9A 01135 3q U Ja3awesed sjy} ‘Juawnd0p A1NYY Palols e buissaippe uaym

“13)3wesed ay>oed 3y} buisn apew 1sanbai snoiaaid e o3 asuodsal
AU Ul 1SIXD AQ pauInal] UOISSIS Payped e g pynoys Ja1awesed Y} Jo anjea ay|

‘pasn
sem Jajaweled ayoed ay) 31aym K1anb snoiaaid e Jo synsal 3y} AJ3uapi 03 pasn aq ue)

*f13nb enui
U JO JINS3I Y1 Ul PauUINI3I (] UOISSS PayIed 3y 3q pjnoys Jaratuesed aya Jo anjea ay

“f1anb e Jo
S}NS3J P3YILD AU} 3SLI|3I 0} PAsN 3¢ Ue) Jajaweled S1y] “Payded ale JIAIIS [S3Y 3y} Aq
SUOIINIAX3 AIANDY PUe Yiedy JO SHNS3I 3y} ‘SK 0} 135 I Jalaweled YD ay) U3y

13D ue 3q pjnoys Ja3aweied ay} 4o anjea y|

"l Y1 Aq paredipur uor3|[03 10 Juwndop
3yp s1 K13nDY Y1 J0 1X3U0D [eRIUI BY] "3INIAX3 03 K13nQ) ue dpinoid 0} pasn 3q ue)

*0u J0 S3A J3Y3 3¢ pnoys Jarawesed ay Jo anjeA ay]

"JUaWNOP 3|nsaJ 3y Jo buniewioy ay) 03 uoneuapul A|dde 0y Jazife1as Ay} SNASY|

uondisaq

92JN0Ss

uo1ssos

oSe9al

A1anb

Juapul

533

REST Server Processes

t-ebooks.info

http://www.it-ebooks.info/

ou=deum gapou-Aw//=K1anb~; Juo1123]710>
-Aw/qp/31s91/1s1x9/0808:1soy1ed0)//:diqy

<$3]1GD1JDA/><3]GD1IDA
/><d@2uanbas :xs /><an]DA: XS />aN] DA
awos<,buiriys:sx,=adA}
an]DA:XS><aduanbas : xs><awpub /><awbu]DO0]
/>JDA - AW<dWbU] DD0] ><dWpub><3)qD1IDA><,p3Z1]1D113S
/SadA3/Aianbx
/b10°qp-151x3//:d11y, =XS :SUTWX
.1S1X3/SN/33uabiof
3534nos *31s1xa//:d131y, =sujux
$21GD1JDA>=Sd\qe1JRA™ (AJanbx Aianb - Aw
/U011281102-AwW/qp/1S91/1S1X9/0808:31s0y1ed01//:d1ay

saA=padAy gepou-Aw//=Kisnb™ ¢ Juo1158]170>
-Aw/qp/31sa1/1s1Xa/0808:1soy1ed01//:diay

Ir=1Jeis 32/q/p/=Aienb™ ¢ Juo13123770>
-Aw/qp/1s91/1s1x9/0808:150y 301 //:d11y

9|dwexj

*0U 10 SA J3Y1Id 3q pjnoys Jaaweied y) Jo anjea ay|

"3y 0U sey Jajaulesed siy) ‘sapRNQY Palods bunndaxa pue buissaippe

Ajpau1p uay “buiddem yeyy 3jqesip 03 nok smojje sawesed siyj “0pS abed uo , Jewwelh

TX deim,, u pagudsap se “Juawndop X ue ut paddeim aq [jim A13nQy ayp Jo 3nsal
3y yneyap Aq ‘s93owesed Aaanb 3y} buisn Aq 9IS |SIY 9y3 03 SaU3Nb buipuas uaym

"1s3nbas 130 e uey Jaypes (9¢6 abed uo ,siaweiey 1S0d dLLH, 995)
159nba1 1S0d d11H ue jo Med se siyy puas 03 Jajdwis Yopnuw 3q ued 3 “Juawndop JNX

ue buiaq sa13weled 3y} o anjeu 3y 01 anq "OpS abed uo Jewwelb X S9|qeLIRA, Ul INO

135 Se S3|qeLeA 3y} bujureiuod Juawndop X Ue 3q pjnoys Jajawesed 3y} jo anjea y|

*£13nQY pal0ls e bupndaxa pue buissaippe
Apa1p ybnoayy Jo Jaroweed AISNb e YyM UORRUIGWIOD U] J3YM “IXIU0 JIIRIS
130D 3y} 03Ul puiq 03 SAN|RA 3|qRIBA [RUIDIXD DIOW 10 U0 pIAoid 0} pasn 3q ue)

"0U Jo S3K J3Y3 3q pInoys Jaraweled ay Jo anje ay|

“JU3WNIOP 3|NS3J Y3 JO SIUIWII Y} 03 uoijewoul buidAy
ppe 03 J3zijewds K13nb ay3 pnuisul 03 Ja3awesed A1snb e yym uoieUIGWOD Ul Pas(

‘Auewmoy
=> S]NSaJ <= 1Je1S WOJj pajejndjed s duInbasqns
NS4 3y "240W J0 T J0 3njeA J3b3jul ue 3q pinoys Jalawesed 3y) Jo (e 3y

“wsjueydaw buibed e 31ealn 0) AuBWMOY YIIM UOIIRUIGIO) Ul Pasn AjjeaidA)
SI'SIYL *(SWay Jo duINb3s e suInjas A13nb 3y} J1) 33uanbas Jnsa 3y UIYHM woly synsal
BuiuInga peys 03 aJaym 33edIpu; 0} Ja3aweled AI3Nb e y3IM UOIIRUIGWIOD UT Pas)

uondisaq

deum

sa1qe1Jea

padAy

14e31s

REST Server Processes

Appendix B:

534

www.it-ebooks.info

http://www.it-ebooks.info/

115x°3123ysalAls
-Aw/qp/=1SX gapou-Auw//=K1snb™; /uo11238]710>
-Aw/qp/31sa1/1s1x9/0808:1soy1ed0)//:diqy

apou-Aw//=yredx ¢ /uo1123710>
-Aw/qp/31sa1/1s1x9/0808:1soy1ed0)//:diqy

9|dwexj

“JUIXJU03/WOH ~LSIX7S 311} UOINRINBIIU0Y 3y} U P3|qRUa 3¢ 0S[e 03 SPA3U SIY}
18U 310U ‘suondNAsul buissaroad Tsx Jo buissadold ajgeus oy buisn uay “aseqeiep ay}
U1 3U3WNI0p [TSX Ue 03 yied e 1o ‘ou ‘s Jaynia aq pnoys Jaiawesed ay) Jo anjeA ay|

“Juswndop
}Nsal 3y} 0} uofyewojsues} 115X nads e Ajdde 0} Jo ‘Jazijelsas ayy Aq Juswndop
nsal 3y} uf suondNAsul buissazoid 15y o buissadoad 3y} 3|qesip/a|qeus o} pasn aq ue)

“f13npy ue
10 YRy Ue JayI9 1dadde ued yiym “1a3awesed A1anb 3y Jo J0Ae) Ul paredasdap Si siyL

“U0ISSaIdXa Yiedy ue aq pjnoys
Ja)3wesed 3y} Jo an[eA Y] "[yn Ay} AQ PaeIIPUI UOII||03 0 JUWINIOP Y} S| YIedy 3y}
J0 1X3)U0 3y “)NI3X3 0} Yyedy ue apiaoid 03 Ty e Jo burs Aianb ayy ur pasn aq ue)

uondisaq

1SX

yaedx

535

REST Server Processes

t-ebooks.info

http://www.it-ebooks.info/

HTTP POST Parameters

When making an HTTP POST request to eXist’s REST Server, you can send an XML
document in the body describing an XQuery to be executed and parameters to con-
trol the execution and serialization of results. In many ways this is very similar to the
process described in the previous section, but it uses POST and an XML document as
opposed to GET and URL query parameters.

The XML grammar describing the XML document that can be sent in the body of an
HTTP POST to the REST Server is as follows:
<exist:query xmlns:exist="http://exist.sourceforge.net/NS/exist

start? = number
max? = number

cache? = ("yes" | "no")

session? = string

typed? = ("yes" | "no")

(wrap = ("yes" | "no") | enclose = ("yes" | "no"))?

encoding? = string
method? = string>
(exist:text,
exist:variables?,
exist:properties?)
</exist:query>

The attributes on the exist:query element are documented in Table B-2, while the
exist:text, exist:variables, and exist:properties elements are documented

further in “text XML grammar” on page 540, “variables XML grammar” on page 540, and
“properties XML grammar” on page 540, respectively.

