
www.it-ebooks.info

http://www.it-ebooks.info/

Beginning	JSON

Ben	Smith

www.it-ebooks.info

http://www.it-ebooks.info/

Beginning	JSON

Copyright	©	2015	by	Ben	Smith

This	work	is	subject	to	copyright.	All	rights	are	reserved	by	the	Publisher,	whether	the	whole	or	part	of	the
material	is	concerned,	specifically	the	rights	of	translation,	reprinting,	reuse	of	illustrations,	recitation,
broadcasting,	reproduction	on	microfilms	or	in	any	other	physical	way,	and	transmission	or	information	storage
and	retrieval,	electronic	adaptation,	computer	software,	or	by	similar	or	dissimilar	methodology	now	known	or
hereafter	developed.	Exempted	from	this	legal	reservation	are	brief	excerpts	in	connection	with	reviews	or
scholarly	analysis	or	material	supplied	specifically	for	the	purpose	of	being	entered	and	executed	on	a	computer
system,	for	exclusive	use	by	the	purchaser	of	the	work.	Duplication	of	this	publication	or	parts	thereof	is	permitted
only	under	the	provisions	of	the	Copyright	Law	of	the	Publisher’s	location,	in	its	current	version,	and	permission
for	use	must	always	be	obtained	from	Springer.	Permissions	for	use	may	be	obtained	through	RightsLink	at	the
Copyright	Clearance	Center.	Violations	are	liable	to	prosecution	under	the	respective	Copyright	Law.

ISBN-13	(pbk):	978-1-4842-0203-6

ISBN-13	(electronic):	978-1-4842-0202-9

Trademarked	names,	logos,	and	images	may	appear	in	this	book.	Rather	than	use	a	trademark	symbol	with	every
occurrence	of	a	trademarked	name,	logo,	or	image,	we	use	the	names,	logos,	and	images	only	in	an	editorial
fashion	and	to	the	benefit	of	the	trademark	owner,	with	no	intention	of	infringement	of	the	trademark.

The	use	in	this	publication	of	trade	names,	trademarks,	service	marks,	and	similar	terms,	even	if	they	are	not
identified	as	such,	is	not	to	be	taken	as	an	expression	of	opinion	as	to	whether	or	not	they	are	subject	to	proprietary
rights.

While	the	advice	and	information	in	this	book	are	believed	to	be	true	and	accurate	at	the	date	of	publication,
neither	the	author	nor	the	editors	nor	the	publisher	can	accept	any	legal	responsibility	for	any	errors	or	omissions
that	may	be	made.	The	publisher	makes	no	warranty,	express	or	implied,	with	respect	to	the	material	contained
herein.

Managing	Director:	Welmoed	Spahr

Lead	Editor:	Ben	Renow-Clarke

Technical	Reviewer:	Victor	Sumner

Editorial	Board:	Steve	Anglin,	Mark	Beckner,	Ewan	Buckingham,	Gary	Cornell,	Louise	Corrigan,	Jim
DeWolf,	Jonathan	Gennick,	Robert	Hutchinson,	Michelle	Lowman,	James	Markham,	Matthew
Moodie,	Jeff	Olson,	Jeffrey	Pepper,	Douglas	Pundick,	Ben	Renow-Clarke,	Dominic	Shakeshaft,
Gwenan	Spearing,	Matt	Wade,	Steve	Weiss

Coordinating	Editor:	Christine	Ricketts

Copy	Editor:	Michael	G.	Laraque

Compositor:	SPi	Global

Indexer:	SPi	Global

Artist:	SPi	Global

Distributed	to	the	book	trade	worldwide	by	Springer	Science+Business	Media	New	York,	233	Spring	Street,	6th
Floor,	New	York,	NY	10013.	Phone	1-800-SPRINGER,	fax	(201)	348-4505,	e-mail	orders-ny@springer-
sbm.com,	or	visit	www.springeronline.com.	Apress	Media,	LLC	is	a	California	LLC	and	the	sole	member
(owner)	is	Springer	Science	+	Business	Media	Finance	Inc	(SSBM	Finance	Inc).	SSBM	Finance	Inc	is	a	Delaware
corporation.

For	information	on	translations,	please	e-mail	rights@apress.com,	or	visit	www.apress.com.

Apress	and	friends	of	ED	books	may	be	purchased	in	bulk	for	academic,	corporate,	or	promotional	use.	eBook
versions	and	licenses	are	also	available	for	most	titles.	For	more	information,	reference	our	Special	Bulk	Sales–
eBook	Licensing	web	page	at	www.apress.com/bulk-sales.

Any	source	code	or	other	supplementary	material	referenced	by	the	author	in	this	text	is	available	to	readers	at
www.apress.com.	For	detailed	information	about	how	to	locate	your	book’s	source	code,	go	to
www.apress.com/source-code/.

www.it-ebooks.info

mailto:orders-ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
http://www.apress.com
http://www.apress.com/source-code/
http://www.it-ebooks.info/

To	my	wife,	for	her	patience	with	the	late	evenings	and	stay-at-home
weekends,	as	well	as	for	her	constant	encouragement

www.it-ebooks.info

http://www.it-ebooks.info/

Contents	at	a	Glance
About	the	Author

About	the	Technical	Reviewer

Acknowledgments

Introduction

	Chapter	1:	JavaScript	Basics

	Chapter	2:	Special	Objects

	Chapter	3:	String	Manipulation

	Chapter	4:	Introducing	JSON

	Chapter	5:	Creating	JSON

	Chapter	6:	Parsing	JSON

	Chapter	7:	Persisting	JSON:	I

	Chapter	8:	Data	Interchange

	Chapter	9:	X-Origin	Resources

	Chapter	10:	Serving	JSON

	Chapter	11:	Posting	JSON

	Chapter	12:	Persisting	JSON:	II

	Chapter	13:	Working	with	Templates

	Chapter	14:	Putting	It	All	Together

Index

www.it-ebooks.info

http://www.it-ebooks.info/

Contents
About	the	Author

About	the	Technical	Reviewer

Acknowledgments

Introduction

	Chapter	1:	JavaScript	Basics

JavaScript	History

JavaScript	Essentials

Values
Primitive	Types

Expressions
Operators

Statements
Line	Terminators

Control	Statements

Block	Statements

Truthy/Falsy

Loop	Statements

Declarations
Variables

Functions

Summary
Key	Points	from	This	Chapter

	Chapter	2:	Special	Objects

Objects

Objects	Are	Collections

Built-in	Objects

Object

Creating	Objects

Access	Notation

www.it-ebooks.info

http://www.it-ebooks.info/

Array

Object	Literals

Designing	Literals
The	Object	Literal

The	Array	Literal

Summary
Key	Points	from	This	Chapter

	Chapter	3:	String	Manipulation

String	Concatenation

The	String	object

Creating	String	objects

The	Interface	of	the	String	object
length

toString

charAt

indexOf

lastIndexOf

match

replace

slice

substr

split

toUpperCase

toLowerCase

The	Implicit	String	object

Summary
Key	Points	from	This	Chapter

	Chapter	4:	Introducing	JSON

History

JSON	Grammar
Composite	Structures

JSON	Values

JSON	Tokens

www.it-ebooks.info

http://www.it-ebooks.info/

Summary
Key	Points	from	This	Chapter

	Chapter	5:	Creating	JSON

The	Serialization	Process—Demystified

The	JSON	Object
stringify

Summary
Key	Points	from	This	Chapter

	Chapter	6:	Parsing	JSON

JSON.parse
eval

reviver

Summary
Key	Points	from	This	Chapter

	Chapter	7:	Persisting	JSON:	I

HTTP	Cookie
Syntax

document.cookie

Web	Storage
Web	Storage	Interface

Summary
Key	Points	from	This	Chapter

	Chapter	8:	Data	Interchange

Hypertext	Transfer	Protocol
HTTP-Request

HTTP	Response

Ajax

XMLHttpRequest	Interface
Global	Aspects

The	Request	Aspect

The	Response	Aspect

Obtaining	the	Response

www.it-ebooks.info

http://www.it-ebooks.info/

Summary
Key	Points	from	This	Chapter

	Chapter	9:	X-Origin	Resources

Same-Origin	Policy

Circumventing	Same-Origin	Policy
CORS

The	Proxy

JSONP

Summary
Key	Points	from	This	Chapter

	Chapter	10:	Serving	JSON

Node.JS
Windows	Installation

Mac	Installation

Building	an	HTTP	Server
Node	HTTP	Web	Server

Node	API

Modules

The	HTTP	Module
http.createServer

http.IncomingMessage

http.ServerResponse

http.Server

CORS-Enabled	Server

JSONP	Server

The	Proxy	Server
http.request

http.Stream

http.ClientRequest

Summary
Key	Points	from	This	Chapter

	Chapter	11:	Posting	JSON

Request	Entity	Body

www.it-ebooks.info

http://www.it-ebooks.info/

HTML	Form	POST

Processing	a	JSON	POST

Preflight	Request
OPTIONS	Request	Method

What	Determines	Preflight

Summary
Key	Points	from	This	Chapter

	Chapter	12:	Persisting	JSON:	II

CouchDB
Windows	Installation

Mac	Installation

Working	with	CouchDB
Futon

Creating	Views

Creating	Our	First	Custom	View

Connecting	Node	and	CouchDB
Cradle	for	Node

Working	with	Databases

Cradle	Database	API

Creating	Documents	via	Cradle

Creating	Design	Documents	via	Cradle

Summary
Key	Points	from	This	Chapter

	Chapter	13:	Working	with	Templates

Templating	Engine

Handlebars
Installation

Working	with	Handlebars
A	Basic	Expression

The	Role	of	<script>

Compiling	a	Template

Giving	Context	to	Our	Template

Multiple	Placeholders

Complex	JSON	Structures

Block	Expressions

www.it-ebooks.info

http://www.it-ebooks.info/

Block	Expressions	and	Arrays

Applying	Logic	to	Logic-less	Templates
Helpers

Summary
Key	Points	from	This	Chapter

	Chapter	14:	Putting	It	All	Together

Twitter
Twitter	Apps

Keys	and	Access	Tokens

Public	Stream

Your	User	Access	Token

#Trending

Node.js
Twitter	Module

Incorporating	the	Twitter	Module

Streaming	API	(Stable)

Statuses/Filter

CouchDB
Incorporating	the	Cradle	Module

Creating	a	View

Enabling	CORS

Ajax
Requesting	Ranges

Handlebars

Summary

Index

www.it-ebooks.info

http://www.it-ebooks.info/

About	the	Author

Ben	Smith	is	an	accomplished	technical	experience	director	with	many	years	of
experience	leading	web	development	for	well-known	digital	agencies.	His	list	of
contributions	to	the	community	has	earned	him	a	place	as	an	Adobe	Community
Professional.	It	should	be	apparent	from	his	background	as	an	author,	speaker,	and	a	judge
for	the	Favourite	Website	Awards	(FWA)	that	he	is	passionate	about	the	Web.	He
attributes	his	growth	to	experimentation	and	experience.

www.it-ebooks.info

http://www.it-ebooks.info/

About	the	Technical	Reviewer

Victor	Sumner	is	a	senior	software	engineer	at	D2L	Corporation,	where	he	helps	to	build
and	maintain	an	integrated	learning	platform.	As	a	self-taught	developer,	he	is	always
interested	in	emerging	technologies	and	enjoys	working	on	and	solving	problems	that	are
outside	his	comfort	zone.

When	not	at	the	office,	Victor	has	a	number	of	hobbies,	including	photography,
horseback	riding,	and	gaming.	He	lives	in	Ontario,	Canada,	with	his	wife,	Alicia,	and	their
two	children.

www.it-ebooks.info

http://www.it-ebooks.info/

Acknowledgments
This	book	could	not	have	been	written	without	a	loving	and	patient	wife,	an	understanding
circle	of	friends,	and	a	great	team	of	editors	and	reviewers.	My	sincerest	thanks	to	them
all.

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction
Programming	is	not	at	all	a	linear	path.	Often,	you	find	yourself	facing	a	fork	in	the	road.
In	choosing	one	path,	you	are	likely	to	find,	after	a	period	of	time,	that	you	go	back	and
travel	down	the	other.	While	it	is	assumed	that	you	are	familiar	with	HTML,	CSS,	and
JavaScript,	this	book	makes	no	further	assumptions	regarding	your	experience.	Therefore,
it	attempts	to	provide	a	thorough	explanation	for	everything	you	will	read	in	it.

While	JSON	is	the	essence	of	this	book,	it	is	not	the	sole	topic	discussed.	While	that
may	sound	counterproductive,	it	is	a	much-needed	requirement.	JSON	can	be	devised	in
isolation,	but	it	would	serve	little	purpose.	What	makes	JSON	so	impactful	is	that	it
interacts	with	the	many	tools	of	the	developer.	For	this	reason,	this	book	covers	a	wide
range	of	implementations—from	libraries	to	software.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER	1

JavaScript	Basics
JavaScript	is	a	scripting	language	that	has	been	known	to	be	a	finicky	beast.	Many	well-
known	developers	have	forged	their	names	in	the	annals	of	the	web-development
community,	having	discovered	special	techniques	and	hidden	gems	to	tame	said	beast.	The
topic	of	this	book,	JSON,	is	one	such	gem.	You	will	learn	more	about	that	in	Chapter	4.

JSON	is	simply	a	data-interchange	format	and,	therefore,	does	not	directly	require
immediate	knowledge	of	the	JavaScript	language.	However,	this	book	does	not	only
discuss	the	composition	of	JSON.	It	also	discusses	how	to	incorporate	it	within	an
application.	For	this	reason,	this	book	employs	JavaScript	extensively	to	demonstrate	the
many	ways	to	work	with	JSON.	There	are	plenty	of	great	books	that	reveal	the	ins	and
outs	of	the	JavaScript	language.	This	chapter	solely	acts	as	a	primer	to	the	upcoming
chapters.

JavaScript	History
The	year	is	1995,	and	Netscape	seeks	to	add	dynamic	behavior	as	well	as	the	capability	to
automate	parts	of	a	web	page	within	its	browser.	It	was	at	this	point	in	time	that	Brendan
Eich	was	hired	to	incorporate	the	functional	scripting	language	Scheme	into	the	Netscape
Navigator	browser.1	However,	Netscape	had	also	been	in	discussion	with	other
software/hardware	companies.	In	a	mad	dash	for	the	finish	line,	Eich	had	prototyped	the
scripting	language	that	would	soon	become	what	is	known	today	as	JavaScript.

The	incorporation	of	this	new	dynamic	behavior	within	the	browser	became	a	game-
changer.	This	had	a	direct	impact	on	how	developers	programmed	for	the	Web.
Furthermore,	this	incorporation,	as	an	innovation,	encouraged	Internet	users	to	adopt
Navigator	as	the	preferred	browser.	In	order	to	compete	with	the	new	dynamic,	and	with
the	browser	wars	on	the	rise,	Microsoft	was	quick	to	incorporate	a	scripting	language	of
its	own	into	Internet	Explorer.

Microsoft’s	scripting	dialect	was	developed	to	be	compatible	with	the	scripting
language	of	Netscape.	However,	to	ensure	the	language	remained	uniform,	Netscape
submitted	its	dialect	to	the	Ecma	International	for	standardization.	Thus	were	the
beginnings	of	the	ECMA-262	specification.	ECMA-262	is	the	name	for	this	scripting
language’s	specification.	The	name	ECMAScript	is	the	union	of	Ecma	International	and
JavaScript.	To	reference	ECMAScript	is	to	reference	the	specification	rather	than	the
language	itself.

JavaScript	Essentials

www.it-ebooks.info

http://www.it-ebooks.info/

At	its	core,	JavaScript	is	a	text-based	scripting	language,	whereby	sequences	of	Unicode
characters	are	strung	together.	That	said,	what	makes	JavaScript	more	than	a	sequence	of
characters	is	its	adherence	to	the	rules	that	govern	how	the	JavaScript	engine	interprets
said	sequence	into	a	particular	application.	The	set	of	rules	that	defines	the	valid
sequencing	of	characters	is	known	as	Syntax.	Listing	1-1	reveals	a	syntactically	correct,
albeit	simple,	JavaScript	application.

Listing	1-1.	A	Valid	JavaScript	Program

	1	var	welcomeMessage	=	"Hello	World";

	2			//Lines	denoted	with	'//'	are	used	to	leave	comments

	3			console.log(welcomeMessage);		//prints	to	the	console	

Hello	World

	4			console.log("A");			//prints	the	character	A

	5			console.log(2+5);	//prints	the	number	7

	6

	7			console.log("goodbye"	+	"	"	+	"all");	//prints	goodbye	

all.

Listing	1-1	reveals	seven	lines	composed	of	a	sequence	of	Unicode-encoded
characters.	However,	as	the	characters	of	Listing	1-1	adhere	to	the	ECMAScript
specification,	what	Listing	1-1	reveals	is	technically	a	JavaScript	application.

Values
Because	many	languages	heavily	influenced	JavaScript,	the	values	used	by	JavaScript
may	appear	familiar.	While	there	are	many	values	used	by	the	JavaScript	language,	there
are	two	categories	for	which	these	values	are	distinguished.	Those	two	categories	are	the
primitive	and	non-primitive	types.	Non-primitive	types	are	otherwise	known	as	Objects
and	are	the	topic	of	Chapter	2.

Primitive	Types
A	primitive	type	represents	the	set	of	all	basic	building	blocks	for	which	data	can	be
represented.	These	are	referred	to	as	primitive	because	they	are	rudimentary.	This	is,	of
course,	in	contrast	to	non-primitive	types.

There	are	five	primitive	types	in	JavaScript,	as	depicted	in	Figure	1-1.	These	five	types
are	number,	string,	Boolean,	undefined,	and	null.

Figure	1-1.	The	five	primitive	types	in	JavaScript

www.it-ebooks.info

http://www.it-ebooks.info/

The	Number	Type
The	number	type	represents	the	set	of	all	possible	numeric	values	recognized	by	the
JavaScript	language.	Such	representations	are	shown	in	Figure	1-2.	Possible	number
values	include	fractions	as	well	as	whole	numbers,	and	each	can	possess	a	negative	or
positive	value.	Additionally,	fractions	can	be	written	using	scientific	notation.	Listing	1-2
reveals	a	variety	of	valid	JavaScript	numeric	values.

Figure	1-2.	Valid	representations	of	the	number	type

Listing	1-2.	Valid	Number	Values

4

16

3.402823669209385e+38

-1

The	String	Type
The	string	type	represents	the	set	of	all	possible	string	values	whereby	a	string	value	is	a
finite	representation	that	includes	0	or	more	Unicode	characters.	As	outlined	in	Figure	1-3,
while	the	character	encoding	is	strictly	regarded	as	that	of	Unicode,	string	values	can	also
be	representative	of	ASCII	character	encoding.	This	is	because	ASCII	is	a	subset	of	the
Unicode	character	set.	Examples	of	possible	string	values	can	be	found	in	Listing	1-3.

Figure	1-3.	Valid	encodings	of	the	string	type

Listing	1-3.	Valid	String	Values

"this	is	a	string	value";

"string";

"s";

"";		//An	empty	String

Because	a	program	is	made	up	of	text,	a	string	value	is	differentiated	from	our
program	by	delimiting	its	value	with	quotations.	In	Listing	1-3,	I	have	wrapped	each	string
value	within	double	quotes.	However,	it	is	entirely	valid	to	utilize	singular	quotes	as	well.

Because	quotations	mark	the	beginning	and	end	of	a	string	value,	it	will	be	imperative
that	your	string	does	not	employ	the	same	outer	quotes	to	nest	quotes	such	as	the

www.it-ebooks.info

http://www.it-ebooks.info/

following:	“Mike	said	and	I	quote,	“let	me	tell	you	a	secret””.	Nesting	quotations	with	the
same	characters	used	to	signify	a	string	will	confuse	the	engine,	resulting	in	the	likelihood
of	an	error.	Because	the	engine	reads	in	a	left-to-right,	top-to-bottom	manner,	the	first
nested	quotation	encountered	will	be	interpreted	as	the	terminating	quotation.	This	means
that	what	was	expected	to	be	a	quote	by	Mike	is	instead	treated	as	an	invalid	statement.

Nesting	quotations	within	string	values	are	perfectly	acceptable,	providing	they	do	not
cause	the	engine	to	believe	the	string	ends	prematurely,	as	in	the	preceding	example.
There	are	two	possible	ways	to	accomplish	this.

Alternate	Quotations
Because	you	can	alternate	between	singular	and	double	quotes,	whichever	you	use	to
delimit	a	string	value,	you	can	use	the	alternate	variation	to	add	grammar	to	your	string.
Listing	1-4	revisits	the	preceding	example	with	the	use	of	alternating	quotations.

Listing	1-4.	Alternating	Use	of	Quotes

'Mike	said	and	I	quote,	"let	me	tell	you	a	secret".';		//		'	

is	used	to	delimit	a	string

"Mike	said	and	I	quote,	'let	me	tell	you	a	secret'.";		//		"	

is	used	to	delimit	a	string

As	you	can	see	from	Listing	1-4,	you	can	use	one	pair	of	quotes	to	signify	a	string	and
an	alternate	form	to	establish	proper	English	grammar	within.	The	engine	will	interpret
this	as	a	string	within	a	string	and	move	on.

Escaped	Quotations
The	second	method	of	incorporating	quotes	within	a	string	is	to	ensure	that	the	engine
does	not	treat	our	inner	quotations	as	string	delimiters.	In	order	to	accomplish	this,	we
must	escape	our	inner	quotation	marks.

The	escape	character	instructs	the	engine	to	interpret	the	subsequent	character
differently	from	how	it	would	otherwise	be	viewed.	This	is	opposed	to	being	interpreted	as
a	delimiter	that	would	otherwise	be	used	to	mark	the	end	or	beginning	of	a	string	value.
Escaping	a	character	is	easily	accomplished	by	prefixing	the	character	you	wish	to	escape
with	a	backslash	(\).

The	use	of	the	escaped	quotation	allows	our	strings	to	employ	quotations
indiscriminately.	Examples	can	be	seen	in	Listing	1-5.

Listing	1-5.	Nested	Escaped	Quotations

"Mike	said	and	I	quote,	\"let	me	tell	you	a	secret\".";

'Mike	said	and	I	quote,	\'let	me	tell	you	a	secret\'.';

	Note		The	escape	character	informs	the	engine	to	interpret	a	character	differently.

The	Boolean	Type

www.it-ebooks.info

http://www.it-ebooks.info/

A	Boolean	type	represents	a	logical	value	consisting	of	only	two	possible	values.	Those
values,	as	illustrated	in	Figure	1-4,	are	either	true	or	false.	While	these	are	two
possible	values	that	can	be	assigned,	a	Boolean	type	is	commonly	returned	as	the
evaluation	of	a	condition.	Such	an	evaluation	may	be	the	comparison	between	two
numbers,	as	seen	in	Listing	1-6.

Figure	1-4.	Valid	values	of	the	Boolean	type

Listing	1-6.	Boolean	Expressions

var	bol	=	false;	//assigns	bol	a	false	value

(10<9);										//evaluates	to	false;

(10>9);										//evaluates	to	true;

Boolean	values	are	great	for	incorporating	decision	making	within	your	application.
Determining	whether	an	expression	evaluates	to	true	or	false	allows	an	application	to
react	accordingly.	We	will	revisit	this	when	I	discuss	conditional	statements.

undefined	Type
The	undefined	type	is	the	value	used	to	represent	when	an	identifier	has	not	yet	been
assigned	a	value.	When	a	reference	to	a	variable	is	evaluated,	if	it	has	yet	to	be	assigned	a
value,	the	value	of	undefined	is	returned.

Listing	1-7	reveals	two	lines	of	code.	The	first	line	is	used	to	declare	a	variable	labeled
name	(line	1).	The	declaration	of	our	variable	informs	the	JavaScript	engine	to	allocate	a
portion	of	memory	that	our	application	can	use	to	store	data.	The	variable’s	identifier
name	provides	us	a	textual	means	to	refer	to	said	allocation.	As	we	have	not	yet	assigned
any	data	to	our	variable,	the	subsequent	line	returns	the	value	of	undefined	(line	2).

Listing	1-7.	An	Undefined	Variable

1	var	name;

2	console.log(name)			//returns	undefined;

null	Type
The	null	type	represents	the	intentional	absence	of	a	value.	This	is	contrary	to	the
undefined	value,	which	represents	no	value	as	having	been	set.	The	null	type	is	a
value	used	explicitly	to	represent	an	empty	or	nonexistent	reference.

Listing	1-8,	assigns	the	value	of	null	to	the	name	identifier,	to	explicitly	denote	the
intentional	absence	of	a	value.

Listing	1-8.	null	Assignment

www.it-ebooks.info

http://www.it-ebooks.info/

var	name	=	null;

console.log(name)			//returns	null;

Expressions
Simply	stated	by	the	Mozilla	Developer	Network,	“An	expression	is	any	valid	unit	of	code
that	resolves	to	a	value.”2	The	value	to	which	an	expression	resolves	is	either	that	of	a
primitive	type	or	that	of	an	object.	Two	possible	forms	of	expressions	can	be	viewed	in
Listing	1-9.

Listing	1-9.	Contrasting	Expressions

1	var	name	=	"ben";

2													2+5;

Listing	1-9	demonstrates	two	different	types	of	expressions.	The	first	represents	the
assignment	of	a	literal	value	to	a	variable	(line	1)	where	name	represents	the	identifier	to
which	the	string	literal	ben	is	assigned.	The	second	regards	the	operation	of	two	operands
(line	2).

	Note		The	operand	is	the	datum	being	operated	on.

An	expression	either	returns	a	value,	causes	a	side	effect,	or	both.	The	determining
factor	is	the	operator	employed.

Operators
There	are	a	variety	of	operators	within	the	JavaScript	language	that	can	be	used	to	fashion
an	expression.	The	operator	utilized	directly	impacts	the	outcome	of	the	value.	I	will	take
this	opportunity	to	discuss	the	various	operators	utilized	throughout	this	book.

Assignment	Operator
The	assignment	operator	is	used	to	set	the	value	of	an	expression	to	that	of	an	identifier.	In
order	to	devise	an	assignment,	the	JavaScript	language	relies	on	the	use	of	the	equal	(=)
operator.	Listing	1-10	makes	use	of	the	assignment	operator	to	assign	a	primitive	value	to
a	variable.

Listing	1-10.	Assigning	Values	to	Variables

1	var	bolValue	=	true;

2	var	name	=	"ben";

Once	a	value	is	assigned,	it	can	be	obtained	by	referencing	the	appropriate	identifier.
It’s	important	to	note	that	identifiers	are	case-sensitive,	meaning	that	if	you	use	all
lowercase	characters	to	label	a	variable,	it	must	always	be	referred	to	in	lowercase.	To	do
otherwise	would	cause	an	error.

www.it-ebooks.info

http://www.it-ebooks.info/

Arithmetic	Operators
The	arithmetic	operators	are	operators	that	are	concerned	with	mathematical	operations.
The	operators	that	make	up	this	category	can	be	viewed	in	Table	1-1.

Table	1-1.	Arithmetic	Operators

Arithmetic	Operator Operator

Addition	Operator +

Subtraction	Operator -

Division	Operator /

Multiplication	Operator *

As	you	may	suspect,	arithmetic	operators	are	used	to	perform	mathematical	operations
on	numerical	values,	as	shown	in	Listing	1-11.

Listing	1-11.	Arithmetic	Operations

4+9;		//	evaluates	to	13

8-2;		//	evaluates	to	6

3*7;		//	evaluates	to	21

2/1;		//	evaluates	to	2

However,	what	might	not	be	expected	is	that	the	addition	operator	serves	two
purposes.	The	first	purpose	concerns	the	summation	of	numbers;	the	second	is	used	to	join
two	string	values	together.	As	long	as	the	two	operands	used	in	conjunction	with	the
additional	operator	are	of	numeric	value,	they	will	be	added	together.	However,	if	at	least
one	operand	is	a	string	value,	both	operands	will	be	coerced	into	their	string
representations	and	joined	end-to-end,	as	demonstrated	in	Listing	1-12.

Listing	1-12.	String	Concatenation

1	'Hello'	+	'World';	//	evaluates	to	"Hello	World"

2	""	+	'Welcome';				//	evaluates	to	"Welcome"

3	true	+	'';									//	evaluates	to	"true"

4	3	+	'3';											//	evaluates	to	"33"

Listing	1-12	demonstrates	the	union	of	strings	when	used	with	the	addition	operator.
While	lines	1	and	2	may	be	easily	accepted,	lines	3	and	4	may	not	be.	As	previously
stated,	the	addition	operator	can	only	be	used	on	numbers	or	strings.	If	both	operands	are
numbers,	then	it’s	easy	for	the	engine	to	know	which	operation	to	perform.	However,	if	at
least	one	operand	is	a	string	value,	then	no	matter	what	data	type	the	other	operand	is,	it
will	always	be	converted	into	a	string.

Line	3	seeks	to	add	a	Boolean	value	with	an	empty	string,	which	results	in	the
coercion	of	true	into	that	of	a	string.	Then,	as	both	operands	are	viewed	as	strings,	they
are	joined	together	and	returned	as	the	singular	string	value.	Similarly,	line	4	seeks	to	add

www.it-ebooks.info

http://www.it-ebooks.info/

the	number	3	with	that	of	the	string	'3',	resulting	in	the	string	value	“33”.

Comparison	Operators
Comparison	operators	are	used	to	compare	two	operands	(see	Table	1-2).	The	evaluated
value,	which	will	always	be	that	of	a	Boolean	value,	is	a	direct	reflection	as	to	whether	or
not	the	comparison	is	true.	It	is	important	to	point	out	that	few	comparison	operators
compare	operands	without	implicit	type	coercion.

Table	1-2.	Comparison	Operators

Comparison
Operator Operator Description

Less	Than < Used	to	determine	whether	the	left	operand	is	less	than	the	right

Greater	Than > Used	to	determine	whether	the	left	operand	is	greater	than	the	right

Less	Than	or	Equal <=
Used	to	determine	whether	the	left	operand	is	less	than	or	equal	to	the
right

Greater	Than	or
Equal

>=
Used	to	determine	whether	the	left	operand	is	greater	than	or	equal	to
the	right

Equals == Used	to	determine	whether	the	left	operand	is	equal	to	the	right

Does	Not	Equal != Used	to	determine	whether	the	left	operand	does	not	equal	the	right

Strictly	Equals ===
Compares	the	equality	of	two	operands	without	allowing	type	coercion
to	occur

Does	Not	Strictly
Equal

!==
Compares	the	inequality	of	two	operands	without	allowing	type
coercion	to	occur

Listing	1-13	reflects	the	evaluation	between	two	operands.	As	demonstrated	by	Listing
1-13,	the	comparison	operators	have	two	modes:	one	is	the	strict	comparison	between	two
operands;	the	other	is	a	more	lax	comparison.

Listing	1-13.	Comparing	Operands

3<=3;				//	evaluates	to	true:		after	type	coercion,	3	is	

less	than	or	equal	to	3

3=='3';		//	evaluates	to	true:		after	type	coercion,	'3'	and	

'3'	are	found	to	be	equal

3==3;				//	evaluates	to	true:		after	type	coercion,	3	and	

3	are	found	to	be	equal

3===3;			//	evaluates	to	true:		3	and	3	are	the	same

3==='3';	//	evaluates	to	false:	3	does	not	equal	'3'

3!='3';		//	evaluates	to	false:	3	and	'3'	are	equal

3!=='3';	//	evaluates	to	true:		3	does	not	equal	'3'

When	the	comparison	is	lax,	the	two	operands	are	coerced	behind	the	scenes	to	the
same	type.	Regardless	of	whether	the	operand	is	that	of	a	string	or	a	number,	both	will	be

www.it-ebooks.info

http://www.it-ebooks.info/

coerced	into	the	same	data	type	before	they	are	compared.

However,	the	use	of	a	strict	comparison	operator	ensures	that	both	operands	are
compared	without	the	use	of	type	conversion.	This	is	essential	for	determining	whether
two	operands	are	similar	in	both	value	as	well	as	type.

The	typeof	Operator
The	typeof	operator	evaluates	the	type	of	any	datum.	The	value	returned	reflects	one	of
the	six	data	types	(see	Listing	1-14)	used	by	the	JavaScript	language.

Listing	1-14.	Determining	Data	Types

1	typeof	3;														//outputs	number

2	typeof	"hello	world";		//outputs	string

3	typeof	true;											//outputs	boolean

4	typeof	(new	Object());	//outputs	object

5	var	emptyVariable;

6	typeof	emptyVariable;		//outputs	undefined

Listing	1-14	demonstrates	how	the	typeof	operator	can	be	used	to	identify	to	which
data	type	the	value	in	question	belongs.

The	instanceof	Operator
While	the	typeof	operator	is	used	to	determine	the	type	of	some	value,	instanceof	is
used	to	test	whether	an	instance	is	a	subclass	for	a	given	object	type.	The	instanceof
operator	returns	a	Boolean	value,	indicating	whether	or	not	the	instance	is	the	descendant,
directly	or	otherwise,	of	a	particular	object.	Use	of	the	instanceof	operator	is
demonstrated	in	Listing	1-15.

Listing	1-15.	Classifying	Instances

1	var	array	=	new	Array();

2	var	xhr	=	new	XMLHttpRequest();

3

4	console.log(xhr	instanceof	Array);													//outputs	

false

5	console.log(array	instanceof	XMLHttpRequest);		//outputs	

false

6	console.log(array	instanceof	Array);											//outputs	

true

7	console.log(xhr	instanceof	XMLHttpRequest);				//outputs	

true

8	console.log(xhr	instanceof	Object);												//outputs	

true

9	console.log(array	instanceof	Object);										//outputs	

true

www.it-ebooks.info

http://www.it-ebooks.info/

Listing	1-15	employs	the	instanceof	operator	to	determine	whether	two	instances,
array	and	xhr,	evaluate	as	members	of	each	other’s	object	type.	Because	xhr	is	an
instance	of	the	XMLHttpRequest	Object,	and	array	is	an	instance	of	the	Array
Object	type,	they	both	output	false	when	compared	against	each	other’s	object	type.

From	there,	each	instance	is	compared	against	its	own	object	type,	which	evaluates	to
that	of	true.	This	is	because	our	array	is	an	instance	of	the	Array	Object	type,	while
xhr	is	indeed	a	member	of	the	XMLHttpRequest	Object	type.

One	final	thing	to	point	out	is	that	both	our	xhr	and	array	instances	are	in	fact
members	of	the	Object	type.	This	is	because	both	the	Array	and	XMLHttpRequest
Objects	are	direct	descendants	of	the	Object	itself.	This	will	be	discussed	in	more	detail	in
Chapter	2.

The	!	Operator
The	NOT	operator,	signified	by	the	exclamation	(!)	token,	is	used	to	invert	a	Boolean
value,	as	seen	in	Listing	1-16.

Listing	1-16.	Inversing	a	Boolean	Value

console.log(!true);			//	outputs	false

var	someVal	=	!false;			//	assigns	the	value	true;

Statements
While	expressions	are	concerned	with	the	evaluation	of	values,	statements	are	concerned
with	the	actions	of	an	application.	A	statement	can	be	as	simple	as	displaying	the	sum	of
two	numbers	or	as	complex	as	generating	the	histogram	of	a	photograph.

A	statement	may	exist	on	a	line	of	its	own	or	be	composed	of	multiple	statements.	A
general	rule	of	thumb	is	that	each	new	line	of	code	represents	a	statement.	However,	what
truly	distinguishes	a	statement	is	the	explicit	use	of	line	terminators.

	Note		While	expressions	and	statements	are	two	separate	categories	in	the	JavaScript
syntax,	the	reality	is	that	the	two	will	often	be	intertwined.	In	other	words,	the	two	do	not
always	occur	independently.

Line	Terminators
The	use	of	a	semicolon	(;)	explicitly	signifies	the	end	of	a	statement.	This	ensures	that	if
multiple	statements	are	found	on	a	single	line,	they	are	interpreted	as	entirely	separate
statements.	If	a	semicolon	is	not	found	at	the	end	of	a	valid	statement,	the	engine	will
instead	interpret	carriage	returns	and	line	breaks	as	statement	terminators.	When	these
implicit	line	terminators	are	encountered,	the	engine	inserts	semicolons	behind	the	scenes
to	comply	with	the	syntax.

Listing	1-17	reveals	four	lines	of	code.	The	first	two	lines	represent	two	separate

www.it-ebooks.info

http://www.it-ebooks.info/

statements.	While	they	do	not	explicitly	end	with	a	semicolon,	they	do	employ	line	breaks,
which	is	seen	by	the	engine	as	a	line	terminator.	When	the	JavaScript	interpreter	reads
these	two	lines,	it	will	automatically	add	semicolons	to	the	end	of	both	lines	1	and	2,
making	them	valid	statements.

Listing	1-17.	Statements	Require	Terminators

1	console.log('a')																					//valid	statement

2	console.log('b')																					//valid	statement

3	console.log('a');	console.log('b');		//2	valid	statements	

on	1	line

4	console.log('a')		console.log('b');		//1	invalid	statement

Line	3,	on	the	other	hand,	is	a	condensed	way	of	writing	the	preceding	two	statements.
Rather	than	occupy	two	lines	of	code,	the	explicit	use	of	semicolons	after	each	statement
informs	the	interpreter	that	multiple	statements	occur	on	the	same	line.

Line	4,	on	the	other	hand,	possesses	two	statements	without	explicit	use	of	the	;
delimiter.	This	results	in	the	engine	executing	an	invalid	statement	leading	to	a	syntax
error.

	Tip		It’s	best	to	clearly	identify	your	statements	by	ending	them	with	a	;.

Control	Statements
Control	statements	are	used	to	add	decision	making	to	an	application.	Depending	on	the
evaluation	of	an	expression,	an	application	can	determine	whether	or	not	to	execute	a
particular	statement.	Table	1-3	reveals	two	keywords	that	are	used	by	this	book	to	devise
control	statements.

Table	1-3.	Control	Statements

Control	Statements Description

if Executes	a	statement	if	a	logical	condition	is	true

else An	optional	clause	to	execute	a	statement	if	a	logical	condition	is	true

The	if	statement	is	used	to	execute	a	statement	if	and	when	an	expression	evaluates
to	true.	On	the	other	hand,	if	the	expression	evaluates	to	false,	the	indicated	statement
will	be	skipped,	as	seen	in	Listing	1-18.

Listing	1-18.	Controlling	Flow	with	if

1	var	bol	=	false;

2	if(bol)	console.log('condition	is	met');

Listing	1-18	demonstrates	a	typical	use	of	the	if	statement.	Listing	1-18	begins	by
assigning	false	to	a	variable	labeled	bol	(Line	1).	The	subsequent	line	represents	our
control,	which	outlines	the	following	condition:	if	bol	evaluates	as	true,	then	perform

www.it-ebooks.info

http://www.it-ebooks.info/

the	subsequent	statement	(Line	2).	Unfortunately,	as	bol	evaluates	to	false,	the
condition	is	not	met,	and,	therefore,	the	statement	does	not	execute.

Whereas	the	statement	in	Listing	1-18	will	cease	to	be	executed,	the	else	clause	can
be	paired	with	that	of	the	if	statement.	As	you	may	have	anticipated,	the	else	clause
will	execute	a	statement	in	the	case	that	a	condition	is	not	met.	Listing	1-19	appends	the
else	statement	to	our	earlier	demonstration.

Listing	1-19.	Controlling	Flow	with	if/else

1	var	bol=false;

2	if(bol)	console.log('condition	is	met');

3	else	console.log('condition	is	not	met');			//	condition	

is	not	met

Running	Listing	1-19	results	in	the	execution	of	line	3.

Block	Statements
Although	a	statement	can	only	ever	comprise	one	task,	it	is	quite	possible	to	group	a	series
of	statements	to	be	performed.	A	grouping	of	statements	is	known	as	a	block	statement.	A
block	statement	is	delimited	with	the	pair	of	curly	brackets,	as	seen	in	Listing	1-20.

Listing	1-20.	Grouping	Statements	Within	a	Block

{

		statement1;

		statement2;

		statement3;

}

As	revealed	by	Listing	1-20,	a	statement	block	can	hold	any	number	of	statements
within.	You	may	notice	that	while	each	enclosed	statement	within	the	block	is	concluded
with	a	semicolon,	the	block	statement	itself	does	not	require	them.	The	statement	block	is
an	extremely	important	aspect	of	the	language,	because	it	can	be	inserted	wherever	a
statement	is	considered	valid.	Listing	1-21	revisits	our	control	statements	from	Listing	1-
19	and	incorporates	the	use	of	a	block	statement.

Listing	1-21.	Substituting	Block	Statements	for	Statements

1	var	bol=false;

2	if(bol)	{		console.log('condition	is	met');	

alert('condition	is	met');	}

3	else	{		console.log('condition	is	not	met');	

alert('condition	is	not	met');	}

Truthy/Falsy
Any	valid	JavaScript	value	will	evaluate	to	that	of	a	Boolean	value	when	used	as	the

www.it-ebooks.info

http://www.it-ebooks.info/

expression	of	a	control	statement.	While	the	evaluation	returns	either	true	or	false,	the
values	that	evaluate	to	true	or	false	are	not	as	cut	and	dry.	Those	that	evaluate	to
true	are	referred	to	as	truthy	values.	While	those	that	evaluate	to	false	are	referred	to
as	falsy	values.

The	simplest	way	to	contrast	the	truthy	values	from	those	that	are	falsy	is	to	recognize
which	values	are	falsy.	Listing	1-22	reveals	the	falsy	values	of	the	JavaScript	language.

Listing	1-22.	Demonstrates	All	Falsy	Values

if('');																					//	An	empty	string

if(0);																						//	the	number	0

if(null);																			//	a	value	of	null

if(false)																			//	a	value	of	false

if(undefined);														//	a	value	of	undefined

if(NaN);																				//	a	value	of	NaN

Any	value	not	displayed	in	Listing	1-22	represents	a	truthy	value.

Loop	Statements
The	JavaScript	language	does	possess	a	few	loop	statements,	which	enable	a	statement	to
occur	as	long	as	a	particular	condition	is	met.

The	for	loop
One	loop	that	is	used	extensively	throughout	this	book	is	the	for	loop.	The	for	loop	is
commonly	used	to	execute	a	statement	for	as	long	as	a	condition	remains	true.	The
syntax	for	the	for	loop	can	be	seen	in	Listing	1-23.

Listing	1-23.	The	Syntax	of	a	for	Loop

for(initialization	;	condition	;	operation)	statement;

As	revealed	in	Listing	1-23,	a	for	loop	requires	an	initialization,	a	condition,	and,
last,	an	operation	that	either	increments	or	decrements	the	initialized	value.

As	long	as	the	condition	remains	true,	the	provided	statement	will	be	executed.
However,	the	moment	the	condition	is	no	longer	met,	the	loop	will	terminate	and	the
engine	will	move	on	to	the	next	statement	in	the	application.	Listing	1-24	employs	a	for
loop	to	execute	a	statement,	as	long	as	the	variable	i	remains	less	than	10.

Listing	1-24.	An	Iterative	Statement	Can	Reference	the	Current	Index

1	for(var	i=0;	i<10	;	i++)	console.log(i);	//	logs	out	

0,	1,	2,	3,	4,	5,	6,	7,	8,	9

The	for/in	loop
The	second	form	of	a	loop	that	will	be	used	by	this	book	is	the	for/in	loop.	The

www.it-ebooks.info

http://www.it-ebooks.info/

for/in	loop	is	used	to	enumerate	the	members	possessed	by	an	object	instance	(see
Listing	1-25).

Listing	1-25.	Iterating	All	Owned	Enumerable	Keys	of	an	object

1	var	carA	=	new	Object();

2					carA.wheels=4;

3					carA.color="blue"

4					carA.make="Volvo";

5	for(var	member	in	carA)	console.log(member);

Listing	1-25	possesses	a	variable	labeled	carA,	which	is	assigned	a	non-primitive
value.	To	be	more	specific,	carA	is	assigned	the	value	of	an	object.	An	object	can	be
thought	of	as	a	container	used	to	group	common	variables	together.	In	this	case,	the
particular	variables	are	grouped	together	to	represent	a	vehicle.	As	revealed	in	Listing	1-
25,	the	variables	used	in	the	collection	are	the	following:	wheels,	color,	and	make.
These	properties	are	used	to	add	specifics	to	our	vehicle.

The	for/in	loop	is	used	to	iterate	all	identifiers	contained	within	the	chosen
instance.	Executing	the	preceding	listing	results	in	the	following	output:

wheels

color

make

Declarations
JavaScript	declarations	are	used	to	register	text	identifiers	that	can	be	referenced
throughout	a	program.

Variables
For	all	intents	and	purposes,	JavaScript	variables	can	be	thought	of	as	a	named	pointer	that
remains	a	symbolic	link	to	a	particular	location	in	memory.	The	name	for	which	the
pointer	is	provided	is	known	as	an	identifier.	An	identifier	is	a	case-sensitive	label	used	as
a	means	to	refer	to	its	particular	storage	location.	Only	by	declaring	a	variable	can	a	value
be	assigned,	retained,	and	later	referenced.

In	the	JavaScript	language,	variables	are	declared	via	the	keyword	var,	as
demonstrated	in	Listing	1-26.

Listing	1-26.	Declaring	Three	Variables

1	var	name	=	"ben";

2	var	age	=	36;

3	var	sayName	=	function(){	return	this.name	};		//function	

expression

Listing	1-26	declares	three	variables	and	provides	each	with	a	concise	yet	meaningful

www.it-ebooks.info

http://www.it-ebooks.info/

identifier.	Identifiers	should	reflect	something	meaningful	and	befit	the	data	for	which
they	are	assigned.

Functions
Technically,	functions	are	not	statements	but	are	used	to	perform	specific	actions.
Functions	are	a	special	form	of	object,	which	allows	functions	to	be	treated	as	values.
Listing	1-27	reveals	the	syntax	of	a	function.

Listing	1-27.	The	Syntax	of	the	Function	Declaration

function	Identifier	(FormalParameterListopt)	

{	//statements;	}

As	outlined	in	Listing	1-27,	a	function	is	defined	by	using	the	function	keyword.
The	identifier,	which	follows	the	declaration,	registers	the	function	with	the	provided
label.	This	ensures	that	an	application	can	refer	to	the	function	at	any	point	in	time
throughout	the	application.

Following	the	identifier	is	a	pair	of	parentheses,	which	are	used	to	hold	any	number	of
optional	identifiers	separated	with	the	use	of	a	comma.	These	identifiers	are	used	as	labels
for	the	parameters	that	you	may	wish	to	provide	to	the	body	of	a	function.

The	final	component	of	the	function	declaration	is	the	statement	block	to	be	executed
when	the	function	is	executed.	Listing	1-28	declares	a	function	labeled	sayName.

Listing	1-28.	Invoking	the	sayName	Function	with	a	Parameter

1	function	sayName	(name){

2			return	"Hello	"	+	name;

3	};

4	console.log(sayName("Ben"));	//	Hello	Ben

Listing	1-28	employs	a	function	declaration	to	devise	a	function	that	is	capable	of
accepting	an	arbitrary	value	whose	identifier	reflects	that	of	name.	This	identifier
represents	the	identity	for	the	parameterized	value	provided	by	the	caller	of	the	function.
The	body	of	the	function	can	then	reference	this	value	and	use	it	within	its	operation.

In	the	case	of	sayName,	the	function	body	references	the	identifier	name	and	uses
the	addition	operator	to	join	its	value	and	the	word	Hello	together.	Utilizing	the	keyword
return,	the	evaluation	is	then	provided	back	to	the	caller	of	the	function.	This	results	in
the	output	of	Hello	Ben	to	the	console.

Summary
This	chapter	has	sought	to	provide	an	overview	of	the	many	upcoming	chapters,	in	which
the	JavaScript	language	will	be	relied	on	extensively	to	employ,	explain,	and	devise
JSON.	While	much	of	this	chapter	has	focused	on	statements,	operators,	and	primitive

www.it-ebooks.info

http://www.it-ebooks.info/

types	that	will	be	used	in	this	book,	the	next	chapter	focuses	on	the	non-primitive	types	of
the	language,	otherwise	known	as	objects.

Key	Points	from	This	Chapter
JavaScript	is	a	text-based	language	made	up	of	Unicode	and	ASCII
characters.

ECMAScript	refers	to	the	specification	of	the	language.

JavaScript	possesses	two	categories	of	data	types:	primitive	and	non-
primitive.

Primitive	values	can	be	numbers,	strings,	Boolean,	undefined,	and
null.

undefined	represents	the	lack	of	value.

null	is	used	to	denote	intentional	absence	of	value.

Expressions	resolve	to	a	value.

Operators	are	used	to	fashion	expressions.

The	addition	operator	serves	two	purposes.

Strict	comparison	operators	prevent	the	occurrence	of	type	coercion.

Non-strict	comparison	operators	rely	on	type	coercion	before
comparing	two	operands.

The	typeof	operator	is	used	to	determine	the	type	of	datum.

The	instanceof	operator	is	used	to	determine	the	Object	type	of	an
instance.

Statements	should	be	terminated	explicitly.

Statement	blocks	can	group	multiple	statements.

Identifiers	are	case-sensitive	text-based	labels.

Functions	are	named	blocks	of	code	that	can	be	provided	parameters.

1Wikipedia,	“JavaScript,”	http://en.wikipedia.org/wiki/JavaScript,	modified	January	2015.

2MDN:	Mozilla	Developer	Network,	“Expressions	and	operators,”	https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Guide/Expressions_and_Operators,	last	updated	November	27,	2014.

www.it-ebooks.info

http://en.wikipedia.org/wiki/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Expressions_and_Operators
http://www.it-ebooks.info/

CHAPTER	2

Special	Objects
JavaScript	is	an	object-oriented	language,	which	is	a	programming	paradigm	that
acknowledges	the	compartmentalization	of	data	encapsulated	within	an	“object.”	But	what
exactly	is	an	object?	To	put	it	plainly,	it	is	a	classification	used	to	represent	a
generalized/generic	form.	This	lack	of	specificity	makes	it	possible	to	classify	an	object	as
anything	that	exists.	This	affords	an	object-oriented	language	a	means	to	address	any	and
all	non-primitive	types.

This	is	extremely	beneficial	to	an	object-oriented	language,	which	employs	the	Object
—due	to	its	general	classification—thereby	encompassing	everything	within	a	singular
classification.	The	object	is	the	singular	classification	that	unifies	any	and	all	more
specific	objects	within	the	language,	thereby	devising	a	hierarchical	system.	No	matter
how	unique	or	specific	the	possessed	behaviors	of	an	object	may	be	considered,	they	can
always	be	regarded	as	an	object.

Objects
Absolutely	everything	is	an	object.	It’s	true	that	an	object	can	be	grouped	into	a	particular
category	with	regard	to	its	particular	attributes.	This	categorization	is	considered	the
classification	of	an	object.	The	greater	the	emphasis	on	the	particular	set	of	behaviors	an
object	possesses,	the	further	its	classification	from	that	of	the	generalized	object.
Simultaneously,	the	emphasis	placed	on	the	specific	traits,	attributes,	and/or	behaviors	of
an	object	can	be	used	to	place	it	within	a	subclassification.	However,	the	inverse	will
always	hold	true.	In	JavaScript,	all	classifications,	in	their	most	generalized	form,	are
objects.

Before	we	go	any	further,	it	is	worth	noting	the	repeated	use	of	the	words	Object	and
object(s).	These	two	terms	are	not	being	used	interchangeably.	Throughout	this	book,	I
have	done	my	best	to	ensure	that	Object	and	object	remain	properly	distinguished	in	the
sentences	in	which	I	refer	to	them.	Object	and	object	refer	to	two	separate	concepts,	as
you	will,	I	hope,	come	to	learn.	The	term	Object	regards	a	built-in	type	of	the	JavaScript
language,	whereas	the	term	object	refers	to	an	instance	of	a	said	Object	type.

Objects	Are	Collections
What	classifies	all	objects	in	the	JavaScript	language	is	that	at	their	most	atomic	unit,	they
are	simply	collections	of	string	value	pairs.	Technically	speaking,	all	objects	are
associative	arrays.	Simply,	what	this	means	is	that	an	object	has	the	capability	to	retain	a
value	for	any	given	identifier.	Furthermore,	as	a	collection	of	strings,	it	can	hold	many

www.it-ebooks.info

http://www.it-ebooks.info/

identifiers.

Quite	commonly,	these	identifiers	are	referred	to	as	properties,	members,	and	even
keys.	Regardless	of	how	they	are	referred	to,	these	identifiers,	much	like	variables,	will
map	to	a	value.	Such	values	can	be	primitive	or	non-primitive.	Because	a	member	can
only	be	paired	to	a	singular	value,	a	member	and	its	value	are	often	referred	to	as	a
key/value	pair.	Precisely	like	a	variable,	the	keys	of	an	object	can	be	referenced,	invoked
(if	it’s	assigned	value	is	that	of	a	function),	and	even	assigned	a	value.	Unlike	a	variable,
which	can	be	referenced	simply	by	the	name	of	the	identifier,	a	key	must	be	accessed
through	the	instance.	This	is	achieved	with	access	notation.	You	will	learn	more	about
how	to	access,	assign,	and	invoke	properties	within	the	section	“Access	Notation.”

	Note		This	book	uses	the	terms	properties,	members,	and	keys	interchangeably.

What	is	so	powerful	about	the	object-oriented	paradigm	is	its	ability	to	devise
collections	of	like-minded	behaviors	whose	sole	faculties	are	dedicated	toward	a	specific
task.	The	more	specific	the	behaviors,	the	more	specialized	these	objects	become.
Furthermore,	because	an	object-oriented	language	relies	on	a	hierarchical	structure	to
establish	relationships	among	all	objects,	any	object	spawned	from	an	existing	object	can
and	will	inherit	its	ancestor’s	behaviors.	This	helps	to	ensure	that	every	descendant
possesses	its	ancestor’s	behaviors.	This	provides	all	objects	the	ability	to	be	classified	as
any	of	the	classifications	that	make	up	their	lineage.	This,	of	course,	includes	their
topmost	ancestor,	the	Object.

Built-in	Objects
The	JavaScript	language	has	plenty	of	built-in	objects,	many	of	which	are	used	throughout
this	book.	Because	they	all	share	a	common	ancestor,	the	Object,	each	of	these	objects,	at
its	core,	will	continue	to	remain	collections	of	key/value	pairs.	Furthermore,	as	direct
descendants,	they	will	indirectly	possess	the	behaviors	of	their	ancestor.	What	makes	these
objects	specialized	are	the	collective	behaviors	each	possesses	to	facilitate	the	fulfillment
of	a	specific	goal.	For	each	object,	the	collections	of	behaviors	and	attributes	uniquely
classify	it	as	highly	specialized.	The	Object	and	Array	are	just	two	of	the	specialized
objects	this	book	will	make	extensive	use	of.

Object
As	mentioned	earlier,	an	Object	is	a	built-in	type	that	defines	an	unordered	collection	of
key/value	pairs.	The	defined	properties	and	behaviors	possessed	by	the	built-in	Object
facilitate	this	behavior.	In	addition	to	the	aforementioned	behavior,	the	Object	also
possesses	other	behaviors,	which	will	be	inherited	by	every	descendant.	One	such
behavior	possessed	and	passed	on	by	the	Object	is	the	toString	behavior.

The	toString	identifier	represents	the	key	that	directly	accesses	the	value	of	a
function.	Because	the	key	is	paired	to	a	function,	we	can	follow	up	the	reference	with	the

www.it-ebooks.info

http://www.it-ebooks.info/

parentheses	(())	operator,	to	invoke	the	function.	This	results	in	the	return	of	the	string
representation	of	the	object.

	Note		When	an	identifier	is	mapped	to	a	function,	it	is	referred	to	as	a	method	of	the
object.

Beyond	its	default	behaviors,	the	Object	acts	as	a	template	from	which	our	application
can	clone	and	supply	to	it	a	collection	of	behaviors	required	by	our	application.

Creating	Objects
While	the	Object	is	extremely	beneficial	within	an	object-oriented	language,	its	sole	use	to
a	developer	is	the	ability	to	provide	to	it	a	collection	of	behaviors.	Fortunately,	for	this
reason,	the	JavaScript	language	allows	us	to	create	instances	of	the	Object	by	way	of	the
keyword	new,	as	demonstrated	in	Listing	2-1.

Listing	2-1.	Creation	of	an	object

var	aCollection	=	new	Object();

Listing	2-1	leverages	the	keyword	new	to	inform	the	JavaScript	engine	to	create	an
instance	of	the	Object	type.	Upon	the	instantiation,	an	object	is	created,	returned,	and
assigned	to	a	variable,	so	that	our	application	can	maintain	a	reference	to	the	instance.	By
referencing	the	aCollection	identifier,	our	application	can	directly	refer	to	our
instance	and	take	advantage	of	its	possessed	behaviors.

At	any	point	in	time,	a	reference	to	aCollection	allows	our	application	to	access
any	of	the	key/value	pairs	retained	by	it.	At	this	moment,	the	only	behaviors	possessed	by
our	aCollection	instance	are	those	that	are	built	in	to	the	Object	type.	One	such
behavior	is	the	toString	method.

Access	Notation
The	JavaScript	language	offers	two	ways	in	which	one	can	assign	or	retrieve	a	value	from
an	instance.	The	two	varieties	of	manner	are	known	as	dot	notation	and	bracket	notation.

Dot	Notation
Dot	notation	represents	the	particular	syntax	for	which	a	key/value	pair	can	be	accessed	or
assigned	to	a	specified	instance.	Dot	refers	to	the	use	of	the	operator	employed	to	access	a
property	of	an	instance.	That	operator	is	the	period	(.)	symbol.	The	period	itself	acts	as
the	delimiter	between	our	instance	and	the	key	we	wish	to	get,	set,	or	invoke,	as	seen	in
Listing	2-2.

Listing	2-2.	Dot	Notation	Is	Used	to	Access	a	Member	from	an	Instance

1	var	aCollection	=	new	Object();

www.it-ebooks.info

http://www.it-ebooks.info/

2				console.log(aCollection.firstProperty);	//	undefined

3				aCollection.firstProperty=	"hello	world";

4				console.log(aCollection.firstProperty);	//	hello	

world

5				console.log(aCollection.toString());				//	[object	

Object]

Listing	2-2	instantiates	an	object	and	assigns	it	to	aCollection	(line	1).	Utilizing
dot	notation,	Listing	2-2	attempts	to	read	a	property	value	from	our	aCollection
instance.	The	name	of	the	property	is	appropriately	labeled	firstProperty.	As	the
collection	lacks	a	value	for	the	requested	property,	the	value	undefined	is	returned.
This	value	is	then	logged	to	the	developer’s	console	(line	2).

In	order	to	get	a	value	for	a	particular	key,	it	must	be	assigned	a	value,	lest	it	returns
undefined.	To	keep	things	simple,	Listing	2-2	assigns	the	string	value	“hello
world”	to	the	key	firstProperty	(line	3).	On	assignment	of	a	value	to	the	identified
property,	our	aCollection	instance	will	reflect	a	value	for	each	query	of
firstProperty	until	the	value	is	reassigned	or	deleted.	A	subsequent	lookup	of	the
firstProperty	utilizing	dot	notation	outputs	the	value	of	“hello	world”	to	the
console	(line	4).

Last,	as	every	object	possesses	the	toString	method,	we	can	invoke	its	behavior	by
succeeding	the	key	identifier	with	a	parenthesis	(line	5).	Doing	so	outputs	a	string	that
represents	the	current	object.	As	you	can	see,	the	output,	while	not	all	that	insightful,	does
indeed	provide	a	value	to	the	console.	This	output	is	the	default	behavior	of	the	built-in
Object.	However,	because	all	objects	are	collections	of	key/value	pairs,	the	toString
member	of	aCollection	can	be	reassigned	with	a	function	that	more	accurately
represents	our	instance.	Each	object-type	of	the	JavaScript	language	overrides	the	default
functionality	of	the	toString	method.

Bracket	Notation
The	second	mechanism	used	to	assign,	obtain,	or	invoke	a	key/value	pair	is	bracket
notation.	Bracket	notation	is	similar	to	dot	notation	in	that	it	is	used	to	query	or	assign	a
value	for	a	given	property	of	an	instance.	The	most	noticeable	difference	between	bracket
notation	and	dot	notation	is	that	bracket	notation	requires	all	keys	to	be	referenced	as
string	values	rather	than	as	an	identifier.	The	reference	to	bracket	notation	regards	the
delimiter	between	the	key,	represented	as	a	string	value,	and	the	instance	from	which	it’s
being	accessed.	The	string	value	is	enclosed	within	an	opening	([)	and	closing	(])	bracket
and	immediately	succeeds	the	instance	identifier	from	which	the	key	is	being	queried.
Listing	2-3	revisits	the	firstProperty,	only	this	time,	it	employs	bracket	notation	to
do	so.

Listing	2-3.	Bracket	Notation	Is	Used	to	Access	a	Member	from	an	Instance

var	aCollection	=	new	Object();

				console.log(aCollection['firstProperty']);	//	undefined

				aCollection['firstProperty']=	"hello	world";

www.it-ebooks.info

http://www.it-ebooks.info/

				console.log(aCollection['firstProperty']);	//	hello	

world

				console.log(aCollection['toString']());				//	[object	

Object]

If	you	were	to	execute	the	preceding	listing,	you	would	arrive	at	precisely	the	same
results	as	those	of	Listing	2-2.	Aside	from	the	obvious	differences	in	syntax,	you	may
wonder	why	you	would	use	one	notation	over	the	other.

Bracket	Notation	vs.	Dot	Notation
While	dot	notation	is	certainly	cleaner	than	bracket	notation,	bracket	notation	has	a
particular	advantage.	Bracket	notation	relies	on	string	values,	whereas	dot	notation	utilizes
identifiers.	The	key	difference	is	that	identifiers	must	adhere	to	language	constraints.	For
example,	identifiers	can’t	start	with	numbers,	use	whitespace,	or	be	a	reserved	word	in	the
language.	On	the	other	hand,	because	bracket	notation	utilizes	string	values,	it	allows	for
the	use	of	characters	that	otherwise	would	be	a	violation	of	the	syntax.	One	such	example
is	shown	in	Listing	2-4.

Listing	2-4.	Comparing	Notations

var	aBracketNotationCollectionA	=	new	Object();

				aBracketNotationCollectionA['1']="1";			//	creates	a	key	

of	"1"	and	assigns	it	the	string	value	'1'

var	aDotNotationCollectionB	=	new	Object();

				aDotNotationCollectionB.1="1";										//	throws	

a	SyntaxError

Array
Because	a	collection	retains	a	value	for	a	given	key,	a	value	is	obtained	directly	by
referencing	its	key.	Thus,	the	key	is	the	sole	conduit	through	which	a	value	is	reached.	For
this	reason,	the	Object	is	known	as	an	unordered	collection.	The	Array	is	a	specialized
descendant	of	the	JavaScript	Object,	which,	on	the	other	hand,	seeks	to	provide	an	order
among	values.

What	makes	the	Array	special	is	that	its	collective	behaviors	allow	for	cataloging	of
data	as	an	ordered	list.	In	order	to	accomplish	this,	the	Array	employs	the	use	of	numbers
to	stand	in	as	the	key	for	any	key/value	pair.	As	you	may	have	already	surmised,	because
numbers	are	involved,	rather	than	relying	on	dot	notation,	an	Array	requires	none	other
than	bracket	notation.	Listing	2-5	demonstrates	the	use	of	the	array	to	devise	an	ordered
collection	set.

Listing	2-5.	An	Ordered	List	of	the	Days	of	the	Week

var	orderedCollection	=	new	Array();	//instantiate	an	array	

instance

				orderedCollection[0]	=	'Sunday';

www.it-ebooks.info

http://www.it-ebooks.info/

				orderedCollection[1]	=	'Monday';

				orderedCollection[2]	=	'Tuesday';

				orderedCollection[3]	=	'Wednesday';

				orderedCollection[4]	=	'Thursday';

				orderedCollection[5]	=	'Friday';

				orderedCollection[6]	=	'Saturday';

As	revealed	by	Listing	2-5,	the	days	of	the	week	are	assigned	as	the	value	to	a	key,
similar	to	an	object.	The	difference	in	this	case	is	that	an	Array	employs	bracket	notation
to	allow	for	its	properties	to	be	specified	as	integers.	With	each	key	identified	as	a
sequence	of	integers,	values	can	be	obtained	in	the	precise	order	in	which	they	are
cataloged.	The	simplest	way	to	obtain	each	value	sequentially	is	with	a	for	loop,	as
shown	in	Listing	2-6.

Listing	2-6.	A	for	Loop	Is	Used	to	Read	from	an	Ordered	List

var	daysOfTheWeek	=	7;

for(var	i=0;	i<daysOfTheWeek;	i++)	console.log(

orderedCollection[i]);

If	you	were	to	run	Listing	2-6,	you	would	undoubtedly	see	the	days	of	the	week
printed	to	the	console	tab	within	the	developer’s	toolbar.	Furthermore,	they	would	be
output	in	the	order	they	are	assigned.

As	was	stated	earlier,	JavaScript	objects	are	collections	of	string/value	pairs.	Although
the	keys	of	an	array	are	numerical,	behind	the	scenes	each	integer	is	coerced	into	its	string
representation.

As	a	descendant	of	the	Object,	all	instances	of	the	array	possess	an	inherit	toString
method.	Unlike	the	default	value	output	earlier,	our	array	instance	provides	a	more
appropriate	value	upon	invocation,	as	seen	in	Listing	2-7.

Listing	2-7.	Demonstrating	the	String	Representation	of	an	array

var	orderedCollection	=	new	Array();								//instantiate	an	

array	instance

				orderedCollection[0]	=	'Sunday';

				orderedCollection[1]	=	'Monday';

				orderedCollection[2]	=	'Tuesday';

console.log(orderedCollection.toString());		//	

"Sunday,Monday,Tuesday"

As	demonstrated	in	Listing	2-7,	the	toString	implementation	results	in	the	joining
of	all	user-defined	values	possessed	by	the	collection	in	a	comma-delimited	string.
Because	our	collection	is	ordered,	the	values	within	the	returned	string	reflect	their	index
within	the	collection.

Object	Literals

www.it-ebooks.info

http://www.it-ebooks.info/

Both	the	Array	and	the	Object	can	be	instantiated	via	the	keyword	new.	Once	either
instance	is	created,	key/value	pairs	can	be	assigned	accordingly.	That	being	said,	both	the
Array	and	Object	are	capable	of	being	configured	without	this	syntactical	overhead.	To
better	illustrate	this	point,	take	a	look	at	Listing	2-8.

Listing	2-8.	Object	Literals	Can	Be	Designed	with	Members

var	array=	

["Sunday","Monday","Tuesday","Wednesday","Thursday","Friday","Saturday"];

				console.log(array[0]);			//outputs	"Sunday"

var	object=	{	firstProperty:	"hello	world"	};

				console.log(object.firstProperty);			//outputs	"hello	

world"

Listing	2-8	creates	two	object	literals.	The	first	represents	the	instance	of	the	Array,
while	the	latter	represents	an	instance	of	the	Object.	For	all	intents	and	purposes,	an	object
literal	is	just	another	way	to	arrive	at	an	instantiated	object.

While	it	may	not	appear	to	be	the	case,	the	instantiation	of	an	object	literal	and	the
instantiation	of	an	object	via	the	keyword	new	create	objects	similarly.	The	most
significant	difference	is	that	literals	can	be	instantiated	with	a	preconfigured	collection	of
key/values	pairs.	Literals	are	referred	to	as	such	because	they	are	instantiated	as	they	are
designed.

Utilizing	this	technique,	we	can	assign	key/value	pairs	to	the	object	prior	to	its
instantiation.	One	immediate	benefit	is	that	key/value	pairs	are	more	identifiable	without
the	added	dot/bracket	notation.	A	second	benefit	is	that	complex	collections	and	their
structures	can	be	defined	prior	to	the	existence	of	other	instances.	To	better	understand	the
preceding	statement,	consider	the	following	complex	collection	in	Listing	2-9.

Listing	2-9.	undefined	Assignment	of	internalObject

	1	var	externalObject	=	new	Object();

	2					externalObject.child	=	internalObject;

	3	var	internalObject	=	new	Array();

	4				internalObject[0]	=	'Sunday';

	5				internalObject[1]	=	'Monday';

	6				internalObject[2]	=	'Tuesday';

	7				internalObject[3]	=	'Wednesday';

	8				internalObject[4]	=	'Thursday';

	9				internalObject[5]	=	'Friday';

10				internalObject[6]	=	'Saturday';

11

12	console.log(externalObject.child);			//	outputs	undefined

Listing	2-9	instantiates	an	instance	of	the	Object	and	Array.	As	you	can	see,	the	object
instance	is	assigned	as	the	value	to	externalObject	(line	1).	Conversely,	the	array
instance	is	assigned	to	the	variable	labeled	internalObject	(line	3).	Because	a
property	can	be	assigned	any	valid	type	in	JavaScript,	we	will	devise	a	complex	structure

www.it-ebooks.info

http://www.it-ebooks.info/

where	our	object	instance	possesses	a	direct	reference	to	our	array	instance.	Used	to
represent	this	relationship	is	the	identifier	labeled	child	(line	2).

As	it	currently	stands,	externalObject.child	does	not	possess	a	reference	to
internalObject.	This	is	made	evident	by	the	undefined	value	that	is	printed	in	the
console	(line	12).	The	reason	the	value	is	not	assigned	is	simply	due	to	the	fact	that
internalObject	was	undefined	at	the	time	of	its	assignment	to
externalObject.child	(line	2).	Correcting	the	matter	in	this	particular	example	is
as	simple	as	moving	the	code	within	line	2	down	to	line	11,	as	seen	in	Listing	2-10.

Listing	2-10.	Moved	Assignment	of	Instance	Creation

	1	var	externalObject	=	new	Object();

	2

	3	var	internalObject	=	new	Array();

	4				internalObject[0]	=	'Sunday';

	5				internalObject[1]	=	'Monday';

	6				internalObject[2]	=	'Tuesday';

	7				internalObject[3]	=	'Wednesday';

	8				internalObject[4]	=	'Thursday';

	9				internalObject[5]	=	'Friday';

10				internalObject[6]	=	'Saturday';

11				externalObject.child	=	internalObject;

12	console.log(externalObject.child);			//	outputs	our	array	

as	expected

Listing	2-10	reflects	in	bold	our	changes.	Moving	the	order	in	which	our	child
property	is	assigned	does,	in	fact,	solve	our	issue.	Unfortunately,	this	reorganization	of
code	actually	decreases	the	continuity	of	keeping	code	organized	and	can	soon	become	a
maintenance	nightmare.	In	this	case,	our	code	was	subject	to	function	vs.	form,	not	the
other	way	around.

A	second	alternative	is	to	swap	altogether	the	order	in	which	both	instances	are
created,	as	seen	in	Listing	2-11.

Listing	2-11.	Reordering	of	Instantiations

	1	var	internalObject	=	new	Array();

	2				internalObject[0]	=	'Sunday';

	3				internalObject[1]	=	'Monday';

	4				internalObject[2]	=	'Tuesday';

	5				internalObject[3]	=	'Wednesday';

	6				internalObject[4]	=	'Thursday';

	7				internalObject[5]	=	'Friday';

	8				internalObject[6]	=	'Saturday';

	9	var	externalObject	=	new	Object();

10					externalObject.child	=	internalObject;

11

12		console.log(externalObject.child);			//	outputs	our	

www.it-ebooks.info

http://www.it-ebooks.info/

array	as	expected

Listing	2-11	has	solved	our	dilemma	in	the	most	ideal	way	that	the	new	keyword	can
provide.	Because	new	instantiates	bare	objects,	you	may	find	yourself	having	to	resort	to
reordering	code	simply	to	assign	key/value	pairs.	This	is	where	object	literals	can	truly
shine.

Because	collections	can	be	preconfigured	using	literal	syntax,	creating	nested
collections	is	as	simple	as	designing	them.	When	the	engine	evaluates	the	literal,	each
nested	collection	is	instantiated	on	demand.	The	end	result	is	the	same,	as	made	evident	by
the	output	on	line	4	of	Listing	2-12.

Listing	2-12.	Object	Literals	Are	Created	As	They	Are	Evaluated

1	var	externalObject	=	{

2									child:	["Sunday",	"Monday",	"Tuesday",	

"Wednesday",	"Thursday",	"Friday",	"Saturday"]

3					};

4	console.log(externalObject.child);							//	outputs	our	

array	as	expected

5	console.log(externalObject.toString());		//	[object	

Object]

Listing	2-12	employs	the	literal	syntax	of	the	object	and	array	to	configure	the
key/value	pairs	for	two	individual	collections.	Furthermore,	because	all	literals	are
instantiated	into	objects,	they	are	bestowed	with	any	and	all	inherited	behaviors.	This
accounts	for	the	ability	to	reference	the	toString	method	of	externalObject.

	Note		All	literals	in	the	JavaScript	language	are	instantiated	behind	the	scenes.

Designing	Literals
Because	both	Array	and	Object	are	collections	of	key/value	pairs,	the	term	designing
literals	simply	refers	to	the	incorporation	of	key/value	pairs	at	author	time.	Depending	on
whether	the	literal	is	that	of	an	object	vs.	an	array,	the	syntax	used	to	design	a	literal	will
vary.

The	Object	Literal
The	syntax	used	to	delimit	an	object	literal	is	the	use	of	the	opening	and	closing	brace	({,
})	symbols.	When	the	JavaScript	engine	encounters	an	assignment	of	a	variable	that
employs	the	aforementioned	delimiters,	behind	the	scenes,	an	instance	of	the	Object	type
is	instantiated	and	returned.	Listing	2-13	employs	the	object	literal	syntax	to	create	an
object	instance.

Listing	2-13.	Syntactical	Representation	of	an	Object	Literal

www.it-ebooks.info

http://www.it-ebooks.info/

1	var	emptyObject	=	{	};

						console.log(emptyObject.toString());		//	[object	

Object]

What	is	important	to	note	is	that	the	assignment	operation	informs	the	engine	to
evaluate	the	brackets	as	an	object	literal	rather	than	that	of	a	statement.	This	is	necessary
as	a	block	statement	employs	the	use	of	the	same	tokens	to	delimit	a	block	of	statements.

Currently	our	object	literal	remains	absent	of	any	key/value	pairs	and	thus	will	be
instantiated	at	runtime	without	any	custom	behaviors.	However	this	can	be	easily	changed,
as	seen	in	Listing	2-14.

Listing	2-14.	Object	Literal	with	a	Key/Value	Pair

var	literalObject	=	{

							firstProperty:"hello	world"

				};

console.log(literalObject.firstProperty);		//	"hello	world"

As	revealed	by	Listing	2-14,	a	key/value	pair	is	configured	by	specifying	an	identifier
along	with	its	value	separated	by	a	colon	(:)	token.	Listing	2-14	demonstrates	how
firstProperty	is	assigned	the	value	“hello	world”	with	literal	syntax.
Additionally,	literals	can	be	designed	with	multiple	key/value	pairs.	Each	key/value	pair
must	remain	separate	from	one	another.	This	is	achieved	by	separating	each	key/value	pair
with	a	comma	(,).	Listing	2-15	outlines	an	object	literal	that	possesses	three	key/value
pairs.

Listing	2-15.	Object	Literal	Designed	with	Multiple	Key/Value	Pairs

var	literalObject	=	{

								firstProperty	:	"hello	world",

								name										:	"iObjectA",

								toString						:	function(){	return	this.name;	}

				};

console.log(literalObject.toString());		//	"iObjectA"

Listing	2-15	revisits	our	previous	object	literal	from	Listing	2-14.	This	time	instead	of
configuring	a	singular	key/value	pair,	it	defines	three.	Note	the	use	of	the	commas	to
separate	each	key/value	pair.	Lastly,	one	thing	to	note	is	that	the	toString	method	is
assigned	with	a	function	that	explicitly	returns	the	name	property.	The	use	of	this
ensures	that	the	identifier	being	referenced	remains	scoped	to	the	context	of	our	instance.
Use	of	this	is	necessary	because	the	built-in	Object	does	not	possess	a	name	property,
only	our	literalObject.	Therefore,	we	must	ensure	the	scope	remains	relevant	to	the
instance	invoking	the	behavior.

The	Array	Literal
The	syntax	used	to	delimit	an	array	literal	is	the	use	of	the	opening	and	closing	bracket	([,
])	symbols.	When	the	JavaScript	engine	encounters	an	assignment	of	a	variable	that

www.it-ebooks.info

http://www.it-ebooks.info/

employs	the	aforementioned	delimiters,	behind	the	scenes	an	instance	of	the	Array	type	is
instantiated	and	returned.	Listing	2-16	employs	the	array	literal	syntax	to	create	an	empty
instance	of	the	Array	type.

Listing	2-16.	Syntactical	Representation	of	an	array	Literal

var	literalArray	=	[];

Currently,	our	literal	remains	absent	of	any	key/value	pairs	and,	thus,	will	be
instantiated	at	runtime	without	any	custom	behaviors.	However,	this	can	be	easily
changed,	as	seen	in	Listing	2-17.

Listing	2-17.	array	Literal	Designed	with	a	Key/Value	Pair

var	literalArray	=	["hello	world"];

Listing	2-17	reveals	an	array	literal	that’s	in	possession	of	a	singular	string	value.	You
may	notice	that	the	key	for	which	this	string	value	is	assigned	appears	to	be	missing.	In
fact,	it	is	not	missing	at	all.	As	you	may	recall,	the	Array	represents	an	ordered	collection.
This	means	that	each	value	supplied	is	implicitly	provided	an	index	key.	In	other	words,
when	our	literalArray	is	instantiated	as	an	object	at	runtime,	we	can	use	the	0
integer	and	bracket	notation	to	access	“hello	world”,	as	shown	in	Listing	2-18.

Listing	2-18.	Array	Literal	Value	Obtainable	via	Bracket	Notation

var	literalArray	=	["hello	world"];

console.log(literalArray[0]);		//	hello	world

As	with	the	object	literal	syntax,	multiple	values	can	be	supplied	to	an	ordered
collection	by	separating	multiple	values	with	a	comma,	as	shown	in	Listing	2-19.	Each
value	is	implicitly	provided	the	next	available	index	as	its	key.

Listing	2-19.	Array	Literal	Designed	with	Multiple	Key/Value	Pairs

var	literalArray	=	["hello	world","goodbye	world"];

console.log(literalArray[0]);		//	hello	world

console.log(literalArray[1]);		//	goodbye	world

Summary
This	chapter	provided	the	fundamentals	for	working	with	JavaScript	objects.	Objects	are
of	great	importance	not	only	to	the	language	itself,	but	to	JSON	as	well.

Key	Points	from	This	Chapter
Absolutely	everything	is	an	object.

All	classifications	in	their	most	generalized	form	are	objects.

Object	and	object	have	two	different	meanings.

www.it-ebooks.info

http://www.it-ebooks.info/

Object	(with	an	initial	capital	letter)	refers	to	the	JavaScript	Object
type.

An	object	refers	to	an	instance.

objects	are	collections.

Special	Objects	are	collections	of	like-minded	behaviors.

All	instances	implicitly	possess	their	ancestors’	behaviors.

toString	returns	the	string	representation	of	an	object.

new	is	used	to	create	instances	of	a	non-primitive	value.

Dot	notation	relies	on	identifiers.

Bracket	notation	relies	on	strings.

Objects	are	unordered	collections.

Arrays	are	ordered	collections.

Literals	can	be	instantiated	with	predefined	key/value	pairs.

All	literals	are	instantiated	via	objects	behind	the	scenes.

this	is	used	to	maintain	the	scope	of	the	property	being	accessed.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER	3

String	Manipulation
As	I	mentioned	in	Chapter	1,	a	JavaScript	application	is	written	entirely	as	a	sequence	of
Unicode	characters.	This	is	not	at	all	a	feature	exclusive	to	the	JavaScript	language.	Other
examples	are	HTML	and	CSS,	to	name	just	a	few.	Even	the	underlying	protocol	used	by
the	World	Wide	Web	is	an	entirely	text-based	communications	protocol.

Data	is	often	transmitted	in	the	form	of	text,	as	it’s	highly	interoperable.	This	is	due	to
the	fact	that	all	computers	have	the	ability	to	work	with	Unicode.	One	attribute	that	makes
JSON	highly	interoperable	is	that	it’s	composed	of,	and	transmitted	simply	as,	Unicode.
For	this	reason,	this	book	will	work	extensively	with	the	creation,	formation,	and	general
manipulation	of	strings	designed	for	both	inbound	and	outbound	traffic.

String	Concatenation
The	incorporation	of	the	string	literal	makes	creating	strings	an	absolute	cinch.	As	you
may	recall	from	Chapter	1,	a	string	value	represents	a	sequence	of	0	or	more	finite
Unicode	characters.	The	reason	why	the	definition	of	a	string	contains	the	word	finite	is
due	to	the	fact	that	JavaScript	strings	are	immutable.	In	other	words,	a	string’s	value	is	a
constant.	While	strings	themselves	are	immutable,	entirely	new	strings	can	be	created
simply	by	joining	two	strings	together	end-to-end,	using	the	addition	operator,	as	shown	in
Listing	3-1.

Listing	3-1.	Joining	Strings

1	var	str	=	"Hello"	+	"	World";

2	console.log(str);		//Hello	World

Listing	3-1	demonstrates	the	union	between	the	two	string	literals,	Hello
and		World,	via	the	addition	operator	(line	1).	The	result	of	the	union	will	be	that	of
Hello	World.	This	joining	of	strings,	known	as	string	concatenation,	is	the	language’s
simplest	means	of	string	manipulation.	It	is	the	concatenation	of	strings,	which	invites	our
application	to	build	strings	on	the	fly.

While	concatenation	is	solely	limited	to	strings,	we	can	use	the	addition	operator	to
coerce	primitive	values	into	their	string	representations.	This	offers	our	application	the
ability	to	capture	its	state	as	a	singular	string	value,	which	can	later	be	transmitted	across
the	Internet.	Consider	the	demonstration	in	Listing	3-2.

Listing	3-2.	Formatting	Data

1	var	userName	=	"Ben";

2	var	clickedButton	=	false;

www.it-ebooks.info

http://www.it-ebooks.info/

3	var	stringRepresentation	=	"username="+userName	

+"&clickedButton="	+	clickedButton;

4	console.log(stringRepresentation);		//	

"username=Ben&clickedButton=false"

Listing	3-2	employs	the	use	of	the	addition	operator	to	convert	and	append	the	existing
state	of	an	application	into	that	of	a	string	value.	This	results	in	the	production	of	a	string
containing	the	Unicode	characters	that	read	as
“username=Ben&clickedButton=false”.

The	way	in	which	our	data	is	represented	is	referred	to	as	a	data	format.	It	is	the
purpose	of	the	data	format	to	provide	a	structure	that	infers	the	meaning	of	all
concatenated	values.	Relying	on	a	lesser-known	data	format	makes	it	difficult	for	the
recipient	to	extract	or	analyze	the	individual	values.	This	book	will	regard	a	variety	of	data
formats	similar	to	the	preceding	one,	as	well	as	JSON.

The	String	Object
The	String	object	is	a	specialized	object	whose	collective	behaviors	facilitate	the
manipulation	of	a	string	value.	We	will	learn	more	of	its	behaviors	in	the	upcoming
sections.

Creating	String	Objects
Like	all	objects,	a	String	object,	is	created	using	the	keyword	new	followed	by	the
constructor	function	of	the	object-type.	As	revealed	by	the	syntax	of	the	String’s
constructor,	String(string);,	each	instance	must	be	provided	with	a	string	value
at	the	time	of	its	instantiation.	Listing	3-3	demonstrates	the	provision	of	the	string	literal
“test”.

Listing	3-3.	Instantiating	a	String	object

1	var	strObject	=	new	String("test");

2	console.log(strObject)	;			//String	{	0="t",	1="e",	

2="s",	3="t"	}

To	keep	things	succinct,	the	string	object	in	Listing	3-3	is	provided	with	a	string	literal.
However,	it	could	have	just	as	easily	been	supplied	an	identifier	that	evaluates	to	a	string
value.	Upon	the	instance’s	creation,	the	string	object	is	returned	and	assigned	to	the
strObject	variable	(line	1).	As	the	assignment	to	a	variable,	we	can	continue	to
reference	it	and	its	many	behaviors.

As	revealed	by	the	subsequent	line	(line	2),	logging	out	the	reference	to	our	instance
shows	that	the	provided	string	is	no	longer	retained	in	its	original	form.	Instead,	each
character	of	the	provided	string	has	been	separated	and	cataloged	within	our	collection.
Exploding	the	string	into	the	individual	characters	of	which	it	was	composed	becomes	the
foundation	from	which	all	manipulation	occurs.

www.it-ebooks.info

http://www.it-ebooks.info/

The	Interface	of	the	String	Object
As	outlined	in	Table	3-1,	the	interface	of	the	String	object	offers	a	wide	range	of	utility.
Furthermore,	it	is	inheritied	by	each	instance	to	allow	for	the	manipulation	and	formatting
of	the	string	value	for	which	it	is	provided.

Table	3-1.	String	object’s	Interface

Properties Type Description

length Property Returns	the	length	of	the	string

toString Method Returns	a	string	representation	of	the	collection

charAt Method Returns	the	character	at	the	specified	index

indexOf Method Returns	the	position	of	the	first	occurrence	of	a	substring

lastIndexOf Method Returns	the	last	occurrence	of	a	substring

match Method Matches	a	string	with	a	pattern	and	returns	all	matches	as	an	array

replace Method Replaces	text	in	a	string

slice Method Returns	a	section	of	a	string,	as	indicated	by	a	range

substr Method Returns	a	substring,	as	indicated	by	a	start	index,	through	a	specified	length

split Method Splits	a	string	into	substrings,	using	the	specified	separator,	and	returns	them
as	an	array

toUpperCase Method Converts	all	characters	in	the	string	to	uppercase

toLowerCase Method Converts	all	characters	in	the	string	to	lowercase

	Note		A	substring	can	be	a	singular	character	or	a	sequence	of	characters.

length
The	length	member	is	the	only	behavior	that	is	not	a	method.	The	sole	purpose	of	the
length	property	is	to	obtain	an	accurate	count	of	how	many	characters	are	retained
within	the	collection.	Both	forms	of	access	notation	can	access	the	length	member,	as
well	as	those	outlined	in	Table	3-1.	Listing	3-4	makes	use	of	dot	notation.

Listing	3-4.	Obtaining	a	String’s	Length

1	var	str	=	"test";

2	var	strObject	=	new	String(str);

3	console.log(strObject)	;			//String	{	0="t",	1="e",	

2="s",	3="t"	}

4	console.log(strObject.length);					//	4

www.it-ebooks.info

http://www.it-ebooks.info/

Listing	3-4	begins	by	assigning	the	string	literal	“test”	to	the	str	variable	(line	1).
Next,	we	instantiate	a	string	object	and	provide	our	str	variable	as	the	argument.	The
instance	is	then	assigned	as	the	reference	to	strObject	(line	2).	Utilizing	our	reference,
we	print	its	contents	to	the	console	(line	3).	Last,	utilizing	the	dot	notation,	we	access	the
length	property	and	print	the	resulting	value	to	the	console	(line	4).

As	you	can	see	in	Listing	3-4,	the	access	of	length	results	in	the	return	of	the
amount	of	characters	used	to	devise	the	original	string.	Understanding	the	total	character
count	will	be	a	great	benefit	when	manipulating	an	ordered	sequence	of	characters.

toString
The	toString	method,	whose	signature	is	that	of	toString();,	is	used	to	return	the
string	representation	of	the	value	possessed	by	our	collection.	It	is	worth	noting	that	the
toString	method	does	not	return	a	string	object,	but	rather	the	primitive-type	string.

charAt
The	charAt	method,	whose	signature	is	that	of	charAt(index);,	is	used	to	return
the	cataloged	character	whose	key	matches	the	specified	index.	As	the	string	object
represents	an	ordered	collection	of	characters,	the	first	character’s	index	is	always	0.
Obtaining	a	character	is	as	simple	as	providing	an	index	to	the	method,	as	seen	in	Listing
3-5.

Listing	3-5.	Obtaining	Unicode	Characters

var	str	=	"Hello	World";

var	strObject	=	new	String(str);

console.log(strObject.charAt(0));		//	H

console.log(strObject.charAt(1));		//	e

console.log(strObject.charAt(2));		//	l

	Note		As	an	ordered	collection,	the	returned	value	of	length	-1	will	always	be	the
index	to	the	last	character	in	the	collection.

By	pairing	the	charAt	and	the	length	property,	we	can	automate	our	efforts	by
way	of	a	for	loop,	as	seen	in	Listing	3-6.

Listing	3-6.	Iterating	Through	a	String’s	Characters

1	var	str	=	"Hello	World";

2	var	strObject	=	new	String(str);

3	var	length	=	strObject.length;

4	for(var	i=0;	i<length;	i++)		console.log(

strObject.charAt(i));

Listing	3-6	uses	a	for	loop	to	print	each	sequential	character	(line	3).	The	loop	begins
with	an	initial	variable,	i,	which	is	assigned	the	value	of	0.	In	order	to	ensure	that	all

www.it-ebooks.info

http://www.it-ebooks.info/

characters	are	evaluated,	the	condition	for	the	loop	determines	whether	the	current	value
of	i	is	less	than	the	total	length	of	characters	in	the	collection.	As	long	as	this	condition
evaluates	to	true,	our	statement	is	executed,	and	the	post-operation	increments	i	by	a
value	of	1.

indexOf
While	the	charAt	method	aims	to	return	a	character	at	the	specified	index,	the
indexOf	method	provides	the	inverse	behavior.	Instead	of	supplying	an	index	to	obtain
its	corresponding	character,	the	indexOf	enables	you	to	obtain	the	index	whereby	the
first	use	of	a	specified	subset	occurs.	Its	signature,	indexOf(subString[,
startIndex]);,	reveals	that	the	method	anticipates	a	possible	two	arguments.	The
first	represents	the	subString,	whose	index	we	seek,	while	the	second	parameter,
startIndex,	represents	an	offset	from	which	the	search	should	begin.	Because	the
startIndex	is	optional,	we	will	only	focus	on	the	required	parameter.	(See	Listing	3-
7).

Listing	3-7.	Obtaining	the	First	Location	for	a	Substring

1	var	str	=	"Hello	World";

2	var	strObject	=	new	String(str);

3	console.log(strObject.indexOf("H"));	//	0

Listing	3-7	relies	on	indexOf	to	obtain	the	location	for	the	first	determined
substring,	“H”,	within	our	string	value	(line	3).	As	you	may	have	expected,	the	result
returned	and	output	to	the	console	is	0.	It’s	worth	stressing	that	indexOf	only	returns	the
index	of	the	first	determined	substring.	Therefore,	if	the	substring	used	happens	to	occur
more	than	once	in	the	collection,	only	the	location	of	the	first	occurrence	will	be	returned,
as	shown	in	Listing	3-8.

Listing	3-8.	The	Index	of	the	First	Matched	Character	‘l’	is	Returned

1	var	str	=	"Hello	World";

2	var	strObject	=	new	String(str);

3	console.log(strObject.indexOf("l"));	//	2

If	a	sought	substring	does	not	exist	within	the	collection,	the	resulting	index	will	be
that	of	-1.	Because	our	ordered	list	can	only	possess	a	positive	sequence	of	numbers,	the
evaluation	of	-1	offers	our	application	the	ability	to	determine	whether	or	not	an	operation
should	take	place	via	a	control	statement,	as	seen	in	Listing	3-9.

Listing	3-9.	If	the	Index	of	-1	is	Returned,	the	Substring	is	Not	Present

1	var	str	=	"Hello	World";

2	var	strObject	=	new	String(str);

3	var	index	=	strObject.indexOf(";");

4	if(index>-1)		//perform	operation

5	else	console.log("substring	does	not	occur");

www.it-ebooks.info

http://www.it-ebooks.info/

As	shown	in	Listing	3-9,	we	can	incorporate	the	value	returned	by	indexOf	to
control	the	flow	of	our	application.	Listing	3-9	uses	a	conditional	operation	to	determine
whether	the	index	returned	is	greater	than	-1.	This	signifies	to	our	application	that	our
collection	possesses	the	substring	being	sought	after,	resulting	in	some	unknown	operation
being	performed.	However,	if	the	condition	is	not	met,	the	application	prints	to	the	console
“substring	does	not	occur”.

It’s	worth	stressing	that	indexOf	accepts	multiple	characters.	The	preceding	listings
have	only	supplied	a	singular	character.	In	addition	to	working	with	individual	characters,
indexOf	can	determine	the	starting	index	for	a	sequence	of	characters.	This	will	be	very
beneficial	when	attempting	to	obtain	the	location	of	a	substring	that	has	multiple
occurrences.	Consider	an	example	in	which	we	are	required	to	find	a	particular	occurrence
in	a	phrase	that	relies	on	repetition.	(See	Listing	3-10.)

Listing	3-10.	The	Index	of	the	First	Matched	Substring	is	Returned

1	var	str	=	"side	beside	besides	the	ocean";

2	var	strObject	=	new	String(str);

3	var	index	=	strObject.indexOf("side");

4	if(index>-1)	console.log(index);		//	0

5	else	console.log("substring	does	not	occur");

lastIndexOf
While	the	indexOf	method	returns	the	index	of	the	first	found	occurrence,
lastIndexOf	returns	the	index	of	the	last	found	occurrence	of	a	substring.	Similarly,	if
the	string	does	not	possess	the	provided	substring,	-1	is	returned	as	the	result.

The	method’s	signature,	lastIndexOf(subString[,	startIndex]);,	is
equal	to	that	of	indexOf.	It	expects	at	most	two	arguments;	however,	this	book	only
employs	the	first.	Listing	3-11	demonstrates	how	we	can	obtain	the	starting	index	for	the
last	occurrence	of	“side”	in	our	previous	string.

Listing	3-11.	Locating	the	Index	of	the	Last	Matched	Substring

1	var	str	=	"side	beside	besides	the	ocean";

2	var	strObject	=	new	String(str);

3	var	index	=	strObject.lastIndexOf("side");

4	if(index>-1)	console.log(index);		//14

5	else	console.log("substring	does	not	occur");

match
The	match	method,	whose	signature	is	match(pattern);,	is	used	to	locate
character	patterns	within	a	string.	An	invocation	of	the	match	accepts	a	string	value	or	a
regular	expression	and	returns	an	array	containing	all	matched	substrings	of	said	search.
Listing	3-12	demonstrates	the	provision	of	both	parameters	to	the	method.

Listing	3-12.	Obtaining	Matched	Substrings

www.it-ebooks.info

http://www.it-ebooks.info/

1	var	str	=	"username=Ben&clickedButton=false";

2	var	strObject	=	new	String(str);

3	var	stringMatches	=	strObject.match("username");

4	console.log(stringMatches);			//	["username"]

5	var	patternMatches	=	strObject.match(/[^&]+/g);

6	console.log(patternMatches);		//	["username=Ben",	

"clickedButton=false"]

Listing	3-12	begins	by	assigning	a	formatted	string	to	the	str	variable	(line	1).	From
there,	we	provide	it	as	the	value	to	initialize	our	instance	(line	2).

From	there,	the	string	“username”	is	provided	as	the	pattern	to	locate	within	our
string	(line	3).	This	results	in	the	return	of	an	array	containing	all	found	matches.	The
array	returned	reveals	that	it	has,	in	fact,	located	a	match	(line	4).	Alternatively,	we
employ	a	regular	expression	pattern	to	locate	any	and	all	series	of	characters	that	do	not
possess	the	&	token	(line	5).	The	array	returned	reveals	that	is	has,	in	fact,	located	two
matches	(line	6).

replace
The	replace	method,	whose	signature	is	replace(pattern,	replaceText);,
can	be	used	to	exchange	a	matching	substring	with	that	of	another.	Whether	or	not	a	match
is	found,	the	method	will	result	in	the	return	of	a	string	value.	Listing	3-13	utilizes	the
replace	method	to	substitute	all	found	occurrences	of	the	substring	“Hello”	with	that
of	“Goodbye”.

Listing	3-13.	Replacing	Matched	Substrings

1	var	str	=	"Hello	World";

2	var	strObject	=	new	String(str);

3	var	result	=	strObject.replace("Hello",	"Goodbye");

4	console.log(result);				//Goodbye	World

5	console.log(strObject);	//String	{	0="H",	1="e",	2="l",	

3="l",	4="o",	5="	",	...//truncated	}

Listing	3-13	employs	the	replace	method	in	order	to	substitute	the	substring
“Goodbye”	for	all	determined	occurrences	of	the	substring	“Hello”.	You	may	note
that	I	assign	the	resulting	string	to	a	variable	labeled	result	(line	3).	Because	strings	are
immutable,	meaning	they	cannot	be	altered,	the	result	of	the	behavior	produces	an	entirely
new	string.	It	does	not	attempt	to	alter	the	variable	it	was	initially	supplied.	Furthermore,
as	illustrated	on	line	5,	use	of	the	behaviors	possessed	by	our	string	object	will	not	alter
the	initial	characters	cataloged	by	the	collection.

