Beginning

JSON

LEARN THE FREFERRED DATA
FORMAT OF THE WEB

Ben Smith

APICSS®

http://www.it-ebooks.info/

Beginning JSON

Ben Smith
Apress

www.it-ebooks.info

http://www.it-ebooks.info/

Beginning JSON
Copyright © 2015 by Ben Smith

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or
hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or
scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer
system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted
only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission
for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-0203-6
ISBN-13 (electronic): 978-1-4842-0202-9

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image, we use the names, logos, and images only in an editorial
fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary
rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the author nor the editors nor the publisher can accept any legal responsibility for any errors or omissions
that may be made. The publisher makes no warranty, express or implied, with respect to the material contained
herein.

Managing Director: Welmoed Spahr
Lead Editor: Ben Renow-Clarke
Technical Reviewer: Victor Sumner

Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Louise Corrigan, Jim
DeWolf, Jonathan Gennick, Robert Hutchinson, Michelle Lowman, James Markham, Matthew
Moodie, Jeff Olson, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft,
Gwenan Spearing, Matt Wade, Steve Weiss

Coordinating Editor: Christine Ricketts
Copy Editor: Michael G. Laraque
Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th
Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer -
sbm. com, or visit www . springeronline.com. Apress Media, LLC is a California LL.C and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware
corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales—
eBook Licensing web page at www . apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to readers at
www . apress.com. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code/.

www.it-ebooks.info

mailto:orders-ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
http://www.apress.com
http://www.apress.com/source-code/
http://www.it-ebooks.info/

To my wife, for her patience with the late evenings and stay-at-home
weekends, as well as for her constant encouragement

www.it-ebooks.info

http://www.it-ebooks.info/

Contents at a Glance

About the Author
About the Technical Reviewer
Acknowledgments
Introduction
Chapter 1: JavaScript Basics
Chapter 2: Special Objects
Chapter 3: String Manipulation
Chapter 4: Introducing JSON
Chapter 5: Creating JSON
Chapter 6: Parsing JSON
Chapter 7: Persisting JSON: I
Chapter 8: Data Interchange
Chapter 9: X-Origin Resources
Chapter 10: Serving JSON
Chapter 11: Posting JSON
Chapter 12: Persisting JSON: I1
Chapter 13: Working with Templates
Chapter 14: Putting It All Together

Index

www.it-ebooks.info

http://www.it-ebooks.info/

Contents

About the Author
About the Technical Reviewer
Acknowledgments
Introduction
Chapter 1: JavaScript Basics
JavaScript History
JavaScript Essentials

Values

Primitive Types

Expressions

Operators

Statements

Line Terminators
Control Statements
Block Statements
Truthy/Falsy

Loop Statements

Declarations

Variables

Functions

Summary

Key Points from This Chapter
Chapter 2: Special Objects
Objects
Objects Are Collections
Built-in Objects
Object
Creating Objects

Access Notation

www.it-ebooks.info

http://www.it-ebooks.info/

Array
Object Literals

Designing Literals

The Object Literal
The Array Literal

Summary

Key Points from This Chapter

Chapter 3: String Manipulation
String Concatenation
The String object
Creating String objects
The Interface of the String object

length
toString
charAt
indexOf
lastIndexOf
match
replace
slice

substr

split
toUpperCase

toLowerCase
The Implicit String object

Summary

Key Points from This Chapter
Chapter 4: Introducing JSON
History
JSON Grammar

Composite Structures

JSON Values

JSON Tokens

www.it-ebooks.info

http://www.it-ebooks.info/

Summary

Key Points from This Chapter

Chapter 5: Creating JSON
The Serialization Process—Demystified
The JSON Object
stringify

Summary

Key Points from This Chapter

Chapter 6: Parsing JSON
JSON.parse

eval

reviver

Summary

Key Points from This Chapter

Chapter 7: Persisting JSON: I
HTTP Cookie
Syntax
document.cookie
Web Storage
Web Storage Interface

Summary

Key Points from This Chapter
Chapter 8: Data Interchange

Hypertext Transfer Protocol

HTTP-Request
HTTP Response

Ajax
XMLHttpRequest Interface

Global Aspects
The Request Aspect
The Response Aspect

Obtaining the Response

www.it-ebooks.info

http://www.it-ebooks.info/

Summary

Key Points from This Chapter
Chapter 9: X-Origin Resources
Same-Origin Policy

Circumventing Same-Origin Policy

CORS
The Proxy
JSONP

Summary

Key Points from This Chapter

Chapter 10: Serving JSON
Node.JS

Windows Installation

Mac Installation

Building an HTTP Server

Node HTTP Web Server
Node API
Modules

The HTTP Module

http.createServer
http.IncomingMessage
http.ServerResponse

http.Server

CORS-Enabled Server
JSONP Server
The Proxy Server

http.request
http.Stream
http.ClientRequest

Summary

Key Points from This Chapter

Chapter 11: Posting JSON
Request Entity Body

www.it-ebooks.info

http://www.it-ebooks.info/

HTML Form POST

Processing a JSON POST
Preflight Request

OPTIONS Request Method

What Determines Preflight
Summary

Key Points from This Chapter

Chapter 12: Persisting JSON: 11
CouchDB

Windows Installation

Mac Installation

Working with CouchDB

Futon
Creating Views

Creating Our First Custom View

Connecting Node and CouchDB

Cradle for Node

Working with Databases
Cradle Database API

Creating Documents via Cradle

Creating Design Documents via Cradle

Summary

Key Points from This Chapter

Chapter 13: Working with Templates
Templating Engine
Handlebars

Installation

Working with Handlebars

A Basic Expression

The Role of <script>

Compiling a Template

Giving Context to Our Template
Multiple Placeholders

Complex JSON Structures

Block Expressions

www.it-ebooks.info

http://www.it-ebooks.info/

Block Expressions and Arrays
Applying Logic to Logic-less Templates
Helpers

Summary

Key Points from This Chapter

Chapter 14: Putting It All Together

Twitter

Twitter Apps

Keys and Access Tokens
Public Stream

Your User Access Token

#Trending

Node.js

Twitter Module

Incorporating the Twitter Module
Streaming API (Stable)

Statuses/Filter

CouchDB

Incorporating the Cradle Module
Creating a View
Enabling CORS

Ajax
Requesting Ranges
Handlebars

Summary

Index

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Ben Smith is an accomplished technical experience director with many years of
experience leading web development for well-known digital agencies. His list of
contributions to the community has earned him a place as an Adobe Community
Professional. It should be apparent from his background as an author, speaker, and a judge
for the Favourite Website Awards (FWA) that he is passionate about the Web. He
attributes his growth to experimentation and experience.

www.it-ebooks.info

http://www.it-ebooks.info/

About the Technical Reviewer

Victor Sumner is a senior software engineer at D2L. Corporation, where he helps to build
and maintain an integrated learning platform. As a self-taught developer, he is always
interested in emerging technologies and enjoys working on and solving problems that are
outside his comfort zone.

