
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Jonathan LeBlanc and Tim Messerschmidt

Identity and Data Security for Web
Development

Best Practices

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

www.it-ebooks.info

http://www.it-ebooks.info/

978-1-491-93694-8

[FILL IN]

Identity and Data Security for Web Development
by Jonathan LeBlanc and Tim Messerschmidt

Copyright © 2016 Jonathan LeBlanc, Tim Messerschmidt. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc. , 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com .

Editor: Meg Foley
Production Editor: FILL IN PRODUCTION EDI‐
TOR
Copyeditor: FILL IN COPYEDITOR
Proofreader: FILL IN PROOFREADER

Indexer: FILL IN INDEXER
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

January -4712: First Edition

Revision History for the First Edition
2016-04-01: First Early Release
2016-04-08: Second Early Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491936948 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Identity and Data Security for Web
Development, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author(s) have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author(s) disclaim all responsibil‐
ity for errors or omissions, including without limitation responsibility for damages resulting from the use
of or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

www.it-ebooks.info

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781491936948
http://www.it-ebooks.info/

Table of Contents

Preface. vii

1. Introduction. 1
The problems with current security models 1

Poor Password Choices 2
Security Over Usability 3
Improper Data Encryption 4

The weakest link: human beings 5
Single sign-on 6

Understanding Entropy in Password Security 7
Entropy in Randomly Selected Passwords 7
Entropy in Human Selected Passwords 9

Breaking Down System Usage of a Username and Password 11
Securing our current standards for identity 11

Good and bad security algorithms 12
What data should be protected? 13

Account Recovery Mechanisms & Social Engineering 13
The Problem with Security Questions 14

Next up 15

2. Password Encryption, Hashing, and Salting. 17
Data at Rest vs Data in Motion 17

Data at Rest 17
Data in Motion 19

Password Attack Vectors 19
Brute Force Attack 21
Creating a CAPTCHA with reCAPTCHA 22
Dictionary Attacks 28

iii

www.it-ebooks.info

http://www.it-ebooks.info/

Reverse Lookup Tables 29
Rainbow Tables 30

Salting 32
Generating a Random Salt 32
Salt Reuse 33
Salt Length 33
Where to Store the Salt 34

Peppering 34
Choosing the Right Password Hashing Function 35

bcrypt 36
PBKDF2 37
scrypt 38
Validating a Password Against a Hashed Value 39

Key Stretching 41
Recomputing Hashes 41
Next Steps 42

3. Identity Security Fundamentals. 43
Understanding the concept of various identity types 43

Social Identity 44
Concrete Identity 45
Thin Identity 45

Enhancing user experience by utilizing identity 46
Introducing the concept of Trust Zones 46
Browser Fingerprinting 48

Configurations More Resistant to Browser Fingerprinting 49
Identifiable Browser Information 49
Capturing Browser Details 50

Location Based Tracking 52
Device Fingerprinting (Phone / Tablet) 54
Device Fingerprinting (Bluetooth Paired Devices) 55
Implementing Identity 56

4. Securing the Login with OAuth 2 and OpenID Connect. 57
The difference between authentication and authorization 57

Authentication 57
Authorization 58

What is OAuth and OpenID Connect? 58
Introducing OAuth 2.0 61
Handling authorization with OAuth 2.0 63
Using the Bearer Token 65
Authorization and authentication with OpenID Connect 66

iv | Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

Security considerations between OAuth 2 and OAuth 1.0a 67
Building an OAuth 2.0 server 68
Creating the Express application 68
Setting up our server’s database 69

Generating Authorization Codes and tokens 69
The Authorization Endpoint 72
Handling a token’s lifetime 75
Handling Resource Requests 78
Using Refresh Tokens 81
Handling errors 82

Adding OpenID Connect functionality to the server 86
The ID Token Schema 87
Modifying the Authorization Endpoint 88
Adjusting the Token Endpoint 89
The UserInfo Endpoint 91
Session Management with OpenID Connect 91

Building an OAuth 2 Client 91
Using Authorization Codes 92
Authorization using Resource Owner Credentials or Client Credentials 95

Adding OpenID Connect functionality to the client 96
The OpenID Connect Basic flow 97

Beyond OAuth 2.0 and OpenID Connect 98

5. Alternate methods of identification. 101
Device and browser fingerprinting 101
2-factor authentication and n-factor authentication 102

n-factor authentication 103
One-Time Passwords 103
Implementing two-factor authentication with Authy 107

Biometrics as username instead of password 113
How to rate biometric effectiveness 114

Face recognition 114
Retina and Iris scanning 115
Vein recognition 116

Upcoming standards 116
FIDO Alliance 116
Oz 118
The Blockchain 119

6. Hardening Web Applications. 121
Securing sessions 121

Different types of sessions 122

Table of Contents | v

www.it-ebooks.info

http://www.it-ebooks.info/

How Express handles sessions 123
Handling XSS 127

The Three Types of XSS Attacks 127
Testing XSS Protection Mechanisms 127
Conclusion 132

CSRF attacks 132
Handling CSRF with csurf 133

Valuable resources for Node 134
Lusca 134
helmet 135
Node Security Project 135

Other mitigation techniques 136
Our findings 137

7. Data Transmission Security. 139
SSL/TLS 139

Certificate Validation Types and Authorities 140
Creating your own Self-Signed Certificate for Testing 143

Asyncronous Cryptography 151
Use Case 151
Implementation Example 153
Advantages, Disadvantages, and Uses of Aynchronous Cryptography 160

Synchronous Cryptography 160
Initialization Vector 161
Padding 162
Block Cipher Modes of Operation 164
Using AES with CTR Encryption Mode 166
Using AES with with GCM Authenticated Encryption Mode 168
Advantages, Disadvantages, and Uses of Synchronous Cryptography 170

A. GitHub Repositories. 173

B. Technical Preconditions and Requirements. 175

Glossary. 181

Index. 183

vi | Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

1 http://www.inc.com/will-yakowicz/cyberattacks-cost-companies-400-billion-each-year.html
2 http://cybersecurityventures.com/cybersecurity-market-report/

Preface

“Companies Lose $400 Billion to Hackers Each Year”1

—Inc. Magazine

In a cybersecurity market report2, issued by Cybersecurity Ventures in Q4 of 2015,
they stated that cyber attacks are costing businesses between $400 - $500 billion a
year. In the same thread, IT security spending is due to increase by 4.7% in 2015 to
$75.4 billion USD, with an estimate that the world will spend upwards of $101 billion
in information security in 2018, and growing to $170 billion in 2020. Due to this, it’s
projected that there will be a cybersecurity workforce shortage of 1.5 million by 2019,
as demand is expected to rise 6 million people in 2019.

As web and application developers, designers, engineers, and creators, we are no
longer living in an age where we can offload the knowledge of identity and data secu‐
rity to someone else. In this age, a web developer can unwittingly open up a security
flaw on a site simply by not understanding how to properly obscure data in transmis‐
sion, a project manager can cause a major attack vector to open up in an application
by not understanding that previously secure password algorithms have been shown
to now include flaws, and not prioritize the work on rehashing the database of user
records. It is now the business of every person working on a system to take a part in
ensuring that your users and data are protected.

Despite these facts, it seems like every week we have new cases of companies, from
startups to massive corporations, losing privileged user information, credit card data,
medical records, and many other pieces of information that are entrusted to protect.
It comes to light that many of these same organizations never took the effort to
encrypt data properly, storing everything in plaintext, awaiting for some hacker to
abuse.

vii

www.it-ebooks.info

http://www.inc.com/will-yakowicz/cyberattacks-cost-companies-400-billion-each-year.html
http://cybersecurityventures.com/cybersecurity-market-report/
http://www.it-ebooks.info/

The true problem is that hacking is no longer just the business of individuals wanting
to prove that they can breach a system, it is now a realm of organized businesses,
hacking for money or to damage the business.

This is where this text comes in. As we explore each chapter and concept, we will be
taking the approach of how to plug holes in existing systems, protect against viable
attack vectors, and how to work in environments that are sometimes naturally inse‐
cure. We’ll look at concepts such as:

• Understanding the state of web and application security, with concepts.
• Building security password encryption, and how to combat password attack vec‐

tors.
• Creating digital fingerprints to identify users, through browser, device, and

paired device detection.
• Building secure data transmission systems through OAuth and OpenID Connect.
• Using alternate methods of identification for a second factor of authentication.
• How to harden your web applications against attack.
• Creating a secure data transmission system using SSL/TLS, Synchronous and

Asynchronous cryptography.

In the end, we’ll have a comprehensive understanding of the current state of identity
and data security, knowing how to protect ourselves against potential attacks, and
protecting our users from having the data that they entrusted to us compromised.

Acknowledgments
First of all we would like to thank the O’Reilly crew for publishing this book and ena‐
bling us to share our knowledge, thoughts and opinion with many individuals around
the world. A huge special thanks goes out to our editor Meg Foley, who has been
patient, supportive and helpful throughout the process of finishing this work.

Our thanks also go out to both Lenny Markus, Allen Tom, and Aaron Parecki, who
patiently reviewed this book’s manuscript and helped to improve its quality tremen‐
dously.

We’d also like to thank our developer relations team for proof-reading, providing cri‐
tique and freeing us up to work on this book.

Finally, we’d like to express our gratitude to you, our readers, for buying this book.
We hope you enjoy it!

viii | Preface

www.it-ebooks.info

http://www.it-ebooks.info/

Jonathan
I’d like to start out by thanking my partner in crime, Tim, for being an amazing co-
author to work with. Without our continued conversations, building up and breaking
down all of our ideas into new amazing hybrids of their original selves, this book
wouldn’t have been what it is today. Your ideas, drive, and humor made this one of
my favorite experiences.

To my wife Heather, you’ve helped to keep me sane when I decided to write my first
book almost 5 years ago. Despite the fact that I forgot how much time away that took,
you stood by me when I decided to write another one. Without you, I could not have
kept my sanity and drive throughout this process. You have always been by my side to
encourage me to chase my dreams. You’ve been my biggest advocate through all of
this, and I love you for that.

To my daughter Scarlett, throughout the time that I have had to pleasure to be your
father, you have brought a calming effect into my life. With constant chaos, you have
allowed me to see that the world doesn’t have to be as serious as I used to think it was.
You’ve brought a peace into my life that I will always thank you for.

To my group, my friends. We may all go our separate ways, be split through compa‐
nies and across the world, but I will always see you as some of my closest friends. We
have been through so much together, and have sacrificed a lot. Despite all that, you
have been our supporters through everything we have gone through, boosting us up,
allowing us to succeed. Thank you.

Tim
I’d like to thank Jonathan, who’s not only been a fantastic colleague and friend, but
also a great co-author on this book. It was brilliant to be able to bounce ideas and
thoughts back and forth and I am positive that the book would have been far less
interesting without your influence, support and work.

My wife, Karin, deserves a huge thank you - and probably an even bigger bouquet of
flowers - for granting me all the time I needed in order to finish my work on this
book.

Joe Nash, Alan Wong, Steven Cooper and Cristiano Betta have been a fantastic team
throughout the time of authoring this book and deserve to be mentioned here.

I am grateful for everyone that encouraged me to write this piece and saw me ram‐
bling about security concepts and usability concepts on various stages.

A special mention goes to Danese Cooper, PayPal’s Head of Open Source, who highly
animated me to write down my thoughts beyond blog posts.

Preface | ix

www.it-ebooks.info

http://www.it-ebooks.info/

Finally, I would like to thank both John Lunn and Taylor Nguyen, who supported me
tremendously in writing this book and gave me support and advice throughout my
career.

x | Preface

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1

Introduction

Jonathan LeBlanc and Tim Messerschmidt

One of the most important investments that you can make in a system, company, or
application, is in your security and identity infrastructures. We can’t go a week
without hearing about another user customer breach, stolen credit cards, or identity
theft. Even though you can put an entire series of hurdles in the way of a potential
attacker, there will always exist a possibility that your databases will be breached,
information will be stolen, and an attacker will begin attempting to crack the sensitive
data that was stored (if encrypted).

There is no bulletproof, secure method for protecting your data, identity and data
security has always been about mitigating risk, protecting the secure data, and buying
yourself enough time to take action and reduce damage if something like this should
ever happen to you.

As we dive down into the concepts, technology, and programming methodologies
behind building a secure interface for data and identity. We’re explore the decisions,
tradeoffs, and core concepts that you will need to understand as you embark on mak‐
ing those final decisions about your security.

As we begin, the best place to start is in exploring what the major problems with data
security and identity are in the industry right now.

The problems with current security models
The current state of industry security is not one in which the technology can’t keep
up with the potential attack vectors, it’s one in which development choices lead us
down a path of weak systems. One of the biggest mistakes that many of us tend to
make is to assume that a user will understand how to protect their own accounts,
such as with strong password choices or two-factor authentication, or even if they do,

1

www.it-ebooks.info

http://www.it-ebooks.info/

that they wouldn’t pick the most usable choice over the easiest one. We, as developers,
have to protect our users in the same way that we try to protect our systems, and we
must assume that the user will not do that for themselves.

What this means is that we have to purge a few misconceptions from our heads:

• The user will always use the most secure options: The simple fact is that the
worst thing you can rely on is that the user will be capable, or willing, to use the
option that will secure them and their data. The onus has to be on the site or ser‐
vice owner to ensure that data provided by the user for their security (such as a
password) is hardened to ensure that minimum levels of security are imposed
(see more about data encryption and security in Chapter 2). For instance, when
two-factor authentication services are offered, a typical adoption rate is approxi‐
mately between 5-10% of users.

• We should always make systems more secure, at the cost of usability: This is
typically one of the reactions to the last point, to make a system as secure as pos‐
sible, at the cost of usability of the system for the user. This is simply not the case,
there are numerous mechanisms that can be put in place to enhance security
without drastically affecting the user. We’ll explore this further below.

• Our security will never be breached: From startups to large companies, many
engineers have put too much faith in the security of their systems. What this has
lead to is lax data encryption standards, meaning that personal and privileged
information, such as credit card data, home addresses, etc, are stored as cleartext,
data that is not encrypted in any way. When the system is breached, hackers have
to put in no effort to capture and use that data.

Always assume your data will be stolen and use proper data encryption

In June, 2015, a massive breach of US government data was said to
expose the personal information on millions of government work‐
ers, since the data itself was not encrypted (source: Computer
World). No matter how big you are, you should always assume that
the possibility exists that your database security will be breached,
and data stolen. All sensitive information should always be prop‐
erly encrypted.

Let’s drill down into some of these issues a bit further to see the cause and effect of the
choices we make as users and developers.

Poor Password Choices
As we stated above, users are notorious for choosing highly unsecure passwords for
their accounts. To expand on that proof point, let’s look at the top passwords of 2015,

2 | Chapter 1: Introduction

www.it-ebooks.info

http://www.computerworld.com/article/2935132/cybercrime-hacking/hacked-data-on-millions-of-us-govt-workers-was-unencrypted.html
http://www.computerworld.com/article/2935132/cybercrime-hacking/hacked-data-on-millions-of-us-govt-workers-was-unencrypted.html
http://www.it-ebooks.info/

compiled by SplashData from files containing millions of stolen passwords that have
been posted online during the previous year.

Table 1-1. Most popular passwords of 2015
1: 123456 6: 123456789 11: welcome 16: dragon 21: princess

2: password 7: football 12: 1234567890 17: master 22: qwertyuiop

3: 12345678 8: 1234 13: abc123 18: monkey 23: solo

4: qwerty 9: 1234567 14: 111111 19: letmein 24: passw0rd

5: 12345 10: baseball 15: 1qaz2wsx 20: login 25: starwars

Before we get too far up in arms about people choosing these passwords, there are
many issues with the data sets that we need to be aware of:

• Since most of this data comes from information leaks, it could be that these pass‐
words are just easier to crack through dictionary or brute force attacks.

• We don’t know the sources of much of this data, so we can’t validate the security
measures in place on the sites or services.

• The data may contain anomalies, or simply bad data. If a default password is
being set by a service with a lot of leaked data (and never changed), it will push it
higher. If we are analyzing data from multiple different sources using informa‐
tion that was poorly parsed, or has those anomalies, the list will be skewed.

With that said, even though those passwords may be a smaller number than the lists
purport them to be, and the data may be highly skewed, they still exist. What this
means, when building a data and identity security system, is that you have to provide
an adequate level of protection for these people. Typically, you want to build for the
weakest possible authentication system, which, depending on your security require‐
ments, might be comprised of this list.

In many ways this is because of what we expect of people when they are creating a
password: provide a password with mixed case, at least one symbol & number, noth‐
ing recognizable in a dictionary or guessable from those who know you. These types
of expectations create poor usability for the user, where they won’t be able to remem‐
ber the password, and also ensures that they either pick the easiest way they can to
enter the site, or write down that complex password on a post-it note on their display.
Usability needs to be a part of identity security for it to be effective.

Security Over Usability
Favor security too much over the experience and you’ll make the website a pain to use.

—Anthony T, Founder

The problems with current security models | 3

www.it-ebooks.info

http://www.teamsid.com/worst-passwords-2015/
http://www.it-ebooks.info/

Your main objective when handling the data and identity of your users is to ensure
their security, but at the same time you don’t want to alienate your entire user base by
making your sign-in forms complex, or by forcing a multi-screen, manual checkout
process for purchasing goods, or by continually challenging the user for identification
details as they are trying to use your service. Those are sure-fire ways of ensuring that
your users never return.

Main reasons for shopping cart abandonment included the user
being uncomfortable with the buying process (it was too complex /
lengthy), or they were forced to sign up before purchasing. Many of
these concerns can be solved through the usability considerations,
such as a single page checkout, and allowing a simplified guest
checkout.

The concept of usability versus security is always a balancing act. You need to ensure
that you have a high enough confidence in the security of your users, and at the same
time do as much behind the scenes so that the user isn’t forced to break out of the
experience of your site to continually verify themselves.

Some of the questions that we can ask ourselves, when thinking this through, are:

• Can I obtain identity information to increase my confidence that the user is who
they say they are, without imposing additional security checks on the user?

• If I have a high confidence that the user is who they say they are, can I build a
more usable experience for that user versus one that I have no confidence in?

• What content requires user identification, and when should I impose additional
levels of security to verify that?

We’ll explore these concepts further in Chapter 3, as we learn about trust zones and
establishing identity information on a user.

Improper Data Encryption
Data security and identification isn’t about planning for the best, it’s about planning
for the worst. If there is the possibility of something happening, you should assume
that it will happen and have a plan in place to decrease or mitigate the damage that is
done.

On March 27th, 2015, Slack announced that their systems had been breached, and
user information was stolen. The damage of the security incident was lessened
because of their strong data encryption methods. From their blog on the incident,
“Slack maintains a central user database which includes user names, email addresses,
and one-way encrypted (hashed) passwords. Slack’s hashing function is bcrypt with a
randomly generated salt per-password which makes it computationally infeasible that

4 | Chapter 1: Introduction

www.it-ebooks.info

http://www.it-ebooks.info/

your password could be recreated from the hashed form.”. In addition, following this
incident, they introduced two factor authentication for users, as well as a password
kill switch for team owners that automatically logged out all users, on all devices, and
forced them to create a new password.

In the above case, data encryption and quick action prevented a massive theft of user
accounts, and lessened the damage to their credibility and the confidence their users
had in them. Data encryption isn’t always about trying to prevent data from being
stolen, it’s meant to slow down hackers from decrypting the data long enough to
make it either infeasible for them to decrypt massive amounts of data, or delay them
until you can take appropriate action.

The weakest link: human beings
As developers and service providers our biggest interest should be treating our users’
data with the most respect we can provide. Hence, we try to secure any kind of infor‐
mation a user provides to us by using encryption algorithms, offer safe ways to com‐
municate and continuously harden our infrastructure in an ongoing struggle.

The most important element in this chain, the human being, is often taken out of the
equation, and therefore we open up our application towards threats that we might
have not even considered when laying out and designing our security layer. Truth is:
users tend to go the easy way. This means for us, that people are likely to choose easy-
to-remember and short passwords, simple to guess usernames and might not have
been educated about current authentication technology like two-factor authentication
- also known as 2FA. Two-factor authentication is a technology that we will discuss in
depth in the fifth chapter of this book - it certainly deserves extra attention and focus.
Also we will discuss a technology deriving from 2FA simply titled n-factor authenti‐
cation that represents a scalable security approach depending on the use case.

It is easy to understand why people tend to use and especially reuse simple passwords
- it saves them time while setting up user profiles and makes authenticating against
services and applications a quick to execute task. Especially with the rise of mobile
we’re often facing small screen estate and touchscreen keyboards which can be expe‐
rienced as additional burden.

The phenomenon described here is also known as password fatigue. Gladly there are
multiple tools that we, as developers, can use in order to counter these problems and
ensure a smooth and pleasing registration and authentication flow within our appli‐
cations while still maintaining user security.

The weakest link: human beings | 5

www.it-ebooks.info

http://www.it-ebooks.info/

1 http://www.nngroup.com/articles/password-creation
2 http://research.microsoft.com/pubs/227130/WhatsaSysadminToDo.pdf
3 http://research.microsoft.com/pubs/227130/WhatsaSysadminToDo.pdf

Many operating systems, browsers and third-party applications try
to solve the issue of password fatigue by allowing to both generate
randomized passwords and by offering a way to store those pass‐
words under protection of a master password.
A popular example would be the password-management applica‐
tion Keychain that got introduced with Mac OS 8.6.

More and more services like 1Password, Dashlane or LastPass offer to generate pass‐
words for their users. This removes the need to come up with a secure password and
is often seen as a convenient way to speed up user account registration.

Katie Sherwin, a member of the Nielsen Norman Group, released an article 1 about
simplifying password authentication flows and listed these three approaches as a way
to improve user experience:

• Show the Rules
• Show the User Input
• Show Strength Meters

By applying these three rules we can ensure that users feel comfortable about the
passwords they use and get a clear indication about the password’s strength itself.
Further research indicates that users that see a strength meter choose more secure
passwords - even if the strength indicator is not implemented that well2.

Those who saw a meter tended to choose stronger passwords than those who didn’t,
but the type of meter did not make a significant difference.3

—Dinei Florencio, Cormac Herley and Paul C. van Oorschot, An Administrator’s
Guide to Internet Password Research

Single sign-on
Single sign-on, also known as SSO, is a technology that leverages existing user
accounts in order to authenticate against various services. The idea behind this con‐
cept is prefilling and securing a central user account instead of forcing the user to
register at a variety of services over and over again.

Common choices that try to accommodate the wish to reuse user profiles to either
provide profile information or to simply authenticate against other services include
OpenID, OAuth 1.0, OAuth 2.0 and various hybrid models like OpenID Connect. In

6 | Chapter 1: Introduction

www.it-ebooks.info

http://www.nngroup.com/articles/password-creation
http://research.microsoft.com/pubs/227130/WhatsaSysadminToDo.pdf
http://research.microsoft.com/pubs/227130/WhatsaSysadminToDo.pdf
http://www.it-ebooks.info/

Chapter 4 we will focus on a selection of authentication techniques and will discuss
both the technical implementation details as well as the security implications.

Understanding Entropy in Password Security
Before we get too far into the weeds, we should first address how we can determine a
weak password from a strong one, if that password was created by a human being.
The standard industry mechanism for determining password strength is called
“information entropy”, which is measured in the number of bits of information in a
provided source, such as a password.

Typically, if you are using passphrases, a good level of entropy to
have at minimum is 36.86 bits, which coincides with the average
entropy level of 3 random words selected from a list of 5000 possi‐
ble unique words from a list.

Password entropy is simply a measurement of how unpredictable a password is. Its
measurement is based on a few key characteristics:

• The symbol set that is used.
• The expansion of the symbol set through lowercase / uppercase characters.
• Password length.

Using the information above, password entropy, expressed in bits, is used to predict
how difficult it would be for the password to be cracked through guessing, dictionary
attacks, brute force cracking, etc.

When you are looking at determining overall password entropy, there are two main
ways of generating passwords that we should explore: randomly generated passwords
(computer generated), and human selected passwords.

According to one study, titled “A Large-Scale Study of Web Pass‐
word Habits”, by Dinei Florencio and Cormac Herley of Microsoft
Research, the entropy level of the average password was estimated
to be 40.54 bits.

Entropy in Randomly Selected Passwords
When we look into the entropy of randomly selected passwords (computer gener‐
ated), the process is fairly straightforward for determining the overall entropy of the
passwords, since there is no human, random, element involved. Depending on the

Understanding Entropy in Password Security | 7

www.it-ebooks.info

http://www.it-ebooks.info/

symbol set that we choose symbols from, we can build a series of passwords with a
desired level of entropy fairly easily.

First, the generally accepted formula that we use to calculate entropy is: H = log2 bl .

Where

• H = The password entropy, measured in bits
• b = The number of possible symbols in the symbol set
• l = The number of symbols in the password (or length)

To come up with the value of b, we can simply choose the symbol set that we are
using from the list below.

Table 1-2. Entropy for each symbol in a symbol set

Symbol set name Number of symbols in set Entropy per symbol (in bits)
Arabic numerals (0–9) 10 3.322

Hexadecimal numerals (0–9, A-F) 16 4.000

Case insensitive Latin alphabet (a-z or A-Z) 26 4.700

Case insensitive alphanumeric (a-z or A-Z, 0–9) 36 5.170

Case sensitive Latin alphabet (a-z, A-Z) 52 5.700

Case sensitive alphanumeric (a-z, A-Z, 0–9) 62 5.954

All ASCII printable characters 95 6.570

All extended ASCII printable characters 218 7.768

Binary (0-255 or 8 bits or 1 byte) 256 8.000

Diceware word list 7776 12.925

The symbol set you might not be familiar with above is the dice‐
ware word list. The method behind diceware is to use a single die
(from a pair of dice), and roll it 5 times. The numeric values on the
die each time create a 5 digit number (e.g. 46231, matching the
value of each individual roll). This number is then used to look up
a word from a given word list. There are 7776 possible unique
words using this method. See the diceware word list for the com‐
plete reference.

Using the formula, length of the password, and numbers of symbols in a given sym‐
bol set, you can estimate the bits of entropy from a randomly generated password.

8 | Chapter 1: Introduction

www.it-ebooks.info

http://world.std.com/~reinhold/diceware.wordlist.asc
http://www.it-ebooks.info/

4 http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63-2.pdf

Entropy in Human Selected Passwords
Before we get into measuring entropy levels within a password that was created by a
human being, rather than being randomly generated based on security standards, we
need to understand these numbers are non trivial. There are many methods that have
been proposed for doing so (NIST, Shannon Entropy, Guessing Entropy, etc), but
most of these fall short in one way or another.

Shannon Entropy is seen to give an overly optimistic view of password security (while
providing no real actionable improvement hints), and NIST a non-accurate (yet con‐
servative) one. Since we always want to err on the side of caution with password secu‐
rity, let’s quickly look at the NIST study on how to measure human selected
passwords, as that will give us a good starting point.

According to NIST special publication 800-63-24, if we take a human selected pass‐
word, we can measure the assumed entropy with the following steps:

• The entropy of the first character is 4 bits.
• The entropy of the next 7 characters are 2 bits per character (they state that this is

“roughly consistent with Shannon’s estimate that when statistical effects extending
over not more than 8 letters are considered the entropy is roughly 2.3 bits per char‐
acter“).

• Character 9 through 20 have an entropy of 1.5 bits per character.
• Characters 21 and above have an entropy of 1 bit per character.
• A 6 bit bonus is given to password rules that require both upper case and non-

alphabetic characters (This is also a conservative bit estimate, as the NIST publi‐
cation notes that these special characters will most likely come at the beginning
or end of the password, reducing the total search space).

• An additional 6 bit bonus is given to passwords with a length of 1 to 19 charac‐
ters that follow an extensive dictionary check to ensure the password is not con‐
tained within a large dictionary. The reason passwords that are longer than 20
characters do not receive this bonus is because they are assumed to consist of
multiple dictionary words placed together into pass-phrases.

Let’s take that idea and see what the entropy of a few examples would be:

• monkey (6 characters) = 14 bits of entropy (4 bits for the first character, 10 bits
for the following 5 characters)

Understanding Entropy in Password Security | 9

www.it-ebooks.info

http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63-2.pdf
http://www.it-ebooks.info/

• Monkey1 (7 characters) = 22 bits of entropy (4 bits for the first character, 12 bits
for the following 6 characters, 6 bit bonus for uppercase and non-alphabetic
characters being used)

• tvMD128!Rrsa (12 characters) = 36 bits of entropy (4 bits for the first character,
14 bits for the following 7 characters, 6 bits for the following 4 characters, 6 bit
bonus for uppercase and non-alphabetic characters being used, 6 bit bonus for a
non-dictionary string within 1-19 characters)

• tvMD128!aihdfo#Jh43 (19 characters) = 46.5 bits of entropy (4 bits for the first
character, 14 bits for the following 7 characters, 16.5 bits for the following 11
characters, 6 bit bonus for uppercase and non-alphabetic characters being used, 6
bit bonus for a non-dictionary string within 1-19 characters)

• tvMD128!aihdfo#Jh432 (20 characters) = 42 bits of entropy (4 bits for the first
character, 14 bits for the following 7 characters, 18 bits for the following 12 char‐
acters, 6 bit bonus for uppercase and non-alphabetic characters being used)

You can start to see some holes in the assumptions that the NIST study makes with
the last two password examples, where 1 additional character causes the loss of 6
bonus bits of entropy because of the assumption that the password is of significant
length that a user would not have chosen a complex string, and that if a string of that
length was used for a password, it is most likely several dictionary words put together,
such as “treemanicuredonkeytornado”, which, based on the NIST study, would
actually give us 41 bits of entropy.

As we go further, you can see why determining the security of a human created pass‐
word can be tricky, and that’s because humans are unpredictable. If we plug in a sys‐
tem of security requirements into a computer generated password system, and store
that in a password vault application like 1Password, KeePass, or LastPass, then we can
have a very predictable environment. That’s why, for the most part, we usually take
one of two steps (sometimes both) in securing identity in web development:

1. You provide requirements to the user, when they create their password, on how
to strengthen their login. This can be requirements for length, non-alphabetic
characters, uppercase and lowercase characters, non-dictionary words, etc. For
obvious reasons, the usability of this solution is quite bad, and may alienate many
users, but the security increases. The problem here is that when we make it
harder to create a password, it is more likely that a user will forget that password,
then requiring the use of the “forgot your password” reset flow.

2. You attempt to harden the data, as best you can, behind the scenes. This usually
involves encryption, salting, and key stretching (all concepts we will dive into in
Chapter 2), to try to help prevent weak passwords that are stolen from being
compromised. When you have a solution like this, you may also see a mechanism
that only allows a certain number of login attempts before temporarily locking

10 | Chapter 1: Introduction

www.it-ebooks.info

http://www.it-ebooks.info/

the account, to prevent potential brute force attacks against weak passwords. This
solution is higher on the usability side, since users can practically pick any pass‐
word they want, but lowers the overall security of their account.

In the end, we’re back to questions of usability versus security, and the truth of the
matter is that our ideal scenario, for all parties, is somewhere in between. Remember,
the two aren’t mutually exclusive.

Breaking Down System Usage of a Username and
Password
Another important step in understanding the concept of a username and password is
to break down what they represent in an identification system. If we put this simply,
they are an identification of who you are (the username, or public key) and then a
verification of that fact with something that only you should know (the password, or
private key).

With that understanding in place, there are two ways that we can think about han‐
dling data in an authentication system:

• Harden the System: This is the case where we take an existing (or new) system
that is built on top of a traditional username and password, and attempt to
strengthen it.

• Remove the Username and Password: In new or innovative technology solu‐
tions, this is the case where we apply the concepts of a username and password,
but do so in a different way.

As you dive further into each chapter, our main goals will be to build upon these two
concepts, focusing on hardening the system, or finding a new methodology for build‐
ing our identity and data security with new tools and techniques.

Securing our current standards for identity
Enhancing the security of an existing system is usually the choice of the vast majority
of us, as we are building on top of existing work, or we’re building a product where
the use of a username and password is a preferred login mechanism for the users.

As we explored earlier in this chapter, users are usually the worst people to put in
charge of protecting their own security, through their passwords. The vast majority of
the population will choose passwords that they can remember, which is almost always
the complete opposite of what we would traditionally think of as a secure password.

Breaking Down System Usage of a Username and Password | 11

www.it-ebooks.info

http://www.it-ebooks.info/

What we know from earlier sections is how to approximate the predictability of a
password, and that we should always build our security towards the most unsecure
element in the chain, not the average.

With that said, there are certain standard mechanisms that we use for account secu‐
rity, and others that we should avoid.

Good and bad security algorithms
Not all encryption algorithms are created equal when it comes to the security of our
data and privileged user information. Some are built for speed, for quickly and accu‐
rately encrypting and decrypting large amounts of data, and then there are others
that are designed to be slow. Let’s say your database of a million encrypted user
records has been stolen, and the attacker is attempting to crack the encryption, such
as by trying every word in the dictionary as an option, to reveal the data underneath.
Would you prefer to make this as fast as possible for them to check different words,
or as slow as possible? The correct answer is that you want this process to be as slow
as possible for them.

With regular cryptographic hash functions, an attacker can guess billions of pass‐
words per second. With password security hashing algorithms, depending on what
the configuration is, the attacker may only be able to guess a few thousand passwords
per second, which is a massive difference.

The Good

These are hashing algorithms that are meant to be used for password security, and are
built to be purposefully slow to make cracking the data harder.

• PBKDF2: PBKDF2 stands for “Password-Based Key Derivation Function 2”, and
was created by RSA Laboratories. It applies a pseudorandom function, such as a
hash, cipher, or HMAC, to the input (password) along with a salt. The process is
repeated many times, which produces a derived key.

• bcrypt: Created by Niels Provos and David Mazières, bcrypt stands for “Belgian
Fundamental Research in Cryptology and Information Security”. It is a key deri‐
vation function based on the blowfish cipher. It incorporates a salt into the pro‐
cess to protect the key, and also has an interesting adaptive functionality to it.
Over time, the iteration count can be increased to make it slower, so it remains
resistant to brute-force attacks.

• scrypt: Created by Colin Percival, scrypt is another key derivation function that
is designed to combat large-scale hardware attacks by requiring high amounts of
memory and therefore slowing down computation.

The Bad (for passwords)

12 | Chapter 1: Introduction

www.it-ebooks.info

http://www.it-ebooks.info/

5 http://searchsecurity.techtarget.com/definition/social-engineering

These are our standard cryptographic hashing algorithms, which are meant to be fast.
In the case of password security, this is not a good scenario as slowing down the algo‐
rithm makes it much harder for an attacker to crack the data.

• MD5: MD5, or “Message-digest algorithm”, was designed by Robert Rivest in
1991, and produces a 128-bit hash value, typically expressed as a 32 digit long
hexadecimal number.

• SHA-1: SHA stands for “Secure Hash Algorithm”. It was designed by the NSA,
SHA-1 produces a 160-bit (20-byte) hash value. This hash value is typically ren‐
dered as a 40 digit long hexadecimal number.

• SHA-2: Also designed by the NSA, SHA-2 is the successor of SHA-1, and consists
of six hash functions with hash values that are 224, 256, 384 or 512 bits
(SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224, SHA-512/256).

What data should be protected?
We’ve hinted at this one a few times during this chapter, but when it comes to asking
yourself “What information absolutely needs to be encrypted?”, the answer is actually
pretty simple: Anything that is personally identifiable (identity data, personal infor‐
mation, payment details), or anything that is imperative to your system, that could
open up additional leaks or holes in your architecture if released.

Account Recovery Mechanisms & Social Engineering
After we’ve reviewed the details worth protecting, we should take this knowledge into
account when looking at recovery mechanisms. Often Social Engineering or weak
recovery mechanisms lead to exposure of information - even though protection
mechanisms got implemented in order to prevent exactly this. If you are familiar with
these matters, feel free to skip to this chapter’s wrap-up.

Popular examples include customer support providing account details they’re not
supposed to share, and badly-planned password-reset flows. A compromised email
account can lead to easy access to a user’s account - securing our users by offering
sensible security questions and allowing to provide specific responses can help lower‐
ing the risk of information leaks.

Social engineering is a non-technical method of intrusion hackers use that relies heav‐
ily on human interaction and often involves tricking people into breaking normal
security procedures. It is one of the greatest threats that organizations today encounter.
5

What data should be protected? | 13

www.it-ebooks.info

http://searchsecurity.techtarget.com/definition/social-engineering
http://www.it-ebooks.info/

6 http://www.mcsweeneys.net/articles/nihilistic-password-security-questions
7 Kevin Mitnick rose to mainstream fame by hacking companies such as Nokia and Pacific Bell. He’s nowadays

active as a security consultant.

—TechTarget SearchSecurity

The Problem with Security Questions
While the overall knowledge and consciousness about secure passwords is steadily
growing, another volatile area - Security Questions - is often ignored. Instead of
offering the user an array of personal questions or even allowing for the definition of
your own security questions, a number of generic phrases is offered that is often as
easy to find out as searching for a person’s social media profile.

Security Questions often appear as repetitive and sometimes even inadvertently
comedic collections that can be cumbersome to answer and hard to remember
(“What was my favorite dish as a child?”, “What’s your favorite book?”). Soheil
Rezayazdi published a list of Nihilistic Security Questions on McSweeney’s Internet
Tendency6 that should at least cause a slight smile on your face - here are our personal
top 5:

1. When did you stop trying?
2. In what year did you abandon your dreams?
3. At what age did your childhood pet run away?
4. What was the name of your favorite unpaid internship?
5. What is the name of your least favorite child?