	Note		All	strings	returned	by	the	methods	of	a	string	object	are	the	creation	of	a	new
string.

slice
www.it-ebooks.info

http://www.it-ebooks.info/

The	slice	method	is	used	to	return	a	substring	of	the	collection	determined	by	a	range	of
indexes.	The	method,	as	revealed	by	its	signature,	replace(start,	[end]);,
requires	a	starting	index	and	an	optional	ending	index.	All	characters	located	at	the
starting	index	and	up	to,	but	not	including,	the	ending	index	will	be	returned	to	the	caller
of	the	method.	If	the	end	index	is	not	specified,	the	substring	reflects	every	subsequent
character	beyond	the	starting	index.	Listing	3-14	demonstrates	how	we	can	extract	the
word	Hello	from	our	string	literal	by	utilizing	the	slice	method.

Listing	3-14.	Extracting	Substrings	with	slice

1	var	str	=	'Hello	World';

2	var	strObject	=	new	String(str);

3	var	index	=	strObject.indexOf('o');	//4;

4	var	result	=	strObject.slice(0,	index);

5	console.log(result);	//Hell

6	console.log(strObject.slice(0,	index	+	1));	//Hello

Listing	3-14	demonstrates	the	extraction	of	the	word	Hello	from	our	string	with	the
use	of	the	slice	method.	Because	we	know	that	Hello	begins	at	index	0,	we	simply	have
to	determine	which	index	is	used	to	signify	the	boundary	of	our	substring.	It	is	important
to	note	that	slice	returns	the	sequence	of	characters	from	the	start	index	up	to,	but	not
including,	the	ending	index.	This	is	why	line	4	outputs	Hell	rather	than	Hello.

Because	the	returned	substring	will	always	be	one	character	less	than	that	specified,
the	supplied	index	must	always	reflect	one	position	more	than	we	seek	to	obtain.	The
solution	is	to	add	1	to	the	determined	index	(line	6).

substr
The	substr	method	is	used	to	return	a	substring	within	a	specific	range.	The	substr
method	is	similar	to	the	slice	method	in	that	it	can	be	used	to	obtain	a	substring	within	a
given	boundary.	As	depicted	by	the	signature	substr(start	[,	length]);,	the
substr	method	can	accept	two	parameters;	however,	only	the	first	is	required.

The	required	parameter,	start,	signifies	where	the	substring	to	extract	begins.	This
value	can	be	followed	by	an	optional	number	of	characters	to	include	in	the	returned
substring.	The	key	difference	between	substr	and	slice	is	that	the	length	does	not
indicate	an	index.	Instead,	it	indicates	the	total	number	of	characters	(including	the
character	at	the	specified	start)	to	return	in	the	substring.	Listing	3-15	demonstrates	how
we	can	extract	the	word	World	from	the	string,	utilizing	the	substr	method.

Listing	3-15.	Extracting	Substrings	with	substr

1	var	str	=	'Hello	World';

2	var	strObject	=	new	String(str);

3	var	startIndex	=	strObject.indexOf('W');	//6;

4	var	length	=	(new	String('World')).length;	//4

5	var	result	=	strObject.substr(startIndex,	length);

www.it-ebooks.info

http://www.it-ebooks.info/

6	console.log(result);	//World

Listing	3-15	begins	by	obtaining	the	starting	index	for	our	substring,	'World'	(line
3).	Once	we	have	obtained	its	index,	we	can	supply	it	to	our	substr	method	as	the
starting	index.	Additionally,	we	can	provide	an	optional	number	of	characters,	which	will
determine	how	many	subsequent	characters	beyond	the	starting	point	to	be	returned.

In	this	case,	I	have	opted	to	supply	the	length	of	characters	possessed	by	the	substring
'World'.	This	is	achieved	by	creating	a	second	string	object,	supplying	it	with	the	string
'World',	and	obtaining	its	character	count	by	way	of	the	length	attribute	(line	4).
This	value	is	then	supplied	as	the	argument	that	identifies	the	total	length	of	characters	to
include	in	the	substring	(line	5).

	Note		If	the	optional	parameter	length	is	omitted,	all	characters,	from	the	start	index	to
the	end	of	the	string,	will	be	returned.

split
The	split	method	is	used	to	split	a	string	into	substrings	and	return	them	as	the	values
of	an	array.	As	revealed	by	the	method’s	signature	split(separator[,	limit]);,
the	method	expects	to	receive	at	most	two	arguments.	The	first	argument,	labeled
separator,	is	required,	while	the	latter	argument,	limit,	remains	optional.	This	book
will	only	make	use	of	the	separator	parameter.	The	separator	argument	is	used	to
define	the	delimiters	that	define	the	boundaries	of	substrings	captured	within	the	provided
string.	Listing	3-16	contains	one	such	string,	whereby	substrings	are	delimited	by	way	of
an	ordinary	comma.

Listing	3-16.	Separating	a	Comma-Delimited	String

1	var	strObject	=	new	String('ben,mike,ivan,kyle');

2	console.log(strObject.split(','));		//	

['ben','mike','ivan','kyle']

Listing	3-16	instantiates	a	string	object	and	supplies	it	with	a	comma-delimited	list	of
names	(line	1).	Next,	we	invoke	the	split	method	and	supply	it	with	the	substring	used
to	separate	each	name.	In	this	particular	case,	that	substring	is	a	comma,	resulting	in	the
return	of	an	ordered	collection	of	all	names	(line	2).

toUpperCase
The	toUpperCase	method	is	used	to	convert	all	characters	within	a	string	to	uppercase.
The	method	does	not	accept	any	parameters,	and	it	will	be	applied	to	an	entire	string,	as
seen	in	Listing	3-17.

Listing	3-17.	Capitalizing	All	Alphabetic	Characters

1	var	strObject	=	new	String('Hello	World');

2	console.log(strObject.toUpperCase());		//	HELLO	WORLD

www.it-ebooks.info

http://www.it-ebooks.info/

toLowerCase
Conversely,	unlike	the	toUpperCase	method,	the	toLowerCase	method	is	used	to
convert	all	alphabetic	characters	within	a	string	to	lowercase,	as	seen	in	Listing	3-18.

Listing	3-18.	Applying	Lowercase	to	All	Alphabetic	Characters

1	var	strObject	=	new	String('Hello	World');

2	console.log(strObject.toLowerCase());		//	hello	world

Aside	from	the	obvious	use	for	the	toUpperCase	and	toLowerCase	methods,
there	is	yet	another	reason	they	will	be	used	throughout	this	book.	When	working	with
text,	the	use	of	capitalization	or	lack	thereof	is	to	be	expected.	However,	this	makes	it
difficult	to	compare	two	strings	within	a	language	that	is	case-sensitive.	Listing	3-19
compares	strings	that	will	always	fail,	due	to	the	inconsistent	use	of	letter	casing.

Listing	3-19.	Comparisons	Are	Case-Sensitive

1	console.log('Hello	World'	===	'hello	world');	//false

2	console.log('Hello	world'	===	'hello	world');	//false

3	console.log('HELLO	WORLD'	===	'Hello	World');	//false

While	the	characters	used	in	both	words	may	appear	equal	to	us,	they	are	definitely	not
viewed	as	the	same	by	a	computer.	This	is	because	computers	view	uppercase	and
lowercase	letters	as	different	Unicode	values.	Therefore,	to	ensure	that	casing	is	not	an
issue	during	the	comparison	of	strings,	we	will	often	use	toUpperCase	and
toLowerCase	before	comparing	them.

The	Implicit	String	Object
The	preceding	listings	make	explicit	use	of	the	string	object,	in	order	to	tap	into	its	many
behaviors.	While	a	string	object	adds	great	value,	it	comes	at	the	cost	of	its	syntactical
overhead.	Consider	Listing	3-4,	which	required	the	instantiation	of	a	string	object	simply
to	obtain	the	length	of	characters	used	to	devise	a	string.	To	ease	this	burden	for
developers,	the	JavaScript	language	does,	in	fact,	offer	us	the	best	of	both	worlds.

As	mentioned	in	Chapter	1,	primitive	values	are	not	objects	and,	therefore,	cannot
possibly	possess	key/value	pairs.	Any	attempt	to	access	a	property	of	a	string,	or	any
primitive	type	for	that	matter,	would	ordinarily	throw	a	SyntaxError.	However,
JavaScript	seeks	to	reduce	the	syntactical	overhead	by	allowing	the	behaviors	of	the	string
object	to	be	accessed	through	a	primitive	string	via	access	notation.	Doing	so	prompts	the
engine	to	instantiate	a	string	object	on	our	behalf,	using	the	target	string	as	its	argument.
Once	the	instance	is	created,	the	accessed	behavior	is	fulfilled	by	the	instance	itself.
Listing	3-20	demonstrates	how	the	interface	of	the	string	object	can	be	accessed	indirectly
through	a	string	value.

Listing	3-20.	Implicit	Use	of	the	String	object

www.it-ebooks.info

http://www.it-ebooks.info/

1	var	strLiteral	=	'Hello	World';

2	console.log(strLiteral.toLowerCase());		//	hello	world

3	console.log(strLiteral.length);		//	11

4	console.log(strLiteral.substr(0	,	5));		//	Hello

Listing	3-20	begins	by	assigning	the	string	literal	'Hello	World'	to	the	variable
strLiteral	(line	1).	From	there,	each	subsequent	line	of	code	relies	on	dot	notation	to
reference	a	behavior	of	the	string	object.	Because	the	engine	recognizes	that	a	string	does
not	possess	any	attributes,	behind	the	scenes,	it	instantiates	a	string	object,	supplies	it	with
the	value	of	strLiteral,	and	returns	the	resulting	value.	The	result	is	precisely	the
same	as	if	we	instantiated	the	string	object	ourselves,	only	without	the	syntactical
overhead.	For	this	reason,	you	should	never	have	to	instantiate	a	string	object	directly.

Summary
This	chapter	has	introduced	you	to	the	behaviors	of	the	String	object,	which	will	be
employed	extensively	in	the	upcoming	chapters.	Each	behavior	covered	offers	our
applications	the	necessary	ability	to	work	extensively	with	strings.

When	it	comes	to	string	manipulation,	you	will	find	that	there	is	no	right	way	or	wrong
way	to	get	something	done.	It’s	as	the	old	adage	goes,	“There	is	more	than	one	way	to	skin
a	cat.”

Key	Points	from	This	Chapter
There	is	a	corresponding	object	for	each	primitive	type.

A	data	format	refers	to	the	way	data	is	assembled.

The	addition	operator	is	used	to	capture	application	logic	within	a
string.

The	string	primitive	has	pseudo	members	that	can	be	accessed	with
access	notation.

The	behaviors	of	the	string	object	can	be	used	indirectly.

The	HTTP	protocol	transmits	text.

The	comparison	between	strings	does	not	ignore	case.

Manipulating	a	string	does	not	alter	the	original.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER	4

Introducing	JSON
The	JavaScript	Object	Notation	data	format,	or	JSON	for	short,	is	derived	from	the	literals
of	the	JavaScript	programming	language.	This	makes	JSON	a	subset	of	the	JavaScript
language.	As	a	subset,	JSON	does	not	possess	any	additional	features	that	the	JavaScript
language	itself	does	not	already	possess.	Although	JSON	is	a	subset	of	a	programming
language,	it	itself	is	not	a	programming	language	but,	in	fact,	a	data	interchange	format.

JSON	is	known	as	the	data	interchange	standard,	which	subtextually	implies	that	it	can
be	used	as	the	data	format	wherever	the	exchange	of	data	occurs.	A	data	exchange	can
occur	between	both	browser	and	server	and	even	server	to	server,	for	that	matter.	Of
course,	these	are	not	the	only	possible	means	to	exchange	JSON,	and	to	leave	it	at	those
two	would	be	rather	limiting.

History
JSON	is	attributed	to	being	the	creation	of	Douglas	Crockford.	While	Crockford	admits
that	he	is	not	the	first	to	have	realized	the	data	format,1	he	did	provide	it	with	a	name	and	a
formalized	grammar	within	RFC	4627.	The	RFC	4627	formalization,	written	in	2006,
introduced	the	world	to	the	registered	Internet	media	type	application/json,	the	file
extension	.json,	and	defines	JSON’s	composition.	In	December	2009,	JSON	was
officially	recognized	as	an	ECMA	standard,	ECMA-404,	and	is	now	a	built-in	aspect	of
the	standardization	of	ECMAScript-262,	5th	edition.

Controversially,	another	Internet	working	group,	the	Internet	Engineering	Task	Force
(IETF),	has	also	recently	published	its	own	JSON	standard,	RFC	7159,	which	strives	to
clean	up	the	original	specification.	The	major	difference	between	the	two	standards	is	that
RFC	7159	states	that	a	valid	JSON	text	must	encompass	any	valid	JSON	values	within	an
initial	object	or	an	array,	whereas	the	ECMA	standard	suggests	that	a	valid	JSON	text	can
appear	in	the	form	of	any	recognized	JSON	value.	You	will	learn	more	about	the	valid
JSON	values	when	we	explore	the	structure	of	JSON.

It	is	important	to	remember,	as	we	get	further	into	the	structure	of	JSON,	that	as	a
subset	of	JavaScript,	it	remains	subject	to	the	same	set	of	governing	rules	defined	by	the
ECMA-262	standardization.	You	can	feel	free	to	read	about	the	latest	specification	at	the
following	URL:	www.ecma-
international.org/publications/files/ECMA-ST/Ecma-262.pdf.	At
the	time	of	writing,	the	current	edition	of	the	ECMA-262	standard	is	5.1;	however,	6	is
just	around	the	corner.

	Note		While	edition	5.1	is	today’s	current	standard,	at	the	time	of	JSON’s	formalization,

www.it-ebooks.info

http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://www.it-ebooks.info/

the	ECMA-262	standard	was	only	in	edition	3.

Crockford	documented	JSON’s	grammar	on	http://json.org	in	2001,	and	soon
word	began	to	spread	that	there	was	an	alternative	to	the	XML	data	format.	With	the
widespread	adoption	of	Ajax	(Asynchronous	JavaScript	and	XML),	JSON’s	popularity
began	to	soar,	as	people	began	to	note	its	ease	of	implementation	and	how	it	rivaled	that	of
XML.	You	would	think	that	Ajax	would	have	enforced	the	adoption	of	XML,	as	the	x
within	the	acronym	strictly	refers	to	XML.	However,	being	modeled	after	SGML,	a
document	format,	XML	possesses	qualities	that	make	it	very	verbose,	which	is	not	ideal
for	data	transmission.	One	of	the	reasons	JSON	has	become	the	de	facto	data	format	of	the
Web,	as	you	will	shortly	see	in	the	upcoming	section,	is	due	to	its	grammatical	simplicity,
which	allows	for	JSON	to	be	highly	interoperable.

JSON	Grammar
JSON,	in	a	nutshell,	is	a	textual	representation	defined	by	a	small	set	of	governing	rules	in
which	data	is	structured.	The	JSON	specification	states	that	data	can	be	structured	in	either
of	the	two	following	compositions:

1.	 A	collection	of	name/value	pairs

2.	 An	ordered	list	of	values

Composite	Structures
As	the	origins	of	JSON	stem	from	the	ECMAScript	standardization,	the	implementations
of	the	two	structures	are	represented	in	the	forms	of	the	object	and	array.	Crockford
outlines	the	two	structural	representations	of	JSON	through	a	series	of	syntax	diagrams.
As	I	am	sure	you	will	agree,	these	diagrams	resemble	train	tracks	from	a	bird’s-eye	view
and	thus	are	also	referred	to	as	railroad	diagrams.	Figure	4-1	illustrates	the	grammatical
representation	for	a	collection	of	string/value	pairs.

Figure	4-1.	Syntax	diagram	of	a	string/value	pair	collection

As	the	diagram	outlines,	a	collection	begins	with	the	use	of	the	opening	brace	({),	and
ends	with	the	use	of	the	closing	brace	(}).	The	content	of	the	collection	can	be	composed
of	any	of	the	following	possible	three	designated	paths:

The	top	path	illustrates	that	the	collection	can	remain	devoid	of	any
string/value	pairs.

The	middle	path	illustrates	that	our	collection	can	be	that	of	a	single

www.it-ebooks.info

http://json.org
http://www.it-ebooks.info/

string/value	pair.

The	bottom	path	illustrates	that	after	a	single	string/value	pair	is
supplied,	the	collection	needn’t	end	but,	rather,	allow	for	any	number
of	string/value	pairs,	before	reaching	the	end.	Each	string/value	pair
possessed	by	the	collection	must	be	delimited	or	separated	from	one
another	by	way	of	a	comma	(,).

	Note		String/value	is	equivalent	to	key/value	pairs,	with	the	exception	that	said	keys
must	be	provided	as	strings.

An	example	of	each	railroad	path	for	a	collection	of	string/value	can	be	viewed	within
Listing	4-1.	The	structural	characters	that	identify	a	valid	JSON	collection	of	name/value
pairs	have	been	provided	emphasis.

Listing	4-1.	Examples	of	Valid	Representations	of	a	Collection	of	Key/Value	Pairs,	per
JSON	Grammar

//Empty	Collection	Set

{};

//Single	string/value	pair

{"abc":"123"};

//Multiple	string/value	pairs

{"captainsLog":"starDate	9522.6","message":"I've	never	trusted	

Klingons,	and	I	never	will."};

Figure	4-2	illustrates	the	grammatical	representation	for	that	of	an	ordered	list	of
values.	Here	we	can	witness	that	an	ordered	list	begins	with	the	use	of	the	open	bracket
([)	and	ends	with	the	use	of	the	close	bracket	(]).

Figure	4-2.	Syntax	diagram	of	an	ordered	list

The	values	that	can	be	held	within	each	index	are	outlined	by	the	following	three
“railroad”	paths:

The	top	path	illustrates	that	our	list	can	remain	devoid	of	any	value(s).

The	middle	path	illustrates	that	our	ordered	list	can	possess	a	singular
value.

The	bottom	path	illustrates	that	the	length	of	our	list	can	possess	any
number	of	values,	which	must	be	delimited,	that	is,	separated,	with	the
use	of	a	comma	(,).

www.it-ebooks.info

http://www.it-ebooks.info/

An	example	of	each	railroad	path	for	the	ordered	list	can	be	viewed	within	Listing	4-2.
The	structural	tokens	that	identify	a	valid	JSON	ordered	list	have	been	emphasized.

Listing	4-2.	Examples	of	Valid	Representations	of	an	Ordered	List,	per	JSON	Grammar

//Empty	Ordered	List

[];

//Ordered	List	of	multiple	values

["abc"];

//Ordered	List	of	multiple	values

["0",1,2,3,4,100];

You	may	have	found	yourself	wondering	how	it	came	to	be	that	the	characters	[,],	{,
and	}	represent	an	array	and	an	object,	as	illustrated	in	Listing	4-1	and	Listing	4-2.	The
answer	is	quite	simple.	These	come	directly	from	the	JavaScript	language	itself.	These
characters	represent	the	Object	and	Array	quite	literally.

As	was	stated	in	Chapter	2,	both	an	object	and	an	array	can	be	created	in	one	of	two
distinct	fashions.	The	first	invokes	the	creation	of	either,	through	the	use	of	the	constructor
function	defined	by	the	built-in	data	type	we	wish	to	create.	This	style	of	object	invocation
can	be	seen	in	Listing	4-3.

Listing	4-3.	Using	the	new	Keyword	to	Instantiate	an	object	and	array

var	objectInstantion			=	new	Object();		//invoking	the	

constructor	returns	a	new	Object

var	arrayInstantiation	=	new	Array();			//invoking	the	

constructor	returns	a	new	Array

The	alternative	manner,	which	we	can	use	to	create	either	object	or	array,	is	by	literally
defining	the	composition	of	either,	as	demonstrated	in	Listing	4-4.

Listing	4-4.	Creation	of	an	object	and	an	array	via	Literal	Notation

var	objectInstantion			=	{};	//creation	of	an	empty	object

var	arrayInstantiation	=	[];	//creation	of	an	empty	array

Listing	4-4	demonstrates	how	to	create	both	an	array	and	an	object,	explicitly	using
JavaScript’s	literal	notation.	However,	both	instances	are	absent	of	any	values.	While	it	is
perfectly	acceptable	for	an	array	or	object	to	exist	without	content,	it	will	be	more	likely
that	we	will	be	working	with	ones	that	possess	values.

Because	object	literals	can	be	used	to	design	the	composition	of	objects	within	source
code,	they	can	also	be	provisioned	with	properties	as	they	are	authored.	Listing	4-5	should
begin	to	resemble	the	syntax	diagrams	we	just	reviewed.

Listing	4-5.	Designing	an	object	and	array	via	Literal	Notation	with	the	Provision	of
Properties

var	objectInstantion			=	{name:"ben",age:36};

var	arrayInstantiation	=	["ben",36];

www.it-ebooks.info

http://www.it-ebooks.info/

	Note		While	Listing	4-4	and	Listing	4-5	illustrate	the	creation	of	objects	through	the	use
of	literals,	JSON	uses	literals	to	capture	the	composition	of	data.

The	JSON	data	format	expresses	both	objects	and	arrays	in	the	form	of	their	literal.	In
fact,	JSON	uses	literals	to	capture	all	JavaScript	values,	except	for	the	Date	object,	as	it
lacks	a	literal	form.

What	you	may	not	have	noticed,	due	to	its	subtlety,	is	that	JavaScript	object	literals	do
not	require	its	key	identifiers	to	be	explicitly	defined	as	strings.	Take,	for	example,	the
literal	declaration	of	{name:“ben”,	age:36};	from	Listing	4-5.	It	could	have
equally	been	declared	as	{“name”:“ben”,	age:36};.	Both	declarations	will	create
the	same	object,	allowing	our	program	to	reference	the	same	name	property	equally.
Consider	the	code	within	Listing	4-6.

Listing	4-6.	Object	Keys	Can	Be	Defined	Explicitly	or	Implicitly	As	Strings

var	objectInstantionA			=	{name:"ben",age:36};

var	objectInstantionB			=	{"name":"ben",age:36};

console.log(objectInstantionA.name);		//	"ben"

console.log(objectInstantionB.name);		//	"ben"

The	reason	the	preceding	example	works	is	because,	behind	the	scenes,	JavaScript
turns	every	key	identifier	into	a	string.	That	said,	it	is	imperative	that	the	key	of	every
value	pair	be	wrapped	in	double	quotes	to	be	considered	valid	JSON.	This	is	due	to	the
many	reserved	keywords	in	JSON’s	superset	and	the	fact	that	ECMA	3.0	grammar
prohibits	the	use	of	keywords	as	the	properties	held	by	an	object.	The	ECMA	3.0	grammar
does	not	allow	reserved	words	(such	as	true	and	false)	to	be	used	as	a	key	identifier	or	to
the	right	of	the	period	in	a	member	expression.2	Listing	4-7	demonstrates	the	first	JSON
text	used	to	interchange	data.3

Listing	4-7.	The	Very	First	JSON	Message	Used	by	Douglas	Crockford

var	firstJSON	=		{to:"session",do:"test","message":"Hello	

World"};	//Syntax	Error	in	ECMA	3

However,	this	JSON	text	produced	an	error	instantly,	due	to	the	use	of	the	reserved
keyword	do	as	the	property	name	of	a	string/value	pair.	Rather	than	outlining	all	words
that	would	then	cause	such	syntax	errors,	Crockford	found	it	simpler	to	formalize	that	all
property	names	must	be	explicitly	expressed	as	strings.

	Note		If	you	were	to	reference	the	exact	preceding	code	expecting	to	arrive	at	a	syntax
error,	you’ll	likely	be	confused	why	none	is	thrown.	The	ECMAScript,	5th	edition	allows
for	keywords	to	now	be	used	with	dot	notation.	However	the	JSON	spec	continues	to
account	for	legacy.

JSON	Values
As	mentioned	earlier,	JSON	is	a	subset	of	JavaScript	and	does	not	add	anything	that	the

www.it-ebooks.info

http://www.it-ebooks.info/

JavaScript	language	does	not	possess.	So,	naturally,	the	values	that	can	be	utilized	within
our	JSON	structures	are	represented	by	types,	as	outlined	within	the	3rd	edition	of	the
ECMA	standard.	JSON	makes	use	of	four	primitive	types	and	two	structured	types.

The	next	figure	in	succession,	Figure	4-3,	defines	the	possible	values	that	can	be
substituted	where	the	term	value	appears	in	Figures	4-1	and	4-2.	A	JSON	value	can	only
be	a	representative	of	string,	number,	object,	array,	true,	false,	and	null.	The	latter	three
must	remain	lowercased,	lest	you	invoke	a	parsing	error.	While	Figure	4-3	does	not	clearly
demonstrate	it,	all	JSON	values	can	be	preceded	and	succeeded	by	whitespace,	which
greatly	assists	in	the	readability	of	the	language.

Figure	4-3.	Syntax	diagram	illustrating	the	possible	values	in	JSON

String	literals	in	the	JavaScript	language	can	possess	any	number	of	Unicode
characters	enclosed	within	either	single	or	double	quotes.	However,	it	will	be	important	to
note,	as	outlined	in	Figure	4-4,	that	a	JSON	string	must	always	begin	and	end	with	the	use
of	double	quotes.	While	Crockford	does	not	justify	this,	it	is	for	interoperable	reasons.	The
C	programming	grammar	states	that	single	quotes	identify	a	single	character,	such	as	a	or
z.	A	double	quote,	on	the	other	hand,	represents	a	string	literal.	While	Figure	4-4	appears
verbose,	there	are	only	four	possible	paths.

www.it-ebooks.info

http://www.it-ebooks.info/

Figure	4-4.	Syntax	diagram	of	the	JSON	string	value

The	topmost	path	illustrates	that	our	string	literal	can	be	absent	of	any
Unicode	characters.

The	middle	path	illustrates	that	our	string	can	possess	any	Unicode
characters	(represented	in	literal	form),	except	for	the	following:	the
quotation	mark,	the	backslash	(solidus).

The	last	several	paths	illustrate	that	we	can	insert	into	our	string
control	characters	with	the	use	of	a	solidus	(\)character	preceding	it.
Additionally,	the	bottommost	rung	specifies	that	any	character	can	be
defined	in	its	Unicode	representation.	To	indicate	that	the	preceding	u
character	is	used	to	identify	a	Unicode	value,	it,	too,	must	be	escaped.

The	second	topmost	path	represents	our	loop,	which	allows	the
addition	of	any	of	the	outlined	characters.

Listing	4-8	demonstrates	a	variety	of	valid	string	values.

Listing	4-8.	Examples	of	Valid	String	Values	As	Defined	by	the	JSON	Grammar

//absent	of	unicode

"";

//random	unicode	characters

"∑";	or	"	";

//use	of	escaped	character	to	display	double	quotes;

"	\"	\"	";

//use	of	\u	denotes	a	unicode	value

"\u22A0";	//	outputs

//a	series	of	valid	unicode	as	defined	by	the	grammar

www.it-ebooks.info

http://www.it-ebooks.info/

"\u22A0			\"	∑	\n";

A	solidus,	better	known	as	a	backslash,	is	used	to	demarcate	characters	as	having	an
alternate	meaning.	Without	the	use	of	the	\,	the	lexer	might	interpret	as	a	token	what	is
intended	to	be	used	as	a	string,	or	vice	versa.	Escaping	characters	offers	us	the	ability	to
inform	the	lexer	to	handle	a	character	in	a	manner	that	is	different	from	its	“normal”
behavior.	Table	4-1	illustrates	the	use	of	the	escaped	literals	for	the	prohibited	characters.

Table	4-1.	Escaped	Literals

The	last	value	to	discuss	is	that	of	the	number.	A	number	in	JSON	is	the	arrangement
of	base10	literals,	in	combination	with	mathematical	notation	to	define	a	real	number
literal.	Figure	4-5	addresses	the	syntactical	grammar	of	the	JSON	number	in	great	detail;
however,	it’s	rather	simple	when	we	view	it	step-by-step.

Figure	4-5.	Syntax	diagram	of	a	JSON	number

The	first	thing	to	note	is	that	the	numbers	grammar	does	not	begin	or	end	with	any
particular	symbolic	representation,	as	our	earlier	object,	array,	and	string	examples	did.

As	illustrated	in	Figure	4-5,	a	JSON	number	must	adhere	to	the	following	rules:

1.	 The	number	literal	will	be	implicitly	positive,	unless	explicitly
indicated	as	a	negative	value.

2.	 Numbers	cannot	possess	superfluous	0’s.

www.it-ebooks.info

http://www.it-ebooks.info/

3.	 Can	be	in	the	form	of	a	whole	number

a.	 made	up	of	a	single	BASE10	numeric	literal	(0-9)

b.	 made.	any	number	of	BASE10	numeric	literals	(0-9)

4.	 Can	be	in	the	form	of	a	fraction

4.1.		Made	up	of	a	singular	base10	numerical	literal	at	the	10s
placement

4.2.		Made	up	of	any	base10	numerical	literal	per	placement	beyond
the	decimal

5.	 Can	possess	the	exponential	demarcation	literal

5.1.		E	notation	can	be	expressed	in	the	form	of	a	uppercase	“E”	or
lowercase	“e”

5.2.		Immediately	followed	by	a	signed	sequence	of	1	or	more
base10	numeric	literals	(0-9)

Listing	4-9	reveals	valid	numerical	values	as	defined	by	the	JSON	grammar.

Listing	4-9.	Valid	Numerical	Values

-0.01			//valid	use	of	0's

	00.1			//superfluous	0	produces	a	SyntaxError

	1/3				//fraction	form

	.3333333333333333	//decimal	form

	1.2e-1	//scientific	notation

Any	of	the	values	discussed	in	this	chapter	can	be	used	in	any	combination	when
contained	within	a	composite	structure.	Listing	4-10	illustrates	how	they	can	be	mixed	and
matched.	What	is	necessary	is	that	the	JSON	grammar	covered	is	followed.	The	examples
in	Listing	4-10	demonstrate	proper	adherence	of	the	JSON	grammar	to	portray	data.

Listing	4-10.	Examples	of	JSON	Text	Containing	a	Variety	of	Valid	JSON	Values

//	JSON	text	of	an	array	with	primitives

[

				null,		true,	8

]
//	JSON	text	of	an	object	with	two	members

{

				"first":	"Ben",

				"last":	"Smith",

}
//	JSON	text	of	an	array	with	nested	composites

[

				{		"abc":	"123"	},

				["0",	1,		2,	3,	4,	100]

]

www.it-ebooks.info

http://www.it-ebooks.info/

//JSON	text	of	an	object	with	nested	composites

{

				"object":	{

								"array":	[true]

				}

}

JSON	Tokens
While	the	Object	and	Array	are	conventions	used	in	JavaScript,	JavaScript,	like	many
programming	languages,	borrowed	from	the	C	language	in	one	form	or	another.	While	not
every	language	explicitly	implements	Arrays	and	Objects	akin	to	JavaScript,	they	do	often
possess	the	means	to	model	collections	of	key/value	pairs	and	ordered	lists.	These	may
take	on	the	form	of	Hash	maps,	dictionaries,	Hash	tables,	vectors,	collections,	and	lists.
Furthermore,	most	languages	will	be	capable	of	working	with	text,	which	is	precisely	what
JSON	is	based	on.

At	the	end	of	the	day,	JSON	is	nothing	more	than	a	sequence	of	Unicode	characters.
However,	the	JSON	grammar	standardizes	which	Unicode	characters	or	“tokens”	define
valid	JSON,	in	addition	to	demarcating	the	values	contained	within.

Therefore,	when	regarding	the	interchange	of	JSON	and	the	many	languages	that	do
not	natively	possess	Objects	and	Arrays,	the	tokens	that	make	up	the	JSON	text	are	all	that
is	required	to	interpret	if	any	collections	or	ordered	lists	exist	and	apply	all	values	in	a
manner	required	of	that	language.	This	is	accomplished	with	six	structural	characters,	as
listed	in	Table	4-2.

Table	4-2.	Six	Structural	Character	Tokens

One	point	to	note	is	that	JSON	will	ignore	all	insignificant	whitespace	before	or	after
the	preceding	six	structural	tokens.	Table	4-3	illustrates	the	four	whitespace	character
tokens.

Table	4-3.	Four	Whitespace	Character	Tokens

www.it-ebooks.info

http://www.it-ebooks.info/

Because	JSON	is	nothing	more	than	text,	you	may	find	it	rather	difficult	to	determine
whether	your	JSON	is	properly	formatted	or	not.	Furthermore,	if	the	syntax	is	inaccurate
to	the	grammar	specified,	then	you	will	find	that	your	malformed	JSON	causes	code	to
come	to	a	halt.	This	would	be	due	to	the	syntax	error	that	would	be	uncovered	at	the	time
of	trying	to	parse	said	JSON.	You	will	learn	about	parsing	in	Chapter	6.

For	this	reason,	any	attempt	to	devise	JSON	by	hand	should	be	performed	with	the	aid
of	an	editor.	The	following	list	of	JSON	editors	understand	the	JSON	grammar	and	are
able	to	offer	some	much	needed	and	immediate	validation.

http://jsoneditoronline.org/

http://jsonlint.com/

The	first	editor,	http://jsoneditoronline.org/,	adheres	to	the	ECMA-262
standardization	and,	therefore,	allows	your	JSON	text	to	represent	a	singular	primitive
value.	Whereas	the	ladder	follows	the	RFC	7159	standardization,	thus	requiring	a	JSON
text	to	represent	a	structural	value,	i.e.,	array	or	object	literal.	It	should	be	made	known
that	the	two	editors	mentioned	previously	are	not	the	only	two	in	existence.	There	are
many	online	and	offline	editors,	each	with	its	own	nuances.	I	favor	the	two	mentioned,	for
their	convenience.

Summary
In	this	chapter,	I	covered	the	history	of	JSON	and	the	specifications	of	the	JSON	data
format	that	defines	the	grammar	of	a	valid	JSON	text.	You	learned	that	JSON	is	a	highly
interoperable	format	for	data	interchange.	This	is	achieved	via	the	standardization	of	a
simplistic	grammar	that	can	be	translated	into	any	language	simply	by	understanding	the
grammar.

As	was	demonstrated	in	this	chapter,	we	can	use	the	JSON	grammar	in	conjunction
with	predetermined	data	to	create	JSON.	Because	we	are	simply	working	with	text,	it	will
be	helpful	to	rely	on	an	editor	that	understands	JSON’s	grammar,	for	validation	purposes.
However,	JSON	can	be	written	with	a	basic	text	editor	and	saved	as	a	JSON	document,
using	the	file	extension	.json.	Furthermore,	as	a	subset	of	JavaScript,	JSON	can	even	be
hard-coded	within	a	JavaScript	file	directly.	Both	methods	are	ideal	for	devising
configuration	files	for	an	application.

The	next	chapter	will	reveal	how	we	can	use	the	JavaScript	language	to	produce	JSON
at	runtime.

www.it-ebooks.info

http://jsoneditoronline.org/
http://jsonlint.com/
http://jsoneditoronline.org/
http://www.it-ebooks.info/

Key	Points	from	This	Chapter
The	array	represents	an	ordered	list	of	values,	whereas	the	object
represents	a	collection	of	key/value	pairs.

Unordered	collections	of	key/value	pairs	are	contained	within	the
following	opening	({)	and	closing	(})	brace	tokens.

Ordered	lists	are	encapsulated	within	opening	([)	and	closing	(])
square	bracket	tokens.

The	key	of	a	member	must	be	contained	in	double	quotes.

The	key	of	a	member	and	its	possessed	value	must	be	separated	by	the
colon	(:)	token.

Multiple	values	within	an	object	or	array	must	be	separated	by	the
comma	(,)	token.

Boolean	values	are	represented	using	lowercase	true/false	literals.

Number	values	are	represented	using	double-precision	floating
number	point	format.

Number	values	can	be	specified	with	scientific	notation.

Control	characters	must	be	escaped	via	the	reverse	solidus	(\)	token.

Null	values	are	represented	as	the	literal:	null.

1http://yuiblog.com/yuitheater/crockford-json.m4v.

2Allen	Wirfs-Brock,	“ES	3.1	‘true’	as	absolute	or	relative?”	https://mail.mozilla.org/pipermail/es-
discuss/2009-April/009119.html,	April	9,	2009.

3http://yuiblog.com/assets/crockford-json.zip.

www.it-ebooks.info

http://yuiblog.com/yuitheater/crockford-json.m4v
https://mail.mozilla.org/pipermail/es-discuss/2009-April/009119.html
http://yuiblog.com/assets/crockford-json.zip
http://www.it-ebooks.info/

CHAPTER	5

Creating	JSON
Serialization	is	the	process	of	taking	a	snapshot	of	a	data	structure	in	a	manner	that	allows
it	to	be	stored,	transmitted,	and	reconstructed	back	into	a	data	structure	at	a	later	point	in
time.	As	serialization	is	merely	a	process	rather	than	the	utilization,	its	applications	are
mainly	limited	by	your	application’s	needs.	This	chapter	will	explore	the	serialization
methods	utilized	by	the	JavaScript	language	and	required	of	the	JSON	subset.

While	serialization	may	seem	like	a	mystical	concept,	the	result	of	the	snapshot,	at	the
most	atomic	level,	is	nothing	more	than	a	string.	The	serialization	process	is	simply	the
construction	of	said	string,	which	often	occurs	behind	the	scenes.	What	is	important	to
note	is	that	in	JavaScript,	the	produced	string	incorporates	the	representations	of	data	in
their	literal	forms.	By	capturing	data	in	their	literal	form,	each	literal	can	be	evaluated
back	into	its	respective	JavaScript	values.

	Note		A	serialized	value	could	result	in	a	simple-looking	string,	such	as	“\“Hello-
World\””	or	“false”.

You	learned	in	Chapter	4	that	any	C	language	can	easily	work	with	JSON.	The	most
prominent	reason	is	that	all	C	languages	possess	a	means	to	represent	collections	of
name/value	pairs,	ordered	lists,	Booleans,	and	strings.	Nevertheless,	in	the	few	cases	in
which	the	literals	that	make	up	the	JSON	subset	are	not	inherently	understood	by	a
specific	language,	a	translation	among	grammars	can	take	place.	This	occurs	by	simply
deconstructing	the	JSON	text	into	a	series	of	tokens	and	deriving	meaningful	structures
that	are	possible	within	the	grammar	of	that	particular	language.

	Note		Grammar	translation	is	the	process	of	converting	the	syntax	of	one	language
equivalently	into	that	of	another.

Conversely,	one	can	construct	JSON	from	any	data	structure,	simply	by	following	the
grammar	defined	by	the	JSON	specification.	In	Chapter	6,	you	will	learn	more	about	such
reconstruction.	This	chapter	will	focus	on	how	to	create	a	JSON	text	from	JavaScript
values.

The	Serialization	Process—Demystified
As	was	discussed	in	Chapter	3,	all	JavaScript	values	can	be	converted	into	their	string
equivalent	form	by	adding	it,	via	the	addition	operator,	with	another	string,	as	seen	in
Listing	5-1.

Listing	5-1.	Concatenating	Primitive	Values	with	Strings

www.it-ebooks.info

http://www.it-ebooks.info/

""+1;									//produces	"1"

""+true;						//produces	"true"

""+null;						//produces	"null"

""+undefined;	//produces	"undefined"

""+"Hello";			//produces	"Hello"

While	the	string	representations	for	all	primitive	values	are	captured	as	expected,	as
displayed	in	Listing	5-2,	the	same	cannot	be	said	of	non-primitive	values.

Listing	5-2.	Concatenating	Non-Primitive	Values	with	Strings

""+{identifier:"Hello"};								//produces	"[object	Object]"

""+["Hello",["hello","World"]];	//produces	

"Hello,hello,World"

As	revealed	in	Listing	5-2,	while	the	JavaScript	language	possesses	the	ability	to
create	objects	out	of	literal	forms,	there	is	no	easy	way	to	perform	the	contrary.	In	order	to
deconstruct	an	object	into	that	of	its	literal	form,	the	members	of	an	instance	must	be
traversed,	analyzed,	and	assembled	piece	by	piece	into	its	corresponding	literal	form.

To	accomplish	this	undertaking,	we	must	rely	on	the	use	of	loops,	string	manipulation,
and	the	appropriate	sequencing	of	the	necessary	structural	tokens,	listed	in	Table	5-1.

Table	5-1.	The	Six	Structural	Character	Tokens

Token Literal Name

Array	Opening [Left	Square	Bracket

Array	Closing] Right	Square	Bracket

Object	Opening { Left	Curly	Bracket

Object	Closing } Right	Curly	Bracket

Name/Value	Separator : Colon

Value	Separator , Comma

The	following	code	in	Listing	5-3	demonstrates,	as	succinctly	as	possible,	a	method
that	transforms	a	supplied	object	into	that	of	its	literal	form	counterpart.

Listing	5-3.	Converting	an	object	and	Its	Property	into	an	object	literal

	1		var	author	=	new	Object();

	2						author.name	=	"Ben";

	3		var	literal	=	stringify(author);

	4		function	stringify(structure){

						//if	the	structure	supplied	possesses	the	string	data	

type

	5				if(typeof	structure=="string"){

www.it-ebooks.info

http://www.it-ebooks.info/

	6								return	'"'+String(structure)+'"';

	7				}

						//if	the	structure	supplied	possess	the	object	data	

type

	8				if(typeof	structure=="object"){

	9						var	partial=[];

											//for	each	property	held	by	our	structure

10										for(var	k	in	structure){

11														var	v=	structure[k];

12																			v	=	stringify(v);

13														partial.push(k+"	:	"+v);

14										}

												//if	partial	does	not	possess	children	capture	

opening/closing	brackets;

15										v	=	(partial.length	===	0)?	'{}'

16										//otherwise,	comma	delimit	all	values	within	

opening/closing	brackets

17											:	'	{	'	+	partial.join('	,	')		+	'	}	'

18											return	v;

19						}

20			}

21			console.log(literal);				//	"{	name	:	"Ben"	}"

22			console.log(typeof	literal);				//	"string"

Our	demonstration	begins	(line	1)	with	the	creation	of	an	object	author	who	is
assigned	a	singular	property	name.	We	next	supply	author	to	the	stringify	function
as	the	object	we	wish	to	transform	into	its	literal	representation.	The	stringify
function	then	analyzes	the	data	type	of	the	structure	supplied,	in	order	to	determine	the
appropriate	course	of	action.

When	stringify	ascertains	that	the	supplied	structure	is	an	object	(line	8),	the
function	then	proceeds	to	traverse	all	members	in	its	possession.	The	value	of	each	key
enumerated	this	way	is	in	turn	supplied	to	the	stringify	method,	to	be	transformed
into	its	literal	form.	Alas,	this	time,	the	data	type	is	found	to	be	that	of	a	string.	In	order	to
capture	said	string	as	its	literal	counterpart,	the	function	surrounds	it	with	double	quotes
and	returns	it	back	to	the	caller	of	the	invocation	(line	12).	From	here,	the	current	key,	k,
and	its	value,	v,	are	sequenced	together,	separated	by	a	colon	(:)	and	stored	within	the
array	partial,	so	that	any	remaining	properties	can	be	enumerated	similarly.

To	keep	this	example	short,	author	is	in	possession	of	one	property.	However,	were
there	more	properties	possessed	by	our	structure,	the	preceding	process	would	be	repeated
until	every	single	one	is	deconstructed	and	converted	into	its	literal	counterpart	and
appended	to	the	final	string	representation.	When	there	are	no	further	properties	to
analyze,	we	determine	if	the	length	of	partial	is	greater	or	equal	to	that	of	zero.	If
partial’s	length	is	0,	it	does	not	possess	any	values,	and,	therefore,	a	string	consisting
of	a	pair	of	opening/closing	braces	is	devised.

Otherwise,	we	create	a	string	that	joins	each	value	with	a	comma	separator	(,)	and

www.it-ebooks.info

http://www.it-ebooks.info/

insert	it	within	a	pair	of	opening/closing	brace	tokens.	The	serialized	literal	is	then
returned	to	the	invoker	(line	3).	The	demonstration	ends	by	outputting	the	final
representation,	revealing	our	reverse-engineered	object	literal	(line	21).

	Note		In	the	preceding	example,	stringify	is	only	capable	of	converting	strings	and
objects	into	their	literal	counterparts.	Crafted	for	that	purpose	only,	it	is	not	capable	of
recognizing	all	types.

We’re	very	close	to	our	goal.	However,	this	literal	isn’t	able	to	be	considered	valid
JSON,	as	it	does	not	fully	adhere	to	the	JSON	grammar.	The	key	name	in	our	key/value
pair	must	be	surrounded	by	double	quotes.	Fortunately,	this	is	easy	to	remedy	with	strings:
partial.push('”'+	k+'”'	+	“:	”	+v);.	If	we	were	to	log	our	result	once
again,	we	would	see	the	following:	“{“name”:“Ben”}”.

While	the	demonstration	in	Listing	5-1	possessed	a	singular	member,	it	will	not	be
unlikely	that	the	data	requiring	serialization	possesses	the	makeup	of	objects	nested	within
objects.	Four	objects	are	used	in	total	to	represent	our	author	object,	as	seen	in	Listing
5-4,	and	each	is	used	to	organize	data.	One	object	is	used	as	a	list,	which	includes	the	pets
owned	by	yours	truly.	Another	two	are	used	to	capture	the	names	and	ages	of	each	pet.
While	both	pets	are	contained	within	the	ordered	list,	the	ordered	list	itself	is	held	as	just
another	property	on	our	author	instance.

Listing	5-4.	A	Nested	Data	Structure

var	author	=	new	Object();

				author.name	=	"Ben";

				author.age		=		36;

				author.pets	=	[

								{	name	:	"Waverly"	,	age	:	3.5	},

								{	name	:	"Westley"	,	age	:	4	}

]

If	we	were	to	serialize	author	from	Listing	5-4	using	the	stringify	function
outlined	in	Listing	5-3,	each	property	possessed	by	the	top-level	element	would	be
enumerated.	Similarly,	the	value	held	by	each	key	would	be	supplied	to	its	own	invocation
of	the	stringify	function	as	the	top-level	element	to	have	its	composition	serialized.
This	process	continues	until	all	values	of	all	structures	have	been	analyzed,	serialized,	and
concatenated	as	a	valid	JSON	text.

	Note		Object	properties	and	Array	indexes	represent	a	key.

As	the	stringify	function	demonstrates,	transforming	a	JavaScript	object	into	a
valid	JSON	representation	requires	the	use	of	identifying	data	types,	recursion,	and	a
heavy	amount	of	string	manipulation.	Fortunately	for	us,	the	formalizer	of	JSON,	Douglas
Crockford,	devised	a	JSON	library	that	would	conveniently	produce	JSON	text	from	that
of	a	specified	datum.	The	JSON	library	is	a	convenient	JavaScript	file,	which	can	be
downloaded	from	the	following	GitHub	URL:

www.it-ebooks.info

http://www.it-ebooks.info/

https://github.com/douglascrockford/JSON-

js/blob/master/json2.js.

The	JSON	Object
As	a	JavaScript	file,	the	json2.js	library	can	be	included	in	any	existing	application,	by
referencing	the	downloaded	library	within	the	<head></head>	tags	on	each	HTML
page	that	seeks	use	of	it.	Listing	5-5	incorporates	the	JSON	library	by	referencing	the
location	of	the	library,	relative	to	the	top	directory,	within	the	script	tag	in	the	head	of	the
following	HTML	file.	In	this	example,	the	json2.js	file	has	been	downloaded	within
the	js/libs/	directory	of	the	working	directory	of	a	project.

Listing	5-5.	HTML	Markup	Referencing	the	Inclusion	of	the	json2.js	JavaScript
Library

<!doctype	html>

<html	lang="en">

				<head>

								<meta	charset="utf-8">

								<link	rel="stylesheet"	href="css/style.css">
								<script	src="js/libs/json2.js"></script>

				</head>

				<body>

				</body>

</html>

When	the	page	is	viewed	in	a	browser,	and	as	soon	as	the	json2.js	file	is	loaded,
the	JSON	Object	declared	by	json2.js	is	added	to	the	global	namespace,	so	that	the
serialization	method	can	be	accessed	from	within	any	scope.	Unlike	the	built-in	objects,
such	as	Object	or	Array,	whose	global	methods	can	be	used	as	a	constructor	to	create
instances	of	these	objects	via	the	keyword	new,	the	JSON	Object	does	not	possess	a
constructor	at	all.	Instead,	the	JSON	Object	possesses	two	methods,	parse	and
stringify.	However,	this	chapter	will	only	discuss	one	of	them:	stringify.

stringify
As	the	name	suggests,	stringify	is	used	for	serializing	JavaScript	values	into	that	of	a
valid	JSON.	The	method	itself	accepts	three	parameters,	value,	replacer,	and
space,	as	defined	by	the	signature	in	Listing	5-6.	As	I	mentioned,	the	JSON	Object	is	a
global	object	that	does	not	offer	the	ability	to	create	any	instances	of	the	JSON	Object.
Any	attempt	to	do	so	will	cause	a	JavaScript	error.	Therefore,	one	must	simply	access	the
stringify	method	via	the	global	JSON	Object.

Listing	5-6.	Syntax	of	the	JSON	stringify	Method

JSON.stringify(value[,	replacer	[,	space]]);

www.it-ebooks.info

https://github.com/douglascrockford/JSON-js/blob/master/json2.js
http://www.it-ebooks.info/

	Note		The	brackets	surrounding	the	two	parameters,	replacer	and	space,	is	just	a
way	to	illustrate	in	a	method	definition	what	is	optional.	However,	while	an	argument
supplied	to	the	method	may	be	optional,	you	must	follow	the	proper	parameter	order,	as
outlined	by	the	method.	In	other	words,	to	specify	an	argument	for	space	but	not
replacer,	you	must	supply	null	as	the	second	argument	to	the	stringify	method.

value
The	value	parameter	of	the	stringify	method	is	the	only	required	parameter	of	the
three	outlined	by	the	signature	in	Listing	5-6.	The	argument	supplied	to	the	method
represents	the	JavaScript	value	intended	to	be	serialized.	This	can	be	that	of	any	object,
primitive,	or	even	a	composite	of	the	two.	As	both	Objects	and	Arrays	are	composite
structures,	the	argument	supplied	can	be	in	possession	of	any	combination	of	objects	and
primitives	nested	within,	much	like	our	author	object	from	Listing	5-4.	Let’s	jump	right
in	and	serialize	our	author	object	as	shown	in	Listing	5-7.

Listing	5-7.	HTML	Markup	Demonstrating	the	Output	of	JSON.stringify

<!doctype	html>

<html	lang="en">

				<head>

								<meta	charset="utf-8">

								<link	rel="stylesheet"	href="css/style.css">
								<script	src="js/libs/json2.js"></script>

				</head>

				<body>

								<script>

								//obtain	a	reference	to	the	body	tag

								var	body	=	document.getElementsByTagName("body")[0];

								//function	log	will	append	a	value	to	the	body	for	

output

								function	log(jsonText)	{

															//surround	supplied	jsonText	with	double	quotes	

and	append	a	new	line

															body.innerHTML	+=	'"'	+	jsonText	+	'"
';

								}

								var	author	=	new	Object();

												author.name	=	"Ben";

												author.age		=		36;

												author.pets	=	[

																{	name	:	"Waverly"	,	age	:	3.5	},

																{	name	:	"Westley"	,	age	:	4	}

];

								var		JSONtext	=	JSON.stringify(author)

								log(JSONtext);

www.it-ebooks.info

http://www.it-ebooks.info/

								</script>

				</body>

</html>

Listing	5-7	leverages	the	markup	from	Listing	5-5	and	inserts	within	the	body	a	script
defining	our	author	object.	Immediately	following,	we	supply	author	into	that	of
JSON.stringify,	which	returns	the	following	JSON	text:

"{"name":"Ben","age":36,"pets":

[{"name":"Waverly","age":3.5},{"name":"Westley","age":4}]}"

The	produced	JSON	captures	the	data	precisely	as	it	was	housed	within	the	author
object.	The	great	thing	about	the	serialization	process	is	that	all	of	the	work	is
encapsulated	behind	the	scenes.	This	allows	us	to	remain	unconcerned	as	to	how	the
encoding	logic	works,	in	order	to	be	able	to	use	it	as	we	just	have.

Serializing	structures	equivalent	to	author	will	work	out	marvelously,	as	it	possesses
only	the	values	that	are	formalized	as	valid	values	of	the	JSON	grammar.	On	the	other
hand,	as	the	needs	of	an	application	become	more	complex	than	that	of	author,	you	may
encounter	a	few	oddities	in	the	way	that	your	data	is	outputted.

Your	program	being	written	in	JavaScript	will	surely	take	advantage	of	all	the
language	has	to	offer,	as	well	it	should.	Yet,	as	JSON	is	a	subset	of	the	JavaScript
language,	many	objects	and	primitives	employed	by	your	application	may	not	be
serialized	as	expected.	You	may	come	to	find	that	this	is	both	a	blessing	and	a	curse.
However,	either	way	you	see	it,	it	will	be	an	undeniable	fact.	Therefore,	short	of	learning
the	inner	workings	of	the	stringify	method,	it	will	be	important	to	understand	how	the
serializer	handles	particular	values	it	comes	across,	in	order	to	be	able	to	anticipate
arriving	at	the	expected	or	even	necessary	results.

	Tip		The	serialization	process	occurs	in	a	synchronous	manner.	In	other	words,	the
moment	you	call	the	stringify	method,	all	remaining	code	that	has	to	be	executed
must	wait	for	the	serialization	to	conclude	before	it	can	proceed.	Therefore,	it	will	be	wise
to	keep	your	objects	as	concise	as	necessary	during	the	serialization	process.

EXERCISE	5-1.		STRINGIFY

Let’s	now	experiment	with	a	few	types	of	data	structures	and	see	what	JSON	text	is
outputted.	Create	an	HTML	file	within	the	top	root	of	a	working	directory,	and	within
it,	copy	the	code	from	Listing	5-5.	Within	that	same	directory,	create	a	js/	directory
and	a	libs/	directory	within	it.	If	you	have	not	already	downloaded	json2.js,	do
so	and	save	it	within	js/libs/.	Revisit	the	created	.html	file	and	within	the	body
tag,	include	the	following	lines	of	code:
01.		<script>

02.					//obtain	a	reference	to	the	body	tag

03.					var	body	=	document.getElementsByTagName(“body”)

[0];

www.it-ebooks.info

http://www.it-ebooks.info/

04.					//function	log	will	append	a	value	to	the	body	as	

a	string	value	for	output

05.					function	log(jsonText)	{

06.												//wrap	all	strings	with	double	quotes	and	

append	a	new	line

07.												body.innerHTML	+=	'”'	+	jsonText	

+	'”
';

08.				}

09.

10.					log(JSON.stringify(false));

11.					log(JSON.stringify(undefined));

12.					log(JSON.stringify([undefined]));

13.					log(JSON.stringify([“undefined”,	false]));

14.					log(JSON.stringify({prop	:	undefined	}));

15.					log(JSON.stringify(new	Date(“Jan	1	2015”)));

16.

17.					var	obj	=	new	Object();

18.									obj.name	=	“name-test”;

19.									obj.f	=	function()	{	return	“function-

test”		};

20.

21.					log(JSON.stringify(obj));

22.					log(JSON.stringify(“this	example	\u000A\u000D	has	

control	characters”));

23.					log(JSON.stringify(“true”));

24.					log(JSON.stringify(1/0));

25.					log(JSON.stringify(Infinity));

26.					log(JSON.stringify([function(){	return	“A”}	

]));

27.

28.				var	selfReference=	new	Array();

29.								selfReference[0]=selfReference;

30.					//because	line	31	will	throw	an	error,	we	must	

wrap	it	with	a	try	catch	to	view	the	error

31.					try{	JSON.stringify(selfReference)	}	catch(e){	

log(e)	};

32.		</script>

Once	you’ve	added	the	following	script	to	your	HTML	file,	open	that	.html	file	in
your	favorite	browser	and	observe	the	output	for	each	data	serialized.	Your	results
should	be	comparable	to	the	results	shown	in	the	following	table.

Results	of	the	Code	Produced

Exercises Outputs

JSON.stringify(false); “false”

www.it-ebooks.info

http://www.it-ebooks.info/

JSON.stringify([undefined]); “[null]”

JSON.stringify([“undefined”	,	false]); “[\“undefined\”,false]”

JSON.stringify({	prop:undefined	}); “{}”

JSON.stringify(new	Date(“Jan	1	2015”));
“\“2015-01-

01T05:00:00.000Z\””

var	obj=	new	Object();

obj.name=“name-test”;

obj.f=function(){

return	“function-test”

};

JSON.stringify(obj);

“{\“name\”:\“name-test\”}”

JSON.stringify(“this	example	\u000A\u000D

has	control	characters”);

“\“this	example	\n\r	has

control	characters\””

JSON.stringify(“true”); “\“true\””

JSON.stringify(1/0); “null”

JSON.stringify(Infinity); “null”

JSON.stringify([function(){	return	“A”}]); “[null]”

var	selfReference=	new	Array();

selfReference[0]=selfReference;

JSON.stringify(selfReference);

TypeError:	cyclic	object

value

As	you	can	see	from	the	results	of	our	exercise,	the	stringify	method	doesn’t
acknowledge	a	few	values.	First	and	foremost,	you	may	have	realized	that	an
undefined	value	is	handled	in	one	of	two	possible	manners.	If	the	value	undefined
is	found	on	a	property,	the	property	is	removed	entirely	from	the	JSON	text.	If,	however,
the	value	undefined	is	found	within	an	ordered	list,	the	value	is	converted	to	'null'.

Functions	are	also	disregarded	by	the	stringify	method,	even	functions	that	would
return	a	string	to	the	key	holding	it.	The	stringify	method	only	analyzes	and	encodes
values;	it	does	not	evaluate	them.	Therefore,	functions	when	encountered	by	stringify
are	replaced	with	the	undefined	value.	The	rules	I	covered	previously	regarding	an
undefined	value	will	apply	to	the	key	that	now	references	the	assigned	undefined
primitive.	There	is	one	method	that	will	be	invoked,	if	found	to	have	that	of	a	particular
method	name.	I	will	talk	more	about	this	later	in	the	toJSON	section.

As	JavaScript	does	not	possess	a	date	literal,	Dates	are	automatically	serialized	as
string	literals,	based	on	the	(UTC)	ISO	encoding	format.

All	number	values	must	be	finite.	If	the	number	is	evaluated	to	that	of	an	Infinity
or	NaN,	the	number	will	return	as	the	literal	'null'	value.

When	the	sole	value	serialized	is	that	of	a	string	value,	its	literal	form	is	escaped	and

www.it-ebooks.info

http://www.it-ebooks.info/

nested	within	another	set	of	quotes.

The	last	takeaway	from	the	preceding	exercises	is	that	JSON	cannot	handle	cyclic
object	values,	meaning	that	neither	an	array	nor	object	can	possess	a	value	that	is	a
reference	to	itself.	Should	you	attempt	to	define	a	cyclic	structure,	an	immediate	error	is
thrown.

toJSON
Because	dates	do	not	possess	a	literal	form,	the	stringify	method	captures	all	dates	it
encounters	as	string	literals.	It	captures	not	only	the	date	but	time	as	well.	Because
stringify	converts	a	date	instance	into	a	string,	you	might	rationalize	that	it’s
produced	by	calling	the	toString	method	possessed	by	the	Date	object.	However,
Date.toString(),	does	not	produce	a	standardized	value,	but,	rather,	a	string
representation	whose	format	depends	on	the	locale	of	the	browser	that	the	program	is
running.1	With	this	output	lacking	a	standard,	it	would	be	less	than	ideal	to	serialize	this
value	for	data	interchange.

What	would	be	ideal	is	to	transform	the	contents	into	that	of	the	ISO	8601	grammar,
which	is	the	standard	for	handling	date	and	time	interchange.

	Note		A	JavaScript	Date	Object	can	be	instantiated	with	the	provision	of	an	ISO
formatted	string.

To	enable	this	feature,	Crockford’s	library	also	includes	the	toJSON	method,	which	is
appended	to	the	prototype	of	the	Date	Object	so	that	it	will	exist	on	any	date.	Listing	5-8
reveals	the	default	toJSON	function	that	will	be	inherited	by	any	and	all	dates.

Listing	5-8.	Default	toJSON	Implementation

Date.prototype.toJSON	=	function(key)	{

				function	f(n)	{

								//	Format	integers	to	have	at	least	two	digits.

								return	n	<	10	?	'0'	+	n	:	n;

				}

				return	this.getUTCFullYear()	+	'-'	+

											f(this.getUTCMonth()	+	1)	+	'-'	+

											f(this.getUTCDate())	+	'T'	+

											f(this.getUTCHours())	+	':'	+

											f(this.getUTCMinutes())	+	':'	+

											f(this.getUTCSeconds())	+	'Z';

};

When	stringify	invokes	the	toJSON	method,	it	expects	to	be	provided	a	return
value.	In	Listing	5-8,	the	value	being	returned	is	a	string	that	is	devised	from	the
concatenation	of	the	methods	possessed	by	the	instance	being	analyzed.	The	return	value
can	be	of	any	value	that	is	defined	in	the	JSON	subset.	Upon	returning	a	value,	the	logic

www.it-ebooks.info

http://www.it-ebooks.info/

within	stringify	will	continue	to	ensure	that	your	value	is	analyzed.	It	will	do	so
iteratively	if	returned	in	the	form	of	an	object	or,	more	simply,	if	the	value	returned	is	a
primitive,	it’s	converted	into	a	string	and	sanitized.	Because	stringify	continues	to
analyze	the	retuned	value,	the	rules	of	Table	5-1	continue	to	apply.

	Note		Because	toJSON	exists	as	a	method	of	a	Date	Object,	the	this	keyword
remains	scoped	to	the	particular	instance	being	analyzed.	This	allows	the	serialization
logic	to	be	statically	defined,	yet	each	instance	at	runtime	will	reference	its	own	values.

If	you	are	curious	as	to	the	purpose	of	function	f,	function	f	wraps	each	method	and
prefixes	each	result	with	0,	if	the	returned	number	is	less	than	10,	in	order	to	maintain	a
fixed	number	of	digits.	Last,	each	number	is	arranged	in	a	sequence	combined	with
various	tokens	and	joined	into	a	string,	resulting	in	a	valid	grammar,	according	to	the	IS0
8601	specification.

What	is	important	to	know	about	the	toJSON	method	is	that	it	can	be	used	on	more
than	dates.	For	each	object	analyzed,	the	internal	logic	of	the	stringify	method
invokes	said	toJSON	method,	if	it	is	in	possession	of	one.	This	means	we	can	add
toJSON	to	any	built-in	JavaScript	Object,	and	even	to	custom	classes,	which,	in	turn,	will
be	inherited	by	their	instances.	Furthermore,	we	can	add	it	to	individual	instances.	This
inherit	ability	to	add	a	toJSON	method	enables	each	application	to	provide	the	necessary
encoding	that	might	not	otherwise	be	possible	by	default,	such	as	that	of	our	date.

	Note		Custom	classes,	when	serialized,	are	indistinguishable	from	the	built-in	objects
types.

Each	call	to	the	toJSON	method	is	supplied	with	a	key	as	an	argument.	This	key
references	the	holder	of	the	value	that	stringify	is	currently	examining.	If	the	key	is	a
property	on	an	object,	that	properties	label	is	supplied	as	the	key	to	the	method.	If	the	key
is	the	index	of	an	array,	the	argument	supplied	will	be	an	index.	The	former	provides
useful	insight	when	devising	conditional	logic	that	must	remain	flexible	or	dependent	on
the	instances	context,	whereas	the	latter	is	less	indicative.	Our	author	object	possesses
both	a	collection	of	key/value	pairs	and	an	ordered	collection.	By	adding	a	toJSON
method	to	all	object	instances,	we	can	easily	log	the	key	that	is	provided	to	each	toJSON
invocation,	as	achieved	in	Listing	5-9.

Listing	5-9.	Attaching	the	toJSON	Function	to	the	Object	Will	Cause	All	JavaScript
objects	to	Possess	It

Object.prototype.toJSON=function(key){

				//log	the	key	being	analyzed

				console.log(key);		//outputs	the	key	for	the	current	

context	(shown	below)

				//log	the	scope	of	the	method

				console.log(this);	//outputs	the	current	context	(shown	

below)

				//return	the	object	as	is	back	to	the	serializer

www.it-ebooks.info

http://www.it-ebooks.info/

				return	this;

}

var	author	=	new	Object();

				author.name	=	"Ben";

				author.age		=		36;

				author.pets	=	[

												{	name	:	"Waverly"	,	age	:	3.5	},

												{	name	:	"Westley"	,	age	:	4	}

];

				JSON.stringify(author);

/*	captured	output	from	the	above	Listing	*/

//the	author	object	being	analyzed

//(key)					""

//(context)	Object	{	name="Ben",	age=36,	pets=[2],	

more...}		//truncated
//the	pets	object	being	analyzed

//(key)					pets

//(context)	[Object	{	name="Waverly",	age=3.5,	

toJSON=function()},

																				 Object	{	name="Westley",	age=4,	

toJSON=function()}]
//index	0	of	array	being	analyzed

//(key)					0

//(context)	Object	{	name="Waverly",	age=3.5,	

toJSON=function()}
//index	1	of	array	being	analyzed

//(key)					1

//(context)	Object	{	name="Westley",	age=4,	

toJSON=function()}

"{"name":"Ben","age":36,"pets":

[{"name":"Waverly","age":3.5},{"name":"Westley","age":4}]}"

Listing	5-9	demonstrates	that	each	object	that	possesses	the	toJSON	method	is
supplied	with	the	key	by	which	it	is	held.	These	values	are	logged	in	the	order	in	which
the	properties	are	enumerated	by	the	JavaScript	engine.	The	first	key	that	is	logged	from
our	toJSON	method	is	that	of	an	empty	string.	This	is	because	the	stringify
implementation	regards	key/value	pairs.	As	you	can	see,	the	immediate	logging	of	this
reveals	the	author	object.	With	the	return	of	the	invoked	method,	stringify
continues	onto	the	next	object	it	encounters.

	Note		The	key	of	the	initial	value	is	always	that	of	an	empty	string.

The	next	object	the	stringify	method	encounters	happens	to	be	that	of	an	array.
An	array,	as	a	subtype	of	Object,	inherits	and	exposes	the	toJSON	method	and	is,

www.it-ebooks.info

http://www.it-ebooks.info/

therefore,	invoked.	The	key	it	is	passed	is	the	identifier	pets.	Respectively,	both	objects
contained	within	are	invoked	and	provided	the	index	to	which	they	are	ordered,	those	keys
being	0	and	1.

The	toJSON	method	provides	a	convenient	way	to	define	the	necessary	logic	wherein
the	default	behavior	may	fall	short.	While	this	is	not	always	ideal,	it	is	often	necessary.
However,	the	toJSON	method	is	not	the	only	means	of	augmenting	the	default	behavior
of	the	stringify	method.

replacer
The	second	parameter,	replacer,	is	optional,	and	when	supplied,	it	can	augment	the
default	behavior	of	the	serialization	that	would	otherwise	occur.	There	are	two	possible
forms	of	argument	that	can	be	supplied.	As	explained	within	the	ECMA-262
standardization,	the	optional	replacer	parameter	is	either	a	function	that	alters	the	way
objects	and	arrays	are	stringified	or	an	array	of	strings	and	numbers	that	acts	as	a	white	list
for	selecting	the	object	properties	that	will	be	stringified.2

replacer	Array
Suppose	I	had	the	following	JavaScript	data	structure	(see	Listing	5-10)	and	decided	to
serialize	it	using	the	built-in	JSON	Object	and	its	stringify	method.	By	supplying	the
author	instance	as	the	value	into	the	JSON.stringify	method,	I	would	be	provided
with	the	result	displayed	in	Listing	5-10.

Listing	5-10.	Replaced	Pets	Property	with	E-mail

var	author	=	new	Object();

				author.name="ben";

				author.age=35;

				author.email="iben@spilled-milk.com";

				JSON.stringify(author);

				//		"{"name":"ben","age":35,"email":"iben@spilled-

milk.com"}"

As	expected,	the	produced	JSON	text	reflects	all	of	the	possessed	properties	of	the
author	object.	However,	suppose	that	e-mail	addresses	were	not	intended	to	be
serialized	by	our	application.	We	could	easily	delete	the	e-mail	property	and	then	pass
author	through	stringify.	While	that	would	prevent	the	e-mail	address	from	being
serialized,	this	method	could	prove	problematic	if	our	application	continued	to	require	use
of	the	e-mail	address.	Rather	than	delete	the	value	from	the	author	object,	we	could	take
advantage	of	the	replacer	method.

Were	we	to	supply	the	replacer	parameter	with	an	array	whose	values	outline	the
properties	we	desire	stringify	to	serialize,	the	JSON	text	would	only	capture	those
key/value	pairs.	Listing	5-11	white	lists	the	two	properties,	name	and	age,	that	our
application	is	permitted	to	serialize.

www.it-ebooks.info

http://www.it-ebooks.info/

Listing	5-11.	Supplying	a	replacer	array	Can	Specify	What	Keys	to	Output

//...		continuation	of	Listing	5-10

JSON.stringify(author,	["name","age"]);		//	"{"	

name":"ben","age":35"}"

Providing	an	ordered	list	as	the	replacer	argument	filters	the	properties	that	are
output	during	serialization.	Any	identifiers	that	are	not	specified	within	the	replacer
array	will	not	become	a	part	of	the	JSON	text.	As	an	additional	point,	the	order	of	our
white-listed	properties	affects	the	way	in	which	they	respectively	occur	in	the	serialized
output.	Listings	5-11	and	5-12	vary	by	the	order	of	the	white-listed	properties	supplied	in
the	replacer.	The	results	reflect	the	specified	order	in	each	JSON	text	produced.

Listing	5-12.	The	Order	of	the	White-Listed	Properties	Determines	the	Order	in	Which
They	Are	Captured

//...		continuation	of	Listing	5-10

JSON.stringify(author,	["age","name"]);	//		"

{"age":35","name":"ben"}"

Listing	5-11	displays	name	in	the	JSON	text	first,	whereas	in	Listing	5-12,	name
appears	last.	This	has	to	do	with	the	fact	that	our	replacer	argument	is	an	array,	and	an
array	is	simply	an	ordered	list.	In	this	case,	the	ordered	list	just	so	happens	to	expresses
our	white-listed	properties.	The	serialization	process	then	iterates	over	each	white-listed
identifier	in	ascending	order	for	each	collection	of	name/value	pairs	it	may	come	across.

White-listed	properties	mustn’t	be	provided	in	string	literal	form.	They	can	also	be
represented	as	a	primitive	number.	However,	any	number	the	method	encounters	is
converted	into	its	string	equivalent.	This	is	due	to	the	fact	that	keys	are	always	stored	as
strings	behind	the	scenes.	This	is	demonstrated	in	Listing	5-13.

Listing	5-13.	Numbers	Used	As	Keys	Are	Converted	to	Strings

var	yankeesLineup	=	new	Object();

				yankeesLineup['1']	="Jacoby	Ellsbury";

				yankeesLineup['2']	="Derek	Jeter";

				yankeesLineup['3']	="Carlos	Beltran";

				yankeesLineup['4']	="Alfonso	Soriano";

			//...etc

JSON.stringify(yankeesLineup,	[1,2]);

			//	"{"1":"Jacoby	Ellsbury","2":"Derek	Jeter"}"

	Note		Even	array	indexes	are	converted	into	strings	behind	the	scenes.

	Tip		While	numbers	are	allowed	as	white-listed	values,	it	will	always	be	best	to	supply
a	string	representation,	as	it	will	convey	meaning	to	those	who	may	not	know	that
numbers	are	converted	to	strings	behind	the	scenes	when	used	as	keys.	Furthermore,	using
numbers	as	a	property	identifier	is	not	the	best	choice	for	a	meaningful	label.

www.it-ebooks.info

http://www.it-ebooks.info/

replacer	Function
The	alternate	form	that	can	be	supplied	as	the	replacer	is	that	of	a	function.	Supplying	a
function	to	the	replacer	property	allows	the	application	to	insert	the	necessary	logic
that	determines	how	objects	within	the	stringify	method	are	serialized,	much	like	that
of	the	toJSON	method.	In	fact,	the	replacer	function	and	the	toJSON	method	are
nearly	identical,	apart	from	three	distinguishable	characteristics.	The	first	is	that	one	is	a
function	and	the	other	is	a	method.	The	second	is	that	the	replacer	function	is	provided
iteratively,	the	key	for	every	property	encountered.	Last,	the	replacer	function	is
provided	the	value	held	by	each	key.	As	you	can	see	from	the	method	definition	in	Listing
5-14,	the	replacer	function	expects	to	be	provided	with	two	arguments,	k	and	v.

	Note		Only	properties	whose	values	are	both	owned	by	the	object	being	traversed,	in
addition	to	being	enumerable,	are	discovered	during	the	iterative	process.

Listing	5-14.	Signature	of	the	replacer	Function

var	replacerFunction	=	function(k,	v);

The	k	argument	will	always	represent	the	identifier	(key)	per	object	the	method	seeks
to	encode,	whereas	the	v	parameter	represents	the	value	held	by	said	key.

	Note		If	the	replacer	method	is	used	in	conjunction	with	an	object	that	possesses	a
toJSON	method,	the	value	of	v	will	be	that	of	the	result	provided	by	the	toJSON
method.

The	context	of	the	toJSON	method	will	always	be	that	of	the	object	for	which	it’s
defined.	A	method’s	scope	is	always	tied	to	the	object	for	which	it	exists.	Contrary	to
methods,	a	function’s	scope	is	tied	to	that	of	where	it	was	declared.	However,	within	the
stringify	method,	the	scope	of	the	replacer	function	supplied	is	continuously	set
to	the	context	of	each	object	whose	key	and	value	are	being	supplied	as	arguments.	This
means	that	the	implicit	this	possessed	by	all	functions	will	always	point	to	the	object
whose	keys	are	currently	being	analyzed	within	the	stringify	method.

Let’s	revisit	our	example	from	Listing	5-9.	However,	this	time,	rather	than	define	a
toJSON	that	is	inherited	by	all	objects,	we	will	supply	stringify	with	a	replacer
function.	As	we	are	not	concerned	with	customizing	the	default	serialization	of	any	values
for	the	purpose	of	this	illustration,	Listing	5-15	returns	back	to	stringify	the	value,	v,	it	has
supplied	to	us.

Listing	5-15.	Logging	All	Keys,	Values,	and	Context	with	the	replacer	Function

var	author	=	new	Object();

							author.name	=	"Ben";

							author.age		=		36;

							author.pets	=	[

															{	name	:	"Waverly"	,	age	:	3.5	},

www.it-ebooks.info

http://www.it-ebooks.info/

															{	name	:	"Westley"	,	age	:	4	}

];

			JSON.stringify(author,
																		function(k,v){

																					console.log(this);

																					console.log(k);

																					console.log(v);

																			return	v;

																		});

//the	initial	object	wrapper	being	analyzed

//(context)	Object	{{...}}		//truncated

//(key)			(an	empty	string)

//(value)	Object	{	name="Ben",	age=36,	pets=[...]}	

//truncated
//the	author	object	ben	property	being	analyzed

//(context)	Object	{	name="Ben",	age=36,	pets=[...]}	

//truncated

//(key)					name

//(value)			Ben
//the	author	object	age	property	being	analyzed

//(context)	Object	{	name="Ben",	age=36,	pets=[...]}	

//truncated

//(key)					age

//(value)			36
//the	author	object	pets	property	being	analyzed

//(context)	Object	{	name="Ben",	age=36,	pets=[...]}	

//truncated

//(key)					pets

//(value)			[Object	{	name="Waverly",	age=3.5},	Object	

{	name="Westley",	age=4}]
//the	pets	object	0	index	being	analyzed

//(context)	[Object	{	name="Waverly",	age=3.5},	Object	

{	name="Westley",	age=4}]

//(key)					0

//(value)			Object	{	name="Waverly",	age=3.5}
//the	0	index	name	property	being	analyzed

//(context)	Object	{	name="Waverly",	age=3.5}

//(key)					name

//(value)			Waverly
//the	0	index	age	property	being	analyzed

//(context)	Object	{	name="Waverly",	age=3.5}

//(key)					age

//(value)			3.5
//the	pets	object	1	index	being	analyzed

//(context)	[Object	{	name="Waverly",	age=3.5},	Object	

{	name="Westley",	age=4}]

//(key)					1

www.it-ebooks.info

http://www.it-ebooks.info/

//(value)			Object	{	name="Westley",	age=4}
//the	1	index	name	property	being	analyzed

//(context)	Object	{	name="Westley",	age=4}

//(key)					name

//(value)			Westley
//the	1	index	age	property	being	analyzed

//(context)	Object	{	name="Westley",	age=4}

//(key)					age

//(value)			4

//JSON	text	"{"name":"Ben","age":36,"pets":

[{"name":"Waverly","age":3.5},{"name":"Westley","age":4}]}"

While	Listing	5-15	utilizes	the	same	data	structure	from	our	toJSON	example,	in
Listing	5-9,	you	will	most	certainly	be	able	to	perceive	that	the	results	logged	in	Listing	5-
15	are	far	more	plentiful.	This	is	due	to	the	fact	that,	unlike	toJSON,	the	replacer
function	is	triggered	for	each	property	encountered	on	every	object.

The	benefit	of	the	keys	provided	to	both	the	replacer	function	and	toJSON	is	that
they	offer	your	application	a	means	to	flag	a	property	whose	value	requires	custom
serializing.	Listing	5-16	demonstrates	how	we	can	leverage	a	supplied	key	to	prevent	a
value	or	values	from	being	captured	in	the	produced	JSON	text.

Listing	5-16.	replacer	Function	Can	Be	Used	to	Provide	Custom	Serializing

var	author	=	new	Object();

								author.name	=	"Ben";

								author.age		=		36;

								author.pets	=	[

																{	name	:	"Waverly"	,	age	:	3.5	},

																{	name	:	"Westley"	,	age	:	4	}

];

var	replacer=	function(k,v){

																						//if	the	key	matches	the	string	'age'

																						if(k==="age"){

																										//remove	it	from	the	final	JSON	text

																										return	undefined;

																						}	//else

																						return	v;

																			}

JSON.stringify(author,replacer);

//	"{"name":"Ben","pets":[{"name":"Waverly"},

{"name":"Westley"}]}"

Listing	5-16	leverages	the	uniqueness	of	the	age	identifier	so	that	it	can	determine
when	to	remove	it	from	the	final	JSON	text,	by	returning	the	value	of	undefined.
While	this	is	a	valid	example,	it	could	have	been	equally	satisfied	by	the	replacer
array.	The	takeaway	is	that	the	identifier	can	be	extremely	instrumental	in	the

www.it-ebooks.info

http://www.it-ebooks.info/

orchestration	of	custom	serialization.

The	return	value,	much	like	in	the	case	of	toJSON,	can	be	that	of	any	value	outlined
in	the	JSON	subset.	The	serializer	will	continue	to	ensure	that	your	value	is	iteratively
analyzed	if	returned	in	the	form	of	an	object,	or	converted	into	a	string	and	sanitized,	if
returned	as	a	primitive.	Furthermore,	the	rules	of	Table	5-1	will	always	apply	to	any	and
all	returned	values.

space
The	third	parameter,	space,	is	also	optional	and	allows	you	to	specify	the	amount	of
padding	that	separates	each	value	from	one	another	within	the	produced	JSON	text.	This
padding	provides	an	added	layer	of	readability	to	the	produced	string.

The	argument	supplied	to	the	parameter	must	be	that	of	a	whole	number	equal	or
greater	to	1.	Supplying	a	number	less	than	1	will	have	no	effect	on	the	produced	JSON
text.	However,	if	the	number	supplied	is	1	or	greater,	the	final	representation	of	the	JSON
text	will	display	each	value	indented	by	the	specified	amount	of	whitespace	from	the	left-
hand	margin.	A	margin	is	established	by	the	inclusion	of	new	line	characters	after	each	of
the	following	tokens:	{,	},	[,	and].

In	other	words,	new	line-control	characters	are	inserted	into	the	produced	JSON	after
each	opening/closing	token,	for	both	an	array	or	object.	Additionally,	a	new	line	character
is	added	after	each	separator	token.	Listing	5-17	contrasts	the	produced	JSON	text	with
and	without	padding.

Listing	5-17.	JSON	Text	with	Added	Padding

var	obj={	primitive:"string",	array:["a","b"]	};

JSON.stringify(obj,null,0);

//(no	padding)

		//	"{"primitive":"string","array":["a","b"]}"

JSON.stringify(obj,null,8);

/*	(8	spaces	of	added	padding)

"{

								"primitive":	"string",

								"array":	[

																"a",

																"b"

]

}"

*/

The	provision	of	the	space	parameter	will	have	no	effect	on	a	JSON	text	if	it	does	not
possess	either	an	array	or	object,	regardless	of	the	value	specified.	Listing	5-18	indicates
that	eight	spaces	should	be	applied	to	the	produced	JSON.	However,	because	it	is	not	in
possession	of	either	an	object	or	array,	no	padding	is	applied.

www.it-ebooks.info

http://www.it-ebooks.info/

Listing	5-18.	Space	Only	Works	on	objects	and	arrays

var	primitive="string";

var	JSONtext=	JSON.stringify(primitive	,	null	,8);

console.log(JSONtext);

//	""string""

The	added	padding	appended	to	the	final	JSON	text	will	have	zero	impact	on	its
conversion	back	into	that	of	a	JavaScript	object.	Additionally,	the	inclusion	of	whitespace
and	new	line	characters	will	not	add	significant	weight	that	would	slow	its	transmission
across	the	Internet.

Summary
In	this	chapter,	we	covered	the	JSON	library,	which	enables	JavaScript	structures	to
become	serialized	for	storage	and	data	interchange.	This	was	accomplished	via
downloading	the	JSON	library	and	referencing	the	JSON	global	object	and	its
stringify	method.	What	you	may	not	know	is	that	even	though	we	downloaded	the
JSON	library	and	referenced	it	within	our	.html	files	for	this	chapter,	the	odds	are	you
did	not	require	it.

As	I	mentioned	in	Chapter	4,	JSON	is	incorporated	within	the	ECMA-262,	5th	edition.
What	this	means	is	that	any	browser	that	aligns	with	ECMA	5th	edition	standards	or
greater	possesses	the	native	JSON	Object	as	the	means	for	both	serializing	and
deserializing	JSON.	Table	5-2	lists	the	versions	of	each	browser	that	possess	the	JSON
Object.

Table	5-2.	Minimal	Browser	Versions	That	Possess	the	JSON	Object

Browser Version

FireFox 3.5+

Chrome 5+

Safari 4.0.5+

Opera 10.5+

Internet	Explorer 8+

In	any	browser	whose	version	is	greater	or	equal	to	what	is	listed,	you	would	be
successful	in	referring	to	the	native	JSON	Object.	There	is	absolutely	zero	harm	in
incorporating	the	JSON	library	as	we	have,	in	addition	to	working	with	a	browser
mentioned	in	the	preceding	table.	The	reason	for	this	is	because	the	library	first	checks	to
see	if	a	JSON	Object	currently	exists	before	creating	one	and	attaches	it	to	the	global
namespace.	If	one	is	found	to	exist	when	the	library	is	loaded	into	the	script,	it	does	not
take	any	action.	Listing	5-19	demonstrates	how	if	there	isn’t	already	a	global	JSON
Object,	one	is	created.

www.it-ebooks.info

http://www.it-ebooks.info/

Listing	5-19.	JSON	Object	is	Instantiated	Only	if	One	Does	Not	Exist

if	(typeof	JSON	!==	'object')	{

				JSON	=	{};

}

What	this	means	is	that	the	library	will	only	have	an	impact	on	browsers	whose
versions	are	below	that	of	Table	5-2.	While	it’s	becoming	increasingly	less	likely	you	will
continue	to	cater	to	browsers	before	Internet	Explorer	8,	some	clients	continue	to	require
it.

The	benefit	of	having	you	download	the	JSON	library	rather	than	reference	the	native
JSON	Object	is	that	at	any	point	during	our	discussion,	you	possess	the	ability	to	open	the
JSON	library	and	review	the	code	within,	whereas	you	would	not	be	as	fortunate	to	do	so
with	the	alternative,	because,	being	native,	it’s	built	into	the	browser.	Therefore,	there	is
no	code	to	review.

What	is	important	to	remember	about	this	chapter	is	that	much	like	in	the	Matrix,
knowing	the	rules	allows	you	to	bend	the	rules	in	your	favor.

Key	Points	from	This	Chapter
Numbers	must	be	finite,	or	they	are	treated	as	null.

A	value	that	is	not	recognized	as	a	valid	JSON	value	produces	the
undefined	value.

A	function	whose	name	is	not	toJSON	is	ignored.

Properties	whose	values	are	undefined	are	stripped.

If	the	value	of	an	array	is	that	of	undefined,	it	is	treated	as	null.

The	primitive	null	is	treated	as	the	string	null.

A	TypeError	Exception	is	thrown	when	a	structure	is	cyclic.

toJSON	and	the	replacer	parameter	allow	applications	to	supply
necessary	logic	for	serialization.

toJSON	can	be	defined	on	any	built-in	object	and	even	overridden.

A	replacer	array	identifies	the	properties	that	should	be	serialized.

A	replacer	function	is	invoked	with	every	property	in	the	data
structure.

toJSON	this	explicitly	refers	to	the	object	it’s	defined	on.

A	replacer	function’s	this	implicitly	refers	to	the	object	that	is
currently	being	analyzed.

A	key	is	either	a	property	possessed	by	an	object	or	the	index	of	an
array.

www.it-ebooks.info

http://www.it-ebooks.info/

Custom	classes	are	captured	as	ordinary	objects.

In	the	next	chapter,	you	will	continue	to	learn	how	we	can	use	the	JSON	Object’s
second	method,	parse,	to	convert	JSON	back	into	a	usable	JavaScript	value.

1Microsoft,	Internet	Explorer	Dev	Center,	“toString	Method	(Date),”	http://msdn.microsoft.com/en-
us/library/ie/jj155294%28v=vs.94%29.aspx.

2ECMA	International,	ECMAScript	Language	Specification,	Standard	ECMA-262,	Edition	5.1,	www.ecma-
international.org/publications/files/ECMA-ST/Ecma-262.pdf,	June	2011.

www.it-ebooks.info

http://msdn.microsoft.com/en-us/library/ie/jj155294%28v=vs.94%29.aspx
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://www.it-ebooks.info/

CHAPTER	6

Parsing	JSON
In	the	last	chapter,	I	discussed	how	to	convert	a	JavaScript	value	into	a	valid	JSON	text
using	JSON.stringify.	In	Chapter	4,	you	learned	how	JSON	utilizes	JavaScript’s
literal	notation	as	a	way	to	capture	the	structure	of	a	JavaScript	value.	Additionally,	you
learned	in	that	same	chapter	that	JavaScript	values	can	be	created	from	their	literal	forms.
The	process	by	which	this	transformation	occurs	is	due	to	the	parsing	component	within
the	JavaScript	engine.	This	brings	us	full	circle,	regarding	the	serializing	and	deserializing
process.

Parsing	is	the	process	of	analyzing	a	string	of	symbols,	either	in	natural	language	or	in
computer	languages,	according	to	the	rules	of	a	formal	grammar.	As	the	grammar	of	JSON
is	a	subset	of	JavaScript,	the	analysis	of	its	tokens	by	the	parser	occurs	indifferently	from
how	the	Engine	parses	source	code.	Because	of	this,	the	data	produced	from	the	analysis
of	the	JSON	grammar	will	be	that	of	objects,	arrays,	strings,	and	numbers.	Additionally,
the	three	literals—true,	false,	and	null—are	produced	as	well.

Within	our	program,	we	will	be	able	to	refer	to	any	of	these	data	structures	as	we
would	any	other	JavaScript	value.	In	this	chapter,	you	will	learn	of	the	manners	by	which
we	can	convert	valid	JSON	into	usable	JavaScript	values	within	our	program.

JSON.parse
In	our	investigation	of	the	JSON	Object,	I	discussed	how	the	JSON	Object	possesses	two
methods.	On	one	hand,	there	is	the	stringify	method,	which	produces	serialized	JSON
from	a	datum.	And	on	the	other	hand,	there	is	a	method	that	is	the	antithesis	of
stringify.	This	method	is	known	as	parse.	In	a	nutshell,	JSON.parse	converts
serialized	JSON	into	usable	JavaScript	values.	The	method	JSON.parse,	whose
signature	can	be	observed	in	Listing	6-1,	is	available	from	the	json2.js	library,	in
addition	to	browsers	that	adhere	to	ECMA	5th	edition	specifications.

Listing	6-1.	Syntax	of	the	JSON.parse	Method

JSON.parse(text	[,	reviver]);

Until	Internet	Explorer	7	becomes	a	faded	memory	only	to	be	kept	alive	as	a	myth
when	whispered	around	a	campfire	as	a	horror	story,	it	will	continue	to	be	wise	to	include
the	json2.js	library	into	your	projects	that	work	with	JSON.	Furthermore,	json2.js
is	a	fantastic	way	to	gain	insight	into	the	inner	workings	of	the	method,	short	of
interpreting	ECMA	specifications.

As	outlined	in	the	preceding,	JSON.parse	can	accept	two	parameters,	text	and

www.it-ebooks.info

http://www.it-ebooks.info/

reviver.	The	name	of	the	parameter	text	is	indicative	of	the	value	it	expects	to
receive.	The	parameter	reviver	is	used	similarly	to	the	replacer	parameter	of
stringify,	in	that	it	offers	the	ability	for	custom	logic	to	be	supplied	for	necessary
parsing	that	would	otherwise	not	be	possible	by	default.	As	indicated	in	the	method’s
signature,	only	the	provision	of	text	is	required.

You	will	learn	about	the	optional	reviver	parameter	a	bit	later.	First,	we	will	begin
an	exploration	of	the	text	parameter.	The	aptly	named	parameter	text	implies	the
JavaScript	value,	which	should	be	supplied.	Of	course,	this	is	a	string.	However,	more
specifically,	this	parameter	requires	serialized	JSON.	This	is	a	rather	important	aspect,
because	any	invalid	argument	will	automatically	result	in	a	parse	error,	such	as	that
shown	in	Listing	6-2.

Listing	6-2.	Invalid	JSON	Grammar	Throws	a	Syntax	Error

var	str	=	JSON.parse("abc123");		//SyntaxError:	JSON.parse:	

unexpected	character

Listing	6-2	throws	an	error	because	it	was	provided	a	string	literal	and	not	serialized
JSON.	As	you	may	recall	from	Chapter	4,	when	the	sole	value	of	a	string	value	is
serialized,	its	literal	form	is	captured	within	an	additional	pair	of	quotes.	Therefore,
“abc123”	must	be	escaped	and	wrapped	with	an	additional	set	of	quotation	marks,	as
demonstrated	in	Listing	6-3.

Listing	6-3.	Valid	JSON	Grammer	Is	Successfully	Parsed

var	str	=	JSON.parse("\"abc123\"");		//valid	JSON	string	

value

console.log(str)																							//abc123;

console.log(typeof	str)																//string;

The	JavaScript	value	of	a	parsed	JSON	text	is	returned	to	the	caller	of	the	method,	so
that	it	can	be	assigned	to	an	identifier,	as	demonstrated	in	Listing	6-3.	This	allows	the
result	of	the	transformation	to	be	referenced	later	throughout	your	program.

While	the	preceding	example	was	supplied	with	a	simple	JSON	text,	it	could	have
been	a	composite,	such	as	a	collection	of	key/value	pairs	or	that	of	an	ordered	list.	When	a
JSON	text	represents	nested	data	structures,	the	transformed	JavaScript	value	will
continue	to	retain	each	nested	element	within	a	data	structure	commonly	referred	to	as	a
tree.	A	simple	explanation	of	a	data	tree	can	be	attributed	to	a	Wikipedia	entry,	which
defines	a	tree	as	a	nonlinear	data	structure	that	consists	of	a	root	node	and,	potentially,
many	levels	of	additional	nodes	that	form	a	hierarchy.1

Let’s	witness	this	with	a	more	complex	serialized	structure.	Listing	6-4	revisits	our
serialized	author	object	from	the	previous	chapter	and	renders	it	into	JSON.parse.
Using	Firebug	in	conjunction	with	console.log,	we	can	easily	view	the	rendered	tree
structure	of	our	author	object.

Listing	6-4.	Composite	Structures	Create	a	Data	Tree

var	JSONtext=	'{"name":"Ben","age":36,"pets":[{"name":"Waverly","age":3.5},

www.it-ebooks.info

http://www.it-ebooks.info/

{"name":"Westley","age":4}]}';

var	author	=	JSON.parse(JSONtext);

console.log(author);

/*Firebug	Illustrates	the	parsed	Data	Tree	of	our	serialized	JSON	text	

below

				age					36

				name		"Ben"

		pets		[Object	{	name="Waverly",	age=3.5	},		Object	

{	name="Westley",	age=4	}]

				 	0				Object	{	name="Waverly",	age=3.5	}

				 	1				Object	{	name="Westley",	age=4	}

*/

Once	a	JSON	text	is	converted	into	that	of	a	data	tree,	keys,	also	called	members,
belonging	to	any	level	of	node	structure	are	able	to	be	referenced	via	the	appropriate
notion	(i.e.,	dot	notation/array	notation).	Listing	6-5	references	various	members	existing
on	the	author	object.

Listing	6-5.	Members	Can	Be	Accessed	with	the	Appropriate	Notation

var	JSONtext=	'{"name":"Ben","age":36,"pets":

[{"name":"Waverly","age":3.5},{"name":"Westley","age":4}]}';

var	author	=	JSON.parse(JSONtext);

console.log(typeof	author)								//object;

console.log(author.name)										//	Ben

console.log(author.pets.length)			//	2;

console.log(author.pets[0].name)		//	Waverly;

The	magic	of	JSON.parse	is	twofold.	The	first	proponent	that	allows	for	the
transformation	of	JSON	text	into	that	of	a	JavaScript	value	is	JSON’s	use	of	literals.	As
we	previously	discussed,	the	literal	is	how	JavaScript	data	types	can	be	“literally”	typed
within	source	code.

The	second	aspect	is	that	of	the	JavaScript	interpreter.	It	is	the	role	of	the	interpreter	to
possess	absolute	understanding	over	the	JavaScript	grammar	and	determine	how	to
evaluate	syntax,	declarations,	expressions,	and	statements.	This,	of	course,	includes
JavaScript	literals.	It	is	here	that	literals	are	read,	along	with	any	other	provided	source
code,	evaluated	by	the	interpreter	of	the	JavaScript	language	and	transformed	from
Unicode	characters	into	JavaScript	values.	The	JavaScript	interpreter	is	safely	tucked
away	and	encapsulated	within	the	browser	itself.	However,	the	JavaScript	language
provides	us	with	a	not-so-secret	door	to	the	interpreter,	via	the	global	function	eval.

eval
The	eval	function	is	a	property	of	the	global	object	and	accepts	an	argument	in	the	form
of	a	string.	The	string	supplied	can	represent	an	expression,	statement,	or	both	and	will	be
evaluated	as	JavaScript	code	(see	Listing	6-6).

www.it-ebooks.info

http://www.it-ebooks.info/

Listing	6-6.	eval	Evaluates	a	String	As	JavaScript	Code

eval("alert(\"hello	world\")");

Albeit	a	simple	example,	Listing	6-6	illustrates	the	use	of	eval	to	transform	a	string
into	a	valid	JavaScript	program.	In	this	case,	our	string	represents	a	statement	and	is
evaluated	as	a	statement.	If	you	were	to	run	this	program,	you	would	see	the	dialog
prompt	appear	with	the	text	hello	world.	While	this	is	a	rather	innocent	program,	and
one	created	to	be	innocuous,	you	must	take	great	caution	with	what	you	supply	to	eval,
as	this	may	not	always	be	the	case.	Listing	6-7	reveals	that	eval	will	also	evaluate
expressions.

Listing	6-7.	eval	Returns	the	Result	of	an	Evaluation

var	answer	=	eval("1+5");

console.log(answer)	//6;

The	eval	function	not	only	evaluates	the	string	provided,	but	it	can	also	return	the
result	of	an	evaluated	expression	so	that	it	can	be	assigned	to	a	variable	and	referenced	by
your	application.	Expressions	needn’t	be	mere	calculations	either,	as	demonstrated	in
Listing	6-8.	If	we	were	to	supply	eval	with	a	string	referencing	an	object	literal,	it,	too,
would	be	evaluated	as	an	expression	and	returned	as	a	JavaScript	instance	that
corresponds	to	the	represented	object	literal.

Listing	6-8.	object	Literals	Can	Be	Evaluated	by	the	eval	Function

var	array	=	eval("['Waverly','Westley','Ben']");

console.log(array[1])	//Westley;

Because	JSON	is	a	subset	of	JavaScript	and	possesses	its	own	specification,	it	is
important	to	always	ensure	that	the	supplied	text	is	indeed	a	sequence	of	valid	JSON
grammar.	Otherwise,	we	could	be	unaware	of	welcoming	malicious	code	into	our
program.	This	will	become	more	apparent	when	we	invite	JSON	text	into	our	program	via
Ajax.	For	this	reason,	while	eval	possesses	the	means	to	handle	the	transformation	of
JSON	into	JavaScript,	you	should	never	use	eval	directly.	Rather,	you	should	always	rely
on	the	either	the	JSON2.js	library	or	the	built-in	native	JSON	Object	to	parse	your
JSON	text.

If	you	were	to	open	the	json2.js	library	and	review	the	code	within	the	parse
function,	you	would	find	that	the	JSON.parse	method	occurs	in	four	stages.

