The Manager’s Guide
to Web Application
Security

A Concise Guide to the
Weaker Side of the Web

FIND, FIX, AND PREVENT
VULNERABILITIES IN
WEB APPLICATIONS

Ron Lepofsky

APress’

http://www.it-ebooks.info/

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks
and Contents at a Glance links to access them.

Apress®

www.it-ebooks.info

http://www.it-ebooks.info/

Contents at a Glance

About the Authorccccccineemmmnissennmnssssn s Xvii
About the Technical REVIEWErcuuvsssssssmssssssssssssssnsssssssssnsnsssssnnnnss Xix
Acknowledgmentsccccuuseemmmmsssssnmmssssssnmmssssssnnsssssssssesssssnsnessssnnnnns XXi
Introductionccccissemmmmnssssnnmmnssssnmnsssssnnsssssssn s annn s nnns Xxiii
Chapter 1: Understanding IT Security RiSKS......ccccussseenmrssssssnsnsssnnns 1
Chapter 2: Types of Web Application Security Testingccuuseees 13
Chapter 3: Web Application Vulnerabilities and the Damage
They Can CaUSE ...uceeerrrssssnsnmmssssnsnssssssssnssssssnsnsssssssnnssssssssnssssssnnnnss 21
Chapter 4: Web Application Vulnerabilities and
CoUuNtermMeasUres ... eerrmisssssnmmssssnsnssssssnnnssssssnnnssssssnnnsssssnnnsesssnnns 47
Chapter 5: How to Build Preventative Countermeasures for
Web Application Vulnerabilities..........ccoiunsmmmmnnsssnnmmssssssnsmsssssnnns 81
Chapter 6: How to Manage Security on Applications
Written by Third Parties.......cccmmmnnmemmmmmmsssnmmmsssssmmssssssmsssnns 95
Chapter 7: Integrating Compliance with Web Application
SECUNLY wuvvireeemnrissssnnnisssssnsnssssssnnnssssssnnnessssnnnssssssnnnsessssnnnnesssnnnnnnssss 99
Chapter 8: How to Create a Business Case for Web
Application Securityccciumssemmmmnsssnnnmmnsssnnmmmssssmm——— 111
Chapter 9: Parting Thoughts..........cccccunsemmmmmsssnmnmmmssssssmmsssssssnnnn 131
\%

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS AT A GLANCE

Appendix A: COBIT® 5 for Information SeCurity.......ccseesssssssees 133

Appendix B: Experian EI3PA Security Assessmentcccouunnee 147

Appendix C: ISO/IEC 17799:2005 and the

ISO/IEC 27000:2014 SEII€S sevursursursursussussnssnssnssnssassassnssassnssassssssssassass 161

Appendix D: North American Energy Council Security

Standard for Critical Infrastructure Protection (NERC CIP) 165

Appendix E: NIST 800 GuidelinesS......ccccuerrrrmsmssssssnssssssssssssssssnnnnns 177

Appendix F: Payment Card Industry (PCI) Data Security

Standard........cccccmmrnineennnnsnnn i ———————————— 179

Appendix G: Sarbanes-0xley Security Compliance

Requirementscuuuseeeesssmmmmmmmmmsssssssssnssssssssssnsssssssssssssssssnnnnsnsnnnss 197

Appendix H: Sources of Information...........cccccuseemnnnsssennnnnsssnnnns 199
1T L 201

vi

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction

Executives and security technologists need a common understanding of web
application security risks and how to find and fix them. This book provides common
points of understanding to enable both groups to collaborate on building secure web
application frameworks.

The book translates with simplicity and brevity the technical world of threats,
vulnerabilities, mitigation, prevention, and level of technical risk into language that
executives can quickly understand.

Similarly, the book shows executives how to express their need to understand cost,
risk and risk reduction, and return on investment in terms security technologists can
relate to.

About the Book

Chapter 1 explains how to calculate IT security risk, including descriptions of risk-related
terms that are applicable. These terms will then be used elsewhere throughout the book.
Chapter 2 identifies and explains the various types of web application security audits.
Chapter 3 identifies web application vulnerability classes, specific vulnerabilities, and
their risks. Chapter 4 covers the vulnerabilities’ remediation.

Chapters 5 and 6 discuss the prevention of web application vulnerabilities, including
how to manage security of third-party applications. Chapter 7 shows how to integrate
compliance to various standards with security. Chapter 8 brings it all together by
explaining how to create a business case to cost justify web application security, and
Chapter 9 offers some final thoughts.

Appendices A through H provide more details on compliance standards and sources
of expert information.

Companion Files

There are several companion spreadsheets which are used in Chapters 1, 7, and 8. You
can download them from the Source Code/Downloads tab on the book’s Apress web page
(www.apress.com/9781484201497).

These spreadsheets are designed for the reader to readily implement the various
strategies proposed in this book.

The first set of spreadsheets is used for various calculations of risk in Chapter 1.
Another spreadsheet provides a summary of vulnerability classes, specific vulnerabilities,
and their remediation and risks discussed in Chapters 3 and 4. The Summary of Risk and
Remediation, with Compliance Standards Added table from Chapter 7 also is included.

xxiii

www.it-ebooks.info

www.apress.com/9781484201497
http://www.it-ebooks.info/

INTRODUCTION

Finally, the Chapter 8 spreadsheets are calculators of risk, costs, and returns on
investment, which form the business case for cost-justifying web application security.
These spreadsheets include a template for creating a weighted score of the health of
security for any specific environment.

Contact and More Information

Iwould be happy to answer any questions or respond to any feedback from readers of this
book. Perhaps we can implement these discussions into a second edition! Please feel free
to contact me at RonL@ere-security.ca or request further documentation on security
subjects related to this book at my web site waw.ere-security.ca.

Disclaimer

The advice and information I give in this book are of general applicability and may not

be suitable in specific applications. I urge managers always to consult their IT security
specialists before implementing any security measures. I cannot accept any legal
responsibility for any errors or omissions that may be made or information or advice given.

XXiv

www.it-ebooks.info

http://RonL@ere-security.ca
http://www.ere-security.ca
http://www.it-ebooks.info/

CHAPTER 1

Understanding IT Security
Risks

There seems to be a lot of confusion about security terms and concepts. This confusion
often leads to poor decisions that waste both valuable time and money. A proactive
approach in determining the associated costs of potential losses should a web application
breach occur would be the first step in creating countermeasures to reduce the chance

of such events ever happening. Without a clear understanding of the proper security
requirements and the associated costs, security teams are often misdirected in their
persuits. This ends up being counterproductive and often ends in poor decisions or no
decisions at all.

For instance, I often hear executives say they want a penetration test, when what they
really want is a less expensive and more useful vulnerability assessment. Or management
will say it wants a security audit report, but they have no idea of what they will do with it,
because they are not familiar with the term risk analysis in relation to the security of web
applications.

This chapter will remediate the terminology problem.

Web Application Security Terminology

The core message of this book is about helping readers to quickly, clearly eliminate risk in
the realm of web application security. Chapters 2 and 3 dive right into identifying the key
classes of web application vulnerabilities and the business risks they pose. The terms in
Chapters 2 and 3 are those used by security technologists to describe elements of security
and how they relate to one another.

Prior to reading these two chapters, it will be helpful to review these elements
and their interrelationship with one another. What follows are definitions of the most
important terms that will be covered:

e Risk: Risk s the possibility of loss as the result of a danger or
threat. In this context, we mean the loss of confidentiality,
availability, or integrity as the result of an IT security threat. Risks
are typically rated as high, medium, and low severity.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 © UNDERSTANDING IT SECURITY RISKS

¢ Relative risk: In the context of this book, relative risk refers
to risk severities in comparison to one another, in a specific
environment. For instance, the risk prior to addressing a threat
will be higher than after addressing the threat. Risks associated
with two separate threats are another more meaningful example.
Or the results of one type of threat may pose a greater risk than
those of another type of threat. When performing a risk analysis, it
is useful to allocate values to risk. A person creating a risk analysis
will want to use comparative values for various risks in order
to offer clarity to business decision makers. So, for instance, an
analyst may assign an 80 percent risk to a high-risk situation, but
he may assign a 20 percent risk to a lower-risk situation. These
risks are relative with respect to each other rather than being
absolute in relationship to the entire Internet world.

e Temporal risk: A temporal risk is one that changes over time due
to changes in the security environment, and is not necessarily
directly related to any change to a particular vulnerability.

For instance, if a patch to the affected software that removes
vulnerability is made available to Internet users, the risk severity
decreases as soon as that patch is successfully implemented.
Temporal risk is defined for clarity, but this term will not be used
in this book.

e Threat: A threat is a danger posed to a web application. There
are several sources of threats, such as malware, hackers,
cybercriminals, and others with malintent.

e Vulnerability: A vulnerability is a weakness that is subject to
compromise by a threat. For instance, an unlocked door poses the
vulnerability of a thief opening the door, but only if it is unlocked.
If the door is locked, there is no vulnerability for the thief, who is a
high-risk threat if the door is unlocked but a very-low-risk threat if
the door is, in fact, locked.

e Breach: A security breach is a threat that takes active advantage of
a weakness or vulnerability and may compromise the application.
In the example just given, a thief actively opening the unlocked
door is an act of compromise. A breach is more associated with
vulnerabilities.

¢ Compromise: A compromise is a synonym for a breach
except the term is more associated with risk. I use breach and
compromise interchangeably.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 © UNDERSTANDING IT SECURITY RISKS

Mitigation: A mitigation is a repair or a protection made as a
defense against a threat. A mitigation either repairs vulnerability
or reduces its seriousness in order to make the vulnerability

less susceptible to compromise by a threat. Risk is reduced by
mitigation.

As a physical analogy for a logical security problem, we can use
the example of an unlocked door to a building. A mitigation for
the unlocked door may have three components:

e Locking the door immediately

e Making a policy that everyone who opens the door must
subsequently leave it locked

e Making a policy that once per day a designated person
checks that the door is locked, always at different times

Countermeasure: A countermeasure is often used instead of a
mitigation when the vulnerability simply cannot be removed and
awork-around is required. An example is where there are known
code vulnerabilities within a web application but the code cannot
be modified for valid business reasons. A countermeasure to
these vulnerabilities could be a web application firewall.

However, a countermeasure can also refer to a safeguard that
addresses a threat and mitigates risk. A countermeasure is usually
associated with a threat and a mitigation is usually associated
with a risk. I use the terms countermeasure and mitigation
interchangeably because, in practice, they are functionally
equivalent.

Residual risk: Residual risk is the risk that still remains after
mitigation. This may sound unclear at first, as one assumes
mitigation reduces risk to zero. However, in a situation with
high risk vulnerability, there may be reasons why the risk can
only be reduced but not completely eliminated. In the analogy
of the unlocked door, for example, if the locked door policy

is laxly followed and the designated lock checker misses an
unlocked door, residual risk arises. In addition, residual risk can
reoccur, particularly in a dynamic environment where changes
subsequent to mitigation virtually undo the mitigation or create
new vulnerabilities.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 © UNDERSTANDING IT SECURITY RISKS

Risk Calculation Models

There are many models for calculating risk in the area of IT security. What follows is a
selection of the better-known risk-analysis methodologies or tools:

¢ CRAMM: An acronym standing for the “CTCA risk analysis and
management method,” it refers to a process of analysis that
combines assets, threats, and vulnerabilities to evaluate risk and
come up with a list of countermeasures.

e DREAD: “Damage, reproducibility, exploitability, affected users,
discoverability” is a Microsoft model focused on vulnerabilities
and their outcomes. DREAD comes with a scoring plan that
makes creating a quantitative DREAD score straightforward and
less qualitative.

e STRIDE: “Spoofing identity, tampering with data, repudiation,
information disclosure, denial of service, and elevation of
privilege” is a model focused on types of threats.

Note DREAD and STRIDE are measurement systems that are sometimes used in
conjunction with each other.

e FRAP: The “facilitated risk analysis process” is a type of
qualitative risk analysis focused on organizing teams from
business units in order to address security.

e OCTAVE Allegro: Developed by CERT, “operationally critical
threat, asset and vulnerability evaluation” is a suite of tools,
techniques, and methods for risk-based information security
strategic assessment and planning. There are two versions of
OCTAVE: full OCTAVE for large organizations and OCTAVE-S for
small organizations.

e Spanning Tree Analysis: This is a technique for creating a “tree”
of all possible threats to a system.

There are other risk assessment models, and the reader can pick and choose which
components make most sense from each of them. I have chosen to focus on DREAD as an
example to drill down on simply because I use this model, as well as STRIDE, in all of my
audit reports.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 © UNDERSTANDING IT SECURITY RISKS

DREAD

The DREAD model is a widely used methodology for calculating the degree of risk
presented by a threat. It involves attaching a numeric score to five risk variables and then
calculating another score for a particular threat. Information about DREAD is available
on the Open Web Application Security Project (OWASP) web page (www.owasp.0rg).

The five variables for calculating risk in the DREAD model are:

Damage potential: Assesses how much damage an exploited
vulnerability could cause. The more damage, the higher the risk.

Reproducibility: Determines the degree of difficulty of
reproducing or making an exploit happen. The easier the
reproduction, the higher the risk.

Exploitability: Evaluates the degree of expertise, time, and tools
needed to execute the exploit. The easier the process, the higher
the risk.

Affected users: Calculates the number and importance of users
that could be affected. The larger the number and the higher the
importance, the higher the risk.

Discoverability: Assesses the ease of identifying the threat, which
might range from one that is obvious and is shown in a web
browser address bar to one that is not documented and is very
difficult to detect. The more difficult to detect, the higher the risk.

You then assign one of the following values to each of the five variables to get a clear
indication of the security posture:

0 = Nothing
5 = Medium risk description

10 = High risk description

An example is a cross-site scripting vulnerability, whose DREAD score may be:

Damage potential: 10
Reproducibility: 5
Exploitability: 10
Affected users: 10
Discoverability: 5

Total score: 40

In this case, the reader can infer from the high total score that the vulnerability
has great large damage potential to a great number of users and should be mitigated
immediately.

www.it-ebooks.info

http://www.owasp.org/
http://www.it-ebooks.info/

CHAPTER 1 © UNDERSTANDING IT SECURITY RISKS

How to Calculate Web Application Security Risk

Not to put too fine a point on this, but it is useful to understand how security

experts calculate security risk. An agreed-to understanding of the definition of

risk among executives and their security teams is a key element for more clear,

concise communication. This will be useful in Chapter 2, which associates classes of
vulnerabilities with risk; in Chapter 4, which explains how to remediate vulnerabilities;
and in Chapter 8, which explains the structure of a business case for justifying web
application security. In Chapter 8, actual values of risk are used.

Since executive management teams prefer to think of IT security in terms of risk,
currency, and return on investment, it is useful for them to instruct IT security technology
experts to translate technical security into language that they can understand. Chapter 8
explains how to do this in detail.

Standard Calculations

I will first look at the standard risk calculation method and then show a customized
version. Next, I will use the customized version to show examples of three types of risk
calculation:

e Calculating any security risk

e Applying that calculation to multiple risks threatening a
single asset

e (Calculating the monetary value at risk for an asset

In most real-life business environments, calculations of risk are based upon
estimated values pertaining to the technology side of risk, generating estimated values
for risk and the cost of risk. Industry experts such as ISC(2) (International Information
Systems Security Certification Consortium) and ISACA (formerly Information Systems
Audit and Control Association, but now known just by the ISACA acronym) publish
equations for calculating risk using the following variables:

¢ The monetary value of loss associated with the compromise of
any specific asset

e The probability that a specific type of security breach/event will
occur for a specific asset

e The estimated number of times per year a specific breach/event
will occur. This type of statistic may be available from publishers
of information on risk. However, it is not easy to gather statistics
about security events, as many organizations are reticent to
divulge data about their security events.

Annual loss expectancy is calculated by multiplying

the expected loss in $ x the probability of a specific breach
x the estimated number of occurrences per year.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 © UNDERSTANDING IT SECURITY RISKS

A Customized Approach

I'have created a slightly different version of the risk calculation, which attempts to
estimate the risk of an event by articulating the variables that security technologists live
with on a daily basis:

e Any key asset and the estimated monetary loss expected to result
from a breach

e The existence of a threat to that asset
e Any security vulnerabilities associated with that asset
¢ Anymitigation/prevention steps currently being deployed

I believe that a meaningful way of calculating risk is to attach estimated values to
each of these variables, with an explanation to management of how the estimates were
derived. The values can be expressed in the following ways:

e Asadollar value for the loss of any key asset. This is the dollar
value at risk if the asset were to be compromised. It could be the
cost of production downtime, legal costs, or other costs
associated with a loss. This is discussed in more detail in Chapter 8,
which identifies how to create business cases involving return
on investment. Management is the best source for providing the
monetary value of each key asset and the expected monetary loss
associated with any key asset.

e Asa percentage value indicating the possibility that a threat exists.
The existence of a threat could be 100% if there is a known threat.
However, in some cases the value could be less than 100%, such
as if the existence of a threat is predicted but not confirmed.

e Asa percentage value that a vulnerability to the known threat
exists. If there is no vulnerability susceptible to a threat, the
vulnerability value is 0%. If a vulnerability is highly susceptible to
a threat, the value is 100%. If there is a vulnerability that is difficult
to compromise by the threat, the vulnerability is assigned some
other percentage.

The confidence level in any mitigation/preventative step is expressed as a percentage
value. The value may vary widely depending upon in-house experience, shared
experiences among the professional-security world, in-house testing, and security-audit
testing by impartial third parties.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 © UNDERSTANDING IT SECURITY RISKS

Calculating a Security Risk
The steps for calculating a security risk are:

1. Identify each asset in scope. Use the following process
for each asset.

2. Identify the existence of a threat to an asset. If a threat exists,
then the percentage value of the threat is, of course, 100%.

3. Identify any security vulnerabilities associated with an asset.
The percentage represents the degree of risk posed by a
vulnerability. For instance, a medium-to-high risk may
be 80%, while a very low risk may be 10%.

4. Identify mitigation steps and what percentage of risk remains
after they are taken. If the mitigation reduces risk completely,
then the riskis 0%.

The idea here is that when risk is multiplied by the currency value of an asset, the
value at risk will be zero value for a zero risk factor and at the other extreme will be simply
the currency value of an asset.

The following equation is an example calculation of security risk. Estimated values
for each factor are then given.

% risk = existence of a threat to that asset
x any security vulnerabilities associated with that asset
x any mitigation/prevention steps deployed

Factors for calculating risk % values assigned by the
security technology team

Existence of a threat to the asset 100%

Risk posed by security vulnerabilities 80%

associated with the asset

Percentage of risk remaining after 5%
mitigation/prevention steps are deployed

If we replace the factors in the equation with these values, the calculation becomes
100% x 80% x 5%,

which results in the risk percentage being 4%.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 © UNDERSTANDING IT SECURITY RISKS

Calculating Risk from Multiple Vulnerabilities for
Any Asset

In the typical case where multiple threats are posed to an asset, the total risk for all the
threats is calculated by adding up the sum of all risks. Because this calculation is designed
to give an overall impression of the risk faced by an asset, the idea is not to calculate
an actual value but to look at the relative values across all assets in scope. It is easy to
understand the reasoning here: as several risk factors for any one asset could total over
100%, it is the relative values that are important here.

This step is, of course, optional. It utilizes the risk calculations generated from the
previous calculations of risk for each vulnerability. The total risk is calculated as follows:

total % risk = sum of all the individual risks for each vulnerability, or
vulnerability A + vulnerability B + vulnerability C

Factors for calculating % values assigned by the
$ value at risk security technology team
Risk for vulnerability A 4%

Risk for vulnerability B 10%

Risk for vulnerability C 17%

If we replace the factors with their values, the calculation becomes

4% + 10% + 17% = 31% total risk

Calculating the Monetary Value at Risk for Any Asset

So far, we have just calculated pure risk for each asset. The next step is to add, for any key
asset in question, the estimated monetary loss expected as the result of a breach.

For simplicity, the currency in the following example is in dollars. Here, the dollar
value at risk, $1,000,000, is multiplied by the risk value previously calculated, 4%.

The value at risk might have been obtained using the executive straw poll in Chapter 8
for determining estimated values at risk from security breaches.

The calculation for monetary value at risk is

$ value at risk = $ value of the expected loss for a specific asset
x total % risk facing the asset

Factors for calculating $ value at risk Value of factors
$ value of expected loss for a specific asset $1,000,000
Total % risk facing the asset 4%

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 © UNDERSTANDING IT SECURITY RISKS

Replacing the factors with their values, the calculation becomes
$1,000,000 x 4% = $40,000 at risk

The value of the risk calculations shows executives the relative risk of various
threat/vulnerability/mitigation groupings.

The monetary value at risk for any asset gives executives a basis for comparing
potential losses across various key assets. We will see in Chapter 8 how the value at risk is
used in the calculation of return on information security investment.

These calculations are available for your use in spreadsheet format in the downloads
for this book.

Sources of Web Application Security Vulnerability
Information

The severity of many vulnerabilities is well documented and publicly available. Several of
the most useful resources for finding this information are

e Open Web Application Security Project (OWASP):
(www.owasp.org) Based on information sent to the organization
from security experts around the world, this site publishes lists of
the most severe web application vulnerabilities.

e National Vulnerability Database (NVD): (http://nvd.nist.gov/)
Sponsored by the National Institute of Standards and Technology,
this vulnerability resource focuses on servers and networks. Its
Common Vulnerability Scoring System (CVSS) provides an open
framework for communicating the characteristics and impacts of
IT vulnerabilities.

e US Computer Emergency Readiness Team (US CERT):
(www.us-cert.gov) This site is maintained by the National
Homeland Security’s team that leads the cybersecurity efforts in
United States .

e Web Application Security Consortium (WASC):
(www.webappsec.org/) This site is run by WASC, a not-for-profit
organization made up of an international group of experts,
industry practitioners, and organizational representatives who
produce open-source and widely agreed-upon best-practice
security standards for the World Wide Web.

10

www.it-ebooks.info

http://www.owasp.org/
http://nvd.nist.gov/
http://www.us-cert.gov/
http://www.webappsec.org/
http://www.it-ebooks.info/

CHAPTER 1 © UNDERSTANDING IT SECURITY RISKS

Summary

It is important for executives to understand the relationship between their key assets
and the risk and threats to those assets early on in the risk analysis process. To do
this, they must understand the meaning of risk, relative risk, threats, vulnerabilities,
breach, compromise, remediation, and countermeasures in the context of IT security.
Management needs a simple mechanism for estimating the monetary value of an asset’s
potential losses that result from a security breach. I describe an executive straw poll
method for doing so in Chapter 8.

In the next chapter, we will look at vulnerabilities and their risk severity, which can
be directly fed into the risk analysis calculations we generated in this chapter.

11

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2

Types of Web Application
Security Testing

The purpose of web application security testing is to find any security weaknesses

or vulnerabilities within an application and its environment, to document the
vulnerabilities, and to explain how to fix or remediate them. The business drivers behind
the testing may be requirements of corporate policy, security requirements mandated
by the corporate financial auditors or an internal audit department, compliance
requirements for PCI or other industry standards, or compliance with regulatory
standards such as Sarbanes-Oxley or HIPAA. An evidentiary type of audit report, which
contains evidence to back up claims of vulnerabilities, is even better, as the report will
stand the test of time, and, over the years, explanations and thoughts about how the
vulnerabilities were found may fade from people’s memories.

There are several types of testing methodologies. These include web application
security audits, vulnerability assessments, and penetration tests. These methodologies
have different scopes and goals, each with strengths and weaknesses. For clarity,
these methodologies are all different from one another, but vulnerability testing and
penetration testing may also both be part of an overall audit. However, an audit may
contain steps that are not related to either vulnerability testing or penetration testing,
as described in the section “Web Application Audits.”

The testing methodologies, in turn, can be executed with different levels of
automation. Some testing is done in a completely automated fashion and other testing is
done with a high component of manual intervention. This chapter briefly describes the
goals and differences of the various types of testing and audits but does not attempt to
delve into details of audit methodologies or audit standards to which audits may adhere.

Once testing is complete, the next recommended step is to fix the vulnerabilities
identified by the testing. Once remediation is complete, the step following that should be
postremediation testing to ensure all the repairs were done successfully.

In Chapter 3, we will walk through the process of these steps and describe in detail
common web application vulnerabilities that are found during the course of audits,
vulnerability testing, and penetration testing.

13

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 * TYPES OF WEB APPLICATION SECURITY TESTING

Understanding the Testing Process

Web application security testing comes in all shapes and sizes and it is sometimes
difficult to differentiate between them. To add to the confusion, the names of the tests
are sometimes used interchangeably, which sets incorrect expectations of all the tests
concerned.

In a nutshell, the different aspects of web application testing can be understood in
terms of the questions they answer:

e Aweb application audit answers the question, Is an organization
implementing its web application policies correctly?

e Avulnerability assessment answers the question, What security
weaknesses or vulnerabilities exist within an application?

e Apenetration test answers the question, Was the tester, in a given
amount of time, able to compromise any of the vulnerabilities?

e Postremediation testing answers the question, Have the
vulnerabilities found during testing been completely remediated?

To summarize the terms used here since they seem very similar, an audit has
the greatest scope and includes vulnerability testing, and web app audits try to find
vulnerabilities in a broader scope of subjects including policies and procedures.
Vulnerability testing is usually passive and seeks to identify but not compromise the
vulnerabilities it identifies. Penetration testing is the next possible step after identifying the
vulnerabilities and attempts to compromise those vulnerabilities. Another way of saying
the same thing is that whereas vulnerability testing just identifies technical vulnerabilities,
penetration testing actually tries to exploit those vulnerabilities. Postremediation testing
occurs after remediation and identifies the degree of remediation success.

The main reason penetration testing is done is to satisfy a specific governmental
or very high security requirement. However, in some cases companies simply want
proof that the systems can be compromised. I recommend using the funds that
would otherwise be used for penetration testing for postremediation testing and for
implementing ongoing, regular vulnerability testing.

Web Application Audits

The scope of an audit is generally a superset of a vulnerability assessment. The scope
may include other software associated with the application, such as databases, access
controls for the application environment, application documentation, security policies
and procedures for managing the application and its environment, change management,
revision management, backup and restore procedures, and so on.

The audit process starts with a specific, clearly defined scope of requirements.
These requirements may include vulnerability testing for the application and its
associated database, access controls, and security policies and procedures.

The first step of the audit involves a planning meeting to ensure all objectives will be
met by the various planned audit activities. Activities include collecting data about the
security posture of the environment through vulnerability and other technological-security

14

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 © TYPES OF WEB APPLICATION SECURITY TESTING

testing, manual security testing, interviews with staff members, and a review of operational
and security-related policy/procedures documentation. After the data-collection phase

of the audit is completed, analysis is done on all the data collected in order to create the
required deliverables of:

1. Anyavailable evidence of the presence of vulnerabilities
A description of the vulnerabilities
Recommended remediation for each type of vulnerability

Each vulnerability’s levels of security risk and business risk.

o~ N

An executive summary that translates all the technical
jargon into business risks upon which financial decision
makers can act.

Vulnerability Assessment

A vulnerability assessment is a subset of an audit and is focused on finding weaknesses or
vulnerabilities within the web application. It involves real-time testing and exercises the
application components such as all input fields. There are different vulnerability testing
tools commercially available such as Nexpose, Nessus, and NMap.

Vulnerability assessments can be completely automated or have a manual component.
A manual component is usually done by an expert tester who utilizes several testing tools
over a predetermined scope of time to find vulnerabilities in a step-by-step manner. The
steps may involve launching several tools, with the intention that a vulnerability missed by
one tool will be identified by another.

The steps may also involve the tester diving deeper into any vulnerability that
she thinks may lead to finding other vulnerabilities. For instance, if a tester finds weak
encryption in one section of a transaction processing application, she may dive more
deeply into that section to look for weaknesses relating to out-of-date security certificates.

There are upsides and downsides to both fully automated vulnerability testing and
for manual testing.

Fully Automated Testing

Fully automated testing is done using tools that are designed to run autonomously
once they are given target IP addresses and URLSs to test. Prior to starting the automated
testing, the tester first needs to make sure the targets have visibility. For instance, if the
IP addresses and URLs that are in scope for testing reside behind a firewall, the security
person responsible for these items needs to grant him secure-access.

High-quality automated testing tools should have access to back-end databases of
both current vulnerabilities and current threats so that they can test comprehensively and
then tune out false positives. The method for tuning out false positives is to compare the
vulnerabilities against the list of threats and then eliminate reporting on vulnerabilities
for which there are no corresponding threats.

15

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 * TYPES OF WEB APPLICATION SECURITY TESTING

The main benefits of automated testing include the following:

e 100 percent scope: These tests run very fast and the scope of
testing is 100 percent of an application.

e Exact number of instances reported: Since the test scope is
100 percent of an application, the tool can enumerate the exact
number of instances of each type of vulnerability.

¢ Cost effectiveness: These tests are less expensive to run than
ones involving expert testers’ time. For instance, an automated
test may take one person-day to implement and only minutes
to run. A comparable manual test would take four person-days
to execute. If the testing tool can be rented or used as part of an
outsourced service, then the all-in costs of the automated testing
tool may be significantly less than for manual testing.

¢ Timely actionable information: Since the tests are less expensive
than manual ones, it is more affordable to run them often, such
as monthly, to obtain timely information about newly evolving
vulnerabilities.

The primary downside of automated tests is that they cannot find all of the types of
vulnerabilities. For example, the testing algorithms cannot anticipate issues that arise
with real-time data, such as work flow errors or weak password protection.

Manual Testing

If manual testing is done by an expert in web application security, then this methodology
offers the greatest-possible depth of testing. Manual testing is a step-by-step process where
the tester looks for vulnerabilities, and, when they are found, attempts to drill down further
into the vulnerabilities to clarify their magnitude and just how risky they are.

A manual tester uses testing tools to conduct much of the testing but directs the
course of the tools. Also, since every tool has its limitations, a skilled tester will use at least
two tools in order to minimize the chances of missing a vulnerability.

Since manual testing always has time and cost limitations, it is done only on
sample sections of a web application. The reports then identify where and what type of
vulnerabilities were found. Recommendations for where remediation can be done in
every instance of the security weakness.

The most significant benefit of manual testing is that it can be more granular than
automated testing and cover a wider scope. Since human experts are conducting the
testing, they can understand vulnerabilities that automated testing tools cannot parse or
understand. Also, experienced testers can dive deeper in an iterative manner to explore
suspicious circumstances.

16

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 © TYPES OF WEB APPLICATION SECURITY TESTING

However, there are several downsides to manual testing:

e Expense: Person power is expensive.

e Scope limited to sampling: Since every testing engagement has a
finite amount of time allocated for expert testers’ time, the testing
is often limited to a sample of the application.

e Number of instances not reported: The total number of
instances of each vulnerability is not usually reported. Instead,
the type of vulnerabilities is reported, and it is up to the web
application owner to identify all the instances.

Combining Automated and Manual Testing

The most accurate determinant of vulnerabilities and risk is the use of automated testing
in concert with manual testing. Automated testing can be done monthly to provide
information on a regular, timely basis at a relatively low cost. Manual testing can be
done periodically, such as on a quarterly or annual basis, to find the vulnerabilities not
detectable by the automated tester at a relatively higher cost.

The optimization of lower-cost automated testing in conjunction with higher-cost
manual testing provides the benefits of both worlds:

e 100 percent scope of the application is tested
e Regular, timely reports of the latest vulnerabilities

e Quarterly or annual deeper-dive testing to identify vulnerabilities
not otherwise found

A valuable enhancement to identifying vulnerabilities is to proceed to map the
vulnerabilities against a database of existing exploits and attacks “in the wild” and then
allocate higher risks to those vulnerabilities for which there exist actual threats.

Penetration Testing

A penetration test is a deeper dive of a vulnerability test. Here, the expert tester attempts
to compromise vulnerabilities he finds. The tester’s goal it to prove he can gain a high
level of administrative access. Testing is often done by teams of one or more testers,
called tiger teams.

The main benefit of a penetration test is the proof of the risk. A compromised
vulnerability proves the degree of risk. On the other hand, the time it takes for penetration
testing is expensive, and it does not reduce risk; it only verifies the risk.

I believe it is a better return on investment for most companies to spend their
security funds on eliminating vulnerabilities and hardening their security infrastructure
rather than testing vulnerabilities that they already know need to be mitigated.

17

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 * TYPES OF WEB APPLICATION SECURITY TESTING

Postremediation Testing

It is surprising that vulnerabilities are sometimes not remediated even after a comprehensive
web application test. Yet this problem often occurs and for many reasons. Sometimes
remediations are effectively implemented but then unwound by an additional development
of the application. Sometimes technologists remediate some but not all the instances
of every type of vulnerability. There are also instances where third-party operators
inadvertently undo the benefits of remediation by operational changes they make.
Therefore, a postremedial audit is a very useful tool for ensuring the remediation
plan was successfully executed. The postremedial audit is usually smaller in scope
than the initial audit and its focus is on identifying whether or not the remediation
recommendations in the initial audit have been done correctly. The remediation audit
report is therefore comprised of yes-or-no responses for each vulnerability in regard to
whether each vulnerability has been successfully remediated.

Important Report Deliverables for All
Testing Reports

Reports are the last stage of an audit engagement and are done after the testing team
has completed information gathering, done the requisite analysis, drawn conclusions,
and made recommendations. If the report is not crystal clear, actionable, complete, and
easy to read, and does not include a provision for the recipient to ask questions, then
the report may have little value. I have seen reports that were filled with unanalyzed
data, did not provide actionable remediations, did not differentiate the levels of risk of
the vulnerabilities, did not transparently identify evidence of vulnerabilities, did not
explain what tools and methodologies were used, did not organize the results data in a
format that is clear and able to be easily referenced, and did not have provisions for any
subsequent questions to be answered.

Readers of audit reports want to see crystal clear observations, specific remedial
recommendations, brevity that does not impune accuracy, and a linkage between
vulnerabilities and their related business risks. That is what a good audit report provides.

Testing reports are most useful when they:

e provide only actionable data. This means filtering out false
positives.

e provide up-to-date and accurate analysis based on extensive and
constantly updated databases of vulnerabilities, malware, and
attacks that exist in the wild.

e report the technical information by correlating each vulnerability
with its:

e associated threat
e risk of compromise

e business risk

18

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 © TYPES OF WEB APPLICATION SECURITY TESTING

e remediation
e evidence of existence

e number of occurrences by vulnerability type
wherever possible

e report estimated time for remediation for each type of
vulnerability.

e identify the tools and methodology used for testing.

e precisely identify the scope of the audit, including IP address
ranges, URLs, number of employees interviewed, number of
pages of documentation read, the dates during which testing was
done, and so forth.

e publish a Q & A session for recipients postreport with full
transparency and disclosure for all types of questions.

This is a general list that will vary for reports looking at specific types of testing, such
as penetration testing, where the vulnerabilities may already be known and the focus
is on whether or not they can be compromised by a testing team of a specific size and
testing for a specific period of time. The report for a postremedial audit will be severely
truncated and can be as simple as a column of yes-or-no observations added to the
vulnerability list in the initial audit portion.

Summary

There is a wide range of types and methodologies of web application security testing.
Itis important for those with expectations of the results of testing to understand the
differences and overlap between different types of tests and how they are performed.
This is important in order to ensure that expectations of results are clearly understood
before funds are spent on the actual testing.

There is a different return on investment for each type of testing. Some testing is
more drill down in depth, such as penetration testing, but may not have any return on
investment at all. Other testing, such as automated regular-vulnerability testing, will be
relatively inexpensive but may have a huge return on investment and may also meet all
the business requirements imposed upon those responsible for web application security.
In between these extremes exist various degrees and subsets of web application audits,
whose return on investments will vary with the business requirements that drive the
underlying testing needs.

The testing process (defining the pieces) for web application security audits,
vulnerability assessments, and penetration testing can vary and is generally divided
between automated and manual testing. Testing can have various degrees of automation
and manual testing. Generally, automated testing is faster and less expensive than
manual testing. There is a variety of testing tools available for web application security
testing. It is useful to test with at least two tools to improve the chances that any
vulnerability that is not found by one tool will be identified by another. Manual testing
can find vulnerabilities that fully automated testing simply cannot.

19

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 * TYPES OF WEB APPLICATION SECURITY TESTING

After testing is completed, remediation should be done to fix vulnerabilities
found during the testing phase. Postremediation testing should be done to make sure
remediation has been done successfully. It is very important that false positives are
tuned out during the analysis phase of all testing. This ensures that the reports are as
meaningful and as actionable as possible.

Test reports must be clear, complete, actionable, and accompanied by an
opportunity for the recipient to ask questions about the information provided.

20

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3

Web Application
Vulnerabilities and the
Damage They Can Cause)

The obvious risks to a security breach are that unauthorized individuals: 1) can gain
access to restricted information and 2) may be able to escalate their privileges in order to
compromise the application and the entire application environment. The areas that can
be compromised include user and system administration accounts.

This chapter identifies the major classes of web application vulnerabilities, gives
some examples of actual vulnerabilities found in real-life web application audits, and
describes their associated level of risk. The classes are:

e authentication

e session management

e access control

e inputvalidation

e redirects and forwards

e injection flaws

e unauthorized view of data
e error handling

e cross-site scripting

e security misconfigurations
e denial of service

e related security issues

21

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © WEB APPLICATION VULNERABILITIES AND THE DAMAGE THEY CAN CAUSE

Chapter 4 provides remediation guidance for each of the vulnerability classes and
specific vulnerabilities described in this chapter. The vulnerability and remediation
information also is provided in a consolidated spreadsheet that you can sort or add to is
available with the downloads for this book. (See the Source Code/Downloads tab on the
book’s Apress product page: www. apress . com/9781484201497.)

IT-security and web-application-security auditors including myself have seen more
than our fill of real-life vulnerabilities. I am sharing some of these examples in this book
to make the information as relevant as possible to the reader.

Lack of Sufficient Authentication

Risk level: HIGH

Correctly checking authentication credentials and then providing access to a web
application accordingly are paramount operations for a server to perform when providing
security and privacy.

Prior to accessing a web application, a server should require end users to
authenticate themselves and confirm they are in fact who they purport to be.

In addition, strong authentication using valid credentials is the first security
checkpoint for protecting web applications. One of the biggest web application
weaknesses is the failure to provide a means of strong authentication.

The obvious risk to an authentication breach is that an unauthorized individual
or computer program can gain access to restricted information and may be able to
escalate their privileges in order to compromise an application and the entire application
environment.

The compromised applications can, of course, include user and system-administration
accounts. Additionally, the individual could gain unauthorized access to the targeted
account, to another user’s account, and/or have the opportunity to view sensitive or private
information.

Weak Password Controls

Risk level: HIGH

Passwords are one of the most important elements to Internet security. They must
be protected and changed regularly because an attacker or malicious user can mount a
password-guessing attack (e.g., through brute force or a dictionary) that can have a high
probability of success. Once a password has been guessed, the attacker can then log on to
the application using the “guessed” account credentials and operate on the user’s behalf
(e.g., change the user’s profile, mount attacks using fields available only to authenticated
users, access sensitive information).

As auditors, we often find a situation like this wherein the user policy did not require
users to have a complex password (such as a combination of alphanumeric characters,
use of lower- and upper-case characters, etc.). One of the auditors was able to breach this
weak security and gain access to the account with a simple password (“abcde”).

22

www.it-ebooks.info

http://www.apress.com/9781484201497
http://www.it-ebooks.info/

CHAPTER 3 * WEB APPLICATION VULNERABILITIES AND THE DAMAGE THEY CAN CAUSE

Passwords Submitted Without Encryption

Risk level: HIGH

Passwords submitted over an unencrypted connection are vulnerable to capture by
an attacker that is suitably positioned on the network to monitor and capture traffic. This
includes any malicious party located on the user’s own network, within her ISP, within
the ISP used by the application, and within the application’s hosting infrastructure, as
well as networks along the communications path.

A real-life example that I've seen is credentials being sent in clear text on an
unencrypted communications channel that was susceptible to eavesdropping.
Unencrypted means the opposite of encrypted. Encryption is the conversion of data
into a form that an unauthorized reader cannot easily interpret. An authorized reader
then converts encrypted data back into its original form so it can be understood using a
method of decryption. There are many methods for encryption/decryption that are called
algorithms in the security world. An algorithm can be as simple as Morse code or as
complex as those used for military purposes.

Username Harvesting

Risk level: HIGH

Usernames need to be protected and never shared, as they can be used to try to
obtain unauthorized access to an account.

Like passwords, usernames are susceptible to being harvested with a brute-force
method or by simply finding the e-mail address associated with them by doing research
on the Internet. An attacker or a malicious user can leverage these items as a potential
vulnerability with which to gather information. That person can then guess usernames
in the login screen, which will return a detailed error message if the account does not
exist. This information can in turn be used to devise more precise attacks (e.g., password
guessing for valid accounts only, focusing on reducing the number of hacking attempts to
a level that may not be detected by any automated methods).

Login screens are also configured to display detailed error messages that reveal
username information, and in a worst-case scenario, this information can also be
exploited to gather information.

Weak Session Management

Risk level: LOW-HIGH

Session management is something that most users are unaware of, but this is an
essential security methodology for foiling hackers from attempting to break into and
take control of a session. The idea is for a server to be able to regularly verify that the user
conducting the interaction or conversation is the one the server thinks it is.

If an application doesn’t use transport-level encryption (SSL or TLS) to protect all
sensitive communications passing between a client and a server, the communications
between them is more highly susceptible to a security breach. Communications are
intended to include the login mechanism and related functions where sensitive data can
be accessed and where privileged actions are performed.

23

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © WEB APPLICATION VULNERABILITIES AND THE DAMAGE THEY CAN CAUSE

Secure Sockets Layer (SSL) is a standard security technology, or protocol, for
establishing an encrypted link between a web server (“server”) and a web browser
(“client”). SSL uses encryption technology to secure both the communications link
(referred to as a tunnel) and the data being transmitted.

SSL has been superseded by a more advanced technology called Transport Layer
Security (TLS). TLS relies on third-party or self-signed certificates to create keys that are
used for encryption. TLS is the successor of SSL. TLS is more secure than its predecessor.
However, SSL is more widely used than TLS.

We found many real-life examples where web applications are not correctly
establishing session encryption. Since HTTP does not provide this capability, it is up to
the web applications to provide it. HTTP is short for hypertext transfer protocol, which is
the underlying protocol used by the World Wide Web. HTTP defines how messages are
formatted and transmitted and what actions web servers and browsers should take in
response to various commands.

During the course of two separate audits, we could not determine the level of SSL
security because we could not explicitly determine whether the SSL keys were verified
by hashing or if they were simply encrypted while stored. Since interviews were not in
the scope of these particular audits, there was no way for an auditor to verify the facts. If
the SSL keys were simply encrypted but not hashed, then they would be susceptible to
compromise if an attacker could decode the encryption. In addition, during the course of
these two audits, there was no evidence of salting being used in this environment, which
was another indication that hashing was not used in these environments.

Hashing is a form of one-way encryption. The idea is to protect critical information
such as passwords by never having to store them, something that allows them to be
compromised. By hashing them and storing the hashed value instead of storing the
actual critical information, the risk to the critical information is reduced. The recipient
must recreate the hashing process and compare hashed values to make sure the critical
information is correct. Salting is additional protection for hashing. Salting is adding
random extra information into the critical data before it is hashed. This process makes it
more difficult for a person of malintent to guess critical information.

For the purposes of this book, a session is the activity carried on between a web
browser and a web server from the time of logon to the time of logout. It is conducted
over the HTTP or HTTPS protocols. In the bigger picture, a session is really a TCP or UDP
session that deals with any protocol and doesn’t necessarily directly relate to HTTP or
HTTPS, although in the context of web application security it can.

Transmission control protocol (TCP) is one of the most basic of the group of
protocols that makes the Internet function. TCP allows for requests and responses, and a
TCP request is simply a request for service. User datagram protocol (UDP) is a simplified
version of a transmission protocol that provides for limited messaging to be exchanged
between computers in a network that uses the internet protocol (IP). It does not provide
as comprehensive a function as the TCP protocol.

24

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * WEB APPLICATION VULNERABILITIES AND THE DAMAGE THEY CAN CAUSE

Weak SSL Ciphers Support

Risk level: HIGH

A standard method of securing communications between a user and a web
application is the use of encryption. If the method of encryption is outdated or weak, then
the security is weak.

There are too many examples we have seen during the audit process where a remote
service supports the use of weak SSL ciphers. An attacker could break the weak cipher’s
encryption and perform a “man-in-the-middle” attack to eavesdrop on a user’s session.

As previously mentioned, SSL is a standard security technology or protocol for establishing
an encrypted link between a server and a client. SSL uses encryption technology to secure
both the communications link (referred to as a tunnel) and the data being transmitted.
The cipher for SSL is the encryption methodology that a particular version of SSL is using.
SSL can utilize a variety of ciphers, some of which are more secure than others.

Information Submitted Using the GET Method

Risk level: MEDIUM

There are several methods that HTTP utilizes to make requests for information,
including GET and POST. Since HTTP is unencrypted, it is important for web application
programmers to consider the security weaknesses inherent in its use of the GET method,
making GET a poor choice for transmitting sensitive data such as user names and
passwords. Not to drill in too deeply, but it is the clear-text nature of the HTTP protocol
that makes it insecure. GET displays data in clear text in the URL, and the URL can in turn
be seen in server logs, in client browser histories, and in any forward or reverse proxy
servers between a user and a web application server. This makes sensitive data retrievable
for unauthorized persons.

URL request strings may also be displayed onscreen, bookmarked, or e-mailed
around by users. They may be disclosed to third parties via the HTTP referrer header
when any off-site links are followed. The HTTP referrer header is a data field, such as a
hyperlink on a web site, that drives visits to another web site. Examples of HTTP referrers
are other web sites, search engines, link lists, e-mails, and banner advertisements.

Here again, we see many client web applications that use the GET method to submit
sensitive information, such as session ID (session token) and passwords, which are
transmitted within the query string of the requested URL.