536 | Appendix B: REST Server Processes

www.it-ebooks.info

http://www.it-ebooks.info/

<Aienb:jsixa/>
<3x@d3:3s51Xd/><[[
apou-Au//
1v1vad]i><3x®3:351X3>
<,9T-41n,=bu1podus
,1S1X8/SN/38u 9b104ed1n0s *3s1xa//:1d13y, =3S1Xd:SU WX AJanb:jsixa>

<Aianb:jsixa/>
<IX23:351X3/><[[
apou-Aw//
1vivan]i><3axa3:3s1xa>
<,0U,=35072Ud
,3S1x8/SN/318u"ebiogedinos 31sixa//:d13y,=3s1xa:sujux AJanb:lsixa>

<fianb:3sixa/>
<Ix23:351X3/><[[
>/q/e/
1vlvan]i><3axa3:3s1xa>
<,Sok =ayded
,1S1X8/SN/38u 9b104801n0s *3s1x8//:d11Yy, =3S1Xd:SU WX AJanb:jsixa>

9|dwex3

“Jnejap £q 8- 41N
S9SN 151X *(9T - 41N “H3) 3Yyr 4nok £q panioddns buipodud
J3PRIRY B JO JWRU 3y} 3G pjnoys Jajawesed 3y} Jo anjea ay|

“JU3WNIOP J|NS31 3y} 10} J3z1[euds 3y} Aq pasn
3 pInoys 1ey buipodua Jameleyd ay Ayads 03 pasn aq ue)

“13)9weled deJm 3y} 4o Joaey uj paredaIdap s siy)
"0U Jo S3K 13Y3 3q pjnoys Jaraweled 3y Jo anjea ay]

"PD3yd ou sey Jarawesed siy) ‘sauaNQY palols bunndaxa pue
buissasppe Ajalip usayp “buiddeim 1eyy sjqesip 03 noA smojje
1319weed siy] “0pS 9bed uo Jewweih X deim, Ui paquIsap
Se “JuaWndop TN ue ul paddeim aq [|1m A1anDX 3y Jo

}|Nsal Y3 }nejap Aq ‘13AIAS 1S3y Ay} 03 Sauanb Huipuas uaym

*0U 10 SA J3Y}Id 3q pjnoys Jaaweied y) Jo anjen ay|

"PI-UOLSSIS-X Japeay asuodsal 4] |H Y3 ul os|e pue

‘0u 0} 135 Jou S| Jajawesed deam ay) Ji (opS abed uo ,Jewwesb
WX deim,, 33s) AInquIIe UO1LSSISP/INSDI:1SLXD

3U) Ul pauIn3al S|] UoIssas Y “sisanbal Juanbasqns uj

35N 01 PAsU NOA YPIYM ‘@ Uoissas e paubisse ale synsal paype)

"sabed ul snsaJ 3y} IA3LI1RI LAY pue

‘3u0 £13nb e 33naxa Apuapiya 01 nof 3jqeus 0} s1a1awesed
XBW pUe ‘3J831S ‘U01SSIS Y} YuMm sisanbas bujwiopad
Ajpuanbasgns uaym [nyasn A|enadsa i siy) “Wyy ul A1anDy ays
J0 S){NSJ 3Y) 3YILD 03 JAAIIS [STY Y} 1PNIAISUI 0] PAsn 3q ue)

uondusag

sia1ouvivd Apoq jsanbat 1SOd dILH ‘2-9 2191

buipoous

9S015Ud

ayoed

537

REST Server Processes

t-ebooks.info

http://www.it-ebooks.info/

<Kio9nb:3s1xa/>
<Ix@3:351Xd/><[[
>/q/e/
lvivao]i><axa3:3s1ixa>
<,0T,=Xeuw
WTT.=34e3s
./ ,=U01SS3s
,1S1x8/SN/3auebiogedinos 3s1xa//:d31y,=1Ss1x9:sulwx Asanb:isixa>

<Aianb:jsixa/>
<3x@3:3s51x9/><[[
>/q/e/
1v1vad]i><3xe3:351X3>
<,uos(, =poy3au
,1S1X8/SN/38u eb104edun0s *3s1xa//:1d13y, =3S1xd:SuU wx AJanb:jsixa>

<fio9nb:3sixa/>
<IX@3:3s51Xd/><[[
>/a/e/
1v1van]i><1xa3:3s1xa>
<,0T,=xeu
13STX@/SN/33u"9610430n0s *3s1x3/ /1 d1ay, =3s1X3:sUux KJanb:3sixe>

9|dwexj

“19)aweled aysed 3y} buisn
apew 1sanbai snoiaaid e 03 asuodsal ayy ul IsIx3 Aq pauinial
(1] UOISS3s Payed e 3q pjnoys Jajawesed 3y} jo anjeA y|

"pasn sem Jajaweled aysed ay)
313ym £1anb snoiaaud e Jo synsal 3y Ajuap! 03 pasn aq ue)

3%93 10 ‘uos(‘S 1wy 1wy
WYX “LWX JAYY 3q JSnw Jaawesed 3yl Jo anjeA 3y|
*Lz1 9bed uo ,uonezijeuas NOSI, 99s ISIX Aq pasn TWX

J0 JeWI0) UoIRZI[eLIAs NOSI 3y} 104 “£ianb 3y} o s)nsal ayy
U0 POYIdW UO1RZI[eLIdS YIS B 3sn 0} 13zI[RUAS Y} SPNIISU|

‘poyraw 4azijeuas paijddns ayy
buisn pazijeuas 3q 03 A13nb 3y} Jo S3Nsal 3y sasned i AAanpy
ue buiA|ddns uaym 3sanbas 1S0d e Jo Apoq ayp ul pasn aq ue)

"pauinyas butaq synsai e ur ynsal Ajdwis [j1m synsas
3[qe|1eAR J0 J3qUINU 3y} Uey) Ja1ealb Jaquinu e buisy alow
10 T J0 anjea J3bajur ue aq pinoys Jaawesed ayp Jo anjea ay|

“wsjueypaw

buibed e 33ean A]1sea 03 3121S YIIM UOIRUIGUIOD U] PAsn

30 0S[e UB) SIy “(Sway Jo 3uanbas e suinyas A1anb ayy j1)
£13nb 3y} woay pauIn}al 3q pnoys synsas Auew moy sajedIpu|

uondisaq

uol1ssas

poyzau

xXeu

REST Server Processes

Appendix B:

538

t-ebooks.info

http://www.it-ebooks.info/

<Aianb:jsixa/>
<3X93:351Xd/><[[
apou-Au//
1v1vaD]i><3xe3:351X3>
<,ou, =deim
,3S1X8/SN/3au"abliogedunos 3s1xa//:d13y,=3s1xa:sujwx AJanb:isixa>

<Aianb:3sixa/>
<3x93:3s1xa/><[[
apou-Auw//
1v1vad]i><3xa3:3s1Xa>
<, soA =padAy
,1S1x8/SN/3au ebiogedinos 3s1xa//:d31y,=1S1x9:sulwx Asanb:isixa>

<fianb:3sixa/>
<IX@3:3S51Xd/><[[
>/a/e/
1v1van]i><31xa3:3s1xa>
<,TT7,=3Je3s
13STX3/SN/33u"9640430n0s *3s51x3/ /1 d1ay, =3s1X3:sUux KJanb:3sixe>

9|dwexj

"0U Jo S3K 13Y}d 3q pInoys Jajaweled ay) Jo anje ay|

"1D3JJ9 ou sey Jarawesed siy) ‘sauaNQy palols bunndaxa pue
buissaippe Ajpaup uayp “buiddesm 1eyy ajgesip 03 nok smojje
1319wesed siy| “0pS 9bed uo Jewweih X deim, ui paquIsap
Se “Juawndop X ue ul paddem aq ||1m K13nQY 3y3 Jo

3|Nsal Y3 }nejap Aq ‘19AIAS 1Sy Y3 03 sauanb Huipuas uaym

"0U Jo S3K J3Y3 3q pInoys Jaraweled 3y Jo anje ay|

*JUBWNIOP J|NSA Y JO SYUBWI[D
3y} 0} uonew.opu; buidAy ppe 03 Jazijelas K13nb ayy spnIsu|

‘Xew
=> s}1NnsaJ

<= 1Je1S WoJ) paje|nd|ed S| Uanbasqns Jnsal ay| “dlow
10 T J0 anjea Jab3jul ue 3q pnoys Jalawesed 3y} Jo anjea ay|
"wsjueyIW

buibed e 31ean 01 xew yym uoneuiquiod uj pasn AjedidAy si
SIYL *(Sway o duanbas e suinal A13nb ayp 1) 33uanbas ynsal
U} UIYMM WOJJ SYNS3J BujuInIaI 1elS 01 313YM SIRIIPU]

uondisaq

deum

padAy

14e31s

539

REST Server Processes

t-ebooks.info

http://www.it-ebooks.info/

Common XML Grammars for Parameters

This section details some of the common XML grammars used in GET and POST oper-
ations.