The	first	thing	the	method	aims	to	accomplish,	before	it	supplies	the	received	string	to
the	eval	function,	is	to	ensure	that	all	necessary	characters	are	properly	escaped,
preventing	Unicode	characters	from	being	interpreted	as	line	terminators,	causing	syntax
errors.	For	example,	Listing	6-9	demonstrates	that	you	cannot	evaluate	a	string	possessing
a	carriage	return,	as	it	will	be	viewed	as	an	unterminated	string	literal.

Listing	6-9.	String	Literals	Cannot	Possess	Line	Breaks

var	str="this	is	a	sentence	with	a	new	line

www.it-ebooks.info

http://www.it-ebooks.info/

...	here	is	my	new	line";

//	SyntaxError:	unterminated	string	literal

//	Similarly

eval("\"this	is	a	sentence	with	a	new	line	\u000a…	here	is	

my	new	line\"");

//	SyntaxError:	unterminated	string	literal

However,	as	stated	by	EMCA-262,	section	7.3,	line	terminator	characters	that	are
preceded	by	an	escape	sequence	are	now	allowed	within	a	string	literal	token.2	By
escaping	particular	Unicode	values,	a	line	break	can	be	evaluated	within	a	string	literal,	as
demonstrated	in	Listing	6-10.

Listing	6-10.	String	Literals	Can	Only	Possess	Line	Breaks	If	They	Are	Escaped

eval("\"this	is	a	sentence	with	a	new	line	\\u000a…	here	is	

my	new	line\"");		//will	succeed

The	JSON	library	does	not	just	ensure	that	Unicode	characters	are	properly	escaped
before	they	are	evaluated	into	JavaScript	code.	It	also	works	to	ensure	that	JSON	grammar
is	strictly	adhered	to.	Because	JSON	is	simply	text,	its	grammar	can	be	overlooked,	if	it	is
not	created	via	JSON.stringify	or	a	similar	library.	Furthermore,	because	a	string	can
possess	any	combination	of	Unicode	characters,	JavaScript	operators	could	be	easily
inserted	into	a	JSON	text.	If	these	operators	were	evaluated,	they	could	be	detrimental	to
our	application,	whether	or	not	they	were	intended	to	be	malicious.	Consider	an	innocent
call	that	has	an	impact	on	our	system,	as	shown	in	Listing	6-11.

Listing	6-11.	Assignments	Can	Impact	Your	Existing	JavaScript	Values

var	foo=123

eval("var	foo	=	\"abc\"");

console.log(foo);	//	abc

Because	JavaScript	values	can	easily	be	overwritten,	as	demonstrated	in	Listing	6-11,
it	is	imperative	that	only	valid	JSON	text	is	supplied	to	eval.

The	second	stage	of	the	parse	method	is	to	ensure	the	validity	of	the	grammar.	With
the	use	of	regular	expressions,	stage	two	seeks	out	tokens	that	do	not	properly	represent
valid	JSON	grammar.	It	especially	seeks	out	JavaScript	tokens	that	could	nefariously
cause	our	application	harm.	Such	tokens	represent	method	invocations,	denoted	by	an
open	parenthesis	(()	and	close	parenthesis	());	object	creation,	indicated	by	the	keyword
new;	and	left-handed	assignments,	indicated	by	the	use	of	the	equal	(=)	operator,	which
could	lead	to	the	mutation	of	existing	values.	While	these	are	explicitly	searched	for,	if
any	tokens	are	found	to	be	invalid,	the	text	will	not	be	further	evaluated.	Instead,	the
parse	method	will	throw	a	syntax	error.

However,	should	the	provided	text	in	fact	appear	to	be	a	valid	JSON,	the	parser	will
commence	stage	three,	which	is	the	provision	of	the	sanitized	text	to	the	eval	function.	It
is	during	stage	three	that	the	captured	literals	of	each	JSON	value	are	reconstructed	into
their	original	form.	Well,	at	least	as	close	to	their	original	form	as	JSON’s	grammar	allows

www.it-ebooks.info

http://www.it-ebooks.info/

for.	Remember:	JSON’s	grammar	prohibits	a	variety	of	JavaScript	values,	such	as	the
literal	undefined,	functions	and	methods,	any	nonfinite	number,	custom	objects,	and
dates.	That	said,	the	parse	method	offers	the	ability	for	us	to	further	analyze	the
produced	JavaScript	values	in	a	fourth	and	final	stage,	so	that	we	can	control	what
JavaScript	values	are	returned	for	use	by	our	application.	If,	however,	the	reviver
parameter	is	not	supplied,	the	produced	JavaScript	value	of	the	eval	function	is	returned
as	is.

The	final	stage	of	the	parse	operation	occurs	only	if	we	supply	an	argument	to	the
method,	in	addition	to	the	JSON	text	we	seek	to	be	transformed.	The	benefit	of	the
optional	parameter	is	that	it	allows	us	to	provide	the	necessary	logic	that	determines	what
JavaScript	values	are	returned	to	our	application,	which	otherwise	would	be	impossible	to
achieve	by	the	default	behavior.

reviver
The	reviver	parameter,	unlike	the	replacer	parameter	of	the	stringify	method,
can	only	be	supplied	a	function.	As	outlined	in	Listing	6-12,	the	reviver	function	will
be	provided	with	two	arguments,	which	will	assist	our	supplied	logic	in	determining	how
to	handle	the	appropriate	JavaScript	values	for	return.	The	first	parameter,	k,	represents
the	key	or	index	of	the	value	being	analyzed.	Complementarily,	the	v	parameter	represents
the	value	of	said	key/index.

Listing	6-12.	Signature	of	reviver	Function

var	reviver	=	function(k,v);

If	a	reviver	function	is	supplied,	the	JavaScript	value	that	is	returned	from	the
global	eval	method	is	“walked”	over,	or	traversed,	in	an	iterative	manner.	This	loop	will
discover	each	of	the	current	object’s	“own”	properties	and	will	continue	to	traverse	any
and	all	nested	structures	it	possesses	as	values.	If	a	value	is	found	to	be	a	composite
object,	such	as	array	or	object,	each	key	that	object	is	in	possession	of	will	be	iterated	over
for	review.	This	process	continues	until	all	enumerable	keys	and	their	values	have	been
addressed.	The	order	in	which	the	properties	are	uncovered	is	not	indicative	of	how	they
are	captured	within	the	object	literals.	Instead,	the	order	is	determined	by	the	JavaScript
engine.

With	each	property	traversed,	the	scope	of	the	reviver	function	supplied	is
continuously	set	to	the	context	of	each	object,	whose	key	and	value	are	supplied	as
arguments.	In	other	words,	each	object	whose	properties	are	being	supplied	as	arguments
will	remain	the	context	of	the	implicit	this	within	the	reviver	function.	Last,	it	will
be	imperative	for	our	reviver	method	to	return	a	value	for	every	invocation;	otherwise,
the	JavaScript	value	returned	will	be	that	of	undefined,	as	shown	in	Listing	6-13.

Listing	6-13.	Members	Are	Deleted	If	the	Returned	Value	from	reviver	Is
undefined

var	JSONtext='{"name":"Ben","age":36,"pets":

www.it-ebooks.info

http://www.it-ebooks.info/

[{"name":"Waverly","age":3.5},{"name":"Westley","age":4}]}';

var	reviver=	function(k,v){};

var	author	=	JSON.parse(JSONtext,reviver);

console.log(author)	//undefined

console.log(typeof	author)	//undefined

If	the	return	value	from	the	reviver	function	is	found	to	be	undefined,	the
current	key	for	that	value	is	deleted	from	the	object.	Specifying	the	supplied	v	value	as	the
return	object	will	have	no	impact	on	the	outcome	of	the	object	structure.	Therefore,	if	a
value	does	not	require	any	alterations	from	the	default	behavior,	just	return	the	supplied
value,	v,	as	shown	in	Listing	6-14.

Listing	6-14.	Returning	the	Value	Supplied	to	the	reviver	Function	Maintains	the
Original	Value

var	JSONtext='{"name":"Ben","age":36,"pets":

[{"name":"Waverly","age":3.5},{"name":"Westley","age":4}]}';

var	reviver=	function(k,v){	return	v	};

var	author	=	JSON.parse(JSONtext,reviver);

console.log(author);

/*	the	result	as	show	in	firebug	below

				age					36

				name		"Ben"

	pets				[Object	{	name="Waverly",	age=3.5	},		Object	

{	name="Westley",	age=4	}]

				 		0						Object	{	name="Waverly",	age=3.5	}

				 		1						Object	{	name="Westley",	age=4	}

*/

console.log(typeof	author);	//object

As	was	stated	earlier,	a	well-defined	set	of	object	keys	is	not	only	useful	for	your
application	to	target	appropriate	data	but	can	also	provide	the	necessary	blueprint	to	our
reviver	logic	for	clues	leading	to	how	and	when	to	alter	a	provided	value.	The
reviver	function	can	use	these	labels	as	the	necessary	conditions	to	further	convert	the
returned	values	of	the	eval,	in	order	to	arrive	at	the	JavaScript	structures	we	require	for
our	application’s	purposes.

As	you	should	be	well	aware	at	this	point,	JSON	grammar	does	not	capture	dates	as	a
literal	but,	instead,	as	a	string	literal	in	the	UTC	ISO	format.	As	a	string	literal,	the	built-in
eval	function	is	unable	to	handle	the	conversion	of	said	string	into	that	of	a	JavaScript
date.	However,	if	we	are	able	to	determine	that	the	value	supplied	to	our	reviver
function	is	a	string	of	ISO	format,	we	could	instantiate	a	date,	supply	it	with	our	ISO-
formatted	string,	and	return	a	valid	JavaScript	date	back	to	our	application.	Consider	the
example	in	Listing	6-15.

Listing	6-15.	With	the	reviver	Function,	ISO	Date-Formatted	Strings	Can	Be
Transformed	into	date	objects

www.it-ebooks.info

http://www.it-ebooks.info/

var	date=	new	Date("Jan	1	2015");

var	stringifiedData	=	JSON.stringify(date);

console.log(stringifiedData);		//	"2015-01-

01T05:00:00.000Z"

var	dateReviver=function(k,v){

					return	new	Date(v);

}

var	revivedDate	=	JSON.parse(stringifiedData	

,	dateReviver);

console.log(revivedDate);		//Date	{Thu	Jan	01	2015	00:00:00	GMT-
0500	(EST)}

Because	the	ISO	date	format	is	recognized	as	a	standard,	JavaScript	dates	can	be
initiated	with	the	provision	of	an	ISO-formatted	string	as	an	argument.	Listing	6-15	shows
a	program	that	begins	with	a	known	JavaScript	date	set	to	January	1,	2015.	Upon	its
conversion	to	a	JSON	text,	our	date	is	transformed	into	a	string	made	up	of	the	ISO	8601
grammar.	By	supplying	a	reviver	function,	which	possesses	the	necessary	logic,
JSON.parse	is	able	to	return	a	date	to	our	application.

For	purely	illustrative	purposes,	Listing	6-15	does	not	have	to	determine	if	the	value
supplied	is	in	fact	an	ISO-formatted	string.	This	is	simply	because	we	know	the	value
being	supplied	is	solely	that.	However,	it	will	almost	always	be	necessary	for	a	reviver
function	to	possess	the	necessary	conditional	logic	that	controls	how	and	when	to	treat
each	supplied	value.

That	said,	we	could	test	any	string	values	supplied	to	our	reviver	function	against
the	ISO	8601	grammar.	If	the	string	is	determined	to	be	a	successful	match,	it	can	be
distinguished	from	an	ordinary	string	and	thus	transformed	into	a	date.	Consider	the
example	in	Listing	6-16.

Listing	6-16.	RegExp	Can	Match	ISO-Formatted	Strings

var	book={};

				book.title	=	"Beginning	JSON"

				book.publishDate=	new	Date("Jan	1	2015");

				book.publisher=	"Apress";

				book.topic="JSON	Data	Interchange	Format"

var	stringifiedData	=	JSON.stringify(book);

console.log(stringifiedData);

//	["value	held	by	index	0","2015-01-

01T05:00:00.000Z","value	held	by	index	2","value	held	by	

index	3"]

var	dateReviver=function(k,v){

				var	ISOregExp=/^([\+-]?\d{4}(?!\d{2}\b))((-?)((0[1-

9]|1[0-2])(\3([12]\d|0[1-9]|3[01]))?|W([0-4]\d|5[0-2])(-?[1-

7])?|(00[1-9]|0[1-9]\d|[12]\d{2}|3([0-5]\d|6[1-6])))([T\s]

((([01]\d|2[0-3])((:?)[0-5]\d)?|24\:?00)([\.,]\d+(?!:))?)?

www.it-ebooks.info

http://www.it-ebooks.info/

(\17[0-5]\d([\.,]\d+)?)?([zZ]|([\+-])([01]\d|2[0-3]):?([0-

5]\d)?)?)?)?$/;

				if(typeof	v==="string"){

								if(ISOregExp.test(v)){

													return	new	Date(v);

								}

				}

				return	v;

}

var	revivedValues	=	JSON.parse(stringifiedData	

,	dateReviver);

console.log(revivedValues);

/*	the	result	as	show	in	firebug	below

	publishDate				Date	{Thu	Jan	01	2015	00:00:00	GMT-0500	

(EST)}	,

				publisher				"Apress",

				title								"Beginning	JSON"

				topic								"JSON	Data	Interchange	Format"

*/

In	the	preceding	example,	our	application	parses	a	composite	structure,	which	is
simply	an	array.	The	value	of	each	key	is	in	the	form	of	a	string,	one	of	which,	however,
represents	a	date.	Within	the	reviver	function,	we	first	determine	if	each	value	supplied
is	that	of	a	string,	via	the	operator	typeof.	If	the	value	is	determined	to	be	of	the
string	type,	it	is	further	compared	against	the	ISO	grammar	by	way	of	a	regular
expression.	The	variable	ISOregExp	references	the	pattern	that	matches	a	possible	ISO-
formatted	string.	If	the	pattern	matches	the	value	supplied,	we	know	it	is	a	string
representation	of	a	date,	and,	therefore,	we	can	transform	our	string	into	a	date.	While	the
preceding	example	produces	the	desired	effect,	a	regular	expression	may	not	prove	most
efficient	in	determining	which	strings	should	be	converted	and	which	should	not.

This	is	where	we	can	rely	on	a	well-defined	identifier.	The	k	value,	when	supplied	as	a
clearly	defined	label,	as	shown	in	Listing	6-17,	can	be	incredibly	useful	for	coordinating
the	return	of	the	desired	object.

Listing	6-17.	Well-Defined	Label	Identifiers	Can	Be	Used	to	Establish	Which	objects
Require	Added	Revival

var	book={};

				book.title	=	"Beginning	JSON"

				book.publishDate=	new	Date("Jan	1	2015");

				book.publisher=	"Apress";

				book.topic="JSON	Data	Interchange	Format"

var	bookAsJSONtext	=	JSON.stringify(book);

console.log(bookAsJSONtext);

//	"{"title":"Beginning	JSON",

				"publishDate":"2015-01-01T05:00:00.000Z",

www.it-ebooks.info

http://www.it-ebooks.info/

				"publisher":"Apress",

				"topic":"JSON	Data	Interchange	Format"}"

var	reviver	=	function(k	,	v){
							console.log(k);

/*	logged	keys	as	they	were	supplied	to	the	reviver	function	*/

//	title

//	publisher

//	date

//	publishedInfo

//	topic

//(an	empty	string)

				if(k	==="publishDate"){

								return	new	Date(v);

				}

				return	v;

}

var	parsedJSON	=	JSON.parse(bookAsJSONtext	,	reviver);

console.log(parsedJSON);

/*	the	result	as	show	in	firebug	below

	publishDate			Date	{Thu	Jan	01	2015	00:00:00	GMT-0500	(EST)}	

,

			publisher				"Apress",

			title								"Beginning	JSON"

			topic								"JSON	Data	Interchange	Format"

*/

Listing	6-17	achieves	the	same	results	as	Listing	6-16;	however,	it	does	not	rely	on	a
regular	expression	to	seek	out	ISO-formatted	dates.	Instead,	the	reviver	logic	is
programmed	to	revive	only	strings	whose	key	explicitly	matches	publishDate.

Not	only	do	labels	offer	more	possibility	when	determining	whether	the	value	should
or	should	not	be	converted,	their	use	is	also	more	expedient	than	the	former	method.
Depending	on	the	browser,	the	speeds	can	range	from	29%	to	49%	slower	when	the
determining	factor	is	based	on	RegExp.	The	results	can	be	viewed	for	yourself	in	the
performance	test	available	at	http://jsperf.com/regexp-vs-label.

It	was	briefly	mentioned	in	Chapter	5	that	custom	classes,	when	serialized,	are
captured	indistinguishably	from	the	built-in	objects	of	JavaScript.	While	this	is	indeed	a
hindrance,	it	is	not	impossible	to	transform	your	object	into	a	custom	object,	by	way	of	the
reviver	function.

Listing	6-18	makes	use	of	a	custom	data	type	labeled	Person,	which	possesses	three
properties:	name,	age,	and	gender.	Additionally,	our	Person	data	type	possesses
three	methods	to	read	those	properties.	An	instance	of	Person	is	instantiated	using	the

www.it-ebooks.info

http://jsperf.com/regexp-vs-label
http://www.it-ebooks.info/

new	keyword	and	assigned	to	the	variable	p.	Once	assigned	to	p,	the	three	properties	are
supplied	with	valid	values.	Using	the	built-in	instanceof	operator,	we	determine
whether	our	instance,	p,	is	of	the	Person	data	type,	which	we	soon	learn	it	is.	However,
once	we	serialize	our	p	instance,	and	parse	it	back	into	that	of	a	JavaScript	object,	we	soon
discover	via	instanceof	that	our	p	instance	no	longer	possesses	the	Person	data
type.

Listing	6-18.	Custom	Classes	Are	Serialized	As	an	Ordinary	object

function	Person(){

				this.name;

				this.age;

				this.gender;

}

Person.prototype.getName=function(){

				return	this.name;

};

Person.prototype.getAge=function(){

				return	this.age;

};

Person.prototype.getGender=function(){

				return	this.gender;

};

var	p=new	Person();

				p.name="ben";

				p.age="36";

				p.gender="male";

console.log(p	instanceof	Person);	//	true

var	serializedPerson=JSON.stringify(p);

var	parsedJSON	=	JSON.parse(serializedPerson);
console.log(parsedJSON	instanceof	Person);	//	false;

Because	the	reviver	function	is	invoked	after	a	JSON	text	is	converted	back	into
JavaScript	form,	the	reviver	can	be	used	for	JavaScript	alterations.	This	means	that	you
can	use	it	as	a	prepping	station	for	the	final	object	to	be	returned.	What	this	means	for	us
is	that,	using	the	reviver	function,	we	can	cleverly	apply	inheritance	back	to	objects
that	we	know	are	intended	to	be	of	a	distinct	data	type.	Let’s	revisit	the	preceding	code	in
Listing	6-19,	only	this	time,	with	the	knowledge	that	our	parsed	object	is	intended	to
become	a	Person.

Listing	6-19.	Reviving	an	object’s	Custom	Data	Type	with	the	reviver	Function

function	Person(){

				this.name;

				this.age;

				this.gender;

www.it-ebooks.info

http://www.it-ebooks.info/

};

Person.prototype.getName=function(){

				return	this.name;

};

Person.prototype.getAge=function(){

				return	this.age;

};

Person.prototype.getGender=function(){

				return	this.gender;

};

//instantiate	new	Person

var	p=new	Person();

				p.name="ben";

				p.age="36";

				p.gender="male";

//test	that	p	possesses	the	Person	Data	Type
console.log(p	instanceof	Person);	//	true

var	serializedPerson=JSON.stringify(p);

var	reviver	=	function(k,v){

//	if	the	key	is	an	empty	string	we	know	its	our	top	level	

object

				if(k===""){

								//set	object’s	inheritance	chain	to	that	of	a	Person	

instance

								v.__proto__	=	new	Person();

				}

				return	v;

}

var	parsedJSON	=	JSON.parse(serializedPerson	,	reviver);

//test	that	parsedJSON	possesses	the	Person	Data	Type
console.log(parsedJSON	instanceof	Person);	//	true

console.log(parsedJSON.getName());	//	"Ben"

The	__proto__	property	used	in	the	preceding	example	forges	the	hierarchical
relationship	between	two	objects	and	informs	JavaScript	where	to	further	look	for
properties	when	local	values	are	unable	to	be	found.	The	__proto__	was	originally
implemented	by	Mozilla	and	has	slowly	become	adopted	by	other	modern	browsers.
Currently,	it	is	only	available	in	Internet	Explorer	version	11	and,	therefore,	shouldn’t	be
used	in	daily	applications.	This	demonstration	is	intended	for	illustrative	purposes,	to
demonstrate	succinctly	how	the	reviver	function	offers	you	the	ability	to	be	as	clever	as
you	wish,	in	order	to	get	the	parsed	values	to	conform	to	your	application’s	requirements.

www.it-ebooks.info

http://www.it-ebooks.info/

Summary
JSON.parse	is	the	available	mechanism	for	converting	JSON	text	into	a	JavaScript
value.	As	part	of	the	JSON	global	object,	it	is	available	in	modern	browsers	as	well	as
older	browsers,	by	way	of	including	the	json2.js	library	into	your	application.	In	order
to	convert	the	literals	captured,	json2.js	relies	on	the	built-in	global	eval	function	to
access	the	JavaScript	interpreter.	While	you	learned	that	using	the	eval	function	is	highly
insecure,	the	JSON	Object	seeks	out	non-matching	patterns	of	the	JSON	grammar
throughout	the	supplied	text,	which	minimizes	the	risk	of	inviting	possibly	malicious	code
into	your	application.	If	the	parse	method	uncovers	any	tokens	that	seek	to	instantiate,
mutate,	or	operate,	a	parse	error	is	thrown.	In	addition,	the	parse	method	is	exited,
preventing	the	JSON	text	from	being	supplied	to	the	eval	function.

If	the	supplied	text	to	the	parse	method	is	deemed	suitable	for	eval,	the	captured
literals	will	be	interpreted	by	the	engine	and	transformed	into	JavaScript	values.	However,
not	all	objects,	such	as	dates	or	custom	classes,	can	be	transformed	natively.	Therefore,
parse	can	take	an	optional	function	that	can	be	used	to	manually	alter	JavaScript	values,
as	required	by	your	application.

When	you	design	the	replacer,	toJSON,	and	reviver	functions,	using	clearly
defined	label	identifiers	will	allow	your	application	the	ability	to	better	orchestrate	the
revival	of	serialized	data.

Key	Points	from	This	Chapter
JSON.parse	throws	a	parse	error	if	the	supplied	JSON	text	is	not
valid	JSON	grammar.

parse	occurs	in	four	stages.

eval	is	an	insecure	function.

Supply	only	valid	JSON	to	eval.

A	reviver	function	can	return	any	valid	JavaScript	value.

If	the	reviver	function	returns	the	argument	supplied	for	parameter
v,	the	existing	member	remains	unchanged.

If	reviver	returns	undefined	as	the	new	value	for	a	member,
said	member	is	deleted.

reviver	manipulates	JavaScript	values,	not	JSON	grammar.

1Wikipedia,	“Tree	(data	structure),”
http://en.wikipedia.org/wiki/Tree_%28data_structure%29#Terminology,	modified	January
2015.

2ECMA	International,	ECMAScript	Language	Specification,	Standard	ECMA-262,	Edition	5.1,	Section	7.3,

www.it-ebooks.info

http://en.wikipedia.org/wiki/Tree_%28data_structure%29#Terminology
http://www.it-ebooks.info/

www.ecma-international.org/ecma-262/5.1/#sec-7.3,	June	2011.

www.it-ebooks.info

http://www.ecma-international.org/ecma-262/5.1/#sec-7.3
http://www.it-ebooks.info/

CHAPTER	7

Persisting	JSON:	I
In	Chapter	5,	you	learned	how	JSON.stringify	captures	the	data	possessed	by	an
identified	JavaScript	value.	This	occurs	by	reverse	engineering	the	specified	target	into	its
literal	form,	in	accordance	with	the	JSON	grammar,	thus	capturing	the	current	state	of	a
model	for	a	particular	application	as	JSON	text.	You	further	learned	that	JSON.parse
taps	into	the	innate	ability	of	the	JavaScript	engine	to	“parse”	the	literals	that	make	up	a
valid	JSON	text.	This	revives	the	state	from	a	previous	model	for	use	within	the	existing
session.

To	illustrate	how	to	use	JSON.parse,	each	example	in	Chapter	6	was	preceded	by
the	stringify	method,	in	order	to	provide	something	to	be	parsed.	Furthermore,	this
was	meant	to	illustrate	the	lifecycle	of	how	one	method	gives	rise	to	the	other.

While	this	is	sufficient	for	the	purposes	of	a	demonstration,	it	will	be	rare	to	parse	data
immediately	after	it	has	been	serialized	by	our	application.	This	would	result	in	a	very
linear	and	limited	use	case.	These	two	methods	really	shine,	however,	when	they	are
paired	with	data	persistence.	It	is	the	persistence	of	data	that	enables	both	methods,
stringify	and	parse,	to	be	used	independently	of	each	other.	This	offers	an
application	many	more	use-case	scenarios.	This	contrast	is	illustrated	in	Figure	7-1.

Figure	7-1.	Contrast	between	use-case	scenarios

Computer	science	defines	the	persistence	of	data	as	a	state	that	continues	to	exist	after
the	process	from	which	it	was	created.1	Much	like	the	phrase,	“you	can’t	step	in	the	same
spot	of	a	moving	river	twice,”	the	process	that	serializes	data	will	cease	to	exist	the
moment	the	JSON	text	is	produced	and	the	function	that	ran	the	process	is	exited.
Therefore,	in	order	to	utilize	the	produced	JSON	beyond	the	given	process	that	created	it,
it	must	be	stored	for	later	retrieval.

Believe	it	or	not,	in	the	examples	in	Chapter	5,	we	were	using	a	slight	form	of	data

www.it-ebooks.info

http://www.it-ebooks.info/

persistence,	according	to	the	aforementioned	definition.	When	the	stringify	method
exited,	the	produced	JSON	returned	by	each	example	was	able	to	continue	to	be
referenced	by	the	application.	This	is	because	we	had	assigned	it	as	the	value	to	a	variable,
which	was	often	labeled	JSONtext.	Therefore,	we	managed	to	persist	JSON	by
definition.	However,	if	we	were	to	navigate	away	from	the	application	at	any	point	in	the
course	of	running	the	Chapter	5	examples	within	a	browser,	the	variable	JSONtext
would	cease	to	persist,	and	the	JSON	it	was	assigned	would	be	lost	as	well.

Because	the	Internet	was	founded	atop	a	request-and-response	protocol,	each	request
made	of	a	server,	regardless	of	whether	it’s	for	.html,	.jpg,	.js,	etc.,	occurs	without
consideration	of	any	previous	or	subsequent	requests	by	the	same	visitor.	This	is	even	if
requests	made	are	to	the	same	domain.	What	is	returned	from	the	server	is	simply	the
fulfillment	of	the	resource	requested.	Over	the	years,	many	a	developer	has	needed	to	be
able	to	string	together	the	isolated	requests	of	a	common	server,	in	order	to	facilitate
things	such	as	shopping	carts	for	e-commerce.	One	of	the	technologies	that	was	forged
from	this	requirement	brought	forth	a	technique	that	we	will	leverage	in	order	to	achieve
the	persistence	of	JSON.	That	technology	is	the	HTTP	cookie.

HTTP	Cookie
As	was	previously	mentioned,	the	HTTP/1.1	protocol	is	incapable	of	persisting	state;
therefore,	it	becomes	the	duty	of	the	user-agent	to	manage	this	undertaking.	The	HTTP
cookie,	or	cookie	for	short,	was	created	as	a	means	to	string	together	the	actions	taken	by
the	user	per	“isolated”	request	and	provide	a	convenient	way	to	persist	the	state	of	one
page	into	that	of	another.	The	cookie	is	simply	a	chunk	of	data	that	the	browser	has	been
notified	to	retain.	Furthermore,	the	browser	will	have	to	supply,	per	subsequent	request,
the	retained	cookie	to	the	server	for	the	domain	that	set	it,	thereby	providing	state	to	a
stateless	protocol.

The	cookie	can	be	utilized	on	the	client	side	of	an	application	with	JavaScript.
Additionally,	it	is	available	to	the	server,	supplied	within	the	header	of	each	request	made
by	the	browser.	The	header	can	be	parsed	for	any	cookies	and	made	available	to	server-
side	code.	Cookies	provide	both	front-end	and	back-end	technologies	the	ability	to
collaborate	and	reflect	the	captured	state,	in	order	to	properly	handle	each	page	view	or
request	accordingly.	The	ability	to	continue	to	progress	the	state	from	one	page	to	another
allows	each	action	to	no	longer	be	isolated	and,	instead,	occur	within	the	entirety	of	the
user’s	interaction	with	a	web	site.2

Like	JSON,	cookies	possess	a	specification	and	protocol	all	their	own.	By
understanding	its	syntax,	we	can	tap	into	the	persistence	of	the	HTTP	cookie	and,	by
extension,	persist	JSON	for	later	use	with	an	application.	The	great	news	is	that	HTTP
cookies	are	extremely	simple,	in	addition	to	being	recognized	by	all	major	browsers	dating
back	to	Internet	Explorer	3.

Syntax

www.it-ebooks.info

http://www.it-ebooks.info/

At	its	most	atomic	unit,	the	cookie	is	simply	a	string	of	ASCII	encoded	characters
composed	of	one	or	more	attribute-value	pairs,	separated	by	a	semicolon	(;)	token.
Listing	7-1	outlines	the	syntax	for	the	HTTP	cookie.

	Note		ASCII	is	short	for	“American	Standard	Code	for	Information	Interchange”	and	is
composed	of	128	characters,	which	are	letters	from	the	English	alphabet,	digits	0–9,	basic
punctuation,	and	a	few	control	characters.

Listing	7-1.	Set-Cookie	Syntax	as	Defined	by	RFC	6265

set-cookie						=							"Set-Cookie:"	cookies

cookies									=							1#cookie

cookie										=							NAME	"="	VALUE	*(";"	cookie-av)

NAME												=							attr

VALUE											=							value

cookie-av							=							"expires"	"="	value

																|							"max-age"	"="	value

																|							"domain"	"="	value

																|							"path"	"="	value

																|							"secure"

																|							"httponly"

Listing	7-1	uses	the	grammar	defined	by	the	HTTP/1.1	specification	to	outline	the
syntax	of	the	HTTP	cookie.	In	order	to	understand	the	syntax,	I	would	like	to	direct	your
focus	to	the	line	cookie	=	NAME	“=”	VALUE	*(“;”	cookie-av).	This	line
outlines	the	entire	syntax	of	the	cookie.	We	will	dissect	this	line	in	two	passes.	The	first
half	will	regard	only	cookie	=	NAME	“=”	VALUE.	This	portion	of	the	syntax
outlines	the	following:	“Set	some	cookie	specified	by	the	indicated	NAME,	to	possess	the
assigned	VALUE.”	A	cookie,	in	short,	is	nothing	more	than	a	key/value	pair.

As	with	all	key/value	pairs,	it	will	be	the	purpose	of	the	“key”	represented	by	NAME	to
both	identify	as	well	as	provide	the	means	to	access	an	assigned	value.	VALUE,	on	the
other	hand,	represents	the	data	or	state	that’s	intended	to	be	persisted	for	the	application.
To	ensure	a	cookie	is	stored	uniformly	among	all	browsers,	it	will	be	imperative	that	both
NAME	and	VALUE	be	made	up	of	valid	ASCII	characters,	such	as	those	shown	in	Listing
7-2.

Listing	7-2.	Key/Value	Pairs	Intended	to	Be	Persisted	As	a	Cookie	Must	Both	Be	Valid
ASCII	Characters

"greetings=Hello	World!";

"greetingJSON=[\"Hello	World!\"]";

	Note		Safari	as	well	as	Internet	Explorer	do	not	correctly	handle	cookies	that	contain
non-ASCII	characters.

While	the	tokens	that	make	up	JSON	text	are	valid	ASCII	characters,	the	values	held

www.it-ebooks.info

http://www.it-ebooks.info/

within	are	not	limited	to	ASCII	but,	rather,	UTF-8.	Therefore,	if	the	characters	that	are
represented	in	your	application	fall	outside	of	the	ASCII	range,	it	will	be	necessary	to
encode	your	UTF-8	characters	with	Base64	encoding.	Two	libraries	you	can	use	for	this
purpose	are	https://jsbase64.codeplex.com/releases/view/89265	and
https://code.google.com/p/javascriptbase64/.	While	both	utilize
different	namespaces,	Base64	and	B64,	they	both	rely	on	the	same	methods	to	encode	and
decode.	Either	of	these	libraries	will	be	capable	of	converting	your	non-ASCII	values	into
ASCII-encoded	values.	Listing	7-3	demonstrates	the	use	of	one	of	the	aforementioned
Base64	libraries	by	converting	the	characters	of	our	string	of	UTF-8	characters	into	those
of	ASCII,	in	order	to	be	compliant	with	the	HTTP	cookie	syntax.

Listing	7-3.	UTF-8	Characters	Being	Converted	into	ASCII	Using	a	Base64	Library

var	unicodeValue	=	"привет	мир!";		//	Hello	World!	in	Russian;

var	asciiString	=	Base64.encode(JSON.stringify(

unicodeValue));

console.log(asciiString);	//	

"ItC/0YDQuNCy0LXRgiDQvNC40YAhIg=="

var	decodedValue	=	Base64.decode(asciiString);

console.log(decodedValue);		//	"привет	мир!"

The	second	half	of	the	line	in	review,	*(“;”	cookie-av),	explains	that	our	cookie
can	be	supplied	a	sequence	of	any	of	the	six	optional	cookie	attribute-value	pairs,	as
required	by	an	application.	The	token	that	must	separate	them	from	their	successor	in	the
string	is	the	semicolon	(;).	While	it	is	not	necessary	to	supply	whitespace	characters
between	the	semicolon	and	the	attribute	value,	it	will	aid	to	keep	your	code	clean	and
legible.	The	possible	cookie-av	values	are	listed	in	Listing	7-1	as	“expires”,
“max-age”,	“domain”,	“path”,	“secure”,	and	“httponly”.	Each	attribute
value	defines	a	specific	scope	to	the	defined	cookie.

expires
The	expires	attribute	is	quite	literally	the	“key,”	pun	intended,	to	the	duration	over	the
persistence	of	the	specified	cookie.	Should	the	expires	attribute	be	specified,	its	value
counterpart	will	inform	the	browser	of	the	date	and	time	it	is	no	longer	necessary	to
further	store	said	cookie.	The	value	supplied	is	required	to	be	in	UTC	Greenwich	Mean
Time	format.	Being	that	UTC	GMT	is	a	standard,	we	can	achieve	this	value	with	ease,	by
way	of	the	built-in	methods	of	the	Date	object	as	demonstrated	in	Listing	7-4.

Listing	7-4.	toUTCString	Produces	a	UTC	Greenwich	Mean	Time	Value

var	date=	new	Date("Jan	1	2015	12:00	AM");

var	UTCdate=	date.toUTCString()	;

console.log(UTCdate);		//	"Thu,	01	Jan	2015	06:00:00	GMT"

Listing	7-4	initiates	a	date	instance	with	the	supplied	string	of	January	1,	2015.
Furthermore,	the	time	is	set	to	exactly	12	AM.	Utilizing	date’s	built-in	method,
toUTCString,	the	date	and	time	it	represents	is	translated	into	its	GMT	equivalent	and

www.it-ebooks.info

https://jsbase64.codeplex.com/releases/view/89265
https://code.google.com/p/javascriptbase64/
http://www.it-ebooks.info/

then	returned	to	the	caller	of	the	method.	When	we	log	that	value,	we	can	clearly	note	that
the	date	has	been	converted,	as	it	is	signified	by	the	appended	abbreviation	GMT.	If	you
were	to	run	the	code	from	Listing	7-4,	you	might	receive	a	different	value.	That	is	because
the	JavaScript	Date	Object	correlates	to	your	location	and	time	zone.	Nevertheless,	the
date	and	time	that	you	specify	will	be	equal	to	the	difference	in	time	zone	between	your
location	and	Greenwich.

If	we	were	to	assign	the	date	from	Listing	7-4	to	our	author	cookie	in	Listing	7-5,	the
cookie	would	be	available	until	exactly	Thursday,	12:00	AM	January	1,	2015,	or
Thursday,	01	Jan	2015	06:00:00	Greenwich	Mean	Time.

Listing	7-5.	Appending	Date	to	the	Key/Value	Pair	to	Provide	an	Expiration

var	date=	new	Date("Jan	1	2015	12:00	AM");

"author=test;	expires="+	date.toUTCString();

If	the	value	supplied	to	the	expires	attribute	occurs	in	the	past,	the	cookie	is
immediately	purged	from	memory.	On	the	other	hand,	if	the	expires	attribute	is
omitted,	then	the	cookie	will	be	discarded	the	moment	the	session	has	ended.	Essentially,
the	browser	would	continue	to	persist	the	cookie	only	as	long	as	the	session	remained
open.

It	used	to	be	that	the	moment	you	exited	the	browser,	all	sessions	were	immediately
closed.	Today,	however,	it’s	worth	noting	that	sessions	may	persist	well	after	the	browser
is	exited.	This	is	due	to	the	specific	features	that	vendors	have	incorporated	into	their
browsers,	such	as	restoring	previously	viewed	pages/tabs	if	the	browser	crashes.
Additionally,	they	provide	us	the	ability	to	restore	pages/tabs	from	History.	Therefore,
session	cookies	may	continue	to	persist	in	memory	longer	than	expected.

As	we	will	be	looking	to	persist	our	JSON	indefinitely,	we	will	almost	always	supply
an	expires	attribute	value	to	our	cookies.

max-age
The	max-age	attribute,	like	the	expires	attribute,	specifies	how	long	a	cookie	should
persist.	The	difference	between	the	two	is	that	max-age	specifies	the	life	span	of	the
cookie	in	seconds.	While	the	max-age	attribute	is	defined	by	the	original	specification
and	continues	to	exist	today,	it	is	not	an	attribute	that	is	acknowledged	by	Internet
Explorer	6	through	8.	That	said,	it	will	be	wise	to	favor	the	expires	attribute	and	ignore
max-age.

domain
The	domain	attribute	explicitly	defines	the	domain(s)	to	which	the	cookie	is	to	be	made
available.	However,	the	domain	specified	must	somehow	possess	a	relationship	to	the
origin	setting	the	cookie.	In	other	words,	if	www.sandboxed.guru	is	setting	a	cookie,
it	cannot	supply	apress.com	as	the	domain.	This	would	prove	to	be	a	huge	security
concern,	if	it	were	possible	to	set	cookies	for	other	domains.

It	is	the	responsibility	of	the	browser	to	make	available,	to	both	JavaScript	and	the

www.it-ebooks.info

http://www.sandboxed.guru
http://apress.com
http://www.it-ebooks.info/

server,	all	cookies	whose	supplied	domain	attribute	matches	that	of	the	domain	of	the
visited	URL.	To	ensure	that	the	domains	match,	the	browser	will	compare	the	two.	This
comparison	can	be	illustrated	with	a	regular	expression	(see	Listing	7-6).

Listing	7-6.	Using	a	Regular	Expression	to	Demonstrate	Matching	Origins

var	regExp=

(/www.sandboxed.guru$/i).test('www.sandboxed.guru');		//true

Listing	7-6	defines	a	pattern	that	matches	against	the	tail	end	of	a	host	domain.	The
pattern	www.sandboxed.guru	represents	the	cookie’s	assigned	domain	attribute.
The	$	token	further	specifies	that	the	pattern	explicitly	ends	with	.guru.	This	is
necessary	to	prevent	the	cookies	of	sandboxed.guru	from	being	available	to	another
domain	that	might	just	so	happen	to	possess	our	origin	within	its	subdomain.	This	would
be	quite	the	security	risk.	Note	the	difference	between	the	URLs	sandboxed.guru	and
guru.com.	They	are	two	entirely	different	domains.	Now	consider	what	might	occur	if
guru.com	were	to	use	the	following	subdomain:	www.sandboxed.guru.com	(see
Listing	7-7).

Listing	7-7.	Matching	URLs	are	Determined	Through	the	Top	Level	Domain	(.com)

(/sandboxed.guru/i).test('sandboxed.guru.com');		//true

(/sandboxed.guru$/i).test('sandboxed.guru.com');	//false

Listing	7-7	demonstrates	that	without	specifying	the	$	to	force	a	tail-end	match,	two
completely	different	properties	could	potentially	be	considered	a	match.

	Note		To	prevent	possible	matches	that	could	exist	within	subdomains,	browsers
explicitly	check	that	a	match	must	end	with	the	appropriate	top-level	domain.

The	i	simply	informs	the	pattern	to	remain	case-insensitive	during	the	match.	If	the
domain	attribute	and	the	server	domain	are	determined	to	be	a	match,	then	for	each
HTTP	request,	any	and	all	cookies	will	be	sent	to	the	server	and	made	available	to	the
JavaScript	application	of	each	page.

The	domain	attribute	is	optional,	but	for	security	purposes,	one	must	be	set.	By
default,	the	domain	attribute	will	be	set	to	the	absolute	origin	that	the	cookie	is	set	from.
This	can	be	slightly	limiting	if	you	have	subdomains	that	require	visibility	of	these
cookies,	or	vice	versa.	Consider	a	domain	attribute	that	is	defaulted	to
www.sandboxed.guru	for	a	particular	cookie.	That	cookie	will	never	be	available	to
sandboxed.guru	because	of	the	preceding	www.	Similarly,	if	the	domain	attribute	is
defaulted	to	sandboxed.guru,	that	cookie	will	not	be	visible	to
json.sandboxed.guru.

However,	by	assigning	the	domain	attribute	value,	we	have	the	ability	to	broaden	the
scope	of	our	cookies.	For	instance,	if	we	specify	a	domain	attribute	as	the	top-level
domain,	preceded	by	the	.	token	(.sandboxed.guru),	the	domain	attribute	would
match	not	only	a	top-level	domain	(sandboxed.guru)	but	any	and	all	subdomains	as
well	(json.sandboxed.guru).	This	is	demonstrated	in	Table	7-1.

www.it-ebooks.info

http://www.sandboxed.guru
http://guru.com
http://guru.com
http://www.sandboxed.guru.com
http://www.sandboxed.guru
http://www.it-ebooks.info/

Table	7-1.	Illustrating	Which	Origins	Are	Considered	Matches	Against	the	Value
Possessed	by	the	domain	Attribute

domain	Attribute Origin Match

www.sandboxed.guru sandboxed.guru false

sandboxed.guru www.sandboxed.guru false

.sandboxed.guru sandboxed.guru true

.sandboxed.guru www.sandboxed.guru true

.sandboxed.guru json.sandboxed.guru true

It	is	not	necessary	to	apply	the	.	token.	As	long	as	we	explicitly	specify	a	hostname
for	the	domain	attribute,	the	.	token	will	automatically	be	prepended	to	all	non-fully-
qualified	domains	by	the	user	agent.

path
While	the	domain	attribute	specifies	to	which	domain(s)	a	set	cookie	is	scoped,	the
path	attribute	further	enforces	to	which	subdirectories	a	cookie	is	available.	If	a	path
attribute	is	not	explicitly	specified,	the	value	is	defaulted	to	the	current	directory	that	set
the	cookie.	Furthermore,	every	subdirectory	of	the	defaulted	directory	will	be	provided
access.	However,	explicitly	defining	the	path	attribute	allows	us	to	narrow	or	broaden
the	scope	of	the	cookie	to	that	of	a	particular	directory	and	all	of	its	subdirectories.	Listing
7-8	demonstrates	how	cookies	can	further	scope	a	cookie	to	that	of	a	particular	URL	for
any	domain	that	is	deemed	a	potential	match.

Listing	7-8.	Demonstrating	Path	Scoping	with	Cookies	Set	from
http://json.sandboxed.guru/chapter7/ficticious.html

"cookieDefault=test;	domain=.sandboxed.guru";

		http://json.sandboxed.guru/chapter7/							//cookieDefault	is	

provided	for	this	request

		http://json.sandboxed.guru/chapter7/css/			//cookieDefault	is	

provided	for	this	request

		https://www.sandboxed.guru/																//cookieDefault	is	NOT	

provided	for	this	request

		http://json.sandboxed.guru/chapter3/js/						//cookieDefault	is	NOT	

provided	for	this	request

		https://json.sandboxed.guru/chapter3/img/				//cookieDefault	is	NOT	

provided	for	this	request

"cookieA=test;	domain=.sandboxed.guru;	path=/";

		http://json.sandboxed.guru/chapter7/							//cookieA	is	

provided	for	this	request

		https://www.sandboxed.guru/																//cookieA	is	

provided	for	this	request

www.it-ebooks.info

http://www.sandboxed.guru
http://www.sandboxed.guru
http://www.sandboxed.guru
http://json.sandboxed.guru/chapter7/ficticious.html
http://www.it-ebooks.info/

		http://json.sandboxed.guru/chapter3/js/				//cookieA	is	

provided	for	this	request

		https://json.sandboxed.guru/chapter3/img/		//cookieA	is	

provided	for	this	request

"cookieB=test;	domain=.sandboxed.guru;	path=chapter3/js/";

		http://json.sandboxed.guru/chapter7/							//cookieB	is	NOT	

provided	for	this	request

		http://json.sandboxed.guru/																//cookieB	is	NOT	

provided	for	this	request

		https://json.sandboxed.guru/chapter3/js/			//cookieB	is	

provided	for	this	request

		https://json.sandboxed.guru/chapter3/						//cookieB	is	NOT	

provided	for	this	request

	Note		Cookies	that	are	scoped	to	a	particular	domain	and/or	path	are	able	to	be	used
indistinguishably	by	HTTP	and	HTTPS	protocols.

secure
The	secure	attribute	is	slightly	misleading,	as	it	does	not	provide	security.	Rather,	this
attribute,	which	does	not	require	being	assigned	a	variable,	informs	the	browser	to	send
the	cookie	to	the	server	only	if	the	connection	over	which	it	is	to	be	sent	is	a	secure
connection,	such	as	HTTPS.	Transmitting	data	over	a	secure	transport	reduces	the	ability
for	any	network	hijackers	to	view	the	contents	being	transported.	This	helps	to	ensure	that
the	cookie	remains	concealed	from	possible	snoopers.	While	this	flag	ensures	that	a
cookie’s	value	remains	hidden	from	an	attacker,	it	does	not	prevent	the	cookie	from	being
overwritten	or	even	deleted	by	an	attacker.

httponly
The	httponly	attribute,	when	specified,	limits	the	availability	of	the	cookie	to	the
server	and	the	server	alone.	This	means	the	cookie	will	not	be	available	to	the	client	side,
thereby	preventing	client-side	JavaScript	from	referencing,	deleting,	or	updating	the
cookie.	This	httponly	flag,	when	used	in	conjunction	with	the	secure	flag,	helps	to
reduce	cross-site	scripting	from	exploiting	the	cookie.	As	this	chapter	is	focused	on	the
persistence	of	JSON	data	from	a	client-side	perspective,	we	will	be	avoiding	this	attribute.

	Note		Cookies	set	with	the	httponly	flag	can	only	be	set	by	the	server.

When	specifying	any	of	the	preceding	attribute-value	pairs,	there	is	no	particular	order
in	which	they	must	be	specified.	Furthermore,	each	is	case-insensitive	and	can	appear	in
lowercase	or	uppercase	form.

document.cookie
www.it-ebooks.info

http://www.it-ebooks.info/

A	cookie	can	be	created	by	a	server,	server-side	code,	HTML	meta	tags,	and	even
JavaScript.	In	this	chapter,	we	will	solely	be	focused	on	the	creation	and	the	retrieval	of
cookies	by	way	of	the	JavaScript	language.	Up	until	now,	we	have	been	equating	a
particular	syntax	of	string	as	the	representative	for	a	cookie.	The	reality	is	that	it	is	not	a
cookie	until	we	supply	it	to	our	document.

The	Document	Object	Model,	or	DOM	for	short,	can	be	referenced	via	the	document
object	in	JavaScript.	This	document	object	possesses	a	variety	of	interfaces	that	allows	us
to	manipulate	HTML	elements	and	more.	One	interface	on	which	we	will	be	focusing	is
the	appropriately	named	document.cookie	interface.	The	cookie	attribute	of	the	document
object	is	responsible	for	supplying	the	browser	with	a	provided	string	of	name/value	pairs,
enabling	the	persistence	of	said	key/value	pairs.	Additionally,	this	property	acts	as	the
interface	for	their	retrieval	from	the	document.	Listing	7-9	uses	document.cookie	to	create
our	first	cookie.

Listing	7-9.	Supplying	Our	First	Key/Value	Pair	to	document.cookie	in	Order	to
Become	a	Cookie

document.cookie=	"ourFirstCookie=abc123";

While	it	appears	in	Listing	7-9	that	we	are	assigning	a	string	to	the	cookie	property,	in
actuality	we	are	providing	a	string	as	the	argument	to	a	setter	method.	A	setter	method	is	a
method	that	is	used	to	control	changes	to	a	variable.3	Behind	the	scenes,	the	document
receives	the	value	being	assigned	and	treats	it	as	an	argument	to	an	internal	method,	which
immediately	sets	the	assignment	as	the	value	to	be	stored	within	an	internal	collection.
This	collection,	which	has	come	to	be	referred	to	as	the	cookie	jar,	is	stored	in	a	file	that	is
available	only	to	the	browser	that	stores	it.	Because	each	browser	sets	cookies	within	its
cookie	jar,	cookies	are	only	available	to	the	browser	that	is	used	at	the	time	they	are	set.

As	we	are	not	truly	assigning	a	value	to	the	document.cookie	property,	we	can
add	any	number	of	name/value	pairs	to	document.cookie,	without	fear	that	we	will
overwrite	what	we	had	previously	set	as	a	cookie,	as	seen	in	Listing	7-10.

Listing	7-10.	Subsequent	Assignments	to	document.cookie

document.cookie=	"ourFirstCookie=abc123";

document.cookie=	"ourSecondCookie=doeRayMe";

document.cookie=	"ourThirdCookie=faSoLaTeaDoe";

As	I	stated	earlier,	the	name/value	pairs	are	not	being	overridden	with	each	new
assignment.	All	name/value	pairs	assigned	to	document.cookie	are	not	held	as	the
value	of	cookie	but,	rather,	stored	safely	within	the	cookie	jar.	The	cookie	jar	is	simply	a
resource	located	on	the	file	system	of	the	user’s	computer,	which	is	why	cookies	have	the
ability	to	persist.

In	order	to	view	all	cookies	on	your	machine,	follow	the	outlined	steps	for	the	modern
browser	of	your	choice.

For	Chrome:

www.it-ebooks.info

http://www.it-ebooks.info/

1.	 Open	Chrome.

2.	 Navigate	your	browser	to	chrome://settings/cookies.

3.	 Click	any	site	to	view	all	cookies	for	that	particular	site.

For	Firefox:

1.	 Open	Firefox.

2.	 From	the	Firefox	menu,	select	Preferences.

3.	 Click	the	Privacy	tab.

4.	 Click	the	linked	words	“remove	individual	cookies.”

5.	 Click	any	site	to	view	all	cookies	for	that	particular	site.

For	Safari:

1.	 From	the	Safari	menu,	select	Preferences.

2.	 In	the	preferences	window,	select	Privacy.

3.	 In	the	Privacy	window,	click	Details.	(Unfortunately,	with	Safari,
you	can	only	see	what	sites	have	set	cookies.	You	won’t	be	able	to
view	full	details.)

For	Internet	Explorer:

1.	 Open	Internet	Explorer.

2.	 From	the	Tools	menu	(the	gear	icon),	select	Internet	Options.

3.	 On	the	General	tab,	within	the	section	“Browser	History,”	select
Settings.

4.	 From	the	Settings	panel,	click	“View	objects”	or	“View	Files.”

If	you	only	care	to	view	the	cookies	that	are	available	to	the	sites	you	are	currently
viewing,	this	can	easily	be	achieved	by	way	of	the	developer	console.	Utilizing	the
developer’s	tools	provided	by	a	modern	browser,	we	can	easily	witness	the	cookies	we
have	created	thus	far.	Figure	7-2	displays	the	stored	cookies	of	Listing	7-10,	by	way	of	the
developer	tools	provided	by	Chrome	Version	35.0.1916.114.

Figure	7-2.	Chrome’s	Developer	Tools	Console	displays	the	cookies	for	the	currently	visited	URL
json.sandboxed.guru/chapter7/

As	you	can	note	from	the	Name	column	in	Figure	7-2,	each	cookie	has,	in	fact,	been
stored	rather	than	overwritten.	Furthermore,	you	can	see	what	values	are	set	for	each

www.it-ebooks.info

http://www.it-ebooks.info/

optional	cookie-av,	as	follows:

Domain:	json.sandboxed.guru

Path:	/chapter7

Expires:	Session

As	you	may	recall,	Listing	7-10	merely	supplied	the	name/value	pair	and	did	not
append	any	optional	cookie	attribute	values.	However,	the	domain,	path,	and
expires	attributes	are	required	of	the	cookie.	Therefore,	the	values	supplied,	as	shown
in	Figure	7-2,	have	been	set	to	their	defaulted	values.

As	discussed	earlier,	both	the	domain	and	path	attribute	values	are	defaulted	to	the
respective	aspects	of	the	URL	from	which	a	cookie	is	set.	The	domain	attribute,	which	is
set	to	json.sandboxed.guru,	clearly	identifies	the	domain	name	from	which	the
application	ran.	Furthermore,	the	path	set	to	/chapter7	is	a	reflection	of	the	directory
from	which	the	resource	set	the	preceding	cookies.

	Note		The	preceding	results	reflect	the	cookies	set	from	the	following
URL:		http://json.sandboxed.guru/chapter7/7-7.html.

Last,	the	expires	attribute	is	defaulted	to	a	session,	which	means	that	the	moment
the	session	ends,	the	browser	is	no	longer	required	to	store	the	cookie	further.	In	order	to
provide	a	level	of	control	over	the	cookie	attribute	values,	we	must	append	them	as
required	by	the	syntax	of	the	HTTP	cookie.	This	can	be	done	easily	by	devising	a	function
to	handle	this,	as	portrayed	in	Listing	7-11.

Listing	7-11.	The	setCookie	Function	Simplifies	the	Creation	of	HTTP	Cookie	Values

function	setCookie(name,	value,	expires,	path,	domain,	

secure,	httpOnly)	{

																document.cookie	=	name	+	"="	+	value

																//if	expires	is	not	null	append	the	specified	

GMT	date

																+	((expires)?	";	expires="	

+	expires.toUTCString()	:	"")

																//if	path	is	not	null	append	the	specified	path

																+	((path)	?	";	path="	+	path	:	"")

																//if	domain	is	not	null	append	the	specified	

domain

																+	((domain)	?	";	domain="	+	domain	:	"")

																//if	secure	is	not	null	provide	the	secure	Flag	

to	the	cookie

																+	((secure)	?	";	secure"	:	"");

};

The	function	setCookie	within	Listing	7-11	provides	us	with	a	simple	means	to
create	a	cookie,	by	supplying	the	necessary	arguments	for	each	cookie-av	parameter.
For	each	value	that	you	wish	to	override,	the	function	setCookie	may	be	supplied	with

www.it-ebooks.info

http://json.sandboxed.guru/chapter7/7-7.html
http://www.it-ebooks.info/

the	appropriate	string	value.	That	is,	except	for	the	expires	attribute,	which	requires	a
date.	For	any	optional	cookie	attribute	value	that	you	wish	to	omit,	you	can	simply	provide
the	null	primitive.	This	is	demonstrated	in	Listing	7-12.

Each	line	within	the	setCookie	function	relies	on	what	is	known	as	a	tertiary
operator	to	determine	whether	an	empty	string	or	a	supplied	value	is	to	be	appended	to	the
cookie.	A	tertiary	operator,	which	is	simply	a	condensed	if	…	else	statement	determines	if
a	parameter	has	been	provided	an	argument	to	append.	If	the	parameter	has	not	been
supplied	an	argument,	an	empty	string	is	assigned	as	the	value	for	the	specified	cookie
attribute.

	Note		It	is	the	responsibility	of	the	user-agent	to	set	values	for	any	attribute	value	that	is
not	valid.	Attributes	that	possess	empty	strings	will	be	replaced	with	a	default	value.

Listing	7-12.	The	Function	setCookie	Has	Been	Created	to	Help	in	the	Provision	of
Cookie	Attribute	Values

setCookie("ourFourthCookie",																		//name

										"That	would	bring	us	back	to	Doe",		//value

											new	Date("Jan	1	2016	12:00	AM"),			//expires

											"/",																															//path

											null);																													//secure

Listing	7-12	utilizes	the	setCookie	function	to	create	a	cookie	that	will	persist	until
January	1,	2016.	The	attribute’s	values	can	be	viewed	within	the	cookie	jar,	as
demonstrated	within	the	Developer	Tools	Console,	as	shown	in	Figure	7-3.

Figure	7-3.	Developer	Tools	Console	displaying	the	configured	cookie	attribute	values	for	the	currently	viewed	URL

While	document.cookie	is	the	entry	point	to	the	method	that	controls	the	storage
of	cookies,	it	can	also	be	used	to	obtain	the	many	name/value	pairs	that	have	been	stored,
provided	their	domain	attribute	matches	the	domain	from	which	they	are	being
requested.	In	order	to	read	from	the	cookie	jar,	we	simply	reference	the	cookie	property	of
the	document,	without	providing	it	an	assignment,	as	demonstrated	in	Listing	7-13.

Listing	7-13.	Retrieving	All	Persisted	Cookies	for	the	Scoped	Origin	and	Path	via
document.cookie

console.log(document.cookie);	//	"ourFourthCookie=That	would	

bring	us	back	to	Doe"

The	code	within	Listing	7-13	simply	logs	out	the	returned	value	from
document.cookie	and	sends	it	to	the	console	for	inspection.	What	is	outputted	is	the
name/value	pair	that	has	continued	to	persist.	This	is	assuming	you	are	running	this	code

www.it-ebooks.info

http://www.it-ebooks.info/

prior	to	January	1,	2016.	Otherwise,	because	the	expires	attribute	would	be	explicitly
set	to	a	date	that	occurred	in	the	past,	it	would	be	removed	from	memory,	and	nothing
would	appear.

	Note		Running	the	preceding	code	after	January	1,	2016,12:00	AM	would	inform	the
browser	that	it	no	longer	is	required	to	store	the	cookie.

What	you	may	recognize	immediately	is	that	the	product	returned	from	document
remains	unaltered	from	what	we	initially	supplied	in	Listing	7-12.	Unfortunately,
document	neither	separates	the	supplied	key	from	its	assigned	value	for	ease	of	use,	nor
does	the	document	possess	a	method	that	can	separate	them	for	us.	Therefore,	in	order	to
extract	the	value	from	the	string	returned,	we	will	have	to	separate	the	value	from	the	key
ourselves.	Listing	7-14	accomplishes	this	with	simple	string	manipulation.

Listing	7-14.	Separating	the	Value	from	the	Supplied	Key	from	a	Singularly	Returned
Cookie

	1		var	returnedCookie	=	"ourFourthCookie=That	would	bring	

us	back	to	Doe";

	2		//15	characters	in	is	the	=	sign

	3		var	seperatorIndex	=	returnedCookie.indexOf("=");

	4

	5		//extract	the	first	15	characters

	6		var	cookieName		=	

returnedCookie.substring(0,seperatorIndex);

	7

	8		//extract	all	characters	after	the	'='	15th	character

	9		var	cookieValue	

=	returnedCookie.substring(seperatorIndex+1,	

returnedCookie.length);

10

11		console.log(cookieName);		//"ourFourthCookie"

12		console.log(cookieValue);	//"That	would	bring	us	back	to	

Doe"

Listing	7-14	begins	by	searching	for	the	first	occurrence	of	the	equal	(=)	token	(line
3),	as	that	is	the	token	that	separates	the	key	from	its	value.	Once	this	index	is	made
known,	we	can	consider	everything	up	to	that	index	the	“key”	and	everything	beyond	it
the	“value.”	Utilizing	the	implicit	method	of	the	String	Object,	we	can	extract	a	sequence
of	characters	within	a	numeric	range.	We	begin	with	the	range	of	characters	from	0	up	to
the	15th	character	being	the	=	token	for	Name	(line	6).	The	next	set	of	characters,	which
begins	at	the	16th	character,	ranges	through	the	remaining	characters	of	the	string,	thus
successfully	extracting	the	value.

You	may	also	notice	that	the	string	returned	does	not	supply	us	with	any	of	the
attribute-value	pairs	that	it	was	initially	assigned.	This	is	strictly	due	to	the	fact	that	the
cookie-av	values	are	intended	to	be	utilized	by	the	browser	alone.	It	is	the	browser’s
job	to	ensure	that	cookies	are	being	supplied	to	the	necessary	domain,	path,	and	over	the

www.it-ebooks.info

http://www.it-ebooks.info/

proper	transport	protocol.	Our	application	merely	requires	informing	the	browser,	at	the
moment	the	cookie	is	set,	how	it	is	necessary	to	handle	the	storage	and	access	to	the
cookie.

While	Listing	7-14	outputted	only	one	cookie,	this	will	not	always	be	the	case.	In	the
event	that	numerous	cookies	are	stored	and	requested	from	that	of	a	matching	origin/path,
each	persistently	stored	cookie	will	be	concatonated	and	returned	by	the	document.	Each
name/value	pair	is	separated	from	another	by	way	of	the	semicolon	(;)	token,	as
demonstrated	in	Listing	7-15.

Listing	7-15.	Multiple	Cookies	Are	Concatenated	and	Delimited	by	a	Semicolon	(;)

setCookie("ourFourthCookie",

										"That	would	bring	us	back	to	Doe",

											new	Date("Jan	1	2016	12:00	AM"),"/",null,null);

setCookie("ourFifthCookie",

										"Doe	a	dear	a	female	dear”,

											new	Date("Jan	1	2016	12:00	AM”),"/",null,null);

console.log(document.cookie);

//"ourFifthCookie=Doe	a	dear	a	female	dear;	

ourFourthCookie=That	would	bring	us	back	to	Doe"

By	identifying	the	tokens	of	the	grammar	that	make	up	the	cookie	syntax,	we	can
separate	the	name/value	pairs	from	one	another.	Additionally,	we	can	separate	the	value
from	the	specified	name.	This	can	be	achieved	by	searching	the	provided	string	for	the
semicolon	(;)	and	equal	sign	(=)	tokens.

Listing	7-16.	Extracting	the	Value	from	a	Specified	Key	Among	Many

	1	function	getCookie(name)	{

	2					var	regExp	=	new	RegExp(name	+	"=[^\;]*",	"mgi");

	3					var	matchingValue	=	(document.cookie).match(regExp);

	4					console.log(matchingValue)			//	

"ourFourthCookie=That	would	bring	us	back	to	Doe"

	5					for(var	key	in	matchingValue){

	6									var	

replacedValue=matchingValue[key].replace(name+"=","");

	7									matchingValue[key]=replacedValue;

	8					}

	9					return	matchingValue;

10	};

11	getCookie("ourFourthCookie");		//	["That	would	bring	us	

back	to	Doe"]

The	function	getCookie	within	Listing	7-16	utilizes	a	regular	expression	to	seek	out
any	name/value	pairs	from	the	string	returned	by	document.cookie.	The	pattern
name+”=[^\;]*”,	as	highlighted	on	line	2,	defines	a	pattern	to	match	all	sequences	of

www.it-ebooks.info

http://www.it-ebooks.info/

characters	within	a	string	that	is	found	to	possess	a	specified	name	immediately	followed
by	the	=	token.	From	there,	any	valid	ASCII	character	is	considered	to	be	a	match,	as	long
as	that	character	is	not	a	semicolon	(;)	token.	Should	the	string	returned	by	the
document.cookie	possess	any	sequences	of	characters	that	match	this	pattern,	they
are	captured,	respectively,	within	an	array	and	returned	for	reference	(line	3).

At	this	point,	if	a	match	has	been	made,	what	will	be	indexed	within	the	returned	array
are	the	name/value	pairs	that	match	the	cookie	name	supplied	to	the	method.	If	we	were	to
log	out	the	results	found	within	the	array	at	this	point,	we	should	view	the	following:
“ourFourthCookie=That	would	bring	us	back	to	Doe”	(line	4).	In	order
to	separate	the	value	from	Name	and	the	equal	sign,	we	iterate	over	all	matched
occurrences	and	replace	the	found	name	and	=	token	with	those	of	an	empty	string	(line
6),	thereby	exposing	the	value.	The	value	is	then	reassigned	back	to	the	key	to	which	it	is
referenced	within	the	matchingValue	array	(line	7).	Last,	the	getCookie	function
returns	the	array	of	all	found	values	(line	9).

Thus	far,	you	have	learned	how	to	successfully	write	and	store	persistent	values	by
way	of	HTTP	cookies.	Utilizing	our	new	functions,	setCookie	and	getCookie,	let’s
revisit	the	Person	object	from	the	previous	chapter	and	store	its	serialized	JSON	text
within	a	cookie	(see	Listing	7-17).

Listing	7-17.	Pairing	the	JSON	Object	and	the	Cookie	to	Store	objects

	1		function	Person()	{

	2								this.name;

	3								this.age;

	4								this.gender;

	5		};

	6		Person.prototype.getName	=	function()	{

	7								return	this.name;

	8		};

	9		Person.prototype.getAge	=	function()	{

10								return	this.age;

11		};

12		Person.prototype.getGender	=	function()	{

13								return	this.gender;

14		};

15

16		//instantiate	new	Person

17		var	p	=	new	Person();

18						p.name	=	"ben";

19						p.age	=	"36";

20						p.gender	=	"male";

21

22		var	serializedPerson	=	JSON.stringify(p);

23		setCookie("person",	serializedPerson,	new	Date("Jan	

1	2016"),"/","sandboxed.guru",null);

24		console.log(getCookie("person"));	"

www.it-ebooks.info

http://www.it-ebooks.info/

{"name":"ben","age":"36","gender":"male"}"

Running	the	preceding	code	within	a	browser	will	create	a	cookie,	as	previously,	only
this	time,	the	cookie	created	possesses	JSON	as	the	supplied	value.	Also	as	before,	by
opening	up	the	developer	consoles	provided	by	modern	browsers,	we	can	view	all	stored
cookies	within	the	cookie	jar	for	the	current	origin.

As	you	can	clearly	see	from	Figure	7-4,	our	person	cookie,	like	the	others,	has	been
added	to	the	cookie	jar.	It	will	remain	available	to	all	JavaScript	code	from	within	any
directory	of	the	scoped	domain	sandboxed.guru,	as	well	as	any	and	all	subdomains.

Figure	7-4.	Developer	console	exhibiting	the	persistence	of	our	person	cookie	and	its	JSON	value

To	further	illustrate	this	point,	simply	navigate	to
http://json.sandboxed.guru/chapter7/cookie-test.html	and	create
your	own	person	cookie	to	store.	After	you	submit	your	cookie	to	the	document,	either
refresh	the	page	to	find	the	person	column	populated	or	navigate	to
http://sandboxed.guru/cookie-test.html	to	find	that	this	top-level	domain
has	access	to	your	new	person	cookie.	Now	hit	Delete,	to	remove	the	persisted	cookie,
and	generate	another,	this	time	with	different	data.	Once	more,	visit	the	subdomain
http://json.sandboxed.guru/chapter7/cookie-test.html,	and	you
will	see	that	new	cookie	pre-populated.

For	all	of	its	benefits,	the	cookie	does	come	with	a	few	limitations.	Sadly,	the	cookie
can	only	store	a	maximum	amount	of	bytes.	In	fact,	it	can	only	store	roughly	4KB,	which
would	be	roughly	4,000	ASCII	characters.	While	4,000	characters	is	a	lot,	it	can	add	up
quickly,	depending	on	what	you	are	storing.	Furthermore,	Base64	characters	can	require
up	to	three	times	more	bytes	per	character	than	ASCII.

You	learned	that	document.cookie	does	not	provide	any	information	beyond	the
stored	name/value	pair.	This	is	problematic,	because	there	is	no	way	to	truly	know	how
many	bytes	are	available	to	us.	Another	issue	that	cookies	face	is	that	they	are	scoped	to
the	browser,	which	means	that	the	preserved	state	is	only	available	to	the	specific	browser
that	preserves	it.	Last,	because	the	cookie	was	originally	crafted	to	help	maintain	a
visitation	between	a	server	and	a	browser,	cookies	are	automatically	sent	with	every
request	made	to	the	server	that	possesses	the	allowed	origin	by	the	cookie.	The	issue	here
is	that	the	more	cookies	that	are	used,	each	occupying	x	number	of	bytes	is	sent	to	the
server	with	every	single	request.	Essentially,	unless	your	server	is	utilizing	the	cookie,	you
are	needlessly	transmitting	4KB	for	each	cookie	stored	for	every	request.

While	the	cookie	has	its	advantages,	it	is	also	archaic.	It	was	just	a	matter	of	time
before	another	front-end	technology	came	along.	That	tool	is	HTML	5’s	Web	Storage.

www.it-ebooks.info

http://json.sandboxed.guru/chapter7/cookie-test.html
http://sandboxed.guru/cookie-test.html
http://json.sandboxed.guru/chapter7/cookie-test.html
http://www.it-ebooks.info/

Web	Storage
HTML5	introduced	the	concept	of	Web	Storage	to	pick	up	where	the	cookie	had	left	off.
While	Web	Storage	may	be	considered	to	be	the	HTTP	cookie	successor,	it	would	simply
be	a	matter	of	the	context	in	which	you	can	make	that	statement.	A	better	way	to	view
Web	Storage	is	simply	to	look	at	it	as	cookies’	counterpart.	Its	creation	is	not	necessarily
to	replace	the	cookie.	The	cookie	itself	serves	a	very	important	purpose,	which	is	to
maintain	the	session	between	a	browser	and	a	server.	This	is	something	that	Web	Storage
does	not	intend	to	replace,	because	it	exists	to	meet	the	growing	needs	of	the	times	in	a
way	that	the	cookie	is	simply	incapable	of	fulfilling,	when	it	comes	to	the	persistence	of
client-side	data.4

It	strives	to	reduce	the	overhead	of	HTTP	requests	and	offers	an	incredibly	large
amount	of	storage	per	origin.	In	fact,	the	allowed	capacity	ranges	about	5MB.	Similar	to
its	predecessor,	the	Web	Storage	API	enables	state	to	be	stored	via	JavaScript,	either
indefinitely	or	solely	for	the	duration	of	a	session.	Much	like	the	cookie,	Web	Storage
concerns	itself	with	the	persistence	of	name/value	pairs.	Because	each	value	supplied	to
the	storage	object	must	be	in	string	form,	it	can	quickly	become	cumbersome	to	deal	with
a	plethora	of	string	values,	thereby	making	JSON	data	the	ideal	candidate.

Web	Storage	is	accessible	to	JavaScript,	by	way	of	Window	Object	and	can	be
accessed	as	Window.localStorage	and	Window.sessionStorage.	Because	the
window	object	is	global	and	can	always	be	reached	from	within	any	scope,	each	storage
object	can	be	referenced	without	the	explicit	reference	of	the	window	object,	shortening
each	reference	to	localStorage	and	sessionStorage.

Both	forms	of	the	aforementioned	storage	objects,	whether	they	be	local	or	session,
allow	for	the	storage	of	state	through	a	similar	API.	However,	as	you	may	have	already
surmised,	the	difference	between	the	two	regards	the	contrast	among	the	durations	for
which	the	state	of	data	is	retained.	The	sessionStorage,	as	the	name	implies,	allows
data	to	persist	only	as	long	as	the	session	exists.	Whereas	the	data	stored	via
localStorage	will	persist	indefinitely,	either	until	the	state	is	deleted	by	the
application	or	user,	by	way	of	the	browser’s	interface.	Unlike	the	cookie,	all	data	stored
within	localStorage	will	not	be	set	to	expire.

Web	Storage	Interface
Web	Storage	allows	for	the	storing	of	data,	the	retrieval	of	data,	and	the	removal	of	data.
The	means	by	which	we	will	be	working	with	data	and	the	storage	object	is	via	the	Web
Storage	API.	As	Table	7-2	outlines,	there	are	six	members	that	make	up	the	Web	Storage
API,	and	each	provides	a	specific	need	for	working	with	data	persistence.

Table	7-2.	Six	Members	of	the	Web	Storage	API

Members Parameter Return

setItem string	(key),	string	(value) void

www.it-ebooks.info

http://www.it-ebooks.info/

getItem string	(key) string	(value)

removeItem string	(key) void

clear 	 void

key Number	(index) string	(value)

length 	 Number

Unlike	the	singular	interface	of	the	HTTP	cookie,	which	is	used	to	store,	retrieve,	and
delete	data,	Web	Storage	possesses	an	API	to	make	working	with	the	persistence	of	data
all	the	more	practical.	Furthermore,	regardless	of	the	storage	object	you	intend	to	use,
whether	it’s	local	or	session,	the	API	remains	uniform.

setItem
The	Storage	Object	method	setItem	possesses	the	signature	of	Listing	7-18	and	is	the
method	that	we	will	use	to	persist	data.	As	was	mentioned	previously,	much	like	the	HTTP
cookie,	Web	Storage	persists	data	in	the	form	of	name/value	pairs.	However,	while	the
cookie	itself	did	not	distinguish	the	name	from	the	value	it	retained,	Web	Storage	does.
Therefore,	setItem	does	not	merely	accept	a	singular	string	but,	rather,	requires	two
strings	to	be	provided.	The	first	string	represents	the	name	of	the	key,	and	the	second
string	will	represent	the	value	to	be	held.

Listing	7-18.	Signature	of	the	setItem	Method

setItem(key	,	value)

When	a	value	is	set,	it	will	occur	without	providing	a	response	back	to	the	invoker	of
the	method.	However,	if	a	value	is	unable	to	be	set,	either	because	the	user	has	disabled
the	storage	or	because	the	maximum	capacity	for	storage	has	been	reached,	an	Error	will
be	thrown.	It’s	as	they	say,	“no	news	is	good	news.”	In	other	words,	if	an	error	does	not
occur	on	setItem,	you	can	rest	assured	the	data	has	been	set	successfully.

Because	a	runtime	error	can	cause	your	script	to	come	to	a	halt,	it	will	be	imperative	to
wrap	your	call	to	setItem	with	a	try/catch	block.	Then,	you	can	catch	the	error	and
handle	exceptions	gracefully.

Listing	7-19.	Storing	Our	First	Item

localStorage.setItem("ourFirstItem,"abc123");

As	with	the	key/value	pairs	of	a	JavaScript	object,	each	key	must	possess	a	unique
label.	If	you	were	to	store	a	value	with	the	name	of	a	key	that	currently	exists,	that	value
would	effectively	replace	the	previously	stored	value.

Listing	7-20.	Replacing	the	Value	Possessed	by	the	ourFirstItem	Key

localStorage.setItem("ourFirstItem","abc123");

localStorage.setItem("ourFirstItem","sunday	Monday	happy-

days");

www.it-ebooks.info

http://www.it-ebooks.info/

At	this	point	in	time,	if	we	were	to	retrieve	the	value	set	for	ourFirstItem,	we
would	witness	that	the	previous	value	of	“abc123”	had	been	replaced	with	the	theme
song	from	the	television	sitcom	Happy	Days.

	Tip		Because	an	error	will	be	thrown	if	the	user	has	disabled	Web	Storage,	it	would	be
wise	to	wrap	every	call	to	the	Storage	Object	API	within	a	try/catch	block.

getItem
The	Storage	Object	method	getItem	(see	Listing	7-21)	is	the	counterpart	to	the
setItem	method.	It,	like	our	getCookie	method	from	Listing	7-16,	allows	us	to
retrieve	the	persisted	state	that	corresponds	to	the	key	provided	to	the	method	(see	Listing
7-22).

Listing	7-21.	Signature	of	getItem

getItem(key)

Listing	7-22.	Obtaining	a	Value	for	a	Specified	Key

console.log(localStorage.getItem("ourFirstItem"));			

//sunday	Monday	happy-days

console.log(localStorage.getItem("ourSecondItem"	

));		//null

The	key	is	the	only	expected	parameter,	as	indicated	in	Listing	7-22,	and	will	return
the	corresponding	state	for	the	supplied	key.	If,	however,	the	name	of	the	key	supplied
does	not	exist	on	the	Storage	Object,	a	value	of	null	will	be	returned.

removeItem
The	Storage	Object	method	removeItem	is	the	sole	means	of	expiring	the	persistence	of
an	individual	key/value	pair.	Its	signature	is	similar	to	that	of	getItem,	in	that	it	accepts
one	parameter,	as	shown	in	Listing	7-23.	This	parameter	is	the	key	that	pertains	to	the	data
that	you	no	longer	wish	to	persist	(see	Listing	7-24).

Listing	7-23.	Signature	of	removeItem

removeItem(key)

Listing	7-24.	Utilizing	removeItem	to	Expire	a	Persisted	State

console.log(localStorage.getItem("ourFirstItem"	

));				//sunday	Monday	happy-days

													localStorage.removeItem("ourFirstItem");

console.log(localStorage.getItem("ourFirstItem"	

));				//null

clear

www.it-ebooks.info

http://www.it-ebooks.info/

As	indicated	in	Listing	7-25,	the	method	clear	does	not	require	any	parameters.	This	is
because	this	method	is	simply	used	to	instantly	purge	each	and	every	key/value	pair
retained	by	the	targeted	Storage	Object.

Listing	7-25.	Signature	of	the	clear	Method

clear()

key
The	Storage	Object	method	key	is	used	to	obtain	the	identities	of	all	stored	keys	that
possess	accompanying	data	retained	by	the	given	Storage	Object.	As	the	signature
outlined	in	Listing	7-26	demonstrates,	the	method	can	be	provided	with	that	of	an	index,
which	will	return	in	kind	with	the	member	at	the	supplied	index.	If	a	value	does	not	exist
for	the	provided	index,	the	method	will	return	a	value	of	null.

Listing	7-26.	Signature	of	the	key	Method

key(index)

length
As	it	will	not	be	beneficial	to	supply	indexes	that	are	beyond	the	boundaries	of	stored
keys,	the	Storage	Object	provides	us	with	access	to	the	length	of	all	values	stored	by	the
Storage	Object	in	question.	This	total	can	be	obtained	via	the	length	property.	The
length	property,	when	used	in	conjunction	with	a	loop,	as	demonstrated	in	Listing	7-27,
provides	us	with	the	ability	to	remain	within	the	boundaries	of	the	values	stored.

Listing	7-27.	Obtaining	the	Stored	Keys	from	a	Storage	Object	Is	Simple	with	a	Loop

var	maxIndex=	localStorage.length;

for(var	i=0;	i<maxIndex;	i++){

								var	foundKey	=	localStorage.key(i);

}

Reusing	the	key/value	pair	used	by	our	first	cookie,	we	will	demonstrate	the	ease	of
the	Web	Storage	API.

Listing	7-28.	Utilizing	Web	Storage	to	Persist	the	Value	Supplied	to	Our	Person
Instance

	1	function	setItem(key	,	value){

	2				try{

	3									localStorage.setItem(key	,	value);

	4				}catch(e){

	5									//WebStorage	is	either	disabled	or	has	exceeded	

the	Storage	Capacity

	6					}

	7	}

	8	function	getItem(key){

www.it-ebooks.info

http://www.it-ebooks.info/

	9				var	storageValue;

10				try{

11								storageValue=	localStorage.getItem(key);

12				}catch(e){

13								//WebStorage	is	disabled

14				}

15				return	storageValue;

16	}

17

18		function	Person()	{

19								this.name;

20								this.age;

21								this.gender;

22		};

23		Person.prototype.getName	=	function()	{

24								return	this.name;

25		};

26		Person.prototype.getAge	=	function()	{

27								return	this.age;

28		};

29		Person.prototype.getGender	=	function()	{

30								return	this.gender;

31		};

32

33		//instantiate	new	Person

34		var	p	=	new	Person();

35						p.name	=	"ben";

36						p.age	=	"36";

37						p.gender	=	"male";

38

39		var	serializedPerson	=	JSON.stringify(p);

40		setItem("person"	,	serializedPerson);

41		console.log(getItem("person"));	//	"

{"name":"ben","age":"36","gender":"male"}"	||					

"undefined"

Listing	7-28	revisits	our	person	example	from	Listing	7-17	to	point	out	how	the	Web
Storage	API	and	cookie	interface	vary.	The	examples	similarly	use	their	component	to
store	and	retrieve	the	same	value.	However,	the	use	of	the	API	provided	by	Web	Storage
simplifies	things	greatly.	Unlike	in	our	cookie	example,	Web	Storage	requires	less	work
for	setting—and	especially	retrieving—data.	Line	41	of	Listing	7-28	simply	requests	the
data	of	the	supplied	key	and	logs	it	for	inspection	to	the	developer	console.	The	reason
why	the	value	returned	may	be	either	what	is	stored	or	(signified	by	the	||	operator)
“undefined”,	is	due	to	the	fact	that	Web	Storage	may	be	disabled,	which	will	prevent
the	variable	storageValue	(line	9)	from	being	set.	Unlike	its	cookie	counterpart,
getItem	handles	the	management	of	key/value	pairs	for	us,	so	that	we	don’t	have	to

www.it-ebooks.info

http://www.it-ebooks.info/

manipulate	the	returned	string.	Could	you	imagine	performing	a	JavaScript	search	over
5MB	worth	of	ASCII	characters?	The	application	would	become	nonresponsive.

What	you	may	have	also	noticed	is	that	we	never	specified	a	domain	or	path	at	any
point	in	time	during	our	review	of	Web	Storage.	This	is	because,	unlike	the	cookie,	the
Storage	Object	strictly	adheres	to	the	same-origin	policy,	meaning	that	resources	can	only
be	shared/accessed	from	the	same	document	origin,	if	the	two	share	the	same	protocol,
hostname,	and	port.	You	will	learn	more	about	the	same-origin	policy	in	Chapter	9.

Summary
The	HTTP	cookie	and	Web	Storage	are	extremely	useful	client-side	tools	for	storing	and
persisting	JSON	data.	They	can	be	utilized	to	retain	the	state	of	a	user’s	engagement	with
a	web	site,	web	app,	or	even	a	game.	As	cookies	and	Web	Storage	are	stored	on	the	user’s
browser,	each	visitor	can	potentially	possess	different	information,	which	can	further	add
to	the	benefit	of	local	persistence.	Such	benefit	would	be	personalization/optimization.
However,	for	all	their	benefits,	the	cookie	and	Web	Storage	are	not	without	their
limitations.

The	first	and	foremost	concern	surrounds	security.	As	both	the	cookie	and	a	Storage
Object	can	be	set	and	retrieved	with	JavaScript,	it’s	best	practice	to	store	information	that
is	not	particularly	sensitive.	While	it	may	not	be	understood	by	the	average	visitor	of	your
site	how	data	is	being	utilized	between	your	application	and	their	browser,	those	who	are
seeking	to	exploit	these	technologies	do	understand.	As	this	data	is	accessible	to
JavaScript,	by	utilizing	the	same	techniques	covered	in	this	chapter,	a	user	or	a	site
hijacker	can	manipulate	or	alter	persisted	state	at	any	point	in	time,	for	malicious	or
benign	intent.	This,	of	course,	will	vary,	based	on	the	data	as	well	as	the	nature	of	the
application	that	makes	use	of	it.

As	I	previously	indicated,	the	HTTP	cookie	and	Web	Storage	are	scoped	to	a	visitor’s
browser.	Data	that	may	have	been	set	to	persist,	whether	by	cookie	or	Storage	Object,	is
dependent	on	the	browser	the	visitor	previously	used	to	interact/view	your	application.
This	means	the	persistence	of	state	has	the	potential	to	vary	from	one	browser	to	the	other,
each	time	a	user	visits	your	application.	This	inconsistency	may	prove	to	be	problematic,
depending	on	your	application’s	needs.	Last,	as	the	data	that	is	being	retained	will	persist
on	the	visitor’s	file	system	and	not	the	server’s,	it	can	easily	be	removed	by	the	visitor	at
any	point	he	or	she	chooses,	through	the	interface	provided	by	the	browser.

These	aforementioned	issues	can	be	avoided	when	used	in	conjunction	with	a	server-
side	database,	which	will	be	the	topic	of	discussion	in	Chapter	12.	In	the	next	chapter,	I
will	discuss	how	to	transmit	JSON	to	and	from	our	applications	via	JavaScript.

Key	Points	from	This	Chapter
Data	persistence	is	the	continued	existence	of	state	after	the	process
that	created	it.

HTTP/1.1	is	a	stateless	protocol.

www.it-ebooks.info

http://www.it-ebooks.info/

Cookies	and	Web	Storage	are	used	to	retain	state.

Cookies	are	sent	with	every	HTTP/1.1	request.

Session	data	will	cease	to	exist	after	the	session	exits.

Sessions	do	not	necessarily	end	when	a	browser	is	closed.

Cookies	are	exchanged	via	HTTP	and	HTTPS,	unless	flagged	as
secure.

Cookies	can	only	store	4KB	worth	of	ASCII	characters.

Cookies	can	be	shared	among	subdomains.

Web	Storage	can	store	5MB	of	data.

Each	origin	possesses	its	own	Storage	Object.

Web	Storage	strictly	adheres	to	a	same-origin	policy.

1Wikipedia,	“Persistence	(computer	science),”
http://en.wikipedia.org/wiki/Persistence_%28computer_science%29,	2014.

2Wikipedia,	“Stateless	protocol,”	http://en.wikipedia.org/wiki/Stateless_protocol,	2014.

3Wikipedia,	“Mutator	method,”	http://en.wikipedia.org/wiki/Mutator_method,	2014.

4W3C,	W3C	Recommendation,	“Web	Storage,”	http://www.w3.org/TR/webstorage/#introduction,
July	30,	2013.

www.it-ebooks.info

http://en.wikipedia.org/wiki/Persistence_%28computer_science%29
http://en.wikipedia.org/wiki/Stateless_protocol
http://en.wikipedia.org/wiki/Mutator_method
http://www.w3.org/TR/webstorage/#introduction
http://www.it-ebooks.info/

CHAPTER	8

Data	Interchange
Thus	far,	you	have	been	learning	how	to	work	with	JSON	data	that	has	been	stringified,
parsed,	persisted,	and	retrieved—all	from	within	the	scope	of	a	running	application.
However,	as	JSON	is	a	data-interchange	format,	it	is	capable	of	being	transmitted	across
the	Internet,	which	offers	our	applications	much	more	possibility	than	we	have	currently
been	allowing	them.

With	the	use	of	data	interchange,	we	can	send	JSON	across	the	Internet	into	a	database
that	is	owned/controlled	by	us.	The	visitor	cannot	as	easily	delete	data	this	way,	as	it	could
be	with	Web	Storage	and	the	HTTP	cookie.	Furthermore,	the	ability	to	transmit	data
allows	our	application	the	ability	not	only	to	push	out	JSON	but	also	to	load	it	into	our
applications.	In	other	words,	not	only	can	we	load	into	our	application	the	data	that	we’ve
stored,	but	we	can	also	tap	into	the	data	that	others	are	willing	to	share	as	well.	This	may
be	data	that	is	available	to	the	general	public	free	of	charge	or	by	a	paid	service.	Consider
the	vast	array	of	social	sites	out	there	that	offer	to	the	public	free	of	charge	the	data	that
they	capture.	Twitter,	Facebook,	and	Instagram	are	prime	examples	of	social	properties
that	are	willing	to	offer	aspects	of	their	data	via	an	API.	Because	of	the	many	positive
attributes	that	JSON	possesses,	it	is	the	favored	data	format	of	nearly	every	social	API.

In	upcoming	discussions,	you	will	learn	how	to	load	JSON	into	our	application,
transmit	JSON	from	our	application,	and	persist	JSON	into	a	database	over	which	we	have
control.	Then,	we	will	look	at	how	to	incorporate	the	data	from	the	API	of	the	social
property	Twitter.	However,	before	we	jump	into	those	topics,	it	will	be	of	great	benefit	to
understand	the	communication	that	takes	place	under	the	hood	of	our	browser	during	the
request	for	a	resource	and	the	response	from	a	server,	as	well	as	the	underlying
technologies	that	we	will	utilize	to	enable	both.

Hypertext	Transfer	Protocol
The	Hypertext	Transfer	Protocol,	or	simply	HTTP,	is	the	underlying	mechanism
responsible	for	our	daily	interactions	with	the	Internet.	It	is	used	in	conjunction	with	many
underlying	networks	of	protocols,	in	order	to	facilitate	the	appropriate	request/response
between	a	client	and	a	server.	Typically,	the	client	utilized	in	the	request/response
exchange	is	that	of	a	web	browser,	such	as	Chrome,	Firefox,	Internet	Explorer,	or	Safari.
However,	it	can	also	be	that	of	another	server.	Regardless	of	whether	the	client	is	a
browser	or	a	server,	the	request/response	can	only	take	place	upon	the	initiation	of	a
request.	Furthermore,	a	response	can	only	be	provided	from	a	web	server.

Anytime	a	resource	is	requested	from	a	server,	whether	it’s	a	document,	an	image,	a
style	sheet,	etc.,	a	request	must	be	initiated.

www.it-ebooks.info

http://www.it-ebooks.info/

HTTP-Request
It	is	the	role	of	the	request	to	outline	the	specifics	that	detail	the	required	resource	from	the
server.	It	will	be	these	details	that	help	to	ensure	that	the	server	provides	the	appropriate
response.	A	request	can	be	thought	of	as	your	order	at	a	restaurant.	When	you	provide	a
waiter	with	your	order,	you	are	outlining	what	you	are	expecting	from	the	kitchen.
Additionally,	it	may	include	your	preferences	of	how	you	would	like	it	to	be	cooked	or
served.	In	the	preceding	analogy,	the	HTTP	protocol	is	the	waiter,	the	order	is	the	HTTP
request,	and	the	food	provided	represents	the	HTTP	response.

The	HTTP	request	consists	of	three	general	components,	each	with	a	particular	use	for
detailing	what	resource	is	required	from	a	server.	These	three	components	can	be	viewed
in	Table	8-1.

Table	8-1.	Structure	of	the	HTTP	Request

	 Parts Required

1 Request	Line Yes

2 Headers No

3 Entity	Body No

Request	Line
The	first	component,	known	as	the	request	line,	is	absolutely	mandatory	for	any	request.	It
alone	is	responsible	for	the	type	of	request,	the	resource	of	the	request,	and,	last,	which
version	of	the	HTTP	protocol	the	client	is	making	use	of.	The	request	line	itself	is
composed	of	three	parts,	separated	from	one	another	by	whitespace.	These	three
components	are	Method,	Request-URI,	and	HTTP-Version.

Method	represents	the	action	to	be	performed	on	the	specified	resource	and	can	be	one
of	the	following:	GET,	POST,	HEAD,	PUT,	LINK,	UNLINK,	DELETE,	OPTIONS,	and
TRACE.	For	the	purposes	of	this	chapter,	I	will	only	discuss	the	first	two.

The	method	GET	is	used	to	inform	the	server	that	it	possesses	a	resource	that	we	wish
to	obtain.	GET	is	most	commonly	used	when	navigating	to	a	particular	URL	in	a	browser,
whereas	the	POST	method	is	used	to	inform	the	server	that	you	are	providing	data	along
with	your	request.	The	POST	method	is	commonly	used	with	HTML	forms.	The	response
that	is	supplied	upon	a	form’s	submission	often	reflects	content	that	accounts	for	the	form
submission.

Because	the	GET	method	does	not	concern	itself	with	any	alterations	to	a	server,	it	is
commonly	referred	to	as	a	safe	method.	The	POST	method,	on	the	other	hand,	is	referred
to	as	an	unsafe	method,	as	it	concerns	working	with	data.

The	URI	of	the	request	line	simply	identifies	the	resource,	which	the	request	method
applies.	The	specified	URI	may	be	that	of	a	static	resource,	such	as	a	CSS	file,	or	that	of	a
dynamic	script	whose	content	is	produced	at	the	moment	of	a	request.

www.it-ebooks.info

http://www.it-ebooks.info/

Last,	the	request	line	must	indicate	the	HTTP-Version	utilized	by	the	client.	Since
1999,	the	Request-Version	of	browsers	has	been	HTTP/1.1.	Examples	of	a	request	line	are
shown	in	Listing	8-1.

Listing	8-1.	Syntactic	Structure	of	a	Request	Line

GET			

http://json.sandboxed.guru/chapter8/css/style.css								HTTP/1.1

GET			

http://json.sandboxed.guru/chapter8/img/physics.jpg						HTTP/1.1

POST		http://json.sandboxed.guru/chapter8/post.php													

HTTP/1.1

Headers
The	second	component	of	the	request	concerns	the	manner	by	which	the	request	is	able	to
provide	supplemental	meta-information.	The	meta-information	is	supplied	within	the
request	in	the	form	of	a	header,	whereas	a	header,	at	its	most	atomic	unit,	is	simply	a
key/value	pair	separated	by	the	colon	(:)	and	made	up	of	ASCII	characters.	The	server
can	utilize	this	information	in	order	to	best	determine	how	to	respond	to	the	request.

The	HTTP	protocol	has	formalized	a	plethora	of	headers	that	can	be	utilized	to	relay	a
variety	of	detail	to	the	server.	These	headers	fall	under	one	of	three	categories:	general
headers,	request	headers,	and	entity	headers.

General	Headers
The	first	category	of	header	is	that	of	the	general	headers.	The	headers	that	apply	to	this
category	identify	general	information	pertaining	to	the	request.	Such	general	information
may	regard	the	date	of	the	request,	whether	or	not	to	cache	the	request,	etc.	The	following
are	general	headers:

Cache-Control

Connection

Date

Pragma

Trailer

Transfer-Encoding

Upgrade

Via

Warning

Request	Headers
The	second	category	of	headers	is	that	of	the	request	headers.	These	headers	can	be

www.it-ebooks.info

http://www.it-ebooks.info/

supplied	with	the	request	to	provide	the	server	with	preferential	information	that	will	assist
in	the	request.	Additionally,	they	outline	the	configurations	of	the	client	making	the
request.	Such	headers	may	reveal	information	about	the	user-agent	making	the	request	or
the	preferred	data	type	that	the	response	should	provide.	By	utilizing	the	headers	within
this	category,	we	can	potentially	influence	the	response	from	the	server.	For	this	reason,
the	request	headers	are	the	most	commonly	configured	headers.

One	very	useful	header	is	the	Accept	header.	It	can	be	used	to	inform	the	server	as	to
what	MIME	type	or	data	type	the	client	can	properly	handle.	This	can	often	be	set	to	a
particular	MIME	type,	such	as	application/json,	or	text/plain.	It	can	even	be	set	to	*/*,
which	informs	the	server	that	the	client	can	accept	all	MIME	types.	The	response	provided
by	the	server	is	expected	to	reflect	one	of	the	MIME	types	the	client	can	handle.	The
following	are	request	headers:

Accept

Accept-Charset

Accept-Encoding

Accept-Language

Authorization

Expect

From

Host

If-Match

If-Modified-Since

If-None-Match

If-Range

If-Unmodified-Since

Max-Forwards

Proxy-Authorization

Range

Referer

TE

User-Agent

At	this	point,	feel	free	to	navigate	the	browser	of	your	choice	to	the	following	URL:
http://json.sandboxed.guru/chapter8/headers.php.	The	content	that	is
displayed	is	the	response	to	that	of	an	HTTP	request.	Ironically,	the	content	displayed
presents	the	HTTP	request	for	the	requested	URI.	Here,	you	can	view	the	combination	of
general	headers	and	the	request	headers	submitted	with	the	request.	Generally	speaking,	as

www.it-ebooks.info

http://json.sandboxed.guru/chapter8/headers.php
http://www.it-ebooks.info/

we	navigate	the	Internet,	the	browser	supplies	the	various	headers	with	each	request	on
our	behalf.	Therefore,	some	of	the	request	headers	supplied	possess	values	that	reflect
those	configured	within	our	browser	settings.	Because	each	browser	may	vary	in	its	values
supplied	to	the	reflected	headers,	your	results	may	not	reflect	mine,	shown	in	Listing	8-2.

Listing	8-2.	The	Composition	of	an	HTTP	GET	Request

GET	/chapter8/headers.php	HTTP/1.1

Host:	json.sandboxed.guru

Cache-Control:	max-age=0

Connection:	close

X-Insight:	activate

Cookie:	person={"age":"36","name":"ben","gender":"male"}

Dnt:	1

Accept-Encoding:	gzip,	deflate

Accept-Language:	en-us,en;q=0.7,fr;q=0.3

Accept:	

text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

User-Agent:	Mozilla/5.0	(Macintosh;	Intel	Mac	OS	X	10.9;	

rv:30.0)	Gecko/20100101	Firefox/30.0	FirePHP/0.7.4

	Note		The	Referer	header	is	the	result	of	a	spelling	mistake	that	was	not	caught	before	it
was	incorporated	within	the	HTTP	specification.

As	you	can	clearly	see,	the	first	line,	the	request	line,	details	the	method	to	apply	to	the
indicated	URI	of	/chapter8/headers.php.	While	the	URI	is	that	of	a	dynamic
page,	the	request	line	states:	GET	the	resource	provided	by	headers.php.	That
resource,	of	course,	generates	its	content	upon	receipt	of	the	HTTP	request,	in	order	to
reveal	the	headers	as	your	browser	configures	them.