Self-Signed Certificates, Insecure Keys, and Passwords

Risk level: HIGH

Certificates, keys, and passwords are fundamental to Internet security. The most
reliable certificates are managed by third-party certificate authorities. Self-signed and
self-managed versions are not as trustworthy. They are good cover for an imposter posing
as a valid organization, and the SSL or TLS man-in-the-middle attack often uses self-signed
certificates to eavesdrop on SSL or TLS connections. A man-in-the-middle attack is done
by an eavesdropper of a communication session that subsequently inserts itself into

25

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © WEB APPLICATION VULNERABILITIES AND THE DAMAGE THEY CAN CAUSE

the session and tricks the parties at either end to think they are still communicating
directly with each other. In fact, they are both communicating with the man in the middle.
This attack succeeds when the attacker impersonates each endpoint to the satisfaction of
the other.

On another note, users should be wary of the warning statements about invalid
certificates, which indicate that a self-signed certificate has no outside validation.

We saw a situation where a server’s X.509 certificates were indeed self-signed,
suggesting that they were not obtained from a certificate authority. If the certificates were
susceptible to being viewed by an unauthorized party, then that party could create bogus
certificates and attempt to hijack a session.

Username Harvesting Applied to Forgotten Password
Process

Risk level: HIGH

A relatively simple way for hackers to gain unauthorized access to usernames is
via a password recovery process. We have frequently seen registered users’ information
being revealed. This happens through the unnecessary display of user identification in
a password error message. An attacker or malicious user can leverage this vulnerability
to gather information on registered users. This information will assist in devising more
precise attacks (e.g., password guessing focusing on valid accounts only to reduce the
number of attempts, at a level that may not be detected by automated monitoring).

Autocomplete Enabled on Password Fields

Risk level: LOW

Another relatively easy way for hackers to gain unauthorized access to usernames is
to see them displayed in autocomplete as soon as the first part of the name is typed.

The web application contains HTML form fields that contain an input password
when Autocomplete is not set to Off. Passwords stored on connecting client machines
could expose user accounts to malicious third parties.

Most browsers have a facility to remember user credentials that are entered into
HTML forms. This function can be configured by the user and also by applications that
employ user credentials. If the function is enabled, credentials entered by users are
stored on their local computer and retrieved by the browser on future visits to the same
application.

The stored credentials can be captured by an attacker who gains access to the
client computer, either locally or through a remote compromise. Further, methods exist
whereby a malicious web site can retrieve the stored credentials for other applications by
exploiting browser vulnerabilities or through application-level cross-domain attacks.

While storing information on a web application does not represent a risk in and of
itself, it does mean that users who use the affected forms may have their credentials saved
in their browsers, which could in turn lead to a loss of confidential information if a shared
host is used or their machine is compromised.

26

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * WEB APPLICATION VULNERABILITIES AND THE DAMAGE THEY CAN CAUSE

Session IDs Nonrandom and Too Short

Risk level: MEDIUM

Since it is a security weakness to use unique session identifiers that are easy to guess,
they should be as random and as long as possible.

A Session ID or session identifier or session token is an identification device used
to identify a user to a web application. The web application creates session tokens and
sends them to a user’s browser. The web browser in turn sends the token back to the web
application along with any requests or information in order to identify the user.

An attacker could guess token values for authenticated users, which could lead to
unauthorized access in the form of session hijacking. From the point of hijacking onward,
any action performed by a malicious user will then be logged as being performed by the
legitimate user.

Weak Access Control

Risk level: LOW-HIGH

Restricting or controlling access to an application, or for that matter to all important
processes and files, is the most important aspect of security. A prime goal of hackers is
to gain unauthorized access to applications and then increase the priority level of their
access privileges.

In general, strict authentication should be enforced at both the application and
server levels in order to minimize the chance of unauthorized access to confidential
information. This process is prone to administrative errors particularly if it is not kept
simple and implemented in a way that is easy to test.

During a particular audit, we identified that access control to a specific page was not
enforced either at the application or server level, which may have allowed an attacker to
impersonate an authorized user and gain access to confidential information.Specifically,
the URL pointing to subsections of the application was allowed to be changed by the user
without further authentication.

During the interview portion of the audit, the auditor further discovered that
some of the authentication process code was written in-house as part of the client-side
application in order to communicate with the third-party authentication engine. This
nonunified code was hard to administer and prone to errors.

Frameable Response (Clickjacking)

Risk level: LOW

If IFrames are used in an application without any restriction on the source of the
content, then a clickjacking attack can occur. An attacker can do this by embedding an
IFrame on any web site and overlaying the invisible IFrame on top of legitimate content.
When a user clicks a legitimate-looking button, the attacker’s button or link is actually
being clicked.

27

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © WEB APPLICATION VULNERABILITIES AND THE DAMAGE THEY CAN CAUSE

By inducing users to then perform actions such as mouse clicks and keystrokes, the
attacker can cause them to unwittingly carry out harmful actions. This can result in a user’s
computer being hijacked and confidential data getting compromised. IFrames are tools
available to web site developers that allow them to divide a screen into different sections.
This enables each section to get information from its own separate information source.

What makes this a very powerful way of attacking is that it is actually done within
the bounds of the HTML specification, which means that the web site is working as
expected. The attackers just exploit this feature for malicious attacks. Therefore, web site
administrators may not know that something is wrong until complaints come in from
users. It is hard to pinpoint that an attack has taken place because everything on the site
looks the same and the clickjack element has been thoroughly disguised as harmless.

Cached HTTPS Response

Risk level: MEDIUM

Cached HTTPS responses are caused by sensitive information from application
responses being stored in the local cache memory of a user’s workstation. This
information may be viewed and retrieved by other parties who have access to the same
computer simply by looking at the cache. This situation is exacerbated if a laptop is stolen
or if a user accesses the web application from a public terminal.

Cache refers to copies of recently viewed web pages and associated data that are
stored on a local disk. This local data improves web application access speed but it is also
easy for anyone to find. For instance, Microsoft Internet Explorer cache files can be easily
found in the Users File and labeled as Cache or Temporary Internet Files. In some browsers
including Internet Explorer, cache content may be created by both HTTP and HTTPS.

An example of this vulnerability appeared while conducting a test during a valid
user session, where a user’s browser did store content received from the web application
in cache.

Sensitive Information Disclosed in HTML Comments

Risk level: LOW

Many web application programmers use HTML comments to help debug the
application. While adding descriptive comments can be very useful for developers to
explain things to others and to remind themselves about how program code works, they
should never be able to be viewed by users, who might be potential hackers. To worsen
the situation, some programmers also leave sensitive data in comments. By sensitive data,
I am referring to things like file names that are related to the web application, old links
or links that were not meant to be browsed by users, and old code fragments. An attacker
who finds this type of data in comments can map the application’s structure and files,
expose hidden parts of the site, and study the fragments of code to reverse engineer the
application. These are stepping stones from which an attacker may develop a damaging
attack against the site.

28

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * WEB APPLICATION VULNERABILITIES AND THE DAMAGE THEY CAN CAUSE

HTTP Server Type and Version Number Disclosed

Risk level: LOW

It is always good security practice to not reveal any information about the
manufacturer or version of any network hardware or software since this information can
be used by a hacker to further investigate vulnerabilities associated with that specific
technology.

For instance, a common audit observation is that HTTP headers in HTTP responses from
web servers disclose the web server type and version number. An attacker or a malicious user
could exploit this information to mount attacks against the known vulnerabilities associated
with the type and version of the web server. These attacks may compromise the remote
system and allow the attacker to obtain administrator-level permissions on the web server,
which will grant full access to the system and all the data stored on it.

The remote system can then be leveraged to execute additional attacks against
internal systems in the organization.

Insufficient Session Expiration

Risk level: MEDIUM
I previously discussed the importance of secure sessions. It is also important that
sessions are changed frequently to make hacking them more difficult. Insufficient session
expiration may permit an attacker to reuse old session credentials or session IDs for
authorization. One auditor was able to replay a single request to the web application after
logging out. A session is the activity carried on between a web browser and a web server
from the time of logon to the time of logout. It runs over the HTTP or HTTPS protocols.
The lack of proper session expiration may also improve the likelihood of success
of certain attacks. An attacker may intercept a session ID, possibly via a network sniffer
or cross-site scripting attack. In another scenario, a user might access a web site from
a shared computer (such as at a library, Internet cafe, or open work environment).
Insufficient session expiration could allow an attacker to use the browser’s back button to
access web pages previously accessed by the victim.

HTML Does Not Specify Charset

Risk level: LOW

An easy-to-overlook security problem with creating HTML content is the developer
being able to specify which character set he wants to use; it is best default practice to use
the most secure one.

If a web response states that it contains HTML content but does not specify a
character set, then the browser may analyze the HTML and attempt to determine which
character set it appears to be using. HTML is an Internet standard that specifies how web
pages are formatted and displayed.

Even if the majority of the HTML actually employs a standard character set such as
UTF-8, the presence of nonstandard characters anywhere in the response may cause the
browser to interpret the content using a different character set.

29

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © WEB APPLICATION VULNERABILITIES AND THE DAMAGE THEY CAN CAUSE

This can have unexpected results and can lead to cross-site scripting vulnerabilities
in which nonstandard encodings like UTF-7 can be used to bypass the application’s
defensive filters. In most cases, the absence of a charset directive does not constitute
a security flaw, particularly if the response contains static content. Always review the
contents of the response and the context in which it appears to determine whether any
vulnerability exists.

Session Fixation

Risk level: HIGH

Yet another issue with the security of sessions occurs when sessions are not fully
terminated when the activity related to that session is ended. Many web application
audits have revealed that there exists a serious cookie problem where the web application
authenticates a user without first invalidating the existing session. The result is that the
application continues to use the session associated with the previous user. This creates a
risk of users gaining access to data that they do not have authorization to view.

Insecure Cookies

Risk level: MEDIUM

Since cookies can be part of access controls, five common security flaws related to
them are aptly included here at the end of the access control section. An HTTP cookie is a
short file of information sent by a web server to a web browser. The message is then sent
back to the server each time the browser requests a page from it. The purpose of the use
of the cookie is to enhance the user’s experience with the web application by directing the
user to the information of most interest within it.

We often see that the session tokens are not properly protected where the web
application environment provides a session capability; for example, when the user’s
session ID is displayed in the URL. This creates a vulnerability where an attacker could
hijack an active session and assume the identity of a valid user.

Even if authentication is required, it may be possible for a user to conduct it using
legitimate credentials but then change the session ID in the URL line to access another
user’s data without requiring reauthentication. A session token, or session identifier or
session ID, is an identification device used to identify a user to a web application. The
web application creates session tokens and sends them to a user’s browser. The web
browser in turn sends the token back to the web application along with any requests or
information in order to identify the user.

An external or even internal attacker could leverage the flaws in the authentication
or session management functions (e.g., exposed accounts, passwords, session IDs) to
impersonate users and even to escalate their privileges.

As a general comment, developers frequently build custom authentication and
session management schemes, but building these correctly is difficult. As a result, custom
schemes frequently have flaws in areas such as the login/logout, password management,
time-outs, Remember Me buttons, secret question, account updates, and so forth.
Finding such flaws can sometimes be difficult, as each implementation is unique.

30

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * WEB APPLICATION VULNERABILITIES AND THE DAMAGE THEY CAN CAUSE

Cookies with No Secure Flag

Risk level: MEDIUM

A cookie with no secure flag is another example of when it is important to not
unnecessarily reveal details even of a cookie. As a reminder, a cookie is a short file of
information sent from a server to a browser and its contents should remain unavailable to
potential hackers.

If the secure flag is set on a cookie, browsers will not submit the cookie in any
requests that use an unencrypted HTTP connection, thereby preventing the cookie from
being intercepted by an attacker monitoring network traffic. If the secure flag is not set on
the cookie, the cookie will be transmitted in clear text.

Cookies Set to Expire in the Distant Future

Risk level: MEDIUM

Prolonged expiration is another example of problems that can arise with secure
cookies. It is important to make sure that cookies do not last too long in order to reduce
the chances of them being read by a party with malicious intent.

A user’s session can be used by anyone with knowledge of the cookie. Since cookies
are not necessarily destroyed upon tabbing to a new page or to closing a window, it
can be easy for anyone with physical access to the user’s computer to reuse an existing
session.

We once saw a case where the configuration for cookie expiration was set for 30 years
from its initial creation, where best practices suggest cookie expiration should be only as
long as required for its useful life, pending any legal requirements for longevity.

Cookies with No HttpOnly Flag

Risk level: LOW

HttpOnly cookies are created by a server application and have security value. They
cannot be read from or written to in JavaScript on the client side, with these possibilities
only existing on the server side.

If the HttpOnly flag is not set or the cookie is created in client-side JavaScript, the
cookie can be read from and written to in client-side JavaScript as well as on the server
side. This is not desirable from a security perspective.

Client-side malicious code, such as a malicious JavaScript, could read the cookie
content. An attacker could leverage this vulnerability and capture confidential cookies via
an injected script. This confidential data can be used to build an attack.

Cookies Created on the Client Side

Risk level: LOW

The same concern as for cookies where the HttpOnly flag is not set, a party other
than the trusted server can send potentially malicious data back to the server
within a cookie.

31

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © WEB APPLICATION VULNERABILITIES AND THE DAMAGE THEY CAN CAUSE

Malicious client-side code could be used to manipulate a site’s cookies. This makes
it possible to move the enforcement of cookie logic from the application server to the
client-side application browser. It could allow an attacker to send unauthorized cookies
with malicious intent.

Cookies Scoped to a Parent Domain

Risk level: LOW

Another layer of security for cookies involves restricting their access to only the
applications with which they are intended to interact.

A cookie’s domain attribute determines which domains can access the cookie.
Browsers will automatically submit the cookie in requests to in-scope domains, which
will also be able to access the cookie. If a cookie is scoped to a parent domain, then that
cookie will be accessible to the parent domain and also by any of its other subdomains.

If the cookie contains sensitive data (such as a session token) and is accessible to
subdomains, then unauthorized persons could possibly gain access to the confidential
information contained in the cookies. A subdomain is a child or member of a main
domain. The main domain is called the root. For example, a root domain may be named
abcd.com and a subdomain may be called childof.abc.com.

Weak Input Validation at the Application Level

Risk level: HIGH

Unauthorized access is the golden nugget for hackers, and strong protection against
unauthorized access is strong validation of the identities of users requesting access to an
application.

While it is common practice for web applications to verify access rights before
making functionality visible in the user interface (UI), it should also be common practice
to revalidate authentication at various important access points within an application.

If revalidation of the user ID and user requests are not verified, an attacker may
be able to forge requests within an existing session in order to access unauthorized or
privileged information.

For example, in a transaction-processing web application, a user may be required to
first authenticate just for the privilege of gaining access to the application; a second time
when she selects the transaction class she wishes to execute, such as buy, sell, trade, or
look-up; and a third time to manage the movement of currency.

Lack of Validated Input Allowing Automatic Script
Execution

Risk level: HIGH

All user input must be filtered to restrict any data not expected and wanted by
an application. This includes any strings or groups of characters, especially control
characters, which can be used to gain unauthorized privileges and control of the
environment.

32

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * WEB APPLICATION VULNERABILITIES AND THE DAMAGE THEY CAN CAUSE

We have found quite the opposite to exist in real-world situations, where user input,
such as messages, text, and data input into e-mail fields, was not validated or filtered
before being accepted. This insecure manner of operation fails to prevent a malicious
user from inserting malicious code into the input fields. An attacker could use this
vulnerability to perform different attacks. These could include redirecting the user to
a malicious web site where he may be tricked into inputting private information or a key
logger using malicious code to steal authentication and other privileged material.

Unauthorized Access by Parameter Manipulation

Risk level: HIGH

This vulnerability involves having a potential security weakness to what is called
a parameter manipulation attack. The problem is inherent in input fields, where too
many choices of search parameters are given to users without sufficient controls over the
parameters they may choose. This may allow a user unintended privileges in accessing
parameters, such as session tokens, values stored in cookies, HTTP headers, and so on. A
malicious user could exploit this vulnerability to access and gather data about other valid
users. This could result in breaches to confidentiality and privacy.

A parameter manipulation attack compromises weak protection of data residing in
a user’s browser, where that data should otherwise be invisible and unable to be changed
by a user. The data can be session tokens, values stored in cookies, HTTP headers, or even
prices in web carts.

Buffer Overflows

Risk level: HIGH

Buffer overflows are a high-risk vulnerability that are widely publicized and should
be avoided.

Web applications may be vulnerable to buffer overflows, which occur when a
program attempts to store more data in a static buffer than it is designed to manage. The
additional data overwrites and corrupts memory, allowing an attacker to insert arbitrary
instructions on the web server or crash the system. For additional clarity, a buffer
overflow is an error that may occur when a program writes more data than expected to a
buffer or space allocated for an expected amount of data. The excess data overruns the
buffer’s boundary and overwrites adjacent memory. If this violation is allowed to occur, it
can permit a hacker to inject instructions and compromise an environment.

Applications may be susceptible to the insertion of too much data, which may cause
a memory overflow. This may allow dangerous instructions to be input. For example, a
hacker may enter a command line executable statement such as

<! —exec¥%20cmd="/bin/cat%20/etc/passwd"—>
into a legitimate web site form under the guise of an HTTP request to gain access to the
web server. If security configuration allows, the hacker will receive the /etc/passwd file

and gain access to files and, ultimately, the usernames and passwords stored on the web
server.

33

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © WEB APPLICATION VULNERABILITIES AND THE DAMAGE THEY CAN CAUSE

Forms Submitted Using the GET Method

Risk level: HIGH

This vulnerability is almost identical to the previously discussed vulnerability of
submitting data using the GET method. In this case, an entire form is submitted using the
GET method.

This is a common security vulnerability we see, where a number of the web forms
are submitted using the GET method. The GET method is considered insecure because it
visibly presents the submitted parameters and their values in the browser address bar.

A malicious user can exploit this vulnerability and perform a man-in-the-middle attack,
where she uses the visible information to impersonate either the browser to the web
application or the web application to the browser. An attacker could also do a parameter
manipulation attack by manipulating parameters within the visible URL text to gain
access to unauthorized data.

Redirects and Forwards to Insecure Sites

Risk level: LOW-MEDIUM

A session being redirected to an insecure web site is even more serious than users
surfing to the same dangerous page on their own, simply because there is an implied trust
relationship between the user and the page doing the redirecting.

Web applications frequently redirect and forward users to other pages and web sites
and use untrusted data to determine the destination pages. Without proper validation,
attackers can redirect victims to phishing or malware sites or use forwards to access
unauthorized pages.

Maliciously installed redirects may attempt to install malware or trick victims into
disclosing passwords or other sensitive information and may facilitate the bypass of
access control by an attacker.

Application Susceptible to Brute-Force Attacks

Risk level: LOW

This vulnerability arises when the application code does not stop a potentially
malicious user from gaining unauthorized access after a certain number of failed
authentication attempts, simply by denying access for a period of time or forever.

If the attacker’s false login attempts are not restricted after several attempts, the
attacker can proceed to discover a successful username and password combination and
use it to impersonate the account’s legitimate user, thereby gaining unauthorized access
to the application.

34

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * WEB APPLICATION VULNERABILITIES AND THE DAMAGE THEY CAN CAUSE

Client-Side Enforcement of Server-Side Security

Risk level: MEDIUM
When validation is performed on the client side, security is always affected to some
extent because it allows for much less control than when it is enforced on the server side.
If a server relies on validation mechanisms placed on the client side, an attacker
can modify the client-side behavior to bypass the protection mechanisms, resulting in
potentially unexpected interactions between the client and server. The consequences will
vary depending on what the mechanisms are trying to protect.

Injection Flaws

Risk level: HIGH

Injection vulnerability is caused by a lack of sufficient filtering or testing of data; that
is, input from a client. All data other than expected items such as size, type, and character
type should be rejected by the web application immediately.

This is a class of attacks that relies on injecting data into a web application in order
to facilitate the execution or interpretation of malicious data in an unexpected manner.
Examples of attacks within this class include cross-site scripting (XSS), SQL injection,
header injection, and many more. They result in running malicious code to steal and
compromise data.

Malicious instructions are included with user data and sent as part of a command
or query to an interpreter, which is a program used to convert high-level language
commands into machine-readable binary language, in a line-by-line fashion, in near
real time as part of a command or query. The attacker’s hostile instructions can trick
the interpreter into executing unintended commands or accessing data without proper
authorization.

In these attacks, the victims are web applications and the databases behind them,
but can also include the users of a vulnerable web site.

Five different injection vulnerabilities follow.

SQL Injection

Risk level: HIGH

A SQL injection is one of several types of injection vulnerabilities, which allows
malicious SQL statements and queries to be submitted to a web application without the
web application stripping them out.

Many web applications do not properly strip user input of unnecessary special
characters, such as string literal escape characters, nor do they validate information
contained in a web request before making SQL queries. SQL injection is an attack
technique that takes advantage of a security vulnerability in a web application to extract
or alter data within the database management system, which resides at the back end of
the web application. The data may come from an input field on a client’s web browser as
part of a command or request. The data is then used for doing SQL queries or executing
commands in a back-end database that are never intended to occur in normal activity.
If the vulnerability to this attack allows the database to respond to the malicious

35

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © WEB APPLICATION VULNERABILITIES AND THE DAMAGE THEY CAN CAUSE

instructions, the database is compromised. A less direct attack injects malicious code
into strings that will be kept in a table for future reference. When the stored strings are
subsequently used in an SQL command, the malicious code is executed.

Such attacks can result in access to unauthorized data, bypassing of authentication,
or the shutting down of a database regardless of whether the database resides on the web
server or a separate server.

Blind SQL Injection

Risk level: HIGH

A blind SQL injection is another flavor of an injection vulnerability, where a web
application does not filter or restrict requests for more information from the back-end
database. These types of requests should be very closely filtered by developers.

Blind SQL injection differs from a normal SQL injection in the way the data is
retrieved from the database. When the database does not output data to the web page and
instead displays an error message about the syntax of the query, an attacker is forced to
steal data by asking the database a series of true or false questions. This makes exploiting
the SQL injection vulnerability more difficult, but still possible.

The risks are the same as for other SQL injection attacks.

Link Injection

Risk level: HIGH

This attack occurs when a malicious user is allowed to input code that contains
carriage return (CR) and line feed (LF) characters into an HTTP RESPONSE header.
After the characters are injected, the attacker makes space in the header to write their
own malicious code. The malicious data in the HTTP header is then passed to the web
application via the client’s browser.

This vulnerability facilitates a cross-site request forgery attack, which is covered later
in this chapter.

HTTP Header Injection Vulnerability

Risk level: HIGH

An HTTP header injection vulnerability occurs when HTTP headers are created on
the fly based upon user input. This vulnerability occurs if strict filtering is not put in place
to restrict malicious characters. The vulnerability can allow for the HTTP response-splitting
attack to occur. An HTTP response header includes detailed information about an HTTP
sent or received message, which a typical user never sees but is quite available to view on a
browser. Viewing the header information is accomplished either by using the appropriate
command or getting the appropriate viewing tool for any web browser.

HTTP Response-Splitting Attack

Risk level: HIGH

The HTTP response-splitting attack compromises the HTTP header and is another
member of the injection vulnerability class. It occurs when insufficient filtering allows
the carriage return (CR) character and line feed (LF) character to be entered into the

36

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * WEB APPLICATION VULNERABILITIES AND THE DAMAGE THEY CAN CAUSE

HTTP header if the underlying environment is vulnerable to these characters. If attackers
can inject CR or LF line characters into the header, then they can also inject new HTTP
headers and write arbitrary content into the application’s response.

An attacker can exploit this vulnerability to mount an attack using multiple
attack vectors. This type of attack can lead to a full systems compromise and loss of
confidentiality, integrity, and availability.

Any attack that can be delivered via cross-site scripting can usually also be delivered
via header injection because the attacker can construct a request that causes arbitrary
JavaScript to appear within the response body. Further, it is sometimes possible to
leverage header injection vulnerabilities to poison the cache of any proxy server through
which users access the application. Here, an attacker sends a crafted request that results
in a “split” response containing arbitrary content. JavaScript is a scripting language
developed by Netscape to enable web authors to design interactive sites. It shares many
of the features and structures of the full Java language but it also can interact with HTML
source code, enabling dynamic content to be created.

If the proxy server can be manipulated to associate the injected response with
another URL used within the application, then the attacker can perform a “stored” attack
against this URL that will compromise other users who request that URL in the future.

Unauthorized View of Data

Risk level: LOW-HIGH

This is a common vulnerability, where sensitive information about the web
application environment is disclosed. This can assist a hacker in probing for more
sensitive data in preparation for an attack. The vulnerability arises when an unauthorized
user identifies an object such as a server or file name by a specific name. An indirect
reference is done by providing an alias name to the server or file, such as a number
value or a description of what the device does. This way, users only see alias names and
the application environment translates between alias names and real object names. If
authorization for each user is not verified prior to accessing an object, a malicious party
could gain confidential information about the environment, sufficient to plan an attack.

In actual audit situations, we have seen this particular problem, with web application
pages using the formal names of objects. Without an access control check or other
protection, attackers can manipulate these references and guess names of other objects
in order to access unauthorized data. This vulnerability can be compromised by both an
authorized and unauthorized user.

Web Application Source Code Disclosure

Risk level: LOW

This is a similar vulnerability to unauthorized view of data, but in this case it is
specifically related to actually revealing pieces of source code. Source code is the set of
instructions written in a programming language that regulate what an application does
and how it should operate. Application source code should not be accessible to web
users, as it may contain sensitive application information and back-end logic. This is not
an unusual occurrence, as we detected responses containing fragments of application
source code during separate audits.

37

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © WEB APPLICATION VULNERABILITIES AND THE DAMAGE THEY CAN CAUSE

While such leakage does not necessarily represent a breach in security, it can give
an attacker useful guidance for future exploitation. Leakage of sensitive data may carry
various levels of risk and should be limited whenever possible.

Web Directories Enumerated

Risk level: LOW

This unauthorized view is specifically related to web directories and involves
confidential information pertaining to names of directories and their subdirectories
being made available to users. This information, in the hands of a malicious person, can
be used to plan an attack.

It is often the case when we do vulnerability scans of external IP addresses that
we are able to enumerate several web directories. An attacker would most likely focus
on these directories (especially the ones with names that reveal the function of objects
within each directory) and try to fine-tune an attack accordingly.

Active Directory Object Default Page on Server

Risk level: LOW

An Active Directory object default page contains information that should only be
seen by the developers of a web application environment, but definitely not by web
application users. This information can be inadvertently revealed to users as the result of
incorrect parameter settings by developers.

Active Directory is a very widely used Microsoft Windows service that provides a
way to view and organize all the network resources, particularly for a complex and large
environment, in a digestible manner. Active Directory objects are all the bits and pieces
that the service organizes, such as users, computers, groups of users, supersets of groups
of users called organizational units (OU), and so on.

A malicious party could build on information details about network devices and the
application to fine-tune an attack. This reduces an attacker’s workload by reducing the
attack scope and risk of detection while increasing the probability of a successful attack.

Temporary Files Left in the Environment

Risk level: LOW

Here is another example of sensitive information being inadvertently made available
to a potential hacker and becoming a security vulnerability. In this case, the knowledge
relates to temporary files. Web application users can gain access to pages containing
temporary files simply by exploring web links. Although the temporary files are required
by the application, they should be accessible only to authorized users. Temporary files
are files typically used during an update or editing process. Once the process is complete,
the user saves the changes and the files get closed or deleted. However, if there are of
unplanned activities, such as restarting a computer or turning it off during an active
Windows session, the files may get left in the environment.

38

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * WEB APPLICATION VULNERABILITIES AND THE DAMAGE THEY CAN CAUSE

If the temporary files are found by a malicious party, confidential data may be
revealed. Further, if any of the temporary files can be written to by an attacker, malicious
code can be injected into it, and it may be vulnerable to being moved to a location
that inherently gives the attacker more access privileges. Finally, the script files for a
temporary file may reveal the application logic and other sensitive information such as
usernames and passwords.

Internal IP Address Revealed by Web Server

Risk level: MEDIUM

This is the old story of too much information being revealed to an unintended,
unauthorized individual. In this case, an IP address is the item of concern and could be
used by a hacker to build an attack.

For example, if a web server is misconfigured and identifies its internal IP address
in an HTTP header field, that IP address could allow unauthorized parties to learn
potentially dangerous information about the corporate network.

If an attacker knows the address space of the internal network, she may be able to
craft packets to get around network protection (firewall, intrusion detection
systems/intrusion prevention systems) and get access to the insecure internal network.

Server Path Disclosed

Risk level: MEDIUM

Another instance of otherwise-confidential information being revealed to any
unauthorized individual, in this case a literal file path is disclosed and could be used by a
hacker to build an attack.

For example, an HTTP response containing a file’s absolute path (e.g., c:\dir\file in
Windows or /dir/file in UNIX) may be clearly visible. An unauthorized party may be able
to exploit this information to access sensitive data on the directory structure of the server
machine, which it could then use for further attacks against the site.

Information such as the location of files on the server as well as directory structure
may be extremely beneficial for an attacker. It could allow the attacker to craft and
fine-tune an attack that will have a higher probability of success while reducing the effort
and elapsed time required to execute it.

Hidden Directory Detected

Risk level: LOW

Hidden directories are another type of directory information, which are intended for
viewing only by developers and have no business in the hands of web application users.
They are a directory (folder), such as an Active Directory or other types of directories, that
file system utilities do not display by default. They are commonly used for storing user
preferences and the states of various tools or utilities.

The web application exposes the presence of the hidden directory on the web
application server by issuing a 403 Forbidden Response code in response to users
attempting to access this directory without having access authorization.

39

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © WEB APPLICATION VULNERABILITIES AND THE DAMAGE THEY CAN CAUSE

Although the directory does not list its content, any available pieces of data could
reveal sufficient information for an attacker to develop an attack against the site. For
example, by knowing the directory name, an attacker could guess the content type and
possibly file names that reside in it, or subdirectories under it, and try to access them.

Unencrypted VIEWSTATE

Risk level: HIGH

Here is another instance of revealing too much information, in this case unencrypted
confidential data sent by a browser to its server. As a reminder, VIEWSTATE is a
temporary storage that allows ASP.NET users to store all the temporary information about
aweb page, such as which panels are open and in use, the options that are currently
chosen, the current data in each text box, and even the data for other information.

During an audit, we were able to see confidential material from the browser session
being sent back to the application in an unencrypted view state. Therefore, any user can
see information for which he does not have sufficient authorization.

Obsolete Web Server

Risk level: MEDIUM
Obsolete servers can be more vulnerable to attacks since they do not have the most
up-to-date security protection. An attacker could exploit this vulnerability to mount an
attack focused on known vulnerabilities in outdated versions of the web site platform. Such
an attack has a higher likelihood of success on this version than on a more secure version.
There are just too many real-life examples of this occurring, not only for web servers
but for all manner of servers.

Query Parameter in SSL Request

Risk level: MEDIUM

This is another variation of a vulnerability that can occur when developers use the
GET command instead of using other commands such as POST, which presents fewer
security risks. The GET method allows for requests to be stored in a browser’s history.

A vulnerability arises when the browser’s history is used to reveal the URLs
containing the query parameter names and values. If these names and values are not
confidential, then the confidential information is available to unauthorized parties.

During several web application vulnerability tests, we found HTTP GET requests in
browser histories that contained parameters containing confidential information.

Error Handling

Risk level: HIGH

This is a variation on the theme of revealing what may appear to be innocuous
information to unauthorized parties. In reality, a competent hacker may be able to
leverage the information while preparing an attack.

40

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * WEB APPLICATION VULNERABILITIES AND THE DAMAGE THEY CAN CAUSE

A malicious party may intentionally submit abnormal data in order to force error
messages. An attacker could use generic error messages such as “Username incorrect”
and “Password incorrect” or hidden files and directories to plan an attack.

Cross-Site Scripting Attacks

Risk level: HIGH

Cross-site scripting (XSS) attacks receive a lot of news coverage, principally because
of the dramatic increase in the use of scripting languages. The same-old problems creep
up even in these relatively new scripting languages—insufficient filtering of input data
from users and, conversely, banning all but expected types of data.

This XSS vulnerability is caused by flaws in client-side scripting languages such
as JavaScript and the HTML scripting language. It can arise when web applications
accept input data from users and dynamically include it in web pages without properly
validating it first. XSS vulnerabilities allow an attacker to execute arbitrary commands
and display arbitrary content in a user’s browser. In the victim’s browser, the malicious
code appears to be a legitimate part of a web site and causes it to act as an unintentional
accomplice to the attacker.

Cross-site scripting is the most prevalent web application security flaw. XSS flaws
occur when an application includes user-supplied data in a page sent to the browser
without properly validating or rejecting it. There are three known types of XSS flaws:

e stored
e reflected
e DOM based

The consequences of an XSS attack are the same regardless of the type of flaw,
with the difference between them only in how the payload arrives at the server.

The damaging results of the XSS attack include: user sessions being hijacked to
steal or to change confidential information, defacement of web sites, insertion of hostile
content, redirection of users, disclosure of the end user’s session token, and the platform
on which the user’s browser is running being attacked.

Reflected Cross-Site Scripting Attack

Risk level: HIGH

In a reflected XSS attack, malicious data enters a client’s browser by the browser
making a request to a compromised web site. The browser becomes infected with malicious
malware code. When the client then accesses its trusted web application, the malware on
the browser secretly requests personal information from the web site. The web site sends or
reflects the data to the compromised browser, which in turn sends the personal information
to the attacker.

41

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © WEB APPLICATION VULNERABILITIES AND THE DAMAGE THEY CAN CAUSE

The most common mechanism for delivering malicious content is to include it as
a parameter in a URL that is posted publicly or e-mailed directly to the victim. URLs
constructed in this manner constitute the core of many phishing schemes, involving an
attacker convincing a victim to visit a URL that refers her to a vulnerable site. Once the
victim is on the site, the attacker will cause malicious code to execute within the user’s
browser.

The attacker-supplied code can perform a wide variety of actions, such as stealing
the victim’s session token or login credentials, performing arbitrary actions on the victim’s
behalf, and logging her keystrokes. The attacker can induce a user to issue his crafted
request by:

e Requesting the transfer of private information, such as cookies
that include session data, from the victim’s computer to that of the
attacker, who then can hijack the session

e Sending malicious requests to a web site, which could be
especially dangerous if the victim has administrator privileges

e Conducting phishing attacks that emulate trusted web sites and
trick the victim into entering a password, allowing the attacker to
compromise the victim’s account

e Exploiting browser vulnerabilities that enable the attacker to take
over the victim’s computer (drive-by hacking)

Stored Cross-Site Scripting Attack

Risk level: HIGH

In this attack, the malicious code is stored permanently on the compromised web
application, such as in the back-end database. In a compromise situation, when a client’s
browser retrieves information from the compromised web site, it also retrieves malware.
In this case, there are two sets of victims: the compromised web site and the visitors to the
compromised web site. The order of the attack sequence is:

1. The attacker inserts malicious code into a web application.

2. Thevictim, who is a client of the web site, requests a page
from the web site.

3. The compromised web site unwittingly sends the malicious
code to its client’s browser.

4. The compromised client’s browser sends confidential
information back to the attacker’s server.

42

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * WEB APPLICATION VULNERABILITIES AND THE DAMAGE THEY CAN CAUSE

Cross-Site Request Forgery Attack
Risk level: HIGH

Cross-site request forgery (CSRF) is yet another vulnerability caused by insufficient
filtering of data input into a web application. This complex attack dupes a browser into
being an unwitting participant in an attack against an otherwise-trusted web site. This
type of attack sounds like the XSS attack just defined. However, it differs from XSS in that
here the attacker uses the victim’s browser as a conduit through which to send malicious
instructions to a web application currently authenticating the victim. In this case, there
are two concurrent victims:

e the client whose browser is being remotely controlled by the
attacker, who is an unwitting participant in the attack

e the trusted web site to which the client browser is authenticated,
which is the ultimate victim of the attack

The CSREF attack forces a logged-on victim’s browser to send a forged HTTP request,
which includes the victim’s session cookie and any other automatically included
authentication information, to a vulnerable web application. The attacker forces
the victim’s browser to generate seemingly legitimate requests and send them to the
vulnerable application. In the security world, a cookie is used as a messenger to carry
session identification data related to a specific session. The session identification is called
a session cookie or session token or session identifier.

CSRF takes advantage of the fact that most web apps allow potential attackers to
predict all the details of a particular action. Since browsers send credentials like session
cookies automatically, attackers can create malicious web pages that generate forged
requests indistinguishable from the legitimate ones.

Security Misconfigurations and Use of Known
Vulnerable Components

Risk level: MEDIUM

It is imperative for operations teams dealing with web applications to ensure their
configurations of hardware and software are free of known vulnerabilities. However,
we have commonly seen misconfigurations that expose web applications to threats.
This issue is exacerbated because there is a huge volume of documented security
vulnerabilities, primarily published in good faith for the benefit of protecting applications
and networks but also serving as guidance for hackers. Off-the-shelf and widely available
software components such as libraries, frameworks, and other software modules can
have security weaknesses that are able to be exploited by parties with malicious intent.
The problem is exacerbated if these components run with full privileges. If a vulnerable
component is exploited, such an attack can facilitate serious data loss or server takeover.
This is a common problem, as few development teams focus on ensuring that their
components/libraries are up to date.

43

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © WEB APPLICATION VULNERABILITIES AND THE DAMAGE THEY CAN CAUSE

The full range of weaknesses is therefore possible, including injection, broken
access control, cross-site scripting, and so forth. The impact could range from minimal to
complete host takeover and data compromise.

Denial-of-Service Attack

Risk level: HIGH

Many web applications are vulnerable to denial-of-service (DoS) attacks that can
dramatically curtail access or even result in a total shutdown of the affected network.
Attackers can use various mechanisms to launch a DOS attack, such as sending many
TCP requests and using an Internet control message protocol (ICMP) to flood a device
with ping requests. ICMP is a fundamental Internet protocol; in this case, it is used by
devices on a network to send error and control messages back and forth to each other.
ICMP flooding is malicious use of the ICMP protocol to deluge a target device with so
many messages as to overwhelm its ability to respond or to therefore properly function.

Excessive numbers of TCP and ICMP ping requests, which are simply various flavors
of Internet traffic, are very high generators of unnecessary traffic. When used as designed,
these protocols work well; misused, they are tools for DoS attacks. DoS attacks may be
simple, such as repeated requests for a single URL from a single source, or more complex,
such as a coordinated effort from multiple machines or botnets to barrage the URL.

Related Security Issues

Risk level: HIGH
There are several security issues that can be sources of the previous vulnerabilities of
which users should be aware.

Storage of Data at Rest

Risk level: HIGH

People are very concerned about data in motion, such as data and web sites, being
compromised during transactions. However, there is also an entire class of vulnerabilities
associated with data at rest, such as the security used to store data associated with web
applications.

Many web application logs contain sensitive information, such as passwords, session
IDs, web server requests, and statistics, and by default many applications provide logs
that detail the product’s installation data. These logs and other sensitive files may be
stored on the web server or back-end database and hackers can retrieve them to perform
unauthorized functions, view their content, or compromise the resource.

44

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 * WEB APPLICATION VULNERABILITIES AND THE DAMAGE THEY CAN CAUSE

Storage of Account Lists

Risk level: HIGH

Hackers can also use account information to plan an attack. Identifying usernames
by their accounts is a strong tool to leverage if this opportunity presents itself.

Here are several real-life examples of vulnerabilities associated with account
information we obtained during the course of one audit:

e anaccount list stored in a file with minimum security controls

e anaccount list containing many stale accounts, including
previous employees and contractors no longer providing services
for the company

e the eventlog for an account file indicating several failed attempts
by existing employees at logging into stale accounts

Password Storage

Risk level: HIGH

Gaining valid credentials for an application is bread and butter for a hacker.

The ability to gain even hints about how passwords are built and stored is valuable for
a hacker who is building an attack.

Most applications have a password recovery system that is activated by clicking
on the password reminder link. This identifies the fact that passwords are stored or
encrypted as plain text. This unsecure form of storage may allow an attacker to gain
access to passwords, which, in combination with a valid username, could provide
unauthorized access to confidential corporate information including a client’s personal
and sensitive data.

Since this type of application is also susceptible to SQL injection, the password
list is definitely at risk. A successful SQL injection attack would make the plain text or
encrypted passwords vulnerable to exposure.

Insufficient Patch Management

Risk level: HIGH

One of the most common and high-risk activities an operations team can commit
is to not install security-related patches in a timely manner. Since descriptions of
vulnerabilities and their associated patches or corrections are widely published to assist
with security, the same information is just as available to potential hackers.

During the network-vulnerability portion of our audit, we identified out-of-date
revision levels in several third-party software platforms associated with the web
application environment.

This may be indicative of an insufficient patch-management process. Since
insufficient/insecure patches result in a very large percentage of web application
vulnerabilities, this section needs to be included as part of a web application vulnerability list.

45

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © WEB APPLICATION VULNERABILITIES AND THE DAMAGE THEY CAN CAUSE

Summary

There are many well-known and clearly documented classes of web application
vulnerabilities. Each class of vulnerability contains well-documented members of its class.
There will undoubtedly be more classes and class members that evolve right
along with changes in web application infrastructure and the progression of creative
cyberattacks. The cyberattackers will in turn create threats to compromise these
vulnerabilities, thereby creating new risk.
The documented remediations for all these classes and class members are the
subject of Chapter 4.

46

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4

Web Application
Vulnerabilities and
Countermeasures

Chapter 3 identified many commonly found vulnerabilities in my real experience as an
auditor. This chapter explains how to remediate each vulnerability. For both chapters,
the vulnerabilities and their remediations are grouped into classes or variations on a
theme of susceptibility. The classes are:

e authentication

e session management

e access control

e inputvalidation

e redirects and forwards

e injection flaws

e unauthorized view of data
e error handling

e cross-site scripting

e security misconfigurations
e denial of service

e related security issues

For brevity and clarity, in this chapter the recommendations for eliminating each
vulnerability are provided in list form following a brief introduction.

47

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © WEB APPLICATION VULNERABILITIES AND COUNTERMEASURES

Note A summary table featuring the vulnerability class definitions from Chapter 3 and
the remediations discussed in this chapter is available in spreadsheet format with the
downloads for this book. See the Source Code/Downloads tab on the book’s Apress product
page: www.apress.com/9781484201497.

Lack of Sufficient Authentication

Risk level: HIGH

The hacker’s mantra is acquiring unauthorized access. The mantra of the security
manager is to provide strong authentication and to force all potential users to provide
strong evidence as to who they are and to what degree of access they are entitled.
This section deals mainly with the front-end process of identification and how to not
unnecessarily reveal secrets that could compromise authentication. The back end of this
process is associating users with what privileges they are entitled to, but the details of
implementing and enforcing credentials is beyond the scope of this chapter.

It is important to ensure there is a corporate authentication policy. The policy should
specify all aspects of authentication, including password management, designation
of privileges, and the prevention of leakage of confidential information relating to
authentication. The policy should also specify the requirements that will be used to
guarantee the adherence of the security department, IT operations, and all users. Some of
these requirements include:

e Password strength: Passwords should have restrictions that
require a minimum size and complexity. Complexity typically
involves the combinations of alphabetic, numeric, and/or
nonalphanumeric characters (e.g., at least one of each) in a
password. (See the “Weak Password Controls” section.)

e Password use: Users should be restricted to a certain number of
login attempts per unit of time. Repeated failed login attempts
should be logged. Passwords provided during failed login
attempts should not be recorded, as this may expose a user’s
password to whoever can gain access to this log.

e Nondescriptive error messages: The system should not indicate
whether it was the username or password that was wrong if a
login attempt fails.

¢ Failed login attempt notification: Users should be informed
of the date/time of their last successful login and the number of
failed attempts to access their account since that time.

48

www.it-ebooks.info

http://www.apress.com/9781484201497
http://www.it-ebooks.info/

CHAPTER 4 © WEB APPLICATION VULNERABILITIES AND COUNTERMEASURES

e Password change controls: Users should be required to change
their password periodically and should be prevented from reusing
previous passwords. There should be requirements for doing so,
including:

e Apassword change mechanism should be used wherever
users are allowed to change a password, regardless of the
situation.

e Users should always be required to provide both their old
and new password when changing their password (like all
account information).

e The system should require users to reauthenticate whenever
changing their e-mail address—otherwise any attacker
who might temporarily get access to their session
(e.g., by walking up to their computer while they are logged in)
can simply change their e-mail address and request a
“forgotten” password be mailed to them.

e Strong authentication, including authentication tokens: Strong
authentication, such as HTTPS, with encrypted credentials should
be employed. While authentication to a web application typically
involves the use of a user ID and password, stronger methods of
authentication are also commercially available such as software-
and hardware-based cryptographic tokens or biometrics.

¢ Required reauthentication: Reauthentication should be required
at specified time intervals or when users move between web pages.

¢ Testing and enforcement of authentication: Authentication
and all potential ways to circumvent it should be regularly tested.
A user privilege policy should be enforced, specifying what
authenticated users are and are not allowed to do.

Weak Password Controls

Risk level: HIGH

Because passwords are one of the most important elements to Internet security,
they must be protected and changed regularly. The first requirement is that the password
cannot be identical to the previous 13 passwords. A policy for enforcing password
complexity also should be implemented, with the minimum requirements of

e atleast one nonalphanumeric character
e atleast two numeric characters
e atleasttwo uppercase letters

e atleast two lowercase letters

49

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © WEB APPLICATION VULNERABILITIES AND COUNTERMEASURES

Passwords Submitted Without Encryption

Risk level: HIGH

Since passwords are susceptible to theft, it should be ensured that they are protected
by encryption or by hashing, which is a form of one-way encryption.

All passwords should be hashed for session authentication as well as during
transmission. Additionally, passwords should be stored as hashed values when the data
is at rest.

Username Harvesting

Risk level: HIGH

Since in two-factor authentication, the other critical component besides a
password is the username, usernames should always be kept confidential and should
not be inadvertently made available for potential hackers to harvest (steal). To mitigate
harvesting, confidential information about usernames and passwords should not be
inadvertently disclosed, as might happen in:

e Error messages: Error messages should be user friendly, but they
are also required to be ambiguous and uninformative, especially
for unauthenticated users.