wrap XML grammar

The XML grammar describing the result document returned by the REST Server
when the wrap request parameter is not set to no is formatted as follows:

<exist:result xmlns:exist="http://exist.sourceforge.net/NS/exist"
hits = number
start = number
count = number
session? = string>
any*
</exist:result>

properties XML grammar

The XML grammar for the properties request parameter has this format:

<exist:properties>
(exist:property+)
</exist:properties>

<exist:property
name = string
value = string/>
text XML grammar

The XML grammar for the text request parameter has this format:

<exist:text><![CDATA[
(: Your XQuery code here! :)

1]1></exist:text>

variables XML grammar

The XML grammar for the variables request parameter has the following format,
and you can see it in context in Example B-1:

<exist:variables xmlns:exist="http://exist.sourceforge.net/NS/exist">
(exist:variable+)
</exist:variables>

<exist:variable xmlns:sx="http://exist-db.org/xquery/types/serialized"s>
(exist:gname,
sX:sequence)

</exist:variable>

540 | Appendix B: REST Server Processes

www.it-ebooks.info

http://www.it-ebooks.info/

<exist:qname>
(exist:prefix?,
exist:localname,
exist:namespace?)

</exist:qname>

<sx:sequence>
(sx:value+)
</sx:sequence>

<sx:value type? = string>
(text() | element())
</sx:value>

Example B-1. variables XML document

<variables xmlns="http://exist.sourceforge.net/NS/exist"
xmlns:sx="http://exist-db.org/ xquery/types/serialized"s
<variable>
<gname>
<localname>my-var</localname>
</qname>
<sx:sequence>
<sx:value type="xs:string"ssome value</sx:value>
</sx:sequence>
</variable>
<variable>
<gname>
<localname>author</localname>
<namespace>http://book/example/</namespace>
</qname>
<sx:sequence>
<sx:value>
<firstName xmlns=
</sx:value>
<sx:value>
<lastName xmlns=
</sx:value>
</sx:sequence>
</variable>
</variables>

>Adam</firstName>

>Retter</lastName>

www.it-ebooks.info

REST Server Processes

541

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Index

Symbo's annotations
() (empty sequence), 103 consumes constraint, 224
{} (curly braces), 239 function, 418 .
|| (string concatenation operator), 114 method constraint, 218-222
parameter, 225-227
A path constraint, 223
roduces constraint, 224

absolute versus relative paths, 92 %ESTXQ and. 115. 217-227
access control entries (see ACEs) XQuery 3.0 1’1 4 3’5 4
j;é(;.ass control lists (slee A(;Ls) Ant build tool, 379, 399

; (a:c;:;s;ontro entries) Apache Directory Studio, 172

about,

Apache log4j, 385

Apache Lucene library (see Lucene library)
Apache Maven build tool, xvi

Apache Server Project, 186

allowing access, 158-163
examples of, 158-163
managing, 164-165

restricting access, 160-163
ACL i APTs
li (accc;zs6 control lists) about, 303
about, , choosing, 303-305
access control entries and, 157 . .
Lowi 158.163 disabling, 181-183
allowling access, 156- local (see local APIs)

examples of, 158-163

managing, 164-165

permissions and, 157

restricting access, 160-163
Active Directory, authentication and, 172-174
ad hoc queries, 100-101
add-group configuration option (LDAP), 172
admin account, 134
Admin Web Application, 26, 282
AdminServlet class, 182
afterCreateDocument event, 76
afterUpdateDocument event, 76
Amazon EC2 platform, 408-411
<analyzer> element, 298
ancestor nodes, 81

remote (see remote APIs)
securing, 184
apps collection, 42
architecture (eXist)
deployment, 67-71
dynamic level numbering, 80-85
efficient XML processing, 76-86
overview, 65-67
storage, 72-76
atomic value type mappings, 475
AtomServlet class, 182, 361
<attribute> element, 106
authentication
Active Directory and, 172-174

543

www.it-ebooks.info

http://www.it-ebooks.info/

basic model, 134
default groups, 135
default users, 134
HTTP, 95
realms and, 166-174
XForms submissions, 262
XQuery and, 187-188
authentication configuration option (LDAP),
168
<author> element, 232
autodeployment, disabling for EXPath pack-
ages, 183
AutoDeploymentTrigger class, 183, 447
AxisServlet class, 182

B
backup and restore
about, 396
Ant supported, 382-383
client-side backups, 397-400
dashboard access, 26
Emergency Export tool, 404-405
restoring clean database, 403
server-side backups, 400-403
base configuration option (LDAP), 168
base-uri function (XPath), 45, 93
BDD (behavior-driven development), 240, 418
beforeCreateDocument event, 75
beforeUpdateDocument event, 75
behavior-driven development (BDD), 240, 418
betterForm processor, 36, 263-264
BfServletContextListener class, 183
binary documents
collections and, 77
efficient processing architecture, 79
Fluent API and, 370
locking, 79
metadata and, 76, 80
retrieving, 80
searching, 301-302
storing, 76-76, 322-324
blacklist configuration option (LDAP), 171
<bool> element, 294
broker pool, 67
brokers, 67
bug reporting, 14, 16
build.properties file, 129

C

cache extension module, 179, 497
<cache-control> element, 202
caching
about, 85-86
cache tuning, 394-396
LDAP account credentials, 167
case-sensitivity, NGram indexes and, 280
Change Owner dialog box, 155
character encoding rules (see URL-encoded
URIs)
child nodes, 82
<clear-attribute> element, 202
Client object (Jersey client library), 340
Client Tool (eXist) (see Java Admin Client)
client/server architecture
backing up client-side data, 397-400
backing up server-side data, 400-403
database considerations, 69-70
web application platforms and, 70
ClientResponse object (Jersey client library),
340
cloud providers, 408-413
collations, 251
Collection Browser
about, 42
collection and resource properties, 89
Resource Properties dialog box, 152
starting, 26
collection function (XPath)
about, 88, 93
listing with, 45-47
XLST stylesheets and, 243
collection store, 75
collection triggers, 452, 459-462
CollectionManagementService interface, 351
CollectionManager interface, 351
collections
about, 27, 40, 88
addressing, 91-93, 107
backing up, 382
creating, 109
defining indexes in, 275
deleting, 110, 324
designing structure, 42
efficient XML processing architecture,
77-79
inheritance and, 78
Internet media type and, 90

544 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

listing with Ant, 381

metadata and, 77

moving, 110

permissions and, 135-139, 151-155

properties of, 88

renaming, 110

retrieving with REST Server API, 319-322

setting permissions, 110

shadow structure, 59

XML:DB API and, 350, 367
CollectionTrigger interface, 457
command line

backups from, 398

Emergency Export tool from, 405

installing from, 22

restoring from, 398

starting and stopping eXist from, 24
<comment> element, 106
common ancestor nodes, 82
compression extension module, 498
conf.xml file, 28, 247
config collection, 28, 275, 286
connections (XQJ), 360
Consistency Check system task, 402
consumes constraint annotations, 224
Content-Type header (HTTP), 120, 224, 322
contentextraction extension module, 301, 499
controller-config.xml file, 198, 206
controller.xql file

external variables, 199-200

URL rewriting and, 194-198, 203
<copyright> element, 232
counter extension module, 179, 500
<create> element, 276
CSVExtractingTrigger class, 449
curl command

applying XUpdate, 333

browsing REST Server API with, 321

deleting XML documents, 324

sending XQuery to REST Server API, 327,

329

storing documents, 322-324

curly braces {}, 239

D
dashboard (home screen), 24-26
data sources (XQJ), 360
database (eXist)

about, 87

clean restore, 403
contents of, 87-93
controlling from XQuery code, 107-110
executing stored queries, 335-339
Fluent API and, 369
querying using REST, 94-101
querying using REST Server API, 326
retrieving stored images from, 337, 356-359
storing images in, 336, 354-356
updating, 333-335
updating documents, 101-107
XML:DB API and, 367
XPath collection function, 93
XPath doc function, 94
database systems
comparisons among, 3-5
eXist competitors, 7-9
NoSQL, 1,3
database triggers, 449-453
DatabaselnstanceManager interface, 352
datetime extension module, 500
davfs2, installing, 315
dba group
about, 135
managing permissions, 140, 151, 164
.dbx file extension, 87
debugging eXist, 488-491
debugging indexes
about, 281
checking index definitions, 282
checking index usage, 282
tracing optimizer, 283
declare option exist: statement, 124
<default-operator> element, 295
default-password configuration option
(LDAP), 169
default-username configuration option
(LDAP), 168
defragmentation, document, 85
DELETE requests (HTTP)
about, 97
deleting collections and documents, 324
process flow, 529
RESTXQ support, 218
deleting
collections, 110, 324
documents, 324
nodes, 103
resources, 110