While	this	information	will	only	be	present	for	the	particular	URI	utilizing	our
developer	console,	we	will	be	able	to	view	any	and	all	HTTP	requests	and	their	responses
for	any	resource.	This	can	be	accomplished	by	profiling	the	network	activity	from	within
the	developer’s	console	of	your	favorite	modern	browser.	Feel	free	to	refresh	the	page
once	you	have	your	developer	console	open	and	the	network	tab	in	view.	Figure	8-1
displays	the	HTTP	request	and	its	headers	for	the	request	URI
http://json.sandboxed.guru/chapter8/headers.php.

www.it-ebooks.info

http://json.sandboxed.guru/chapter8/headers.php
http://www.it-ebooks.info/

Figure	8-1.	The	request	headers	exhibited	by	the	Chrome	developer	console

Entity	Headers
The	third	category	of	headers	is	that	of	the	entity	headers.	These	headers	are	used	to
supply	meta-information	regarding	any	data	that	is	being	sent	to	the	server	along	with	the
request.	The	provision	of	data	that	accompanies	a	request	is	always	tied	to	the	unsafe
HTTP	methods,	such	as	PUT	and	POST.	Safe	methods,	on	the	other	hand,	will	never
possess	an	entity	body.	However,	when	data	is	supplied,	it	will	be	these	headers	that
describe	the	data	type	being	sent,	the	character	encoding	it	possesses,	and	the	amount	of
bytes	of	data	being	transferred.	The	following	are	entity	headers:

Allow

Content-Encoding

Content-Languages

Content-Length

Content-Location

Content-MD5

Content-Range

Content-Type

Expires

Last-Modified

Entity	Body
The	final	component	of	the	request	is	the	entity	body.	While	the	entity	headers	carry	the
meta-information,	the	entity	body	is	strictly	the	nomenclature	for	the	data	being	sent	to	the
server.	The	syntax	of	the	entity	can	reflect	that	of	HTML,	XML,	or	even	JSON.	However,
if	the	Content-Type	entity	header	is	not	supplied,	the	server,	being	the	receiving	party	of
the	request,	will	have	to	guess	the	appropriate	MIME	type	of	the	data	provided.

www.it-ebooks.info

http://www.it-ebooks.info/

I	will	now	review	the	request	of	an	unsafe	method,	so	that	you	can	observe	a	request
that	is	in	possession	of	an	entity	body.	Feel	free	to	navigate	your	browser	to	the	following
URL:	http://json.sandboxed.guru/chapter8/post.php.	By	filling	out	the
two	form	fields	and	clicking	submit,	the	form	post	will	automatically	trigger	an	HTTP
request	that	will	supply	the	filled-in	fields	as	data.	The	response	that	will	be	outputted	to
the	screen	will	reflect	the	captured	headers	of	the	POST	request.	Listing	8-3	reveals	the
HTTP	request	and	the	entity	it	possesses.	Feel	free	to	utilize	your	developer’s	console,	to
compare	the	request	with	the	results	shown	below.

Listing	8-3.	The	Composition	of	an	HTTP	POST	Request

POST	/chapter8/headers.php	HTTP/1.1

Host:	json.sandboxed.guru

Cache-Control:	max-age=0

Connection:	close

X-Insight:	activate

Referer:	http://json.sandboxed.guru/chapter8/post.php

Dnt:	1

Accept-Encoding:	gzip,	deflate

Accept-Language:	en-us,en;q=0.7,fr;q=0.3

Accept:	

text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

User-Agent:	Mozilla/5.0	(Macintosh;	Intel	Mac	OS	X	10.9;	

rv:30.0)	Gecko/20100101	Firefox/30.0	FirePHP/0.7.4

Content-Length:	37

Content-Type:	application/x-www-form-urlencoded

fname=ben&lname=smith&mySubmit=submit

As	you	can	see	from	Listing	8-3,	an	empty	line	following	the	other	two	request
components	separates	the	entity	body.	Furthermore,	the	two	supplied	entity	headers,
Content-Length	and	Content-Type,	provide	the	server	with	an	understanding	of	what	is
being	supplied,	relieving	the	server	from	having	to	guess	how	to	properly	parse	the	data.

HTTP	Response
For	every	HTTP	request	there	is	an	HTTP	response.	Additionally,	the	structural
composition	of	the	HTTP	response,	as	displayed	in	Table	8-2,	is	identical	to	that	of	the
HTTP	request	with	one	major	exception:	the	request	line	is	replaced	with	a	status	line.

Table	8-2.	Structure	of	the	HTTP	Response

	 Parts Required

1 Status	Line Yes

2 Headers No

3 Entity	Body No

www.it-ebooks.info

http://json.sandboxed.guru/chapter8/post.php
http://www.it-ebooks.info/

Status	Line
The	first	component	of	the	HTTP	response	is	the	status	line,	which	details	the	result	of	the
request.	The	composition	of	the	status	line	is	composed	of	three	parts:	the	version	of	the
HTTP	protocol	utilized	by	the	server,	a	numeric	status	code,	and	an	associated	textual
phrase	that	describes	the	status	of	the	request.	Each	component	is	separated	from	the	other
with	whitespace.

The	HTTP	version	simply	reflects	the	version	of	the	HTTP	protocol	used	by	the	server.

The	status	code	represents	a	three-digit	number	that	reflects	the	status	of	the	request.	It
is	the	duty	of	the	status	code	to	inform	the	client	whether	the	request	was	understood,	if	it
resulted	in	an	error,	and/or	if	the	client	must	take	further	action.	There	are	five	categories
of	statuses,	and	each	three-digit	status	code	is	a	member	of	an	appropriate	status	class.

The	status	classes,	as	illustrated	in	Table	8-3,	are	divided	into	groups	of	hundreds,
meaning	that	the	indicated	classes	can	possess	100	different	unique	status	codes.	While
this	is	not	currently	the	case,	by	providing	each	class	with	ample	padding,	additional
statuses	can	be	incorporated	in	the	future.

Table	8-3.	Response	Status	Classes	of	the	HTTP-Request

Status
Class Reason	Phrase

100–199 This	class	of	status	code	indicates	a	provisional	response,	consisting	only	of	the	status	line	and
optional	headers.

200–299 This	class	of	status	code	indicates	that	the	client’s	request	was	successfully	received,	understood,
and	accepted.

300–399 This	class	of	status	code	indicates	that	further	action	needs	to	be	taken	by	the	user-agent,	in	order
to	fulfill	the	request.

400–499 This	class	of	status	code	is	intended	for	cases	in	which	the	client	seems	to	have	erred.

500–599 This	class	of	status	code	indicates	cases	in	which	the	server	is	aware	that	it	has	erred	or	is
incapable	of	performing	the	request.

The	most	common	classes	that	will	be	used	by	the	average	user	will	be	among	the
following:	200’s,	400’s,	and	500’s.	These	represent	the	response	messages	from	the	server
that	will	help	to	indicate	if	the	resource	requested	has	been	satisfied	or	if	there	were	errors
along	the	way.	The	most	common	status	codes	encountered	by	front-end	developers	are
the	following:	200,	204,	404,	and	500.

200	OK:	The	server	has	successfully	recognized	the	request.

204	No	Content:	The	server	has	successfully	recognized	the	request;
however,	there	is	no	new	entity	body	to	return.

404	Page	Not	Found:	The	indicated	resource	is	unable	to	be	located
by	the	server.

www.it-ebooks.info

http://www.it-ebooks.info/

500	Internal	Server	Error:	The	server	has	encountered	an	issue
preventing	the	request	from	being	fulfilled.

The	textual	phrase	of	the	status	line	is	utilized,	so	that	it	can	be	easily	read	and
interpreted	by	humans.	Each	phrase	details	the	meaning	of	its	associated	status	code.

	Note		You	can	read	more	on	the	existing	status	codes	here:
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html.

Headers
The	second	component	of	the	response	concerns	the	mechanism	by	which	the	response	is
able	to	provide	the	client	with	supporting	meta-information.	As	with	requests,	response
headers	are	grouped	into	three	categories:	general	headers,	request	headers,	and	entity
headers.

General	Headers
The	first	category	of	headers	is	the	general	headers.	The	headers	that	apply	to	this
category	identify	general	information.	Such	general	information	may	regard	the	date	of	the
response	or	whether	the	connection	should	remain	open	or	closed.	The	following	are
general	headers:

Cache-Control

Connection

Date

Pragma

Trailer

Transfer-Encoding

Upgrade

Via

Warning

Response	Headers
The	second	category	of	headers	is	the	response	headers.	These	headers	provide	the	client
of	the	request	with	information	pertaining	to	the	configurations	of	the	server,	as	well	as	the
requested	URI.	For	example,	the	server	can	provide	response	headers	to	inform	the	request
of	what	HTTP	methods	are	accepted,	as	well	as	whether	authorization	is	required	in	order
to	access	the	specified	URI.	These	headers	can	even	inform	the	request	whether	it	should
occur	at	a	later	point	in	time.	The	following	are	response	headers:

Accept-Ranges

www.it-ebooks.info

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://www.it-ebooks.info/

Age

ETag

Location

Proxy-Authentication

Retry-After

Server

Vary

WWW-Authenticate

Entity	Headers
The	third	category	of	headers	is	the	entity	headers.	These	headers	are	used	to	supply	meta-
information	regarding	the	data	being	sent	along	with	the	response.	As	with	entity	headers
for	a	request,	the	most	beneficial	entity	headers	for	a	response	will	be	those	that	describe
the	MIME	type	of	the	entity	provided,	so	that	it	may	be	parsed/read	properly.	This	is
achieved	via	the	Content-Type	header.	The	configured	value	of	the	Content-Type	will
often	reflect	a	MIME	type	that	was	indicated	as	the	value	of	the	Accept	header	within	the
request.	The	following	are	entity	headers:

Allow

Content-Encoding

Content-Languages

Content-Length

Content-Location

Content-MD5

Content-Range

Content-Type

Expires

Last-Modified

Entity	Body
The	final	component	of	the	response	is	that	of	the	entity	body.	Whereas	entity	headers
outline	the	meta-information,	the	entity	body	is	the	data	provided	by	the	server.

Let’s	now	revisit	our	earlier	HTTP	request	from	Figure	8-1,	only	this	time,	let’s	focus
on	the	response	captured	in	Figure	8-2.	Figure	8-2	reveals	the	response	that	is	returned	by
the	server	for	the	following	URL:
http://json.sandboxed.guru/chapter8/headers.php.	The	first	thing	to
note	is	the	status	line	located	below	the	response	headers	heading.	It	begins	by	revealing

www.it-ebooks.info

http://json.sandboxed.guru/chapter8/headers.php
http://www.it-ebooks.info/

the	HTTP	version	and	is	immediately	followed	by	the	status	of	the	request.

Figure	8-2.	The	response	headers	exhibited	by	the	Chrome	developer	console

In	this	particular	case,	the	response	is	successfully	fulfilled,	as	indicated	by	the	status
code	of	200.	Furthermore,	from	the	textual	phrase	that	follows	the	status	code,	we	can
read	that	the	messaging	is	that	of	OK.	Below	the	status	line,	we	are	able	to	observe	a
variety	of	headers,	which	belong	to	the	general	headers	and	entity	headers	categories.	I
want	to	draw	your	attention	to	the	final	header	in	the	listing.	This	particular	entity	header
is	configured	to	define	the	MIME	type	of	the	entity	body	being	returned.	This	enables	the
browser	to	parse	it	accordingly	and	display	it	upon	its	arrival.	In	this	particular	case,	the
data	being	provided	is	HTML	and,	therefore,	possesses	the	Content-Type	of	text/HTML.

The	actual	data	that	is	returned	can	be	viewed	in	the	response	tab,	which	is	none	other
than	the	markup	that	is	being	presented	upon	arrival	of	the	URL.

If	the	preceding	content	is	new	to	you,	don’t	worry,	for	you	are	not	alone.	In	fact,
typically,	only	those	who	are	server-side	developers	know	the	preceding	information.	This
is	because	they	generally	write	the	code	to	analyze	the	request	headers	and,	in	turn,
configure	the	appropriate	response.	Typically,	HTTP	requests	are	made	behind	the	scenes
and	handled	by	the	browser,	allowing	front-end	developers	like	us	to	remain	ignorant	of
the	communications	taking	place.	However,	in	the	upcoming	section,	I	will	discuss	the
technique	that	enables	us	to	initiate	and	configure	our	own	HTTP	requests,	allowing	us	to
send	and	receive	JSON	via	JavaScript.

Ajax
Ajax	itself	is	not	a	technology	but,	rather,	a	term	coined	by	Jesse	James	Garrett	in	2005.
Ajax	stands	for	Asynchronous	JavaScript	and	XML	(a.k.a.	Ajax)	and	has	become
synonymous	with	modern-day	front-end	development,	and	for	great	reason.	It	offers	the
ability	to	initiate	HTTP-Requests	such	as	GET	and	POST	on	demand	and	without	having
to	navigate	away	from	the	current	web	page,	as	shown	in	Figure	8-3.

www.it-ebooks.info

http://www.it-ebooks.info/

Figure	8-3.	The	full	life	cycle	of	an	HTTP	GET	request

Figure	8-3	demonstrates	the	process	by	which	data	is	integrated	into	a	web	page	when
solely	handled	by	the	server.	The	demo	begins	with	a	user	landing	on	a	web	page	and
being	invited	to	sign	in	to	the	site	experience	via	a	simple	form.	Upon	clicking	submit,	the
browser	initiates	a	new	request	to	the	server,	in	order	to	retrieve	the	appropriate	response
that	reflects	the	data	that	has	been	provided	by	the	user.	The	headers	within	that	request
detail	the	necessary	information	for	the	server	to	respond	accordingly.	Once	the	server
receives	the	request,	it	fetches	the	resource	being	requested,	retrieves	some	information
from	the	database,	and	inserts	it	within	the	content	to	be	returned,	thereby	revealing	an
updated	page	for	the	visited	URL:	json.sandboxed.guru/chapter8/8-1.php.

The	terms	Asynchronous	JavaScript	and	XML	refer	to	the	various	web	technologies
that	are	used	to	incorporate	the	exchange	of	data	between	the	current	web	page	and	a
server	in	the	background.	You	might	be	thinking	that	if	the	x	in	Ajax	stands	for	XML,	and
this	is	a	book	on	the	use	of	JSON,	why	then	should	we	care	about	Ajax?	While	the	x	does
stand	for	XML,	the	request/response	initiated	via	Ajax	continues	to	remain	bound	to	the
rules	of	the	HTTP	protocol.	Therefore,	the	server	can	return	any	and	all	valid	data	types,
such	as	HTML,	Text,	XML,	JSON,	etc.	We,	of	course,	will	be	working	with	JSON.	The	x
in	Ajax	came	to	be	simply	because	the	original	XMLHttpRequest	only	supported	XML
parsing.1

The	XMLHttpRequest	object	provides	the	interface	by	which	JavaScript	can	initiate
an	HTTP-Request	directly	from	within	a	running	application,	enabling	communication
with	a	server.	This	allows	for	data	to	be	pushed	out	or	consumed.	Furthermore,	as	the	A	in
Ajax	suggests,	this	communication	occurs	asynchronously,	implying	non-blocking.	This
allows	the	executing	application	and	the	user	to	continue,	without	requiring	either	to	stop
what	they’re	doing,	until	the	request	has	been	fulfilled	by	the	server.	The	HTTP	request
occurs	outside	of	the	process	used	to	run	our	JavaScript	application.	More	specifically,	it
occurs	in	a	separate	process	that	is	used	only	by	the	browser.	When	the	server	has	fulfilled
the	request,	the	browser	will	alert	our	application	to	its	availability,	by	notifying	our
application	via	an	event.	By	listening	in	on	this	event,	we	can	obtain	the	response	from	the
server	to	parse	and	use,	as	our	application	requires.

The	XMLHttpRequest	object,	which	is	the	ECMAScript	HTTP	API,2	originated	as
a	proprietary	feature	within	Internet	Explorer	5,	as	a	part	of	the	Active	X	framework.	Its
practicality	and	implications	became	immediately	recognized	and	were	quickly

www.it-ebooks.info

http://json.sandboxed.guru/chapter8/8-1.php
http://www.it-ebooks.info/

implemented	by	competing	browsers.	Anticipating	the	possible	variations	and	problems
that	could	soon	arise	among	vendor	implementations,	the	W3C	urged	to	formalize	the
standard	of	the	syntax,	which	can	be	read	at	the	following	URL:
www.w3.org/TR/2014/WD-XMLHttpRequest-20140130/.	This	standard
outlines	the	API	that	developers	can	leverage	to	invoke	an	HTTP	request	that	will
facilitate	the	invocation	of	an	HTTP	request.

XMLHttpRequest	Interface
The	HTTP	API,	as	exposed	by	the	XMLHttpRequest	object,	consists	of	a	variety	of
methods,	event	handlers,	properties,	and	states,	all	of	which	provide	our	JavaScript
application	the	ability	to	successfully	facilitate	an	HTTP	request,	in	addition	to	obtaining
the	response	from	a	server.	For	this	reason,	each	method,	property,	handler,	and	state	will
be	integral	in	a	particular	aspect	of	the	request	or	the	response.

Global	Aspects
The	sole	global	method	of	the	XMLHttpRequest	interface	is	that	of	the	constructor	(see
Table	8-4),	which,	when	invoked,	will	return	to	our	application	a	new	instance	of	the
XMLHttpRequest	object.	It	will	be	through	the	interface	inherited	by	this	object	that
we	will	initiate	and	manage	our	requests.	Furthermore,	by	instantiating	multiple	instance
of	the	XMLHttpRequest	object,	we	can	manage	simultaneous	requests.

Table	8-4.	XMLHttpRequest	Constructor

Method/Property Parameter Returned	Value

constructor N/A XMLHttpRequest	(object)

Listing	8-4	demonstrates	the	instantiation	of	an	XMLHttpRequest	object	and
assigns	the	instance	to	a	variable	labeled	xhr.	It	will	be	fairly	common	to	see	xhr	as	the
reference,	as	this	is	simply	the	acronym	for	the	XMLHttpRequest	object.

Listing	8-4.	Creating	an	Instance	of	the	XMLHttpRequest	Object

var	xhr	=	new	XMLHttpRequest();

Whether	you	are	working	with	one	xhr	or	many,	as	the	HTTP	request	occurs
asynchronously,	it	is	necessary	for	our	application	to	be	notified	of	any	change	in	state,	for
the	duration	of	the	request.	Such	notifications	may	be	whether	the	response	has	been
fulfilled	or	the	connection	has	timed	out.	The	XMLHttpRequest	Level	2	standard	outlines
the	event	handlers	possessed	by	each	xhr	instance,	so	that	we	may	remain	aware	of	the
status	of	the	request.	These	event	handlers	can	be	viewed	in	Table	8-5.

Table	8-5.	The	xhr	Event	Handlers	for	Monitoring	the	Progress	of	the	HTTP	Request

Event	Handlers Event	Handler	Event	Type

www.it-ebooks.info

http://www.w3.org/TR/2014/WD-XMLHttpRequest-20140130/
http://www.it-ebooks.info/

onloadstart	* loadstart	*

onprogress progress

onload load

onloadend	* loadended	*

onerror error

ontimeout timeout

onabort	* abort	*

onreadystatechange readystatechange

	Note		The	progress	events	that	do	not	appear	with	an	asterisk	(*)beside	them	are
implemented	by	all	modern	browsers,	in	addition	to	Internet	Explorer	8.	However,	those
beside	an	asterisk	require	IE	10	or	greater.

The	event	handlers	in	Table	8-5	will	alert	our	application	to	a	variety	of	notifications
pertaining	to	the	state	of	the	request.	Furthermore,	they	can	be	utilized	in	one	of	two
possible	implementations.

The	first	is	that	we	can	remain	object-oriented	and	register	the	event	of	the	state	to
which	we	choose	to	listen.	For	each	event	to	which	we	listen,	we	can	assign	a	particular
function	to	be	triggered	upon	notification,	such	as	that	in	Listing	8-5.	As	different
browsers	implement	various	ways	to	register	an	event,	it	is	necessary	to	make	use	of	a
cross-browser	solution,	as	I	have	on	line	11.

Listing	8-5.	The	Registration	for	Event	Listeners	Belonging	to	the	xhr	object	for	Each
Notification	of	State

	1		var	xhr	=	new	XMLHttpRequest();

	2		addListener(xhr,	'loadstart',	function()	{	alert("load-

start");	});

	3		addListener(xhr,	'progress',	function()	

{	alert("progress");	});

	4		addListener(xhr,	'load',	function()	{		alert("load");	

});

	5		addListener(xhr,	'loadended',	function()	

{		alert("loadended");	});

	6		addListener(xhr,	'timeout',	function()	

{		alert("timeout");});

	7		addListener(xhr,	'abort',	function()	{		alert("abort");	

});

	8		addListener(xhr,	'readystatechange',	function()	

{	alert("readystatechange");});

	9

10		//cross	browser	addListener

www.it-ebooks.info

http://www.it-ebooks.info/

11		function	addListener(elem,	eventName,	handler)	{

12									if	(elem)	{

13													elem.addEventListener(eventName,	handler,	

false);

14									}	else	if	(elem.attachEvent)	{

15													elem.attachEvent('on'	+	eventName,	handler);

16									}	else	{

17													elem['on'	+	eventName]	=	handler;

18								}

19	}

The	alternative	to	being	notified	of	a	change	in	a	particular	state	is	to	assign	a	function
as	the	callback	to	the	event	handler,	which	exists	as	a	property	of	the	object	itself.	This
manner	of	implementation	is	demonstrated	in	Listing	8-6.

Listing	8-6.	Assigning	Callback	Functions	to	Each	of	the	xhr	Status	Event	Handlers

	1		var	xhr	=	new	XMLHttpRequest();

	2						xhr.onloadstart								=	function()	

{		alert("onloadstart");		};

	3						xhr.onprogress									=	function()	

{		alert("onprogress");		};

	4						xhr.onload													=	function()	

{		alert("onload");		};

	5						xhr.onloadend										=	function()	

{		alert("onloadend");		};

	6						xhr.ontimeout										=	function()	

{		alert("ontimeout");		};

	7						xhr.onabort												=	function()	

{		alert("onabort");		};

	8						xhr.onreadystatechange	=	function()	

{		alert("onreadystatechange");		};

Whether	the	implementation	you	choose	to	be	made	aware,	regarding	state
notifications	of	the	HTTP	request,	reflects	that	of	Listing	8-5	or	that	of	Listing	8-6,	both
will	produce	the	equivalent	results.	The	result	produced	is	the	invocation	of	the
corresponding	function	that	has	been	assigned	as	the	receiver	of	a	particular	notification,
when	that	event	is	dispatched.

There	are	eight	progress	notifications	in	total	that	will	inform	an	application	as	to	the
particular	state	of	the	HTTP	request.	These	notifications	are	the	following:	loadstart,
progress,	error,	load,	timeout,	abort,	loadend,	and
onreadystatechange.

The	loadstart	event	is	dispatched	the	moment	the	HTTP	request	begins.	This	is
not	to	be	confused	with	the	moment	communication	occurs	between	the	client	and	the
server.	As	the	loadstart	event	reflects	the	start	of	a	request,	it	should	be	expected	to	be
dispatched	a	total	of	one	time	for	each	request	initiated.

www.it-ebooks.info

http://www.it-ebooks.info/

The	progress	event	is	dispatched	the	moment	the	HTTP	connection	is	established
and	the	request/response	is	effectively	relaying	data.	During	the	course	of	the
transmission,	the	progress	event	will	continue	to	fire	until	there	is	no	further	data	to
transmit.	This,	however,	does	not	always	indicate	that	a	successful	request	has	been
fulfilled.

The	error	event	will	be	dispatched	exactly	once,	or	not	at	all,	during	the	course	of
each	HTTP	request	initiated	by	the	xhr	object.	Should	the	request	result	in	an	error,	the
error	event	will	immediately	be	dispatched.	This	event	is	useful	for	being	informed	that
the	request	was	unsuccessful.

The	load	event	will	be	dispatched	exactly	once,	or	not	at	all,	during	the	course	of
each	HTTP	request	initiated	by	the	xhr	object.	Should	the	request	be	successfully
fulfilled,	the	load	event	will	be	immediately	dispatched.	This	event	is	useful	for	being
informed	that	the	request	has	been	completed.	It	should	be	mentioned	that	just	because	a
load	is	considered	completed	by	the	xhr	object	does	not	necessarily	mean	that	the	request
was	successfully	satisfied.	Therefore,	it	will	be	imperative	to	provide	your	callback
method	with	the	logic	to	determine	the	status	code,	in	order	to	ensure	that	it	was	truly
successful.	The	status	code,	in	addition	to	the	status	text,	can	be	obtained	by	the	status
and	statusText	properties	of	the	xhr.	I	will	discuss	these	two	properties	a	bit	later	in
the	chapter.

The	timeout	event	will	be	dispatched	exactly	once,	or	not	at	all,	during	the	course	of
each	HTTP	request	initiated	by	the	xhr	object.	Should	the	duration	of	the	request	be
determined	to	have	surpassed	a	particular	interval,	the	connection	will	have	been	deemed
to	be	timed	out,	notifying	our	application	of	the	matter.

The	abort	event	is	dispatched	exactly	once,	or	not	at	all,	during	the	course	of	each
HTTP	request	initiated	by	the	xhr	object.	Should	the	request	at	any	time	be	aborted,	the
abort	event	will	be	immediately	dispatched.

The	loadend	event	is	dispatched	exactly	once	during	the	course	of	each	HTTP
request	initiated	by	the	xhr	object.	The	loadend	notification	is	dispatched	the	moment
the	HTTP	request	is	no	longer	active	in	its	attempt	to	fulfill	a	request.	This	event	is
dispatched	after	the	following	possible	notifications:	error,	abort,	load,	and
timeout.

The	onreadystatechange	is	the	original,	and	at	one	time	the	only,	event	handler
of	the	XMLHttpRequest	implemented	by	earlier	browsers.	This	event	is	used	to	notify
a	supplied	function	of	the	progress	of	the	initiated	HTTP	request.	The
onreadystatechange	event	is	dispatched	multiple	times	during	the	course	of	each
HTTP	request	initiated	by	the	xhr	instance.	In	fact,	the	event	is	dispatched	each	time	the
readyState	property	of	the	xhr	instance	is	assigned	a	new	state.	The	possible	states
that	can	be	assigned	to	the	readyState	property	are	those	outlined	in	Table	8-6.

Table	8-6.	The	Possible	States	of	the	xhr	object	and	Numeric	Representation

States Numeric	Representation

UNSENT 0

www.it-ebooks.info

http://www.it-ebooks.info/

OPENED 1

HEADERS_RECEIVED 2

LOADING 3

DONE 4

The	states	outlined	in	Table	8-6	are	assigned	to	that	of	the	readyState	property	that
exists	on	each	xhr	instance.	The	assigned	state	reflects	the	progress	of	the	HTTP	request
itself.	There	are	five	possible	states	that	can	be	assigned	to	the	readyState	property,
and	each	infers	the	given	state	of	the	request.

The	state	UNSENT	is	the	default	state	of	the	readyState	property.	This	state	is	used
to	inform	our	application	that	the	xhr	object,	while	instantiated,	is	not	yet	initialized.	The
readyState	property	during	this	state	returns	a	value	of	0.

The	state	OPENED	replaces	the	UNSENT	state	the	moment	the	request	method,	open,
has	been	invoked,	initializing	our	xhr	instance.	The	readyState	property	during	this
state	returns	a	value	of	1.

The	state	HEADERS_RECEIVED	is	assigned	as	the	value	of	the	readyState
property	upon	receiving	the	headers	that	accompany	the	response	that	will	ultimately	be
received	from	a	server.	The	readyState	property	during	this	state	returns	a	value	of	2.

The	state	LOADING	is	assigned	as	the	value	of	the	readyState	property	as	the
transmission	of	data	pertaining	to	the	response	entity	body	is	received.	The	readyState
property	during	this	state	returns	a	value	of	3.

The	state	DONE	is	assigned	as	the	value	of	the	readyState	property	upon	the
conclusion	of	the	HTTP	request.	This	state	reflects	only	the	closure	of	the	request.	As	with
the	load	event,	the	done	state	does	not	identify	if	the	request	resulted	in	an	error,	a	time-
out,	or	a	successful	fulfillment	of	a	request.	Therefore,	it	will	be	imperative	to	determine
the	statusCode	when	determining	how	to	process	the	request.	The	readyState
property	during	this	state	returns	a	value	of	4.	Listing	8-7	demonstrates	an	event	handler
that	monitors	all	states	of	the	readyState	property.

Listing	8-7.	Determining	the	State	of	the	xhr	object	for	Each	Change	in	State

	1		var	xhr	=	new	XMLHttpRequest();

	2						xhr.onreadystatechange	=	handlStateChange;

	3

	4		function	handleStateChange()	{

	5						if	(xhr.readyState	===	0)	{

	6												alert("XHR	is	now	instantiated");

	7						}	else	if	(xhr.readyState	===	1)	{

	8												alert("XHR	is	now	Initialized");

	9						}	else	if	(xhr.readyState	===	2)	{

10												alert("Headers	are	now	Available");

11						}	else	if	(xhr.readyState	===	3)	{

www.it-ebooks.info

http://www.it-ebooks.info/

12												alert("Receiving	Data");

13						}	else	if	(xhr.readyState	===	4)	{

14													alert("HTTP	Request	ended");

15						}

As	an	older	implementation,	the	onreadystatechange	does	not	offer	an
application	as	accurate	a	notification	system	as	the	other	seven	progress	events.
Furthermore,	the	processing	that	is	required	by	our	JavaScript	to	determine	the	state	of	the
HTTP	request,	if	extensive,	has	the	ability	to	block	the	thread,	thereby	delaying	the	events
from	being	triggered.

The	Request	Aspect
The	methods	and	properties	that	are	outlined	within	this	section	make	up	the	facade	that
enables	one	to	correctly	configure	the	metadata	of	the	HTTP	request.	(See	Table	8-7.)

Table	8-7.	The	Request	Methods	of	the	xhr	object

Method Parameters Returned
Value

open
String	(method),	String	(URI),	Boolean	(async),	String
(user),	String	(password) N/A

setRequestHeader
String	(field),

String	(value)
N/A

send String	(entity	body) N/A

abort N/A N/A

open
The	open	method,	whose	signature	can	be	viewed	in	Listing	8-8,	acts	as	the	starting	point
that	will	be	used	to	configure	the	HTTP	request.

Listing	8-8.	The	Signature	of	the	open	Method	of	the	xhr	object

open(HTTP-Method,	request-URI	[,	async	[,	user	[,	

password]]]);

As	revealed	by	Listing	8-8,	the	open	method	accepts	five	arguments.	Three	are
optional,	and	two	are	required.

The	first	parameter,	HTTP-Method,	indicates	to	the	server	what	method	it	requires	to
be	performed	on	the	specified	request	URI.	A	resource	may	be	the	target	of	a	“safe”	or
“unsafe”	method.	As	discussed	in	the	earlier	sections	of	the	chapter,	the	two	types	of
methods	this	chapter	will	focus	on	are	GET	and	POST.

The	second	parameter,	request-URI,	identifies	the	target	of	our	request.	The
argument	supplied	to	the	request-URI	can	be	specified	either	as	a	relative	URL	or,

www.it-ebooks.info

http://www.it-ebooks.info/

alternatively,	an	absolute	URL.	As	the	XMLHttpRequest	object	is	subject	to	the	same-
origin	policy,	the	URI	supplied	must	possess	the	same	origin	as	the	application
configuring	the	request.	If,	however,	the	URL	provided	is	that	of	another	host	outside	of
the	current	origin,	the	server	of	the	URL	being	targeted	must	allow	for	cross-origin
resource	sharing.	I	will	discuss	cross-origin	resource	sharing	in	the	next	chapter.

	Note		The	XMLHttpRequest	object	is	subject	to	the	same-origin	policy.

The	required	parameters	will	be	appended	together,	along	with	the	HTTP	protocol
version,	which	is	typically	1.1,	to	form	the	very	first	line	of	the	request,	which	is	the
request	line,	as	shown	in	Listing	8-9.

Listing	8-9.	A	GET	Request	for	the	URI	xFile.php	via	the	HTTP/1.1	Protocol

GET	/xFile.php	HTTP/1.1

The	third	parameter	of	the	open	method	does	not	supply	metadata	to	the	request	but,
rather,	indicates	if	the	request	will	occur	asynchronously	or	synchronously.	When	this
parameter	is	left	undefined,	it	defaults	to	true,	thereby	processing	the	HTTP	request	in
another	thread.

The	final	two	optional	parameters,	user	and	password,	are	used	to	supply
credentials	that	may	be	required	of	a	resource	whose	access	requires	basic	authentication.
These	values	will	add	to	the	metadata	of	the	request	only	if	the	server	responds	with	a	401
Unauthorized	status	code.

setRequestHeader
The	next	method,	setRequestHeader,	offers	our	application	the	opportunity	to
specify	particular	headers	that	will	complement	the	request	by	providing	supplemental
information.	These	can	be	any	of	the	recognized	standard	HTTP/1.1	attribute-value
fields.	As	indicated	by	the	signature	of	the	setRequestHeader	defined	in	Listing	8-
10,	the	field	and	value	are	to	be	supplied	as	individual	strings.	Behind	the	scenes,	the	xhr
object	will	append	them	together,	separated	by	a	colon	(:)	token.	Furthermore,	any
number	of	request	headers	can	be	supplied	to	the	request	in	question.

Listing	8-10.	Signature	of	the	setRequestHeader	Method	of	the	xhr	object

setRequestHeader(field	,	value);

Via	setRequestHeader,	our	application	can	supply	any	attribute	value	that	aids	in
the	fulfillment	of	the	response	from	the	server.	Such	headers,	as	illustrated	in	Listing	8-11,
are	the	Accept	headers,	which	outline	the	preferred	media	types	that	our	application
recognizes.	As	the	content	we	will	be	requesting	most	commonly	from	the	server	will	be
that	of	JSON,	we	will	be	using	the	application/json	media	type.

Additionally,	if	the	HTTP-Method	is	specified	to	be	that	of	an	“unsafe”	method,	we
can	assign	the	Content-Type	as	a	request	header,	to	outline	the	encoding	and	MIME	type
of	the	supplied	entity	body	provided	with	the	request.	I	will	discuss	how	to	append	an

www.it-ebooks.info

http://www.it-ebooks.info/

entity	body	in	the	send	method	later	in	this	section.

The	headers	supplied	can	also	represent	custom	attribute	values,	which	can	be	useful
for	supporting	custom	requests.	It’s	common	practice	to	precede	all	custom	headers	with
an	X.

Listing	8-11.	The	Provision	of	the	Accept	Header	and	a	Custom	Header	via	the
setRequestHeader	Method

setRequestHeader("Accept"	,	"application/json");					

//requesting	JSON	as	the	response

setRequestHeader("X-Custom-Attribute"	,	"Hello-World"	

);		//custom	header

For	the	most	part,	all	standard	HTTP/1.1	headers	can	be	supplied.	However,	there
are	a	few	particular	headers	that	cannot	be	overridden,	due	to	security	measures	as	well	as
maintaining	the	integrity	of	data.3	These	values	are	listed	in	Table	8-8.	If	your	application
attempts	to	supply	values	for	any	of	the	listed	headers	in	Table	8-8,	they	will	be
overridden	to	their	default	values.

Table	8-8.	The	Assorted	HTTP	Headers	That	Cannot	Be	Set	Programmatically	via
JavaScript

send
The	send	method	of	the	xhr	object	is	what	prompts	the	submission	of	the	request.	As
indicated	by	its	signature	in	Listing	8-12,	the	send	method	can	be	invoked	with	an
argument	supplied.	This	argument	represents	the	entity	body	of	the	request	and	is	typically
used	if	the	request	method	is	specified	as	one	of	the	“unsafe”	methods,	such	as	POST.

Listing	8-12.	The	Signature	of	the	send	Method	of	the	xhr	object

send	(data);

The	data	supplied	can	consist	of	nearly	anything;	however,	it	must	be	supplied	in	the
form	of	a	string.	Data	can	be	as	simple	as	a	word	or	a	series	of	key/value	pairs	strung
together	to	resemble	a	form	post,	or	even	that	of	JSON	text.	Listing	8-13,	Listing	8-14	and
Listing	8-15	demonstrate	three	different	Content-Types	being	submitted	via	a	form	post.

Listing	8-13.	Data	Sent	As	the	Entity	Body	of	the	Request	with	the	Content-Type
Defaulted	to	text/plain

www.it-ebooks.info

http://www.it-ebooks.info/

var	xhr	=		new	XMLHttpRequest();

				xhr.open("POST",	

"http://json.sandboxed.guru/chapter8/xss-post.php");

				xhr.send("fname=ben&lname=smith");

				//content-type	will	be	defaulted	to	text/plain;	

charset=UTF-8.

Listing	8-14.	Data	Sent	As	the	Entity	Body	of	the	Request	with	the	Content-Type
Specified	As	x-www-form-urlencoded

<form	action="8-1.php"	method="post"	onsubmit="return	

formSubmit();">

				First-Name:<input	name="fname"	type="text"	size="25"	/>

				Last-Name:<input	name="lname"	type="text"	size="25"	/>

</form>

<script>

function	formSubmit(){

				var	xhr	=		new	XMLHttpRequest();

								xhr.open("POST",	

"http://json.sandboxed.guru/chapter8/xss-post.php");

								xhr.setRequestHeader("Content-Type",	"application/x-

www-form-urlencoded");

								xhr.send("fname=ben&lname=smith&mySubmit=submit")	;

				return	false;

}

</script>

Listing	8-15.	Data	Sent	As	the	Entity	Body	of	the	Request	with	the	Content-Type
Specified	As	JSON

var	person={name:"ben",	gender:"male"};

var	xhr	=		new	XMLHttpRequest();

				xhr.open("POST",	

"http://json.sandboxed.guru/chapter8/xss-post.php");

				xhr.setRequestHeader("Content-Type",	"application/json");

				xhr.send(JSON.stringify(person));

Whatever	the	supplied	data,	if	you	do	not	define	the	MIME	type	of	the	data	by	way	of
the	Content-Type	header,	the	type	for	the	data	provided	will	be	defaulted	to	text/plain;
charset=UTF-8,	as	in	Listing	8-13.	At	this	point,	if	you	were	to	run	the	preceding	listings
(8-13	through	8-15)	from	your	local	machine,	the	request	would	fail.	This	is	due	to	the
fact	that	xhr	strictly	adheres	to	the	same-origin	policy.	Requests	can	only	be	to	a	server	if
the	request	is	initiated	from	the	same	origin.	There	is	a	way	around	this,	which	I	will
discuss	further	in	the	next	chapter.	In	the	meantime,	feel	free	to	run	these	listings	and
monitor	the	HTTP	request	via	the	developer	console.	Each	listing	can	be	viewed	at	the
following	URLs:

http://json.sandboxed.guru/chapter8/8-12.html

www.it-ebooks.info

http://json.sandboxed.guru/chapter8/xss-post.php
http://json.sandboxed.guru/chapter8/xss-post.php
http://json.sandboxed.guru/chapter8/xss-post.php
http://json.sandboxed.guru/chapter8/8-12.html
http://www.it-ebooks.info/

http://json.sandboxed.guru/chapter8/8-13.html

http://json.sandboxed.guru/chapter8/8-14.html

	Note		If	you	have	been	following	along	with	the	supplied	URLs	and	have	yet	to	clear
your	cookies,	you	may	have	witnessed	some	of	the	cookies	from	the	previous	chapter	sent
within	the	above	requests.

abort
The	final	method	of	the	request,	abort,	informs	the	HTTP	request	to	discontinue/cancel
the	request.	This	method	effectively	closes	any	connection	that	has	been	made	to	a	server
or	prevents	one	from	occurring	if	a	connection	has	not	yet	been	made.

In	addition	to	methods,	the	xhr	object	provides	a	few	attributes	that	can	help	us	with
configuring	our	request.	These	properties	can	be	found	in	Table	8-9.

Table	8-9.	The	Request	Attributes	of	the	xhr	object

Properties Returned	Value

Timeout Number	(duration)

withCredentials	* Boolean	(credentials)

upload	* XMLHttpRequestUpload	(object)

	Note		The	request	properties	that	are	not	distinguished	by	an	asterisk	(*)	are
implemented	by	all	modern	browsers,	in	addition	to	Internet	Explorer	8.	Those	marked	by
an	asterisk	require	IE	10	or	greater.

timeout
The	timeout	property	can	be	set	in	milliseconds	to	that	of	any	duration.	The	value
supplied	will	be	the	maximum	allotted	time	for	a	request	to	complete.	If	a	request
surpasses	the	provided	time,	the	time-out	event	is	dispatched	to	notify	our	application.

withCredentials
The	withCredentials	property	can	be	set	to	that	of	either	true	or	false.	The
value	supplied	is	used	to	inform	the	server	that	credentials	have	been	supplied	with	a
cross-origin	resource	request.

upload
The	upload	property,	when	read,	provides	our	application	with	a	reference	to	an
XMLHttpRequestUpload	object.	This	object	provides	our	application	with	the	ability
to	monitor	the	transmission	progress	for	the	entity	body	of	a	supplied	request.	This	will	be

www.it-ebooks.info

http://www.it-ebooks.info/

useful	for	any	entity	body	that	contains	an	excessive	amount	of	data,	such	as	when
allowing	users	to	post	various	file	attachments,	such	as	images,	or	media.

At	this	point	in	time,	you	should	possess	the	necessary	understanding	of	the	various
methods	and	properties	possessed	by	the	xhr	object	that	will	allow	for	devising	and
configuring	an	HTTP	request	from	a	JavaScript	application.	The	xhr	provides	us	the
vehicle	we	can	leverage	to	transmit	JSON	to	and	from	our	application.

EXERCISE	8-1.	AJAX	FORM	POST

With	this	newfound	knowledge,	you	should	be	able	to	convert	the	HTML	<form>
element	of	the	following	code	into	an	Ajax	call.

<body>

				<div	class="content">

								<form	

action="http://json.sandboxed.guru/chapter8/exercise.php"

												method="post"	onsubmit="return	ajax();">

												First-Name:<input	name="fname"	type="text"	

size="25"	/>

												Last-Name:	<input	name="lname"	type="text"	

size="25"	/>

												<input	name="mySubmit"	type="submit"	

value="submit"	/>

								</form>

				</div>

				<script>

								function	ajax()	{

												//...	insert	HTTP	Request	here

								}

				</script>

</body>

As	we	will	be	controlling	the	request	via	JavaScript,	and	because	our	favored
Content-Type	is	JSON,	make	sure	that	the	data	of	the	entity	body	is	provided	as
JSON.	You	can	compare	your	answer	to	that	of	the	preceding	code.

Normally,	the	XMLHttpRequest	object	is	incapable	of	making	successful	requests
to	servers	that	do	not	possess	the	same	origin	as	the	document	from	which	the	request	it
initiated.	However,	I	have	employed	a	technique,	which	you	will	learn	about	in	Chapter	9,
that	will	allow	your	xhr	instances	to	successfully	make	requests	to	the	following	request
URI:	http://json.sandboxed.guru/chapter8/exercise.php.

Unfortunately,	if	you	are	authoring	your	code	using	Internet	Explorer	8	or	9	to	make
requests	against	varying	origins,	you	cannot	utilize	the	XMLHttpRequest	object.
Instead,	you	must	initialize	the	XDomainRequest	object.	Furthermore,	while	the
XMLHttpRequest	enables	you	to	specify	the	Content-Type	via	the
setRequestHeader,	the	XDomainRequest	does	not	possess	this	capability.

www.it-ebooks.info

http://json.sandboxed.guru/chapter8/exercise.php
http://www.it-ebooks.info/

The	Response	Aspect
While	the	xhr	object	enables	us	to	configure	the	request,	it	will	serve	no	purpose	without
the	understanding	of	how	to	extract	the	response	provided.	Therefore,	the	xhr	object	also
incorporates	various	methods	and	properties	that	are	concerned	solely	with	working	with
the	response	provided	by	the	server.

As	you	learned	earlier	in	the	chapter,	both	the	HTTP	request	and	the	response	of	said
request	are	broken	into	three	components.	These	represent	the	request-line/status-line,
headers,	and	the	payload.	While	both	the	headers	and	the	payload	are	used	in	collaboration
to	arrive	at	a	parsed	response,	they	are	obtained	separately	via	the	xhr	interface.	The
methods	listed	in	Table	8-10	reflect	the	three	methods	of	the	xhr	interface	that	are	utilized
for	working	with	the	headers	of	the	HTTP	response,	which	will	ultimately	inform	our
application	of	any	details	pertaining	to	the	response.

Table	8-10.	Response	Methods	of	the	xhr	object

Method Parameters Returned	Value

getAllResponseHeaders N/A String	(value)

getResponseHeader String	(key) String	(value)

overrideMimeType String	(Content-Type) N/A

getAllResponseHeaders
The	getAllResponseHeaders	method	of	the	xhr	interface	is	used	to	return	the
various	headers	that	have	been	configured	by	the	server	to	accompany	the	supplied
response.	When	invoked,	xhr	returns	a	string	of	all	headers	of	the	response	as	key/value
pairs,	each	of	which	remains	separated	from	another	by	a	carriage	return	and	new	line
control	characters.	These	control	characters	are	represented	by	the	following	Unicode
values	respectively:	\u000D	and	\u000A.	Furthermore,	each	key/value	pair	is	separated
from	another	via	the	colon	(:)	token.

Knowing	the	syntax	of	the	value	returned,	we	can	parse	the	string	and	simply	extract
each	header	into	an	array,	with	the	help	of	some	minor	string	manipulation,	as	revealed	in
Listing	8-16.

Listing	8-16.	Extracting	All	Values	That	Are	Configured	to	the	Provided	Response
Headers

…truncated	code

	5	//when	the	xhr	load	event	is	triggerd	parse	all	headers
	6	xhr.onload	=	parseHeaders;
	7
	8	//parseHeaders	will	manipulate	the	string
	9	function	parseHeaders()	{
10					var	headers	=	new	Object();

www.it-ebooks.info

http://www.it-ebooks.info/

11					var	responseHeaders	=	(this.getAllResponseHeaders());

12					//match	sequences	of	characters	that	preceded	control

characters	into	an	array

13					var	headerArray

=	(responseHeaders.match(/[^\u000D\u000A].*/gi));
14					for	(var	i	=	0;	i	<	headerArray.length;	i++)	{

15										var	akeyValuePair	=	headerArray[i];

16										var	colonIndex	=	akeyValuePair.indexOf(“:”);

17										var	headerKey		=	akeyValuePair.substring(0,

colonIndex);

18										var	headerValue

=	akeyValuePair.substring(colonIndex	+	1);

19										headerValue	=	(headerValue.charAt(0)	==	”	“)

?	headerValue(1)	:	headerValue;

20										headers[headerKey]	=	headerValue;

21					}

22	}

Listing	8-16	demonstrates	how	all	headers	can	be	extracted	with	a	simple	function
labeled	parseHeaders.	Once	the	xhr	load	event	notification	is	dispatched,
parseHeaders	is	invoked	(line	6).	Once	the	parseHeaders	function	runs,	we
initialize	an	object,	which	will	be	used	to	retain	any	and	all	found	headers	and	their	values.

As	parseHeaders	is	invoked	by	xhr,	references	to	this	remain	implicitly	set	to
the	context	of	the	xhr	object.	Therefore,	referencing	this	enables	our	function	to	invoke
the	getAllResponseHeaders	method,	obtaining	the	string	of	all	header-value	pairs
(line	11).	The	returned	string	is	assigned	as	the	value	to	the	variable	labeled
responseHeaders.

Utilizing	a	regular	expression,	we	can	extract	any	sequence	of	characters	that	precede
the	two	control	characters,	thereby	separating	one	header-value	pair	from	another.	All
found	matches	are	then	appended	to	an	array	in	the	order	they	are	encountered.	Once	the
entire	string	has	been	compared	against	the	pattern,	an	array	is	returned,	containing	all
matches	respectively.	In	order	to	manipulate	these	matches	further,	we	assign	the	array	as
the	value	to	variable	headerArray	(line	13).	From	there,	we	iterate	over	each	indexed
value,	so	that	we	can	separate	the	key	from	its	value.	Knowing	that	a	colon	(:)	token	is
used	to	separate	the	two,	we	can	determine	the	location	of	said	token	(line	16),	allowing
us	to	extract	everything	up	to	the	token	(line	17)	and	everything	after	the	token	(line	18).
The	two	substrings,	respectively,	reflect	the	header	and	its	value.	While	the	HTTP	protocol
states	that	headers	and	values	are	separated	via	the	colon	(:)	token,	they	are	also	separated
by	an	additional	space.	Therefore,	if	the	first	character	of	the	substring	that	represents	our
value	is	that	of	a	space,	it	is	effectively	removed	(line	19).	From	there,	we	apply	each	key
and	its	correlating	value	to	the	headers	object.

While	it	may	not	be	immediately	apparent	why	you	would	have	to	analyze	all	supplied
headers,	it	will	simply	come	down	to	the	use	case.	The	getAllResponseHeaders	is
essential	when	your	actions	rely	on	the	metadata	of	the	response.	Such	a	use	case	would
be	when	you	pair	an	HTTP	request	with	that	of	the	request	method	HEAD,	which	is	used	to

www.it-ebooks.info

http://www.it-ebooks.info/

solely	fetch	header	information	from	a	server.

getResponseHeader
The	getResponseHeader	method,	whose	signature	can	be	viewed	in	Listing	8-17,	can
be	utilized	to	obtain	the	value	for	the	specified	response	header,	as	configured	by	the
server.	The	key	supplied	can	be	either	uppercase	or	lowercase,	but	the	format	of	the
argument	must	be	that	of	a	string.

Listing	8-17.	The	Signature	of	the	getResponseHeader	Method	of	the	xhr	object

getResponseHeader(key);

If	the	key	supplied	is	not	a	configured	header	among	those	possessed	by	the	response,
the	value	returned	will	be	that	of	null.	Much	like	getAllResponseHeaders,	being
able	to	analyze	the	meta-information	supplied	within	the	response	can	be	vital	in
coordinating	how	you	display,	update,	or	even	utilize	the	data	provided.

As	was	explained	earlier,	the	X	in	Ajax	represents	XML,	because,	at	the	time,	XML
was	the	only	data	type	outside	of	plain/text	able	to	be	parsed	by	the	xhr	object.	While
many	browsers	have	been	making	great	strides	to	offer	a	variety	of	natively	returned	data
types,	ranging	from	plain	text	to	JSON,	Internet	Explorer	8	and	9	continue	to	provide	us
only	with	the	original	two	flavors.	This	makes	for	a	particularly	strong	case	as	to	why	one
would	require	the	use	of	getResponseHeaders.	If	the	data	type	supplied	from	the
server	is	not	in	fact	XML,	with	the	use	of	the	getResponseHeaders	method,	one	is
able	to	obtain	the	correct	Content-Type	of	the	supplied	entity	body	and	correctly	parse	the
string	per	the	syntax	of	said	data	format,	as	demonstrated	in	Listing	8-18.

Listing	8-18.	HTTP	POST	to	exercise.php	with	Configured	Content-Type	and
Accept	Headers

	1	var	xhr	=	new	XMLHttpRequest();

	2	xhr.open("POST",	

"http://json.sandboxed.guru/chapter8/exercise.php");

	3	xhr.setRequestHeader("Content-Type",	"application/json");

	4	xhr.setRequestHeader("Accept",	"application/json");

	5	xhr.onreadystatechange	=	changeInState;

	6	xhr.send('{"fname":"ben","lname":"smith"}');

	7

	8	function	changeInState()	{

	9					var	data;

10					if	(this.readyState	===	4	&&	this.status	===	200)	{

11					var	mime	=	this.getResponseHeader("content-

type").toLowerCase();

12										if	(mime.indexOf('json')))	{

13															data	=	JSON.parse(this.responseText);

14										}	else	if	(mime.indexOf('xml')))	{

15															data	=	this.responseXML;

16										}

www.it-ebooks.info

http://json.sandboxed.guru/chapter8/exercise.php
http://www.it-ebooks.info/

17					}

18	}

Listing	8-18	leverages	our	earlier	exercise	to	help	demonstrate	the	benefit	of	the
getResponseHeader	method.	Thus	far,	I	have	not	discussed	what	data	type	the	earlier
exercise	returns	as	the	response	entity.	I	also	have	not	yet	discussed	any	of	the	properties
that	enable	you	to	read	the	obtained	request.	Unless	you	looked	at	the	headers	provided	by
the	response	via	the	developer	console,	you	may	not	have	known	whether	the	entity	body
returned	was	that	of	XML,	HTML,	plain	text,	or	JSON.	Odds	are	you	cleverly	deduced	it
was	JSON,	as	you	realized	the	context	of	this	book.	However,	the	point	is	that	you	may
not	have	known	for	certain.	Therefore,	rather	than	assuming,	it’s	best	to	account	for	the
varying	possibilities,	so	that	you	are	able	to	work	with	the	supplied	data	accordingly.

Listing	8-18	begins	with	the	initialization	of	our	xhr	object	and	supplies	it	with	the
necessary	HTTP-Method	and	request-URI	(line	2).	As	our	request	method	is	specified	as
POST	and	will	be	supplying	data	to	the	server,	we	continue	to	configure	the	Content-Type
of	the	provided	data	(line	3),	informing	the	server	how	to	parse	it	correctly.	As	this	book
concerns	working	with	JSON,	we	inform	the	server	that	our	application	accepts	the
Content-Type	of	application/json	(line	4).	In	order	to	monitor	the	state	of	the
request,	the	changeInState	function	is	assigned	as	the	callback	(line	5).	While	I	chose
to	make	use	of	the	onreadystatechange	to	monitor	the	state	of	the	request,	I	could
have	just	as	easily	used	the	onload	event	handler.	However,	as	the	event	handlers	are	only
available	in	Internet	Explorer	8,	I	wanted	to	demonstrate	how	to	achieve	the	results	of	the
onload	notification,	for	those	who	must	continue	to	work	with	older	browsers.

Last,	we	use	the	send	method	of	the	xhr	object	to	invoke	the	HTTP	request	and,	in
doing	so,	provide	it	with	the	necessary	JSON	data	to	POST	(line	6).

The	function	changeInState	(line	8)	supplied	as	the	callback	to	the
onreadystatechange	is	not	only	used	to	determine	the	change	in	state	but	also	the
Content-Type,	if	the	request	is	successful	(line	11).	If	you	relied	on	the	onload	event
handler,	you	would	not	have	to	determine	the	state,	as	the	event	suggests	it’s	done.
However,	because	the	onreadystatechange	is	triggered	each	time	the
readyState	property	of	the	xhr	object	is	updated,	it’s	imperative	to	query	the	status	of
the	request.

In	order	to	distinguish	among	the	five	various	states	of	the	xhr	object,	it	is	necessary
to	determine	the	value	of	the	readyState	property.	If	the	readyState	value	is	4,	we
know	the	current	state	of	the	xhr	object	is	DONE.	However,	in	order	to	determine	if	the
response	has	successfully	provided	us	with	an	entity	body,	the	status	code	is	also	analyzed
(line	10).	If	the	status	code	is	found	to	be	200,	which	signifies	that	a	response	is
successful,	we	can	begin	to	determine	how	to	parse	the	data	of	the	response.

We	begin	by	utilizing	the	getResponseHeader	to	obtain	the	lowercase	value	of
the	specified	Content-Type	for	the	response,	as	configured	by	the	server	(line	11).	Once
we	have	obtained	the	value,	we	determine	if	it	matches	the	JSON	MIME	type	(line	12)	or
that	of	XML	(line	14).	Depending	on	the	outcome	of	the	determined	type,	the	appropriate
value	is	assigned	to	the	data	variable.	If	the	Content-Type	is	found	to	be	that	of	XML,

www.it-ebooks.info

http://www.it-ebooks.info/

the	value	is	obtained	via	the	responseXML	property	of	the	xhr	object	(line	15).
However,	should	it	be	determined	that	the	response	has	been	provided	in	the	JSON	data
format,	we	must	obtain	the	raw	string	from	the	responseText	and	supply	it	to	the
native	JSON	Object	to	be	parsed	(line	13).	I	will	discuss	the	responseXML	and
responseText	properties	in	the	next	section.

overrideMimeType
The	overrideMimeType	method	enables	our	application	to	override	the	configured
Content-Type	of	the	response	body	when	obtained.	FireFox,	Chrome,	and	Safari	have
implemented	this	method,	which	was	added	in	the	XMLHttpRequest	Level	2	draft
standard.	However,	at	the	time	of	this	writing,	it	is	currently	unavailable	in	Internet
Explorer	11.

Obtaining	the	Response
The	variety	of	properties	of	the	xhr	object	listed	in	Table	8-11	provides	us	with	the
necessary	means	to	obtain	the	provided	response	of	the	HTTP	request.	It	will	be	with	the
help	of	these	attributes	that	we	will	come	full	circle	in	our	ability	to	initiate	a	request	and,
ultimately,	obtain	the	response	of	that	request.

Table	8-11.	The	Response	Properties	of	the	xhr	object

Properties Access	type Returned	Value

readyState Read Integer	(state)

status Read Integer	(HTTP	status	Code)

statusText Read string	(HTTP	status)

responseXML Read XML	(value)

responseText Read string	(value)

responseType Read/Write XMLHttpRequestResponseType	(object)

response Read *	(value)

readyState
The	readyState	property	of	the	xhr	object	exhibits	the	current	state	of	the	HTTP
request.	Throughout	the	asynchronous	process	of	the	HTTP	request,	the	readyState
attribute	will	be	updated	regularly	to	reflect	the	status	of	the	request.	The	values	for	which
it	can	be	assigned	are	the	integers	discussed	previously	in	Table	8-6.

	Note		As	the	states	reflected	are	rather	broad,	the	readyState	property	will	often	be
paired	with	other	properties,	such	as	the	status	or	statusText	properties,	in	order	to
arrive	at	the	necessary	outcome.

www.it-ebooks.info

http://www.it-ebooks.info/

status
The	status	property	of	the	xhr	object	supplies	an	application	with	the	ability	to	obtain
the	HTTP	status	code	of	the	response.	Currently,	there	are	five	classes	for	the	status	codes.
These	classes	are	those	outlined	earlier	in	the	chapter	in	Table	8-3.

Listing	8-18	relied	on	both	the	readyState	and	the	status	property	to	determine
if	the	load	had	completed	successfully.	As	shown	on	line	10,	if(this.readyState
===	4	&&	this.status	===	200),	we	determined	via	the	readyState	if	the
xhr	request	had	ended,	in	addition	to	determining	whether	the	status	of	the	response	is
that	of	200.	A	status	code	of	200	indicates	that	the	request	has	been	acknowledged.

statusText
statusText,	like	the	status,	is	yet	another	property	of	the	xhr	object	that	is
concerned	with	providing	us	the	appropriate	status	regarding	the	fulfillment	of	the
response.	Each	status	code	is	accompanied	by	a	textual	phrase	that	provides	additional
information	regarding	the	status.	Via	statusText,	the	description	that	accompanies	the
status	code	can	be	obtained	and	read	by	our	application.

Using	our	200	status	code	as	an	example,	it	is	accompanied	with	the	textual	phrase	OK.
This	is	very	helpful	when	obtaining	descriptive	issues	that	can	be	relayed	back	to	the	user,
or	even	a	developer,	during	the	course	of	debugging.

	Note		The	textual	phrase	that	accompanies	the	status	code	is	intended	more	for
debugging	than	for	controlling	the	flow	of	an	application.

responseXML
responseXML	is	the	attribute	of	the	xhr	object	that	enables	an	application	to	obtain	an
XML	response	provided	by	the	server.	As	the	data	supplied	within	the	response	will	not
always	be	configured	as	one	of	the	XML	Content-Types,	application/xml	or
text/xml,	the	responseXML	attribute	will	not	always	provide	a	value.	In	the	case	of	a
server	providing	a	response	with	the	Content-Type	that	is	not	indicative	of	XML,	a	value
of	null	will	be	returned	when	read	from	our	application.

It	should	be	made	known	that	responseXML	is	not	solely	for	an	XML	document.
Due	to	the	resemblance,	the	responseXML	attribute	can	also	be	used	to	retrieve	HTML
documents	identified	by	the	text/html	Content-Type.

responseText
responseText	is	a	property	of	the	xhr	object	that	provides	our	applications	with	the
ability	to	obtain	the	raw	text	of	the	entity	body,	as	provided	by	the	response.	While
responseXML	may	often	possess	a	value	of	null,	responseText	will	always
possess	a	value.

Because	the	responseText	attribute	provides	our	application	with	the	raw	entity

www.it-ebooks.info

http://www.it-ebooks.info/

body	received	as	a	string,	we	must	obtain	the	value	of	the	Content-Type	header.	The
configured	Content-Type	header	will	give	us	insight	as	to	the	syntax	required	for	parsing
the	string.	Once	this	is	obtained,	we	can	parse	the	string	into	the	intended	format,	as
demonstrated	on	line	13	of	Listing	8-18.

responseType
The	responseType	property	of	the	xhr	object	is	concerned	with	the	parsing	of	data
types	natively,	beyond	that	of	mere	XML.	As	has	been	previously	stated,	the	xhr	object
has	the	ability	to	parse	a	response	as	XML	data.	However,	as	XML	is	not	today’s	data
interchange	standard,	and	has	not	been	for	quite	some	time,	much	of	the	parsing	that
occurs	is	forced	to	take	place	on	the	client	side.	Unfortunately,	this	puts	the	onus	on	the
application	to	parse	a	string.	Essentially,	this	increases	the	odds	of	blocking	the	single
thread	of	the	JavaScript	engine.	By	allowing	the	browser	to	parse	the	request,	the
JavaScript	thread	is	less	likely	to	become	blocked.

The	responseType	property	has	been	added	to	the	XMLHttpRequest	Level	2	draft
standard	in	an	attempt	to	offload	the	parsing	from	the	client	side	for	five	particular
Content-Types.	These	are	the	following:	arraybuffer,	blob,	document,	text,	and
json.	This	is	great	news	for	JSON	because,	as	you	may	recall,	JSON.parse	is	a
blocking	method.	In	order	to	offload	the	parsing	of	our	response	entity	to	the	process
handling	the	request,	we	must	configure	the	responseType	before	we	invoke	the	send
method.	Any	one	of	five	aforementioned	data	types	can	be	assigned	as	the	value	for	the
responseType	attribute.

By	configuring	our	request	with	a	responseType	attribute,	we	are	able	to	inform
the	xhr	process	to	parse	the	entity	body	against	the	indicated	syntax.	In	Listing	8-19,	I’ve
indicated	that	the	syntax	is	that	of	JSON.

Listing	8-19.	HTTP	Request	Configured	to	Parse	JSON

1	var	xhr	=	new	XMLHttpRequest();

2	xhr.open("POST",	

"http://json.sandboxed.guru/chapter8/exercise.php");

3	xhr.setRequestHeader("Content-Type",	"application/json");

4	xhr.setRequestHeader("Accept",	"application/json");

5	xhr.onreadystatechange	=	changeInState;

6	xhr.responseType	=	"json";

7	xhr.send('{"fname":"ben","lname":"smith"}');

response
The	response	property	of	the	xhr	object,	like	responseXML	and	responseText,
provides	our	application	with	a	way	to	obtain	the	entity	body	of	the	fulfilled	request.
However,	the	major	difference	is	that	the	value	read	will	be	parsed,	that	is,	if	we	have
configured	the	HTTP	request	with	responseType.	Otherwise,	the	value	returned	is	an
empty	string.

Listing	8-20	revisits	the	previous	listing	and	configures	the	request	to	utilize	the

www.it-ebooks.info

http://json.sandboxed.guru/chapter8/exercise.php
http://www.it-ebooks.info/

responseType	of	JSON	(line	6).	As	the	parsing	will	now	occur	within	a	separate
process	from	our	application,	we	no	longer	need	to	parse	the	JSON	ourselves.	Therefore,
we	can	replace	line	14	with	that	of	the	response	attribute,	which	should	now	hold	a
JavaScript	object.

Listing	8-20.	HTTP	Request	Obtaining	the	Parsed	JSON	from	the	xhr	Response	Property

	1	var	xhr	=	new	XMLHttpRequest();

	2					xhr.open("POST",	

"http://json.sandboxed.guru/chapter8/exercise.php");

	3					xhr.setRequestHeader("Content-Type",	

"application/json");

	4					xhr.setRequestHeader("Accept",	"application/json");

	5					xhr.onreadystatechange	=	changeInState;

	6					xhr.responseType	=	"json";

	7					xhr.send('{"fname":"ben","lname":"smith"}');

	8

	9	function	changeInState()	{

10				var	data;

11					if	(this.readyState	===	4	&&	this.status	===	200)	{

12					var	mime	=	this.getResponseHeader("content-

type").toLowerCase();

13										if	(mime.indexOf('json')))	{

14															data	=	this.response;

15										}	else	if	(mime.indexOf('xml')))	{

16															data	=	this.responseXML;

17										}

18					}

19	}

While	the	responseType	and	response	properties	have	been	implemented	in
most	browsers,	Internet	Explorer	continues	to	remain	behind	the	times.	XMLHttpRequest
Level	2	methods	and	attributes	are	only	available	in	IE	10	or	greater.

The	preceding	examples	relied	on	the	provision	of	dynamic	data	from	a	database	on
my	server.	However,	Ajax	does	not	necessarily	have	to	work	with	dynamic	data.	In	fact,
Ajax	is	fantastic	at	loading	static	files	as	well.	Listing	8-21	exposes	the	content	body	of	a
file	labeled	images.json,	which	reveals	the	following	JSON	within.

Listing	8-21.	JSON	Content	Within	/data/imagesA.json

{

				"images":	[

																{

																				"title":	"Image	One",

																				"url":	"img/AndroidDevelopment.jpg"

																},	{

																				"title":	"Image	Two",

www.it-ebooks.info

http://www.it-ebooks.info/

																				"url":	"img/php.jpg"

																},	{

																				"title":	"Image	Three",

																				"url":	"img/Rails.jpg"

																},	{

																				"title":	"Image	Three",

																				"url":	"img/Android.jpg"

																}

]

}

Listing	8-21	reveals	an	object	that	possesses	a	singular	member	labeled	“images”.
Images,	as	a	key,	reference	the	value	of	an	ordered	list,	where	each	index	of	said	ordered
list	references	an	object.	These	objects	represent	the	necessary	details	pertaining	to	various
images	that	will	be	added	dynamically	to	our	page.	The	key	url	reflects	the	location	from
which	the	image	is	supplied,	while	the	title	is	used	to	populate	the	alt	tag	of	the
dynamically	inserted	image.	Listing	8-22	reveleals	the	code	that	will	load,	parse	and	insert
data/imagesA.json	into	an	HTML	document.

Listing	8-22.	The	Body	of	an	HTML	File	That	Utilizes	Ajax	to	Load	the	JSON	Document
data/imagesA.json

	1	<body>

	2	<input	type="submit"	value="load	

images"		onclick="loadImages('data/imagesA.json')"/>

	3			<script>

	4				function	loadImages(url)	{

	5								var	body	=	document.getElementsByTagName("body")

[0];

	6								var	xhr	=	(window.XDomainRequest)	?	new	

XDomainRequest()	:	new	XMLHttpRequest();

	7												xhr.open("GET",	url);

	8												xhr.onload	=	function()	{

	9														var	data	=	JSON.parse(this.responseText);

10														var	list	=	data.images;

11														for	(var	i	=	0;	i	<	list.length;	i++)	{

12																		var	image	=	list[i];

13																		var	listItem	

=	document.createElement("li");

14																		var	img	=	document.createElement("img");

15																						img.src	=	image.url;

16																						img.alt	=	image.title;

17																		listItem.appendChild(img);

18																		body.appendChild(listItem);

19														}

20												};

21												xhr.onerror	=	function()	{

www.it-ebooks.info

http://www.it-ebooks.info/

22															alert(this.status		+	"	"	

+	this.statusText);

23												};

24								xhr.send();

25				};

26				</script>

27	</body>

Listing	8-22	demonstrates	the	use	of	Ajax	to	load	the	static	file	from	Listing	8-21,
populating	a	variety	of	images	within	the	page.	The	document	reveals	nothing	but	a
submit	button	within	the	page	(line	2).	This	button,	when	clicked,	will	trigger	the
JavaScript	code	that	will	both	load	the	image.json	file	and	dynamically	insert	each
found	image	into	the	body	of	our	page.	This	will	allow	users	to	load	our	image	set	at	a
time	of	their	choosing,	rather	than	adding	to	the	initial	file	size	of	the	web	page.	When	the
button	is	clicked,	the	function	loadImages	(line	4)	initiates	the	HTTP	request.	Because
only	modern	browses	and	later	versions	of	Internet	Explorer	possess	the
XMLHttpRequest	object,	we	must	first	determine	what	object	must	be	instantiated,	to
make	the	proper	request.	We	do	so	by	determining	whether	the	window	object	possesses
the	XDomainRequest	object	(line	6).	If	the	XDomainRequest	object	is	available,	we
use	our	tertiary	operator	as	a	condensed	if/else	block,	to	instantiate	an
XDomainRequest	instance.	If,	however,	the	evaluation	to	determine	whether	the
XDomainRequest	is	available	fails,	our	code	will	instantiate	the	more	modern
XMLHttpRequest.	Once	our	xhr	object	is	instantiated,	we	configure	it	with	the
appropriate	request	method	and	URL	(line	7).

Because	we	are	working	with	static	content,	rather	than	making	a	POST	request,	we
will	rely	on	the	GET	HTTP-Method	to	obtain	the	provided	URI.	Using	the	onload	and
onerror	event	handlers	of	the	xhr	object,	we	will	monitor	the	state	of	the	request.	If	the
request	is	successful,	the	onload	event	handler	will	initiate	the	body	of	code	that	will
obtain	the	request	body	from	responseText.	Knowing	that	the	content	provided	within
is	JSON,	we	will	obtain	the	plain/text	from	responsetText	and	parse	it	utilizing	the
JSON	Object	(line	9).	Once	we	obtain	our	data	tree,	we	can	reference	the	ordered	list	of
images	via	the	images	key	(line	10).	From	there,	using	a	for	loop,	we	iterate	over	each
and	every	index	possessed	by	our	ordered	list	(line	11).	By	regarding	each	image	object
individually,	we	can	obtain	the	values	held	within	to	construct	the	necessary	markup	that
will	be	used	to	present	our	images.

In	order	to	have	our	images	display	as	a	vertical	list,	we	create	a	list	item	for	each
image.	By	using	the	document.createElement	method,	we	are	able	to	create
HTML	elements	simply	by	providing	the	method	with	a	string	representing	the	tag	we
wish	to	create.	In	this	case,	as	we	wish	to	create	a	list	item,	we	supply	the
document.createElement	method	with	the	string	li	and	retrain	the	reference	to
the	HTMLobject	returned	(line	13);	Next	we	create	another	HTMLobject	(line	14),
only	this	time	it	will	be	an	element	that	represents	the	img	tag.	Using	the	reference	to	the
image,	we	supply	its	attributes	src	and	alt	with	the	details	that	were	extracted	from	the
image	objects	(line	15		and	line	16).	Next,	we	use	the	appendChild	method	to	append
the	image	as	a	child	of	our	list	item	(line	17).	Additionally,	we	add	the	list	item	as	a	child

www.it-ebooks.info

http://www.it-ebooks.info/

of	the	body	of	the	page,	so	that	it	will	be	visible	to	the	document	(line	18).	This	process	is
repeated	until	all	images	have	been	account	for.

If	the	request	fails,	our	application	will	alert	us	to	the	status	code	and	the	status
description	of	the	failure	(line	22).	Last,	we	invoke	the	request	to	begin	by	calling	the
send	method	on	the	instantiated	xhr	object	(line	24).	The	preceding	code	should	result
as	shown	in	Figure	8-4.

Figure	8-4.	Use	of	Ajax	to	load	and	display	images

It	should	be	mentioned	that	the	object	that	enables	HTTP	requests	are	strictly	for
making	requests	from	a	web	server.	Therefore,	attempting	to	load	files	via	Ajax	locally
will	not	work,	unless	they	are	run	from	a	web	server.	Many	web	editors,	such	as
WebStorm,	Aptana,	and	VisualStudio,	will	run	your	local	code	within	a	temporary	server,
in	which	case,	you	would	have	no	trouble	following	along	with	the	provided	source	code.

Despite	earlier	discussions	surrounding	Content-Type	and	how	the	server	should
always	configure	it,	you	may	have	recognized	that	we	did	not	have	to	configure	the
Content-Type,	even	though	we	were	being	provided	JSON.	Yet,	if	by	some	chance	you
were	to	have	inspected	the	response	header	of	Listing	8-22	with	the	developer	console,
you	would	have	witnessed	that	the	Content-Type	of	the	response	read
“application/json,”	as	indicated	in	Figure	8-5.

www.it-ebooks.info

http://www.it-ebooks.info/

Figure	8-5.	The	response	header	for	imagesA.json	exhibits	the	configured	Content-Type	as	application/json

As	was	mentioned	in	the	history	of	JSON	in	Chapter	4,	Douglas	Crockford’s
formalization	of	JSON	included	the	registered	Internet	media	type
application/json,	in	addition	to	the	file	extension	.json.	While	a	file	extension
doesn’t	explicitly	define	the	encoding	of	the	content	contained	within,	servers	are	able	to
infer	Content-Types	for	commonly	recognized	file	extensions.	As	JSON	is	the	preferred
interchange	format,	it	should	come	as	no	surprise	that	most	servers	can	equate	the	.json
extension	with	the	Content-Type	of	application/json.	Therefore,	the	response	is
configured	with	the	inferred	Content-Type:	application/json.

EXERCISE	8-2.	LOAD	MORE	IMAGES

If	you	haven’t	done	so	already,	click	the	“load	images”	button	from	the	previous
listing	two	more	times	and	take	note	of	what’s	occurring.	With	each	click,	a	new	xhr
object	is	instantiated,	initiating	a	new	HTTP	request.	Providing	the	request	is	being
fulfilled,	the	page	should	now	display	duplicates	of	the	images	loaded.	As	it	serves
little	use	to	display	duplicate	content,	rewrite	the	code	from	Listing	8-22,	so	that	each
subsequent	request	will	load	a	new	JSON	file	containing	no	more	than	four	different
images.

You	will	find	more	images	within	the	img	folder	that	accompanies	the	source	code
for	this	chapter.	(You	can	find	the	code	samples	for	this	chapter	in	the	Source
Code/Download	area	of	the	Apress	web	site	[www.apress.com]).	Reference	these
images	within	two	more	static	JSON	documents	to	be	loaded	in	and	displayed	via
Ajax.	Feel	free	to	duplicate	the	images.json	file	located	within	the	data	folder
and	simply	replace	the	titles	and	URLs.	Or,	you	can	devise	the	JSON	with	the
assistance	of	one	of	the	editors	discussed	in	Chapter	4.

Summary
This	chapter	covered	the	essentials	of	the	Hypertext	Transfer	Protocol	(HTTP),	which	is
necessary	to	comprehend	when	working	with	the	interchange	of	data.	By	applying	this
knowledge,	combined	with	the	built-in	objects	that	enable	HTTP	requests	via	JavaScript,
we	have	been	able	to	send,	as	well	as	receive,	JSON	in	the	background	of	our	applications.
Furthermore,	using	the	techniques	that	make	up	Ajax,	we	were	able	to	incorporate	data
without	the	need	for	full-page	refreshes.

Ajax	has	surely	broadened	the	scope	of	possibility	for	modern-day	front-end

www.it-ebooks.info

http://www.apress.com
http://www.it-ebooks.info/

development.	Conversely,	its	popularity	has	also	resulted	in	an	increase	of	security
concerns.	As	browsers	continue	to	improve	measures	to	thwart	malicious	behavior,	the
ease	of	data	interchange	across	origins	has	often	been	a	difficult	task	to	circumvent.	In	the
upcoming	chapters,	you	will	not	only	learn	how	to	overcome	these	issues	from	a	server-
side	implementation,	you	will	also	set	up	a	local	server,	so	that	you	can	employ	these
techniques.

Key	Points	from	This	Chapter
A	request/response	possesses	three	components.

A	request	is	initiated	by	a	client.

A	response	can	only	be	provided	from	a	web	server.

The	GET	method	is	a	safe	method.

The	POST	method	is	an	unsafe	method.

The	request	URI	identifies	the	resource	that	the	request	method
applies.

The	current	HTTP	version	is	1.1.

General	headers	pertain	to	general	information.

Request	headers	communicate	preferential	information.

Entity	headers	supply	informative	information	regarding	the	supplied
entity	body.

General	headers	and	entity	headers	can	be	configured	by	both	client
and	server.

Response	status	codes	are	used	to	indicate	the	status	of	the	request.

The	Content-Type	header	regards	the	MIME	type	of	an	entity.

The	Accept	header	is	used	to	inform	the	server	of	the	data	types	it	can
work	with.

The	XMLHttpRequest	Object	enables	HTTP	requests	from
JavaScript.

The	XMLHttpRequest	Object	is	available	in	all	modern	browsers
as	well	as	IE	8.

XMLHttpRequest	cannot	be	used	for	cross-origin	requests	in	IE
8/9.

XDomainRequest	can	be	used	for	cross-origin	requests	in	IE	8/9.

XDomainRequest	lacks	the	setRequestHeader	method.

XMLHttpRequest	and	XDomainRequest	expose	event	handlers
to	notify	of	state.

www.it-ebooks.info

http://www.it-ebooks.info/

The	.json	extension	is	recognized	by	servers	and	will	default	the
Content-Type	to	application/json.

Custom	headers	begin	with	an	X.

Status	code	200	represents	a	successful	request.

Prior	to	IE	10,	XMLHttpRequest	could	only	parse	XML/HTML
documents.

1MDN:	Mozilla	Developer	Network,	“HTML	in	XMLHttpRequest,”	https://developer.mozilla.org/en-
US/docs/Web/API/XMLHttpRequest/HTML_in_XMLHttpRequest,	May	26,	2014.

2World	Wide	Consortium	(W3C),	“XMLHttpRequest,”	www.w3.org/TR/2012/WD-XMLHttpRequest-
20121206/#introduction,	December	6,	2012.

3A.	van	Kesteren	et	al.,	“XMLHttpRequest,”	dvcs.w3.org/hg/xhr/raw-file/tip/Overview.html,	May
2014.

www.it-ebooks.info

https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest/HTML_in_XMLHttpRequest
http://www.w3.org/TR/2012/WD-XMLHttpRequest-20121206/#introduction
http://www.it-ebooks.info/

CHAPTER	9

X-Origin	Resources
The	browser’s	inclusion	of	the	XMLHttpRequest	object	offers	front-end	developers	a
means	of	interchanging	data	simply,	with	the	use	of	JavaScript.	Prior	to	Ajax	becoming	a
highly	recognized	term,	the	exchange	of	data	was	primarily	made	possible	through	a	series
of	full-page	requests.	Only	through	front-end	hacks	could	data	appear	to	be	loaded-in
dynamically.	Therefore,	when	it	became	possible	to	make	HTTP	requests	from	within
JavaScript,	it	instantly	became	a	hot	topic.

Such	a	prevalence	of	network	access	has	much	cause	for	concern,	however.	As	Ajax
became	regular	practice,	web	sites	were	becoming	more	and	more	exposed	to	the	possible
injection	of	malicious	code.	Needless	to	say,	this	is	a	serious	matter	for	sites	transmitting
data,	let	alone	sensitive	data	such	as	credit	cards,	bank	accounts,	or	even	personally
identifiable	information.	In	order	to	reduce	web	sites’	being	exposed	to	malicious	requests,
the	XMLHttpRequest	restricts	network	access	only	to	resources	that	can	be	considered
trusted.	However,	therein	lies	part	of	the	problem:	How	do	you	define	what	resources	are
considered	trustworthy?

The	policy	that	prevents	data	from	being	usable	from	varying	origins	is	the	same-
origin	policy	(or	SOP).	This	chapter	will	discuss	the	impact	of	the	SOP	when	regarding
the	interchange	of	resources	between	two	varying	origins.	Additionally	within	this
chapter,	I	will	discuss	the	techniques	that	can	be	used	to	combat	said	limitations.

Same-Origin	Policy
The	same-origin	policy	(SOP)	has	been	in	effect	since	the	introduction	of	JavaScript	and
continues	to	remain	an	important	aspect	of	web	security.	The	SOP	is	the	security	model
commonly	adhered	to	by	all	user-agents.	While	the	policy	has	been	revisited	many	times
since	its	genesis	(largely	in	an	ad	hoc	fashion),	today,	the	SOP	governs	a	variety	of	front-
end	securities,	such	as	matters	surrounding	DOM	access,	cookies,	Web	Storage,	and
network	access.	The	SOP	even	applies	to	web	plug-ins,	such	as	Flash,	Java,	and
Silverlight.	While	the	latter	list	is	not	complete,	it’s	certainly	more	than	enough	to
demonstrate	how	the	SOP	can	be	a	major	obstacle	for	modern-day	web	development.

In	the	previous	chapter,	I	presented	you	with	an	exercise	that	required	the	use	of	an
HTTP	request	that	would	POST	data	to	the	specified	resource	exercise.php,	residing
at	the	address	http://json.sandboxed.guru/chapter8/.	Upon	a	successful
reception	of	the	request,	the	server	would	respond	in	kind	with	an	entity	body,	which
could	be	used	by	any	application.	However,	you	may	recall	that	I	mentioned	that	this	is
behavior	not	typically	allowed	by	the	user-agent.	In	that	particular	example,	I	employed	a
technique	for	that	particular	resource	that	enables	an	Ajax	request	to	be	successful.

www.it-ebooks.info

http://json.sandboxed.guru/chapter8/
http://www.it-ebooks.info/

Ordinarily,	the	user-agent	wouldn’t	allow	the	request	to	succeed,	as	the	origin	from	which
your	request	initiated	did	not	reflect	the	same	origin	as	the	resource.

Generally	speaking,	the	SOP	restricts	which	network	messages	one	origin	can	send	to
another.	The	purpose	of	this	policy	is	to	prevent	a	resource	such	as	a	JavaScript
application	from	origin-A	from	obtaining	the	resources	provided	by	origin-B,	as	the	intent
may	be	malicious.	This	policy	is,	of	course,	enforced	by	the	user-agents	that	are	being
used	to	make	such	network	requests.

	Note		Due	to	legacy	purposes,	SOP	policies	vary	to	the	degree	by	which	they	are
enforced	between	the	various	web	technologies.

At	this	point	in	time,	I’d	like	for	you	to	attempt	to	load	another	static	file	from	my
server.	Only	this	time,	I	have	not	employed	the	same	techniques	as	the	exercise	in	Chapter
8.

EXERCISE	9-1.	XHR	AND	SOP

Open	your	preferred	browser	and	navigate	to	http://sandboxed.guru/xss-
exercise.html.	Next,	open	the	developer	tools	provided	by	your	browser	and
ensure	that	the	console	tab	is	in	view.	Using	the	free-form	field	within	the	console,
construct	an	HTTP	request	that	makes	use	of	the	GET	method	to	enact	on	the
following	resource:
http://json.sandboxed.guru/chapter9/data/images.json.

Be	sure	to	use	the	log	method	of	the	console,	console.log(string);,	to
print	to	the	console	the	raw	text	of	the	response	(responseText),	in	order	to
witness	the	returned	data	once	the	load	is	complete.	Last,	be	sure	to	log	out	an	error
message	if	the	onerror	event	handler	is	dispatched,	should	anything	go	wrong	with
our	request.

If	you	are	using	Internet	Explorer	8	or	9,	it	will	be	essential	to	instantiate	the
XDomainRequest	over	the	XMLHttpRequest	object,	as	we	will	be	making	a
cross-origin	request.	A	convenient	way	of	determining	whether	your	script	must
instantiate	the	XDomainRequest	object	over	the	XMLHttpRequest	object	for
cross-origin	requests	is	to	test	whether	the	browser	executing	the	request	possesses	a
particular	attribute	that	belongs	to	the	XMLHttpRequest	Level	2	interface.	This
attribute	is	particular	to	cross-origin	requests	and	exists	in	modern	browsers	as	well
as	Internet	Explorer	10	and	up.	The	attribute	is	the	withCredentials	attribute.
Utilizing	the	JavaScript	in	operator,	we	can	test	whether	or	not	the
withCredentials	attribute	exists	on	an	XMLHttpRequest	instance.	If	the
attribute	does	not	exist,	we	must	instantiate	an	XDomainRequest	instance.	This
technique	eases	our	efforts	to	determine	if	the	browser	should	rely	on
XDomainRequest,	or	not,	for	these	types	of	requests.	If	you	were	to	incorporate
this	conditional	logic	along	with	the	necessary	code	required	by	the	exercise,	your
code	should	resemble	that	of	Listing	9-1.

Listing	9-1.	Determining	Whether	to	Use	the	XDomainRequest	or	the

www.it-ebooks.info

http://sandboxed.guru/xss-exercise.html
http://json.sandboxed.guru/chapter9/data/images.json
http://www.it-ebooks.info/

XMLHttpRequest	Level	2	Interface	for	a	Cross-Origin	Request

	1	var	xhr=	new	XMLHttpRequest();

	2				if(!"withCredentials"	in	xhr){

	3					xhr=	new	XDomainRequest();

	4				}

	5					

xhr.open("GET","http://json.sandboxed.guru/chapter9/data/images.json");

	6					xhr.onload=function(){

	7								console.log(this.responseText);

	8					};

	9					xhr.onerror=function(){

10									console.error("Error	Occurred");

11					}

12					xhr.send();

Listing	9-1	begins	by	creating	an	instance	of	the	XMLHttpRequest	and	assigns	the
instance	as	the	reference	to	a	variable	labeled	xhr	(line	1).	Utilizing	the	in	operator,
along	with	the	instance	held	by	xhr,	we	can	determine	if	the	withCredentials
attribute	is	exposed	by	the	object	(line	2).	If	the	value	returned	by	the	expression	is
false,	the	instance	is	incapable	of	fulfilling	cross-origin	requests;	therefore,	we
replace	the	existing	xhr	reference	with	an	instance	of	the	XDomainRequest	(line
3).

Once	you	have	coded	the	request	within	the	console	of	the	developer’s	tools,	such	as
in	Figure	9-1,	execute	the	code	and	observe	the	result.

Figure	9-1.	Cross-origin	request	being	made	to	json.sandboxed.guru	from	sandboxed.guru

Next	navigate	your	browser	to
http://json.sandboxed.guru/chapter9/xss-exercise.html;	run
the	preceding	code	once	more;	and	observe	the	results.

www.it-ebooks.info

http://www.it-ebooks.info/

If	you	followed	along	with	the	exercise,	you	should	have	witnessed	the	alert	box
containing	the	raw	JSON	data	during	the	execution	of	the	latter	request,	as	seen	in	Figure
9-2.	However,	while	executing	the	same	request	from	the	initial	origin,
sandboxed.guru,	the	alert	box	was	not	presented.	Instead,	messaging	was	output	to
the	console,	alerting	us	to	the	fact	that	the	request	cannot	occur	(see	Figure	9-3).

Figure	9-2.	Same-origin	request	being	made	to	json.sandboxed.guru	from	json.sandboxed.guru,	resulting
in	response

Figure	9-3.	Chrome	developer	tools	indicating	that	the	request	is	not	allowed	access

As	shown	in	Figure	9-3,	Chrome’s	developer	console	reveals	the	following	error
messaging:

XMLHttpRequest	 cannot	 load
http://json.sandboxed.guru/chapter9/data/images.json.	 No	 'Access-Control-

www.it-ebooks.info

http://www.it-ebooks.info/

Allow-Origin'	 header	 is	 present	 on	 the	 requested	 resource.	 Origin
'http://sandboxed.guru'	is	therefore	not	allowed	access.

From	the	preceding	message,	we	can	ascertain	that	the	request	cannot	be	completed,
because	the	response	for	the	resource	exercise.php	is	not	configured	to	possess	the
Access-Control-Allow-Origin	header.	Depending	on	the	browser	used	to	make	the	request,
you	will	most	assuredly	receive	a	different	message.	For	example,	Firefox,	as	shown	in
Figure	9-4,	sends	the	following	error	messaging:

Cross-Origin	Request	Blocked:	The	Same	Origin	Policy	disallows	 reading	 the
remote	 resource	 at
http://json.sandboxed.guru/chapter9/data/images.json.
This	can	be	fixed	by	moving	the	resource	to	the	same	domain	or	enabling	CORS.

Figure	9-4.	Firefox	alert	stating	that	the	request	is	not	allowed	access

Unfortunately,	Internet	Explorer’s	implementation	of	the	XDomainRequest	will	not
alert	us	to	any	error	messaging,	other	than	the	one	provided	by	us	to	be	output	upon	a
possible	dispatch	of	the	onerror	notification.	On	the	other	hand,	if	you	were	using
Internet	Explorer	10	or	greater,	as	those	versions	implement	a	vast	majority	of	the
XMLHttpRequest	Level	2	standardization,	they	would	inform	you	of	the	failed	incident.
Furthermore,	the	error	message	reveals	that	incorporating	Cross-Origin	Resource	Sharing
(CORS),	similar	to	Chrome	and	Firefox,	can	resolve	the	problem.	Before	I	begin	to
discuss	CORS,	I	will	continue	to	discuss	our	findings	further.

Depending	on	the	browser	you	are	using	to	make	the	request,	you	may	not	witness	any
HTTP	response	headers	from	within	the	network	panel	of	the	developer	console.	This,
unfortunately,	might	lead	you	to	believe	that	the	request	is	prevented	from	even	taking
place.	While	the	response	may	not	appear	in	the	network	tab	of	the	developer	toolbar,	I
can	assure	you	that	the	request	has,	in	fact,	been	submitted	to	the	requested	resource.
However,	being	that	the	request	is	not	considered	trusted	or	authorized,	the	user-agent
shields	us	from	being	able	to	witness	a	response	from	the	server.

www.it-ebooks.info

http://sandboxed.guru
http://json.sandboxed.guru/chapter9/data/images.json
http://www.it-ebooks.info/

If	you	were	to	make	the	same	request	with	the	popular	Firebug	add-on	for	Firefox,	you
would	continue	to	receive	the	same	error	message	as	with	the	other	browsers.	Yet,	upon
navigating	to	the	network	panel,	you	would	be	able	to	see	a	series	of	response	headers	for
the	request.	Furthermore,	the	Content-Length	entity	header,	as	configured	by	the	response,
suggests	there	is	an	entity	body	of	precisely	270	bytes,	and	that	the	MIME	type	of	the
data,	as	configured	by	the	Content-Type	header,	is	that	of	application/json.	Last,
the	status	line	reveals	that	the	request	was	understood	as	it	is	configured,	with	the	status
code	200	and	the	text	phrase	of	OK	(see	Figure	9-5).	These	aspects	should	demonstrate
unquestionably	that	the	request	is	being	received.	However,	if	you	were	to	view	the
Response	tab	from	within	the	navigation	view,	you	will	find	the	data	to	be	missing.

Figure	9-5.	Firebug	developer	tool	revealing	the	response	status	line	as	successful

Based	on	the	outcome	of	the	earlier	exercise,	it	should	be	evident	that	resources	are
limited	in	their	ability	to	be	requested	from	varying	origins,	regardless	of	whether	the	two
origins	involved	are	owned	by	the	same	individual.	It	should	be	evident	that	a	domain	and
its	subdomain	are	not	considered	trusted	by	default	and,	therefore,	cannot	make	resource
requests	of	one	another.	Resource	requests	are	inherently	trusted	only	from	resources	that
have	the	same	origin.	This	is	why	the	subsequent	request	of	our	exercise	alerted	us	to
JSON	data,	while	the	former	attempt	did	not.

In	short,	the	following	resource
http://json.sandboxed.guru/chapter9/data/images.json	is	available
only	to	another	resource	that	has	the	same	origin,	i.e.,
http://json.sandboxed.guru.	While	these	two	URLs	are	considered	to	have	the
same	origin,	it	is	for	reasons	that	may	not	be	as	obvious	as	you	might	think.	Origins	aren’t
considered	to	be	of	the	same	origin	solely	because	they	possess	the	same	hostname.
Specifically,	a	resource	is	considered	authorized	to	obtain/retrieve	content	from	another
resource	only	if	the	two	resources	possess	the	exact	same	scheme,	domain,	and	port.

I	hope	that	Listing	9-2	looks	familiar,	as	this	is	the	general	schema	for	a	web	URL.	If

www.it-ebooks.info

http://json.sandboxed.guru/chapter9/data/images.json
http://json.sandboxed.guru
http://www.it-ebooks.info/

you	are	thrown	by	the	:port/	component,	that	is	okay,	as	it’s	not	always	required	to
incorporate	the	port	into	a	URL.	However,	that	does	not	detract	from	the	fact	that	it’s
always	accounted	for	behind	the	scenes.
Listing	9-2.	Syntax	of	an	HTTP	URL

scheme://domain:port/path/?key=value

Scheme:	The	scheme,	sometimes	referred	to	as	the	protocol,	defines
how	an	indicated	resource	will	be	obtained.	There	are	a	variety	of
protocols	that	can	be	specified,	such	as	ftp,	http,	and	even	https.
Typically,	the	scheme	that	is	used	when	viewing	web	sites	will	be
that	of	http.	However,	it	can	also	be	that	of	https,	where	the	s	means
that	the	transmission	occurs	securely.	This	is	commonly	used	when
you	log	in	to	a	site	such	as	a	bank	or	web	mail.

Domain:	As	you	may	have	guessed,	the	domain	is	the	human-
friendly	means	of	referring	to	a	specific	destination.	However,	this
domain	name	itself	is	actually	converted	behind	the	scenes	to	a
static	IP	address.

Port:	The	port	number	is	an	optional	endpoint	that	can	be	used	to
specify	a	specific	application	running	on	a	common	IP	address.
When	a	port	is	not	defined,	it	falls	back	to	the	default	port	for	the
supplied	scheme.	In	the	case	of	an	HTTP	scheme	the	default	port	is
80.	In	the	case	of	HTTPS,	the	default	port	is	443.

These	three	distinct	aspects	of	the	HTTP-URL	scheme	are	used	by	the	user-agent	to
determine	whether	it	must	enforce	the	SOP.	Table	9-1	demonstrates	which	requests	will	be
considered	authorized	and	which	won’t.

Table	9-1.	The	Same-Origin	Policy	in	Effect,	Demonstrating	Whether	a	Source	Origin	Is
Authorized	to	a	Request

To	further	prevent	any	script	from	forging	the	request,	certain	headers	are	unable	to	be
defined	via	the	setRequestHeader	method	of	the	XMLHttpRequest	object.
Instead,	they	are	explicitly	defined	by	the	user-agent.	Any	attempt	to	provide	a	value	for
these	headers	via	the	setRequestHeader	will	be	overridden	by	the	user-agent.	These
headers	are	the	following:

Host

www.it-ebooks.info

http://www.it-ebooks.info/

Origin

Referer

Via

The	requests	made	by	browsers	work	on	our	behalf,	hence	the	term	user-agent.1	It	is
they	who	enforce	the	SOP,	to	ensure	that	our	daily	Internet	interactions	remain	as	safe	as
possible.	The	SOP	is	an	extremely	important	concept	to	understand,	which	is	why	this
chapter	is	important	to	a	subject	that	looks	to	network	access	to	exchange	JSON	data.	The
fact	that	the	user-agent	acts	on	our	behalf	is	an	important	concept	for	a	front-end
developer	to	grasp.	The	reason,	as	you	will	soon	see,	is	because	the	power	to	bypass	the
limitations	of	the	SOP	lies	on	the	back-end	side	of	programming,	rather	than	the	front	end.
Unfortunately,	not	all	back-end	developers	are	aware	of	these	SOP	requirements,	simply
because	server-side	programing	does	not	involve	a	user-agent	that	governs	HTTP	requests.
To	put	it	plainly,	they	don’t	have	to	deal	with	these	issues.	As	the	adage	goes	“there’s
more	than	one	way	to	skin	a	cat,”	and	there	is	an	exuberant	amount	of	server-side
languages.	In	this	chapter,	all	back-end	programming	will	be	demonstrated	with	the	use	of
the	highly	popular	PHP	language.	However,	the	programming	language	could	just	as
easily	be	Java,	.NET,	etc.

If	you	are	a	Chrome	user,	such	as	myself,	there	is	a	fantastic	HTTP	request	plug-in	that
I	use	to	conveniently	test	web	services.	This	plug-in	is	known	as	Postman	and	can	be
obtained	from	the	browser	via	the	extensions	URL
https://chrome.google.com/webstore/search/postman%20rest%20client

Alternatively,	the	browser	extension	can	be	obtained	from	the	developer’s	web	site:
www.getpostman.com/.	Once	the	extension	is	installed,	navigate	to	the	following
URL:	chrome://apps/,	within	your	Chrome	browser,	and	launch	Postman	by	clicking
the	visible	shortcut.	Upon	launch	of	the	application,	you	should	witness	an	interface	that	is
not	unlike	that	shown	in	Figure	9-6.

www.it-ebooks.info

https://chrome.google.com/webstore/search/postman%20rest%20client
http://www.getpostman.com/
http://www.it-ebooks.info/

Figure	9-6.	Interface	of	Postman

Figure	9-6	reveals	the	interface	of	the	Postman	HTTP	request	builder.	As	an	extension
to	the	browser,	Postman	doesn’t	rely	on	the	XMLHttpRequest	or	XDomainRequest
objects	to	fulfill	network	requests.	Therefore,	any	request	from	Postman	occurs
unencumbered	by	the	SOP.	Utilizing	the	applications	interface,	we	will	re-create	the
request	from	our	earlier	exercise,	to	obtain	the	following	resource:
http://json.sandboxed.guru/chapter9/data/images.json.