¢ Login-screen error messages: Any error message in the login
screen should be along the lines of “User name or password is
incorrect.”

¢ Forgot Password screen: The error message in the Forgot
Password screen should specifically avoid identifying which that a
registered user’s information is stored in the system database.

Weak Session Management

Risk level: LOW-HIGH

All transactions or sessions between a client web browser and a web application
must be encrypted as a basic security measure. This will reduce the chance of sensitive
data and the session being compromised. To do this:

e Encryptall transactions. All transactions between web browsers
and web applications must be encrypted with the Security
Sockets Layer (SSL) or TLS protocol so that your application will
run on an SSL/HTTPS-secured site.

e Ensurethe SSL or TLS version you are using is up to date. After
testing them, only the most current security patches should be
implemented to make sure they do not cause any problems.
Using an outdated version of the SSL/TLS with known security
vulnerabilities is a security red flag.

50

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © WEB APPLICATION VULNERABILITIES AND COUNTERMEASURES

e Obtain SSL or TLS certificates from a trusted certificate authority.
The root certificates with their public key should be installed in
any web application platform or operating system.

e Do not use homemade or self-signed certificates. Industry-trusted
certificates are simply more secure than self-signed certificates.

e Encrypt or hash as appropriate all security-related data at rest,
such as keys, certificates, and passwords. Unencrypted high-risk
data, particularly data in motion, is simply too important to not
secure with encryption or with hashing.

e Ensure secure storage of secrets in memory. Developers must
adhere to processes for scrubbing confidential data that exists in
memory at the end of sessions. It is important to ensure that any
long-term data storage is adequately protected by implementing
strong authentication on a need-to-access basis.

e Approve algorithms for SSL or TLS. Do not use any algorithms
other than industry-approved ones. Keep your algorithm choice
updated. No homegrown algorithms, ever.

e Choose approved algorithms and randomize them. Choose
randomizing algorithms for use by SSL or TLS that are approved
by security experts and are subject to public scrutiny.

e Choose approved ciphers. Similarly, choose expert-approved and
publicly scrutinized ciphers for use by SSL OR TLS.

e Ensure that initiation is only from within HTTPS. Ensure that
web site access or data transfer can only initiated from within
an HTTPS connection.

e Test for restricted access control within a web site. Test the web site
to see whether access can be initiated or data transfer can occur
anywhere on the site that has an HTTP connection, and if it can,
migrate to HTTPS.

Weak SSL Ciphers Support

Risk level: HIGH

Secure Socket Layer (SSL) is a security measure that needs to be configured with
its most secure, up-to-date options; in this case, by choosing a strong cipher option.
Reconfigure the web server to use only a strong cipher suite for SSL.

51

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © WEB APPLICATION VULNERABILITIES AND COUNTERMEASURES

Information Submitted Using the GET Method

Risk level: MEDIUM

Several ways exist to make and submit requests within HTTP; some are less secure
than others. Two methods for a request-response between a client and server within
HTTP are GET and POST. In order to optimize the security of HTTP communications,
all forms submitting passwords should use the POST method for submitting data to be
processed to a specific resource. To achieve this, use POST (method="POST") for the FORM
tag. It may also be necessary to modify the corresponding server-side form handler to
ensure that submitted passwords are properly retrieved from the message body rather
than from a URL query string.

In a nutshell:

e GET: Requests data from a specified resource. It is less secure, as
it writes requests in the URL in the form of a URL query string.

e POST: Submits data to be processed to a specified resource. POST
is more secure than a GET command, as it stores request data in the
body of a message and not in a URL string. Also, the POST query
strings are not stored in browser history or in web server logs.

Self-Signed Certificates, Insecure Keys, and Passwords

Risk level: HIGH

Any stored confidential information is subject to compromise. The best policy is to
minimize the amount of stored critical information and only keep information that is
absolutely necessary. A few tips for storage follow:

e Instead of storing information, require users to re-enter it. Rather
than encrypting and storing credit card numbers or other critical
information with a high threat value, simply require users to
re-enter the information during each new session.

® Hash, don’t encrypt, passwords. Hashing is used to verify the
accuracy and validity of data. Instead of storing encrypted
passwords, use a one-way function such as SHA-1 to hash the
passwords. Hashed values are much more difficult to convert
to readable plain text than encrypted values. Hashing is a
one-direction-only method of encrypting short amounts of data
by using a hashing algorithm that cannot be decrypted. The way
it works is that two parties use the same hashing algorithm on
the same confidential data, such as a password, in order to create
hashed values. The two hashed values are then compared, and
if they are the same, then both parties have agreed to the validity
of the confidential information. In this way, no confidential
information is actually ever shared or transmitted.

52

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © WEB APPLICATION VULNERABILITIES AND COUNTERMEASURES

e Encryptall critical information. Encryption is used to hide
information that is meant to be accessed only by intended
recipients, and so it has a very different use than hashing.

Choose an encryption algorithm that has been exposed to public
scrutiny and make sure that there are no open vulnerabilities.
Encapsulate the cryptographic functions that are used and review
the code carefully. Be sure that secrets, such as keys, certificates,
passwords, and application logs, are stored securely.

e Divide the master secret for encryption keys between at least two
locations and assemble them at runtime. Such locations might
include a configuration file, an external server, or a place within
the code itself.

Username Harvesting Applied to Forgotten Password
Process

Risk level: HIGH

Although error messages should be user friendly, they should also be ambiguous
and uninformative, especially for unauthenticated users. The authentication error
message should be the same for all users and should be along the lines of “User password
could not be reset.”

Autocomplete Enabled on Password Fields

Risk level: LOW

To prevent browsers from storing credentials entered into HTML forms, the attribute
should be configured as autocomplete="off" within the FORM tag (to protect all form
fields) or within the relevant INPUT tags (to protect specific individual fields).

Session IDs Nonrandom and Too Short

Risk level: MEDIUM

You should use a random session ID with a length of at least 128 bits (16 bytes). More
information is available at waw.owasp.org/index.php/Session_Management Cheat_
Sheet#Session ID Properties.

53

www.it-ebooks.info

http://www.owasp.org/index.php/Session_Management_Cheat_Sheet#Session_ID_Properties
http://www.owasp.org/index.php/Session_Management_Cheat_Sheet#Session_ID_Properties
http://www.it-ebooks.info/

CHAPTER 4 © WEB APPLICATION VULNERABILITIES AND COUNTERMEASURES

Weak Access Control

Risk level: LOW-HIGH

Restricting access to only authorized users is core to strong application security.
We will look at the requirements for limiting access to a web application and its
server here.

For every application function:

e Do not allow unauthorized access to an application. Ensure that
unauthorized users cannot gain access to functions to which they
should not have access at the application level.

e Restrict unauthorized access to a server. Ensure unauthorized
users cannot gain access to functions to which they should not
have access at the server level.

o Verify authentication with server-side information. Ensure that
server-side checks on authentication can be independently
verified without information initiated solely on the client side,
such as by verifying the user IP address with credentials.

o Test authentication of roles with various privileges. Use a proxy
with maximum privileges to browse the applications. Then revisit
restricted pages using a less privileged role. The server responses
should be more restrictive for the less privileged role. If this is
not the case, insufficient authentication enforcement may be
indicated.

e Utilize a single, unified authentication scheme. Use a single,
unified authentication mechanism and single storage facility
for all authentication and privileges by function throughout the
entire web application infrastructure.

e Ensure simplicity of management of privileges. Make sure that
the authentication mechanism provides for easy management of
privileges by function according to user or user group.

e Deny access by default. Ensure that enforcement mechanisms
deny all access by default by requiring that access to every
function is explicitly granted for specific roles.

e Testalllogic functions. Prior to allowing access, test all
logical/if conditions to ensure that for all functions involved in the
workflow all conditions are in the proper state.

e Do not reveal unauthorized information. Do not show links or
buttons to users who do not have authority to use these functions.

54

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © WEB APPLICATION VULNERABILITIES AND COUNTERMEASURES

Frameable Response (Clickjacking)

Risk level: LOW
Frames are a convenient tool for developers to divide a screen into sections, but they
must be well secured or they pose security risks. To do so:

e Carefully secure framing. Require the application to either return a
response header with the name of any frame used, return IFrame
or X-Frame options with the value DENY to prevent framing
altogether, or return the value SAMEORIGIN to allow framing only
by pages with the same origin as the response itself. For clarity,
frames, IFrames, and X-Frames are additional tools available to
web site developers that allow a developer to divide a screen into
different sections so that each section can get information from its
own separate information source.

e Usethe latest web server version. It is recommended to upgrade
to the latest web server version available and to verify that the
version effectively deals with the framing issue.

Cached HTTP Response

Risk level: MEDIUM
Cache is used to speed up response time. As typically used in the context of this book,
it refers to clumps of often-accessed data stored within a user’s browser or in memory
for the sole purpose of reducing the need for a browser or a program to execute a slower
query into the main memory of a server. Caching means faster speeds, but it also has the
inherent security risk of being compromised while holding confidential information.
Due to the confidentiality issues involved, a web application should return caching
directives instructing browsers not to store local copies of any sensitive data. Often, this
can be achieved by configuring the web server to prevent caching for relevant paths
within the web root. Alternatively, most web development platforms allow control of the
server’s caching directives from within individual scripts. Ideally, the web server should
return the following HTTP headers in all responses containing sensitive content:

Cache-control: no-storePragma: no-cache

HTTP messages have a structure that includes options that a developer can choose
between. The options are similar to menu selections in a restaurant. One of the options
is called Cache-Control. A developer may choose to allow or not allow caching with
the Cache-Control header option. Pragma is the legacy HTTP/1.0 implementation
for managing cache, and Cache-Control is the HTTP/1.1 implementation for cache
control. They both prevent the client browser from caching a response. Older clients
may not support HTTP/1.1, which is why that header is still in use. Caching, or storing,
information within a client browser is used to improve response speed. In cases where
privileged information such as passwords is cached, security vulnerabilities are created.

55

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © WEB APPLICATION VULNERABILITIES AND COUNTERMEASURES

In situations where legacy HTTP 1.0 servers do not support the Cache-Control
headers, the HTTP Pragma: No-Cache header can be used. However, Pragma: No-Cache
can prevent caching only if it is used for an SSL page.

The best way to implement Pragma: No-Cache is to place another header just before
the HTML code ends. This way, the browser will parse the Pragma: No-Cache directive
after the complete page has been loaded. The reason for this is the Pragma: No-Cache
directive is used in the Meta tag in the header, which is normally at the beginning of
an HTML web page.

When an HTML code is parsed (in a top-to-bottom approach), the browser looks for
the presence of the page in the cache as soon as it reads the Pragma directive. But since at
that moment the page has not been cached (a web page gets cached only after it has filled
at least 32 kilobytes of the buffer), the browser will not clear the cache and it will go ahead
with parsing the rest of the code. As a result, all the contents of web page that are loaded
after the parsing of Pragma get cached.

Sensitive Information Disclosed in HTML Comments

Risk level: LOW

Similarly to not allowing information about HTTP sessions to remain on a computer,
there should be no sensitive information stored on the web site or web application, as
it could be viewed by a potential hacker. To ensure that this does not happen, check all
HTML comments for:

e vital information, including file names and file paths
e previous (or future) site links
e sensitive information

e source code fragments

HTTP Server Type and Version Number Disclosed

Risk level: LOW

Similar to the caution of disclosing unnecessary information about a web application
environment, you want to avoid revealing information specific to the make and model of
the web server. Modify the web server response to include only the minimum information
required by the client-side application. Several tools and utilities can be used to perform
this operation.

56

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © WEB APPLICATION VULNERABILITIES AND COUNTERMEASURES

Insufficient Session Expiration

Risk level: MEDIUM

Sessions need to be set to expire after the completion of a session, during periods of
inactivity, and after a predetermined maximum amount of time in order to minimize the
potential of a hacker gaining access to session information or hijacking a session. Session
expiration should include:

¢ Inactivity expiration: Ensure that each session expires
automatically after a sufficient amount of time of inactivity.

e Absolute time-out: Ensure that each session expires
automatically after a defined amount of time.

e Deletion of session information: Ensure that session information
is destroyed on the client and server side upon user logout.

e Validation of new users: Enforce the invalidation of all existing
session identifiers prior to authorizing a new user session.

HTML Does Not Specify Charset

Risk level: LOW

It is important for web application developers to specify which character set, or
charset, they want used within HTML content, as some sets are more prone to security
breaches than others. To do this:

e Specify character set. For every response containing HTML
content, the application should include within the Content-Type
header a directive specifying a standard recognized character set;
for example, charset=IS0-8859-1. As a double check to this
recommendation:

a. Ensure the user interface does not show navigation to
unauthorized functions.

b. Ensure server-side authentication or authorization
checks are not missing.

e Test with various privilege roles. Using a proxy, browse an
application with a privileged role. Then, retest using a less
privileged role. If the server responses are alike, there are
probably vulnerabilities. Some testing proxies directly support
this type of analysis.

e Test access control by privilege. To verify that the authorization
works, directly test the logic of access control implementation in
the code by logically following a single privileged request through
the code.

57

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © WEB APPLICATION VULNERABILITIES AND COUNTERMEASURES

Session Fixation

Risk level: HIGH

Session fixation permits an attacker to hijack a valid user session by changing a
session ID. In computer network security, session fixation attacks attempt to exploit
the vulnerability of a system that allows one user to fixate (set) another user’s session
identifier (SID). Most session fixation attacks rely on SIDs being accepted from URLs
(query string) or from POST data.

Prudent countermeasures that can be taken include:

e Avoid transmission of SIDs. A web site should be prevented from
receiving SIDs in GET/POST variables contained within URLs.

e Delete the old SID and create a new SID. When authenticating
a user, a web application must delete any and all previous SID
numbers and assign a new SID for each new session.

Insecure Cookies

Risk level: MEDIUM

Since cookies have parameters that can be set, it is relatively easy for a developer to
choose security-healthy options. In this case, the parameters deal with a “secure flag” option
and choosing a browser that automatically includes encryption. The following sections
describe remediations for five cookie vulnerabilities that we too often see during audits.

Cookies with No Secure Flag

Risk level: MEDIUM

The simple way to solve this problem is to enforce that the Secure flag is set for all
cookies and, of course, using HTTPS for all transactions. The Secure flag is an option
that can be set by an application server when sending a new cookie to the user within an
HTTP response. The purpose of the Secure flag is to prevent cookies from being observed
by unauthorized parties due to the transmission of a cookie in clear text.

Cookies Set to Expire in the Distant Future

Risk level: MEDIUM
Use the option within cookies to set expiration dates and have cookies expire when
the user closes the browser—that is, mark the cookie as “Session only.”

Cookies with No HttpOnly Flag

Risk level: LOW

Another option within cookies is to set the HTTPOnly flag as “on.” If the HttpOnly
attribute is set on a cookie, then the cookie’s value cannot be read or set by client-side
JavaScript. This measure can prevent certain client-side attacks, such as cross-site
scripting, from trivially capturing the cookie’s value via an injected script.

58

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © WEB APPLICATION VULNERABILITIES AND COUNTERMEASURES

Cookies Created on the Client Side

Risk level: LOW

It is critical in cookie security to ensure that only trusted cookies are used. By default,
any cookie or piece of software created by a user is not secure. The primary trusted
partner in a relationship between a user and a web application is the web application.
Therefore, it is prudent to enforce the creation of server-side cookies only and not allow
those cookies created on the client side.

Cookies Scoped to Parent Domain

Risk level: LOW

Cookies can be a very good attack point for hackers depending on what is stored
in them. Information can be exposed when the appropriate scope oy, in this case, the
scope of the domains with access to the cookie is not set for cookies. It is important to set
stringent restrictions on cookie paths to include only intended directories and ensure that
no unintended subdomains are included in the paths.

Weak Input Validation at the Application Level

Risk level: HIGH

Since access control is paramount to security, strong validation is required
within a web application both for the authentication and validation of input.
The recommendations for this general class are the same as those listed earlier in the
“Unauthorized Access” section.

Lack of Validated Input Allowing Automatic
Script Execution

Risk level: HIGH

Any active code that is inserted into a data input field is a security landmine,
especially for a field not expecting to receive active code. Input fields need to be stringently
filtered to keep out unwanted active code. To ensure that active code is restricted:

e Validate all user input. All user input must be validated before
being written to the database. Validation should occur within
the server application because client-side validation cannot be
trusted.

e Discard and report nonconforming text. Upon any deviation from
the required text pattern (e.g., an unusual e-mail address pattern,
nonalphabetic characters for first or last names), all filtered-out
text should be reported as an error to the user and discarded from
further processing. It is also prudent to keep a log of discarded
text transactions for security analysis.

59

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © WEB APPLICATION VULNERABILITIES AND COUNTERMEASURES

Unauthorized Access by Parameter Manipulation

Risk level: HIGH

Hackers gaining unauthorized access to sensitive data is another example of why
building security into the design for hiding and restricting access is so important for web
application planning. In this case, malicious users change data or lever what they would
otherwise not see toward building an attack. To restrict access:

e Authenticate all user queries. All query information should be
verified and authorized on the web server before being allowed
to access any data. The validation actions include associating
the requested information with the authenticated user, such as
by verifying that there is a connection between the user account
and the user name. For clarity, a parameter manipulation attack
compromises weak protection and bad application design in
order to act upon data residing in a user browser that would
otherwise be invisible and unable to be changed by a user. The
data can be session tokens, values stored in cookies, HTTP
headers, or even prices in web carts.

e Reject and alert on unauthorized requests. Any unauthorized
requests should be rejected and an alert should be sent to the
system administrator for further investigation. It is also prudent to
keep a log of rejected request transactions for security analysis.

Buffer Overflows

Risk level: HIGH

Since buffer overflows can result in hackers gaining access to otherwise unauthorized
data, it is important to take the following proactive measures to make sure they are never
allowed to occur:

o Test for and identify buffer overflow vulnerabilities. Do this
by entering large values into the form-input and header and
cookie fields. Look for a lack of filtering or outright rejection of
inappropriate data.

e Enforce the length of all input fields. You should ensure that
input fields do not allow arbitrary amounts of data by filtering or
disallowing any data beyond the absolute-maximum number of
expected characters.

60

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © WEB APPLICATION VULNERABILITIES AND COUNTERMEASURES

Form Submitted Using the GET Method

Risk level: HIGH

There are more secure HTTP methods of retrieving and submitting data than the GET
method, so in a nutshell don’t use it. Instead, use the POST method. All forms and user
input can be submitted with it, and it will embed the submitted information in the HTTP
body and not in its header. This will ensure the data is encrypted when using HTTPS.

Redirects and Forwards to Insecure Sites

Risk level: LOW-MEDIUM

Since sending a browser session to a surprise or unexpected web site can lead to
a security breach for the user, it is essential to put into place mitigation steps to ensure
unintended redirects and forwards simply do not happen. In order to set them up:

e Don't use redirect parameters. If destination parameters can’t be
avoided, then ensure that supplied values are validated and that
they are authorized for the user only. Also ensure that unknown,
potentially dangerous URL values cannot be input.

e Use only mapped values, not the actual URL. If destination
parameters must be used, they should be mapped values rather
than the actual destination URL. Server-side code should
translate this mapping value to the target URL.

e Forward or redirect table. Wherever possible, create an
updateable forward or redirect table that the application will send
inquiries to in order to source valid URLs.

e Test for unintended or broken redirects. Do this by spidering
the web application to see if it generates any redirects
(HTTP response codes 300-7, typically 302). Look at the
parameters supplied prior to the redirect to see if they appear to
be a target URL or a piece of such a URL. If so, change the URL
target and observe whether the site redirects to the new target.

61

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © WEB APPLICATION VULNERABILITIES AND COUNTERMEASURES

Application Susceptible to Brute-Force Attacks

Risk level: LOW

It is imperative to protect input fields, particularly authentication fields, from
a malicious user who simply enters data over and over again in an attempt to gain
information or to compromise security. To set up protection:

e Lock and suspend the account. Implement account locking or
temporary account suspension for any user account that incurs
more than five unsuccessful login attempts in a short period
of time (typically no more than three minutes of elapsed time
should be allowed).

e Setatime period for locking. Locking an account for a period
of ten to fifteen minutes is a realistic deterrent to foil brute-
force attackers; another option to consider is requiring account
unlocking by an administrator.

Client-Side Enforcement of Server-Side Security

Risk level: MEDIUM

Enforce server-side testing for all validation and then perform testing to ensure that
only server-side validation is permissible. Ensure any security checks that are performed
on the client side are duplicated or validated on the server side.

Injection Flaws

Risk level: HIGH

Since injection flaws allow attackers to relay malicious code from a web application
to another system, they may attack other web sites, operating systems, and databases.
Five specific types of injection flaws are described in subsequent sections. The key
countermeasures that can be taken include filtering every input field, denying absolutely
every surprise or untrusted character, and validating users, perhaps several times, prior to
giving them the access they request.

o Filtering and rejecting: All data other than expected data, such as
expected size, type, and character type, should be rejected by the
web application immediately. It may not always be practical, but
itis advisable to create an alert for any rejected data for further
investigation. It is also prudent to keep a log of data rejects for
security analysis.

e Dynamic SQL queries: Wherever possible, do not use dynamic
SQL queries; instead use parameterized SQL queries. For clarity,
a dynamic SQL query is an SQL query built at runtime. It is used
to dynamically set values or filters on the fly. Dynamic SQL
queries are the bane of SQL injection attacks. There are safer SQL
queries that are predefined and in which placeholders are used

62

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © WEB APPLICATION VULNERABILITIES AND COUNTERMEASURES

for parameters; the parameter values are supplied at execution
time. The most important reason to use parameterized queries is
to avoid SQL injection attacks.

e Safe API: Utilize a safe API (application programming interface)
that avoids the use of an interpreter entirely or provides a
parameterized interface. Even apparently safe APIs, such as
stored procedures that are parameterized, may still be susceptible
to SQL injection. If a parameterized API is not available, input
should be strongly filtered to remove escaped syntax and escape
characters. For clarity, an API is a set of prebuilt routines and tools
designed to allow external communications with an application
in an automated or semiautomated fashion. A good API makes
it easier and faster to develop a program by providing all the
building blocks, and all programs using a common API will
have similar interfaces. This makes it easier for programmers to
connect various applications.

e White list: Positive or “white list” input validation is recommended,
but it is not a complete defense, as many applications require
special characters in their input.

e Test codelogic: Test code logic to see if the application uses
interpreters safely. Code analysis tools can help a security analyst
find the use of interpreters and trace the data flow through the
application. Vulnerability testers can confirm the existence of
vulnerabilities.

¢ Automated dynamic scanning and manual testing: To test for
SQL injection vulnerabilities, use automated dynamic scanning,
which exercises the application and may provide insight into
whether exploitable injection flaws exist. It is also recommended
that you employ manual vulnerability testing.

SQL Injection

Risk level: HIGH

A subset of injection vulnerabilities, SQL injection vulnerabilities are very severe and
can result in a database being read, changed, and made unavailable. It is critical to invoke
countermeasures; by default, give the lowest-possible privileges to any party trying to
communicate with the database or its server by doing the following:

e Usedynamic SQL queries. Use parameterized SQL Queries and
avoid the use of dynamic SQL queries.

e Enforce access permissions with the fewest possible privileges.
Give users access to only those files, programs, and data that
are necessary for business use. Every other resource is off limits.
The best way to implement least-privilege permissions is to, by
default, make all resources unavailable to users and then add
privileges as exceptions to the default.

63

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © WEB APPLICATION VULNERABILITIES AND COUNTERMEASURES

e Validate user input with a white list comparison. White lists are
lists of acceptable characters, words or strings, names, and other
welcomed data. All input other than that on the white list should
be disregarded.

e Strip user input of special characters. Also validate that input
before using it directly in SQL queries.

e Check input for appropriate/expected length. Filter out strings
or words that exceed expected and desired length of input. For
instance, you might indicate that a state or province name in
North America should not exceed the amount of characters in
“Massachusetts.”

e Ensurethat SQL does not process user commands.

e Apply default error handling. Ensure that all error messages
do not reveal any details about users or about how the web
application environment operates. Instead, give error numbers
to error messages referring users to on an identified help line.
If something unexpected happens, error conditions should
default to one safe state, which can, again, have a message to call
a help line.

e Implement logical security for databases. This should involve
specifying users, roles, and permissions at the database layer.

e Perform SQL testing. Conduct regular vulnerability testing and
code testing for potential SQL injection vulnerabilities.

e Also apply to XML databases and other types of databases. Other
types of databases can also have similar problems with XPath
and XQuery injections. The previous recommendations can
similarly be applied to any programming language with any type
of database. For clarity, extensible markup language (XML) is
a language used by web site developers to create and display
web pages. An XML database allows XML data to be stored and
retrieved while remaining in the XML format.

Blind SQL Injection

Risk level: HIGH

As explained in Chapter 3, a blind SQL injection attack is a form of SQL injection.
This type of attack is just as dangerous as a regular SQL injection and should be dealt with
in the same way. Refer to the recommendations in the preceding section.

64

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © WEB APPLICATION VULNERABILITIES AND COUNTERMEASURES

Link Injection

Risk level: HIGH

Since a link injection attack usually results in the defacement of a web page, this type
of attack can cause damage to reputation and financial loss. To address this vulnerability,
enforce strong filtering at input fields with attention to stopping all control characters.
The following table lists the various control characters.

Characters Descriptions

| (pipe)

& (ampersand)

; (semicolon)

$ (dollar sign)

% (percent sign)

@ (atsign)

! (single apostrophe)

(quotation mark)

\' (backslash-escaped apostrophe)

\" (backslash-escaped quotation mark)
&1t; and 8gt; (triangular parentheses)

0 (parentheses)

+ (plus sign)

CR (carriage return, ASCII 0x0d)

LF (line feed, ASCII 0x0a)

HTTP Header Injection Vulnerability

Risk level: HIGH

Since header injection vulnerabilities are caused by insufficient filtering during the
creation of on-the-fly HTTP headers, and this code attacks a program at the host, take the
following countermeasures for this vulnerability:

e Filter user input. Ensure that stringent filtering is done particularly
on user input, where the input may be then used in an HTTP
header response.

65

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © WEB APPLICATION VULNERABILITIES AND COUNTERMEASURES

e Harden host programs. Verify that all programs, particularly
interpreters, are minimally susceptible to untrusted data by
separating untrusted data before it reaches programs. An
interpreter is a program that is used to convert the high-level
language commands into machine-readable binary language in
aline-by-line fashion in near real-time. Each time an interpreter
gets a high-level language code to be executed, it converts the
code into an intermediate code before converting it into the
machine code. Each part of the code is interpreted and then
executed separately in a sequence.

HTTP Response-Splitting Attack

Risk level: HIGH

HTTP response-splitting is a type of attack where a hacker sends malicious data
to a vulnerable application, which the application then displays in an HTTP response
header. An HTTP response header contains detailed information about an HTTP Sent
or Received message. These headers are typically never seen by an average user but
are quite available to view on a browser. This is done simply by using the appropriate
command or getting the appropriate viewing tool for any web browser. Since the response
header can be viewed by a potential hacker, it is recommended that an application
be set to avoid copying user-controllable data into any HTTP response header. If this
is unavoidable, then the data should be strictly validated to prevent header injection
attacks. In most situations, it will be appropriate to allow only short alphanumeric strings
to be copied into headers, and any other input should be rejected.

The following countermeasures need to be taken to avoid this type of attack:

e Do notallow CR or LF characters into an application. Prevent an
application from accepting input that contains CR (carriage return)
or LF (line feed) in an HTTP header.

e Harden the application. An application should not be vulnerable
to the injection of CR or LF characters.

Unauthorized View of Data

Risk level: LOW-HIGH

Restrict all views to data as “No access by default,” and then allow intentional views
to only authorized, carefully authenticated personnel and users.

Under this vulnerability class, there are ten subclasses, which are similar in that they
all reveal unnecessary and potentially risky information. Each subclass is addressed in
the following sections.

66

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © WEB APPLICATION VULNERABILITIES AND COUNTERMEASURES

The following countermeasures can be taken to protect against the unauthorized
view of data:

e Restrict direct object references by default. Do not allow insecure
direct object references for protecting each object that is
accessible by users (e.g., object number, file name). This can be
done by using indirect references and verifying access authority
for each user.

e Prevent unauthorized access to objects. Implement indirect object
references per user or session, which prevents unauthorized
access to objects. For example, instead of using an object’s actual
name, replace names of authorized objects with a drop-down list
of resource numbers authorized for each user. This requires the
application to map the per-user indirect reference back to the
actual object.

e Validate access authorization to objects. Whenever users want
to gain direct access to an important object, such as a file or an
important section of an application like money transfer, they should
be forced to reauthenticate and then their identification should be
double-checked against an authorization list for that object.

e Limit mapping. For both direct and indirect references, ensure
that the mapping to the direct reference limits access to objects
authorized for each user.

e Review manual code. Manually perform a code review of the
application to verify whether direct and indirect reference logic is
implemented securely.

Web Application Source Code Disclosed

Risk Level: LOW

Source code is something that an unauthorized person should never see, as it can
reveal how an application works. With this knowledge in hand, a hacker can intelligently
look for vulnerabilities and subsequently mount an attack. The following are basic steps
you can take to avoid disclosing source code or pieces of source code:

e Keep patches up to date. Ensure all system patches related to
source code disclosure are installed. It is important to ensure
that patch upgrades are up to date. Although this may be a
simple concept, it is often difficult to achieve in an enterprise
environment.

e Do not leave application source code in HTML comments. This
step requires quality control testing to search all related HTML,
plus whatever other web application programming languages
are used, to find and delete all comments and fragments of
comments.

67

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © WEB APPLICATION VULNERABILITIES AND COUNTERMEASURES

e Separate development, testing, and production. Remove all
source code files from the production environment. Ideally,
development, testing, and production environments are
completely separate. This separation includes both physical
devices and personnel responsible for each environment.

Web Directories Enumerated

Risk level: LOW

Unauthorized viewing of data includes the scope of the naming convention of files.
A hacker can identify naming conventions to assist in making further inquiries into the
structure of an environment and subsequently mount an attack. The countermeasure
taken is similar as that described in the “Unauthorized View of Data” section, but in this
case the issue addressed is hiding directory names. To do so:

e Enforce naming convention to disguise the actual names of all
directories, devices, and services where possible. This will ensure
the names do not reveal their function.

e Do not use theme names for naming objects. Theme names
would be ones like “Star Trek” or “X-Men.” Implement a naming
convention that hampers name guessing of other objects even if a
malicious user gains possession of one valid object name.

Active Directory Object Default Page on Server

Risk level: LOW

Unnecessary disclosure of how the Active Directory manages objects is a potential
security threat, as it provides insight into how the files and other objects within the
directory are stored. This information could be used to create an attack. To prevent this
from happening:

e Deny unnecessary access. Deny access to and remove any pages
that are not part of the application being hosted on the web server.

e Enforce access controls for unrelated pages. If web application
users require access to any unrelated pages, user authentication
and access control for these pages should be strictly enforced.

e Produce logs and alerts for failed access attempts. Too-many failed
access attempts to unrelated pages should be logged and alerts
should be generated. This is prudent for the purpose of security
analysis.

e Deny default access. Access to unrelated pages should be granted
on a restricted basis.

68

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © WEB APPLICATION VULNERABILITIES AND COUNTERMEASURES

Temporary Files Left in the Environment

Risk level: LOW

Temporary files are useful tools for developers when they are creating programs.
They should never be seen by anyone other than the developers, as they provide insight
as to how the programming functions. In the hands of a hacker, this information provides
leverage to mount an attack. To guarantee that no temporary files remain:

e Remove temporary files. Remove test/temporary or backup
scripts/files on the web application server.

e Remove unnecessary files and scripts. Ensure there are no other
scripts/files on the server that are not essential for its normal
operation.

e Testaccess controls. Ensure that testing/temporary files and
backup scripts/files can be accessed only by parties with the
appropriate privileges.

Internal IP Address Revealed by Web Server

Risk level: MEDIUM
It is never necessary to reveal to the outside world or to users actual internal IP
addresses. It is best to obfuscate them in the following ways:

o Implement network address translation (NAT). Doing so provides
internal IP addresses with aliases or pretend names, allowing
users on the Internet to access these addresses on the corporate
network. This process is accomplished with the use of an
intermediate server, a list of valid IP addresses, and a comparable
list of alias addresses for use with the outside world.

e Do not reveal IP addresses to any user. And certainly do not reveal
internal IP addresses associated with any services or devices,
including the web server software platform.

Server Path Disclosed

Risk level: MEDIUM

Similarly to not revealing internal IP addresses to the outside world, it is important
not to reveal to any user or the outside world the actual paths for any servers. To
conceal them:

e Set customErrors mode attribute value to “On RemoteOnly.” This
way, should an error message be generated with regard to a server
path, it will be generic and not reveal any details in the ASP.NET
environment. Similar selections of nonrevealing error messages
should be implemented in all other programming environments.

69

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © WEB APPLICATION VULNERABILITIES AND COUNTERMEASURES

e Create a custom error page for users. The page should only display
generic messages, such as “An error has occurred. Please contact
the system administrator.”

e Eliminate errors with patches. If an error message is caused by a
problem that can be fixed with a security patch, then download
the relevant security patch depending on the issue existing on
your web server or web application.

Hidden Directory Detected

Risk level: LOW

A hidden directory is a directory that is not displayed by default. I often used a
hidden directory or folder of files for storing user preferences and for preserving the
status of various tools. Hidden directories should not be able to be viewed other than by
authorized administrative, operations, and development personnel. In the hands of a
person with malicious intent, the information stored in hidden directory files can be used
to mount an attack.

To reduce the risk, issue a “404—Not Found” response status code instead of a
“403—Forbidden” status code when a user attempts to access a directory they are not
authorized to view. This change will obfuscate the presence of directories on the site and
will reduce the chance of exposing the site structure.

Unencrypted VIEWSTATE

Risk level: HIGH

Since VIEWSTATE is a source of temporary storage that allows ASP.NET users to store
all the temporary information about a web page, it might contain personal information
and is definitely confidential. It should never be allowed to fall into the hands of an
unauthorized person. ASP.NET is a Microsoft-created set of web application development
tools. The benefit for developers is they can create dynamic web sites while using a visual
command interface.

Always encrypt the VIEWSTATE. For clarity, the VIEWSTATE is a source of temporary
storage that allows ASP.NET users to store all the temporary information about a web
page, such as which panels are open and in use, the options that are currently chosen, the
current data in each text box, and other information.

Obsolete Web Server

Risk level: MEDIUM

Obsolete software needs to be replaced because security patches are no longer
installed to keep it secure. This possibly commits a double omission: a) obsolete software,
and therefore possibly also obsolete hardware, should be replaced with technology that
is fully secure with up-to-date patches and revisions; and b) unnecessary disclosure of
technology details, particularly technology with known vulnerabilities, is simply asking
for trouble.

70

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © WEB APPLICATION VULNERABILITIES AND COUNTERMEASURES

To resolve this:

e Update the version of the server you are using. Update your server
to the most recent version of the web site platform.

e Keep your patching up to date.

e Hide technology identifiers. Eliminate all unnecessary
announcements of hardware and software to electronic scanning
and electronic inquiries.

Query Parameter in SSL Request

Risk level: MEDIUM

This vulnerability is very similar to the ones previously discussed in the “Information
Submitted Using the GET Method” section. As with the vulnerabilities described there,
you counter this one by using the POST method.

Error Handling

Risk level: HIGH

When identifying errors to users, an application should not inadvertently reveal
overly informative details about how the application functions. All errors must be
remediated as per a formal change management process. To prevent the application from
disclosing too much information:

e Create unified and nonrevealing error messages. The application
should output generic error messages (for example, “An
unexpected error occurred. Please contact the system
administrator.”).

e Produce logs and alerts. All error messages should be handled and
logged (to the system’s event log or database) and the application
owner alerted.

e After identifying the cause, remediate. Once an alert has been sent,
there should be a policy in place to enforce that the application
owner determines its cause and applies the appropriate fix.

e Implement a formal ticket resolution process. These and all other
security alerts should be input into a trouble-ticket procedure
with a formal closing process for each ticket.

71

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © WEB APPLICATION VULNERABILITIES AND COUNTERMEASURES

Cross-Site Scripting Attacks

Risk level: HIGH

The countermeasures for the injection-like attacks performed by cross-site
scripting (XSS) attacks constitute a superset of approaches similar to those used for SQL
injection attacks. By default, give the lowest-possible privileges to any party trying to
communicate with the database or its server.

See the earlier “SQL Injection” section for recommendations that also apply here.
In addition to those, consider the following:

e Specify HTML coding. Specify an HTML encoding mechanism for
all HTML output from browsers, such as UTF-8.

o Strongly filter/sanitize data. This applies to data being sent from
the application to browsers and from the browsers to the web
application.

e Provide security-awareness training. The training should
constantly reinforce the idea of not responding to any e-mail,
instant messaging, third-party web site, or phone call requesting
users to provide their credentials or personal information.

Reflected Cross-Site Scripting Attack

Risk level: HIGH
In most situations where user-controllable data is copied into application responses,
XSS attacks can be prevented by using layers of defense as follows:

e Strongly validate input. When doing so, give specific attention
to the type of content that it is expected to contain. For example,
personal names should consist of alphabetical and a small range
of typographical characters and be relatively short; a year of birth
should consist of exactly four numerals; and e-mail addresses
should match a well-defined regular expression.

® Reject input that fails validation. Input that fails the validation
should be rejected, not sanitized.

e Perform HTML-encoding for user input. User input should be
HTML-encoded at any point where it is copied into application
responses. All HTML metacharacters, including < »,",", and =,
should be replaced with the corresponding HTML entities
(81t; > so so forth)

e Remove control characters. In all cases, all user input fields should
be parsed to remove the characters in the following chart.

72

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © WEB APPLICATION VULNERABILITIES AND COUNTERMEASURES

Characters Descriptions

| (pipe)

& (ampersand)

; (semicolon)

$ (dollar sign)

% (percent sign)

@ (at sign)

’ (single apostrophe)

! (quotation mark)

\ (backslash-escaped apostrophe)
\" (backslash-escaped quotation mark)

&1t; and 8gt; (triangular parentheses)

0 (parentheses)

+ (plus sign)

CR (carriage return, ASCII 0x0d)
LF (line feed, ASCII 0x0a)

e Filter for dangerous syntax. In cases where the application’s
functionality allows users to author content using a restricted
subset of HTML tags and attributes (for example, blog comments
that allow limited formatting and linking), parse the supplied
HTML to validate that it does not use any dangerous syntax.

Stored Cross-Site Scripting Attack

Risk level: HIGH

Since the storage of XSS is the most dangerous attack in this class and is caused by
web applications that store user data within a web site page for later use, it is extremely
important for data to be stringently filtered at input and to understand exactly how data
is stored within a web site page. If the data is malicious, it can be passed onto successive
visitors to the page, so employ the following countermeasures:

e Do avulnerability test of HTML code and JavaScript content.
A test of how all input data is stored should be done prior to
moving code into production.

73

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © WEB APPLICATION VULNERABILITIES AND COUNTERMEASURES

e Test out-of-band communications channels. Also do a vulnerability
test and analysis of precisely how any user input data is received
and stored via out-of-band channels. Out-of-band channels, in
this case, refer to any other mechanism besides the expected user
input fields.

e Have administrators test and identify user data. A testing process
must be established for all areas of a web application accessible
by administrators in order to identify the presence of user data in
these otherwise-“restricted” areas of the application.

o XSS-reflected recommendations. In addition, implement all the
recommendations in the “Cross-Site Scripting Reflected Attack”
section.

Cross-Site Request Forgery Attack

Risk level: HIGH

Preventing cross-site request forgery (CSRF) usually requires the inclusion of an
unpredictable token in each HTTP request. Such tokens should, at a minimum, be unique
per user session. The preferred option is to include the unique token in a hidden field.
This causes the value to be sent in the body of the HTTP request, avoiding its inclusion in
the URL, which is more prone to exposure.

The unique token can also be included in the URL itself or in a URL parameter.
However, such placement runs a greater risk that the URL will be exposed to an attacker,
thus compromising the secret token. The CSRF Guard available at the Open Web
Application Security Project (OWASP) can automatically include such tokens in Java EE,
.NET, or PHP apps (see www.owasp.org/index.php/Category:OWASP_CSRFGuard Project).
OWASP’s Enterprise Security API Project (ESAPI) includes methods developers can
use to prevent CSRF vulnerabilities (see www.owasp.org/index.php/Category:OWASP_
Enterprise Security API).

OWASP is a worldwide application-security organization based in Australia that
provides educational material about web application security for free to anyone. ESAPI is
a free, open-source library offering web application security controls that makes it easier
for programmers to write lower-risk applications.

Java, created by Sun Microsystems, is a high-level programming language that is
created for use by developers writing Internet-based applications. Java EE is the Java
Enterprise Edition.

Scripting languages are high-level programming languages that were developed
primarily to assist web application developers in creating dynamic HTML content.
Dynamic content changes each time it is viewed. For instance, it may show the time
of day, the profile of the viewer, or the geographic location of the viewer or it may add
functionality such as creating graphic displays and creating different menu styles. These
languages, such as JavaScript, ASP, Python, Perl, PHP, and JSP, are interpreted at runtime,
which is why they can dynamically present data.

4

www.it-ebooks.info

http://www.owasp.org/index.php/Category:OWASP_CSRFGuard_Project
http://www.owasp.org/index.php/Category:OWASP_Enterprise_Security_API
http://www.owasp.org/index.php/Category:OWASP_Enterprise_Security_API
http://www.it-ebooks.info/

CHAPTER 4 © WEB APPLICATION VULNERABILITIES AND COUNTERMEASURES

Another measure to take is to require users to reauthenticate to renew the proof that
they are a valid user. This is a commonly used security methodology, which can be seen, for
instance, on the Amazon site when moving from the phase of selecting items to the phase of
paying for items. At the beginning of the payment phase, the user is asked to reauthenticate.

Security Misconfigurations and Using Known
Vulnerable Components

Risk level: MEDIUM

Wherever cost effective, it is best to replace legacy technology, which is no longer
supported with security updates, with more recent technology that is well supported with
security updates.

Most component vendors do not create vulnerability patches for old versions.
Instead, they simply fix the problem in the next version. Be sure to ensure that patches
and upgrades for the most secure recent versions are done in accordance with a
corporate security policy. This can be done in the following ways:

e Document legacy components in a library. Identify all components
and their versions in the corporate software library, including all
dependencies.

e Keep informed of legacy component security issues. Monitor the
security of these components in public databases, project mailing
lists, and security mailing lists, and keep them up to date.

e Establish security policies for legacy technology. Set security
policies governing component use, such as requiring certain
software development practices, passing security tests, and
outlining acceptable licenses.

e Add security wrappers. Where possible, add security wrappers
around components to disable unused functionality and/or
secure weak or vulnerable aspects of the component.

Denial-of-Service Attack

Risk level: HIGH
These high-profile attacks should be dealt with up front by providing
countermeasures and monitoring as follows:

e Stabilize high-volume traffic flow. Ensure that the application
functions properly when presented with large volumes of
transactions, requests, or traffic.

e Monitor event logs. Monitor the event logs of application servers,
firewalls, intrusion detection systems (IDS), and intrusion
prevention systems (IPS), and set thresholds to alert for
anomalous traffic increases that are indicative of a DoS attack.

75

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © WEB APPLICATION VULNERABILITIES AND COUNTERMEASURES

e Block originating IP addresses. Once you have determined the
originating IP address or addresses of the attack, block them
either at the firewall level (to kill HTTP requests) or further
upstream at the ISP level (to kill network-level floods).

e Prevent ICMP floods. Implement technology to identify and
prevent ICMP (Internet Control Message Protocol) flood attacks.

e Block repeated requests from a single URL. Large-volume requests
from a single URL usually mean malicious activity, as a normal
activity pattern would consist of a solo or low volume of requests
from a single URL.

e Implement an intrusion prevention system. Route traffic through
an intrusion prevention system (IPS) to actively detect and block
DoS and DDoS attacks.

e Implement a third-party denial of service (DoS)/distributed denial
of service (DDoS) prevention service. Consider setting up one
of these services, which may include the use of proxy servers
to scrub attacks and load multiple instances of the application
server for alternate routing.

Related Security Issues

Risk level: HIGH

Data at rest, such as in storage, needs to be secured equally to data in motion, such
as data flowing between a web application server and a user’s browser. Securing data at
rest can be done through:

e Encryption: Encrypt web application logs, keys, certificates,
passwords, and all other sensitive or confidential information.

¢ Hiding and restricting access: Remove sensitive files (etc/passwd)
from production or restrict file access to only authorized
personnel.

e Backing up to secure location: Do not back up web application
source code to the web server; instead use a more secure location.

Storage of Data at Rest

Risk level: HIGH

Data encryption and data masking are both recommended for protecting data at rest.
Data masking is used to obfuscate data so that it typically cannot be seen by developers
and database testers, who have no business reasons to view private or confidential data.
In their cases, the data is present but hidden. One of the best forms of protecting data at
rest, of course, is to limit access to it on a business need basis.

76

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © WEB APPLICATION VULNERABILITIES AND COUNTERMEASURES

There are many different methodologies of data access control, all of which are
designed for different environments. For instance, discretionary access controls (DACs)
are controls placed on data by the data owner. The owner decides who has what privileges
and access to data. DACs are commonly used. Mandatory access controls (MACs)
are control systems used in more highly sensitive environments where controls are
determined by both the owner and by the system. The system is instructed to provide
access controls based on the clearance level of a user and the classification of the data
to be accessed. Another example is the role-based access control system, in which
access is granted based on the functions that a user is allowed to perform. The most
applicable methodology or version of various methodologies should be chosen to meet
an organization’s specific needs.

Timely destruction of data is another important element for security of data at rest.
Increasingly, large amounts of useless data have become a target for a security breach.
There should be stringent policies in place for data life cycle management, which
includes the timely, secure destruction of data.