Index | 545

www.it-ebooks.info

http://www.it-ebooks.info/

<dependency> element, 230
deployment architectures
about, 67
client/server database, 69-70
embedded, 68
web application platform, 70-72
<description> element, 232
diff document, 429
Digital Ocean cloud provider, 413
directories (see collections (eXist))
disabling
APIs, 181-183
EXPath package autodeployment, 183
extension modules, 177-180
Java binding, 180
network services, 181-183
REST Server access, 180
<dispatch> element, 201
DLN (dynamic level numbering)
of nodes, 80-83
updating XML documents and, 83-85
doc function (XPath)
about, 94, 180
Shakespeare plays examples, 48
XLST stylesheets and, 243
doctype declaration, 120
document base revision, 429
document filtering triggers, 452, 462
document revision versioning mechanism,
428-435
document triggers, 75, 452, 462-466
documentation, XQuery, 125
documents (see binary documents; XML docu-
ments)
DocumentTrgger interface, 457
domain configuration option (LDAP), 168
downloading eXist, 20
downloading XML files, 211
drivers (XML:DB API), 350
drives, mapping from Windows Explorer,
306-309
DwrServlet class, 183
dynamic level numbering (DLN)
of nodes, 80-83
updating XML documents and, 83-85

E
Edit Group dialog box, 150
<element> element, 106

embedded architecture, 68
Emergency Export tool, 404-405
empty sequence (), 103
enabling

APIs, 69

extension modules, 128-131, 436

Java binding, 180

network services, 181
encode-for-uri function (XPath), 55
encoding rules (see URL-encoded URIs)
Entic VPS provider, 408
error handling, XInclude support, 245
error pages, 215
<error-code> element, 215
ErrorServlet class, 183
evaluating expressions, 118
Execute permission, 136
exi extension module, 500
eXide IDE

about, 27, 193, 374-375

collection and resource properties, 89

file manipulation, 30

opening, 43

querying using, 100

viewing stored data, 43-45
exiftool extension module, 501
eXist

about, 1-3

additional resources, 16-18

building from source, 485

case studies, 9-13

competitors with, 7-9

contributing to community, 13-16

database system comparisons, 3-5

debugging, 488-491

developing, 483

downloading and installing, 19-23

feature overview, 24-29

getting files in and out, 30-31

history of, 5-7

rebuilding, 130

starting and stopping, 23-24
exist.xml file, 229
exist:batch-transaction pragma, 118, 123
exist:force-index-use pragma, 123
exist:no-index pragma, 123
exist:optimize pragma, 123
<exist:result> element, 98, 99, 327
exist:serialize option, 49, 119, 241

546 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

exist:timer pragma, 124 uploading files, 210

EXistServlet class, 181 <filter-rewrite> element, 295
$EXIST_HOME variable, xii, 28, 175 Finder, mounting WebDAYV from, 309-312
EXPath packages <finish> element, 232-234

about, 228 <first> element, 294

building, xvi Fluent API, 68, 369-371

disabling autodeployment for, 183 folders (Fluent API), 370

packaging format, 229-233 format-dateTime function (XPath), 112

removing preinstalled, 184 FormsServlet class, 183
expath-pkg.xml file, 229-231 <forward> element, 201-202
explicit validation, 246, 248-250 fs directory, 88
exporting ft extension module

client-side data backups, 397-400 about, 502

documents from eXist, 40-41 index function, 302

Emergency Export tool and, 404-405 optimize function, 291

server-side data backups, 400-403 query function, 286, 292
expressions (XQJ), 360 score function, 286, 296
extended query requests, 98-99 search function, 302
extension modules ftpclient extension module, 179, 502

about, 48, 493 full-text indexes

additional data category, 494 about, 272, 275

core category, 494 configuring, 286-291

database functionality category, 495 defining and configuring Lucene analyzer,

datatype extensions category, 495 298-301

disabling, 177-180 KWIC and, 285-286, 297

enabling, 128-131 maintaining, 291

index category, 495 manual indexing, 301-302

protocols/interfaces category, 496 searching with, 292-297

security considerations, 213 functions

types of, 127-128 annotations and, 418

XML Technologies category, 496 higher-order, 113

XQuery update extensions, 102-105 parameters and return types, 477

XQuery-related category, 496 FUSE and WebDAYV, 315

external library modules, 468

G

F GET requests (HTTP)
file extension module about, 95-97
about, 501 common XML grammars for parameters,
Java binding versus, 117 540
mkdir function, 502 curl command and, 321
move function, 502 parameters supported, 96, 531-535
security considerations, 179 process flow, 526
serialize function, 502 querying database, 326
file management, 40 RESTXQ support, 218
(see also resources) global error pages, 215
addressing files, 91-93 GNOME Nautilus and WebDAYV, 312-315
downloading XML files, 211 grammar documents, 246
packages and, 26 GreenQloud cloud provider, 412
tools supporting, 30-31 group by clause (XQuery), 115

Index | 547

www.it-ebooks.info

http://www.it-ebooks.info/

group managers, 140, 149-150
groups
creating, 145-147
default, 135
managing, 140-144
managing with Java Admin Client, 145-150
permissions and, 135-137
guest account, 62, 95, 134
guest group, 135

H
hardening

about, 174

reducing attack surface, 177-187

reducing collateral damage, 175-177
HEAD requests (HTTP), 218, 527
Hello world example, 31-37, 471, 473
higher-order functions, 113
historical archival facility, 427
HistoryTrigger class, 450
home screen (dashboard), 24-26
Host object (Milton client library), 317
HostBuilder class, 317
hosting and the cloud, 408-413
HTML format, listing search results in, 48-51
HTTP authentication, 95
http extension module, 179, 503
HTTP requests (see specific requests)
httpclient extension module

about, 504

extended query results, 98

get function, 504

post function, 99, 504

put function, 504

storing XML documents, 97
<httpclient:body> element, 99
HttpServletResponse class (Java), 211

<ignore> element, 201, 290, 291

image extension module, 504

images
retrieving from database, 337, 356-359
storing, 336, 354-356

implicit validation, 246-248

import module statement (XQuery), 92,
127-128

index controller, 75

<index> element, 276, 278, 287

indexes and indexing
about, 271
configuring indexes, 275-278
debugging indexes, 281-283
index types, 274-275
indexing example, 272-273
maintaining indexes, 278
optimization tips, 281
searches using, 58-60
storing, 72-76
usage considerations, 279-281
indexing pipeline, 75
IndexQueryService interface, 352
inheritance, collections and, 78
<inline> element, 290
inspect extension module, 125, 505
installing eXist
as service, 405-407, 410
installer options, 22-22
post-installation checks, 22
preconditions, 19
preparations prior to, 20-21
rebuilding eXist, 130
integration (see APIs)
internal library modules
about, 468-473
function parameters and return types,
477-482
Hello World module, 473
module configuration, 483
types and cardinality, 474-477
variable declarations, 482
Internet media type (resources), 89

J

Java
database triggers, 449-453
extension modules and, 127-130
Fluent API, 369-371
HttpServletResponse class, 211
internal library modules and, 468-483
Java triggers, 457-467
NullPointerException, 243
REST Server API and, 339-342
scheduled jobs, 441-446
startup triggers, 446
WebDAYV and, 316-319
XML-RPC API and, 345-348
XML:DB API and, 349-353

548 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

XQJ, 359
Java Admin Client
about, 25, 29-29, 373
backup support, 397
collection and resource properties, 88
exporting documents, 40-41
managing ACLs, 164
managing permissions, 151, 154-155
managing users and groups, 141, 145-150
opening, 40
querying using, 100
Java binding, 117, 180
Java Development Kit (JDK), 20
Java Flight Recorder (JFR), 393
Java Management Extensions (JMX), 387-388
Java Mission Control (JMC), 392
Java Network Launching Protocol (JNLP), 25
Java Runtime Environment (JRE), 20
Java Service Wrapper, 176, 407
Java Virtual Machine (JVM), 67, 69
Java web application servers, 70
JavaScript Object Notation (JSON), 120,
121-123
JavaScript, remote API libraries, 363
JAVA_HOME environment variable, 130
JAXP parser, 248, 250
JAXYV parser, 248
JConsole (JDK), 388
JDK (Java Development Kit), 20
Jersey client library, 339
Jetty Java web application server
about, 71, 184
changing settings, 205
JER (Java Flight Recorder), 393
jfreechart extension module, 505
Jing parser, 248
JMC (Java Mission Control), 392
jmc command, 393
JMX (Java Management Extensions), 387-388
JMXServlet class, 181
jndi extension module, 179, 506
JNLP (Java Network Launching Protocol), 25
JnlpServlet class, 183
job exception actions, 442
JOB_ABORT action, 443
JOB_ABORT_ALL action, 443
JOB_ABORT_THIS action, 443
JOB_REFIRE action, 443
JPEG images, storing, 336, 354-356