When not at the office, Victor has a number of hobbies, including photography,
horseback riding, and gaming. He lives in Ontario, Canada, with his wife, Alicia, and their
two children.

www.it-ebooks.info

http://www.it-ebooks.info/

Acknowledgments

This book could not have been written without a loving and patient wife, an understanding
circle of friends, and a great team of editors and reviewers. My sincerest thanks to them
all.

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction

Programming is not at all a linear path. Often, you find yourself facing a fork in the road.
In choosing one path, you are likely to find, after a period of time, that you go back and
travel down the other. While it is assumed that you are familiar with HTML, CSS, and
JavaScript, this book makes no further assumptions regarding your experience. Therefore,
it attempts to provide a thorough explanation for everything you will read in it.

While JSON is the essence of this book, it is not the sole topic discussed. While that
may sound counterproductive, it is a much-needed requirement. JSON can be devised in
isolation, but it would serve little purpose. What makes JSON so impactful is that it
interacts with the many tools of the developer. For this reason, this book covers a wide
range of implementations—from libraries to software.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1

JavaScript Basics

JavaScript is a scripting language that has been known to be a finicky beast. Many well-
known developers have forged their names in the annals of the web-development
community, having discovered special techniques and hidden gems to tame said beast. The
topic of this book, JSON, is one such gem. You will learn more about that in Chapter 4.

JSON is simply a data-interchange format and, therefore, does not directly require
immediate knowledge of the JavaScript language. However, this book does not only
discuss the composition of JSON. It also discusses how to incorporate it within an
application. For this reason, this book employs JavaScript extensively to demonstrate the
many ways to work with JSON. There are plenty of great books that reveal the ins and
outs of the JavaScript language. This chapter solely acts as a primer to the upcoming
chapters.

JavaScript History

The year is 1995, and Netscape seeks to add dynamic behavior as well as the capability to
automate parts of a web page within its browser. It was at this point in time that Brendan
Eich was hired to incorporate the functional scripting language Scheme into the Netscape

Navigator browser.! However, Netscape had also been in discussion with other
software/hardware companies. In a mad dash for the finish line, Eich had prototyped the
scripting language that would soon become what is known today as JavaScript.

The incorporation of this new dynamic behavior within the browser became a game-
changer. This had a direct impact on how developers programmed for the Web.
Furthermore, this incorporation, as an innovation, encouraged Internet users to adopt
Navigator as the preferred browser. In order to compete with the new dynamic, and with
the browser wars on the rise, Microsoft was quick to incorporate a scripting language of
its own into Internet Explorer.

Microsoft’s scripting dialect was developed to be compatible with the scripting
language of Netscape. However, to ensure the language remained uniform, Netscape
submitted its dialect to the Ecma International for standardization. Thus were the
beginnings of the ECMA-262 specification. ECMA-262 is the name for this scripting
language’s specification. The name ECMAScript is the union of Ecma International and
JavaScript. To reference ECMAScript is to reference the specification rather than the
language itself.

JavaScript Essentials

www.it-ebooks.info

http://www.it-ebooks.info/

At its core, JavaScript is a text-based scripting language, whereby sequences of Unicode
characters are strung together. That said, what makes JavaScript more than a sequence of
characters is its adherence to the rules that govern how the JavaScript engine interprets
said sequence into a particular application. The set of rules that defines the valid
sequencing of characters is known as Syntax. Listing 1-1 reveals a syntactically correct,
albeit simple, JavaScript application.

Listing 1-1. A Valid JavaScript Program

1 var welcomeMessage = "Hello World";

2 //Lines denoted with '//' are used to leave comments

3 console.log(welcomeMessage); //prints to the console
Hello World

4 console.log("A"); //prints the character A

5 console.log(2+5); //prints the number 7

6

7 console.log("goodbye" + " " + "all"); //prints goodbye
all.

Listing 1-1 reveals seven lines composed of a sequence of Unicode-encoded
characters. However, as the characters of Listing 1-1 adhere to the ECMAScript
specification, what Listing 1-1 reveals is technically a JavaScript application.

Values

Because many languages heavily influenced JavaScript, the values used by JavaScript
may appear familiar. While there are many values used by the JavaScript language, there
are two categories for which these values are distinguished. Those two categories are the
primitive and non-primitive types. Non-primitive types are otherwise known as Objects
and are the topic of Chapter 2.

Primitive Types

A primitive type represents the set of all basic building blocks for which data can be
represented. These are referred to as primitive because they are rudimentary. This is, of
course, in contrast to non-primitive types.

There are five primitive types in JavaScript, as depicted in Figure 1-1. These five types
are number, string, Boolean, undefined, and null.

Primitive Type

Number Type String Type Boolean Type Undefined Type Null Type
Figure 1-1. The five primitive types in JavaScript

www.it-ebooks.info

http://www.it-ebooks.info/

The Number Type

The number type represents the set of all possible numeric values recognized by the
JavaScript language. Such representations are shown in Figure 1-2. Possible number
values include fractions as well as whole numbers, and each can possess a negative or
positive value. Additionally, fractions can be written using scientific notation. Listing 1-2
reveals a variety of valid JavaScript numeric values.

Number Type

+ Fractions + Whole Numbers + Infinity + Exponents

Figure 1-2. Valid representations of the number type

Listing 1-2. Valid Number Values

4

16
3.402823669209385e+38
-1

The String Type

The string type represents the set of all possible string values whereby a string value is a
finite representation that includes 0 or more Unicode characters. As outlined in Figure 1-3,
while the character encoding is strictly regarded as that of Unicode, string values can also
be representative of ASCII character encoding. This is because ASCII is a subset of the
Unicode character set. Examples of possible string values can be found in Listing 1-3.

String Type

ASCII UNICODE

Figure 1-3. Valid encodings of the string type
Listing 1-3. Valid String Values

"this is a string value";
"string";

IISII;

".//An empty String

Because a program is made up of text, a string value is differentiated from our
program by delimiting its value with quotations. In Listing 1-3, I have wrapped each string
value within double quotes. However, it is entirely valid to utilize singular quotes as well.

Because quotations mark the beginning and end of a string value, it will be imperative
that your string does not employ the same outer quotes to nest quotes such as the

www.it-ebooks.info

http://www.it-ebooks.info/

following: “Mike said and I quote, “let me tell you a secret””. Nesting quotations with the
same characters used to signify a string will confuse the engine, resulting in the likelihood
of an error. Because the engine reads in a left-to-right, top-to-bottom manner, the first
nested quotation encountered will be interpreted as the terminating quotation. This means
that what was expected to be a quote by Mike is instead treated as an invalid statement.