Within	the	form	field	that	states	“Enter	request	URL	here,”	supply	the	aforementioned
URL.	To	the	right-hand	side	of	this	field,	you	can	witness	a	combo-box.	This	input	field
represents	the	request	method.	By	giving	focus	to	this	field,	we	are	able	to	select	the
necessary	method	to	enact	on	the	supplied	resource.	Fortunately	for	us,	GET	is	the	default
selection,	so	we	will	leave	that	as	is.	To	the	right	of	the	combo-box	is	the	button	labeled
“Headers,”	which,	when	clicked,	will	reveal	a	pair	of	input	fields	below	the	URL	field	of
the	request.	Utilizing	the	Header	and	Value	fields,	respectively,	we	can	configure	specific
headers	of	the	request.	Figure	9-7	illustrates	the	provision	of	two	familiar	headers,	Accept-
Language	and	Accept.

Figure	9-7.	Configuring	a	GET	request	with	Postman

At	this	point,	locate	the	Send	button	at	the	lower	left	of	the	screen,	to	initiate	the
request.	Upon	sending	the	request,	depending	on	your	Internet	connection,	you	should	be
provided	with	a	status	line	of	200,	revealing	that	the	request	was	successful.	Following	the
status,	you	should	see	the	JSON	content	for	the	requested	resource.	The	results	should
reflect	those	captured	in	Figure	9-8.

www.it-ebooks.info

http://json.sandboxed.guru/chapter9/data/images.json
http://www.it-ebooks.info/

Figure	9-8.	A	successful	response	is	provided

Circumventing	Same-Origin	Policy
As	has	been	revealed,	the	browser	limits	the	network	access	occurring	between	two
varying	origins,	in	order	to	enforce	the	same-origin	policy.	However,	as	the	SOP	has	been
adjusted	in	an	ad	hoc	fashion	over	time,	a	couple	of	loopholes	do	exist,	which	we	will
leverage,	in	order	to	facilitate	cross-origin	requests.

CORS
The	first	technique	that	I	will	discuss,	which	sidesteps	the	same-origin	policy	(SOP),	is
that	of	CORS.	CORS,	as	mentioned	previously,	is	an	acronym	that	stands	for	Cross-Origin

www.it-ebooks.info

http://www.it-ebooks.info/

Resource	Sharing.	CORS,	which	is	the	W3C-approved	technique	to	handle	cross-origin
requests,	does	not	eliminate	the	SOP.	It	elaborates	upon	the	model	in	a	way	that	enables
servers	to	opt	in	to	requests	that	may	not	be	trusted,	thus,	informing	the	user-agent	that	it
should	not	prevent	the	response	from	being	obtained	from	Ajax	requests	of	varying
origins.	The	CORS	specification	defines	how	a	server,	as	well	as	a	user-agent,	is	to
coordinate	the	authorization	of	a	request	by	a	web	application	from	a	varying	origin.

The	overview	of	how	CORS	works	is	simple.	For	every	Ajax	request,	the	user-agent	is
notified	that	a	request	is	to	be	initiated	via	the	send	method	of	the	xhr	object.	As	a	result
of	this	invocation,	the	request	begins.	However,	during	the	request,	the	user-agent	and	the
server	communicate	via	the	inclusion	of	special	HTTP	headers,	in	order	to	determine	if	the
request	should	be	facilitated.

In	our	earlier	exercise,	we	received	notice	from	the	browser	that	our	request	was
unable	to	be	carried	out,	due	to	the	fact	that	the	received	response	lacked	the	Access-
Control-Allow-Origin	header.	Access	to	our	origin	was	refused.	The	fact	that	the	response
did	not	possess	a	particular	response	header	was	all	it	took	to	inform	the	user-agent	that
the	provided	data	was	not	intended	for	the	origin	that	initiated	the	request.	Therefore,
whether	or	not	the	server	successfully	received	the	request	was	moot,	as	the	user-agent
denied	our	application	access.

Access-Control-Allow-Origin	is	just	one	header	among	a	handful	that	is	defined	by	the
CORS	specification.	In	fact,	there	are	fewer	than	ten	in	total.	Three	are	configured	by	the
user-agent	to	accompany	the	request,	and	six	can	be	configured	by	the	server	to
accompany	the	response.	However,	not	all	nine	must	be	used	to	coordinate	the
authorization	of	an	HTTP-Request.	In	fact,	most	of	the	time,	a	maximum	of	four	headers
will	be	exchanged.	However,	for	the	purposes	of	this	chapter,	we	will	consider	two:

Access-Control-Allow-Origin

Origin

What	determines	which	of	the	nine	CORS	headers	are	necessary	to	authorize	the
request	depends	on	whether	the	request	is	deemed	“simple”	or	requiring	“preflight.”	What
distinguishes	a	request	as	being	the	former	or	the	latter	ultimately	boils	down	to	the
request	method	chosen	to	enact	on	the	indicated	resource,	in	addition	to	the	configured
request	headers.

A	simple	request,	as	defined	by	the	specification,	is	one	that	identifies	GET,	POST,	or
HEAD	as	its	request	method.	Additionally,	a	simple	request	cannot	specify	headers	that	are
not	among	those	white-listed.	Those	headers	are	the	following:

Accept

Accept-Language

Content-Language

Content-Type

While	you	may	initially	find	the	preceding	headers	reasonable	for	GET	requests,	I

www.it-ebooks.info

http://www.it-ebooks.info/

think	you	will	find	them	rather	limiting	for	POST,	after	you	realize	that	Content-Type	can
only	be	configured	as	application/x-www-form-urlencoded,
multipart/form-data,	or	text/plain.	What	this	means	is	that	when	a	POST
request	is	accompanied	by	an	entity	body	whose	Content-Type	is	configured	as
application/json,	a	preflight	request	must	occur	prior	to	the	actual	request.

A	preflight	request	is	simply	an	initial	HTTP	request	submitted	by	the	user-agent	to	the
requested	server,	using	the	OPTIONS	request	method	to	obtain	the	necessary	server
information	and	configured	headers	that	might	suggest	the	Ajax	request	is	authorized.	In
other	words,	before	attempting	to	make	a	request	that	is	not	considered	simple,	and,
therefore,	may	be	considered	malicious,	the	user-agent	determines	if	the	remote	server
indicates	any	interest	in	receiving	such	a	request.	As	indicated	earlier,	this	is	accomplished
via	the	OPTIONS	method,	which	simply	informs	the	remote	server	to	provide	a	list	of	all
acceptable	headers	and	methods	that	can	accompany	a	request	to	the	indicated	resource.	If
the	response	is	not	configured	to	handle	the	headers/methods	as	they	are	explicitly
outlined	by	the	user-agent,	the	actual	request	will	be	canceled.

I	will	discuss	how	to	configure	a	server’s	response	to	accommodate	preflight	requests
in	more	detail	in	Chapter	11.	In	the	meantime,	feel	free	to	review	the	CORS	headers
required	of	preflight	requests,	in	Table	9-2.

For	every	“simple”	cross-origin	request,	the	user-agent,	in	addition	to	configuring	any
default	headers,	must	configure	a	header	that	is	essential	to	the	CORS	specification.	This
header,	which	is	simply	labeled	“Origin,”	indicates,	as	its	configured	value,	the	source
origin	of	the	request.	On	receiving	the	request,	the	server	can	use	the	configured	value
possessed	by	the	Origin	header	to	configure	the	fulfillment	of	the	request.	As	briefly
discussed,	an	origin	is	considered	authorized	by	a	user-agent	if,	and	only	if,	the	fulfillment
of	the	request	possesses	the	Access-Control-Allow-Origin	header	and	is	configured	to
indicate	as	trusted	the	origin	that	initiated	the	request.	If	the	Access-Control-Allow-Origin
header	is	not	present,	access	to	the	response	will	not	be	permitted.	However,	if	the	header
is	present,	the	user-agent	will	determine	via	an	algorithm	whether	the	configured	value
matches	the	source	origin.	This	algorithm	makes	up	Section	7.2	of	the	CORS
specification,	Resource	Sharing	Check.

Resource	Sharing	Check
The	configured	headers	provided	by	the	server	are	merely	the	mechanism	by	which	to
communicate	with	the	user-agent.	They	do	not	guarantee	that	a	source	origin	can	bypass
the	same-origin	policy	(SOP).	As	the	user	agent	governs	the	SOP,	it	is	the	user-agent’s
responsibility	to	determine	whether	the	source	origin	and	the	value	accompanying	the
Access-Control-Allow-Origin	header	meet	the	authorization	requirements.	The	user-agent
accomplishes	this	via	the	following	steps	of	an	algorithm:2

1.	 If	the	response	includes	zero	or	more	than	one	Access-Control-
Allow-Origin	header	value,	return	fail	and	terminate	this	algorithm.

2.	 If	the	Access-Control-Allow-Origin	header	value	is	the	*	character
and	the	omit	credentials	flag	is	set,	return	pass	and	terminate	this

www.it-ebooks.info

http://www.it-ebooks.info/

algorithm.

3.	 If	the	value	of	Access-Control-Allow-Origin	is	not	a	case-sensitive
match	for	the	value	of	the	Origin	header	as	defined	by	its
specification,	return	fail	and	terminate	this	algorithm.

4.	 If	the	omit	credentials	flag	is	unset	and	the	response	includes	zero
or	more	than	one	Access-Control-Allow-Credentials	header	value,
return	fail	and	terminate	this	algorithm.

5.	 If	the	omit	credentials	flag	is	unset	and	the	Access-Control-Allow-
Credentials	header	value	is	not	a	case-sensitive	match	for	true,
return	fail	and	terminate	this	algorithm.

6.	 Return	pass.

In	short,	the	value	of	the	Access-Control-Allow-Origin	header,	as	configured	by	the
server,	must	satisfy	all	origins	via	the	provision	of	the	wild	card	token	*	or	be	provided	as
a	case-sensitive	match	for	the	indicated	origin,	as	supplied	within	the	request.	On	the	other
hand,	if	the	resource-sharing	check	determines	that	authorization	should	not	be	allowed,
we	are	provided	with	the	aforementioned	network	error	indicating	that	the	origin	lacks
sufficient	authorization.	As	the	SOP	specifies	trust	per	URI,3	the	preceding	outlined	steps
occur	for	each	requested	cross-origin	resource.	Listing	9-3	demonstrates	how	a	resource
can	grant	proper	authorization	to	all	source	origins,	utilizing	PHP.

Listing	9-3.	Authorizing	All	Source	Origins	per	the	Current	Resource

1	<?php

2	header('Access-Control-Allow-Origin:	*');

3	$headers=getallheaders();

4	$origin	=$headers["Origin"];

3	echo	'{"message":"congratulations	'.$origin	.',	your	

origin	has	been	successfully	authorized	by	your

									user-agent"}';

4	?>

The	most	minimal	configuration	required	on	the	server’s	behalf,	as	demonstrated	in
the	preceding	listing,	is	to	configure	the	Access-Control-Allow-Origin	header	with	the
value	of	the	wild-card	*	token.	With	the	preceding	Access-Control-Allow-Origin	header
in	place,	any	simple	request	made	via	XMLHttpRequest	or	XDomainRequest	and
occurring	from	any	origin	will	be	provided	the	appropriate	authorization.	If	you	were	to
run	the	following	code	from	Listing	9-4,	the	source	origin	of	your	request	would	be
entitled	access	to	the	JSON	provided.

Listing	9-4.	A	GET	Request	Being	Made	of	cors.php

	1	<script>

	2	var	xhr=	new	XMLHttpRequest();

	3			if(!"withCredentials"	in	xhr){

	4				xhr=	new	XDomainRequest();

www.it-ebooks.info

http://www.it-ebooks.info/

	5			}

	6			xhr.open("GET",	

"http://json.sandboxed.guru/chapter9/cors.php");

	7			xhr.onload	=	function()	{

	8							alert(this.responseText);

	9			};

10			xhr.send();

11	</script>

No	matter	the	source	origin	of	the	request,	executing	the	request	from	the	preceding
listing	will	result	in	an	alert	box	prominently	appearing	to	inform	the	user	that	the	source
origin	of	the	request	has	been	granted	authorization	to	the	JSON	response,	as	revealed	in
Figure	9-9.

Figure	9-9.	Successful	attempt	at	Cross	Origin	Resource	Sharing

As	you	can	clearly	witness	from	the	URL	in	Figure	9-9,	our	local	request,	signified	by
the	IP	address	127.0.0.1,	is	able	to	receive	access	to	the	JSON	body	provided	by	the
resource,	whose	origin	is	http://json.sandboxed.guru.	By	reviewing	the
headers	of	the	request,	as	captured	by	the	developer’s	console,	we	can	witness	the
inclusion	of	the	Origin	and	Access-Control-Allow-Origin	headers	used	to	coordinate	the
source	origin’s	authorization,	as	shown	in	Figure	9-10.

www.it-ebooks.info

http://json.sandboxed.guru
http://www.it-ebooks.info/

Figure	9-10.	CORS	response	exhibiting	the	configuration	of	the	Options	and	Access-Control-Allow-Origin	headers

With	the	use	of	the	two	aforementioned	CORS	headers,	we	can	successfully	bypass
the	SOP	and	successfully	enable	cross-origin	requests.	However,	this	does	not	entitle	a
cross-origin	request	to	be	treated	similarly	to	that	of	an	SOP.	Although	the	server	has
authorized	the	request,	the	user-agent	continues	to	refrain	from	providing	information	that
may	reduce	the	security	of	either	the	client	or	response.	For	this	reason,	cookies,	basic-
authorization,	and	custom	headers	are	prevented	from	reaching	their	destination,	unless
otherwise	coordinated	between	the	user-agent	and	server	via	two	more	headers.
Furthermore,	the	user-agent	will	limit	the	application’s	exposure	to	any	headers	provided
by	the	server	that	are	not	considered	to	be	among	the	following	six	white-listed	simple
response	headers:

Cache-Control

Content-Language

Content-Type

Expires

Last-Modified

Pragma

To	further	broaden	the	scope	of	the	authorization,	to	enable	these	aspects	as	required
by	your	application,	the	server	must	coordinate	with	the	user-agent	by	configuring	any
necessary	header	as	supplied	by	the	CORS	specification.	Following	are	two	tables	that
outline	the	various	CORS	headers,	as	utilized	by	the	two	request	categories	simple	and
preflight.

www.it-ebooks.info

http://www.it-ebooks.info/

The	headers	in	Table	9-2	are	concerned	with	all	aspects	of	simple	requests.

Table	9-2.	CORS	Simple	Headers

Header Role Configured
by

Origin Indicates	where	the	cross-origin	request	originates User-Agent

Access-Control-
Allow-Origin

Indicates	whether	a	resource	can	be	shared	by	returning	the	value
configured	for	the	Origin	request	header,	*,	or	null Server

Access-Control-
Allow-Credentials

Indicates	whether	the	response	to	the	request	can	be	exposed	when	the
omit	credentials	flag	is	unused Server

Access-Control-
Expose-Headers

Indicates	which	headers	are	safe	to	expose	to	the	API
XMLHttpRequest	object	via	the	getResponseHeaders	method Server

The	headers	within	Table	9-3	are	concerned	with	the	more	complex	requests,	which
require	an	initial	request,	in	order	to	determine	if	the	server	acknowledges	the	configured
aspects	of	the	request	that	are	not	recognized	as	simple.	If	the	server	indicates	that	it	is
willing	to	handle	said	aspects,	only	then	will	the	actual	request	be	sent	to	the	server.	If,
however,	the	server	does	not	indicate	that	it	can	handle	those	aspects,	the	user-agent	will
cancel	the	request	altogether,	once	again	resulting	in	the	same	network	error	indicating
insufficient	authorization.

Table	9-3.	CORS	Preflight	Headers

Header Role Configured
by

Access-Control-
Request-Headers Indicates	which	headers	will	be	used	in	the	actual	request User-Agent

Access-Control-
Request-Method Indicates	which	method	will	be	used	in	the	actual	request User-Agent

Access-Control-Allow-
Methods

Indicates	which	methods	can	be	used	during	the	request	for	a
targeted	resource Server

Access-Control-Allow-
Headers

Indicates	which	header	field	names	can	be	used	during	the	request
of	the	targeted	resource Server

Access-Control-Max-
Age Indicates	how	long	the	results	of	a	preflight	request	can	be	cached Server

Although	CORS	is	the	official	W3C	technique	to	abide	by	when	working	with	cross-
origin	requests,	the	CORS	headers	can	only	be	used	by	the	user-agent	that	conforms	to	the
algorithms	of	the	CORS	specification.	This	is	to	say	that	only	those	browsers	that
implement	the	XMLHttpRequest	Level	2	specification	can	fully	support	CORS.	As	you
learned	in	Chapter	8,	modern	browsers,	in	addition	to	Internet	Explorer	10	and	greater,
support	the	XMLHttpRequest	Level	2	specification.	For	this	reason,	this	chapter	will
continue	to	outline	two	other	techniques	that	enable	cross-origin	requests.

www.it-ebooks.info

http://www.it-ebooks.info/

The	Proxy
While	the	same-origin	policy	(SOP)	is	enforced	by	the	browser,	I	did	recently	discuss	that
the	SOP	is	not	at	all	a	component	of	the	HTTP	protocol.	Rather,	it’s	a	security	model	that
is	strictly	adhered	to	by	the	browsers	of	which	we	make	use.	As	demonstrated	by	our
earlier	use	of	Postman,	when	we	use	tools	that	do	not	rely	on	the	browser,	we	are	able	to
make	requests	indiscriminately.	This	is	because	the	foundations	of	the	HTTP	protocol	rely
on	the	ability	for	any	server	to	fulfill	a	request.	However,	it	is	up	to	the	targeted	server	to
determine	whether	or	not	that	request	should	be	allowed.

As	the	name	suggests,	the	concept	of	a	server	proxy	is	to	forward	an	authorized
request	to	a	local	server	to	a	remote	server.	(Remember:	An	authorized	request	comes
from	the	same	origin.)	The	process	begins	with	an	HTTP	request	being	made	to	a	same-
origin	web	server.	From	there,	either	the	same	request,	or	a	new	request,	is	provided	to	a
remote	server	by	the	local	web	server,	unhindered	by	the	user-agent.	Provided	the	request
is	successful,	the	response	is	returned	up	the	chain	from	the	remote	server	to	the	local
server	that	made	the	request	and	back	to	the	client	who	invoked	the	request,	our	Ajax	call.
The	forwarding	of	requests	can	be	observed	from	the	diagram	in	Figure	9-11.

Figure	9-11.	Proxy	diagram	from	sandboxed.guru	to	json.sandboxed.guru	and	back

Because	the	communications	that	take	place	via	the	user-agent	remain	between	the
same	origin,	all	proxy	requests	are	considered	trusted	and,	therefore,	authorized	to	view
the	response.	We	will	begin	with	a	review	of	the	xhr	code,	as	seen	in	Listing	9-5.

Listing	9-5.	HTTP	Request	to	the	Authorized	/proxy.php	Resource

1	var	xhr=	new	XMLHttpRequest();

2					xhr.open("GET","http://sandboxed.guru/proxy.php");

3					xhr.onload=function(){

4								console.log(this.responseText);

5					};

6					xhr.onerror=function(){

7									console.log("Error	Occurred");

8					}

www.it-ebooks.info

http://www.it-ebooks.info/

9					xhr.send();

Listing	9-5	should	not	appear	new,	as	we	have	been	using	the	same	code	from	both	the
previous	chapter	as	well	as	this	chapter.	Ultimately,	we	initiate	a	GET	request	to
http://sanboxed.guru/proxy.php.	The	only	thing	to	point	out	is	that	Listing	9-
5	does	not	make	use	of	the	XDomainRequest.	This	is	strictly	because	the
XDomainRequest	is	only	required	in	Internet	Explorer	versions	8	and	9,	to	make
requests	to	varying	origins.	However,	as	the	proxy	technique	utilizes	a	server	program	that
runs	on	the	same	server	from	which	the	request	will	occur,	we	can	utilize	the
XMLHttpRequest	from	IE	8+.	This	will	provide	us	with	more	control	over	the	request
as	well.	Remember:	The	XDomainRequest	object	does	not	possess	the
setRequestHeader,	whereas	the	XMLHttpRequest	object	does.

Upon	the	submission	of	the	request,	the	target	of	the	request,	local	resource
/proxy.php,	whose	code	can	be	observed	in	Listing	9-6,	will	be	executed.

Listing	9-6.	PHP	Server-Side	Proxy	Implementation

1	<?php

2	if	($_SERVER['REQUEST_METHOD']	===	'GET')	{

3				$ch	=	curl_init();

4				curl_setopt($ch,	

CURLOPT_URL,'http://json.sandboxed.guru/chapter9/data/images.json');

5				curl_setopt($ch,	CURLOPT_RETURNTRANSFER,	false);

6				$output	=	curl_exec($ch);

7				curl_close($ch);

8	}

9	?>

Listing	9-6	demonstrates	the	minimal	PHP	code	required	to	create	a	request	using	a
library	known	as	cURL,	which	is	simply	a	command-line	utility	that	enables	the
interchange	of	data.	Let’s	walk	through	the	preceding	code	to	understand	what	is	taking
place.

The	script	begins	by	ensuring	that	the	request	method	to	be	enacted	on	proxy.php	is
a	GET	(line	1).	This	is	necessary	to	ensure	that	extraneous	use	of	the	proxy	is	prevented
from	occurring	from	requests	other	than	GET	requests.

Once	we	have	determined	that	the	request	method	is	in	fact	GET,	we	proceed	with
initializing	our	cURL	object	(line	3).	The	cURL	object,	when	initialized,	returns	an
instance,	which	is	stored	on	a	variable	labeled	$ch.	As	with	the	xhr	object,	we	configure
our	instance	of	the	cURL	object	with	the	necessary	headers	and	values	to	initiate	the
request.	Our	first	line	provides	the	URL	of	our	resource,
http://json.sandboxed.guru/chapter9/data/images.json	(line	4).
The	next	configuration	is	used	to	obtain	the	response	as	a	string,	rather	than	outputting	the
response	directly	(line	5).	In	this	particular	case,	we	set	the	value	to	false,	as	we	will
have	no	need	to	further	modify	the	response	from	the	remote	server.	The	next	line	(line	6)
executes	the	request.	Once	the	response	is	obtained,	we	close	the	cURL	resource	(line	7).

www.it-ebooks.info

http://sanboxed.guru/proxy.php
http://json.sandboxed.guru/chapter9/data/images.json
http://www.it-ebooks.info/

It	should	be	noted	that	the	use	of	cURL	is	code	blocking,	and,	therefore,	the	response
awaited	by	our	xhr	object	continues,	until	either	the	connection	times	out	or	a	response	is
finally	provided.	However,	once	the	cURL	request	is	provided	a	response	from	the	remote
server,	the	response	provided	is	sent	back	to	the	client	request,	which	was	prompted	by
Ajax,	whereby	either	the	onload	or	onerror	event	handler	will	be	triggered.

While	the	preceding	code	successfully	demonstrates	how	a	proxy	can	be	used	to
successfully	bypass	the	SOP,	the	proxy	is	rather	limited.	As	the	indicated	resource	on	line
4	of	Listing	9-6	is	hard-coded,	we	would	require	multiple	proxies,	if	there	were	multiple
files	that	our	application	required.	While	this	can	get	quite	cumbersome,	we	can	eliminate
that	issue	with	relative	ease,	either	by	appending	a	query	string	parameter	to	the	end	of	our
resource	or	by	providing	the	URI	as	a	value	belonging	to	a	custom	header.

In	order	to	make	this	something	that	can	be	witnessed	from	a	browser,	in	addition	to
an	Ajax	request,	the	code	that	follows	(Listing	9-7)	makes	use	of	the	former	option	(the
query	string	parameter).

Listing	9-7.	An	xhr	object	Whose	Target	Resource	Possesses	a	Query	String	Parameter
Indicating	the	URI	for	the	Proxy	to	Obtain

1	var	xhr=	new	XMLHttpRequest();

2					xhr.open("GET","http://sandboxed.guru/proxy.php?

uri=images.json");

3					xhr.onload=function(){

4								console.log(this.responseText);

5					};

6					xhr.onerror=function(){

7									console.log("Error	Occurred");

8					}

9					xhr.send();

Listing	9-7	remains	unchanged	from	that	of	Listing	9-5,	with	the	minor	appendage	to
the	indicated	resource	(line	2).	We	have	supplied	the	resource	with	a	key/value	pair,
which,	when	supplied	in	a	URL,	is	a	query	string	parameter.	In	this	case,	the	key	is	that	of
uri,	and	its	value	represents	the	desired	resource	to	be	obtained	by	our	proxy.	Our	proxy
must	then	be	modified	slightly	to	anticipate	the	use	of	a	query	string	value.	These	changes
that	account	for	the	new	query	string	parameter	are	outlined	in	bold	in	Listing	9-8.

Listing	9-8.	PHP	Code	Accounting	for	the	Added	jsonp	URL	Parameter

	1	<?php

	2	if	(strtolower($_SERVER['REQUEST_METHOD'])	===	'get')	{

	3				$uri	=	(isset($_GET[uri]));

	4				if	($uri)	{

	5								$uri	=	htmlentities($_GET[uri]);

	6								$ch	=	curl_init();

	7								curl_setopt($ch,	CURLOPT_URL,	

'http://json.sandboxed.guru/chapter9/data/'	.	$uri);

	8								curl_setopt($ch,	CURLOPT_RETURNTRANSFER,	false);

www.it-ebooks.info

http://www.it-ebooks.info/

	9								$output	=	curl_exec($ch);

10								curl_close($ch);

11				}	else	{

12								header('HTTP/1.1	400	Bad	Request');

13								echo	'Append	?uri=xxxx	to	the	target	resource	where	xxxx	is	the	
value	of	the	URI	on

																json.sandboxed.guru/chapter9/data/xxxx';

14				}

15	}

16	?>

Listing	9-8	revisits	our	proxy	from	Listing	9-6,	with	the	new	query	string	parameter
being	taken	into	account.	We	begin	by	determining	if	the	uri	key	has	been	provided	with
the	request	and	assign	the	returned	Boolean	value	produced	by	the	evaluation	onto	a
variable	labeled	$uri	(line	3).	From	there,	we	determine	what	block	of	code	should	be
executed,	depending	on	whether	the	$uri	value	is	set	(line	4).	If	the	$uri	variable	is
evaluated	to	be	true,	we	continue	to	execute	the	code	block	that	initiates	the	proxy.	At
this	point,	we	have	only	determined	if	the	uri	parameter	has	been	provided	with	the
request.	Now,	we	must	obtain	the	value	that	it	possesses.	Repurposing	the	$uri	variable,
we	reassign	it	with	the	obtained	value	held	by	the	key	(line	5).	The	period	(.)	token,	in
PHP,	is	used	to	concatenate	strings,	thereby	joining	the	URL	with	the	dynamic	resource.
Being	that	our	Ajax	request	provided	the	uri	as	images.json,	line	7	will	result	in	the
final	URL	of
http://json.sandboxed.guru/chapter9/data/images.json.	While	this
is	precisely	the	same	URL	we	previously	targeted,	the	required	resource	is	specified
dynamically	and,	therefore,	can	request	a	variety	of	resources	stored	within	the	preceding
path.

Should	the	uri	parameter	not	be	present	for	the	provided	request,	the	proxy	will	not	be
triggered	to	provide	a	response	from	the	remote	source.	Instead,	the	request	will	be
fulfilled	with	that	of	a	response	from	our	proxy	server.	As	the	request	is	not	properly
formed,	the	server	configures	the	status	line	to	possess	a	status	code	of	400	(line	12).	It
further	specifies	the	textual	phrase	that	accompanies	the	status	code,	which	is	Bad
Request.	This	status	code	is	utilized	to	inform	the	client	that	he/she	should	not	continue
to	repeat	the	request	without	further	modification.	Last,	in	order	to	further	clarify	how	to
correct	the	request,	we	output	a	message	stating	that	a	query	string	must	be	provided	(line
13).

At	this	point,	feel	free	to	navigate	your	browser	to
http://sandboxed.guru/proxy.php	to	see	the	results	of	the	proxy	for	yourself.
Upon	reception	of	the	provided	messaging,	append	the	uri	parameter	to	the	URL,	whose
value	can	be	any	of	the	following	resources:	images.json,	string.json,	or
script.json.

JSONP
The	final	technique	that	enables	us	to	interchange	JSON	between	two	varying	origins	is

www.it-ebooks.info

http://json.sandboxed.guru/chapter9/data/images.json
http://sandboxed.guru/proxy.php
http://www.it-ebooks.info/

that	of	JSON	with	padding.	JSON	with	padding,	or	JSONP,	as	Bob	Ippolito	coined	it	in
2005,	regards	a	particular	technique	in	which	a	client	can	obtain	JSON	simply	by
leveraging	the	HTML	<script>	element.

The	same-origin	policy	(SOP)	does	not	govern	the	requests	of	externally	referenced
content	via	specific	HTML	tags.	Such	tags	are	those	of	,	<style>,	<iframe>,
and	<script>.	As	you	may	recall	from	your	past	experiences	in	web	development,
script	tags	are	able	to	embed	externally	referenced	JavaScript	files,	regardless	of	whether
the	requesting	origin	matches	the	origin	of	the	targeted	resource.	Such	an	example	that
may	be	familiar	is	shown	in	Listing	9-9.

Listing	9-9.	Script	Tag	Targeting	the	Externally	Hosted	jQuery	Script	from	a	CDN

<script	src="//code.jquery.com/jquery-1.11.0.min.js">

</script>

Listing	9-9	utilizes	the	script	tag	to	retrieve	the	jQuery	library	from	the	jQuery	CDN,
regardless	of	the	origin	of	the	request.	Furthermore,	once	the	resource	is	obtained,	the
external	script	gains	total	access	to	our	document,	and	vice	versa,	making	this	ideal
transport	for	JSON.	Unfortunately,	as	you	will	shortly	see,	not	all	JSON	values	can	be
properly	parsed	when	obtained	via	the	HTML	<script>	element.

Listing	9-10	demonstrates	grammatically	valid	JSON,	as	the	content	of	an	indicated
resource	located	at	the	URL
http://json.sandboxed.guru/chapter8/data/imagesA.json.

Listing	9-10.	JSON	Content	Within	imagesA.json

{

				"images":	[

																{

																				"title":	"Image	One",

																				"url":	"img/AndroidDevelopment.jpg"

																},	{

																				"title":	"Image	Two",

																				"url":	"img/php.jpg"

																},	{

																				"title":	"Image	Three",

																				"url":	"img/Rails.jpg"

																},	{

																				"title":	"Image	Three",

																				"url":	"img/TSQL.jpg"

																}

]

}

As	with	our	earlier	jQuery	inclusion,	we	should	be	able	to	load	imagesA.json	into
an	application	as	an	external	reference,	via	the	script	tag,	as	shown	in	Listing	9-11.

Listing	9-11.	Script	Tag	Referencing	imagesA.json

www.it-ebooks.info

http://json.sandboxed.guru/chapter8/data/imagesA.json
http://www.it-ebooks.info/

<script	

src="http://json.sandboxed.guru/chapter8/data/imagesA.json">

</script>

Unfortunately,	if	we	were	to	incorporate	the	code	from	Listing	9-11	into	an	HTML
document	and	view	that	document	in	a	browser,	we	would	arrive	at	the	following	syntax
error,	as	shown	in	Figure	9-12.

Figure	9-12.	Loading	/data/imagesA.json	via	the	<script>	tag	results	in	a	syntax	error

The	preceding	error	is	not	the	result	of	our	HTML	Document	loading	a	JSON
document	as	an	external	reference	but,	rather,	how	the	script	engine	evaluates	JavaScript.
Consider	the	more	succinct	JSON	example	being	supplied	to	the	eval	function	in	Listing
9-12.	When	the	following	JSON	is	provided	to	the	JavaScript	engine,	it,	too,	results	in	an
error.

Listing	9-12.	Supplying	a	JSON	Collection	to	the	Script	Engine	via	eval

eval('{	"test":"abc"	}');		//fails

This	error	occurs	for	no	other	reason	than	the	fact	that	the	provided	content	is	not
considered	syntactically	valid	JavaScript.	However,	as	explained	earlier,	the	error	is	not
due	to	the	fact	that	we	are	supplying	JSON.	As	you	should	recall,	JSON	is	a	subset	of
JavaScript.	The	issue	simply	lies	in	the	fact	that	the	engine	favors	the	evaluation	of
statements,	rather	than	those	of	expressions.	According	to	Section	12.4,	Expression
Statements,	of	the	ECMA-262	standardization:

An	 ExpressionStatement	 cannot	 start	 with	 an	 opening	 curly	 brace	 because
that	might	make	it	ambiguous	with	a	Block.

While	this	can	be	viewed	as	a	setback,	it	is	certainly	not	a	roadblock.	We	simply
require	a	way	to	coax	the	parser	into	seeing	the	provided	script	as	an	expression.
Fortunately,	JavaScript	provides	us	with	the	operator	that	can	manage	this.	That	operator,
of	course,	is	the	grouping	operator	signified	by	the	open	and	closed	parenthetical	(())
tokens.

	Note		Only	the	initial	({	})	braces	cause	the	parser	to	throw	a	syntax	error.	No	other
object	literal	suffers	the	same	fate.

By	wrapping	our	script	with	the	grouping	operator,	we	can	inform	the	parser	to
handle	the	evaluation	in	the	context	of	an	expression.	It	is	the	padding	of	the	parentheses
for	which	the	phrase	JSON	with	padding	refers.

By	padding	our	object	literal	within	the	grouping	operator,	as	seen	in	Listing	9-13,	the

www.it-ebooks.info

http://www.it-ebooks.info/

script	engine	no	longer	alerts	us	to	a	syntax	error.	However,	having	crossed	one	hurdle,	we
find	ourselves	facing	yet	another.

Listing	9-13.	Wrapping	JSON	with	the	Grouping	Operator

eval('({	"test":"abc"	})');		//Successfully	parsed

Once	the	script	engine	properly	parses	the	provided	JSONP,	we	find	ourselves	without
a	means	of	obtaining	the	parsed	data.	However,	this	can	be	easily	overcome	using	the
JSONP	model.	By	preceding	our	JSONP	with	a	function	name,	that	function	will	be
invoked	upon	the	script’s	evaluation,	essentially	acting	as	an	event	handler.	Furthermore,
the	evaluated	object	literal,	wrapped	within	parentheses,	will	be	parsed	into	a	valid
JavaScript	object	and	provide	as	the	argument	the	indicated	function,	allowing	our
function	to	obtain	the	parsed	JSON.	The	structural	composition	of	JSONP	is
CALLBACK_IDENTIFIER(JSONtext);.	Listing	9-14	is	an	example	of	this.

Listing	9-14.	Example	of	the	JSONP	Model

someMethod({	"test"	:	"abc"	});

As	you	might	expect,	this	requires	our	HTML	document	to	be	in	possession	of	a
function	whose	identifier	is	equal	to	that	of	the	function	name	prepended	to	our	JSONP,
lest	the	parser	throw	a	ReferenceError,	as	indicated	in	Figure	9-13.

Figure	9-13.	Reference	error,	can’t	find	someMethod

In	Listing	9-15,	the	object	literal,	padded	by	the	parentheses	on	both	sides,	is	properly
recognized	by	the	engine	as	an	expression	and,	therefore,	parsed	into	a	proper	JavaScript
object.	From	there,	the	evaluation	is	provided	to	the	indicated	function	as	the	argument.
Upon	the	invocation	of	someMethods,	the	statement(s)	within	the	body	of	the	function
are	able	to	reference	the	parsed	data	(line	3).	In	this	case,	the	statement	simply	logs	out	the
test	key,	resulting	in	abc	being	sent	to	the	developer	console.

Listing	9-15.	Invocation	of	the	Method	Evaluated,	and	the	Provision	of	a	JSON	Argument

1	eval('someMethod(({	"test"	:	"abc"	}))');

2	function	someMethod(data){

3					console.log(data.test);		//abc;

4	}

It	is	the	function	name	that	forges	the	contract	between	the	provider	of	the	JSONP	and
the	client	that	seeks	to	make	use	of	it.	This	is	an	important	fact,	because	if	the	name	is
defined	statically,	it	reduces	the	interoperability	among	applications.	Therefore,	to	keep

www.it-ebooks.info

http://www.it-ebooks.info/

the	method	name	from	conflicting	with	any	application,	the	JSONP	model	requires	that
the	resource	allow	the	client	of	the	request	to	define	the	name	of	the	function	that	will
precede	the	JSONP.

The	manner	by	which	the	client	informs	the	server	to	the	preferred	callback	is	quite
simple.	The	client	appends	a	jsonp	query	string	parameter	to	the	targeted	URL	and
assigns	its	value	the	name	of	the	function	to	invoke	(see	Listing	9-16).

Listing	9-16.	JSONP	Request

1	<script>

2				var	test=function(data){

3								//do	something	with	data	here.

4				}

5	</script>

6	<script	

src='http://json.sandboxed.guru/chapter9/data/jsonp.php?

jsonp=test'></script>

Listing	9-16	declares	a	function,	which	will	operate	on	a	supplied	piece	of	data	and
assigns	it	to	the	variable	test	(line	1),	where	it	can	be	referenced	later.	Next,	utilizing	the
script	tag	(line	6),	we	make	a	request	to	our	JSONP	resource	and	append	to	it	the	jsonp
parameter,	whose	value	is	that	of	the	preferred	function	to	invoke	upon	the	evaluation	of
the	received	script.

Now,	while	Listing	9-16	accounts	for	the	front	end,	the	resource	must	account	for	the
supplied	parameter.	Once	again,	any	server-side	language	can	manage	this	easily	enough.
I,	however,	will	demonstrate	the	code	as	it	appears	in	PHP	(see	Listing	9-17).

Listing	9-17.	Fulfillment	of	JSON	or	JSONP,	Pending	the	Provision	of	the	jsonp
Parameter

1	<?php

2	header('Content-Type:	application/javascript');

3	$callback	=	(isset($_GET["jsonp"]))	?	$_GET["jsonp"]	:	"";

4	$JSONtext	=	’{

							"images":	[

											{

															"title":	"Image	One",

															"url":	"img/AndroidDevelopment.jpg"

											},	{

															"title":	"Image	Two",

															"url":	"img/php.jpg"

											},	{

															"title":	"Image	Three",

															"url":	"img/Rails.jpg"

											},	{

															"title":	"Image	Three",

															"url":	"img/Android.jpg"

www.it-ebooks.info

http://www.it-ebooks.info/

											}

]

							}’

5	echo	$callback	.	'('	.$JSONtext.	');';

6	?>

Listing	9-17	reveals	the	PHP	code	for	the	requested	URI:
http://json.sandboxed.guru/chapter9/data/jsonp.php.	For	the	most
part,	the	content	within	can	be	recognized	as	the	imagesA.json	from	Listing	9-10.
However,	the	lines	that	appear	in	bold	have	been	added	to	serve	JSONP.	The	script	begins
by	properly	indicating	the	header	of	the	response.	As	the	body	of	the	response	is	no	longer
JSON,	but	rather	JavaScript,	we	must	ensure	that	clients	treat	the	body	as	JavaScript.
Therefore,	we	set	the	Content-Type	to	application/javascript	(line	2).	Next,
utilizing	the	parameters	of	the	URL,	we	determine	if	the	key	labeled	jsonp	has	been
provided.	If	it	has	indeed	been	set,	we	assign	its	value	to	a	variable	labeled	$callback.	If
the	jsonp	parameter	is	not	present	with	the	GET	request,	we	assign	an	empty	string	to
said	variable	(line	3).	Next,	to	keep	the	code	clean	for	review,	I	assign	the	intended	JSON
text	to	a	variable	labeled	$JSONtext	(line	4).	This	value	will	later	be	padded	with
parentheses	and	a	possible	callback	identifier.	Last,	using	PHP’s	concatenation	operator	.,
we	join	the	provided	callback	with	that	of	our	padded	JSON	and	output	the	final
representation	as	the	response	of	the	request	(line	5).

While	Listing	9-16	demonstrates	the	implementation	of	a	<script>	element,	along
with	a	collaborating	function	to	receive	JSONP,	the	fact	that	they	were	defined	at	design
time	results	in	the	immediate	request,	upon	the	execution	of	the	HTML	document.
However,	this	may	not	always	be	the	desired	effect.	Utilizing	JavaScript,	we	can	resort	to
script	tag	injection,	thereby	obtaining	the	results	at	a	time	of	our	choosing.

Dynamic	Script	Tag	Injection
When	an	HTML	document	is	opened	within	the	browser,	the	parser	scans	from	the	top
down	the	markup	of	the	document	for	any	tags	that	reference	external	content.	For	each
,	<style>,	or	<script>	encountered	that	may	reference	an	external	resource,
an	HTTP	request	is	initiated.	This,	however,	is	not	always	the	desired	effect.

Dynamic	script	tag	injection	is	a	technique	that	relies	on	JavaScript	to	configure	an
HTML	<script>	element	at	runtime.	By	creating	said	tag	on	the	fly,	the	tag	remains
absent	from	the	markup,	which	prevents	a	resource	from	being	fetched	prematurely.	Yet,
at	a	point	of	our	choosing,	we	can	insert	the	configured	tag	into	the	body	of	the	document,
thereby	initiating	a	request	for	the	indicated	JSONP	resource.	The	necessary	code	to
achieve	this	on	demand	behavior	can	be	viewed	in	Listing	9-18.

Listing	9-18.	Dynamic	Script	Tag	Injection

1	function	getScript(url){

2	var	script	=	document.createElement("script");

3					script.src=url;

4					document.getElementsByTagName('head')

www.it-ebooks.info

http://json.sandboxed.guru/chapter9/data/jsonp.php
http://www.it-ebooks.info/

[0].appendChild(script);

5	}

6	

getScript('http://json.sandboxed.guru/chapter9/data/jsonp.php?

jsonp=someMethod');

Listing	9-18	reveals	a	function	that,	when	invoked,	is	responsible	for	the	creation,
configuration,	and	the	injection	of	a	script	tag	within	the	document	of	the	application
being	run.	The	code	solely	responsible	for	the	dynamic	script	tag	injection	has	been
encapsulated	within	the	getScript	function,	so	that	we	can	generate	any	number	of
scripts	through	a	single	endpoint	(line	1).	Furthermore,	to	account	for	any	possible	URL	to
be	supplied	as	the	resource	of	the	request,	the	getScript	function	accepts	a	URL	as	a
parameter.

Upon	an	invocation,	we	utilize	the	createElement	method	of	the	document	object	to
create	an	HTML	element	of	our	choosing.	As	the	tag	we	require	is	that	of	a	script	element,
we	provide	script	as	the	parameter	and	assign	the	returned	element	to	a	variable
labeled	script	(line	2).	Utilizing	the	script	reference,	we	supply	the	URL	argument	as
the	referenced	source	via	the	src	attribute	(line	3).	From	there,	we	utilize	the	document
object	to	obtain	a	reference	to	the	HTML	<head>	element,	whereby	we	will	insert	our
newly	crafted	HTML	<script>	element.	Last,	to	generate	a	dynamic	tag	and	trigger	our
resource	to	be	loaded,	we	invoke	getScript	and	supply	to	it	our	JSONP	URL.	By	using
JavaScript	to	inject	a	script	tag	into	our	markup,	we	have	more	control	over	when	the
resource	is	loaded.	The	invocation	can	be	the	result	of	an	event,	such	as	a	button	click.

While	getScript	makes	loading	JSONP	resources	on	demand	a	simple	task,	there	are
many	available	libraries,	such	as	jQuery,	that	extend	the	code	even	further,	so	that	it’s
possible	to	provide	anonymous	functions	for	invocation	upon	the	evaluation	of	the
indicated	JSONP	request.	Such	a	function	that	enables	this	type	of	behavior	can	be	viewed
in	Listing	9-19.

Listing	9-19.	Dynamic	Script	Tag	Injection	with	Anonymous	Callback	Behavior

	1	var	getJSONP	=	(function	()	{

	2		jsonp_callbacks={};

	3		return	function(url,	fName,	callback)	{

	4						scriptNode	=	document.createElement('script');

	5						scriptNode.setAttribute('type',	'text/javascript');

	6						scriptNode.src	=	url	+	'?jsonp='	

+	encodeURIComponent('jsonp_callbacks["'	+	fName	+									

'"]');

	7						jsonp_callbacks[fName]	=	function	(data)	{

	8										delete	jsonp_callbacks[fName];

	9										callback(data);

10						};

11						document.body.appendChild(scriptNode);

12		};

13	}());

www.it-ebooks.info

http://www.it-ebooks.info/

14	

getJSONP('http://json.sandboxed.guru/chapter9/data/jsonp.php',

	'callback',	function				(data)	{

15					console.log(data);

16	});

Summary
This	chapter	pointed	out	three	techniques	that	can	be	used	to	initiate	cross-origin	requests
that	fulfill	the	interchange	of	JSON.	As	was	indicated,	the	majority	of	front-end	code
remains	unchanged.	However,	it	does	require	a	slight	amount	of	modification,	with	regard
to	requesting	a	JSONP	resource.	In	contrast,	it	will	be	the	onus	of	the	server	administrator
to	configure	a	resource	to	be	made	available	to	a	cross-origin	request.

With	the	conclusion	of	this	chapter,	you	should	find	yourself	one	step	closer	toward
being	able	to	harness	the	full	power	of	JSON.	In	the	next	chapter,	we	will	install	and	work
with	Node.js,	a	platform	built	on	Chrome’s	JavaScript	runtime,	so	that	you	can	host	your
own	local	web	server,	which	can	be	used	to	receive,	store,	retrieve,	and	transmit	JSON,
utilizing	the	configurations	required	of	each	of	the	tactics	discussed	in	this	chapter.

The	wonderful	news	is	that	because	Node.js	works	entirely	on	the	V8	JavaScript
engine,	you	won’t	be	asked	to	follow	along	with	a	language	that	you	might	not	be	used	to.

Key	Points	from	This	Chapter
The	same-origin	policy	(SOP)	is	the	security	model	adhered	to	by	all
user-agents.

The	SOP	governs	a	variety	of	front-end	securities.

The	SOP	restricts	network	messages	between	varying	origins.

SOPs	vary	according	to	the	degree	by	which	they	are	enforced
between	different	technologies.

Use	the	in	operator	to	test	whether	the	widthCredentials
attribute	exists	on	the	xhr	instance.

Cross-network	errors	can	be	corrected	by	moving	the	resource	to	the
same	domain	as	the	source	origin,	or	by	enabling	Cross-Origin
Resource	Sharing	(CORS).

A	domain	and	its	subdomain	are	not	considered	authorized	by	default.

Origins	are	considered	similar	if	they	possess	the	same	scheme,	port,
and	domain.

The	port	address	for	HTTP	is	80,	while	that	for	HTTPS	is	443

Certain	headers	are	unable	to	be	altered	via	setRequestHeader.

SOPs	can	be	circumvented	via	server-side	programming.

www.it-ebooks.info

http://www.it-ebooks.info/

The	Access-Control-Allow-Origin	header	is	required	to	fulfill
“simple”	requests	from	varying	origins.

If	a	request	is	not	simple,	it	requires	“preflight.”

Simple	requests	use	GET,	POST,	or	Head	and	are	limited	to	four
white-listed	headers.

The	simple	header	Content-Type	can	only	be	configured	as
application/x-www-form-urlencoded,
multipart/form-data,	or	text/plain.

CORS	headers	can	only	be	used	with	user-agents	that	conform	to	the
algorithms	of	the	CORS	specification.

JSONP	is	JSON	wrapped	in	parentheses	and	preceded	by	a	function
name.

The	client	request	specifies	the	function	name	via	the	jsonp	query
parameter.

The	SOP	does	not	govern	requests	of	externally	referenced	content	via
<script>.

An	ExpressionStatement	cannot	start	with	an	opening	curly
brace.

A	server	proxy	forwards	an	authorized	request	to	a	remote	server.

1What’s	My	User	Agent,	“What’s	a	User	Agent	String,”	www.whatsmyuseragent.com/WhatsAUserAgent,
2015.

2World	Wide	Consortium	(W3C),	“Cross-Origin	Resource	Sharing,”	www.w3.org/TR/cors/#resource-
sharing-check,	January	16,	2014.

3Adam	Barth,	Internet	Engineering	Task	Force	(IETF),	“The	Web	Origin	Concept,”
www.ietf.org/rfc/rfc6454.txt,	2011.

www.it-ebooks.info

http://www.whatsmyuseragent.com/WhatsAUserAgent
http://www.w3.org/TR/cors/#resource-sharing-check
http://www.ietf.org/rfc/rfc6454.txt
http://www.it-ebooks.info/

CHAPTER	10

Serving	JSON
Up	until	this	point,	we	have	been	focusing	on	JSON	primarily	from	a	front-end
perspective.	However,	as	a	data	interchange	format,	JSON	plays	an	important	role	on	the
back	end	of	our	applications	as	well.	Therefore,	in	order	to	further	empower	ourselves	in
the	ways	of	JSON,	we	will	explore	how	to	set	up	our	very	own	web	server,	utilizing	an
open	source	technology	known	as	Node.js.

Once	we	have	our	own	server	up	and	running,	you	will	learn	how	to	utilize	said	server
to	provide	JSON,	receive	JSON,	and	even	store/persist	JSON.

Node.JS
Node.js,	commonly	referred	to	as	Node,	is	a	runtime	environment	created	by	Ryan	Dahl
that	allows	us	to	devise	a	web	server	using	nothing	other	than	JavaScript.	That’s	right,
JavaScript.	Now	before	you	begin	to	presume	that	this	can’t	be	considered	a	true	server,
let	me	assure	you	that	Node	is	incredibly	powerful	and	extremely	efficient.	So	much	so,
that	it’s	used	by	many	popular	brands,	such	as	Walmart,	PayPal,	and	eBay,	to	name	a	few.

Node	is	built	on	top	of	Chrome’s	V8	JavaScript	engine,	making	JavaScript	the	ideal
language	of	our	server.	Furthermore,	because	Node	makes	use	of	the	latest	V8	code	base,
our	server	can	utilize	the	cutting-edge	inclusions	of	the	JavaScript	API,	such	as	File-
System,	Web	Workers,	etc.	The	benefits	don’t	just	stop	there	either.	Because	JavaScript	is
an	event-driven	language,	the	functions	within	Node	remain	asynchronous	and	are	capable
of	handling	data-intensive	applications.	Last,	Node	can	run	without	additional	software,
such	as	Apache,	being	installed,	making	it	simple	and	convenient	to	install	on	either
Windows	or	Mac.

Windows	Installation
Upon	navigating	to	nodejs.org/download/,	we	are	immediately	presented	with	the
tools	that	will	get	us	up	and	running.	As	there	is	no	reason	to	take	anything	but	the	path	of
least	resistance,	we	will	download	and	install	the	Windows	Installer	(.msi).	Whether	you
chose	the	32-bit	vs.	the	64-bit	version	is	dependent	on	your	current	operating	system.
While	most	programs	designed	for	the	32-bit	versions	of	Windows	are	compatible	with
64-bit	versions,	the	same	cannot	be	stated	for	64-bit	software	on	32-bit	Windows.

To	find	out	if	your	computer	is	running	a	32-bit	or	64-bit	version	of	Windows,	in
Windows	8	or	Windows	8.1,	do	the	following:

1.	 Open	System	by	right-clicking	the	Windows	button	and	selecting

www.it-ebooks.info

http://www.it-ebooks.info/

System	from	the	list.

2.	 Within	the	System	pane,	you	can	view	the	system	type.

To	find	out	if	your	computer	is	running	a	32-bit	or	64-bit	version	of	Windows,	in
Windows	7	or	Windows	Vista,	do	the	following:

1.	 Open	System	by	clicking	the	Start	button,	right-clicking	Computer,
and	then	clicking	Properties.

2.	 Under	System,	you	can	view	the	system	type.

If	your	computer	is	running	Windows	XP,	do	the	following:

1.	 Click	Start.

2.	 Right-click	My	Computer	and	then	click	Properties.

a.	 If	you	don’t	see	“x64	Edition”	listed,	then	you’re	running
the	32-bit	version	of	Windows	XP.

b.	 If	“x64	Edition”	is	listed	under	System,	you’re	running	the
64-bit	version	of	Windows	XP.

Once	you	determine	which	bit	operating	system	your	machine	is	running,	click	the
corresponding	Windows	Installer.	As	I	am	running	a	32-bit	version	of	Windows,	as	shown
in	Figure	10-1,	I	will	be	installing	the	32-bit	Node	Windows	Installer.

Figure	10-1.	Determining	Windows	operating	system	type:	32-bit	vs.	64-bit

By	clicking	either	the	32-bit	or	64-bit	button,	depending	on	your	browser,	the	.msi
should	begin	downloading.	Depending	on	the	browser,	you	may	have	to	acknowledge	that
you	wish	the	file	to	be	saved.	Once	the	file	has	been	downloaded	successfully,	navigate	to

www.it-ebooks.info

http://www.it-ebooks.info/

the	directory	in	which	it	has	been	downloaded	and	double-click	the	installer,	to	initiate	the
installation	wizard.	At	this	point,	the	Node	setup	wizard	will	walk	you	through	the
installation	step-by-step.	To	begin	the	processes,	click	Next.

The	second	screen	of	the	wizard	presents	us	with	the	license	agreement	of	Node.
Before	continuing	on	to	the	next	screen,	you	must	accept	the	terms	in	the	license
agreement.	Take	this	opportunity	to	read	and	accept	the	End-User	License	Agreement	and
then	click	Next	to	configure	the	installation.

The	following	few	screens	enable	you	to	change	the	default	configurations	of	the
installation.	Such	configurations	determine	in	which	directory	to	install	Node,	or	how
corresponding	features	should	be	installed.	Unless	you	feel	comfortable	enough	to	modify
these	settings,	you	should	leave	them	as	they	are	and	continue	to	the	installation	screen
shown	in	Figure	10-2.

Figure	10-2.	Node	setup	wizard

Once	you	reach	this	screen,	simply	click	Install,	and	then	sit	back	and	relax	for	a	short
moment.	You	will	be	presented	with	confirmation	that	the	Node	setup	wizard	has
completed.	At	this	point,	feel	free	to	click	Finish	to	exit	the	wizard.	By	default,	Node	and
its	features	are	installed	globally,	and	often,	system-wide	variable	changes	may	not	always
be	recognized	until	after	a	reboot.	Therefore,	before	we	verify	that	the	installation	of	Node
was	successful,	it	will	be	wise	to	reboot.

Once	Windows	loads,	we	can	verify	the	installation	of	Node.	We	will	achieve	this	with
the	assistance	of	the	command-line	interpreter,	also	known	as	the	command	prompt.	To

www.it-ebooks.info

http://www.it-ebooks.info/

access	the	command	prompt	application,	right-click	your	desktop’s	Start	button	and
choose	Run	from	the	list	of	options.	Within	the	input	field,	simply	type	cmd.exe,	then
click	the	button	labeled	“OK.”

Figure	10-3	reveals	the	command	terminal	in	which	we	can	enter	commands.	The
terminal	will	open	to	a	defaulted	folder	that	exists	on	the	hard	drive.	Which	folder	depends
on	whether	you	run	cmd.exe	as	an	administrator	or	as	a	user.	If	you	run	it	as	an
administrator,	the	default	folder	will	be	that	of	a	system	folder,	whereas	if	you	open	it	as	a
user,	it	will	reflect	your	user’s	folder.	Figure	10-3	reveals	my	directory	as
C:\Users\UrZA>,	which	simply	reflects	the	directory	that	corresponds	to	the	account
that	I	logged	in	to	on	the	machine.	Of	course,	that	account	user	is	named	UrZA.

Figure	10-3.	Command	prompt	interface

In	order	to	ensure	that	Node	was	installed	and	configured	successfully,	type	node
—version	within	the	terminal,	then	hit	Enter.	If	Node	has	successfully	been	configured
for	your	user	account,	you	should	be	provided	with	the	numerical	version	of	Node	that	has
been	installed.

If	you	are	presented	with	something	that	reflects	the	vX.XX.XX	format,	as	shown	in
Figure	10-4,	then	congratulations;	you	can	begin	work	with	Node	right	away.	Feel	free	to
fast-forward	to	the	“Building	an	HTTP	Server”	section.

www.it-ebooks.info

http://www.it-ebooks.info/

Figure	10-4.	The	Node	—version	command	outputs	the	installed	version	of	Node.js

If,	on	the	other	hand,	the	terminal	outputs	the	message	that	Node	is	not	recognized	as
an	internal	or	external	command,	operable	program,	or	batch	file,	it’s	evident	that	Node
has	not	been	correctly	installed.	In	order	to	correct	this,	there	are	a	few	steps	that	can	be
taken.

The	Node	installation	will	install	node.exe	within	the	C:\Program
Files\nodejs\	directory	by	default.	Take	a	moment	to	verify	that	this	executable	is
indeed	present	within	this	folder.	If	you	have	altered	the	destination	during	the	setup
process,	please	navigate	to	that	directory	instead.	If	you	do	not	witness	the	node.exe
executable	within	the	determined	directory,	the	installation	may	not	have	successfully
completed.	Please	run	the	installation	wizard	once	again	to	rerun	the	setup	process
followed	by	a	system	reboot.

If	you	are	able	to	verify	the	presence	of	node.exe	within	the	chosen	directory,	the
failure	of	the	command	prompt	to	execute	the	command	node	—version	may	be	due
to	the	fact	that	the	directory	to	which	it	is	installed	lies	outside	the	directories	utilized	by
the	shell.	To	be	certain	as	to	whether	this	is	the	case,	type	the	command	PATH	within	the
command	prompt.	The	output	shown	in	Figure	10-5	lists	the	default	directories	used	by
the	shell.

www.it-ebooks.info

http://www.it-ebooks.info/

Figure	10-5.	Output	of	the	PATH	variable

As	you	can	see,	C:\Program	Files\nodejs\	is	not	among	the	outputted
directories.	In	this	case,	we	may	have	to	include	the	installed	directory	as	one	of	the
directories	to	be	used	by	the	shell.	This	can	be	achieved	by	adding	the	nodejs	directory
to	that	of	the	PATH	environment	variable.	In	order	to	add	the	necessary	directory	to	our
PATH	environment,	we	must	navigate	to	the	Control	Panel	window	and	type
“environment	variables”	within	the	input	field	that	reads	“Search	Control	Panel”	and	hit
Enter.	This	will	filter	the	results	in	the	panel,	revealing	a	result	labeled	“Edit	the	system
environment	variables.”	Click	this	result	and,	on	the	window	that	opens	thereafter,	click
the	button	labeled	“Environment	Variables….”	At	this	point,	you	should	be	presented	with
a	window	displaying	both	User	and	System	variables,	as	shown	in	Figure	10-6.

www.it-ebooks.info

http://www.it-ebooks.info/

Figure	10-6.	Add	environment	variables	to	Windows

Next,	click	the	New…	button	immediately	below	the	System	variables	box.	Where	it
asks	for	the	“Variable	name:”,	supply	“PATH.”	Additionally,	for	the	“Variable	value:”,
supply	“C:\Users\UrZA	\AppData\Roaming\npm.”	(Do	not	use	quotations,	and
replace	UrZA	with	your	user	name.)	Once	those	fields	are	supplied,	click	OK.

Next,	within	the	System	variables	section,	locate	a	variable	labeled	“Path,”	select	it,
and	click	the	button	labeled	“Edit…”,	located	directly	below	the	System	variables	section.
As	the	Path	already	exists,	we	simply	have	to	append	our	nodejs	directory	to	the	list.
This	is	accomplished	by	typing	;C:\Program	Files\nodejs\	to	the	end	of	the
Variable	value	field.	Note	the	use	of	the	semicolon	(;)	before	the	actual	directory.	This	is
used	to	delimit	one	path	from	another.

	Note		If	you	changed	the	default	installation	directory,	you	would	have	to	supply	that
directory	to	the	PATH	environment	variable	instead.

Once	the	nodejs	directory	has	been	added	to	our	PATH	environment	variable,	accept
the	changes	by	hitting	OK	on	all	remaining	windows.	Next,	reopen	the	Command	Prompt
window	and	run	the	following	command:	node	—version.

Mac	Installation

www.it-ebooks.info

http://www.it-ebooks.info/

Upon	navigating	to	nodejs.org/download/,	we	are	immediately	presented	with	the
tools	that	will	get	us	up	and	running.	As	there	is	no	reason	to	take	anything	but	the	path	of
least	resistance,	we	will	download	and	install	the	Mac	OS	X	Installer	(.pkg).	Unlike	the
installers	for	Windows/Linux,	the	Mac	Installer	provides	a	universal	installer.	Go	ahead
and	click	the	button	labeled	“Universal,”	to	begin	the	download	of	the	Mac	Installer.
Depending	on	which	browser	you	are	currently	using,	such	as	Chrome	or	Firefox,	you
may	receive	some	form	of	notification	that	requires	you	to	confirm	that	you	wish	to
download	the	indicated	file.

Once	the	download	has	completed,	locate	the	Node	installer	on	your	system.
Ordinarily,	files	are	downloaded	to	your	Downloads	folder.	Once	you	locate	the	installer,
double-click	the	installer,	to	initiate	the	installation	wizard.	At	this	point,	the	Node	setup
wizard	will	walk	us	through	the	installation	step-by-step.	The	initial	screen	simply	informs
us	of	where	the	package	will	install	node	and	npm.	Feel	free	to	click	the	button	labeled
“Continue.”

The	second	screen	of	the	wizard	presents	us	with	the	Node	license	agreement.	Before
continuing	to	the	next	screen,	you	must	accept	the	terms	in	the	agreement.	Take	this
opportunity	to	read	the	software	license	agreement,	then	click	Continue,	to	agree	to	the
terms	of	the	agreement.	Upon	agreeing	to	the	terms,	we	will	continue	into	the
configuration	portion	of	the	installation.

The	next	screen	enables	us	to	configure	the	default	destination	of	the	installation.
Unless	you	have	multiple	hard	drives,	you	may	only	have	one	option	available,	as
reflected	in	Figure	10-7.	Select	the	appropriate	destination	and	continue	to	the	installation
screen.

Figure	10-7.	Node	Mac	setup	wizard

www.it-ebooks.info

http://www.it-ebooks.info/

Once	you	reach	this	screen,	simply	click	Install,	then	sit	back	and	relax	for	a	short
moment.	You	will	be	presented	with	confirmation	that	the	Node	setup	wizard	has
completed	successfully.	You	might	note	that	the	Summary	screen	displays	the	paths	to
where	both	node	and	the	Node	Package	Manager,	or	npm,	binaries	are	located.
Additionally,	it	recommends	that	we	ensure	that	/usr/local/bin	is	specified	as	a
directory	within	our	$PATH	environment	variable.

The	$PATH	environment	variable	is	a	colon-delimited	list	of	directories	that	your	shell
searches	through	when	you	enter	a	command.	The	shell	searches	through	each	of	these
directories,	one	by	one,	until	it	finds	a	directory	in	which	the	executable	exists.	If	the	path
is	not	configured	with	the	directory	that	holds	our	two	bin	files,	they	will	not	be	found
and,	therefore,	never	executed.

In	order	to	verify	that	our	$PATH	variable	possesses	the	/usr/local/bin
directory,	we	must	utilize	the	built-in	command	line	of	the	Unix	OS	known	as	Terminal.
There	are	a	few	ways	to	access	Terminal,	but	we	will	rely	on	Spotlight.	Simply	clicking
the	magnifying	glass	in	the	top-right	corner,	or	pressing	Command	and	Space	at	the	same
time,	will	provide	access	to	Spotlight.	Within	the	input	field	to	the	right	of	where	it	states
Spotlight,	type	in	“Terminal,”	without	the	quotations.	This	will	begin	the	search	and
display	access	to	the	Terminal	application.	Select	the	result	shown	as	the	Top	Hit,	to	bring
up	the	Terminal	interface.

Within	the	terminal,	type	echo	$PATH,	then	hit	the	Enter	key	on	your	keyboard	to
execute	the	statement.	The	list	of	directories	that	are	configured	for	your	environment
should	be	outputted	to	the	terminal.	The	directories	that	are	listed	within	my	environment
can	be	viewed	in	Figure	10-8.

Figure	10-8.	Exported	$PATH	configuration

Among	the	directories	listed,	if	you	are	able	to	verify	/usr/local/bin,	it	should
be	safe	to	presume	that	the	node	and	npm	binaries	are	accessible.	If,	however,	the
preceding	path	is	not	found	within	the	$PATH	environment	variable,	we	will	have	to
configure	it.	Utilizing	the	terminal,	type	nano	~/.bash_profile,	then	hit	Enter.
This	will	bring	up	the	personal	initialization	file.	It	is	here	that	we	will	configure	our
$PATH	variable.

If	your	.bash_profile	is	empty,	as	shown	in	Figure	10-9,	simply	add	the	line
export	PATH=$PATH:/usr/local/bin,	then,	on	your	keyboard,	hold	down	the
Control	key	and	press	the	X	key	to	exit.	Before	the	application	terminates,	you	will	be
promoted	to	save	the	changes,	as	shown	in	Figure	10-10.	Simply	hit	Y	to	save,	and

www.it-ebooks.info

http://www.it-ebooks.info/

proceed	to	exit	.bash_profile.

Figure	10-9.	Empty	.bash_profile	content

Figure	10-10.	Configuring	the	$PATH	environment	variable	to	include	/usr/local/bin

	Note		The	preceding	code	(shown	in	Figure	10-10)	will	not	impair	your	existing
environment	variables.	It	will	merely	append	the	/usr/local/bin	directory	to	the
existing	list.

As	the	code	within	the	.bash_profile	is	only	run	prior	to	a	terminal	session,	close
the	existing	Terminal	application	and	open	the	application	once	again.	This	time,	when
you	type	echo	$PATH	and	then	hit	the	Enter	key	on	your	keyboard	to	execute	the
statement,	you	should	see	/usr/local/bin	among	the	list	of	directories	shown.

In	order	to	know	whether	or	not	Node	was	installed	and	configured	successfully,	type
the	command	node	–-version	within	the	console,	then	hit	Enter.	If	Node	has
successfully	been	configured,	you	should	be	provided	with	the	version	of	Node	that	has
been	installed.

If	you	are	presented	with	output	that	reflects	the	format	vX.XX.XX,	such	as	that
shown	in	Figure	10-11,	then	congratulations;	we	can	begin	working	with	Node	right	away.

www.it-ebooks.info

http://www.it-ebooks.info/

Feel	free	to	click	Close,	to	exit	the	Node	installation	wizard	and	proceed	to	the	section
“Building	an	HTTP	Server.”

Figure	10-11.	node	—version	resulting	in	the	output	of	the	installed	version	of	Node.js

Building	an	HTTP	Server
With	Node	installed	and	configured	properly,	it	is	high	time	to	begin	building	an	HTTP
server	that	we	can	continue	to	build	on	in	the	upcoming	chapters.	As	it	was	stated	at	the
beginning	of	this	chapter,	Node	is	a	platform	that	utilizes	the	JavaScript	language.
Therefore,	much	of	the	code	that	we	will	be	working	with	will	be	simply	vanilla
JavaScript.

Node	HTTP	Web	Server
In	this	chapter,	I	will	be	discussing	the	components	and	methods	that	make	up	a	Node
server.	While	all	code	will	be	utilizing	pure	JavaScript,	some	of	these	concepts	may	seem
new	to	you.	With	that	in	mind,	I	will	attempt	to	keeps	things	as	simple	as	possible.
However,	I	wish	to	provide	you	with	an	example	of	what	we	will	be	working	with.	This
will,	I	hope,	provide	you	with	a	concrete	example	that	you	can	keep	in	mind	throughout
this	chapter.	Listing	10-1	illustrates	an	introductory	Node	server	that	acts	as	our
foundation	for	this	chapter.

Listing	10-1.	Extremely	Basic	Node	Server

	1	var	http	=	require('http');

	2	var	server	=	http.createServer();

	3					server.addListener('request',	requestHandler);

	4					server.listen(1337,	'127.0.0.1');

	5

	6	function	requestHandler(request,	response)	{

	7					console.log(request.url);

	8					console.log(request.headers);

	9					var	body="Hello	World";

10					response.statusCode	=	200;

11					response.setHeader("Content-Type",	"text/plain");

12					response.setHeader("Content-Length",	

www.it-ebooks.info

http://www.it-ebooks.info/

Buffer.byteLength(body,	'utf8'));

13					response.end(body);

14	};

15	console.log('Server	running	at	http://127.0.0.1:1337/');

Listing	10-1,	displays	15	lines	of	code	that	make	up	the	content	of	a	simple	Node
server.	The	first	four	lines	are	all	that	are	required	to	devise	a	Node	Web	Server.	The	latter
nine	lines	of	code	demonstrate	how	to	configure	a	simple	response	for	any	and	all
incoming	HTTP	requests.	Let’s	walk	through	the	code	and	discuss	each	statement.

We	begin	by	loading	the	built-in	HTTP	module	of	the	Node	platform	via	the
require	function.	As	each	module	is	simply	a	JavaScript	object,	we	assign	the	loaded
module	and	then	assign	it	to	a	well-labeled	variable.	In	this	case,	that	variable	is	labeled
“http”	(line	1).	Utilizing	the	createServer	method	exposed	by	the	HTTP	object,	we
establish	a	new	instance	of	a	web	server.	Next,	we	assign	it	to	the	variable	labeled
“server,”	in	order	to	configure	the	web	server	(line	2).	From	there,	we	begin	with	our
first	configuration,	which	is	to	provide	a	function	to	the	server	as	the	default	handler	for
all	incoming	requests	to	this	server	instance.	When	the	server	receives	an	incoming
request,	it	dispatches	a	“request”	event	notification,	to	which	the	associated	handler	is
invoked,	thereby	handling	the	request	(line	3).	Last,	we	configure	the	server	to	monitor
any	incoming	transmissions	to	the	specified	domain	(127.0.0.1),	along	with	the	specified
port	(1337)	(line	4).

The	final	portion	of	code	(lines	6–15)	represents	the	business	logic	of	the	response.
The	handler	that	is	provided	to	the	server	will	consistently	be	provided	two	arguments	for
every	incoming	request.	The	first	argument,	the	request,	represents	an	object	that	retains
the	configurations	of	the	client’s	request.	This	object	can	be	used	to	obtain	the	method,
URL,	and	the	headers	of	the	request,	as	seen	in	lines	2–3.	The	second	argument	is	the
response,	which,	as	an	object,	exposes	the	necessary	properties	to	configure	an	HTTP
response,	as	seen	in	lines	10–13.

Within	the	body	of	the	request	handler,	we	obtain	the	reference	to	the	response	object
and	begin	to	provide	it	with	a	status	code.	We	will	set	this	to	200,	to	reflect	the
acknowledgment	of	the	request	provided	(line	10).	Next,	we	configure	the	headers	of	the
response.	As	we	will	be	providing	back	the	text	“Hello	World,”	we	use	the	setHeader
method	to	inform	the	client	of	the	Content-Type	(line	11).

Last,	we	invoke	the	response	object’s	end	method,	which	not	only	enables	us	to
provide	the	response	with	an	entity	body,	it	also	signifies	the	response	has	been	fully
crafted,	fulfilling	the	request	and	providing	the	response	back	to	the	client.	The	very	last
line	of	code	serves	only	to	output	to	the	Terminal	console	that	the	server	has	been	initiated
(line	13).

If	at	this	point,	if	you	were	to	navigate	to	http://127.0.0.1:1337,	you	would
not	be	provided	with	any	response	from	our	server.	That	is	because,	at	this	point,	we
haven’t	started	our	Node	application.	We	must	inform	the	Node	engine	to	parse	the
preceding	JavaScript,	in	order	for	our	server	to	be	operational.	To	accomplish	this,	it	will
be	necessary	to	save	the	base_server.js	within	a	directory	that	you	will	be	able	to
easily	navigate	to	via	the	command-line	utility.	You	can	obtain	the	location	of	a	file	simply

www.it-ebooks.info

http://www.it-ebooks.info/

by	right-clicking	the	document	and	selecting	“Get	Info”	for	Mac	or	“Properties”	for	a	PC.
To	obtain	the	location	of	the	file	in	question,	you	will	have	to	look	in	the	General	tab.	I
have	mine	saved	in	the	following	directory:

//PC

C:\Users\UrZA\Desktop\BeginningJSON\chapter10\server

//Mac

/Users/FeZEC/Desktop/BeginningJSON/chapter10/server

At	this	point,	if	you	have	closed	the	Terminal	or	Command	Prompt	window,	open	it
once	more	and	type	the	following:

//For	PC:

cd	C:\Users\UrZA\Desktop\BeginningJSON\chapter10\server

//For	Mac:

cd	/Users/FeZEC/Desktop/BeginningJSON/chapter10/server

However,	rather	than	referencing	the	location	of	my	file,	replace	the	preceding	path
with	the	directory	that	holds	your	file.	Note	that	I	did	not	add	the	name	of	the	file.	At	this
point,	within	the	Terminal	application,	type	node	10-1.js	and	then	hit	Return	on	your
keyboard.	If	you	have	successfully	navigated	to	the	proper	directory	and	provided	Node
with	the	proper	file	name,	you	should	see	the	statement	Server	running	at
http://127.0.0.1:1337/	outputted	to	the	terminal.	If,	however,	you	are	provided
with	an	error,	Error:	Cannot	find	module,	you	may	have	accidentally	misspelled
the	file	name	or	navigated	into	the	incorrect	directory.

If	the	problem	persists,	and	the	error	continues	to	state	that	it	is	unable	to	find	the
module	provided,	simply	move	base_server.js	directly	to	your	desktop.	Then,	open
the	console	window	and	type:	node	~/Desktop/10-1.js	(Mac)	or	node
C:\Users\YourUserNameHere\Desktop\10-1.js	(PC),	then	hit	Enter.	This
time,	rather	than	navigating	into	the	desktop	directory	before	informing	Node	of	the	file
name	to	run,	execute	the	Node	shell	and	explicitly	specify	the	full	path	of	the	script.

We	could	have	just	as	easily	navigated	to	the	desktop	directory	first,	then	typed	node
10-1.js.	The	difference	is	that	when	you	are	within	the	directory	that	holds	the	file,	you
do	not	require	specifying	the	path.

Now	that	we	have	our	server	up	and	running,	let’s	open	our	preferred	browser	and
navigate	to	http://127.0.0.1:1337.	Upon	your	arrival,	you	should	see	“Hello
World”	outputted	to	the	screen,	as	in	Figure	10-12.

www.it-ebooks.info

http://www.it-ebooks.info/

Figure	10-12.	Our	first	“Hello	World”	Node	Server

If	you	were	to	open	your	developer	console,	bring	the	network	pane	into	view,	and
refresh	the	page,	you	would	be	able	to	view	the	headers	of	our	response,	however	minimal
they	may	be.	What	you	should	see	are	the	following	headers:

HTTP/1.1	200	OK

Content-Type:	text/plain

Content-Length:	11

Date:	Mon,	14	Jul	2014	00:19:09	GMT

Over	the	course	of	this	chapter,	we	will	continue	to	modify	the	body	of	code	that	exists
within	requestHandler,	so	that	we	can	serve	JSON	to	our	web	applications.

Now,	exit	out	of	the	browser	and	locate	the	console	window	that	was	used	to	start	up
our	server	and	give	it	focus.	While	holding	the	Control	key	on	the	keyboard,	press	the
letter	C,	to	shut	down	the	application.	A	running	server	will	not	reflect	changes	to	the
JavaScript	code.	It	will	be	necessary	to	shut	down	the	server	instance	and	start	it	back	up,
for	any	changes	to	be	present.

Node	API
The	great	thing	about	the	Node	API	is	that	it’s	relatively	small,	given	how	powerful	it	is.
You	can	view	the	entire	documentation	from	the	Node	web	site	located	at
http://nodejs.org/api/.	If	you	find	yourself	feeling	a	bit	overwhelmed	from
looking	at	the	table	of	contents,	let	me	assure	you	that	I	am	only	going	to	talk	about	a	few
aspects	of	the	API.	Those	aspects	are	the	following	modules:	HTTP,	Path,	URL,	and	File
System.	Furthermore,	for	the	purpose	of	this	chapter,	we	will	only	be	regarding	a	subset	of
said	modules.

Modules
Modules,	for	all	intents	and	purposes,	are	nothing	more	than	JavaScript	objects.	By
referencing	a	specific	module,	we	are	able	to	utilize	the	interface	to	which	the	object
exposes.	Additionally,	as	they	are	broken	out	into	their	own	context,	we	can	choose	to
load	in	only	the	objects	that	our	server	requires,	thereby	lowering	the	amount	of	overhead

www.it-ebooks.info

http://nodejs.org/api/
http://www.it-ebooks.info/

on	the	server.	While	it	is	possible	to	create	your	own	modules	(following	the	CommonJS
architecture),	we	will	only	be	considering	built-in	modules	of	Node.

Each	module	in	Node	(built-in	or	custom)	can	be	imported	into	an	application	via	a
simple	function	call.	That	function	is	simply	require.	As	demonstrated	by	the	signature
in	Listing	10-2,	the	require	function	simply	expects	a	singular	argument,	which
represents	the	module	to	load	in.

Listing	10-2.	Signature	of	the	require	Method

require('module');

For	all	built-in	modules,	we	can	simply	specify	the	name	of	the	module.	The
aforementioned	modules	HTTP,	Path,	URL,	and	File	System	can	be	imported	using	their
respective	names:	http,	path,	url,	and	fs.

For	each	module	specified,	a	corresponding	object	is	loaded	into	the	application	and
evaluated.	It	will	be	necessary	to	assign	the	object	returned	to	an	appropriately	labeled
variable,	so	that	its	interface	can	be	utilized	at	a	later	point	in	time.	Listing	10-3
demonstrates	how	we	can	load	and	reference	the	preceding	modules.

Listing	10-3.	Imported	Modules	via	the	require	Method

var	http	=	require('http');

var	path	=	require('path');

var	url	=	require('url');

var	fileSystem	=	require('fs');

The	first	module	referenced	is	that	of	http,	and	it	is	essential	for	any	Node	server.	It
is	responsible,	with	the	help	of	several	internal	objects,	for	facilitating	the	mechanisms	of
an	HTTP	server.

The	HTTP	Module
The	HTTP	module	is	responsible	for	devising	a	server	instance	and	initiating	server-side
HTTP	requests	(which	will	be	used	for	our	proxy).	It	concerns	the	handling	of	streams,	as
well	as	parsing	messages	into	headers	and,	possibly,	an	entity	body.	In	order	to	remain
flexible	for	any	and	all	possible	applications,	the	HTTP	module	possesses	an	extremely
low-level	API.	What	this	means	is	that,	much	like	a	box	of	LEGOs,	all	the	individual	parts
required	to	build	a	server	have	been	packaged	within	Node.	However,	it	will	be	up	to	us	to
connect	the	individual	pieces	as	we	see	fit.

The	parts	that	have	shipped	within	the	HTTP	module	box	that	we	will	be	exploring	for
the	duration	of	this	chapter	are	http.IncomingRequest,
http.ServerResponse,	http.Server,	http.ClientRequest,	and
http.Streams.	The	two	methods	outlined	in	Table	10-1	will	be	the	two	methods	of	the
HTTP	module	that	we	will	use	throughout	this	chapter.

Table	10-1.	Methods	of	the	HTTP	Module

www.it-ebooks.info

http://www.it-ebooks.info/

Methods Description

createServer([requestListener]) Returns	a	new	web	server	object

request(options,	[callback])
Enables	the	ability	to	issue	server	requests.	*Returns	an
instance	ClientRequest

http.createServer
The	HTTP	method	createServer	is	solely	responsible	for	instantiating	a	server
instance	that	will	be	used	for	monitoring	connections	to	our	server.	I	will	discuss	the
server	shortly.	As	you	can	see	from	the	signature	in	Table	10-1,	an	optional	callback	can
be	supplied	as	an	argument	of	the	method.	This	will	be	the	method	that	will	be	invoked	the
moment	a	request	is	made	of	our	server.	Any	provided	requestListener	must
possess	the	following	signature:	function	(request,	response);.

http.IncomingMessage
The	first	argument	provided,	request,	is	an	instance	of	the	IncomingMessage
Object.	IncomingMessage	exposes	an	API	that	is	instrumental	in	obtaining	all	parts	of
the	request.	Through	it,	we	can	obtain	the	requested	URL,	the	request	method,	the
supplied	headers	of	the	request,	and	the	entity	body,	if	one	was	supplied.

Table	10-2	outlines	the	interface	of	the	IncomingMessage	object	that	makes	it
simple	for	our	application	to	obtain	key	aspects	of	the	request.	However,	you	may	notice
there	is	no	attribute	for	obtaining	the	entity	body.	As	this	is	a	slightly	more	complex	task,	I
will	discuss	how	to	obtain	the	entity	body	in	the	“The	Proxy	Server”	section.

Table	10-2.	Methods	of	the	IncomingMessage	Object

Methods Description

url Returns	as	a	string	the	URL	that	is	present	in	the	actual	HTTP	request

Method Returns	the	HTTP	request	method	as	a	string

Headers Returns	an	object	containing	the	request	headers	and	values.	*Header	names	are	lowercased.

http.ServerResponse
The	second	argument,	the	response,	is	an	instance	of	an	object	member	of	the	HTTP
module	known	as	ServerResponse.	It	will	be	through	the	interface	of	the	response
instance	that	we	can	provide	a	response	back	to	the	client	of	the	request.	The	exposed
interface	of	the	ServerResponse	Object	that	we	will	make	use	of	can	be	viewed	in
Table	10-3.

Table	10-3.	Methods	of	the	ServerResponse	Object

Methods Description

www.it-ebooks.info

http://www.it-ebooks.info/

response.setHeader(name,

value) Sets	a	single	header	value	for	the	response

response.write(chunk,

[encoding])

Sends	a	chunk	of	the	response	body.	*Can	be	called	multiple	times.
Possible	encodings	are	binary	or	utf8.

response.statusCode
Setter	method	used	to	generate	the	status-line	of	the	response.
*Expected	assignment	is	a	valid	HTTP	status	code.

response.end([data],

[encoding])

Signals	the	end	of	the	response.	It	can	be	called	with	an	entity	body.
*Data	must	be	in	string	form.

http.Server
The	request	and	response	instances	supplied	to	the	requestListener	method
are	always	supplied	by	our	server	instance	and	for	any	incoming	request.	In	short,	the
server	instance	is	an	event	dispatcher	or	event	emitter,	notifying	any	event	listeners	to	the
incoming	event	via	the	“request”	notification	(See	Table	10-5).	Because	the	server	is	an
event	dispatcher,	it’s	a	matter	of	preference	if	you	wish	to	designate	requestListener
at	the	time	of	creating	the	server	instance.	As	an	alternative,	if	you	prefer	the	more	object-
oriented	route,	you	can	choose	to	listen	for	the	“request”	notification,	via	the	server’s
addListener	method	(See	Table	10-4).	The	two	possible	manners,	as	shown	in	Listing
10-4,	are	equivalent.

Listing	10-4.	Providing	a	Callback	as	the	Function	to	Trigger,	per	Incoming	Request

var	serverA=	http.createServer(requestListener);

//or

var	serverB=http.createServer();

				serverB.addListener("request",	requestListener);

Table	10-4.	Methods	of	the	Server	object

Members Description

addListener(event	,	callback

);
Assigns	an	event	handler	for	a	particular	event

listen(port,	[hostname])
Begins	accepting	connection	on	the	specified	port	and
hostname

Table	10-5.	Events	of	the	Server	object

Event Description

request
Emitted	each	time	there	is	a	request.	The	event	handler	will	receive	a	request	and	response
instance.

In	order	for	our	server	to	monitor	the	request,	we	must	first	establish	which
connections	it	is	responsible	for.	In	order	to	do	this,	we	will	use	the	listen	method	of
our	server	instance.	The	listen	method,	as	shown	in	Listing	10-5,	can	be	supplied	with

www.it-ebooks.info

http://www.it-ebooks.info/

two	arguments.	The	first	parameter,	port,	is	required,	while	the	second	parameter,
hostname,	remains	optional.	For	the	purposes	of	this	book,	both	will	be	used.

Listing	10-5.	Signature	of	the	listen	Method

listen(port,	[hostname]);

Where	hostname	is	required,	we	will	always	use	the	IP	address	127.0.0.1,	which	is
simply	a	way	to	access	one’s	own	computer’s	network	services.	The	value	of	the	port,	on
the	other	hand,	is	used	to	afford	multiple	servers	the	ability	to	listen	to	the	same	IP.
However,	by	specifying	a	port,	all	running	servers	on	127.0.0.1	will	be	able	to	distinguish
their	incoming	requests	from	the	others.

At	this	point,	you	should	have	an	understanding	of	the	basic	components	that	are	used
to	craft	a	rudimentary	Node	server.	Before	we	continue	to	learn	the	remaining	parts,	let’s
review,	in	a	simple	exercise,	what	we	have	learned.

EXERCISE	10-1.	YOUR	FIRST	JSON	SERVER

Use	the	HTTP	module	and	its	members	to	create	a	server	that	monitors	all	incoming
traffic	on	port	1337.	Furthermore,	utilizing	the	interface	of	both	the	response	and
request	objects,	provide	the	necessary	implementation	that	results	in	the	response
headers	shown	following.	The	response	should	satisfy	only	the	target	resource	of	the
request	(shown	following).

Request	Headers

GET	/message.json	HTTP/1.1

Host:	127.0.0.1:1337

Accept:	application/json

Response	Headers

HTTP/1.1	200	OK

Content-Type:	application/json

Content-Length:	25

{"message":"hello-world"}

	Hint	In	order	to	arrive	at	the	correct	Content-Length	for	the	entity	body,	you	must
supply	the	body	to	the	following	method:	Buffer.byteLength(data	,
'utf8'));.

Test	if	you	are	correct	by	navigating	your	browser	to	your	server.	Be	sure	to	append	a
few	paths	after	the	URL	and	port	to	ensure	that	only	the	request	is	satisfied:
http://127.0.0.1:1337/[paths-here].

Listing	10-6	reveals	the	answer	to	the	previous	exercise.	We	begin	by	importing	our
HTTP	module	(line	1).	We	then	invoke	its	createServer	method	to	initialize	our
server	(line	2).	Additionally,	using	the	optional	parameter,	we	supply	the	callback

www.it-ebooks.info

http://127.0.0.1:1337/
http://www.it-ebooks.info/

method	that	will	be	triggered	for	each	incoming	request.	Utilizing	the	listen	method,
inform	the	server	to	monitor	our	localhost,	with	a	focus	on	port	1337	(line	3).

Listing	10-6.	Answer	to	Our	JSON	Exercise

	1	var	http			=	require('http');

	2	var	server	=	http.createServer(requestHandler);

	3					server.listen(1337);

	4	function	requestHandler(request,	response)	{

	5				if	(request.url	===	"/message.json")	{

	6								var	body	=	JSON.stringify({

	7																						message	:	"hello-world"

	8																			});

	9							response.statusCode	=	200;

10							response.setHeader("Content-Type",	

"application/json");

11							response.setHeader("Content-Length",	

Buffer.byteLength(body,	'utf8'));

12							response.end(body);

13			}

14	};

15	console.log('Server	running	at	http://127.0.0.1:1337/');

When	an	incoming	request	notification	occurs,	our	requestHandler	function	will
be	invoked	and	supplied	two	objects:	request	and	response	(line	4).	Per	the	exercise,
our	task	was	to	ensure	that	the	response	was	provided	only	for	the	requested
/message.json	resource.	To	ensure	that	we	respond	only	to	that	resource,	we	must
obtain	the	requested	URL	and	compare	it	before	we	handle	it	(line	5).	This	is
accomplished	with	strict	equality.	If,	and	only	if,	the	requested	resource	matches
/message.json	do	we	configure	a	response.

Utilizing	the	JSON.stringify	method	(remember:	Node	runs	on	JavaScript),	we
convert	an	object	into	a	string	(line	6).	From	there,	utilizing	the	setter	method	of	the
statusCode	attribute	of	the	response	object,	we	assign	it	a	value	of	200.	This	will
inform	the	client	that	the	request	was	understood	(line	9).	Next,	utilizing	the	setHeader
method,	we	supply	the	Content-Type,	which,	of	course,	is	application/json	(line
10).	In	order	to	calculate	the	Content-Length,	we	supply	the	body	variable,	which	is
currently	assigned	our	JSON	text,	to	the	Buffer.byteLength	method.	Utilizing	the
proper	encoding,	we	can	arrive	at	the	proper	Character-Length	(line	11).

Remember	that	Character-Length	is	not	simply	the	character	length	but,	rather,	the
length	in	bytes.	While	ASCII	characters	require	1	byte	per	character,	you	should
remember	that	JSON	is	UTF8.	Therefore,	it	is	simply	safer	to	rely	on	the
Buffer.byteLength	method	to	determine	the	length	of	our	UTF8-encoded	JSON
values.

Last,	we	use	the	end	method	of	our	response	object	to	signify	that	our	response
has	been	configured	at	last.	Additionally,	we	supply	our	body	variable	as	an	argument	to

www.it-ebooks.info

http://www.it-ebooks.info/

the	optional	parameter.

If	we	were	to	run	this	server	and	navigate	to	http://127.0.0.1:1337/,	we
should	not	be	provided	with	anything.	In	fact,	the	request	should	never	be	fulfilled.	A
response	is	only	completed	with	the	invocation	of	response.end().	However,	this
method	will	only	be	triggered	if	we	navigate	to
http://127.0.0.1:1337/message.json.	Upon	arriving	at	this	URL,	we	will
also	be	faced	with	our	JSON	message	outputted	to	the	viewport,	as	shown	in	Figure	10-13.

Figure	10-13.	message.json	outputs	the	expected	JSON

To	keep	things	simple,	the	previous	exercise	only	required	that	you	configure	a
response	for	a	particular	request.	However,	it	should	be	known	that	all	requests	be
provided	a	proper	response.	Failure	to	use	the	end	method	of	the	response	object	will
result	in	the	client	waiting	until	a	time-out	occurs.	You	can	experience	a	time-out	simply
by	navigating	to	127.0.0.1:1337/.

A	request	can	be	handled	in	any	manner	you	see	fit.	The	preceding	exercise	created	an
object	on	the	fly,	but	we	could	just	as	easily	have	provided	the	contents	of	a	JSON
document,	by	tapping	into	the	File	System	module.

Nevertheless,	by	monitoring	the	interface	of	the	IncomingRequest	instance,
whether	it’s	by	the	exposed	URL	or	any	of	its	configured	headers,	we	can	determine	how
to	best	satisfy	the	request.	This	takeaway	will	be	essential	for	the	remainder	of	this
chapter.

CORS-Enabled	Server
If	you	are	following	along	with	the	source	code	provided,	take	a	moment	to	locate	the	file
labeled	“xss-server.js”	within	Chapter	10.	Right-click	the	file	and	select	“Get-
Info,”	if	you’re	on	Mac,	or	“Properties,”	for	a	PC.	Within	the	General	tab,	locate	the
absolute	path	for	the	file	and	copy	it.

Now,	open	up	a	second	window	of	the	Command	Prompt	(PC)	or	Terminal.app	(Mac).
Within	this	second	command	window,	we	are	going	to	start	our	xss-server.	At	this
point,	type	“node”	and	then	paste	the	location	to	the	aforementioned	xss-server.js.
If	the	address	is	found,	you	should	see	a	message	informing	you	that	a	server	is	running	at
http://127.0.0.1:8080.

www.it-ebooks.info

http://www.it-ebooks.info/

Ensure	that	your	previous	server	is	still	running,	by	navigating	to
http://127.0.0.1:1337/message.json.	I	hope	{“message”:“hello-
world”}	is	outputted	to	the	screen.	If	so,	the	server	is	ready	to	receive	our	request;
otherwise,	we	must	start	up	our	exercise	server	once	again.

Now,	with	both	servers	running,	proceed	to	http://127.0.0.1:8080.	If	you	are
not	following	along	with	the	source	code,	navigate	your	browser	to
http://json.sandboxed.guru/chapter10/xss-exercise.html.	Upon
arriving	at	either	of	the	two	destinations,	you	will	be	presented	with	the	code	for	an	xhr
object	configured	to	make	a	request	to	http://127.0.0.1:1337/message.json.
Now,	open	the	developer’s	console,	copy	and	paste	the	code	provided	for	the	request,	and
execute	the	code	to	observe	the	results.	As	in	our	previous	chapter,	you	should	be
confronted	with	the	infamous	network	error,	as	shown	in	Figure	10-14.

Figure	10-14.	Cross-origin	network	error

However,	as	we	are	in	control	of	the	server	and	can	configure	the	headers	for
message.json,	we	can	resolve	this	in	one	of	three	manners.	The	first	is	to	incorporate
the	necessary	headers,	as	outlined	by	the	W3C	CORS	standard.	Second,	we	can	utilize	a
proxy	to	make	authorized	requests	on	our	client’s	behalf.	Third,	we	can	exchange	JSON	as
valid	JavaScript	via	JSONP.

At	this	point	in	the	chapter,	we	have	everything	we	require	to	fulfill	a	request	via	the
first	and	third	option;	however,	we	have	yet	to	discuss	a	few	particulars	that	would	enable
us	to	devise	a	proxy.	That	being	said,	let’s	resolve	the	matter	by	way	of	incorporating	the
CORS	header	Access-Control-Allow-Origin	(see	Listing	10-7).

Listing	10-7.	message.json	with	CORS	Enabled

	1	var	http			=	require('http');

	2	var	server	=	http.createServer(requestHandler);

	3					server.listen(1337,	'127.0.0.1');

	4	function	requestHandler(request,	response)	{

	5				if	(request.url	===	"/message.json")	{

	6								var	body	=	JSON.stringify({

	7																						message	:	"hello-world"

	8																			});

	9							response.statusCode	=	200;

www.it-ebooks.info

http://json.sandboxed.guru/chapter10/xss-exercise.html
http://127.0.0.1:1337/message.json
http://www.it-ebooks.info/

10							response.setHeader("Access-Control-Allow-Origin",	'*');

11							response.setHeader("Content-Type",	

"application/json");

12							response.setHeader("Content-Length",	

Buffer.byteLength(body,	'utf8'));

13							response.end(body);

14			}

15	};

16	console.log('Server	running	at	http://127.0.0.1:1337/');

Listing	10-7	reveals	in	bold	the	inclusion	of	the	CORS	header	and	configures	its	value
to	that	of	the	wildcard	*	token.	This	will	provide	authorization	to	all	requests	from	any
origin.	However,	we	could	have	determined	whether	the	source	origin	via	the	origin
header	was	exposed	via	request.headers,	to	determine	if	the	indicated	source	origin
should	be	authorized	to	access	the	resource.	If	we	determine	the	source	origin	to	be
authorized,	we	can	simply	configure	the	value	for	the	header	with	the	source	origin	of	the
incoming	message,	as	seen	in	Listing	10-8.

Listing	10-8.	message.json	CORS	Enabled	for	json.andboxed.guru	Only

	8								//..	code	truncated

	9							var	sourceOrigin		=	request.headers.origin;

10							var	originAllowed	=	(sourceOrigin	===	

"http://json.sandboxed.guru")	?	sourceOrigin	:	null;

11							response.setHeader("Access-Control-Allow-Origin",	

originAllowed);

12							//..	code	truncated

The	preceding	code	in	Listing	10-8	obtains	the	origin	header	from	the	incoming
message	via	the	request	object.	(In	Node,	all	exposed	headers	are	lowercase.)	Utilizing
the	value	returned	from	this	header,	we	can	determine	if	it	is	a	source	origin	we	are
expecting,	such	as	that	of	json.sandboxed.guru.	We	can	match	the	value	against
more	values;	however,	as	this	is	simply	for	demonstrative	purposes,	I	chose	just	the	one.
Utilizing	a	tertiary	operator	(a	succinct,	if	else,	evaluation),	we	determine	if	the	source
origin	should	be	provided	as	the	value	to	the	Access-Control-Allow-Origin	header.	If	it	is
a	match,	we	will	provide	the	origin.	However,	if	it	is	not	a	match,	we	will	supply	the	value
with	null.

With	the	new	line	in	place,	let’s	restart	our	server.	First,	we	must	shut	down	the	server
by	pressing	Control+C,	then	we	can	initialize	our	server	by	typing	node,	followed	by	the
name	of	the	exercise.js	file.	Alternatively,	you	could	hit	the	up	key	on	your
keyboard	within	the	console	to	use	a	previous	command.	Either	way,	hit	Enter,	once	the
proper	command	is	in	place,	to	run	the	server.

At	this	point,	an	attempt	to	obtain	the	message.json	resource	from	either
http://127.0.0.1:8080	or
http://json.sandboxed.guru/chapter10/xss-exercise.html	will	be
successful.	Congratulations,	you	have	just	configured	your	first	CORS-enabled	resource	to

www.it-ebooks.info

http://127.0.0.1:1337/
http://json.sandboxed.guru/chapter10/xss-exercise.html
http://www.it-ebooks.info/

handle	simple	requests.	At	this	point,	feel	free	to	shut	down	both	servers,	as	we	will
shortly	modify	our	code	to	provide	JSONP	also.