In all seriousness, the impact of Social Engineering is often completely underestima‐
ted or even ignored. It is often easier to pass barriers instead of circumventing and
breaking them down. The scope of Social Engineering can be anything between look‐
ing up some facts about a person online and sneaking into office buildings; while this
might sound like an exaggeration (and often does not have to happen), it makes sense
to prepare and train staff accordingly.

In case you are looking for more information on this topic: great resources on Social
Engineering are Kevin Mitnick’s books “Ghost in the Wires”, “The Art of Intrusion”
and “The Art of Deception”7.

14 | Chapter 1: Introduction

www.it-ebooks.info

http://www.mcsweeneys.net/articles/nihilistic-password-security-questions
http://www.it-ebooks.info/

Next up
Now that we understand all of the concepts that we are going to be using and talking
about throughout the rest of the chapters, let’s jump into the next chapter by drilling
down into how hashing, salting, and data encryption can be added to your systems.

Next up | 15

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2

Password Encryption, Hashing, and Salting

Jonathan LeBlanc

In the first chapter we learned about the underlying concepts of password security,
and the current state of the industry and standards employed. Let’s start putting some
of that into practice as we explore the practical application of password encryption
and security.

To start this implementers approach, let’s first look at the different ways that data will
be transmitted and stored, that we should be aware of.

Data at Rest vs Data in Motion
As we start to explore the concepts of data security, there are two important concepts
that we should adress: data in motion versus data at rest.

When we talk about data at rest, what we actually mean is the inactive (or resting)
digital data that is being stored on your servers, such as the databases that you are
using to store passwords, profile information, or any other details needed within your
application.

When we discuss the concept of data in motion, what we’re talking about is any data
that is in transit, being sent back and forth from an application to a database, or com‐
munication back and forth between websites and APIs or external data sources.

Data at Rest
If you’re talking about credit card environments, where you’ve got a requirement to
encrypt the credit card information at rest, I think the most common method people

17

www.it-ebooks.info

http://www.it-ebooks.info/

1 http://www.zdnet.com/article/encrypting-data-at-rest-is-vital-but-its-just-not-happening/

use there is enabling encryption within the database. That’s typically about as good as it
gets in terms of host-based encryption1

—Chris Gatford, Hacklabs

When it comes to web and application developers, the concept of protecting the data‐
base in which we store secure information about our clients is typically something
that we rarely have to encounter, but it is a concept that should be understood. While
the aspects of data at rest are beyond the scope of this book, let’s cover some of the
basic concepts and guidelines to understand that database encryption is absolutely
needed, even though in 99% of organizations, this is simply not done.

If we’ve tried to reiterate on a few occassions, you should always assume a worst case
scenario when planning for data breaches. In this case, we should assume that an
attacker has gained access to our database, with the end goal of capturing any senstive
data and passwords. Wouldn’t you want to have both the password encryption to pre‐
vent account access, as well as an additional layer of encryption on the database
itself?

First, let’s address the encryption methods that should be used on the database. Dif‐
ferent to the standards that we discussed in Chapter 1 for password encryption, the
strong encryption methods that should be used for database encryption are SHA-256
(Secure Hash Algorithm) or better, AES (Advanced Encryption Standard)), and RSA
(Rivest-Shamir-Adleman)). These are all part of the NIST approved algorithms. Weak
encryption algorithms, such as MD5 and SHA1, should never be used for database
encryption.

Now, there are a few standards that should be followed:

• Keep access control (user login) separate from database encryption. Should a
username or password fail, the database itself should remain encrypted, effec‐
tively providing multiple levels of protection.

• The keys that are used for the database encryption should be updated on a regu‐
lar basis.

• Encryption keys should always be stored separately from the data.

Data federation is another method to help prevent unwanted access in the case of an
application with global reach and data storage. The purpose of this strategy is to
maintain distinct database systems in the regions where the personal information is
actually needed (e.x. the personal information of a UK customer is stored within a
database in the UK, not a centralized database in the US). Effectively, instead of hav‐
ing a centralized database with all customer information that is copied around to data

18 | Chapter 2: Password Encryption, Hashing, and Salting

www.it-ebooks.info

http://www.zdnet.com/article/encrypting-data-at-rest-is-vital-but-its-just-not-happening/
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf
http://www.it-ebooks.info/

centers as needed, only information in the region that it is needed in is maintained.
This type of strategy is effective when government regulations / laws require access to
be granted to all user information that is stored in their country, regardless of
whether that data belongs to individuals in other countries.

Lastly, there is one underlying concept that should be understood and implemented.
You should only ever store the minimum amount of sensitive user data that is
required to run your application, site, or services. A major industry trend over the
last few years has been to capture as much information about your users as possible,
store it, and then figure out whether it is useful and is viable at a later date. This is
absolutely not the practice that should be employed when you are trying to provide
the best level of protection for your users. When creating the architectural schema for
your application or website, you should include think heavily on the type of data that
is needed for both the state of the application, and use that to build the database
structure for personal information that should be stored. The less priviledged infor‐
mation stored, the less potential impact on your customers.

Beyond the user data, sensitive financial information such as credit card data can also
be offloaded, typically to the payment provider through a system such as a credit card
vault. In addition to the security benefits in not having to host that data yourself, you
don’t incur the implications of having to implement all standards for PCI DSS com‐
pliance, as required when hosting payment information for customers.

Data in Motion
Data in motion, or data that is in transit, is what the vast majority of web and applica‐
tion developers will be dealing with in their day to day development. Realistically, this
will encompass a number of different scenarios, including:

• Signup information from a user that will be used for account access and identity.
• Transmission of profile information to and from service APIs.
• Other data collected through the application or website and transmitted for data‐

base storage.

This is the data focus that we will be exploring throughout the upcoming chapters.
Our first step is to look into security and encryption behind the user profile, through
the proper storage and use of the user password.

Password Attack Vectors
There are many methods in which an attacker may attempt to gain access to the
account of a user. Some of which are geared around manipulation of the user them‐
selves, while others attempt to target the application or website itself to gain access.

Password Attack Vectors | 19

www.it-ebooks.info

https://www.pcisecuritystandards.org/security_standards/
https://www.pcisecuritystandards.org/security_standards/
http://www.it-ebooks.info/

A few of these are:

• Phishing: This is the concept behind tricking the user into providing their login
credentials through a malicious site or application. Typically you would see these
types of attempts come through email scams, where the sender portrays to be the
company in question, and requires the user to log in to the malicious site for
some reason, thereby stealing their login credentials, and access to their accounts.

• Social Engineering: Taking the concept behind phishing to a new level, social
engineering hacks are usually orchestrated by other communication means, such
as through phone calls. The attacker pretends to be a network technician, or
some sort of IT security for a company, and asks the user for their login creden‐
tials to repair the issue that they are calling about. In doing so, they gain access to
the user account.

As you can well imagine, it is difficult to build a safety net for cases such as these, but
when it comes to attacks against the website or application that we are working with,
that is an area where we definitely have the control to build safety measures into our
login controls, profile systems, and database structures.

These attack vectors include:

• Brute force attacks: Calculate every possible key variation within a given length,
and then trying each one, one after another, until the password is guessed. The
shorter the password, the quicker this method takes to work. As the length of the
password increases, the time to crack the password increases exponentially.
When this method becomes too costly, other methods, such as dictionary attacks,
are employed. One of the methods employed to counter brute force attacks is key
stretching, which we’ll explore later in this chapter.

• Dictionary attacks: The premise behind this is to loop through a list of pre-
determined words / terms, such as all words in a dictionary (hence the term “dic‐
tionary attack”), and trying all combinations against an encrypted password to
find matching values. Unlike a brute force attack, a dictionary attack is just trying
input that is considered to, most likely, be a common input word, term, or
phrase. Use of a salt (which we’ll discuss below) is an appropriate way of dealing
with these types of attacks.

• Rainbow tables: Essentially, rainbow tables are large lists that contain pre-
calculated hashes (for a given hash function), and the passwords from which they
were derived. Unlike a dictionary attack where the hash function is applied at
each crack attempt, the attacker can simply compare the pre-calculated hash with
the password hash from the user database, making the entire process more effi‐
cient. Use of a salt is an appropriate way of dealing with these types of attacks.

20 | Chapter 2: Password Encryption, Hashing, and Salting

www.it-ebooks.info

http://www.it-ebooks.info/

This type of attack is typically carried out offline, when the attacker has full
access to the data.

• Malware: These are key loggers or screen scrapers that might be present on a
users machine, logging activity during log in or signup. Typically, these would be
used in conjunction with social engineering to prompt the user to load or install
a piece of infected content. An appropriate way of dealing with these attacks is to
use a second factor of authentication (e.g. text message verification) during login.

• Offline cracking: We cannot forget that there’s always the possibility that all of
our stored user information will be stolen, giving an attacker all the time they
want to crack a password hash. Once the data is stolen, hardening techniques
such as hashing our passwords with a salt, and using appropriate hashing mecha‐
nisms that are built to slow down cracking, are the barriers to data theft.

With an understanding of the general landscape of attack vectors, let’s dig into some
of these in more depth.

Brute Force Attack
Brute force attacks, also known as an exhaustive key search, is the practice of attempt‐
ing to break password encryption by going through all potential permutations of a
password for a given length. In other words, let’s say that we’re trying to break a pass‐
word of a known length, up to 5 characters, a brute force attack will attempt every
possible password permutation of that length.

Obviously, this is not the first method that an attacker would use, due to the length of
time that it would take to crack a password. For a password with a key length of N
bits, the time that it would take to crack the password will be proportional to the
number of bits, which would be proportional to 2N in the worst case, but half of that
on average. Thusly, as the password length increases, the time to break the password
also increases, exponentially.

Other methods, such as the use of rainbow tables, or dictionary attacks, are more via‐
ble attack vectors. Typically brute force attacks will only be used with offline data (not
a direct site attack, but data that was downloaded in a hack), and will only be used
when other more viable vectors are unavailable to the attacker. If proper password
encryption methods are employed that utilize key stretching, this attack method
becomes incredibly negligable.

Given these facts, when it does come to securing your web application from potential
brute force attacks, there are a number of methods that can be implemented to pre‐
vent this attack vector, including:

Password Attack Vectors | 21

www.it-ebooks.info

http://www.it-ebooks.info/

2 https://en.wikipedia.org/wiki/CAPTCHA
3 https://www.authy.com/
4 https://www.google.com/recaptcha/intro/index.html

• Implementing a CAPTCHA (Stands for *C*ompletely *A*utomated *P*ublic
*T*uring test to tell *C*omputers and *H*umans *A*part)2) following an unsuc‐
cessful login attempt to increase login complexity and help prevent automated
attacks.

• Adding in a 2FA (Two-Factor Authentication) verification mechanism, such as
through an SMS to a verified phone number using Authy3) or some other like
service.

We’ll go through an implementation of 2FA with Authy in Chapter 5, but let’s see
what a CAPTCHA implementation might look like when integrated within our site.

Creating a CAPTCHA with reCAPTCHA
As we talked about earlier, one of the methods that can be employed for preventing
an attacker from attempting password after password for an account is to place a
CAPTCHA in front of them. Typically you’ll want to make use of a CAPTCHA only
after one to two failed password attempts. These may be a user who has simply for‐
gotten their password, or they may be an attacker attempting different password
combinations in an attempted brute force attack.

Using a CAPTCHA

As with most security precautions, you want to try to impact users
as little as possible. This is the reason that we don’t want to show a
CAPTCHA for every login attempt, as it’s just an extra step that a
user has to go through to log in. When restricting use to only after
one to two failed attempts, you ensure that the vast majority of
your users are not impacted, and those that are will mostly under‐
stand the reasons for the added security on successive password
attempts.

One of the leading CAPTCHA systems is reCAPTCHA by Google4. The simply inter‐
face typically will involve just clicking a box to confirm that you are “not a robot”. It
provides a very nice and simple user interface so that your users aren’t heavily impac‐
ted like with traditional CAPTCHA systems that require you to type in words from a
picture or audio recording, while still providing high levels of security potential bots
and automated attacks.

22 | Chapter 2: Password Encryption, Hashing, and Salting

www.it-ebooks.info

https://en.wikipedia.org/wiki/CAPTCHA
https://www.authy.com/
https://www.google.com/recaptcha/intro/index.html
https://www.google.com/recaptcha/intro/index.html
http://www.it-ebooks.info/

With that said, let’s see how we’re going to implement reCAPTCHA on one of our
sites, and then confirm user input on our Node server.

The first step is to head over to the reCAPTCHA admin page to sign up for an API
key pair for your site, that will allow you to use the system.

On this page (given that you don’t have any existing keys), you will be met with the
registration system that looks like the image below:

Figure 2-1. Registering your Keys

Following the instructions on the page to register a new site, we enter a few pieces of
information:

• Label: Something to identify the site or keys for yourself, such as the site name or
URL.

• Domains: The root domains that you will be placing reCAPTCHA on. This can
be multiple domains that you maintain.

When you click the register button, you will now see all of the setup information that
you will need to go through to integrate reCAPTCHA on your site, as shown below:

Password Attack Vectors | 23

www.it-ebooks.info

https://www.google.com/recaptcha/admin
http://www.it-ebooks.info/

Figure 2-2. Adding reCAPTCHA to your Site

At the top we can see the keys that we will be using for this process. Keep those in
mind as we go through the two steps that are needed for integration.

First we need to add the reCAPTCHA script include at the end of the <head> section
of our HTML document, and create the container for the widget within our login
form. Stripping down this process into just the pieces that we need on the page, the
HTML code would look like the below:

<html>
<head>
 <script src='https://www.google.com/recaptcha/api.js'></script>
</head>
<body>

<form method="post" action="/capture">
 <div class="g-recaptcha" data-sitekey="6Lc2FxgTAAAXXXXXXXXXXXX"></div>
 <input type="submit" value="Submit">
</form>

</body>
</html>

Going through the above, here’s what we’re doing:

24 | Chapter 2: Password Encryption, Hashing, and Salting

www.it-ebooks.info

http://www.it-ebooks.info/

• The https://www.google.com/recaptcha/api.js script include is added right before
the closing </head> tag of our HTML document.

• We create a form that will POST the login data to our Node endpoint, /capture
(we will set up an Express app to capture POST requests to that endpoint).

• In the form, we simply have the <div> that will house the reCAPTCHA widget
(placed where I want it to show up in the form), and a submit button to submit
the form to our server-side endpoint.

When we load that form, we should see something like the below on our page, clearly
showing the reCAPTCHA widget and our submit button.

Figure 2-3. reCAPTCHA on your Site

The user will interact with the widget and click (or not) the option to identify them‐
selves as human. When the form is submitted, the POST data will be sent to our /
capture endpoint. For the reCAPTCHA component, the data the we will need to cap‐
ture for the verification step will be located within the g-recaptcha-response parame‐
ter, and look something like the below:

g-recaptcha-response=03AHJ_VusWHPddH611975sAE4rH9twXhs05HZcIlUa4Yv9eczU_aFxLl2VeB
kisEkZdCBd7a1R35rNvCikbsgkAsEN8KoP400SEFhzNebZN3yaK4826QQT2W0jjaK-fGIVxWGiTzHrcBW
roHDAbImEpukdJj58yN_vJFsgrnSvmXV3jWK09f_zqiOpOw07V848yYnXnIQdCuqR3SKJEvexIEmlRewZ
GnJvnN2pKMaQ_Hcnjp5p2mc5Nm-z_bELGwf2isrQvw8zm9m4lA9Etu0CS-N3PwZ_R0kELWdSTwNYH7aI8
wlWMHct8A71LDy_t82maP0jC07y6sVzlRJLQ5dsJ5gXCpnuUDPTfeASoJosTUChPPXjYWDEiZ8dAJxxNP
SNdyhftEXtrN7PiebkIEVngwRxVUqZRLe9JQpLk9HimOoOuuu5gKva4Ai_-ohHHqaAem6e_AJe6GnWO8f
PDpqXBcNOU_kkDOfQ_zHZ7FVoOvhbBW8GwV5xRjOB-7yxibHguemcm2X22W2atX0TC_hIaJZjWYZncGms
3Hgeq5lLTKzInV1W6kHmCvGqCVrakhHjQn1tfQppXsPZyWPx6RWzNKR0Mloe8bYefx2VdYZAhXeJfDMSD
sq1c7KYGJctNXiL34QIGwWxyPkUCYUxMHACkGyryRCxbYKDwi6fdsONeQHe4nhGwFneKU4kI4Kp-ymEgc
HvDUaTGS8sLrXiY36eKZrB6CIS0P4pQbJr4TJvt2dE9VkVPjKsyvRKMONpIu6G0pJsxb0ssUHHa_iTK7w
s0k681LM7LKH_MxtQJKwl8_6HycyhDn-BAjx8YEZ-KSslUvuVSelSxEo1R_y_n5MGo-qrRVSmKjP14O2k
DBF0vlW1UZTIgl2gc6Iz_QU6Oz6JQOUJOAZNtkMv6aWu5h-uVkMcIRqIHWWFqg

At this point we need to set up that /capture endpoint to accept the form POST from
our HTML document. We’ll be using Express for this one, with mostly standard
packages. Since we will be dealing with JSON responses, the only package that we’ll
need to pull down from NPM is body-parser, to handle those responses. Start out by
installing this via the following terminal command:

Password Attack Vectors | 25

www.it-ebooks.info

https://www.google.com/recaptcha/api.js
http://www.it-ebooks.info/

npm install body-parser --save

Next, let’s set up the variables for the packages that we’ll need, as well as the configu‐
ration for body-parser to handle JSON data responses.

var querystring = require('querystring'),
 bodyParser = require('body-parser'),
 https = require('https'),
 app = require('express')();

//support JSON & URL encoded bodies
app.use(bodyParser.json());
app.use(bodyParser.urlencoded({
 extended: true
}));

Here is what each package above will be used for:

• querystring: Converting JSON objects into strings for POSTing.
• body-parser: Accepting JSON responses from the verification step.
• https: Making HTTPS requests to verify the reCAPTCHA data sent from the

previous form.
• app: Express

Now let’s build an app handler for the data that will be POSTed from our previous
form to the /capture endpoint. That block will look like the below:

//handle all POST requests
app.post('/capture', function (req, res){
 var response = req.body['g-recaptcha-response'];

 var verify_data = querystring.stringify({
 'secret' : 'YOUR SECRET KEY',
 'response': response
 });

 //uber access token fetch endpoint
 var verify_options = {
 host: 'google.com',
 path: '/recaptcha/api/siteverify',
 method: 'POST',
 headers: {
 'Content-Type': 'application/x-www-form-urlencoded',
 'Content-Length': verify_data.length
 }
 };

 //set up request
 var post_req = https.request(verify_options, function(result){
 result.setEncoding('utf8');

26 | Chapter 2: Password Encryption, Hashing, and Salting

www.it-ebooks.info

http://www.it-ebooks.info/

 result.on('data', function (verification){
 console.log(verification);
 });
 });

 //post data
 post_req.write(verify_data);
 post_req.end();
});

The above will run for all POSTed data sent to the /capture endpoint. When data
arrives, we run it through several steps:

• We capture the reCAPTCHA data to be verified within the POSTed data, located
within req.body[g-recaptcha-response].

• Next we build the POST object that will be needed to send to the verification
endpoint. The data required will be your secret (this is the key that was given to
you at the beginning of this section when you signed up for your keys) and the
response from the POST body.

• We then build out the endpoint data for the verification step. The endpoint to
send this data is https://www.google.com/recaptcha/api/siteverify, so we set the
host to google.com, the path to /recaptcha/api/siteverify, and the method should
be POST.

• Next we set up the request. Since this is an HTTPS endpoint, we need to use
https.request(…), passing along the endpoint option variable that we just cre‐
ated. When the results from that come back we will simply be logging out the
response.

• Lastly, we begin the request by sending through the verification data variable that
we set up at the beginning.

The last line is to start our server.

app.listen(process.env.PORT || 3000);

In the case of testing on localhost, when we run the above it’ll listen on localhost, port
3000.

At this point the verification has been sent, and a response on whether this is a
human or not (that the person clicked the “I’m not a robot” box) will be logged out
from our above code.

If successful, the data response that we will see will look like the below:

{
 "success": true
}

If not successful, we’ll see a response like the below:

Password Attack Vectors | 27

www.it-ebooks.info

https://www.google.com/recaptcha/api/siteverify
http://www.it-ebooks.info/

{
 "success": false,
 "error-codes": [
 "missing-input-response"
]
}

Basically, if we read the success paramter from the response, we can see whether we
should process the login or not.

Using this method, we can prevent an automated script from simply making request
after request to our login for a given username, passing through every possible varia‐
tion of a password that they can generate, leading to an account being compromised.

Dictionary Attacks
A dictionary attack is slight different than a brute force attack. Instead of trying every
permutation of a given password length, a dictionary attack takes words from a pre-
arranged list (typically all words in a dictionary and other common password
choices), encrypts those words, and compares the encrypted string against the
encrypted password obtained from a user’s account.

In a practical sense, let’s say that we had each of the words that we wanted to check,
such as the following (as just an example):

var words = ['animal', 'monkey', 'test', 'tornado', 'mango', 'slide', 'pepper',
 'diaper', 'tube', 'cloth', 'hair', 'smell', 'eyes', 'tip', 'right',
 'wrong', 'happy'];

Now, to conduct this type of attack we would encrypt those words, perhaps with an
obtained salt (a random unique string used to strengthen weak passwords) from a
data breach, or perhaps without a salt, to give us a hash to compare. Given the words,
we might now have a list of hashes that appear as such:

Table 2-1. Dictionary words and associated hashes

Common Word Associated Hash
test $2a$10$wkmirMIMsQxpSvKpn.KNyOTU65YuneDcMXwA7XEHR5brjhpjugWCm

animal $2a$10$.hfSmZVMv3kv5SE9hMun8O5p/AAWsH7eOrhfYdItG0UCaU/aRT85W

tornado $2a$10$GI5itVWvmom3vBLTCSsZJ.vUtp5qzAnjVUK5PG4PRIbleIkw8BldC

monkey $2a$10$mmKLHtnYIlvGrcwF9pXgjOEkczGm99f/iNU3qCA2GOySPgOjAeguO

pepper $2a$10$wbNHHKyHhIhToY6kpExOZO.qIS4UURMm7sKAUTLudiiyMO8wD.HGq

slide $2a$10$/j9vzCZqmGvhGLMUFhwJ2.JvsiZ3i/MsXTfsf9VItR8Gitg.GWgv2

mango $2a$10$TFKgAYZrfb7p/J6Mz1NZsuhlp62Sa24GKBb7G8q4j702rc1Ntlopa

diaper $2a$10$/ISCPiQC5wGh4JF9bXKJmeI9OKvWdikq8cUuKmXvh5Za9HWcOADVy

tube $2a$10$lkZSe0Y1h710V4JGV5hBD.ZVttOnizitpqdeu1nQvO7txdemIvta2

cloth $2a$10$et.LBm.NeYWXhVl/TFB3cOs0kRAPFh8iBjSicap1ZUYNBqFlOLUp2

28 | Chapter 2: Password Encryption, Hashing, and Salting

www.it-ebooks.info

http://www.it-ebooks.info/

Common Word Associated Hash
hair $2a$10$6taHB2eQJDLeUUYL7Fw.O.u1avLlLkOt74Jhv1uBHv350QAvwKRgC

smell $2a$10$nVJwlzP5yheetOa8ALQGBehoreNsfY7eyC4X76tl3ZdiCGYtHNg4m

tip $2a$10$xeKdWcIook9IOKjcQO2GkOpzgPo.pkbc3QVIFsGKfv6UqYV2KoZlG

right $2a$10$Y0pfFl08OWinGu1/1T7NHe6LsE1ey9ggq7.kIvoiS2jkzSMpjZfZu

wrong $2a$10$6Q34ws6flQDvZU6RftuaJeWC40c8GCO2NeZfmCHyoW7aZv9H1sYG2

eyes $2a$10$vIcnd/G9fyDYVklgvRhTUuTw26L57nw4MuZEYqHv2dSYiyppCnbA.

happy $2a$10$3c3lF6ALH4kab4Cd8Zeq5OJEfSF9EcOcVJlxL5Ra.x9g8OVCjKKti

From our data dump, let’s say the user record has an encrypted password of $2a
10TFKgAYZrfb7p/J6Mz1NZsuhlp62Sa24GKBb7G8q4j702rc1Ntlopa. We com‐
pare all of the hashes that we have produced above against that user hash, and find a
match with the word mango. We now have a cracked password that we can use to
gain access to the user account.

The way we typically protect against dictionary attacks is through employing a salt in
your password encryption. Using a salt means that the attacker cannot just employ a
standard encryption algorithm to generate the hash, but they also need to compute
the hash with the associated salt.

Reverse Lookup Tables
Taking the process of dictionary attacks a bit further, and thus reducing time to
decrypt, what a reverse table basically does is store the plaintext variation of a pass‐
word beside the associated hash of the password in a table. The table is stored to be
searched on the hash as opposed to the plaintext password.

If we go back to our dictionary attack list, it would look very similar:

Table 2-2. Example lookup table

Hash Associated Word
$2a$10$wkmirMIMsQxpSvKpn.KNyOTU65YuneDcMXwA7XEHR5brjhpjugWCm test

$2a$10$6Q34ws6flQDvZU6RftuaJeWC40c8GCO2NeZfmCHyoW7aZv9H1sYG2 wrong

You start with obtaining the hashed password from the user record. You then com‐
pare that hash to the other hashes in your database. If there is a match, you pull the
associated plaintext word for the password.

Like dictionary attacks, salting a password during hashing makes reverse lookup
tables essentially useless. Even if the salts were obtained in a user information data
breach, a lookup table would need to be generated for each word with the associated
one time use salt, making it incredibly inefficient.

Password Attack Vectors | 29

www.it-ebooks.info

http://www.it-ebooks.info/

Rainbow Tables
There is typically much confusion over the difference between a rainbow table and a
simple lookup table that stores a hash to a matching plaintext password. Rainbow
tables are essentially a way of reducing the amount of storage needed to calculate a
long list of password guesses to try in order to break a hash.

Let’s compare that space / time tradeoff. A rainbow table attack takes less processing
time than a brute force attack, but uses more storage. On the flip side, a rainbow
tables needs more processing time than a simple lookup table, but requires far less
memory.

There is one important aspect that is required for rainbow tables to function, and
that’s called a reduction function. In short, the purpose of a reduction function is to
take a given hash and run the algorithm to generate the next possible plaintext pass‐
word for us.

For instance, say the passwords that we are looking for are simply numeric, and a
maximum of 5 digits in length. Our reduction function can simply have an algorithm
that pulls the first 5 digits from the resulting hash, like so:

1. We start with arbitrary password 12345.
2. We use bcrypt to hash that password, giving us a hash of $2a$06$qEMn/

vmty3PCCc5qxyOpOOjbJYnokP9zfwWVxT1jnfJqIQwOzuqjq.
3. We use our reduction function to take the first 5 characters we find in the hash.
4. That gives us the next plaintext password to try, 20635 (the literal first 5 numbers

we encounter in the hash).

Here’s how this whole process works in detail. Let’s say we want to generate 10,000
potential plaintext passwords, and their associated hashes, to compare against hashes
that we have from a compromised list of user records. If I was using a lookup table, I
would have each of those plaintext passwords mapped directly to its hash. That
requires a lot of storage, but is rather trivial to query to see if I have a match.

Here’s how a rainbow table stores a chain of plaintext passwords and their associated
hashes.:

1. We take some arbitrary password, such as treehouse.
2. We then hash that, say with bcrypt, to give us a resulting hash, $2a

06TjlWuN71X8GshO31hK8qVueHhV4nsTi9ZGxk9fBSxwiU49nBw8kVy.
3. We then run that hash through our reduction function, giving us our next viable

plaintext password.
4. Next, we repeat steps 2-3 for a lengthy number of chains, say 10,000.

30 | Chapter 2: Password Encryption, Hashing, and Salting

www.it-ebooks.info

http://www.it-ebooks.info/

5. Here’s the secret. We only store the first plaintext password, and the last hash in
the 10,000 word/hash chain. What we have essentially done is created a list of
10,000 plaintext / hash pair guesses, while only storing one plaintext password,
and one hash.

A rainbow table is not a decoding system for a hash, as hashing is
built to be one-way (can encode, but not decode). A hashing func‐
tion allows you to map a plaintext password to a resulting hash, but
if you try to get a plaintext password back from a hash, you’ll only
get some other random plaintext password. A rainbow table works
in reverse, mapping a hash to its associated plaintext password. We
aren’t docoding, we’re mapping.

Let’s say we now have a hash that we want to get the plaintext password for. We follow
a few steps to try to get it:

1. First we look through the list of hashes that we have stored in our table (that last
hash of a 10,000 word/hash chain). If we find a match, we just grab the associated
word for that hash that we already precalculate.

2. If there is no match, we move to the next hash in the chain, hash #9,999, and do
the same thing.

3. We then follow this process all the way to the end of the chain, tryng to find the
associated plaintext password.

In a realistic implementation, we would have a multitude of chains created that we
could run through. With multiple machines, we would run these chains in parallel to
reduce the amount of time it would take to process the attack.

The best way to combat this attack is, again, through salting. In the case of attack vec‐
tors like this, having a long, complex password becomes important because:

• It takes exponentially more time to run these attacks with each additional charac‐
ter added.

• Parrot and parrot (change of case) need to be stored as different attack cases in
the table, as they contain different characters. Adding mixed cases and special
character through the salt allows you to increase the size of the character set, and
thus potential guesses, that an attacker needs to run through.

With that said, let’s look at the process of salting in more depth to truly understand
how to properly implement it in our hashing functions.

Password Attack Vectors | 31

www.it-ebooks.info

http://www.it-ebooks.info/

Salting
A salt is some sort of random data that is used in conjunction with the user password,
when hashing, to harden the data and to protect against a few of our attack vectors,
specifically dictionary attacks and rainbow tables. By providing that piece of random
data, of significant length, what you’re essentially doing is ensuring that the produced
hash is unique, so even if multiple users have the same password (as we know they
do), the unique salt applied to the hash will ensure that the resulting hash itself is
unique. The unique hash is what protects us from the hash comparison methodolo‐
gies behind rainbow tables and dictionary attacks.

Let’s look at this in practice. First, let’s start by seeing what a hash might look like if
we run it through scrypt with no applied salt. Let’s assume the password that the user
is using is “mechagodzilla”:

//example hashes using the password 'mechagodzilla' and no salt
hash('mechagodzilla') =
 162e0a91026a28f1f2afa11099d1fcbdd9f2e351095ebb196c90e10290ef1227

Each time scrypt hashes that password, the resulting hash will remain the same. If
“mechagodzilla” is part of the word list tested through a dictionary attack, then it
would be an easy matter of comparing the hashes and figuring out the user password.

Now let’s see what applying a random salt to the equation will give us. Let’s use the
same “mechagodzilla” user password, but use a salt generated from the Node crypto
library when the hash is created. Here are three instances of that at work:

//example hashes using the password 'mechagodzilla' and random salt
hash('mechagodzilla' + '458cf2979ef27397db67077775225334') =
 f3499a916612e285612b32702114751f557a70606c32b54b92de55153d40d3b6
hash('mechagodzilla' + 'ef5b72eff781b09a0784438af742dd6e') =
 7e29c5c48f44755598dec3549155ad66f1af4671091353be4c4d7694d71dc866
hash('mechagodzilla' + 'cc989b105a1c6a5f0fb460e29dd272f3') =
 6dedd3dbb0639e6e00ca0bf6272c141fb741e24925cb7548491479a1df2c215e

In simple terms, a salt of sufficient length and randomness provides a massive boost
in security towards certain attack vectors, with just that simple, unique addition.

Generating a Random Salt
Let’s take a look into how we can generate a random salt for our hash functions using
the Node crypto library. Since it is part of the standard library, we don’t have to go
through the additional step of installing from npm.

The Node crypto library, in addition to providing functionality for
generating random salts of varying length, also has built in func‐
tionality for working with PBKDF2 to generate required hashes
from the user password and salt.

32 | Chapter 2: Password Encryption, Hashing, and Salting

www.it-ebooks.info

http://www.it-ebooks.info/

First we start by adding the crypto requirement to our Node project:

var crypto = require('crypto');

With that in place, we can generate our salt using the randomBytes(…) method, like
so:

crypto.randomBytes(32, function(ex, salt){
 //log readable string version of the salt
 console.log('salt: ' + salt.toString('hex'));

 //proceed to next step: using the salt
});

Generating a salt synchronously

Generating a salt via randomBytes can also be done synchronously,
like so: var buf = crypto.randomBytes(256);

The randomBytes method will accept a parameter for the size of the generated salt, in
bytes. What is returned to us is the randomly generated salt. At this point, we can go
to the next step of adding that salt to one our our hash functions, as we’ll see in
“Choosing the Right Password Hashing Function” on page 35.

Salt Reuse
One of the common issues in using a salt for password hashing is to reuse the salt
over and over again. This completely defeats the purpose of using a salt to begin with.
If we have a common salt being used, and a series of users that are using the same
password, then the resulting hash will be the same. From there, an attacker can create
a reverse lookup table and run a dictionary attack on each hash at the same time.

The standard that should be used is that when a user creates a new account, or they
change their password, a new salt and hash should be generated and stored.

Salt Length
What is the appropriate length for your salt, and what are the implications of using a
salt that is too short?

Let’s tackle the first part, what is the ideal length of the salt? One general rule of
thumb to use here is for the salt to be the same size as the output of the hash function
used. If we look at sha256 for instance, the resulting hash is 32 bytes in length, so our
salt should be 32 bytes, at minimum. In the case of sha1, the output length is 20 bytes,
so our salt should be 20 bytes as well.

Salting | 33

www.it-ebooks.info

http://www.it-ebooks.info/

5 https://tools.ietf.org/html/rfc2898#section-4.1

The PBKDF2 standard recommends that a salt length of, at least, 64 bits (8 bytes)5 be
used to be effective. In many cases the next power of 2, so 128 bits (16 bytes), is typi‐
cally used.

Let’s move on to the implications of a using a short salt. Simply put, if the generated
salt is short, lookup tables can be created with all possible salt values, and then be
used to crack the data.

Where to Store the Salt
The first thought that you may have is that the salt should be stored in a secure loca‐
tion, separate from the hash. The simple fact is that we use the salt to prevent pre‐
computed attacks (e.g. rainbow tables), where we would have a series of hashes that
can be compared against what is stored in the user database. If we can prevent that
easy / quick lookup from happening, then we force the attacker to start cracking the
hashes individually, which is significantly slower.

Since that is the case, we don’t need to obfuscate or encrypt the salt, and it can be
stored as a plaintext value in our database along with the hash. With that said, you
also don’t want to make it readily accessible (like a username) to the open world.

Peppering
One of the other concepts in password crytography, beyond the salt, is the concept of
a pepper. Much like the salt, a pepper is another value that is added to the salt and
password when hasing.

Where the salt and pepper differ is that instead of the pepper being stored alongside
the hash (like a public key), and being randomly generated anew for each hash, the
pepper instead is a more safeguarded key, and is typically pulled from a single, or
subset, of strings.

The simple formula for pepper use is: hash(salt + pepper + password) = pass
word hash

When using a pepper, you will generally be following one of two scenarios:

• The pepper value is held in a separate location than the password hash, and is
treated more like a private key than a public key.

• The pepper is never stored, but is instead randomly chosen from a subset of val‐
ues when the hash is generated. When doing a password comparison, you will
instead compare the hash to the proposed password, the salt, and each possible

34 | Chapter 2: Password Encryption, Hashing, and Salting

www.it-ebooks.info

https://tools.ietf.org/html/rfc2898#section-4.1
http://www.it-ebooks.info/

value of the pepper, so you will make multiple comparisons against possible val‐
ues for the pepper until the comparison either passes of fails. This means that the
values for the pepper are calculated from the code layer, instead of the stored
value.

In general, the reason why one would use a pepper is because the added characters
and symbols can be utilized to bolster a weak password. By prepending a unique
value that is chosen for a secure approach, we can harden passwords that would
otherwise be easily crackable. Your password length is now increased, it has special
characters, etc. With this, the resulting hash will be increasingly unique, helping to
prevent dictionary attacks.

In reality though, there are a few controversial aspects of a pepper, and are some of
the reasons why peppers are not heavily employed:

• A pepper is only valuable if it’s kept secret. If an sql injection attack is used, and
only one table with the hash and salt are stolen, but the pepper is safe, then it
does its job. Unfortunately, in many cases, the entire database structure is com‐
promised and leaked, meaning that our pepper usually goes right along with it.

• Hashing algorithms that are employed en masse, and publically vetted, do not
accept a pepper as an argument. Most implementers can bring about some disas‐
trous results by doing this wrong, or modifying the hashing algorithm, which is
heavily discouraged.

• There is really no analysis of the benefits of a pepper out there, unlike salting.

Many in the cryptography community simply state that a salt of proper uniqueness
and length, and a hash with an appropriate number of iterations employed to slow
down cracking, is more than sufficient to make the pepper fairly useless.

In the end, it’s good to understand that these mechanisms are out there, but in practi‐
cality, it’s sometimes more trouble than it’s worth, especially when implementing
proper hashing and salting.

Choosing the Right Password Hashing Function
Now that we understand how everything works, let’s move on to how we are going to
pick the hashing function that is best for our needs.

We already know that the three main hashing functions that we should be using for
passwords are bcrypt, PBKDF2, and scrypt, but what’s the difference between the
three? Let’s break these down a little bit further and explore the benefits of each, and
how they are used in conjunction with a salt.

Choosing the Right Password Hashing Function | 35

www.it-ebooks.info

http://www.it-ebooks.info/

bcrypt
bcrypt is the first hashing function on our list. It’s a key derivation function designed
for passwords, and is based on the blowfish cipher.