Storage of Account Lists

Risk level: HIGH
A major part of security 101 is managing the life cycles of accounts and account
lists. Prevent users from gaining access to a list of account names. If a user list must be
presented, then use only pseudonyms (screen names) that map to the actual account list.
When setting up account life cycle management:

e Disable stale accounts. On a periodic basis, review all system
accounts and disable all accounts that cannot be associated with
a business process and owner.

e Ensure that all accounts have an expiration date. This is a fallback
protective measure against stale accounts staying in existence
by default. In the worst-case situation where a valid account is
automatically expired, the user will complain to the help desk,
and the help desk will investigate and reinstate a valid account.

e Create a daily report of account life cycle policy violations. Create
an automated daily report that is sent to a senior IT administrator
which identifies: locked-out accounts, disabled accounts,
accounts with passwords that exceed the maximum password
age, and accounts that appear dormant.

e Disable accounts immediately upon termination of an employee or
contractor.

When setting up secure long-term storage:

e Secure storage after disabling accounts. When a dormant account
is disabled, any files associated with that account should be
encrypted and moved to a secure file server for analysis of
whether the data should be retained or destroyed by security or
management personnel.

7

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © WEB APPLICATION VULNERABILITIES AND COUNTERMEASURES

When managing access control:

e Create strong passwords for admin accounts. Require that all
nonadministrator accounts have strong passwords that contain
letters, numbers, and special characters; are changed at least
every 90 days; and are not allowed to use the previous 15
passwords as a new password. These values can be adjusted
based on the specific business needs of the organization.

e Use and configure account lockouts for failed logins. After a set
number of failed login attempts, the account should be locked for
a standard period of time.

e Monitor failed logins. Monitor event logs and set up alerts
for unusual activities, such as attempts to access deactivated
accounts and failed login attempts.

e Flag anomalous behavior. Profile users’ typical account usage and
flag anomalous usage.

Password Storage

Risk level: HIGH

Managing the life cycle and storage of passwords is absolutely critical to security
since passwords are fundamental to authentication and access control. To protect
passwords:

e Store passwords in hashed form. This will protect them from
exposure regardless of where they are stored. Hashed form is also
less susceptible to being reversed than encrypted data.

e Avoid hardcoding passwords. Passwords should never be hardcoded
in any source code. Be sure to never store unencrypted passwords
anywhere, including within databases, cookies, or text files.

e Strongly protect encryption keys. If encryption is used for
password protection, then the decryption keys must be strongly
protected.

e Securely store or destroy artifacts. Ensure artifacts containing
passwords, such as logs, dumps, and backups, are securely stored
or securely destroyed.

Insufficient Patch Management

Risk level: HIGH

Insufficient patch management is one of the most common causes for security
breaches, and so stringent patch management is a security must. Ensure patching is kept
up to date for all software platforms within a web application environment, but only after
patches are tested in a nonproduction environment.

78

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © WEB APPLICATION VULNERABILITIES AND COUNTERMEASURES

Summary

Prevention is the best form of remediation and there are a number of key preventative
takeaways to reduce the need for excessive remediations that we have covered in this chapter:

Implement strong security during the development phase of a
web application.

Replace obsolete technology with security-supported new
technology.

Do not implement technology with known security flaws.

Implement strong authentication, then enforce it continuously
and test it regularly.

Enforce access privileges on a need-to-know basis only. Make
the denial of access the default and then provide access only on a
need-to-read basis.

Manage the life cycles of passwords and accounts.
Manage the life cycle of sessions and session IDs.
Filter, filter, filter all data input fields. Reject everything unexpected.

Filter or parse data flowing from an application to browsers to
mitigate cross-site scripting.

Encrypt any data in motion or data at rest that is sensitive.

Hash or one-way encrypt all passwords. This includes both
passwords in motion and passwords being stored.

Keep security patching up to date.

Monitor and identify unusual traffic patterns, especially from
unknown IP addresses.

Log all security activity, both normal and infractions, for analysis
and planning.

Create an event log of unusual traffic patterns and repetitive
security events. Create alerts for all serious security infractions.

Regularly test security for the presence of known vulnerabilities.

79

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5

How to Build Preventative
Countermeasures for Web
Application Vulnerabilities)

Most of the vulnerabilities identified in Chapter 3 could have been simply avoided by not
allowing them to occur in the first place. The best way to avoid creating vulnerabilities in
web applications is to plan and build security as part of the development cycle.

Since application-security planning is not a widely understood art, and since it
involves time and expenses, it is often neglected. The unfavorable alternative is to test
applications for vulnerabilities after they are created in test or beta test mode. As we saw
in Chapter 3, this is simply too late.

This issue becomes a decision point for the financial manager responsible for the
overall life cycle cost of an application. The decision has many variables:

¢ including security as intrinsic to the software development
life cycle

o the cost of developers’ time and expenses
e the cost of hiring external expertise for the process

e the overall least-probable cost, including both the software
development life cycle and the estimated costs of security
breaches

e determining the importance of taking reasonable steps with
regard to governance, risk management, and compliance (GRC)

Real-life examples of vulnerabilities that auditors find during business in the course
of usual activities are identified in Chapter 3. The reality of how security teams in the field
address these vulnerabilities is found in Chapter 4. The results of what happens when the
vulnerabilities are found and compromised by malicious third parties are often shouted
out by the media:

e stolen credit card information

e stolen personal information being used for fraud

81

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 © HOW TO BUILD PREVENTATIVE COUNTERMEASURES FOR WEB APPLICATION VULNERABILITIES

e stolen money
e denial of service attacks; preventing service

e stolen sensitive information compromising business and national
security

e web site defacements
The costs to the victims are:
e damage to reputation

e financial losses due to lost business, production, clients, and
partners

e damage to clients

e compliance-violation expenses

e legal expenses

e money spent on emergency-security countermeasures
e publicrelations fees

The cost of prevention therefore needs to be analyzed in terms of its alternative
scenario, which indeed may include the occurrence of episodes from the “scary list” just
outlined. Prevention is the preferred method of vulnerability management, and it can be
built intrinsically into a web application. The formal methodology for doing so is called
the security-in-software-development life cycle (S-SDLC).

Once an application is put into production, the change management portion of
S-SDLC should be stringently enforced. For example, one of the most widely found
sources of application-security vulnerabilities is failing to implement security-related
patches and revisions in a timely fashion. This is a human error associated with change
management that should be a carefully documented and enforced core to security policy.

Security-in-Software-Development Life Cycle

Embedding security should be done at every phase of software development, including
code writing, change management, and testing during and after development. The key
components of building strong security into the SDLC process are:

e Business requirements: These requirements must be identified
in sufficient detail and clarity so that the application design phase
can proceed efficiently.

e Security requirements: Right alongside the business
requirements, it is important to define all security requirements
from a business perspective.

82

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 © HOW TO BUILD PREVENTATIVE COUNTERMEASURES FOR WEB APPLICATION VULNERABILITIES

¢ Threat modelling: Somewhere early in the security design phase,
threat modelling should be done in order to identify the potential
threats that exist specific to the application. For instance, it would
be a waste of money to have controls for theft protection when
there is nothing to steal. Threat modelling might also assist in
identifying the threats from potential vulnerabilities and the
controls available to mitigate the associated risk.

e Design: The design phase involves translating the business
requirements into architecture and determining how the
applications will function. The design specification should
address how security functions will be incorporated and should
highlight all major security concerns and how they will be
managed.

e Apolicy for secure web application code: Writing secure code
occurs only by adhering to a writing a policy or framework for
doing so. The framework should include technical processes
for writing securely for every coding language, interim testing,
separation of duties for code writers and testers, implementing
controls for all known vulnerabilities identified during threat
modelling, end user testing and remediation, implementing
backups and backup revision cataloguing, and so on.

e Aframework for secure web application code: Although
mentioned in the previous paragraph, this topic requires
further attention. There are open-source guides available
from educational resources such as OWASP with detailed
recommendations as to how to write code that minimizes the
chances of creating vulnerabilities. There are also training courses
available on the topic. I recommend that financial executives
give consideration to ensuring that their development team is
sufficiently trained in the art of writing secure code and that
management enforces policy regarding writing secure code.
There are more details about this topic in the section “Framework
for Secure Web Application Code.”

e Aseparation between code and production environment:
Development code should be written on a server that is separate
and isolated from any production technology. This is typically
called a development environment. To fully describe the process,
at the risk of jumping ahead, once development is complete
and the application is ready to be integrated into the production
environment, it is best to move it to a test server. The test server
will not provide production services to end users but will be
used to stringently test all security throughout the entire
integration of devices.

83

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 © HOW TO BUILD PREVENTATIVE COUNTERMEASURES FOR WEB APPLICATION VULNERABILITIES

¢ Code testing and web application security testing: There are
several methods and technologies for testing code, all of which
are discussed in the section “Web Application Security Testing.”
In addition to testing code, there are tools and methodologies
for testing code as it is running, all of which are also discussed in
this section. Although I mention testing prior to integration and
validation, the idea behind testing is: Always be testing. Testing
needs to be done during development but also during integration
and validation, preproduction, and continuously during
postproduction.

e Integration and validation: Most transaction web applications
are integrated with other network components such as a back-end
database, a proxy server between the web server and the back-end
database, other web sites such as payment sites, authentication
technology such as multifactor authenticators, back-end
administrative services, and of course logical connectivity with
users of the web application. All of the devices and services of
the web application must be secure within themselves and the
communication between all of these technologies must also be
strongly secured.

e Production: This process involves moving a thoroughly tested
application from a test environment into full production and
providing the intended business services to end users.

¢ Change management: Web application changes typically are
made informally and without vulnerability testing. But without
proper controls to test web applications in an environment
identical to the production environment as well as the ability
to transfer the updates into the production environment,
security vulnerabilities may be introduced into the production
environment. These vulnerabilities are discussed in more detail in
the following section.

Framework for Secure Web Application Code

To mitigate the chances of writing insecure code, several steps should be included in the
SDLC, which I will review in this section.

Since writing secure code is fundamental to minimizing the occurrence of
vulnerabilities, it is worth elaborating on this topic for the benefit of executives. This step
in development is too often overlooked, misunderstood, or deemed to be of secondary
importance compared with production deadlines. For executives, it is worth reviewing
the basic steps for writing secure code if only to remember that this concept exists and
may at some point present an attractive return on investment.

84

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 © HOW TO BUILD PREVENTATIVE COUNTERMEASURES FOR WEB APPLICATION VULNERABILITIES

Creating a framework for secure code involves the following aspects:

Management buy-in: Involve executives and other members

of management early. Include business process owners, the
corporate security committee, and senior financial management
from the beginning of the development process, starting with
the definition of business requirements for the web application.
Get financial commitments from financial management upfront
to support the entire security framework. The details of how to
engage management are discussed in more detail in Chapter 8.

Security team engagement: Involve the security team from

the beginning. Invite the team to the initial planning sessions

for any software development to ensure that security is being
considered and addressed at all stages of the SDLC, from concept
to production. This will help avoid security weaknesses starting
right at the inception of the development process.

Separation of duties and separation of environments: In a
perfect world, there would exist a separation of all functions
relating to security. This includes a separation between

coders and testers, a separation between test and production
environments, and bringing in only impartial external testers.
Unfortunately, due to financial constraints, it is not always
possible to attain this level of separation, but it is a useful to get as
close as possible to the goal. Some basic considerations include:

e Separating development, test, and production systems:
Separate development and quality assurance (QA)
environments from the production network.

e Separating duties: Ensure that different people are assigned
to do the production coding and the testing of code. Where
possible, task different team members for security and for
implementation/production.

e Usingimpartial third-party testing: Use arm’s-length
third-party testing where applicable, such as for compliance,
in cases where internal testers/auditors want the comfort
of receiving verification from a third-party tester, or for
management, which might want an impartial expert to
provide due-diligence testing.

Backups: Include software revision backups, and incorporate
an automated revision library for change management of
application code.

85

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 © HOW TO BUILD PREVENTATIVE COUNTERMEASURES FOR WEB APPLICATION VULNERABILITIES

e Monitoring and alerts: This stage involves several steps.

Monitor event logs. Monitor event logs of all elements of a
web application environment including the application,
web application platform, operating system(s), hardware
platform(s), and firewall.

Create alerts for high-risk activities. Set up alerts for
high-risk activity and create trouble tickets that must be
formally closed and regularly reviewed by the appropriate
security/end-user committee.

Log application and application-server event logs. In addition
to logging application activity, investigate all high-risk
activities, such as exceeded threshold values for failed login
attempts and logins during unusual hours.

e Patching: It is important to keep patching up to date. Patch all
third-party elements of the web application environment in a
timely fashion.

e Authentication and password management: As described
in Chapter 4, managing the password life cycle involves the
following five actions.

86

Ensure password complexity. Sufficient password complexity
minimizes the chance of password guessing or brute-force
attacks against passwords.

Regularly change passwords. Password rotation minimizes
the chance of password theft or a user’s duplicate password
being obtained from another web site.

Reset passwords. Ensuring that there is a secure mechanism
to reset passwords minimizes the chance of stale passwords
staying in circulation.

Only store hashed passwords. You can guarantee that all
passwords are kept secure by storing only hashed values
and password inputs for users and then comparing the two
hashed values.

Use operating system-based access-control facilities. These
mechanisms include operating system permissions and
access control lists.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 © HOW TO BUILD PREVENTATIVE COUNTERMEASURES FOR WEB APPLICATION VULNERABILITIES

e Session management: Chapter 4 also describes how to manage
sessions and addresses the following six points.

e Token length and randomizing: Enforce the requirement
for users to create sufficiently long and random session
token IDs.

e Random number generator for session tokens: Sufficiently
secure mechanisms for creating session tokens with a
cryptographic random number generator.

e Session inactivity timeouts: To guarantee that inappropriate
users don't log on to a session, timeouts should be
implemented.

e Restrictions on the storage of a session token in cache:
Restrictions need to be set up, as stealing data from cache
memory is a favorite hacker activity.

e New token for state change: It is necessary to create secure
random tokens, particularly whenever there is a state change.

e Limitation of the reuse of tokens: You should ensure that
the token is unique for each user and for each session and
you should never allow a session token to be reused in a
subsequent session.

e Secure flags: The process of setting a secure flag is described in
Chapter 4.

e HttpOnly flag: Always make sure this flag is set.

¢ Indirect file path: Always display an indirect file path, using the
current file as a root for accessing an image. For example, you
might use the following code:
:\images\pic.jpg
instead of the more revealing absolute path
C:\programfiles\webapps\project\images\pic.jpg.

e SSL or TLS with HTTPS: For users viewing confidential/sensitive

information and for all transactions, implement SSL or TLS with
HTTPS.

87

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 © HOW TO BUILD PREVENTATIVE COUNTERMEASURES FOR WEB APPLICATION VULNERABILITIES

¢ Inputvalidation: Chapter 4 discusses input validation and
filtering content in some detail. Some important aspects include:

e Client-side validation: Implement server side validation
versus client-side validation.

e Strong input validation: Implement robust input validation
including filtering out all unnecessary control characters.

e Stringent filtering of rich user content: This is critically
important, requiring that special attention is paid to control
characters, any special characters, and the length of responses.

e Verification of uploaded files: This can be done in several ways.

e Ensure that extension types are as expected. Parse input
file content to ensure it agrees with the file extension type;
similarly, ensure that the content of image files agrees with
the extension type (.MP3, .jpg).

e Guarantee that permitted file size is not exceeded. Ensure that
the size of the files does not exceed that which is expected
and allowed.

e Filter for permitted character values. Filter strongly for only
allowed values paying special attention to XML and other
control characters.

e Implement a white list. The white list should include special
files that are not allowed, such as .exe.

e Output encoding: Chapter 4 deals with the details of how to
encode output safely from a security perspective. Doing so
includes:

e Encoding output data: Encode all output that will be
returned to an HTML page, being sure to use the appropriate
encoding such as that which is HTML or JavaScript specific;
avoid sending user data to an operating system.

e Using a UTF-8 character set: Implement a UTF-8 character
representation for output in order to preserve the order of
translation steps used, which is sometimes critical to the
security of the application.

e Exception and error handling: Do not reveal user information,
authentication information, file names, file paths, or any verbose
information. Reveal only the most generic information possible in
error messages.

88

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 © HOW TO BUILD PREVENTATIVE COUNTERMEASURES FOR WEB APPLICATION VULNERABILITIES

e Application testing: There are several necessary components,
which follow:

e Web application security testing: Incorporate web application
security testing into the SDLC phases, including code
planning and code writing. This will be discussed in more
detail in the next section.

e Testing compliance with policy: Integrate web application
security testing into the security program to evaluate and
validate whether the application is operating according to
security policy. As part of this step, require authorization for
movement into production by both the end user and security
personnel.

e Known vulnerabilities: Test applications for all known
vulnerabilities.

e Training: There are a couple of processes involved in training.

e Locate training courses. Obtain application training courses
for developers from organizations such as SANS, CSI, NSI,
IEEE, IETF, and CERT.

e Setup security for ancillary elements. Pay attention to security
best practices for related topics: database, file management,
memory management, and data storage.

Once the application code has been written in a secure fashion, it is of course time
to test the code to verify its security health. One might think that after adhering to a
framework for writing secure web application code, testing it may be overkill. However,
this could not be further from the truth; this is separation of duties in real life. Now on to
web application security testing.

Web Application Security Testing

Web application security testing is another topic worth repeating since it takes time and

money to execute and does not require additional business functions or add glitz to an

application. Since financial executives receive only risk analysis data as the result of

testing, they sometimes put this type of testing in the backseat of production priorities.
Web application testing includes:

¢ Reviewinglines of code: Reviewing ensures that lines of code
comply with the security plan and that their logic will produce the
intended results.

e Real-time testing: This type of testing assesses how applications
actually respond and function.

89

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 © HOW TO BUILD PREVENTATIVE COUNTERMEASURES FOR WEB APPLICATION VULNERABILITIES

¢ Constant testing and retesting: It is necessary to test all the
time, including during code writing, after end-user testing, just
before introducing the code into production, and continuously
thereafter. Testing is especially important after changes are made
to the application environment including to both software and
network technology.

Manual vs. Automated Code Testing

A source code review is an effective method of detecting security vulnerabilities as well as
other logic flaws. Manual reviews, the tried-and-true method of code testing, especially
applicable prior to the advent of automated-code testing tools, are time consuming and
expensive. The reasons for this include the requirements of:

e Ateam effort: A team effort is necessary since programmers are
required to review each other’s work. The reasoning for this is that
programmers may notice errors in another developer’s code with
much more clarity than their own errors.

e Real-time testing: Reviews need to be repeated at regular
intervals to review fresh code or re-review code after
recommended changes have been applied.

¢ Expertise: Those reviewing the code need to have extensive
application-development experience and security expertise.

However, automated application-source-code analyzer tools can shorten the time
and cost required to review and subsequently make the requisite corrections to source
code, particularly for large applications. A number of different select tools can analyze
source code or a compiled version of the code.

Automated tools are most cost effectively used in the application development
environment since correcting security vulnerabilities at an early stage is less expensive
than finding and correcting them late in the development cycle. However, automated
tools can provide a false sense of security that everything is being addressed, when, in
fact, they cannot identify every kind of web application vulnerability and can produce
false positives and false negatives. (It should be noted that this also applies to static-code
analysis.)

There are two basic models of automated-code testing tools:

e static-code analyzers
e dynamic-code analyzers

Static analyzers collect information based on looking directly at the syntactical
structure of code and drawing conclusions about the program’s behavior. Dynamic
analyzers take a different approach, wherein they evaluate how the code actually behaves
when it is interacting with the real world, taking state information into account.

90

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 © HOW TO BUILD PREVENTATIVE COUNTERMEASURES FOR WEB APPLICATION VULNERABILITIES

Static-Code Analysis Advantages

Static-code analysis can provide an early security warning system for developers as they
write sections of code. A static-code analysis tool:

Reduces cost. This type of analysis greatly reduces the cost of
eliminating security defects in software. The earlier an error is
detected, the lower the cost of remediation.

Finds security vulnerabilities at specific locations.

Is quick and less expensive. Because this analysis tool is
quicker, it is therefore a less expensive means of fixing security
vulnerabilities.

Provides granularity and scale. This degree of detail is possible
because an automated static-code analysis tool can scan the
entire code base rather than just samples of code.

Provides immediate feedback. An analysis tool can be run
repetitively, such as after each batch of mitigations is complete.

Finds specific classes of problems. The tool is effective at detecting
certain classes of problems that dynamic-code analyzers cannot
always find, such as buffer overflows and SQL injection flaws. An
alternative solution to using a dynamic-code analyzer is to deploy
manual testing by expert testers.

Examines how data flows through an application. In addition to
investigating data flows, this tool looks at how specific types of
data, such as confidential and personal data, are processed and
protected.

Examines how sensitive data is encrypted and decrypted.

Uncovers logic flaws. The tool’s discovery of an application’s logic
flaws is something that a web application firewall can’t do.

Static-Code Analysis Limitations

There are, however, limitations to what a static-code analyzer can accomplish, including

that it:

Requires trained software developers. The testing involved
needs to be conducted by trained software developers who fully
understand the code.

Possibly does not support all programming languages. A particular
code analyzer might not support all programming languages.

Produces a false sense of security. Static-code analysis can foster
the belief that everything is being addressed, when in fact this is
not always the case.

91

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5

HOW TO BUILD PREVENTATIVE COUNTERMEASURES FOR WEB APPLICATION VULNERABILITIES

Is unable to find configuration problems.

Cannot find runtime problems. It cannot find vulnerabilities
introduced in the runtime environment, such as authentication
problems and access control issues.

Cannot identify insecure cryptography.

Does not detect noncompliance with a security policy.
Does not identify back doors.

Cannot diagnose memory leaks and concurrency errors.
Can be inconvenient to use.

Three specific ways are:

e Automated tools can produce spurious warning/error
messages that the developers cannot silence. If developers
feel comfortable ignoring compiler warnings, the compile
phase will eventually be filled with warnings that are
ignored, even though they may include unresolved security
vulnerabilities.

e Since these tools take a long time to run, developers
sometimes do not bother running them.

e Many of these tools have difficulty analyzing code that can’t
be compiled. Analysts frequently can’t compile code because
they don’t have the right libraries, all the compilation
instructions, or all the code.

Dynamic-Code Analysis Advantages

Dynamic-code analysis has several advantages, particularly in identifying runtime
security flaws. It can:

92

Identify vulnerabilities in a runtime environment. Dynamic-code
analysis deals with real runtime values, which static-code analysis
cannot do.

Test applications when there is no access to the actual code.

Find false negatives. This analysis can identify vulnerabilities that
might have been false negatives in the static-code analysis.

Provide validation of static-code analysis findings.

Detect vulnerabilities that static analysis cannot.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 © HOW TO BUILD PREVENTATIVE COUNTERMEASURES FOR WEB APPLICATION VULNERABILITIES

Dynamic-Code Analysis Limitations

Dynamic-code testing technology is not perfect and does exhibit some limitations.

In particular, it has limited scope. A dynamic-code tester will test for all activities it is
directed to test, but if certain options or activities are not specified to the tool, it may miss
testing those options or activities.

Multilayered Defense

The ideal approach is to perform both an application code review and a vulnerability test,
as completing both provides the best multilayered defense.

There is a wide variety of testing tools, within both commercially available and
open-source tools. These tools may be found by doing a search for static or dynamic-code
analysis testing tools as well as referencing both the OWSAP and the NIST web sites.

Security Technology for Protecting Web
Applications and Their Environments

A highly popular technology for protecting web applications is the web application
firewall (WAF). In my opinion, the WAF is an effective countermeasure for insufficient
security within a web application but it is not a replacement for sufficient security within
a web application. The WAF is a countermeasure that acts as a proxy or middleman to
filter data entering and leaving a web application and, in theory, to restrict the passage of
malicious data. The WAF:

e Isanalogous to a network firewall. The WAF performs an
analogous role to the more widely known network firewall.
The WAF is also a traffic-filtering device that sits between the web
application to be protected and the Internet.

e Filters traffic for known application vulnerabilities. In doing so,
the WAF will drop potentially threatening inbound or outbound
traffic. Its filter rules need to be continuously updated with the
latest vulnerabilities in order to optimize the effectiveness of the
technology.

There are, of course, many other relevant application security technologies that help
provide defense in depth, including antivirus, antispam, antimalware, web application
and network vulnerability scanners, authentication mechanisms, strong authentication
mechanisms, intrusion detection systems, intrusion preventions systems, and the list
goes on.

It is my opinion that WAFs should be considered as a piece of a well-thought-out
complete security environment but should not replace developing secure application
environments and testing them accordingly.

93

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 © HOW TO BUILD PREVENTATIVE COUNTERMEASURES FOR WEB APPLICATION VULNERABILITIES

Summary

Web application vulnerabilities can often be prevented simply by incorporating IT security
into the development process right up front. A valuable process is to build security right
into the software development life cycle, which includes rules and guidance on how to
securely write code. Testing code using either or both static-code and dynamic-code
testing technology during the coding process provides massive downstream benefits in
terms of eliminating vulnerabilities that would have to otherwise be found and remediated
at future times. WAFs are an excellent adjunct to, but not a replacement for, a secure code
development and testing process.

In summary:

e Prevention trumps remediation.

e Effective prevention of vulnerabilities starts with implementing
security—in the software development life cycle, or SDLC.

e Financial factors should be considered when deciding whether to
include strong security practices within the SDLC.

e There exist strong frameworks for writing secure application code,
called security-in-software development life cycles, or S-SDLC.

e Incorporating security into the code-writing process is critically
important.

e Web application security testing is a must during development,
and it is important to make sure it is ongoing in production mode.
Test. Test. Test.

e Aplethora of security technologies exist for protecting web
applications and their environment.

e Web application firewalls are an excellent security technology
but should not replace secure coding practices and vulnerability
testing. WAFs are best used as part of a defense in depth.

94

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6

How to Manage Security
on Applications Written by
Third Parties

Many web site owners use third-party software for their web applications and the
underlying web application environment. The actual web applications may be off the
shelf or developed by a third party on behalf of a web site owner. The web server, the
server operating system, and the back-end database are a few common examples.

All the liability that may result from security breaches on web applications is the
responsibility of site owners even though all the control for the security posture of all
the third-party vendor code is with the third-party software vendors. Therefore, the site
owners need to ensure that they maximize their legal leverage over their third-party
software vendors in order to provide all security features and timely upgrades/patches in
a timely fashion.

Maximizing site owners’ legal leverage is the subject of this chapter. Since the author
is not a lawyer, when translating these recommendations into a contract, you will require
legal assistance, preferably from a lawyer with substantial experience in software-support
contract law.

Transparency of Problem Resolution

Transparency of problem resolution is the key to managing third parties. This applies
equally to the security of applications written by third parties. Problems arise when site
owners identify security issues and request fixes in the form of upgrades or patches from
their third-party vendors. These problems include:

¢ vendors not acknowledging the problems
e vendors being overly slow to acknowledge the problems
e vendors acknowledging the problems but not agreeing to fix them

e vendors agreeing to fix the problems but not committing to a
timeline

95

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 © HOW TO MANAGE SECURITY ON APPLICATIONS WRITTEN BY THIRD PARTIES

e vendors committing to a timeline but missing the milestones and
the deadline

e the upgrade or patch being delivered but failing to fix the problem

e the upgrade or patch fixing the problem but causing other
problems

In cases of software that is widely used and produced by large companies such as
Microsoft or Oracle, the site owner will not have much say in a support contract.

In cases where the application is not widely sold or where the software is uniquely written
or tuned for a site owner, the site owner has more leverage to ask for a stringent support
agreement.

What follows are some specific recommendations for the site owner with leverage
over the software vendor to ensure that the site owner and software vendor have a clear
view of the other’s needs and expectations.

It is up to site owners to ensure that they have a written support contract in place
with their third-party software vendor and that the agreement contains all of their
requirements. The support contract must be read and approved by the site owner’s
lawyers prior to signing.

The contract should state that:

e There is a written service-level agreement (SLA) for managing
problem resolution that includes specific mechanisms for the site
owners to issue a request/problem resolution and for the vendor
to respond, response time frames for communications, and
response time for problem resolution.

e There are written remedies and time to remediate compliance
violations if either party fails to comply.

e Itincludes a patch/upgrade schedule and provides an
accompanying description of the exact responsibilities of
the third-party software vendor to provide and implement
patches/upgrades, including a rollback process in the case of
failed patches /upgrades.

e Source code will be kept in escrow by a third-party escrow agent
and will be made available to the site owner in the instance
where the third-party software vendor can no longer adhere to
the support contract. It should also state that source code will be
made available irrespective of any legal complexities relating to
change of ownership or the financial viability of the vendor.

e Ithas an explicit escalation path for any issue that is not being
resolved in accordance with the steps and timing described in
the support contract. The escalation path should contain the
titles, names, office/cell/home phone numbers, e-mail addresses,
and business addresses of all personnel in both the site owner’s
organization and the third-party software vendor’s organization.

96

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 = HOW TO MANAGE SECURITY ON APPLICATIONS WRITTEN BY THIRD PARTIES

e The third-party software vendor will either hire outside security
experts—a fourth party in this case—to conduct regular
vulnerability assessments of the application and compose an
assessment report that it will make available to the site owner,
or agree to allow the site owner to conduct regular vulnerability
assessments on the application.

It should additionally state that the costs of the regular vulnerability assessments
will be borne by the third-party software vendor and, just as important, that the costs of
remediating any discovered vulnerabilities will be borne by the vendor.

Liability Insurance as Backup for Transparency
of Problem Resolution

Since a site owner’s liability does not necessarily transfer to a third-party software
developer in the case of a security breach caused by a failure in a software support
agreement, I advise a couple of ways of managing the liability for a security breach: either
with insurance or with a written guarantee from the software vendor to take responsibility
for the costs associated with a security breach. Costs may be both direct and indirect
consequential damages to other parties.

However, even if the third-party software vendor undertakes responsibility for the
costs of a security breach, it is strongly advisable to ensure it has liability insurance in
force at all times to cover the liability contingency.

Change Management

Change management for third-party applications should follow standard software
development life cycle (SDLC) procedures, including:

e running all changes/upgrades/patched software in a test
environment

e obtaining written sign-off from all user groups and from the
security department for all changes

e maintaining a software library of executable code of the
application, including revision numbers, patch numbers, and
change dates

It is widely understood that contracting parties will often struggle through a failing
process and maintain the illusion of a successful work in progress rather than admit
defeat and start over.

But starting over trumps failure.

97

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 © HOW TO MANAGE SECURITY ON APPLICATIONS WRITTEN BY THIRD PARTIES

Summary

It is important to maintain transparency in the problem-solving process, specifically
because it is a web site owner’s responsibility to manage any liability that is the result of
a security breach occurring on his web site. This is true even if the security breach occurs
on software provided by a third-party software vendor. In this case, liability does not
automatically shift from a web site owner to a third-party software vendor.

Wherever possible, a web application site owner should get a software support
contract with transparency of problem resolution. The site owner should have her lawyer
vet the agreement prior to signing. The contract should state precisely how and when
support will be provided along with giving an enforceable escalation plan. Liability
insurance should be considered as a backup plan to the software service contract.

It is also important that change management for third-party applications follows
standard SDLC procedures. It is required the applications’ adherence to these procedures
is transparent.

98

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7

Integrating Compliance
with Web Application
Security

Compliance with regulations and industry standards is a strong motivator in today’s IT
security world. Regulatory standards deal mostly with financial reporting, privacy, and IT
security for the protection of critical assets. Industry standards for corporate IT security
are created as trusted benchmarks that corporate executives can rely upon as reasonable
goals. Guidelines are less formal and just suggestions.

Compliance specifically means following the rules or control points within the
applicable regulation or standard. It often falls into the security domain and therefore
into the web application world simply because security vulnerabilities are also
compliance violations.

The most common compliance requirements come from government regulations,
industry standards, and recommendations from the outside financial auditors of publicly
traded companies. Government regulations and industry standards are subject to change
and publiushed publicly.

Regulations, Standards, and Expert Organization
Recommendations

This section identifies some of the most widely adopted regulations and standards, as
well as expert information sources. The reason why the expert recommendations are of
such great value is that they are more granular and reflect current risks, while regulations
and standards define requirements at a higher level. One could regard regulations and
standards as operating at the strategic level, while the expert organizations provide
tactical recommendations.

The regulations discussed in this book span all aspects of security and cover various
geographic and industry types by jurisdiction. It should be noted there are many more
regulations than mentioned here and no doubt many more will come into existence.

99

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 * INTEGRATING COMPLIANCE WITH WEB APPLICATION SECURITY

Government Regulations

Some of the more well-known governmental regulations that require IT security
compliance to various degrees are:

e (California Security Breach Information Act (SB-1386): privacy

¢ Health Insurance Portability and Accountability Act (HIPAA):
privacy of medical records

e Ontario Securities Commission (OSC) Bill 198: financial reporting

¢ North American Electric Reliability Corporation Critical
Infrastructure Protection 02 -09 (NERC CIP 02-09): electrical
utility security

e Personal Information Protection and Electronic Documents
Act (PIPEDA): privacy

e Harmonized Threat and Risk Assessment Methodology by the
Chief, Communications Security Establishment and the Royal
Canadian Mounted Police / RCMP/CSE TRA: security

e Sarbanes-Oxley Act (SOX): financial reporting

Industry Standards
The following is a good representation of security and privacy regulations:

e Control Objectives for Information and Related Technology 5 for
IT Security (COBIT 5 for IT Security): This is a security standard
that provides guidance to help IT and security professionals
understand, utilize, implement, and direct important information
about security-related activities.

e Experian Independent Third Party Assessment (E13PA):
Addressing both security and privacy, this document identifies
certification requirements for third parties that want direct
electronic access to Experian credit-history information.

e Global Data Synchronization for GS1 Data Pools (GS1): This is a
security guideline for all members of the GS1, which is a nonprofit
organization that creates guidelines for companies that exchange
information electronically. The GS1 is well known for producing
barcode standards.

100

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 * INTEGRATING COMPLIANCE WITH WEB APPLICATION SECURITY

e International Standards Organization 27002 and 17799
(ISO 27002 and ISO 17799): The ISO 27002 is an information
security standard that was published in 2002 and gives
recommendations for IT security controls, which are actions or
technology used to reduce the chance of a security breach. It has
since been republished as ISO 17799.

e PCI Data Security Standard (PCI DSS): Created by the PCI
Security Standards Council, this standard covers security and
privacy guidelines for the credit card industry.

e Health Insurance Portability and Accountability Act (HIPAA): This
privacy regulation, presided over by the US Department of Health
and Human Services, protects the privacy of individuals’ health
information.

Recommendations from Expert Organizations

There is a wealth of open-source web application security assistance found in expert
organization publications. This information can serve as both an adjunct to and
assistance for adherence to control points required by regulations and industry
standards. Some of the organizations that produce recommendations are:

¢ International Information Systems Security Certification
Consortium (ISC2): Focusing on both security and privacy,
this organization is the designator of the Certified Information
Security System Professional (CISSP) and other security
certifications.

¢ Information Systems Audit and Control Association: ISACA
is the creator of COBIT 5 and COBIT 5 for IT Security and the
designator of Certified Information Security Manager (CISM) and
other security certifications.

e National Institute of Standards and Technology: NIST is the
federal technology agency that works with industry to develop
and apply technology, measurements, and standards.

e Open Web Application Security Project: OWASP is a worldwide
not-for-profit organization focused on improving web application
security and providing information that helps make informed
decisions about true software security risks.

101

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 * INTEGRATING COMPLIANCE WITH WEB APPLICATION SECURITY

e SANS: This information-security training organization derived its
name from the first letters of SysAdmin, Audit, Networking, and
Security. SANS both provides training and publishes the Critical
Security Controls Version 5 List, which is a regularly updated
list of what SANS considers to be the most serious IT security
vulnerabilities for the reporting period.

e Web Application Security Consortium: WASC is an international
group of experts, industry practitioners, and organizational
representatives who produce open-source and widely agreed-upon
best-practice security standards for the World Wide Web.

Financial Auditors’ Favorites

The following guidelines are the compliance requirements recommended by financial
auditors for both IT security and work flow control point compliance. I have included these
guidelines in this section because they are widely referenced by third-party financial auditors
as being their clients’ definitive guides for IT security posture, but in reality, none of these
auditors have anything to do with IT security or with web application security.

e Canadian Institute of Chartered Accountants CICA 5970: Now
superseded by the CASE 3416, CICA 5970 is a new Canadian
auditing standard that is closely aligned with the US SSAE 16 and
international ISAE 3402 auditing standards for evaluating internal
controls for financial auditing.

e COBIT 5: As previously discussed, COBIT 5 is ISACA’s business
framework for the governance and management of enterprise IT.

e ITIL: Formerly known as the IT Infrastructure Library, ITIL is
the most widely accepted standard in the world for how to plan,
deliver, and support IT service features.

o American Institute of Certified Public Accountants’ Statement of
Auditing Standards No. 70 for Service Organizations (SAS 70): SAS
70 is the examination standard for auditors and often includes
controls for information technology and related processes.

102

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 * INTEGRATING COMPLIANCE WITH WEB APPLICATION SECURITY

Leading Standards and Regulations

I believe that the PCI DSS, the E13PA, the NERC CIP, and COBIT 5 are the frontrunners for
IT security standards, with some overlap on web application security. These regulations
and industry standards along with SOX, the ISO 27000, and the NIST 800-53 are described
in a little more detail in this section. The most relevant sections of the standards are
included in the appendices of this book, as referred to in Table 7-1. They are included
here with the kind written permission of the source organizations.

Table 7-1. Standards Covered in the Appendices in This Book

Appendix Standard Subject matter

Appendix A COBIT 5 for IT Security ~ Best security practices; widely used by IT
Security auditors

Appendix B E13PA Version of the PCI DSS adapted by Experian

Appendix C 1SO 27000 A high-level framework for IT security

Appendix D NERC CIP Critical infrastructure protection for

electrical, water, and sewage utilities with
sections pertinent to web application

security

Appendix E NIST 800-53 US government IT security
recommendations

Appendix F PCIDSS Security for credit card vendors, with many

useful sections for web application security

Appendix G Sarbanes-Oxley (SOX) Accuracy requirements for financial
reporting, but lacks specific security
recommendations

The following sections provide an overview of each standard, offering convenient
reference points to which to refer when you look at the actual appendices.

COBIT

COBIT is really a short-form name for the most recent version of a constantly evolving
standard that provides a business framework for the governance and management of
enterprise IT. The most current version is COBIT 5. It is a favorite of external financial
auditors, especially for setting IT security control points for their clients. There is also a
version of COBIT specifically for information security, which I will discuss in the next section.

103

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 * INTEGRATING COMPLIANCE WITH WEB APPLICATION SECURITY

ISACA is the author of both COBIT, the business framework, and COBIT 5 for IT
Security, in addition to other standards. ISACA, previously known as the Information
Systems Audit and Control Association, is an independent nonprofit global association.
It engages in the development, adoption, and use of globally accepted, industry-leading
knowledge and practices for information systems.

The SOX standard, which is derived from the Sarbanes-Oxley Act and is covered later
in this chapter, relies on COBIT and dovetails well with the responsibilities of financial
auditors. Since COBIT is highly methodical and process oriented, it is relatively easy for
financial auditors to translate it into measurable control points. As previously mentioned,
security controls or control points are actions or technology used to reduce the chance of a
security breach. Controls can be used to reduce exposure to threats, to reduce occurrence of
vulnerabilities, and to reduce the chance of a vulnerability being compromised by a threat.

Note An excellent list of security controls, Critical Security Controls, Version 5, is
published by SANS.

COBIT 5 for IT Security

COBIT 5 for IT Security is a different publication than COBIT, previously mentioned.

As its name indicates, COBIT 5 for IT Security is more on topic for security matters. The
similar names can be confusing, and even some security people are not aware that there
are two different standards published by ISACA.

E13PA and PCI DSS

Both the E13PA, produced by Experian, and the PCI DSS, produced by the PCI Security

Standards Council, are excellent granular standards for financial transaction web sites and

their associated network infrastructures. The E13PA is an auditing standard that is based

on the PCIDSS standard. These standards are more architecturally and implementation

oriented than COBIT, but, of course, all three standards deal with policies and procedures.
The PCI DSS, or PCI Data Security Standard, is a framework for developing a

robust payment card data security process, which includes prevention, detection,

and appropriate reaction to security incidents. The PCI Security Standards Council

is an open global forum launched in 2006 that is responsible for the development,

management, education, and awareness of the PCI Security Standards. The council’s five

founding global payment brands are American Express, Discover Financial Services, JCB

International, MasterCard, and Visa.

104

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 * INTEGRATING COMPLIANCE WITH WEB APPLICATION SECURITY

Experian is an information services company that helps businesses to manage
credit risk, prevent fraud, target marketing offers, and automate decision making.
The company also helps individuals to check their credit report and credit score and
protect against identity theft. The E13PA, or Experian Independent 3rd Party Assessment,
is a comprehensive list of the IT security control points that comprise Experian’s
security requirements for a business partner, such as a reseller of Experian data that
communicates with the Experian network. Although EI3PA is licensed by PCI, it focuses
on protecting Experian data.

ISO 27000

Ubiquitously held in high esteem, the ISO 27000 series is the basis for creating both
security architectural frameworks and IT security audits.

The International Organization for Standards (ISO) develops and publishes internal
standards with the goal of ensuring the safety, reliability, and quality of products and
services. One of its standards is the ISO 27001 for Information Security and Management.

NIST

NIST, the American National Institute for Standards and Technology, publishes an array
of recommendations for all matters related to IT, including the most recent NIST 800-53,
which deals with IT Security.

NIST is the US federal technology agency that works with industry to develop and
apply technology, measurements, and standards, including those for IT security.

NERC CIP

The North American Electric Reliability Corporation’s Critical Infrastructure Protection
standard, or NERC CIP, is one of my favorites, as it is both architecturally detailed and
constantly evolving. Technical detail is seen in Appendix D, which contains the relevant
sections of CIP-007-5, where some detailed control point references for application
security are given. Appendix D also addresses updating, giving relevant subsets of tables
identifying current enforcements and those areas subject to future enforcement. The
future enforcement sections contain augmentations to existing control points and new
control points.

The expert organizations’ documentation have far more detail and depth of
recommendations than NERC CIP, as do the E13PA and the PCI DSS, and NERC CIP does
not focus on web application security to the extent that the publications of these other
organizations do.

The NERC CIP was created as a direct response to the Department of Homeland
Security’s requirement for a secure, reliable electricity infrastructure for the United States.
As such, the standard focuses around the primary application used by electrical utilities
called SCADA. However, the NERC CIP can be applied to almost any IT security architecture.

105

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 * INTEGRATING COMPLIANCE WITH WEB APPLICATION SECURITY

Sarbanes-Oxley

The Sarbanes-Oxley Act, or SOX, does not really have any prescriptive directions for

IT security, as its primary focus is on the accuracy of financial reporting. As such, SOX
primarily relies upon COBIT for an IT security framework. The specific COBIT document
for this purpose is called IT Control Objectives for Sarbanes-Oxley, 2nd Edition. The SOX
bill does not refer to ISACA or COBIT in any way; however, COBIT has become the de
facto standard for SOX compliance.

Integrating Compliance and Security Reporting

I described vulnerability reporting in Chapter 3 and remediation reporting in Chapter 4.
I also identified compliance regulations, standards, and guidelines earlier in this chapter.
It now is time to put all the aspects together in a clear, understandable way.

Since compliance with a security standard involves identifying any underlying
security vulnerability that may cause a compliance violation, it is very simple to combine
compliance with a security audit. Any security vulnerability found during an audit that
impinges upon a compliance standard is simply noted as a compliance violation. If you
will, this is hitting two birds with one stone.

The most expedient way to accomplish combining reporting on compliance with
web application security is to simply incorporate both within one reporting table.

If compliance to any standard or standards is part of a security policy, it is useful to
cross-reference the relevant subsections of applicable documents in the technical
sections of corporate security policy/procedures documents and of course within the
results of web-application-security vulnerability assessments.

106

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 * INTEGRATING COMPLIANCE WITH WEB APPLICATION SECURITY

An easy way to accomplish creating this table of integrated vulnerabilities,
remediation, and compliance is to build on an existing table. Included with the downloads
for this book is a summary table of vulnerabilities, remediation for each vulnerability,
and its associated risk. A logical approach to adding compliance is simply to create a new
column heading across the top of the table for each compliance requirement. A compliance
requirement may be a regulatory requirement such as SOX, an industry compliance
requirement such as COBIT 5, or a requirement to comply with corporate IT security
policy. If the requirement were to involve complying with COBIT 5, PCI, and corporate
policy, then the table headings would be as shown in Table 7-2. These three compliance
requirements would make sense together in a case like this:

e The corporate external financial auditor specifies several COBIT
control points as requirements to pass an annual audit.

e Retail credit card payments are a key process of the corporation’s
day-to-day business activities, and the corporation must adhere
to the PCI DSS.

In Table 7-2, three compliance columns have been added to correlate the
vulnerabilities with the compliance violations of COBIT 5 for IT Security, the PCI DSS,
and corporate security policy standards.