JRE (Java Runtime Environment), 20

JSON (JavaScript Object Notation), 120,
121-123

json extension module, 506

jsonp extension module, 507

JSONP serialization options, 120, 121-123

jstack tool, 414

jvisualvm command, 392

JVM (Java Virtual Machine), 67, 69

K
keyword in context (KWIC), 285-286, 297
KWIC (keyword in context), 285-286, 297
kwic extension module

about, 297, 507

enabling, 131

summarize function, 286, 297

L
LDAP realm module
about, 166
configuration for Active Directory, 172-174
conﬁguration options, 167-172
<leading-wildcard> element, 295
least recently used (LRU) caches, 86
library module (XQuery), xiii, 467-483
<license> element, 232
linking data analysis, 55
Linux platforms
changing Jetty port setting, 206
hardening, 176
installing eXist as service, 407
WebDAYV and, 312-316
local APIs
about, 303, 364-366
Fluent API, 68, 369-371
XML:DB API, 68, 144, 153, 366-369
<location> element, 215
locking documents, 79
log4j (Apache), 385
Log4jInit class, 181
logfile maintenance
about, 385-387
creating logs, 60-63
inserting messages, 105
LRU (least recently used) caches, 86
<lucene> element, 290
lucene extension module (see ft extension mod-
ule)

Index | 549

www.it-ebooks.info

http://www.it-ebooks.info/

Lucene library, 275
(see also full-text indexes)
about, 275, 285
defining and configuring analyzer, 298-301
native query syntax, 292

M

mail extension module, 179, 508
main module (XQuery), xiii, 467
map data type, 116
map extension module, 116, 509
mapping drives from Windows Explorer,
306-309
masks, assigning to users, 139
math extension module, 509
Maven (Apache) build tool, xvi
memcached extension module, 129, 179
memory management
caching and, 85-86, 394-396
memory usage considerations, 390-393
paging and, 85-86
setting memory, 21, 389
MessageReceiverStartupTrigger class, 447
metadata
binary documents, 76, 80
collections, 77
XML documents, 80
metadata extension module, 510-511
metadata-search-attribute configuration option
(LDAP), 170, 172
method constraint annotations, 218-222
Microsoft Active Directory, authentication and,
172-174
Milton client library, 316-319
MiltonWebDAVServlet class, 182
MIME types, 90
mime-types.xml file, 90
Model-View-Controller (MVC) pattern, 203,
255
<modifications> element, 106
<module> element, 128
mod_proxy module, 208
MVC (Model-View-Controller) pattern, 203,
255

N

Namespace-Based Validation Dispatching Lan-
guage (NVDL), 248
namespaces

extended query requests, 98
XUpdate, 98
XUpdate XML fragments, 105
Nautilus, mounting WebDAV from, 312-315
<near> element, 294
network services
disabling, 181-183
securing, 184
New Group dialog box, 146
New Scenario dialog box, 378
New User dialog box, 147
Nginx web server, 186
<ngram> element, 278
ngram extension module, 280, 511
NGram indexes
about, 272, 275
configuring, 278
usage considerations, 280
node identifiers, 244
node type mappings, 477
nodes
deleting, 103
dynamic level numbering of, 80-85
indexing specific, 277
inserting content into, 103
renaming, 104
replacing, 104
updating content of, 105
NVDL (Namespace-Based Validation Dis-
patching Language), 248

0

<options> element, 295
Orbeon Forms processor, 255
OS X platform, WebDAYV support, 309-312
OutOfMemoryError, 389
oXygen XML Editor
about, 31, 375
debugging and, 240
natively connecting with, 377-379
WebDAV and, 376-377

P

<package> element, 230

Package Manager, 24, 26, 228, 266

packages and packaging
about, 26, 227-229, 234
building EXPath package, xvi
creating packages, 234

550 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

disabling autodeployment for EXPath, 183
examples of, 229
packaging format, 229-233
prepare and finish scripts, 233
removing preinstalled EXPath, 184
Packaging System, 24
paging, 85-86
<param> element, 299
<param-value> element, 206
parameter annotations, 225-227
parent nodes, 81
path constraint annotations, 223
Path object (Milton client library), 318
paths, relative versus absolute, 92
percent encoding
encode-for-uri function and, 55
reserved characters, 43, 91
unescape-uri function, 46
Perl, remote API libraries, 363
permissions
ACLs and, 157
application, 214
default, 138-139
getting information about, 108
managing, 151-154
permission modes, 135-137
setting, 110
<permissions> element, 232
persistent DOM, 75, 85
PHP, remote API libraries, 364
<phrase> element, 293
<phrase-slop> element, 295
port 389, 173
port 636, 173
port 80, 187
port 8080, 22, 184, 205
port 8443, 22, 184
port tunneling (SSH), 411
POST requests (HTTP)
about, 98-99
common XML grammars for parameters,
540-540
parameters supported, 536-539
process flow, 530-531
querying database, 326, 329-330
RESTXQ support, 218
updating database, 333-335
pragmas, eXist XQuery, 123
<prepare> element, 232-234

principals-are-case-insensitive configuration
option (LDAP), 168
processing instructions
invoking XSLT, 44, 242
xml-stylesheet, 120
XSL, 322
<processing-instruction> element, 106
produces constraint annotation, 224
<properties> element, 99
properties XML grammar, 540
proxying, 185-187, 207-209, 346
proxy_set_header directive, 187
PUT requests (HTTP)
about, 97
process flow, 528
RESTXQ support, 218
storing documents and, 322
Python
remote API libraries, 363
XML-RPC API and, 348

Q

QName (qualified name), 274
qualified name (QName), 274
query body (XQuery), xiii, 467
Query Dialog box (XQuery), 100
querying eXist database

about, 94

ad hoc queries, 100-101

DELETE requests, 97

executing stored queries, 335-339

GET requests, 95-97

including query results, 245

POST requests, 98-99

PUT requests, 97

REST Server API and, 326

security considerations, 95
QueryService (Fluent API), 370

R
range indexes
about, 272,274
configuring, 276-278
usage considerations, 279
Read permission, 136
realms
about, 166
LDAP realm module, 166-174
other modules, 174

Index |

www.it-ebooks.info

http://www.it-ebooks.info/

<redirect> element, 199, 201
<regex> element, 293
relative versus absolute paths, 92
remote APIs
about, 303, 305
community APIs by programming lan-
guage, 363-364
deprecated, 361-363
REST Server API, 305, 319-342
RESTXQ, 72, 192, 215-227, 305, 353-359
WebDAV AP], 30, 69, 305-319, 376-377
XML-RPC API, 69, 144, 153, 185, 342-349
XML:DB API, 69, 144, 153, 349-353
XQJ API, 359-361
RemoteCollectionManagementService class
(Java), 351
RemoteDatabaselnstanceManager class (Java),
352
RemoteIndexQueryService class (Java), 352
RemoteXPathQueryService class (Java), 351
RemoteXUpdateQueryService class (Java), 351
renaming
collections, 110
nodes, 104
resources, 110
replacing nodes, 104
ReplicationTrigger class, 450
repo extension module, 511
repo.xml file, 229-233
request extension module
about, 209, 512
get-cookie-names function, 209
get-cookie-value function, 209
get-data function, 260, 336
get-header function, 187
get-method function, 337
get-parameter function, 55, 198, 209
get-parameter-names function, 209
get-remote-port function, 209
get-uploaded-file-data function, 210
get-uploaded-file-name function, 210
get-uploaded-file-size function, 210
get-uri function, 209, 336, 338
parameters and attributes, 210
set-attribute function, 210
uploading files, 210
reserved characters
encode-for-uri function and, 55
percent encoding, 43, 91

unescape-uri function, 46
resource function registry, 447
resource functions
about, 215, 217, 354
consumes constraint annotations, 224
method constraint annotations, 218-222
parameter annotations, 225-227
path constraint annotations, 223
produces constraint annotation, 224
RESTXQ and, 216
Resource object (Milton client library), 317
Resource Properties dialog box
managing ACLs, 164
managing permissions, 154
managing properties, 88
resources
about, 40, 88
addressing, 91-93, 107
collection function and, 93
creating, 109
Internet media type, 89
moving, 110
permissions and, 135-139, 151-155
properties of, 88
removing, 110
renaming, 110
security considerations, 90
setting permissions, 110
XML:DB API and, 351
ResourceServlet class, 183
response extension module
about, 211, 512
redirect-to function, 211
set-cookie function, 211
set-header function, 211
set-status code function, 261
set-status-code function, 211
stream function, 211
stream-binary function, 211, 253, 338
rest extension module
base-uri function, 227
resource-functions function, 217, 227
uri function, 227, 356
REST interface
querying eXist database, 94-101
viewing stored data, 44
REST Server
disabling access to, 180
XForms instances and, 255