Some of the benefits of bcrypt are:

• Since it’s based on the blowfish cipher, which uses RAM-based lookup tables that
are constantly being altered throughout the execution of the algorithm. These
types of tables are easy to handle for a CPU, but due to the sequential memory
access and parallel processing required, the GPU falls short. In this way, it hin‐
ders GPU hardware enhancements by an attacker.

• Specifically designed as a password hashing algorithm, with an intent at being
slow (a good thing in password hashing).

With that in mind, let’s jump into implementing this into our application or website.

First, we need to install the bcrypt package from npm, like so:

npm install bcrypt --save

We then require bcrypt in our Node app:

var bcrypt = require('bcrypt');

The bcrypt packages has a built in method for generating a salt, so we’re going to be
using that instead of the one that is made available in the crypto library, so that we
don’t need to include both bcrypt and crypto in our library.

function bcrypt_encrypt(username, password){
 bcrypt.genSalt(10, function(err, salt) {
 bcrypt.hash(password, salt, function(err, key) {
 //store username, hashed password, and salt in your database
 });
 });
}

We’ve built a function that accepts a username and password, presumably from user
input when they are creating or updating their account. We’re taking an asynchro‐
nous approach to generating the hash, which is the preferred method. We call
bcrypt.genSalt(…) to create our salt. The method accepts the number of rounds (or
cost) of the process (default is 10), and the callback to the method returns any error,
and the derived salt.

Once the salt is generated, we then call the bcrypt.hash(…) method to generate our
hash. It will accept the password to be hashed, and the salt we just generated. The
callback will return the hash key that is generated from the process.

We can then take that hash and store it in our database along with the salt and the
rest of the user record.

36 | Chapter 2: Password Encryption, Hashing, and Salting

www.it-ebooks.info

http://www.it-ebooks.info/

To do the same thing using a synchronous approach, you can do the following:

var salt = bcrypt.genSaltSync(10);
var hash = bcrypt.hashSync(password, salt);

PBKDF2
Next, let’s look into PBKDF2. A key derivation function that has an academic back‐
ground, coming from RSA laboratories.

PBKDF2 has a number of main benefits and implementations in the wild:

• Time tested and has been the subject of intense research over the years.
• Recommended by NIST special publication 800-132
• Used by password management systems 1Password, LastPass, and others.
• Available as a standard method within the native Node crypto library.

Since PBKDF2 is the hashing algorithm baked into the Node crypto library, it’s fairly
easy to get started. We first need to require crypto into our Node application:

var crypto = require('crypto');

Now, we simply build a function much like we did with bcrypt, to accept a username
and password.

function pbkdf2_encrypt(username, password){
 crypto.randomBytes(32, function(ex, salt){
 crypto.pbkdf2(password, salt, 4096, 512, 'sha256', function(err, key) {
 if (err) throw err;
 //store username, hashed password, and salt in your database
 });
 });
}

We make a request to crypto.randomBytes(…) to generate a random salt for us. The
method accepts the number of bytes of data to be generated (in our case 32 bytes),
and returns a salt.

We then make a request to crypto.pbkdf2(…), passing in:

• The user password
• The salt
• The number of iterations, or the number of times that the hash function should

be applied. In our case, 4096.
• The keylength. In our case, 512.

Choosing the Right Password Hashing Function | 37

www.it-ebooks.info

http://csrc.nist.gov/publications/nistpubs/800-132/nist-sp800-132.pdf
http://www.it-ebooks.info/

• The digest function. In our case, sha256. You can get a list of supported digest
functions with crypto.getHashes().

What is returned to us is a hex string containing our hash. You can push it to a plain
string for viewing like so:

console.log('key: ' + key.toString('hex'));

Like before, you then store your username, hash, and salt in the user database.

To do the same thing synchronously:

const salt = crypto.randomBytes(32);
var result = crypto.pbkdf2Sync(password, salt, 4096, 512, 'sha256');

scrypt
Last on our hashing function list is scrypt. While there are many heated debates on
the use of PBKDF2 vs. bcrypt, and which is better, scrypt takes a very different
approach to hashing than either of the two.

Benefits and implementations of scrypt include:

VERIFY THE BELOW - SEEMS TO OVERLAP INCORRECTLY WITH PBKDF2

• Specifically designed to make it hardware and memory intensive for an attacker
to perform large scale attacks.

• Implemented as the algorithm behind cryptocurrencies Litecoin and Dogecoin.

The main benefit here is that, unlike bcrypt and PBKDF2, scrypt is designed to be
incredibly hardware and memory intensive in order to crack. In the case of bcrypt
and PBKDF2, an attacker would be able to run thousands of parallel attacks on the
hashed data from minimal hardware resources, since they are not meant to have large
resource demands.

Let’s get into the implementation. First, let’s install scrypt using npm:

npm install scrypt --save

With scrypt, we’re going to use a mix of the crypto library (for the salt), and the
scrypt module (for the hash). We include those two into our Node application like
this:

var scrypt = require('scrypt'),
 crypto = require('crypto');

With everything in place, we again have a function that accepts a username and pass‐
word.

function scrypt_encrypt(username, password){
 crypto.randomBytes(32, function(ex, salt){

38 | Chapter 2: Password Encryption, Hashing, and Salting

www.it-ebooks.info

https://nodejs.org/api/crypto.html#crypto_crypto_gethashes
http://www.it-ebooks.info/

 scrypt.hash(password, {"N":16384,"r":8,"p":1}, 64, salt, function(err, key) {
 //store username, hashed password, and salt in your database
 });
 });
}

We use the crypto library to generate our salt, with crypto.randomBytes(…), passing
in the number of bytes that should be generated in the output. The output gives us
the generated salt.

We then go to our next step of generating the hash with that salt. We make a request
to scrypt.hash(…), which accepts a number of values:

• The user password to be hashed.
• An object containing the parameters to control the scrypt hashing:

— N: The maximum amount of time in seconds that scrypt will spend comput‐
ing the derived key (double).

— r: The maximum number of bytes of RAM used when computing the derived
key (integer). The default is 0.

— p: The fraction of the available RAM used when computing the derived key (0
to 1, converted to percentages). The default is 0.5.

• The length of the resulting hash.
• The salt we just generated.

Once computed, the derived hash will be sent back for us to store.

The same approach synchronously would look like:

const salt = crypto.randomBytes(256);
var result = scrypt.hashSync(key,{"N":16384,"r":8,"p":1}, 64, salt);

Validating a Password Against a Hashed Value
Once we have a hashed valued of a password stored with the salt in our database, how
do we validate that the hash we have stored matches a login attempt by a user at
future iterations of the application use?

Since we are working with one way hash functions, there is actually a simple way to
validate a hash against another password to see if they are valid. We just follow a few
steps:

• We capture the password from the user login attempt
• We lookup the record from our database that matches who the user is purporting

to be, and get the hash and the salt.

Choosing the Right Password Hashing Function | 39

www.it-ebooks.info

http://www.it-ebooks.info/

• We use the same hashing function that we did to derive that hash (e.g. bcrypt),
with the salt from the database, to generate a new hash.

• We compare the newly generated hash with the hash from the database. If they
match, we have a valid password.

If we follow that process for PBKDF2, we can see how comparison will work:

var dbsalt = 'USER RECORD SALT FROM YOUR DATABASE';
var dbhash = 'USER RECORD KEY FROM YOUR DATABASE';

crypto.pbkdf2(password, dbsalt, 4096, 512, 'sha256', function(err, comparehash){
 if (err) throw err;
 if (dbhash.toString('hex') === comparehash.toString('hex')){
 //passwords match
 } else {
 //passwords don't match
 }
});

As you can see, the code above looks quite familiar to the encryption process with
PBKDF2. There are several things that we need to note about the comparison pro‐
cess:

• We first capture the hash and salt from our local user record storage for the user
that is trying to login in (variables dbsalt and dbhash).

• We then encrypt the password for the login attempt (the password that the user
supplied to log in) and encrypt it using dbsalt, the same salt that encrypted the
user password during registration.

• Once that hash is produced (the comparehash variable), we then compare the
hash stored for that user in their user record (dbhash) against the newly gener‐
ated version.

• If the password was the same, using the same salt to encrypt the password and
compare against the stored value, then we will have a matching password and can
safely log the user in.

Some packages, such as bcrypt, make that process a bit easier for us by providing a
compare method. The compare method simplifies the above steps of having to
encrypt the password with the salt that we stored by mixing hashing and comparison
into a single call, like so:

bcrypt.compare(password, hash, function(err, res) {
 //returns true or false
});

40 | Chapter 2: Password Encryption, Hashing, and Salting

www.it-ebooks.info

http://www.it-ebooks.info/

6 https://en.wikipedia.org/wiki/Moore%27s_law

In this case, we’re supplying the raw user password from the login attempt and the
hash from the database. The result will be either true or false, depending on if they’re
a match.

Key Stretching
One of the underlying concepts that makes bcrypt, scrypt, and PBKDF2 effective is a
technique that they employ called key stretching. As we learned about in Chapter 1, a
vast majority of people don’t utilize standards of significant password length and
complexity to keep their profile data secure, and prevent attack vectors like brute
force attacks, on their own. This is where key streching comes in, it takes a potentially
weak password, and outputs an encrypted key of significant length and complexity,
that attack vectors like bruce forcing no longer become viable options.

In the case of our cryptographic hash functions, key stretching is done by applying
the hash function repeatedly in a loop, until a hash of the desired length and com‐
plexity is obtained. When we talked about number of iterations in the hash function
examples previously, that is the implementation of this key stretching concept.

Recomputing Hashes
At some point, you may have the need to generate new secure password hashes for
your users. Perhaps:

• Hardware has changed due to Moore’s Law6 and you need to change the weight /
work factor used by your encryption algorithms.

• Algorithms have changed, and the one you are using is no longer secure, or
something better has come along.

• The hashes are simply no longer as secure as they can be.

In these instances, the standard practice is to stored a new hash for the user as they
use your system. As each user logs in with their username / password, you log them
in as you normally would by comparing the login hash with the stored hash. Then,
instead of throwing out the password, you instead generate a new hash for the user,
and replace the old one in the user database record, before throwing out the pass‐
word.

To speed this process along, you can force logout all users. For instance, if you allow
users to remain logged in via a session cookie, you can invalidate all user cookies and
force each user to log in on their next visit.

Key Stretching | 41

www.it-ebooks.info

https://en.wikipedia.org/wiki/Moore%27s_law
http://www.it-ebooks.info/

Next Steps
Expanding upon the concepts of password security, let’s look at a few practical
approaches to protecting our systems against attack vectors.

42 | Chapter 2: Password Encryption, Hashing, and Salting

www.it-ebooks.info

http://www.it-ebooks.info/

1 http://www.merriam-webster.com/dictionary/identity
2 http://en.wikipedia.org/wiki/Online_identity

CHAPTER 3

Identity Security Fundamentals

Tim Messerschmidt and Jonathan LeBlanc

After we have taken the time to discuss ongoing issues with current security models
in the first chapter and introduced the concepts of secure passwords, hashing and
salting in the second chapter, we will now focus on discussing the concept of a per‐
son’s identity across multiple sites.

the qualities, beliefs, etc., that make a particular person or group different from others1

—Merriam Webster Dictionary

The basic assumption is that differences are what make identity relevant and help
using ongoing identity concepts in order to handle authentication and authorization
scenarios.

Understanding the concept of various identity types
While using the internet a person establishes a so-called online identity2 that repre‐
sents certain elements or characteristics of the human being. This form of identity
can - and often will - differ across multiple sites and leads to a fragmentation that we
can group into different areas based on a website’s use-case.

Based on this we’d like to introduce three different types of identity that we will then
discuss in detail: Social Identity, Concrete Identity and Thin Identity. These types of
identity often overlap and can share the same attributes.

43

www.it-ebooks.info

http://www.merriam-webster.com/dictionary/identity
http://en.wikipedia.org/wiki/Online_identity
http://www.it-ebooks.info/

Figure 3-1. Overlapping identities

Federated Identity Management
Often applied through Single sign-on - known as SSO - Federated Identity Manage‐
ment (FIM or FIdM) is the practice of using a set of identity attributes across multiple
systems or organizations. The three identity types can be considered federated identi‐
ties and are applied through technologies such as SAML, OpenID, OAuth and tokeni‐
zation.

While SSO is a way of using the same credentials across multiple sites and applica‐
tions, FIM shifts the verification of credentials towards the identity provider.

Social Identity
Social identity came up with the rise of social networks and can be seen as a very
moderate form of identity that people tend to share quite casually. Profile informa‐

44 | Chapter 3: Identity Security Fundamentals

www.it-ebooks.info

http://www.it-ebooks.info/

3 http://lists.openid.net/pipermail/openid-eu/2009-February/000280.html
4 http://get.digits.com/

tion often concentrate on social connections, interests and hobbies, while ignoring or
not necessarily favoring severe information that might be used against the user.

Services such as Facebook or Google+ allow the user to quickly access other services
using their already populated profiles and leverage scopes in order to control the level
of information shared. Especially on mobile phones this quickly became a very much
favored way of handling login scenarios - this can be attributed to the issue of enter‐
ing any kind of complex information on touchscreens and more often than not pro‐
vides a big boost in convenience.

Concrete Identity
While leveraging social identity is completely valid and even encouraged for services
such as games, media consumption and of course social networks, for other use cases
such as online banking or eCommerce, a more concrete profile is required that pro‐
vides useful insights such as the user’s email, address, phone number, spoken lan‐
guages or age.

Especially in eCommerce scenarios the payment process can be painful. Having to
enter a 16+ digits credit card number manually can be tedious on a physical device
and painful on a touchscreen. This is where services such as PayPal, Amazon Pay‐
ments or Google Wallet come in. By providing valuable information such as the user’s
address and tokenizing sensible credentials such as the payment details, the actual
checkout flow can be sped up tremendously.

Another popular example of using concrete identity is the election process in Lithua‐
nia (and many other state services) are backed up by a state-provided OpenID in the
citizen’s ID card3. This enables a form of eGovernment that enables people living
remotely to participate in ongoing discussions and actively contribute to the country’s
politic environment.

Thin Identity
Thin identity is an old concept that currently gains in popularity again. Thin identity
- or even no identity - simply means user authentication without actually gaining
access to profile information.

A good example would be Twitter’s service Digits4 that allows to use your phone
number as a means of logging in. The identifying - and globally unique - bit here is
the person’s phone number. Looking at the definition of identity that we have intro‐
duced in the introduction of this chapter, the criteria of difference (towards other

Understanding the concept of various identity types | 45

www.it-ebooks.info

http://lists.openid.net/pipermail/openid-eu/2009-February/000280.html
http://get.digits.com/
http://www.it-ebooks.info/

5 http://www.infopackets.com/news/9545/new-yahoo-login-system-uses-no-password
6 https://www.nngroup.com/articles/login-walls/

phone numbers) is certainly met. Digits - and other similar services - aim at replacing
error-prone and vulnerable passwords with another factor that seems to be univer‐
sally given. Yahoo went a similar route and provided a way to do passwordless login
using text messages with one-time only passwords5 - this is not yet part of Yahoo’s
developer offerings, though.

Enhancing user experience by utilizing identity
User experience studies carried out by the Nielsen Norman Group6 show that login
doesn’t necessarily have to be the first point of contact for users and often harms the
conversion process of turning visitors into users by forcing them to register or login.
The current sentiment in user experience research is, that a preview of offered func‐
tionality is desirable and helps people decide if they want to commit to an applica‐
tion.

Leveraging existing profiles, such as a user’s social identity, can help easing the way
once the user did decide to register by pre-populating profile information and there‐
fore lowering the amount of information the user has to type in manually.

Introducing the concept of Trust Zones
The devices we use nowadays come pre-equipped with a variety of different sensors
that allow to gather information about the user’s environment. GPS, WiFi, cameras,
accelerometers, gyroscopes, light and many other sensors allow to build up profiles
and identify the user accordingly. Combining this concept with the concept of iden‐
tity, we can not only identify users - we can also build up so-called trust zones.

46 | Chapter 3: Identity Security Fundamentals

www.it-ebooks.info

http://www.infopackets.com/news/9545/new-yahoo-login-system-uses-no-password
https://www.nngroup.com/articles/login-walls/
http://www.it-ebooks.info/

7 http://developers.google.com/identity/smartlock-passwords/android/
8 http://support.google.com/nexus/answer/6093922?hl=en

Figure 3-2. The Concept of Trust Zones

Trust zones are a concept that allows us to scale our security based on the user’s
behavior, environment, and our ability to determine whether a user is who they say
they are. In essence, what we are trying to do is create a digital fingerprint for the
user, from any data that might be available and unique for the given user, such as
their browser configuration, hardware, devices, location, etc.

If we can guarantee a user is at home, based on the current GPS coordinates and the
WiFi used to connect to the internet, trust zones can offer the user a way to waive
certain steps within authorization and authentication of web and mobile applications.
Google introduced this concept for Android as a feature known as Smart Lock7:
When a user wears his Android Wear device, the phone can be set up to automati‐
cally unlock whenever a Bluetooth connection between the wearable device and the
user’s phone is established8. Other supported factors for Smart Lock are the user’s
location, face recognition and on-body detection - a feature that relies on the device’s
accelerometer. Chapter 5 covers these alternate ways of user authentication more
deeply.

Realistically, what we’re trying to do here is to remove hurdles during the application
experience for the user by trying to answer the question, if we have obtained enough
bits of information about the user from the system and devices that they are using to
determine that there are almost certainly who they say they are, and they are in a
trusted location, is it necessary to challenge them when changing account informa‐
tion, or provide login details during a checkout process instead of providing a 1-click
checkout experience.

Introducing the concept of Trust Zones | 47

www.it-ebooks.info

http://developers.google.com/identity/smartlock-passwords/android/
http://support.google.com/nexus/answer/6093922?hl=en
http://www.it-ebooks.info/

9 https://www.eff.org/
10 https://www.eff.org/deeplinks/2010/05/every-browser-unique-results-fom-panopticlick
11 https://panopticlick.eff.org/

These are the types of things that we can do when we have a strong certainty that the
user is who they are purporting to be.

Let’s take this conversation into a practical look into this technology, starting with the
browser.

Browser Fingerprinting
One of our main goals as application and web developers is to both make the experi‐
ence of our users secure, and as conveinient as possible. With the concept of trust
zones understood, we can start to see how many of the security measures that we can
put in place may occur without burdening the user for more information.

One of the methods that can be employed is through the concept of browser finger‐
printing. This process involves using unique characteristics about the browser that
the user is using, such as headers, fonts, etc, to be able to determine a second factor of
authentication based on the browser that they’re using.

Back in May of 2010, the EFF (The Electronic Frontier Foundation)9 published a
report10 from an experiment that they were running on browser fingerprinting, called
Panopticlick11. From this study, there were some interesting results that were derived
from the browsers that were tested during their first 1 million visits. What they found
was that:

• 84% of browsers tested had a unique configuration.
• Among browsers that had Flash or Java installed, 94% were unique.
• Only 1% had fingerprints that were seen more than twice

These are obviously not definitive numbers to determine to a near certainty the
browser uniqueness of each user, but the numbers of significant enough to be able to
easily use these types of tests as a second factor of authentication for our users. When
we are able to find a unique browser configuration, we have a high likelihood (99%)
of determining that the browser is unique and attributable to that individual. When
using this, coupled with additional techniques that we will explore in later sections,
we can predict a high degree of certainty that a user is who they say they are. When
we have that determination, along with the login mechanisms that the user them‐
selves has used (such as a username / password), then we are able to maintain a high
level of confidence to create our trust zones.

48 | Chapter 3: Identity Security Fundamentals

www.it-ebooks.info

https://www.eff.org/
https://www.eff.org/deeplinks/2010/05/every-browser-unique-results-fom-panopticlick
https://panopticlick.eff.org/
http://www.it-ebooks.info/

These tests used the concept of bits of entropy to determine the fingerprint of a
browser. From their subset of tests, they noticed that the distribution of entropy
observed on a tested browser is typically around 18.1 bits, This means that if a
browser was chosen at random, at best we would expect that only 1 in 286,777 other
browsers would share the same fingerprint.

In addition to making things easier for the user through these trust zones, there’s
another benefit to having this information tracked. If we are processing payments for
our users, inevitably there will be some disputes over a payment, and who may have
made it. Being able to provide information such as these digital fingerprints during
dispute resolution can help to provide favorable results during the process.

Configurations More Resistant to Browser Fingerprinting
In their study, the EFF also noticed that there were certain configurations that made
the resistance to browser fingerprinting quite high, meaning that they were harder to
generate a fingerprint for. These configurations included:

• Browsers with JavaScript, or plugins disabled.
• Browsers with TorButton installed, which anticipated and defended against the

fingerprinting techniques.
• Mobile devices, since the lack of configurability of the mobile browser tends to

lead to a more generic fingerprint. These devices do tend to not have good inter‐
faces for controlling cookies, so information may be obtained more easily
through that method.

• Corporate desktop machines that are precise clones of one another, and don’t
allow for degrees of configuration.

• Browsers running in anonymous mode.

Identifiable Browser Information
Through the studies that were performed during the Panopticlick project, they were
able to assign different entropy bit levels for different configurations types that can be
derived from a browser. These included the following:

Table 3-1. Entropy (bits) for Browser Characteristics

Characteristic Bits of Entropy
User Agent 10.0

Plugins 15.4

Fonts 13.9

Video 4.83

Browser Fingerprinting | 49

www.it-ebooks.info

http://www.it-ebooks.info/

12 https://panopticlick.eff.org/static/browser-uniqueness.pdf

Characteristic Bits of Entropy
Supercookies 2.12

HTTP ACCEPT header 6.09

Timezone 3.04

Cookies Enabled 0.353

The browser uniqueness report12, in addition to providing the characteristics, also
provided the means through which those values were obtained:

Table 3-2. How Browser Characteristics Were Obtained

Characteristic Method
User Agent This was transmitted via HTTP, and logged by the server. It contains the browser micro-version,

OS version, language, toolbar information, and other information on occassion.

Plugins 1The PluginDetect JavaScript library was used to check 8 common plugins. Extra code was also
used to estimate the current version of Acrobat Reader. The data was then transmitted via AJAX
post.

Fonts A flash or Java applet was used, and the data was collected via JavaScript and transmitted via
AJAX post.

HTTP ACCEPT header Transmitted by HTTP and logged by the server.

Screen Resolution JavaScript AJAX post.

Supercookies (partial test) JavaScript AJAX post.

Timezone JavaScript AJAX post.

Cookies Enabled Inferred in HTTP, and logged by the server.

Looking at a breakdown of all characteristics, we have a good idea of how to imple‐
ment these techniques. For the most part, we’re pulling data via JavaScript and log‐
ging on our server, and at most (in the case of fonts), we have a flash or Java applet
doing the work for us.

Capturing Browser Details
Let’s take a look at the methods that we can use to begin capturing some of this infor‐
mation from client-side JavaScript. This will be part of the data that we will need in
order to start generating a fingerprint for our users, as they come through.

User Agent
Let’s start with a simple one, the user agent. This will provide us with quite a bit of
information that we can use for the overall fingerprint.

50 | Chapter 3: Identity Security Fundamentals

www.it-ebooks.info

https://panopticlick.eff.org/static/browser-uniqueness.pdf
http://www.pinlady.net/PluginDetect/
http://www.it-ebooks.info/

To obtain this string, we can use the data within the navigator object, like so:

var agent = navigator.userAgent;

From this test, you may see a string returned that would look something like the fol‐
lowing:

Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_5) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/48.0.2564.116 Safari/537.36

There are some important pieces of information contained in this string that we can
use, specifically:

• Mozilla/5.0: Mozilla-compatible user agent and version. This is used for histori‐
cal reasons, and has no real meaning in modern browsers.

• Intel Mac OS X 10_10_5: The operating system and version.
• AppleWebKit/537.36: Web kit and build.
• KHTML, like Gecko: Open source HTML layout engine (KHTML), like Gecko.
• Chrome/48.0.2564.116: Browser (Chrome) and version.
• Safari/537.36: Based on browser (Safari) and build.

Time Zone
Next, let’s capture the time zone using getTimezoneOffset(). This function will return
the offset, in minutes, from GMT. To obtain the number of hours that the user is off‐
set from GMT, we can simply divide that result by 60, like so:

var offset = new Date().getTimezoneOffset() / 60;

You may notice something strange about the result here. The hour is correct, but the
negative / positive identifier is flipped. For instance, if I am on the east coast of the
United States (GMT-5), the result returned is 5, not -5. This is because getTimezo‐
neOffset() is calculating GMT’s offsite from your time zone, not the other way
around. If you wish to have it the other way around, simply multiply by -1, like so:

var offset = (new Date().getTimezoneOffset() / 60) * -1;

Screen Resolution
The screen resolution can be obtained by using the window object. This will give me
the screen resolution of the monitor being used, which can be a fairly static indicator
for the browser fingerprint.

We can obtain those results with the following snippets:

var width = window.screen.width;
var height = window.screen.height;

Browser Fingerprinting | 51

www.it-ebooks.info

http://www.it-ebooks.info/

This will give me the given numeric results for the width and height, such as 2560
(width) and 1440 (height) for a screen resolution of 2560x1440.

Plugins
Browser plugin information can garner quite a bit of detail for the fingerprint, and is
obtained via navigator.plugins. Let’s say we want to capture the name of each plugin
installed in the browser, and just display those out for the time being. We can do so
with the following code:

//get plugin information
var plugins = navigator.plugins;
for (var i = 0; i < plugins.length; i++){
 console.log(plugins[i].name);
}

JavaScript Library for Plugin Detection

An alternative method for obtaining additional plugin information
from the browser is through the PluginDetect JavaScript library.

The information that may be displayed, depending on the plugins installed in the
browser, may look something like the following:

Widevine Content Decryption Module
Chrome PDF Viewer
Shockwave Flash
Native Client

That information can be added to the custom identifiers for the user’s browser.

Location Based Tracking
Other than browser fingerprinting, one of the other methods that we can use for
building trust zones for a user is to use their physical location.

Here’s how this can be valuable. Let’s say that we have an ecommerce store where the
user has filled out their shipping address during signup, or a previous purchase. We
have that address stored, to make it easier for the user the check out, and that has
become a trusted home location. If we could determine the physical location of the
person that is attempting to use the site while purporting to be the user, we could
match that against the address on file. If those two addresses match, we can use that
as a trusted point, and potentially lift the need to have the user confirm their login
information before checkout, etc.

52 | Chapter 3: Identity Security Fundamentals

www.it-ebooks.info

http://www.pinlady.net/PluginDetect/
http://www.it-ebooks.info/

Use Geolocation with Caution

Use gelocation data from the user with caution. Physical location
can be masked, and may provide inaccurate results. With that said,
ensure that you use alternate methods of identification with geolo‐
cation, and use with caution.

Let’s look at a simple JavaScript based approach towards gathering the latitude and
longitude of the user, using the navigator object. First off, let’s see what the current
support for geolocation is within modern browsers:

Figure 3-3. Current Geolocation Browser Support

Looking at the support, we have good overall coverage in most modern browsers.
Now let’s see how to set up a simple example of this.

//on success handler
function success(position){
 console.log('lat: ' + position.coords.latitude);
 console.log('lon: ' + position.coords.longitude);
}

//error handler
function failure(err){
 console.log(err);
}

//check geolocation browser availability and capture coordinates
if ('geolocation' in navigator){
 navigator.geolocation.getCurrentPosition(success, failure, {timeout:10000});
} else {
 console.log('geolocation is not available');
}

We start out by defining two handler functions, one for success and the other for
handling errors. Within the success function we will be passed position data, which
we can then extract coordinate information from. Within the error handler, we are
simply logging out the errors that may be produced. One potential error may be
caused by the user not allowing the website to capture their geolocation, which would
produce the following error:

Location Based Tracking | 53

www.it-ebooks.info

http://www.it-ebooks.info/

PositionError {}
 - code: 1
 - message: "User denied Geolocation"

With those in place, we check at the bottom of the sample to see if geolocation is
available within the navigator object. If it is, we call navigator.geolocation.getCurrent‐
Position(…), passing in the success function, error function, and the options, which
contain a timeout of 10 seconds.

When run in a browser, the user will be asked to confirm the user of their geolocation
data.

Figure 3-4. Requesting Use of Geolocation Data

Once allowed, we will be able to extract the latitude and longitude, compare to the
address we have stored on file, and see if the user is in a trusted zone. Creating a geo‐
fence of an appropriate range (range from the root address that the coordinates are
within) will allow you to handle cases of the user being within close proximity to
their home location.

Other Methods

There are many other methods for obtaining geolocation informa‐
tion for a user. For instance, within a mobile application environ‐
ment, we can simply leverage off of the GPS data for the same end
result.

Device Fingerprinting (Phone / Tablet)
As we’re now seeing, there are a multitude of different data points that can be gath‐
ered to help us determine if a user is who they say they are, without really impacting
their experience. This allows us to continue to make things easier by not having to
request additional information from them for security.

54 | Chapter 3: Identity Security Fundamentals

www.it-ebooks.info

http://www.it-ebooks.info/

13 http://developer.android.com/reference/android/os/Build.html

Another method that we can use for this cause is to use the hardware fingerprint of
the devices that are actually being used by the person using our site or service. Users
will typically use a range of devices (phones, tablets, etc) for interacting with your
applications. These devices, when used over time, can become trusted sources to help
determine if the user is on a trusted device.

Let’s take a look at a simple method for capturing this type of information from an
Android application. Build13 information is available to us to be able to obtain infor‐
mation about the device that the user is using.

Some of that information can be pulled like so:

//Build Info: http://developer.android.com/reference/android/os/Build.html

System.getProperty("os.version"); //os version
android.os.Build.DEVICE //device
android.os.Build.MODEL //model
android.os.Build.VERSION.SDK_INT //sdk version of the framework
android.os.Build.SERIAL //hardware serial number, if available
.
.
.

We can obtain information such as the OS version, device, model, etc. This can all go
towards building a framework of trusted devices, and allowing a user to bypass the
need for additional levels of security, should they be required.

Changing Devices

A typical question here may be, “What if I change my device”? If a
device is changed, the system should note that the device is not
trusted, and show appropriate security challenges as one would for
an untrusted user. Once the user has verified their identity through
the challenges, that device can then be added to the list of trusted
devices.

Device Fingerprinting (Bluetooth Paired Devices)
We are in a time where our phone is not the only connected device we have. We may
have our phone connected to a smart watch, a car, or other like hardware around us.
These devices, much like the phone, can be used as a hardware fingerprint to help
determine if a user is who they say they are. If I can find devices that are typically
connected to the phone, then the trust score would increase.

Device Fingerprinting (Bluetooth Paired Devices) | 55

www.it-ebooks.info

http://developer.android.com/reference/android/os/Build.html
http://www.it-ebooks.info/

14 http://developer.android.com/about/versions/marshmallow/android-6.0-changes.html

Let’s look at an example of how this would work within an Android application, if I
wanted to fetch all of the bluetooth devices that are connected to my phone.

//fetch all bonded bluetooth devices
Set<BluetoothDevice> pairedDevices = mBluetoothAdapter.getBondedDevices();

//if devices found, fetch name and MAC address for each
if (pairedDevices.size() > 0){
 for (BluetoothDevice device : pairedDevices){
 //Device Name - device.getName()
 //Device MAC address - device.getAddress()
 }
}

We start by calling getBondedDevices() to capture any devices that are currently
attached to the phone. We then loop through the devices found, and can fetch some
basic information about them:

• Device Name: Readable name of the device, obtained through device.getName().
• MAC Address: The physical address of the device, obtained through

device.getAddress().

Setting Proper Permissions

As of Android 6.0, there have been permission changes to provide
users with greater data protection. In order to obtain hardware
identifiers (such as the MAC address) of a Bluetooth attached
device, you need to set the ACCESS_FINE_LOCATION or
ACCESS_COARSE_LOCATION permissions in your app. If those
permissions are not set, device.getAddress() will return a constant
value of 02:00:00:00:00:00.14

Implementing Identity
Now that we have built up an understanding of different identity types and the con‐
cepts behind trust zones, we will take on a basic implementation of OAuth 2.0 and
OpenID - the driving technologies behind identity. Please note that the identity sector
is currently evolving and new standards - such as FIDO - are on the horizon. These
new technologies will be part of Chapter 5’s focus.

56 | Chapter 3: Identity Security Fundamentals

www.it-ebooks.info

http://developer.android.com/about/versions/marshmallow/android-6.0-changes.html
http://www.it-ebooks.info/

CHAPTER 4

Securing the Login with OAuth 2 and
OpenID Connect

Tim Messerschmidt

In this chapter we are going to discuss the concepts behind the two standards OAuth
2.0 and OpenID Connect in order to provide a comprehensive overview of current
authentication and authorization standards. In order to do so, the difference between
authentication and authorization will be outlined, followed by an explanation of
OAuth’s evolution throughout the years. Afterwards, we will sketch out a basic imple‐
mentation of an OAuth 2.0 server and client that leverages OpenID Connect func‐
tionality.

The difference between authentication and authorization
A common issue is seeing both authentication and authorization as one and the same.
In fact, they are very different and can be used in different scenarios or combined in
order to allow for accessing different kinds of information. In order to understand
why multiple standards exist and are being pushed forward at the same time, a basic
understanding of the main differences will be provided.

Authentication
Authentication is the process of identifying a user against a service. OpenID was the
first standard that aimed at providing a decentralized protocol for identifying users
across multiple sites. The idea behind this was very simple: avoiding the tedious task
of re-entering information over and over. Basically the log-in process is being delega‐
ted to another site.

57

www.it-ebooks.info

http://www.it-ebooks.info/

1 http://openid.net/2009/12/16/openid-2009-year-in-review/
2 http://oauth.net/core/1.0/

OpenID got introduced in 2005 and saw enormous growth with totaling over 1 bil‐
lion user accounts in 20091. Recent development showed less demand for OpenID
and central identity platforms. Instead hybrid approaches were being introduced that
offered both user authentication and authorization at the same time.

Authorization
While authentication aims at user identity, authorization tries to solve the issue of
providing access to a user’s protected resources. This can involve providing access to
user profiles - which blurs the line between authentication and authorization - or
simple anomynous access to data.

Authorization standards like OAuth are often used as a more convenient and more
secure way of handling sign-in than regular basic authentication flows using user‐
names and passwords. The idea behind this concept is relying on a third-parties’
authentication system. This concept is heavily leveraged for various social login sce‐
narios using Service Providers like Facebook, Google Plus or Twitter.

What is OAuth and OpenID Connect?
The first draft of the OAuth 1.0 Core got released in December 20072. The idea
behind OAuth was to provide an authentication technology that would allow for
anonymous resource sharing with third-parties. Anonymous resources sharing can
be seen as a way of providing access to information and resources without the need of
providing information about the user’s identity.

The server-side of this process is being titled as Service Provider, the client is also
known as Consumer. In order to allow for resource sharing and accessing a user’s
protected resources, a process called OAuth authorization flow is initiated that con‐
sists out of 8 steps:

1. Consumer: Retrieve a Request Token
2. Service Provider: Grant Request Token
3. Consumer: Direct user to the Service Provider in order to sign-in
4. Service Provider: Obtain authorization
5. Service Provider: Redirect the user to the Consumer
6. Consumer: Request an Access Token
7. Service Provider: Grant Access Token

58 | Chapter 4: Securing the Login with OAuth 2 and OpenID Connect

www.it-ebooks.info

http://openid.net/2009/12/16/openid-2009-year-in-review/
http://oauth.net/core/1.0/
http://www.it-ebooks.info/

3 http://designingsocialinterfaces.com/patterns/The_Password_Anti-Pattern

8. Consumer: Use Access Token to access protected resources

This flow - as outlined in the official specification - is known as three-legged OAuth.
3-legged OAuth requires using a web browser in order to obtain a user’s authoriza‐
tion. The three parties involved in the process are:

1. The Consumer (which we also identify as the Client)
2. The Service Provider
3. The End-User

The whole nature and reason for this convoluted process results out of the desire to
prevent the Consumer from ever handling the user’s credentials (username and pass‐
word). By involving all three parties only a minimum of information is provided in
order to grant access to a user’s resources. By implementing OAuth, a potentially
insecure password is replaced by an opaque token that can be revoked by the applica‐
tion and the end-user. This results in avoiding the password anti-pattern.

Users should have access to their data and should be allowed to bring it from one site
to another. Social sites shouldn’t propagate bad behavior by teaching users that it’s ok
to give any site their user names and passwords for all the sites to which they belong.3

—Designing Social Interfaces

An alternative flow - known as two-legged OAuth - skips obtaining the user’s authori‐
zation since no user data is being requested or involved. User data can be filled within
the Consumer and stored afterwards within the Service Provider. The two-legged
OAuth flow can be used as a replacement for traditional basic authentication.

What is OAuth and OpenID Connect? | 59

www.it-ebooks.info

http://designingsocialinterfaces.com/patterns/The_Password_Anti-Pattern
http://www.it-ebooks.info/

Figure 4-1. OAuth 1.0a authorization flow

60 | Chapter 4: Securing the Login with OAuth 2 and OpenID Connect

www.it-ebooks.info

http://www.it-ebooks.info/

4 http://tools.ietf.org/html/rfc5849
5 http://hueniverse.com/2009/04/23/explaining-the-oauth-session-fixation-attack/

6 http://tools.ietf.org/html/draft-ietf-oauth-v2-01
7 http://tools.ietf.org/html/rfc6749
8 http://tools.ietf.org/html/rfc6750

The Internet Engineering Task Force - known as IETF - started supporting OAuth in
November 2008. The official Request for Comments got published in 20104.