107

www.it-ebooks.info

http://www.it-ebooks.info/

INTEGRATING COMPLIANCE WITH WEB APPLICATION SECURITY

CHAPTER 7

"9NS PaIndas-Sd.LLH/TSS

ue uo suni uoneddde moA

*S1 SYUTY) I9AISS 9}
QUO d]) ST UONBSISAU0D
10 UOT}OBISNUI 1SN 9}
18y} AJ119A A[1RN331 01
9[qe 9 01 I9AISS B 10]
SI BAPI Y], 'UOISSIS B
JO [01UOJ 9)e) pUE OJUL
yeaiq o) Sunduwane

UOISIaA TSS oy s1exoey SuIfIo] 10§
parepdn jsowr 123 08 1020301d STLIOISS £Fojoporpow Aumoos
10} JUswaImMbal soomIpgypeny O M suonedrdde qgam [BIIUBSSA UE SI1] 'JO
:SUOISSas pue oremey PUP SI9SMOI] qom Uusamiaq aIEMBUN 9IE SI9SN
SIOATOS /1UID uondA1ouy 1suresy uonsaloig suonoesuen [[e}dAUT 150 jey Suryrowos st juswageuew
Jo uondAruyg YeoM (T’ T'H g6 a8 ‘suonovsuvy v JdAoug yuowedeurUW UOISSAS UYSIH ~— UOISSas Yeap
“(4oea Jo auo 1583
1e ““8'9) promssed s 1osn e Ul
s19108IRYO SLBWNUERyd[EUOU
Io/pue ‘Ouewnu ‘onaqeydre -aq 01110d1nd £a1) oym
JO SUODEUIGUIOD UMUWIUIW 161 1y ore Koty WLIUOD
ompayds Jo asn ap saxmboai Ajpeordfy puE saApSWAY
[emaus1 fyxordwo) “Ayrxarduwios ajeonuUaINe 0}
promssed pue azIs winuuiur e s19sn pus axmbar
pue p8usns $901A19G $1YSry aaey 0} paxmbaiaq P[NOYS I9AI9S B uoneINUSYINY
piomssed suonemnSyUO) $S9IJY PUE SSAIIY P[noys spiomsseqd ‘uoneoridde gam e wLOING
[UOMBONUSINY 9IN03G :9°['F 19s() :6G 2InS1] ‘Y1Sua.is promssvd 21va.7) Suisseooe 11011y YSIH Jo R
UOIJeJOIA UOHE[OIA UONE|OIA AJLINDag sse[o

Ka1jod ajeiodion

$8aldd

1141046 11909

Kiewwns uonelpaway

uonduosaq

Asy Amgessunp

pPappY Spivpuvis aouvijduio) Yiim UoyvIpaway puv sty Jo Livwwuns “g-2 219,

108

www.it-ebooks.info

http://www.it-ebooks.info/

INTEGRATING COMPLIANCE WITH WEB APPLICATION SECURITY

CHAPTER 7

‘SPADPUD]S 3S0Y]

U1 SUO1JI2S PUD SAUNSL 01 34D SUUIN]O0D SPIDPUDIS Y] UIYIIM SIIUI[a. 21] "SuondLiosap a1a]duiod ay1 10f “yooq s1yj 10f sppojumop ayj
u1 21qvy Lipwiwns ay1 10 ‘§ puv ¢ s1a3dvy)) 238 "2)duivxa s1yj Ul pagv112.1qqy Udq 2avY SALIPUUUNS UOIDIPIULdL PUD U01]d110Sap dY T,

CERIAREIND 01:111%
Jonuo) pue aI1eM[eIA
§S900Y, 10] suoperndguo) Isuredy uondaloId
Se aures EXBEINER 7 186 am3ry
IDAIIS A}
Je pajepIeA pue
uoneordde app
uo SurLIMd20
uonezroyne
I9SM 10§ sreod sy

JUaWIddIoJu wﬁo_umﬂ.—waﬁou $S3JJ®k pue $S3dJd¢e
:[01UOI SS3Y 9INdaS B ['Y I9s() :9¢ wuﬂwwm

‘;ndur jo uonepiea

pue uoneOnUIYINE 10J Y1oq
uonedrdde gom e urypm
paxmbazi st uonepirea
Suons ‘Aiunoas yunowered
SI [0IJU0D SSIIIB IIUIS

*S[9AJ]
IaA19s pue uonedrdde ayp
1B $S900® 9ABY JOU P[NOYS
£33 yo1IyM 0} SuoTdUNJ 0}
$S9008 UTES JOUUED SIASTL
Ppaziioyineun Jety) dIsuyg

*$120.19S puv suovaddp oy
$S900D PAZLIOYINDUN JI1LISIY

‘uoneordde

ue 03 ssadoe unsanbai
SI9SN JO SANNUAPI Y}
JO UOTBPI[RA JUSIIJNS
SI $S900® pazLIoyineun
jsurede uonoajoid
Suons y "s1aory 10§
1988nu uapyo8 atp st
$S900® pazLIoyINeu()

‘sa8ariand

$S900€ 119} JO [9AJ]
K1o1id oy asearour
U9y} pue $s3208
paziroyineun ures o} st
s1axoey jo [eod swnd
e ‘A[9s10AU0)) "AI1IMIIS
Jo 10adse juelrodur
Jsour A} ST ‘SaIy pue
$3ss9201d Jueyrodur
[[e 01 I9)jeW JBY) 10]
10 ‘uoneoridde ue 0}
$s929¢e Surjonuod

10 3unoinsay

[oA9]
uoneordde ap

e UOnEpIEA

YsiH indur yeapm

[onuod
yStH $S900B YBAM

109

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 * INTEGRATING COMPLIANCE WITH WEB APPLICATION SECURITY

Summary

Compliance is a strong motivator to enforce rigorous IT security and web application
security. Most compliance requirements are acted upon in order to adhere to government
regulations and security control points specified by corporate external financial auditors.
Sometimes, corporate policy that addresses web application security also requires
adherence.

The most commonly specified regulations/standards for security-related compliance
are COBIT, COBIT 5 for IT Security, the E13PA, the ISO 27000, the NERC CIP, NIST,
the PCI DSS, and Sarbanes-Oxley. All of these regulations and standards have their
differences.

Security-compliance control points will also always be security control points.

The remediation is the same for both.

A straightforward way of reporting both security vulnerabilities and compliance
violations is by using a table showing the correlation of security vulnerabilities with
compliance violations. Several security regulations and standards can be referenced in
one table along with security vulnerabilities.

110

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8

How to Create a Business
Case for Web Application
Security

The security of web applications, particularly those that are transaction platforms and
those in a constant state of change, is costly to achieve and to maintain. Now, pile on
privacy and regulatory-compliance testing and remediating, and the related costs
become frustrating to senior managers who see no tangible or visible improvement to
the web applications. These expenses must be cost justified in terms of risk and return
on investment.

The key to getting the IT security governance committee to fund the appropriate
compliance budget is to speak its language. In order to do that, risks need to be expressed
in terms of the costs for executives. Specifically, expenses need to be identified as:
potential cost of losses, mitigation costs, the total costs (potential cost of losses plus
mitigation costs), and residual costs.

In order to be clear and meaningful for the intended audience, the material should
be presented graphically, with changes depicted in both cost and risk over time. This
trending analysis will be the most useful in supporting the IT security governance
committee’s ability to make well-informed decisions about how to most effectively invest
in security and thereby derive optimal payback for stakeholders.

The steps to performing this analysis are:

1. Assess therisk.

Calculate the annual loss expectancy.

Calculate the cost of prevention and remediation.
Calculate the return on security investment (ROSI).
Create a business case.

Measure and cost justify residual risk.

N o e &~ 0Dn

Determine whether ROSI objectives are met.

111

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 " HOW TO CREATE A BUSINESS CASE FOR WEB APPLICATION SECURITY

Assessing the Risk

The first step in this process is to identify risk from a business perspective and then
quantify the cost impact that would take place if the risk becomes a reality. For instance,
you might identify the damage to the brand that would result from a Trojan attack causing
the theft of clients’ credit card information. The risk is assessed as the potential money
lost as a result of a single incidence of the event, which might be $10 million. The annual
loss expectancy is calculated by multiplying the estimated number of occurrences of this
particular event; in this case, each at a cost of $10 million.

Identifying Risk and Its Business Impact

The costs of IT security risk associated with web applications for breaches and
noncompliance of regulatory/standards and the resulting negative impact on business
can be broadly identified as follows:

e loss of revenue or production due to unavailability of production
resource

e time and effort needed to recover from a security-related loss of
production

e legal ramifications and expenses

e damage to brand

e regulatory compliance violations

e privacy compliance violations

e damage to client and vendor relationships

¢ loss of intellectual, competitive, or proprietary information

e unrealized profits resulting from the inability to demonstrate to
clients/vendors/partners a strong security process

The cost of risk is the resulting impact on business that may be incurred should a risk
become a reality. Determining the cost of a potential event is difficult at best. However,
it can be accomplished by employing one or more quantitative and qualitative methods,
and should be undertaken by those most qualified to do so. Qualified assessors include
unit profit and loss managers, stakeholders, and executives with insight into how an event
would quantitatively affect their work domain.

The cost of various types of events can be viewed in terms of being low, medium, or high.
This qualitative analysis is not useful in itself but may assist management in determining how
to prioritize the order in which it will perform a more in-depth risk analysis.

112

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 = HOW TO CREATE A BUSINESS CASE FOR WEB APPLICATION SECURITY

Estimating the Chance of Occurrence of Each Event

Creating a case to present to senior management about web application security involves
calculating the estimated cost of risk versus the cost of preventing or remediating its
causes. In order to calculate the cost of risk;, it is first necessary to estimate the chance of
each security event occurring over the course of a budget year. To do this, you would first
identify the types of threats, then use either qualitative or quantitative risk analysis, and
finally calculate annual loss expectancy by associating a cost with each security event.

Once you determine the likelihood of an event occurring over the course of a budget
year, the most useful way of expressing that likelihood is as a percentage representing the
possibility of the event or total number of events occurring in any one year.

However, any likelihood estimate should be adjusted to account for changes in the
security environment. There are typically evolving waves of new threats that may affect
the likelihood of occurrence, such as:

¢ new Internet-based security attacks

e new viruses

e malware of all sorts

e distributed denial of service attacks (DDOS)
e identity theft

e risk created internally within the host organization of a
web application, simply through the process of change and
maintenance of the application and its environment

Qualitative and Quantitative Risk Analysis

As part of risk analysis, one needs to determine the chance of an event occurring. There
are two basic approaches to determining the probability of an event occurring. They

are: qualitative, which is more subjective and based upon commonsense and current
knowledge about security issues, and quantitative, which relies upon published statistical
information about chances of occurrences and mathematical calculations.

The qualitative method is the one most often used, as it is intuitively understood and
most quick to estimate. It is done by first considering various events in terms of their risk
and the relative cost of loss per occurrence. Then, you plot out where each vulnerability
would fall in terms of threat and vulnerability levels using a graph like the one in Figure 8-1.

113

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 " HOW TO CREATE A BUSINESS CASE FOR WEB APPLICATION SECURITY

High Risk Medium High
) High Cost = Risk Risk
| Low Risk Low Medium
% Probability of Occurrence Vulnerability Level

Figure 8-1. Potential cost versus probability of occurrence

In Figure 8-1, the cost of loss is plotted along the vertical axis and the percentage of
the probability of occurrence is plotted along the horizontal axis. For any vulnerability,
the higher the chance of occurrence and the higher the cost, the higher its risk. The
highest risks reside in the upper-right-hand quadrant and the lowest risks, in the lower-
left-hand quadrant.

Quantitative analysis is more theoretical and based upon the statistical probability of
any type of event occurring in an environment. The probability is derived from the historical
trends for that particular industry and geography, and should include other relevant
statistical factors. I mention it here only for completeness, but it is not very practical.

Calculating Annual Loss Expectancy

The annual loss expectancy (ALE) is the estimated annualized cost for the occurrence

of any type of event. This number is useful for comparison with the annual cost of
mitigation. The ALE for an event is calculated by multiplying the estimated cost of a single
event by the number of times it is expected to occur. The calculation is done as follows:

ALE = estimated cos? per event xthenumber of estimated occurrences per year

For example, if the estimated cost per a particular event is $100,000, and the
estimated number of occurrences per year is 2, then:

ALE=$100,000x2

and the annual loss expectancy is $200,000.

114

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 = HOW TO CREATE A BUSINESS CASE FOR WEB APPLICATION SECURITY

The annual loss expectancy combined with the qualitative risk level provides
decision criteria for prioritizing the order in which risks are dealt with. You can feed
all this information directly into the business case covered later in this chapter in the
section “Creating the Business Case for Executives.” The cost of required mitigation or
remediation is considered when prioritizing a risk management plan and is discussed in
the next section, “Calculating the Cost of Prevention and Remediation.”

Various methods can be used either separately or together with the implementation
of an averaging metric to estimate the cost per occurrence of an event. These methods
may include:

e soliciting expert advice from financial management, lawyers, and
risk management consultants

e conducting a straw poll of stakeholders, each estimating the
downside cost of an event

e participating in a fact-gathering survey of similar businesses, each
of which provides factual and straw poll estimates of the cost of an
event

e purchasing statistical information from industry experts regarding
the cost of an event

e obtaining statistical information from industry associations about
the cost of an event experienced by their membership

Calculating the Cost of Prevention and
Remediation

The security team needs to identify all preventative countermeasures and remediation
steps that will be taken, at least as a first-pass estimate, in order to include these items in
the cost-justification business case that will be made to executives.

These steps should include hiring personnel to assist in creating policy and in
executing it via implementing procedures and processes. They must also include creating
control points and recommending technology and security services. The technology may
be purchased, leased, or outsourced. The services similarly may be built in house, such as
in-house web application auditing, or a less biased way is to outsource that service.

Once all the costs are known or estimated, they can be combined with the estimated
cost of risk to come up with return-on-security investment calculations, as shown in the
next section.

115

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 " HOW TO CREATE A BUSINESS CASE FOR WEB APPLICATION SECURITY

Calculating the Return on Security Investment

Once the total cost of security mitigation is determined, factoring in any costs for managing
residual risk, calculating the ROSI, becomes straightforward. It is done as follows:

ROSI = costof mitigation +costof risk

For example, if the estimated cost of mitigation is $20,000, and the estimated cost of
risk is $200,000:

ROSI= $20,000+$200,000

and ROSI is 10%.

When calculating ROS], it is important to allocate mitigation costs on a prorated
basis across all risks to which they apply. This allows profit-and-loss managers and
associated stakeholders to most accurately calculate and evaluate ROSI.

Executives comprehend the value of web application security with more clarity
when the variables are expressed in terms of dollars and relative risk. It is more likely an
executive committee will respond to a security budget if they can understand:

¢ the potential cost of losses associated with a security breach

e therelative risk of a breach(es) occurring within a specific period
of time, such as within the next budget year

e the cost of reducing the relative risk

e the amount by which the relative risk is reduced based on the
investment-in-security expenditures

A powerful method of estimating the damage of a web-application-security breach
is to list the most likely outcomes of a breach and ask the members of the executive
committee to ballpark the resulting costs in an executive straw poll. For instance, the
outcomes may be:

e loss of production for one day
e loss of production for one week
e loss of electronic communications with clients for two days

e incorrect information collected and presented on the client
support web site

The estimated annualized cost due to security breaches needs to incorporate
several factors:

e the estimated cost of each breach

e the potential number of breaches during a one-year period

116

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 = HOW TO CREATE A BUSINESS CASE FOR WEB APPLICATION SECURITY

e therisk of a breach or breaches actually occurring

¢ the tolerance of the governance committee to sustaining such
a breach. This is an emotional factor, which, in the author’s
experience, simply cannot be ignored.

The ability to estimate the potential number of breaches in a year is very difficult to
estimate since it is based on many complex, difficult-to-research factors, including:

e statistical estimated similar breaches for similar industries
e estimates of new Internet threats

For expediency, it is useful to combine the estimated cost of each breach and the
guesstimated number of breaches into a single number at the time of completing the
straw poll. So, we may include as breaches a virus infection and a web site compromise
that lead to theft of client financial information.

Three spreadsheets compiled based on a straw poll are shown in Tables 8-1 through 8-3.
For clarity, separate tables are devoted to cost, risk, and tolerance. The tables illustrate
three of the seven event descriptions from the section “Identifying Risk and Its Business
Impact” The additional spreadsheets are included with the downloads for this book.

Table 8-1. Cost Estimates for Various Web Application Security Events Based on Straw Poll

Employee Revenue Revenue Damage to brand ... Impact to
loss from loss dueto or corporate corporate
damaged client the inability image due to annual
relationships to process inability to process revenues

transactions transactions

CIO $1,000,000 $100,000 $150,000 $165,000,000
CFO $1,100,000 $150,000 $250,000 $165,000,000
CEO $1,500,000 $20,000 $300,000 $165,000,000
Board member $300,000 $200,000 $400,000 $165,000,000
VP of Sales $400,000 $500,000 $175,000 $165,000,000
Average $860,000 $194,000 $255,000 ... $165,000,000

In Table 8-2, the assessment of risk varies from .0 to 1, where 0 represents zero risk
and 1 represents maximum risk. The numbers represented as fractions between 0 and 1
in the table indicate each manager’s assessment of risk for each event.

117

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 " HOW TO CREATE A BUSINESS CASE FOR WEB APPLICATION SECURITY

Table 8-2. Adjustment for Risk for Various Web Application Security Events Based on
Straw Poll

Employee Revenue loss Revenue loss due Damage to brand or
from damaged to the inability corporate image due to
client relationships to process inability to process

transactions transactions

CIO 0.4 0.6 0.3

CFO 0.3 0.5 0.2

CEO 0.2 0.4 0.1

Board member 0.5 0.7 0.4

VP of Sales 0.4 0.6 0.3

Average 0.36 0.56 0.26

In Table 8-3, the tolerance for risk varies from .0 to 1, where 0 represents maximum
tolerance to risk and 1 represents minimum tolerance to risk. The numbers represented
as fractions between 0 and 1 in the chart indicate each manager’s tolerance for risk for
each event. It should be noted that indicating a zero essentially means the manager will
accept the risk, no matter the potential financial cost of a resulting security breach.

Table 8-3. Adjustment for Tolerance for Various Web Application Security Events Based on
Straw Poll

Employee Revenue losses Revenue loss due Damage to brand or
from damaged client to the inability corporate image due
relationships to process to inability to process

transactions transactions

CIO 1.0 0.6 1.0

CFO 1.0 0.5 0.8

CEO 1.0 0.4 0.9

Board Member 1.0 0.7 1.0

VP Sales 1.0 0.6 0.9

Average 1.00 0.56 0.92

118

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 = HOW TO CREATE A BUSINESS CASE FOR WEB APPLICATION SECURITY

For example, from Table 8-1, the revenue loss from damaged client relationships is
averaged at $860,000. From Table 8-2, the associated average risk is 0.36. Similarly, from
Table 8-3, the associated tolerance for risk is 1.0. We can now represent the executives’
opinion of the associated financial value of the risk along with their perceptions that
the risk will actually come to fruition, along with their tolerance for the risk coming to
fruition, by multiplying the three values together.

In this example, the adjusted revenue loss is expressed as

Adjusted Re venue Loss=Re venueloss x risk x tolerance for risk

or,
$309,600=%$860,000x0.36x1

Creating the Business Case for Executives

You can create a business case that justifies expenditures for web application security
fairly easily created by correlating three factors:

e the cost of risk, taking into account relative risk and tolerance
for risk

e the cost for preventative and remedial measures
e avariety of return-on-investment calculations

The results of the straw poll are used to create an example business case, as shown
in Table 8-4. The cost of risk is detailed in Section 1, “Cost of Risk,” where the cost is
linked directly to the results of the straw polls and a high, medium, or low risk is assigned
for each factor. For simplicity and clarity the estimates of risk and tolerance for risk are
shown both as quantitative and as qualitative values in Table 8-4, which is the sample
business case.

119

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 " HOW TO CREATE A BUSINESS CASE FOR WEB APPLICATION SECURITY

Table 8-4. Sample Business Case for Calculating Annualized Return on Web Application

Security Investment

Section 1. Cost of Risk

Cost and/or Cost and/
Potential or Lost

Losses from a Revenues
Breach

(Average of
Respondents)

Tolerance Risk
Factor Factor for Risk

Adjustment Adjustment Adjusted

for Total
Tolerance

Revenue

losses from
damaged client
relationships

$860,000

Revenue loss due $194,000
to the inability

to process

transactions

Damage to brand $255,000
or corporate

image due

to inability

to process

transactions

Legal costs from $70,000
client data or
other third-party

data made public

Costs of disclosure $51,000
of confidential

or sensitive

information which
contravenes

financial and

disclosure

regulations

Costs due
to breaches
of privacy
and privacy
regulations

$59,000

Low High 0.36

Med Med 0.56

Low High 0.26

Med High 0.76

Med Med 0.46

Med Low 0.46

1.00 $309,600

0.56 $60,838

0.92 $60,996

1.00 $53,200

0.056 $13,138

0.20 $5,428

120

www.it-ebooks.info

(continued)

http://www.it-ebooks.info/

CHAPTER 8 = HOW TO CREATE A BUSINESS CASE FOR WEB APPLICATION SECURITY

Table 8-4. (continued)

Liability and legal $29,000 Low High 0.26 1.00 $7,540
costs for damage
to third parties

Total Cost and/or $1,518,000 $519,526
Potential Losses
from a Breach

Section 2: Cost to Prevent and Mitigate Potential Losses
Prevention, Cost

Countermeasure,

or Mitigation

Upgrade patch $35,000
management
process.

Implement all $25,000
recommendations

of last

vulnerability

assessment.

Purchase ongoing $50,000
vulnerability
assessments.

Regularly analyze $50,000
all event logs.

Upgrade $50,000
authentication
process.

Upgrade web $25,000
application
security policy.

Total Annual $235,000
Mitigation Costs

(continued)

121

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 " HOW TO CREATE A BUSINESS CASE FOR WEB APPLICATION SECURITY

Table 8-4. (continued)

Section 3. Cost of Risk
Calculations of ROSI
Key Cost and

Risk Ratios

Return on Security 15.48%
Investment

(ROSI)% of $

Mitigation / $

Potential Losses

% of $ Mitigation 45.23%
/ $ Adjusted
Potential Losses

Client’s annual $165,000,000
revenues

% of $ Mitigation 0.14%
/ $ Annual
Revenues

% of $ Potential 0.92%
Losses / $ Annual
Revenues

% of $ Adjusted 0.31%
Potential Losses

/ $ Annual

Revenues

Section 2, “Cost to Prevent and Mitigate Potential Losses,” shows a budget for
preventative and mitigation factors related to security, as can be composed by your web
application security team.

The bottom-line ratios of return on investment, risk relative to gross income, and
prevention/mitigation costs relative to gross income are shown in Section 3, “Return on
Investment.”

Measuring and Cost-Justifying Residual Risk

Measuring residual risk is an ongoing responsibility and it is often thankless since nobody
wants to hear that risk still exists after spending considerable funds on eliminating it. One
of the easiest ways of identifying residual risk is to create or purchase a monthly security
health score, which should include a delta report of how your security health is changing
month to month. Calculating the risk associated with residual vulnerabilities is similar

122

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 = HOW TO CREATE A BUSINESS CASE FOR WEB APPLICATION SECURITY

to the process already described in this chapter. It is always important to understand the
difference between when a vulnerability is merely dealt with and when it is effectively
fixed. When cost-justifying a security budget and subsequently cost-justifying it for
remedial risk, everything comes down to calculating if the ROSI is satisfactory.

Calculating Security Status and Residual Risk with a
Monthly Security Health Score

A simple-to-create and simple-to-convey method of estimating residual risk involves using
a monthly web-application-security health report. The report is based upon statistical
results of what actually occurred in the application security environment under scrutiny.

You should get a proposal of the list of factors to be considered from your security
team and have it approved by the security governance committee so that the results are
meaningful to all concerned. The factors will probably change over time in accordance
with changes in the business environment. Examples of factors are:

e the number of high-risk vulnerabilities found during the previous
month’s web application vulnerability scans

e the number of high risks remediated in one day, week, month, or
more than one month

e the number of servers that don’t have the latest recommended
security patches applied

e the number of workstations that don’t have the latest
recommended security patches applied

The factors, criteria of how to calculate scores for each factor, and weighting of
each factor can then be tabulated in a spreadsheet, with a perfect score being 100%.
The numeric score and the details of its calculation are valuable planning information,
and the security governance team will be able to easily absorb a single percent or
alphabetic score.

The results can be reported numerically, such as with a percentage, and
alphabetically, as A, B, C, or D. It is most useful to also record scores over time in order to
see a pattern of performance.

Figure 8-2 shows an example scorecard. The score is calculated by using control
points to create scoring criteria. In this example, the four major scoring criteria are: server
patch management, account administration, virus/spam problems, and undiagnosed
security events. A score for a particular month is allocated for each criterion and a
percentage-based score out of a total perfect score is calculated. The score is multiplied
by applying a weighting factor for each criteria—in this case 25% weighting for each
criteria—in order to come up with a total weighted score of 81%, which in turn is assigned
an alphabetical value of A-.

123

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 © HOW TO CREATE A BUSINESS CASE FOR WEB APPLICATION SECURITY

Score for September 2014
0
A- | 81%
|Control Points for Assessing Score |Weight Score Out of Possible % Score Weighte
100 Perfect d Score
Score
Server Patch Management 25% 16.7%
Timeliness of patches 60 100
Patches missed 40 100
Failed patches 100 100
Total 200 300 66.7%
Account Administration 25% 20.6%
Expired accounts not deleted 80 100
Non authorized accounts not deleted 90 100
Failed login attempts on admin 90 100
accounts
Failed login attempts on user accounts 0 100
Total 330 400 82.5%
Virus / Spam Problems 25% 23.8%
Serious virus events 90 100
Serious spam events 100 100
Total 190 200 95.0%
Undiagnosed Security Events 25% 20.0%
Serious security events (server and 80 100
IDS) not fully investigated
Total 80 100 80.0%
Total Weighted Score 81.0%

Figure 8-2. A monthly security health scorecard

How to Cost-Justify and Triage Vulnerabilities for
Remediation

We have already looked at cost-justifying remediation and calculating residual risk.
However, the calculations do not take into consideration the timing or order of
remediation. Deciding on the order of remediation directly impacts risk at any point in
time plus the timing of expenditures necessary to remediate.

Since information security is fundamentally concerned with both risk management
and optimizing the return on investment of key assets, it makes sense to triage the
vulnerabilities for remediation based upon the same principles.

If your corporate security policy sets out criteria for evaluating remediation, then it is
relatively simple to create a remediation plan.

124

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 = HOW TO CREATE A BUSINESS CASE FOR WEB APPLICATION SECURITY

The data for creating a remediation plan type starts with identifying the residual
vulnerabilities, their associated risk, the number of occurrences of each vulnerability, and
the estimated time to remediate each type of vulnerability, along with the associated costs
of risk. The technical vulnerability information can be obtained from a web-application-
security audit.

The key asset values should be documented as part of the creation of an overall IT
security policy and should be regularly reviewed thereafter, particularly in organizations
involved with:

e mergers and acquisitions

e sharing of data with partnering organizations

e sharing of data with customers and vendors

e creating and updating web-enabled applications
e changein general

The remediation plan can therefore be optimized according to several parameters,
such as minimizing impact, remediating the most number of vulnerabilities in a given
amount of time, or mitigating the highest risk vulnerabilities.

It is good security practice for the person creating the mitigation plan to share the
plan in written form with management for their buy-in.

As an ongoing practice, it is useful if possible to track vulnerabilities by type,
frequency of occurrence, the time lapse between discovering a vulnerability and
actually beginning remediation, and time to remediate. This information is useful in
identifying the root cause of problems and for getting financial justification for more
IT security resources.

Noting the Difference Between Remediating and Fixing

Remediation is often confused with getting the problem fixed. Too often, remediation is
not successful in resolving the initial vulnerability. This is particularly true when it takes
place over a period of a few days or weeks after the discovery of a vulnerability, especially in
dynamic environments. This is also true when remediation steps are not documented and
relayed to all sources of potential change associated with the change management process.

Remediation can be undone or compromised by operational processes and can be
introduced by various parties, including consultants and subcontractors as well as
in-house code writers and IT/security operations staff.

It is suggested that when remediation is not successful, one should document:

e which vulnerabilities have been affected and, more important,
which key assets are at risk

e why the remediation was unsuccessful or how the remediation
was reversed

e recommended next steps to either reimplement the original
remediation recommendation or alternative suggestions to
resolve the vulnerability

125

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 " HOW TO CREATE A BUSINESS CASE FOR WEB APPLICATION SECURITY

Itis both important and useful to keep a log of why remediation was not successful
in order to identify the root causes of problems, and subsequently modifying policies and
processes helps improve the change management process. This information should then
be fed into the IT-security budgeting process.

Calculating the Cost of Mitigation

Security professionals are well acquainted with determining the costs of mitigation.
Senior executives sometimes think they too are familiar with these costs based on ads
they have read about antivirus and firewall technology.

The danger here is that it is all too easy for those concerned to focus on technology as
the primary mitigation for security and compliance.

It is well advised to address the following areas of mitigation:

1. reengineering processes, both technological and
human-oriented

security technology
physical security

training and awareness

LA

third-party auditing to verify the effectiveness of
all of the above

From an IT security governance perspective, the optimal cost point for mitigation
is where the total costs of risk and mitigation are lowest. This point can be graphically
determined, as done in Figure 8-3.

\\/ Total cost

Potential losses ! Cost of mitigation

Cost

<——— Optimal cost point

High Low
% Chance of event

Figure 8-3. Optimal cost point for mitigation

126

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 = HOW TO CREATE A BUSINESS CASE FOR WEB APPLICATION SECURITY

Once mitigation costs are determined, it is important to express to the IT security
governance committee that mitigation only goes so far and that some residual risk
remains even after spending on mitigation takes place. The residual risk can be expressed
as the cost of risk that remains after mitigation is implemented. As shown in Figure 8-4,
expenditures on mitigation reduce the cost of exposure to risk.

Cost of risk Cost of mitigation

Cost

Cost of
residual risk

B

High Low
% Chance of event

Figure 8-4. Mitigation cost vs. % chance of event occurring

Your IT security governance committee may decide to deal with residual risk by:
e accepting the risk
e passing on the risk (by purchasing insurance)

e further mitigation

Measuring the Effectiveness of Mitigation

It is paramount to close the risk management loop by comparing the planned and actual
results of mitigation. The goal is to identify clearly whether the risk level has changed
and what consistent metrics will be used to base a conclusion on. Once again, this may
be difficult to accomplish directly, but there are common metrics for measuring and
comparing the results of implementing mitigation. The metrics should always:

e produce repeatable, consistent results
e beunderstandable

e bereasonably simple to use over time

127

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 " HOW TO CREATE A BUSINESS CASE FOR WEB APPLICATION SECURITY

The following list of resources and frameworks provide a good initial guide to metrics
that can be used for consistently measuring and reporting on risk:

e ‘“Incorporating Security into the Enterprise Architecture
Process”: (www.gartner.com/doc/488575/incorporating-
security-enterprise-architecture-process) This white paper,
offered by Gartner and produced by Enterprise Information
Security Architecture (EISA), can be used as an architecture for
measuring risk.

e Architecture Framework Forum: (www.architectureframework.
com/dodaf/) This web site is devoted to enterprise architecture
frameworks and technologies.

¢ Institute for Enterprise Architecture Developments:
(www.enterprise-architecture.info/) The institute’s web site
offers the extended enterprise architecture framework (E2AF) and
an information exchange area.

e “Federal Enterprise Architecture” (FEA):
(www.whitehouse.gov/omb/e-gov/fea/) The US Government’s
Office of Management and Budget offers various papers related to
FEA guidance, reference models, and management tools.

¢ Capgemini’s integrated architecture framework:
(http://www.ca.capgemini.com/resources/the-integrated-
architecture-framework-explained)

e “NIH Enterprise Architecture Framework”:
(https://enterprisearchitecture.nih.gov/Pages/
Framework.aspx) The US Government’s National Institutes of
Health Enterprise Architecture offers this framework outlining the
enterprise information technology environment at NTH.

e Open Security Architecture: (www.opensecurityarchitecture.
org/cms/index.php) The OSA’s web site offers various
information on open security architecture.

¢ Open Group architecture framework:
(http://pubs.opengroup.org/architecture/togaf8-doc/arch/)

e Zachman Framework: (www.zachman.com/about-the-zachman-
framework)

e Control points from the COBIT framework:
(www.isaca.org/Template.cfm?Section=COBIT6&Template=/
TaggedPage/TaggedPageDisplay.
cfm&TPLID=55&ContentID=7981)

128

www.it-ebooks.info

http://www.gartner.com/doc/488575/incorporating-security-enterprise-architecture-process
http://www.gartner.com/doc/488575/incorporating-security-enterprise-architecture-process
http://www.architectureframework.com/dodaf/
http://www.architectureframework.com/dodaf/
http://www.enterprise-architecture.info/
http://www.whitehouse.gov/omb/e-gov/fea/
http://www.ca.capgemini.com/resources/the-integrated-architecture-framework-explained
http://www.ca.capgemini.com/resources/the-integrated-architecture-framework-explained
https://enterprisearchitecture.nih.gov/Pages/Framework.aspx
https://enterprisearchitecture.nih.gov/Pages/Framework.aspx
http://www.opensecurityarchitecture.org/cms/index.php
http://www.opensecurityarchitecture.org/cms/index.php
http://pubs.opengroup.org/architecture/togaf8-doc/arch/
http://www.zachman.com/about-the-zachman-framework
http://www.zachman.com/about-the-zachman-framework
http://www.isaca.org/Template.cfm?Section=COBIT6&Template=/TaggedPage/TaggedPageDisplay.cfm&TPLID=55&ContentID=7981
http://www.isaca.org/Template.cfm?Section=COBIT6&Template=/TaggedPage/TaggedPageDisplay.cfm&TPLID=55&ContentID=7981
http://www.isaca.org/Template.cfm?Section=COBIT6&Template=/TaggedPage/TaggedPageDisplay.cfm&TPLID=55&ContentID=7981
http://www.it-ebooks.info/

CHAPTER 8 = HOW TO CREATE A BUSINESS CASE FOR WEB APPLICATION SECURITY

The following tests and trends already occurring within your company can be used
to measure and report on risk:

vulnerability assessments
penetration tests

time trends in frequency of occurrence and the real costs of
security events, privacy violations, and policy-compliance
violations

time trends in cost to recover from events

time trends in frequency of policy-compliance violations that
do not necessarily cause any financial losses, including Trojans,
viruses, root kits, unauthorized logins, attempted port scans,
frequency of dropped packets, frequency of password life cycle,
breaches, and frequency of rescheduled/cancelled IT security
governance meetings with business managers.

Determining Whether Return on Security
Investment Objectives Are Met

Tires meet the road when it is time to determine whether or not ROSI objectives for
security/policy/compliance have been met. Conveying this determination is essential
to building (or destroying) the credibility of the group that made the mitigation
recommendations in the first place.

Determining ROSI is quite simple, as discussed previously in the “Calculating
the Return on Security Investment” section. The actual costs resulting from events are
compared with the projected costs after mitigation. If the mitigation was successful,
then the actual costs should be near or below the projected costs. This information can
be presented as shown in Figure 8-5 (an updated version of Figure 8-3). For purposes of
accuracy, new trends that developed in the security environment over the period of study
should be considered. If the new trends increased the cost of losses, and the effects can be
quantified, then the results should be reported accordingly.

Cost

Actual losses

Potential losses
Potential total cost

Actual total cost

High

Low
% Chance of event

Figure 8-5. Projected vs. actual cost of losses

www.it-ebooks.info

129

http://www.it-ebooks.info/

CHAPTER 8 " HOW TO CREATE A BUSINESS CASE FOR WEB APPLICATION SECURITY

Summary

The task of getting approval for a sufficient budget for web application security, including
privacy-regulatory compliance, is simplified when financial executives are presented with
sufficiently clear data to build a cost-justifying business case.

The IT security governance body should request that graphic presentations of data
be provided to them by the security team. The graphs should depict the relationship
between the cost of risk and the cost of mitigation. The presentation process should occur
both at the time of the budget request, in order to show the intended plan, and after the
budget cycle, to show the actual results.

Financial managers and stakeholders should participate in a straw poll to
estimate business costs resulting from potential security breaches. This is an easy way
to engage them in the security process, and it will make the cost justification business
case more meaningful to them. A monthly web application health scorecard is a useful
tool for measuring and communicating ongoing security health and security posture
for all concerned.

Residual risks and their mitigation will be ongoing and therefore will need to be
included in ongoing cases made to executives for cost-justifying web application security.

130

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9

Parting Thoughts

Over the course of this book, we have covered the critical aspects of web application
security. Before closing, let’s look back at the salient points and steps in the web
application security process.

Web application security is an ongoing process involving the executive committee,
application owners, end users, the development and testing teams, and the IT security
team. The process begins with analyzing the risk of application assets and the processes
they affect in order to determine a starting point for assessing a security budget.

Itis important to understand the differences and relationships between threats,
vulnerabilities, risk, breaches, remediation, and countermeasures. These were discussed
in Chapter 1.

The importance of involving the executive committee in the web application security
process cannot be overstated. Reminding senior stakeholders and executives of the
potential downside costs of a security breach (in a detailed assessment report) is a strong
motivator for the executive committee to participate in a straw poll. The how-tos for this
process were described in Chapter 8.

Gaining a more detailed understanding of vulnerabilities and their remediation
is the next key step required in order to build a security program specifically for web
applications. Chapters 3 and 4 covered the current threats and vulnerabilities that we find
in real-life situations.

The IT group may want to acquire training and recommendations from members
of organizations in the IT security establishment, which includes CERT, NIST, OWASP,
ISC2, ISACA, IS0, and so forth. The IT department of any organization must reach out
to third-party expertise for security audits, web application and network vulnerability
assessments, penetration tests, and code reviews. It is useful for all concerned to
understand the relationships between all these types of security testing. Chapter 2
provided a drill down into these topics.

While executives certainly do not need to understand the details about current
threats and vulnerabilities, they do need sufficient familiarity with the concepts in order
to manage their web application security team. There is a wealth of online, impartial,
no-charge resources to keep executives up to date on the top trends in security issues.
Organizations like OWASP, SANS, and WASC, which were mentioned in Chapter 7,
provide quick reads for explaining security issues, for all levels of comprehension.

As mentioned previously, a downloadable spreadsheet summarizes the top classes of
vulnerabilities and their remediation identified in Chapters 3 and 4 and can be updated
by the reader and kept current.

131

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 © PARTING THOUGHTS

The Appendices A, B, C, D, E, E G, and H in this book are a good resource for
understanding web application security recommendations across several expert
organizations. The reader will quickly see the overlap of recommendations across several
of the standards and guidelines in the appendices.

The next step on the critical path of risk mitigation is to create a proposal for a web
application security program that includes technology, person hours, training, end-user
security awareness training, and, of course, the applicable policy and process documents.
The spreadsheets in Chapter 8 are available to readers to download and modify to meet
their specific planning needs. Then it’s time to present management with the program
budget along with estimates of risk reduction that include the benefits of reducing the
potential cost of losses due to security breaches.

Once the budget is approved, it’s time for the IT group and developers to swing
into action and develop, deploy, mitigate, or test, as required. Chapter 5 got into some
detail about building effective countermeasures for web application vulnerabilities.

If third-party web application software is used, next it’s time to get the software license
owners involved. Chapter 6 explained the why’s and how’s for doing so.

If you remember anything about this book, please let it be that enforcing strong web
application security policies for people, processes, and technology gives the best chances
for no breaches. It is also a good prescription for sleeping more soundly at night.

132

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX A

COBIT® 5 for Information
Security

The material in this appendix is taken from an ISACA® document tittled COBIT® 5 for
Information Security.! T have included it here as a convenient compliance resource to
refer to since it is mentioned in Chapter 8, “Integrating Compliance with Web Application
Security,” and in several places throughout the book.

The information is reproduced verbatim from the ISACA publication. The references
within this information include mention of Appendix B and Appendix E For clarity, these
appendices are COBIT" 5 for Information Security appendices and not appendices from
this book. Since this is copyrighted information, I have not made any changes whatsoever.

To access the full COBIT® 5 for Information Security publication, please go to
www.isaca.org. ISACA is an independent, nonprofit, global association that engages in
the development, adoption, and use of globally accepted, industry-leading knowledge
and practices for information systems. ISACA® and COBIT® are trademarks registered by
ISACA® in the United States and other countries.

"Excerpt from Information Systems Audit and Control Association, “Appendix F: Detailed
Guidance: Services, Infrastructure and Application Enabler,” in COBIT® 5 for Information Security
(Rolling Hills, IL: ISACA, 2012). Reprinted with the permission of ISACA®.

133

www.it-ebooks.info

http://www.isaca.org/
http://www.it-ebooks.info/

APPENDIX A COBIT® 5 FOR INFORMATION SECURITY

F.3 Secure Development

Description of the Service Capability

Figure 45 describes the service capability for secure development services.

Figure 45—Secure Development Services: Description of the Service Capability

Service Capability

Description

Develop secure
coding practices.

Develop secure

The design and delivery of coding practices, examples and
content demonstrating secure coding and development
(development of code that can withstand attacks) for a given set

of languages and environments

The design and delivery of language- and environment-specific

infrastructure information security modules that provide essential or critical
libraries. information security functions
Attributes

Figure 46 describes attributes for secure development services.

Figure 46—Secure Development Services: Attributes

Service Capability Supporting Technology

Benefit

Develop secure .
coding practices. 4

Compilers, linkers

Secure coding resources
(books, courses, examples)

Static and binary analysis tools

Code scanners

Decreased likelihood of
vulnerabilities in code

Assistance in conforming
with compliance standards

Develop secure e Development languages ¢ Protection of intellectual
infrastructure e Secure coding resources property
libraries. (books, courses) e Decreased likelihood of
e Code scanners vulnerabilities in software
development
e Static and binary analysis tools p
e Compilers, linkers
134

www.it-ebooks.info

http://www.it-ebooks.info/

Goals

APPENDIX A ' COBIT® 5 FOR INFORMATION SECURITY

Figure 47 describes goals for secure development services.

Figure 47—Secure Development Services: Goals

Service Capability Quality Goal Metric
Develop secure Accurate identification of all Number of new types of risk
coding practices. information risk and resulting discovered via incidents not
business risk/effects to a given covered in report
asset or entity
Develop secure Improvements in information Number of information security
infrastructure security configuration of systems issues discovered after an
libraries. in alignment with information information security assessment
security requirements of the hardened system

F.4 Security Assessments
Description of the Service Capability

Figure 48 describes the service capability for security assessment services.

Figure 48—Security Assessment Services: Description of the Service Capability

Service Capability

Description

Perform information

security assessments.

Perform information
risk assessments.

Performance of an information security assessment of a
given entity, system, process, procedure, application or
organisational unit for information security issues

Process of providing identification, evaluation, estimation and
analysis of threats to and vulnerabilities of an given entity,
system, process, procedure, application or organisational unit
to determine the levels of risk involved (potential for losses),
and using the analysis as a basis for identifying appropriate
and cost-effective measures as well as the determination of an
acceptable level of risk

135

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX A COBIT® 5 FOR INFORMATION SECURITY

Attributes

Figure 49 describes attributes for security assessment services.

Figure 49—Security Assessment Services: Attributes

Service Capability Supporting Technology Benefit
Perform information =~ e Vulnerability scanner ¢ Identification of
security assessments. o Fuzzers, sniffers information
security
e Protocol analysers vulnerabilities

Passive and active network analysers
Honeypots

Endpoint agents

Application scanners

Compliance management
Reporting tools

Remote access (if needed),
network, side channels, virtual

Identification of
gaps that could
lead to compliance
issues

private networks (VPNs)
Perform information e Same as above: e Provision of risk
risk assessments. e Vulnerability scanner rating for informa-
tion securi
e Fuzzers, sniffers . ty
practices
e Protocol analysers e Help in prioritising
 Loganalyser vulnerabilities
e Passive and active network analysers based on risk
e Honeypots ¢ Insight into ways to
e Endpoint agents mmgat.e risk based
o on business needs
e Application scanners
¢ Compliance management
e Reporting tools
e Remote access (if needed),
network, side channels, VPNs
136

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX A ' COBIT® 5 FOR INFORMATION SECURITY

Goals

Figure 50 describes goals for security assessment services.

Figure 50—Security Assessment Services: Goals

Service Capability Quality Goal Metric

Perform Accurate identification of all Number of items
information information security weaknesses, discovered via incidents
security deficiencies, exposures, vulnerabilities not covered in report
assessments. and threats to a given asset or entity

Perform Accurate identification of all Areas of new risk
information risk information risk and resulting business discovered via incidents
assessments. risk/effects to a given asset or entity not covered in report

F.5 Adequately Secured and Configured Systems,
Aligned With Security Requirements and Security

Architecture
Description of the Service Capability

Figure 51 describes the service capability for adequately secured systems services.

Figure 51—Adequately Secured Systems Services: Description of the Service Capability

Service Capability Description

Provide adequately secured Provide the information security-related
hardened and configured systems, configuration, settings and system hardening to
in line with information security ensure that the information security posture of
requirements and information a given system is based on a set of requirements
security architecture. or architectural designs.

Provide device information security = Provide device-specific information security

protection. measures and activities.
Provide physical information Provide adequate, specific information security
protection. measures for data and information that exist in

non-digital forms, including documents, media,
facilities, physical perimeter and transit.

137

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX A COBIT® 5 FOR INFORMATION SECURITY

Attributes

Figure 52 describes attributes for adequately secured systems services.

Figure 52—Adequately Secured Systems Services: Attributes

Service Capability ~ Supporting Technology Benefit

File Transfer ¢ Reduced unauthorised

Provide adequately o
secured hardened
and configured
systems, in line with
information security

requirements and ®
information security e
architecture.

Provide device .
information security o
protection.

Provide physical
information .
protection.

Protocol (FTP)

CMDB update methods
Signature verification solutions
File integrity monitoring
Kernel modules

Information security require-
ments and information security
architecture

System management
Patch management
Virtualisation management

Cloud management

Device-specific platform OS

Platform management console/
systems

Closed-circuit television (CCTV)
Locks

Alarms

Access control

Vaulting

Intelligence reports

First responder interfaces

Facilities management
solutions

Fire protection systems
Time locks

Physical access solutions

access to data

Reduced external and
internal threats

Simplified compliance

Confidentiality in case
of theft

Prevention of unauthor-
ised access to specific
devices

More explicit informa-
tion security for specific
devices

Protection of physical
assets from external and
internal threats

138

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX A

Goals

COBIT® 5 FOR INFORMATION SECURITY

Figure 53 describes goals for adequately secured systems services.

Figure 53—Adequately Secured Systems Services: Goals

Service Capability Quality Goal Metric

Provide adequately Improvements in Number of information
secured hardened and information security security issues discovered
configured systems, in line configuration of systems after an information security
with information security in alignment with assessment of the hardened
requirements and information information security system

security architecture. requirements

Provide device information =~ Improvements in

security protection. information security
configuration of device
in alignment with
information security
requirements

Provide physical information Physical controls in line
protection. with information security
requirements

Number of information
security issues discovered
after an information security
assessment of the secured
device

Number of incidents not
discovered by review/
assessment

Number incidents detected
not addressed by existing
controls

F.6 User Access and Access Rights in Line With

Business Requirements
Description of the Service Capability

Figure 54 describes the service capability for user access and access rights services.