Nesting quotations within string values are perfectly acceptable, providing they do not
cause the engine to believe the string ends prematurely, as in the preceding example.
There are two possible ways to accomplish this.

Alternate Quotations

Because you can alternate between singular and double quotes, whichever you use to
delimit a string value, you can use the alternate variation to add grammar to your string.
Listing 1-4 revisits the preceding example with the use of alternating quotations.

Listing 1-4. Alternating Use of Quotes

'Mike said and I quote, "let me tell you a secret".'; // '
is used to delimit a string
"Mike said and I quote, 'let me tell you a secret'."; // "
is used to delimit a string

As you can see from Listing 1-4, you can use one pair of quotes to signify a string and
an alternate form to establish proper English grammar within. The engine will interpret
this as a string within a string and move on.

Escaped Quotations

The second method of incorporating quotes within a string is to ensure that the engine
does not treat our inner quotations as string delimiters. In order to accomplish this, we
must escape our inner quotation marks.

The escape character instructs the engine to interpret the subsequent character
differently from how it would otherwise be viewed. This is opposed to being interpreted as
a delimiter that would otherwise be used to mark the end or beginning of a string value.
Escaping a character is easily accomplished by prefixing the character you wish to escape
with a backslash (\).

The use of the escaped quotation allows our strings to employ quotations
indiscriminately. Examples can be seen in Listing 1-5.

Listing 1-5. Nested Escaped Quotations

"Mike said and I quote, \"let me tell you a secret\".";
'"Mike said and I quote, \'let me tell you a secret\'.';

Note The escape character informs the engine to interpret a character differently.

The Boolean Type

www.it-ebooks.info

http://www.it-ebooks.info/

A Boolean type represents a logical value consisting of only two possible values. Those
values, as illustrated in Figure 1-4, are either true or false. While these are two
possible values that can be assigned, a Boolean type is commonly returned as the
evaluation of a condition. Such an evaluation may be the comparison between two
numbers, as seen in Listing 1-6.

Boolean Type

True False

Figure 1-4. Valid values of the Boolean type

Listing 1-6. Boolean Expressions

var bol = false; //assigns bol a false value
(10<9); //evaluates to false;
(10>9); //evaluates to true;

Boolean values are great for incorporating decision making within your application.
Determining whether an expression evaluates to true or false allows an application to
react accordingly. We will revisit this when I discuss conditional statements.

undefined Type

The undefined type is the value used to represent when an identifier has not yet been
assigned a value. When a reference to a variable is evaluated, if it has yet to be assigned a
value, the value of undefined is returned.

Listing 1-7 reveals two lines of code. The first line is used to declare a variable labeled
name (line 1). The declaration of our variable informs the JavaScript engine to allocate a
portion of memory that our application can use to store data. The variable’s identifier
name provides us a textual means to refer to said allocation. As we have not yet assigned
any data to our variable, the subsequent line returns the value of undefined (line 2).

Listing 1-7. An Undefined Variable

1 var name;
2 console.log(name) //returns undefined;

null Type

The null type represents the intentional absence of a value. This is contrary to the
undefined value, which represents no value as having been set. The null type is a
value used explicitly to represent an empty or nonexistent reference.

Listing 1-8, assigns the value of null to the name identifier, to explicitly denote the
intentional absence of a value.

Listing 1-8. null Assignment

www.it-ebooks.info

http://www.it-ebooks.info/

var name = null;
console.log(name) //returns null;

Expressions

Simply stated by the Mozilla Developer Network, “An expression is any valid unit of code
that resolves to a value.”” The value to which an expression resolves is either that of a
primitive type or that of an object. Two possible forms of expressions can be viewed in
Listing 1-9.

Listing 1-9. Contrasting Expressions

1 var name = "ben";
2 2+5;

Listing 1-9 demonstrates two different types of expressions. The first represents the
assignment of a literal value to a variable (line 1) where name represents the identifier to
which the string literal ben is assigned. The second regards the operation of two operands
(line 2).

Note The operand is the datum being operated on.

An expression either returns a value, causes a side effect, or both. The determining
factor is the operator employed.

Operators

There are a variety of operators within the JavaScript language that can be used to fashion
an expression. The operator utilized directly impacts the outcome of the value. I will take
this opportunity to discuss the various operators utilized throughout this book.

Assignment Operator

The assignment operator is used to set the value of an expression to that of an identifier. In
order to devise an assignment, the JavaScript language relies on the use of the equal (=)
operator. Listing 1-10 makes use of the assignment operator to assign a primitive value to
a variable.

Listing 1-10. Assigning Values to Variables

1 var bolvValue = true;
2 var name = "ben";

Once a value is assigned, it can be obtained by referencing the appropriate identifier.
It’s important to note that identifiers are case-sensitive, meaning that if you use all
lowercase characters to label a variable, it must always be referred to in lowercase. To do
otherwise would cause an error.

www.it-ebooks.info

http://www.it-ebooks.info/

Arithmetic Operators

The arithmetic operators are operators that are concerned with mathematical operations.
The operators that make up this category can be viewed in Table 1-1.

Table 1-1. Arithmetic Operators

Arithmetic Operator Operator

Addition Operator +
Subtraction Operator -
Division Operator /

Multiplication Operator

As you may suspect, arithmetic operators are used to perform mathematical operations
on numerical values, as shown in Listing 1-11.

Listing 1-11. Arithmetic Operations

4+9; // evaluates to 13
8-2; // evaluates to 6
3*7; // evaluates to 21
2/1; // evaluates to 2

However, what might not be expected is that the addition operator serves two
purposes. The first purpose concerns the summation of numbers; the second is used to join
two string values together. As long as the two operands used in conjunction with the
additional operator are of numeric value, they will be added together. However, if at least
one operand is a string value, both operands will be coerced into their string
representations and joined end-to-end, as demonstrated in Listing 1-12.

Listing 1-12. String Concatenation

1 'Hello' + 'World'; // evaluates to "Hello World"

2 "" + 'welcome'; // evaluates to "Welcome"
3 true + ''; // evaluates to "true"
4 3 + '3"; // evaluates to "33"

Listing 1-12 demonstrates the union of strings when used with the addition operator.
While lines 1 and 2 may be easily accepted, lines 3 and 4 may not be. As previously
stated, the addition operator can only be used on numbers or strings. If both operands are
numbers, then it’s easy for the engine to know which operation to perform. However, if at
least one operand is a string value, then no matter what data type the other operand is, it
will always be converted into a string.