OAuth 1.0a

Revision 1.0a of OAuth got released in June 2009. It serves as a hot‐
fix for possible session fixation attacks that allowed to access the
victim’s resources.
Eran Hammer, one of the co-authors of OAuth 1.0, wrote a blog
post about the possible exploit and how OAuth 1.0a fixes this
attack vector5.
In this book we will use OAuth 1.0a as a base for any discussion
regarding the first version of OAuth.

From a security perspective the first version of OAuth heavily relies on signing the
request on the Consumer’s side using HMAC-SHA1, RSA-SHA1 or PLAINTEXT. A Service
Provider is allowed to implement other signing methods. The signature is being
passed as oauth_signature parameter, while the method used to sign the signature is
being provided via oauth_signature_method. Nonces and timestamps are being
leveraged as additional security mechanisms that aim at avoiding replay attacks.

The process of signing requests and the bloated process of retrieving an Access Token
can be found amongst the main reasons behind criticism for OAuth 1.0a. Developers
often feel like they have to rely on libraries in order to implement OAuth 1.0-based
authentication and feel like the standard is not approachable.

Introducing OAuth 2.0
Since the web changed heavily and new form factors got released, new authentication
scenarios had to be introduced in order to accommodate web applications, native
applications for desktop and mobile, and even interfaceless Consumers such as Inter‐
net of Things devices. Furthermore demand for more simplicity has been rising
amongst the developer community. Both reasons led to the introduction of the first
draft of OAuth 2.0 in April 20106. The main framework for OAuth 2.0 RFC7 and a
RFC discussing OAuth 2.0 Bearer Token Usage8 have been published in 2012.

What is OAuth and OpenID Connect? | 61

www.it-ebooks.info

http://tools.ietf.org/html/rfc5849
http://hueniverse.com/2009/04/23/explaining-the-oauth-session-fixation-attack/
http://tools.ietf.org/html/draft-ietf-oauth-v2-01
http://tools.ietf.org/html/rfc6749
http://tools.ietf.org/html/rfc6750
http://www.it-ebooks.info/

9 http://hueniverse.com/2012/07/26/oauth-2-0-and-the-road-to-hell
10 https://www.tbray.org/ongoing/When/201x/2012/07/28/Oauth2-dead

Amongst the main differences between OAuth 1.0a and 2.0, the following details got
updated:

1. Access Tokens are now subject to a time to live (TTL) / expiry time
2. No more client-side cryptography
3. Different flows to accommodate different authentication scenarios

Drama around OAuth 2.0

If you are aware about the ongoing discussion between the differ‐
ent OAuth 2.0 stakeholders or you simply don’t care: feel free to
skip to the next section!

While OAuth 2.0 fixes a lot of the issues that OAuth 1.0 had, it is far from perfect and
saw its biggest critique coming from Eran Hammer, who participated in the OAuth
2.0 working group. In a post called “OAuth 2.0 and the Road to Hell”9 Hammer writes
about his frustration with a standard that often lacks concrete implementation strate‐
gies and leaves a lot of decision making to the implementor. One of the points he
touches is that Bearer tokens are not encrypted per se and therefore are inherently
less secure than specified. OAuth 2.0 puts the trust into TLS and SSL and doesn’t add
additional security mechanisms on top of these protocols in order to control token
ownership.

Other contributors, such as Tim Bray, on the other hand raise valid points about
OAuth 2.0 being usable already, working in its core and not necessarily having the
need for interoperability.

Having said all that, OAuth 2 may not be perfect, and may have been harmed by the
Enterprise crap, but the core of Web functionality (all I care about) seems to have sur‐
vived.10

—On the Deadness of OAuth 2, Tim Bray

OAuth 1.0 vs. OAuth 2.0. Overall the industry seems to agree that OAuth 2.0 is a better
standard than its predecessor by offering an easier implementation and more flexibil‐
ity in terms of defining access to resources. Many developers are heavily challenged
when implementing OAuth 1.0’s signatures and often run into outdated or even dep‐
recated libraries. When you are able to use secure connections (which we highly rec‐

62 | Chapter 4: Securing the Login with OAuth 2 and OpenID Connect

www.it-ebooks.info

http://hueniverse.com/2012/07/26/oauth-2-0-and-the-road-to-hell
https://www.tbray.org/ongoing/When/201x/2012/07/28/Oauth2-dead
http://www.it-ebooks.info/

11 http://dev.evernote.com/doc/articles/authentication.php
12 http://dev.twitter.com/oauth/reference/post/oauth2/token
13 https://developers.google.com/identity/protocols/OAuthForWebApps

ommend and explain in Chapter 7) it makes sense to go for the slimmer OAuth 2.0 -
otherwise we’d recommend to take a deeper look into OAuth 1.0a.

Looking at the tech landscape, there are only few active companies remaining that
still build upon OAuth 1.0 (such as Evernote11). Twitter, another prominent imple‐
mentor of OAuth 1.0a nowadays offers a hybrid implementation that uses both
OAuth 1.0a and OAuth 2.012 based on the API you wish to use. Google, on the other
hand, announced that their OAuth 1.0 support has been deprecated as of April 20,
2012 and actively encourages developers to start using OAuth 2.0 instead13.

Handling authorization with OAuth 2.0
In OAuth 2.0 the classical OAuth authorization flow, also known as OAuth dance, was
simplified in order to require less steps.

1. Consumer: Direct user to the Service Provider in order to sign-in
2. Service Provider: Obtain authorization
3. Service Provider: Redirect the user to the Consumer
4. Consumer: Use Authorization Code to request Access Token
5. Service Provider: Grant Access Token
6. Consumer: Use Access Token to access protected resources

This flow is a very basic summary of the process that happens when users aim at
authorizing clients through OAuth 2.0. Please reference the visualization in order to
see a more comprehensive version of the so-called OAuth dance.

What is OAuth and OpenID Connect? | 63

www.it-ebooks.info

http://dev.evernote.com/doc/articles/authentication.php
http://dev.twitter.com/oauth/reference/post/oauth2/token
https://developers.google.com/identity/protocols/OAuthForWebApps
http://www.it-ebooks.info/

Figure 4-2. OAuth 2.0 authorization flow

64 | Chapter 4: Securing the Login with OAuth 2 and OpenID Connect

www.it-ebooks.info

http://www.it-ebooks.info/

14 https://aaronparecki.com/2012/07/29/2/oauth2-simplified#authorization
15 http://tools.ietf.org/html/rfc6749#Section-1.3
16 https://tools.ietf.org/html/draft-ietf-oauth-v2-http-mac-05
17 http://tools.ietf.org/html/rfc7519

This flow is also known as Authorization Code flow and will be discussed in detail in
this chapter.

OAuth 2.0 Authorization Grant Types
According to the specification, the various OAuth 2.0 Grant Types are defined as:

1. Authorization Code: an intermediate token is being used to prevent sharing the
resource owner’s credentials

2. Implicit: the client is not being authenticated
3. Resource Owner Password Credentials: used to obtain an authorization grant
4. Client Credentials: when the client is also the resource owner

A less confusing translation is provided by Aaaron Parecki14:

• Authorization Code: for apps running on a web server
• Implicit: for browser-based or mobile apps
• Resource Owner Password Credentials: for logging in with a username and pass‐

word
• Client Credentials: for application access

More information on authorization grant types can be found in Section 1.3 of the
OAuth 2.0 RFC document15.

Using the Bearer Token
The Bearer token is one of the most used default token types amongst the OAuth 2.0
standard. When the server’s token endpoint retrieves a request for a new token, it rec‐
ognizes the type bearer and provides a default Access Token according to the specifi‐
cation. This token is not further encrypted or signed - if this is something you are
interested in, the token type MAC (which stands for Message Authentication Code16) is
what you’re looking for. An alternative to this type is utilizing JSON Web Tokens17.

What is OAuth and OpenID Connect? | 65

www.it-ebooks.info

https://aaronparecki.com/2012/07/29/2/oauth2-simplified#authorization
http://tools.ietf.org/html/rfc6749#Section-1.3
https://tools.ietf.org/html/draft-ietf-oauth-v2-http-mac-05
http://tools.ietf.org/html/rfc7519
http://www.it-ebooks.info/

18 https://tools.ietf.org/html/rfc6750#Section-5

19 http://openid.net/foundation/
20 http://openid.net/2014/02/26/the-openid-foundation-launches-the-openid-connect-standard/
21 http://openid.net/specs/openid-connect-core-1_0.html#StandardClaims

There are three different ways to use Bearer Tokens in practice. The first option is
using Request Header Fields to provide the Access Token: Authorization: Bearer
4ae6ce68-4c59-4313-94e2-fcc2932cf5ca.

Second, the token can also be passed in the request’s body as a form encoded parame‐
ter named access_token. In order for this to work the request’s Content-Type header
needs to be set to application/x-www-form-urlencoded and all further body param‐
eters need to comply to the encoding requirements - JavaScript’s method encodeURI
Component() comes in handy here.

When providing the Access Token as a URI query parameter, use access_token fol‐
lowed by the Access Token itself. This last method is least desirable, since URLs
might be logged. If neither using the Authorization header, nor passing the Access
Token via the request body is an option for you, make sure to send a Cache-Control
header that is set to no-store. Further security considerations are being outlined in
Section 5 of the official Bearer Token RFC18.

Authorization and authentication with OpenID Connect
Now that we have discussed OAuth 2.0 in detail it is time to highlight OpenID Con‐
nect. OpenID traditionally stands for an authentication framework that has been
widely adopted in the pre-2010 era. With the rise of OAuth and the users’ wish to
adopt multiple identities based on the authentication use case, a variety of hybrid
extensions and so called pseudo-authentication using OAuth became popular.
OpenID Connect is a standard issued by the OpenID Foundation19 in February 201420

and resembles an extra layer on top of the OAuth 2.0 core that handles user authenti‐
cation in a standardized REST-like manner. All data being transmitted is formatted
using JSON. While OAuth is supposed to be a standard for authorization, OpenID
Connect enables authentication use cases leveraging the OAuth 2.0 protocol. This
pretty much means that OpenID Connect is a superset of OAuth 2.0.

UserInfo Endpoint and Claims
Next to OAuth’s Authorization and Token endpoint, OpenID Connect relies on an
additional endpoint called UserInfo. This endpoint provides Claims about the authen‐
ticated user. Claims are a pre-defined set of profile information about the user like the
user’s name, the profile’s URL, or if the user’s email address has been verified21. Addi‐
tionally an Address Claim can be requested and custom Claims can be defined.

66 | Chapter 4: Securing the Login with OAuth 2 and OpenID Connect

www.it-ebooks.info

https://tools.ietf.org/html/rfc6750#Section-5
http://openid.net/foundation/
http://openid.net/2014/02/26/the-openid-foundation-launches-the-openid-connect-standard/
http://openid.net/specs/openid-connect-core-1_0.html#StandardClaims
http://www.it-ebooks.info/

22 http://openid.net/specs/openid-connect-core-1_0.html#IDToken

23 https://tools.ietf.org/html/draft-ietf-jose-json-web-signature-41
24 https://tools.ietf.org/html/draft-ietf-jose-json-web-encryption-40
25 http://oauth.net/core/1.0a/#anchor32
26 http://tools.ietf.org/html/rfc6749#Section-1.6

User Authentication
OpenID Connect allows to handle a user’s log in or to determine if a user is logged in
already.

The ID Token
A central part of the OpenID Connect specification22 is the ID Token. The the token’s
functionality resolves around the following details:

• serves as security token
• contains authentication information
• is signed using JSON Web Signatures (JWS)
• can be encrypted using JSON Web Encryption (JWE)

At the time of writing this book, both JWS23 and JWE24 are still work in progress.

Security considerations between OAuth 2 and OAuth 1.0a
As highlighted in this chapter’s introduction, OAuth 1.0a’s security heavily relies on
client-side cryptography mechanisms. Using TLS or SSL is not enforced and impor‐
tant credentials like the consumer secret and token secret are stored in plaintext.
Phishing attacks are a possibility and require the user to verify the authenticity of
websites before providing any credentials25.

OAuth 2.0 on the other hand relies on TLS version 1.026 as a security mechanism.
Additionally protection against cross-site request forgery, known as CSRF attacks,
can be achieved by utilizing the state parameter (as outlined in the Section about
Authorization Codes).

Security considerations between OAuth 2 and OAuth 1.0a | 67

www.it-ebooks.info

http://openid.net/specs/openid-connect-core-1_0.html#IDToken
https://tools.ietf.org/html/draft-ietf-jose-json-web-signature-41
https://tools.ietf.org/html/draft-ietf-jose-json-web-encryption-40
http://oauth.net/core/1.0a/#anchor32
http://tools.ietf.org/html/rfc6749#Section-1.6
http://www.it-ebooks.info/

27 http://expressjs.com/
28 http://expressjs.com/en/guide/using-middleware.html#middleware.built-in

Building an OAuth 2.0 server
In this Section we will discuss an implementation of OAuth 2.0 for Node.js web appli‐
cation framework Express 27. Express serves as base for many web projects and is lis‐
ted as one of the most popular packages hosted on npm, the Node package manager.

To allow for seamless authentication and authorization mechanisms between the
server’s different routes, a feature called middleware will be leveraged.

Middleware can be used on application-level, route-level and to handle errors. You
can imagine middleware as a function that can be plugged into our application’s
routes and is able to interact with the request and response objects. Popular examples
for third-party middleware are cookie-parser, which allows to parse cookie headers,
and passport which is a popular middleware for handling user authentication.

Since version 4.x of Express, the only built-in middleware is express.static; this
function is responsible for serving static assets28.

Creating the Express application
Before we can get started with the OAuth 2.0 server integration, we need to take a few
minutes in order to set up our environment. Please refer to this book’s appendix for
an instruction on installing and setting up Node.js and the Express generator accord‐
ingly.

Following the installation of the generator, we will create our first Express applica‐
tion:

express oauth
cd oauth
npm install
npm start

This will create a new Express application in the folder oauth and install the required
dependencies. The command npm start runs our application, which will be served
from now on http://localhost:3000/ (unless specified otherwise).

Congratulations - you’ve just created your first Express application! We will use this
knowledge in our upcoming samples throughout this book.

68 | Chapter 4: Securing the Login with OAuth 2 and OpenID Connect

www.it-ebooks.info

http://expressjs.com/
http://expressjs.com/en/guide/using-middleware.html#middleware.built-in
http://www.it-ebooks.info/

29 https://www.mongodb.org/
30 http://mongoosejs.com/
31 http://tools.ietf.org/html/rfc6749#Section-4.1.2

Setting up our server’s database
To allow for interaction with MongoDB29, our project’s database, we will use the data‐
base connector mongoose.js 30. To install the package execute npm install mongoose
--save from the root folder of your application. The --save option for the npm
install command makes sure that an entry for mongoose is added to our project’s
package.json file as a run-time dependency. This is important since the node_mod
ules folder, where all the installed modules reside, is usually not pushed to the server.

First, we need to set up the code that allows to connect to our MongoDB database. In
order to so add the following code snippet to the app.js file that the Express genera‐
tor created for you.

var mongoose = require('mongoose');
mongoose.connect('mongodb://localhost/book');

For development purposes we will use a local database - obviously this would change
when deploying this application onto a different environment. By connecting to
mongoose within app.js we provide application-wide access to the database itself - a
necessity for having the ability to handle database queries and object manipulation
within our application’s routes.

Generating Authorization Codes and tokens
There are two types of tokens that are relevant for our OAuth 2.0 integration. A key
requirement for OAuth Tokens is that they need to be unique, non-sequential and
non-guessable.

Authorization Codes
Authorization codes are used in redirection based authorization flows. A code can
only be used once and a maximum lifetime of 10 minutes is recommended by the
official specification31.

A typical authorization server response contains the following parameters:

Table 4-1. Authorization request response

parameter necessity description

code required An access grant that is bound to the client’s redirect URL and identifier

state requireda Used to prevent cross-site request forgery

Setting up our server’s database | 69

www.it-ebooks.info

https://www.mongodb.org/
http://mongoosejs.com/
http://tools.ietf.org/html/rfc6749#Section-4.1.2
http://www.it-ebooks.info/

32 http://github.com/substack/node-hat
33 http://github.com/broofa/node-uuid

parameter necessity description
a Providing the state parameter in the authorization response is required when it got submitted in the authorization
request

Access Tokens
Access Tokens are tokens with a short lifetime that are used to access protected
resources. The short lifetime is an inbuilt security mechanism that tries to prevent
any fraudulent usage of resources. Using the Access Token to access resources con‐
sumes the token. Securing HTTP requests to access OAuth 2.0 protected resources is
also known as Bearer Token usage.

Access Tokens in OAuth 1.0

An Access Token in OAuth 1.0 is valid until it is revoked manually.

Table 4-2. Defining a successful Access Token response

parameter necessity description

access_token required The Access Token issued by the authorization server

token_type required Helps the client utilize the Access Token with resource requests

expires_in recommended Lifetime in seconds

scope optional The scope of resources that can be accessed

refresh_token optional Used to refresh the Access Token with the same authorization grant

Refresh Tokens
Refresh Tokens allow refreshing Access Tokens after they got consumed or expired.
In order to allow for refreshing the Access Tokens, Refresh Tokens are long-lived and
expire after they have been used to refresh the Access Token. This feature can also be
used to request Access Tokens with a narrower scope and its implementation is
optional.

Generation of codes and tokens
To ensure complete uniqueness of tokens and authorization codes, various packages
for Node.js can be leveraged in order to generate UUIDs. Amongst the popular mod‐
ules to generate UUIDs are hat 32 and node-uuid 33.

70 | Chapter 4: Securing the Login with OAuth 2 and OpenID Connect

www.it-ebooks.info

http://github.com/substack/node-hat
http://github.com/broofa/node-uuid
http://www.it-ebooks.info/

34 http://es5.github.io/x15.8.html#x15.8.2.14
35 https://bocoup.com/weblog/random-numbers/

In order to use hat we will use npm:

npm install hat --save

After the module is installed and the entry added to our package.json file, we can start
working with hat in order to create UUIDs:

var hat = require('hat');
var token = hat();

In order to avoid collision the function rack() can be used:

var hat = require('hat');
var rack = hat.rack();
var token = rack();

node-uuid, another solution to generate UUIDs, can be installed using npm, too:

npm install node-uuid --save

Next, we obtain access to the module and generating UUIDs using the v4 method.

var uuid = require('node-uuid');
var token = uuid.v4(); // Unique token

Both hat and node-uuid allow for passing additional parameters to further random‐
ize the generated tokens. Please refer to the individual documentations for more
details. For any further examples in this book we will stick with using node-uuid.
Please note that both modules can be exchanged mutually based on your own prefer‐
ence.

If we were to generate a unique string using a self-implemented method, one might
consider JavaScript’s Math.random() as a feasible choice to build upon. Considering
its pseudo random nature (see the documentation34) a different method like the two
packages outlined above should be used, though. Adam Hyland published a fantastic
article on the nature of Math.random() in 2013 - it should definitely be read when
considering the use of this method35.

Official documentation of Math.random() from ES5
Returns a Number value with positive sign, greater than or equal to 0 but less than 1,
chosen randomly or pseudo randomly with approximately uniform distribution over
that range, using an implementation-dependent algorithm or strategy. This function
takes no arguments.

Setting up our server’s database | 71

www.it-ebooks.info

http://es5.github.io/x15.8.html#x15.8.2.14
https://bocoup.com/weblog/random-numbers/
http://www.it-ebooks.info/

36 http://docs.mongodb.org/manual/reference/object-id/

The correct implementation if UUIDs requires to meet three criteria:

1. universally unique
2. non-sequential
3. non-guessable

Using a database’s identifier like MongoDB’s ObjectId is not recommended since we
cannot guarantee the requirements above. ObjectId is a 12-byte BSON type and con‐
sists of the following elements (according to the documentation36):

• a 4-byte value representing the seconds since the Unix epoch,
• a 3-byte machine identifier,
• a 2-byte process id, and
• a 3-byte counter, starting with a random value.

The Authorization Endpoint
As discussed in the introductory section for OAuth 2.0, the Authorization Code flow
requires two endpoints to be implemented in order to work. First, we will have a look
at implementing the authorization endpoint:

var uuid = require('node-uuid');
var Client = require('../lib/models/client');
var AuthCode = require('../lib/models/authcode');

router.get('/authorize', function(req, res, next) {
 var responseType = req.query.response_type;
 var clientId = req.query.client_id;
 var redirectUri = req.query.redirect_uri;
 var scope = req.query.scope;
 var state = req.query.state;

 if (!responseType) {
 // cancel the request - we miss the response type
 }

 if (responseType !== 'code') {
 // notify the user about an unsupported response type
 }

 if (!clientId) {
 // cancel the request - client id is missing
 }

72 | Chapter 4: Securing the Login with OAuth 2 and OpenID Connect

www.it-ebooks.info

http://docs.mongodb.org/manual/reference/object-id/
http://www.it-ebooks.info/

 Client.findOne({
 clientId: clientId
 }, function (err, client) {
 if (err) {
 // handle the error by passing it to the middleware
 next(err);
 }

 if (!client) {
 // cancel the request - the client does not exist
 }

 if (redirectUri !== client.redirectUri) {
 // cancel the request
 }

 if (scope !== client.scope) {
 // handle the scope
 }

 var authCode = new AuthCode({
 clientId: clientId,
 userId: client.userId,
 redirectUri: redirectUri
 });
 authCode.save();

 var response = {
 state: state,
 code: authCode.code
 };

 if (redirectUri) {
 var redirect = redirectUri +
 '?code=' + response.code +
 (state === undefined ? '' : '&state=' + state);
 res.redirect(redirect);
 } else {
 res.json(response);
 }
 });
});

The code above assumes that there is a mongoose model called Client. A client con‐
sists of an id, a secret, a user id and a few other attributes like the redirect URI it uses
in order to communicate with the Consumer.

When the redirect client flow is being used, the code is provided as query parameter -
in case of a resource request, a JSON object containing both the state and the code is
returned.

Setting up our server’s database | 73

www.it-ebooks.info

http://www.it-ebooks.info/

Amongst the attributes of a client is also the so-called scope. The scope tells the Ser‐
vice Provider which kind of attributes the Consumer is allowed to access. When
obtaining the user’s authorization, clients usually display the scopes in order to make
sure that users understand what kind of information they share.

Our application requires client credentials to be passed in both the /authorization
and /token route. Client ids, secrets and names are required to be unique in order to
avoid issues - we will build upon MongoDB’s schema mechanisms in order to realize
this challenge: Properties can be flagged as unique in order to avoid duplicate keys in
the database.

var mongoose = require('mongoose');
var uuid = require('node-uuid');

var ClientModel = function() {
 var clientSchema = mongoose.Schema({
 clientId: { type: String, default: uuid.v4(), unique: true },
 clientSecret: { type: String, default: uuid.v4(), unique: true },
 createdAt: { type: Date, default: Date.now },
 name: { type: String, unique: true },
 scope: { type: String },
 userId: { type: String },
 redirectUri: { type: String }
 });

 return mongoose.model('Client', clientSchema);
};

module.exports = new ClientModel();

In ClientModel we use MongoDB’s default initialization to our advantage. Instead of
having to pass a client id and secret whenever we create a client, this process is shifted
towards the database schema itself.

When dealing with attributes that are flagged as unique - such as the client’s name -
we need to check if the database entry was created successfully. When using the
save() method you’ll notice that mongoose and the underlying MongoDB won’t pro‐
vide feedback if the operation was successful or not. This is where a callback mecha‐
nism can be used. By checking if an error occurred before rendering the client’s
details, we can ensure that we avoid confusion and problems:

router.get('/', function(req, res, next) {
 var client = new Client({
 name: 'Test',
 userId: 1,
 redirectUri: 'http://localhost:5000/callback'
 });
 client.save(function(err) {
 if (err) {
 next(new Error('Client name exists already'));

74 | Chapter 4: Securing the Login with OAuth 2 and OpenID Connect

www.it-ebooks.info

http://www.it-ebooks.info/

37 http://mongoosejs.com/docs/guide.html

 } else {
 res.json(client);
 }
 });
});

When implementing this route you’ll want to pair it with a form that allows to enter a
client name, select scopes - which will be required for OpenID Connect - and enter
the client’s redirect URI.

AuthCode, another mongoose model we rely on, is implemented in a similar manner.
It represents the authorization codes our application issues in /authorize:

var mongoose = require('mongoose');
var uuid = require('node-uuid');

var AuthCodeModel = function() {
 var authCodeSchema = mongoose.Schema({
 code: { type: String, default: uuid.v4() },
 createdAt: { type: Date, default: Date.now, expires: '10m' },
 consumed: { type: Boolean, default: false },
 clientId: { type: String },
 userId: { type: String },
 redirectUri: { type: String }
 });

 return mongoose.model('AuthCode', authCodeSchema);
};

module.exports = new AuthCodeModel();

Handling a token’s lifetime
In this example we will have a look at creating and storing tokens using mongoose.js,
handling the token’s lifetime and consuming the token afterwards. For our applica‐
tion we will use a Token TTL of 3 minutes.

First we will set up a new mongoose Schema37 called Token. The schema will consist
of the details outlined in the OAuth 2.0 specification:

var mongoose = require('mongoose');
var uuid = require('node-uuid');

var TokenModel = function() {
 var tokenSchema = mongoose.Schema({
 userId: { type: String },
 refreshToken: { type: String, unique: true },
 accessToken: { type: String, default: uuid.v4() },

Setting up our server’s database | 75

www.it-ebooks.info

http://mongoosejs.com/docs/guide.html
http://www.it-ebooks.info/

 expiresIn: { type: String, default: '10800' },
 tokenType: { type: String, default: 'bearer' },
 consumed: { type: Boolean, default: false },
 createdAt: { type: Date, default: Date.now, expires: '3m' }
 });

 return mongoose.model('Token', tokenSchema);
};

module.exports = new TokenModel();

You will notice that an expires flag has been defined. It’s set to three minutes and will
cause the database entry to be deleted - other values like 1h or simple integers for sec‐
onds can be used here, too. In order to make creating Access Tokens as easy as writ‐
ing a few lines of code, sensible default values for fields like tokenType are being used.

The Access Token is initialized using the node-uuid module in order to populate the
accessToken and refreshToken field. userId identifies the resource owner and can
be used to consume all Access Tokens that was assigned to the user.

By providing the user’s id to both the RefreshToken and Token objects, we can ensure
that we are able to consume all issued tokens at once.

var mongoose = require('mongoose');
var uuid = require('node-uuid');

var RefreshTokenModel = function() {
 var refreshTokenSchema = mongoose.Schema({
 userId: { type: String },
 token: { type: String, default: uuid.v4() },
 createdAt: { type: Date, default: Date.now },
 consumed: { type: Boolean, default: false }
 });

 return mongoose.model('RefreshToken', refreshTokenSchema);
};

module.exports = new RefreshTokenModel();

After defining the Access Token and Refresh Token schema, we’re able to generate
both of them like this:

var uuid = require('node-uuid');
var Token = require('../lib/models/token');
var RefreshToken = require('../lib/models/refreshtoken');

var userId = 1; // some id

var refreshToken = new RefreshToken({
 userId: userId
});
refreshToken.save();

76 | Chapter 4: Securing the Login with OAuth 2 and OpenID Connect

www.it-ebooks.info

http://www.it-ebooks.info/

var token = new Token({
 refreshToken: refreshToken.token,
 userId: userId
});
token.save();

If we put all of the above together, we can begin with implementing our token end‐
point. For the first implementation of this route, we will refrain from handling
Refresh Tokens that got obtained before - we will cover handling them in another
section a bit further down this chapter after covering some more basics.

var AuthCode = require('../lib/models/authcode');
var Client = require('../lib/models/client');
var Token = require('../lib/models/token');
var RefreshToken = require('../lib/models/refreshtoken');

router.post('/token', function (req, res) {
 var grantType = req.body.grant_type;
 var authCode = req.body.code;
 var redirectUri = req.body.redirect_uri;
 var clientId = req.body.client_id;

 if (!grantType) {
 // no grant type passed - cancel this request
 }

 if (grantType === 'authorization_code') {
 AuthCode.findOne({
 code: authCode
 }, function(err, code) {
 if (err) {
 // handle the error
 }

 if (!code) {
 // no valid authorization code provided - cancel
 }

 if (code.consumed) {
 // the code got consumed already - cancel
 }

 code.consumed = true;
 code.save();

 if (code.redirectUri !== redirectUri) {
 // cancel the request
 }

 // validate the client id - an extra security measure
 Client.findOne({

Setting up our server’s database | 77

www.it-ebooks.info

http://www.it-ebooks.info/

 clientId: clientId
 }, function(error, client) {
 if (error) {
 // the client id provided was a mismatch or does not exist
 }

 if (!client) {
 // the client id provided was a mismatch or does not exist
 }

 var _refreshToken = new RefreshToken({
 userId: code.userId
 });
 _refreshToken.save();

 var _token = new Token({
 refreshToken: _refreshToken.token,
 userId: code.userId
 });
 _token.save();

 // send the new token to the consumer
 var response = {
 access_token: _token.accessToken,
 refresh_token: _token.refreshToken,
 expires_in: _token.expiresIn,
 token_type: _token.tokenType
 };

 res.json(response);
 });
 });
 }
});

Now our server is ready to issue Access Tokens in order to allow the Consumer to
access protected resources.

Handling Resource Requests
Whenever a resource is accessed using the Access Token, the token needs to be con‐
sumed in order to make sure no more resource requests are made using this token.

var Token = require('../lib/models/token');
var accessToken = 'some uuid';

Token.findOne({
 accessToken: accessToken
}, function(err, token) {
 if (err) {
 // handle the error
 }

78 | Chapter 4: Securing the Login with OAuth 2 and OpenID Connect

www.it-ebooks.info

http://www.it-ebooks.info/

 if (!token) {
 // no token found - cancel
 }

 if (token.consumed) {
 // the token got consumed already - cancel
 }

 // consume all tokens - including the one used
 Token.update({
 userId: token.userId,
 consumed: false
 }, {
 $set: { consumed: true }
 });
});

Mongoose’s findOne and update functions are very practical when dealing with
tokens since we can easily consume all tokens for a certain user or check if a token is
still valid.

This method makes for a very convenient middleware that protects our applications
resources. Let’s apply this to a Express route:

var Token = require('../models/token');

var authorize = function(req, res, next) {
 var accessToken;

 // check the authorization header
 if (req.headers.authorization) {
 // validate the authorization header
 var parts = req.headers.authorization.split(' ');

 if (parts.length < 2) {
 // no access token got provided - cancel
 res.set('WWW-Authenticate', 'Bearer');
 res.sendStatus('401');
 return;
 }

 accessToken = parts[1];
 } else {
 // access token URI query parameter or entity body
 accessToken = req.query.access_token || req.body.access_token;
 }

 if (!accessToken) {
 // no access token got provided - cancel with a 401
 }

Setting up our server’s database | 79

www.it-ebooks.info

http://www.it-ebooks.info/

 Token.findOne({
 accessToken: accessToken
 }, function(err, token) {
 // Same as in above example
 ...

 // consume all tokens - including the one used
 Token.update({
 userId: token.userId,
 consumed: false
 }, {
 $set: { consumed: true }
 });

 // ready to access protected resources
 next();
 });
};

module.exports = authorize;

After the authorization middleware has processed the request, the request is passed
on to the next middleware or the route itself by executing next().

Authorizing requests using the authorization middleware we just implemented is as
easy as adding it to our resources route:

var express = require('express');
var router = express.Router();
var authorize = require('../lib/middleware/authorize');

router.get('/user', authorize, function (req, res) {
 var user = {
 name: 'Tim Messerschmidt',
 country: 'Germany'
 }
 res.json(user);
});

module.exports = router;

Additional middleware can be passed by using array-syntax instead. If we were to use
another middleware that logs all requests, the /user definition would change to the
following:

router.get('/user', [logger, authorize], function (req, res) {
 var user = {
 name: 'Tim Messerschmidt',
 country: 'Germany'
 }
 res.json(user);
});

80 | Chapter 4: Securing the Login with OAuth 2 and OpenID Connect

www.it-ebooks.info

http://www.it-ebooks.info/

Using Refresh Tokens
The Refresh Token is being used in order to obtain a new Access Token. In order to
do so the Consumer communicates with the Service Provider’s token endpoint. In the
next example we will continue working on the token endpoint we have implemented
before in order to issue Access Tokens in exchange for Authorization Codes.

The key difference for this scenario is the different Grant Type refresh_token; it
indicates that the client obtained an Access Token before and is now trying to obtain
new credentials in order to continue accessing protected resources.

var AuthCode = require('../lib/models/authcode');
var Token = require('../lib/models/token');
var RefreshToken = require('../lib/models/refreshtoken');

router.post('/token', function(req, res) {
 var grantType = req.body.grant_type;
 var refreshToken = req.body.refresh_token;
 var authCode = req.body.code;
 var redirectUri = req.body.redirect_uri;
 var clientId = req.body.client_id;

 if (!grantType) {
 // no grant type provided - cancel
 }

 if (grantType === 'authorization_code') {
 ...
 } else if (grantType === 'refresh_token') {
 if (!refreshToken) {
 // no refresh token provided - cancel
 }

 RefreshToken.findOne({
 token: refreshToken
 }, function (err, token) {
 if (err) {
 // handle the error
 }

 if (!token) {
 // no refresh token found
 }

 if (token.consumed) {
 // the token got consumed already
 }

 // consume all previous refresh tokens
 RefreshToken.update({
 userId: token.userId,

Setting up our server’s database | 81

www.it-ebooks.info

http://www.it-ebooks.info/

38 https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

 consumed: false
 }, {
 $set: {consumed: true}
 });

 var _refreshToken = new RefreshToken({
 userId: token.userId
 });
 _refreshToken.save();

 var _token = new Token({
 refreshToken: _refreshToken.token,
 userId: token.userId
 });
 _token.save();

 var response = {
 access_token: _token.accessToken,
 refresh_token: _token.refreshToken,
 expires_in: _token.expiresIn,
 token_type: _token.tokenType
 };

 // send the new token to the consumer
 res.json(response);
 });
 }
});

You will notice that using the token endpoint with Refresh Tokens is very similar to
the code we have used before to authorize requests using Access Tokens. After apply‐
ing some basic parameter checks, the tokens are being consumed using the update-
mechanism and the next action - in this case issuing a new Access Token - is
executed.

Handling errors
In this section’s code listings, we’ve mostly looked at success cases and covered error-
handling mostly through comments. This subsection will cover how to handle errors
according to the OAuth spec utilizing Express’s response object.

Before we dive into OAuth’s specification again, a quick look into HTTP status38

codes reveals, that there is a selection of codes that will be interesting for us:

82 | Chapter 4: Securing the Login with OAuth 2 and OpenID Connect

www.it-ebooks.info

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://www.it-ebooks.info/

39 http://tools.ietf.org/html/rfc6749#section-4.1.1

code name description

302 Found The user agent MUST NOT automatically redirect. Can be used in routes such as the
Authorization Request.

400 Bad Request Malformed request.

401 Unauthorized Authentication failed or not provided. Response must contain WWW-Authenticate header.

403 Forbidden Even though an authentication might have happened, the requesting party is not authorized
to access the underlying resources.

500 Internal Server Error An unexpected condition causes that the server cannot handle the request.

503 Service Unavailable The server might be overloaded and cannot handle the request at this time.

These status codes provide us with a toolkit to handle different use-cases in the
authentication and authorization we encounter throughout the OAuth flow. OAuth’s
specification provides error codes39 that need to be provided in order to help the
implementor with identifying potential sources of mistaking.

code description

invalid_request Parameters missing, invalid parameter value provided or parameters might be
duplicate.

unauthorized_client Malformed request.

access_denied The resource owner or authorization server denied the request.

unsupported_response_type The authorization server does not support obtaining an authorization code using this
method.

invalid_scope The requested scope is invalid, unknown, or malformed.

invalid_grant The provided authorization grant or Refresh Token is invalid, expired or the client
details don’t match those defined in the authorization request (redirect URI, different
client).

server_error Internal server error that can be used when a 500 error cannot be returned to the
client.

temporarily_unavailable The server is currently unable to handle the request. Can be used in redirect scenarios
where a 503 cannot be returned.

Please note that these error codes differ based on the current step in the authentica‐
tion flow.

Using the knowledge we’ve acquired about the tools that both HTTP/1.1 and OAuth
2.0 provide, we can advance to building our own error handling class:

var util = require('util');

function OAuthError(code, message, err) {
 Error.call(this);

Setting up our server’s database | 83

www.it-ebooks.info

http://tools.ietf.org/html/rfc6749#section-4.1.1
http://www.it-ebooks.info/

 Error.captureStackTrace(this, this.constructor);

 if (err instanceof Error) {
 this.stack = err.stack;
 this.message = message || err.message;
 } else {
 this.message = message || '';
 }
 this.code = code;

 switch (code) {
 case 'unsupported_grant_type':
 this.status = 400;
 break;
 case 'invalid_grant':
 this.status = 400;
 break;
 case 'invalid_request':
 this.status = 400;
 break;
 case 'invalid_client':
 this.status = 401;
 break;
 case 'invalid_token':
 this.status = 401;
 break;
 case 'server_error':
 this.status = 503;
 break;
 default:
 // Leave all other errors to the default error handler
 this.status = 500;
 break;
 }

 return this;
}

util.inherits(OAuthError, Error);

module.exports = OAuthError;

Since OAuthError is an extension of Error and is supposed to be provided towards
Express’s error-handling mechanism (via using next or throwing an error), Node’s
util module is used in order to inherit all Error methods and properties. The OAuth
specification allows to define custom error codes (such as invalid_token) in order to
refine the interaction with clients.