Figure 54—User Access and Access Rights Services: Description of the Service Capability

Service Capability Description
Provide authentication Provide a set of capabilities for performing user or entity
services. identification using a set of factors as determined by the

information security policy or access control requirements.

Provide information Provide a set of capabilities for creating, delivering and

security provisioning managing the information security-enabling technologies

services. to a given system, entity, application, service or device.
(continued)

www.it-ebooks.info

139

http://www.it-ebooks.info/

APPENDIX A COBIT® 5 FOR INFORMATION SECURITY

Figure 54—User Access and Access Rights Services: Description of the Service Capability

Service Capability

Description

Evaluate information
security entity
classification services.

Provide revocation
services.

Provide user
authentication and

Evaluate the categories, classification, information security
level and sensitivity for a given entity, system, process,
procedure, application, service or organisational unit.

Provide a set of capabilities for cancelling, withdrawing
or terminating information security rights or abilities
for a given system, entity, application, service, process,
procedure, organisational unit or device.

Provide a set of capabilities and management practices
for performing user identification using a set of factors

authorisation rights as determined by the information security policy or

in line with business access control requirements as defined by the business
requirements. requirements.

Attributes

Figure 55 describes attributes for user access and access rights services.

Figure 55—User Access and Access Rights Services: Attributes

Service Capability Supporting Technology Benefit
Provide e Biometrics e Prevention of
authentication e Certificates unauthorised access
services. to systems/data
e Dongles
e Smart card e Assurance that every
art cards entity has only the
e Embedded device IDs necessary level of
¢ One-time passwords (OTPs), access
fobs, cellular telephones e Safeguarding of
e Username/passwords sensitive information
¢ Identity as a Service (IDaaS), e Verification of the
barcodes, universal identity of users
o product code (UPC) accessing systems
e Certificate revocation list (CRL),
ID federation
¢ Root certificates
¢ Key management services
e Location services
e Reputation services
e Public key infrastructure (PKI)
(continued)
140

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX A ' COBIT® 5 FOR INFORMATION SECURITY

Figure 55—User Access and Access Rights Services: Attributes

Service Capability Supporting Technology Benefit

Provide information =~ e Open Mobile Alliance (OMA) Appropriate and timely
security provisioning Device Management (DM) access to needed
services. provisioning systems for employees

Provide information
security entity
classification services.

Provide revocation
services.

Provide user
authentication and
authorisation rights
in line with business
requirements.

Subscriber identity module (SIM),
certificates, root certificates

Local and remote encryption
services

Key management services

Location services system and
device Management solutions

Software distribution solutions
HR data feed

Diagram and visualisation tools
Classification tools

CMDB

Enterprise architecture
Classification standards

Release candidate push solutions

SIM, certificates, root certificates

Local and remote encryption
services

Key management services
Location services

HR data feed

PKI

SIM, certificates, root certificates

Local and remote encryption
services

Key management services
Location services
PKI

Enables appropriate
grouping and
categorisation of
information security
entities to classify the
appropriate level of risk

e Prevention of systems
access by unauthor-
ised users

o after their privileges
have been revoked
(due to termination
or role change)

e Reduced likelihood
of an internal attack

e Verification that users
have appropriate
level of access to
needed systems only

¢ Reduced exposure of
sensitive data

e Reduced likelihood
of internal attack

www.it-ebooks.info

141

http://www.it-ebooks.info/

APPENDIX A COBIT® 5 FOR INFORMATION SECURITY

Goals

Figure 56 describes goals for user access and access rights services.

Figure 56—User Access and Access Rights Services: Goals

Service Capability Quality Goal Metric
Provide Accurate, completeand e Number of entities or services not
authentication timely authentication under the authentication service
services. of all entities and/or e Completeness of authentication
services factors supporting information
security requirements
Provide Accurate, complete and e Number of incomplete provisioning
information timely provisioning of all transactions
security services and information Nymber of inaccurate provisioning
provisioning security elements for transactions
services. entities, devices or . .
. e Average delay in provision
services
e Violation of maximum delay in
provisioning
Provide Accurate and complete e Number of inaccuracies in
information classification of all classification
secur.i'.[y er_ltity entities e Number of classes not defined for
classification entities discovered
services.

Provide revocation Accurate, complete, and
privilege services. timely revocation of all
entities and/or services 4

Number of changes required to
existing classifications

Number of failed revocations for
targets

Completeness of revocations
supporting information security
requirements

Delay in revocation of entities and
services for a given target

Provide user Accurate, complete, and e Number of entities or services not

authentication timely authentication under the authentication or

and authorisation and proper authorisation authorisation service

rights in line of all entities and/or e Completeness of authentication and

with })usiness services authorisation factors supporting

requirements. information security and business
requirements

142

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX A ' COBIT® 5 FOR INFORMATION SECURITY

F.7 Adequate Protection Against Malware,

External Attacks and Intrusion Attempts
Description of the Service Capability

Figure 57 describes the service capability for protection against malware and

attacks services.

Figure 57—Protection Against Malware and Attacks Services: Description of the

Service Capability

Service Capability

Description

Provide information
security and
countermeasures for
threats (internal and
external).

Provide data protection
(in host, network, cloud
and storage).

Plan, implement, maintain and improve measures,
countermeasures and activities including, but not
limited to, actions, processes, devices or systems,
addressing threats and vulnerabilities as identified in
the risk assessments, information security policies and
information security strategy.

Remain up to date on emerging technologies.

Provide a set of capabilities and management practices
for implementing protection, confidentiality, integrity and
availability of data in all of their states including, but not
limited to, at rest or in transit, locally and externally,
short-term and long-term.

143

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX A COBIT® 5 FOR INFORMATION SECURITY

Attributes

Figure 58 describes attributes for protection against malware and attacks services.

Figure 58—Protection Against Malware and Attacks Services: Attributes

Service Capability Supporting Technology Benefit
Provide e Encryption e Anup-to-date
information e PKI, deep packet inspection (DPI), sniffers reference for
security and . remediating

o Firewalls
countermeasures threats
f?r threats o Packet analyser, sensors e Prevention of
(internal and e Compliance management internal and
external). ¢ Information security requirements and external attacks

information security architecture
e CMDB

e System patch management
e Virtualisation management
¢ Cloud management

e Vendor-supplied dashboards and
management agents

e Vendor-supplied updates
e Open source software (OSS) repositories

¢ Vendor information security advisories
and KBs, honeypots, tarpits

e Antimalware, antirootkit, antispyware,
antiphishing

e Browser protection, sandboxing, content
inspection

e Reputation services

(continued)

144

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX A ' COBIT® 5 FOR INFORMATION SECURITY

Figure 58—Protection Against Malware and Attacks Services: Attributes

Service Capability Supporting Technology Benefit
Provide data e PKI, sniffers, DPI o Ability for data to
protection e Encryption services be stored and
(in host, network, X transferred

e Dataloss prevention (DLP)
cloud and] securely
storage). e System and device management o Confidentiality

solutions) . ’
integrity and
o Software distribution solutions availability

e Remote management systems

e Virtualisation and cloud management
solutions

¢ Document management
o Data classification systems

o Application-centric data management
solutions

e Data obfuscation solutions

Goals

Figure 59 describes goals for protection against malware and attacks services.

Figure 59—Protection Against Malware and Attacks Services: Goals

Service Capability Quality Goal Metric

Provide information security Maximised protection Number of information
and countermeasures for against known and security-related

threats (internal and external). unknown threats incidents

Provide data protection (in host, Maximised data protection =~ Number of data
network, cloud and storage). for all data states exposures

145

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX B

Experian EI3PA Security
Assessment

This appendix contains excerpts from Experian’s EI3PA Security Assessment standard
that are most applicable to web application security. EI3PA is available directly from
Experian and is not published on the Experian web site.

The material is this appendix is provided with copyright permission from Experian
and from PCI.

Experian sublicenses content from PCI, so copyright permissions from both
organizations are included.

Portions of this production are provided courtesy of PCI Security Standards Council,
LLC (“PCISSC”) and/or its licensors, and are protected by copyright laws. All rights
reserved. Neither PCI SSC nor its licensors endorses this production, its providers or
the methods, procedures, statements, views, opinions or advice contained herein. All
references to documents, materials or portions thereof provided by PCI SSC should
be read as qualified by the actual materials made available by PCI SSC. For questions
regarding such materials, please contact PCI SSC through its web site at
https://www.pcisecuritystandards.org.

Portions included within the PCI SSC materials in this production are copyrighted
by Experian Information Solutions, Inc. All rights reserved. Experian is the registered
trademark of Experian Information Solutions, Inc.

147

www.it-ebooks.info

https://www.pcisecuritystandards.org/
http://www.it-ebooks.info/

APPENDIX B

EXPERIAN EI3PA SECURITY ASSESSMENT

Requirement 2: Do not use vendor-supplied defaults for system passwords and other
security parameters for systems housing or processing Experian provided data.

Malicious individuals (external and internal to a company) often use vendor default
passwords and other vendor default settings to compromise systems. These passwords
and settings are well known in hacker communities and easily determined via public

information.
Requirements

2.1 Always change vendor-supplied
defaults before installing a system on

the network, including but not limited to
passwords, simple network management
protocol (SNMP) community strings, and
elimination of unnecessary accounts.

2.2 Develop configuration standards for
all system components. Assure that these
standards address all known security
vulnerabilities and are consistent with
industry-accepted system hardening
standards.

Sources of industry-accepted system
hardening standards may include, but are
not limited to:

¢ Center for Internet Security (CIS)

¢ International Organization for
Standardization (ISO)

e SysAdmin Audit Network Security
(SANS) Institute

e National Institute of Standards
Technology (NIST)

2.2.2 Enable only necessary and secure
services, protocols, daemons, etc., as
required for the function of the system.

Implement security features for any
required services, protocols or daemons
that are considered to be insecure—for
example, use secured technologies such as
SSH, S-FTP, SSL, or IPSec VPN to protect
insecure services such as NetBIOS, file-
sharing, Telnet, FTP, etc.

Testing Procedures

2.1 Choose a sample of system
components, and attempt to log on

(with system administrator help) to the
devices using default vendor-supplied
accounts and passwords, to verify that
default accounts and passwords have
been changed. (Use vendor manuals and
sources on the Internet to find vendor-
supplied accounts/passwords.)

2.2.a Examine the organization’s system
configuration standards for all types of
system components and verify the system
configuration standards are consistent with
industry- accepted hardening standards.

2.2.b Verify that system configuration
standards are updated as new vulnerability
issues are identified, as defined in
Requirement 6.2.

2.2.c Verify that system configuration
standards are applied when new systems
are configured.

2.2.d Verify that system configuration
standards include each item below
(2.2.1-2.2.4).

2.2.2.a For a sample of system
components, inspect enabled system
services, daemons, and protocols. Verify
that only necessary services or protocols
are enabled.

2.2.2.b Identify any enabled insecure
services, daemons, or protocols. Verify they
are justified and that security features are
documented and implemented.

148

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX B * EXPERIAN EI3PA SECURITY ASSESSMENT

Requirement 2: Do not use vendor-supplied defaults for system passwords and other
security parameters for systems housing or processing Experian provided data.

2.2.4 Remove all unnecessary 2.2.4.a For a sample of system

functionality, such as scripts, drivers, components, verify that all unnecessary

features, subsystems, file systems, and functionality (for example, scripts, drivers,

unnecessary web servers. features, subsystems, file systems, etc.) is
removed.

2.2.4.b. Verity enabled functions are
documented and support secure
configuration.

2.2.4.c. Verify that only documented
functionality is present on the sampled
system components.

2.3 Encrypt all non-console administrative 2.3 For a sample of system components,
access using strong cryptography. Use verify that non-console administrative
technologies such as SSH, VPN, or SSL/ access is encrypted by performing the
TLS for web-based management and other following:

non-console administrative access. ..
2.3.a Observe an administrator log on

to each system to verify that a strong
encryption method is invoked before the
administrator’s password is requested.

2.3.b Review services and parameter files
on systems to determine that Telnet and
other remote login commands are not
available for use internally.

2.3.c Verify that administrator access to
the web-based management interfaces is
encrypted with strong cryptography.

149

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX B~ EXPERIAN EI3PA SECURITY ASSESSMENT

Requirement 4: Encrypt transmission of Experian provided data across public

networks.

Sensitive information must be encrypted during transmission over networks that

are easily accessed by malicious individuals. Misconfigured wireless networks and
vulnerabilities in legacy encryption and authentication protocols continue to be targets
of malicious individuals who exploit these vulnerabilities to gain privileged access to

Experian provided data environments.
Requirements

4.1 Use strong cryptography and
security protocols (for example, SSL/
TLS, IPSEC, SSH, etc.) to safeguard
sensitive Experian provided data
during transmission over open, public
networks. Examples of open, public
networks that are in scope of the PCI
DSS include but are not limited to:

e The Internet
e Wireless technologies,

¢ Global System for Mobile communi-
cations (GSM)

e General Packet Radio Service (GPRS)

Testing Procedures

4.1 Verify the use of security protocols
wherever Experian provided data is
transmitted or received over open, public
networks.

Verify that strong cryptography is used
during data transmission, as follows:

4.1.a Select a sample of transactions as they
are received and observe transactions as they
occur to verify that Experian provided data is
encrypted during transit.

4.1.b Verify that only trusted keys and/or
certificates are accepted.

4.1.c Verify that the protocol is implemented
to use only secure configurations, and

does not support insecure versions or
configurations.

4.1.d Verify that the proper encryption
strength is implemented for the encryption
methodology in use. (Check vendor
recommendations/best practices.)

4.1.e For SSL/TLS implementations:

o Verify that HTTPS appears as a part of the
browser Universal Record Locator (URL).

e Verify that no Experian provided data is
required when HTTPS does not appear in
the URL.

150

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX B * EXPERIAN EI3PA SECURITY ASSESSMENT

Requirement 5: Use and regularly update anti-virus software for systems housing,
accessing or processing Experian provided data.

Malicious software, commonly referred to as —malware—including viruses, worms,

and Trojans—enters the network during many business-approved activities including
employee e-mail and use of the Internet, mobile computers, and storage devices, resulting
in the exploitation of system vulnerabilities. Anti-virus software must be used on all
systems commonly affected by malware to protect systems from current and evolving

malicious software threats.
Requirements

5.1 Deploy anti-virus software on
all systems commonly affected by
malicious software (particularly

personal computers and servers).

5.1.1 Ensure that all anti-virus programs
are capable of detecting, removing, and
protecting against all known types of
malicious software.

5.2 Ensure that all anti-virus
mechanisms are current, and actively
running, and capable of generating audit
logs.

Testing Procedures

5.1 For a sample of system components
including all operating system types
commonly affected by malicious software,
verify that anti-virus software is deployed if
applicable anti-virus technology exists.

5.1.1 For a sample of system components,
verify that all anti-virus programs detect,
remove, and protect against all known types
of malicious software (for example, viruses,
Trojans, worms, spyware, adware, and
rootkits).

5.2 Verify that all anti-virus software is
current, actively running, and generating logs
by performing the following:

5.2.a Obtain and examine the policy and
verify that it requires updating of anti-virus
software and definitions.

5.2.b Verify that the master installation of the
software is enabled for automatic updates
and periodic scans.

151

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX B~ EXPERIAN EI3PA SECURITY ASSESSMENT

Requirement 6: Develop and maintain secure systems and applications.

Unscrupulous individuals use security vulnerabilities to gain privileged access to systems.
Many of these vulnerabilities are fixed by vendor-provided security patches, which must

be installed by the entities that manage the systems. All critical systems must have the
most recently released, appropriate software patches to protect against exploitation

and compromise of Experian provided data by malicious individuals and malicious
software. Note: Appropriate software patches are those patches that have been evaluated
and tested sufficiently to determine that the patches do not conflict with existing security
configurations. For in-house developed applications, numerous vulnerabilities can be
avoided by using standard system development processes and secure coding techniques.

Requirements

6.1 Ensure that all system components
and software are protected from known
vulnerabilities by having the latest
vendor- supplied security patches
installed. Install critical security patches
within one month of release.

Note: An organization may consider
applying a risk-based approach to
prioritize their patch installations.

For example, by prioritizing critical
infrastructure (for example, public-
facing devices and systems, databases)
higher than less-critical internal devices,
to ensure high-priority systems and
devices are addressed within one month,
and addressing less critical devices and
systems within three months

6.2 Establish a process to identify and
assign a risk ranking to newly discovered
security vulnerabilities.

Notes:

¢ Riskrankings should be based on
industry best practices. For example,
criteria for ranking “High” risk vulner-
abilities m ay include a CVSS base score
of 4.0 or above, and/or a vendor-sup-
plied patch classified by the vendor as
“critical,” and/or a vulnerability
affecting a critical system component.

¢ The ranking of vulnerabilities as
defined in 6.2.a is considered a best
practice until June 30, 2012, after
which it becomes a requirement.

Testing Procedures

6.1.a For a sample of system components
and related software, compare the list of
security patches installed on each system to
the most recent vendor security patch list,
to verify that current vendor patches are
installed

6.1.b Examine policies related to security
patch installation to verify they require
installation of all critical new security
patches within one month.

6.2.a Interview responsible personnel to
verify that processes are implemented

to identify new security vulnerabilities,
and that a risk ranking is assigned to such
vulnerabilities. (At minimum, the most
critical, highest risk vulnerabilities should
be ranked as “High”.

6.2.b Verify that processes to identify new
security vulnerabilities include using
outside sources for security vulnerability
information.

152

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX B * EXPERIAN EI3PA SECURITY ASSESSMENT

Requirement 6: Develop and maintain secure systems and applications.

6.3 Develop software applications
(internal and external, and including
web-based administrative access to
applications) in accordance with PCI
DSS (for example, secure authentication
and logging), and based on industry
best practices. Incorporate information
security throughout the software
development life cycle. These processes
must include the following:

6.3.1 Removal of custom application
accounts, user IDs, and passwords
before applications become active or are
released to customers.

6.3.2 Review of custom code prior to
release to production or customers in
order to identify any potential coding
vulnerability.

Note: This requirement for code reviews
applies to all custom code (both internal
and public-facing), as part of the system
development life cycle.

Code reviews can be conducted by
knowledgeable internal personnel or
third parties. Web applications are also
subject to additional controls, if they are
public facing, to address ongoing threats
and vulnerabilities after implementation,
as defined at PCI DSS Requirement 6.6

6.3.a Obtain and examine written software
development processes to verify that the
processes are based on industry standards
and/or best practices and accordance with
PCIDSS

6.3.b Examine written software
development processes to verify that
information security is included throughout
the life cycle

6.3.c Examine written software
development processes to verify that
software applications are developed in
accordance with PCI DSS.

6.3.d From an examination of written
software development processes, and
interviews of software developers, verify
that:

6.3.1 Custom application accounts, user IDs
and/or passwords are removed before
system goes into production or is released
to customers.

6.3.2.a Obtain and review policies to
confirm that all custom application code
changes must be reviewed (using either
manual or automated processes) as follows:

o Code changes are reviewed by
individuals other than the originating
code author, and by individuals who
are knowledgeable in code review
techniques and secure coding practices.

e Code reviews ensure code is developed
according to secure coding guidelines
(see PCI DSS Requirement 6.5).

e Appropriate corrections are
implemented prior to release.

Code review results are reviewed and
approved by management prior to
release.

(continued)

153

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX B~ EXPERIAN EI3PA SECURITY ASSESSMENT

Requirement 6: Develop and maintain secure systems and applications.

6.4 Follow change control processes and
procedures for all changes to system
components. The processes must include
the following:

6.4.1 Separate development/test and
production environments.

6.4.2 Separation of duties between
development/test and production
environments.

6.4.3 Production data (consumer data)
are not used for testing or development.

6.4.4 Removal of test data and accounts
before production systems become active.

6.4.5 Change control procedures for the
implementation of security patches and
software modifications. Procedures must
include the following:

6.4.5.1 Documentation of impact.

6.4.5.2 Documented change approval by
authorized parties.

6.4.5.3 Functionality testing to verify that
the change does not adversely impact the
security of the system.

6.4.5.4 Back-out procedures.

6.4 From an examination of change control
processes, interviews with system and
network administrators, and examination
of relevant data (network configuration
documentation, production and test data,
etc.), verify the following:

6.4.1 The development/test environments
are separate from the production
environment, with access control in place to
enforce the separation.

6.4.2 There is a separation of duties
between personnel assigned to the
development/test environments and those
assigned to the production environment.

6.4.3 Production data (consumer) are not
used for testing or development.

6.4.4 Test data and accounts are removed
before a production system becomes active.

6.4.5.a Verify that change-control
procedures related to implementing
security patches and software modifications
are documented and require items

6.4.5.1 - 6.4.5.4 below.

6.4.5.1 Verify that documentation of
impact is included in the change control
documentation for each sampled change.

6.4.5.2 Verify that documented approval
by authorized parties is present for each
sampled change.

6.4.5.3.a For each sampled change, verify that
functionality testing is performed to verify
that the change does not adversely impact the
security of the system.

6.4.5.3.b For custom code changes, verify
that all updates are tested for compliance
with PCI DSS Requirement 6.5 before being
deployed into production.

6.4.5.4 Verify that back-out procedures are
prepared for each sampled change.

154

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX B * EXPERIAN EI3PA SECURITY ASSESSMENT

Requirement 6: Develop and maintain secure systems and applications.

6.5 Develop applications based on secure
coding guidelines.

Prevent common coding vulnerabilities
in software development processes, to
include the following:

Note: The vulnerabilities listed at 6.5.1
through 6.5.9 were current with industry
best practices when this version of

PCI DSS was published. However, as
industry best practices for vulnerability
management are updated (for example,
the OWASP Guide, SANS CWE Top 25,
CERT Secure Coding, etc.), the current
best practices must be used for these
requirements.

6.5.1 Injection flaws, particularly SQL
injection. Also consider OS Command
Injection, LDAP and XPath injection flaws
as well as other injection flaws.

6.5.2 Buffer overflow.

6.5.3 Insecure cryptographic storage.

6.5.4 Insecure communications.

6.5.5 Improper error handling.

6.5.6 All “High” vulnerabilities identified
in the vulnerability identification process
(as defined in PCI DSS Requirement 6.2).

Note: This requirement is considered a best
practice until June 30, 2012, after which it
becomes a requirement.

6.5.a Obtain and review software
development processes.

Verify that processes require training in
secure coding techniques for developers,
based on industry best practices and
guidance.

6.5.b. Verify that processes are in place to
ensure that applications are not vulnerable
to, at a minimum, the following:

6.5.1 Injection flaws, particularly SQL

injection. (Validate input to verify user data
cannot modify meaning of commands and
queries, utilize parameterized queries, etc.)

6.5.2 Buffer overflow (Validate buffer
boundaries and truncate input strings).

6.5.3 Insecure cryptographic storage
(Prevent cryptographic flaws).

6.5.4 Insecure communications (Properly
encrypt all authenticated and sensitive
communications).

6.5.5 Improper error handling (Do not leak
information via error messages).

6.5.6 All “High” vulnerabilities as identified
in PCI DSS Requirement 6.2.

(continued)

155

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX B

EXPERIAN EI3PA SECURITY ASSESSMENT

Requirement 6: Develop and maintain secure systems and applications.

6.6 For public-facing web applications,
address new threats and vulnerabilities
on an ongoing basis and ensure these
applications are protected against
known attacks by either of the following
methods:

¢ Reviewing public-facing web
applications via manual or automated
application vulnerability security
assessment tools or methods, at least
annually and after any changes

¢ Installing a web-application firewall in
front of public-facing web applications

6.6 For public-facing web applications,
ensure that either one of the following
methods are in place as follows:

o Verify that public-facing web applica-
tions are reviewed (using either manual
or automated vulnerability security
assessment tools or methods), as
follows:

— Atleast annually
— After any changes

— By an organization or in-house
subject matter experts that specializes
in application security

— That all vulnerabilities are corrected

— That the application is re-evaluated
after the corrections

o Verify that a web-application firewall is
in place in front of public-facing web
applications to detect and prevent
web-based attacks.

Note: “An organization that specializes in
application Security” can be either a third-
party company or an internal organization,
as long as the reviewers specialize in
application security and can demonstrate
independence from the development team
verify that a web-application firewall

is in place in front of public-facing web
applications to detect and prevent web-
based attacks.

156

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX B * EXPERIAN EI3PA SECURITY ASSESSMENT

Requirement 10: Track and monitor all access to network resources and Experian

provided data.

Logging mechanisms and the ability to track user activities are critical in preventing,
detecting, or minimizing the impact of a data compromise. The presence of logs in all
environments allows thorough tracking, alerting, and analysis when something does go
wrong. Determining the cause of a compromise is very difficult, if not impossible, without

system activity logs.
Requirements

10.1 Establish a process for linking all
access to system components (especially
access done with administrative privileges
such as root) to each individual user.

10.2 Implement automated audit trails for
all system components to reconstruct the
following events:

10.2.1 All individual accesses to Experian
provided data.

10.2.2 All actions taken by any individual
with root or administrative privileges.

10.2.3 Access to all audit trails.

10.2.4 Invalid logical access attempts.

10.2.5 Use of identification and
authentication mechanisms.

10.2.6 Initialization of the audit logs.

10.2.7 Creation and deletion of system-
level objects.

10.3 Record at least the following audit trail
entries for all system components for each
event:

10.3.1 User identification.

10.3.2 Type of event.

10.3.3 Date and time.

Testing Procedures

10.1 Verify through observation and
interviewing the system administrator,
that audit trails are enabled and active for
system components.

10.2 Through interviews, examination of
audit logs, and examination of audit log
settings, perform the following:

10.2.1 Verify all individual access to
Experian provided data is logged.

10.2.2 Verify actions taken by any
individual with root or administrative
privileges are logged.

10.2.3 Verify access to all audit trails is
logged.

10.2.4 Verify invalid logical access
attempts are logged.

10.2.5 Verify use of identification and
authentication mechanisms is logged.

10.2.6 Verify initialization of audit logs is
logged.

10.2.7 Verify creation and deletion of
system level objects are logged.

10.3 Through interviews and observation,
for each auditable event (from 10.2),
perform the following:

10.3.1 Verify user identification is included
in log entries.

10.3.2 Verify type of event is included in
log entries.

10.3.3 Verify date and time stamp is
included in log entries.

(continued)

157

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX B~ EXPERIAN EI3PA SECURITY ASSESSMENT

Requirement 10: Track and monitor all access to network resources and Experian

provided data.

10.3.4 Success or failure indication.

10.3.5 Origination of event.

10.3.6 Identity or name of affected data,
system component, or resource.

10.3.4 Verify success or failure indication
isincluded in log entries.

10.3.5 Verify origination of event is
included in log entries.

10.3.6 Verify identity or name of affected
data, system component, or resources is
included in log entries.

Requirement 11: Regularly test security systems and processes.

Vulnerabilities are continually being discovered by malicious individuals and researchers,
and being introduced by new software. Systems, components, processes, and custom
software should be tested frequently to ensure security controls continue to reflect a

changing environment.
Requirements

11.2.1 Perform quarterly internal
vulnerability scans.

Testing Procedures

11.2.1.a Review the scan reports and verify
that four quarterly internal scans occurred
in the most recent 12-month period.

11.2.1.b Review the scan reports and verify
that the scan process includes rescans until
passing results are obtained, or all “High”
vulnerabilities.

11.2.1.c Validate that the scan was
performed by a qualified internal
resource(s) or qualified external third
party, and if applicable, organizational
independence of the tester exists (not
required to be a QSA or ASV).

158

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX B * EXPERIAN EI3PA SECURITY ASSESSMENT

Requirement 11: Regularly test security systems and processes.

11.2.2 Perform quarterly external
vulnerability scans via an Approved
Scanning Vendor (ASV), approved by the
Payment Card Industry Security Standards
Council (PCISSC).

Note: Quarterly external vulnerability
scans must be performed by an Approved
Scanning Vendor (ASV), approved by the
Payment Card Industry Security Standards
Council (PCI SSC). Scans conducted after
network changes may be performed by
internal staff.

11.3 Perform penetration testing on
network infrastructure and applications
atleast once a year, and after any
significant infrastructure or application
upgrade or modification (e.g., operating
system upgrade, sub-network added to
environment, web server added

to environment).

11.2.2.a Review output from the four most
recent quarters of external vulnerability
scans and verify that four quarterly scans
occurred in the most recent 12-month
period.

11.2.2.b Review the results of each
quarterly scan to ensure that they satisfy
the ASV Program Guide requirements (for
example, no vulnerabilities rated higher
than a 4.0 by the CVSS and no automatic
failures).

11.2.2.c Review the scan reports to
verify that the scans were completed by
an Approved Scanning Vendor (ASV),
approved by the PCI SSC.

11.3 Obtain results from the most recent
penetration test to verify that penetration
testing is performed at least annually
and after any significant changes to the
environment. Confirm that any noted
vulnerabilities were corrected.

159

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX C

ISO/IEC 17799:2005 and
the ISO/IEC 27000:2014 Seri§

The material in this appendix is taken from the ISO (International Organization for
Standardization) web site sections pertaining to information security. [have included

it as a convenient compliance resource because it is referred to in Chapter 8 and other
places throughout the book and is highly regarded. Having said that, its inclusion is

more for completeness than for any significant contribution to web application security
vulnerability knowledge. Even the most closely related ISO standards do not go into detail
about web application security.

Specifically, this appendix includes summary outlines of the ISO/IEC 17799:2005
guidelines and the ISO 27000:2014 family of standards. Of the subject material published
by the ISO, ISO/IEC 17799:2005 is the most closely related to web application security.

The ISO/IEC 27000:2014 series is a family of standards useful for security framework planning.

ISO/IEC 17799:2005

As a quick point of reference, I have included an outline of the most current contents
of ISO/IEC 17799:2005. Although it does not include any specific reference to web
application security, this standard is an important set of guidelines and best practices.
As such, it is not technical and is technology agnostic.

Note For detailed information on ISO/IEC 17799:2005, please visit the ISO information
technology page for “Security techniques — Code of practice for information security
management” at www.iso.org/iso/iso_catalogue/catalogue_ics/catalogue_
detail ics.htm?csnumber=39612.

161

www.it-ebooks.info

http://www.iso.org/iso/iso_catalogue/catalogue_ics/catalogue_detail_ics.htm?csnumber=39612
http://www.iso.org/iso/iso_catalogue/catalogue_ics/catalogue_detail_ics.htm?csnumber=39612
http://www.it-ebooks.info/

APPENDIX C * ISO/IEC 17799:2005 AND THE ISO/IEC 27000:2014 SERIES

The topics covered by ISO/IEC 17799:2005 include the following:
e Security policy
e Organization of information security
e Asset management
e Human resources security
e Physical and environmental security
¢ Communications and operations management
e Access control
° Information systems acquisition, development, and maintenance
e Information security incident management
e Business continuity management

e Compliance

The ISO/IEC 27000:2014 Series

The ISO also publishes several other IT security guidelines. These guidelines are most
useful for security framework planning, though they are not specifically focused on web
application security. This section includes a summary outline of the ISO information
technology guidelines for “Security techniques: Information security management
systems.”

Note For detailed information on the ISO 27000:2014 series, see the following page:
www.iso.org/iso/home/store/catalogue_tc/catalogue detail.htm?csnumber=63411.

The ISO 27000:2014 family of standards includes:

e ISO/IEC 27000, Information security management
systems — Overview and vocabulary

e ISO/IEC 27001, Information security management
systems — Requirements

e ISO/IEC 27002, Code of practice for information security controls

e ISO/IEC 27003, Information security management system
implementation guidance

e ISO/IEC 27004, Information security management — Measurement
e ISO/IEC 27005, Information security risk management

162

www.it-ebooks.info

http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=63411
http://www.it-ebooks.info/

APPENDIX C " ISO/IEC 17799:2005 AND THE ISO/IEC 27000:2014 SERIES
ISO/IEC 27006, Requirements for bodies providing audit and
certification of information security management systems

ISO/IEC 27007, Guidelines for information security management
systems auditing

ISO/IEC TR 27008, Guidelines for auditors on information
security controls

ISO/IEC 27010, Information security management for inter-sector
and inter-organizational communications

ISO/IEC 27011, Information security management guidelines for
telecommunications organizations based on ISO/IEC 27002

ISO/IEC 27013, Guidance on the integrated implementation of
ISO/IEC 27001 and ISO/IEC 20000-1

ISO/IEC 27014, Governance of information security

ISO/IEC TR 27015, Information security management guidelines
for financial services

ISO/IEC TR 27016, Information security
management — Organizational economics

163

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX D

North American Energy
Council Security Standard
for Critical Infrastructure
Protection (NERC CIP)

The material in this appendix is from the NERC CIP web page. I have included it as a
convenient compliance resource since it is referred to in Chapter 8 and several places
throughout the book.

The information is reproduced verbatim from the publications of the NERC CIP.
The references within the material include mention of footnotes, related information, and
other references to NERC documents. For clarity, these references are internal to NERC
documentation and not to this book. Since this is copyrighted information, I have not
made any changes whatsoever.

This appendix contains three major elements:

1. NERC CIP Standards Currently in Force: The sections of the
NERC CIP standard that are currently in force.

2. Future NERC CIP Standards: The sections of the NERC CIP
standard that will be enforced in the future and are currently
works in progress by the NERC CIP standards council.

3. Future Standard CIP-007-5: Cyber Security—System Security
Management: This document is a drill-down of excerpts from a
work in progress called the “CIP 007-5: Cyber Security — System
Security Management,” which will be enforced in the future. This
portion of the standards contains excellent recommendations
pertaining to the security of any application environment.

Note Complete information about the NERC CIP standards is available at
www.nexrc.com/pa/Stand/Pages/CIPStandards.aspx.

165

www.it-ebooks.info

http://www.nerc.com/pa/Stand/Pages/CIPStandards.aspx
http://www.it-ebooks.info/

APPENDIX D © NORTH AMERICAN ENERGY COUNCIL SECURITY STANDARD FOR CRITICAL
INFRASTRUCTURE PROTECTION (NERC CIP)

NERC CIP Standards Currently in Force

Subject to Enforcement

CIP-002-3 Cyber Security — Critical Cyber Asset Identification
CIP-003-3 Cyber Security — Security Management Controls
CIP-004-3a Cyber Security — Personnel & Training

CIP-005-3a Cyber Security — Electronic Security Perimeter(s)
CIP-006-3c Cyber Security — Physical Security of Critical Cyber Assets
CIP-007-3a Cyber Security — Systems Security Management

CIP-008-3 Cyber Security — Incident Reporting and Response Planning
CIP-009-3 Cyber Security — Recovery Plans for Critical Cyber Assets
CIP-002-3 Cyber Security — Critical Cyber Asset Identification

Future NERC CIP Standards

Subject to Future Enforcement

CIP-002-5.1 Cyber Security — BES Cyber System Categorization
CIP-003-5 Cyber Security — Security Management Controls
CIP-004-5.1 Cyber Security — Personnel & Training

CIP-005-5 Cyber Security — Electronic Security Perimeter(s)
CIP-006-5 Cyber Security — Physical Security of BES Cyber Systems

CIP-007-5 Cyber Security — System Security Management

CIP-008-5 Cyber Security — Incident Reporting and Response Planning

CIP-009-5 Cyber Security — Recovery Plans for BES Cyber Systems

CIP-010-1 Cyber Security — Configuration Change Management and Vulnerability
Assessments

CIP-011-1 Cyber Security — Information Protection

166

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX D © NORTH AMERICAN ENERGY COUNCIL SECURITY STANDARD FOR CRITICAL
INFRASTRUCTURE PROTECTION (NERC CIP)

Future Standard CIP-007-5: Cyber
Security — System Security Management

The material in this section provides details about the CIP-007-5 standard, excerpted with
NERC permission from “CIP-007-5—Cyber Security - System Security Management”.

Note The full document for CIP-007-5 is available at http://tinyurl.com/o6kjs5uz.

1. Title: Cyber Security — System Security Management
2. Number: CIP-007-5

3. Purpose: To manage system security by specifying select
technical, operational, and procedural requirements in
support of protecting BES Cyber Systems against compromise
that could lead to misoperation or instability in the BES.

Requirement R1:

Requirement R1 exists to reduce the attack surface of Cyber Assets by requiring entities to
disable known unnecessary ports. The SDT intends for the entity to know what network
accessible (“listening”) ports and associated services are accessible on their assets and
systems, whether they are needed for that Cyber Asset’s function, and disable or restrict
access to all other ports.

1.1. This requirement is most often accomplished by disabling the corresponding
service or program that is listening on the port or configuration settings within the Cyber
Asset. It can also be accomplished through using host-based firewalls, TCP_Wrappers, or
other means on the Cyber Asset to restrict access. Note that the requirement is applicable
at the Cyber Asset level. The Cyber Assets are those which comprise the applicable BES
Cyber Systems and their associated Cyber Assets. This control is another layer in the
defense against network-based attacks, therefore the SDT intends that the control be
on the device itself, or positioned inline in a non-bypassable manner. Blocking ports at
the ESP border does not substitute for this device level requirement. If a device has no
provision for disabling or restricting logical ports on the device (example - purpose built
devices that run from firmware with no port configuration available) then those ports that
are open are deemed ‘needed’

1.2. Examples of physical I/0 ports include network, serial and USB ports external to
the device casing. BES Cyber Systems should exist within a Physical Security Perimeter in
which case the physical I/O ports have protection from unauthorized access, but it may
still be possible for accidental use such as connecting a modem, connecting a network
cable that bridges networks, or inserting a USB drive. Ports used for ‘console commands’

167

www.it-ebooks.info

http://tinyurl.com/o6kj5uz
http://www.it-ebooks.info/

APPENDIX D © NORTH AMERICAN ENERGY COUNCIL SECURITY STANDARD FOR CRITICAL
INFRASTRUCTURE PROTECTION (NERC CIP)

primarily means serial ports on Cyber Assets that provide an administrative interface.
The protection of these ports can be accomplished in several ways including, but not
limited to:

e Disabling all unneeded physical ports within the Cyber Asset’s
configuration

e Prominent signage, tamper tape, or other means of conveying
that the ports

e should not be used without proper authorization
e Physical port obstruction through removable locks

This is a ‘defense in depth’ type control and it is acknowledged that there are other
layers of control (the PSP for one) that prevent unauthorized personnel from gaining
physical access to these ports. Even with physical access, it has been pointed out there
are other ways to circumvent the control. This control, with its inclusion of means such
as signage, is not meant to be a preventative control against intruders. Signage is indeed
a directive control, not a preventative one. However, with a defense-in-depth posture,
different layers and types of controls are required throughout the standard with this
providing another layer for depth in Control Center environments. Once physical access
has been achieved through the other preventative and detective measures by authorized
personnel, a directive control that outlines proper behavior as a last line of defense are
appropriate in these highest risk areas. In essence, signage would be used to remind
authorized users to “think before you plug anything into one of these systems” which
is the intent. This control is not designed primarily for intruders, but for example the
authorized employee who intends to plug his possibly infected smartphone into an
operator console USB port to charge the battery.

Requirement R2:

The SDT's intent of Requirement R2 is to require entities to know, track, and mitigate the
known software vulnerabilities associated with their BES Cyber Assets. It is not strictly
an “install every security patch” requirement; the main intention is to “be aware of in a
timely manner and manage all known vulnerabilities” requirement.

Patch management is required for BES Cyber Systems that are accessible remotely
as well as standalone systems. Stand alone systems are vulnerable to intentional or
unintentional introduction of malicious code. A sound defense-in-depth security strategy
employs additional measures such as physical security, malware prevention software,
and software patch management to reduce the introduction of malicious code or the
exploit of known vulnerabilities.

One or multiple processes could be utilized. An overall assessment process may exist
in a top tier document with lower tier documents establishing the more detailed process
followed for individual systems. Lower tier documents could be used to cover BES Cyber
System nuances that may occur at the system level.

2.1. The Responsible Entity is to have a patch management program that covers
tracking, evaluating, and installing cyber security patches. The requirement applies to
patches only, which are fixes released to handle a specific vulnerability in a hardware or

168

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX D © NORTH AMERICAN ENERGY COUNCIL SECURITY STANDARD FOR CRITICAL
INFRASTRUCTURE PROTECTION (NERC CIP)

software product. The requirement covers only patches that involve cyber security fixes
and does not cover patches that are purely functionality related with no cyber security
impact. Tracking involves processes for notification of the availability of new cyber
security patches for the Cyber Assets. Documenting the patch source in the tracking
portion of the process is required to determine when the assessment timeframe clock
starts. This requirement handles the situation where security patches can come from an
original source (such as an operating system vendor), but must be approved or certified
by another source (such as a control system vendor) before they can be assessed and
applied in order to not jeopardize the availability or integrity of the control system.

The source can take many forms. The National Vulnerability Database, Operating
System vendors, or Control System vendors could all be sources to monitor for release
of security related patches, hotfixes, and/or updates. A patch source is not required for
Cyber Assets that have no updateable software or firmware (there is no user accessible
way to update the internal software or firmware executing on the Cyber Asset), or those
Cyber Assets that have no existing source of patches such as vendors that no longer exist.
The identification of these sources is intended to be performed once unless software is
changed or added to the Cyber Asset’s baseline.

2.2. Responsible Entities are to perform an assessment of security related patches
within 35 days of release from their monitored source. An assessment should consist of
determination of the applicability of each patch to the entity’s specific environment and
systems. Applicability determination is based primarily on whether the patch applies
to a specific software or hardware component that the entity does have installed in
an applicable Cyber Asset. A patch that applies to a service or component that is not
installed in the entity’s environment is not applicable. If the patch is determined to be
non-applicable, that is documented with the reasons why and the entity is compliant. If
the patch is applicable, the assessment can include a determination of the risk involved,
how the vulnerability can be remediated, the urgency and timeframe of the remediation,
and the steps the entity has previously taken or will take. Considerable care must be taken
in applying security related patches, hotfixes, and/or updates or applying compensating
measures to BES Cyber System or BES Cyber Assets that are no longer supported by
vendors. It is possible security patches, hotfixes, and updates may reduce the reliability
of the system, and entities should take this into account when determining the type
of mitigation to apply. The Responsible Entities can use the information provided in
the Department of Homeland Security “Quarterly Report on Cyber Vulnerabilities of
Potential Risk to Control Systems” as a source. The DHS document “Recommended
Practice for Patch Management of Control Systems” provides guidance on an evaluative
process. It uses severity levels determined using the Common Vulnerability Scoring
System Version 2. Determination that a security related patch, hotfix, and/or update
poses too great a risk to install on a system or is not applicable due to the system
configuration should not require a TFE.

When documenting the remediation plan measures it may not be necessary
to document them on a one to one basis. The remediation plan measures may be
cumulative. A measure to address a software vulnerability may involve disabling
a particular service. That same service may be exploited through other software
vulnerabilities. Therefore disabling the single service has addressed multiple patched
vulnerabilities.

169

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX D © NORTH AMERICAN ENERGY COUNCIL SECURITY STANDARD FOR CRITICAL
INFRASTRUCTURE PROTECTION (NERC CIP)

2.3. The requirement handles the situations where it is more of a reliability risk to
patch a running system than the vulnerability presents. In all cases, the entity either
installs the patch or documents (either through the creation of a new or update of an
existing mitigation plan) what they are going to do to mitigate the vulnerability and
when they are going to do so. There are times when it is in the best interest of reliability
to not install a patch, and the entity can document what they have done to mitigate the
vulnerability. For those security related patches that are determined to be applicable, the
Responsible Entity must within 35 days either install the patch, create a dated mitigation
plan which will outline the actions to be taken or those that have already been taken by
the Responsible Entity to mitigate the vulnerabilities addressed by the security patch,
or revise an existing mitigation plan. Timeframes do not have to be designated as a
particular calendar day but can have event designations such as “at next scheduled
outage of at least two days duration.” “Mitigation plans” in the standard refers to internal
documents and are not to be confused with plans that are submitted to Regional Entities
in response to violations.

2.4. The entity has been notified of, has assessed, and has developed a plan to
remediate the known risk and that plan must be implemented. Remediation plans
that only include steps that have been previously taken are considered implemented
upon completion of the documentation. Remediation plans that have steps to be
taken to remediate the vulnerability must be implemented by the timeframe the entity
documented in their plan. There is no maximum timeframe in this requirement as
patching and other system changes carries its own risk to the availability and integrity of
the systems and may require waiting until a planned outage. In periods of high demand
or threatening weather, changes to systems may be curtailed or denied due to the risk to
reliability.

Requirement R3:

3.1. Due to the wide range of equipment comprising the BES Cyber Systems and the
wide variety of vulnerability and capability of that equipment to malware as well as the
constantly evolving threat and resultant tools and controls, it is not practical within

the standard to prescribe how malware is to be addressed on each Cyber Asset. Rather,
the Responsible Entity determines on a BES Cyber System basis which Cyber Assets
have susceptibility to malware intrusions and documents their plans and processes for
addressing those risks and provides evidence that they follow those plans and processes.
There are numerous options available including traditional antivirus solutions for
common operating systems, white-listing solutions, network isolation techniques,
portable storage media policies, Intrusion Detection/Prevention (IDS/IPS) solutions,
etc. If an entity has numerous BES Cyber Systems or Cyber Assets that are of identical
architecture, they may provide one process that describes how all the like Cyber Assets
are covered. If a specific Cyber Asset has no updateable software and its executing code
cannot be altered, then that Cyber Asset is considered to have its own internal method of
deterring malicious code.

3.2. When malicious code is detected on a Cyber Asset within the applicability of
this requirement, the threat posed by that code must be mitigated. In situations where
traditional antivirus products are used, they may be configured to automatically remove
or quarantine the malicious code. In white-listing situations, the white-listing tool itself

170

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX D © NORTH AMERICAN ENERGY COUNCIL SECURITY STANDARD FOR CRITICAL
INFRASTRUCTURE PROTECTION (NERC CIP)

can mitigate the threat as it will not allow the code to execute, however steps should still be
taken to remove the malicious code from the Cyber Asset. In some instances, it may be in
the best interest of reliability to not immediately remove or quarantine the malicious code,
such as when availability of the system may be jeopardized by removal while operating and
arebuild of the system needs to be scheduled. In that case, monitoring may be increased
and steps taken to insure the malicious code cannot communicate with other systems. In
some instances the entity may be working with law enforcement or other governmental
entities to closely monitor the code and track the perpetrator(s). For these reasons, there is
no maximum timeframe or method prescribed for the removal of the malicious code, but
the requirement is to mitigate the threat posed by the now identified malicious code.