552 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

XForms submissions and, 258
REST Server API
about, 305, 319
deleting collections and documents, 324
executing stored queries, 335-339
Java and, 339-342
parameters and paging results, 330-333
querying database, 326
retrieving collections and documents,
319-322
storing documents, 322-324
updating database, 333-335
restore process (see backup and restore)
RESTXQ
about, 192, 305, 353-356
annotations and, 115, 217-227
building applications with, 215
configuring, 216
retrieving stored images, 356-359
storing images, 354-356
XForms Filter and, 72
XQuery extension functions and, 227
restxq extension module, 513
restxqex extension module, 513
RestXqServlet class, 182
RestXqStartupTrigger class, 447
RestXqTrigger class, 450
result sequences (XQJ), 361
reverse proxying, 185-187
root collection, 27
<root> element, 283
root node, 81
RpcServlet class, 181
Ruby, remote API libraries, 364

S

Saxon processor, 238
Scala, remote API libraries, 364
scheduled backups, 401
scheduled jobs
about, 435
Java, 441-446
scheduling jobs, 436-438
XQuery, 438-441
scheduler extension module
about, 514
enabling, 436
get-scheduled-jobs function, 437, 514

schedule-schedule-xquery-cron-job func-
tion, 446
schedule-xquery-cron-job function, 439
schedule-xquery-periodic-job function, 446
search-attribute configuration option (LDAP),
169, 171
search-filter-prefix configuration option
(LDAP), 169, 171
searching data
including query results, 245
listing results in HTML format, 48-51
listing results in XML format, 45-48
locating matches, 296
using indexes, 58-60
using XQuery, 56-58
with full-text indexes, 292-297
security
about, 133
access control lists and, 156-165
addressing collections and resources, 107
Ant extension and, 154
APIs and, 184
application, 212-214
authentication and, 134-135, 187-188
backups and, 189
extension modules and, 179, 213
hardening and, 174-187
managing users and groups, 140-150
network services and, 184
permissions and, 135-139, 151-155
realms and, 166-174
resource considerations, 90
REST interface and, 95
setting permissions, 110
storing apps and, 194
XForms and, 256
security collection, modifying, 143
Security Manager, 143, 166
sequences extension module, 514
serialization
controlling, 119
eXist-specific options, 121
post-processing options, 120
XQuery support, 115, 118-123
<serializer> element, 267
service command (Linux), 407
Service Management Framework (SMF), 176,
406
services

Index | 553

www.it-ebooks.info

http://www.it-ebooks.info/

installing eXist as, 405-407, 410
network, 181-183, 184
XML:DB API and, 351
session extension module
about, 211, 515
clear function, 189
create function, 211
get-attribute function, 211
get-max-inactive-interval function, 211
invalidate function, 189
remove-attribute function, 189
security considerations, 179
set-attribute function, 211
set-max-inactive-interval function, 211
session identifiers, 331
<set-attribute> element, 202
<set-header> element, 202
Shakespeare plays examples
analyzing data, 51-55
linking data analysis, 55
listing data in HTML format, 48-51
listing data in XML format, 45-48
searching data, 56-60
viewing stored data, 43-45
shutdown process
Ant supported, 382
command-line-based, 24
dashboard and, 26
GUI-based, 23
XML:DB API and, 368
sibling nodes, 82
simple map operator (!), 52, 114
sm extension module
about, 515
chmod function, 110
chown function, 110
has-access function, 214, 516
security and, 213
system collections and, 90
SMF (Service Management Framework), 176,
406
SOAP API, 144, 362
SOAP Server, 362
Solaris platforms, 176, 406
sort extension module, 516-517
sort indexes, 271
special characters, 91
sql extension module, 179, 517
SSL interface, 185

starting eXist
from command line, 24
with GUI, 23
startup command, 24
startup triggers
about, 217, 446
configured modules example, 448
creating, 447
<status> element, 232
stopping eXist
from command line, 24
with GUI, 23
stopwords, 298-301
storage
about, 72
application, 194
binary documents and, 76-76, 322-324
indexing and, 72-76
JPEG images, 336, 354-356
XML documents and, 72-76, 88, 97, 322-324
Streaming Transformations for XML (STX),
451
string concatenation operator ||, 114
structural index
about, 75, 274
usage considerations, 279
STX (Streaming Transformations for XML),
451
STXTransformerTrigger class, 451
stylesheets
embedding, 238-240
XSLT details, 243
subvalue identifiers, 84
sum function, 52
svcadm command, 406
sveefg command, 406
sves command, 406
switch expression (XQuery), 113
symbols table, 75
SYSTEM account, 134
system administration
about, 385
backup and restore, 189, 382-383, 396-405
cache tuning, 394-396
getting support, 413-415
hosting and the cloud, 408-413
installing eXist as service, 405-407
JMX, 387-388
logging information, 60-63, 105, 385-387

554 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

memory usage, 390-393 U

system collections, 28, 90 umasks, 139
system extension module unit testing, 418
about, 518 Unix platforms, 206, 407
as-user function, 214 update delete statement (XQuery), 103
get-exist-home function, 127 update insert statement (XQuery), 103
get-memory-free function, 391 update rename statement (XQuery), 104
get-memory-max function, 391 update replace statement (XQuery), 104
get-memory-total function, 391 update value statement (XQuery), 105
get-module-load-path function, 234 updating
trigger-sysem-task function, 402 content of nodes, 105
trigger-system-task function, 446 database, 333-335
trigger-task function, 446 XML documents, 83-85, 101-107
system task jobs, 435, 441, 444-446 uploading files, 210
system tasks, 400 upper-case function (XPath), 114
url configuration option (LDAP), 168
T URL mapping using URL rewriting (see URL
<target> element, 232 rewriting)
TDD (test-driven development), 417 URL rewriting
<term> element, 293 about, 192, 194
test-driven development (TDD), 417 advanced URL control, 203-205
testing XQuery, 417-427 anatomy of an application, 195-198
<text> element, 99, 106, 287 changing URL for, 205-209
text extension module, 518 controller environment, 199-200
text function, 46 controller output XML format, 200-203
text indexing (see full-text indexes) finding controller, 198
text XML grammar, 540 URL-encoded URIs
thrashing caches, 86 encode-for-uri function and, 55
thread dumps, 414 reserved characters, 43, 91
<title> element, 230, 277 unescape-uri function, 46
tokenize function, 52 use-ssl configuration option (LDAP), 168
transaction management, 5, 118 user jobs, 435, 441-443
transform extension module User Manager
about, 519 about, 26, 142
invoking XSLT with, 240 creating groups, 145-147
passing XSLT parameters, 241 creating users, 147-149
stream-transform function, 240 opening, 145
transform function, 241 setting group managers, 149-150
triggers UserManagementService interface, 351
collection, 452, 459-462 users
database, 449-453 assigning masks to, 139
document, 75, 452, 462-466 authenticating, 187-188
Java, 457-467 creating, 147-149
startup, 217, 446-448 default, 134
XQuery, 453-457 managing, 140-144
try/catch mechanism (XQuery), 112 managing with Java Admin Client, 145-150
<type> element, 232 permissions and, 135-137

USE_UPSTART flag, 407
util extension module

Index | 555

www.it-ebooks.info

http://www.it-ebooks.info/

about, 519 Java and, 316-319

binary-doc function, 505 Linux platforms and, 312-316
collations function, 251 mapping drives from Windows Explorer,
declare-option function, 119, 121 306-309
enable-profiling function, 386 OS X platform and, 309-312
expand function, 296 oXygen XML Editor and, 376-377
get-option function, 119 Windows platforms and, 306
log function, 441 WebResource object (Jersey client library), 340
security considerations, 179 <website> element, 232
serialize funciton, 212 whitelist configuration option (LDAP), 170,
serialize function, 179 172
string-to-binary function, 212 whitespace, inline content and, 290
system-time function, 273 <wildcard> element, 293
unescape-uri function, 46 wildcard index operator, 277, 292
wait function, 179 Windows Explorer, mapping drives from,
306-309
v Windows platforms
validation hardening, 176
about, 246 installing eXist as service, 407
explicit, 246, 248-250 WebDAV and, 306
implicit, 246-248 wrap XML grammar, 540
XML documents, 75, 246 write conflict avoidance, 433-435