Since the routes handling POST requests don’t have access to the next parameter, we
set up new handler:

84 | Chapter 4: Securing the Login with OAuth 2 and OpenID Connect

www.it-ebooks.info

http://www.it-ebooks.info/

function handleError(err, res) {
 res.set('Cache-Control', 'no-store');
 res.set('Pragma', 'no-cache');

 if (err.code === 'invalid_client') {
 var header = 'Bearer realm="book", error="invalid_token",' +
 'error_description="No access token provided"';
 res.set('WWW-Authenticate', header);
 }
 res.status(err.status).send({
 error: err.code,
 description: err.message
 });
}

module.exports = handleError;

The default behavior is to turn off caching by providing both the Cache-Control and
Pragma (nowadays mostly obsolete) headers to the client. This ensures the freshness
of information provided.

Using Error Handlers
After we’ve extended the Error class in order to be able to provide more meaningful
feedback to the client, we are able to implement this accordingly in order to handle all
cases that apply to our current scenarios:

The first step is to make both the OAuthError class and the handleError function
available via require.

// Require custom error handling
var OAuthError = require('../lib/errors/oautherror');
var errorHandler = require('../lib/errors/handler');

For GET requests we can build upon middlewares once more. By using the command-
chain we simply hand over the OAuthError to the appropriate handler - the Express
generator creates one by default that renders the status code and error message (when
running in a development environment):

// development error handler
// will print stacktrace
if (app.get('env') === 'development') {
 app.use(function(err, req, res) {
 console.log('error');
 res.status(err.status || 500);
 res.render('error', {
 message: err.message,
 error: err
 });
 });
}

Setting up our server’s database | 85

www.it-ebooks.info

http://www.it-ebooks.info/

// production error handler
// no stacktraces leaked to user
app.use(function(err, req, res) {
 console.log('error');
 res.status(err.status || 500);
 res.render('error', {
 message: err.message,
 error: {}
 });
});

When checking if the GET request was populated according to OAuth’s requirements,
we can simply invoke the error handler like this:

if (!responseType) {
 next(new OAuthError('invalid_request',
 'Missing parameter: response_type'));
}

For POST requests we alter the code slightly. In this example we validate if the Author‐
ization Code has been consumed before issueing a new Access Token:

if (code.consumed) {
 return errorHandler(new OAuthError('invalid_grant',
 'Authorization Code expired'), res);
}

You will notice that this time we invoke the errorHandler and pass the response
object in order to set the status and error message accordingly.

Adding OpenID Connect functionality to the server
After we’ve discussed how to implement OAuth 2.0 on the server by adding both
the /token and /authorize endpoint, in this section we will highlight how to build
upon our existing implementation by adding OpenID Connect functionality on top.
Before we add the userinfo endpoint, we should examine the ID Token, OpenID
Connect’s security mechanism of proving authentication and authorization.

Table 4-3. The basics of an ID Tokena

parameter necessity description

iss required Issuer Identifier - comes as URL using https scheme and contains host, port, path https://
example.com

sub required Subject Identifier - MUST NOT exceed 255 ASCII characters

aud required The ID Token’s audience - MUST contain the OAuth client_id

exp required Expiration time

iat required Time at which the token was issued

86 | Chapter 4: Securing the Login with OAuth 2 and OpenID Connect

www.it-ebooks.info

http://www.it-ebooks.info/

40 https://www.npmjs.com/package/njwt
41 http://openid.net/specs/openid-connect-core-1_0.html#IDToken

42 https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date
43 https://en.wikipedia.org/wiki/Unix_time

parameter necessity description

nonce required* If present the nonce must be verified

auth_time optional Time at which the user authentication occurred

acr optional Authentication Context Class Reference

amr optional Authentication Methods References

azp optional Authorized party - MUST contain the OAuth client_id

a http://openid.net/specs/openid-connect-core-1_0.html#IDToken

OpenID Connect tokens are JSON Web Tokens that must be signed using JWS and
can then be optionally signed and encrypted using JWS and JWE. Amongst popular
module choices to handle JWT with Node is njwt, which handles signing tokens via
HS256 per default40.

The ID Token Schema
As with the other tokens that we’ve been using in this example so far, we will create a
new Mongoose schema, that will handle the generation and expiry of our ID Token.

var mongoose = require('mongoose');
var uuid = require('node-uuid');

var IdTokenModel = function() {
 var idTokenSchema = mongoose.Schema({
 createdAt: { type: Date, default: Date.now, expires: '1m' },
 iat: { type: String, default: Math.floor(new Date() / 1000) },
 exp: { type: String, default: Math.floor(new Date() / 1000) + 180 },
 sub: { type: String, default: uuid.v4(), maxlength: 255 },
 iss: { type: String },
 aud: { type: String },
 userId: { type: String }
 });

 return mongoose.model('IdToken', idTokenSchema);
};

module.exports = new IdTokenModel();

The ID Token specification41 requires the iat and exp values to represent the seconds
since 1970-01-01T0:0:0Z UTC. We achieve this by simply using JavaScript’s Date
class42 which returns the milliseconds since Unix Epoch43 and get the seconds by

Adding OpenID Connect functionality to the server | 87

www.it-ebooks.info

https://www.npmjs.com/package/njwt
http://openid.net/specs/openid-connect-core-1_0.html#IDToken
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date
https://en.wikipedia.org/wiki/Unix_time
http://openid.net/specs/openid-connect-core-1_0.html#IDToken
http://www.it-ebooks.info/

dividing the result through 1000. Math.floor rounds down the result to the next
integer.

Modifying the Authorization Endpoint
When dealing with a regular OAuth 2 authorization flow, the scope parameter is con‐
sidered optional and serves the purpose of defining resources that will be accesses on
top of handling a simple login with OAuth. This behavior changes when we decide to
use OpenID Connect as our Authorization and Authentication framework, though.
OpenID Connect’s specification defines multiple scope values that can be passed in
order to specify which profile information are required by the client. The minimum
scope that needs to be passed is openid; this tells the server that an OpenID Connect
authorization attempt is being made.

Considering the required scope as outlined above we will go ahead and modify the
authorization endpoint accordingly:

router.get('/authorize', function(req, res, next) {
 var responseType = req.query.response_type;
 var clientId = req.query.client_id;
 var redirectUri = req.query.redirect_uri;
 var scope = req.query.scope;
 var state = req.query.state;
 var userId = req.query.user_id;

 // Same as in above example
 ...

 if (!scope || scope.indexOf('openid') < 0) {
 next(new OAuthError('invalid_scope',
 'Scope is missing or not well-defined'));
 }

 Client.findOne({
 clientId: clientId
 }, function (err, client) {
 ...

 if (scope !== client.scope) {
 next(new OAuthError('invalid_scope',
 'Scope is missing or not well-defined'));
 }

 ...
 });
});

In the above example we have made the basic assumption that each request to the
endpoint is an OpenID Connect authentication request. Another way of handling the

88 | Chapter 4: Securing the Login with OAuth 2 and OpenID Connect

www.it-ebooks.info

http://www.it-ebooks.info/

request is handling all requests with a scope containing openid as OpenID Connect
and all other requests as OAuth 2.

Instead of checking the scope parameter in the initial statements, we move the condi‐
tional statement down to the Client section and will check if we deal with an OpenID
Connect authentication request. The OpenID Connect specification does not specify
how to handle non openid scope requests - the fallback to OAuth 2 seems to be a sen‐
sible choice, though.

if (scope && scope.indexOf('openid') >= 0) {
 // OpenID Connect Authentication request - generate an ID Token
}

Adjusting the Token Endpoint
While the changes to the Authorization Endpoint are very minimal and easy to han‐
dle, we need to do a few more changes to our Token Endpoint. The client’s request
will practically stay the same but we’ll need to create the ID Token, store that token
and pass it to the client with our Access Token response.

One of the new requirements for the Token Endpoint is verifying if the Grant Type
(the Authorization Code we pass to the Token Endpoint) is the result of an OpenID
Connect authentication request - otherwise the endpoint is not supposed to return an
ID Token.

router.post('/token', function (req, res) {
 var grantType = req.body.grant_type;
 var refreshToken = req.body.refresh_token;
 var authCode = req.body.code;
 var redirectUri = req.body.redirect_uri;
 var clientId = req.body.client_id;

 if (!grantType) {
 return errorHandler(
 new OAuthError('invalid_request',
 'Missing parameter: grant_type'),
 res);
 }

 if (grantType === 'authorization_code') {
 AuthCode.findOne({
 code: authCode
 }, function (err, code) {
 // the same validation as for the OAuth 2 flow
 ...

 Client.findOne({
 clientId: clientId
 }, function (error, client) {
 // same as in the OAuth 2 example

Adding OpenID Connect functionality to the server | 89

www.it-ebooks.info

http://www.it-ebooks.info/

 ...

 var _token;
 var response;
 if (client.scope && (client.scope.indexOf('openid') >= 0)) {
 // An OpenID Connect request
 var _idToken = new IdToken({
 iss: client.redirectUri,
 aud: client.clientId,
 userId: code.userId
 });
 _idToken.save();

 _token = new Token({
 refreshToken: _refreshToken.token,
 idToken: _idToken.sub,
 userId: code.userId
 });
 _token.save();

 // send the token to the consumer
 response = {
 access_token: _token.accessToken,
 refresh_token: _token.refreshToken,
 id_token: _idToken.sub,
 expires_in: _token.expiresIn,
 token_type: _token.tokenType
 };

 res.json(response);
 } else {
 // An OAuth 2 request
 _token = new Token({
 refreshToken: _refreshToken.token,
 userId: code.userId
 });
 _token.save();

 // send the token to the consumer
 response = {
 access_token: _token.accessToken,
 refresh_token: _token.refreshToken,
 expires_in: _token.expiresIn,
 token_type: _token.tokenType
 };

 res.json(response);
 }
 });
 });
 });
});

90 | Chapter 4: Securing the Login with OAuth 2 and OpenID Connect

www.it-ebooks.info

http://www.it-ebooks.info/

44 https://openid.net/specs/openid-connect-session-1_0.html

The UserInfo Endpoint
After we have adjusted the Authentication and Token endpoint, the last adjustment
we need to handle is adding a new endpoint called UserInfo. The UserInfo endpoint
shares the resource owner’s profile information with the client. All requests towards
this endpoints must be signed using the OAuth 2 Access Token provided as Authori
zation header.

Since we have already written the middleware that handles OAuth 2-based authoriza‐
tion, adding the UserInfo endpoint is as easy as adding this new route:

router.get('/userinfo', authorize, function(req, res) {
 // The request got authorized - share profile information
 ...
});

This example outlines the power of middleware. Instead of writing duplicate code in
order to handle simple tasks like checking the Authorization header, we simply
mount a middleware that handles this task for all relevant routes.

Session Management with OpenID Connect
OpenID Connect Session Management is a draft44 that proposes the ability to control
End-User sessions to the OpenID Connect stack. This would enable the functionality
to not just log the user in (as a lot of OAuth 2 clients) but also handle the termination
of sessions, the actual log out process, too.

The specification proposes to pass three parameters to the service provider in order
to allow for logging out the user. id_token_hint is a required parameter that matches
the previously issued ID Token and allows to identify the authenticated End-User
plus the user’s session. The parameter post_logout_redirect_uri will be used for
redirects after the logout and is optional. Finally, the parameter state can be passed
as additional security mechanism - after the logout it will be passed on to the
post_logout_redirect_uri as query parameter. state is an optional parameter, too.

Building an OAuth 2 Client
Client-side OAuth 2.0 varies based on our client’s use case and flow. In below sections
we will discuss the redirection based Authorization Code flow and how to use the
credentials-based flow.

Building an OAuth 2 Client | 91

www.it-ebooks.info

https://openid.net/specs/openid-connect-session-1_0.html
http://www.it-ebooks.info/

45 https://github.com/expressjs/session#saveuninitialized

Using Authorization Codes
Authorization Codes are one of the most common OAuth 2.0 grant types. They find
their usage in multiple web- and mobile-applications that leverage redirects in order
to exchange the necessary information.

In this example we will implement another Express server that will act as Consumer.
The sample will leverage Jade, a Node template engine, and show a simple button that
allows to authorize the user.

The first step is enabling session support for Express. In order to do so, execute npm
install express-session --save to install the required node module and add the
following lines to your app.js or index.js that handles the Express initialization:

var session = require('express-session');

app.use(session({
 secret: 'your session secret',
 resave: false,
 saveUninitialized: false,
 cookie: { maxAge: 60000 }
}));

The resave option warrants that sessions are saved even if they didn’t get modified.
By saveUninitialized doesn’t save new sessions before they are modified - espe‐
cially when dealing with authentication and authorization purposes it is recom‐
mended to disable this option (the default value is true according to the
documentation45).

var express = require('express');
var router = express.Router();
var uuid = require('node-uuid');

var SEVER_URL = 'YOUR SERVER URL';
var REDIRECT_SERVER_URL = 'REDIRECT URL';

var CLIENT_ID = 'YOUR_CLIENT_ID';

router.get('/', function(req, res) {
 var state = uuid.v4();
 req.session.state = state;

 var options = {
 url: SERVER_URL + '/authorize',
 client_id: CLIENT_ID,
 redirect_uri: REDIRECT_SERVER_URL + '/callback',
 state: state,

92 | Chapter 4: Securing the Login with OAuth 2 and OpenID Connect

www.it-ebooks.info

https://github.com/expressjs/session#saveuninitialized
http://www.it-ebooks.info/

 response_type: 'code',
 user_id: 1
 };

 var authorizationURL = options.url +
 '?redirect_uri=' + options.redirect_uri +
 '&user_id=' + options.user_id +
 '&client_id=' + options.client_id +
 '&response_type=' + options.response_type +
 '&state=' + options.state;

 res.render('index', {
 authorizationURL: authorizationURL
 });
});

Our Express route will render a template called index and will provide the authoriza
tionURL to the template in order to avoid hardcoding the Client’s details into the tem‐
plate itself.

extends layout

block content
 h1 OAuth 2 Client
 a(href="#{authorizationURL}")
 button Authorize

After the Service Provider authorized our client, it will redirect to the specified redi
rect_uri and will provide the state query parameter (if sent to the server in the pre‐
vious request) and the Authorization Code itself as code.

We leverage request - a module that ease making HTTP requests - in order to
request the Access Token. Install request by executing npm install request --save.

var express = require('express');
var router = express.Router();

var request = require('request');

router.get('/callback', function(req, res, next) {
 var state = req.query.state;
 var code = req.query.code;

 // Compare the state with the session's state
 if (state !== req.session.state) {
 next(new Error('State does not match'));
 }

 request.post({
 url: SEVER_URL + '/token',
 form: {
 code: code,

Building an OAuth 2 Client | 93

www.it-ebooks.info

http://www.it-ebooks.info/

46 http://www.w3schools.com/html/html5_webstorage.asp

 grant_type: 'authorization_code',
 redirect_uri: REDIRECT_SERVER_URL + '/callback',
 client_id: CLIENT_ID
 }}, function(error, response, body) {
 if (error) {
 // handle the error
 next(error);
 }

 var resp = JSON.parse(body);
 var accessToken = resp.access_token;

 // Use the Access Token for a protected resource request
 ...
 });
});

Node is able to perform HTTP requests without leveraging the help of any third-
party modules. The reason we chose request over implementing requests manually
with the http module is simplicity and better readability.

Storing tokens on the Client
There is a big discussion about finding the most secure and most-conveniently acces‐
sible storage for tokens. Realistically an Access Token expires after a few minutes so
we can take that lifetime into consideration. For the Refresh Token on the other hand
we deal with a far longer lifecycle and have to handle the token appropriately. From a
security standpoint we want to ensure that our tokens are not vulnerable to XSS
(Cross-Site Scripting), which means that they shouldn’t be accessible from JavaScript
(injections) that runs on our client. This reasoning would rule out utilizing the
HTML5 Web Storage46. The HTML5 Web Storage offers both a local storage that can
be accessed via window.localStorage and doesn’t expire, and window.sessionStor
age, a session-based storage mechanisms that get’s wiped as soon as the user closes
the browser’s tab.

Classical cookies can be flagged with the HttpOnly option, that ensures that the cook‐
ie’s value can only be accessed from the server-side. This serves as a protection mech‐
anism against XSS-attacks and leaves XSRF/CSRF-attacks for discussion - a big risk
that often is not being accounted for. Gladly modern web-frameworks often offer
security mechanisms (that might have to be enabled in their configuration) in order
to handle the threat of replay attacks and more. We will discuss these concepts in
depth in Chapter 6.

94 | Chapter 4: Securing the Login with OAuth 2 and OpenID Connect

www.it-ebooks.info

http://www.w3schools.com/html/html5_webstorage.asp
http://www.it-ebooks.info/

47 https://tools.ietf.org/html/rfc6749#section-4.3

Custom schemes
Especially on mobile platform it has become quite popular to use a custom URL
scheme in order to make server to application calls. A URL can be broken down in
the following components: scheme://host/path?query - this allows apps to define
callbacks from the web like myoauthapp://book/auth?callback.

Authorization using Resource Owner Credentials or Client Credentials
Next to the Authorization Code Grant Flow another popular OAuth 2.0 Grant is
known as the Resource Owner Password Credentials Grant as defined in section 4.3 of
the OAuth 2.0 specification47. This flow represents a simplified way to obtain an
Access Token and involves less steps in doing so.

Figure 4-3. OAuth 2.0 Resource Owner Credentials Grant

The specification describes this flow as viable for scenarios, where the user deeply
trusts the client - this could be a device’s operating system or a highly privileged
application.

The Resource Owner Credentials Grant Type is very similar to the Client Credentials
Grant Type, in which the Client provides its credentials to the Service Provider. The
difference is that in the first case the user trusts the client and therefore submits his
details, whereas in the latter example the client owns the resources himself and there‐
fore another step in the authentication scenario can be removed:

Building an OAuth 2 Client | 95

www.it-ebooks.info

https://tools.ietf.org/html/rfc6749#section-4.3
http://www.it-ebooks.info/

48 https://developer.paypal.com/docs/api/#authentication—headers
49 http://openid.net/specs/openid-connect-basic-1_0.html

Figure 4-4. OAuth 2.0 Client Credentials Grant

As you might have guessed, in this flow the client simply asks for the user’s creden‐
tials. A popular example for a Client Credentials driven API is PayPal’s REST API
which uses client credentials in order to authorize a merchant’s application to accept
payments48.

Adding OpenID Connect functionality to the client
Since OpenID Connect heavily relies on OAuth 2.0 in terms of communication and
security mechanisms only few changes or additions to our client-side OAuth 2.0
example are needed in order to add support for OpenID Connect.

OpenID Connect provides two ways in order to handle the consumer and service
provider communication. The first flow is known as Basic Client and is being detailed
in the Basic Client Implementer’s Guide49, the second flow, the Implicit Client is

96 | Chapter 4: Securing the Login with OAuth 2 and OpenID Connect

www.it-ebooks.info

https://developer.paypal.com/docs/api/#authentication—headers
http://openid.net/specs/openid-connect-basic-1_0.html
http://www.it-ebooks.info/

50 http://openid.net/specs/openid-connect-implicit-1_0.html
51 https://labs.hybris.com/2012/06/05/oauth2-the-implicit-flow-aka-as-the-client-side-flow/
52 http://openid.net/specs/openid-connect-basic-1_0.html#RequestParameters

detailed in the Implicit Client Implementer’s Guide50. The implicit flow is known as
client-side flow or implicit grant flow and removes the need for an authorization
token - the access token is simply sent back to the server and no refresh token is
being issued. This flow is generally seen as less secure than the basic flow and will
therefore not be outlined in detail. A great post51 covering the OAuth 2.0 implicit flow
has been written by Sven Haiges.

The OpenID Connect Basic flow
When dealing with OpenID Connect’s Basic flow we’ll need to adjust the client-side
OAuth 2.0 requests for authentication and accessing resources. For OAuth 2.0 the
scope parameter is optional and needs to be used when added to the initial authenti‐
cation request. When adding OpenID Connect functionality to the client, scope
becomes a required parameter that needs to be set to cover at least openid as scope
value52.

Table 4-4. OpenID Connect request scope values

scope value necessity description

openid required Specifies that the Client is making an OpenID Connect request

profile optional Access to the User’s profile Claims such as: name, family_name and given_name

email optional Access to the email and email_verified Claims

address optional Access to the address Claim

phone optional Access to the phone_number and phone_number_verified Claims

offline_access optional Request that an OAuth 2.0 Refresh Token is issued in order to allow for obtaining a new
Access Token and therefore allowing to access the UserInfo endpoint even when the user
is not present.

The request in order to handle the client’s authentication will be altered to this form:

var options = {
 url: SERVER_URL + '/authorize',
 client_id: CLIENT_ID,
 redirect_uri: REDIRECT_SERVER_URL + '/callback',
 state: state,
 scope: 'openid',
 response_type: 'code',
 user_id: 1
};

Adding OpenID Connect functionality to the client | 97

www.it-ebooks.info

http://openid.net/specs/openid-connect-implicit-1_0.html
https://labs.hybris.com/2012/06/05/oauth2-the-implicit-flow-aka-as-the-client-side-flow/
http://openid.net/specs/openid-connect-basic-1_0.html#RequestParameters
http://www.it-ebooks.info/

53 http://openid.net/specs/openid-connect-core-1_0.html#IDTokenValidation
54 http://openid.net/specs/openid-connect-basic-1_0.html#StandardClaims
55 http://openid.net/specs/openid-connect-registration-1_0.html

var authorizationURL = options.url +
 '?redirect_uri=' + options.redirect_uri +
 '&user_id=' + options.user_id +
 '&client_id=' + options.client_id +
 '&scope=' + options.scope +
 '&response_type=' + options.response_type +
 '&state=' + options.state;

res.render('index', {
 authorizationURL: authorizationURL
});

The difference compared to the OAuth 2 client is that this time we are required to
pass the scope parameter (set to at least openid) in order to match the specifcation’s
minimum requirements.

After obtaining the user’s authorization, the authorization code is issued and
exchanged for the actual token. The token endpoint’s response will differ slightly and
will also contain an id_token attribute:

{
 "access_token": "71518132-d27b-4828-9317-5571a46c89fb",
 "refresh_token": "3ae3e757-7c32-492d-8af5-8dba943d2ec3",
 "id_token": "ee0b16a5-5be7-4629-8d1b-bf3fd7ea64a9",
 "expires_in": "10800",
 "token_type": "bearer"
}

The ID Token can be used as an additional security mechanism. It contains claims
about the authentication of an end-user as defined in the OpenID Connect specifica‐
tion53. An example value that can be easily validated is azp (authorized party) that
must match the Consumer’s client_id.

The OpenID Connect specification provides a list of all 21 standard Claims54 that can
be returned by the server’s UserInfo endpoint. Claims must be returned in JSON for‐
mat unless the format was defined differently during the client’s registration55.

Beyond OAuth 2.0 and OpenID Connect
In this chapter we have discussed the ins and outs of both OAuth 2.0 and OpenID
Connect. Both protocols find strong adoption within the industry and empower mil‐
lions of users and a multitude of applications. Still, with the rise of mobile apps and
especially mobile authentication and authorization, the need to provide better User

98 | Chapter 4: Securing the Login with OAuth 2 and OpenID Connect

www.it-ebooks.info

http://openid.net/specs/openid-connect-core-1_0.html#IDTokenValidation
http://openid.net/specs/openid-connect-basic-1_0.html#StandardClaims
http://openid.net/specs/openid-connect-registration-1_0.html
http://www.it-ebooks.info/

Experience is even more prominent than on the desktop. In the following chapter we
will discuss current multi-factor authentication systems and viable alternatives, such
as biometrics, to identify users and grant authorization towards certain actions or
information.

Beyond OAuth 2.0 and OpenID Connect | 99

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

1 http://fidoalliance.org
2 http://amiunique.org

CHAPTER 5

Alternate methods of identification

Tim Messerschmidt and Jonathan LeBlanc

Due to the heavy intersection between mobile devices, desktop clients and a new
breed of connected hardware out of the Internet of Things section, the demand for a
new class of authentication and authorization technology is on the rise. In this chap‐
ter we will discuss upcoming standards like FIDO1 that enable covering multiple
form factors and are able to scale beyond software-based authentication technology.

Device and browser fingerprinting
Next to regular authentication and authorization scenarios, device and browser fin‐
gerprinting allows for a more passive way to identify users across a big target group.
Applications like Am I Unique?2 are broadly available and can leverage many differ‐
ent factors in order to decide if a user is unique or not.

When performing device and browser fingerprinting the user is usually tested against
some very general and broad factors - such as the device’s platform, the current
browser or if cookie’s are enabled on the device - and then against more granular and
subtle determinants, like the device’s resolution, timezone, the browser’s enabled plu‐

101

www.it-ebooks.info

http://fidoalliance.org
http://amiunique.org
http://www.it-ebooks.info/

3 http://panopticlick.eff.org
4 http://panopticlick.eff.org/browser-uniqueness.pdf

gins or user agent. When having Flash enabled, services like Am I Unique? or Panop‐
ticlick3 are even able to obtain a list of currently installed fonts.

In total there are 8 different factors that can be concatenated and lead to a browser’s
fingerprint:

Table 5-1. Browser measurements to determine uniqueness

variable obtained through

User Agent HTTP

HTTP ACCEPT headers HTTP

Cookies enabled HTTP

Screen resolution AJAX

Timezone AJAX

Browser plugins AJAX

System fonts Flash or Java applets, collected through AJAX

Supercookie test AJAX

Additional factors, such as the user’s geolocation, can be obtained through HTML5 if
the user agrees to share them or by analyzing the user’s IP address (which does not
involve the need for the user’s consent).

Panopticlick released a paper on browser uniqueness that is a very worthwhile read
and a great source for further information on this subject4.

2-factor authentication and n-factor authentication
Due to the known weaknesses and issues that come along with basic authentication
through passwords, the demand for more secure login methods is high. 2-factor
authentication (2FA) relies on the addition of another token, such as a One-Time
Password, which is consumed after usage and therefore prevents common security
exploits, such as replay attacks. In this section we aim at explaining the basic concepts
of both 2-factor authentication and the upcoming n-factor authentication technolo‐
gies.

102 | Chapter 5: Alternate methods of identification

www.it-ebooks.info

http://panopticlick.eff.org
http://panopticlick.eff.org/browser-uniqueness.pdf
http://www.it-ebooks.info/

5 http://www.webopedia.com/TERM/R/rsa_secure_id.html
6 http://www.emarketer.com/Article/Smartphone-Users-Worldwide-Will-Total-175-Billion-2014/1010536

7 http://github.com/google/google-authenticator
8 http://www.authy.com

n-factor authentication
n-factor authentication , also known as multi-factor authentication (MFA), revolves
around the concept of assuming three basic components that every individual should
have:

1. Something you know
2. Something you have
3. Something you are

When examining these three requirements you will quickly realize that they match
concepts, that we have discussed before. Something you know is the most basic com‐
ponent and can be assumed as granted: it can be as simple as a password or pass‐
phrase.

The second item on our list, Something you have, is an additional component, that
aims at securing our password or passphrase by adding another layer of protection. A
popular example are smart cards or RSA Tokens, that are being used for RSA’s
SecurID5 network authentication technology. As of 2014 about 1.75 billion people
worldwide will have access to mobile phones6 - a small and affordable piece of tech‐
nology that can act very easily as additional physical layer in authentication and
authorization technology. By being able to receive text messages and/or emails and
allowing for the installation of authentication applications that generate one-time
passwords , such as Google Authenticator7 and Authy8, people are able to secure exist‐
ing logins.

Lastly, Something you are, focusses on the individual’s identity and adds a handful of
new challenges, that we will discuss in the following section. The basic assumption
here is that the usage of something intrinsic, such as the individual’s fingerprint,
allows to uniquely identify the user amongst all users and therefore adds a third layer
of security.

One-Time Passwords
One-Time Passwords, known as OTP, have been positioned in the industry as a
means to fight traditional password weaknesses and exploits. By being ever-changing
and only usable once, they reduce an application’s attack surface drastically.

2-factor authentication and n-factor authentication | 103

www.it-ebooks.info

http://www.webopedia.com/TERM/R/rsa_secure_id.html
http://www.emarketer.com/Article/Smartphone-Users-Worldwide-Will-Total-175-Billion-2014/1010536
http://github.com/google/google-authenticator
http://www.authy.com
http://www.it-ebooks.info/

9 http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-get.cgi/2006/CS/CS-2006-07.pdf

10 http://stackoverflow.com/a/2448531/636579
11 http://code.tutsplus.com/tutorials/ios-sdk-working-with-url-schemes—mobile-6629

Currently, there are three different ways to generate One-Time Passwords: The first
implementation, time-synchronization, generates short-lived tokens. Popular 2-factor
authentication applications, such as Authy or Google Authenticator, use this method
to generate OTPs.

Both the second and third implementation are based on mathematical algorithms and
generate long-lived tokens: One way to handle these OTPs is generating them based
on the previous password and therefore require to be used in a predefined order. The
other way to handle mathematically generated OTPs is generating them based on a
random challenge.

When not being generated by a client-side application, OTPs can be delivered by
either text messages or emails. The industry tends to favor text over email at the
moment since it’s broadly available, a phone number is rated to be unique across all
users, and can be made accessible through text-to-speech and therefore also cover
landline phones. A reason to use emails instead is the cost of sending a text message
and the inability to check if the text message arrived at it’s destination. Another issue
of text messages is the weak (A5/x9) or non-existant encryption standards that allow
for man-in-the-middle attacks.

On mobile devices the usage of emails in order to transport One-Time Password has
one big advantage for User Experience: applications can automatically open and
import the OTP - this heavily reduces friction and is being used by companies like
Slack. The key to automating this process is registering a custom url-handler (via
Android’s application manifest10 and utilizing URL Schemes on iOS11) that detects
when URLs of a certain markup are handled.

104 | Chapter 5: Alternate methods of identification

www.it-ebooks.info

http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-get.cgi/2006/CS/CS-2006-07.pdf
http://stackoverflow.com/a/2448531/636579
http://code.tutsplus.com/tutorials/ios-sdk-working-with-url-schemes—mobile-6629
http://www.it-ebooks.info/

Figure 5-1. Slack’s mobile sign-in flow

This sign-in flow results in an email like the following:

2-factor authentication and n-factor authentication | 105

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 5-2. Slack’s sign-in email for mobile devices

When analyzing the email’s source code you’ll notice that a URL like the following is
used: https://slack.com/z-app-211= 9624547-19991285158-cJ1DJfifFa?

s=3Dslack. Since Slack clearly owns the authority over slack.com (and no other appli‐
cations should claim any URI’s containing this domain), no custom scheme work‐
around like myapp://auth.com/ is needed. By clicking on the “Sign in to Slack on
your mobile device"-button from within your mobile email client, the Slack applica‐
tion will open up and the user will be signed in.

106 | Chapter 5: Alternate methods of identification

www.it-ebooks.info

http://www.it-ebooks.info/

12 http://developer.android.com/training/app-links/index.html#web-assoc
13 https://www.authy.com/

Since version 6.0 (Marshmellow), Android allows to declare web‐
site associations12. This mechanism helps to protect your native
applications by preventing third-party applications from accessing
information that are meant for internal consumption only.

Implementing two-factor authentication with Authy
Now that we understand how OTPs work, let’s see how we can implement these
within our own apps and websites. For this example, we’re going to use a Twilio
authentication service called Authy13. Authy will allow us to do a number of things
that we’ll need for a 2FA system, such as:

• Register / delete 2FA user accounts on our service.
• Send SMS verification codes to those users.
• Verify the verification codes once the user enters them on the website to verify

themselves.

With that said, our first task will be to set up an application with Authy and get a key
that we will use to verify our application against the service. We can do that be follow‐
ing the steps below:

• Go to the Authy dashboard at https://dashboard.authy.com/signin.
• Sign in or register a new account.
• Click to “Access Authy Dashboard” (direct link).
• Click on “Enable Two-Factor Authentication”, and select your preferred verifica‐

tion method, which is required to create a new application.
• Click on “Create your first app”.
• Enter an application name on the form that pops up, then hit “Create”. Follow the

rest of the instructions to create the application.

Once the application dashboard comes up, at the top of the page you will see a section
for information, which will include your hidden product and sandbox keys. We’re
going to be using our production key, so click the eye beside the hidden key to reveal
it.

2-factor authentication and n-factor authentication | 107

www.it-ebooks.info

http://developer.android.com/training/app-links/index.html#web-assoc
https://www.authy.com/
https://dashboard.authy.com/signin
https://www.twilio.com/user/account/ahoy-authy
http://www.it-ebooks.info/

Figure 5-3. Authy key details

Take note of that key, because we’ll be using it in our Authy 2FA example.

The complete sample code for the below Authy example is available
at https://github.com/iddatasecuritybook/chapter5/tree/master/
authy-2fa.

With our key in hand, let’s dive into a practical walkthrough of how to implement
2FA using the service. First we’re going to need to install a few npm modules, specifi‐
cally:

• body-parser: For dealing with JSON / URL -encoded payloads post Express 4.0.
• authy: A helpful module for working with authy functionality for users and

tokens.

We can pull down these packages via npm with the following terminal commands:

npm install body-parser --save
npm install authy --save

We can now create our .js file, and instantiate our packages and the body-parser func‐
tionality.

var express = require('express'),
 app = express(),
 bodyParser = require('body-parser'),
 authy = require('authy')('YOUR AUTHY PRODUCTION API KEY');

app.use(bodyParser.json()); //to support JSON-encoded bodies
app.use(bodyParser.urlencoded({ extended: true })); //to support URL-encoded bodies

In the above, we set up our express, body-parser, and authy variables. With the Authy
instantiation, we pass in that Authy production key that we obtained when we create
our application on the site. In the last two lines we then set up body-parser to be able

108 | Chapter 5: Alternate methods of identification

www.it-ebooks.info

https://github.com/iddatasecuritybook/chapter5/tree/master/authy-2fa
https://github.com/iddatasecuritybook/chapter5/tree/master/authy-2fa
https://www.npmjs.com/package/body-parser
https://www.npmjs.com/package/authy
http://www.it-ebooks.info/

to handle JSON and URL encoded objects that we will need to parse from our
requests later.

With Express, we can now set up a few routes in our application to handle POST
requests to different endpoints for working with user setup and token verification.
Let’s start with defining a route to handle user registration.

When should you register a new user with Authy?

The Authy registration for new users should be done when you
have a new user creating an account with your site or service, dur‐
ing your regular registration process. As you are storing user infor‐
mation for your site, you will also store the user id that Authy
provides during registration.

//route: register a new user via provided email and phone number
app.post('/register', function(req, res){
 var email = req.body.email;
 var number = req.body.number;

 authy.register_user(email, number, function (err, response){
 //expected response:
 //{ message: 'User created successfully.',
 // user: { id: 16782433 },
 // success: true }
 res.send(response);
 });
});

The above route will allow any POST request sent to the /register endpoint of the
application to be handled. The endpoint is expecting two pieces of data to be sent to
it:

• email: The email of the user to be registered. This should match the email that
was stored in your user records when you registered the individual.

• number: The phone number of the user to be used for the SMS 2FA process.

With that information obtained, we then make a request to authy.register_user(…),
passing in the email and number that we just pulled from the POST body. If all was
successful, the return value (stored in response), should contain three pieces of data:

• message: The human readable success message.
• user: The user ID of the newly registered user. This should be stored in your user

database for sending the 2FA requests.
• success: A boolean true / false indicating the success state.

2-factor authentication and n-factor authentication | 109

www.it-ebooks.info

http://www.it-ebooks.info/

Next on our list is to set up the ability to send SMS 2FA messages to a given user ID.

When should you send the SMS verification code?

SMS verification should be conducted during login. When a user
enters their first set of credentials (typically username / password),
you can then send the SMS message from Authy for a second level
of authentication.

//route: send authy SMS message with verification code
app.post('/sms', function(req, res){
 var uid = req.body.uid;

 authy.request_sms(uid, function (err, response){
 //expected response:
 //{ success: true,
 // message: 'SMS token was sent',
 // cellphone: '+1-XX12362760' }
 res.send(response);
 });
});

The route above will accept any POST request to the /sms endpoint, and will expect
one piece of data to be POSTed:

• uid: The user ID that was obtained from registering the user with Authy, during
the last step.

Once we pull out that value, we can then make a request to authy.request_sms(…),
passing along that uid and a callback. This will attempt to send an SMS verification
code to the phone number that is registered for that given user during the registration
step. In the response object (on success), we are expecting a few parameters:

• success: A boolean true / false indicating the success state.
• message: The human readable success message.
• cellphone: The cell phone number that the SMS was transmitted to.

At this point the user has obtained a verification code, they enter the code on your
site, and you will need to verify that it is correct.

How and when should you validate a verification code?

When the user is sent the SMS verification code during the login
step (for second factor verification), you should supply a method
for them to enter in the code that they see on their mobile device
on your site.

110 | Chapter 5: Alternate methods of identification

www.it-ebooks.info

http://www.it-ebooks.info/

//route: verify a provided verification token against a given user
app.post('/verify', function(req, res){
 var uid = req.body.uid;
 var token = req.body.token;

 authy.verify(uid, token, function (err, response){
 //expected response:
 //{ message: 'Token is valid.',
 // token: 'is valid',
 // success: 'true' }
 res.send(response);
 });
});

The above route will handle the verification step. It will accept a POST request to
the /verify endpoint, and will expect two pieces of data in the POST body:

• uid: The user ID that Authy provided during the registration step.
• token: The verification token that the user was sent via SMS during the last step.

Once we obtain that information, we can then call authy.verify(…), passing in the uid,
token, and a callback function. If the verification step completes successfully, we will
be expecting three pieces of data coming back from the response:

• message: The human readable success message.
• token: Verification whether the token is valid or not.
• success: A boolean true / false indicating the success state.

Once we verify the token is legitimate, we can then allow the user to enter the site,
and the 2FA process is now complete.