Line 3 seeks to add a Boolean value with an empty string, which results in the
coercion of true into that of a string. Then, as both operands are viewed as strings, they
are joined together and returned as the singular string value. Similarly, line 4 seeks to add

www.it-ebooks.info

http://www.it-ebooks.info/

the number 3 with that of the string ' 3', resulting in the string value “33".

Comparison Operators

Comparison operators are used to compare two operands (see Table 1-2). The evaluated
value, which will always be that of a Boolean value, is a direct reflection as to whether or
not the comparison is true. It is important to point out that few comparison operators
compare operands without implicit type coercion.

Table 1-2. Comparison Operators

Comparison ..

Operator Operator Description

Less Than < Used to determine whether the left operand is less than the right

Greater Than > Used to determine whether the left operand is greater than the right

Less Than or Equal = Used to determine whether the left operand is less than or equal to the
right

Greater Than or - Used to determine whether the left operand is greater than or equal to

Equal the right

Equals == Used to determine whether the left operand is equal to the right

Does Not Equal 1= Used to determine whether the left operand does not equal the right

Strictly Equals —— Compares the equality of two operands without allowing type coercion
to occur

Does Not Strictly | == Compares the inequality of two operands without allowing type

Equal coercion to occur

Listing 1-13 reflects the evaluation between two operands. As demonstrated by Listing
1-13, the comparison operators have two modes: one is the strict comparison between two
operands; the other is a more lax comparison.

Listing 1-13. Comparing Operands

3<=3; // evaluates to true: after type coercion, 3 1is
less than or equal to 3

3=='3'; // evaluates to true: after type coercion, '3' and
'3' are found to be equal

3==3; // evaluates to true: after type coercion, 3 and
3 are found to be equal

3===3; // evaluates to true: 3 and 3 are the same
3==='3"; // evaluates to false: 3 does not equal '3'
3!1="'3"'"; // evaluates to false: 3 and '3' are equal
3!'=="'3"; // evaluates to true: 3 does not equal '3’

When the comparison is lax, the two operands are coerced behind the scenes to the
same type. Regardless of whether the operand is that of a string or a number, both will be

www.it-ebooks.info

http://www.it-ebooks.info/

coerced into the same data type before they are compared.

However, the use of a strict comparison operator ensures that both operands are
compared without the use of type conversion. This is essential for determining whether
two operands are similar in both value as well as type.

The typeof Operator

The typeof operator evaluates the type of any datum. The value returned reflects one of
the six data types (see Listing 1-14) used by the JavaScript language.

Listing 1-14. Determining Data Types

typeof 3; //outputs number
typeof "hello world"; //outputs string
typeof true; //outputs boolean

typeof (new Object()); //outputs object
var emptyVariable;
typeof emptyVariable; //outputs undefined

Ok, WNERE

Listing 1-14 demonstrates how the typeof operator can be used to identify to which
data type the value in question belongs.

The instanceof Operator

While the typeof operator is used to determine the type of some value, instanceof is
used to test whether an instance is a subclass for a given object type. The instanceof
operator returns a Boolean value, indicating whether or not the instance is the descendant,
directly or otherwise, of a particular object. Use of the instanceof operator is
demonstrated in Listing 1-15.

Listing 1-15. Classifying Instances

1 var array = new Array();

2 var xhr = new XMLHttpRequest();

3

4 console.log(xhr instanceof Array); //outputs
false

5 console.log(array instanceof XMLHttpRequest); //outputs
false

6 console.log(array instanceof Array); //outputs
;rggnsole.log(xhr instanceof XMLHttpRequest); //outputs
;rggnsole.log(xhr instanceof Object); //outputs
;rggnsole.log(array instanceof Object); //outputs
true

www.it-ebooks.info

http://www.it-ebooks.info/

Listing 1-15 employs the instanceof operator to determine whether two instances,
array and xhr, evaluate as members of each other’s object type. Because Xhr is an
instance of the XMLHt tpRequest Object, and array is an instance of the Array
Object type, they both output false when compared against each other’s object type.

From there, each instance is compared against its own object type, which evaluates to
that of true. This is because our array is an instance of the Array Object type, while
Xhr is indeed a member of the XMLHt tpRequest Object type.

One final thing to point out is that both our Xhr and array instances are in fact
members of the Object type. This is because both the Array and XMLHt tpRequest
Objects are direct descendants of the Object itself. This will be discussed in more detail in
Chapter 2.

The ! Operator
The NOT operator, signified by the exclamation (!) token, is used to invert a Boolean
value, as seen in Listing 1-16.

Listing 1-16. Inversing a Boolean Value

console.log('true); // outputs false
var someVal = 1false; // assigns the value true;

Statements

While expressions are concerned with the evaluation of values, statements are concerned
with the actions of an application. A statement can be as simple as displaying the sum of
two numbers or as complex as generating the histogram of a photograph.

A statement may exist on a line of its own or be composed of multiple statements. A
general rule of thumb is that each new line of code represents a statement. However, what
truly distinguishes a statement is the explicit use of line terminators.

Note While expressions and statements are two separate categories in the JavaScript
syntax, the reality is that the two will often be intertwined. In other words, the two do not
always occur independently.

LLine Terminators

The use of a semicolon (;) explicitly signifies the end of a statement. This ensures that if
multiple statements are found on a single line, they are interpreted as entirely separate
statements. If a semicolon is not found at the end of a valid statement, the engine will
instead interpret carriage returns and line breaks as statement terminators. When these
implicit line terminators are encountered, the engine inserts semicolons behind the scenes
to comply with the syntax.

Listing 1-17 reveals four lines of code. The first two lines represent two separate

www.it-ebooks.info

http://www.it-ebooks.info/

statements. While they do not explicitly end with a semicolon, they do employ line breaks,
which is seen by the engine as a line terminator. When the JavaScript interpreter reads
these two lines, it will automatically add semicolons to the end of both lines 1 and 2,
making them valid statements.

Listing 1-17. Statements Require Terminators

1 console.log('a') //valid statement

2 console.log('b') //valid statement

3 console.log('a'); console.log('b'); //2 valid statements
on 1 line

4 console.log('a') console.log('b'); //1 invalid statement

Line 3, on the other hand, is a condensed way of writing the preceding two statements.
Rather than occupy two lines of code, the explicit use of semicolons after each statement
informs the interpreter that multiple statements occur on the same line.

Line 4, on the other hand, possesses two statements without explicit use of the ;
delimiter. This results in the engine executing an invalid statement leading to a syntax
erTor.

Tip It’s best to clearly identify your statements by ending them with a ;.

Control Statements

Control statements are used to add decision making to an application. Depending on the
evaluation of an expression, an application can determine whether or not to execute a
particular statement. Table 1-3 reveals two keywords that are used by this book to devise
control statements.