JSONP	Server
A	JSONP	server,	as	you	recall	from	Chapter	9,	requires	us	to	pad	our	JSON	entity,	so	that
the	script	engine	views	it	as	valid	JavaScript.	In	other	words,	we	cannot	return	JSON	as	an
entity	body	whose	structural	composition	is	that	of	a	collection	(signified	by	the	beginning
and	ending	of	the	{	and	}	tokens).

While	this	will	not	prohibit	us	from	returning	JSON,	whose	structural	composition	is
that	of	an	ordered	list,	we	will	still	be	confronted	with	the	dilemma	of	obtaining	the	data
upon	being	evaluated	by	the	script	engine.	In	order	to	combat	this,	our	JSON	must	be
wrapped	or	padded	by	the	grouping	operator	and	prepended	with	a	function	name	supplied
by	the	requesting	client.	The	JSONP	model	establishes	that	this	identifier	should	be
provided	as	the	value	to	a	query	string	parameter	labeled	“jsonp.”

Let’s	leverage	our	existing	JSON	server	to	support	the	JSONP	format	also,	so	that	if	a
request	for	the	resource	message.json	arrives,	we	can	continue	to	supply	it	with
JSON.	However,	should	the	URL	possess	the	jsonp	parameter,	we	can	manipulate	the
JSON	to	reflect	the	JSONP	model.	Because	the	request.url	provides	us	with	a	string
reflecting	the	entire	URL	as	it	pertains	to	the	request,	it	will	be	necessary	to	use	string
manipulation	to	mask	the	various	components	that	could	possibly	be	reflected	in	the
string.	In	other	words,	we	will	have	to	isolate	any	and	all	query	strings	from	the	path	of
our	resource	from	the	provided	string.	Furthermore,	for	any	query	string	key	provided,	it
will	be	necessary	to	obtain	its	corresponding	value.	Only	by	taking	this	route	can	we	be
certain	our	conditions	for	a	particular	URL	will	be	a	match.	Additionally,	it	will	allow	our
server	to	determine	whether	to	respond	with	JSON	or	JSONP.	We	can	validate	the
conditions	accordingly,	utilizing	some	vanilla	JavaScript,	as	demonstrated	in	Listing	10-9.

Listing	10-9.	Skeletal	Body	of	a	requestHandler	to	Extract	the	Possible	jsonp	Key-
Value	from	the	request.url

	1	function	requestHandler(request	,		response){

	3				if(request.url	===	'/message.json')	{

	4									//	return	JSON	entity

	5				}	else	

if(request.url.toLowerCase().indexOf('/message.json?jsonp=')	

>	-	1)	{

	6									//	return	JSONP	entity;

	7				}	else	{

	8									//	404	file	not	found;

	9							}

10	}

11	function	getParamKey(key,	str)	{

12				var	regExp	=	new	RegExp(key.toLowerCase()	+	'=[^&]*');

13				var	matchingValue	=	(str.toLowerCase()).match(regExp);

www.it-ebooks.info

http://www.it-ebooks.info/

14				for	(var	i	=	0;	i	<	matchingValue.length;	i++)	{

15										var	replacedValue	=	matchingValue[i].replace(key	

+	'=',	'');

16										matchingValue[i]	=	replacedValue;

17				}

18				return	decodeURIComponent(matchingValue[0]);

19	};

Listing	10-9	reflects	the	skeletal	structure	to	assess	whether	the	requested
/message.json	resource	should	be	returned	as	JSON	or	JSONP.	The	code	begins	by
assessing	whether	the	request.url	matches	exactly	that	of	the	/messages.json
(line	3).	If	this	is	the	case,	we	will	continue	to	provide	the	response	in	JSON	form.	If,
however,	the	URL	requested	does	not	explicitly	match	that	of	/messages.json,	we
further	analyze	it	to	determine	if	the	URL	in	question	contains	the	following	substring:
/message.json?jsonp=	(line	5).	This	is	accomplished	through	the	inherited
indexOf	method	possessed	by	all	strings.	If	the	substring	is	found	within	the	request
URI,	the	character	index,	as	to	the	beginning	of	the	match,	will	be	supplied	as	the	value	of
the	evaluation.	However,	if	the	substring	is	not	found,	it	returns	the	integer	-1.	Therefore,
should	the	value	be	greater	than	-1,	we	can	be	sure	that	the	request	is	for
message.json	and	that	the	client	wishes	to	receive	the	response	as	JSONP.	If	the	URL
does	not	reflect	any	of	these	conditions,	we	shall	supply	the	status	code	of	404	(File	Not
Found).

Last,	in	order	to	extract	the	value	possessed	by	the	jsonp	parameter,	we	will	utilize	a
modified	version	of	our	getCookie	function,	discussed	in	Chapter	7.	This	time,
however,	rather	than	extracting	a	particular	key	from	a	cookie,	we	will	be	extracting	the
value	of	a	particular	parameter.	As	we	will	no	longer	be	“getting-cookies”	but,	rather,
obtaining	a	“parameter-key,”	we	will	name	this	method	getParamKey.

The	function	getParamKey	is	called	with	two	arguments.	The	first	represents	the
key	to	extract,	while	the	second	represents	the	string	that	is	in	possession	of	the	key	we
seek	to	obtain	(line	11).	Utilizing	a	regular	expression,	we	analyze	the	provided	string	for
a	possible	pattern	match	(line	12).	That	pattern,	of	course,	is	the	name	of	the	key,	followed
by	the	=	token	and	any	subsequent	characters,	providing	that	character	is	not	the	&	token
(which	would	denote	the	beginning	of	another	key).	From	there,	if	the	pattern	is	matched,
we	store	those	matches	in	the	matchingValue	variable	(line	13).	Next,	as	our	match
will	reflect	the	key	=	value	format,	we	must	isolate	the	value	(line	15).	We	can
achieve	this	easily	by	replacing	our	key=	with	and	empty	string	'',	essentially	deleting
that	portion	of	our	string.	Last,	we	decode	the	value,	in	case	it	is	URL-encoded,	and	then
return	it	to	the	caller	of	the	function	(line	18).

	Note		When	dealing	with	JSONP,	it	will	be	beneficial	to	ensure	that	the	returned	value
is	not	URL	encoded,	lest	we	wrap	our	JSON	with	a	label	such	as	%20someMethod%20.

Let’s	now	revisit	our	previous	code	from	Listing	10-7	and	begin	serving	up	our
JSON/JSONP	server	(see	Listing	10-10).

www.it-ebooks.info

http://www.it-ebooks.info/

Listing	10-10.	Simple	JSON	and	JSONP	Server

	1	var	http	=	require('http');

	2	var	server	=	http.createServer();

	3	server.addListener("request",	requestHandler);

	4	server.listen(1337,	'127.0.0.1');

	5	function	requestHandler(request,	response)	{

	6					var	body;

	7					if	(request.url	===	'/message.json')	{

	8									//	return	JSON	entity;

	9									response.statusCode	=	200;

10									response.setHeader("Access-Control-Allow-Origin",	

"*");

11									response.setHeader("Content-Type",	

"application/javascript");

12									body	=	JSON.stringify({	message	:	"hello-world"	

});

13					}	else	if	(request.url.toLowerCase().indexOf('/message.json?jsonp=')	

>	-1)	{

14									//	return	JSONP	entity;

15									response.statusCode	=	200;

16									response.setHeader("Content-Type",	"application/javascript");

17									var	jsonText	=	JSON.stringify({	message	:	"hello-world"	});

18									body	=	getParamKey("jsonp",	request.url)	+	"("	+	jsonText	

+	");";

19					}	else	{

20									//	404	file	not	found;

21									response.statusCode	=	404;

22									response.setHeader("Content-Type",	"text/html");

23									body	=	"<h1>404<h1>	page	not	found";

24					}

25					(body)	?	response.end(body)	:	response.end();

26	};

27	function	getParamKey(key,str)	{

28				var	regExp	=	new	RegExp(key.toLowerCase()	+	'=[^&]*');
29				var	matchingValue	=	(str.toLowerCase()).match(regExp);

30				for	(var	i	=	0;	i	<	matchingValue.length;	i++)	{

31										var	replacedValue	=	matchingValue[i].replace(key	+	'=',	'');

32										matchingValue[i]	=	replacedValue;

33				}

34				return	decodeURIComponent(matchingValue[0]);

35	};

36	console.log('Server	running	at	http://127.0.0.1:1337/');

Listing	10-10	reflects	in	bold	the	latest	code	changes	inserted	into	our	earlier
json.server,	in	order	to	fulfill	a	request	for	JSONP.	At	this	point	in	time,	let’s	run
Listing	10-10	and	navigate	your	browser	to
http://127.0.0.1:1337/message.json.	You	should	find	that	your	browser

www.it-ebooks.info

http://127.0.0.1:1337/message.json
http://www.it-ebooks.info/

continues	to	output	the	previous	message,	as	shown	in	Figure	10-13.	Now,	if	you	were	to
append	?jsonp=someMethod	to	the	current	URL
(http://127.0.0.1:1337/message.json?jsonp=someMethod),	you	should
be	presented	with	the	same	JSON	text,	only	now	it	should	reflect	the	JSONP	model,	as
seen	in	Figure	10-15.

Figure	10-15.	Output	of	JSONP,	demonstrating	the	client-supplied	value	as	the	prepended	function	name

Any	value	you	provide	for	the	jsonp	key	will	continue	to	be	prepended	to	the	padded
JSON.	As	our	server	is	now	serving	JSONP,	let’s	test	its	acquisition	from	another	origin.
For	those	following	along	with	the	source	code,	feel	free	to	run	the	jsonp.html	from
within	the	BeginingJSON/chapter10/	directory;	otherwise,	navigate	your	browser
to	http://json.sandboxed.guru/chapter10/jsonp.html.	What	you
should	be	witnessing	is	a	button	labeled	“load	jsonp,”	such	as	that	in	Figure	10-16.

Figure	10-16.	jsonp.html	from	y,	configured	to	load	in	JSONP	from	your	local	server

By	clicking	this	button,	we	will	dynamically	inject	a	script	tag	into	our	document.	As
you	may	have	already	guessed,	the	resource	that	is	specified	as	the	external	resource	to
obtain	is	none	other	than	that	of	your	server.	With	that	being	said,	and	with	our	server	up
and	running,	let’s	do	as	the	button	suggests	and	load	some	JSONP.

Much	as	is	illustrated	in	Figure	10-17,	no	matter	how	many	times	you	click	the	button,
the	result	will	always	be	the	same.	That	result	is	the	reception	of	JSONP	from	your	server.

www.it-ebooks.info

http://127.0.0.1:1337/message.json?jsonp=someMethod
http://json.sandboxed.guru/chapter10/jsonp.html
http://www.it-ebooks.info/

Congratulations!	At	this	point,	you	have	successfully	configured	a	server	to	fulfill	a
JSONP	request.

Figure	10-17.	json.sandboxed.guru	successfully	receiving	JSONP	from	your	server

The	Proxy	Server
Before	we	delve	into	the	proxy	server,	we	must	revisit	our	previous	discussion	pertaining
to	the	members	of	the	HTTP	module.	As	you	may	recall,	I	had	previously	mentioned	that
the	HTTP	module	possesses	the	ability	to	make	client	requests	directly	from	the	server.
This	is	achieved	via	the	request	method	belonging	to	the	HTTP	module.

http.request
The	request	method,	the	second	method	of	the	HTTP	module	shown	in	Table	10-2,
whose	signature	is	the	request(options,	[callback]);,	provides	the	server
with	the	ability	to	configure	a	client	request.	This	method,	as	witnessed	in	the	signature,	is
able	to	receive	two	parameters.	The	first	parameter,	options,	must	be	provided	with	an
object	whose	member’s	make	up	the	request	line,	in	addition	to	the	headers	of	the	request.
Such	members	can	be	seen	in	Table	10-6.

Table	10-6.	Possible	Keys	That	Can	Belong	to	the	Argument	of	the	options	Parameter

Properties Description

host A	domain	name	or	IP	address	of	the	server	that	issues	the	request

port Port	of	the	provided	host

method A	string	specifying	the	HTTP	request	method

path Requested	resource.	*Defaults	to	/

headers An	object	containing	request	headers

The	second	parameter,	callback,	represents	the	function	to	be	triggered	as	the
handler	on	receiving	a	response	from	the	remote	server.	In	order	to	obtain	the	response,
the	function	indicated	as	the	callback	must	possess	the	signature	shown	in	Listing	10-11.

www.it-ebooks.info

http://www.it-ebooks.info/

Listing	11-11.	Signature	of	the	Request	callback	Parameter

callback(response);

As	in	the	case	of	our	earlier	review	of	the	requestHandler,	the	callback	function
supplied	to	the	method	will	receive	an	instance	of	the	IncomingMessage	object,	from
which	it	will	be	able	to	reference	the	headers	and	status	code	of	the	response.	At	this	point,
let’s	take	a	moment	to	put	all	of	this	information	together	into	code	and	walk	through	it.

Listing	10-12	demonstrates	the	minimal	amount	of	code	to	configure	a	server-side
request.	We	begin	by	devising	an	object	that	will	be	used	to	represent	the	request	line	of
our	request.	It	is	supplied	with	necessary	values	for	the	properties	host,	path,	and
method	(line	2).	We	then	provide	our	configured	object	as	our	first	argument	to	the
http.request	method.	Next,	we	provide	an	argument	as	the	callback.	This	function
will	be	used	to	handle	the	IncomingMessage	object	provided	by	the	remote	server
(line	3).	Once	the	request	is	fulfilled,	and	a	response	has	been	provided,	it	will	be	made
available	to	our	called	function,	from	which	our	application	can	extract	the	headers	and
status	of	the	response	(line	5–line	6).

Listing	10-12.	Minimal	Code	Required	to	Handle	a	Server-Side	Request	Using	the
http.request	Method

	1	var	http	=	require('http');

	2	var	options	=	{		host:"json.sandboxed.guru",

																				path:'/chapter10/data/imagedata.txt',

																				method:"GET"

																	};

	3		http.request(options,	callback);

	4		function	callback(response){

	5								console.log(response.statusCode);

	6								console.log(response.headers);

	7		};

What	should,	I	hope,	be	apparent	is	that	our	code	is	missing	a	means	of	extracting	the
entity	body	of	the	response.	In	order	to	receive	the	entity	body	for	our
IncomingMessage	object,	we	must	learn	how	to	consume	the	data	directly	from	the
stream.

http.Stream
The	IncomingMessage	object,	and	all	of	its	instances,	is	a	subclass	of	a	stream.	What
this	simply	means	is	that	the	interface	possessed	by	a	stream	is	also	possessed	by	any
IncomingMessage	instance.

	Note		Obtaining	data	from	IncomingMessage	applies	to	any	IncomingMessage
object	that	possesses	an	entity	body,	even	for	all	incoming	requests	to	our	server.

A	stream,	as	defined	by	Node.org,	is	an	abstract	interface	implemented	by	various

www.it-ebooks.info

http://www.it-ebooks.info/

objects	in	Node.	I	like	to	equate	a	stream	to	a	common	garden	hose.	If	you	can	bring	to
mind	a	garden	hose,	the	first	thing	that	you	might	visualize	is	a	long	tube	that	possesses	a
relatively	small	diameter.	This	small	diameter	is	what	ultimately	restricts	the	flow	of
water,	thereby	allowing	only	a	finite	volume	of	water	to	exit	per	second.	Now,	envision
that	garden	hose	as	the	cable	that	connects	your	computer	to	a	server	across	the	Internet.
Similarly,	the	diameter	of	this	hose	represents	your	bandwidth.	The	bytes	sent	from	the
server	are	streamed,	much	like	running	water	through	the	restricting	tube,	and	arrive	at
your	computer,	where	they	accumulate,	only	instead	of	water	molecules,	our	stream
consists	of	data-packets.

There	are	two	events	that	are	dispatched	by	Node	streams,	as	outlined	in	Table	10-7,
that	enable	us	to	consume	the	streaming	data.	Those	events	are	data	and	end.

Table	10-7.	Events	of	http.Stream

Properties Description

data Enough	bytes	are	available	for	the	stream	to	consume.

end All	bytes	from	the	stream	have	been	consumed.

The	data	event	is	fired	when	enough	data	becomes	available	to	consume	from	the
stream.	Depending	on	the	amount	of	bytes	that	make	up	an	entity	body,	this	event	may	fire
multiple	times.	Each	time	the	data	event	is	fired,	any	callback	function	will	be	provided
“chunks”	of	available	data.	This	allows	our	application	to	consume	the	available	bytes	as
they	arrive.

The	second	event,	end,	informs	our	application	that	the	handler	reading	from	the
stream	has	consumed	every	bit	of	data	and	should	not	expect	anymore.

In	order	to	listen	for	either	of	these	events,	we	can	attach	listeners	directly	to	the
provided	IncomingMessage	instance.	Listing	10-13	reveals	the	necessary	code
required	to	consume	an	entity	body	from	our	response.

Listing	10-13.	Skeletal	Body	of	Code	Required	to	Consume	an	Entity	Body	from	an
IncomingMessage	object

1	var	http	=	require('http');

2	var	options	=	{		host:"json.sandboxed.guru",

																				path:'/chapter10/data/imagedata.txt',

																				method:"GET"

																	};

	3		http.request(options,	callback);

	4		function	callback(proxy_response){

	5								console.log(response.statusCode);

	6								console.log(response.headers);

	7				proxy_response.addListener('data',	function(chunkOfData)	{

	8							//do	something	with	a	chunk	of	data

	9				});

10				proxy_response.addListener	('end',	function()	{

www.it-ebooks.info

http://www.it-ebooks.info/

11							//end	of	stream	reached

12				});

13		};

Listing	10-13	incorporates	(in	bold)	the	necessary	listeners	for	the	data	and	end
events	to	properly	work	with	incoming	data,	to	receive	a	possible	entity	body	from	a
response.	While	Listing	10-13	does	not	currently	provide	any	particular	implementation	to
handle	the	provided	data,	we	can	honestly	do	anything	with	it.	We	could	piece	it	all	back
together	onto	a	variable,	so	that	we	can	read	it	in	its	entirety,	once	the	data	has	been
consumed	fully.	Or,	as	it	will	be	in	the	case	of	our	proxy,	we	can	pipe	it	directly	into	our
response.

At	this	point	in	time,	if	the	preceding	code	from	Listing	10-13	were	to	be	executed	on
the	server,	the	request	would	never	be	initiated.	Calling	the	request	method	does	not
initiate	the	actual	request.	Much	like	the	xhr	object	in	JavaScript,	we	must	trigger	the
submission	of	the	request.	This	is	accomplished	through	the	ClientRequest	instance.

http.ClientRequest
When	the	request	method	is	invoked,	an	instance	of	the	ClientRequest	object	is
created	and	returned	to	the	caller	of	the	method.	It	will	be	through	the	interface	possessed
of	this	method	that	we	can	provide,	along	with	our	request,	an	entity	body.

As	shown	in	Table	10-8,	the	ClientRequest	interface	possesses	an	end	method.
This	method	signifies	that	our	request	is	fully	configured,	thereby	initiating	the	actual
request.	Additionally,	the	end	method	can	accept	an	optional	argument,	which	allows	for
the	submission	of	an	entity	body,	along	with	our	request.

Table	10-8.	ClientRequest	Methods

Properties Description

end([data],

[encoding])

Finishes	sending	the	request.	*It	can	be	called	with	an	entity	body.	*Data	must	be
in	string,	binary,	or	UTF-8	form.

abort Aborts	a	request

Listing	10-14	demonstrates	the	bare	bones	of	code	required	when	working	with	a
client	request.	To	better	understand	the	code,	let’s	walk	through	it.

Listing	10-14.	Entire	Skeletal	Structure	for	Facilitating	Proxy	Calls

	1	var	http	=	require('http');

	2	var	options	=	{hostname:"json.sandboxed.guru",	

path:'/chapter10/data/imagedata.txt',	method:"GET"};

	3	var	clientRequest=http.request(options,	responseHandler);

	4					clientRequest.end();

	5	function	responseHandler(proxy_response)	{

	6				console.log('STATUS:	'	+	proxy_response.statusCode);

	7				console.log('HEADERS:	'	+proxy_response.headers);

www.it-ebooks.info

http://www.it-ebooks.info/

	8				proxy_response.addListener('data',	

function(chunkOfData)	{

	9							//do	something	with	a	chunk	of	data

10				});

11				proxy_response.addListener	('end',	function()	{

12								//end	of	stream	reached

13				});

14	}

The	code	begins	with	the	inclusion	of	an	http	instance	(line	1).	Next,	we	configure
an	object	with	the	particulars	of	the	request	and	assign	it	to	a	variable	labeled	“options”
(line	2).	From	there,	we	initialize	our	ClientRequest	through	the	http.request
method	and	supply	it	with	the	options	variable	as	well	as	the	handler	of	the	provided
response	(line	3).	Much	as	with	the	response	object	from	our	earlier	discussions,	the
ClientRequest	has	the	ability	to	contain	an	entity	body.	For	this	reason,	the	request	is
not	invoked	immediately.	It	will	be	a	requirement	to	use	its	exposed	end	method	to
signify	that	the	request	is	ready.	That	being	said,	and	with	no	body	to	supply	for	the
request,	we	invoke	the	end	method	on	the	referenced	ClientRequest	(line	4).

The	next	block	of	code	pertains	to	the	management	of	the	response	from	the	remote
network.	Our	callback	responseHandler	is	invoked	upon	the	reception	of	the
IncomingMessage.	This	IncomingMessage	is	supplied	as	the	argument	to	our
proxy_response	parameter	(line	5),	from	which	we	are	able	to	obtain	the	existing
headers	(line	6)	and	status	code	(line	7).

From	there,	we	are	able	to	monitor	the	stream	for	any	incoming	data	that	makes	up	the
entity	of	the	response.	Adding	an	event	listener	via	the	addListener	method	and
specifying	which	event	to	listen	for,	we	can	monitor	the	incoming	bytes	of	data.	The	data
event	will	supply	the	event	handler	with	a	chunk	of	data	that	can	either	be	used	to	send
back	a	response	with	the	use	of	response.write	or	assembled	for	internal	processing
(line	8).	In	the	preceding	listing,	I	have	opted	to	assemble	the	incoming	transmission.
Each	chunk	of	data	provided	to	the	handler	is	appended	onto	our	existing	data	variable
(line	9).

Last,	we	attach	an	event	listener	to	monitor	for	the	end	event,	so	that	we	can	be	made
aware	that	we	have	read	all	the	bytes	on	the	provided	stream	(line	11).

EXERCISE	10-2.	YOUR	FIRST	PROXY	SERVER

Leveraging	the	code	from	Listing	10-14,	as	well	as	what	you	learned	earlier	in	the
chapter,	building	a	proxy	server	should	be	no	sweat.	In	this	exercise,	you	are	asked	to
devise	the	necessary	implementation	that	would	result	in	the	following	(proxy)
request	headers	for	the	resulting	incoming	request	headers.
Request	Headers	(Proxy)

GET	/chapter10/data/imagedata.txt	HTTP/1.1

Host:	json.sandboxed.guru

Accept:	*

www.it-ebooks.info

http://www.it-ebooks.info/

Request	Headers	(Incoming)

GET	/proxy/	HTTP/1.1

Host:	127.0.0.1:1337

Accept:	*

As	this	is	a	proxy,	be	sure	to	write	all	incoming	chunkOfData	directly	to	the
response.	Similarly,	don’t	forget	about	the	headers.	Once	the	stream	has	been
exhausted	of	all	data,	be	sure	to	end	the	response.	The	answer	can	be	seen	in	Listing
10-15.

Listing	10-15.	Answer	to	the	Proxy	Exercise

	1	var	http	=	require('http');

	2	var	server	=	http.createServer();

	3					server.addListener('request',requestHandler);

	4					server.listen(1337,	'127.0.0.1');

	5	function	requestHandler(request,	response)	{
	6					if	(request.url.toLowerCase().indexOf("/proxy/")	>-1)	{

	7										var	options	=	{	host:"json.sandboxed.guru",

																										path:'/chapter10/data/imagedata.txt',

																										method:"GET"	};

	8									var	clientRequest=http.request(options,	

responseHandler);

	9													clientRequest.end();

10									function	responseHandler(proxy_response)	{

11												response.writeHead(proxy_response.statusCode,	
proxy_response.headers);

12												proxy_response.addListener('data',	

function(chunkOfData)	{

13															response.write(chunkOfData);

14												});

15												proxy_response.addListener	('end',	function()	

{

16																response.end();

17												});

18									}

19					}	else	{

20								response.statusCode	=	200;

21								body	=	'proxy	calls	occur	at	/proxy/';

22								response.setHeader("Content-Type",	"text/plain");

23								response.setHeader("Content-Length",	

Buffer.byteLength(body,	'utf8'));

24								(body)	?	response.end(body)	:	response.end();

25					}

26	};

27	console.log('Server	running	at	http://127.0.0.1:1337/');

Listing	10-15	reveals,	in	bold,	the	necessary	code	required	to	fulfill	the	requirements

www.it-ebooks.info

http://www.it-ebooks.info/

of	the	preceding	exercise.	As	the	code	builds	on	Listing	10-14,	I	will	discuss	only	the	lines
that	are	required	to	satisfy	the	exercise.

Per	the	exercise,	a	proxy	should	only	occur	if	it	has	been	determined	that	an	incoming
request	seeks	a	resource	located	within	the	/proxy/	directory.	Utilizing	indexOf,	we
can	determine	if	the	/proxy/	substring	exists	within	request.url.	If	the	substring	is
found,	the	index	returned	will	be	greater	than	-1,	and,	therefore,	the	subsequent	block	of
code	will	be	able	to	run	(line	6).	Of	course,	within	that	subsequent	block	of	code	resides
our	proxy.

Once	we	initiate	our	proxy,	the	supplied	callback	is	provided	a	reference	to	an
IncomingMessage	object.	As	our	proxy	is	merely	making	a	request	on	behalf	of	our
client	in	order	to	circumvent	the	same-origin	policy,	we	must	simply	provide	all	aspects	of
the	request,	unaltered,	as	the	response	from	our	server.	Therefore,	once	we	can	obtain	the
headers	and	status	line	of	the	proxy_response,	we	simply	relay	them	onto	the
response	that	we	will	provide	back	to	our	client.	This	is	achieved	via	the	expose
writeHead	method	(line	11).

Similarly,	we	have	to	route	any	incoming	data	chunks	to	the	response	of	our	incoming
request.	This	is	accomplished	via	the	write	method	(line	13).	Last,	once	all	data	has
been	consumed	from	the	stream,	we	invoke	response.end()	to	deliver	the	response
back	to	the	requesting	client	(line	16).

If	you	were	to	run	this	server	and	navigate	to	the	URL,
http://127.0.0.1/proxy/,	you	should	be	presented	with	similar	results,	as	shown
in	Figure	10-18.

Figure	10-18.	A	rather	large	image	whose	data	has	been	encoded	into	Base64

Currently,	our	proxy	will	always	and	only	request,	on	our	behalf,	the	preceding	Base64
data.	However,	as	this	is	rather	limiting,	let’s	modify	it	to	possess	the	ability	to	fetch	other
files	as	well.	On	my	server,	json.sandboxed.guru,	within	the
/chapter10/data/	directory,	I	have	placed	the	following	files:	imagesA.json,
imagesB.json,	and	imagesC.json.	You	may	remember	these	from	Chapter	8.

www.it-ebooks.info

http://127.0.0.1/proxy/
http://www.it-ebooks.info/

Utilizing	a	singular	line	of	JavaScript,	we	ensure	that	these	files	can	be	fetched	in	addition
to	the	existing	imagesdata.txt	file	(see	Listing	10-16).

Listing	10-16.	Altering	Our	Proxy	to	Fetch	Additional	Files	from
json.sandboxed.guru

	1	var	http	=	require('http');

	2	var	server	=	http.createServer();

	3					server.addListener('request',requestHandler);

	4					server.listen(1337,	'127.0.0.1');

	5	function	requestHandler(request,	response)	{

	6					if	(request.url.toLowerCase().indexOf("/proxy/")	>-1	

)	{

	7										var	options	=	{	hostname:"json.sandboxed.guru",

																										path:'/chapter10/data/'	+	request.url.substr(7)	,

																										method:"GET"	};

	8									var	clientRequest=http.request(options,	

responseHandler);

	9													clientRequest.end();

10									function	responseHandler(proxy_response)	{

11												response.writeHead(proxy_response.statusCode,	

proxy_response.headers);

12												proxy_response.addListener('data',	

function(chunkOfData)	{

13															response.write(chunkOfData);

14												});

15												proxy_response.addListener	('end',	function()	

{

16																response.end();

17												});

18									}

19					}	else	{

20								response.statusCode	=	200;

21								body	=	'proxy	calls	occur	at	/proxy/';

22								response.setHeader("Content-Type",	"text/plain");

23								response.setHeader("Content-Length",	

Buffer.byteLength(body,	'utf8'));

24								(body)	?	response.end(body)	:	response.end();

25					}

26	};

27	console.log('Server	running	at	http://127.0.0.1:1337/');

Listing	10-16	demonstrates	how,	through	simple	string	manipulation,	we	can
dynamically	specify	the	resource	to	be	requested	from	the	remote	server.	Through	the
request.url,	we	can	extract	any	resource	that	follows	the	first	seven	characters,	which
are	precisely	how	many	characters	are	used	to	specify	/proxy/.	From	there,	the
remaining	characters	within	the	string	can	be	appended	to	the	value	for	our	path.	At	this

www.it-ebooks.info

http://www.it-ebooks.info/

point,	let’s	shut	down	the	currently	running	server,	so	that	we	can	insert	this	amendment.
Once	it’s	in	place,	we	can	start	our	server	back	up	and	navigate	to	the	following:

http://127.0.0.1:1337/proxy/imagedata.txt

http://127.0.0.1:1337/proxy/imagesA.json

http://127.0.0.1:1337/proxy/imagesB.json

http://127.0.0.1:1337/proxy/imagesC.json

When	navigating	to	any	of	the	preceding	destinations,	you	should	be	provided	with	the
exact	response,	as	if	you	directly	obtained	them	from
http://json.sandboxed.guru/chapter10/data/.	The	reason	why	is
because	we	did	obtain	them	directly	from	the	preceding	URL,	via	our	proxy.

Congratulations!	You	have	constructed	a	functioning	proxy	server.

Summary
This	chapter	contained	a	lot	of	advanced	concepts,	and	you	should	be	truly	proud	of
yourself	for	making	it	through.	A	server	is	an	integral	component	when	it	comes	to	the
Internet,	and	not	just	for	fetching	static	resources,	as	you	have	surely	observed.	A	server,
while	capable	of	fetching	static	files,	can	in	concert	with	server-side	programming,
generate	the	content	of	the	response,	evaluate	the	request,	and	even	initiate	requests	of	its
own.

With	the	ease	of	the	JavaScript	language,	and	Chrome’s	V8	engine,	we	were	able	to
conveniently	run	and	manage	our	own	server.	With	it,	we	learned	how	to	handle	incoming
requests,	as	well	as	how	to	configure	a	response.	This	chapter	also	provided	a	hands-on
approach	toward	circumventing	the	same-origin	policy	of	the	browser.	Additionally,	you
had	a	glimpse	into	the	concepts	of	server-side	programming,	which	will	serve	you	well	in
the	future	or,	at	the	very	least,	the	next	chapter.

In	the	upcoming	chapter,	we	will	continue	to	leverage	the	Node	platform	to	create	a
simple	JSON	database.	This	database	will	allow	incoming	JSON	data	to	be	captured	and
stored	locally	on	the	file	system,	so	that	it	can	be	retrieved	by	later	requests.

Key	Points	from	This	Chapter
A	Node	server	can	be	programmed	entirely	in	JavaScript	via	the
Node’s	HTTP	module.

end	must	be	invoked	on	the	response	instance	for	a	request	to	be
completed.

Neglecting	to	invoke	end	will	result	in	the	client’s	request	to	time	out.

You	must	restart	your	server	anytime	a	change	is	introduced	to	the
code.

Node	possesses	an	extremely	low-level	API.

www.it-ebooks.info

http://127.0.0.1:1337/proxy/imagedata.txt
http://127.0.0.1:1337/proxy/imagesA.json
http://127.0.0.1:1337/proxy/imagesB.json
http://127.0.0.1:1337/proxy/imagesC.json
http://json.sandboxed.guru/chapter10/data/
http://www.it-ebooks.info/

Node	is	non-blocking/event-driven.

IncomingMessages	instances	represent	request/response
arguments.

You	can	obtain	the	headers,	URLs,	and	request/status	lines	from
IncomingMessages.

To	obtain	an	entity	body	from	IncomingMessages,	you	must
consume	data	from	their	stream.

127.0.0.1	is	a	way	to	access	one’s	own	computer’s	network	services.

Content-Length	must	specify	bytes	not	character	length.

Ensure	that	the	value	supplied	with	the	jsonp	parameter	is	not	URL-
encoded	when	appending	it	to	the	padded	JSON.

With	string	manipulation,	you	can	respond	accordingly	to	any	request.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER	11

Posting	JSON
As	should	be	evident	by	now,	a	server	has	the	ability	to	provide	a	tailored	response	to	best
match	the	indicated	method,	resource,	and	the	configured	headers	of	an	incoming	request.
This	protocol,	when	paired	with	static	content,	can	be	utilized	by	the	server	software	to
translate	an	incoming	request	into	a	location	for	said	resource	located	on	its	file	system.
The	specified	path	of	the	resource	is	translated	via	the	server	software	into	that	of	a
determined	directory,	for	which	a	file	is	thought	to	exist.	The	response	is	either	the	content
of	the	file	or	a	404	page.

Similarly,	the	very	same	protocol,	when	paired	with	a	dynamic	programming	language
(such	as	PHP,	.NET,	or	Java),	provides	cooperating	developers	a	means	of	incorporating
web	services.	Such	services	can	be	used	to	persist,	update,	and	retrieve	existing	data.	The
difference,	per	the	HTTP/1.1	Specification,1	lies	with	the	particular	method	of	the	request.
In	this	chapter,	I	will	focus	on	the	use	of	the	POST	method	to	provide	an	entity	body	to
our	Node	application.

Request	Entity	Body
There	are	two	sets	of	HTTP	request	methods:	those	that	are	considered	safe,	and	those	that
are	considered	unsafe.	Generally	speaking,	safe	methods	merely	retrieve	a	resource,
whereas	unsafe	methods	seek	to	provide	data	with	an	HTTP	request.	This	resource	is
referred	to	as	a	payload.	The	payload	itself	may	be	as	complex	as	a	file	or	as	simple	as	an
e-mail	address.	However,	once	this	information	is	received,	it	is	often	written	to	a	database
for	later	retrieval.

While	the	preceding	sentence	may	make	immediate	sense,	what	might	not	be	so
obvious	is	that	without	the	use	of	a	server-side	code	to	receive	and	process	the	incoming
payload,	the	entity	provided	to	a	server	would	serve	little	to	no	use.	However,	once	that
data	is	received	and	handled	appropriately,	its	usefulness	is	limited	to	our	imaginations
and	business	goals	or,	as	seen	in	the	case	of	Twitter	or	Facebook,	your	fan	base.

With	the	proxy	example	from	the	previous	chapter,	you	learned	that	in	order	to	obtain
the	payload	of	an	IncomingMessage	object,	we	must	consume	it	via	the	inherited
interface	of	the	stream	object.	This	is	accomplished,	as	demonstrated	in	Listing	11-1,	by
attaching	an	event	listener	to	the	incoming	request	instance,	in	order	to	monitor	the
stream	for	a	data	payload.	Furthermore,	by	pairing	the	listener	with	a	callback	capable	of
receiving	incremental	chunks	of	data	as	an	argument,	we	can	consume	data	from	the
stream	as	it	is	received.

Listing	11-1.	Monitoring	the	Stream	for	Data

www.it-ebooks.info

http://www.it-ebooks.info/

1	function	requestHandler(request,	response)	{

2				request.addListener('data',	function(chunk)	{

3																//do	something	with	data	chunk

4																});

					//...truncated

8	}

Depending	on	the	format	of	the	payload,	whether	it’s	in	binary	or	ASCII,	our
application	may	begin	to	utilize	the	individual	chunks	as	they	enter	it.	Additionally,	by
monitoring	the	stream	for	the	end	event,	our	application	can	be	made	aware	of	when	there
is	no	further	data	to	be	consumed	from	the	stream,	as	demonstrated	in	Listing	11-2.

Listing	11-2.	Monitoring	the	Stream	for	the	end	of	Data

1	function	requestHandler(request,	response)	{

					//...truncated

5				request.addListener(end,	function()	{

6																				//stream	no	longer	has	data

7																});

8	}

The	preceding	lines	of	code,	outlined	in	bold	in	both	Listing	11-1	and	11-2,	are
essential	for	obtaining	an	entity	body	from	an	incoming	request.	However,	the	actual
implementation	of	code	that	is	utilized	within	the	body	is	dependent	on	the	needs	of	the
application.	Whether	the	incoming	data	chunks	are	immediately	parsed	or	amassed	until
the	stream	is	drained	is	a	matter	of	your	application’s	needs	and	data	expectancies.
Furthermore,	how	the	data	is	parsed	is	absolutely	dependent	on	the	Content-Type	of	the
incoming	payload.	While	GET	requests	can	only	provide	data	in	the	URL-encoded	format,
POST	requests	can	supply	data	in	a	variety	of	formats.	Such	formats	are	the	following:
multipart/form-data,	application/x-www-form-urlencoded,
application/xml,	text/xml,	application/json,	and	more.

	Note		In	order	to	recognize	how	to	parse	the	incoming	information	accordingly,	it	will
be	helpful	to	utilize	the	Content-Type	header	held	by	the	incoming	request	via	the
following	snippet:	if(request.headers['content-
type'].indexOf(substring-to-match-here)>-1){		//condition

block	}.

HTML	Form	POST
As	a	front-end	developer,	it	is	likely	that	you	have	previously	used	the	standard	HTML
<form>	element	to	POST	data	to	a	server.	The	<form>	element	provides	a	convenient
and	standard	way	for	a	user	to	supply	data	via	a	series	of	semantic	components,	such	as
input	fields,	check	boxes,	radio	buttons,	etc.,	to	a	web	service	that	is	capable	of	processing
the	supplied	information	on	the	server.

In	order	to	demonstrate	a	form	POST,	we	must	first	devise	the	HTML	markup	that	can

www.it-ebooks.info

http://www.it-ebooks.info/

be	returned	as	a	resource	by	our	Node	application.	Listing	11-3	demonstrates	the	markup
that	will	be	provided	to	any	incoming	requests	for	the	following	resource	/index.html.

Listing	11-3.	An	HTML	Form	POST

1			<!doctype	html>

	2			<html	lang="en">

	3			<head>

	4							<meta	charset="utf-8">

	5			</head>s

	6			<body>

	7							<form	action="formPost"	method="POST"	content="application/x-www-
form-urlencoded">

	8											First-Name:	<input	name="fname"	type="text"	size="25"/>

	9											Last-Name:	<input	name="lname"	type="text"	size="25"/>

10											<input	type="submit"/>

11								</form>

12				</body>

13				</html>

The	preceding	code	should	not	come	as	a	surprise	to	you,	as	this	is	standard	HTML
markup.	The	only	five	lines	that	we	should	discuss	are	those	that	make	up	our	form.	We
use	the	HTML	<form>	element	not	only	to	declare	the	container,	which	will	hold
relevant	form	elements,	but	also	to	configure	key	aspects	of	the	request	(line	7).	The
attribute	labeled	“action”	defines	the	target	resource	for	which	the	method	is	enacted.	In
this	case,	I	have	set	the	resource	to	that	of	formPost.	The	second	attribute,	labeled
“method,”	defines	the	method	to	be	used	on	the	request.	This	can	be	a	method	such	as
GET	or	POST,	but	in	this	case,	we	will	specify	POST.	These	two	attributes	will	be	used	in
conjunction	to	make	up	the	request	line	of	our	HTTP	request.

Last,	utilizing	the	attribute	labeled	“content,”	we	specify	the	Content-Type	of	the
data	accompanying	the	request.	While	there	are	many	possible	Content-Types	in
existence,	only	three	possible	values	can	be	applied	to	an	HTML	form.	These	three
Content-Types	are	the	following:	application/x-www-form-urlencoded,
multipart/form-data,	and	text/plain.

	Note		If	a	form	is	not	configured	with	the	content	attribute,	the	Content-Type	that
will	be	used	will	be	that	of	application/x-www-form-urlencoded.

The	next	two	lines	(line	8	and	line	9)	simply	define	the	input	fields	that	will	be	used	to
capture	an	individual	aspect	of	data.	Utilizing	the	attribute	labeled	“name,”	we	can
establish	the	key	that	is	used	to	transport	the	supplied	value.	As	this	form	will	capture	a
user’s	first	and	last	name,	I	have	used	fname	and	lname	as	the	respective	keys.	Next,	we
assign	the	value	text	to	the	type	attribute.	This	will	identify	the	input	field	as	requiring
user	input,	so	that	the	browser	renders	it	accordingly.

Last,	in	order	to	invoke	the	submission	of	the	data,	we	must	include	a	Submit	button
(line	10).	This	is	simply	achieved	by	utilizing	yet	another	input	field.	However,	as	you

www.it-ebooks.info

http://www.it-ebooks.info/

may	expect,	this	input	field’s	type	attribute	is	supplied	with	that	of	submit.	This	will
inform	the	browser	to	render	this	input	field	as	a	button.	Upon	the	user’s	click	of	the
button,	it	will	prompt	the	form	to	initiate	the	request.

EXERCISE	11-1.	YOUR	FIRST	NODE	FORM	POST

ExerciseA.js	has	begun	to	incorporate	the	HTML	document	from	Listing	11-3
into	the	appropriate	conditional	block.	Continue	to	supply	the	remaining	ten	lines	of
markup	to	the	following	code	(Listing	11-4)	to	complete	our	index.html	resource.

Listing	11-4.	ExerciseA.js,	a	Local	Form	POST	Application

	1	var	http	=	require('http');

	2	var	server	=	http.createServer();

	3	server.addListener('request',	requestHandler);

	4	server.listen(1337,	'127.0.0.1');

	5	function	requestHandler(request,	response)	{

	6			console.log(request.url);

	7			request.addListener('data',	function(chunk)	{

	8							console.log(chunk);

	9				});

10				request.addListener(“end”,	function()	{

11								console.log(“end	of	stream	\n”);

12				});

13		if(request.url===”/index.html”){

14						response.statusCode	=	200;

15						response.setHeader(“Content-type”,	“text/html”);

16						response.write('<!doctype	html>');

17						response.write('<html	lang=“en”>');

18						response.write('<body>');
								//…	add	code	here;

28		}else{

29					response.statusCode=204;

30		}

31		response.end();

32	};

33	console.log('Server	running	at	

http://127.0.0.1:1337/index.html');

Once	the	document	has	been	incorporated	into	exerciseA.js,	use	the	command-
line	interface	to	initiate	our	server.	With	the	server	running,	navigate	to
http://127.0.0.1:1337/index.html,	fill	in	the	form	with	your	first	and
last	name,	hit	Submit,	and	take	note	of	the	data	outputted	to	the	command-line
window.

If	your	name	coincidently	happens	to	be	Ben	Smith,	then	you	should	have	witnessed
the	following	output	as	shown	following:

www.it-ebooks.info

http://www.it-ebooks.info/

Server	running	at	http://127.0.0.1:1337/index.html

/index.html

end	of	stream

/favicon.ico

end	of	stream

/formPost

<Buffer	66	6e	61	6d	65	3d	42	65	6e	26	6c	6e	61	6d	65	3d	53	6d	69	74	68>

end	of	stream

For	those	whose	names	are	not	the	equivalent,	you	should	witness	something	very
close	to	what	has	been	shown	in	the	preceding	code.	In	fact,	the	data	shown	in	bold	is
present	in	your	output	as	well.	Let’s	examine	the	output	in	detail,	to	gain	a	better
understanding	of	what	is	occurring.

The	moment	our	server	is	initialized,	our	console	first	outputs	a	reminder	of	the	URL
and	PORT,	for	which	our	server	is	running.	Additionally,	to	remind	ourselves	that	we	must
request	the	index.html	to	be	presented	with	our	form,	I	have	chosen	to	include	it
within	the	initial	output.

By	navigating	to	the	URL	that	is	outputted,	we	arrive	at	our	HTML	form.	Because	the
exerciseA	application	logs	each	requested	resource,	the	line	that	immediately	follows
is	/index.html.	While	that	should	make	sense,	what	might	not	be	clear	are	the	next
three	lines.

Following	the	output	of	our	/index.html	request,	a	message	informs	us	that	we
have	reached	the	end	of	our	stream.	This	might	be	confusing,	as	you	may	have	expected
the	end	event	to	fire	only	after	we	had	submitted	our	form.	However,	the	reality	is	that
our	Node	application	has	been	written	to	monitor	for	incoming	data	with	each	incoming
request.	As	the	request	for	our	index.html	page	was	not	accompanied	by	any	data
what	so	ever,	as	the	stream	is	empty,	the	end	event	naturally	fires.	This	check	happens
needlessly	for	every	single	incoming	request	and	is	made	evident	with	each	subsequent
request.

The	next	line	is	one	I	wanted	to	discuss	because	it	often	confuses	a	lot	of	Node
newcomers.	Often,	when	debugging	code,	newcomers	are	curious	as	to	why	their	code
appears	to	fire	multiple	times	after	receiving	an	HTML	document.	The	reason	is	that	user-
agents	initiate	a	request	that	is	not	apparent	to	the	end	user.	That	request	is	for	the	icon	that
appears	in	the	browser’s	window	tab	for	the	displayed	HTML	Document.	This	is	known	as
the	favicon	and	is	a	16×16	image	that	can	be	used	as	the	icon	that	will	identify	your	page
should	someone	choose	to	bookmark	it.	An	example	of	a	favicon	can	be	seen	in	Figure	11-
1.	As	this	is	yet	another	incoming	request	on	our	server,	the	messaging	end	of	stream
follows.	Lastly,	as	initiated	by	the	submission	of	our	form,	an	incoming	request	for
/formPost	is	outputted	to	our	console.

www.it-ebooks.info

http://www.it-ebooks.info/

Figure	11-1.	Microsoft	favicon

	Note		So	as	not	to	cause	added	throughput	on	our	server,	an	application	should	only
attempt	to	consume	data	from	the	stream	of	a	client	the	requested	method	has	determined
to	be	an	unsafe	method,	such	as	POST.

Following	the	output	of	said	resource	appears	to	be	a	sequence	of	alphanumeric
characters.	To	keep	things	as	simple	as	possible,	I	can	assure	you	this	is	not	gibberish	but,
rather,	hexadecimal	format.	I	won’t	go	into	too	much	detail,	but,	ultimately,	each	grouping
of	characters	represents	an	alphanumeric	character.	In	the	preceding	output,	66	represents
f,	6e	represents	n,	61	represents	a,	etc.	If	I	were	to	continue	to	explain	the	next	three
values,	you	would	be	able	to	recognize	the	gibberish	is	actually	spelling	out	“fname=.”

While	reading	hexadecimal	is	far	better	than	reading	binary,	it	is	absolutely	no
substitute	for	plain	text.	Therefore,	let’s	shut	down	our	current	server	and	modify	the
buffer	to	output	plain	text.	This	is	accomplished	by	defining	the	encoding	via	the
setEncoding	method	exposed	on	our	request	instance.	The	code,
request.setEncoding('utf8');,	defaults	all	incoming	data	as	UTF-8.	At	this
point	in	time,	let’s	shut	down	our	server	and	incorporate	this	line	of	code	just	before	our
data	event	listener.	Once	this	code	is	in	place,	restart	our	exerciseA	application	and
perform	a	form	POST	once	again.	This	time,	you	should	observe	the	following	output:

//..truncated	output

fname=Ben&lname=Smith

end	of	stream

Congratulations!	You	have	received	your	first	HTML	form	POST.	As	you	can	clearly
read	from	the	output,	the	entity	body	is	provided	in	the	form	of	a	key/value	pair,	similar	to
that	of	a	GET.	The	notable	difference	is	that	the	data	is	not	preceded	by	the	?	token.	As	we
have	been	working	rather	extensively	with	key/value	pairs,	it	should	be	a	cinch	to	extract
our	data	values	from	their	keys,	utilizing	our	getParamKey	function	from	the	previous
chapter.	Once	again,	let’s	shut	down	our	server	and	incorporate	the	getParamKey
function,	shown	in	Listing	11-5,	into	our	existing	server.

Listing	11-5.	The	getParamKey	Function

function	getParamKey(key,	str)	{

				var	regExp	=	new	RegExp(key.toLowerCase()	+	'=[^&]*');

				var	matchingValue	=	(str.toLowerCase()).match(regExp);

				for	(var	i	=	0;	i	<	matchingValue.length;	i++)	{

								var	replacedValue	=	matchingValue[i].replace(key	

+	'=',	'');

								matchingValue[i]	=	replacedValue;

				}

				return	decodeURIComponent(matchingValue[0]);

};

The	incorporation	of	getParamKey	will	enable	us	to	extract	the	values	for	the

www.it-ebooks.info

http://www.it-ebooks.info/

supplied	keys	that	make	up	the	entity	body.	For	the	form	POST	we	have	been	working
with,	those	keys	are	fname	and	lname.	By	providing	these	identifiers	along	with	the
received	data	chunk	to	getParamKey,	we	can	easily	obtain	their	values.	At	this	point	in
time,	let’s	shut	down	our	currently	running	server	and	insert	the	necessary	code	required	to
log	out	the	value	for	our	two	variables,	by	tapping	into	the	getParamkey	function.
Once	you	have	implemented	the	code	that	would	result	in	Listing	11-6,	restart	the	server,
use	the	form	to	submit	your	name	once	again,	and	observe	the	results.
Listing	11-6.	Parsing	x-www-form-urlencoded	Data

var	http	=	require('http');

var	server	=	http.createServer();

server.addListener('request',	requestHandler);

server.listen(1337,	'127.0.0.1');

function	requestHandler(request,	response)	{

		console.log(request.url);

		request.setEncoding('utf8');

		request.addListener('data',	function(chunk)	{
						console.log(getParamKey("fname",	chunk));

						console.log(getParamKey("lname",	chunk));

		});

		request.addListener("end",	function()	{

						console.log("end	of	stream	\n\r");

		});

		if(request.url	===	"/index.html")	{

				response.statusCode	=	200;

				response.setHeader("Content-Type",	"text/html");

				response.write('<!doctype	html>');

				response.write('<html	lang="en">');

				response.write('<body>');

				response.write('<form	action="formPost"	method="POST"	

content="application/x-www-form-urlencode">');

				response.write('First-Name:');

				response.write('<input	name="fname"	type="text"	

size="25"/>');

				response.write('Last-Name:');

				response.write('<input	name="lname"	type="text"	

size="25"/>');

				response.write('<input	type="submit"/>');

				response.write('	</form>');

				response.write('	</body>');

				response.write('</html>');

		}	else	{

						response.statusCode	=	204;

		}

www.it-ebooks.info

http://www.it-ebooks.info/

			response.end();

};

function	getParamKey(key,	str)	{

				var	regExp	=	new	RegExp(key.toLowerCase()	+	'=[^&]*');
				var	matchingValue	=	(str.toLowerCase()).match(regExp);

				for	(var	i	=	0;	i	<	matchingValue.length;	i++)	{

								var	replacedValue	=	matchingValue[i].replace(key	+	'=',	'');

								matchingValue[i]	=	replacedValue;

				}

				return	decodeURIComponent(matchingValue[0]);

};

console.log('Server	running	at	

http://127.0.0.1:1337/index.html');

Running	the	preceding	code,	should	no	errors	be	present,	will	have	undoubtedly
outputted	the	values	that	had	been	supplied	to	both	input	fields.	Now	that	we	have	this
extracted	information,	we	could	potentially	alter	the	data	of	the	response	or	even	store	the
supplied	information	within	a	database.	You	will	learn	more	about	persisting	data	via
back-end	programming	in	the	next	chapter.

While	forms	are	a	convenient	way	for	a	visitor	to	supply	a	few	fields	of	basic
information,	such	as	first	name	and	last	name,	the	possible	Content-Types	that	can	be	used
with	a	form	lack	the	ability	to	maintain	the	structure	of	data	such	as	that	of	JSON.
However,	in	order	to	transmit	the	JSON	data	type,	we	will	have	to	leverage	an
XMLHttpRequest	object.

Processing	a	JSON	POST
As	has	been	stated	throughout	this	book,	JSON	is	a	highly	interoperable	data	format	with
many	advantages.	It	can	easily	be	read	by	humans;	it	is	succinct,	thereby	keeping	file	size
to	a	minimum;	it	can	group	as	well	as	retain	the	structure	of	data;	and,	as	a	text-based
format,	JSON	can	be	stored/retrieved	and	parsed	without	degrading	its	integrity.	Of
course,	to	utilize	this	functionality,	our	server-side	application	must	possess	the	ability	not
only	to	obtain	any	and	all	incoming	JSON	but	to	parse	it	as	well.	In	order	to	keep	things
backward	compatible,	we	will	build	upon	our	code	base	from	exerciseA.	This	way,	if	a
visitor	has	JavaScript	enabled,	the	data	contents	will	be	provided	to	our	server	via	Ajax	as
JSON.	However,	if	the	user	does	not	have	JavaScript	enabled,	our	form	will	continue	to
work	as	intended	in	the	URL-encoded	data	format,	via	a	full-page	load.

As	was	stated	earlier,	an	HTML	form	element	can	only	send	one	of	three	Content-
Types,	and	JSON	is	not	one	of	them.	Therefore,	in	order	to	send	JSON,	we	must	leverage
our	acquired	knowledge	of	Ajax.	Listing	11-7	reveals	the	ajax	function	that	was
discussed	in	Chapter	8.	For	the	most	part,	the	ajax	function	remains	unchanged,	with	the
exception	that	the	request	line	has	been	updated	to	reflect	the	new	formPost	resource.

Listing	11-7.	Progressively	Enhancing	Our	HTML	Form	with	Ajax

<script>

www.it-ebooks.info

http://www.it-ebooks.info/

	function	ajax()	{

					var	xhr	=	new	XMLHttpRequest();

					xhr.open("POST",	"formPost");

					xhr.setRequestHeader("Content-Type",	

"application/json");

					var	input	=	document.getElementsByTagName("input");

					var	obj	=	{

									fname	:	input[0].value,

									lname	:	input[1].value

					};

					xhr.send(JSON.stringify(obj));

			return	false;

	}

</script>

If	you	recall	from	Chapter	8,	we	used	the	preceding	function	to	POST	two	HTML
form	fields,	First	Name	and	Last	Name,	to	a	server,	using	the	application/json
Content-Type.	Obtaining	the	values	directly	from	the	input	fields,	and	then	adding	them	as
the	members	of	an	object,	which	was	immediately	serialized,	accomplished	this.	The
form,	with	the	use	of	its	onsubmit	attribute,	invoked	the	ajax	function	when	its	Submit
button	was	clicked.

If	you	are	following	along	with	the	source	code	provided	for	Chapter	11,	locate	the
json-form.js	file.	This	file	incorporates	the	ajax	function,	shown	in	Listing	11-7,
along	with	a	few	additional	code	amendments.	One	such	amendment	is	the	assignment	of
our	function	as	the	value	of	the	form’s	onsubmit	attribute:	<form	action=“formPost”
method=“POST”	onsubmit=“return	ajax();”>.

Furthermore,	as	this	application	will	be	used	to	demonstrate	the	reception	of	JSON,
rather	than	our	previous	key/value	pairs,	I	have	incorporated	a	means	to	isolate	the	values
for	fname	and	lname	in	a	manner	befitting	of	JSON.	Because	our	Node	application	is
written	entirely	in	JavaScript,	I	have	merely	incorporated	the	use	of	JSON.parse,	as
shown	in	Listing	11-8.	In	order	to	distinguish	the	x-www-form-urlencoded	format
from	that	of	incoming	JSON,	we	will	incorporate	conditions	that	determine	whether	a
particular	Content-Type	exists	as	a	substring	of	request.headers['content-
type'].

	Note		The	implementation	of	the	ajax	function	progressively	enhances	the	capability
of	our	form	to	transmit	the	captured	data	of	a	user	via	Ajax,	without	impairing	the
experience	for	those	visitors	who	may	have	JavaScript	turned	off.

Listing	11-8.	Determining	the	Content-Type	of	Incoming	Data

request.addListener('data',	function(chunk)	{

		if(request.headers['content-type']].indexOf('application/json')>-1){

				var	json=JSON.parse(chunk);

				console.log(json.fname);

www.it-ebooks.info

http://www.it-ebooks.info/

				console.log(json.lname);

		}else	if(request.headers['content-type'].indexOf('application/x-www-

form-urlencoded)>-1){

		}

});

Be	sure	to	shut	down	any	Node	applications	that	you	may	have	running,	and	start	up
json-form.	When	you	navigate	to	http://127.0.0.1:1337/index.html,	you
should	not	witness	any	visual	differences,	as	we	have	not	altered	our	form,	only	the	format
for	which	it	is	supplied.	This	time,	when	you	submit	the	form,	the	output	displayed	in	the
command-line	interface	should	resemble	that	of	Figure	11-2.

Figure	11-2.	Logging	out	end	of	stream	when	all	data	has	been	consumed

As	clearly	illustrated	in	Figure	11-2,	the	fields	of	our	data	have	been	successfully
parsed	and	individually	outputted.	Congratulations,	you	have	parsed	your	first,	albeit
simple,	JSON	POST!	Before	you	begin	your	celebration	dance,	I	do	wish	to	point	out	one
thing.	In	our	json-form	application,	in	addition	to	our	exercise	application,	we	were
attempting	to	parse	the	incoming	data	before	we	had	reached	the	end	of	the	stream,	as
illustrated	in	Figure	11-2.	While	this	is	not	a	problem	for	these	two	simple	examples,	we
could	easily	run	into	issues	when	the	incommoding	data	is	extremely	large.	As	you
witnessed	in	the	previous	chapter,	the	data	event	is	capable	of	firing	multiple	times,	each
time	supplying	more	data	to	our	application.	In	that	particular	example,	the	file	that	was
being	transferred	was	1.5MB	in	size.

As	the	data	being	transmitted	to	our	application	within	this	chapter	is	minimal,	there	is
no	need	to	expect	the	data	event	to	fire	multiple	times.	However,	this	might	not	always
be	the	case.	Therefore,	in	order	to	ensure	that	we	have	received	every	last	chunk	of
incoming	data	before	attempting	to	parse	it,	we	should	accumulate	all	incoming	data	onto
a	variable	(see	Listing	11-9).	Only	once	the	end	event	has	fired	should	our	application
attempt	to	parse	our	data.

Listing	11-9.	Retaining	All	Incoming	Data	onto	a	Variable

1	function	requestHandler(request,	response)	{

2					console.log(request.url);

3					console.log(request.headers);

www.it-ebooks.info

http://127.0.0.1:1337/index.html
http://www.it-ebooks.info/

4					var	incomingEntity	=	'';

5					request.setEncoding(‘utf8’);

6					request.addListener('data',	function(chunk)	{

7									incomingEntity	+=	chunk;

8							});

9						request.addListener("end",	function()	{

10									console.log("end	of	stream	\n");

11									console.log(incomingEntity);

12									if	(request.headers['content-

type'].indexOf("application/json")	>	-1){

13													//handle	JSON	payload

14									}else	if(request.headers['content-

type'].indexOf("application/x-www-form-urlencoded")>	-1){

15													//handle	x-www-form-urlencoded	payload

16									}

17					});

18				if	(request.url	===	"/index.html")	{

19								response.statusCode	=	200;

20								response.setHeader("Content-type",	"text/html");

21								//...truncated	code

22				}	else	{

72								response.statusCode	=	204;

73								response.end();

74			}

75		}

76	console.log("response-end");

Listing	11-9	demonstrates	the	use	of	a	variable	labeled	“incomingEntity,”	which
will	be	used	to	retain	all	incoming	chunks	of	data.	Because	UTF-8	is	a	text-based	format,
we	can	use	string	manipulation	to	join	incoming	chunks	of	data	together.	However,	we
will	not	attempt	to	read	said	data	until	we	are	certain	we	have	received	it	all.	Once	the
end	event	is	dispatched,	we	can	safely	log,	parse,	or	inspect	the	accumulated	data	retained
by	an	incoming	entity.

EXERCISE	11-2.	INCOMING	ENTITY	BODY

In	order	to	minimize	the	amount	of	code	used	within	the	preceding	sections,	our
server	has	neglected	to	respond	to	any	request	for	/formPost.	Instead,	we	have
been	informing	the	browser,	via	the	204-status	code,	that	the	resource	being
requested	is	without	content.	However,	now	that	we	have	the	ability	to	parse	the
information	as	it	enters,	let’s	output,	as	the	response,	the	full	name	received.

Because	our	existing	form	has	been	enhanced	utilizing	JavaScript,	it	is	certain	that
visitors	who	do	not	have	JavaScript	enabled	will	require	a	proper	response	to	be
provided	in	the	HTML	format.	This,	of	course,	will	result	in	a	full-page	load.
However,	for	those	individuals	who	do	have	JavaScript	enabled,	we	should	continue
to	provide	them	with	JSON.

www.it-ebooks.info

http://www.it-ebooks.info/

Be	sure	to	check	the	responses	from	the	application	via	the	Network	tab	of	the
developer	console,	with	JavaScript	both	turned	on	as	well	as	off.	Compare	your
results	with	Listing	11-10.

Regardless	of	whether	JavaScript	is	enabled	or	disabled,	our	exercise	application,
whose	code	should	reflect	that	of	Listing	11-10,	is	capable	of	properly	parsing	the	payload
provided.	Furthermore,	the	application	responds	with	a	corresponding	Content-Type,
which	enables	the	results	to	be	viewed	by	our	visitor,	regardless	of	whether	JavaScript	is
on	or	off.

Listing	11-10.	Answer	to	Exercise/Incoming	Entity	Body
	1	var	http	=	require('http');

	2	var	server	=	http.createServer();

	3	server.addListener('request',	requestHandler);

	4	server.listen(1337,	'127.0.0.1');

	5	function	requestHandler(request,	response)	{

	6			console.log(request.url);

	7				if	(request.method	===	“POST”)	{

	8								var	incomingEntity	=	'';

	9								var	data;

10								request.addListener('data',	function(chunk)	{

11											incomingEntity	+=	chunk;

12							});

13							request.addListener(“end”,	function()	{

14											console.log(“end	of	stream	\n”);

15											console.log(“Raw	entity:	”	

+	incomingEntity);

16												if	(request.headers['content-

type'].indexOf(“application/json”)	>	-1){

17																data	=	JSON.parse(incomingEntity);

18																if	(request.url	===	“/formPost”)	{

19																				response.statusCode	=	200;

20																				response.setHeader(“Content-Type”,	

“application/json”);

21																				response.end(incomingEntity);

22																}

23												}else	if(request.headers['content-

type'].indexOf(“application/x-www-form-urlencoded”)>-1){

24																if	(request.url	===	“/formPost”)	{

25																				response.statusCode	=	200;

26																				response.setHeader(“Content-Type”,	

“text/html”);

www.it-ebooks.info

http://www.it-ebooks.info/

27																						var	fname	=	getParamKey(“fname”,	

incomingEntity);

28																						var	lname	=	getParamKey(“lname”,	

incomingEntity);

29																				response.write('<!doctype	html>');

30																				response.write('<html	lang=“en”>');

31																				response.write('<body>');

32																				response.write(''	+	fname+	’	

‘	+lname	+'');

33																				response.write('</body>');

34																				response.end();

35																				return;

36																}

37												}

38								});

39				}	else	if	(request.method	===	“GET”)	{

40								if	(request.url	===	“/index.html”)	{

41												response.statusCode	=	200;

42												response.setHeader(“Content-Type”,	

“text/html”);

43												response.write('<!doctype	html>');

44												response.write('<html	lang=“en”>');

45												response.write('<body>');

46												response.write('<form	action=“formPost”	

method=“POST”	onsubmit=“return	ajax();”

																														content=“application/x-www-

form-urlencoded”>');

47												response.write('First-Name:');

48												response.write('<input	name=“fname”	

type=“text”	size=“25”/>');

49												response.write('Last-Name:');

50												response.write('<input	name=“lname”	

type=“text”	size=“25”/>');

51												response.write('<input	type=“submit”/>');

52												response.write('</form>');

53												response.write('<script>');

54												response.write('function	ajax(){');

55												response.write('var	xhr	=	new	

XMLHttpRequest();');

56												response.write('xhr.open(“POST”,	

“formPost”);');

57												response.write('xhr.setRequestHeader(“Content-

Type”,	“application/json”);');

58												response.write('xhr.setRequestHeader(“Accept”,

	“application/json”);');

www.it-ebooks.info

http://www.it-ebooks.info/

59												response.write('var	input	

=	document.getElementsByTagName(“input”);');

60												response.write('var	obj	=	{');

61												response.write('fname	:	input[0].value,');

62												response.write('lname	:	input[1].value');

63												response.write('};');

64												response.write('xhr.send(JSON.stringify(obj));');

65												response.write('return	false;');

66												response.write('}');

67												response.write('</script>');

68												response.write('	</body>');

69												response.write('</html>');

70												response.end();

71								}	else	{

72												response.statusCode	=	204;

73												response.end();

74								}

75				console.log(“response-end”);

76	};

77	function	getParamKey(key,	str)	{

78				var	regExp	=	new	RegExp(key.toLowerCase()	+	'=

[^&]*');

79				var	matchingValue	

=	(str.toLowerCase()).match(regExp);

80				for	(var	i	=	0;	i	<	matchingValue.length;	i++)	{

81								var	replacedValue	

=	matchingValue[i].replace(key	+	'=',	'');

82								matchingValue[i]	=	replacedValue;

83				}

84					return	decodeURIComponent(matchingValue[0]);

85	};

86	console.log('Server	running	at	

http://127.0.0.1:1337/index.html');

As	it	stands	now,	our	application	possesses	the	ability	to	handle	two	varieties	of
incoming	payloads.	This,	of	course,	can	always	be	enhanced	to	further	handle	even	more.
The	code,	as	it	stands	now,	can	only	satisfy	incoming	payloads	from	the	same	origin,	and
not	simply	because	our	code	neglects	to	configure	the	Access-Control-Allow-Origin
header.	Rather,	our	code	neglects	to	satisfy	a	user-agent’s	preflight	request.

Preflight	Request
As	you	may	recall	from	Chapter	9,	while	our	application	is	able	to	receive
communications	from	other	servers,	the	user-agents	of	modern	browsers	will	interfere
with	most	client	requests	when	they	are	made	from	varying	source	origins.	Previously,	we
discussed	how	user-agents	prohibit	our	applications	from	receiving	a	response	provided	by

www.it-ebooks.info

http://127.0.0.1:1337/index.html
http://www.it-ebooks.info/

a	server	located	at	originA	from	being	obtained	by	a	client	request	from	originB,	due	to
the	same-origin	policy	(SOP).

In	Chapters	9	and	10,	you	learned	how	to	circumvent	the	SOP	so	that	we	could	obtain
the	response.	We	learned	of	three	ways	in	which	we	could	successfully	do	so,	with	the
simplest	of	all	techniques	being	the	inclusion	of	the	Access-Control-Allow-Origin	header.
While	the	aforementioned	header	has	the	ability	to	authorize	the	source	origin,	thereby
allowing	the	client	to	obtain	a	proper	response,	the	Access-Control-Allow-Origin	header
alone	is	not	responsible	for	authorizing	an	HTTP	POST	from	varying	origins.

As	explained	earlier,	GET	requests	are	considered	safe	methods	because	they	generally
fetch	a	resource.	I	state	generally	because,	as	you	have	seen	earlier,	an	application	can	be
programmed	to	do	as	it	sees	fit.	However,	per	the	specification,	GET	requests	do	not	incur
side	effects	such	as	that	of	a	POST	method.	Therefore,	the	only	matter	at	hand	is	whether
or	not	the	source	origin	is	authorized	to	receive	the	resource	provided,	which,	of	course,	is
determined	with	the	Access-Control-Allow-Origin	header.

On	the	other	hand,	a	method	such	as	POST	is	considered	an	unsafe	method.	This
means	that	it	can	cause	side	effects	on	the	server	and	even	the	response.	Therefore,	the
user-agent	can’t	shoot	first	and	then	ask	for	authentication	later.	In	other	words,	the	user-
agent	can’t	simply	allow	the	request	to	occur	and	then	determine	if	the	source	origin	has
proper	authorization	before	returning	the	response.	Instead,	it	must	first	proceed	with	what
is	referred	to	as	a	preflight	request.

Preflight	is	a	term	that	is	defined	by	Webster	as	“preparing	for	or	preliminary	to
flight.”2	As	you	may	have	guessed,	preflighting	is	a	term	that	originated	in	the	aviation
industry	and	represents	a	series	of	checks	and	tests	that	are	conducted	by	the	pilot
preflight,	to	ensure	that	it	will	be	a	safe	and	successful	one.	Generally	speaking,	the	use	of
preflight	is	to	determine	the	risks,	if	any	exist.	While	the	term	certainly	better	suits
aircrafts	than	Ajax,	the	process	of	preflighting	reduces	the	likelihood	of	irreparable
damage	that	could	otherwise	take	place	by	blindly	allowing	an	unsafe	request	to	occur.

In	order	to	preflight	our	request,	the	user-agent	acts	sort	of	like	a	bouncer	at	a	club—
checking	everybody’s	identification	and	comparing	them	against	the	club’s	rules	and
regulations.	Such	rules	may	be	the	maximum	number	of	total	occupants,	in	addition	to
minimum	age	restrictions.	Should	all	club	criteria	be	met,	the	bouncer	allows	a	patron	to
enter	the	premises.	Otherwise,	the	bouncer	turns	them	away,	forcibly,	if	need	be.

As	discussed	previously,	HTTP	headers	are	used	to	facilitate	the	request/response
between	the	client	and	the	server.	However,	in	the	case	of	preflight,	our	bouncer,	the	user-
agent,	utilizes	headers	to	determine	if	the	server	has	any	rules	that	may	prevent	an	unsafe
request	from	entering,	by	preceding	our	actual	request	with	that	of	another,	as	depicted	in
Figure	11-3.

www.it-ebooks.info

http://www.it-ebooks.info/

Figure	11-3.	An	unauthorized	preflight	request

Figure	11-3	demonstrates	the	necessary	preflight	request	and	its	use	of	the	OPTIONS
request	method.

OPTIONS	Request	Method
The	request	method	OPTIONS,	as	outlined	in	the	original	1999	HTTP/1.1	specifications,
can	be	used	to	determine	the	options	and/or	requirements	associated	with	a	given	resource.
Additionally,	it	can	be	used	to	reveal	the	capabilities	of	a	server.	Furthermore,	the	request
receives	such	information	without	implying	any	action	to	be	performed	on	the	specified
resource.	Therefore,	it	will	not	initiate	the	retrieval	of	said	resource.	For	this	reason,
OPTIONS	is	considered	a	safe	method.

Generally	speaking,	a	request	for	a	resource	utilizing	the	OPTIONS	method	reveals,
by	way	of	the	configured	headers,	which	request	headers	and	possible	request	methods	are
capable	of	being	used	with	incoming	requests	for	the	indicated	resource.

As	this	point	in	time,	if	you	are	following	along	with	the	source	code	that	accompanies
this	chapter,	locate	and	run,	within	your	browser,	out-bound-entity.html.	If	you
are	not	following	along	with	this	chapter’s	source	code,	you	can	navigate	the	browser	of
your	choice	to	the	following	URL:
http://json.sandboxed.guru/chapter11/out-bound-entity.html.
Upon	your	arrival	to	either	the	local	or	online	version	of	the	out-bound-
entity.html	resource,	you	will	view	the	form	shown	in	Figure	11-4.

Figure	11-4.	Form	that	makes	cross-origin	requests	to	http://127.0.0.1:1337/formPost

www.it-ebooks.info

http://json.sandboxed.guru/chapter11/out-bound-entity.html
http://www.it-ebooks.info/

You	may	note	that	it’s	not	unlike	the	one	used	by	our	incomingEntityBody
application.	The	most	notable	difference	between	this	form	and	the	previous	form	is	the
inclusion	of	a	check	box	located	to	the	right	of	the	Submit	button.	In	the	previous	exercise,
I	had	you	disable	JavaScript,	which	caused	the	form	post	to	be	submitted	in	a	different
format	from	when	JavaScript	was	turned	on.	The	result	is	that	when	JavaScript	was	turned
off,	the	browser	parsed	the	response	rather	than	the	xhr	object.	This	resulted	in	a	new
page	being	presented	on	the	screen.	As	the	source	origin	of	the	request	and	the	response
occurred	from	the	same	origin,	the	response	appeared	natural.	However,	this	would	not	be
the	case	if	the	form	from	exampleA.com	resulted	in	a	full-page	reload	from
exampleB.com,	as	this	would	be	rather	apparent	to	the	end	user.	Therefore,	I	have
included	this	check	box,	which	uses	JavaScript	to	toggle	between	the	application/x-
www-form-urlencoded	format	and	the	application/json	format.	We	will	keep
it	checked	to	send	as	JSON	for	the	meantime.

If	you	no	longer	have	the	incomingEntityBody	application	running,	start	the
server	once	again,	so	that	we	can	attempt	to	submit	our	form	from	a	varying	origin.
Additionally,	open	the	Network	tab	on	your	developer	toolbar,	to	observe	the	HTTP
request.	Upon	the	submission	of	your	form,	the	results,	as	shown	in	your	developer
toolbar,	should	reflect	those	shown	in	Figure	11-3.	Rather	than	a	POST	occurring,	an
OPTIONS	request	takes	place.	In	fact,	our	POST	does	not	even	appear	in	the	list	at	all.
The	reason	why	is	because	the	user-agent	has	not	yet	received	the	proper	preflight
authorization	from	the	server	regarding	the	formPost	resource	that	would	result	in	our
request	taking	place.	Let’s	inspect	the	headers	of	the	OPTIONS	request	that	occurred.

By	navigating	to	the	“Headers”	aspect	within	the	Network	tab,	you	should	be	able	to
review	the	configured	headers	of	the	preflight	request.	Those	headers	should	reflect	the
ones	that	I	have	listed	below,	with	the	exception	of	the	headers	outlined	in	bold.

Access-Control-Request-Headers:		accept,	content-type

Access-Control-Request-Method:	POST

Cache-Control:	no-cache

Origin:	http://json.sandboxed.guru

Pragma:	no-cache

Referer:	http://json.sandboxed.guru/chapter11/out-bound-

entity.html

User-Agent:	Mozilla/5.0	(Macintosh;	Intel	Mac	OS	X	10_9_4)	

AppleWebKit/537.36	(KHTML,	like	Gecko)	Chrome/36.0.1985.143	

Safari/537.36

Of	the	headers	listed,	there	are	three	that	you	might	recognize	from	Chapter	9,	which
defined	the	headers	of	the	CORS	specifications.	Those	headers	are	Access-Control-
Request-Headers,	Access-Control-Request-Method,	and	Origin.

As	you	may	recall,	the	Origin	header	is	added	by	the	user-agent	to	inform	the	server	as
to	the	source	origin	of	the	request,	of	which	the	server	can	determine	whether	or	not	to
authorize	the	source	origin,	via	the	Access-Control-Allow-Origin	header.	What	you	may
not	know	is	that	the	other	two	headers	are	intended	for	similar	use.	However,	rather	than
communicate	the	need	for	authorization	among	origins,	they	require	authorization	for	the

www.it-ebooks.info

http://www.it-ebooks.info/

configured	headers	of	our	request,	as	well	as	the	specified	method	to	be	enacted	on	the
target	resource.

To	ensure	the	safety	of	the	request,	the	user-agent,	as	per	the	CORS	specification,
extracts	all	headers	from	the	actual	Ajax	request	and	configures	them	as	a	comma-
delimited	value	for	the	preflight	CORS-supported	header	Access-Control-Allow-Headers.
Likewise,	the	request	method	specified	in	the	request	line	of	our	actual	request	is	extracted
and	configured	as	the	value	to	yet	another	preflight	CORS	header	labeled	“Access-
Control-Request-Method.”

Once	the	server	receives	these	three	headers,	it	is	able	to	authorize	or	deny	the	request
simply	by	configuring	the	request	with	the	corresponding	preflight	CORS	response
headers.	Those	headers,	as	shown	in	Table	11-1,	are	the	following:	Access-Control-Allow-
Headers	and	Access-Control-Allow-Methods.

Table	11-1.	CORS	Preflight	Headers

Header Role Configures

Access-
Control-
Request-
Headers

Indicates	which	headers	will	be	used	in
the	actual	request User-Agent

Access-
Control-
Request-
Method

Indicates	which	method	will	be	used	in
the	actual	request User-Agent

Access-
Control-
Allow-
Methods

Indicates,	which	methods	can	be	used
during	the	request	for	a	targeted	resource Server

Access-
Control-
Allow-Headers

Indicates	which	header	field	names	can
be	used	during	the	request	of	the	targeted
resource

Server

If,	and	only	if,	all	values	configured	by	the	user-agent,	are	reflected	in	the	configured
values	of	the	response	will	the	actual	request	take	place.	Unlike	the	Access-Control-
Allow-Origin	header,	which	can	be	configured	with	the	wildcard	*	token,	the	Access-
Control-Allow-Methods	and	Access-Control-Allows-Headers	headers	must	explicitly
declare,	in	a	comma-delimited	fashion,	all	accepted	header	fields	and	methods	for	the
identified	resource.

As	it	stands	now,	we	are	unable	to	review	the	response	within	the	network	tab,	and	for
good	reason.	Up	until	this	moment,	our	incomingEntityBody	application	has	only
required	the	ability	to	respond	to	incoming	requests	that	utilize	GET	and	POST.	Until	we
implement	a	response	for	the	OPTIONS	request	method,	the	request	will	continue	to	wait
for	one.

Currently,	the	requestHandler	within	our	incomingEntityBody	application
distinguishes	between	GET	and	POST	methods.	Depending	on	which	request	method	is

www.it-ebooks.info

http://www.it-ebooks.info/

being	used,	the	appropriate	code	block	is	run,	resulting	in	the	fulfillment	of	the	request.
Monitoring	for	the	OPTIONS	request	is	as	simple	as	adding	yet	another	condition,	as	seen
in	Listing	11-11.

Listing	11-11.	Including	the	Ability	to	Respond	to	Preflight	Requests

	1	//...	code	is	truncated

	6	function	requestHandler(request,	response)	{

	7			console.log(request.url);

	8				if	(request.method	===	"POST")	{

	9							//...	code	is	truncated

51				}	else	if	(request.method	===	"GET")	{

52								//...	code	is	truncated
88				}	else	if(request.method==="OPTIONS"){

89				}

90				console.log("response-end");

91	};

To	keep	things	simple,	Listing	11-11	reveals	the	code	as	it	stands	within
incomingEntityBody,	only	I	have	condensed	the	areas	that	are	not	relevant	to	the
current	discussion.	As	you	can	see	on	lines	88	and	89,	a	new	code	block	has	been	added	to
respond	to	any	incoming	OPTIONS	request.	Within	this	block,	we	can	properly	configure
a	response	to	reflect	which	headers	and	methods	are	allowed	on	either	a	global	level	or	for
an	individual	resource.	For	the	purpose	of	this	demonstration,	we	will	be	configuring	the
headers	on	a	per-resource	basis.

Listing	11-12	begins	by	configuring	the	appropriate	status	code	that	acknowledges	the
request	was	properly	received	(line	89).	From	there,	we	determine	if	the	resource	being
requested	by	the	client	is	for	that	of	/formPost	(line	90).	If	this	is,	in	fact,	the	resource
being	requested,	the	response	will	be	configured	utilizing	the	appropriate	CORS	headers.

Listing	11-12.	Demonstrating	the	Configuration	of	the	Preflight	CORS	Headers

	88	}	else	if(request.method==="OPTIONS"){

	89			response.statusCode	=	200;

	90			if	(request.url	===	"/formPost")	{

	91							response.setHeader('Access-Control-Allow-Origin',	

'*');

	92							response.setHeader('Access-Control-Allow-Headers',	

'Content-Type,	Accept,

																													Accept-Language,	Accept-

Encoding,	User-Agent,	Host,

																													Content-Length,	Connection,	

Cache-Control');

	93							response.setHeader("Access-Control-Allow-Methods",	

'GET,	POST,	OPTIONS');

	94		}

	95		response.end();

	96	}

www.it-ebooks.info

http://www.it-ebooks.info/

The	first	configured	header	is	used	to	authorize	the	source	origin.	The	second
configured	header	is	used	to	inform	the	user-agent	of	any	and	all	headers	that	are
authorized	for	the	following	resource.	As	you	can	see,	each	header	field	that	our	resource
requires	must	be	added	to	the	Access-Control-Allow-Headers	header.	These	configured
values	may	regard	valid	HTTP/1.1	headers	in	addition	to	custom	headers.	In	this	case,	I
have	configured	the	values	with	typical	fields	(line	92).	These	configured	fields	for	the
Access-Allow-Request-Headers	header	can	certainly	possess	more	that	what	I	have	listed.
The	third	configured	header	regards	the	authorized	methods	that	can	enact	upon	the
targeted	resource.	As	this	book	only	considers	three	HTTP/1.1	methods,	GET,	OPTIONS,
and	POST,	I	have	provided	all	three	(line	93).

Last,	regardless	of	which	resource	is	requested,	we	submit	the	response,	as	it	is
currently	configured,	and	conclude	the	incoming	request	(line	95).	Upon	the	reception	of
the	response,	the	user-agent	will	compare	and	contrast	its	configured	headers	with	those
returned	by	the	server.

CORS	Preflight	Request	Headers

Access-Control-Request-Headers:		accept,	content-type

Access-Control-Request-Method:	POST

Origin:	http://json.sandboxed.guru

CORS	Preflight	Response	Headers

Access-Control-Allow-Headers:	Content-Type,	Accept,	Accept-

Language,Accept-

							Encoding,	User-Agent,	Host,	Content-Length,	

Connection,	Cache-Control

Access-Control-Allow-Methods:	GET,	POST,	OPTIONS

Access-Control-Allow-Origin:	*

If	the	configured	values	of	the	CORS	preflight	request	headers	can	be	matched	(case-
insensitive)	against	the	corresponding	CORS	preflight	response	headers,	only	then	will	the
actual	request	be	initiated.	Otherwise,	the	actual	request	will	be	canceled.

With	our	new	configured	headers	in	place,	let’s	run	the	application	that	possesses	the
code,	as	shown	in	Listing	11-12,	and	perform	another	form	submission	once	again.	Upon
the	submission	of	the	form,	you	should	see	that	the	preflight	request	has	been	performed
and	succeeds	and,	therefore,	is	followed	by	our	actual	request,	as	shown	in	Figure	11-5.

www.it-ebooks.info

http://www.it-ebooks.info/

Figure	11-5.	Authorized	preflight	request	followed	by	an	unauthorized	source	origin	request	for	formPost

As	depicted	by	Figure	11-5,	the	preflight	request	has	been	approved	and	follows	up
with	our	actual	request.	However,	due	to	a	network	error,	our	request	for	the	/formPost
resource	is	canceled.	The	reason	for	the	network	error	is	outputted	within	the	console	tab.
While	the	network	error	will	vary	depending	on	the	browser	being	used	to	make	the
request,	it	should	be	immediately	apparent	as	to	why	the	request	was	canceled.

XMLHttpRequest	cannot	load	http://127.0.0.1:1337/formPost.	

No	'Access-Control-Allow-Origin'	header	is	present	on	the	

requested	resource.	Origin	'http://127.0.0.1:8020'	is	

therefore	not	allowed	access.

As	explained	via	the	preceding	messaging	provided	by	Chrome,	the	request	resulted	in
a	network	error.	This	is	due	to	the	fact	that	the	source	origin	has	not	been	provided
sufficient	authorization	to	receive	the	response.	However,	this	is	simple	enough	to	resolve
by	including	the	Access-Control-Allow-Origin	header	as	a	configured	header	of	the
response.	At	this	point	in	time,	let’s	make	this	proper	amendment,	shown	in	bold	in
Listing	11-13,	and	then	initiate	the	request	once	more.

Listing	11-13.	Authorizing	formPost	for	All	Source	Origins

	1		...//truncated	code

13							request.addListener("end",	function()	{

14											console.log("end	of	stream	\n");

15											console.log("Raw	entity:	"	+	incomingEntity);

16												if	(request.headers['content-

type'].indexOf("application/json")>-1)	{

17																data	=	JSON.parse(incomingEntity);

18																if	(request.url	===	"/formPost")	{

19																				response.setHeader("Access-Control-Allow-
Origin","*");

www.it-ebooks.info

http://www.it-ebooks.info/

20																				response.statusCode	=	200;

21																				response.setHeader("Content-Type",	

"application/json");

22																				response.end(incomingEntity);

23																}

24									}else	if(request.headers['content-

type'].indexOf("application/x-www-form-urlencoded")>-1)	{

25																if	(request.url	===	"/formPost")	{

26																				response.statusCode	=	200;

27																				response.setHeader("Access-Control-Allow-
Origin","*");

28																				response.setHeader("Content-Type",	

"text/html");

29																						var	fname	=	getParamKey("fname",	

incomingEntity);

30																						var	lname	=	getParamKey("lname",	

incomingEntity);

31																				response.write('<!doctype	html>');

32																				response.write('<html	lang="en">');

33																				response.write('<body>');

34																				response.write(''	+	fname+	’	‘	

+lname	+'');

35																				response.write('</body>');

36																				response.end();

37																				return;

38																}

39												}

40								});

41				...//truncated	code

If	we	were	to	run	the	application	with	the	inclusion	of	the	bold	code	from	Listing	11-
13	and	resubmit	our	form,	the	results	this	time	would	be	authorized,	resulting	in	the	output
above	our	form,	as	shown	in	Figure	11-6.

Figure	11-6.	Successful	Ajax	POST	from	a	remote	origin

Additionally,	if	you	were	to	uncheck	the	check	box	beside	the	Submit	button,	we	could

www.it-ebooks.info

http://www.it-ebooks.info/

alter	the	Content-Type	of	the	payload	from	application/json	to
application/x-www-form-urlencoded.	Because	our	server	is	implemented	to
respond	with	an	appropriate	Content-Type	that	reflects	the	format	of	an	incoming	payload,
the	transmission	of	the	two	Content-Types	can	be	clearly	identified	via	the	response,	as
shown	in	Figure	11-7.

Figure	11-7.	Successful	form	POST

Congratulations!	You	have	just	created	a	server	that	can	accept	incoming	JSON
payloads	from	both	local	and	remote	origins.

What	Determines	Preflight
It	should	be	made	known	that	the	real	reason	I	had	incorporated	the	check	box	into	the
preceding	form	was	not	truly	to	demonstrate	the	ability	for	our	form	to	alternate	between
two	Content-Types.	Rather,	I	incorporated	it	to	emphasize	the	conditions	under	which	the
user-agent	determines	if	a	preflight	request	is	deemed	necessary.

If	you	were	to	monitor	the	network	traffic	that	occurred	in	Figure	11-7,	you	would
notice	that	the	there	was	only	one	preflight	request,	as	signified	by	the	OPTIONS	request
method.	This	can	be	observed	in	Figure	11-8.

Figure	11-8.	One	reflight	request,	two	POST	requests

As	clearly	shown	in	Figure	11-8,	the	form	received	two	responses	of	varying	Content-

www.it-ebooks.info

http://www.it-ebooks.info/

Types.	One	response	was	supplied	as	application/json,	while	the	other	was
supplied	as	text/html.	Both	responses	are	output	as	they	are	received	in	the	upper-left
corner	of	the	document.	However,	as	seen	in	the	Network	tab,	three	requests	were	made,
of	which	only	one	is	a	preflight	request.

As	was	stated	in	Chapter	9,	for	legacy	purposes,	HTTP	requests	that	are	only
configured	with	simple	request	headers	and	simple	request	methods	do	not	require	the	use
of	preflight.	However,	if	the	requests	are	made	from	varying	origins,	they	will	require
proper	authorization	to	obtain	the	response.	This	is	achieved	by	configuring	the	Access-
Control-Allow-Origin	header.	While	simple	request	methods	refer	to	requests	that	utilize
either	GET,	POST,	or	HEAD	as	their	request	methods,	what	constitutes	simple	request
headers	is	slightly	more	elaborate,	as	quoted	by	the	CORS	specification.3

A	 header	 is	 said	 to	 be	 simple,	 if	 the	 header	 field	 name	 is	 an	 ASCII	 case-
insensitive	match	for	Accept,	Accept-Language,	or	Content-Language	or	if	it	is
an	 ASCII	 case-insensitive	 match	 for	 Content-Type	 and	 the	 header	 field	 value
media	 type	 (excluding	 parameters)	 is	 an	 ASCII	 case-insensitive	 match	 for
application/x-www-form-urlencoded,	multipart/form-data,	or	text/plain.

What	this	means	for	varying	origins	is	that	if	your	server	is	expecting	an	incoming
payload	whose	Content-Type	is	not	among	the	three	that	can	be	configured	with	an	HTML
form	element,	such	as	JSON,	it	will	be	mandatory	for	your	application	to	anticipate	a
browser’s	need	for	preflight.	Conversely,	your	Ajax	request	may	be	denied	if	the	server
does	not	utilize	these	headers.

Summary
Typically,	when	we	use	APIs	belonging	to	Twitter	or	Facebook,	we	tend	to	overlook	what
might	be	required	of	a	server	to	make	these	interactions	possible.	Generally,	we	take	a	lot
of	what	is	taking	place	behind	the	scenes	for	granted.	This	chapter	has	attempted	to	shed
some	light	on	this	matter.

We	regarded	what	it	takes	to	receive	and	process	incoming	data.	As	it	turns	out,
POSTing	JSON	data	can	be	slightly	more	intricate	than	you	may	have	previously	believed,
especially	when	dealing	with	cross-origin	requests.

When	considering	a	request	from	a	varying	origin,	any	attempt	to	use	an	unsafe
method	immediately	results	in	what	is	regarded	as	a	preflight	request.	Only	requests	that
use	simple	methods	and	simple	headers	are	able	to	make	a	request	without	the	use	of
preflight.	Furthermore,	as	you	have	learned,	any	attempt	to	transmit	the	Content-Type
application/json	results	in	a	preflight	request.	Preflight,	of	course,	is	only	required
when	the	request	occurs	from	a	source	origin	that	varies	from	the	origin	of	the	server
being	posted	to.	In	either	case,	this	chapter	has	now	prepared	you	to	account	for	both.

Now	that	you	have	learned	to	process	data,	you	will	be	able	to	apply	this	knowledge	in
the	next	chapter.

Key	Points	from	This	Chapter

www.it-ebooks.info

http://www.it-ebooks.info/

GET	requests	only	have	one	MIME	type,	whereas	POST	requests	have
many.

Incoming	payloads	can	be	both	simple	and	complex.

One	must	consume	incoming	data	by	monitoring	the	stream	for	the
data	event.

When	all	data	has	been	consumed	from	the	stream,	the	end	event	is
fired.

The	HTML	<form>	element	can	only	transmit	three	Content-Types.

Determining	the	Content-Type	for	incoming	data	is	beneficial	with
regard	to	processing	the	received	data.

Buffers	are	used	to	read	bytes	from	the	stream.

Preflight	reduces	the	likelihood	of	malicious	behavior.

Preflight	makes	use	of	the	OPTIONS	request	method.

There	are	two	preflight	headers	that	must	be	properly	configured	by
the	server	in	order	to	authorize	a	source	origin.

1R.	Fielding	et	al.,	Hypertext	Transfer	Protocol—HTTP/1.1,	http://tools.ietf.org/html/rfc2616,	1999.

2Merriam	Webster	Online	Dictionary,	“preflight,”	http://www.merriam-
webster.com/dictionary/preflight,	2015.

3World	Wide	Web	Consortium	(W3C),	Anne	van	Kesteren,	ed.	“Cross-Origin	Resource	Sharing,”
www.w3.org/TR/cors/,	January	16,	2014.

www.it-ebooks.info

http://tools.ietf.org/html/rfc2616
http://www.merriam-webster.com/dictionary/preflight
http://www.w3.org/TR/cors/
http://www.it-ebooks.info/

CHAPTER	12

Persisting	JSON:	II
The	last	time	I	discussed	the	persistence	of	JSON,	it	was	strictly	from	a	front-end
perspective.	However,	as	promised,	this	chapter	will	consider	the	persistence	of	JSON
from	a	back-end	perspective.

You	may	be	familiar	with	the	terms	SQL	and	MySQL,	as	they	are	both	rather	popular
databases.	These	databases	store	data	in	rows,	within	a	table.	With	the	assistance	of	the
SQL,	Structured	Query	Language,	data	can	be	extracted	from	the	table	and	returned	to	the
requesting	client.	However,	what	you	may	not	be	so	familiar	with	is	the	term	NoSQL
databases,	which,	as	you	may	surmise,	refers	to	a	category	of	databases	that	do	not	rely	on
the	SQL	query	language	(or	at	least	not	heavily).

NoSQL	databases,	such	as	CouchDB	and	MongoDB,	store	their	data	as	JSON	within
individual	documents,	rather	than	as	rows	within	a	table.	Storing	data	in	this	fashion	has
been	shown	to	provide	a	great	amount	of	scalability,	as	well	as	flexibility,	compared	to
traditional	SQL	databases.

CouchDB
As	prominently	stated	on	the	CouchDB	web	site,	located	at
http://couchdb.apache.org,	Apache	CouchDB™	is	a	database	that	uses	JSON
for	documents,	JavaScript	for	MapReduce	indexes,	and	regular	HTTP	for	its	API.	Because
CouchDB	leverages	the	open	source	technologies	of	the	Web,	it	itself	is	an	entirely	open
source	project.

Installing	CouchDB,	as	with	Node,	requires	very	little	effort	and	is	as	easy	as
downloading	the	appropriate	installation	package.	CouchDB	is	available	for	Mac,
Windows,	and	Ubuntu	Linux,	but	this	book	will	only	cover	the	installation	on	Mac	and
Windows.

Windows	Installation
Open	your	browser	to	http://couchdb.apache.org/	and	scroll	down	until	you
find	the	red	Windows	(x86)	download	button.	At	the	time	of	this	writing,	the	version	of
CouchDB	that	will	be	downloaded	is	1.6.1.	This	will	direct	you	to	the	Apache	Download
Mirrors	site,	which	makes	a	few	suggestions	pertaining	to	where	you	should	download	the
CouchDB	setup	executable.	Unless	you	have	a	preference	for	which	mirror	you	make	use
of,	click	the	mirror	link	directly	below	the	words	“We	suggest	the	following	mirror	site	for
your	download.”	This	will	initiate	the	download.	Depending	on	the	browser	being	used,
you	may	be	prompted	to	run,	save,	or	cancel	the	download.

www.it-ebooks.info

http://couchdb.apache.org
http://couchdb.apache.org/
http://www.it-ebooks.info/

When	the	download	has	completed,	and	you	are	ready	to	begin	the	installation,	locate
the	directory	for	which	the	download	was	saved	and	run	the	executable.	Once	the
application	runs,	you’ll	be	presented	with	the	initial	screen	of	the	setup	wizard.	At	this
point,	feel	free	to	click	Continue	and	accept	the	Apache	license	agreement.

The	third	screen	of	the	installation	presents	you	with	the	default	location	for	the
installation.	Unless	you	have	a	reason	for	this	to	change,	continue	with	the	defaulted
location	by	clicking	Next.	Unless	you	would	like	to	place	the	program’s	shortcut	within	a
folder	other	than	Apache	CouchDB,	click	Next.

The	final	screen	presents	you	with	two	check	boxes	that	have	already	been	checked
off.	Keep	these	both	active	and	continue	once	again	by	clicking	Next,	to	proceed	to	the
installation	screen.	The	installation	screen	reflects	the	chosen	configurations	for	one	final
review	before	the	installation	begins.	If	you	are	satisfied	with	the	present	settings,	click
Install.

When	the	installation	has	concluded,	and	you	receive	the	“Completing	the	Apache
CouchDB	Setup	Wizard”	message,	you	can	click	Finish.	At	this	point,	and	only	if	you	left
both	check	boxes	selected,	CouchDB	will	already	be	running.	To	ensure	that	the
installation	has	been	successful,	navigate	your	browser	to	the	following	address:
http://127.0.0.1:5984/.	You	should	be	presented	with	similar	JSON	output
shown	in	Figure	12-1.

Figure	12-1.	Successfully	running	CouchDB

If	you	are	seeing	this	message,	congratulations;	CouchDB	has	been	successfully
installed.

Mac	Installation
Open	your	browser	to	http://couchdb.apache.org/	and	scroll	down	until	you
find	the	red	Mac	OS	X	(10.6+)	download	button.	At	the	time	of	this	writing,	the	version	of
CouchDB	that	will	be	downloaded	is	1.6.1.	This	will	direct	you	to	the	Apache	Download
Mirrors	site,	which	makes	a	few	suggestions	pertaining	to	where	you	should	download	the
CouchDB	setup	executable.	Unless	you	have	a	preference	for	which	mirror	you	make	use
of,	click	the	mirror	link	directly	below	the	words	“We	suggest	the	following	mirror	site	for
your	download.”	This	will	initiate	the	download.	Depending	on	the	browser	being	used,
you	may	be	prompted	to	run,	save,	or	cancel	the	download.	Feel	free	to	hit	Save.

www.it-ebooks.info

http://127.0.0.1:5984/
http://couchdb.apache.org/
http://www.it-ebooks.info/

Once	the	download	has	completed,	and	you	are	ready	to	begin	the	installation,	locate
the	directory	for	which	the	download	was	saved.	Locate	the	Apache-CouchDB	file	and
double-click	it	to	unzip	the	contents	of	the	archive,	to	reveal	the	Apache	CouchDB
application.	The	beauty	of	the	Mac	installation	is	that	the	application	is	self-contained	and
ready	to	run	simply	by	double-clicking	the	app.	As	the	file	is	an	app,	feel	free	to	move	the
file	into	the	Applications	directory	before	running.