The last step we may need is when a user deletes their account from our site. We want
to ensure that we cleanup all residual user information, including their Authy user
registration data.

When should you delete users from Authy?

When a user deletes their account with your site or service, you
should also clean up their information in Authy by deleting the
registered account. The registration / deletion steps should be
synced with your site / service registration and deletion steps.

//route: delete an existing user
app.post('/delete', function(req, res){
 var uid = req.body.uid;
 authy.delete_user(uid, function (err, response){
 //expected response:

2-factor authentication and n-factor authentication | 111

www.it-ebooks.info

http://www.it-ebooks.info/

 //{ message: 'User was added to remove.', success: true }
 res.send(response);
 });
});

The route above will accept a POST request to the /delete endpoint, and expect one
item in the POSTed data:

• uid: The user ID that Authy provided during the registration step.

When obtained, we then make a call to authy.delete_user(…), passing along the user
ID, and a callback. If the deletion was successful, we should see the following parame‐
ters come back in the response:

• message: The human readable success message.
• success: A boolean true / false indicating the success state.

Once done, the user has been removed from the Authy registration system. In our
app sample, the last thing we need to do is start the server.

app.listen(process.env.PORT || 3000);

This will listen on the expected port (such as if running via Heroku), or on port 3000
otherwise. Once the server is up and running (assuming on localhost port 3000 in
this case), we can then run some tests by sending POST requests from the terminal to
each of the endpoints we set up.

First we issue a request to register a new user.

curl -H "Content-Type: application/json" -X POST -d
'{"email":"jenny@email.com, "number":"18675309"}' http://localhost:3000/register

We send an HTTP POST request to the register endpoint, passing along an email and
phone number in the POST body. The JSON response from that will give us the user
ID for the newly registered person, which we will use for the next step.

The second step is to trigger the send of an SMS to the phone of that registered user.

curl -H "Content-Type: application/json" -X POST -d
'{"uid":"16572253"}' http://localhost:3000/sms

From the registration request we obtained a user id from Authy. We send that UID
through to the SMS endpoint. The response from that should be a text message show‐
ing up on the phone number registered. The response from that will provide us with
a verification code via SMS.

Next, we send the token we have in our SMS through for verification.

curl -H "Content-Type: application/json" -X POST -d
'{"uid":"16572253", "token":"0512278"}' http://localhost:3000/verify

112 | Chapter 5: Alternate methods of identification

www.it-ebooks.info

http://www.it-ebooks.info/

14 http://www.ccc.de/en/updates/2013/ccc-breaks-apple-touchid

We send the user ID and token via a POST body to the verify endpoint, which should
provide us with a message stating that the token is valid, if the request was successful.

The last step is to clean up the user records by deleting the user we just created

curl -H "Content-Type: application/json" -X POST -d
'{"uid":"16572253"}' http://localhost:3000/delete

We send the user ID to the delete endpoint which, on success, will provide us with a
success message response.

With all of that in place, we now have the structure in place to provide 2FA SMS
token verification for our users.

Biometrics as username instead of password
With the growing availability of fingerprint scanners on mobile devices, such as the
iPhone device family and newer Android devices, more and more applications try to
identify use-cases that enhance the overall user experience. This surge in new tech‐
nology led to people starting to ask for using their fingerprint in order to replace
password prompts on their phones.

From a logical standpoint it might occur as an easy choice to leverage biometrics in
order to authorize access to applications, unlock a device’s screen, and much more,
but effectively new issues are being provoked. Passwords are traditionally vulnerable,
as we have discussed in Chapters pass[<a data-type="xref ” data-
xrefstyle="select:labelnumber” href="#ch1">#ch1 and <a data-type="xref ” data-
xrefstyle="select:labelnumber” href="#ch2">#ch2], and can be leaked or exposed
to third parties. When using simple passwords we can simply alter that password and
exchange it for a new, more secure password. When using fingerprints we run into a
whole new dimension of issues: human beings have a maximum of ten fingers and it
is highly desirable that those fingerprints are not invalidated by being exposed
towards the public.

Using fingerprints as a security mechanism

The German Chaos Computer Club managed to bypass the secu‐
rity mechanisms of Apple’s TouchID in 2013. By replicating a fin‐
gerprint using a high resolution photograph, the CCC managed to
trick an iPhone 5s’s TouchID sensor into unlocking the phone.
In the exploit’s summary14, the CCC highly recommends not to use
fingerprints in order to secure anything.

Biometrics as username instead of password | 113

www.it-ebooks.info

http://www.ccc.de/en/updates/2013/ccc-breaks-apple-touchid
http://www.it-ebooks.info/

15 https://www.tbray.org/ongoing/When/201x/2013/09/22/The-Fingerprint-Hack
16 https://twitter.com/gruber/status/381857717406560257
17 https://static.googleusercontent.com/media/source.android.com/en//compatibility/android-cdd.pdf

Tim Bray, co-inventor of XML and contributor to the IETF’s OAuth work, expressed
his opinion about using fingerprint scanners and other biometric factors in a blog
post15 that led to an interesting discussion16 with John Gruber, inventor of the Mark‐
down standard. Gruber states that using a fingerprint is still better than using no
security (like not locking your phone with a 4-digit pin or a passphrase) or weak
security.

Considering the discussion between Bray and Gruber and the fact, that the CCC
managed to exploit fingerprint scanners into unlocking, it might be wise to consider
biometric factors less as a security mechanism and more as a mechanism in order to
prove identity.

How to rate biometric effectiveness
When handling biometric factors for authentication scenarios the false-positive rate,
also known as false-acceptance rate, of the used mechanism is critical. Google
requires third-party manufacturers that want to implement fingerprint scanners for
Android phones to use an implementation that leads to a false-positive rate of not
higher than 0.002%17. False-rejection, another confounding factor, leads to user frus‐
tration and is to be avoided - Google’s guidelines defines a maximum rate of 10% and
a maximum latency between scan and action of 1 second. A third important criteria
to secure fingerprint scanning is limiting the number of false attempts before disa‐
bling fingerprint scanning; Apple allows for 3 false attempts on iOS devices before
asking the user to unlock the phone differently, while Google defines a maximum of 5
tries before disabling fingerprint scanning for at least 30 seconds (per the manufac‐
turer guideline).

Face recognition
Facial recognition aims at using either digital images or videos in order to identify
people. In order to do so a wide array of so-called landmarks and features are being
extracted and processed in order to match profiles. Factors such as the relative posi‐
tion and size of those landmarks are being normalized and compared using either
geometric (compare distinguishing features) or photometric (generating statistical
values) approaches. Emerging three-dimensional recognition systems have proven to
be less sensitive towards changes in lighting and can help with improving recognition
by allowing to scan different angles (often at the same time by stacking multiple sen‐
sors on the same chip).

114 | Chapter 5: Alternate methods of identification

www.it-ebooks.info

https://www.tbray.org/ongoing/When/201x/2013/09/22/The-Fingerprint-Hack
https://twitter.com/gruber/status/381857717406560257
https://static.googleusercontent.com/media/source.android.com/en//compatibility/android-cdd.pdf
http://www.it-ebooks.info/

18 http://www.biometricupdate.com/201601/facephi-facial-recognition-solution-to-authenticate-banco-nacional-of-
costa-rica-clients

19 http://findbiometrics.com/alipay-facial-recognition-comes-to-ios-android-212227/
20 http://blog.m2sys.com/biometric-hardware/iris-recognition-vs-retina-scanning-what-are-the-differences/
21 https://nei.nih.gov/health/macularhole/macularhole

Various banks such as the National Bank of Costa Rica and Ecuador have announced
to use facial recognition technology on mobile devices to secure access to banking
accounts18. Alipay, the Alibaba Group’s online payment platform, announced in
November 2015 to roll out facial recognition to both iOS and Android devices19. Both
examples demonstrate that the finance industry does not seem to be completely
behind fingerprint technology and tries to evaluate other biometric factors on a
broader scale.

Retina and Iris scanning
In a similar fashion to face recognition, retina scans rely on identifying unique pat‐
terns. When observing a person’s eye, blood vessels can be analyzed and used in order
to identify users. Even identical twins do not share the same blood vessel network and
therefore cannot circumvent this security concept20.

Figure 5-4. Anatomy of an Eye - illustration taken from the National Eye Institute21

While both retina and iris scanning use cameras to identify people, the key difference
lies in the identification process itself. While retina scans rely on light being absorbed
by blood vessels in order to analyze a person’s retina, iris scanning is based on taking

How to rate biometric effectiveness | 115

www.it-ebooks.info

http://www.biometricupdate.com/201601/facephi-facial-recognition-solution-to-authenticate-banco-nacional-of-costa-rica-clients
http://www.biometricupdate.com/201601/facephi-facial-recognition-solution-to-authenticate-banco-nacional-of-costa-rica-clients
http://findbiometrics.com/alipay-facial-recognition-comes-to-ios-android-212227/
http://blog.m2sys.com/biometric-hardware/iris-recognition-vs-retina-scanning-what-are-the-differences/
https://nei.nih.gov/health/macularhole/macularhole
http://www.it-ebooks.info/

22 http://www.globalsecurity.org/security/systems/biometrics-eye_scan.htm
23 http://www.biometricupdate.com/201510/fujitsu-laboratories-develops-method-to-convert-biometric-data-into-

cryptographic-key

an image of an eye that will be analyzed in order to identify structure. These images
can be captured from a distance of 3 to 10 inches and therefore are considered less
intrusive than retina scans that require the the user’s eye to be much closer to the
scanning device. An iris is supposed to have 266 unique spots that can be leveraged to
determine uniqueness22.

While a person’s retina might change due to temporal or permanent effects (like dia‐
betes or high blood pressure), the iris supposedly stays the same between birth and
death of a human being.

Vein recognition
While fingerprints remain usable as long as they can be duplicated or obtained in any
other way, a persons veins are only viable for authentication mechanisms as long as
blood flows through the body. Fujitsu has deployed palm vein recognition as a solu‐
tion across ATMs in Japan that leverages biometric details to encrypt the dataset itself
and therefore removes the need for encryption keys23.

Upcoming standards
When analyzing the current authentication and authorization standards, it becomes
quite apparent that the industry has not decided on a common standard. In this sec‐
tion we’d like to present three currently viable contenders with very different focus
and industry backing: The FIDO Alliance, Oz, and the Blockchain.

FIDO Alliance
The FIDO Alliance - which stands for Fast Identity Online - is a new industry alliance
between major contributors such as Google, Blackberry, Microsoft, PayPal and
Lenovo. FIDO aims at providing a scalable identity solution that covers multiple plat‐
forms and covers the three basic principles of authentication - something you have,
something you know, something you are - by providing two different scenarios: Uni‐
versal Authentication Framework (UAF) and Universal 2nd Factor (U2F).

Both U2F and UAF are compatible with current federated identity services - such as
OpenID and SAML - or authorization protocols like OAuth.

116 | Chapter 5: Alternate methods of identification

www.it-ebooks.info

http://www.globalsecurity.org/security/systems/biometrics-eye_scan.htm
http://www.biometricupdate.com/201510/fujitsu-laboratories-develops-method-to-convert-biometric-data-into-cryptographic-key
http://www.biometricupdate.com/201510/fujitsu-laboratories-develops-method-to-convert-biometric-data-into-cryptographic-key
http://www.it-ebooks.info/

UAF
UAF got designed with passwordless and mutli-factor authentication flows in mind.
By leveraging local mechanisms - such as using microphone input, entering a PIN or
fingerprint-scanning - a trust relation is established. The beauty of the protocol is,
that various factors can be combined; this kind of security-layering is a concept that
will be outlined in the sixth chapter of this book.

From a privacy perspective, the FIDO alliance dictates that as minimal data as needed
is collected and only used for FIDO purposes. User verification is handled locally on
the device and does not convey any biometric details to third parties.

Figure 5-5. FIDO UAF Authentication

U2F
While UAF aims at combining various factors towards a secure and passwordless sol‐
ution, U2F aims at augmenting an existing authentication implementation by adding
a second factor. The second factor allows to simplify passwords requirements to 4-
digit PIN codes and manifests in a device that presents the second factor via USB or
NFC. This piece of hardware is usable across all implementing online services as long
as the web-browser supports the U2F protocol.

The devices are supposed to be designed with mainstream adoption in mind. This is
why the design principles are very minimal and allow for affordable hardware that
can be distributed widely. From a security perspective a secure key will be provided
that will be provided to manufacturers of secure elements and will change with every
chipset batch.

U2F got designed with flexibility in mind: Multiple persons can share one device and
each person can use multiple devices to secure accounts across implementing sites.

Figure 5-6. FIDO U2F Authentication

U2F utilizes a special registration and authentication message format in order to
communicate with all supporting devices and browsers. The authentication message
is defined as the following:

Upcoming standards | 117

www.it-ebooks.info

http://www.it-ebooks.info/

24 http://github.com/hueniverse/oz
25 https://github.com/hueniverse/hawk
26 https://github.com/hueniverse/iron

Table 5-2. Authentication message format

parameter description
Control byte 0x07 to check if the key handle was created for the provided application parameter, 0x03 if a real

signature and user presence is required

Challenge SHA-256 hash of client data (stringified JSON)

Application SHA-256 hash of the application identifier

Key handle length byte Defines the length of the following key handle

Key handle Provided by the relying party & obtained during registration

In case of a successful authentication, the response contains a parameter that provides
information about the user presence, a counter that increments whenever a successful
authentication operation was performed and a signature consisting of:

• application parameter (32 byte)
• user presence byte (1 byte)
• counter (4 byte)
• challenge parameter (32 byte)

Oz
Eran Hammer - known for his contributions to both OAuth 1.0 and 2.0 - recently
(September 2015) published a web authorization framework called Oz24, that aims at
compiling industry best practices in order to provide not just a protocol but rather a
concrete implementation that is very opinionated about details such as client-side
cryptography using HMAC.

This framework does not try to be a solution that covers all platforms and form fac‐
tors but rather a viable tool for JavaScript-based applications that aim at implement‐
ing a secure solution for authorization.

Currently Oz provides a OAuth 1.0-esque authorization flow and is based on two cur‐
rent solutions: Hawk, a client-server authorization protocol25, and Iron - a tool that
allows encoding and verifying of JavaScript objects 26. Opposed to OAuth, Oz tries
not to to handle user authentication - it’s sole purpose is handling application-to-
server-authorization scenarios. From an architecture standpoint Oz is very similar to
a slimmed-down implementation of OAuth 2 enriched with security best practices.

118 | Chapter 5: Alternate methods of identification

www.it-ebooks.info

http://github.com/hueniverse/oz
https://github.com/hueniverse/hawk
https://github.com/hueniverse/iron
http://www.it-ebooks.info/

27 http://www.shocard.com
28 http://www.shocard.com/what-is-a-blockchain

The Blockchain
Developed to verify Bitcoin transactions, the blockchain is slowly becoming a power‐
ful tool beyond the scope of cryptocurrency and the payments landscape.

The idea behind using the blockchain for identity scenarios is simple: a user can store
proof of certain attributes - such as first and family name, address or date of birth -
and make the cryptographic hash of these attributes publicly available to anyone that
is able to provide the user’s public key. This allows individuals to verify information,
while authenticity of these details can be ensured. The interesting twist in this con‐
cept is the ability to decide which information are supposed to share.

Let’s use the example of a car accident - somebody scratched your car and wants to
provide you important information such as insurance details, contact name and
phone number. Currently we’d hope that the person gave us the correct details and
cannot verify anything until it is probably too late. Utilizing the blockchain, we’d rely
on exchanging cryptographic hashes and could verify all information provided on the
spot.

A company called ShoCard27 tries to build upon this concept by providing a
consumer-friendly mobile application. All information are being stored in the public
blockchain data layer28 and made accessible on demand.

Upcoming standards | 119

www.it-ebooks.info

http://www.shocard.com
http://www.shocard.com/what-is-a-blockchain
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6

Hardening Web Applications

Tim Messerschmidt

After we have spent some time in the fourth chapter in order to discuss the relevance
of OAuth 2.0 and OpenID Connect and analyzed the relevance of identity and biome‐
try plus the impact of multi-factor authentication, this chapter will cover security
considerations for Node applications - especially focussing on Express.

In security it is fantastic to provide a secure solution to identify users and authorize
access towards certain resources, but due to a multitude of different attack vectors it
is simply not enough to rely on a simple protocol in order to secure our application.
This is why we tend to go for layered security. Let’s use a simple analogy: In medieval
times a castle was secured by a gate - which was a good way to keep people out and
defend property. When being combined with stone walls instead of simple wood the
gate got even better, since even heavy machinery needed more time in order to
breach the walls. If combined with a moat, the wall and gate became even more use‐
ful. If we take this analogy and apply it to today’s standards, we want to make sure
that our application is not just capable of identifying users, but also ensures that we
withstand a DDoS attack, secure our sessions, and prepare for potential XSS and
CSRF attacks.

Securing sessions
Sessions have a very simple reason to exist: being able to persist user logins across
various routes within our application without the need to re-authenticate the user by
prompting for usernames and passwords over and over again. Just like passwords,
sessions have to meet certain requirements in order to meet security expectations:
session ids should be unique, non-guessable and non-sequential. Just like passwords,
sessions benefit from long session ids that decrease attack vectors.

121

www.it-ebooks.info

http://www.it-ebooks.info/

1 http://tools.ietf.org/html/rfc2965

Different types of sessions
Before we dive into the details of sessions and securing sessions on top of the mecha‐
nisms that Express provides by default, it is sensible to explore the difference between
cookies and sessions and what makes them interesting first.

Figure 6-1. Session & Cookie Relationship

What’s a cookie?
A cookie is used as client-side storage for information - they’re mostly used in order
to store certain user preferences, authentication details (such as the username and
password) and session information. In fact cookies can be seen as client-side imple‐
mentation of sessions and are usually combined with strong cryptographic mecha‐
nisms in order to provide safety, integrity and authenticity of the data.

If you are looking for additional material on cookies, RFC 2965 - HTTP State Man‐
agement Mechanisms - from 20001 states that cookies are not to be used for account

122 | Chapter 6: Hardening Web Applications

www.it-ebooks.info

http://tools.ietf.org/html/rfc2965
http://www.it-ebooks.info/

2 http://tools.ietf.org/html/rfc6265#section-8
3 http://tools.ietf.org/html/rfc6265#section-8.4

information unless encryption is being used. Section 8 of the updated RFC 6265 from
20112 (this RFC supersedes RFC 2965) defines various considerations that must be
taken into account to ensure security.

What’s a session?
While cookies are being used as client-side mechanism, sessions are stored server-
side and serve as a way to persist user interaction with web applications.

Session identifiers are used in order to handle a minimum of details on the client-side
but also expose the application to the possibility of session fixation attacks (as out‐
lined in RFC 62653).

How Express handles sessions
Since version 4 of Express a lot of bundled middleware like bodyParser, cookie
Parser and session got moved into separate modules in order to allow for quicker
updates and better maintainability. In this section we will explore some of the func‐
tionality that the module express-session brings to the table in order to allow for
secure handling of sessions.

When using the Express generator or looking at most tutorials, you will see a default
initialization of the session middleware that looks somehow like this:

var session = require('express-session');

app.use(session({
 secret: 'mechagodzilla',
 resave: false,
 saveUninitialized: true,
 cookie: {
 secure: true
 }
}));

SHA-256 is part of the family of SHA-2 (Secure Hash Algorithm) hash functions and
produces digests (hash values) that are 256 bits by using 32 bit words. The SHA-2
finds usage in popular protocols such as SSL or PGP but got heavy critics in recent
events for being used as cryptographic tool in order to secure passwords. Please refer
Chapter 2 for additional information about SHA-2 and proper alternatives.

Securing sessions | 123

www.it-ebooks.info

http://tools.ietf.org/html/rfc6265#section-8
http://tools.ietf.org/html/rfc6265#section-8.4
http://www.it-ebooks.info/

4 http://github.com/expressjs/session#resave
5 http://www.w3.org/Protocols/rfc2109/rfc2109
6 http://github.com/expressjs/session#cookie-options

Let’s look at the default options that are being passed towards the middleware:

• secret is a required option and resembles the session secret that is utilized to
sign the session ID cookie. The session module relies on the node module
cookie-signature which utilizes crypto, a popular module for cryptography, in
order to sign the provided value with SHA-256 as keyed-hash message authentica‐
tion code - also known as HMAC. Finally, the signed value is being hashed as
Base64 before being returned to Express.

• The next option, resave, decides if sessions are saved in the session storage even
when they did not get modified. The default value used to default to true but is
not encouraged to use anymore. Instead decide based on your session storage: if
req.session.touch() is used, resave can be set to false- otherwise true is the
recommended value4.

• saveUninitialized is used to determine if a new (but unmodified) session
should be saved - while true is the default value, it is recommend to set this value
to false when being used to handle authentication.

• cookie allows for deeper configuration of your session ID cookie. secure is rec‐
ommended to be set to true and ensures that secure cookies for HTTPS-enabled
website work. The session middleware does not rely on the cookieParser mid‐
dleware anymore and can even cause issues when being used in conjunction.

• cookie.maxAge is set to null per default and results in cookies being handled as
browser-session cookies - which means that they get removed as soon as the
browser window is closed.

Testing the session ID generation can be a difficult task when using the secure option
for the cookie. The value true only serves the cookie via HTTPS. When testing on
both HTTP and HTTPS connection the value auto can be used - please be aware that
a cookie that got set via HTTPS is only accessible for HTTPS connections. Non-
secure cookies can be accessed using either HTTP or HTTPS5.

In our examples we stick to true as the default value for our session cookie - this is
the recommended setting 6. When developing in an non-HTTPS-enabled environ‐
ment consider setting secure to false.

124 | Chapter 6: Hardening Web Applications

www.it-ebooks.info

http://github.com/expressjs/session#resave
http://www.w3.org/Protocols/rfc2109/rfc2109
http://github.com/expressjs/session#cookie-options
http://www.it-ebooks.info/

7 http://github.com/expressjs/session/issues/107

A prime feature of this middleware is the possibility of setting up your own function
for generating session IDs. genid can be used with any function that creates and
returns unique IDs. Currently, the default implementation uses uid2.

Using genid

While uid2 seems to be a reasonable implementation of creating session IDs, genid
provides a way to create harder-to-guess IDs, provide Access Tokens or whichever
other scenario you are looking for. Asynchronous functions are sadly not supported
as of now but are a listed issue in the project’s repository7.

Let’s use genid in order to produce our own session IDs:

var session = require('express-session');
var uuid = require('node-uuid');

app.use(session({
 genid: function(req) {
 return uuid.v4()
 },
 secret: 'mechagodzilla',
 resave: false,
 saveUninitialized: false,
 cookie: {
 secure: true
 }
}));

In the above example we generate UUIDs with node-uuid. In the following section
we will have an in-depth look into how we apply this in practice.

Best practices when dealing with sessions
Sessions are designed to have a finite lifespan and are supposed to expire by either
being invalidated through the web application or simple cookie mechanics. Within
our application we can tie the generated session towards a timespan and therefore
easily validate if the session should remain valid, is invalid or should be invalidated.
In order to minimize expensive database operations, it is reasonable to provide the
sessions creation date as additional suffix in the session hash itself. This does not only
help to reduce computing time but also adds another factor to the generated hash and
therefore acts as additional security mechanism. A potential attacker deals not only
with the session’s id but also with a timestamp. To make session-guessing even harder,
we can add additional factors into generating session hashes.

Securing sessions | 125

www.it-ebooks.info

http://github.com/expressjs/session/issues/107
http://www.it-ebooks.info/

When using your own function to generate session IDs, you need to be aware about
the fact that the session secret provided to Express is not being used (even though it is
a required parameter). The module cookie-signature is very easy to use and allows
for signing and un-signing of cookies:

var cookie = require('cookie-signature');

var value = 'test';
var secret = 'myamazingsecret';

var signedValue = cookie.sign(value, secret);
// signedValue is 'test.6L58yh6xptQIl6IyKA5GxGr63TRJwwxTNUYy6ui51Bk'

var unsignedValue = cookie.unsign(signedValue, secret);
// unsignedValue is 'test'

Let’s apply these best practices to the session generation function we’ve worked with
before:

var session = require('express-session');
var uuid = require('node-uuid');

app.use(session({
 genid: function (req) {
 var timestamp = Date.now();
 var id = uuid.v4();
 var sessionId = id + '$' + timestamp;
 return sessionId;
 },
 secret: 'mechagodzilla',
 resave: false,
 saveUninitialized: false,
 cookie: {
 secure: true
 }
}));

In this example the $-symbol is being used as a delimiter. By leveraging this syntax we
can easily identify the timestamp after we’ve retrieved the session’s ID. Using this
mechanism we do not only benefit from making session-guessing harder; we also
have the power of being able to check if sessions are expired already by simply vali‐
dating the timestamp:

var sessionParts = req.sessionID.split('$');
if (sessionParts.length === 2) {
 var timestamp = sessionParts[1];
 // Validate session
 ...
}

In this section we’ve learned how the express-session module works, which meth‐
ods and modules it uses and how we can build our own secure implementation of

126 | Chapter 6: Hardening Web Applications

www.it-ebooks.info

http://www.it-ebooks.info/

8 http://en.wikipedia.org/wiki/Fragment_identifier
9 http://www.owasp.org/index.php/HTML5_Security_Cheat_Sheet#Local_Storage

session ID generation in order to achieve security-layering and make session-
guessing harder than before.

Handling XSS
Cross-site scripting is a popular attack that has been briefly introduced in Chapter 4.
XSS attacks are based on the fact, that the browser trusts sites it visits, and therefore
can be led towards executing malicious code. By injecting this code into other sites it’s
distributed and either persisted or used for one-off attacks such as filling out forms
within web applications.

The Three Types of XSS Attacks
When dealing with XSS prevention mechanisms, three different attack methods
become apparent:

1. Persistent XSS
2. Reflected XSS
3. DOM-based XSS

Persistent XSS relies on malicious code being stored in a website’s database. This
results in the injected code being loaded over and over again and was a popular
exploit in the early days of internet forums.

Reflected XSS attacks originate from the original request and can be seen as one-time
attacks that are returned in the server’s response to the victim.

The last type, DOM-based XSS, is based on modifying client-side code and often
attacks the URL’s fragment identifier8 which we know as the hash mark that normally
serves for navigational purposes. Another example for DOM-based XSS is modifying
entries in HTML5’s LocalStorage - OWASP released a cheat sheet when dealing with
HTML5 in order to assist with securing your application9.

Testing XSS Protection Mechanisms
In this section we will explore how a basic reflected injection attack works and which
mechanisms Node, HTTP and the browsers put into place in order to prevent exploi‐
tation.

Handling XSS | 127

www.it-ebooks.info

http://en.wikipedia.org/wiki/Fragment_identifier
http://www.owasp.org/index.php/HTML5_Security_Cheat_Sheet#Local_Storage
http://www.it-ebooks.info/

First of all we will generate a new project (using the Express generator) which will be
configured in order to be vulnerable. To get started execute the following command
in your terminal:

express xss
cd express
npm install .

This will generate the initial setup for our application. After all modules get installed,
we can start working on a very basic user registration feature - residing in views/
index.jade - which accepts a first- and lastname and eventually displays these details
on a simple profile page.

extends layout

block content
 h1 Registration
 form(method='POST', action='/register')
 fieldset
 legend Your details
 label(for='firstname') Firstname
 input(id='firstname', name='firstname', type='text')
 label(for='lastname') Lastname
 input(id='lastname', name='lastname', type='text')
 input(type='submit', value='Submit')

The form submits a POST requests with the populated body to the route /register.
In this step we will add this new route declaration to our application (which you can
find in routes/index.js):

router.post('/register', function(req, res) {
 var user = {
 firstname: req.body.firstname,
 lastname: req.body.lastname
 };

 res.render('profile', { user: user });
});

For this example we don’t bother with storing user data and simply render another
template, profile, with the POST request’s details. The profile page is created by run‐
ning the following command:

touch views/profile.jade

The template below displays the user’s firstname and lastname using Jade’s buffered
code mechanism:

extends layout

block content
 h1 Your Profile

128 | Chapter 6: Hardening Web Applications

www.it-ebooks.info

http://www.it-ebooks.info/

 p= user.firstname
 p= user.lastname

Now that all pieces are in place, we can run our first attempt at an XSS attack. Instead
of submitting an innocent combination of first- & lastname, we want to abuse the
lastname in order to submit a script that loads another site:

<script>window.location="http://tme.coffee"</script>

Submitting the details will populate the POST request’s body like this:

{
 firstname: 'Tim',
 lastname: '<script>window.location="http://tme.coffee"</script>'
}

Now the basic assumption is that our profile page would simply render the informa‐
tion provided and therefore loads the URL http://tme.coffee instead of displaying
the lastname.

Gladly Jade escapes buffered code and therefore simply renders the following output:

Figure 6-2. Escaped Profile Information

When inspecting the page’s source, you will notice that the escaped profile page will
render like this:

<body>
 <h1>Your Profile</h1>
 <p>Tim</p>
 <p><script>window.location="http://tme.coffee"</script></p>
</body>

For this upcoming step, let’s be foolish and disable this automatic escaping-
mechanism - this can be done by simply changing the template:

extends layout

block content
 h1 Your Profile

Handling XSS | 129

www.it-ebooks.info

http://www.it-ebooks.info/

10 https://github.com/WebKit/webkit/blob/fa65954cef5bc7a64f34e38d08f21833cad81506/Source/WebCore/html/
parser/XSSAuditor.cpp#L102

 p= user.firstname
 p!= user.lastname

Instead of displaying buffered code with =, we use the functionality to render unbuf‐
fered code != - which is definitely not safe for input - and resubmit our form.

This is where things get interesting as differences in browsers become quite apparent.
Chrome (tested with Version 48.0.2564.48 beta) simply doesn’t render the lastname’s
field and prints the following statement in the JavaScript console:

The XSS Auditor refused to execute a script in http://localhost:
3000/register because its source code was found within the request.
The auditor was enabled as the server sent neither an X-XSS-
Protection nor Content-Security-Policy header.

Doing the same experiment with Mozilla’s Firefox V42 results in the script tag execut‐
ing - the browser loads up the page http://tme.coffee.

XSS Auditor is a feature that initially got introduced with WebKit and made it’s way
into the Chromium Project’s WebKit fork Blink. That implies that a wide array of
browsers such as Chrome, Opera and Safari come with this inbuilt mechanism
against reflected XSS attacks. Microsoft’s Internet Explorer supports XSS Auditor
functionality with version 8 and above.

Circumventing XSS Auditor
XSS Auditor should not be seen as a sole defense mechanism against XSS attacks. It is
rather an additional client-side tool to decrease the risk implied by vulnerable soft‐
ware. By blacklisting certain payloads and query parameters, injection points are sup‐
posed to be detected and execution on the browser DOM is prevented by
transforming the response into a non-executable state.

Let’s have a look at the script tag detection mechanism in WebKit’s XSSAuditor.cpp10:

static bool startsOpeningScriptTagAt(const String& string, size_t start)
{
 return start + 6 < string.length() && string[start] == '<'
 && WTF::toASCIILowerUnchecked(string[start + 1]) == 's'
 && WTF::toASCIILowerUnchecked(string[start + 2]) == 'c'
 && WTF::toASCIILowerUnchecked(string[start + 3]) == 'r'
 && WTF::toASCIILowerUnchecked(string[start + 4]) == 'i'
 && WTF::toASCIILowerUnchecked(string[start + 5]) == 'p'
 && WTF::toASCIILowerUnchecked(string[start + 6]) == 't';
}

130 | Chapter 6: Hardening Web Applications

www.it-ebooks.info

https://github.com/WebKit/webkit/blob/fa65954cef5bc7a64f34e38d08f21833cad81506/Source/WebCore/html/parser/XSSAuditor.cpp#L102
https://github.com/WebKit/webkit/blob/fa65954cef5bc7a64f34e38d08f21833cad81506/Source/WebCore/html/parser/XSSAuditor.cpp#L102
http://localhost:3000/register
http://localhost:3000/register
http://www.it-ebooks.info/

11 http://www.sinatrarb.com
12 http://www.npmjs.com/package/helmet

Based on this detection mechanism potential threads can be detected and examined
more deeply.

The auditor relies on the following HTTP header to be set: X-XSS-Protection. We
can inspect our request’s header in order to understand how Express, Node and
Chrome handle this situation:

Accept:text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8
Accept-Encoding:gzip, deflate
Accept-Language:en-US,en;q=0.8,de;q=0.6
Cache-Control:max-age=0
Connection:keep-alive
Content-Length:73
Content-Type:application/x-www-form-urlencoded
Host:localhost:3000
If-None-Match:W/"be-JIAfZIOVAe1p85FawKqWIg"
Origin:http://localhost:3000
Referer:http://localhost:3000/
Upgrade-Insecure-Requests:1
User-Agent:Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/48.0.2564.48 Safari/537.36

The sample application does not provide the X-XSS-Protection itself - gladly WebKit
sets this option as default and it needs to be explicitly disabled by setting the header
manually:

router.post('/register', function(req, res) {
 var user = {
 firstname: req.body.firstname,
 lastname: req.body.lastname
 };

 res.set('X-XSS-Protection','0');
 res.render('profile', { user: user });
});

The header options value 0 disables this mechanism, 1 enables it and 1;mode=block
results in rendering a blank page. Obviously it is always desirable to either set the
value to 1 or 1;mode=block. Warning: While other web frameworks - such as Sinatra11

for Ruby - provide the X-XSS-Protection header as default, Express relies on exter‐
nal modules such as Helmet12.

Handling XSS | 131

www.it-ebooks.info

http://www.sinatrarb.com
http://www.npmjs.com/package/helmet
http://www.it-ebooks.info/

13 http://hackademix.net/2009/11/21/ies-xss-filter-creates-xss-vulnerabilities
14 http://github.com/helmetjs/helmet#xss-filter-xssfilter
15 http://homakov.blogspot.de/2013/02/hacking-with-xss-auditor.html
16 http://excess-xss.com

17 http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project#tab=OWASP_Top_10_for_2013
18 http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project#tab=OWASP_Top_10_for_2010

Setting the X-XSS-Protection header causes vulnerabilities on old
versions of Internet Explorer13. It is recommended to set the header
to 0 accordingly. Helmet handles this exception automatically14.

The Security Consultant Egor Homakov wrote a very interesting post15 about the
mechanism of XSS Auditor.

Conclusion
Through a combination of sensible browser defaults like the X-XSS-Protection
header and the features of modern templating engines like escaping input, a solid
base-layer security is being provided. Previously, we’ve been exploring the concept of
security-layering and it definitely makes sense to hold on to this behavior when deal‐
ing with reflected XSS. As developers we should use both client-side and server-side
features that help escaping and sanitizing input in order to prevent exploitation of
our application.

More information on XSS attacks and different tools that help with reducing attack
vectors can be found here16.

CSRF attacks
Close to being as popular as XSS, cross-site request forgery is used in order to lever‐
age the browsers trust in a user to execute requests on the user’s behalf. This can
cause site’s to execute requests that seemingly come from a valid authorized user and
express a huge threat. In fact, CSRF ranks as the eight-biggest harm in OWASP’s top
ten list of current security threats17 down from the fifth place in 201018. While the
threat might be decreasing in commonness, a place within the top 10 of ongoing vul‐
nerabilities still justifies discussing the issue itself and prevention mechanisms that
help Node.js developer to deploy secure applications.

132 | Chapter 6: Hardening Web Applications

www.it-ebooks.info

http://hackademix.net/2009/11/21/ies-xss-filter-creates-xss-vulnerabilities
http://github.com/helmetjs/helmet#xss-filter-xssfilter
http://homakov.blogspot.de/2013/02/hacking-with-xss-auditor.html
http://excess-xss.com
http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project#tab=OWASP_Top_10_for_2013
http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project#tab=OWASP_Top_10_for_2010
http://www.it-ebooks.info/

19 http://github.com/expressjs/csurf

Handling CSRF with csurf
Express offers an optional middleware called csurf 19 that can be installed via npm.
Effectively the module provides a unique token that needs to be rendered in forms
and will be validated after form-submission - a mechanism that’s similar to what we
have done with providing the state parameter when requesting the Authorization
Code in the previous sample.

var csurf = require('csurf');

var csrfMiddleware = csurf({
 cookie: true
});

app.get('/form', csrfMiddleware, function(req, res) {
 res.render('form', { csrfToken: req.csrfToken() });
});

In this example we create a new middleware based on csurf that stores uses cookies
instead of req.session in order to store the CSRF token secret. This middleware is
mounted for the route /form and provides the generated token as option to the form
template.

extends layout

block content
 h1 CSRF protection using csurf
 form(action="/login" method="POST")
 input(type="text", name="username=", value="Username")
 input(type="password", name="password", value="Password")
 input(type="hidden", name="_csrf", value="#{csrfToken}")
 button(type="submit") Submit

By rendering the CSRF token as hidden part of a hypothetical login form, we provide
a way to send the token back to the server. This allows to validate the authenticity of
our request in the /login route.

app.post('/login', csrfMiddleware, function(req, res) {
 // This request is unique and can be handled accordingly
});

Some of the functionality in csurf relies on using a session middleware (like cookie-
parser or express-session) before using the middleware itself. This is just a matter
of handling the initialization process of your application’s middlewares accordingly.

CSRF attacks | 133

www.it-ebooks.info

http://github.com/expressjs/csurf
http://www.it-ebooks.info/

20 http://krakenjs.com
21 https://github.com/krakenjs/lusca#usage

Protecting our application against CSRF attacks with popular modules such as csurf
is incredibly easy and leaves little excuse for not doing so. By simply using a middle‐
ware and handling the provided token, a whole level of threat can be managed.