Table 1-3. Control Statements

Control Statements Description
if Executes a statement if a logical condition is true
else An optional clause to execute a statement if a logical condition is true

The 1f statement is used to execute a statement if and when an expression evaluates
to true. On the other hand, if the expression evaluates to false, the indicated statement
will be skipped, as seen in Listing 1-18.

Listing 1-18. Controlling Flow with if

1 var bol = false;
2 if(bol) console.log('condition is met');

Listing 1-18 demonstrates a typical use of the 1f statement. Listing 1-18 begins by
assigning false to a variable labeled bol (Line 1). The subsequent line represents our
control, which outlines the following condition: if bol evaluates as true, then perform

www.it-ebooks.info

http://www.it-ebooks.info/

the subsequent statement (Line 2). Unfortunately, as bol evaluates to false, the
condition is not met, and, therefore, the statement does not execute.

Whereas the statement in Listing 1-18 will cease to be executed, the e1se clause can
be paired with that of the if statement. As you may have anticipated, the else clause
will execute a statement in the case that a condition is not met. Listing 1-19 appends the
else statement to our earlier demonstration.

Listing 1-19. Controlling Flow with 1f/else

1 var bol=false;

2 1f(bol) console.log('condition is met');

3 else console.log('condition is not met'); // condition
1s not met

Running Listing 1-19 results in the execution of line 3.

Block Statements

Although a statement can only ever comprise one task, it is quite possible to group a series
of statements to be performed. A grouping of statements is known as a block statement. A
block statement is delimited with the pair of curly brackets, as seen in Listing 1-20.

Listing 1-20. Grouping Statements Within a Block
{

statementl;
statement2;
statement3;

}

As revealed by Listing 1-20, a statement block can hold any number of statements
within. You may notice that while each enclosed statement within the block is concluded
with a semicolon, the block statement itself does not require them. The statement block is
an extremely important aspect of the language, because it can be inserted wherever a
statement is considered valid. Listing 1-21 revisits our control statements from Listing 1-
19 and incorporates the use of a block statement.

Listing 1-21. Substituting Block Statements for Statements

1 var bol=false;

2 if(bol) { console.log('condition is met');
alert('condition is met'); }

3 else { console.log('condition is not met');
alert('condition is not met'); }

Truthy/Falsy

Any valid JavaScript value will evaluate to that of a Boolean value when used as the

www.it-ebooks.info

http://www.it-ebooks.info/

expression of a control statement. While the evaluation returns either true or false, the
values that evaluate to true or false are not as cut and dry. Those that evaluate to
true are referred to as truthy values. While those that evaluate to false are referred to
as falsy values.

The simplest way to contrast the truthy values from those that are falsy is to recognize
which values are falsy. Listing 1-22 reveals the falsy values of the JavaScript language.

Listing 1-22. Demonstrates All Falsy Values

if(''); // An empty string
if(0), // the number 0
if(null); // a value of null
if(false) // a value of false
if(undefined); // a value of undefined
if(NaN); // a value of NaN

Any value not displayed in Listing 1-22 represents a truthy value.

Loop Statements

The JavaScript language does possess a few loop statements, which enable a statement to
occur as long as a particular condition is met.

The for loop

One loop that is used extensively throughout this book is the for loop. The for loop is
commonly used to execute a statement for as long as a condition remains true. The
syntax for the for loop can be seen in Listing 1-23.

Listing 1-23. The Syntax of a for Loop
for(initialization ; condition ; operation) statement;

As revealed in Listing 1-23, a for loop requires an initialization, a condition, and,
last, an operation that either increments or decrements the initialized value.

As long as the condition remains true, the provided statement will be executed.
However, the moment the condition is no longer met, the loop will terminate and the
engine will move on to the next statement in the application. Listing 1-24 employs a for
loop to execute a statement, as long as the variable i remains less than 10.

Listing 1-24. An Iterative Statement Can Reference the Current Index

1 for(var i=0; 1i<10 ; i++) console.log(1); // logs out
e, 1, 2, 3, 4, 5, 6, 7, 8, 9

The for/in loop

The second form of a loop that will be used by this book is the for/in loop. The

www.it-ebooks.info

http://www.it-ebooks.info/

for/in loop is used to enumerate the members possessed by an object instance (see
Listing 1-25).

Listing 1-25. Tterating All Owned Enumerable Keys of an object

1 var carA = new Object();

2 carA.wheels=4;
3 carA.color="blue"
4 carA.make="Volvo";

5 for(var member in carA) console.log(member);

Listing 1-25 possesses a variable labeled car A, which is assigned a non-primitive
value. To be more specific, carA is assigned the value of an object. An object can be
thought of as a container used to group common variables together. In this case, the
particular variables are grouped together to represent a vehicle. As revealed in Listing 1-
25, the variables used in the collection are the following: wheels, color, and make.
These properties are used to add specifics to our vehicle.

The for/1in loop is used to iterate all identifiers contained within the chosen
instance. Executing the preceding listing results in the following output:

wheels
color
make

Declarations

JavaScript declarations are used to register text identifiers that can be referenced
throughout a program.

Variables

For all intents and purposes, JavaScript variables can be thought of as a named pointer that
remains a symbolic link to a particular location in memory. The name for which the
pointer is provided is known as an identifier. An identifier is a case-sensitive label used as
a means to refer to its particular storage location. Only by declaring a variable can a value
be assigned, retained, and later referenced.

In the JavaScript language, variables are declared via the keyword var, as
demonstrated in Listing 1-26.

Listing 1-26. Declaring Three Variables

1 var name = "ben";

2 var age = 36;

3 var sayName = function(){ return this.name }; //function
expression

Listing 1-26 declares three variables and provides each with a concise yet meaningful

www.it-ebooks.info

http://www.it-ebooks.info/

identifier. Identifiers should reflect something meaningful and befit the data for which
they are assigned.

Functions

Technically, functions are not statements but are used to perform specific actions.
Functions are a special form of object, which allows functions to be treated as values.
Listing 1-27 reveals the syntax of a function.

Listing 1-27. The Syntax of the Function Declaration

function Identifier (FormalParameterListopt)
{ //statements; }

As outlined in Listing 1-27, a function is defined by using the function keyword.
The identifier, which follows the declaration, registers the function with the provided
label. This ensures that an application can refer to the function at any point in time
throughout the application.

Following the identifier is a pair of parentheses, which are used to hold any number of
optional identifiers separated with the use of a comma. These identifiers are used as labels
for the parameters that you may wish to provide to the body of a function.

The final component of the function declaration is the statement block to be executed
when the function is executed. Listing 1-28 declares a function labeled sayName.