3.3. In instances where malware detection technologies depend on signatures or
patterns of known attacks, the effectiveness of these tools against evolving threats is tied to
the ability to keep these signatures and patterns updated in a timely manner. The entity is to
have a documented process that includes the testing and installation of signature or pattern
updates. In a BES Cyber System, there may be some Cyber Assets that would benefit from
the more timely installation of the updates where availability of that Cyber Asset would not
jeopardize the availability of the BES Cyber System’s ability to perform its function.

For example, some HMI workstations where portable media is utilized may benefit from
having the very latest updates at all times with minimal testing. Other Cyber Assets should
have any updates thoroughly tested before implementation where the result of a ‘false
positive’ could harm the availability of the BES Cyber System. The testing should not
negatively impact the reliability of the BES. The testing should be focused on the update
itself and if it will have an adverse impact on the BES Cyber System. Testing in no way
implies that the entity is testing to ensure that malware is indeed detected by introducing
malware into the environment. It is strictly focused on ensuring that the update does not
negatively impact the BES Cyber System before those updates are placed into production.

Requirement R4:

Refer to NIST 800-92 and 800-137 for additional guidance in security event monitoring.

4.1. In a complex computing environment and faced with dynamic threats and
vulnerabilities, it is not practical within the standard to enumerate all security-related
events necessary to support the activities for alerting and incident response. Rather, the
Responsible Entity determines which computer generated events are necessary to log,
provide alerts and monitor for their particular BES Cyber System environment.

Specific security events already required in Version 4 of the CIP Standards carry
forward in this version. This includes access attempts at the Electronic Access Points,
if any have been identified for a BES Cyber Systems. Examples of access attempts include:
(i) blocked network access attempts, (ii) successful and unsuccessful remote user access
attempts, (iii) blocked network access attempts from a remote VPN, and (iv) successful
network access attempts or network flow information.

User access and activity events include those events generated by Cyber Assets
within the Electronic Security Perimeter that have access control capability. These
types of events include: (i) successful and unsuccessful authentication, (ii) account
management, (iii) object access, and (iv) processes started and stopped.

171

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX D © NORTH AMERICAN ENERGY COUNCIL SECURITY STANDARD FOR CRITICAL
INFRASTRUCTURE PROTECTION (NERC CIP)

It is not the intent of the SDT that if a device cannot log a particular event that a TFE
must be generated. The SDT’s intent is that if any of the items in the bulleted list (for
example, user logouts) can be logged by the device then the entity must log that item. If the
device does not have the capability of logging that event, the entity remains compliant.

4.2. Real-time alerting allows the cyber system to automatically communicate events
of significance to designated responders. This involves configuration of a communication
mechanism and log analysis rules. Alerts can be configured in the form of an email, text
message, or system display and alarming. The log analysis rules can exist as part of the
operating system, specific application or a centralized security event monitoring system.
On one end, a real-time alert could consist of a set point on an RTU for a login failure,
and on the other end, a security event monitoring system could provide multiple alerting
communications options triggered on any number of complex log correlation rules.

The events triggering a real-time alert may change from day to day as system
administrators and incident responders better understand the types of events that might
be indications of a cyber-security incident. Configuration of alerts also must balance
the need for responders to know an event occurred with the potential inundation of
insignificant alerts. The following list includes examples of events a Responsible Entity
should consider in configuring real-time alerts:

e Detected known or potential malware or malicious activity

e Failure of security event logging mechanisms

e Login failures for critical accounts

e Interactive login of system accounts

¢ Enabling of accounts

e Newly provisioned accounts

e System administration or change tasks by an unauthorized user

e Authentication attempts on certain accounts during
non-business hours

e Unauthorized configuration changes
e Insertion of removable media in violation of a policy

4.3. Logs that are created under Part 4.1 are to be retained on the applicable Cyber
Assets or BES Cyber Systems for at least 90 days. This is different than the evidence
retention period called for in the CIP standards used to prove historical compliance.

For such audit purposes, the entity should maintain evidence that shows that 90 days
were kept historically. One example would be records of disposition of event logs beyond
90 days up to the evidence retention period.

4.4. Reviewing logs at least every 15 days (approximately every two weeks) can
consist of analyzing a summarization or sampling of logged events. NIST SP800-92
provides a lot of guidance in periodic log analysis. If a centralized security event
monitoring system is used, log analysis can be performed top-down starting with a review
of trends from summary reports. The log review can also be an extension of the exercise
in identifying those events needing realtime alerts by analyzing events that are not fully
understood or could possibly inundate the real-time alerting.

172

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX D © NORTH AMERICAN ENERGY COUNCIL SECURITY STANDARD FOR CRITICAL
INFRASTRUCTURE PROTECTION (NERC CIP)

Requirement R5:
Account types referenced in this guidance typically include:

e Shared user account: An account used by multiple users for
normal business functions by employees or contractors. Usually
on a device that does not support Individual User Accounts.

e Individual user account: An account used by a single user.

e Administrative account: An account with elevated privileges for
performing administrative or other specialized functions. These
can be individual or shared accounts.

e System account: Accounts used to run services on a system
(web, DNS, mail etc). No users have access to these accounts.

e Application account: A specific system account, with rights
granted at the application level often used for access into a
Database.

e Guest account: An individual user account not typically used
for normal business functions by employees or contractors and
not associated with a specific user. May or may not be shared by
multiple users.

¢ Remote access account: An individual user account only used for
obtaining Interactive Remote Access to the BES Cyber System.

e Generic account: A group account set up by the operating system
or application to perform specific operations. This differs from
a shared user account in that individual users do not receive
authorization for access to this account type.

5.1. Reference the Requirement’s rationale.

5.2, Where possible, default and other generic accounts provided by a vendor should
be removed, renamed, or disabled prior to production use of the Cyber Asset or BES
Cyber System. If this is not possible, the passwords must be changed from the default
provided by the vendor. Default and other generic accounts remaining enabled must be
documented. For common configurations, this documentation can be performed at a
BES Cyber System or more general level.

5.3. Entities may choose to identify individuals with access to shared accounts
through the access authorization and provisioning process, in which case the individual
authorization records suffice to meet this Requirement Part. Alternatively, entities
may choose to maintain a separate listing for shared accounts. Either form of evidence
achieves the end result of maintaining control of shared accounts.

5.4. Default passwords can be commonly published in vendor documentation
that is readily available to all customers using that type of equipment and possibly
published online.

173

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX D © NORTH AMERICAN ENERGY COUNCIL SECURITY STANDARD FOR CRITICAL
INFRASTRUCTURE PROTECTION (NERC CIP)

The requirement option to have unique password addresses cases where the
Cyber Asset generates or has assigned pseudo-random default passwords at the time of
production or installation. In these cases, the default password does not have to change
because the system or manufacturer created it specific to the Cyber Asset.

5.5. Interactive user access does not include read-only information access in which
the configuration of the Cyber Asset cannot change (e.g. front panel displays, web-based
reports, etc.). For devices that cannot technically or for operational reasons perform
authentication, an entity may demonstrate all interactive user access paths, both remote
and local, are configured for authentication. Physical security suffices for local access
configuration if the physical security can record who is in the Physical Security Perimeter
and at what time.

Technical or procedural enforcement of password parameters are required
where passwords are the only credential used to authenticate individuals. Technical
enforcement of the password parameters means a Cyber Asset verifies an individually
selected password meets the required parameters before allowing the account to
authenticate with the selected password. Technical enforcement should be used in most
cases when the authenticating Cyber Asset supports enforcing password parameters.
Likewise, procedural enforcement means requiring the password parameters through
procedures. Individuals choosing the passwords have the obligation of ensuring the
password meets the required parameters.

Password complexity refers to the policy set by a Cyber Asset to require passwords
to have one or more of the following types of characters: (1) lowercase alphabetic,

(2) uppercase alphabetic, (3) numeric, and (4) non-alphanumeric or “special” characters
(e.g. #,$, @, &), in various combinations.

5.6. Technical or procedural enforcement of password change obligations are
required where passwords are the only credential used to authenticate individuals.
Technical enforcement of password change obligations means the Cyber Asset requires
a password change after a specified timeframe prior to allowing access. In this case,
the password is not required to change by the specified time as long as the Cyber Asset
enforces the password change after the next successful authentication of the account.
Procedural enforcement means manually changing passwords used for interactive user
access after a specified timeframe.

5.7. Configuring an account lockout policy or alerting after a certain number of
failed authentication attempts serves to prevent unauthorized access through an online
password guessing attack. The threshold of failed authentication attempts should be set
high enough to avoid false-positives from authorized users failing to authenticate.

It should also be set low enough to account for online password attacks occurring over
an extended period of time. This threshold may be tailored to the operating environment
over time to avoid unnecessary account lockouts.

Entities should take caution when configuring account lockout to avoid locking out
accounts necessary for the BES Cyber System to perform a BES reliability task. In such
cases, entities should configure authentication failure alerting.

174

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX D © NORTH AMERICAN ENERGY COUNCIL SECURITY STANDARD FOR CRITICAL
INFRASTRUCTURE PROTECTION (NERC CIP)

Rationale for R5:

To help ensure that no authorized individual can gain electronic access to a BES Cyber
System until the individual has been authenticated, i.e., until the individual's logon
credentials have been validated. Requirement R5 also seeks to reduce the risk that static
passwords, where used as authenticators, may be compromised.

Requirement Part 5.1 ensures the BES Cyber System or Cyber Asset authenticates
individuals that can modify configuration information. This requirement addresses the
configuration of authentication. The authorization of individuals is addressed elsewhere
in the CIP Cyber Security Standards. Interactive user access does not include read-only
information access in which the configuration of the Cyber Asset cannot change (e.g.
front panel displays, web-based reports, etc.). For devices that cannot technically or for
operational reasons perform authentication, an entity may demonstrate all interactive
user access paths, both remote and local, are configured for authentication. Physical
security suffices for local access configuration if the physical security can record who is in
the Physical Security Perimeter and at what time.

Requirement Part 5.2 addresses default and other generic account types. Identifying
the use of default or generic account types that could introduce vulnerabilities has the
benefit ensuring entities understand the possible risk these accounts pose to the BES
Cyber System. The Requirement Part avoids prescribing an action to address these
accounts because the most effective solution is situation specific, and in some cases,
removing or disabling the account could have reliability consequences.

Requirement Part 5.3 addresses identification of individuals with access to shared
accounts.

This Requirement Part has the objective of mitigating the risk of unauthorized
access through shared accounts. This differs from other CIP Cyber Security Standards
Requirements to authorize access. An entity can authorize access and still not know
who has access to a shared account. Failure to identify individuals with access to shared
accounts would make it difficult to revoke access when it is no longer needed. The term
“authorized” is used in the requirement to make clear that individuals storing, losing, or
inappropriately sharing a password is not a violation of this requirement.

Requirement 5.4 addresses default passwords. Changing default passwords closes
an easily exploitable vulnerability in many systems and applications. Pseudo-randomly
system generated passwords are not considered default passwords.

For password-based user authentication, using strong passwords and changing them
periodically helps mitigate the risk of successful password cracking attacks and the risk
of accidental password disclosure to unauthorized individuals. In these requirements,
the drafting team considered multiple approaches to ensuring this requirement was
both effective and flexible enough to allow Responsible Entities to make good security
decisions. One of the approaches considered involved requiring minimum password
entropy, but the calculation for true information entropy is more highly complex
and makes several assumptions in the passwords users choose. Users can pick poor
passwords well below the calculated minimum entropy.

The drafting team also chose to not require technical feasibility exceptions
for devices that cannot meet the length and complexity requirements in password
parameters. The objective of this requirement is to apply a measurable password policy

175

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX D © NORTH AMERICAN ENERGY COUNCIL SECURITY STANDARD FOR CRITICAL
INFRASTRUCTURE PROTECTION (NERC CIP)

to deter password cracking attempts, and replacing devices to achieve a specified
password policy does not meet this objective. At the same time, this requirement has
been strengthened to require account lockout or alerting for failed login attempts, which
in many instances better meets the requirement objective.

The requirement to change passwords exists to address password cracking attempts
if an encrypted password were somehow attained and also to refresh passwords which
may have been accidentally disclosed over time. The requirement permits the entity to
specify the periodicity of change to accomplish this objective. Specifically, the drafting
team felt determining the appropriate periodicity based on a number of factors is more
effective than specifying the period for every BES Cyber System in the Standard. In
general, passwords for user authentication should be changed at least annually. The
periodicity may increase in some cases. For example, application passwords that are long
and pseudo-randomly generated could have a very long periodicity. Also, passwords used
only as a weak form of application authentication, such as accessing the configuration of
arelay may only need to be changed as part of regularly scheduled maintenance.

The Cyber Asset should automatically enforce the password policy for individual
user accounts. However, for shared accounts in which no mechanism exists to enforce
password policies, the Responsible Entity can enforce the password policy procedurally
and through internal assessment and audit.

Requirement Part 5.7 assists in preventing online password attacks by limiting the
number of guesses an attacker can make. This requirement allows either limiting the
number of failed authentication attempts or alerting after a defined number of failed
authentication attempts. Entities should take caution in choosing to limit the number of
failed authentication attempts for all accounts because this would allow the possibility for
a denial of service attack on the BES Cyber System.

176

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX E

NIST 800 Guidelines

The National Institute of Standards and Technology (NIST) material in this appendix is
taken from the NIST Computer Security Division Computer Security Resource Center
web site. I have included it as a convenient compliance resource since it is referred to in
Chapter 8 and other places throughout the book.

The set of guidelines published by NIST is highly regarded. Although it is less
frequently cited for compliance than it is for regulatory standards, it is always a good
source of security suggestions.

The NIST web page for IT security includes the Special Publications (SP) 800 series.
I have selected those articles that most relate to web application security and identified
their titles and SP numbers for your reference.

The most relevant publications are SP 800-95, Guide to Secure Web Services, and
SP 800-44, Version 2, Guidelines on Securing Public Web Servers. Other relevant NIST
publications are shown in the following list in the order of their SP numbers:

e SP 800-40, Rev.3: Guide to Enterprise Patch Management
Technologies

e SP 800-83, Rev. 1: Guide to Malware Incident Prevention and
Handling for Desktops and Laptops

e SP800-100: Information Security Handbook: A Guide for
Managers

e SP800-102: Recommendation for Digital Signature Timeliness

e SP800-111: Guide to Storage Encryption Technologies for End
User Devices

e SP800-113: Guide to SSL VPNs

e SP800-115: Technical Guide to Information Security Testing and
Assessment

e SP800-118: DRAFT Guide to Enterprise Password Management

e SP 800-122: Guide to Protecting the Confidentiality of Personally
Identifiable Information (PII)

177

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX E * NIST 800 GUIDELINES

e SP800-123: Guide to General Server Security

e SP800-128: Guide to Security-Focused Configuration
Management of Information Systems

e SP 800-132: Recommendation for Password-Based Key Derivation
“Part 1: Storage Applications”

These publications can be found on the “Special Publications (800 Series)” page
in NIST’s Computer Security Resource Center: http://csrc.nist.gov/publications/
PubsSPs.html.

NIST’s drafts of computer-security publications are an additional valuable reference
source offered by the institute. These drafts are not necessarily directly related to web
application security, but some are closely related. You can find the documents on the
“Drafts” page in the Computer Security Resource Center: http://csrc.nist.gov/
publications/PubsDrafts.html#SP-800-118.

178

www.it-ebooks.info

http://csrc.nist.gov/publications/PubsSPs.html
http://csrc.nist.gov/publications/PubsSPs.html
http://csrc.nist.gov/publications/PubsDrafts.html#SP-800-118
http://csrc.nist.gov/publications/PubsDrafts.html#SP-800-118
http://www.it-ebooks.info/

APPENDIX F

Payment Card Industry (PCl)
Data Security Standard
Template for Report on
Compliance for use with

PCI DSS v3.0

This appendix includes excerpts from the “Template for Report on Compliance for use
with PCI DSS v3.0” as they provide a convenient compliance resource. The Payment
Card Industry Data Security Standard (PCI DSS) is referenced in Chapter 8 and other
places throughout the book.! For clarity and brevity, only excerpts from the template that
most closely align with web application security are shown. For more comprehensive

information about the PCI DSS or the “Template for Report on Compliance,” you can
contact the PCI Security Standards Council directly.

'The materials provided in this appendix appear courtesy of PCI Security Standards Council, LLC,
and/or its licensors. ©2014 PCI Security Standards Council, LLC. All Rights Reserved.

179

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX F

PCI DSS TEMPLATE FOR REPORT ON COMPLIANCE

Maintain a Vulnerability Management Program

Requirement 5: Protect all systems against malware and regularly update anti-virus

software or programs

PCI DSS Requirements and Testing Procedures | Reporting Instruction

(particularly personal computers and servers).

5.1 Deploy anti-virus software on all systems commonly affected by malicious software

5.1 For a sample of system components
including all operating system types commonly
affected by malicious software, verify that
anti-virus software is deployed if applicable
anti-virus technology exists.

Identify the sample of system
components selected (including
all operating system types
commonly affected by malicious
software).

For each item in the sample,
describe how anti-virus software
was observed to be deployed.

5.1.1 Ensure that anti-virus programs are capable
against all known types of malicious software.

of detecting, removing, and protecting

5.1.1 Review vendor documentation and
examine antivirus configurations to verify that
anti-virus programs:
o Detect all known types of malicious
software,

o Remove all known types of malicious
software, and

o Protect against all known types of
malicious software.

(Examples of types of malicious software include
viruses, Trojans, worms, spyware, adware, and
rootkits).

Identify the vendor documenta-
tion reviewed to verify that
anti-virus programs:

o Detect all known types of
malicious software,

o Remove all known types of
malicious software, and

o Protect against all known types
of malicious software.

Describe how anti-virus configu-
rations were examined to verify
that anti-virus programs:

Detect all known types of
malicious software,

Remove all known types of
malicious software, and

Protect against all known types of
malicious software.

180

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX F = PCI DSS TEMPLATE FOR REPORT ON COMPLIANCE

6.1 Establish a process to identify security vulnerabilities, using reputable outside
sources for security vulnerability information, and assign a risk ranking (for example,
as “high,” “medium,” or “low”) to newly discovered security vulnerabilities.

Note: Risk rankings should be based on industry best practices as well as consideration
of potential impact. For example, criteria for ranking vulnerabilities may include
consideration of the CVSS base score, and/or the classification by the vendor, and/or type
of systems affected.

Methods for evaluating vulnerabilities and assigning risk ratings will vary based on an
organization’s environment and risk assessment strategy. Risk rankings should, at a
minimum, identify all vulnerabilities considered to be a “high risk” to the environment.
In addition to the risk ranking, vulnerabilities may be considered “critical” if they pose
an imminent threat to the environment, impact critical systems, and/or would result in a
potential compromise if not addressed. Examples of critical systems may include security
systems, public-facing devices and systems, databases, and other systems that store,
process, or transmit cardholder data.

6.1.a Examine policies and procedures to |e Identify the documented policies and
verify that processes are defined for the procedures examined to confirm that
following: processes are defined:

o To identify new security o To identify new security
vulnerabilities. vulnerabilities.

o To assign a risk ranking to vulner- o To assign a risk ranking to vulner-
abilities that includes identification abilities that includes identification
of all “high risk” and “critical” of all “high risk” and “critical”
vulnerabilities. vulnerabilities.

o To include using reputable outside o To include using reputable outside
sources for security vulnerability sources for security vulnerability
information. information.

6.3 Develop internal and external software applications (including web-based
administrative access to applications) securely, as follows:

¢ In accordance with PCI DSS (for example, secure authentication and logging).
¢ Based on industry standards and/or best practices.
¢ Incorporate information security throughout the software development life cycle.

Note: This applies to all software developed internally as well as bespoke or custom
software developed by a third party.

6.3.a Examine written software ¢ Identify the document that defines software
development processes to verify that development processes based on industry
the processes are based on industry standards and/or best practices.

standards and/or best practices.
¢ Identify the industry standards and/or best

practices used.

(continued)

181

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX F

PCI DSS TEMPLATE FOR REPORT ON COMPLIANCE

6.3.b Examine written software
development processes to verify
that information security is included
throughout the life cycle.

Identify the documented software
development processes examined to verify
that information security is included
throughout the life cycle.

6.3.c Examine written software
development processes to verify that
software applications are developed
in accordance with PCI DSS.

Identify the documented software
development processes examined to verify
that software applications are developed in
accordance with PCI DSS.

6.3.d Interview software developers
to verify that written software
development processes are
implemented.

Identify the software developers interviewed
for this testing procedure.

For the interview, summarize the relevant
details discussed to verify that written
software development processes are
implemented.

6.3.1 Remove development, test and/or custom application accounts, user IDs, and
passwords before applications become active or are released to customers.

6.3.1 Examine written software-
development procedures and
interview responsible personnel to
verify that pre-production and/or
custom application accounts,

user IDs and/or passwords are
removed before an application
goes into production or is released
to customers.

Identify the documented software-development
processes examined to verify processes define
that pre-production and/or custom applica-
tion accounts, user IDs and/or passwords are
removed before an application goes into
production or is released to customers.

Identify the responsible personnel
interviewed for this testing procedure.

For the interview, summarize the relevant
details discussed to confirm that preproduc-
tion and/or custom application accounts, user
IDs and/or passwords are removed before an
application goes into production or is released
to customers.

182

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX F = PCI DSS TEMPLATE FOR REPORT ON COMPLIANCE

6.3.2 Review custom code prior to release to production or customers in order to identify
any potential coding vulnerability (using either manual or automated processes) to
include at least the following:
e Code changes are reviewed by individuals other than the originating code author,
and by individuals knowledgeable about code review techniques and secure
coding practices.

e Code reviews ensure code is developed according to secure coding guidelines.
e Appropriate corrections are implemented prior to release.
e Code review results are reviewed and approved by management prior to release.

Note: This requirement for code reviews applies to all custom code (both internal and
public-facing), as part of the system development life cycle.
Code reviews can be conducted by knowledgeable internal personnel or third parties.

Public-facing web applications are also subject to additional controls, to address ongoing
threats and vulnerabilities after implementation, as defined at PCI DSS Requirement 6.6.

(continued)

183

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX F

PCI DSS TEMPLATE FOR REPORT ON COMPLIANCE

6.3.2.a Examine written software
development procedures and
interview responsible personnel to
verify that all custom application
code changes must be reviewed
(using either manual or automated
processes) as follows:

o Code changes are reviewed

by individuals other than the
originating code author, and
by individuals who are
knowledgeable in code review
techniques and secure coding
practices.

Code reviews ensure code is
developed according to secure
coding guidelines (see PCI
DSS Requirement 6.5).

Appropriate corrections are
implemented prior to release.

Code-review results are
reviewed and approved by
management prior to release.

Identify the documented software-development
processes examined to verify processes define
that all custom application code changes
must be reviewed (using either manual or
automated processes) as follows:

o Code changes are reviewed by individuals
other than the originating code author, and
by individuals who are knowledgeable in
code review techniques and secure coding
practices.

o Code reviews ensure code is developed
according to secure coding guidelines
(see PCI DSS Requirement 6.5).

o Appropriate corrections are implemented
prior to release.

o Code-review results are reviewed and
approved by management prior to release.

Identify the responsible personnel inter-
viewed for this testing procedure who confirm
that all custom application code changes are
reviewed as follows:

o Code changes are reviewed by individuals
other than the originating code author, and
by individuals who are knowledgeable in
code-review techniques and secure coding
practices.

o Code reviews ensure code is developed
according to secure coding guidelines
(see PCI DSS Requirement 6.5).

o Appropriate corrections are implemented
prior to release.

o Code-review results are reviewed and
approved by management prior to release.

Describe how all custom application code
changes must be reviewed, including whether
processes are manual or automated.

184

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX F

PCI DSS TEMPLATE FOR REPORT ON COMPLIANCE

6.3.2.b Select a sample of recent
custom application changes and
verify that custom application code
is reviewed according to 6.3.2.a,
above.

Identify the sample of recent custom
application changes selected for this testing
procedure.

For each item in the sample, describe how code
review processes were observed to verify custom
application code is reviewed as follows:

Code changes are reviewed by individuals
other than the originating code author.

Code changes are reviewed by individuals
who are knowledgeable in code-review
techniques and secure coding practices.

Code reviews ensure code is developed
according to secure coding guidelines
(see PCI DSS Requirement 6.5).

Appropriate corrections are implemented
prior to release.

Code-review results are reviewed and
approved by management prior to release.

6.4.1 Separate development/test environments from production environments, and
enforce the separation with access controls.

6.4.1.a Examine network
documentation and network device
configurations to verify that the
development/test environments
are separate from the production
environment(s).

Identify the network documentation that
illustrates that the development/test
environments are separate from the
production environment(s).

Describe how network device configurations
were examined to verify that the development/
test environments are separate from the
production environment(s).

6.4.1.b Examine access controls
settings to verify that access controls
are in place to enforce separation
between the development/test
environments and the production
environment(s).

Identify the access control settings examined
for this testing procedure.

Describe how the access control settings
were examined to verify that access controls
are in place to enforce separation between
the development/test environments and the
production environment(s).

(continued)

185

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX F

PCI DSS TEMPLATE FOR REPORT ON COMPLIANCE

6.4.2 Separation of duties between development/test and production environments.

6.4.2 Observe processes and
interview personnel assigned to
development/test environments
and personnel assigned to
production environments to verify
that separation of duties is in
place between development/test
environments and the production
environment.

Identify the personnel assigned to develop-
ment/test environments interviewed who
confirm that separation of duties is in place
between development/test environments
and the production environment.

Identify the personnel assigned to produc-
tion environments interviewed who confirm
that separation of duties is in place between
development/test environments and the
production environment.

Describe how processes were observed to
verify that separation of duties is in place
between development/test environments
and the production environment.

6.4.5.3.b For custom code changes,
verify that all updates are tested

for compliance with PCI DSS
Requirement 6.5 before being
deployed into production.

Identify the sample of system components
selected for this testing procedure.

For each item in the sample, identify the
sample of custom code changes and the
related change control documentation
selected for this testing procedure.

Describe how the custom code changes were
traced back to the identified related change
control documentation to verify that the
change control documentation for each
sampled custom code change includes
evidence that all updates are tested for
compliance with PCI DSS Requirement 6.5
before being deployed into production.

6.4.5.4 Back-out procedures.

6.4.5.4 Verify that back-out
procedures are prepared for each
sampled change.

For each change from 6.4.5.b, describe how
the changes were traced back to the identi-
fied related change control documentation
to verify that back-out procedures are
prepared for each sampled change and
present in the change control documentation
for each sampled change.

186

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX F

PCI DSS TEMPLATE FOR REPORT ON COMPLIANCE

6.5 Address common coding vulnerabilities in software-development processes as

follows:

e Train developers in secure coding techniques, including how to avoid common
coding vulnerabilities, and understanding how sensitive data is handled in

memory.

e Develop applications based on secure coding guidelines.

Note:

requirements.

The vulnerabilities listed at 6.5.1 through 6.5.10 were current with industry best
practices when this version of PCI DSS was published. However, as industry best practices
for vulnerability management are updated (for example, the OWASP Guide, SANS

CWE Top 25, CERT Secure Coding, etc.), the current best practices must be used for these

Note: Requirements 6.5.1 through 6.5.6, below, apply to all applications (internal or external):

6.5.1 Injection flaws, particularly SQL injection. Also consider OS Command Injection,
LDAP and XPath injection flaws as well as other injection flaws.

6.5.1 Examine software development
policies and procedures and interview
responsible personnel to verify that
injection flaws are addressed by
coding techniques that include:

o Validating input to verify user
data cannot modify meaning of
commands and queries.

o Utilizing parameterized
queries.

For the interviews at 6.5.d, summarize the
relevant interview details that confirm
processes are in place, consistent with the
software development documentation at 6.5.d,
to ensure that injection flaws are addressed by
coding techniques that include:

e Validating input to verify user data cannot
modify meaning of commands and queries.

e Utilizing parameterized queries.

6.5.2 Buffer overflow.

6.5.2 Examine software development
policies and procedures and interview
responsible personnel to verify that
buffer overflows are addressed by
coding techniques that include:

o Validating buffer boundaries.

o Truncating input strings.

For the interviews at 6.5.d, summarize the
relevant interview details that confirm
processes are in place, consistent with the
software development documentation at 6.5.d,
to ensure that buffer overflows are addressed by
coding techniques that include:

o Validating buffer boundaries.

e Truncating input strings.

(continued)

187

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX F

PCI DSS TEMPLATE FOR REPORT ON COMPLIANCE

6.5.3 Insecure cryptographic storage.

6.5.3 Examine software development
policies and procedures and interview
responsible personnel to verify that
insecure cryptographic storage is
addressed by coding techniques that:

o Prevent cryptographic flaws.

o Use strong cryptographic
algorithms and keys.

For the interviews at 6.5.d, summarize the
relevant interview details that confirm
processes are in place, consistent with the
software development documentation at 6.5.d,
to ensure that insecure cryptographic storage is
addressed by coding techniques that:

e Prevent cryptographic flaws.

e Use strong cryptographic algorithms
and keys.

6.5.4 Insecure communications.

6.5.4 Examine software development
policies and procedures and interview
responsible personnel to verify

that insecure communications are
addressed by coding techniques that
properly authenticate and encrypt all
sensitive communications.

For the interviews at 6.5.d, summarize the
relevant interview details that confirm
processes are in place, consistent with the
software development documentation at 6.5.d,
to ensure that insecure communications are
addressed by coding techniques that properly:

e Authenticate all sensitive communications.

e Encrypt all sensitive communications.

6.5.7 Examine software development
policies and procedures and interview
responsible personnel to verify that
cross-site scripting (XSS) is addressed
by coding techniques that include:

o Validating all parameters before
inclusion.

o Utilizing context-sensitive
escaping.

For the interviews at 6.5.d, summarize the
relevant interview details that confirm
processes are in place, consistent with the
software development documentation at 6.5.d,
to ensure that cross-site scripting (XSS) is
addressed by coding techniques that include:

o Validating all parameters before inclusion.

o Utilizing context-sensitive escaping.

188

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX F

PCI DSS TEMPLATE FOR REPORT ON COMPLIANCE

6.5.8 Improper access control (such as insecure direct object references, failure to

restrict URL access, directory traversal,

and failure to restrict user access to functions).

6.5.8 Examine software development
policies and procedures and interview
responsible personnel to verify that
improper access control—such as
insecure direct object references,
failure to restrict URL access, and
directory traversal—is addressed by
coding technique that include:

o Proper authentication of users.

o Sanitizing input.

o Not exposing internal object

references to users.
User interfaces that do not

permit access to unauthorized
functions.

For the interviews at 6.5.d, summarize the
relevant interview details that confirm
processes are in place, consistent with the
software development documentation at
6.5.d, to ensure that improper access control is
addressed by coding techniques that include:

e Proper authentication of users.

Sanitizing input.

Not exposing internal object references to
users.

User interfaces that do not permit access to
unauthorized functions.

6.5.9 Cross-site request forgery (CSRF).

6.5.9 Examine software development
policies and procedures and interview
responsible personnel to verify that
cross-site request forgery (CSRF) is
addressed by coding techniques that
ensure applications do not rely on
authorization credentials and tokens
automatically submitted by browsers.

For the interviews at 6.5.d, summarize the
relevant interview details that confirm
processes are in place, consistent with the
software development documentation at 6.5.d,
to ensure that cross-site request forgery (CSRF)
is addressed by coding techniques that ensure
applications do not rely on authorization
credentials and tokens automatically submitted
by browsers.

(continued)

189

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX F PCI DSS TEMPLATE FOR REPORT ON COMPLIANCE

requirement.

6.5.10 Broken authentication and session management.

Note: Requirement 6.5.10 is a best practice until June 30, 2015, after which it becomes a

6.5.10 Examine software
development policies and procedures
and interview responsible personnel
to verify that broken authentication
and session management are
addressed via coding techniques that
commonly include:

o Flagging session tokens (for
example cookies) as “secure.”

o Not exposing session IDs
in the URL.

o Incorporating appropriate
time-outs and rotation of
session IDs after a successful
login.

Indicate whether this ROC is being completed
prior to June 30, 2015. (yes/no)

If “yes” AND the assessed entity does not have
this in place ahead of the requirement’s effective
date, mark the remainder of 6.5.10 as “Not
Applicable.”

If “no” OR if the assessed entity has this in
place ahead of the requirement’s effective date,
complete the following:

For the interviews at 6.5.d, summarize the
relevant interview details that confirm
processes are in place, consistent with the
software development documentation at 6.5.d,
to ensure that broken authentication and
session management are addressed via coding
techniques that protect credentials and session
IDs, including:

o Flagging session tokens (for example
cookies) as “secure”.

o Not exposing session IDs in the URL.

e Implementing appropriate time-outs and
rotation of session IDs after a successful login

190

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX F = PCI DSS TEMPLATE FOR REPORT ON COMPLIANCE

6.6 For public-facing web applications, address new threats and vulnerabilities on an
ongoing basis and ensure these applications are protected against known attacks by
either of the following methods:

e Reviewing public-facing web applications via manual or automated application
vulnerability security assessment tools or methods, at least annually and after any
changes.

Note: This assessment is not the same as the vulnerability scans performed for
Requirement 11.2.

o Installing an automated technical solution that detects and prevents web-based
attacks (for example, a web application firewall) in front of public-facing web
applications, to continually check all traffic.

6.6 For public-facing web e For each public-facing web application,
applications, ensure that either one of identify which of the two methods are
the following methods is in place as implemented:
follows: o Web application vulnerability security
o Examine documented assessments, AND/OR
processes, interview personnel, o Automated technical solution that detects
and examine records of and prevents web-based attacks, such as
application security web application firewalls.

assessments to verify that
public-facing web applications | If application vulnerability security assessments

are reviewed—using either are indicated above:

manual or automated .

vulnerability security e Describe the tools and/or methods used
assessment tools or methods— (manual or automated, or a combination
as follows: of both).

- Atleast annually. ¢ Identify the organization(s) confirmed to
- After any changes. specialize in application security that is

_ By an organization that performing the assessments.

specializes in application .

Identify the documented processes that were

security. examined to verify that public-facing web

- That, at a minimum, all applications are reviewed using the tools
vulnerabilities in and/or methods indicated above, as follows:
Requirement 6.5 are o Atleast annually.

included in the assessment.
o After any changes.

- Thatall vulnerabilities are o By an organization that specializes in

corrected. application security.

- That the application is o That, at a minimum, all vulnerabilities in
re—evah.lated after the Requirement 6.5 are included in the
corrections.

assessment.
o That all vulnerabilities are corrected

o That the application is re-evaluated after
the corrections.

(continued)
191

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX F PCI DSS TEMPLATE FOR REPORT ON COMPLIANCE

o Examine the system configura-
tion settings and interview
responsible personnel to verify
that an automated technical
solution that detects and
prevents web-based attacks
(for example, a web-application
firewall) is in place as follows:

- Issituated in front of
public-facing web applica-
tions to detect and prevent
web-based attacks.

- Isactively running and
up-to-date as applicable.

- Is generating audit logs.

- Is configured to either block
web-based attacks, or
generate an alert.

Identify the responsible personnel inter-
viewed who confirm that public-facing web
applications are reviewed, as follows:

o Atleast annually.
o After any changes.

o By an organization that specializes in
application security.

o That, at a minimum, all vulnerabilities in
Requirement 6.5 are included in the
assessment.

o That all vulnerabilities are corrected.

o That the application is re-evaluated after
the corrections.

Identify the records of application security
assessments examined for this testing
procedure.

Describe how the records of application
security assessments were examined to
verify that public-facing web applications are
reviewed as follows:

o Atleast annually.
o After any changes.

o By an organization that specialized in
application security.

o That at a minimum, all vulnerabilities in
requirement 6.5 are included in the
assessment.

o That all vulnerabilities are corrected.

o That the application is re-evaluated after
the corrections.

192

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX F = PCI DSS TEMPLATE FOR REPORT ON COMPLIANCE

If an automated technical solution that detects
and prevents web-based attacks (for example, a
web-application firewall) is indicated above:

e Describe the automated technical solution
in use that detects and prevents web-based
attacks.

o Identify the responsible personnel inter-
viewed who confirm that the above auto-
mated technical solution in use to detect and
prevent web-based attacks is in place as
follows:

o Issituated in front of public-facing web
applications to detect and prevent
web-based attacks.

o Is actively running and up-to-date as
applicable.

o Is generating audit logs.

o Is configured to either block web-based
attacks, or generate an alert.

Identify the system configuration settings
examined for this testing procedure.

Describe how the system configuration
settings were examined to verify that the above
automated technical solution is use to detect
and prevent web-based attacks is in place as
follows:

o Issituated in front of public-facing web
applications to detect and prevent
web-based attacks.

o Isactively running and up-to-date as
applicable.

o Isgenerating audit logs.

o Is configured to either block web-based
attacks, or generate an alert.

(continued)

193

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX F

PCI DSS TEMPLATE FOR REPORT ON COMPLIANCE

8.1.8 If a session has been idle for more than 15 minutes, require the user to
re-authenticate to re-activate the terminal or session.

8.1.8 For a sample of system components,
inspect system configuration settings to
verify that system/session idle time

out features have been set to 15 minutes
or less.

o Identify the sample of system compo-
nents selected for this testing
procedure.

o For each item in the sample, describe
how system configuration settings were
inspected to verify that system/session
idle time out features have been set to
15 minutes or less.

8.2 In addition to assigning a unique ID, ensure proper user-authentication
management for non-consumer users and administrators on all system components by
employing at least one of the following methods to authenticate all users:

e Something you know, such as a password or passphrase.
e Something you have, such as a token device or smart card.

e Something you are, such as a biometric.

8.2 To verify that users are authenticated
using unique ID and additional
authentication (for example, a password/
phrase) for access to the cardholder data
environment, perform the following:

- Examine documentation
describing the authentication
method(s) used.

- For each type of authentication
method used and for each type of
system component, observe an
authentication to verify authenti-
cation is functioning consistent
with documented authentication
method(s).

o Identify the document describing the
authentication method(s) used that was
reviewed to verify that the methods
require users to be authenticated using
aunique ID and additional authentica-
tion for access to the cardholder data
environment.

¢ Describe the authentication methods
used (for example, a password or
passphrase, a token device or smart
card, a biometric, etc.) for each type of
system component.

For each type of authentication method
used and for each type of system component,
describe how the authentication method
was observed to be:

e Used for access to the cardholder data
environment.

e Functioning consistently with the
documented authentication method(s).

194

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX F = PCI DSS TEMPLATE FOR REPORT ON COMPLIANCE

8.2.1 Using strong cryptography, render all authentication credentials (such as
passwords/phrases) unreadable during transmission and storage on all system
components.

8.2.1.a Examine vendor documentation o Identify the vendor documentation
and system configuration settings to verify reviewed for this testing procedure.
that passwords are protected with strong

cryptography during transmission and * Identify the sample of system
storage. components selected.

o For each item in the sample, describe
how system configuration settings were
examined to verify that passwords are
protected with strong cryptography
during transmission.

o For each item in the sample, describe
how system configuration settings were
examined to verify that passwords are
protected with strong cryptography
during storage.

8.2.1.b For a sample of system e Foreachitemin the sample at 8.2.1.a,
components, examine password files describe how password files were
to verify that passwords are unreadable examined to verify that passwords are
during storage. unreadable during storage.
8.2.1.c For a sample of system e For each item in the sample at 8.2.1.a,
components, examine data transmissions describe how password files were
to verify that passwords are unreadable examined to verify that passwords are
during transmission. unreadable during transmission.
8.2.1.d Additional procedure for service o Additional procedure for service
providers: Observe password files to verify providers: for each item in the sample
that customer passwords are unreadable at 8.2.1.a, describe how password files
during storage. were examined to verify that customer
passwords are unreadable during
storage.
8.2.1.e Additional procedure for service o Additional procedure for service
providers: Observe data transmissions providers: for each item in the sample
to verify that customer passwords are at 8.2.1.a, describe how password files
unreadable during transmission. were examined to verify that customer
passwords are unreadable during
transmission.
(continued)
195

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX F

PCI DSS TEMPLATE FOR REPORT ON COMPLIANCE

8.2.2 Verify user identity before modifying any authentication credential —for example,
performing password resets, provisioning new tokens, or generating new keys.

8.2.2 Examine authentication procedures
for modifying authentication credentials
and observe security personnel to

verify that, if a user requests a reset of

an authentication credential by phone,
e-mail, web, or other non-face-to-face
method, the user’s identity is verified
before the authentication credential is
modified.

Identify the document examined to
verify that authentication procedures
for modifying authentication creden-
tials define that if a user requests a reset
of an authentication credential by a
non-face-to-face method, the user’s
identity is verified before the authenti-
cation credential is modified.

Describe the non-face-to-face methods
used for requesting password resets.

Describe how security personnel were
observed to verify that if a user requests
areset of an authentication credential
by a non-face-to-face method, the
user’s identity is verified before the
authentication credential is modified.

The complete version of the material found in this appendix is available at following
the PCI URL: www. pcisecuritystandards.org/documents/PCI_DSS_v3_ROC Reporting
Templatevi.1.pdf.

196

www.it-ebooks.info

http://www.pcisecuritystandards.org/documents/PCI_DSS_v3_ROC_Reporting_Templatev1.1.pdf
http://www.pcisecuritystandards.org/documents/PCI_DSS_v3_ROC_Reporting_Templatev1.1.pdf
http://www.it-ebooks.info/

APPENDIX G

Sarbanes-Oxley Security

Compliance Requirements W,

I have included this admittedly very short appendix for the Sarbanes-Oxley Act (SOX)
because it is widely cited for IT security compliance. The act is referred to in Chapter 8
and other places throughout the book.

As strange as it may seem, the Sarbanes-Oxley Act does not specify any details for

web application security whatsoever. Two organizations, the Committee of Sponsoring

Organizations of the Treadway Commission (COSO) and ISACA, stepped up to the pla
and created some nontechnical guidelines to interpret IT security requirements for
compliance with SOX. COSO has created guidelines, which, in turn, refer to the ISACA
COBIT standard. I have taken the next step and refer to the COBIT5 for Information
Security standard as the most meaningful COBIT reference for this book.

te

The two sections of SOX that are pertinent to IT security are Section 302 and Section 404:

Section 302 - Accurate Reporting

Section 302 states that the Chief Executive Officer (CEO) and
Chief Financial Officer (CFO) must personally certify that
financial reports are accurate and complete. They must also
assess and report on the effectiveness of internal controls around
financial reporting. This section clearly places responsibility for
accurate financial reporting on the highest level of corporate
management. CEOs and CFOs now face the potential for
criminal fraud liability. It is noteworthy that section 302 does not
specifically list which internal controls must be assessed.

Section 404 - Annual Assessment of Internal Controls

Section 404 states that a corporation must assess the
effectiveness of its internal controls and report this assessment
annually to the SEC. The assessment must also be reviewed and
judged by an outside auditing firm. The impact of section 404

is substantial in that a large amount of resources are needed for
compliance. A comprehensive review of all internal controls
related to financial reporting is a daunting task. As with section
302, the wording of section 404 is broad and does not provide
specific guidance as to which controls must be assessed.

www.it-ebooks.info

197

http://www.it-ebooks.info/

APPENDIX G SARBANES-OXLEY SECURITY COMPLIANCE REQUIREMENTS

It is apparent that no prescriptive recommendations are made for IT security or, by
extension, for web application security. Nonetheless, as mentioned previously, SOX is
often cited as a compliance requirement for IT security audits.

A SANS article describing the interrelationships between SOX, COSO, and COBIT
cites the two standards noted previously, COSO and COBIT, as governing the IT security
for SOX.

COSO is more general in nature than COBIT, and COBIT5, which is discussed in this
book, is the most relevant of the COBIT collection of standards for the purposes of SOX
compliance.

A good source of information about the Sarbanes-Oxley Act is the SEC web site:

www. sec.gov/about/laws/s0a2002.pdf

For information about the COSO framework, you can go to the COSO
organization’s site:

Www. c0s0.0rg/documents/C0S0%20McNallyTransition%20Article-Final%20C0S0%20
Version%20Proof 5-31-13.pdf

Details of COBITS5 for Information Security can be found in Appendix A of this book.
The source for the SANS content in this appendix is found at Institute Infosec
Reading Room in “An Overview of Sarbanes-Oxley for the Information Security

Professional”:

www.sans.org/reading-room/whitepapers/legal/overview-sarbanes-oxley-
information-security-professional-1426

198

www.it-ebooks.info

http://www.sec.gov/about/laws/soa2002.pdf
http://www.coso.org/documents/COSO%20McNallyTransition%20Article-Final%20COSO%20Version%20Proof_5-31-13.pdf
http://www.coso.org/documents/COSO%20McNallyTransition%20Article-Final%20COSO%20Version%20Proof_5-31-13.pdf
http://www.sans.org/reading-room/whitepapers/legal/overview-sarbanes-oxley-information-security-professional-1426
http://www.sans.org/reading-room/whitepapers/legal/overview-sarbanes-oxley-information-security-professional-1426
http://www.it-ebooks.info/

APPENDIX H

Sources of Information

(ISC)?, “Ten Best Practices for Secure Software Development”

www.1sc2.org/uploadedFiles/(ISC)2_Public_Content/Certification_Programs/
CSSLP/ISC2_WPIV.pdf

On the web site of the International Information Systems Security Certification
Consortium, or (ISC)2, you will find this article about the best practices for securely
developing applications.

(ISC)?, The Official (ISC)? Guide to the CISSP CBK, 3rd Edition
This training guide is for the (ISC)? CISSP certification exam. It contains a lot of
material relevant to information security.