Valuable resources for Node
Lusca
Back in 2012 PayPal started adopting Node in order to power its application stack.
Part of this process was the development of krakenjs20, an extension of Express. Part
of the kraken suite is a module called Lusca, which focusses heavily on improving
security by setting sensible defaults and coming with protection mechanisms against
prominent vulnerabilities.

Lusca can be used as application-level middleware by adding it to your application’s
initialization process (sample taken from the project’s documentation21):

var express = require('express'),
 app = express(),
 session = require('express-session'),
 lusca = require('lusca');

//this or other session management will be required
app.use(session({
 secret: 'abc',
 resave: true,
 saveUninitialized: true
}));

app.use(lusca({
 csrf: true,
 csp: { /* ... */},
 xframe: 'SAMEORIGIN',
 p3p: 'ABCDEF',
 hsts: {maxAge: 31536000, includeSubDomains: true, preload: true},
 xssProtection: true
}));

Please note that not only common threats such as XSS and CSRF are covered, Lusca
also features HTTP Strict Transport Security (HSTS), Content Security Policy (CSP)
options, and support for the X-Frame-Options response header.

134 | Chapter 6: Hardening Web Applications

www.it-ebooks.info

http://krakenjs.com
https://github.com/krakenjs/lusca#usage
http://www.it-ebooks.info/

22 http://github.com/helmetjs/helmet
23 http://github.com/helmetjs/helmet#how-it-works
24 http://github.com/helmetjs/helmet#usage-guide

helmet
Helmet22 is a collection of 10 security middlewares that operate closely to how Pay‐
Pal’s Lusca functions. You can either use a default initialization with app.use(hel
met()) and cover 6 out of 10 middlewares (as documented in the project’s
repository23) or use the submodules individually.

Currently, Helmet comes with the following modules:

• contentSecurityPolicy - CSP settings
• dnsPrefetchControl - controls browser DNS prefetching. Currently beta and

soon part of the default middleware.
• frameguard - prevention of clickjacking
• hidePoweredBy - controls the X-Powered-By header
• hpkp - HTTP Public Key Pinning
• hsts - HTTP Strict Transport Policy
• ieNoOpen - X-Download-Options (IE8 and newer)
• noCache - client-side caching
• noSniff - prevents MIME type sniffing
• xssFilter - X-XSS-Protection header

We definitely recommend reading Helmet’s documentation - the contributors took
the time to provide detailed explanations of the different attack types and how they
can be mitigated24.

Node Security Project
The last valuable resource that is worth mentioning is the Node Security Project. It is
definitely worth to subscribe to their Node Security Newsletter and trying out nsp.
nsp allows for auditing your Node application’s package.json and npm-

shrinkwrap.json files for known vulnerabilities.

Simply install nsp by running the following command:

npm install -g nsp

Afterwards navigate to your project and run nsp like so:

Valuable resources for Node | 135

www.it-ebooks.info

http://github.com/helmetjs/helmet
http://github.com/helmetjs/helmet#how-it-works
http://github.com/helmetjs/helmet#usage-guide
http://www.it-ebooks.info/

25 http://nodesecurity.io/resources

cd testapp
nsp check

Potential output will look similar to the following:

Figure 6-3. nsp security audit

The Node Security Project also curates a list of valuable resources25 (such as talks,
papers, blog posts and more). This collection serves as a great overview about current
security best practices for Node.

Other mitigation techniques
A lot of different mitigation techniques - such as HSTS or CSP - have been men‐
tioned in the above sections. We’d like to take the time to briefly summarize their core
functionality before moving on ot the next chapter.

Table 6-1. Mitigation techniques

mechanism description

Content Security Policya Prevents execution of malicious content in trusted sites (reduces risk of XSS).

HTTP Strict Transport Securityb A mechanism that allows applications to be only accessed via secure connections.

HTTP Public Key Pinningc Ensures the authenticity of a server’s public key.

136 | Chapter 6: Hardening Web Applications

www.it-ebooks.info

http://nodesecurity.io/resources
http://www.it-ebooks.info/

mechanism description

Frameguardd Allows to define if an application allows to be framed (in a <frame> or <iframe> tag).

Platform for Privacy Preferencese P3P allows to define which information a website collects about users.

a http://content-security-policy.com
b http://tools.ietf.org/html/rfc6797
c https://developer.mozilla.org/en/docs/Web/Security/Public_Key_Pinning
d https://en.wikipedia.org/wiki/Clickjacking
e http://www.w3.org/P3P/

The X-Powered-By header does not necessarily open up a vulnerability but tells
potential attackers about our application stack. By default Express sets the header to
X-Powered-By: Express and therefore exposes which framework got used to build
the application. We recommend to unset the header either manually (like outlined
below) or to use the options provided by Helmet and Lusca.

router.get('/myroute', function(req, res) {
 res.set('X-Powered-By', '');
});

We highly recommend to do some further research on these mitigtation techniques
in order to understand how to implement them most effectively.

Our findings
In this chapter we have intensively discussed and dissected session mechanisms, the
potential threat behind cross-site scripting and the severe impact of cross-site request
forgery. So far we have learned about:

• Express security features (such as express-session)
• Client-side XSS prevention (XSS Auditor and the X-XSS-Protection header)
• Server-side XSS prevention (escaping and buffering parameters using templating

engines)
• Securing requests against CSRF (providing unique tokens with csurf)
• Using security modules (helmet and Lusca)
• Mitigation techniques (CSP, HSTS, HPKP, and more)

In the following chapter we will have a look at efficient and secure data transmission
using techniques such as SSL, asymmetric and symmetric encryption and the impli‐
cations of cryptography itself.

Our findings | 137

www.it-ebooks.info

http://content-security-policy.com
http://tools.ietf.org/html/rfc6797
https://developer.mozilla.org/en/docs/Web/Security/Public_Key_Pinning
https://en.wikipedia.org/wiki/Clickjacking
http://www.w3.org/P3P/
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7

Data Transmission Security

Jonathan LeBlanc

In Chapter 2 we discussed at length about protection of identification and account
security through the use of proper hashing and salting techniques. Even though
account security is vitally important to any system, what if we want to secure any data
that is being transmitted from one party to another, where that data might be sensi‐
tive in nature or contain priviledged user information.

There are numerous techniques towards data security that we will explore, which are
designed to protect data in motion, or better said, data that is moving between par‐
ties. Throughout this chapter we’ll look at a few of these techniques in depth:

• The concepts behind SSL secure data transmission.
• Asymmetric key cryptography, better known as public / private key encryption.
• Symmetric key encryption, better known as shared secret encryption.

Let’s start things out by exploring our ideal secure scenario.

SSL/TLS
Under the ideal scenario, when working with data security as web developers, Secure
Sockets Layer (SSL) is the mechanism that you should be targeting as your data secu‐
rity standard for a user.

If you’re not familiar with how it works, you’ll be familiar with seeing the affect of an
SSL certificate being used on websites that you visit, such as the below image, which
shows the expanded certificate information for https://www.google.com/.

139

www.it-ebooks.info

https://www.google.com/
http://www.it-ebooks.info/

Figure 7-1. SSL Certificate on Google

SSL, and its successor, Transport Layer Security (TLS), are cryptographic protocols
that are typically bundled together when talking about “SSL”. When creating a secure
SSL connection on your website, you will be required to set up an SSL certificate,
which is provided by an SSL certificate authority (CA), which is the company that can
issue these digital certificates. When doing so, you verify identification information
about your site to the certificate authority, then your web server generates two cryp‐
tographic keys, a public and a private key. This process uses the symmetric key cryp‐
tography approach to data security and data privacy, which we’ll be exploring in more
detail later in this chapter.

These certificates usually contain some basic information about you and your web‐
site:

• Domain name
• Company name
• Address
• City
• State / Province
• Country

Certificate Validation Types and Authorities
There are a number of different SSL certificate types that you can obtain when work‐
ing through a certificate authority, depending on your needs. These include:

140 | Chapter 7: Data Transmission Security

www.it-ebooks.info

http://www.it-ebooks.info/

Domain Validation (DV): The CA validates that the applicant has the right to use the
specific domain name, meaning that someone with admin rights to the domain is
aware of the application. Rights are typically proven by either receiving and confirm‐
ing an email that is sent to the admin email for the domain, or by configuring specific
DNS records for the domain. No company information is vetted or displayed to cus‐
tomers visiting the website who view the certificate details.

With domain validation, you will see the green lock in the URL bar, but will not see
company specific details when the certificate is loaded.

Figure 7-2. Domain Validation Certificate Example

Organization Validation (OV): The domain verification in the DV step is conduc‐
ted, but in addition, the company / organization information goes through some vet‐
ting, such as name, city, state and country. This basic information will also be
displayed to customers visiting the website who view the certificate details.

With sites that have this type of validation, you will be able to see company informa‐
tion when the certificate is loaded, like below:

SSL/TLS | 141

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 7-3. Organization Validation Certificate Example

Extended Validation (EV): The CA validates domain ownership (DA), organization
information (OV), as well as checks the legal existance of the organization. This is the
lengthiest process of the three, and also validates that the organization is aware of the
SSL certificate request and approves it. The validation step requires specific docu‐
mentation that certifies the identity of the company, as well as an additional set of
steps and checks.

Typically you will see an example of this type of validation in sites that have a green
address bar with the lock and company name, as displayed below.

142 | Chapter 7: Data Transmission Security

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 7-4. Extended Validation Certificate Example

When working with a CA, such as Digicert, GoDaddy, Verisign, Comodo, etc, you
will typically be brought through a few steps to:

• Create a Certificate Signing Request (CSR)
• Purchase the certificate

Once the certificate is purchased, the CA will validate and process the CSR, then issue
you the certificate for installation (typically through email). Many CAs offer support
for Wilcard certificates, which allows you to also secure all subdomains under a root
domain.

Creating your own Self-Signed Certificate for Testing

Using in production will produce an error

Working with self-signed certificates, as we will be seeing in this
section, should never be done in a production environment where
you are expecting actual traffic. The entire purpose for working
with self-signed certificates is for testing only. Using them will pro‐
duce a nasty browser warning explaining to all your visitors that
your certificate is not trusted. You have been warned. The message
looks like the below, which will take over the entire browser win‐
dow before going on to your site content, as displayed below:

Figure 7-5. Untrusted Certificate Warning

SSL/TLS | 143

www.it-ebooks.info

http://www.it-ebooks.info/

Now that we have been thoroughly warned about using the following section for test‐
ing only, let’s proceed to learn about creating and signing our own certificates for test‐
ing purposes. This will allow us to build our infrastructure in a separate environment
before moving to a proper production environment with a trusted certificate author‐
ity.

In the previous sections we learned about the fundamentals of setting up a produc‐
tion level certificate. Now let’s go through the steps that will need needed, in contrast,
for setting up your own certificate.

Certificate Setup
The first step is to create your private key and the self-signed certificate that we will
be using when we spin up a Node server instance.

For the sake of the example, we’re going to store our keys in the same folder as the
program that we will be running. With that said, load up a terminal window and go
to the folder you are using for this program.

Let’s start with the private key setup. Type in the following command:

openssl genrsa -des3 -out server.key 2048

When run, you will be asked to enter and verify a password for the file. What you are
essentially doing is creating a new 2048-bit, triple DES encrypted, RSA key, encrypt‐
ing it with a password, and then storing it to a file, server.enc.key.

The process will look like the below:

Figure 7-6. Generating a 2048 bit RSA Key

Next up, we need to create a certificate signing request (CSR). Using our previously
generated key, we issue the following command:

openssl req -new -key server.key -out server.csr

This will create our certificate signing request, with the intent of outputting the CSR
to server.csr. After issuing the command, this is where you will be required to input
more detailed information about yourself and your company. During this process you
will be asked to enter:

• The passphrase used for the private key (the same one used for the last com‐
mand).

144 | Chapter 7: Data Transmission Security

www.it-ebooks.info

http://www.it-ebooks.info/

• Your 2-digit country code.
• Your state or province.
• Your city or locality name.
• Your company or organization name.
• The group or unit that this belongs to in the company.
• Any common name to be used for the certificate request, or your name.
• An appropriate email address to contact.

You will also be asked to add a few extra attributes, including:

• A challenge password.
• A company name (optional).

The entire process, end-to-end, will look like the below:

Figure 7-7. Creating a Certificate Signing Request

SSL/TLS | 145

www.it-ebooks.info

http://www.it-ebooks.info/

Removing Key Encryption

If you are only using the self-signed certificate for testing and wish
to remove the password and encryption from your private key (not
recommended for anything but single user, local testing), then at
this point you could use your previously generated encrypted pri‐
vate key (say that’s server.enc.key), and generate the new unencryp‐
ted private key (server.key) with the following command:

openssl rsa -in server.enc.key -out server.key

The list of commands to issue to get to the same point as we were
in this section, using this method, are:

openssl genrsa -des3 -out server.enc.key 2048
openssl req -new -key server.enc.key -out server.csr
openssl rsa -in server.enc.key -out server.key

Now that we have our CSR in place, we can self-sign the certificate to create our
needed certificate file (CRT), using the following command

openssl x509 -req -days 365 -in server.csr -signkey server.key -out server.crt

This command will create a temporary certificate for 1 year (specified by the -days
option). If you did not remove the encryption from the original key file, then you will
be required to enter the key passphrase for this step, as shown below:

Figure 7-8. Creating the Self-Signed Certificate

Our self-signed certificate is now ready for us to use in our server setup, to start creat‐
ing secure HTTPS connections between the server and browser.

Server Setup

The server code for the below example is available in its entirety at
https://github.com/iddatasecuritybook/chapter7/blob/master/self-
signed-cert/server.js

For the sake of our example server, we’re going to assume that you chose not to
remove the encryption from your private key in the last section, but we’ll still go
through how to adjust the code below in case you no longer need the passphrase.
We’re also assuming that you have Express setup as we go through the code sample
below.

146 | Chapter 7: Data Transmission Security

www.it-ebooks.info

https://github.com/iddatasecuritybook/chapter7/blob/master/self-signed-cert/server.js
https://github.com/iddatasecuritybook/chapter7/blob/master/self-signed-cert/server.js
http://www.it-ebooks.info/

We’re going to look at an Express server setup that will use our private key and self-
signed certificate from the last step to accept secure (HTTPS) connections from an
alternate source, such as the browser or another program that we’re running locally.
In this case, we will be working with JSON strings that will be sent from another pro‐
gram to our server, which will be done through a secure communication channel
thanks to our certificate and key.

We will be working with a few modules for our server, the file system (fs), https, and
querystring, which are all standard modules and don’t require pulling anything from
npm, as well as body-parser, which will allow us to support JSON / URL encoded
bodies in Express 4.0 or beyond. We install body-parser from npm with the following
command:

npm install body-parser --save

Let’s look at the server code in its entirety, then describe what’s going on in each step.

var fs = require('fs'),
 https = require('https'),
 querystring = require('querystring'),
 bodyParser = require('body-parser')
 app = require('express')();

//support JSON & URL encoded bodies
app.use(bodyParser.json());
app.use(bodyParser.urlencoded({
 extended: true
}));

//handle all POST requests
app.post('/', function (req, res){
 var message = req.body;
 res.send('Message received:' + querystring.stringify(message));
});

//set certificate options
var options = {
 key: fs.readFileSync('server.key'),
 cert: fs.readFileSync('server.crt'),
 passphrase: 'YOUR KEY PASSWORD'
};

//create server with certificate options
https.createServer(options, app).listen(3000, function () {
 console.log('Server started: Listening on port 3000');
});

SSL/TLS | 147

www.it-ebooks.info

http://www.it-ebooks.info/

In the code sample above, you can see that we refer to a passphrase,
and your key password as the input. These values should never be
hard coded in your code. Instead, you should use environment
variables, files with restricted read permissions, or the like. The
Node module dotenv is a great way to handle these environment
variables. A complete runthrough of its use is available in Appendix
B, within the Application Configuration section.

We first start off by including all of our required modiles, then adding in our body-
parser options to Express for supporting JSON and URL encoded strings. Those sec‐
tions comprise our first two blocks of code above.

Next we need to handle all incoming POST requests that will be coming to the server.
We do that by setting app.post(/, …). In the return function, we first start by extract‐
ing req.body, which will be the POST object that the browser / other program sent
over. In this sample, we then simply send back an acknowledgement that the message
was received.

In the next block we set up our certificate options to create that secure connection.
Within the options variable, we add three pieces of data:

• key: Our private key, read in from our local server.key file.
• cert: Our self-signed certificate, read in from our local server.crt file.
• passphrase: The passphrase for our private key file. If you removed the encryp‐

tion from this key file in the previous section, you can omit this line.

Lastly, we simply create our server instance, with those options, and listen on port
3000. When you’re ready to test this out, you can issue the following command on
your terminal, assuming the file is saved as server.js:

node server.js

The server will spin up on port 3000 and will start listening for incoming traffic. Our
next step is to set up another script to act as our client, and send it over an appropri‐
ate JSON object over our new HTTPS connection.

Making Secure Requests to Server

The client code for the below example is available in its entirety at
https://github.com/iddatasecuritybook/chapter7/blob/master/self-
signed-cert/client.js

148 | Chapter 7: Data Transmission Security

www.it-ebooks.info

https://github.com/iddatasecuritybook/chapter7/blob/master/self-signed-cert/client.js
https://github.com/iddatasecuritybook/chapter7/blob/master/self-signed-cert/client.js
http://www.it-ebooks.info/

Our client script, client.js is mostly just a fairly standard POST request, with a few dif‐
ferences. We’ll look at the full code below, then describe each of the sections (and any
caveats).

var querystring = require('querystring'),
 https = require('https');

//POST data to be sent to server
var postData = querystring.stringify({
 'message' : 'My secure JSON string'
});

//POST options
var postOptions = {
 hostname: 'localhost',
 port: 3000,
 path: '/',
 rejectUnauthorized: false,
 method: 'POST',
 headers: {
 'Content-Type': 'application/x-www-form-urlencoded',
 'Content-Length': postData.length
 }
};

//set up HTTPS POST request to server
var postReq = https.request(postOptions, function(res){
 res.setEncoding('utf8');
 res.on('data', function (data){
 console.log(data);
 });
});

//POST data to server
postReq.write(postData);
postReq.end();

We start things off by including the querystring and https standard Node modules.

We then create the JSON object that we will be sending through the HTTPS POST
request, post_data. We add just a simple string for our needs, then stringify the entire
object for POSTing.

Under the POST options, this is where we need to pay attention to slight differences
from a standard POST request with a non self-signed certificate. Within the POST
options, we specify a few options:

• hostname: The host to send the request to. Since we’re running the server locally,
this is localhost.

SSL/TLS | 149

www.it-ebooks.info

http://www.it-ebooks.info/

• port: The port to make the request to. The server is on port 3000, so that’s what
we specify here.

• path: The path to make the request to. The server is accepting all POST traffic to
the same handle, so this can be anything.

• rejectUnauthorized: This is the one to take note of. Specifying this as false will
allow you to make POST requests with a self-signed certificate without being
blocked by a certificate error.

• method: The HTTPS request method, in this case POST.
• headers: Our content headers, specifying content type and length.

Adding rejectUnauthorized: false to your POST options will allow
you to work with a self-signed certificate without receiving error
messages about the certificate not being trusted. The error pro‐
duced, when not properly handled, will look like the following:

Next we set up the HTTPS POST request object. We do this by using
https.request(…), passing in the post_options variable. In the response, we set the
encoding of the response, then handling the case where data is sent back from the
server with res.on(…). In the case of our client, we are simply logging out the
response.

Lastly, we send off the POST request to the server. If all went well, we should see the
following response when using our client:

150 | Chapter 7: Data Transmission Security

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 7-9. Response from HTTPS POST Request

Asyncronous Cryptography
Asyncronous cryptography, also known as public / private key encryption, involves
using sets of public / private key pairs for a sender and receiver to encrypt and sign
(sender), then decrypt and verify (receiver), any message that should be transmitted
securely over a potentially insecure channel, such as when SSL is not available.

Some of these use cases may include multi user environments over internet enabled
hardware, small scale microelectronics, or in any case where you might not be able to
ensure the integrity of the connection for users.

What we have to know beforehand is how we will be working with these key sets
(public / private keys) in order to secure the message being sent. The public key part
of the set can be known to anyone needing it (much like a username), while the pri‐
vate key must remain known only to the party it belongs to (much like a password).

Use Case
Let’s look at a practical scenario of when this will be valuable. Suppose you’re walking
around a store with your mobile phone, and the store uses a series of BLE (bluetooth
low energy) devices, also known as beacons, for in-aisle purchasing. Basically, the
device will allow a phone to connect to it, and then it will in turn connect to some
web endpoint to process the message. In this case, the messages may be to check the
user in with their account, or to pay for their goods through a store credit card or
PayPal account. These BLE beacons themselves are not secure devices, and can be
modified by a malicious party. We want to ensure that when the user is sending their
login information, the beacon hasn’t been modified to now transmit that clear text
data to a malicious endpoint, instead of the store endpoint.

This is where public / private keys come in. The person sending the message would
encrypt the message with the public key of the recipient (perhaps through a public
keystore that verifies requests from the application asking for the public key), and
then sign the message with their private key (in the case of the person walking around
the store, this might be embedded within their store application). The encrypted and
signed versions of the message are transmitted through the beacon, and on to the
store API endpoint. That store API endpoint would then decrypt the encrypted mes‐
sage with their private key (perhaps stored securely on their servers), and the signed
version would be verified using the public key of the sender (the person walking
around the store).

Asyncronous Cryptography | 151

www.it-ebooks.info

http://www.it-ebooks.info/

We have now decrypted the message and verified its origins. In doing so, we’ve miti‐
gated a number of potential attack vectors:

• A malicious party cannot simply watch clear text traffic through the beacon and
store any sensitive information going back and forth, because we encrypt the data
end-to-end.

• A malicious party cannot send fake data through to the endpoint with hopes of
gaining user account access, as the private key is only known to the user, and the
message verification would fail without the public key signing.

• A malicious party cannot force the beacon to push data to their own endpoints
and expect any valid results. The data might arrive, but without a method of
decrypting the data or checking its validity, the information would not be benefi‐
cial.

Let’s break this down into a simple process, based on the figure below

Figure 7-10. Asymmetric Cryptography Process

These are the steps that you would follow as you transmit data:

152 | Chapter 7: Data Transmission Security

www.it-ebooks.info

http://www.it-ebooks.info/

• You generate two sets of keys, public / private keys for the person sending the
data (sender), and another public / private key set for the person receiving the
data (receiver).

• You create a small message (typically a string / JSON object or the like) that you
would like to transmit.

• From the sender side, you take that message and encrypt it with the receiver’s
public key, then take the encrypted message and sign it with your private key.

• You transmit the encrypted and signed data to the recipient, sometimes through
an intermediate device or service.

• The recipient verifies the signed payload with the public key of the sender, then
(if valid) decrypts the encrypted message with their private key.

• We now have a verified and decoded message that can be processed as needed.

Implementation Example
Let’s see this functionality in practice through a Node implementation of this process,
step by step. We’re going to break this up into a 3 step process to explore the main
features of the example:

• Steps 1a / 1b: Generating your two sets of public / private keys. 1a covers doing
so directly in code, with no storage of the keys, while 1b takes that concept a bit
further and shows you how to implement file storage for the public / private keys
on top of that. For a proof of concept, 1a is an expedient way to get started, but
for all production implementations, 1b is preferred. Choose one of these imple‐
mentations as you are running through the samples.

• Step 2: Encrypting and signing some piece of data from the side of the sender, to
be sent through to the receiver.

• Step 3: Decrypting and verifying the data that was sent from a sender.

When keys should be generated and used

Even though we are showing a full end to end example that can be
executed in a single pass, in a production environment this is most
likely not the way that the code execution should be structured. If
you have a sender / receiver relationship, typically the sender
device will be registered with the receiver’s service. When that
device / site registration occurs, the public / private keys for that
pairing (steps 1a or 1b) should be run. Only when the user begins
using the service to transmit data (steps 2 and 3) should those keys
then be extracted and used.

Asyncronous Cryptography | 153

www.it-ebooks.info

http://www.it-ebooks.info/

Let’s start out with generating keys.

Step 1a: Generating Keys Without File Storage

The complete sample code for the asymmmetric key cryptography
process without using the file system is available at https://
github.com/iddatasecuritybook/chapter7/blob/master/asymmetric-
crypto/crypto_no_fs.js

The first thing we need to do when generating our needed public / private key pairs is
to add in a Node package to help us with generating, encrypting, decrypting, signing,
and verifying our keys.

There is a popular package, named ursa, for doing just that, and we install it like so:

npm install fs --save

Next, we add that package as a requirement at the top of our Node script.

var ursa = require('ursa');

Now that we have our packages defined, it’s time to generate a few public and private
keys that we are going to need during the process. As mentioned early, in this exam‐
ple we are going to simply generate these into variables without any file storage com‐
ponent.

//generate sender private and public keys
var senderKey = ursa.generatePrivateKey(1024, 65537);
var senderPrivKey = ursa.createPrivateKey(senderKey.toPrivatePem());
var senderPubKey = ursa.createPublicKey(senderKey.toPublicPem());

//generate recipient private and public keys
var recipientKey = ursa.generatePrivateKey(1024, 65537);
var recipientPrivKey = ursa.createPrivateKey(recipientKey.toPrivatePem());
var recipientPubKey = ursa.createPublicKey(recipientKey.toPublicPem());

In this code snippet, we are running the same three lines of code to generate keys for
the sender and recipient.

When generating keys, the first item on our list is to make a request to the ursa gen‐
eratePrivateKey(…) method, which will produce a random key set that will be used
to extract our individual public and private key pairs.

The parameters passed to generatePrivateKey() are:

• The number of bits in the modulus (in the case above, 1024). Anything 1024 or
over is generally considered secure, but the method defaults to 2048 if no number
is specified.

154 | Chapter 7: Data Transmission Security

www.it-ebooks.info

https://github.com/iddatasecuritybook/chapter7/blob/master/asymmetric-crypto/crypto_no_fs.js
https://github.com/iddatasecuritybook/chapter7/blob/master/asymmetric-crypto/crypto_no_fs.js
https://github.com/iddatasecuritybook/chapter7/blob/master/asymmetric-crypto/crypto_no_fs.js
http://www.it-ebooks.info/

• The exponent value, which must be odd. This argument is optional as well, and
defaults to 65537.

We then need to break those up into our individual matching keys, using the ursa
methods createPrivateKey(…) and createPublicKey(…), which will accept our pre‐
viously generated key set in the previous line as a parameter.

That parameter can be passed through as senderkey.toPrivatePem() or sender‐
key.toPublicPem(), depending on if you’re attempting to generate a public or private
key.

Next, let’s look at doing the same thing file storage for the keys.

Step 1b: Generating Keys with File Storage

The complete sample code for the asymmmetric key cryptography
process using the file system is available at https://github.com/idda
tasecuritybook/chapter7/blob/master/asymmetric-crypto/crypto_fs.js

Now, let’s look at more of a production level deployment, where we might be working
with thousands of key pairs stored in a keystore, or having individual sender keys
deployed through an application on a user’s device.

Like the last example, we’ll include the ursa package for working with our public /
private key pairs, but in addition to those we’ll also include a few others, fs for gener‐
ating files and storing information on the file system, path for normalizing folder /
file paths, and mkdirp for generating folder structures with some good duplicate
folder handling without producing errors.

The fs and path packages are part of the core modules, so we don’t need to define
those. For the other two, we install them from npm like so:

npm install ursa --save
npm install mkdirp --save

As we have done many times before, we now add those packages as requirements to
the top of our Node script.

var fs = require('fs');
var ursa = require('ursa');
var path = require('path');
var mkdirp = require('mkdirp');

We’re going to streamline our key generation a bit, and instead of duplicating the
code for generating just two sets of keys, we’ll put that all together into a single pub‐
lic / private key generation function that we can call.

Asyncronous Cryptography | 155

www.it-ebooks.info

https://github.com/iddatasecuritybook/chapter7/blob/master/asymmetric-crypto/crypto_fs.js
https://github.com/iddatasecuritybook/chapter7/blob/master/asymmetric-crypto/crypto_fs.js
http://www.it-ebooks.info/

function makeKeys(rootPath, subPath){
 try {
 mkdirp.sync(path.join(rootPath, subPath));
 } catch (err) {
 console.error(err);
 }

 var key = ursa.generatePrivateKey(1024, 65537);
 var privatePem = key.toPrivatePem();
 var publicPem = key.toPublicPem();

 try {
 fs.writeFileSync(path.join(rootPath, subPath, 'private.pem'), privatePem, 'ascii');
 fs.writeFileSync(path.join(rootPath, subPath, 'public.pem'), publicPem, 'ascii');
 } catch (err) {
 console.error(err);
 }
}

Working with the file system

Accessing the file system can be very unreliable. Due to this, it’s
always a best practice to ensure that you are appropriately captur‐
ing and handling errors that are produced. A simplified example of
that is displayed in the code above.

Our makekeys function will accept two parameters, a root path for where the keys
will be stored (rootpath), and a subpath for separating out the public / private keys
into individual folders (subpath). In the end, we are looking for a folder structure that
looks something like this:

• ./keys/sender (which includes the public / private .pem files for the sender).
• ./keys/receiver (which includes the public / private .pem files for the sender).

We start by creating our necessary folder path with mkdirp.sync() for the path sup‐
plied. The path package will normalize the root and sub paths together for the folder
locations to be created.

Working with mkdirp

Instead of producing errors on attempting to create a duplicate
folder structure, mkdirp just continues with the next line of code
execution, making it nice to work with in an environment where
there is the potential of attempting to create a duplicate folder
structure.

156 | Chapter 7: Data Transmission Security

www.it-ebooks.info

http://www.it-ebooks.info/

Over the next three lines, we use the ursa package to generate our key pairs, then
extract the public and private keys into individual variables.

Lastly, we use the fs.writeFileSync(…) method to create our .pem files to hold the
public and private keys. writeFile(…) in the example above will accept three parame‐
ters:

• The path and file name to write. In this case, it’s our root and sub folders, with
either private.pem or public.pem as the file name.

• The content to write, which is obtained from our variables holding the public
and private keys.

• The content type, in this case ascii.

Now that we have our function in place to create a public and private key where we
designate, we can create both the key pairs for the sender and receiver with the fol‐
lowing three lines:

var rootPath = './keys';
makeKeys(rootPath, 'sender');
makeKeys(rootPath, 'receiver');

We should now have the directory structure and four .pem files created. In a more
realistic deployment, the content of these .pem files might be stored in a properly
secured key storage lookup, or public keys separated into a public keystore that allows
the lookup of keys for encryption or verification from verified sources, such as from
application locations that were registered with the service.

Key storage file types

There are numerous file extension standards that are used for pub‐
lic / private key storage, including (but definitely not limited
to) .pem (can be used for the public key or for the entire public /
private chain), .key (for just the private key), .pub (for just the pub‐
lic key), .cert (a .pem file with a different file extension that is rec‐
ognized by Windows explorer), as well as many others. Choose the
one that works best for you. For more discussion on this topic, see
this serverfault exchange.

Now that we have our keys in place, we can follow the same type of methodology as
we did in step 1a, but this time we’re going to extract the contents of the keys from
the .pem files we just wrote.

var rootPath = './keys';

//generate sender private and public keys
var senderPubKey = ursa.createPrivateKey(
 fs.readFileSync(path.join(rootPath, 'sender', 'private.pem')));

Asyncronous Cryptography | 157

www.it-ebooks.info

http://serverfault.com/questions/9708/what-is-a-pem-file-and-how-does-it-differ-from-other-openssl-generated-key-file/9717#9717
http://www.it-ebooks.info/

var senderpubkey = ursa.createPublicKey(
 fs.readFileSync(path.join(rootPath, 'sender', 'public.pem')));

//generate recipient private and public keys
var recipientPrivKey = ursa.createPrivateKey(
 fs.readFileSync(path.join(rootPath, 'receiver', 'private.pem')));
var recipientPubKey = ursa.createPublicKey(
 fs.readFileSync(path.join(rootPath, 'receiver', 'public.pem')));

We start with a given root path (same as when we generated the keys) that we should
pull the keys from. For each key, we use the ursa package to create either a public or a
private key. Since it is expecting the key content from the files we wrote, we use the
fs.readFileSync(…) method to pull the content in, passing along the full path to
our .pem files. In a full production deployment, these files would reference back to
your particular key store, where the .pem files are stored.

Next up, we’re going to see how to use these keys to encrypt and sign a message to be
sent.

Step 2: Encrypting and Signing a Message
We’re now at the stage where the user (the sender) is ready to send some data through
a potentially insecure device or third party, on the way to the receiver. To prepare this
data to be sent, we need to encrypt and sign the data using the keys that we just pre‐
pared.

//prepare JSON message to send
var msg = { 'user':'Nikola Tesla',
 'address':'W 40th St, New York, NY 10018',
 'state':'active' };

msg = JSON.stringify(msg);

//encrypt with recipient public key, and sign with sender private key
var encrypted = recipientPubKey.encrypt(msg, 'utf8', 'base64');
var signed = senderPrivKey.hashAndSign('sha256', encrypted, 'utf8', 'base64');

Let’s say that the data that we are trying to send is a JSON structure with some privi‐
ledged information, the msg variable above. To start out, let’s go ahead and convert
that into a string to be encrypted.

Next we use the recipient’s public key (most likely obtained from a public key store)
to encrypt the data by calling recipientPubKey.encrypt(…), passing in the string to
be encrypted.

After we encrypt, we now need to create a signed version of the encrypted data by
using the sender’s private key to hash and sign the encrypted string that we just cre‐
ated, which we do by calling senderPrivKey.hashAndSign(…), passing in the hash‐
ing algorithm (sha256) and the encrypted string.

158 | Chapter 7: Data Transmission Security

www.it-ebooks.info

http://www.it-ebooks.info/

We now have two variables, one the encrypted version and the other the signed ver‐
sion. We take those two variables and transmit them through the third party device
or service.

Let’s say the device working as the transmitter between the sender and the receiver
was compromised. Without the private key of the recipient the raw JSON structure
can’t be extracted. In essence, if the data is sniffed it will be completely useless.

We’re now at the stage where the data has transferred through the third party device
or service, and has arrived safely at the recipient for decryption and verification.

Step 3: Decrypting and Signing a Message
With the data safely in the hands of the recipient, we need to both extract the data
and ensure that the data is coming from a valid source through our matching public /
private key pairs.

//verify message with sender private key
var bufferedMsg = new Buffer(encrypted);
if (!senderPubKey.hashAndVerify('sha256', bufferedMsg, signed, 'base64')) {
 throw new Error("invalid signature");
} else {
 //decrypt message with recipient private key
 var decryptedMsg = recipientPrivKey.decrypt(encrypted, 'base64', 'utf8');
 console.log('decrypted message verified:', decryptedMsg);
}

We start out by needing to verify the data that was sent over, to ensure that the data
that was originally signed is from the source that we expect it to be. We create a buffer
out of the encrypted message, for comparison. We then use senderPubKey.hashAnd‐
Verify(…), passing in the same hashing algorithm we used to sign the data, along
with the buffer of our encrypted string, and the signed version of the data that we
received from the sender. What is happening here is that we are comparing the
Encrypted ciphertext against the signed ciphertext that we received from the sender.
If they don’t match we have an unverified data object, but if they match then we have
valid data and can then move to decrypt the data packet.

Once verified, we now decrypt the data that was transmitted over. If you recall, we
originally encrypted the data with the recipient’s public key, so now we can only
decrypt that data using the matching recipient private key by passing the encrypted
message to recipientPrivKey.decrypt(…).

If we print that out, you’ll now see the original JSON structure that we started with.
Now that we have a verified and decrypted message, we can begin using the data
however we need to.

Asyncronous Cryptography | 159

www.it-ebooks.info

http://www.it-ebooks.info/

Advantages, Disadvantages, and Uses of Aynchronous Cryptography
Aynchronous, or public key Cryptography has a number of advantages when com‐
pared against synchronous cryptography methods. In the same light, we also have to
deal with a few drawbacks with this method.

Let’s look at a few of the benefits here:

• Key convenience: Since each party (sender and receiver) has their own private
key, and that key doesn’t need to be transmitted, we don’t have to deal with the
issue of trying to find a secure method for transmitting that data like you do in a
synchronous environment.

• Key non-repudiation: With each party owning their own private key, and that
value never being shared, the attack case where we might have some piece of
data, with an authenticated server, but potentially have a key that was compro‐
mised, is a non-issue. Each party is responsible for the secure storage of their pri‐
vate keys, meaning that this issue doesn’t come up.

Now, we are dealing with one pretty big negative when working with this method:

• Speed: Due to the fact that there is a lot of processing that needs to happen dur‐
ing encryption and decryption using this method, it is quite slow when com‐
pared to a synchronous model.

With all of this said, asynchronous cryptography is not overly well suited for a single
user environment, where you might be encrypting data to be sent between two parties
that you own, which is where synchronous cryptography shines. This method works
well in a multi-user environment, where the channels between a sender and receiver
might not be secure.

Synchronous Cryptography
With Asynchronous cryptography, we’ve explored the realms of transmitting data
through potentially insecure channels. The use of public and private keys in the
examples that we looked into are a similar methodology behind technologies such as
OAuth and OpenID Connect.

Now that we have that understanding, let’s see how we can further protect data trans‐
mission between two sources that trust each other. Think of it this way, let’s say I’m
writing an email through my gmail account to to sent to another gmail account, Goo‐
gle is transmitting data through a secure HTTPS connection, and we can safely
assume that the email at the end of the line is from an authentic source.