Listing 1-28. Invoking the sayName Function with a Parameter

1 function sayName (name){

2 return "Hello " + name;

3}

4 console.log(sayName("Ben")); // Hello Ben

Listing 1-28 employs a function declaration to devise a function that is capable of
accepting an arbitrary value whose identifier reflects that of name. This identifier
represents the identity for the parameterized value provided by the caller of the function.
The body of the function can then reference this value and use it within its operation.

In the case of sayName, the function body references the identifier name and uses
the addition operator to join its value and the word Hello together. Utilizing the keyword
return, the evaluation is then provided back to the caller of the function. This results in
the output of Hel1o Ben to the console.

Summary

This chapter has sought to provide an overview of the many upcoming chapters, in which
the JavaScript language will be relied on extensively to employ, explain, and devise
JSON. While much of this chapter has focused on statements, operators, and primitive

www.it-ebooks.info

http://www.it-ebooks.info/

types that will be used in this book, the next chapter focuses on the non-primitive types of
the language, otherwise known as objects.

Key Points from This Chapter

e JavaScript is a text-based language made up of Unicode and ASCII
characters.

e ECMAScript refers to the specification of the language.

e JavaScript possesses two categories of data types: primitive and non-
primitive.

e Primitive values can be numbers, strings, Boolean, undefined, and
null.

e undefined represents the lack of value.

e null is used to denote intentional absence of value.

e Expressions resolve to a value.

e QOperators are used to fashion expressions.

e The addition operator serves two purposes.

e Strict comparison operators prevent the occurrence of type coercion.

¢ Non-strict comparison operators rely on type coercion before
comparing two operands.

e The typeof operator is used to determine the type of datum.

e The instanceof operator is used to determine the Object type of an
instance.

e Statements should be terminated explicitly.
e Statement blocks can group multiple statements.
o Identifiers are case-sensitive text-based labels.

e Functions are named blocks of code that can be provided parameters.

1Wikipedia, “JavaScript,” http://en.wikipedia.org/wiki/JavaScript, modified January 2015.

2MDN: Mozilla Developer Network, “Expressions and operators,” https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Guide/Expressions_and_Operators, last updated November 27, 2014.

www.it-ebooks.info

http://en.wikipedia.org/wiki/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Expressions_and_Operators
http://www.it-ebooks.info/

CHAPTER 2

Special Objects

JavaScript is an object-oriented language, which is a programming paradigm that
acknowledges the compartmentalization of data encapsulated within an “object.” But what
exactly is an object? To put it plainly, it is a classification used to represent a
generalized/generic form. This lack of specificity makes it possible to classify an object as
anything that exists. This affords an object-oriented language a means to address any and
all non-primitive types.

This is extremely beneficial to an object-oriented language, which employs the Object
—due to its general classification—thereby encompassing everything within a singular
classification. The object is the singular classification that unifies any and all more
specific objects within the language, thereby devising a hierarchical system. No matter
how unique or specific the possessed behaviors of an object may be considered, they can
always be regarded as an object.

Objects

Absolutely everything is an object. It’s true that an object can be grouped into a particular
category with regard to its particular attributes. This categorization is considered the
classification of an object. The greater the emphasis on the particular set of behaviors an
object possesses, the further its classification from that of the generalized object.
Simultaneously, the emphasis placed on the specific traits, attributes, and/or behaviors of
an object can be used to place it within a subclassification. However, the inverse will
always hold true. In JavaScript, all classifications, in their most generalized form, are
objects.

Before we go any further, it is worth noting the repeated use of the words Object and
object(s). These two terms are not being used interchangeably. Throughout this book, I
have done my best to ensure that Object and object remain properly distinguished in the
sentences in which I refer to them. Object and object refer to two separate concepts, as
you will, I hope, come to learn. The term Object regards a built-in type of the JavaScript
language, whereas the term object refers to an instance of a said Object type.

Objects Are Collections

What classifies all objects in the JavaScript language is that at their most atomic unit, they
are simply collections of string value pairs. Technically speaking, all objects are
associative arrays. Simply, what this means is that an object has the capability to retain a
value for any given identifier. Furthermore, as a collection of strings, it can hold many

www.it-ebooks.info

http://www.it-ebooks.info/

identifiers.

Quite commonly, these identifiers are referred to as properties, members, and even
keys. Regardless of how they are referred to, these identifiers, much like variables, will
map to a value. Such values can be primitive or non-primitive. Because a member can
only be paired to a singular value, a member and its value are often referred to as a
key/value pair. Precisely like a variable, the keys of an object can be referenced, invoked
(if it’s assigned value is that of a function), and even assigned a value. Unlike a variable,
which can be referenced simply by the name of the identifier, a key must be accessed
through the instance. This is achieved with access notation. You will learn more about
how to access, assign, and invoke properties within the section “Access Notation.”

Note This book uses the terms properties, members, and keys interchangeably.

What is so powerful about the object-oriented paradigm is its ability to devise
collections of like-minded behaviors whose sole faculties are dedicated toward a specific
task. The more specific the behaviors, the more specialized these objects become.
Furthermore, because an object-oriented language relies on a hierarchical structure to
establish relationships among all objects, any object spawned from an existing object can
and will inherit its ancestor’s behaviors. This helps to ensure that every descendant
possesses its ancestor’s behaviors. This provides all objects the ability to be classified as
any of the classifications that make up their lineage. This, of course, includes their
topmost ancestor, the Object.

Built-in Objects

The JavaScript language has plenty of built-in objects, many of which are used throughout
this book. Because they all share a common ancestor, the Object, each of these objects, at
its core, will continue to remain collections of key/value pairs. Furthermore, as direct
descendants, they will indirectly possess the behaviors of their ancestor. What makes these
objects specialized are the collective behaviors each possesses to facilitate the fulfillment
of a specific goal. For each object, the collections of behaviors and attributes uniquely
classify it as highly specialized. The Object and Array are just two of the specialized
objects this book will make extensive use of.

Object

As mentioned earlier, an Object is a built-in type that defines an unordered collection of
key/value pairs. The defined properties and behaviors possessed by the built-in Object
facilitate this behavior. In addition to the aforementioned behavior, the Object also
possesses other behaviors, which will be inherited by every descendant. One such
behavior possessed and passed on by the Object is the toString behavior.

The toString identifier represents the key that directly accesses the value of a
function. Because the key is paired to a function, we can follow up the reference with the

www.it-ebooks.info

http://www.it-ebooks.info/

parentheses (()) operator, to invoke the function. This results in the return of the string
representation of the object.

Note When an identifier is mapped to a function, it is referred to as a method of the
object.

Beyond its default behaviors, the Object acts as a template from which our application
can clone and supply to it a collection of behaviors required by our application.

Creating Objects

While the Object is extremely beneficial within an object-oriented language, its sole use to
a developer is the ability to provide to it a collection of behaviors. Fortunately, for this
reason, the JavaScript language allows us to create instances of the Object by way of the
keyword new, as demonstrated in Listing 2-1.