<validation> element, 247 Write permission, 63, 136

validation extension module

about, 248, 519 X
clear-grammar-cache function, 250 xar filename extension, 26
jing-report function, 249 <xf:instance> element, 257
pre-parse-grammar function, 250 <xf:resource> element, 262
show-grammar-cache function, 250 <xf:submission> element, 258
validate function, 249 XForms
validate-report function, 250 about, 254-255
validate-request function, 249 additional resources, 17
variables XML grammar, 540 betterForm and, 26, 36, 263-264
versioning extension module, 520 Hello world example, 35-37
versioning mechanisms, 427-435 instances of, 255-257
VersioningTrigger class, 451 security and, 256
<view> element, 203 submissions, 258-262
virtual private server (VPS), 408 support for, 4
Visual VM tool, 392 XSLTForms and, 26, 36, 265
VPS (virtual private server), 408 XForms Filter, 72
XFormsFilter class, 183, 263
w XFormsInspectorServlet class, 183
WAR files, 71 XFormsPostServlet class, 183
Web Admin Application, 390 XHTML format, listing search results in, 48-51
web application platform architecture, 70-72 <xiinclude> element, 243-245
WebDAV API <xi:fallback> element, 35, 245
about, 305 <xi:include> element, 35, 120
client/server database architecture and, 69 XInclude processing

file manipulation, 30 about, 243

556 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

error handling and fallback, 245
expanding elements in search results, 297
including documents, 244
including query results, 245
XML documents
about, 40, 88
collections and, 77
defining indexes for, 275
defragmenting, 85
deleting, 324
DLN identifiers, 80-83
efficient processing architecture, 79
exporting, 40-41
Fluent API and, 370
locking, 79
metadata and, 80
replacing, 83
retrieving, 80
retrieving with REST Server API, 319-322
storing, 72-76, 88, 97, 322-324
updating, 83-85, 101-107
validating, 75, 246
XInclude support, 244
XUpdate and, 105-106
XML file format
eXist database and, 87
listing search results in, 45-48
URL rewriting controller and, 200-203
viewing data, 44

authenticate function, 188

controlling eXist database, 107
create-collection function, 109
decode-uri function, 91

encode-uri function, 91
get-child-collection function, 108
get-child-resources function, 48, 91, 108
get-group function, 108

get-mime-type function, 108

get-owner function, 108
get-permissions function, 108
last-modified function, 108

login function, 188, 268

move function, 110
permissions-to-string function, 108, 110
reindex function, 278

remove function, 110

rename function, 110

security and, 213
set-collection-permissions function, 110
set-resource-permissions function, 110
size function, 107-108

specifying collections and resources for, 107

store function, 97, 109, 210, 259, 356, 441
store-files-from-pattern function, 109
system collections and, 90

update function, 106

viewing and changing properties, 89
xcollection function, 93

XML grammars, 540-540 XMLDB URIs, 92, 108
XML-RPC API xmldiff extension module, 521
about, 342-345 xmlrpclib library (Python), 348
enabling, 69 xmpp extension module, 522
Java and, 345-348 XPath
permission management, 153 base-uri function, 45, 93
Python and, 348 collection function, 45-47, 88, 93, 243
SSL and, 185 contains function, 280
user and group management, 144 doc function, 48, 94, 180, 243
xml-stylesheet processing instruction, 120 ends-with function, 280
XML:DB API eXist support, 112
about, 366-369 format-dateTime function, 112
client/server database architecture and, 69 security considerations, 180
embedded architecture and, 68 starts-with function, 280
Java and, 349-353 upper-case function, 114
permission management, 153 XPathQueryService interface, 351
user and group management, 144 XPointer expressions, 244
xmlcalabash extension module, 520 XProc module, 237
xmldb extension module .xq filename extension, xiv
about, 48, 153, 521 xqdm extension module, 522

Index | 557

www.it-ebooks.info

http://www.it-ebooks.info/

xqDoc specification, 125

XQJ API, 359-361

XQJException, 361

xgjson extension module, 522

.xqm filename extension, xiv

XQSuite framework, 418-427

XQuery (XML Query Language)
additional resources, 16
analyzing data, 51-55
annotations and, 114, 354
Ant support, 383
backups from, 402
benefits of, 1-2
concat function, 114
controlling database from code, 107-110
controlling execution, 123-124
executing, 118
executing functions, 143, 153
eXist implementation, 111-118
eXist-specific extension, 102-105
extension modules and, 128, 130
external library modules, 468
filename conventions, xiii
FLWOR expression, 51
group by clause, 115
Hello world example, 32
higher-order functions, 113
import module statement, 92, 127-128
Java binding, 117, 180
limiting execution time, 124
limiting output size, 124
listing search results, 45-48
map data type, 116
memory management and, 391
Query Dialog box, 100
scheduled jobs, 438-441
searching data, 56-58
security considerations, 180
serialization and, 115, 118-123
simple map operator, 52, 114
standardizing documentation, 125
string concatenation operator, 114
switch mechanism, 113
testing code, 417-427
try/catch mechanism, 112
update statements, 83

URL rewriting and, 182, 192

user authentication in, 187-188

XForms instances and, 256-257

XForms submissions and, 259-261
<xquery> element, 180, 231
XQueryService interface, 351
XQueryServlet class, 182
XQueryTrigger class, 451, 453-457
XQueryUrlRewrite class, 205, 206
XRX paradigm, 6
XSL processing instructions, 322
XSL transformation, 322
XSL-FO, 18, 252-253
<xsl:import> element, 92, 243
<xslinclude> element, 92, 243
<xsl:output> element, 243
<xsl:param> element, 240
<xsl:result-document> element, 243
xslfo extension module, 253, 523
XSLT

about, 238

additional resources, 17

embedding stylesheets, 238-240

Hello world example, 33-34

invoking by processing instruction, 44, 242

invoking with transform extension module,

240

passing parameters, 241

path resolution, 92

stylesheet details, 243
xslt.stylesheet attribute, 204
XSLTForms processor, 26, 36, 265-268
XSLTServlet class, 182, 204
XUpdate

about, 102, 105

applying documents, 333-335

document processing and, 83

executing, 106

POST requests and, 98

XML format and, 105-106
XUpdateQueryService interface, 351

z

zip extension module, 523

558 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

About the Authors

Erik Siegel runs Xatapult, a consultancy that specializes in content engineering and
the application of XML: strategic use, standards, design, processing platforms, appli-
cations, transformations, and training. Xatapult supports companies that either lack
the knowledge or the capacity in these fields of expertise.

Adam Retter is the Director of Evolved Binary Ltd and a cofounder of eXist Solu-
tions GmbH. Since 2005, Adam has been a core developer on the eXist NoSQL Appli-
cation Platform. Passionate about the Web, code quality, standards, and portable
code, Adam has been promoting XQuery as a web application development language.
Adam has over 11 years of commercial experience in Java application development
and data processing. Naturally fascinated by new technologies, for the last few years
Adam has been developing in Scala and Akka. Adam is a member of the XML Guild,
an Invited Expert to the W3C XML Query and CSV on the Web working groups, and
on the program committee of the XML Prague, XML London, Balisage, and XML
Summer School conferences.

Colophon

The animal on the cover of eXist is a lettered aracari (Pteroglossus inscriptus), a spe-
cies of toucan that lives in swampy regions and forests around South America. It has
been recorded at heights of approximately 4,000 feet in the Andean foothills,
although lowland forest (even heavily disturbed rainforest) seems to be its preferred
habitat.

The lettered aracari is only about a foot in length and weighs in at approximately one
quarter of a pound. Its large, colorful bill helps members of the species recognize each
other for mating purposes. It also allows the lettered aracari to grab and eat fruit,
insects, and small birds such as finches. Birds of both genders have bodies that are
green on top with striking yellow undersides, red rear ends, golden bills, and blue
patches surrounding dark eyes.