Harold E Tipton and Steven Hernandez, Official (ISC)?
Guide to the CISSP CBK, 3rd Edition (Boca Raton, FL: CRC)

ISACA, “Common Web Application Vulnerabilities”

www.isaca.org/Journal/Past-Issues/2005/Volume-4/Pages/Common-Web-
Application-Vulnerabilitiesi.aspx

This page on ISACA’s web site explains common types of web application security
risks and the associated best practices to avoid them.

Microsoft, “Basic Security Practices for Web Applications”
http://msdn.microsoft.com/en-us/library/zdh19h94(v=vs.100).aspx

This page on the Microsoft Developer Network web site is about good security
practices for developing and managing web applications.

NIST, National Vulnerability Database
http://web.nvd.nist.gov/view/vuln/search

On the National Institute of Standards and Technology’s web site, you will find the
National Vulnerability Database, where you can search for software flaws (CVEs) and
misconfigurations (CCEs).

199

www.it-ebooks.info

http://www.isc2.org/uploadedFiles/(ISC)2_Public_Content/Certification_Programs/CSSLP/ISC2_WPIV.pdf
http://www.isc2.org/uploadedFiles/(ISC)2_Public_Content/Certification_Programs/CSSLP/ISC2_WPIV.pdf
http://www.isaca.org/Journal/Past-Issues/2005/Volume-4/Pages/Common-Web-Application-Vulnerabilities1.aspx
http://www.isaca.org/Journal/Past-Issues/2005/Volume-4/Pages/Common-Web-Application-Vulnerabilities1.aspx
http://msdn.microsoft.com/en-us/library/zdh19h94(v=vs.100).aspx
http://web.nvd.nist.gov/view/vuln/search
http://www.it-ebooks.info/

APPENDIX H " SOURCES OF INFORMATION

OWASP, “2013 Top 10 List”
www.owasp.org/index.php/Top_10_2013-Top_10
This web page the Open Web Application Security Project (OWASP) web site

identifies the top 10 most critical web application security flaws and links to tables
identifying relevant factors for each, such as threat agents and attack vectors.

OWASP, “Secure Coding Cheat Sheet”
www.owasp.org/index.php/Secure Coding Cheat_Sheet

This page on the OWASP web site pertains to how to securely code a web site.

OWASP, “Web Application Firewall”
www.owasp.org/index.php/Web_Application_Firewall

This page on the OWASP site is about web application firewall technology.

SANS Institute, “Framework for Secure Application Design and Development”

www.sans.org/reading room/whitepapers/application/framework-secure-
application-design-development_ 842

This page from the SANS Institute Reading Room site addresses the practice of secure
application design and development, and presents a framework to assist developers.

Stanford University, “State of the Art: Automated Black-Box Web Application
Vulnerability Testing”

http://theory.stanford.edu/~jcm/papers/pci_oakland10.pdf

This paper, published on the Stanford Theory Group site, describes vulnerability
scanners used for testing web applications.

University of California, “Secure Coding Practice Guidelines”

https://security.berkeley.edu/content/application-software-security-
guidelines?destination=node/403

This page on the Berkeley Security web site pertains to secure coding practices.

University of Pennsyvania, “Top 10 Web Application Security Vulnerabilities”
www.upenn.edu/computing/security/swat/SWAT Top_Ten_A8.php

This page on the Penn Computing web site describes what it considers to be the top
10 web application security vulnerabilities.

200

www.it-ebooks.info

http://www.owasp.org/index.php/Top_10_2013-Top_10
http://www.owasp.org/index.php/Secure_Coding_Cheat_Sheet
http://www.owasp.org/index.php/Web_Application_Firewall
http://www.sans.org/reading_room/whitepapers/application/framework-secure-application-design-development_842
http://www.sans.org/reading_room/whitepapers/application/framework-secure-application-design-development_842
http://theory.stanford.edu/~jcm/papers/pci_oakland10.pdf
https://security.berkeley.edu/content/application-software-security-guidelines?destination=node/403
https://security.berkeley.edu/content/application-software-security-guidelines?destination=node/403
http://www.upenn.edu/computing/security/swat/SWAT_Top_Ten_A8.php
http://www.it-ebooks.info/

Index

A

Access control, 27, 54
audit observation, 29
cached HTTP response, 55
cached HTTPS response, 28
character set/charset, 29, 57
clickjacking attack, 27-28
discretionary access control, 77

disclosing unnecessary information, 56

frameable response, 55
HTML comments, 28, 56
insecure cookies, 30, 58
mandatory access control, 77
session expiration, 29, 57
session fixation, 58
Annual loss expectancy (ALE), 114
Application security, 111
ALE, 114
business case, 119
prevention and remediation, 115
residual risk measurement
cost-justifying remediation and
calculation, 124
cost of, mitigation, 126
effectiveness of, mitigation, 127
monthly security health
scorecard, 123-124
remediating vs. fixing, 125
risk assessment
identification, business
impact, 112
likelihood of occurrence, 113
qualitative and quantitative risk
analysis, 113-114
security investment
budget, 116
calculation, 116

projected vs. actual cost of
losses, 129

web-application-security breach,
straw poll, 116-117, 119

Authentication

brute-force method, 23

encryption, 50

harvesting, 50

password controls, 22, 49

requirements, 48

unencrypted
connection, 23

B

Brute-force attacks, 34, 62

C

Clickjacking attack, 27-28
Compliance, 99

expert organization, 101
financial auditors, 102
government regulations, 100
industry standards, 100
logical approach, 107
requirements, 107

security standards, 106

Cookies, 30

client-side code, 32
domain attribute, 32
HttpOnly flag, 31
prolonged expiration, 31
secure flag, 31

CRAMM method, 4
Cross-site request forgery

(CSRF), 43, 74

201

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX

Cross-site scripting (XSS) attacks
CSRE 43
reflected XSS, 41
stored XSS, 42

D

Data masking, 76

Denial-of-service (DoS) attacks, 44
Discretionary access controls (DACs), 77
DREAD model, 4-5

E

Error handling, 40-41
Experian EI3PA security, 147
anti-virus updation, 151
develop and maintain secure
systems, 152
encrypt transmission, 150
hacker communities, 148
network resources, access, 157
PCI SSC materials, 147
testing, 158
Extended enterprise architecture
framework (E2AF), 128

FG H
Facilitated risk analysis process
(FRAP), 4
Federal Enterprise Architecture (FEA), 128
Framework, secure code, 85
application testing, 89
backups, 85
error handling, 88
HttpOnly flag, 87
indirect file path, 87
input validation, 88
management buy-in, 85
monitoring and alerts, 86
output encoding, 88
password management, 86
patching, 86
secure flag, 87
security team, 85
separation of duties/environments, 85
session management, 87
SSL/TLS, 87
training, 89
verification, 88

202

LJ, K L

Injection flaws, 62
active directory, 38
blind SQL injection, 36, 64
hidden directory, 39
HTTP header injection, 36, 65
HTTP response-splitting attack, 36, 66
internal IP address, 39
link injection, 65
obsolete servers, 40
server path, 39
source code, 37
SQL injection, 35, 63
SSL request, 40
temporary files, 39
VIEWSTATE, 40
web directory, 38
IT security risks
breach, 2
calculation models
CRAMM, 4
DREAD, 4-5
facilitated risk analysis process
(FRAP), 4
OCTAVE Allegro, 4
spanning tree analysis, 4
STRIDE, 4
calculations, 6
customized approach, 7
monetary value, 9
multiple threats, 9
security risk, 8
compromise, 2
countermeasure, 3
mitigation, 3
relative risk, 2
residual risk, 3
risk, 1
temporal risk, 2
threat, 2
vulnerabilities, 2, 10
IT security standards
appendices, 103
COBIT, 103
E13PA, 104-105
I1SO 105, 27000
NERC CIP, 105
NIST, 105
PCIDSS, 104
Sarbanes-Oxley act, 106

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX

M SSL request, 40
temporary files, 39
Mandatory access controls (MACs), 77 VIEWSTATE, 40
web directory, 38
N input validation, 32
buffer overflows, 33
National Vulnerability Database GET method, 34
(NVD), 10 parameter manipulation
North American Electric Reliability attack, 33
Corporation’s Critical script execution, 32
Infrastructure Protection redirects and forwards, 34
standard (NERC CIP), 105 security issues, 44

account lists, 45

O, P, Q data at rest, 44

password storage, 45

OCTAVE Allegro, 4 patch management, 45
Open Web Application Security Project security misconfigurations, 43
(OWASP), 10 session management, 23
GET method, 25
R harvesting, 26
hashing, 24
Real-life vulnerabilities, 21 internet security, 26
access control, 27 session ID/token/identifier, 27
audit observation, 29 SSL, 24-25
cached HTTPS response, 28 stored credentials, 26
character set, 29 TCP, 24
clickjacking attack, 27-28 TLS, 24
HTML comments, 28 UDP, 24
insecure cookies, 30 unauthorized data view, 37
session expiration, 29 ROSI, 116
authentication
brute-force method, 23
passwords, 22 S
unencrypted connection, 23 Secure sockets layer (SSL), 24
cross-site scripting (XSS) attacks, 41 Software-development life cycle
CSRE 43 (SDLC) process
stored XSS, 42 business requirements, 82
reflected XSS, 41 change management, 84
denial-of-service (DoS) attacks, 44 code development, 83
error handling, 40-41 code testing, 84
injection flaws design phase, 83
active directory, 38 framework, secure code
blind SQL injection, 36 (see Framework, secure code)
hidden directory, 39 integration and
HTTP header injection, 36 validation, 84
HTTP response-splitting attack, 36 policy, secure code, 83
internal IP address, 39 production, 84
obsolete servers, 40 security requirements, 82
server path, 39 threat modelling, 83
source code, 37 Spanning tree analysis, 4
SQL injection, 35 STRIDE model, 4

203

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX

T

Testing, 13, 89
audit process, 14
automate-code tools, 90
dynamic-code analysis, 92
static-code analysis, 91
multilayered defense, 93
penetration testing, 14, 17
postremediation testing, 14, 18
reports, 18
audit reports, 18
testing reports, 18
vulnerability testing, 14-15
automated testing, 15, 17
manual testing, 16-17
Third-party software, 95
change management, 97
liability insurance, 97
transparency of problem resolution, 95
Transmission control protocol (TCP), 24
Transport layer security (TLS), 24

U

US Computer Emergency Readiness Team
(US CERT), 10
User datagram protocol (UDP), 24

\'

Vulnerability remediations, 47
access controls, 54
cached HTTP response, 55
character set/charset, 57
disclosing unnecessary
information, 56
frameable response, 55
HTML comments, 56
insecure cookies, 58
session expiration, 57
session fixation, 58
authentication, 48
encryption, 50
harvesting, 50
password controls, 49
requirements, 48
cross-site scripting (XSS) attacks, 72
CSRE, 74
reflected XSS, 72
stored XSS, 73

204

denial-of-service attack, 75
injection flaws, 62

blind SQL injection, 64

HTTP header injection, 65

HTTP response-splitting attack, 66

link injection, 65

SQL injection, 63
input validation, 59

active code, 59

buffer overflows, 60

GET method, 61

unauthorized access, 60
redirects and forwards, 61

brute-force attacks, 62
security issues, 76

account lists, 77

data at rest, 77

password storage, 78

patch management, 78
security misconfigurations, 75
session management, 50

data storage, 52

error messages, 53

GET method, 52

HTML forms, 53

POST method, 52

random session ID, 53

secure socket layer (SSL), 51
unauthorized data view, 67

active directory, 68

error handling, 71

hidden directory, 70

internal IP address, 69

obsolete server, 70

server path, 69

source code, 67

SSLrequest, 71

temporary files, 69

VIEWSTATE, 70

web directories, 68

W, X,Y,Z

Web application firewall (WAF), 93
Web application security

issues, 131

IT group, 131

process, 131

risk mitigation, 132
Web Application Security Consortium

(WASC), 10

www.it-ebooks.info

http://www.it-ebooks.info/

The Manager’s
Guide to Web
Application Security:

Ron Lepofsky

Apress’

www.it-ebooks.info

http://www.it-ebooks.info/

The Manager’s Guide to Web Application Security: A Concise Guide to the Weaker Side of the Web
Copyright © 2014 by Ron Lepofsky

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter
developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly
analysis or material supplied specifically for the purpose of being entered and executed on a computer system,

for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only
under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use
must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright
Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-0149-7
ISBN-13 (electronic): 978-1-4842-0148-0

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

Portions of this production are provided courtesy of PCI Security Standards Council, LLC (“PCI SSC”) and/or its
licensors, and are protected by copyright laws. All rights reserved. Neither PCI SSC nor its licensors endorses this
production, its providers or the methods, procedures, statements, views, opinions or advice contained herein. All
references to documents, materials or portions thereof provided by PCI SSC should be read as qualified by the actual
materials made available by PCI SSC. For questions regarding such materials, please contact PCI SSC through its
web site at https://www.pcisecuritystandards.org.

Portions included within the PCI SSC materials in this production are copyrighted by Experian Information
Solutions, Inc. All rights reserved. Experian is the registered trademark of Experian Information Solutions, Inc.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Managing Director: Welmoed Spahr

Acquisitions Editor: Robert Hutchinson

Technical Reviewer: Dave Millier

Developmental Editor: Chris Nelson

Editorial Board: Steve Anglin, Mark Beckner, Gary Cornell, Louise Corrigan, James DeWolf,
Jonathan Gennick, Robert Hutchinson, Michelle Lowman, James Markham,
Matthew Moodie, Jeff Olson, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke,
Gwenan Spearing, Matt Wade, Steve Weiss

Coordinating Editor: Rita Fernando

Copy Editor: Jana Weinstein

Compositor: SPi Global

Indexer: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,

6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm. com,
or visitwww. springeronline. com. Apress Media, LLC is a California LLC and the sole member (owner) is

Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special Bulk
Sales-eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to readers at
www.apress.com. For detailed information about how to locate your book’s source code, go to
WwW.apress.com/source-code/.

www.it-ebooks.info

https://www.pcisecuritystandards.org
http:\\orders-ny@springer-sbm.com
www.springeronline.com
http:\\rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/
http://www.it-ebooks.info/

To my wonderful family: Eilene, Steven, Charlotte, and Alice

www.it-ebooks.info

http://www.it-ebooks.info/

Contents

About the Authorccciviseemmmmissssmmmsssssnmsssss s —————— Xvii
About the Technical ReVIEWETccuussesrsssnsssssssssssnsssssanssssanssssnnssssns Xix
Acknowledgments........cccermsnsssssssnnnmsmssssssssssssnsssesssssssssssssnnssessssnns Xxi
Introductionccciuisssmenmmmsssnsnnmssssssnnnssssnsnsnssssnnnnsssnnnnnssssnnnnnnssnnns Xxiii
Chapter 1: Understanding IT Security RiSKS......ccccusssemnmmssssasnnnssssnns 1
Web Application Security Terminologyc.ccecvveerrerresnsesssssesnsesesenens 1
Risk Calculation MOdEIS.........ccocereereernerrerserser s sessnenens 4
DREADcvieeeetrressssessesssesss e sse s s e sss s sss s s ssesssssssssesssssssssssnssnsssssesssnsenes 5
How to Calculate Web Application Security Risk...........cccoevnrierricrnnnnne. 6
Standard Calculations...........ccucerirerenesre e 6

A Customized APPrOACH........cceveverree et sa e e sa e sae e e saesa e e saesaenaens 7
Calculating @ SeCUrity RiSK.........cccouveeriereresneneiesisesssese s se e ssssesssssssessssens 8
Calculating Risk from Multiple Vulnerabilities for Any Assetccoovceveevevniennnnens 9
Calculating the Monetary Value at Risk for Any ASSetccccooervernvniennesniennnens 9
Sources of Web Application Security Vulnerability Information............. 10
1111] 1P S 11
Chapter 2: Types of Web Application Security Testingcccuueue. 13
Understanding the Testing Process.........cccvvvrrerrvvessensessessessessessensenns 14
Web Application AUCILScceeeererereererererererereeseree e raerer e ree e rae e sae e s sassesaesesassenans 14
Vulnerability ASSESSMENL.........ccceoeruererererererrereesereserereseraesersesesaesessesassessesessssesaes 15
Postremediation TESHINGccovrererrererererererererereree e ree e reeresaeres e sas e saesessesesaesanaes 18

vii

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Important Report Deliverables for All Testing Reports...........c.cooveererunnee 18
SUMMAIY ...ttt ne e n s nn s 19
Chapter 3: Web Application Vulnerabilities and the Damage
They Can CauSeccvesmsesmssmmssmsssmsssmssssssssssssssssssssssssssssnssssssnsssanns 21
Lack of Sufficient Authentication ... 22
Weak Password CONtrolS.........cocurnnsnnenssnsssssssssssssssesssssssssessssssens 22
Passwords Submitted Without Encryption.......c.ccceevveevrrersverssere e 23
Username HarvesSting ..o sse s sssssesssssssssssssssssssssanns 23
Weak Session Management...........ccoccveverinnensnsesssssssssssessessessssssssennns 23
Weak SSL Ciphers SUPPOIt.........cccecierrerre e se s e sss e senes 25
Information Submitted Using the GET Method ..o 25
Self-Signed Certificates, Insecure Keys, and Passwordscccooueeeererercnescnennn 25
Username Harvesting Applied to Forgotten Password Process..........cccceeeevvcrnnncnn. 26
Autocomplete Enabled on Password Fields.............ccoevrvernncnecnesniesensesnsesenennes 26
Session IDs Nonrandom and T00 ShOr..........ccocivcniscisc s 27
WeaK ACCESS CONTIOL.........ccceererrenrserrssssessssessessssesss s s sss e snssnssessssnnsens 27
Frameable Response (Clickjacking)........c.couererereneneseresenesenessssesesessssesesessssssesesenns 27
Cached HTTPS RESPONSE.......cvvererrrreeerssrssesesessssssesessssssssessssssssessssssssssssssssssssssnns 28
Sensitive Information Disclosed in HTML Comments..........cccovvrverrnsenennenennns 28
HTTP Server Type and Version Number DiSCIOSEd...........cccorrrererererrnsesesessnsesesenenns 29
Insufficient SeSSioN EXPIFationcccecernesenennesesessssse e sesesenns 29
HTML Does Not Specify Charset..........ccocevrenerernenesesssesesesessssesessssssssessssssssesessnns 29
SESSION FIXALONoeeeececececececeeeeeee s snsnnas 30
INSECUIE COOKIESc.cueeereereecceceeee e 30
Weak Input Validation at the Application Level...........ccccoverrvrvercercnenne 32
Lack of Validated Input Allowing Automatic Script Execution...........ccceeveevevrerennene 32
Unauthorized Access by Parameter Manipulationcccoevvvnvnnnnnnncnsnsennenns 33
BUFfer OVEITIOWS ..o 33
Forms Submitted Using the GET Method.........ccccccevvveverrerenrerrrere e 34
viii

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Redirects and Forwards to Insecure Sitesccvrvvennnscnnsscsnnnnnes 34
Application Susceptible to Brute-Force Attackscccccevvvrecrecncvnccsncccecene, 34
Client-Side Enforcement of Server-Side Security...........ccccorrennnissescnensiesenennns 35

INJECTION FIAWScoueeeecreerescrre s sn s sns e s 35
SQL INJECHON.vevcvcectctcrcrtr s asnnas 35
Blind SQL INJECHONc.covrveeererrreerirrs e ss s nnsnns 36
LiNK INJECHION ...ttt se s s se s nnsns 36
HTTP Header Injection VUINErability..........cccoeeeerrresesersneseseresesesesssssesesessssssesessnns 36
HTTP Response-Splitting AtACK..........ccocerrrverererrnesesesssssesessssssesesesssssesessssssessssnns 36

Unauthorized View of Data..........c.couvevmnenmnnnnnnssss s 37
Web Application Source Code DISCIOSUIEcecerrererererserersersesessesesersssessesersesenaes 37
Web Directories ENUMErated..........c.covrnnmnsssssmsmsssmsssssssssssssssssssssssssssssssssssenes 38
Active Directory Object Default Page on SErvercovcvvveverevererseressersssessesenes 38
Temporary Files Left in the Environment...........ccovvvrvnvnvnnnvnvnvrr s 38
Internal IP Address Revealed by Web SEerver.........oocvevverervernreresereseseseseseeenns 39
Server Path DiSCIOSEd ... 39
Hidden Directory Detected.........ocveveverininc e seeaens 39
Unencrypted VIEWSTATE.........cccovvrerererereresrersesesssssssessssessssessssessssssssssssssassessssenes 40
ODbS0lete WED SEIVEF ... 40
Query Parameter in SSL REQUESLcccovvcererererererereresereesersesessesessesessesassessssenes 40

Error Handlingcocoeeeeeeececece e sse e s sns s s s s snenes 40

Cross-Site Scripting AHACKS........ccoovrererrsernnrinessse e sessesnes 4
Reflected Cross-Site Scripting AHACKccccernerenerneneserss s 4
Stored Cross-Site SCripting AHACKcocveeeerernenererrsresesesesrse s sesesenns 42
Cross-Site Request FOrgery AtaCK.........cocvverererenesesesssssesessssssesessssssssesessssssessssnns 43

Security Misconfigurations and Use of Known

Vulnerable COMPONENtSccecvcriercerserses s 43

Denial-of-Service Atackcoeeriernneiesnsesesssess s 44

ix

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Related Security ISSUES........cccucrrerrersersesses s 44
Storage of Data at RESt..........ccoceererrinccrcrre e 44
Storage 0f ACCOUNT LiSTS........ccocierureiererrescse s 45
LRI 0 (0 T (0] Vo T 45
Insufficient Patch Management.............cooconecncnncnnc e 45

SUMMAIY ...t n s nn s 46

Chapter 4: Web Application Vulnerabilities and
Countermeasurescusesssssssssssssssssnsssssnnssssnnssssnnnsssnnssssnnnsssnnnsssanss 47

Lack of Sufficient Authenticationccoovrrninincnnnnnens 48
Weak Password CONtrOlS.........c.cunnnninnsnssssssssssse s sssssssssssssens 49
Passwords Submitted Without ENCryption...........c.coconnnnnnnnnsenensnns 50
Username Harvesting ... sssssens 50

Weak Session Management...........ccocvcvennernensensessessessessessessesssssssssnsnns 50
Weak SSL Ciphers SUPPOIt.........ccciciererrern e ses e senas 51
Information Submitted Using the GET Method ..o 52
Self-Signed Certificates, Insecure Keys, and Passwordscccooeoeeererercnescrennns 52
Username Harvesting Applied to Forgotten Password Process..........ccoceeeevrernnncnn 53
Autocomplete Enabled on Password Fields.............ccoevmvernncnennecncsensesnsesenennes 53
Session IDs Nonrandom and T00 ShOr..........ccocncininscsc s 53

WeaK ACCESS CONLIOL.........ccceererrenrserrssrsessssessessssessssssesss s ssssnssesssssnsens 54
Frameable Response (Clickjacking)........c.coouererereneneseressscsenessssesesssssssesessssssesesenns 55
Cached HTTP RESPONSE.......ccovreerererreesesessssesesessssssesessssssssesssssssssssssssssesssssssssssssnns 55
Sensitive Information Disclosed in HTML Comments...........ccovvvevrcnnnenenennnnns 56
HTTP Server Type and Version Number DiSCIOSEd...........cccererererererreneseressnseserenenns 56
Insufficient SeSSion EXPIrationccceerrvescnrnesesenssssesessse e sssesessnns 57
HTML Does Not Specify Charset..........cocevrerererenenesessnesssesssssesesssssesesessssssessssnns 57
SESSION FIXALONcoeeeececeeereceeeee s snsnnas 58
INSECUIE COOKIESceeueeereerecceeeeeee e 58

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Weak Input Validation at the Application Level...........cccooverercercernnnen. 99
Lack of Validated Input Allowing Automatic Script Execution...........cccecvvevricrnnncnn 59
Unauthorized Access by Parameter Manipulationccovvveviecnecncnnccnnnenn, 60
BUuffer OVEITIOWS........cocoe et 60
Form Submitted Using the GET Method...........cccoreoeerneicnneere e 61

Redirects and Forwards to InSecure Sitesccovvenernsenessscsesnnenens 61
Application Susceptible to Brute-Force AHackscocoveeererneserensssesesesssenennns 62
Client-Side Enforcement of Server-Side SECUrity.........c.cccerrrerererrsesesesessssesesenens 62

INjection FIAWS ..o 62
L0 IR 1=T 1 T 63
BliNd SQL INJECTIONceeeeeeeererereeere e reserasersesessesessesessesessessssessssesssssssesassessenenes 64
L 11T 0] SRS 65
HTTP Header Injection Vulnerability...........ccocevvrennnnnnnnnnnnsesses e sensnnns 65
HTTP Response-Splitting AacK.........ccccevverrvererernrererere s seree e sessesesessssenes 66

Unauthorized View of Data ..o 66
Web Application Source Code DiSCIOSEdcceceveeerereriernserresenesese e sessesennes 67
Web Directories Enumerated............coonisincssnssncssssssncss s 68
Active Directory Object Default Page on Server..........coooreesenensnencsesessesenens 68
Temporary Files Left in the Environment.............ccoovievninnicnccnecncssesseseenas 69
Internal IP Address Revealed by Web Server............ooonrnencncnnsnesesesseseneenns 69
Server Path DiSCIOSEd ... 69
Hidden Directory Detected..........ccoourmieicnerreeereee s 70
Unencrypted VIEWSTATE..........co e se s e sessessssessssenns 70
Obsolete WED SEIVEF ...t 70
Query Parameter in SSL REQUEST ..o 4l

Error Handlingcccoveenieiesnscnssnsesssss s ssesessesss s s snes l4l

xi

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Cross-Site Scripting AttaCKS.........cccereeerrerersesessessessessesss s ssesessessssssenns 72
Reflected Cross-Site Scripting Attackcccccovvvennecniernce s 72
Stored Cross-Site SCrpting AHACKc.ccvveverrnircrerns e sesens 73
Cross-Site Request FOrgery AHaCK.........ccvcevvrereererererenereressersssersssessssessssessessssenes 74

Security Misconfigurations and Using Known

Vulnerable COMPONENTSccceeeveererirrerrre e 75

Denial-of-Service Attackcoeevernseresnsese s 75

Related Security ISSUES........cccurererernsere e 76
Storage 0f Data at RESt.........cccveverieverrererererere s rse s sse e e ssesesassessssessssasaens 76
Storage 0f ACCOUNT LiSTS......evuvererrererrereerereresesesesessessesessesessesessessssessssessssessssassens 77
PaSSWOIA STOIAQE.......ceeerererererrererrererereserassersesessesessesessessssessesessssesssssssssassesssneres 78
Insufficient Patch Management.............covocvevererrerererereres e ree e sessesessesessenes 78

SUMMANY ...t r s n e 79

Chapter 5: How to Build Preventative Countermeasures for Web

Application Vulnerabilitiescccccummmmmmmmsnmmmmmmmmmssssssssnnsesssssssnsnns 81

Security-in-Software-Development Life CyCle.........ccvvvrrerverrerrerieninnns 82

Framework for Secure Web Application Code..........c.ccoceericrerriernnsenes 84

Web Application Security Testingccccveveversnsnssssssses e 89
Manual vs. Automated Code TeStiNg.......covoeeerermrercserrece e 90
Multilayered DEfEenSe........c.cvivererrernesne s 93

Security Technology for Protecting Web Applications and Their

ENVIFONMENTS ... 93

SUMMAIY ...t a e s n e 94

Chapter 6: How to Manage Security on Applications

Written by Third Parties.........cccoimnnmmmmmnnsssssmmnissssnmmssssssmssssssns 95

Transparency of Problem Resolution...........ccccvvvvrvrvnnensensensensessensenens 95

Liability Insurance as Backup for Transparency of

Problem Resolutioncccvcrvrcersrcrerr s 97

Change Management ... ses e s s s 97

1111] 11 P2 7SS 98

xii

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Chapter 7: Integrating Compliance with Web Application

S 11 99
Regulations, Standards, and Expert Organization
Recommendationsc.ccocvvvververnnsensessn s 99
Government Regulationscccccernencrenneseser e s 100
INUSErY STANAAITScoveerecereeer e s 100
Recommendations from Expert Organizationsc.coceveevererenencneresenesesessnenes 101
Financial Auditors’ FAVOItesceveeerenerienne e seeaes 102
Leading Standards and Regulations...........cccceeeverererrnnensensensessensenens 103
COBIT ..vvovveeereesseesssesssssesssesssssnssssssssssnssssessssssssssessssmessssessssssssssessssssssssessssmsssaessssnns 103
0] I (0T ST 104
E13PA @Nd PCIDSS......cooureereeesseressseesssessssmsessssssssssssssssssssssssssssssssssessssssssssssssnns 104
IS0 27000cveeereeseeessesssseesssessssssssssessssssssssssssssssssssssssssssssssssmssssessssmssssessssnns 105
NIST o eveeeeseesseesssesssssessssesssssnsssssssssssssssessssssssssessssssssssessssssssssnssssmsssssessssmsssanessssnns 105
NERGC CIP.....vvuoeeesressseesssesssssnsssssssssssssssessssssssssessssssssssesssssssssmssssmssssessssmssssnssssnns 105
SArDANES-0XIBYeeverererererrererrererereseresersesessesessesessesassesasesssessesessensssesassesseneres 106
Integrating Compliance and Security Reporting.........cccceeeveecernercnnnee. 106
SUMMAIY ...t nn s srn s 110
Chapter 8: How to Create a Business Case for Web
Application SecUritycciusemmsssmnmmssansssssnsmsssnsssssnsssssnsssssnsssssnns 111
AsSESSING the RiSKc.ceeveereerrreerersersessessesse e ssesss e sssssssssssssasssssassnns 112
Identifying Risk and Its Business Impactccccocvvverrerrenerceressenesrereesereenenens 112
Estimating the Chance of Occurrence of Each Eventcccoceeevvvevercereenerennennns 113
Qualitative and Quantitative RiSK ANAIYSISccccvvverererereresereresseressereesessesenees 113
Calculating Annual LoSS EXPECtanCyccccevrverriersersiessenssensenssensannns 114
Calculating the Cost of Prevention and Remediation.............cccce........ 115
Calculating the Return on Security Investment..........ccocvvvvvvvrcnnnen. 116
Creating the Business Case for EXeCULIVES............ccocuvervenerierensescsennens 119
xiii

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Measuring and Cost-Justifying Residual Risk..........c.cccevrerrereerseriennnn. 122
Calculating Security Status and Residual Risk with a Monthly
Security Health SCOre.........ovceeceereeererre st 123
How to Cost-Justify and Triage Vulnerabilities for Remediation..............ccc......... 124
Noting the Difference Between Remediating and FiXing.........ccocevevvervrereerereenennes 125
Calculating the Cost of Mitigationccccecvvevriernrrnrere e 126
Measuring the Effectiveness of Mitigation ..o, 127

Determining Whether Return on Security Investment Objectives

Are MEt..... oo 129

SUMMAIY ...t ns s 130

Chapter 9: Parting Thoughts..........cccecvnremmmmnssennnmnsssssnmsssssssnnns 131

Appendix A: COBIT® 5 for Information Security.......cuusussesesseseens 133

F.3 Secure Development..........cccvvrvrrrnenvennensesses s ses e sesens 134
Description of the Service Capability........c.ccoceverrnniesrnne s 134
L L] 110 O 134
60T 135

F.4 Security ASSESSMENTS........cccvrerrerrerrerrersersesses s sesses e sessassesssssessens 135
Description of the Service Capability........c.coovverrnniesrnnn s 135
L L] (10 O 136
60 137

F.5 Adequately Secured and Configured Systems,

Aligned With Security Requirements and Security Architecture 137
Description of the Service Capability............cocceeerrerenrnnsescrrr s 137
ALFDULES ... 138
60T 139

F.6 User Access and Access Rights in Line With Business

ReqUIrEMENTScccerercrir st 139
Description of the Service Capability.........ccccvoerrrerrrererre s 139
ALFIDULES ... 140
GIOAIS.....ececeeceeece et n s 142

xiv

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

F.7 Adequate Protection Against Malware, External Attacks

and Intrusion AEEMPLS ..o ———— 143
Description of the Service Capability..........c.coveeerrrnresesnnsesesessese s 143
ALFDULES ...ttt ae e e s e ae e ae e nanaen 144
€707 O 145

Appendix B: Experian EI3PA Security Assessmentcccouunee 147

Appendix C: ISO/IEC 17799:2005 and the IS0O/IEC 27000:2014

L 161

ISO/IEC 17799:2005.........cccrierererrerererensesseressessssessessssessssessessssessssessens 161

The ISO/IEC 27000:2014 SEIES.......ccervrerrererserrrrereressessessssessssesssssssenns 162

Appendix D: North American Energy Council Security

Standard for Critical Infrastructure Protection (NERC CIP) 165

NERC CIP Standards Currently in FOrce..........cccvvrrmrveriersensnssessennnes 166

Future NERC CIP Standards...........cccvvrvrvrrennnsensen s sesseessesensens 166

Future Standard CIP-007-5: Cyber Security — System Security

Management ... ———————————— 167
RequireMent RT:........o e s s sa e sa e saesa e sn e sn e sa e nn s 167
ReqUIreMENt R2:........ooeoeecerere e s sae e sa e sae e sa e sa e sn e sn e sa e nr s 168
RequIireMent R3:........ooeecece e sae e sa e sa e e sa e sa e sn e sn e na e nn s 170
RequIreMeENnt Ré:........ou e s s sa e e sa e sa e sa e sa e sa e sa e na e na s 171
ReqUIreMENt R5:......c.ooeecererereere e s sae e sa e sa e e sa e sa e sa e sa e na e nn s 173
Rationale for RB:........ccocierrcrcs e e 175

Appendix E: NIST 800 GuidelineS......cccssrssssmmsssssssnnsssssssnssssssssnnnss 177

Appendix F: Payment Card Industry (PCl) Data Security

Standard......cccccrvismmmisnnnissnnnsssn s ———————————————— 179

Maintain a Vulnerability Management Program...........cccccceevvercernnnee. 179

XV

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Appendix G: Sarbanes-0xley Security Compliance
Requirementscccuseemmmmmssnnnmmmsssssnmmsssssssssssssssnssssssnnnesssssnnnssssnnns

Appendix H: Sources of Information.........cccccevvnninssssnssnnnnnnnnnnn.

xvi

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Ron Lepofsky, B.A. SC. (Mech Eng), CISSP, CISM is the
President of ERE Information Security and Compliance
Auditors (www.ere-security.ca). Ron is an active
member in ISACA, ISC2, and several online security
communities. Ron has written several published
articles relating to a wide variety of security topics and
makes home-made dark chocolate treats.

xvii

www.it-ebooks.info

http://www.ere-security.ca
http://www.it-ebooks.info/

About the Technical
Reviewer

Dave Millier is well-known in the Canadian high-tech
marketplace, where he’s been helping customers with
their security and compliance needs for over 20 years.
For the past 15 years, Dave has focused on growing
one of Canada’s most recognized MSSPs, Sentry
Metrics, where as the founder he created and brought
to market the industry-leading security and risk
compliance dashboard, theSentry. Dave is continuing
the development of this award-winning platform in his
new company, Uzado (www.uzado. com).

Dave has presented at many network and security conferences including Network
World, Comdex, InfoSecurity Canada, SC Congress, and SecTor (Security Education
Conference Toronto), Canada’s preeminent security conference. Dave has written
numerous articles for security and networking magazines and is often quoted in the press
and news stories. Dave was recognized as one of the top eight security professionals you
need to know in the GTA.

Dave is a recognized leader in the field of governance and risk compliance and
has helped a number of Canada’s leading organizations build their corporate security
strategies, align them with regulatory and corporate requirements, and then implement
strategies to help them “attain and maintain” their overall compliance.

When Dave’s not pursuing his plans for world domination, one client at a time, he’s
an avid (amateur!) dual sport motorcycle rider and loves to spend his spare time off-road
motorcycling.

Xix

www.it-ebooks.info

www.uzado.com
http://www.it-ebooks.info/

Acknowledgments

First, I would like to express my appreciation and thanks to all my clients, many of whom
I have worked with for years. You have taught me much about understanding your needs
and how to satisfy them, all based upon the all-important activity of listening. You have
taught me how your management views your responsibilities to secure their network
infrastructures and applications and how to best articulate your suggestions in terms of
their understanding—return on investment.

Iwould like to thank Dave Millier, Chuck Ben-Tzur, and Assef Levy, a team of
information security experts from whom I have learned a great deal.

I am also grateful to the organizations of ISACA and ISC2 for their informative,
practical, and highly useful training and certifications.

I'would like to thank Experian, ISACA, ISSA, ISO, NERC, PCI, and SANS for
graciously extending to me copyright permissions for their content which I have
reproduced in this book.

I am grateful for my years as a student at University of Toronto department of
Mechanical Engineering, where I was taught critical thinking and project management
skills that well prepared me for my career.

My grateful thanks goes to my editors at Apress Media; Robert Hutchinson, Jonathan
Hassell, Rita Fernando, and Chris Nelson, and of course to my senior editor Jeff Olson.
Jon, Rita, and Chris transformed an immmature draft into hopefully a clear and useful
book. My deep thanks also to the Apress editorial board for having the confidence in me
to undertake this project.

Last, but most important, I thank my wife Eilene for her wise counsel and for her
uncanny instincts that have directed me well in all things. And a special thank you to her
for her generous contribution of time and assistance with this book.

xxi

www.it-ebooks.info

http://www.it-ebooks.info/

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Understanding IT Security Risks
	Web Application Security Terminology
	Risk Calculation Models
	DREAD
	How to Calculate Web Application Security Risk
	Standard Calculations
	A Customized Approach
	Calculating a Security Risk
	Calculating Risk from Multiple Vulnerabilities for Any Asset
	Calculating the Monetary Value at Risk for Any Asset

	Sources of Web Application Security Vulnerability Information
	Summary

	Chapter 2: Types of Web Application Security Testing
	Understanding the Testing Process
	Web Application Audits
	Vulnerability Assessment
	Fully Automated Testing
	Manual Testing
	Combining Automated and Manual Testing
	Penetration Testing

	Postremediation Testing

	Important Report Deliverables for All Testing Reports
	Summary

	Chapter 3: Web Application Vulnerabilities and the Damage They Can Cause
	Lack of Sufficient Authentication
	Weak Password Controls
	Passwords Submitted Without Encryption
	Username Harvesting

	Weak Session Management
	Weak SSL Ciphers Support
	Information Submitted Using the GET Method
	Self-Signed Certificates, Insecure Keys, and Passwords
	Username Harvesting Applied to Forgotten Password Process
	Autocomplete Enabled on Password Fields
	Session IDs Nonrandom and Too Short

	Weak Access Control
	Frameable Response (Clickjacking)
	Cached HTTPS Response
	Sensitive Information Disclosed in HTML Comments
	HTTP Server Type and Version Number Disclosed
	Insufficient Session Expiration
	HTML Does Not Specify Charset
	Session Fixation
	Insecure Cookies
	Cookies with No Secure Flag
	Cookies Set to Expire in the Distant Future
	Cookies with No HttpOnly Flag
	Cookies Created on the Client Side
	Cookies Scoped to a Parent Domain

	Weak Input Validation at the Application Level
	Lack of Validated Input Allowing Automatic Script Execution
	Unauthorized Access by Parameter Manipulation
	Buffer Overflows
	Forms Submitted Using the GET Method

	Redirects and Forwards to Insecure Sites
	Application Susceptible to Brute-Force Attacks
	Client-Side Enforcement of Server-Side Security

	Injection Flaws
	SQL Injection
	Blind SQL Injection
	Link Injection
	HTTP Header Injection Vulnerability
	HTTP Response-Splitting Attack

	Unauthorized View of Data
	Web Application Source Code Disclosure
	Web Directories Enumerated
	Active Directory Object Default Page on Server
	Temporary Files Left in the Environment
	Internal IP Address Revealed by Web Server
	Server Path Disclosed
	Hidden Directory Detected
	Unencrypted VIEWSTATE
	Obsolete Web Server
	Query Parameter in SSL Request

	Error Handling
	Cross-Site Scripting Attacks
	Reflected Cross-Site Scripting Attack
	Stored Cross-Site Scripting Attack
	Cross-Site Request Forgery Attack

	Security Misconfigurations and Use of Known Vulnerable Components
	Denial-of-Service Attack
	Related Security Issues
	Storage of Data at Rest
	Storage of Account Lists
	Password Storage
	Insufficient Patch Management

	Summary

	Chapter 4: Web Application Vulnerabilities and Countermeasures
	Lack of Sufficient Authentication
	Weak Password Controls
	Passwords Submitted Without Encryption
	Username Harvesting

	Weak Session Management
	Weak SSL Ciphers Support
	Information Submitted Using the GET Method
	Self-Signed Certificates, Insecure Keys, and Passwords
	Username Harvesting Applied to Forgotten Password Process
	Autocomplete Enabled on Password Fields
	Session IDs Nonrandom and Too Short

	Weak Access Control
	Frameable Response (Clickjacking)
	Cached HTTP Response
	Sensitive Information Disclosed in HTML Comments
	HTTP Server Type and Version Number Disclosed
	Insufficient Session Expiration
	HTML Does Not Specify Charset
	Session Fixation
	Insecure Cookies
	Cookies with No Secure Flag
	Cookies Set to Expire in the Distant Future
	Cookies with No HttpOnly Flag
	Cookies Created on the Client Side
	Cookies Scoped to Parent Domain

	Weak Input Validation at the Application Level
	Lack of Validated Input Allowing Automatic Script Execution
	Unauthorized Access by Parameter Manipulation

	Buffer Overflows
	Form Submitted Using the GET Method

	Redirects and Forwards to Insecure Sites
	Application Susceptible to Brute-Force Attacks
	Client-Side Enforcement of Server-Side Security

	Injection Flaws
	SQL Injection
	Blind SQL Injection
	Link Injection
	HTTP Header Injection Vulnerability
	HTTP Response-Splitting Attack

	Unauthorized View of Data
	Web Application Source Code Disclosed
	Web Directories Enumerated
	Active Directory Object Default Page on Server
	Temporary Files Left in the Environment
	Internal IP Address Revealed by Web Server
	Server Path Disclosed
	Hidden Directory Detected
	Unencrypted VIEWSTATE
	Obsolete Web Server
	Query Parameter in SSL Request

	Error Handling
	Cross-Site Scripting Attacks
	Reflected Cross-Site Scripting Attack
	Stored Cross-Site Scripting Attack
	Cross-Site Request Forgery Attack

	Security Misconfigurations and Using Known Vulnerable Components
	Denial-of-Service Attack
	Related Security Issues
	Storage of Data at Rest
	Storage of Account Lists
	Password Storage
	Insufficient Patch Management

	Summary

	Chapter 5: How to Build Preventative Countermeasures for Web Application Vulnerabilities
	Security-in-Software-Development Life Cycle
	Framework for Secure Web Application Code
	Web Application Security Testing
	Manual vs. Automated Code Testing
	Static-Code Analysis Advantages
	Static-Code Analysis Limitations
	Dynamic-Code Analysis Advantages
	Dynamic-Code Analysis Limitations

	Multilayered Defense

	Security Technology for Protecting Web Applications and Their Environments
	Summary

	Chapter 6: How to Manage Security on Applications Written by Third Parties
	Transparency of Problem Resolution
	Liability Insurance as Backup for Transparency of Problem Resolution
	Change Management
	Summary

	Chapter 7: Integrating Compliance with Web Application Security
	Regulations, Standards, and Expert Organization Recommendations
	Government Regulations
	Industry Standards
	Recommendations from Expert Organizations
	Financial Auditors’ Favorites

	Leading Standards and Regulations
	COBIT
	COBIT 5 for IT Security
	E13PA and PCI DSS
	ISO 27000
	NIST
	NERC CIP
	Sarbanes-Oxley

	Integrating Compliance and Security Reporting
	Summary

	Chapter 8: How to Create a Business Case for Web Application Security
	Assessing the Risk
	Identifying Risk and Its Business Impact
	Estimating the Chance of Occurrence of Each Event
	Qualitative and Quantitative Risk Analysis

	Calculating Annual Loss Expectancy
	Calculating the Cost of Prevention and Remediation
	Calculating the Return on Security Investment
	Creating the Business Case for Executives
	Measuring and Cost-Justifying Residual Risk
	Calculating Security Status and Residual Risk with a Monthly Security Health Score
	How to Cost-Justify and Triage Vulnerabilities for Remediation
	Noting the Difference Between Remediating and Fixing
	Calculating the Cost of Mitigation
	Measuring the Effectiveness of Mitigation

	Determining Whether Return on Security Investment Objectives Are Met
	Summary

	Chapter 9: Parting Thoughts
	Appendix A: COBIT® 5 for Information Security
	F.3 Secure Development
	Description of the Service Capability
	Attributes
	Goals

	F.4 Security Assessments
	Description of the Service Capability
	Attributes
	Goals

	F.5 Adequately Secured and Configured Systems, Aligned With Security Requirements and Security Architecture
	Description of the Service Capability
	Attributes
	Goals

	F.6 User Access and Access Rights in Line With Business Requirements
	Description of the Service Capability
	Attributes
	Goals

	F.7 Adequate Protection Against Malware, External Attacks and Intrusion Attempts
	Description of the Service Capability
	Attributes
	Goals

	Appendix B: Experian EI3PA Security Assessment
	Appendix C: ISO/IEC 17799:2005 and the ISO/IEC 27000:2014 Series
	ISO/IEC 17799:2005
	The ISO/IEC 27000:2014 Series

	Appendix D: North American Energy Council Security Standard for Critical Infrastructure Protection (NERC CIP)
	NERC CIP Standards Currently in Force
	Future NERC CIP Standards
	Future Standard CIP-007-5: Cyber Security — System Security Management
	Requirement R2:
	Requirement R3:
	Requirement R4:
	Requirement R5:
	Rationale for R5:

	Appendix E: NIST 800 Guidelines
	Appendix F: Payment Card Industry (PCI) Data Security Standard Template for Report on Compliance for use with PCI DSS v3.0
	Maintain a Vulnerability Management Program

	Appendix G: Sarbanes-Oxley Security Compliance Requirements
	Appendix H: Sources of Information
	Index