Listing 2-1. Creation of an object
var aCollection = new Object();

Listing 2-1 leverages the keyword new to inform the JavaScript engine to create an
instance of the Object type. Upon the instantiation, an object is created, returned, and
assigned to a variable, so that our application can maintain a reference to the instance. By
referencing the aCollection identifier, our application can directly refer to our
instance and take advantage of its possessed behaviors.

At any point in time, a reference to aCollection allows our application to access
any of the key/value pairs retained by it. At this moment, the only behaviors possessed by
our aCollection instance are those that are built in to the Object type. One such
behavior is the toString method.

Access Notation

The JavaScript language offers two ways in which one can assign or retrieve a value from
an instance. The two varieties of manner are known as dot notation and bracket notation.

Dot Notation

Dot notation represents the particular syntax for which a key/value pair can be accessed or
assigned to a specified instance. Dot refers to the use of the operator employed to access a
property of an instance. That operator is the period (.) symbol. The period itself acts as
the delimiter between our instance and the key we wish to get, set, or invoke, as seen in
Listing 2-2.

Listing 2-2. Dot Notation Is Used to Access a Member from an Instance

1 var aCollection = new Object();

www.it-ebooks.info

http://www.it-ebooks.info/

2 console.log(aCollection.firstProperty); // undefined
3 aCollection.firstProperty= "hello world";

4 console.log(aCollection.firstProperty); // hello
world

5 console.log(aCollection.toString()); // [object
Object]

Listing 2-2 instantiates an object and assigns it to aCollection (line 1). Utilizing
dot notation, Listing 2-2 attempts to read a property value from our aCollection
instance. The name of the property is appropriately labeled firstProperty. As the
collection lacks a value for the requested property, the value undefined is returned.
This value is then logged to the developer’s console (line 2).

In order to get a value for a particular key, it must be assigned a value, lest it returns
undefined. To keep things simple, Listing 2-2 assigns the string value “hello
world” to the key firstProperty (line 3). On assignment of a value to the identified
property, our aCollection instance will reflect a value for each query of
firstProperty until the value is reassigned or deleted. A subsequent lookup of the
firstProperty utilizing dot notation outputs the value of “hello world” to the
console (line 4).

Last, as every object possesses the toString method, we can invoke its behavior by
succeeding the key identifier with a parenthesis (line 5). Doing so outputs a string that
represents the current object. As you can see, the output, while not all that insightful, does
indeed provide a value to the console. This output is the default behavior of the built-in
Object. However, because all objects are collections of key/value pairs, the toString
member of aCollection can be reassigned with a function that more accurately
represents our instance. Each object-type of the JavaScript language overrides the default
functionality of the toString method.

Bracket Notation

The second mechanism used to assign, obtain, or invoke a key/value pair is bracket
notation. Bracket notation is similar to dot notation in that it is used to query or assign a
value for a given property of an instance. The most noticeable difference between bracket
notation and dot notation is that bracket notation requires all keys to be referenced as
string values rather than as an identifier. The reference to bracket notation regards the
delimiter between the key, represented as a string value, and the instance from which it’s
being accessed. The string value is enclosed within an opening ([) and closing (]) bracket
and immediately succeeds the instance identifier from which the key is being queried.
Listing 2-3 revisits the firstProperty, only this time, it employs bracket notation to
do so.

Listing 2-3. Bracket Notation Is Used to Access a Member from an Instance

var aCollection = new Object();
console.log(aCollection['firstProperty']); // undefined
aCollection['firstProperty']= "hello world";

www.it-ebooks.info

http://www.it-ebooks.info/

console.log(aCollection['firstProperty']); // hello
world

console.log(aCollection['toString']()); // [object
Object]

If you were to execute the preceding listing, you would arrive at precisely the same
results as those of Listing 2-2. Aside from the obvious differences in syntax, you may
wonder why you would use one notation over the other.

Bracket Notation vs. Dot Notation

While dot notation is certainly cleaner than bracket notation, bracket notation has a
particular advantage. Bracket notation relies on string values, whereas dot notation utilizes
identifiers. The key difference is that identifiers must adhere to language constraints. For
example, identifiers can’t start with numbers, use whitespace, or be a reserved word in the
language. On the other hand, because bracket notation utilizes string values, it allows for
the use of characters that otherwise would be a violation of the syntax. One such example
is shown in Listing 2-4.

Listing 2-4. Comparing Notations

var aBracketNotationCollectionA = new Object();
aBracketNotationCollectionA['1']="1"; // creates a key

of "1" and assigns it the string value '1'

var aDotNotationCollectionB = new Object();
aDotNotationCollectionB.1="1"; // throws

a SyntaxError

Array

Because a collection retains a value for a given key, a value is obtained directly by
referencing its key. Thus, the key is the sole conduit through which a value is reached. For
this reason, the Object is known as an unordered collection. The Array is a specialized
descendant of the JavaScript Object, which, on the other hand, seeks to provide an order
among values.

What makes the Array special is that its collective behaviors allow for cataloging of
data as an ordered list. In order to accomplish this, the Array employs the use of numbers
to stand in as the key for any key/value pair. As you may have already surmised, because
numbers are involved, rather than relying on dot notation, an Array requires none other
than bracket notation. Listing 2-5 demonstrates the use of the array to devise an ordered
collection set.

Listing 2-5. An Ordered List of the Days of the Week

var orderedCollection = new Array(); //instantiate an array
instance
orderedCollection[@] = 'Sunday';

www.it-ebooks.info

http://www.it-ebooks.info/

orderedCollection[1] = 'Monday';
orderedCollection[2] = 'Tuesday';
orderedCollection[3] = 'Wednesday';
orderedCollection[4] = 'Thursday';
orderedCollection[5] = 'Friday';
orderedCollection[6] = 'Saturday';

As revealed by Listing 2-5, the days of the week are assigned as the value to a key,
similar to an object. The difference in this case is that an Array employs bracket notation
to allow for its properties to be specified as integers. With each key identified as a
sequence of integers, values can be obtained in the precise order in which they are
cataloged. The simplest way to obtain each value sequentially is with a for loop, as
shown in Listing 2-6.

Listing 2-6. A for Loop Is Used to Read from an Ordered List

var daysOfTheWeek = 7;
for(var 1=0; i<daysOfTheWeek; i++) console.log(
orderedCollection[i]);

If you were to run Listing 2-6, you would undoubtedly see the days of the week
printed to the console tab within the developer’s toolbar. Furthermore, they would be
output in the order they are assigned.

As was stated earlier, JavaScript objects are collections of string/value pairs. Although
the keys of an array are numerical, behind the scenes each integer is coerced into its string
representation.