One of the main uses for synchronous cryptography is in a trusted environment.
Instead of using two separate public and private keys, we are instead using a shared

160 | Chapter 7: Data Transmission Security

www.it-ebooks.info

http://www.it-ebooks.info/

secret between two sources. Using a single key can significantly increase the encryp‐
tion and decryption speed, but at the same time, if the single key is compromised, the
resulting damage might be worse.

At a high level, let’s look at how this process end to end will work with a single shared
secret key.

Figure 7-11. Symmetric Cryptography Process

In the above image, we see that:

• The sender has some piece of plaintext data that they intend to send to the
receiver over the channel.

• The sender uses the shared secret to encrypt the data, giving us the ciphertext.
• When the receiver obtains the ciphertext, they use the same shared secret to

decrypt the ciphertext into its original plaintext.

Below, we’ll run through a few practical examples of synchronous cryptography by
using AES Block ciphering with a few different modes of operation using an initiali‐
zation vector. Before we do that though, let’s see what initialization vectors and pad‐
ding are, how these modes of operation differ, and how they affect the block cipher
security and performance.

Initialization Vector
Many of the cryptographic algorithms that we are likely to use are what we call “itera‐
tive algorithms”. When a piece of data that is to be encrypted is split up into blocks
for encryption, those iterative algorithms depend on the data from previously
encrypted blocks in order to process the next subsequent block. In these cases, the

Synchronous Cryptography | 161

www.it-ebooks.info

https://en.wikipedia.org/wiki/Authenticated_encryption
http://www.it-ebooks.info/

first block of data that will be encrypted has no previous block to build off of, so it
needs some piece of data to begin running the algorithm. This is the initialization
vector.

An initialization vector is a fixed-sized piece of data that is typically required to be
random, or at the least, pseudorandom. Typically, each time you are encrypting a new
piece of data, you would supply a new, random, fixed-length piece of data.

Let’s look at a practical example of this. In the case of the CBC encryption mode of
operation (we will explore that in the next section), the way it works is by breaking up
the data to be encrypted into blocks. As the algorithm goes through each block, the
plaintext block is XORed (“Enclusive or - A or B but not A and B) against the previ‐
ous encrypted block, before finally being encrypted together. Since the first block in
the chain needs to have a previous block to XOR against, we need to supply that data.
That data is the initialization vector.

Padding
In the case of certain block cipher algorithm modes, such as Cipher Block Chaining
(CBC) described in the next section, when the data to be encrypted is split up into
blocks of data to be processed, the plaintext data that is to be encrypted needs to be
an exact multiple of the blocks produced. This means that each block needs to be an
equal size. In these cases, if we come across data that cannot be chunked up into equal
blocks, we need to add some padding data to the blocks.

There are several standard conventions that are employed that set standards on what
this dummy data should be. Let’s look at these visually. Let’s say that we want to
encode the string “This is my block data”. If the cipher mode we are employing
requires equal block sizes, it would split the data into 3 blocks of 8 bytes, represented
below with the hex values of each character:

+-----------------------+-----------------------+-----------------------+
|T h i s _ i s _ |m y _ b l o c k |_ d a t a ? ? ? |
+-----------------------+-----------------------+-----------------------+
|54 68 69 73 20 69 73 20|6d 79 20 62 6c 6f 63 6b|20 64 61 74 61 ?? ?? ??|
+-----------------------+-----------------------+-----------------------+

Those 3 characters at the end will be the padding that we need to add to the string.
Let’s see how this looks with each convention:

Each padded byte is the value of the total number of bytes needing to be added

This is the most popular method used throughout the industry, as
it’s easy during decryption to read these padding bytes and know,
easily, what is a padding byte and how many you should be looking
for.

162 | Chapter 7: Data Transmission Security

www.it-ebooks.info

http://www.it-ebooks.info/

In this case, each byte of padding is set to the value of the total number of bytes of
padding. In this case, we have 3 bytes of padding, so we set the value to 03.

+-----------------------+-----------------------+-----------------------+
|T h i s _ i s _ |m y _ b l o c k |_ d a t a _ _ _ |
+-----------------------+-----------------------+-----------------------+
|54 68 69 73 20 69 73 20|6d 79 20 62 6c 6f 63 6b|20 64 61 74 61 03 03 03|
+-----------------------+-----------------------+-----------------------+

The first padded byte is 0x80, followed by zero bytes for the rest

For this one, we set the first byte of padding to 0x80 and all subsequent padding bytes
to zero.

+-----------------------+-----------------------+-----------------------+
|T h i s _ i s _ |m y _ b l o c k |_ d a t a _ _ _ |
+-----------------------+-----------------------+-----------------------+
|54 68 69 73 20 69 73 20|6d 79 20 62 6c 6f 63 6b|20 64 61 74 61 80 00 00|
+-----------------------+-----------------------+-----------------------+

Each byte is set to zero except the last byte, which is the number of the total bytes
of padding

This is a take on the first method, but we set all bytes of padding to zero, with the
exception of the last byte, which should be equal to the total number of bytes of pad‐
ding. In the case of our example, that will be 03.

+-----------------------+-----------------------+-----------------------+
|T h i s _ i s _ |m y _ b l o c k |_ d a t a _ _ _ |
+-----------------------+-----------------------+-----------------------+
|54 68 69 73 20 69 73 20|6d 79 20 62 6c 6f 63 6b|20 64 61 74 61 00 00 03|
+-----------------------+-----------------------+-----------------------+

All bytes are set to zero

All bytes of padding should be set to zero.

+-----------------------+-----------------------+-----------------------+
|T h i s _ i s _ |m y _ b l o c k |_ d a t a _ _ _ |
+-----------------------+-----------------------+-----------------------+
|54 68 69 73 20 69 73 20|6d 79 20 62 6c 6f 63 6b|20 64 61 74 61 00 00 00|
+-----------------------+-----------------------+-----------------------+

All bytes are set to spaces (0x20)

All bytes of padding should be set to spaces.

+-----------------------+-----------------------+-----------------------+
|T h i s _ i s _ |m y _ b l o c k |_ d a t a _ _ _ |
+-----------------------+-----------------------+-----------------------+
|54 68 69 73 20 69 73 20|6d 79 20 62 6c 6f 63 6b|20 64 61 74 61 20 20 20|
+-----------------------+-----------------------+-----------------------+

Synchronous Cryptography | 163

www.it-ebooks.info

http://www.it-ebooks.info/

How padding works is something that we should understand when choosing a proper
mode of operation, as it can be costly depending on the data that is to be encrypted.
In each case of the padding, the decryption process needs to know how to properly
determine which method was used, and how to properly disregard padding values.

In the case of the algorithms that we are going to use in the practical examples below,
padding will be taken care of for us, so it’s not something that we need to be con‐
cerned with in our implementations.

Block Cipher Modes of Operation
Understanding the different potential modes of operation is important when working
with data encryption. A mode of operation is an algorithm that uses a block cipher
(such as AES) to provide functionality such as confidentiality or data authentication
for the block of information to be encrypted.

Within the case of our web operations, there are three main categories of modes that
we will be working with:

• Encryption: This means, in general terms, data privacy / confidentiality. A
potential attacker who has the generated ciphertext (the encrypted data) will not
be able to get any information about the plaintext data, except for the length per‐
haps.

• Authentication: Authentication mode provides a mechanism for determining
data authenticity. If a receiver obtains ciphertext or cleartext from a sender, they
can determine if the data is genuine and was constructed by the sender.

• Authenticated Encryption: This includes both previous categories.

Now that we have an understanding of the different categories, let’s look at some of
the different NIST approved block cipher modes of operation. Many of these modes
range heavily in how they function, but at the end of this section we list off the most
popular industry standard modes.

If you want to protect the privacy of the data that you are sending, but don’t necessar‐
ily need to authenticate the sending source of the data, then the mode under the
encryption category will fill that need.

Table 7-1. Encryption Modes of Operation

Mode Name Description
ECB Electronic

Codebook
The simplest mode of operation. The data that is supplied for encryption will be divided into blocks.
When encrypting / decrypting, these blocks will be processed individually. The main issue with this
mode is that identical plaintext blocks are encrypted into identical ciphertext blocks, which creates a
pattern that a potential hacker can exploit. One of the benefits on this mode is that the blocks can be
processed in parallel, speeding up encryption / decryption.

164 | Chapter 7: Data Transmission Security

www.it-ebooks.info

http://csrc.nist.gov/groups/ST/toolkit/BCM/index.html
http://www.it-ebooks.info/

Mode Name Description
CBC Cipher

Block
Chaining

In this mode, each plaintext block is XORed against the previous ciphertext (encrypted) block, before
then being encrypted itself. Since this is an iterative algorithm, an initialization vector needs to be
supplied. In order to make each block unique, the initialization vector needs to supplied as the first
block. One of the chief drawbacks is that blocks cannot be processed in parallel, since each block needs
to be run sequentially. The other issue is that plaintext input needs to be a multiple of the block size
(each block the same size), meaning that the initial data may have to be padded to bring it to that
length.

OFB Output
Feedback

The output of OFB is what is called a stream cipher. The plaintext blocks are combined with random or
pseudorandom characters to generate keystream blocks. These keystream blocks are then XORed with
the plaintext blocks to get the end ciphertext. This mode also utilizes a supplied intialization vector.
One of the benefits with this mode is that each block can be a different size, meaning that there is no
need to pad the initial plaintext data. One of the drawbacks is that encrypting and decrypting blocks
cannot be done in parallel, since encrypting each block depends on the previous blocks.

CFB Cipher
Feedback

CFB mode is very similar operationally to CBC. The main difference between these two is that CBC mode
creates the ciphertext after the block cipher algorithm is run, while CFB generates it after we computer
the XOR.

CTR Counter Counter mode, much like OFB, turns the block cipher into a stream cipher. The keystream that is used
can be a function that produces successive values for the random data (a counter). The function
producing the counter data just needs to ensure that the data does not repeat for a long period of time.
The most common counter type is simply one that increments a number by 1 each time. Where CTR
differs from OFB is that both CTR encryption and decryption can be run in parallel, since it doesn’t
generate the ciphertext by XORing the plaintext block against the previous ciphertext block (like in
OFB).

If confidentiality is not required for the message being sent, that’s where the authenti‐
cation mode will come into play. For instance, say you just need to know that the
message came from an approved sender, but the message itself is not sensitive in the
way that you are concerned about data privacy, then these category of modes are
probably best.

Table 7-2. Authentication Modes of Operation

Mode Name Description
CMAC Cipher-based Message

Authentication Code
CMAC mode is used for determining the authenticity and integrity of a message. It uses a
block cipher algorithm in conjunction with a secret key to generate the resulting cipher.
This mode is not heavily used.

In many cases you probably want to not only maintain the privacy of the data being
transmitted, but also verify the source from which the data came, for additional secu‐
rity. In this case, the combined authenticated encryption modes are an excellent
option.

Synchronous Cryptography | 165

www.it-ebooks.info

http://www.it-ebooks.info/

Table 7-3. Authenticated Encryption Modes of Operation

Mode Name Description
CCM Counter with

CBC-MAC
This is the easiest combined mode of operation. As the full name suggests, CCM is a
combination of the CTR and CBC modes of operation. This mode also includes the use of an
initialization vector, and message authentication is done on the plaintext data. Encryption /
Decryption cannot be run in parallel.

GCM Galois/Counter
Mode

GCM has been widely adopted due to its efficiency and performance. Like CCM, GCM uses an
initialization vector, but the message authentication is done on the ciphertext as opposed to the
plaintext data. Encryption / Decryption can also be run in parallel, unlike CCM.

KW /
KWP /
TKW

Key Wrapping Permutations of proposed key wrap algorithm modes for encrypting and authenticating data.
These modes are not widely used.

Even with a basic understanding of the above, it can be difficult to understand what
the best modes of operations would be in each category. If we break them down into
current industry standard use, there are the most popular modes of operation in each
category:

• Encryption: CTR (for good parallelization / speed).
• Authentication: CMAC (because it’s the only approved one, although it’s not

widely used in the industry).
• Authenticated Encryption: GCM (industry accepted standard).

Even though there are preferred modes by many in the industry,
the mode that you choose to use should always come down to your
needs on security, performance, scaling, and how each mode fits
into those plans. Just because it’s popular, doesn’t mean it’s right for
you.

Now that we have an understanding of different modes of operation, let’s apply these
in practice with a few examples, starting with AES using the CTR encryption mode.

Using AES with CTR Encryption Mode

The sample code that we will go through below for using AES with
CTR mode is available at https://github.com/iddatasecuritybook/
chapter7/blob/master/symmetric-crypto/aes-ctr.js

We have all the our core basics to start looking at using a cipher algorithm (AES) with
a particular mode of operation (CTR encryption in this case).

166 | Chapter 7: Data Transmission Security

www.it-ebooks.info

https://github.com/iddatasecuritybook/chapter7/blob/master/symmetric-crypto/aes-ctr.js
https://github.com/iddatasecuritybook/chapter7/blob/master/symmetric-crypto/aes-ctr.js
http://www.it-ebooks.info/

We’re going to be using the standard Node Crypto package for this example, so there
is nothing to pull down from npm. At the top of your node script, add the following
initialization variable.

var crypto = require('crypto');

Now we need to set the variables that we are going to be working with in the example.

var text = "Encryption Testing AES";
var key = crypto.randomBytes(32); //256 bit shared key
var iv = crypto.randomBytes(16); //initialization vector - 16 bytes
var algorithm = 'aes-256-ctr'; //cipher and mode of operation

Going from top to bottom, these are:

• text: The data to be encrypted / decrypted.
• key: A 32 bytes shared key to be used by the crypto library for encryption /

decryption. We use the crypto.randomBytes(…) method to generate that string.
• iv: The initialization vector, which should be a random 16 byte string. We use the
crypto.randomBytes(…) method to generate that string.

• algorithm: The cipher algorithm and mode of operation to use. In this case we’re
using the AES cipher algorithm with the CTR mode of operation.

Next, we create the ciphertext by encrypting the data.

var cipher = crypto.createCipher(algorithm, key, iv);
var encrypted = cipher.update(text, 'utf8', 'hex');
encrypted += cipher.final('hex');

We first make a call to crypto.createCipher(…) to initialize the cipher that we want
to use, passing in the algorithm / mode from above, the shared key, and the initializa‐
tion vector.

Next, we use cipher.update(…) to update he cipher with data. We supply the data to
be encoded, the input encoding (utf8), and the output encoding (hex).

cipher.update(data, input_encoding, output_encoding)

The input encoding (2nd parameter) should be one of utf8, ascii, or
binary. If no input encoding is specified, the data (1st parameter)
must be a Buffer. If a Buffer is specified as the data, input encoding
will be ignored.

Lastly, we make the request to cipher.final(…), passing in the output encoding
type, to return the ciphertext.

Our plaintext input is now encoded. At this point there should be a few things known
about the ciphertext and decryption:

Synchronous Cryptography | 167

www.it-ebooks.info

https://nodejs.org/api/crypto.html
http://www.it-ebooks.info/

• The ciphertext can now be transmitted to its end source (the receiver).
• The shared key and initialization vector must be known to the receiver to

decrypt. The key should be a shared secret between the app and the host (sender
and receiver), and the IV can be considered as a one-time use nonce, shared
between both parties.

Now, let’s say the cipher has been transmitted to the receiver, and they also have the
key and initialization vector. We can now begin deciphering the ciphertext to extract
our plaintext message.

var decipher = crypto.createDecipher(algorithm, key, iv);
var decrypted = decipher.update(encrypted, 'hex', 'utf8');
decrypted += decipher.final('utf8');

We start by making a call to crypto.createDecipher(…), passing along the same val‐
ues that we did for creating the cipher during encryption.

We then call decipher.update(…), passing in the ciphertext, the ciphertext encoding
(in this case, hex), and the intended output encoding (in this case, utf8).

Lastly, we call decipher.final(…) with the output encoding type to retrieve our final
decoded message.

Using AES with with GCM Authenticated Encryption Mode

The sample code that we will go through below for using AES with
GCM mode is available at https://github.com/iddatasecuritybook/
chapter7/blob/master/symmetric-crypto/aes-gcm.js

Now let’s look at an example that is using the GCM joint authenticated encryption
mode of operation. This one will be fairly similar as the above CTR mode example,
but with an additional encryption / decryption step to handle the authentication
piece that we didn’t have in the CTR mode example.

We’re again going to use the standard Node crypto package, so require that at the top
of your Node script.

var crypto = require('crypto');

Next, we initialize the variables that we are going to be using.

var text = "Encryption Testing AES GCM mode";
var key = crypto.randomBytes(32); //256 bit shared key
var iv = crypto.randomBytes(16); //initialization vector - 16 bytes
var algorithm = 'aes-256-gcm'; //cipher and mode of operation

168 | Chapter 7: Data Transmission Security

www.it-ebooks.info

https://github.com/iddatasecuritybook/chapter7/blob/master/symmetric-crypto/aes-gcm.js
https://github.com/iddatasecuritybook/chapter7/blob/master/symmetric-crypto/aes-gcm.js
http://www.it-ebooks.info/

As before, these variables are:

• text: The data to be encrypted / decrypted.
• key: A 32 bytes shared key to be used by the crypto library for encryption /

decryption. We use the crypto.randomBytes(…) method to generate that string.
• iv: The initialization vector, which should be a random 16 byte string. We use the
crypto.randomBytes(…) method to generate that string.

• algorithm: The cipher algorithm and mode of operation to use. In this case we’re
using the AES cipher algorithm with the GCM authenticated encryption mode of
operation.

Now, let’s encode the data to get our ciphertext, and see the differences when we add
the authentication piece.

var cipher = crypto.createCipher(algorithm, key, iv);
var encrypted = cipher.update(text, 'utf8', 'hex');
encrypted += cipher.final('hex');
var tag = cipher.getAuthTag();

We first make a call to crypto.createCipher(…) to initialize the cipher, passing in
the algorithm / mode from above, the shared key, and the initialization vector.

Next, we use cipher.update(…) to update he cipher with data. We supply the data to
be encoded, the input encoding (utf8), and the output encoding (hex).

We then create the ciphertext by calling cipher.final(…) with the output format‐
ting.

This is where the authentication piece comes in, after we have the ciphertext, we now
have to generate a tag by calling cipher.getAuthTag(…). This will be a Buffer con‐
taining an authentication tag that has been computed from the cipher data. This will
be used to authenticate the source of the ciphertext.

As of the writing of this text, getAuthTag only supports the GCM
authenticated encryption mode.

As in the last example, the ciphertext should be transmitted to the receiver. The
receiver should also have knowledge of the shared key, the initialization vector, and
the authentication tag.

var decipher = crypto.createDecipher(algorithm, key, iv);
decipher.setAuthTag(tag);
var decrypted = decipher.update(encrypted, 'hex', 'utf8');
decrypted += decipher.final('utf8');

Synchronous Cryptography | 169

www.it-ebooks.info

http://www.it-ebooks.info/

We make our call to crypto.createDecipher(…), passing along the same values that
we did for creating the cipher during encryption.

Following that, we need to pass in the authentication tag to validate the source of the
ciphertext. We do so by calling decipher.setAuthTag(…), passing in the tag that was
generated from the encryption step.

Next, we go back to the standard decipher techniques by calling decipher.update(…)
to pass in the data, providing the ciphertext, ciphertext encoding (in this case, hex),
and the intended output encoding (in this case, utf8).

Lastly, we call decipher.final(…) with the output encoding type to retrieve our final
decoded message. The ciphertext will now be decoded and the source authenticated,
allowing us to use the data at will.

Advantages, Disadvantages, and Uses of Synchronous Cryptography
As we close out our exploration of synchronous cryptography, it’s a good idea to
understand what it does well, and what it doesn’t do well.

You have some advantages to using this method over its asymmetric counterpart:

• Security: When we are using a secure algorithm, such as the U.S. government
designated Advanced Encryption Standard (AES) that we looked at above, the
ciphertext that is produced is incredibly secure, and is considered essentially
unbreakable with current computing standards.

• Speed: One of the main issues with asymmetric key cryptography is the complex‐
ity of the process that they need for encryption and decryption. With symmetric
cryptography, using modes of operation that allow for parallel block processing
for encryption and decryption, we have a fast processing mechanism.

If we flip the coin though, there are a few drawbacks to this methodology:

• Shared key: As you saw in the practical examples, we generate a single shared key
that is used by the sender for encryption, as well as the receiver for decryption.
You need to take great care in ensuring that this key can be shared between both
parties, without being retrieved by an attacker. Should this key be obtained by an
illicit third party, they now have access to all encrypted data that is using that
shared key. This means that the amount of damage that may be caused by using
this method is typically quite high.

With all said and done, one of the best methods for using this type of cryptography is
when you’re encrypting and decrypting your own data, when you have safe, secure
access to shared keys between endpoints. All in all, if you have a safe way to share the

170 | Chapter 7: Data Transmission Security

www.it-ebooks.info

http://www.it-ebooks.info/

key between yourself and an unknown party, you probably don’t need to be using
your own encryption in the first place.

Synchronous Cryptography | 171

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

1 http://github.com/iddatasecuritybook

APPENDIX A

GitHub Repositories

Jonathan LeBlanc and Tim Messerschmidt

We are well aware that mistakes might have slipped into the code that were not spot‐
ted throughout the review period, that code needs to be updated in order to reflect
current trends or that those libraries and modules we build upon are deprecated in
favor of something better. This is why we have created an organization on GitHub1

that holds all code we present throughout this book. You will find the complete
OAuth 2 and OpenID Connect server, the client that interacts with those service pro‐
viders and all those small snippets we use in order to demonstrate certain features.

In case you have any questions or want to contribute - please feel free to create an
issue on GitHub or fork the affected project, make the change and send us a pull
request. We promise to proactively improve the code over time in order to ensure
longevity of the information we conveyed here.

173

www.it-ebooks.info

http://github.com/iddatasecuritybook
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

1 http://babeljs.io/docs/usage/cli/

2 http://nodejs.org/en/download/
3 http://blog.teamtreehouse.com/install-node-js-npm-mac

APPENDIX B

Technical Preconditions and Requirements

In the following Appendix we’d like to take the time to explain some basic concepts
around Node and add extra material that supplement’s the book’s content.

On ES6 / ES2015
You’ll notice that we are using ES5 syntax as a base for the code throughout this book.
The simple reason is that we wanted to use the more common syntax in order to
ensure that everyone is able to comfortably read through this book.

We highly encourage you to try out ES6 by using compilers / transpilers such as
Babel1. Node is slowly adopting ES6 - in the meantime you can prepare your applica‐
tion and ensure you are ready to deploy to production for when ES6 is fully sup‐
ported.

Setting up your Node.js Environment
This book assumes a working Node.js environment and the ability to install various
modules using npm. In this section we’d like to run you through setting up Node in
order to ensure that you will be able to follow the book.

First of all please install Node by either downloading and running the installer from
nodejs.org’s downloads section2 or leveraging a package manager such as brew3, pac‐

175

www.it-ebooks.info

http://babeljs.io/docs/usage/cli/
http://nodejs.org/en/download/
http://blog.teamtreehouse.com/install-node-js-npm-mac
http://www.it-ebooks.info/

4 http://nodejs.org/en/download/package-manager/

man or apt-get4. Verify that the installation worked by typing which node or node -v
into your terminal - this should display either the path to your node executable or
your local node version.

The download from nodejs.org always serves the most recent stable version of Node
and should be favored over alternative ways of installing Node whenever possible.

Once Node is set up, we can proceed with installing Express by utilizing npm. To see if
your environment is working correctly, simply enter npm in your terminal - you
should see a brief explanation about using the command.

Managing Node versions or alternative installations
By using the installer obtained from nodejs.org, the newest stable version of Node.js
will be installed on your machine. Sometimes you might have to use a certain other
version of Node or even switch between multiple versions based on the project you
are working on. nvm (which stands for Node Version Manager) is a community
project that allows for doing exactly this.

You can use the install script for cURL by running the following command:

curl -o- https://raw.githubusercontent.com/creationix/nvm/v0.31.0/install.sh | bash

Assuming you’d like to install version 5.7.0 of Node.js (the latest stable version of
Node), you’d run the following command:

nvm install 5.7.0

Once the installation is done, run nvm use 5.7.0 and your environment is setup:
5.7.0 will be your system’s default Node.js version.

Should you be required to run multiple versions of Node, you have the choice of
either running the specific version by using the command-line interface nvm run
5.7.0 or by setting up a project-specific .nvmrc-file containing the target version
number.

Installing the Express generator
Assuming the set-up works as intended, we can proceed by installing and using the
Express generator. This generator allows for scaffolding our project and creating a
reasonable structure.

176 | Appendix B: Technical Preconditions and Requirements

www.it-ebooks.info

http://nodejs.org/en/download/package-manager/
http://www.it-ebooks.info/

5 http://expressjs.com/en/starter/generator.html

npm install -g express-generator

You will notice that we use the -g option. This implies that we want to install the gen‐
erator globally and not just as a module for our current project.

To verify that the Express generator was set up correctly, we type the following com‐
mand to see the generator’s usage information:

express --help

More documentation around the generator and Express can be found on
ExpressJS.com5.

Setting up Express
In case you’d like to avoid using a generator to set up your first Express project, you
can start by simply following these instructions:

1. Create a new folder with mkdir projectname
2. Navigate towards the folder by running cd projectname
3. Create a package.json file by running npm init in your project’s root folder.

Don’t worry about fleshing out the content yet - the next section will go into pack
age.json in more detail.

4. Run touch app.js (or whatever name you’ve defined in step 4) to create your
application’s entry point. Here we’ll define many of the modules our project ends
up using, create the server itself and initialize the middleware our project might
rely on (see Chapter 4 authorization middleware).

5. Finally run npm install express --save to install the most important module
for our project: Express itself.

After you’ve taken care of these five steps we’re ready to implement a very basic
Express application that you can then build out in order to achieve additional func‐
tionality:

var app = require('express')();

app.get('/', function(req, res) {
 res.send('Hello from Express!');
});

app.listen(3000, function() {
 console.log('App active on port 3000');
});

Technical Preconditions and Requirements | 177

www.it-ebooks.info

http://expressjs.com/en/starter/generator.html
http://www.it-ebooks.info/

The above example presents the beauty of Express - with mere 9 lines of code we can
run a simple web-server. By navigating to localhost:3000 you’ll be presented with a
hearty Hello from Express!.

Run the application with the following command: node app.js. Congratulations!

You can extend on this by starting to serve static resources (such as your site’s CSS
and JavaScript or images) by modifying the above example:

var express = require('express');
var app = express();

app.use(express.static('public'));

app.get('/', function(req, res) {
 res.send('Hello from Express!');
});

app.listen(3000, function() {
 console.log('App active on port 3000');
});

You can also specify that static resources are served through another folder structure
such as /resources by using the following method:

app.use('/resources', express.static('public'));

It is safer to declare the folder by using the absolute path to the folder: __dirname +
'/public'. express.static uses relative paths - this leads to issues when running
the Node process from another folder:

app.use('/static', express.static(__dirname + '/public'));

Creating and maintaining your package.json file
In case you’ve been using the Express generator you will notice that a file called pack
age.json got generated for you. Otherwise go ahead and create one by running npm
init in your terminal.

package.json contains information about module dependencies, the project’s
authors, versioning, and a section called scripts containing commands for npm. In
the below example case running npm start or npm run start starts a new instance
of our newly generated node server.

{
 "name": "book",
 "version": "1.0.0",
 "private": true,
 "scripts": {
 "start": "node ./bin/www"

178 | Appendix B: Technical Preconditions and Requirements

www.it-ebooks.info

http://www.it-ebooks.info/

6 http://css-tricks.com/why-npm-scripts/
7 http://www.npmjs.com
8 http://browsenpm.org/package.json
9 http://12factor.net/config

 },
 "dependencies": {
 "body-parser": "~1.13.2",
 "cookie-parser": "~1.3.5",
 "debug": "~2.2.0",
 "express": "~4.13.1",
 "jade": "~1.11.0",
 "morgan": "~1.6.1",
 "serve-favicon": "~2.3.0"
 }
}

You can also extend the scripts section for other tasks like running eslint:

"scripts": {
 "start": "node ./bin/www",
 "lint": "eslint app.js lib/** routes/**"
},
...

Damon Bauer wrote a great blog post on using npm scripts for a variety of tasks that
normally would be covered through task runners like grunt, gulp or broccoli6. It’s a
highly recommended read in case you are looking for further inspiration.

By running npm install all entries in the dependencies section will be retrieved. npm
update --save ensures that your project uses the latest version of each dependency
in the dependencies section and updates package.json accordingly. The site
npmjs.com allows to search for modules or browse popular choices7 - you will notice
that npm itself is a module that can be updated using npm itself.

Additional sections - such as bugs - can be defined to help developers understand
how to interact best with the project, how to contact the developers in case they want
to get in touch, or under which license the project got published. Check out the
browsenpm.org for an interactive overview about all possible package.json sections8.

Application Configuration
Environment variables are a sensible way of handling configuration details - such as
database passwords or third party API credentials - without hardcoding them in your
application’s code. The Twelve-Factor App methodology9 defines this as separation of
code and configuration and sees the benefit of being able to quickly change between
different deployment targets such as production environments.

Technical Preconditions and Requirements | 179

www.it-ebooks.info

http://css-tricks.com/why-npm-scripts/
http://www.npmjs.com
http://browsenpm.org/package.json
http://12factor.net/config
http://www.it-ebooks.info/

10 http://github.com/motdotla/dotenv
11 http://github.com/motdotla/dotenv#should-i-commit-my-env-file

The module dotenv10 was designed to specifically cater to this use case and utilizes a
configuration file called .env (located in your project’s root folder) that stores infor‐
mation in the NAME=VALUE format:

MONGO_DB=mongodb://localhost/database
MONGO_USER=tim
MONGO_PW=sloths-are-more-awesome-than-monkeys

You can access these details by simply loading the module and calling the config
method. You will notice that process.env is going to be populated with the informa‐
tion from your .env file.

require('dotenv').config();

var mongoose = require('mongoose');
mongoose.connect(process.env.MONGO_DB);

dotenv allows to pass different configuration options - such as path (in case you
require a different location for your configuration file), silent (which suppresses
warnings when no .env file can be found), or encoding (the default is utf8).

Version Control and Configuration Files

Make sure to exclude your dotenv configuration files by adding
them to your project’s .gitignore file. Please also check out
dotenv’s FAQ for more information11 on this matter.

Working with JSON / URL Encoded Bodies in Express
As of Express 4.0, working with JSON and URL encoded bodies has changed slightly,
and requires an additional setup step to be able to work with that data when it is
POSTed to your server. The body-parser npm module, when used in the following
format, will allow your server to support those entities:

var bodyParser = require('body-parser')
var app = require('express')();
app.use(bodyParser.json());
app.use(bodyParser.urlencoded({
 extended: true
}));

180 | Appendix B: Technical Preconditions and Requirements

www.it-ebooks.info

http://github.com/motdotla/dotenv
http://github.com/motdotla/dotenv#should-i-commit-my-env-file
http://www.it-ebooks.info/

Glossary

2FA / Two-factor authentication
The process of using a secondary means
of identification during a login or user
discovery step. Typically, your first
authentication system is a username and
password, then your second factor of
authentication may be a code provided by
SMS to a registered phone number, a reg‐
istered fingerprint, code via email, etc.

Ciphertext
Unreadable output of an encryption algo‐
rithm

Cleartext
Human readable data that is transmitted
or stored unencrypted

EFF
The Electronic Frontier Foundation. A
nonprofit dedicated towards protecting
user privacy and civil liberties in the digi‐
tal world.

Entropy
In the context of identity, this concerns
the amount of information that is discov‐
erable about a user, determining the likeli‐
hood that the user is who they say they
are.

MFA
Multi-factor authentication is a means of
user identification that requires more than
one method of authenication (username

& password, SMS code, email code, fin‐
gerprint, etc).

NIST
The National Institute of Standards and
Technology, a unit of the U.S. Commerce
Department. NIST promotes and main‐
tains measurement standards and main‐
tains active programs for encouraging and
assisting industry and science to develop
and use these standards.

OWASP
The Open Web Application Security
Project is a community that maintains
tools, documentation, and guides in the
field of web application security, and is
considered a forefront standard in the
space.

Plaintext
Human readable data that is supplied to
the encryption algorithm

Security-layering
The practice of using multiple security
mechanisms in a stacked approach to pro‐
tect identity, data, and resources.

U2F
Universal 2nd Factor is an open authenti‐
cation security standard that aims to
strethen/ simplify two-factor authentica‐
tion using specialized USB or NFC devi‐
ces based on similar security technology
found in smart cards.

181

www.it-ebooks.info

http://www.it-ebooks.info/

UAF
The Universal Authentication Framework
protocol defines the process for password‐

less user experiences. This may be
through voice commands, facial recogni‐
tion, or some other like standard.

UAF

182 | Glossary

www.it-ebooks.info

http://www.it-ebooks.info/

Index

183

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author(s)
John Doe does some interesting stuff...

Colophon
The animal on the cover of FILL IN TITLE is FILL IN DESCRIPTION.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from FILL IN CREDITS. The cover fonts are URW Typewriter and
Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad
Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

www.it-ebooks.info

http://animals.oreilly.com
http://www.it-ebooks.info/

	Cover
	Copyright
	Table of Contents
	Preface
	Acknowledgments
	Jonathan
	Tim

	Chapter 1. Introduction
	The problems with current security models
	Poor Password Choices
	Security Over Usability
	Improper Data Encryption

	The weakest link: human beings
	Single sign-on

	Understanding Entropy in Password Security
	Entropy in Randomly Selected Passwords
	Entropy in Human Selected Passwords

	Breaking Down System Usage of a Username and Password
	Securing our current standards for identity
	Good and bad security algorithms

	What data should be protected?
	Account Recovery Mechanisms & Social Engineering
	The Problem with Security Questions

	Next up

	Chapter 2. Password Encryption, Hashing, and Salting
	Data at Rest vs Data in Motion
	Data at Rest
	Data in Motion

	Password Attack Vectors
	Brute Force Attack
	Creating a CAPTCHA with reCAPTCHA
	Dictionary Attacks
	Reverse Lookup Tables
	Rainbow Tables

	Salting
	Generating a Random Salt
	Salt Reuse
	Salt Length
	Where to Store the Salt

	Peppering
	Choosing the Right Password Hashing Function
	bcrypt
	PBKDF2
	scrypt
	Validating a Password Against a Hashed Value

	Key Stretching
	Recomputing Hashes
	Next Steps

	Chapter 3. Identity Security Fundamentals
	Understanding the concept of various identity types
	Social Identity
	Concrete Identity
	Thin Identity

	Enhancing user experience by utilizing identity
	Introducing the concept of Trust Zones
	Browser Fingerprinting
	Configurations More Resistant to Browser Fingerprinting
	Identifiable Browser Information
	Capturing Browser Details

	Location Based Tracking
	Device Fingerprinting (Phone / Tablet)
	Device Fingerprinting (Bluetooth Paired Devices)
	Implementing Identity

	Chapter 4. Securing the Login with OAuth 2 and OpenID Connect
	The difference between authentication and authorization
	Authentication
	Authorization

	What is OAuth and OpenID Connect?
	Introducing OAuth 2.0
	Handling authorization with OAuth 2.0
	Using the Bearer Token
	Authorization and authentication with OpenID Connect

	Security considerations between OAuth 2 and OAuth 1.0a
	Building an OAuth 2.0 server
	Creating the Express application
	Setting up our server’s database
	Generating Authorization Codes and tokens
	The Authorization Endpoint
	Handling a token’s lifetime
	Handling Resource Requests
	Using Refresh Tokens
	Handling errors

	Adding OpenID Connect functionality to the server
	The ID Token Schema
	Modifying the Authorization Endpoint
	Adjusting the Token Endpoint
	The UserInfo Endpoint
	Session Management with OpenID Connect

	Building an OAuth 2 Client
	Using Authorization Codes
	Authorization using Resource Owner Credentials or Client Credentials

	Adding OpenID Connect functionality to the client
	The OpenID Connect Basic flow

	Beyond OAuth 2.0 and OpenID Connect

	Chapter 5. Alternate methods of identification
	Device and browser fingerprinting
	2-factor authentication and n-factor authentication
	n-factor authentication
	One-Time Passwords
	Implementing two-factor authentication with Authy

	Biometrics as username instead of password
	How to rate biometric effectiveness
	Face recognition
	Retina and Iris scanning
	Vein recognition

	Upcoming standards
	FIDO Alliance
	Oz
	The Blockchain

	Chapter 6. Hardening Web Applications
	Securing sessions
	Different types of sessions
	How Express handles sessions

	Handling XSS
	The Three Types of XSS Attacks
	Testing XSS Protection Mechanisms
	Conclusion

	CSRF attacks
	Handling CSRF with csurf

	Valuable resources for Node
	Lusca
	helmet
	Node Security Project

	Other mitigation techniques
	Our findings

	Chapter 7. Data Transmission Security
	SSL/TLS
	Certificate Validation Types and Authorities
	Creating your own Self-Signed Certificate for Testing

	Asyncronous Cryptography
	Use Case
	Implementation Example
	Advantages, Disadvantages, and Uses of Aynchronous Cryptography

	Synchronous Cryptography
	Initialization Vector
	Padding
	Block Cipher Modes of Operation
	Using AES with CTR Encryption Mode
	Using AES with with GCM Authenticated Encryption Mode
	Advantages, Disadvantages, and Uses of Synchronous Cryptography

	Appendix A. GitHub Repositories
	Appendix B. Technical Preconditions and Requirements
	On ES6 / ES2015
	Setting up your Node.js Environment
	Managing Node versions or alternative installations
	Installing the Express generator
	Setting up Express
	Creating and maintaining your package.json file
	Application Configuration
	Working with JSON / URL Encoded Bodies in Express

	Glossary
	Index
	About the Author(s)
	Colophon