A social animal, the lettered aragari roosts in groups throughout the year. It nests in
cavities and sleeps with its tail folded over its back, along with up to five other adults
and their offspring.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from Johnson’s Natural History. The cover fonts are URW Type-
writer and Guardian Sans. The text font is Adobe Minion Pro; the heading font is
Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

www.it-ebooks.info

http://www.xatapult.com/home
http://animals.oreilly.com/
http://www.it-ebooks.info/

	Table of Contents
	Preface
	Welcome
	Who Is This Book For?
	Conventions Used in This Book
	XQuery Filename Conventions
	Using Code Examples
	Accompanying Source Code
	Getting the Source Code
	Building and Deploying

	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Introduction
	What Is eXist?
	eXist Compared to Other Database Systems
	History
	Competitors
	Open Source Competitors
	Closed Source, Commercial Competitors

	Who Is Using eXist, and for What?
	Contributing to the Community
	Individuals Using eXist
	Organizations Using eXist
	Authors Using eXist
	Developers Using eXist

	Additional Resources

	Chapter 2. Getting Started
	Downloading and Installing eXist
	Preconditions
	Downloading eXist
	Things to Decide Before Installing
	Installing eXist
	Post-Installation Checks

	Starting and Stopping eXist with a GUI
	Starting and Stopping eXist from the Command Line
	A First Tour Around Town
	The Dashboard
	Playing Around
	What’s in Your Database
	What’s on Your Disk
	The Java Admin Client

	Getting Files into and out of the Database
	Hello eXist!
	Hello Data
	Hello XQuery
	Hello XSLT
	Hello XInclude
	Hello XForms

	Chapter 3. Using eXist 101
	Preparations and Basic Application Setup
	eXist Terminology
	Exporting Documents from eXist
	Designing an Application’s Collection Structure and Importing
 Data

	Viewing the Data
	Listing the Plays (XML)
	Listing with the collection Function
	Listing with the xmldb Extension Module

	Listing the Plays (HTML)
	Analyzing the Plays
	Linking the Analysis to the Play Overview
	Searching the Plays
	Searching Using Straight XQuery
	Searching Using an Index

	Creating a Log
	What’s Next?

	Chapter 4. Architecture
	Deployment Architectures
	Embedded Architecture
	Client/Server Database Architecture
	Web Application Platform Architecture

	Storage Architecture
	XML Document Storage and Indexing
	Binary Document Storage

	Efficient XML Processing Architecture
	Collections
	Documents
	Dynamic Level Numbering of Nodes
	Dynamic Level Numbering and Updates
	Paging and Caching

	Chapter 5. Working with the Database
	The Database’s Content
	Help: Where Is My XML?
	Terminology
	Properties of Collections and Resources
	System Collections
	Addressing Collections, Resources, and Files

	The XPath Collection and Doc Functions in eXist
	The collection Function
	The doc Function

	Querying the Database Using REST
	Security
	GET Requests
	PUT Requests
	DELETE Requests
	POST Requests
	Ad Hoc Querying

	Updating Documents
	eXist’s XQuery Update Extension
	XUpdate

	Controlling the Database from Code
	Specifying Collections and Resources for the xmldb Extension
 Module
	Getting Information
	Creating Resources and Collections
	Setting Permissions
	Moving, Removing, and Renaming

	Chapter 6. XQuery for eXist
	eXist’s XQuery Implementation
	XQuery 1.0 Support
	XQuery 3.0 Support
	Other XQuery Extras
	XQuery Execution

	Serialization
	Controlling Serialization
	Serialization Options

	Controlling XQuery Execution
	eXist XQuery Pragmas
	Limiting Execution Time and Output Size
	Other Options

	XQuery Documentation with xqDoc

	Chapter 7. Extension Modules
	Types of Extension Modules
	Extension Modules Written in Java
	Extension Modules Written in XQuery

	Enabling Extension Modules
	Enabling Java Extension Modules
	Enabling XQuery Extension Modules

	Chapter 8. Security
	Security Basics
	Users
	Groups
	Permissions
	Default Permissions

	Managing Users and Groups
	Group Managers
	Tools for User and Group Management

	User and Group Management with the Java Admin Client
	Scenario
	Creating a Group
	Creating Users
	Setting Group Managers

	Managing Permissions
	Tools for Permission Management
	Permission Management with the Java Admin Client

	Access Control Lists
	Access Control Entries
	ACLs by Example
	Managing ACLs

	Realms
	LDAP Realm Module
	Other Realm Modules

	Hardening
	Reducing Collateral Damage
	Reducing the Attack Surface

	User Authentication in XQuery
	xmldb:authenticate
	xmldb:login

	Backups

	Chapter 9. Building Applications
	Overview
	Which Technology to Use?
	Application Aspects
	Getting Started, Quickly?

	Where to Store Your Application?
	URL Mapping Using URL Rewriting
	Anatomy of a URL Rewriting-Based Application
	How eXist Finds the Controller
	The URL Rewriting Controller’s Environment
	The Controller’s Output XML Format
	Advanced URL Control

	Changing the URL for URL Rewriting
	Changing Jetty Settings: Port Number and URL Prefix
	The controller-config.xml Configuration File
	Proxying eXist Behind a Web Server

	Requests, Sessions, and Responses
	The request Extension Module
	The session Extension Module
	The response Extension Module

	Application Security
	Running with Extra Permissions
	Global Error Pages
	Building Applications with RESTXQ
	Configuring RESTXQ
	RESTXQ Annotations
	RESTXQ XQuery Extension Functions

	Packaging
	Examples
	The Packaging Format
	The Prepare and Finish Scripts
	Creating Packages
	Additional Remarks About Packages

	Chapter 10. Other XML Technologies
	XSLT
	Embedding Stylesheets or Not
	Invoking XSLT with the Transform Extension Module
	Passing XSLT Parameters
	Invoking XSLT by Processing Instruction
	Stylesheet Details

	XInclude
	Including Documents
	Including Query Results
	Error Handling and Fallback

	Validation
	Implicit Validation
	Explicit Validation

	Collations
	Supported Collations
	Specifying Collations

	XSL-FO
	XForms
	XForms Instances
	XForms Submissions
	betterForm
	XSLTForms

	Chapter 11. Basic Indexing
	Indexing Example
	Index Types
	Structural Index
	Range Indexes
	NGram Indexes
	Full-Text Indexes

	Configuring Indexes
	Configuring Range Indexes
	Configuring NGram Indexes

	Maintaining Indexes
	Using Indexes
	Using the Structural Index
	Using the Range Indexes
	Using the NGram Indexes
	General Optimization Tips

	Debugging Indexes
	Checking Index Definitions
	Checking Index Usage
	Tracing the Optimizer

	Chapter 12. Text Indexing and Lookup
	Full-Text Index and KWIC Example
	Configuring Full-Text Indexes
	Configuring the Search Context
	Handling Mixed Content

	Maintaining the Full-Text Index
	Searching with the Full-Text Index
	Basic Search Operations
	Scoring Searches
	Locating Matches

	Using Keywords in Context
	Defining and Configuring the Lucene Analyzer
	Manual Full-Text Indexing

	Chapter 13. Integration
	Choosing an API
	Remote APIs
	WebDAV
	REST Server API
	XML-RPC API
	XML:DB Remote API
	RESTXQ
	XQJ
	Deprecated Remote APIs
	Remote API Libraries for Other Languages

	Local APIs
	XML:DB Local API
	Fluent API

	Chapter 14. Tools
	Java Admin Client
	eXide
	oXygen
	Connecting with oXygen Using WebDAV
	Natively Connecting with oXygen

	Ant and eXist
	Trying the Ant Examples
	Preparing an eXist Ant Build Script
	Using Ant with eXist

	Chapter 15. System Administration
	Logging
	JMX
	Memory and Cache Tuning
	Understanding Memory Use
	Cache Tuning

	Backup and Restore
	Client-Side Data Export Backup
	Server-Side Data Export Backup
	Restoring a Clean Database
	Emergency Export Tool

	Installing eXist as a Service
	Solaris
	Windows Linux and Other Unix

	Hosting and the Cloud
	Entic
	Amazon EC2
	Other Cloud Providers

	Getting Support
	Community Support
	Commercial Support

	Chapter 16. Advanced Topics
	XQuery Testing
	Versioning
	Historical Archiving
	Document Revisions

	Scheduled Jobs
	Scheduling Jobs
	XQuery Jobs
	Java Jobs

	Startup Triggers
	Configured Modules Example Startup Trigger

	Database Triggers
	XQuery Triggers
	Java Triggers

	Internal XQuery Library Modules
	Using the Hello World Module
	Types and Cardinality
	Function Parameters and Return Types
	Variable Declarations
	Module Configuration

	Developing eXist
	Building eXist from Source
	Debugging eXist

	Appendix A. XQuery Extension Modules
	Appendix B. REST Server Processes
	GET Process Flow
	HEAD Process Flow
	PUT Process Flow
	DELETE Process Flow
	POST Process Flow
	REST Server Parameters
	HTTP GET Parameters
	HTTP POST Parameters
	Common XML Grammars for Parameters

	Index
	About the Authors

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