At	this	point,	if	you	are	ready	to	launch	the	CouchDB	application,	go	ahead	and
double-click	the	Apache	CouchDB.app.	Now	you	should	have	CouchDB	running	in	the
background.	To	ensure	that	you	have	successfully	launched	CouchDB,	simply	navigate
your	browser	to	the	following	URL:	http://127.0.0.1:5984/.

You	should	be	presented	with	similar	JSON	output	to	that	shown	in	Figure	12-2.

Figure	12-2.	Successfully	running	CouchDB

If	you	are	seeing	this	message,	congratulations;	CouchDB	has	been	successfully
installed.

Working	with	CouchDB
What	makes	CouchDB	unique	as	a	database,	other	than	storing	data	within	individual
documents,	is	the	fact	that	its	API	is	nothing	more	simple	than	HTTP	requests.	Whether
we’re	taking	about	databases	or	the	documents	within	them,	our	ability	to	receive,	update,
add,	and	delete	are	all	made	possible	via	the	eight	standard	HTTP	request	methods	to
http://127.0.0.1:5984.	As	with	our	Node	applications,	CouchDB	is	running	a
server	that	monitors	all	incoming	requests	on	the	port	5984.	For	each	incoming	request,	an
appropriate	response	is	provided.

Because	the	API	is	nothing	more	than	standard	requests,	incorporating	CouchDB	with
Node	is	a	piece	of	cake.	Before	we	begin	to	incorporate	CouchDB	with	our	Node
application,	let’s	first	take	a	look	at	the	interface	that	accompanies	CouchDB.

Futon
As	was	stated	earlier,	the	API	of	CouchDB	is	made	up	entirely	of	HTTP	requests.	Rather
than	requiring	new	adopters	of	CouchBD	to	create	an	interface	of	their	own	to	monitor
and	work	with	databases	instantly,	the	developers	at	CouchDB	have	provided	us	with	a
local	interface	that	wraps	all	HTTP	requests	for	us	within	a	series	of	visual	elements.	This
interface	has	been	dubbed	“Futon.”

www.it-ebooks.info

http://127.0.0.1:5984/
http://127.0.0.1:5984
http://www.it-ebooks.info/

Futon	is	a	simple	HTML	interface	that	leverages	HTTP	requests	to	provide	us	with	an
easy	way	to	work	with	our	data.	At	this	point,	navigate	your	browser	to
http://127.0.0.1:5984/_utils/.	Upon	your	arrival	you	will	be	presented	with
the	view	shown	in	Figure	12-3.

Figure	12-3.	Futon	utilities	interface

Each	Futon	interface	is	divided	into	two	halves.	The	left-hand	portion	of	the	view	is
the	prominent	view	and	is	used	to	easily	work	with	and	create	data.	The	second
component,	toward	the	right-hand	side	of	the	screen,	provides	us	with	an	easy	way	to
access	a	variety	of	utilities	provided	by	the	CouchDB	application.	From	within	this
column	of	the	Futon	interface,	you	can	access	documentation,	update	the	configurations
for	the	application,	and	even	run	diagnostics.

The	view	reflected	in	Figure	12-3	represents	the	overview	interface.	Within	this	view,
we	are	presented	with	a	table	of	currently	existing	databases.	By	default,	CouchDB	comes
preinstalled	with	two.	These	are	the	following:	_replicator	and	_users.	While	it’s
nice	that	Couch	provides	us	with	these,	it	will	be	more	interesting	to	work	with	our	own.
New	databases	can	be	easily	created	directly	from	this	interface	via	the	Create	Database
button	located	just	above	the	table	of	existing	databases.

Constructing	Your	First	Database
Creating	our	first	database	via	Futon	is	as	easy	as	can	be.	Simply	click	the	Create
Database	button	to	begin	the	process.	Upon	clicking,	Futon	provides	us	with	a	prompt
asking	for	us	to	label	our	database.	As	this	chapter	will	work	toward	the	creation	of	a
guestbook	for	our	Node	applications,	we	will	provide	the	label	“guestbook.”	Clicking
Create	will	create	the	database	and	results	in	the	updated	interface	shown	in	Figure	12-4.

	Note		A	guestbook	is	a	way	for	visitors	who	arrive	at	a	site	to	leave	their	names	and

www.it-ebooks.info

http://127.0.0.1:5984/_utils/
http://www.it-ebooks.info/

possible	comments.

Figure	12-4.	No	documents	within	guestbook

As	identified	by	the	breadcrumbs	in	the	upper-left-hand	corner,	this	interface	no	longer
regards	the	overview	but,	rather,	our	recently	created	database.	This	Futon	interface
provides	us	with	the	necessary	tools	to	work	with	a	particular	database.	In	this	case,	that
particular	database	is	our	guestbook	database.

Here,	we	would	be	able	to	see	all	JSON	documents	that	have	been	stored	within;
however,	as	we	have	just	created	this	database,	it	remains	empty	for	the	time	being.	Let’s
add	our	first	piece	of	content	by	clicking	the	button	labeled	“New	Document.”	By	clicking
this	button,	we	find	ourselves	viewing	yet	another	interface	that	resembles	that	shown	in
Figure	12-5.

Figure	12-5.	Overview	of	a	guestbook	document

This	interface,	as	illustrated	by	the	breadcrumb,	concerns	an	individual	document.
Remember	that	all	data	is	saved	individually	as	a	JSON	document.	By	default,	each
document	created	is	provided	with	a	GUID	(Globally	Unique	Identifier).	Because	GUIDs
are	globally	unique,	the	value	shown	in	my	figure	will	undoubtedly	be	different	from	the
GUID	your	document	has	been	provided	with.	Although	this	view	provides	you	with	an
input	field	allowing	you	to	adjust	this	value,	you	are	generally	discouraged	from	doing	so.
The	reason	is	that	this	GUID	is	the	identifier	that	will	be	used	to	locate	this	file.
Depending	on	how	many	documents	you	are	expecting	to	store,	you	may	find	yourself

www.it-ebooks.info

http://www.it-ebooks.info/

running	out	of	proper	names	to	provide	each	document.

Because	the	document	_id	represents	the	resource	itself,	if	you	were	to	have	visited
http://127.0.0.1:5984/guestbook/03e68a3bac3fd452bf6b136e76001222

replacing	my	GUID	with	yours,	you	would	have	made	a	GET	request	for	the	contents	of
the	file	we	are	currently	modifying.

As	this	interface	shows,	you	can	see	that	this	view	provides	us	with	a	few	more
buttons,	such	as	Save	Document,	Add	Field,	and	even	Upload	Attachment.	Just	below
these	buttons	within	the	tab	labeled	“Fields,”	resides	a	singular	field	and	value.	From	this
view,	we	will	be	able	to	provide	key/value	pairs	to	our	JSON	document	simply	by
assigning	as	many	keys	and	values	as	we	desire.

Utilizing	the	button	labeled	“Add	Field,”	we	will	add	two	more	fields	to	this
document.	Upon	clicking	Add	Field,	a	new	“unnamed”	row	will	appear.	Let’s	change	the
name	from	“unnamed”	to	“handle.”	Next,	by	hitting	Tab,	the	focus	will	switch	from	the
Field	to	the	Values	column.	Within	the	Value	field,	provide	the	string	value	@CouchDB
and	hit	Enter.

	Note		It’s	important	to	note	that	fields	should	not	be	provided	with	double	quotes,	as
they	will	be	applied	behind	the	scenes.	Furthermore,	all	strings	provided	for	Values	should
always	have	double	quotes.

Once	again,	click	Add	Field	and	replace	the	“unnamed”	field	with	that	of	“message.”
Then	once	again	hit	Tab,	to	provide	the	value	of	“greetings	and	salutations”	and	hit	Enter.
Last,	click	the	button	labeled	“Save	Document,”	to	write	these	changes	into	the	document.
CouchDB	provides	versioning	to	ensure	the	ability	to	roll	back	to	any	previous	changes.
For	this	reason,	you	may	note	that	CouchDB	has	inserted	a	field	on	your	behalf	labeled
“_rev.”	This	simply	refers	to	the	current	document	revision.

While	we	utilized	the	Add	Field	button	to	include	key/value	pairs	to	our	document,
you	could	have	switched	the	manner	in	which	we	inputted	our	members	by	toggling	from
the	Fields	view	to	the	Source	view.	Once	within	Source	view,	by	double-clicking	the
presented	source,	you	would	note	that	the	presented	JSON	becomes	editable,	as	shown	in
Figure	12-6.	If	you	are	utilizing	the	Source	route,	always	make	sure	that	you	are	providing
valid	JSON.

Figure	12-6.	JSON	Source	input	field

Congratulations,	you	have	created	your	very	first	data	entry	in	the	guestbook	database.
In	order	to	view	the	JSON	text	of	this	entry,	click	the	icon	shown	in	Figure	12-7.

www.it-ebooks.info

http://127.0.0.1:5984/guestbook/03e68a3bac3fd452bf6b136e76001222
http://www.it-ebooks.info/

Figure	12-7.	Performing	a	quick	request	for	the	current	view

Clicking	the	button	shown	in	Figure	12-7	is	simply	an	easier	way	to	navigate	our
browser	to	the	current	document	similarly,	as	shown	previously.	Whether	you	use	the
button	or	physically	type	in	the	full	URI,	you	will	be	presented	with	the	raw	JSON,	as
revealed	in	Figure	12-8.	Figure	12-8	shows	our	recently	created	document	with
accompanying	handle	and	message.

Figure	12-8.	JSON	revealed	for	@CouchDB	signature

At	this	point,	let’s	revisit	the	overview	interface	by	navigating	to
http://127.0.0.1:5984/_utils/.	This	time,	arriving	at	the	overview	interface
lists	our	guestbook	among	the	default	two.	From	here,	we	can	easily	access	our	guestbook
database	by	clicking	the	name	“guestbook”	within	the	list.

By	selecting	the	guestbook	database,	the	Futon	interface	drills	down	from	the
overview	to	our	guestbook	database	specifically.	The	last	time	we	were	within	this
interface,	the	table	possessed	zero	documents.	However,	this	time,	a	single	document	is
presented	within	the	table,	as	shown	in	Figure	12-9.

Figure	12-9.	All	existing	documents	listed	for	guestbook

Figure	12-9	shows	a	two-columned	table	consisting	of	the	labels	“Key”	and	“Value”
and,	within	it,	our	recently	created	document.	This	can	be	identified	by	the	GUID	we	were
working	with	earlier.	Furthermore,	by	clicking	the	GUID	listed	in	the	column	labeled
“Key,”	we	can	review	the	individual	content	retained	by	that	document.

As	I	stated	earlier,	Futon,	similar	to	a	user-agent,	initiates	a	series	of	HTTP	requests	on
our	behalf	behind	the	scenes.	If	you	were	to	open	up	your	developer’s	toolbar	and	navigate
to	the	Network	tab,	you	would	be	able	to	find	a	GET	request	for	the	following	request:
http://127.0.0.1:5984/guestbook/_all_docs.

At	any	point	in	time,	we	can	query	our	database	for	any	and	all	entries	it	holds,	by

www.it-ebooks.info

http://www.it-ebooks.info/

navigating	to	the	aforementioned	URL.	As	the	later	portion	of	the	URL,	_all_docs,
suggests,	we	should	expect	to	view	every	saved	document	pertaining	to	our	guestbook
database.	Upon	your	arrival	to	the	preceding	URL,	you	should	be	presented	with
something	that	resembles	the	following	JSON:

{"total_rows":1,"offset":0,"rows":[

{"id":"03e68a3bac3fd452bf6b136e76001222","key":"03e68a3bac3fd452bf6b136e76001222","value":

{"rev":"1-2c422372e71c79db87aca8289dd78827"}}]}

The	preceding	output	displays	a	complex	JSON	structure	providing	an	overview	of	all
documents	possessed	by	our	guestbook	database.	Held	within	the	member	labeled	“rows,”
it	reveals	an	array	whereby	each	reflected	document	can	be	easily	traversed,	and	its	“id”
can	be	obtained.	As	you	recall,	this	is	the	identifier	by	which	the	server	refers	to	a
document.

The	resource	used	before,	_all_docs,	reflects	a	unique	JSON	document.	What
makes	this	document	unique	is	that	all	of	its	retained	data	reflects	the	results	for	a
particular	query.	That	query	being	the	following:

Capture	the	id	and	current	revision	for	documents	affiliated	

with	our	guestbook	database.	Additionally	insert	the	id	as	

the	value	of	the	"key"	field.

In	the	CouchDB	nomenclature,	all	documents	that	are	used	to	reveal	the	results	of	a
query	are	referred	to	as	a	view.

Creating	Views
Creating	a	custom	JSON	representation	of	the	data	held	by	our	database	is	what	the
CouchDB	nomenclature	refers	to	as	a	view.	A	view,	in	its	most	atomic	form,	is	a
JavaScript	map	function	whose	signature	and	implementation	reflect	the	following	code:

function(doc){

		emit(key	,	value);

}

	Note		A	map	function	is	applied	against	all	elements	within	a	list,	to	produce	a
particular	result	set.

The	initial	parameter	doc	represents	the	parsed	JSON	content	of	a	document,	which
exists	within	the	database.	With	a	process	similar	to	a	JavaScript	for	loop,	each	and
every	document	that	exists	within	our	database	is	supplied	to	this	very	function.	From
within	the	body	of	the	function,	and	utilizing	pure	JavaScript,	we	can	analyze	the	provided
JavaScript	object	to	extract	particular	keys	and	values	to	construct	a	new	object	that
reflects	the	needs	of	a	particular	view.	Once	we	have	determined	what	we	wish	to	provide
as	a	row	within	this	result,	we	will	supply	it	as	the	value	argument	of	the	emit	method.
The	emit	method	is	a	global	method	provided	by	CouchDB	to	capture	a	key	and	data

www.it-ebooks.info

http://www.it-ebooks.info/

value	as	a	row	within	a	particular	view.

The	great	thing	about	the	emit	method	is	that	it	can	be	called	as	many	or	as	few	times
as	you	like	per	document.	Additionally,	the	key	provided	mustn’t	be	unique.	Unlike	a
traditional	key/value	pair,	the	parameter	labeled	“key”	is	used	strictly	to	sort	or	filter
results	that	are	captured	within	this	view.	By	providing	taxonomy,	we	can	obtain	all	rows
that	exhibit	this	particular	key.

	Note		Each	call	to	emit	creates	a	corresponding	row	in	the	produced	document.

While	this	may	sound	inefficient,	depending	on	the	amount	of	saved	documents	within
the	database,	the	reality	is	that	it’s	only	inefficient	the	very	first	time	this	view	is	queried.
Any	subsequent	request	for	a	view	that	has	previously	been	run	will	only	be	executed
against	any	documents	that	may	have	been	updated,	deleted,	or	added.

Creating	Our	First	Custom	View
Let’s	begin	to	devise	our	first	view.	If	you	are	not	currently	within	the	guestbook	view,
navigate	your	browser	to	http://127.0.0.1:5984/_utils/	and	click	the
guestbook	database.	On	the	right-hand	side	of	the	screen,	you	will	see	a	drop-down	menu
labeled	“View:”,	as	seen	in	Figure	12-10.	Be	sure	to	select	“Temporary	view….”

Figure	12-10.	Creating	a	temporary	view

Upon	your	selection,	you	will	be	presented	with	a	screen	similar	to	that	shown	in
Figure	12-11.

Figure	12-11.	An	anonymous	map	function

The	interface	illustrated	in	Figure	12-11	is	what	we	will	use	to	design	a	custom	query,
a.k.a.	a	view.	On	the	left-hand	side	of	the	screen,	just	below	the	label	“Map	Function,”	you
can	see	the	anonymous	function	I	was	discussing	earlier.	Utilizing	the	interface,	we	can

www.it-ebooks.info

http://www.it-ebooks.info/

begin	reading	particular	members	from	the	supplied	document	and	begin	the	retrieval	for
the	rows	of	our	view.

While	we	have	a	view	that	provides	the	IDs	and	revisions	to	all	documents,	let’s	create
a	view	that	will	output	all	captured	handles	and	their	corresponding	message,	by	updating
the	map	function	to	reflect	the	following	code	(Listing	12-1):

Listing	12-1.	A	Specific	map	Function	Implementation

function(doc)	{

		if(doc.handle){

				emit(doc.handle,	{	"handle":doc.handle,	"message":	

doc.message,	"_id":doc._id});

		}

}

Listing	12-1	demonstrates	an	implementation	that	constructs	a	view,	which	will	reveal
the	handles,	messages,	and	the	ID	of	each	document	within	the	guestbook	database.
Furthermore,	using	a	simple	condition	to	determine	if	a	handle	does	not	exist,	we	can
choose	whether	or	not	a	particular	document	should	be	present.	With	this	code	in	place,
click	the	button	labeled	“Run”	to	observe	the	results	of	our	view.

Clicking	Run	should	reveal	a	singular	row	reflecting	its	findings,	as	seen	in	Figure	12-
12.	As	we	only	have	one	document	in	our	database,	only	one	document	has	been	supplied
to	our	function.	Let’s	add	a	second	entry	to	our	guestbook	database,	but	first,	let’s	save	this
temporary	view	as	a	permanent	one.	Any	temporary	view	can	be	converted	into	a
permanent	one	simply	by	clicking	“Save	As…”	on	the	right-hand	side	of	the	screen.

Figure	12-12.	Results	for	our	custom	query

Clicking	this	button	will	bring	up	a	prompt	asking	for	the	name	of	a	design	document,
as	well	as	the	unique	name	for	our	recently	created	query	(a.k.a.	view).	At	this	point,
provide	the	name	of	a	document	as	_design/guests	and	provide	the	view	name
“signatures,”	as	shown	in	Figure	12-13.	Once	you	have	entered	the	appropriate	names,
click	Save.	Because	everything	is	saved	as	a	JSON	document,	you,	too,	can	access	the	raw
JSON	for	the	view	we	just	devised.

www.it-ebooks.info

http://www.it-ebooks.info/

Figure	12-13.	Creating	a	permanent	view

The	design	document	labeled	“guests”	is	an	example	of	a	string	id	versus	a	GUID.
Because	design	documents	are	more	likely	to	be	requested	specifically	rather	than	iterated
over,	it	makes	more	sense	to	use	a	name	that	is	easy	to	remember.	Because	the	name	of	the
resource,	“guests,”	is	the	actual	name	of	the	file,	we	can	always	obtain	its	raw	JSON	by
simply	visiting	the	following	URL:
http://127.0.0.1:5984/guestbook/_design/guests.

It	is	worth	noting	that	all	documents	pertaining	to	a	view	are	prefixed	with
_design/.	This	denotes	a	view	from	an	ordinary	document.

Once	more,	let’s	get	back	to	our	database	by	navigating	your	browser	once	more	to
http://127.0.0.1:5984/_utils/	and	clicking	the	guestbook	database.	To	create
another	entry	into	our	database,	click	New	Document.	Let’s	add	a	second	document,	to
reflect	the	handle	@apache,	and	provide	it	with	the	following	message:	“Hello	World.”
When	this	is	completed,	click	Save.

At	this	point,	you	should	now	have	two	entries	within	the	guestbook	database.	You	can
easily	navigate	back	to	our	guestbook	database	by	selecting	it	from	the	breadcrumb	in	the
header.	Upon	your	arrival,	you	should	witness	the	two	documents	of	our	database,	as
revealed	in	Figure	12-14.	You	may	immediately	recognize	that	the	rows	of	our	view	no
longer	resemble	the	outputted	table	as	previously	shown	in	Figure	12-9.

Figure	12-14.	Two	rows	of	signatures	within	the	guestbook

This	is	because	the	database	currently	makes	use	of	the	“signature”	view	we	recently
created.	Feel	free	to	toggle	between	any	views	by	using	the	drop-down	menu	in	the	upper-
right-hand	corner.	For	whichever	view	is	selected,	choosing	the	icon	shown	in	Figure	12-

www.it-ebooks.info

http://www.it-ebooks.info/

14	will	initiate	an	HTTP	GET	request	for	the	chosen	resource.	The	response	will	reveal	for
the	chosen	query	all	matches	presented	in	JSON.

No	matter	how	many	entries	your	guestbook	DB	is	provided,	you	can	always	obtain
the	results	of	your	signature	view	by	navigating	your	browser	to	the	following	URL:
http://127.0.0.1:5984/guestbook/_design/guests/_view/signatures

Visiting	the	aforementioned	URL	reveals	the	handles,	message,	and	_id	for	each
document	that	matched	our	query.	Furthermore,	because	we	utilized	the	key	label	when
emitting	our	values,	we	can	further	filter	our	search	to	that	of	a	particular	key/value	simply
by	appending	a	query	string	parameter	to	the	preceding	URL,	like	so:
http://127.0.0.1:5984/guestbook/_design/guests/_view/signatures?

key=“apache”.	Appending	the	key	parameter	with	a	string	matching	our	@apache
handle	returns	only	the	results	that	match	the	provided	key.	It’s	important	to	note	that	all
strings	provided	to	the	key	parameter	must	be	wrapped	in	double	quotes.

We	can	even	sort	our	list	by	providing	yet	another	query	parameter.	At	our	disposal	for
sorting,	we	can	use	either	ascending	or	descending.	Regardless	of	which	parameter	you
choose	to	use,	the	value	which	it	requires	is	that	of	a	true	or	false.	Visiting	the
following	URL	will	present	our	rows,	in	alphabetical	order:
http://127.0.0.1:5984/guestbook/_design/guests/_view/signatures?

ascending=true.

Connecting	Node	and	CouchDB
As	was	stated	earlier,	CouchDB	possesses	its	own	REST	API	for	working	with	databases,
documents,	and	views.	In	fact,	it’s	100%	possible	to	add/remove	documents,	views,	and
databases	with	nothing	other	than	standard	HTTP	requests.	I	hope	from	what	you	have
previously	observed	that	this	will	not	come	as	a	shock	to	you.

Because	CouchDB’s	API	is	available	through	the	URL,	we	can	both	persist	and	query
data	from	either	a	browser	or	server.	If	we	were	to	work	with	CouchDB	via	the	client	side,
we	could	rely	on	Ajax,	whereas	on	the	server	side,	we	can	incorporate	the	use	of	an
instance	of	the	http.ClientRequest.

It	must	be	made	known	that	because	CouchDB	runs	on	its	own	port,	any	and	all	client-
side	requests	beyond	those	made	by	Futon	will	require	the	incorporation	of	all	appropriate
CORS	headers.	By	default,	CouchDB	does	not	have	these	enabled,	but	it	does	offer	the
ability	to	activate	them	via	the	configuration	view,	shown	in	Figure	12-15,	located	at
http://127.0.0.1:5984/_utils/config.html.	We	will	discuss	how	to
properly	configure	CouchDB	to	enable	CORS	in	Chapter	14.

www.it-ebooks.info

http://www.it-ebooks.info/

Figure	12-15.	CouchDB	configuration	interface

Simply	because	the	HTTP	methods	required	to	work	with	CouchDB	are	beyond	the
scope	of	this	book,	for	simplicity,	we	will	incorporate	CouchDB	with	Node	and	use	yet
another	module	to	streamline	such	HTTP	calls	into	a	simple	API.	The	module	that	we	will
be	working	with	is	known	as	Cradle.

Cradle	for	Node
While	Node	itself	includes	a	variety	of	modules,	one	that	it	does	not	ship	with	is	Cradle.
Cradle	is	a	third-party,	high-level	CouchDB	client	module	that	has	been	created	to	easily
and	asynchronously	work	with	CouchDB	and	Node	applications.	Due	to	its	extremely
high-level	API,	we	will	remain	shielded	from	the	HTTP	methods	that	have	not	been
covered	in	this	book.	If	you	wish	to	learn	more	about	Cradle,	feel	free	to	navigate	to	its
GitHub	page:	https://github.com/flatiron/cradle.

Installing	Cradle	is	very	easy.	Simply	use	the	command-line	interface	to	navigate	to
the	top	directory,	which	contains	the	chapter12	source	code.	For	me,	that	would	be	the
following	locations:

//PC

C:\Users\UrZA\Documents\Aptana	Studio	

3	Workspace\BeginningJSON\chapter12\

//Mac

/Users/FeZEC/Documents/Aptana	Studio	

3	Workspace/BeginningJSON/chapter12/

Simply	type	cd,	followed	by	the	location	of	your	chapter12	directory,	and	hit
Enter.	Next,	type	in	the	following	command	and	hit	Return	on	your	keyboard:

npm	install	cradle

This	will	initiate	a	download	of	all	required	packages	for	the	particular	module	into	a
folder	labeled	node_modules,	within	the	chapter12	directory.	If	your	console
outputs	a	series	of	lines	that	all	display	errors,	as	shown	in	Figure	12-16,	you	will	be
required	to	run	the	same	command	as	the	administrator.

www.it-ebooks.info

https://github.com/flatiron/cradle
http://www.it-ebooks.info/

Figure	12-16.	Cradle	installation	error

On	a	Mac,	this	can	be	achieved	by	preceding	the	aforementioned	command	with
sudo,	making	the	entire	command	sudo	npm	install	cradle.	Once	you	press
Enter,	you	will	be	asked	for	your	login	password.

On	a	PC,	you	will	have	to	close	the	command	prompt	and	open	it	from	the	Start	menu.
Depending	on	the	version	of	Windows,	you	may	find	within	your	startup	menu	two
listings	for	the	command	prompt;	only	one	is	followed	by	“Admin.”	Choose	this	particular
command	prompt	and	retry	the	preceding	command.

If,	on	the	other	hand,	you	do	not	see	the	Admin	command	prompt	within	your	startup
menu,	right-click	on	the	singularly	listed	command	prompt,	to	reveal	the	menu	option	“run
as	admin.”	Go	ahead	and	run	as	admin	and	retry	the	command.

A	successful	installation	reveals	a	node_module	folder	within	the	specified	path,	at
which	point	our	module	is	ready	to	be	used.

	Note		Due	to	a	bug	in	the	latest	Node.js	Windows	installable,	Windows	users	may	be
receiving	the	​following	message:	“Error:	ENOENT,	stat	'C:\Users\
[USER_NAME]\AppData\Roaming\npm.”	If	this	is	the	case,	to	​correct	the	problem,
you	will	have	to	type	the	command	mkdir	C:\Users\
[USER_NAME]\AppData\Roaming\npm,	where	[USER_NAME]	is	replaced	with
the	login	name	of	your	user.

Incorporating	the	Cradle	Module
Once	the	Cradle	module	has	been	successfully	installed	into	our	top-level	directory,	we
can	begin	working	with	it	by	incorporating	it	into	a	Node	application	via	require().
Furthermore,	as	long	as	the	CouchDB	server	is	running,	we	can	use	the	following	snippet
of	code	shown	in	Listing	12-2	to	configure	our	http.ClientRequest	to	connect	to	it.

Listing	12-2.	Including	and	Configuring	Cradle	with	CouchDB

www.it-ebooks.info

http://www.it-ebooks.info/

1	var	cradle	=	require('../node_modules/cradle');

2	var	DBConnection	=	cradle.Connection;

3	var	couchDB	=	new	DBConnection('127.0.0.1',	5984,	{

4		cache	:	true,

5		raw	:	false,

6		forceSave	:	true

7	});

The	code	shown	in	Listing	12-12	simply	demonstrates	the	inclusion	of	the	Cradle
module	within	the	Node	application,	in	addition	to	opening	a	connection	to	our	CouchDB
server.	The	path	provided	to	the	require	method	reflects	the	path	our	node_module
folder	created,	relative	to	the	directory	holding	our	Node	application.	Once	the	Cradle
object	is	obtained	via	the	require	method,	it	is	assigned	to	a	variable	labeled	“cradle”
and	then	used	to	open	a	connection	to	the	CouchDB	server.

Working	with	Databases
As	you	will	soon	come	to	learn,	Cradle	possesses	an	extremely	high-level	API	that	allows
us	to	simply	and	conveniently	work	with	databases	and	CouchDB.	Furthermore,	the	API
that	we	will	be	working	with	is	object-oriented.	This	means	that	the	API	is	exposed	solely
as	an	inherited	interface	of	an	initialized	object.	In	this	particular	case,	that	object	is	a
database	instance.	Listing	12-3	demonstrates	how	to	create	such	a	reference.

Listing	12-3.	Creating	a	DB	Reference

var	gbDataBase	=	couchDB.database('guestbook');

The	code	shown	in	Listing	12-3	leverages	the	method	labeled	“database,”	exposed
by	our	couchDB	instance,	to	initialize	a	Cradle	database	object.	With	this	object,	we	will
be	able	to	work	with	documents	and	views	that	pertain	to	this	particular	database.	What	is
important	to	understand	is	that	the	preceding	code	is	not	actually	connected	to	CouchDB
at	the	moment.	Remember	that	HTTP	is	a	stateless	protocol.	The	moment	a	response	is
provided,	the	connection	between	the	client	and	server	are	closed.	Instead,	our	gb
reference	is	nothing	more	than	a	wrapper	that	will	be	used	to	concentrate	requests	for	a
particular	database.	In	this	particular	case,	that	database	is	labeled	“guestbook.”	Once	a
reference	to	a	particular	database	is	created,	we	can	reference	its	exposed	API,	to	begin
receiving	and	sending	data	between	Node	and	CouchDB.

Cradle	Database	API
Because	CouchDB’s	interface	is	exposed	via	mere	HTTP	requests,	what	will	actually
occur	under	the	hood	of	the	Cradle	API	will	be	a	series	of	HTTP	requests	to	the	CouchDB
server.	However,	as	Cradle	itself	is	a	wrapper,	it	will	perform	these	low-level	tasks	on	our
behalf.	This	allows	us	to	focus	on	the	five	key	methods	of	the	API,	shown	in	Table	12-1.

Table	12-1.	Methods	of	a	Cradle	Wrapper

Methods Description

www.it-ebooks.info

http://www.it-ebooks.info/

create(); Used	to	create	a	database

exists(callback); Used	to	determine	if	a	database	currently	exists

get(id[,id]	,	[object],

callback);
Used	to	fetch	a	particular	document

view(id,	[object]

,callback);
Used	to	query	an	existing	view

save([id],	object	,

callback);

Used	to	save	a	document	to	the	current	database.	This	can	be	used	to
save	either	a	view	or	an	entry.

The	methods	shown	in	Table	12-1	are	the	sole	methods	we	will	be	working	with	in	this
chapter.	Now,	if	that	is	not	simple	enough,	then	consider	the	following:	four	out	of	the	five
methods	outlined	above	provide	functionality	of	the	sort	we	have	already	become	familiar
with	from	the	previous	sections.

create
The	first	method	that	we	will	review	is	the	create	method.	Use	of	the	create	method
provides	our	Node	application	with	the	ability	to	initialize	a	database	within	CouchDB.
Use	of	the	method	is	as	simple	as	invoking	the	method	upon	a	database	reference,	as	seen
in	Listing	12-4.

Listing	12-4.	Invoking	the	Creation	of	Our	Database	Reference

1	//..truncated	code

8	var	gbDataBase	=	couchDB.database('guestbook');

9				gbDataBase.create();

Listing	12-4	invokes	the	create	method	upon	our	existing	gbDataBase	instance.
The	code	is	equivalent	to	us	having	pressed	the	“Create	Database…”	button	within	the
Futon	interface.

Apache	CouchDB	prevents	us	from	creating	a	database	that	possesses	the	same	name
as	a	database	that	currently	exists.	Because	our	CouchDB	application	is	currently	in
possession	of	a	database	labeled	“guestbook,”	the	code	from	Listing	12-4	silently	fails.
This	can	be	considered	both	a	good	thing	and	a	bad	thing.	On	one	hand,	it’s	great	to	know
that	you	don’t	have	to	be	concerned	with	possibly	overwriting	an	existing	database	by
mistake.	However,	on	the	other	hand,	you	may	rather	be	made	aware	if	a	database	of	the
same	name	exists,	so	that	you	can	provide	a	new	name	to	the	DB.	For	that,	our	DB
instance	exposes	the	exists	method.

exists
The	exists	method	is	an	asynchronous	method	used	to	determine	if	a	database	currently
exists.	The	advantage	of	such	a	method	is	to	determine	whether	a	database	already	exists,
lest	we	insert	values	to	a	table	we	did	not	intend	to.

As	an	asynchronous	method,	the	invocation	of	the	exists	call	must	be	provided	with

www.it-ebooks.info

http://www.it-ebooks.info/

a	callback	function.	It	is	this	function,	whose	signature	reflects	that	of	Listing	12-5,	that
will	be	triggered	once	Cradle	has	determined	whether	the	database	exists	or	not.

Listing	12-5.	Callback	Signature	of	the	exists	Method

function(err,	exists);

As	Listing	12-5	reveals,	the	callback	supplied	must	be	capable	of	receiving	two
arguments.	The	first	parameter,	err,	accounts	for	any	error	that	may	have	occurred,	such
as	a	network	error.	If	no	error	has	occurred,	the	argument	provided	will	be	that	of	null.
The	second	parameter,	exists,	indicates	whether	the	given	database	exists	or	not.	The
argument	it	will	be	provided	if	an	error	is	not	thrown	will	be	that	of	a	Boolean	value.

Using	these	two	parameters,	we	can	determine	the	appropriate	conditions	that
determine	which	code	blocks	to	execute,	as	shown	in	Listing	12-6.

Listing	12-6.	Determining	If	a	Database	Exists

	1	//...truncated	code

	9	gbDataBase.exists(function(err,	exists)	{

10		if(err)	{

11			console.log('error',	err);

12	}else	if	(exists)	{

13			console.log('the	guestbook	db	exists');

14	}else	{

15			console.log('database	does	not	exists.');

16			gbDataBase.create();

17		}

18	});

Utilizing	our	gbDataBase	reference,	Listing	12-6	invokes	the	exists	method
exposed	by	the	gbDataBase	instance	and	supplies	an	anonymous	function	as	the
callback	(line	9).	Upon	the	callbacks	invocation,	it	will	be	supplied	with	either	an	error
instance	or	that	of	a	Boolean.	Utilizing	both	of	these	parameters,	we	can	determine
whether	or	not	they	possess	a	value	to	determine	what	blocks	of	code	should	be	run.

If	there	is	an	error,	our	application	will	be	provided	with	the	ability	to	handle	it	(line
10).	If	the	file	exists,	we	can	perform	the	invocation	of	another	database	(line	13).	Last,	if
the	database	does	not	exist,	we	can	successfully	create	it,	utilizing	the	previously
discussed	create	method	(line	16).

If	you	were	to	execute	Listing	12-6	in	its	totality,	you	would	notice	that	the	following
is	output	in	the	command	line:	the	guestbook	db	exists.	Of	course,	this	is
expected,	as	we	already	had	created	the	guestbook	database.	One	good	thing	about	this	is
that	we	also	have	a	few	documents	stored	within	our	guestbook	database.	This	will
become	helpful	when	we	review	the	next	method	in	the	Cradle	interface.

get
The	get	method,	as	you	may	suspect,	initiates	HTTP	requests	utilizing	the	GET	request

www.it-ebooks.info

http://www.it-ebooks.info/

method.	The	get	method	is	used	to	obtain	documents	that	are	associated	with	the	targeted
database	in	an	asynchronous	fashion.	The	method’s	signature,	as	outlined	in	Table	12-1,
reveals	that	the	get	method	expects	to	be	invoked	with	a	possible	three	arguments.	These
arguments	represent	the	document	by	its	ID,	an	object,	and	a	callback	function.

The	first	parameter,	id,	can	be	provided	either	as	a	singular	identifier	or	as	an	array	of
multiple	document	IDs	supplied	as	an	array.	If	you	recall,	a	document	ID	is	generally	a
GUID,	such	as	03e68a3bac3fd452bf6b136e76001222,	unless	the	document	you
seek	is	the	result	of	a	design	document,	in	which	case,	it’s	you	who	must	supply	the	full
path	to	the	query	you	are	seeking	to	utilize,	such	as
_design/guests/_view/signatures.

	Note		Every	document	possessed	by	a	database	can	be	obtained	by	supplying
_all_docs	as	the	string.

The	second	parameter	of	our	get	method	is	that	of	an	object.	The	object	itself
represents	the	provision	of	optional	query	string	parameters	that	we	wish	to	accompany
the	request.	Such	parameters	can	be	ascending,	descending,	limit,	key,
startkey,	and,	last,	endkey,	used	to	manipulate	the	resulting	rows	returned	by	our
views.

The	first	two	keys,	ascending	and	descending,	are	self-explanatory.	These
parameters	are	used	to	sort	the	set	of	results	in	either	an	ascending	or	descending	manner.
The	factor	that	determines	whether	an	item	comes	before	or	after	depends	on	the	value
that	established	the	“key”	used	with	the	query.	In	the	case	of	our	guest/signature,	the	key
was	each	user	handle.	The	value	that	can	be	supplied	to	either	of	these	keys	is	1	or	0,
whereby	1	equals	true	and	0	is	false.

The	parameter	limit	is	used	to	express	the	maximum	amount	of	desired	results	to	be
returned.	This	value	should	be	expressed	in	the	form	of	an	integer.

The	key	parameter,	as	you	may	recall,	must	be	provided	a	value	of	a	string	wrapped
with	double	quotes.	Providing	this	parameter	can	reduce	the	entire	result	set	to	that	of	a
subset	of	rows	whose	keys	match	the	value	supplied.	Providing	key=”@CouchDB”
would	result	in	our	signature’s	query	only	displaying	one	result.

The	final	two	parameters,	startkey	and	endkey	are	used	to	return	a	subset	of	the
original	set	of	results	whose	keys	are	determined	to	exist	within	the	indicated	boundaries.

The	provision	of	any	query	string	you	choose	to	apply	to	the	GET	request	is	required
to	appear	as	a	key/value	member	of	the	object.	Listing	12-7	demonstrates	the	use	of	the
optional	parameter	to	establish	the	use	of	the	limit	and	key	parameters.	If	you	do	not
plan	on	using	any	parameters,	just	provide	null	as	the	value.

Listing	12-7.	Query	String	Parameters	Supplied	As	Members	of	an	object

var	queryString	=	{	limit:1,	key:"@CouchDB"	};

The	final	parameter	that	must	be	provided	to	get	is	that	of	a	callback.	The	callback
whose	signature	can	be	seen	in	Listing	12-8	is	required	to	possess	two	parameters.

www.it-ebooks.info

http://www.it-ebooks.info/

Listing	12-8.	Callback	Signature	for	get

function(err,	res);

Because	get	is	an	asynchronous	method,	it	is	necessary	to	provide	a	callback,	so	as	to
be	informed	when	the	operation	has	concluded.	Furthermore,	as	outlined	in	Listing	12-8,
our	callback	will	be	provided	with	an	argument	for	either	of	the	two	outlined	parameters,
err	and	res.	The	first	parameter,	err,	will	be	provided	with	an	instance	in	the	event
that	an	error	has	occurred.	Such	an	error	may	be	related	to	network	traffic	or	a	server	error.
On	the	other	hand,	if	everything	is	successful,	our	callback	function	will	be	provided	with
the	appropriate	JSON	response.

Utilizing	these	two	parameters,	we	can	ensure	the	appropriate	body	of	code	is
executed,	lest	we	cause	our	own	errors.	Listing	12-9	demonstrates	a	GET	request	for	our
all_docs	query.

Listing	12-9.	Obtaining	All	Documents	for	the	Target	DB

	1	var	cradle	=	require('../node_modules/cradle');

	2	var	DBConnection	=	cradle.Connection;

	3	var	couchDB	=	new	DBConnection('127.0.0.1',	5984,	{

	4		cache	:	true,

	5		raw	:	false,

	6		forceSave	:	true

	7	});

	8	var	gbDataBase	=	couchDB.database('guestbook');

	9	gbDataBase.exists(function(err,	exists)	{

10		if	(err)	{

11			console.log('error',	err);

12		}	else	if	(exists)	{

13			console.log('the	guestbook	db	exists');

14		}	else	{

15			console.log('database	does	not	exists.');

16			gbDataBase.create();

17		}

18	});
				/*obtain	all	documents*/

19	gbDataBase.get('_all_docs',	{	limit:1	},	function(err,	

res)	{

20		if	(err)	{

21					console.log('error',	err);

22		}	else	if	(res)	{

23					console.log(res);

24		}	else	{

25					//..	do	something	else

26		}

www.it-ebooks.info

http://www.it-ebooks.info/

27	});

Listing	12-9	demonstrates	the	use	of	the	get	method	to	obtain	a	particular	document
from	the	guestbook	database.	In	this	particular	case,	that	document	is	a	query	for	all
documents.	Furthermore,	we	have	chosen	to	limit	the	returned	results	to	a	maximum	of
one	document.	Running	the	preceding	Node	application	results	in	the	following	output:

[{	id:	'03e68a3bac3fd452bf6b136e76001222',

				key:	'03e68a3bac3fd452bf6b136e76001222',

				value:	{	rev:	'2-d91c1f744fe10e74dc5a2e8f23c13315'	}	}]

As	you	can	see,	we	have	received	a	single	result	from	the	original	set	of	results.
Because	we	could	potentially	be	working	with	a	vast	amount	of	results,	CouchDB
conveniently	inserts	each	JSON	result	within	an	array	structure,	so	that	it	can	be	easily
traversed.	As	I	hope	you	may	be	able	to	witness,	the	preceding	output	is	no	longer	JSON
but,	rather,	a	JavaScript	object.	You	can	note	this	is	the	case,	owing	to	the	missing	double
quotes	that	would	otherwise	surround	the	keys	if	it	were	JSON.	What	this	means	is	that	we
don’t	have	to	attempt	to	parse	the	returned	JSON	text,	as	Cradle	has	already	performed
this	for	us.	Therefore,	the	response	provided	can	immediately	be	traversed,	and	its
members	accessed.	Let’s	remove	the	limit	parameter	and	output	only	the	ID	of	each
row.	Listing	12-10	outlines	in	bold	the	changes	to	our	get	method.

Listing	12-10.	Logging	the	ID	of	Each	Returned	JSON	Document

	1	//..truncated	code
				/*obtain	all	documents*/

19	gbDataBase.get('_all_docs',	{	limit:1	},	function(err,	

res)	{

20		if	(err)	{

21			console.log('error',	err);

22		}	else	if	(res)	{
23						var	len	=	res.length;

24							for	(var	i	=	0;	i	<	len;	i++)	{

25										console.log(res[i].id);

26							}

27		}	else	{

28			..	do	something	else

29		}

30	});

Listing	12-10	traverses	each	of	the	indexes	within	the	provided	JavaScript	array	until
all	have	been	reached.	With	each	value	obtained,	we	log	out	the	corresponding	ID,
resulting	in	the	following	output	below:

03e68a3bac3fd452bf6b136e76001222

03e68a3bac3fd452bf6b136e76001eec

_design/guests

As	you	can	see	from	the	output,	our	guestbook	database	is	currently	in	possession	of

www.it-ebooks.info

http://www.it-ebooks.info/

three	documents,	two	of	which	possess	GUIDs	as	their	identifiers,	and	one	of	which
utilizes	a	string.	Knowing	what	is	currently	retained	within	our	database	and	what	was
outputted,	we	could	easily	deduce	that	these	two	GUIDs	represent	our	two	guestbook
entries,	while	the	latter	represents	our	query.	However,	now	that	we	have	obtained	the
resulting	identifiers,	we	could	easily	obtain	the	values	retained	by	each	ID	with
subsequent	use	of	the	get	method.

view
While	the	results	of	a	view	can	be	obtained	via	get,	a	simpler	method	is	to	use	the	view
method.	Because	view	actually	wraps	get,	it	invites	us	to	provide	a	more	succinct	path
to	our	query.	As	I	mentioned	within	the	section	on	get,	a	design	document	can	be
obtained	by	specifying	a	full	path,	such	as	the	following:
'_design/guests/_view/signatures'.	However,	this	path	can	appear	rather
long	and	be	cumbersome	to	work	with.

With	view,	you	have	the	ability	to	query	a	view	simply	by	omitting	_design	and
_view	from	the	preceding	path,	resulting	in	the	more	succinct	path
guest/signatures.	Each	design	document	and	its	view	can	easily	be	fetched	by
simply	joining	the	two	names	together	with	a	forward	slash.	You	may	recall	“Design
Document”	and	“View	Name”	as	the	titles	of	fields	shown	in	Figure	12-13.

The	view	method	possesses	a	few	more	behaviors	that	can	improve	efficiency,	but
they	are	beyond	the	scope	of	this	book.	However,	aside	from	those	unmentionables,	the
view	method	continues	to	function	in	precisely	the	same	manner	as	get.	It	continues	to
require	the	object	parameter	for	added	query	parameters,	and	last,	because	it	is	an
asynchronous	function,	it	requires	a	callback	function	whose	signature	is	the	same	as	that
provided	to	get.	At	this	point,	let’s	query	our	guestbook	database	for	any	and	all
signatures	left	behind	(see	Listing	12-11).

Listing	12-11.	Querying	Our	DB	for	All	Signatures

var	cradle	=	require('../node_modules/cradle');

var	DBConnection	=	cradle.Connection;

var	couchDB	=	new	DBConnection('127.0.0.1',	5984,	{

	cache	:	true,

	raw	:	false,

	forceSave	:	true

});

var	gbDataBase	=	couchDB.database('guestbook');

gbDataBase.exists(function(err,	exists)	{

	if	(err)	{

		console.log('error',	err);

	}	else	if	(exists)	{

		console.log('the	guestbook	db	exists');

	}	else	{

www.it-ebooks.info

http://www.it-ebooks.info/

		console.log('database	does	not	exists.');

		gbDataBase.create();

	}

});

/*obtain	an	existing	view*/

gbDataBase.view('guests/signatures',	null,	function(err,	res)	{

	console.log(res);

});

Listing	12-11	reveals	in	bold	the	latest	change	to	our	running	base	code.	Rather	than
using	the	get	method	exposed	by	our	gbDataBase	instance,	we	opt	for	the	more
succinct	method	of	defining	our	path	with	view.	Running	the	preceding	Node	application
results	in	the	following	output:

[{	id:	'03e68a3bac3fd452bf6b136e76001eec',

				key:	'@apache',

				value:

					{	handle:	'@apache',

							message:	'Hello	World',

							_id:	'03e68a3bac3fd452bf6b136e76001eec'	}	},

		{	id:	'03e68a3bac3fd452bf6b136e76001222',

				key:	'@CouchDB',

				value:

					{	handle:	'@CouchDB',

							message:	'greetings	and	salutations',

							_id:	'03e68a3bac3fd452bf6b136e76001222'	}	}]

The	preceding	code	outputs	the	two	presently	saved	signatures	and	messages	provided
by	both	@apache	and	@CouchDB.	Because	view	leverages	the	get	method,	we	can	opt
to	provide	our	request	with	the	addition	of	query	string	parameters.	Listing	12-12
demonstrates	a	query	that	filters	the	preceding	results	with	the	use	of	the	key	parameter.

Listing	12-12.	Filtering	All	Signatures	for	a	Particular	Key

//..	truncated	code

/*obtain	an	existing	view*/

gbDataBase.view('guests/signatures',	{key:"@CouchDB"}	,	

function(err,	res)	{

				console.log(res);

});

Listing	12-12	replaces	the	null	primitive	with	that	of	an	object	whose	sole	member	is
that	of	the	key	parameter.	The	preceding	code	will	result	in	the	HTTP	GET	request	for	the
following	URL:
127.0.0.1:5984/guestbook/_design/guests/_view/signatures?

key=”@CouchDB”.	By	providing	a	key,	the	result	set	will	be	filtered	there	by	returning
a	subset	of	results	whose	keys	match	those	of	“@CouchDB”.	Running	the	preceding

www.it-ebooks.info

http://www.it-ebooks.info/

listing	outputs	the	following:

[{	id:	'03e68a3bac3fd452bf6b136e76001222',

				key:	'@CouchDB',

				value:

					{	handle:	'@CouchDB',

							message:	'greetings	and	salutations',

							_id:	'03e68a3bac3fd452bf6b136e76001222'	}	}]

As	you	can	see,	the	output	displayed	only	reveals	a	signature	left	by	the	handle
@CouchDB.	If	it	just	so	happened	that	@CouchDB	signed	our	guestbook	more	times,	all
of	those	results	would	be	returned.

With	that	being	said,	the	next	method	will	provide	us	with	the	ability	to	create	more
documents.

save
The	save	method,	as	the	name	suggests,	allows	us	to	save	documents	for	the	targeted
database.	As	its	signature	reveals	in	Table	12-1,	the	save	method	anticipates	three
parameters:	id,	object,	and	callback.

The	first	parameter,	id,	is	used	to	provide	an	identity	to	the	document	being	created.
As	you	have	undoubtedly	witnessed,	any	and	all	documents	have	a	corresponding	ID.
These	are	usually	generated	as	GUIDs	by	CouchDB;	however,	they	can	also	represent	the
name	of	a	design	document.	To	keep	things	flexible,	save	enables	us	to	opt	in	to
supplying	an	ID	as	the	first	parameter.	If	an	ID	is	not	provided,	CouchDB	will	generate	it
automatically.	If,	however,	an	ID	is	provided,	it	will	replace	the	ID	that	will	have	been
generated	by	CouchDB.

If	the	document	being	created	represents	a	view,	you	will	be	required	to	supply	an
appropriate	ID.	Remember:	All	views	must	be	prefixed	with	_design/	in	order	for
CouchDB	to	differentiate	between	ordinary	documents	and	design	documents.

The	second	parameter	that	will	be	supplied	to	save	is	that	of	the	document’s	content.
If	we	were	to	re-create	our	initial	document	with	save,	it	would	be	provided	with	the
following	object:

{

			"handle":	"@CouchDB",

			"message":	"greetings	and	salutations"

}

Providing	ordinary	document	content	is	fairly	straightforward.	On	the	other	hand,	if
we	were	to	re-create	our	“signatures”	view,	the	object	that	would	be	required	reflects	the
one	following:

views:	{

	signatures:	{

		map:"function(doc)	{emit(doc.handle,	{handle:doc.handle,	

www.it-ebooks.info

http://www.it-ebooks.info/

message:doc.message,	_id:doc.id});	}";

	}

};

Because	a	design	document	will	be	saved	as	its	own	JSON	document,	it	is	necessary	to
use	the	members	that	define	its	content	appropriately.	While	at	a	glance	this	might	be
confusing,	the	reality	is	that	this	will	always	be	the	format	for	constructing	a	map
function.

Note	the	complex	structure	of	the	preceding	object.	All	design	documents	begin	with	a
key	labeled	views,	where	views	represents	the	top-level	object	and	is	used	to	reference
yet	another	complex	structure.

The	complex	structure	of	views	consists	of	any	number	of	object	members,	in	which
each	member	represents	an	individual	query.	In	the	preceding	outline,	the	member
signatures	represents	a	possible	query	associated	with	our	view.

Each	query	references	an	object	whose	only	allowable	members	are	the	following	two:
map	and	reduce.	While	both	map	and	reduce	can	be	used	simultaneously,	this	chapter
does	not	make	use	of	the	reduce	member	and,	therefore,	it	has	been	omitted.	We	will	be
working	exclusively	with	map.

The	member	map	holds	a	string	value	whereby	that	string	can	be	evaluated	by
CouchDB	to	produce	our	actual	query.

The	final	parameter	of	the	save	method	is	that	of	a	callback.	As	an	asynchronous
method,	save	requires	a	callback	to	invoke	when	the	operation	has	concluded.	As
outlined	in	Listing	12-13,	the	callback	provided	should	possess	the	following	parameters:
err	and	res.

Listing	12-13.	Callback	Signature	for	save

function(err,	res);

Depending	on	whether	an	error	has	occurred,	the	err	parameter	will	either	be
supplied	with	an	object	or	a	null	primitive.	Furthermore,	if	an	error	has	not	occurred	and
the	response	is	successful,	we	will	be	able	to	reference	that	response	via	the	res
parameter.	Using	these	two	parameters,	we	can	ensure	that	the	appropriate	body	of	code	is
executed,	lest	we	cause	our	own	errors.

Creating	Documents	via	Cradle
Having	learned	how	to	work	with	the	save	method,	let’s	attempt	to	create	some	new
documents,	beginning	with	yet	another	guestbook	signing,	as	seen	in	Listing	12-14.

Listing	12-14.	Creating	a	Document	via	Cradle

1	//..truncated	code

/*signing	of	our	guestbook*/

19		gbDataBase.save({

www.it-ebooks.info

http://www.it-ebooks.info/

20			handle	:	"@CouchDB",

21			message	:	"welcome	and	thank	you",

22		time	:	new	Date()

23			},	function(err,	res)	{

24				if	(err)	{

25					console.log('error',	err);

26				}	else	if	(res)	{

27					console.log(res);

28				}

29	});

Listing	12-14	demonstrates	the	implementation	required	by	Cradle	to	create	a	new
document	for	our	guestbook	database.	As	you	can	see,	we	opted	out	of	providing	this
document	with	a	specific	ID.	As	I	have	previously	stated,	it’s	often	best	to	allow	this	value
to	be	generated	by	CouchDB.

The	body	of	our	document	has	been	devised	to	possess	a	user’s	name	and	message,	in
fields	labeled	“handle”	and	“message.”	In	addition	to	the	previous	fields,	this	document
also	possesses	a	field	that	reflects	the	time	of	its	creation.	While	our	previous	documents
lack	this	“time”	field,	it	is	one	of	the	benefits	of	using	NoSQL	databases	over	SQL
databases.	I	will	discuss	this	in	more	detail	shortly.

	Note		Cradle	methods	require	the	provision	of	an	object	that	will	be	stringified	prior	to
its	transmission	to	CouchDB,	where	it	will	be	encapsulated	within	a	document	as	JSON.

Last,	we	have	provided	a	callback	to	be	notified	as	to	whether	the	document	has	been
successfully	created	or	not.	Running	Listing	12-14,	should	no	network	issues	be	present,
will	result	in	the	following	output:

{	ok:	true,

		id:	'03e68a3bac3fd452bf6b136e760064b4',

		rev:	'1-66821f76618071e197e2c3aa79ecf722'	}

As	you	can	see,	upon	the	creation	of	a	document,	CouchDB	responds	with	the	details
of	that	newly	created	document.	As	signified	by	the	ok	field	and	its	value	of	true,	we
can	rest	assured	that	CouchDB	has	successfully	stored	our	document,	in	which	case,	we
would	be	able	to	see	it	through	the	Futon	interface.

Upon	navigating	your	browser	to
http://127.0.0.1:5984/_utils/database.html?

guestbook/_design/guests/_view/signatures,	CouchDB	will	present	you
with	three	signatures.	Sure	enough,	as	seen	in	Figure	12-17,	our	most	recent	document
appears	within	the	signature	results.	Furthermore,	the	inclusion	of	the	new	field,	time,
did	not	have	any	negative	impact	on	our	signature	query.	Because	our	query	did	not
anticipate	a	field	labeled	as	“time,”	that	value,	whether	it	exists	or	not,	has	no	bearing	on
that	particular	function.

www.it-ebooks.info

http://www.it-ebooks.info/

Figure	12-17.	Cradle	document	successfully	created	in	CouchDB

The	last	time	we	visited	the	preceding	URL,	only	two	documents	were	presented.
Upon	this	query,	as	discussed	early	on	in	this	chapter,	any	new	changes	are	resubmitted	to
the	anonymous	function	and	accounted	for	as	a	row	within	the	provided	results.

Now	that	we	have	more	than	one	result	whose	key	is	that	of	@CouchDB,	let’s	revisit
our	ability	to	filter	results	for	an	identified	key	simply	by	appending	?
key=”@CouchDB”	to	the	preceding	URL.	Upon	receiving	a	response	to
http://127.0.0.1:5984/guestbook/_design/guests/_view/signatures?

key=”@CouchDB”,	you	will	find	yourself	presented	with	two	rows.

SQL	databases	that	make	use	of	tables	to	store	data	require	all	fields	that	will	be	used
for	a	project	to	be	made	known	up	front,	so	that	a	column	can	be	used	to	retain	that	value.
This	behavior	requires	that	all	data	utilize	each	predetermined	field.	If	a	value	for	those
fields	is	not	specified,	a	default	value	must	be	provided,	lest	there	be	an	error	while
running	a	query.

On	the	other	hand,	NoSQL	databases	do	not	rely	on	tables	to	store	data.	Instead,	they
store	data	in	individual	documents,	like	those	we	have	been	working	with.	Because	each
document	represents	its	own	body	of	data,	it	can	possess	any	variety	of	fields	it	chooses.

Creating	Design	Documents	via	Cradle
As	we	have	just	recently	stored	a	document	that	makes	use	of	the	time	in	which	it	was
created,	we	should	devise	a	query	that	can	map	all	documents	for	our	guestbook	database
into	their	own	view.	One	thing	we	will	have	to	keep	in	mind	is	that	if	an	object	does	not
possess	the	time	field,	we	must	make	certain	not	to	populate	our	view	with	the	current
document.	Such	a	query	is	reflected	in	Listing	12-15.

Listing	12-15.	Creating	a	Design	Document	to	Possess	Multiple	Views

	1	//..truncated	code

19	/*saving	of	a	view*/

20	gbDataBase.save('_design/guests',	{

21		views	:	{

22			sigTime	:	{

23				map	:	"function(doc){	"+

24																"if(doc.time){"	+

25																		"emit(doc.handle,{	handle:doc.handle,	

www.it-ebooks.info

http://www.it-ebooks.info/

time:doc.time,	message:doc.message	});"	+

26																"}"	+

27												"}"

28			},

29			signatures	:	{

30				map	:	"function(doc)	{"	+

31														"emit(doc.handle,{	

handle:doc.handle,message:doc.message	});"	+

32											"}"

33			}

34		}

35	},	function(err,	res)	{

36		if	(err)	{

37			console.log('error',	err);

38		}	else	if	(res)	{

39			console.log(res);

40		}

41	});

Listing	12-15	outlines	in	bold	the	key	elements	of	our	new	design	document.	The	first
item	I	will	discuss	is	that	saving	a	design	document	with	the	name	of	a	document	that
exists	will	overwrite	the	original	content	of	that	document.	In	the	preceding	listing,	I	am
opting	to	save	the	current	design	document	with	the	name	of	an	existing	one,	in	order	to
show	you	that	you	can	have	multiple	views	within	a	design	document.

Using	the	save	method	and	the	required	complex	structure	for	a	design	document,
this	view	will	be	used	to	provide	two	queries	regarding	our	guestbook.	These	two	queries
are	signatures	and	sigTime.	The	view	signatures	is,	in	fact,	the	same	query
used	previously;	however,	as	this	update	will	be	overwriting	the	existing
_design/guests	document,	we	must	provide	this	view	in	addition	to	our	sigTime,
lest	it	be	deleted.	However	the	view	sigTime	reflects	an	entirely	new	query,	which	will
be	used	to	create	a	view	to	reveal	only	documents	that	possess	the	time	field.

As	you	can	see	within	the	lines	of	24	and	26,	our	map	function	determines	if	the
document	supplied	does	indeed	possess	a	field	labeled	time.	Only	if	the	field	is	present
will	our	function	emit	a	new	row	for	this	view.	Running,	Listing	12-15,	should	no	network
issues	be	present,	will	result	in	the	following	output:

{	ok:	true,

		id:	'_design/guests',

		rev:	'2-b0723b44888089eeecf790a1c3e37824'	}

You	may	be	able	to	note	that	the	result	returned	is	no	different	than	that	we	received
when	saving	an	ordinary	document.	However,	what	is	different,	aside	from	the	IDs,	is	that
as	this	file	has	been	updated,	its	revision	now	reflects	version	2.

Now	that	we	have	two	views,	let’s	visit	our	Futon	interface	once	again	and	take	a
moment	see	the	results	it	provides.	Figure	12-18	reveals	our	two	views	within	the	drop-

www.it-ebooks.info

http://www.it-ebooks.info/

down	menu	at	the	top-right-hand	side	of	the	interface.

Figure	12-18.	sigTime	and	signatures	successfully	created	as	queries	of	guests

As	you	can	see	from	Figure	12-18,	both	queries	reside	under	the	same	document	ID,
yet	either	can	be	used	to	provide	its	own	set	of	results.	Feel	free	to	toggle	between	the	two
views	and	note	how	the	results	vary.

EXERCISE	12-1.	PERSISTING	INCOMING	DATA

In	Chapter	11,	you	learned	how	to	receive,	authorize,	and	process	incoming	JSON.
Using	a	form	along	with	Ajax,	we	have	been	posting	users’	first	and	last	names	to	our
Node	application.	Up	until	now,	we	have	not	been	retaining	those	names.	In	fact,	all
we	have	been	doing	is	returning	the	extracted	values	as	the	entity	body	of	the	request.
Using	Cradle,	create	a	new	database	labeled	“visitors”	and	retain	all	incoming
names.

Last,	provide	the	incoming	request	with	the	response	supplied	by	CouchDB	with
each	use	of	the	save	method.	You	can	compare	your	code	with	that	of	Listing	12-16.

Hint:	Remember	that	Cradle	provides	all	response	as	JavaScript	objects.	However,	a
response	can	only	be	supplied	as	a	string.

Listing	12-16	leverages	the	code	in	Listing	11-3	from	Chapter	11	and	incorporates	the
changes	discussed	in	this	chapter.	The	additions	from	this	chapter	appear	in	bold.

Listing	12-16.	Incorportaing	Cradle	with	an	Existing	HTTP	Node	Application

/*require*/
var	cradle	=	require('../node_modules/cradle');

var	http	=	require('http');

/*HTTP*/

var	server	=	http.createServer();

server.addListener('request',	requestHandler);

server.listen(1337,	'127.0.0.1');

/*Cradle*/

var	DBConnection	=	cradle.Connection;

var	couchDB	=	new	DBConnection('127.0.0.1',	5984,	{

	cache	:	true,

	raw	:	false,

	forceSave	:	true

});

/*create	visitors	database*/
var	gbDataBase	=	couchDB.database('visitors');

www.it-ebooks.info

http://www.it-ebooks.info/

				gbDataBase.create();

/*	handle	incoming	requests	*/

function	requestHandler(request,	response)	{

	if	(request.method	===	"POST")	{

		var	incomingEntity	=	'';

		var	data;

		request.addListener('data',	function(chunk)	{

			incomingEntity	+=	chunk;

		});

		request.addListener("end",	function()	{

			if	(request.headers['content-

type'].indexOf("application/json")	>	-1)	{

				data	=	JSON.parse(incomingEntity);

			}	else	if	(request.headers['content-

type'].indexOf("application/x-www-form-urlencoded")	>	-1)	{

				data	=	parseQueryStringToObject(incomingEntity);

				return;

			}
			saveToDB(data,	response);

		});

	}	else	if	(request.method	===	"GET")	{

		if	(request.url	===	"/index.html")	{

			response.statusCode	=	200;

			response.setHeader("Content-type",	"text/html");

			response.write('<!doctype	html>');

			response.write('<html	lang="en">');

			response.write('<body>');

			response.write('<form	action="formPost"	method="POST"	

onsubmit="return	ajax();"	content="application/x-www-form-

urlencoded">');

			response.write('First-Name:');

			response.write('<input	name="fname"	type="text"	

size="25"/>');

			response.write('Last-Name:');

			response.write('<input	name="lname"	type="text"	

size="25"/>');

			response.write('<input	type="submit"/>');

			response.write('</form>');

			response.write('<script>');

			response.write('function	ajax(){');

			response.write('var	xhr	=	new	XMLHttpRequest();');

			response.write('xhr.open("POST",	"formPost");');

www.it-ebooks.info

http://www.it-ebooks.info/

			response.write('xhr.onload=function(){	alert(this.responseText);};');

			response.write('xhr.setRequestHeader("Content-Type",	

"application/json");');

			response.write('xhr.setRequestHeader("Accept",	

"application/json");');

			response.write('var	input	

=	document.getElementsByTagName("input");');

			response.write('var	obj	=	{');

			response.write('fname	:	input[0].value,');

			response.write('lname	:	input[1].value');

			response.write('};');

			response.write('xhr.send(JSON.stringify(obj));');

			response.write('return	false;');

			response.write('}');

			response.write('</script>');

			response.write('	</body>');

			response.write('</html>');

			response.end();

		}	else	{

			response.statusCode	=	204;

			response.end();

		}

	}	else	if	(request.method	===	"OPTIONS")	{

		response.statusCode	=	200;

		if	(request.url	===	"/formPost")	{

			response.setHeader("Access-Control-Allow-Origin",	'*');

			response.setHeader("Access-Control-Allow-Headers",	

'Content-Type,	Accept,

								Accept-Language,Accept-Encoding,	User-Agent,	Host,	

Content-Length,	Connection,	Cache-Control');

			response.setHeader("Access-Control-Allow-Methods",	'GET,	

POST,	OPTIONS');

		}

		response.end();

	}

	console.log("response=-end");

};

console.log('Server	running	at	

http://127.0.0.1:1337/index.html');

var	saveToDB	=	function(obj,	response)	{

	gbDataBase.save(obj,	function(err,	res)	{

		response.setHeader("Access-Control-Allow-Origin",	"*");

		if	(err)	{

			response.statusCode	=	500;

			console.log('error',	err);

		}	else	if	(res)	{

www.it-ebooks.info

http://www.it-ebooks.info/

			response.statusCode	=	200;

			var	stringResponse	=	JSON.stringify(res);

			response.setHeader("Content-Type",	"application/json");

			response.setHeader("Content-Length",	Buffer.byteLength(stringResponse,	

'utf8'));

			response.write(stringResponse);

		}

		response.end();

	});

};

var	parseQueryStringToObject	=	function(queryString)	{

	var	params	=	{},	queries,	temp,	i,	l;
	//	Split	into	key/value	pairs

	queries	=	queryString.split("&");
	//	Convert	the	array	of	strings	into	an	object

	for	(i	=	0,	l	=	queries.length;	i	<	l;	i++)	{

		temp	=	queries[i].split('=');

		params[temp[0]]	=	temp[1];

	}

	return	params;

};

Summary
This	chapter	demonstrated	the	persistence	of	JSON	from	the	perspective	of	the	server.	In
contrast	to	persisting	data	via	the	client,	as	we	achieved	in	Chapter	7,	persisting	data	on
the	server	can	offer	a	whole	lot	more	advantages.

For	starters,	visitors	cannot	delete	their	data	simply	by	clearing	cache	or	deleting	their
cookies.	As	the	database	resides	behind	HTTP	requests,	our	application	can	safeguard	the
data	from	specific	requests,	thereby	offloading	the	control	of	what	is	saved/deleted	to	our
application.	Additionally,	because	all	data	is	being	retained	in	a	centralized	location	rather
than	on	visitors’	browsers,	we	can	perform	unique	queries	to	organize	our	data	and	make
connections	between	those	using	our	applications.

CouchDB	is	a	convenient	way	in	which	we	can	construct	a	document-oriented
database.	Furthermore,	because	the	content	within	each	document	is	JSON,	our
applications	are	more	flexible	than	those	of	traditional	SQL	databases.

Key	Points	from	This	Chapter
CouchDB	is	a	NoSQL	database.

NoSQL	databases	store	their	data	as	JSON	within	individual
documents.

CouchDB	leverages	the	power	of	JSON	and	JavaScript	to	create	a
powerful	and	open	source	database.

www.it-ebooks.info

http://www.it-ebooks.info/

CouchDB’s	API	is	simply	HTTP	requests.

Futon	is	a	wrapper	that	allows	us	to	get	up	and	running	with	CouchDB
immediately.

A	query	in	CouchDB	is	referred	to	as	a	view.

A	document	that	contains	a	view	is	referred	to	as	a	design	document.

The	emit	function	populates	a	new	row.

emit	can	be	called	as	many	or	as	few	times	per	document	as	you	like.

Cradle	is	a	Node	module	that	can	be	installed	to	wrap	all	HTTP
requests.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER	13

Working	with	Templates
Generally	speaking,	a	template	is	a	tool	that	is	used	to	structure	as	well	as	provide
consistency	among	interchangeable	parts.	The	benefit,	with	regard	to	interchangeable
parts,	is	that	they	can	be	used	both	interchangeably	and	indistinguishably	within	an
existing	structure,	provided	they	adhere	to	a	template.	The	ability	to	allow	for
interchangeability	is	beneficial	in	all	walks	of	life.	The	flexibility	that	templates	offer	has
reinforced	their	utility	as	dependable	tools	in	the	development	of	modern	web	sites.	The
pairing	of	templates	and	web	development	has	been	proven	to	alleviate	the	tightly	coupled
architecture	concerning	layout	and	the	data	that	it	utilizes.

Owing	to	their	nature,	templates	have	become	the	backbone	of	many	platforms,
resulting	in	the	prevalence	of	content	management	systems	(CMS)	such	as	WordPress,
Drupal,	and	more.	For	the	most	part,	these	platforms	use	dynamic	server-side
programming	to	embed	content	from	a	database	layout.	However,	with	the	prevalence	of
Ajax,	and	the	fact	that	change	is	constant,	it	was	only	a	matter	of	time	before	templates
were	being	applied	to	the	front	end.	Today,	there	is	a	variety	of	templating	engines
available	to	choose	from.	A	few	examples	are	Dust,	JSRender,	Moustache,	and
Handlebars,	all	of	which	rely	on	JSON.

Templating	Engine
A	templating	engine,	with	regard	to	front-end	development,	is	simply	a	library	that	binds
data	with	markup	on	the	fly	or	otherwise	dynamically.	This	could	occur	at	runtime	or	even
performed	at	design	time.

Up	until	now,	while	we	have	not	been	using	a	templating	engine,	we	have	been
performing	a	similar	functionality	nonetheless.	You	may	recall	that	in	Chapter	8,	we	used
JavaScript	not	only	to	trigger	an	XMLHttpRequest	but	to	additionally	append	the
returned	JSON	result	set	of	book	covers	to	our	HTML	document.	This	was	achieved	by
the	code	shown	in	Listing	13-1.

Listing	13-1.	An	Ajax	Request	with	the	Incorporation	of	Markup

<!DOCTYPE	html>

<html	lang="en">

<head></head>

	<body>
		<ul	id="image-container">

		<script>

				function	loadImages()	{
								var	ul=	document.getElementById("image-container");

www.it-ebooks.info

http://www.it-ebooks.info/

								var	xhr=	new	XMLHttpRequest();

												xhr.open("GET",	"data/imagesA.json");

												xhr.onload	=	function()	{
																var	data=	JSON.parse(this.responseText);

																var	list	=	data.images;

																for	(var	i	=	0;	i	<	list.length;	i++)	{
																				var	image	=	list[i];

																				var	listItem	=	document.createElement("li");

																				var	img	=	document.createElement("img");

																								img.src	=	image.url;

																								img.alt	=	image.title;

																			listItem.appendChild(img);

																			ul.appendChild(listItem);

																};

												};

												xhr.send();

				};

				loadImages();

		</script>

	</body>

</html>

The	preceding	listing	relies	on	string	manipulation	and	DOM	scripting	to	augment	the
returned	JSON	data	set	at	runtime	into	a	presentable	list	of	images	utilizing	HTML
elements,	as	shown	in	Figure	13-1.

Figure	13-1.	Revealing	the	markup	of	our	dynamic	inclusion	of	loaded	data

In	the	preceding	example,	the	HTML	elements	required	to	produce	the	layout	have
been	entangled	with	our	HTTP	request,	which	makes	our	application	convoluted.	Not	only
is	our	markup	not	located	where	it	ought	to	be,	in	an	HTML	document,	but	in	their	object-
oriented	form,	the	elements	are	not	instantly	recognizable	as	HTML	elements.

var	listItem	=	document.createElement("li");

var	img	=	document.createElement("img");

www.it-ebooks.info

http://www.it-ebooks.info/

				img.src	=	image.url;

				img.alt	=	image.title;

				listItem.appendChild(img);

The	preceding	isolated	code	is	the	presentational	style	that	will	be	adopted	by	each
item	that	exists	within	our	data	set,	making	the	JavaScript	code	our	template.	While	this
works,	the	code	itself	is	not	very	optimal	or	legible,	for	that	matter.	Furthermore,	as	we	are
integrating	HTML	within	JavaScript,	we	are	thereby	making	readability	and
maintainability	all	the	more	challenging.	Last,	as	JavaScript,	we	lose	the	innate	ability	of
most	IDE’s	to	validate	our	template	as	proper	markup	at	design	time.

Use	of	a	templating	engine	has	the	ability	to	change	all	of	that;	however,	it	requires
that	we	think	a	bit	more	abstractly,	as	you	will	soon	see.

Handlebars
Handlebars	itself	is	not	a	programming	language	but,	rather,	a	JavaScript	templating
engine.	However,	it	does,	for	all	intents	and	purposes,	possess	its	own	lingua	franca	and
syntax,	to	enable	the	desired	templating	behavior.

As	stated	on	the	Handlebars	web	site,	located	at	handlebarsjs.com,	“Handlebars
provides	the	power	necessary	to	let	you	build	semantic	templates	effectively	with	no
frustration.”	What	this	means	is	that	rather	than	using	JavaScript	to	define	our	templates,
as	in	the	preceding	example,	Handlebars	utilizes	a	more	elegant	templating	system	that
employs	the	semantic	tags	of	HTML.	This	will	manage	to	keep	our	code	clean	and
extensible.

Installation
In	order	to	make	use	of	the	Handlebars	library,	we	must	first	obtain	the	latest	source	code
to	incorporate	into	our	HTML	documents.	We	can	obtain	the	latest	source	code	by
navigating	to	http://handlebarsjs.com/	and	clicking	the	bright	orange	button
labeled	“Download:	2.0.0.”	(See	Figure	13-2.)	This	will	download	the	latest	version	of	the
Handlebars	source	code	(currently	version	2.0.0).

www.it-ebooks.info

http://handlebarsjs.com/
http://www.it-ebooks.info/

Figure	13-2.	Handlebars	main	page

As	shown	in	Figure	13-2,	you	can	witness	a	link	just	below	the	orange	button.	This
hyperlink	reads	“Download:	runtime-2.0.0.”	These	two	items	are	not	one	in	the	same	and
are	used	for	different	purposes,	so	be	sure	to	click	directly	on	the	button.	Clicking	this
button	will	begin	the	download	process.	Feel	free	to	save	the	file	to	a	location	of	your
choosing.

	Note		The	runtime	2.0.0	library	is	only	to	be	utilized	by	templates	that	have	been	pre-
compiled.

Once	the	download	has	completed,	navigate	to	the	directory	in	which	it	was	saved.
Once	you	have	located	the	handlebars-v2.0.0.js	file,	move	it	to	a	more	suitable
location	for	use	in	our	exercises.	If	you	are	following	along	with	the	source	code	for	this
chapter,	you	will	note	that	I	have	already	provided	this	chapter	with	the	handlebars-
v2.0.0	JavaScript	file	located	within	the	directory	structure	at
BeginningJSON/chapter13/js/libs/.	If	you	have	been	working	with	your	own
folder	structure,	feel	free	to	move	handlebars-v2.0.0	to	a	location	relative	to	your
HTML	documents.

Once	the	Handlebars	library	has	been	downloaded,	all	one	must	do	is	incorporate	it
within	each	HTML	document	intended	to	use	the	templating	engine.	This	is	easily
achieved	by	incorporating	an	external	script	via	the	HTML	<script>	element,	as	seen
in	Listing	13-2.

Listing	13-2.	Including	the	Handlebars	Library

<!DOCTYPE	html>

<html	lang="en">

	<head>
			<script	src="js/libs/handlebars-v2.0.0.js"></script>

	</head>

	<body>

www.it-ebooks.info

http://www.it-ebooks.info/

			<script>

						alert(Handlebars);

			</script>

	</body>

</html>

Listing	13-2	incorporates	the	Handlebars	version	2.0.0	templating	engine	into	the	head
of	the	page	utilizing	the	HTML	<script>	tag.	Furthermore,	to	ensure	that	the	library	is
properly	incorporated,	I	have	chosen	to	output	the	global	Handlebars	reference.	If	an	alert
of	[Object,	Object]	is	displayed	within	the	alert	box,	then	congratulations,	you
have	successfully	loaded	the	Handlebars	object.	This	is	a	global	object	that	exposes	a	few
methods	that	will	be	used	to	work	with	our	Handlebars	templates.	We	are	now	ready	to
begin	defining	templates	with	Handlebars.

Working	with	Handlebars
The	libraries	name,	Handlebars,	is	a	nod	to	the	tokens	it	makes	use	of	to	demarcate
placeholders	within	a	template.	These	tokens	are	the	opening	and	closing	curly	braces,	({,
}),	which,	when	turned	in	the	appropriate	90-degree	direction,	resemble	a	handlebar
moustache,	hence	the	name	Handlebars.	These	handlebars	are	then	used	to	demarcate	an
expression	within	a	template.

A	Basic	Expression
A	basic	expression,	or	placeholder,	as	it	is	commonly	referred	to,	is	the	building	block	of
the	Handlebars	templating	engine.	Simply	enough,	the	placeholder	syntax	is	none	other
than	the	reference	to	a	key,	wrapped	within	two	curly	braces,	such	as	the	following
{{key}}.	This	placeholder	is	referred	to	as	an	expression,	because,	at	runtime,	it	will	be
replaced	by	the	value	of	a	key/value	pair	possessed	by	a	collection	with	a	member	that
matches	the	specified	key.	Furthermore,	it	is	the	most	basic	expression	within	Handlebars
and	is	used	to	replace	static	elements,	such	as	strings	and/or	numbers.	You	will	learn	about
more	complex	expressions	in	a	later	section.	First,	however,	let’s	ease	into	the	immersion
of	Handlebars	by	analyzing	the	use	of	a	Handlebars	basic	expression	(see	Listing	13-3).

Listing	13-3.	Simplest	Use	of	a	Handlebars	Template

<!DOCTYPE	html>

<html	lang="en">

	<head>

		<meta	charset="utf-8">

		<script	src="js/libs/handlebars-v2.0.0.js"></script>

	</head>

	<body>

		<script	type="application/x-handlebars"	id="Handlebar-

Name-Template">

				{{name}}	

www.it-ebooks.info

http://www.it-ebooks.info/

		</script>

		<script	type="application/javascript">

			var	initialTemplateWrapper	

=	document.getElementById("Handlebar-Name-Template");

			var	initialTemplateContent	

=	initialTemplateWrapper.innerHTML;

			var	dynamicTempate	

=	Handlebars.compile(initialTemplateContent);

			var	markupOutput	=	dynamicTempate({	"name"	:	"ben"	});

							document.getElementsByTagName("body")[0].innerHTML	

=	markupOutput;

		</script>

	</body>

</html>

Listing	13-3	reveals	in	its	entirety	a	succinct	Handlebars	template	and	the	few	lines	of
JavaScript	code	required	to	make	our	template	functional.	Running	the	preceding	listing
results	in	the	document	revealing	the	name	ben,	surrounded	by	opening	and	closing	span
tags.	In	order	to	best	understand	what	is	taking	place	in	Listing	13-3,	the	upcoming
sections	will	break	down	the	preceding	code	into	four	topics.

Defining	a	Handlebars	Template
Defining	a	Handlebars	template	is	a	simple	process	of	designing	a	semantic	layout	using
ordinary	HTML	elements	and	denoting,	inline,	any	basic	expression	to	be	replaced	with
actual	data	at	a	later	point	in	time.	Before	we	get	into	the	syntax	of	the	language,	let’s
begin	by	analyzing	the	design	of	a	simple	template.	The	most	basic	implementation	of	a
template	that	can	be	designed	in	Handlebars	is	one	that	uses	a	single	placeholder,	as
shown	in	Listing	13-4.

Listing	13-4.	A	Single	Expression	Template

	1	<!DOCTYPE	html>

	2	<html	lang="en">

	3		<head>

	4			<meta	charset="utf-8">

	5			<script	src="js/libs/handlebars-v2.0.0.js"></script>

	6		</head>

	7		<body>

	8				<script	type="text/x-handlebars-template"	

id="Handlebar-Name-Template">

	9						{{name}}

10				</script>

11			</body>

12		</html>

Listing	13-4	demonstrates	a	simple	template	that	makes	use	of	a	single	placeholder	to
be	filled	in	dynamically	once	data	is	provided.	The	lines	in	bold	define	our	Handlebars

www.it-ebooks.info

http://www.it-ebooks.info/

template.	Let’s	walk	through	these	lines	of	code,	to	better	understand	what	is	taking	place.

Listing	13-4	begins	as	any	ordinary	HTML	document.	However,	what	makes	this	page
extraordinary	is	the	incorporation	of	the	Handlebars	library.	We	utilize	the	script	tag	to
load	into	the	document	the	external	Handlebars	library,	so	that	we	can	begin	making	use
of	its	templating	engine	(line	5).	Of	course,	along	with	a	template	engine,	we	require	a
template.	The	code	highlighted	in	bold	makes	up	a	Handlebars	template.	However,	the
surrounding	<script>	tag	plays	a	rather	important	part	in	the	template	as	well.

It	may	come	as	a	shock,	but	our	template	is	not	considered	JavaScript,	as	noted	in	the
type	attribute	of	the	script	tag.	Rather,	the	script	type	is	assigned	the	value	of	text.	To
be	more	specific,	it’s	a	particular	subset	of	text	that	defines	a	Handlebars	template.	I	will
explain	why	this	is	important	shortly.	The	content	within	our	script	tag,	as	denoted	by	the
type,	is	that	of	our	Handlebar	template.

Within	the	template,	which	we	have	defined,	is	nothing	more	than	a	single	placeholder
contained	within	a		element.	The	two	braces	that	surround	our	placeholder	easily
identify	a	basic	expression	within	a	Handlebars	template.	An	expression,	as	we	have
learned	in	JavaScript,	is	simply	the	evaluation	and	return	of	data.	In	other	words,	the	basic
expression,	{{name}},	will	later	be	interpolated	with	the	value	retained	by	a	member
that	matches	the	expression,	within	the	given	context	of	the	data	provided.	Furthermore,	as
the	term	template	implies,	every	time	we	reference	this	particular	template,	we	can	expect
to	generate	an	HTML	span	tag	with	an	arbitrary	name	within.

If	we	were	to	run	the	preceding	listing,	I’m	afraid	we’d	be	presented	with	an	empty
document,	as	shown	in	Figure	13-3.	The	reason	why	is	simple.	Currently,	our	document
lacks	any	HTML	markup	to	render.	If	you	were	expecting	our	template	to	render,	the
reason	why	it	doesn’t	is	owing	to	the	use	of	the	<script>	tag	that	surrounds	it.

Figure	13-3.	An	empty	document

	Note		By	default,	the	<script>	tag	exhibits	a	CSS	display	property	of	none.

The	Role	of	<script>
Wrapping	our	template	within	the	script	element	provides	several	advantages.	The	first	is
that	it	cleverly	removes	our	template	from	being	rendered	by	the	document,	lest	we	reveal

www.it-ebooks.info

http://www.it-ebooks.info/

our	placeholders	to	our	visitors.	Per	the	W3C	spec,	any	script	tag	will	forgo	rendering,	as
it	will	be	supplied	to	the	appropriate	script	engine	to	be	evaluated.	However,	as	our
Handlebars	template	does	not	define	JavaScript,	the	last	thing	we	want	to	do	is	supply	our
Handlebars	template	to	the	script	engine,	where	it	would	be	parsed	as	such.	For	this
reason,	we	provision	the	type	attribute	with	a	scripting	language	that	our	browser	will	not
be	able	to	recognize.	In	our	example,	we	have	provided	the	scripting	language	of
text/x-handlebars-template.

Signifying	that	our	script	contains	a	Handlebars	template	not	only	thwarts	the	user-
agent	from	supplying	it	to	a	script	engine	but	helps	to	immediately	identify	it	as	a
Handlebars	template	to	any	and	all	developers.

Provided	we	use	the	script	tag	as	outlined	previously,	our	template	provides	zero
impact	to	the	document.	This	is	one	of	the	greatest	advantages	that	accompanies	our
Handlebar	templates.	This	enables	us	to	define	a	template	inline.	While	this	may	not	seem
to	be	much	at	first,	there	is	a	lot	to	be	said	from	a	maintainability	standpoint,	by
associating	our	template	within	the	markup	that	will	utilize	it.

Last,	a	final	benefit	of	our	script	element	is	that,	as	with	all	elements,	we	can	refer	to	it
by	a	particular	ID.	In	our	existing	example,	our	template	can	be	referenced	via	the	identity
Handlebar-Name-Template.	Having	the	ability	to	reference	our	template	by	ID	will
become	necessary,	as	you	will	soon	see	in	the	upcoming	section.

Compiling	a	Template
At	this	point,	all	we	have	managed	to	do	is	define	a	template	that	our	template	engine	will
use.	However,	as	you	have	just	recently	discovered,	a	template	alone	has	no	effect	on	our
document.	In	order	for	a	template	to	work,	it	must	be	provided	to	the	Handlebars	library,
so	that	it	can	be	compiled	into	a	JavaScript	function.	For	this,	we	are	required	to	provide
the	content	for	the	script	ID,	Handlebar-Name-Template,	to	the	compile	method
exposed	by	the	global	Handlebars	object.	Adding	five	lines	of	code	to	our	existing	markup
achieves	this,	as	shown	in	Listing	13-5.

Listing	13-5.	Compiling	Our	Handlebar-Name-Template

	1	<!DOCTYPE	html>

	2	<html	lang="en">

	3		<head>

	4			<meta	charset="utf-8">

	5			<script	src="js/libs/handlebars-v2.0.0.js"></script>

	6		</head>

	7		<body>

	8				<script	type="text/x-handlebars-template"	

id="Handlebar-Name-Template">

	9							{{name}}	

10				</script>

11				<script	type="application/javascript">

12						var	templateWrapper	=	document.getElementById("Handlebar-Name-

www.it-ebooks.info

http://www.it-ebooks.info/

Template");

13						var	templateContent	=	templateWrapper.innerHTML;

14						var	tempateFunction	=	Handlebars.compile(templateContent);

16				</script>

17			</body>

18		</html>

Listing	13-5	reveals,	in	bold,	the	five	lines	that	are	used	to	transform	our	template	into
a	function	that	can	be	called	repeatedly	and	be	provided	a	JSON	argument.	As	indicated
by	line	11,	the	ability	to	compile	a	template	requires	just	a	bit	of	good	old-fashioned
JavaScript.

The	first	line	of	JavaScript	code	(line	12)	is	used	to	target	the	specific	template	that	we
wish	to	compile.	Leveraging	the	document	method	getElementById	and	supplying
the	value	of	Handlebar-Name-Template	easily	obtains	a	reference	to	the	HTML
script	element	containing	our	template.	To	keep	our	code	clean	and	readable,	I	assign	the
returned	element	to	that	of	a	variable	labeled	templateWrapper.

The	next	step	is	to	extract	the	text	that	occurs	between	the	script	element’s	opening
and	closing	tag.	For	this	we	use	the	innerHTML	property,	and	once	again,	we	assign	the
returned	value	to	another	variable.	In	this	case,	that	variable	is	labeled
templateContent.	Once	we	have	a	reference	to	our	template,	all	that	is	left	is	to
provide	it	as	the	argument	to	the	compile	method	exposed	by	our	global	Handlebars
object.

Giving	Context	to	Our	Template
Supplying	a	template	to	the	compile	method	results	in	the	return	of	a	JavaScript
function,	which	can	be	assigned	to	a	variable	so	that	it	can	be	called	over	and	over	again.
As	revealed	by	the	signature	displayed	in	Listing	13-6,	this	function,	when	invoked,
accepts	a	JSON	argument.

Listing	13-6.	Signature	of	Our	Template	Function

function(object);

The	object	provided	to	the	function	is	referred	to	in	Handlebars	nomenclature	as	the
context.	The	context	is	named	such	because	it	represents	the	model	and/or	data	set	from
which	all	Handlebars	expressions	(placeholders)	derive	their	value.	(See	Listing	13-7.)

Listing	13-7.	A	Compiled	Template	Is	Used	to	Render	JSON	Data	into	Markup

10				//..truncated	code

11				<script	type="application/javascript">

12						var	templateWrapper	

=	document.getElementById("Handlebar-Name-Template");

13						var	templateContent	=	templateWrapper.innerHTML;

14						var	templateFunction	

=	Handlebars.compile(templateContent);

www.it-ebooks.info

http://www.it-ebooks.info/

15						var	outputMarkup	=	templateFunction({	"name":"ben"	});

17						alert(outputMarkup);

16				</script>

17			</body>

18		</html>

Listing	13-7	adds	to	our	existing	code	base	the	two	lines	shown	in	bold.	The	first	new
line	(line	15)	invokes	templateFunction	and	provisions	it	with	a	JSON	collection
consisting	of	one	key/value	pair.	You	may	note	that	the	key	which	our	JSON	possesses	is
equivalent	to	the	label	with	the	placeholder	used	by	our	template.	This	is	not	simply	a
matter	of	coincidence.	I	mentioned	earlier	that	interchangeable	parts	could	be	used	both
interchangeably	and	indistinguishably	within	an	existing	structure,	providing	they	adhere
to	the	structure	of	a	template.	In	other	words,	the	label	used	to	represent	our	placeholder	is
replaced,	or	interpolated,	with	the	corresponding	value	of	a	key	of	the	same	name,	if	it
exists	as	a	member	on	the	context	provided.	When	a	template	is	compiled	via
Handlebars.compile,	it	is	transformed	into	a	JavaScript	function.	When	said
function	is	invoked	with	JSON	as	an	argument,	the	implementation	of	the	function	relies
on	string	manipulation	to	assign	values	from	our	JSON	to	our	placeholders	and	returns,
upon	its	conclusion,	a	string.	This	is	not	unlike	our	Ajax	request	in	Listing	13-1.	The	only
difference	is	that	the	JavaScript	function	is	not	created	at	design	time,	but,	rather,	it	is
created	on	the	fly	at	runtime.	This	takes	place	the	moment	the	reference	to
Handlebars.compile	is	parsed	by	the	script	engine.	Once	the	function	has	been
executed,	the	result	is	provided	back	to	the	caller	of	the	function.

The	second	line	of	code	added	to	our	page	simply	alerts	us	to	the	result,	as	shown	in
Figure	13-4.

Figure	13-4.	The	rendered	output	of	data

As	revealed	by	Figure	13-4,	the	output	that	results	from	templateFunction	is
none	other	than	the	string	representation		ben	.	At	this	point,	we	can
append	the	resulting	string	to	our	HTML	document	with	some	very	simple	DOM
scripting.	Furthermore,	each	invocation	of	our	template	function	can	be	provided	with
varying	contexts,	thus	allowing	the	resulting	output	to	vary	with	each	invocation,	as
shown	in	Listing	13-8.

Listing	13-8.	Repeated	Use	of	templateFunction	with	Varying	Contexts

www.it-ebooks.info

http://www.it-ebooks.info/

var	outputMarkup;

				outputMarkup	=	templateFunction({	"name":"ben"	});

						console.log(outputMarkup);		//		ben	

				outputMarkup	=	templateFunction({	"name":"ivan"	});

						console.log(outputMarkup);		//		ivan	

				outputMarkup	=	templateFunction({	"name":"michael"	});

						console.log(outputMarkup);		//		michael	

Multiple	Placeholders
A	template	needn’t	consist	of	a	single	placeholder.	Because	a	placeholder	is	simply	a
reference	to	a	key	within	a	provided	context,	it’s	entirely	possible	to	construct	templates
that	reference	multiple	placeholders.	However,	it	generally	helps	to	begin	with	just	the
one.	Listing	13-9	demonstrates	how	multiple	placeholders	can	be	used	to	produce	a	more
complex	template.

Listing	13-9.	Use	of	Multiple	Placeholders	Within	a	Template
//..truncated	code

	8	<body>
	9			<section	id=“directory”>
10				<script	type=“application/x-handlebars”	id=“Handlebar-

Employee-Template”>

11					<div	class=“employee”>

12							<p>	firstName:	{{fName}}	</p>

13							<p>	lastName:		{{lName}}	</p>

14							<p>	contact:			{{phone}}	</p>

15					</div>

16				</script>

17			</section>

18			<script>

19			</script>

20	</body>

The	markup	used	within	Listing	13-9	reveals	a	template,	labeled	“Handlebar-
Employee-Template.”	This	particular	template	is	intended	to	house	within	an
individual	<p>	element	the	first	and	last	name,	as	well	as	the	contact	number,	of	one	of
my	colleagues.	Each	of	the	three	paragraphs	is,	furthermore,	contained	within	a	parenting
<div>	tag	that	has	been	provided	employee	as	the	value	of	the	class	attribute.	By
providing	a	class	identifier	to	the	template,	each	context,	when	rendered,	will	reveal	a
uniformly	styled	element	upon	its	inclusion	into	the	document.

With	our	template	having	been	defined,	all	that	remains	is	to	provide	the
implementation	that	compiles	Handlebar-Employee-Template,	as	well	as	supply
it	a	context	or	two	to	be	rendered.	(See	Listing	13-10.)

Listing	13-10.	The	JavaScript	Code	Required	to	Insert	Data	into	a	Document,	with	the
Proper	Presentation

www.it-ebooks.info

http://www.it-ebooks.info/

17		//Truncated	code…

18	<script	type="application/javascript">

19				var	initialTemplateWrapper	

=	document.getElementById("Handlebar-Employee-Template");

20				var	initialTemplateContent	

=	initialTemplateWrapper.innerHTML;

21				var	templateFunction	

=	Handlebars.compile(initialTemplateContent);

22				var	dataA	=	templateFunction({"fName"	:	"Ben",					

"lName"	:	"Smith",		"phone"	:	"555-1234"});

23				var	dataB	=	templateFunction({"fName"	

:	"Ivan",				"lName"	:	"Bravo"	,	"phone"	:	"555-5678"});

24				var	dataC	=	templateFunction({"fName"	:	"Michael",	

"lName"	:	"Chang"	,	"phone"	:	"555-9090"});

24				var	directory	=	document.getElementById("directory");

										directory.innerHTML		=	dataA;

										directory.innerHTML	+=	dataB;

										directory.innerHTML	+=	dataC;

25	</script>

As	the	code	from	Listing	13-10	reveals,	the	implementation	and	utilization	of	a
template	are	equivalent,	regardless	of	the	number	of	placeholders.	This	is	due	to	the	magic
of	the	Handlebars	scripting	engine.	Executing	the	preceding	code	results	in	the	rendering
of	each	context	to	be	included	within	the	directory,	as	shown	in	Figure	13-5.

Figure	13-5.	Directory	listing	of	my	coworkers

www.it-ebooks.info

http://www.it-ebooks.info/

	Note		I	have	not	revealed	any	styling	in	the	listings,	to	keep	code	to	a	minimum.
However,	I	have	applied	a	minimal	amount	of	styling	to	the	employee	class.

One	of	the	features	that	makes	JSON	a	superior	data	format	is	that	it	is	capable	of
retaining	the	hierarchical	structure	of	data.	As	we	have	seen	in	previous	chapters,	JSON
allows	us	to	nest	structural	composites,	resulting	in	more	complex	JSON	structures.

Complex	JSON	Structures
A	great	templating	engine	can	easily	work	with	complex	data,	and	Handlebars	is	definitely
up	to	the	task.	Because	all	Handlebars	placeholders	reference	the	topmost	structure	of	the
provided	context,	any	and	all	nested	members	within	a	data	collection	can	be	referenced
with	the	simple	use	of	dot	notation.

Our	previous	example	demonstrated	how	we	could	use	Handlebars	to	output	an
employee	directory,	revealing	the	contact	number	per	colleague.	However,	in	the	case	of
an	urgent	matter,	it’s	always	best	to	have	alternate	methods	of	contacting	an	individual.
Let’s	revisit	our	previous	Handlebar-Employee-Template,	and	reconstruct	it	to
make	use	of	the	nested	structure	shown	in	Listing	13-11.

Listing	13-11.	A	Complex	JSON	Structure

var	complexJSON	=

{

				"fName"	:	"Ben",

				"lName"	:	"Smith",

				"contact"	:	{

							"phone"	:	"555	-	1234",

							"cell"	:	"555	-	5678",

							"email"	:	"ben@example.com"

				}

};

Listing	13-11	reveals	a	JSON	structure	whose	member,	labeled	“contact”,	is	that	of
a	nested	collection.	Within	the	aforementioned	collection	are	three	possible	forms	of
contact:	phone,	cell,	and	email.	In	order	to	incorporate	a	reference	to	the	nested
values	into	our	template,	we	simply	employ	the	use	of	dot	notation	within	our
placeholders,	as	seen	in	Listing	13-12.

Listing	13-12.	Handlebar	Template	Relying	on	Dot	Notation	to	Reference	a	Nested
Collection

<section	class="directory">

	<script	type="application/x-handlebars"	id="Handlebar-

Employee-Template">

		<div	class="employee">

				<p>	firstName:	{{fName}}	</p>

				<p>	lastName:		{{lName}}	</p>

www.it-ebooks.info

http://www.it-ebooks.info/

				<p>	work:						{{contact.phone}}	</p>

				<p>	email:					{{contact.cell}}	</p>

				<p>	cell:						{{contact.email}}	</p>

		</div>

	</script>

</section>

If	we	were	to	compile	the	template	from	Listing	13-12	and	supply	as	the	context
complexJSON	from	Listing	13-11,	our	document	would	render	the	results	shown	in
Figure	13-6.

Figure	13-6.	Rendered	template	utilizing	dot	notation

While	dot	notation	can	be	sufficient	for	working	with	nested	structures,	it	can	become
rather	cumbersome	and	repetitive.	Furthermore,	when	working	with	many	properties	or
deeply	nested	structures,	our	template	can	become	bloated	and	unwieldy.	For	this	reason,
the	Handlebars	engine	supplies	us	with	more	versatile	expressions.

Block	Expressions
As	stated	on	the	Handlebars	web	site,	“Block	expressions	allow	you	to	define	helpers	that
will	invoke	a	section	of	your	template	with	a	different	context	than	the	current.”	Although
I	have	yet	to	discuss	helpers,	the	key	takeaway	from	the	previous	sentence	is	that	block
expressions	are	special	expressions	that	can	be	used	to	change	the	working	context	within
our	templates.	In	the	upcoming	section	“Block	Helpers,”	you	will	see	how	they	can	be
paired	with	helpers.

As	the	term	block	implies,	a	lock	expression	is	used	to	define	a	subset	or	group	of
expressions	within	a	template.	In	other	words,	block	expressions	are	used	as	containers	for
other	expressions,	wherein	the	expressions	residing	within	a	block	expression	are	subject
to	the	context	defined	by	the	block	itself.	This	is	similar	to	the	CSS	cascading	effect,
which	child	HTML	elements	can	inherit	from	their	parents.	Furthermore,	because	a	block
expression	is	a	special	form	of	expression,	a	block	expression	has	the	capability	to	be	the
parent	for	another	block	expression.	Listing	13-13	reveals	the	syntax	of	a	block
expression.

Listing	13-13.	Syntax	of	a	Block	Expression

{{#Expression}}

							//anything	that	happens	here	is	within	the	context	of	
Expression

{{/Expression}}

As	shown	in	Listing	13-13,	the	syntax	of	a	block	expression	is	much	more	complex

www.it-ebooks.info

http://www.it-ebooks.info/

than	that	of	its	counterpart	the	basic	expression.	Further	examination	of	the	syntax	reveals
similarities	between	the	two.	It	would	appear	that	a	block	expression	is	made	up	of	two
special	basic	expressions.	The	first	expression	is	prefixed	by	a	hash	token	(#),	while	the
latter	basic	expression	is	simply	prefixed	by	the	solidus	token	(/).	The	two	tokens	that	I
have	mentioned	are	used	to	denote	the	beginning	and	end	of	a	block.

Any	and	all	expressions	contained	within	said	block	will	inherit	the	context
established	by	the	block	expression.	What	do	I	mean	by	“established	by	the	block
expression”?	Like	any	basic	expression,	the	block	references	a	placeholder	that	will	be
replaced	with	the	value	for	the	defined	key	shown	in	Listing	13-13	as	“Expression”,
thus	altering	the	context	for	any	nested	expressions.

Incorporating	block	expressions	within	a	template	is	as	simple	as	determining	where
our	template	would	benefit	from	a	change	in	context.	Let’s	revisit	Handlebar-
Employee-Template	from	Listing	13-12	and	establish	a	new	context	that	will	allow
us	to	remove	all	uses	of	dot	notation.	(See	Listing	13-14.)

Listing	13-14.	Use	of	a	Block	Expression	to	Alter	the	Current	Context

<section	class="directory">

	<script	type="application/x-handlebars"	id="Handlebar-

Employee-Template">

		<div	class="employee">

				<p>	firstName:	{{fName}}	</p>

				<p>	lastName:		{{lName}}	</p>
						{{#contact}}

				<p>	work:		{{phone}}	</p>

				<p>	email:	{{cell}}	</p>

				<p>	cell:		{{email}}	</p>
						{{/contact}}

		</div>

	</script>

</section>

Listing	13-14	employs	a	block	expression	in	order	to	reflect,	as	the	new	context,
contact,	exposed	by	the	current	context.	Mind	you,	the	item	held	at	contact	is	a
collection	of	three	keys,	phone,	cell,	and	email.	From	there,	all	placeholders
contained	within	our	block	will	be	replaced	with	the	values	possessed	by	the	matching
keys	held	by	the	new	context,	thus	eliminating	the	need	for	dot	notation,	in	order	to	obtain
references	to	phone,	cell,	and	email.

	Tip		A	block	expression	can	be	used	to	work	your	way	down	a	complex	JSON
structure.

If	we	were	to	compile	the	template	from	Listing	13-14	and	supply	as	the	context
complexJSON	from	Listing	13-11,	our	document	would	render	the	same	result	shown
previously	in	Figure	13-6.

www.it-ebooks.info

http://www.it-ebooks.info/

Block	Expressions	and	Arrays
One	extremely	powerful	inclusion	of	the	block	expression,	aside	from	being	used	to
establish	a	new	context,	is	how	it	will	loop	over	the	indexes	of	an	array,	if	that	is	what	the
expression	evaluates	to.	In	other	words,	if	the	key	defined	by	our	block	expression
evaluates	to	that	of	an	array,	each	item	held	by	all	indexes	of	said	array	are	individually	set
as	the	new	context	for	any	and	all	expressions	within	the	block.	This	is	especially
important,	because	the	Handlebars	engine	will	assemble,	in	one	shot,	several	data	sets
contained	within	an	ordered	list.

With	that	being	said,	Listing	13-15	incorporates	within	our	initial	Handlebar-
Employee-Template	from	Listing	13-9	a	block	expression,	shown	in	bold.

Listing	13-15.	Incorporating	a	Block	Expression

<body>

		<section	id="directory">

			<script	type="application/x-handlebars"	id="Handlebar-

Employees-Template">
				{{#employees}}

				<div	class="employee">

								<p>	firstName:	{{fName}}	</p>

								<p>	lastName:		{{lName}}	</p>

								<p>	contact:			{{phone}}	</p>

				</div>
				{{/employees}}

			</script>

		</section>

</body>

This	very	minor	inclusion	adds	an	extremely	large	amount	of	automation	to	our
template.	Up	until	this	point,	the	code	required	to	augment	multiple	individuals	into	our
directory	consisted	of	obtaining	computed	data,	augmenting	it,	and	inserting	this	into	our
DOM	three	times	over.	However,	the	inclusion	of	the	new	block	expression	can	supply	an
arbitrary	number	of	employees	to	our	template	with	a	single	data	provision.

Because	both	our	template	and	data	must	possess	a	relationship	in	order	for	our
template	to	work,	it	requires	the	provision	of	JSON	that	complements	our	block
expression.	The	JSON	provided	must	possess	at	least	one	key/value	pair	whose	label	is
that	of	employees.	Furthermore,	the	value	which	employees	must	retain	is	that	of	an
array,	whose	indexes	are	composed	of	individual	collections	pertaining	to	a	particular
employee,	as	shown	in	Listing	13-16.

Listing	13-16.	An	Ordered	List	of	Individual	Employees

{

				"employees"	:	[

								{"fName"	:	"Ben",					"lName"	:	"Smith",	"phone"	:	"555	

-	1234"	},

www.it-ebooks.info

http://www.it-ebooks.info/

								{"fName"	:	"Ivan",				"lName"	:	"Bravo",	"phone"	:	"555	

-	5678"	},

								{"fName"	:	"Michael",	"lName"	:	"Chang",	"phone"	:	"555	

-	9090"}

]

};

Listing	13-16	reveals	a	JSON	structure	that	complements	the	block	expression	shown
in	Listing	13-15.	If	we	were	to	compile	the	template	from	Listing	13-15	and	provide	the
preceding	JSON	to	the	resulting	function,	the	resulting	string	returned	would	reflect	the
following	markup:

<div	class="employee">

	<p>	firstName:	Ben	</p>

	<p>	lastName:		Smith	</p>

	<p>	contact:			555	-	1234		</p>

</div>

<div	class="employee">

	<p>	firstName:	Ivan	</p>

	<p>	lastName:		Bravo	</p>

	<p>	contact:			555	-	5678		</p>

</div>

<div	class="employee">

	<p>	firstName:	Michael	</p>

	<p>	lastName:		Chang	</p>

	<p>	contact:			555	-	9090		</p>

</div>

All	that	would	be	left	for	our	code	to	do	would	be	to	append	the	preceding	string	into
our	document	so	that	it	can	be	rendered.	The	full	source	code	can	be	viewed	in	Listing	13-
17.

Listing	13-17.	Utilizing	a	Block	Expression	to	Render	Three	Employees	from	One	JSON
Argument

<body>

		<section	id="directory">

			<script	type="application/x-handlebars"	id="Handlebar-

Employee-Template">

				{{#employees}}

				<div	class="employee">

				<p>	firstName:	{{fName}}	</p>

				<p>	lastName:		{{lName}}	</p>

				<p>	contact:			{{phone}}	</p>

				</div>

				{{/employees}}

			</script>

		</section>

www.it-ebooks.info

http://www.it-ebooks.info/

		<script	type="application/javascript">

			var	initialTemplateWrapper	

=	document.getElementById("Handlebar-Employee-Template");

			var	initialTemplateContent	

=	initialTemplateWrapper.innerHTML;

			var	templateFunction	

=	Handlebars.compile(initialTemplateContent);

			var	dataA	=	templateFunction({

										"employees"	:	[

																									{"fName"	:	"Ben",	"lName"	:	"Smith",	

"phone"	:	"555	-	1234"	},

																									{	"fName"	:	"Ivan",	"lName"	:	"Bravo",	

"phone"	:	"555	-	5678"	},

																									{"fName"	:	"Michael",	"lName"	:	"Chang",	

"phone"	:	"555	-	9090"}

]

				});

			var	directory	=	document.getElementById("directory");

			directory.innerHTML	+=	dataA;

		</script>

	</body>

Executing	Listing	13-17	renders	the	results	shown	in	Figure	13-5.	While	the	results	are
the	same,	the	difference	in	labor	speaks	for	itself.

EXERCISE	13-1.	ENHANCING	THE	DIRECTORY

While	our	employee	directory	is	making	use	of	the	latest	Handlebars	techniques,
thereby	reducing	the	amount	of	JavaScript	required	to	add	new	employees	to	our
directory,	we	have	managed	to	revert	back	to	displaying	only	one	form	of	contact	per
employee.	Using	the	information	learned	thus	far	about	Handlebars	expressions,
rewrite	the	directory	template	to	account	for	the	following	JSON	as	its	context:
{

				“employees”	:	[

					{

										“fName”	:	“Ben”,

										“lName”	:	“Smith”,

										“contacts”	:	{

																“phone”	:	“555	-	1234”,

																“cell”	:	“555	-	5678”,

																“email”	:	“ben@example.com”

										}

					},	{

										“fName”	:	“Ivan”,

										“lName”	:	“Bravo”,

www.it-ebooks.info

http://www.it-ebooks.info/

										“contacts”	:	{

															“phone”	:	“555	-	9012”,

															“cell”	:	“555	-	9034”,

															“email”	:	“ivan@example.com”

										}

				},	{

										“fName”	:	“Michael”,

										“lName”	:	“Chang”,

										“contacts”	:	{

																“phone”	:	“555	-	9035”,

											}

				}]

}

You	may	note	that	Michael	does	not	possess	a	cell	or	e-mail	for	this	exercise.	Take
note	of	this	when	your	template	is	rendered.	You	can	compare	your	template	to
Listing	13-18.

If	your	template	resembles	that	of	Listing	13-18,	then,	congratulations;	you	are	on
your	way	to	mastering	the	Handlebars	engine.

Listing	13-18.	Answer	to	the	Preceding	Exercise

<section	id="directory">

	<script	type="application/x-handlebars"	id="Handlebar-

Employee-Template">

		{{#employees}}

				<div	class="employee">

				<p>	firstName:	{{fName}}	</p>

				<p>	lastName:		{{lName}}	</p>

				{{#contacts}}

									<p>phone:	{{phone}}</p>

									<p>cell:		{{cell}}</p>

									<p>email:	{{email}}</p>

				{{/contacts}}

				</div>

		{{/employees}}

	</script>

</section>

Rendering	the	template	from	Listing	13-18	reveals	that	a	Handlebars	template	outputs
fields,	whether	or	not	an	existing	member	within	the	provided	context	can	replace	the
basic	expression.	As	in	the	case	of	Michael,	who	lacked	a	cell	as	well	as	an	e-mail
address,	Handlebars	did	not	omit	these	fields,	as	shown	in	Figure	13-7.

www.it-ebooks.info

http://www.it-ebooks.info/

Figure	13-7.	Rendering	of	empty	fields

Applying	Logic	to	Logic-less	Templates
As	was	stated	earlier,	Handlebars	templates	are	logic-less,	which	simply	means	that	they
do	not	incorporate	the	use	of	JavaScript	operators.	This	is	extremely	beneficial,	because	it
increases	the	readability,	reusability,	and	maintainability	of	our	templates,	by	ensuring	the
separation	of	presentation	from	functionality.	Similarly,	it	separates	our	HTML	from	our
JavaScript.	However,	at	times,	we	will	find	it	quite	necessary	to	apply	logic	into	our
presentation.	For	this	reason	Handlebars	incorporates	helpers.

Helpers
In	order	to	decouple	logic	from	presentation,	Handlebars	does	not	permit	the	coupling	of
logic	within	a	template—and	rightfully	so.	HTML,	CSS,	and	JavaScript	should	remain	as
separate	from	one	another	as	possible.	However,	this	is	not	to	say	that	Handlebars
templates	cannot	reflect	the	use	of	logic	at	all.	In	fact,	the	Handlebars	library	provides	us
with	the	necessary	framework	in	which	we	can	pair	logic	with	templates	in	a	way	that	is
sure	to	decouple	the	logic	from	our	layout.

In	order	to	decouple	the	two,	the	Handlebars	library	relies	on	what	are	referred	to	as
helpers.	A	helper	is	merely	an	expression,	which,	at	runtime,	resolves	to	a	function	of	the
same	name.	Only	in	the	runtime	environment	are	our	template	and	logic	intertwined.	This
is	contrary	to	design	time	(our	source	code),	during	which	our	template	will	only	exhibit
what	appears	to	be	yet	another	expression,	thus	ensuring	an	optimal	amount	of	separation
from	our	presentation.

There	are	two	types	of	helpers:	custom	and	built-in.	Because	custom	helpers	are	an
advanced	topic,	this	chapter	will	not	discuss	them.	Rather,	I	will	discuss	the	variety	of
remarkably	useful	helpers	that	Handlebars	includes,	so	that	we	can	incorporate	them	into
our	templates	immediately.

Built-in	Helpers
Unlike	custom	helpers,	which,	as	you	may	suspect,	offer	more	fine-tuned	logic,	hence

www.it-ebooks.info

http://www.it-ebooks.info/

increased	complexity,	built-in	helpers	are	included	to	supply	basic	logic	to	Handlebars
templates.	The	helpers	that	I	will	be	discussing	are	each,	if,	unless,	and	else.

As	you	may	surmise	from	their	names,	the	aforementioned	built-in	helpers	facilitate
the	most	basic	of	JavaScript	faculties.	As	you	will	find,	the	built-in	helpers	that	I	will	be
discussing	will	all	coincide	with	a	block	expression.	Helpers	that	are	used	with	block
expressions	are	referred	to	in	the	Handlebars	nomenclature	as	block	helpers.

Block	Helpers
The	syntax	for	a	block	helper,	as	seen	in	Listing	13-19,	reveals	a	similar	resemblance	to
that	of	a	block	expression.	The	sole	difference	between	the	two	is	that	it	is	the	name	of	the
helper	that	defines	the	block.

Listing	13-19.	Syntax	of	a	Block	Helper

{{#helper	Expression}}

				//	Within	the	context	of	Expression

{{/helper}}

As	you	can	see	from	Listing	13-19,	a	block	helper	is	a	block	used	to	apply	specific
logic	to	some	context,	Expression.	In	the	case	of	the	block	helper,	it	is	the	name	of	the
helper	that	succeeds	the	beginning	and	ending	tokens	of	the	block.	Although	the	syntax
varies	from	our	earlier	discussion	of	a	block	expression,	a	block	helper	is	still	a	block,	and,
therefore,	for	all	expressions	within,	is	business	as	usual.	In	other	words,	all	expressions
within	are	subject	to	the	new	context	brought	about	by	the	block	helper.

The	each	Helper
The	each	helper	is	a	remarkable	helper	that	traverses	all	keys	for	a	given	context.	The
difference	between	each	and	the	default	behavior	of	the	block	expression,	however,	is
that	each	will	iterate	over	both	collections	as	well	as	an	ordered	list.	As	with	a	block
expression,	each	item	held	by	the	traversed	key	will	be	set	to	the	current	context	for	any
and	all	expressions	within	the	block.	Listing	13-20	reveals	the	syntax	for	the	each	block
helper.

Listing	13-20.	Syntax	of	the	each	Helper

{{#each	Expression}}

				//evaluate	against	the	current	context

{{/each}}

As	shown	in	Listing	13-20,	the	each	block	helper	defines	a	block	that	will	traverse	all
keys	belonging	to	the	evaluated	context,	Expression.	The	each	key	provides	a
tremendous	amount	of	automation	that	can	be	added	to	our	template.	It	can	be	used	like	a
block	expression	to	iterate	an	array,	or	it	can	also	be	used	to	iterate	over	a	collection	of
key/value	pairs.	Listing	13-21	makes	use	of	both,	to	reveal	the	each	helper’s	versatility.

Listing	13-21.	Revisiting	Our	Directory	with	the	Assistance	of	the	each	Helper

www.it-ebooks.info

http://www.it-ebooks.info/

<script	type="application/x-handlebars"	id="Handlebar-

Employee-Template">

{{#each	employees}}		//traverse	an	array

		<div	class="employee">

				<p>	firstName:	{{fName}}	</p>

				<p>	lastName:		{{lName}}	</p>

				{{#each	contacts	}}	//traverse	a	collection

								<p>{{@key}}:	{{this}}</p>
				{{/each}}

		</div>
{{/each}}

</script>

Listing	13-21	updates	our	previous	Handlebar-Employee-Template.	This
time,	it	reflects	the	necessary	code	that	takes	advantage	of	the	each	helper.	As	you	can
see,	our	template	will	traverse	our	array,	employees,	and	our	object,	contacts.	You
may	notice	that	our	template	no	longer	explicitly	includes	the	placeholders	phone,	cell,
and	email.	In	their	place	is	a	single	line	of	code:	<p>{{@key}}:	{{this}}</p>.
Because	the	use	of	each	sets	the	value	of	each	traversed	key	as	the	current	context	for	all
subsequent	expressions	within	the	block,	our	aforementioned	placeholders	will	not	be
evaluated.	This	is	because	each	value	of	each	key	held	by	our	contacts	collection	is	a
string.	For	this	particular	reason,	the	Handlebars	engine	provides	special	placeholders	that
can	be	used	to	refer	to	specific	parts	of	a	context.

These	special	placeholders	are	{{@key}}	and	{{this}}.	The	placeholder
{{@key}}	refers	to	the	key	for	which	the	current	context	is	held,	while,	conversely,	the
placeholder	{{this}}	refers	to	the	value	of	said	key.	These	come	in	especially	handy
when	iteration	is	involved.

Utilizing	these	two	special	placeholders,	we	can	achieve	the	original	output	of	our
various	methods	of	contact.	Providing	the	data	model	shown	in	Listing	13-22	results	in	the
rendering	of	Figure	13-8.

Listing	13-22.	Complex	JSON

{

				"employees"	:	[

					{

										"fName"	:	"Ben",

										"lName"	:	"Smith",

										"contacts"	:	{	"phone"	:	"555	-	1234",	"cell"	:	"555	

-	5678",	"email"	:	ben@example.com	}

					},	{

										"fName"	:	"Ivan",

										"lName"	:	"Bravo",

										"contacts"	:	{		"phone"	:	"555	-	9012",		"cell"	

:	"555	-	9034",	"email"	:	ivan@example.com	}

				},	{

www.it-ebooks.info

http://www.it-ebooks.info/

										"fName"	:	"Michael",

										"lName"	:	"Chang",

										"contacts"	:	{	"phone"	:	"555	-	9035",	}

				}]

}

Figure	13-8.	Rendering	of	fields	that	exist

As	you	can	see,	the	effect	is	nearly	the	same	as	the	output	from	the	earlier	exercise
within	this	chapter.	What	you	may	recognize,	however,	is	that	only	phone	has	been
outputted	for	Michael.	This	is	because	the	each	helper	traverses	only	the	keys	that	exist.

The	if	Helper
The	if	helper	is	a	handy	helper	that	can	be	used	to	add	conditional	logic	to	a	block
expression	and	takes	on	the	implementation	shown	in	Listing	13-23.

Listing	13-23.	Syntax	of	the	if	Helper

{{#if	Expression}}

				//evaluate	against	the	current	context	Expression

{{/if}}

Listing	13-23	reveals	the	syntax	of	the	block	helper.	Use	of	the	if	helper	conveniently
renders	our	block,	in	addition	to	any	expressions	contained	within,	only	if	Expression
evaluates	as	truthy.	In	other	words,	if	Expression	evaluates	to	null,	0,	false,	or
undefined,	the	block	will	be	bypassed.	Let’s	apply	our	if	helper	to	the	template	from
our	earlier	exercise,	in	order	to	prevent	the	output	of	contact	methods	that	do	not	exist.
(See	Listing	13-24.)

Listing	13-24.	Incorporation	of	the	if	Helper

<script	type="application/x-handlebars"	id="Handlebar-

Employee-Template">

	{{#employees}}

			<div	class="employee">

			<p>	firstName:	{{fName}}	</p>

			<p>	lastName:		{{lName}}	</p>

			{{#contacts}}
				{{#if	phone}}

www.it-ebooks.info

http://www.it-ebooks.info/

						<p>phone:	{{phone}}</p>
				{{/if}}

				{{#if	cell}}

						<p>cell:	{{	cell	}}</p>
				{{/if}}

				{{#if	email}}

						<p>email:	{{email}}</p>
				{{/if}}

		{{/contacts}}

		</div>

	{{/employees}}

</script>

As	shown	in	bold,	the	if	helper	is	used	to	devise	a	block	that	may	or	may	not	render.
This,	of	course,	depends	on	the	resulting	evaluation	of	each	expression:	phone,	cell,
and	email.	Remember	that	if	an	expression	evaluates	to	null,	0,	false,	or
undefined,	each	if	block	helper	will	be	skipped.	Executing	the	previous	template	with
the	data	set	from	Listing	13-24	results	in	the	same	output	as	that	shown	in	Figure	13-9.

Figure	13-9.	Rendering	of	a	member,	if	it	possesses	a	value

The	unless	Helper
The	unless	helper	is	used	to	render	a	block	only	if	the	expression	succeeding	it
evaluates	to	falsy.	The	syntax	for	the	unless	helper	can	be	seen	in	Listing	13-25.

Listing	13-25.	Syntax	of	the	unless	Helper

{{#unless	Expression}}

				//evaluate	against	the	current	context	Expression

{{/unless	}}

The	unless	helper	is	used	inversely	to	that	of	our	if	helper,	in	that	it	is	used	to
render	a	block,	if	and	only	if	Expression	evaluates	to	null,	0,	false,	or
undefined.	You	may	be	asking	yourself	when	might	this	be	useful.	However,	such	a
helper	is	useful	when	rendering	invalid	or	empty	form	fields.	Listing	13-26	uses	the
unless	helper	to	output	into	our	directory	all	contacts	that	have	not	supplied	an	e-mail.

Listing	13-26.	Incorporation	of	the	unless	Helper

www.it-ebooks.info

http://www.it-ebooks.info/

<script	type="application/x-handlebars"	id="Handlebar-

Employee-Template">

		{{#employees}}
			{{#unless	contacts.email}}

			<div	class="employee">

						<p>	firstName:	{{fName}}	</p>

						<p>	lastName:		{{lName}}	</p>

						{{#contacts}}

									<p>phone:	{{phone}}</p>

									<p>cell:	{{	cell	}}</p>

									<p>email:	{{email}}</p>

						{{/contacts}}

				</div>
			{{/unless}}

			{{/employees}}

</script>

Listing	13-26	demonstrates	how	the	unless	helper	can	be	used	to	render	colleagues
that	have	yet	to	supply	an	e-mail	address.	Because	we	know	that	Michael	only	possesses	a
phone	number,	executing	the	preceding	template	against	the	data	set	from	Listing	13-22
results	in	the	output	shown	in	Figure	13-10.

Figure	13-10.	Use	of	the	unless	block	to	render	a	contact	whose	e-mail	is	not	present

The	else	Helper
The	else	helper	is	a	complementary	helper	for	our	two	previously	discussed	helpers,
unless	and	if.	This	special	helper	can	be	incorporated	within	the	body	of	either
if/unless	blocks	in	order	to	render	content,	provided	the	conditions	for	unless/if
are	unsuccessfully	met.	The	syntax	of	our	else	helper	for	both	unless	and	if	blocks
can	be	seen	in	Listing	13-27.

Listing	13-27.	Syntax	of	the	else	Helper

{{#if	Expression}}

				//Evaluate	for	the	current	context	if	truthy
{{else}}

				//Evaluate	for	the	current	context	if	falsy

{{/if}}

{{#unless	Expression}}

				//Evaluate	for	the	current	context	if	falsy
{{else}}

www.it-ebooks.info

http://www.it-ebooks.info/

				//Evaluate	for	the	current	context	if	truthy

{{/unless}}

Utilizing	the	else	helper	offers	our	templates	the	ability	to	provide	presentation	to	an
unmet	outcome.	Consider	our	previous	unless	example.	If	we	wanted	to	highlight	for
Human	Resources	those	colleagues	who	currently	lack	a	valid	e-mail	address,	while
similarly	displaying	those	that	did,	utilizing	the	else	helper	would	make	this	possible.
(See	Listing	13-28.)

Listing	13-28.	Incorporation	of	the	else	Helper

<script	type="application/x-handlebars"	id="Handlebar-

Employee-Template">

		{{#employees}}
			{{#unless	contacts.email}}

			<div	class="lacksEmail">

					<p>	requires	contact	for{{fName}}{{lName}}	</p>

			</div>
			{{else}}

			<div	class="hasEmail">

						<p>	congratulations	{{fName}}	{{lName}}	</p>

			</div>
			{{/unless}}

		{{/employees}}

</script>

Listing	13-28	reveals	the	use	of	the	else	helper	to	render	an	alternate	presentation	for
when	our	condition	is	not	met.	Executing	the	preceding	template	with	the	data	set	from
Listing	13-22	results	in	the	same	output	as	that	shown	in	Figure	13-11.

Figure	13-11.	Use	of	the	else	helper	to	render	an	alternate	condition

EXERCISE	13-2.	TEMPLATIZING	REMOTE	JSON

With	the	lessons	you’ve	learned	in	this	chapter,	see	if	you	can	revise	the	exercise	in
Chapter	8	to	incorporate	Handlebars.	There	is	no	right	or	wrong	answer.

Summary
The	Handlebars	library	makes	it	easy	to	combine	data	with	presentation.	However,	it	does
so	cleanly	and	semantically,	which	makes	it	highly	extensible	as	well	as	maintainable.	In

www.it-ebooks.info

http://www.it-ebooks.info/

our	industry,	in	which	change	is	constant,	the	ability	to	isolate	data	from	presentation
allows	for	things	to	change	independently	of	one	another.	Handlebars	does	this	by	simply
taking	advantage	of	the	clear	distinctions	between	design	time	and	runtime.

Key	Points	from	This	Chapter
Handlebars	is	a	templating	engine.

Handlebars	templates	are	encapsulated	as	text	within	script	tags.

To	prevent	our	templates	from	being	parsed	by	the	JavaScript	engine,
we	mark	the	type	of	script	as	an	unidentifiable	language.

A	placeholder	is	the	atomic	unit	in	Handlebars.

All	expressions	are	references	to	keys	held	by	JSON	data.

A	Handlebars	template	is	converted	into	a	JavaScript	function	at
runtime.

The	JavaScript	function	accepts	JSON	data	against	which	all
placeholders	are	evaluated.

Handlebar	templates	are	logic-less.

Basic	logic	can	be	added	to	a	template	in	the	form	of	a	helper.

The	built-in	helpers	are	used	within	blocks.

Block	expressions	are	used	to	alter	the	current	context.

Block	expressions	can	be	used	to	traverse	arrays.

{{this}}	and	{{@key}}	are	special	placeholders	that	refer	to
current	key/value	pairs.

The	each	helper	can	traverse	members	of	an	ordered	list	or
collection.

The	if	helper	is	used	to	add	conditional	logic	to	a	block.

The	unless	helper	is	used	to	add	conditional	logic	to	a	block.

The	else	helper	can	be	used	when	if	or	unless	conditions	are
unmet.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter	14

Putting	It	All	Together
Each	previous	chapter	has	aimed	to	discuss	the	various	components	of	the	Web	that
circulate	around	JSON.	Owing	to	this	common	thread,	they	are	typically	paired,	rather
than	considered	in	isolation.	In	this	chapter,	I	will	piece	together	the	various	concepts
discussed	throughout	this	book	as	building	blocks	for	an	actual	project.	Each	component
will	play	its	own	critical	role.

Within	this	chapter,	I	will	use	JavaScript,	JSON,	CORS,	Node.js,	CouchDB,
Handlebars,	and,	finally,	Ajax	to	harness	the	data	from	the	social	media	powerhouse	that	is
Twitter.

Twitter
For	those	who	live	under	a	rock,	Twitter	is	the	latest	social	trend	enabling	users	to
communicate	via	a	short,	140-character	message.	For	all	intents	and	purposes,	Twitter	can
be	thought	of	as	the	modern-day	soapbox.	Registered	users	can	read	and	respond	to	other
users’	messages.	But	even	more	important	is	that	unregistered	users	can	still	read	and
search	the	tweets	of	all	registered	users.	This	is	because	Twitter	stores	in	a	database	every
tweet	and	publicizes	them,	thereby	allowing	all	the	world	to	view	the	voices	of	the	many.

Furthermore,	Twitter	has	crafted	a	simple	API	that	welcomes	web	developers	to
harness	their	database,	to	power	the	simplest	or	most	complex	campaign	initiatives.	While
there	are	many	ways	to	utilize	Twitter’s	API,	this	chapter	seeks	to	extract,	at	near-real-
time,	broadcast	tweets	that	contain	a	specific	hashtag	or	phrase.	At	the	time	of	writing,	the
iPhone	6	had	just	been	released,	and	the	hashtag	#bendgate	instantly	trended.	For	this
chapter,	I	will	make	use	of	the	hashtag	#bendgate,	but	feel	free	to	replace	any	#bendgate
reference	with	one	that	is	trending	today.

Twitter	Apps
Much	as	with	all	modern-day	social	APIs,	in	order	to	leverage	Twitter’s	API,	we	must
register	a	Twitter	app.	This	is	easily	accomplished	by	visiting
http://apps.twitter.com	and	clicking	the	Create	New	App	button,	as	shown
Figure	14-1.

Figure	14-1.	Create	New	App	button

www.it-ebooks.info

http://apps.twitter.com
http://www.it-ebooks.info/

If	you	are	not	greeted	with	a	page	that	resembles	that	in	Figure	14-1,	it	may	be	that
Twitter	has	either	updated	this	page	or	that	you	have	yet	to	sign	in	with	your	Twitter
account.	Take	this	opportunity	to	click	“Sign	in	to	twitter,”	if	you	have	an	existing	account
with	Twitter,	or	click	“Sign	up	now”	to	create	one.	As	a	registered	Twitter	user,	you	are
allowed	to	create	as	many	apps	as	you	see	fit.	Let’s	begin	by	creating	an	app.	Clicking
Create	New	App	will	direct	us	to	a	page	enabling	us	to	create	an	application,	as	seen	in
Figure	14-2.

Figure	14-2.	Application	Details	form

In	the	fields	shown	in	Figure	14-2,	we	will	need	to	provide	some	required	information.
First	is	the	provision	of	a	name	for	our	application.	Normally	this	field	is	presented	to	the
end	user,	to	approve	the	application	to	use	the	Twitter	account.	However,	the	app	we	will
be	creating	is	strictly	for	our	own	purposes.	That	being	said,	you	can	fill	out	any	name	that
is	not	already	in	use	by	other	Twitter	developers.	I	have	labeled	my	application
“BeginningJSON.”

The	second	field	seeks	a	description	defining	the	behavior	of	our	application.	What	is
it	for?	What	are	its	intentions?	Again,	this	is	another	user-facing	field.	However,	as	it’s	an
internal	project,	we	can	call	it	whatever	we	wish.	I	have	supplied	the	following
description:	“crawls	the	search	API.”

The	third	field	is	used	to	provide	authority	to	the	source	of	the	application.	If	your
application	creates	tweets	on	behalf	of	a	user	who	authorized	your	app,	the	URL	you
provide	here	will	be	listed	as	the	source	attribute	for	the	tweet.	Our	app	will	not	be	making

www.it-ebooks.info

http://www.it-ebooks.info/

any	tweets	on	anyone’s	behalf;	therefore,	we	can	provide	a	placeholder,	in	order	to	satisfy
the	requirement	of	the	field.	I	have	listed	http://127.0.0.1	as	my	web	site.

The	final	field,	which	is	not	required,	is	mandated	by	the	OAuth	authorization
protocol.	As	we	will	not	be	making	use	of	this	field,	we	can	leave	it	blank.

The	last	step	in	creating	a	Twitter	app	requires	that	we	read	and	acknowledge	the
policies	surrounding	the	use	of	the	Twitter	API.	If	you	agree	to	the	rules	laid	out	by
Twitter,	then	click	“Yes,	I	agree,”	then	click	the	button	labeled	“Create	your	Twitter
application.”

If	the	form	did	not	possess	any	errors,	upon	its	submission,	you	will	be	navigated	to	a
portal	from	which	you	can	manage	the	particulars	of	your	app.	The	landing	page	for	your
application	is	the	Details	page,	which	provides	the	overview	of	your	application.	Your
details	should	reflect	those	shown	in	Figure	14-3.

Figure	14-3.	Application	Details	page

Figure	14-3	displays	the	basic	details	for	our	recently	created	application.	The	major
difference	between	your	app	and	mine	begins	with	the	presented	name	of	the	application.

www.it-ebooks.info

http://www.it-ebooks.info/

In	the	top	left-hand	corner,	you	can	see	that	my	app	is	labeled	“BeginningJSON.”	Further
below,	our	application’s	settings	are	listed.	Here	is	yet	another	obvious	difference	between
your	app	and	mine.	Where	it	states	Consumer	Key	(API	Key),	the	number	that	appears	on
your	Details	page	is	guaranteed	to	be	that	of	a	different	value.	This	is	necessary	for	your
app	and	my	app	to	be	recognized	as	two	separate	applications.	I’ll	talk	more	about	this
shortly.

By	default,	all	applications	are	enabled	to	provide	“Read-only”	status	from	Twitter.
This	is	evident,	as	the	first	field	within	the	Application	Settings	section	reveals	our	access
level.	To	the	right	of	“Access	level”	are	the	following	words:	“Read-only.”	This	is	always
the	default	value,	as	it	is	the	safest	for	any	user	who	wants	to	use	your	application.	If	your
application	requires	write	privileges,	the	existing	permissions	will	require	modification.
However,	for	the	purposes	of	this	chapter,	we	will	continue	to	leave	the	permission	set	to
Read-only.	At	this	point,	let’s	click	the	Keys	and	Access	Tokens	tab	within	the	topmost
navigation.

Keys	and	Access	Tokens
This	section	pertains	to	our	application/user	tokens	and	is	integral	to	a	Twitter	application.
In	fact,	it’s	integral	to	nearly	every	API	out	there	today.	You	see,	the	Twitter	application
for	which	we	are	creating	strictly	adheres	to	the	OAuth	2.0	protocol.	As	the	topic	of
OAuth	is	far	beyond	the	topic	of	this	book,	I	will	simply	explain	that	OAuth	is	an	industry
standard	for	allowing	a	third	party	access	to	your	first-party	data,	while	ensuring	that	the
service	requesting	your	data	remains	ignorant	of	your	credentials.	In	this	particular	case,
that	service	would	be	Twitter.	In	order	to	keep	all	parties	isolated,	thereby	not	exposing	a
user’s	password	to	the	application	creator,	a	series	of	access	tokens	are	used	and
exchanged	instead.

Every	Twitter	application	is	provided	a	Consumer	Key	upon	its	creation.	It	is	this
Consumer	Key	that	distinguishes	my	application	from	your	application.	Furthermore,	it	is
used	to	establish	the	identity	of	my	application	with	Twitter.	Much	like	a	Twitter	handle,	I
have	the	option	of	changing	my	application	name	at	any	point	in	time.	However,	the
Consumer	Key	will	always	remain	the	same,	that	is,	unless	I	regenerate	them	or	change
the	app	permissions,	which	would	provide	my	app	with	a	brand-new	Consumer	Key.	A
change	in	Consumer	Keys,	then,	represents	a	different	app	and,	therefore,	requires	anyone
who	has	previously	authorized	your	app	to	do	so	once	again.	This	ensures	that	users	who
authorize	your	read-only	app	today	cannot	be	taken	advantage	of	tomorrow,	without
having	to	authorize	any	changes	made	to	your	app.

While	the	Consumer	Key	is	intended	to	be	public	information,	all	Public	Keys	are
paired	with	a	secret	key	that	must	be	safeguarded	at	all	times.	For	this	reason,	I	have
blurred	mine	out	from	Figure	14-4.

www.it-ebooks.info

http://www.it-ebooks.info/

Figure	14-4.	Application	Keys	and	Access	Tokens	tab

If	anyone	ever	obtains	a	secret	key,	he/she	can	impersonate	your	app.	These	two	keys,
when	paired,	establish	the	rightful	ownership.	Therefore,	make	certain	that	the	Private	Key
you	are	provided	remains	a	secret	from	anyone.

	Tip		The	safest	way	to	utilize	the	Private	Key	is	on	the	server	side.

At	this	point,	we	have	successfully	registered	a	read-only	Twitter	application	that	can
be	used	to	begin	interacting	with	the	Twitter	API.	All	that	is	required	is	the	understanding
of	the	Twitter	API.	The	Twitter	API	is	bountiful	and	has	loads	of	methods	for	us	to	tap
into.	To	cover	them	all	requires	a	book	in	itself;	however,	now	that	we	have	created	an
app,	you	may	find	it	interesting	to	discover	the	potential	that	Twitter	can	offer.	Feel	free	to
learn	about	the	various	API	methods	from	the	online	documentation	at
https://dev.twitter.com/overview/documentation.

The	clear	and	concise	documentation	outlines	the	methods	we	can	make	use	of,	the
type	of	authorization	required,	whether	or	not	there	is	a	limit	to	how	many	times	it	can	be
called,	and	the	response	format	to	be	expected.	While	not	every	method	will	provide
different	answers,	what	remains	a	constant	is	that	all	response	formats	will	be	provided	as
JSON.

Public	Stream
The	interaction	that	this	chapter	will	make	use	of	is	the	public	stream’s	statuses/filter,	and
its	resource	information	is	provided	in	Figure	14-5.

www.it-ebooks.info

https://dev.twitter.com/overview/documentation
http://www.it-ebooks.info/

Figure	14-5.	Public	stream’s	Resource	Information	page

The	pubic	stream,	as	defined	on	the	Twitter	web	site,	provides	“developers	low	latency
access	to	Twitter’s	global	stream	of	tweet	data.”	This	is	achieved	by	devising	a	socket
between	our	server	and	Twitter’s,	so	they	can	post	to	our	servers	public	tweets	as	they
receive	them.

As	I	mentioned	earlier,	both	registered	and	unregistered	users	have	the	same	ability	to
view	Tweets.	However,	only	registered	users	have	the	ability	to	perform	more	specialized
operations.	As	shown	in	Figure	14-5,	you	can	see	that	the	type	of	authorization	required
for	the	public	stream	is	that	of	a	user	context.	Unlike	the	Consumer	Keys,	which	we
currently	have,	in	order	to	use	this	interface,	we	will	require	a	User	Key	as	well.
Fortunately	for	us,	in	order	to	create	a	Twitter	application,	one	must	have	access	to	a
registered	Twitter	account.	In	other	words,	we	can	generate	a	User	Key	for	our	account
and	pair	it	to	work	with	our	Twitter	application.

Your	User	Access	Token
One	thing	that	Twitter	provides	us	from	the	Keys	and	Access	Tokens	menu	is	the	ability	to
generate	an	access	token	that	can	be	authorized	to	work	with	our	application.	In	order	to
obtain	an	access	token,	simply	click	“Create	my	access	token,”	just	below	the	CTA	“Token
Actions,”	shown	in	Figure	14-6.	This	will	generate	an	access	key	for	this	particular
application,	thereby	satisfying	the	requirements	of	the	public	stream	interface.

www.it-ebooks.info

http://www.it-ebooks.info/

Figure	14-6.	Generated	user	token

As	shown	in	Figure	14-6,	clicking	“Create	my	access	token”	will	generate	an	access
token	as	well	as	its	access	token	secret	counterpart.	Never	reveal	this	access	token	secret
to	anyone;	otherwise,	he/she	can	use	it	to	access	your	account	via	the	Twitter	API.	By
clicking	“Generate	My	Access	Token,”	Twitter	will	authorize	your	account	with	your
Twitter	app.	If	you	were	to	navigate	to
https://twitter.com/settings/applications,	you	would	find	a	list	of	all
the	applications	that	you	have	authorized.	The	most	recent	application	should	reflect
yours,	just	as	Figure	14-7	reveals	mine.

www.it-ebooks.info

https://twitter.com/settings/applications
http://www.it-ebooks.info/

Figure	14-7.	Authoring	our	account	to	make	use	of	our	application

At	this	point,	we	have	all	the	credentials	we	require	to	monitor	in	near-real	time	the
Twitter	database	for	the	tweets	of	our	choosing.

#Trending
Now	that	we	have	the	required	keys	to	consume	data	from	the	Twitter	stream,	all	that
remains	is	the	implementation	for	our	application.	But	what	exactly	are	we	building?	you
ask.	We	are	going	to	build	an	application	that	monitors,	as	close	to	real	time	as	possible,	a
topic	that	is	currently	trending.	Furthermore,	because	the	trend	may	be	gone	tomorrow,	we
will	store	within	a	database	the	data	received	from	the	stream.	This	will	allow	us	the
ability	to	filter,	sort,	or	search	for	particular	tweets	even	after	the	trend	subsides.

Last,	because	the	data	will	be	locked	away	within	a	database,	we	will	devise	a	way	to
extract	the	data	and	incorporate	it	within	an	HTML	document.	In	order	to	present	the	data
as	a	tweet,	we	will	stylize	the	extracted	data	upon	its	inclusion	within	the	HTML
document.	For	this,	you	will	have	to	use	your	gleanings	from	each	preceding	chapter.

Node.js
The	first	piece	of	the	puzzle	is	creating	a	server	from	which	we	can	interchange	data
between	our	application	and	Twitter.	In	order	to	make	our	lives	easier,	we	will	leverage	a
Node	module,	which	will	conceal	our	application	from	the	nitty-gritties	of	the	Twitter
API.	For	this	challenge,	we	will	leverage	the	npm	Twitter	module.	You	can	read	more
about	it	at	the	following	site:	www.npmjs.org/package/twitter.

Twitter	Module
In	order	to	utilize	the	Twitter	module,	we	must	first	install	it	as	a	module	with	Node.js.	In
order	to	do	so,	we	will	follow	the	practices	similar	to	those	that	were	employed	with
Cradle,	discussed	in	Chapter	12.

Simply	use	the	command-line	interface	to	navigate	to	the	top	directory,	which	contains
the	chapter14	source	code.	For	me,	that	would	be	the	following	locations:

//PC

C:\Users\UrZA\Documents\Aptana	Studio	

3	Workspace\BeginningJSON\chapter14\

//Mac

/Users/FeZEC/Documents/Aptana	Studio	

www.it-ebooks.info

http://www.npmjs.org/package/twitter
http://www.it-ebooks.info/

3	Workspace/BeginningJSON/chapter14/

Open	Terminal	for	Mac	or	CMD	for	PC,	and	simply	type	cd,	followed	by	the	location
of	your	chapter14	directory	and	hit	Enter.	Next,	type	in	the	following	command	and	hit
Return	on	your	keyboard.

npm	install	twitter

This	will	initiate	the	installation	process	for	our	Twitter	module.	Remember	that	to
install	a	module,	you	may	require	administration	rights.

Incorporating	the	Twitter	Module
Once	the	Twitter	module	has	been	successfully	installed	into	our	top-level	directory,	we
can	begin	working	with	it,	by	incorporating	it	into	a	Node	application	via	require().
As	outlined	at	www.npmjs.org/package/twitter,	the	setup	for	our	Twitter
application	requires	a	mere	eight	lines	of	code,	as	shown	in	Listing	14-1.

Listing	14-1.	Twitter	Module	Setup

1	var	util	=	require('util');

2	var	twitter	=	require('twitter');

3	var	twitr	=	new	twitter({

4				consumer_key								:	"REPLACE_WITH_YOUR_CONSUMER_KEY",

5				consumer_secret					:	"REPLACE_WITH_YOUR_CONSUMER_KEY_SECRET",

6				access_token_key				:	

"REPLACE_WITH_YOUR_CONSUMER_ACCESS_TOKEN",

7				access_token_secret	

:	"REPLACE_WITH_YOUR_CONSUMER_ACCESS_TOKEN_SECRET"

8			});

As	I	hinted	at	earlier,	a	Twitter	application	relies	on	an	exchange	among	keys.	This	is
why	the	setup	requires	us	to	insert	the	appropriate	keys	that	reflect	the	application	we	are
devising.	The	module	then	utilizes	these	keys	to	generate	the	proper	calls	to	Twitter’s	API.
Because	this	logic	is	complex,	we	are	leveraging	our	module	to	perform	this	labor.

Now,	as	it	currently	stands,	the	code	from	Listing	14-1	simply	configures	our
application	to	properly	access	the	Twitter	API	with	the	appropriate	credentials.	It	does	not
begin	to	make	any	requests	or	receive	any	data.	For	that,	we	must	utilize	the	relevant
methods	of	the	module.

Streaming	API	(Stable)
The	Twitter	module	has	a	few	methods	that	we	can	tap	into;	however,	for	the	purposes	of
this	chapter,	we	will	make	sole	use	of	the	Streaming	API.	The	Streaming	API	is	a	wrapper
to	accessing	Twitter’s	public	streams.	As	you	can	learn	from	Twitter’s	documentation	on
public	streams,	https://dev.twitter.com/streaming/public,	there	are
three	possible	end	points.	We	will	use	statuses/filter.

www.it-ebooks.info

http://www.npmjs.org/package/twitter
https://dev.twitter.com/streaming/public
http://www.it-ebooks.info/

Statuses/Filter
The	documentation	for	the	statuses/filter	URI	states:	“Returns	public	statuses	that	match
one	more	filter	predicates.”	In	other	words,	the	end	point,
stream.twitter.com/1.1/statuses/filter,	will	monitor	for	public	tweets
that	match	any	of	the	delimited	terms	or	hashtags	that	we	specify.	Furthermore,	because
our	application	will	be	listening	to	a	stream,	Twitter	will	provide	us	data	in	near	real	time.

In	order	to	specify	the	terms	or	tags	that	our	application	requires,	we	will	use	the
track	property.	Simply	put,	track	is	a	parameter	that	can	be	provided	phrases	or
keywords.	Multiple	phrases	or	keywords	can	be	separated	by	the	comma	(,)	token.
Listing	14-2	reveals	the	eight	lines	of	code	required	to	devise	a	connection	to	the
status/filter	stream.

Listing	14-2.	Incorporating	the	Stream	API
8	//..truncated	code

		9	var	hashTag=
“REPLACE_WITH_A_COMMA_DILIMITED_SET_OF_HASHTAG(s)“;
	10	twitr.stream('statuses/filter',	{
	11					track	:	hashTag
	12		},	function(stream)	{
	13					stream.on('data',	function(data)	{
	14										console.log(data);		//outputs	JSON
	15					});
	16		});

Listing	14-2	shows	all	the	code	we	will	require	for	devising	a	stream	for	the	chosen
list	of	hashtags	or	phrases.	I,	however,	have	chosen	to	monitor	the	single	hashtag	knows	as
“#BendGate”	(the	latest	trend	following	the	iPhone	6).	Incorporating	Listing	14-2	with
Listing	14-1	and	replacing	all	references	appropriately	is	all	that	remains	to	make	this
Node	application	fully	operational.

If	you	were	to	execute	the	code	from	the	command-line	interface,	via	the	node
command,	depending	on	the	topic	you	had	chosen	to	monitor,	you	would	notice	JSON
being	output	to	the	console	immediately.	If	the	topic	was	truly	trending,	you	might	find	it
impossible	to	determine	one	tweet	from	another.	Remember:	We	are	streaming	data,	which
means	that	everything	is	happening	in	real	time	or	as	close	to	it	as	it	can.

	Note		The	stream	outputs	JSON	and	not	raw	data,	because	the	Twitter	module	parses	it.

Because	it’s	coming	in	at	near-real	time,	we	will	have	to	save	the	incoming	data,	lest	it
never	reappear	in	our	application,	that	is,	unless	it	is	re-tweeted	by	another	user.	In	order
to	ensure	that	we	retain	the	incoming	tweets	of	the	stream,	we	must	incorporate	a	database
on	which	we	can	persist	them.

CouchDB
www.it-ebooks.info

http://www.it-ebooks.info/

There	is	an	expression,	“You	could	not	step	twice	into	the	same	river,”	that	is	used	to
imply	that	things	change.	The	tweets	provided	to	our	application	may	wind	up	being
deleted	by	the	originator	of	the	tweet	moments	after	they	are	published.	This	tweet	will,
for	all	intents	and	purposes,	no	longer	be	obtainable	by	public	searches.	By	applying	the
preceding	expression	to	our	Twitter	stream,	the	incoming	tweets	will	be	lost	to	our	HTML
document	unless	we	devise	a	way	to	capture	and	store	them	for	later	use.	For	this,	we	will
incorporate	CouchDB.

Incorporating	the	Cradle	Module
As	you	should	already	have	CouchDB	installed	on	your	machine,	the	only	thing	that	will
be	required	of	our	application	is	the	installation	of	the	Cradle	module	into	our	current
working	directory.	This	can	be	achieved	by	typing	cd,	followed	by	the	location	of	your
chapter14	directory,	and	hitting	Enter.	Next,	type	in	npm	install	twitter.
Remember:	You	may	require	administration	privileges	to	do	so.

Once	the	Cradle	module	is	installed,	all	that	remains	is	to	incorporate	it	into	our
existing	Node	application.	Listing	14-3	reflects	in	bold	the	code	required.

Listing	14-3.	Incorporation	of	Cradle	into	Our	Node	Application

	1	var	util	=	require('util');

	2	var	twitter	=	require('twitter');

	3	var	cradle	=	require('cradle');

	4	var	twitr	=	new	twitter({

				consumer_key								:	"REPLACE_WITH_YOUR_CONSUMER_KEY",

				consumer_secret					

:	"REPLACE_WITH_YOUR_CONSUMER_KEY_SECRET",

				access_token_key				:	

"REPLACE_WITH_YOUR_CONSUMER_ACCESS_TOKEN",

				access_token_secret	

:	"REPLACE_WITH_YOUR_CONSUMER_ACCESS_TOKEN_SECRET"

			});

	5	var	hashTag=	

"REPLACE_WITH_A_COMMA_DILIMITED_SET_OF_HASHTAG";

	6	var	couchDB	=	new	(cradle.Connection)('127.0.0.1',	5984,	{
						cache	:	true,

						raw	:	false,

					forceSave	:	true

			});

	7	var	twitterDataBase	=	couchDB.database('twitter');

	8	twitterDataBase.exists(function(err,	exists)	{

	9					if	(err)	{

10									console.log('error',	err);

11					}	else	if	(exists)	{

www.it-ebooks.info

http://www.it-ebooks.info/

12									console.log('the	twitter	db	exists');

13					}	else	{

14									console.log('twitter	database	does	not	exists.');

15				twitterDataBase.create();

16				}

17	});

18	twitr.stream('statuses/filter',	{

							track	:	hashTag

						},	function(stream)	{

									stream.on('data',	function(data)	{
												twitterDataBase.save(data,	function(err,	res)	{

																if	(!err)	{

																		console.log(res);		//logs	out	saved	couchDB	_id

																}

												});

									});

			});

Listing	14-3	outlines	in	bold	the	inclusion	of	CouchDB	via	the	Cradle	module.	As	you
can	see	in	lines	5	through	16,	we	establish	a	connection	to	our	CouchDB	service	and
determine	the	existence	of	the	database	labeled	“twitter.”	If	a	database	of	that	name
does	not	currently	exist,	we	create	it	via	the	create	method.

Once	our	database	is	devised,	and	with	a	reference	to	it,	we	can	pipe	the	incoming
JSON	into	our	database.	Because	the	Twitter	module	converts	any	data	read	from	the
stream	into	JSON,	we	can	simply	provide	it	as	the	body	to	Cradle’s	save	method.

If	you	don’t	currently	have	the	CouchDB	service	running	on	port	5984,	take	this
opportunity	to	start	the	CouchDB	application.	Once	you	have	verified	that	CouchDB	is
running	via	the	Futon	interface,	go	ahead	and	restart	our	Node	application.	In	lieu	of
Twitter	data	being	outputted	to	the	console,	you	should	now	be	viewing	JSON	data
returned	by	CouchDB.	This	data,	as	you	may	remember,	represents	the	individual
documents	used	to	persist	the	provided	JSON.	Feel	free	to	allow	this	application	to	run	for
a	short	while,	in	order	to	fill	our	twitter	database.	Before	long,	you	will	surely	see	an
abundant	amount	of	tweets	that	will	have	been	saved	to	our	database.

When	you	are	satisfied,	navigate	your	browser	to	the	Futon	Overview
(http://127.0.0.1:5984/_utils)	to	bear	witness	to	the	fruits	of	your	labor.	As
revealed	in	Figure	14-8,	I	managed	to	receive	a	total	of	7,173	tweets	before	deciding	to
shut	down	my	application.	This	amounted	to	nearly	50	megs	in	saved	documents.	While
hard-drive	space	is	nearly	infinite	for	the	penny	these	days,	my	desire	to	save	50	megs’
worth	of	people	complaining	about	their	bent	phone	is	sadly	finite.

www.it-ebooks.info

http://127.0.0.1:5984/_utils
http://www.it-ebooks.info/

Figure	14-8.	Overview	of	my	Twitter	database

Because	Twitter	does	not	understand	what	attributes	our	app	may	or	may	not	wish	to
utilize,	each	JSON	document	saved	possesses	an	exuberant	amount	of	information.	Such
information	addresses	whom	the	tweet	is	in	reply	to	or	the	location	from	which	the	tweet
originated,	etc.	Feel	free	to	delve	into	your	Twitter	database	and	observe	at	random	a
single	document.	As	you	will	undoubtedly	find,	there	is	an	expansive	amount	of
information	pertaining	to	the	captured	tweet.	As	this	will	be	less	than	ideal	for	HTTP
transport,	we	will	have	to	create	a	view	that	reflects	the	sole	aspects	required	by	this
chapter.

Creating	a	View
As	was	seen	in	Chapter	12,	creating	a	view	entails	the	creation	of	a	design	document,	for
which	the	map	function	we	devise	will	reflect	the	rows	for	this	particular	view.	For	the
purpose	of	our	application,	we	will	require	a	mere	fraction	of	the	values	held	within	each
JSON	document.	These	values	are	the	following:	message,	profile_pic,	handle,
full_name,	created_time,	media,	and	tweet_id.	Each	of	these	aforementioned
labels	will	play	an	integral	role	in	the	presentation	of	the	tweet.

Last,	as	the	key	that	will	be	used	to	sort	our	results,	our	map	function	will	reference
the	captured	timestamp	of	the	tweet.	Referencing	this	value	as	the	primary	key	to	our	view
will	enable	the	ability	to	sort	tweets	by	their	creation	time.	Currently,	the	creation	time	is
represented	as	a	string	rather	than	as	a	number.	However,	we	can	easily	convert	the
timestamp	to	a	number	via	the	built-in	JavaScript	function	Number(string),	as	seen
in	Listing	14-4.

Listing	14-4.	Devising	a	Tweet	map	Function

function(doc)	{

www.it-ebooks.info

http://www.it-ebooks.info/

var	mediaURL=undefined;

if(doc.extended_entities){

			mediaURL=doc.extended_entities.media[0].media_url;

};

emit(Number(doc.timestamp_ms),	{

																																				"message"						:doc.text,

																																				"profile_pic"		:doc.user.profile_image_url,

																																				"handle"							

:doc.user.screen_name,

																																				"full_name"				:doc.user.name,

																																				"created_time"	:doc.created_at,

																																				"media"								:	mediaURL,

																																				"tweet_id"					:doc.id_str

																																	});

}

Listing	14-4	reveals	the	map	function	that	will	be	used	to	create	the	data	set	that	will
be	used	within	our	HTML	document.	As	you	can	see,	the	emit	function	obtains	the
reference	to	our	document	and,	from	it,	captures	only	the	properties	our	application
requires.	Because	media	will	not	accompany	every	tweet,	I	have	also	created	a	condition
in	which	the	mediaURL	is	set	to	undefined	if	media	does	not	exist.	This	will
effectively	remove	the	media	key	from	the	returned	JSON.	This	will	be	important	to
remember	when	we	devise	our	template.

With	our	map	function	devised,	click	the	Run	button	to	extract	our	data	set	against	the
entries	within	our	Twitter	database.	Once	the	operation	completes,	you	should	witness	the
results	of	your	query,	as	shown	in	Figure	14-9.	The	amount	of	time	required	to	query	the
existing	database	will	vary.	Remember	that	the	initial	render	is	the	slowest,	and
subsequent	rendering	of	the	same	query	only	occurs	on	recently	added/removed	or
updated	documents.

Figure	14-9.	Specialized	query

www.it-ebooks.info

http://www.it-ebooks.info/

Once	your	view	has	successfully	resulted	in	a	valid	data	set,	you	will	want	to	save	it.
You	may	recall	that	this	is	achieved	by	clicking	the	Save	As…	button,	which	will	display
the	Save	View	As…	dialog	box	shown	in	Figure	14-10.

Figure	14-10.	Save	dialog	for	a	temporary	view

I	have	labeled	my	design	document	“twitter”	and	the	view’s	name	“tweets.”	Once	the
fields	are	properly	filled	in,	click	Save,	so	that	we	can	now	reference	our	view	via	the
following	URL:
http://127.0.0.1:5984/twitter/_design/twitter/_view/tweets.
Visiting	this	URL	reveals	JSON	to	be	the	data	set	captured	by	our	query.

Enabling	CORS
If	we	wish	our	HTML	application	to	obtain	and	utilize	the	preceding	JSON	resource,	we
will	require	the	use	of	Ajax.	However,	because	CouchDB	runs	on	a	specific	port,	any	and
all	Ajax	requests	that	do	not	get	initiated	from	within	Futon	will	be	denied,	per	the	same-
origin	policy.

However,	as	CouchDB	invites	us	to	modify	its	configurations,	we	can	enable	CORS
with	ease.	Navigating	to	http://127.0.0.1:5984/_utils/config.html
reveals,	via	a	Futon	interface,	the	ability	for	us	to	modify,	add,	and	alter	the	default
configurations	of	CouchDB.

By	default,	CouchDB	disables	CORS,	to	ensure	that	data	captured	within	remains
safeguarded.	However,	enabling	CORS	is	as	simple	as	scrolling	to	the	httpd	section	and
locating	the	enable_cors	option.	While	it	may	appear	that	the	value	is	uneditable,
double-clicking	the	value	will	reveal	an	input	box,	thereby	allowing	us	to	replace	the
current	value	with	that	of	true.	(See	Figure	14-11.)

Figure	14-11.	Configuring	CouchDB	with	CORS	capability

Once	we	have	configured	CouchDB	to	utilize	CORS,	we	will	have	to	include	the
proper	CORS	headers	within	the	CORS	section.	By	default,	the	CORS	section	does	not
possess	any	CORS	headers	as	an	option	and,	therefore,	will	have	to	be	added.	This	is

www.it-ebooks.info

http://127.0.0.1:5984/twitter/_design/twitter/_view/tweets
http://127.0.0.1:5984/_utils/config.html
http://www.it-ebooks.info/

achieved	by	locating,	at	the	bottom	of	the	interface,	the	button	labeled	“Add	a	new
section,”	as	seen	in	Figure	14-12.

Figure	14-12.	Adding	a	new	section	button

On	clicking	this	button,	a	dialog	box	will	appear,	as	shown	in	Figure	14-13,	and	to	it,
we	specify	a	key/value	pair	into	a	given	section.

Figure	14-13.	Configuring	the	origins	header

For	the	purposes	of	this	chapter,	our	application	will	only	initiate	a	GET	request	for	the
Twitter	view.	Per	the	CORS	specification,	in	order	to	authorize	GET	requests	for	data	from
origin	A	to	a	source	origin	B,	we	must	use	the	origins	header.	As	its	value,	we	must
configure	any	and	all	approved	origins.	To	make	things	easy,	we	can	use	the	wildcard	after
all	the	information	we	are	exposing	is	already	public	on	Twitter.	On	clicking	Create,	we
will	have	successfully	configured	our	data	set	from	being	obtained	via	varying	origins.

Ajax
In	order	to	fetch	the	JSON	data	from	CouchDB,	we	must	configure	the	Ajax	request
accordingly.	This	can	be	as	simple	as	configuring	an	xhr	object	and	defining	the	request
line,	as	shown	in	Listing	14-5.

Listing	14-5.	Ajax	Request	to	Obtain	Tweets

var	ajax	=	new	XMLHttpRequest();

				ajax.open("GET",	

"http://127.0.0.1:5984/twitter/_design/twitter/_view/tweets");

				ajax.responseType	=	"json";

				ajax.onload	=	function()	{

								console.log(this.response);

				};

				ajax.send();

Listing	14-5	initializes	an	XMLHttpRequest	object	and	configures	the	request	line

www.it-ebooks.info

http://127.0.0.1:5984/twitter/_design/twitter/_view/tweets
http://www.it-ebooks.info/

to	make	a	GET	request	for	the	Twitter	design	document.	Submission	of	the	request,
provided	the	CORS	headers	are	properly	configured	in	CouchDB,	should	result	in	the
output	of	the	received	JSON	data	to	the	developer’s	console.	At	this	point,	all	that	would
remain	is	to	append	our	JSON	to	the	document.

	Note		To	keep	things	simple,	Listing	14-5	solely	makes	use	of	XMLHttpRequest
Level	2.

If	you	were	to	open	a	simple	HTML	document,	make	reference	to	the	external
Ajax.js	file,	and	run	it	within	a	browser	with	the	developer’s	network	pane	opened,	you
would	be	able	to	witness	a	successful	Ajax	request.	If	your	database	is	as	bountiful	as
mine,	you	might	have	witnessed	that	your	request	received	an	incredibly	large	number	of
tweets.	Receiving	this	many	tweets	will	require	the	viewer	of	our	document	to	wait	until
the	transmission/parsing	of	JSON	has	been	fulfilled,	which	is	less	than	ideal.

Requesting	Ranges
For	our	Ajax	to	be	prompt	and	provide	a	good	user	experience,	we	will	incorporate	into
our	URI	the	following	recognized	parameters	of	CouchDB:	descending,	limit,
startkey,	and	skip.	These	parameters	can	be	used	to	inform	CouchDB	to	return	a
subset	of	data.	This	will	allow	us	to	paginate	our	data	rather	than	receive	it	in	one	lump
sum.	Each	parameter	will	provide	a	specific	functionality	in	defining	the	range	of	our
subset.	Let’s	begin	with	the	descending	parameter.

var	

url="http://127.0.0.1:5984/twitter/_design/twitter/_view/tweets

descending=true";

ajax.open("GET",url);

As	you	can	see	from	the	preceding	code,	I	have	appended	the	descending
parameter	to	the	end	of	our	resource	URI.	Furthermore,	I	have	specified	the	value	of	the
descending	parameter	as	true.	This	will	ensure	the	sorting	order	of	the	original	data
set,	from	which	we	will	define	our	subset.	Next,	we	will	utilize	the	parameter	limit.

var	

url="http://127.0.0.1:5984/twitter/_design/twitter/_view/tweets?

descending=true&limit=20;

ajax.open("GET",url);

Appending	the	limit	parameter	to	our	resource	will	allow	us	to	cap	the	amount	of
rows	returned	by	the	view.	In	this	particular	case,	I	have	specified	the	value	of	20.	If	you
were	to	navigate	to	the	preceding	URI,	you	would	note	that	only	20	rows	are	presented.
Furthermore,	those	20	rows	are	sorted	in	the	order	they	were	extracted,	that	order	being
descending	order.

By	default,	the	20	values	being	returned	will	simply	reflect	the	first	20	rows	that
appear,	beginning	with	the	most	recent.	However,	we	can	manipulate	the	starting	index

www.it-ebooks.info

http://127.0.0.1:5984/twitter/_design/twitter/_view/tweets
http://127.0.0.1:5984/twitter/_design/twitter/_view/tweets?descending=true&
http://www.it-ebooks.info/

with	the	incorporation	of	our	next	parameter,	startkey.

var	

url="http://127.0.0.1:5984/twitter/_design/twitter/_view/tweets?

descending=true&limit=20

									&startkey=1412433722297";

ajax.open("GET",url);

Use	of	startkey	invites	us	to	specify	a	known	key	as	the	index	from	which	our
subset	begins.	In	this	case,	I	have	specified	the	key	1412433722297.	However,	as	you
may	or	may	not	have	a	tweet	that	reflects	this	key,	it’s	best	to	make	this	value	dynamic.
This,	of	course,	can	be	obtained	easily	from	each	Ajax	request.	We	simply	obtain	the	key
from	the	very	last	row	of	JSON	in	our	data	set.	I	will	demonstrate	this	shortly.

Because	we	will	use	the	last	key	to	indicate	the	key	from	which	we	begin	our	subset,
we	will	undoubtedly	obtain	in	each	subset	a	tweet	that	has	already	been	provided	in	our
previous	subset.	Therefore,	the	final	parameter	we	will	utilize	will	inform	CouchDB	to
skip	over	a	specified	number	before	beginning	our	subset.	That	parameter	is,	of	course,
skip.

var	

url="http://127.0.0.1:5984/twitter/_design/twitter/_view/tweets?

descending=true&limit=20

									&startkey=1412433722297&skip=1";

ajax.open("GET",url);

Providing	the	value	of	1	to	our	skip	parameter	informs	CouchDB	to	offset	our	subset
by	one	from	the	established	startkey.	This	will	effectively	skip	the	row	identified	by
the	startkey	from	being	provided	in	this	data	set.

Now	that	we	have	a	firm	understanding	of	the	parameters	involved,	all	that	remains
are	the	operations	that	can	manipulate	our	URI	accordingly.	Such	operations	can	be	seen
in	Listing	14-6.

Listing	14-6.	js/mylibs/ajaxRange.js	Incorporates	the	Pagination	of	Tweets

	1	var	url	

=	'http://127.0.0.1:5984/twitter/_design/twitter/_view/tweets

	2	var	lastKey	=	null;

	3	function	render()	{

	4	var	ajax	=	new	XMLHttpRequest();

	5					ajax.open("GET",	incrementRange(lastKey));

	6					ajax.responseType	=	"json";

	7					ajax.onload	=	function()	{

	8									var	data	=	(this.response);

	9									var	rows	=	data.rows;

10									lastKey	=	rows[rows.length	-	1].key;

11									console.log(data);

www.it-ebooks.info

http://127.0.0.1:5984/twitter/_design/twitter/_view/tweets?descending=true&limit=20
http://127.0.0.1:5984/twitter/_design/twitter/_view/tweets?descending=true&limit=20
http://127.0.0.1:5984/twitter/_design/twitter/_view/tweets
http://www.it-ebooks.info/

12					};

13					ajax.send();

14	}

15	function	incrementRange(lastCount)	{

16			var	range	=	"?descending=true";

17			var	limit	=	20;

18			if	(lastCount)	{

19					range	+=	"&startkey="	

+	lastCount.toString()+"&skip=1";

20			};

21			range	+=	"&limit="	+	limit;

22			return	url	+	range;

23	};

Listing	14-6	incorporates	the	use	of	two	functions	to	append	the	appropriate
parameters	and	their	values	that	enable	the	appropriate	and	linear	subset	of	the	original
data	contained	in	our	twitter	database.

The	first	function,	labeled	“render,”	is	the	main	entry	into	our	Ajax	request.	This
function	is	responsible	for	the	actual	request	that	will	take	place.	However,	the	render
function	will	defer	to	our	second	function,	labeled	“incrementRange,”	which	is
responsible	for	appending	the	appropriate	parameters	for	the	Ajax	call.	As	discussed
earlier,	three	of	our	four	parameters	are	known	constants.	We	will	always	work	in
descending	order;	we	will	limit	our	data	set	to	20	rows;	and,	last,	we	will	always	skip	one.
However,	what	varies	is	the	key	that	will	represent	our	starting	index,	from	which	our
subset	is	derived.

In	order	to	satisfy	the	startkey	parameter,	we	must	retain	the	key	value	from	the
last	row	provided	in	each	data	set	to	a	variable	that	can	be	referenced	by	the
incrementRange	function.	The	variable	that	will	be	assigned	the	key	value	is	that	of
lastKey	(line	10).	With	each	data	set	returned,	we	must	access	the	final	collection	in	the
array	and	obtain	the	value	of	key.

With	each	call	to	render,	lastKey	will	be	provided	as	an	argument	to
incrementRange,	where,	if	and	only	if	the	value	is	not	null,	will	it	be	set	as	the
value	to	startkey.	Next,	startkey	and	the	skip	parameter	are	appended	to	the
current	URI,	along	with	limit.

With	each	invocation	to	render,	the	data	set	will	continue	to	be	incremented	by	the
next	20	rows	in	the	database.	To	make	it	easy	to	request	a	data	set,	we	could	easily	bind
the	render	function	to	that	of	a	button	in	our	HTML,	as	shown	in	Listing	14-7.

Listing	14-7.	HTML	Document’s	Incorporation	of	Our	ajaxRange	Script

<!DOCTYPE	html>

<html	lang="en">

	<head>

		<meta	charset="utf-8">

www.it-ebooks.info

http://www.it-ebooks.info/

	</head>

	<body>

		<input	type="submit"	value="load	tweets"		onclick="return	

render()"/>

		<script	src="js/mylibs/ajaxRange.js"></script>

	</body>

</html>

	Tip		Scripts	should	always	be	referenced	at	the	end	of	your	document,	to	increase	page
load.

If	we	were	to	run	the	document	from	Listing	14-7,	we	would	only	be	able	to	witness
on	the	page	a	Submit	button	that	reads	“load	tweets.”	Although	clicking	the	button	does
initiate	the	appropriate	Ajax	request,	we	have	yet	to	perform	any	options	that	would	insert
the	returned	data	into	our	page.

Handlebars
The	final	piece	of	the	puzzle	is	the	incorporation	of	our	template,	which	will	not	only
apply	presentation	to	our	data	but	also	insert	our	data	into	the	document.	To	assist	in	our
template	creation,	it	will	be	of	great	use	to	know	exactly	what	the	composition	of	our	data
is.	Listing	14-8	reveals	the	composition	of	a	data	whose	range	is	limited	to	the	return	of
two	rows.

Listing	14-8.	A	Subset	of	Our	Data	Context	Received	from	CouchDB

{

	"total_rows":3976,

	"offset":0,

	"rows":[

			{

				"id":"83f4b7105a3aad630fb06e036600176b",

				"key":1412433722297,

				"value":{

							"message":"truncated",

							"profile_pic":"truncated.jpeg",

							"handle":"truncated",

							"full_name":"truncated",

							"created_time":"truncated",

							"media":truncated.jpg",

							"tweet_id":"518410721529307136"

						}

			},{

				"id":"83f4b7105a3aad630fb06e03660016cb",

				"key":1412433721956,

				"value":{

www.it-ebooks.info

http://www.it-ebooks.info/

							"message":"truncated",

							"profile_pic":"truncated.jpeg",

							"handle":"truncated",

							"full_name":"truncated",

							"created_time":"truncated",

							"media":truncated.jpg",

							"tweet_id":"518410719986216960"}

			}
]

}

Listing	14-8	reveals	that	each	tweet	is	a	collection	of	key/value	pairs,	held	sequentially
within	the	ordered	list	labeled	rows.	Because	our	context	is	made	up	of	collections	and
ordered	lists,	our	template	will	have	to	rely	on	block	expressions	and	block	helpers	to
traverse	the	contexts	appropriately.	Listing	14-9	reflects	the	template	I	have	chosen	to
represent	our	tweets.

Listing	14-9.	index.html	Handlebar-Tweet-Template

<!DOCTYPE	html>

<html	lang="en">

<head>

<meta	charset="utf-8">

	<link	href='css/tweet.css'	rel='stylesheet'	

type='text/css'>

</head>

<body>

<section	id="tweets">
	<script	type="application/x-handlebars"	id="Handlebar-Tweet-Template">

			{{#each	rows}}		//for	each	item	contained	within	rows

			{{#value}}						//set	the	current	context	to	value

			<div	class="social-article">

				<a	target="_blank"	href="{{profile_pic}}"	class="profile-

pic">

							

				

				<div	class="social-text">

					<p	class="socialprofilelink">

						

{{full_name}}

						

{{handle}}

					</p>

					<a	target="_blank"	

href="https://twitter.com/{{handle}}/status/{{tweet_id}}"

													class="created-time">{{created_time}}

					<p>{{message}}</p>

				</div>

www.it-ebooks.info

https://twitter.com/
https://twitter.com/
https://twitter.com/
http://www.it-ebooks.info/

				{{#if	media}}			//if	a	media	is	supplied	add	it

					<img	class="media"	src="

{{media}}">
				{{/if}}

				<div	id="twitter-actions">

					<a	target="_blank"	

href="https://twitter.com/intent/tweet?in_reply_to=
{{tweet_id}}"

													title="Reply"	id="intent-reply"	class="intent">

					<a	target="_blank"	

href="https://twitter.com/intent/retweet?tweet_id=

{{tweet_id}}"

													title="Retweet"	id="intent-retweet"	

class="intent">

					<a	target="_blank"	

href="https://twitter.com/intent/favorite?tweet_id=

{{tweet_id}}"

													title="Favorite"	id="intent-fave"	class="intent">

				</div>

			</div>

			{{/value}}			//return	to	the	original	context
			{{/each}}

	</script>

</section>

<input	type="submit"	value="load	tweets"		onclick="return	

render()"/>

<script	src="js/libs/handlebars-v2.0.0.js"></script>

<script	src="js/mylibs/ajaxRange.js"></script>

</body>

</html>

If	you	were	to	open	the	HTML	document	within	a	browser,	all	that	would	be	shown	at
this	point	is	what	appears	in	Figure	14-14.	Furthermore,	clicking	the	“load	tweets”	button
continues	to	make	Ajax	requests;	however,	it	will	not	insert	any	tweets	into	our	page.

Figure	14-14.	Only	a	“load	tweets”	button	is	rendered	to	the	page

This	is	because	we	have	yet	to	supply	our	data	to	our	template.	However,	before	we

www.it-ebooks.info

https://twitter.com/intent/tweet?in_reply_to=
https://twitter.com/intent/retweet?tweet_id=
https://twitter.com/intent/favorite?tweet_id=
http://www.it-ebooks.info/

are	able	to	do	so,	we	must	compile	our	template,	so	that	we	can	reference	it	as	a	function,
as	seen	in	Listing	14-10.
Listing	14-10.	js/mylibs/engine.js	Incorporates	the	Template	with
ajaxRange.js

	1	var	initialTemplateWrapper	=	document.getElementById("Handlebar-Tweet-
Template");

	2	var	initialTemplateContent	=	initialTemplateWrapper.innerHTML;

	3	var	templateFunction	=	Handlebars.compile(initialTemplateContent);

	4	var	url	

=	'http://127.0.0.1:5984/twitter/_design/twitter/_view/tweets

	5	var	lastKey	=	null;

	6	function	render()	{

	7		var	ajax	=	new	XMLHttpRequest();

	9		ajax.open("GET",	incrementRange(lastKey));

10		ajax.responseType	=	"json";

11		ajax.onload	=	function()	{

12			var	data	=	(this.response);

13			var	rows	=	data.rows;

14			lastKey	=	rows[rows.length	-	1].key;

15					document.getElementById("tweets").innerHTML	+=	templateFunction(
data);

16		};

17		ajax.send();

18	}

19	function	incrementRange(lastCount)	{

20		var	range	=	"?descending=true";

21		var	limit	=	20;

22		if	(lastCount)	{

23			range	+=	"&startkey="	+	lastCount.toString()	

+	"&skip=1";

24		};

25		range	+=	"&limit="	+	limit;

26		return	url	+	range;

27	};

Listing	14-10	begins	by	prepending	into	our	ajaxRange	JavaScript	file	the
necessary	lines	both	to	obtain	and	compile	our	Handlebar-Tweet-Template	into	a
JavaScript	function.	We	begin	first	by	obtaining	a	reference	to	the	HTML	<script>
element	whose	ID	is	that	of	Handlebar-Tweet-Template	(line	1).	From	there,	we
extract	the	value	within	via	the	element’s	innerHTML	attribute	(line	2).	Once	we	have	a
reference	to	the	template	markup,	we	can	supply	it	as	the	argument	to
Handlebars.compile	(line	3).	This	will	result	in	the	transformation	of	our	template
into	a	function,	which	can	be	assigned	for	later	reference.	In	this	particular	instance,	I	have

www.it-ebooks.info

http://127.0.0.1:5984/twitter/_design/twitter/_view/tweets
http://www.it-ebooks.info/

labeled	that	reference	templateFunction.	The	variable	templateFunction,
when	called,	can	be	provided	with	our	data	set	to	produce	the	markup	that	can	be	added	to
our	document.	The	final	touch	is	then	to	invoke	the	templateFunction	with	our
returned	JSON	data	(line	15).

At	this	point,	if	we	were	to	open	our	HTML	document	within	a	browser	and	click	the
“load	tweets”	button,	our	document	would	render	each	returned	tweet	with	the	appropriate
presentation,	as	seen	in	Figure	14-15.

Figure	14-15.	Handlebars	automates	the	presentation

As	you	can	see	from	Figure	14-15,	each	tweet	is	clearly	added	to	the	document.	All
that	remains	is	the	incorporation	of	the	appropriate	styling.	The	styling,	much	like	the
template,	can	take	on	any	form.	The	styling	I	have	chosen	to	apply	can	be	seen	in	Listing
14-11,	resulting	in	the	rendering	of	Figure	14-16.

Listing	14-11.	css/tweet.css	Provides	Style	to	Coincide	with	Our	Template

@import	url("//fonts.googleapis.com/css?

family=Open+Sans+Condensed:300|Open+Sans");

#tweets	{

www.it-ebooks.info

http://www.it-ebooks.info/

				font-family:	'Open	Sans'	sans-serif;

				width:	30%;

				margin:	auto;

				overflow:	hidden;

}

.recent-activity	img,	img	{

				border:	0	none;

}

a	img.media	{

				width:	100%;

				height:	auto;

				margin:	10px	0;

				-webkit-border-radius:	7px;

				-moz-border-radius:	7px;

				border-radius:	7px;

}

.social-article	{

				border-top:	1px	slategray	dotted;

				width:	100%;

				padding:	8px	0px	8px	0px;

				margin:	0	0	10px	0;

				position:	relative;

				overflow:	hidden;

}

.social-article	.profile-pic	a	{

				position:	absolute;

				z-index:	99;

				float:	left;

}

.profile-pic	{

				position:	absolute;

}

.profile-pic	img	{

				float:	left;

				border:	none;

				-webkit-border-radius:	20px;

				-moz-border-radius:	20px;

				border-radius:	20px;

				width:	42px;

				height:	42px;

}

.social-article	.social-text	{

				width:	100%;

				float:	left;

				font-size:	11px;

www.it-ebooks.info

http://www.it-ebooks.info/

				padding-left:	52px;

				-moz-box-sizing:	border-box;

				-webkit-box-sizing:	border-box;

				box-sizing:	border-box;

				position:	relative;

}

.social-article	.social-text	p	{

				margin:	0px;

				min-height:	1em;

				line-height:	15px;

				-ms-word-break:	break-all;

				word-break:	break-all;

				/*	Non	standard	for	webkit	*/

				word-break:	break-word;

				-webkit-hyphens:	auto;

				-moz-hyphens:	auto;

				-ms-hyphens:	auto;

				hyphens:	auto;

}

.social-article	.social-text	a,	.social-article	.social-text	

h1	a	{

				color:	#00acee;

				text-decoration:	none;

}

.social-article	.social-text	a:hover,	.social-article	

.social-text	h1	a:hover	{

				text-decoration:	underline;

				color:	#00acee;

}

.created-time	{

				font-size:	10px;

				color:	#878787;

				clear:	both;

				display:	block;

				margin:	0	0	5px	0;

}

.created-time	a,	.created-time	a:hover	{

				color:	#878787;

}

.socialprofilelink	a,	.socialprofilelink	a:hover	{

				color:	#444;

}

/*	--------	FEED		ACTIONS	------*/

#twitter-actions	{

www.it-ebooks.info

http://www.it-ebooks.info/

				width:	75px;

				float:	right;

				position:	relative;

				margin-right:	5px;

				display:	block;

}

.intent	{

				width:	16px;

				height:	16px;

				float:	left;

}

.intent	a	{

				width:	16px;

				height:	16px;

				display:	block;

				background-image:	url(../img/everything-spritev2.png);

				float:	left;

}

#intent-retweet	a	{	background-position:	48px	0px;	}

#intent-retweet	a:hover	{	background-position:	32px	0px;	}

#intent-fave	a	{	background-position:	95px	0px;	}

#intent-fave	a:hover	{	background-position:	79px	0px;	}

#intent-reply	a	{	background-position:	0px	0px;	}

#intent-reply	a:hover	{	background-position:	-16px	0px;	}

www.it-ebooks.info

http://www.it-ebooks.info/

Figure	14-16.	Fully	stylized	#bendgate	tweets

Summary
As	this	chapter	has	shown,	JSON	is	not	simply	a	data	format	but,	rather,	the	kernel	from
which	modern-day	applications	blossom.	Owing	to	its	convenience,	simplicity,	and	ability
to	maintain	the	hierarchical	structure	of	data,	JSON	has	become	the	substance	that	fuels
the	Web.

It	is	true	that	we	could	have	transmitted	XML	in	lieu	of	JSON.	However,	the
convenience	of	working	with	JSON	far	outweighs	the	tediousness	and	bloat	that	comes
with	XML.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Index
		A

Arithmetic	operators

Assignment	operator

Asynchronous	JavaScript	and	XML	(Ajax)

requesting	ranges

descending	parameter

limit	parameter

operations

render	function

skip	parameter

startkey

XMLHttpRequest	object

		B
Block	statements

Boolean	type

Bracket	notation

Buffer.byteLength	method

		C
changeInState	function

charAt	method

Contrasting	expression

Control	statements

CORS.	See	Cross-origin	resource	sharing	(CORS)

CouchDB

CORS

Cradle	module

Node	application

twitter	database

custom	view

definition

emit	method

guestbook	database

map	function

output

permanent	view

www.it-ebooks.info

http://www.it-ebooks.info/

signature	view

temporary	view

URL

Futon

Add	Field	button

@CouchDB	signature

document	list

guestbook

GUIDs

HTML	interface

query

Save	Document

Source	view

Upload	Attachment

URL

Mac	installation

Node	application

configuration	interface

Cradle	process	See	(see	Cradle	module)

HTTP	methods

REST	API

view	creation

map	function

query

temporary	view

Windows	installation

Cradle	module

configuration

CouchDB

Node	application

twitter	database

Cradle	Wrapper

create	method

database	instance

design	document

creation

existing	HTTP	Node	application

output

save	method

sigTime	and	signatures

exists	method

get	method

www.it-ebooks.info

http://www.it-ebooks.info/

all_docs	query

callback	function

document	ID

key	parameter

limit	parameter

logging

query	string	parameters

sorting

startkey	and	endkey	parameters

installation

new	documents

require	method

save	method

view	method

Cross-origin	resource	sharing	(CORS)

Access-Control-Allow-Origin

Ajax	request

authorization

configuration

CORS-enabled	server

GET	request

JSON	response

preflight	headers

response	headers

simple	headers

specification

user-agent

		D
Data	interchange.	See	Hypertext	Transfer	Protocol	(HTTP)

Designing	literals

array

object

Dot	notation

		E
ECMAScript

emit	method

Escaped	literals

eval	function

assignments

evaluate	expression

www.it-ebooks.info

http://www.it-ebooks.info/

object	literals

string	literals

		F
for	loop

syntax

array

charAt

Futon

Add	Field	button

@CouchDB	signature

document	list

guestbook

GUIDs

HTML	interface

query

Save	Document

Source	view

Upload	Attachment

URL

		G
get	method

all_docs	query

callback	function

document	ID

key	parameter

limit	parameter

logging

query	string	parameters

sorting

startkey	and	endkey	parameters

Globally	Unique	Identifier	(GUID)

		H
Handlebars

ajaxRange.js

basic	expression/placeholder

block	expressions

compile	method

complex	JSON	structures

www.it-ebooks.info

http://www.it-ebooks.info/

CSS	style

HTML	span	tag

implementation

index.html	Handlebar-Tweet-Template

installation

JSON	structure

load	tweets	button

multiple	placeholders

outputs	fields

presentation

script	tag

source	code

templateFunction

Hypertext	Transfer	Protocol	(HTTP)

Ajax	(see	XMLHttpRequest	interface)

cookies

ASCII	characters

domain	attribute

expires	attribute

httponly	attribute

max-age	attribute

path	attribute

secure	attribute

syntax

modules

addListener	method

Buffer.byteLength	method

createServer	method

http.createServer

http.IncomingMessage

http.ServerResponse

JSON	message	output

JSON.stringify	method

listen	method

requestListener	method

HTTP-request

entity	body

entity	headers

general	headers

request	headers

request	line

structure	of

www.it-ebooks.info

http://www.it-ebooks.info/

response

entity	body

entity	headers

general	headers

response	headers

status	line

structure	of

Node	API	server

Node	server

server	modules

		I
indexOf	method

Internet	Engineering	Task	Force	(IETF)

ISO	date-formatted	strings

		J,	K
JavaScript

declarations

expressions

arithmetic	operator

assignment	operator

comparison	operator

contrasting

instanceof	operator

NOT	operator

statements

typeof	operator

functions

line	terminators	(see	Line	terminators)

values

non-primitive	types

primitive	types	(see	Primitive	types)

JavaScript	Object	Notation	(JSON)

grammer

composite	structures

escaped	literals

number	values

string	value

text

history

object

www.it-ebooks.info

http://www.it-ebooks.info/

HTML	file

stringify	(see	Stringify	method)

serialization	process

structural	character	token

whitespace	character	token

json2.js	JavaScript	Library

JSON.parse	method

data	tree	creation

eval	function

assignments

evaluate	expression

object	literals

string	literals

notation

parameters

parse	error

reviver	function

custom	data	type

ISO	date-formatted	strings

label	identifiers

__proto__

returned	values

undefined	value

stringify	method	(see	JSON.parse	method)

string	value

JSONP	server

code	implementation

getParamKey	function

load	jsonp

output

requestHandler

server	configurations

JSON.stringify	method

		L,	M
Line	terminators

block	statements

control	statements

loop	statements

truthy/falsy	value

Loop	statements

www.it-ebooks.info

http://www.it-ebooks.info/

		N
Node.JS

Mac	installation

empty	.bash_profile

node	setup	wizard

node-version	command

$PATH	configuration

$PATH	environment	variable

terminal

Windows	installation

32-bit	vs.	64-bit

command	prompt	interface

configurations

End-User	License	Agreement

node	setup

node-version	command

output

user	and	system	variables

Twitter	application

module

statuses/filter	URI	states

Streaming	API

Non-primitive	values

NoSQL	databases.	See	CouchDB

null	type

		O
Objects

access	notation

bracket

dot

aCollection

array

built-in	objects

designing	literals	(see	Designing	literals)

key/value	pair

toString

unordered	collection

OPTIONS	request	method

Access-Control-Allow-Headers

Access-Control-Allow-Methods

www.it-ebooks.info

http://www.it-ebooks.info/

Access-Control-Request-Headers

Access-Control-Request-Method

Content-Type

cross-origin	requests

formPost	resource

header	configuration

incomingEntityBody	application

Network	tab

output

remote	origins

source	origins

unauthorized	source	origin	request

		P,	Q
Persisting	JSON

document	cookie

assigning	value

creation

expires

getCookie	function

modern	browser

setCookie	function

setter	method

storing	cookies

HTTP	cookie

ASCII	characters

domain	attribute

expires	attribute

httponly	attribute

max-age	attribute

path	attribute

secure	attribute

syntax

JSONtext

stringify	and	parse	method

web	storage

clear	method

getItem	method

key	method

length

removeItem	method

setItem	method

www.it-ebooks.info

http://www.it-ebooks.info/

Window.localStorage

Window.sessionStorage

POST	method

code	implementation

HTML	Form	POST

action	attribute

code	implemention

Content-Types

exerciseA	application	logs

getParamKey	function

local	form	POST	application

method	attribute

microsoft	favicon

Node	application

setEncoding	method

URL	and	PORT

JSON	POST

ajax	function

Content-Types

exercise/incoming	entity	body

incoming	entity	variable

json-form.js	file

output

payload

preflight	request

Access-Control-Allow-Origin	header

definition

OPTIONS	request	(see	OPTIONS	request	method)

preflight	header

safe	methods

same-origin	policy

unauthorized	preflight	request

unsafe	method

user-agent	acts

Primitive	values

Boolean	type

null	type

number

strings

alternate	quotations

ASCII	character	encoding

escaped	quotations

www.it-ebooks.info

http://www.it-ebooks.info/

undefined	type

Proxy	server

ClientRequest	methods

code	implementation

http.request

http.Stream

string	manipulation

		R
render	function

reviver	function

custom	data	type

ISO	date-formatted	strings

label	identifiers

returned	values

__proto__

undefined	value

		S
Same-origin	policy	(SOP)

Chrome	developer	tools

Chrome	user

CORS	(see	Cross-origin	resource	sharing	(CORS))

cross-origin	request

definition

domain

effects

Firebug	developer	tool

Firefox	alert

GET	request

HTTP	URL

JSONP

dynamic	script	tag	injection

eval	function

Expression	Statements

function	declaration

grouping	operator

imagesA.json

parameter

ReferenceError

script	tags	targeting

someMethods

www.it-ebooks.info

http://www.it-ebooks.info/

output

port

Postman	HTTP	request

proxy

$uri	variable

cURL

diagram

GET	requests

HTTP	protocol

jsonp	URL	parameter

PHP	server-side	implementation

query	string	parameter

xhr	code

scheme

setRequestHeader	method

user-agent

XDomainRequest

Serialization	process

split	method

Stringify	method

replacer

array

function

serializing	JavaScript	values

space

value	parameter

cyclic	object

functions

number

serialization	process

toJSON

undefined	value

String	object

concatenation

creation

implicit

interface

charAt	method

indexOf	method

length

match	method

replace	method

www.it-ebooks.info

http://www.it-ebooks.info/

split	method

substr	method

toLowerCase	method

toString	method

toUpperCase	method

Structural	character	tokens

		T
Templating	engine

block	helpers

built-in	helpers

code	implementation

each	helper

else	helper

Handlebars

basic	expression/placeholder

block	expressions

compile	method

complex	JSON	structures

HTML	span	tag

implementation

installation

JSON	structure

multiple	placeholders

outputs	fields

script	tag

source	code

templateFunction

if	helper

string	manipulation	and	DOM	script

unless	helper

toJSON	method

toLowerCase	method

toString	method

toUpperCase	method

Twitter	application

description

Details	page

keys	and	access	tokens

API	methods

authorization

Consumer	Key

www.it-ebooks.info

http://www.it-ebooks.info/

OAuth

user	token

New	App	button	creation

Node.js

module

statuses/filter	URI	states

Streaming	API

OAuth	authorization	protocol

public	stream

Read-only	status

registered	users

trending

URL

		U,	V
Undefined	type

Unordered	collection

		W
Web	storage

clear	method

getItem	method

key	method

length

removeItem	method

setItem	method

Window.localStorage

Window.sessionStorage

Whitespace	character	tokens

		X,	Y,	Z
XMLHttpRequest	(xhr)	interface

abort	event

callback	functions

constructor

cross-browser	solution

error	event

event	handlers

HTTP	GET	request

instances

loadend	event

www.it-ebooks.info

http://www.it-ebooks.info/

load	event

loadstart	event

onreadystatechange	event

progress	event

readyState	property

request	method

abort	method

open	method

send	method

setRequestHeader

timeout	property

upload	property

withCredentials	property

response	method

getAllResponseHeaders	method

getResponseHeader	method

overrideMimeType	method

readyState	property

response	property

responseText	property

responseType	property

responseXML	property

status	property

statusText	property

timeout	event

www.it-ebooks.info

http://www.it-ebooks.info/

	Title
	Copyright
	Dedication
	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: JavaScript Basics
	JavaScript History
	JavaScript Essentials
	Values
	Primitive Types

	Expressions
	Operators

	Statements
	Line Terminators
	Control Statements
	Block Statements
	Truthy/Falsy
	Loop Statements

	Declarations
	Variables

	Functions
	Summary
	Key Points from This Chapter

	Chapter 2: Special Objects
	Objects
	Objects Are Collections
	Built-in Objects
	Object
	Creating Objects
	Access Notation
	Array
	Object Literals
	Designing Literals
	The Object Literal
	The Array Literal

	Summary
	Key Points from This Chapter

	Chapter 3: String Manipulation
	String Concatenation
	The String Object
	Creating String Objects
	The Interface of the String Object
	length
	toString
	charAt
	indexOf
	lastIndexOf
	match
	replace
	slice
	substr
	split
	toUpperCase
	toLowerCase

	The Implicit String Object
	Summary
	Key Points from This Chapter

	Chapter 4: Introducing JSON
	History
	JSON Grammar
	Composite Structures
	JSON Values

	JSON Tokens
	Summary
	Key Points from This Chapter

	Chapter 5: Creating JSON
	The Serialization Process—Demystified
	The JSON Object
	stringify

	Summary
	Key Points from This Chapter

	Chapter 6: Parsing JSON
	JSON.parse
	eval
	reviver

	Summary
	Key Points from This Chapter

	Chapter 7: Persisting JSON: I
	HTTP Cookie
	Syntax

	document.cookie
	Web Storage
	Web Storage Interface

	Summary
	Key Points from This Chapter

	Chapter 8: Data Interchange
	Hypertext Transfer Protocol
	HTTP-Request
	HTTP Response

	Ajax
	XMLHttpRequest Interface
	Global Aspects
	The Request Aspect
	The Response Aspect
	Obtaining the Response

	Summary
	Key Points from This Chapter

	Chapter 9: X-Origin Resources
	Same-Origin Policy
	Circumventing Same-Origin Policy
	CORS
	The Proxy
	JSONP

	Summary
	Key Points from This Chapter

	Chapter 10: Serving JSON
	Node.JS
	Windows Installation
	Mac Installation

	Building an HTTP Server
	Node HTTP Web Server
	Node API
	Modules

	The HTTP Module
	http.createServer
	http.IncomingMessage
	http.ServerResponse
	http.Server

	CORS-Enabled Server
	JSONP Server
	The Proxy Server
	http.request
	http.Stream
	http.ClientRequest

	Summary
	Key Points from This Chapter

	Chapter 11: Posting JSON
	Request Entity Body
	HTML Form POST
	Processing a JSON POST

	Preflight Request
	OPTIONS Request Method
	What Determines Preflight

	Summary
	Key Points from This Chapter

	Chapter 12: Persisting JSON: II
	CouchDB
	Windows Installation
	Mac Installation

	Working with CouchDB
	Futon
	Creating Views
	Creating Our First Custom View

	Connecting Node and CouchDB
	Cradle for Node
	Working with Databases
	Cradle Database API
	Creating Documents via Cradle
	Creating Design Documents via Cradle

	Summary
	Key Points from This Chapter

	Chapter 13: Working with Templates
	Templating Engine
	Handlebars
	Installation

	Working with Handlebars
	A Basic Expression
	The Role of <script>
	Compiling a Template
	Giving Context to Our Template
	Multiple Placeholders
	Complex JSON Structures
	Block Expressions
	Block Expressions and Arrays

	Applying Logic to Logic-less Templates
	Helpers

	Summary
	Key Points from This Chapter

	Chapter 14: Putting It All Together
	Twitter
	Twitter Apps
	Keys and Access Tokens
	Public Stream
	Your User Access Token
	#Trending

	Node.js
	Twitter Module
	Incorporating the Twitter Module
	Streaming API (Stable)
	Statuses/Filter

	CouchDB
	Incorporating the Cradle Module
	Creating a View
	Enabling CORS

	Ajax
	Requesting Ranges

	Handlebars
	Summary

	Index