As a descendant of the Object, all instances of the array possess an inherit toString
method. Unlike the default value output earlier, our array instance provides a more
appropriate value upon invocation, as seen in Listing 2-7.

Listing 2-7. Demonstrating the String Representation of an array

var orderedCollection = new Array(); //instantiate an
array instance

orderedCollection[0] = 'Sunday';

orderedCollection[1] = 'Monday';

orderedCollection[2] = 'Tuesday';

console.log(orderedCollection.toString()); //
"Sunday, Monday, Tuesday"

As demonstrated in Listing 2-7, the toString implementation results in the joining
of all user-defined values possessed by the collection in a comma-delimited string.
Because our collection is ordered, the values within the returned string reflect their index
within the collection.

Object Literals

www.it-ebooks.info

http://www.it-ebooks.info/

Both the Array and the Object can be instantiated via the keyword new. Once either
instance is created, key/value pairs can be assigned accordingly. That being said, both the
Array and Object are capable of being configured without this syntactical overhead. To
better illustrate this point, take a look at Listing 2-8.

Listing 2-8. Object Literals Can Be Designed with Members

var array=
["Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday",
console.log(array[O]); //outputs "Sunday"

var object= { firstProperty: "hello world" };
console.log(object.firstProperty); //outputs "hello
world"

Listing 2-8 creates two object literals. The first represents the instance of the Array,
while the latter represents an instance of the Object. For all intents and purposes, an object
literal is just another way to arrive at an instantiated object.

While it may not appear to be the case, the instantiation of an object literal and the
instantiation of an object via the keyword new create objects similarly. The most
significant difference is that literals can be instantiated with a preconfigured collection of
key/values pairs. Literals are referred to as such because they are instantiated as they are
designed.

Utilizing this technique, we can assign key/value pairs to the object prior to its
instantiation. One immediate benefit is that key/value pairs are more identifiable without
the added dot/bracket notation. A second benefit is that complex collections and their
structures can be defined prior to the existence of other instances. To better understand the
preceding statement, consider the following complex collection in Listing 2-9.

Listing 2-9. undefined Assignment of internalObject

1 var externalObject = new Object();

2 externalObject.child = internalObject;
3 var internalObject = new Array();

4 internalObject[@] = 'Sunday';

5 internalObject[1] = 'Monday';

6 internalObject[2] = 'Tuesday';

7 internalObject[3] = 'Wednesday';

8 internalObject[4] = 'Thursday';

9 internalObject[5] = 'Friday';

10 internalObject[6] = 'Saturday';

11

12 console.log(externalObject.child); // outputs undefined

Listing 2-9 instantiates an instance of the Object and Array. As you can see, the object
instance is assigned as the value to externalObject (line 1). Conversely, the array
instance is assigned to the variable labeled internalObject (line 3). Because a
property can be assigned any valid type in JavaScript, we will devise a complex structure

www.it-ebooks.info

http://www.it-ebooks.info/

where our object instance possesses a direct reference to our array instance. Used to
represent this relationship is the identifier labeled child (line 2).

As it currently stands, externalObject.child does not possess a reference to
internalObject. This is made evident by the undefined value that is printed in the
console (line 12). The reason the value is not assigned is simply due to the fact that
internalObject was undefined at the time of its assignment to
externalObject.child (line 2). Correcting the matter in this particular example is
as simple as moving the code within line 2 down to line 11, as seen in Listing 2-10.

Listing 2-10. Moved Assignment of Instance Creation

1 var externalObject = new Object();

2

3 var internalObject = new Array();

4 internalObject[0@] = 'Sunday';

5 internalObject[1] = 'Monday';

6 internalObject[2] = 'Tuesday';

7 internalObject[3] = 'Wednesday';
8 internalObject[4] = 'Thursday';
9 internalObject[5] = 'Friday';

10 internalObject[6] = 'Saturday';

11 externalObject.child = internalObject;
12 console.log(externalObject.child); // outputs our array
as expected

Listing 2-10 reflects in bold our changes. Moving the order in which our child
property is assigned does, in fact, solve our issue. Unfortunately, this reorganization of
code actually decreases the continuity of keeping code organized and can soon become a
maintenance nightmare. In this case, our code was subject to function vs. form, not the
other way around.

A second alternative is to swap altogether the order in which both instances are
created, as seen in Listing 2-11.

Listing 2-11. Reordering of Instantiations

1 var internalObject = new Array();

2 internalObject[@] = 'Sunday';

3 internalObject[1] = 'Monday';

4 internalObject[2] = 'Tuesday';

5 internalObject[3] = 'Wednesday';

6 internalObject[4] = 'Thursday';

7 internalObject[5] = 'Friday';

8 internalObject[6] = 'Saturday';

9O var externalObject = new Object();

10 externalObject.child = internalObject;
11

12 console.log(externalObject.child); // outputs our

www.it-ebooks.info

http://www.it-ebooks.info/

array as expected

Listing 2-11 has solved our dilemma in the most ideal way that the new keyword can
provide. Because new instantiates bare objects, you may find yourself having to resort to
reordering code simply to assign key/value pairs. This is where object literals can truly
shine.

Because collections can be preconfigured using literal syntax, creating nested
collections is as simple as designing them. When the engine evaluates the literal, each
nested collection is instantiated on demand. The end result is the same, as made evident by
the output on line 4 of Listing 2-12.

Listing 2-12. Object Literals Are Created As They Are Evaluated

1 var externalObject = {

2 child: ["Sunday", "Monday'", "Tuesday",
"Wednesday", "Thursday", "Friday", "Saturday"]

3 i

4 console.log(externalObject.child); // outputs our

array as expected
5 console.log(externalObject.toString()); // [object
Object]

Listing 2-12 employs the literal syntax of the object and array to configure the
key/value pairs for two individual collections. Furthermore, because all literals are
instantiated into objects, they are bestowed with any and all inherited behaviors. This
accounts for the ability to reference the toString method of externalObject.

Note All literals in the JavaScript language are instantiated behind the scenes.

Designing Literals

Because both Array and Object are collections of key/value pairs, the term designing
literals simply refers to the incorporation of key/value pairs at author time. Depending on
whether the literal is that of an object vs. an array, the syntax used to design a literal will
vary.

The Object Literal

The syntax used to delimit an object literal is the use of the opening and closing brace ({,
}) symbols. When the JavaScript engine encounters an assignment of a variable that
employs the aforementioned delimiters, behind the scenes, an instance of the Object type
is instantiated and returned. Listing 2-13 employs the object literal syntax to create an
object instance.

Listing 2-13. Syntactical Representation of an Object Literal

www.it-ebooks.info

http://www.it-ebooks.info/

1 var emptyObject = { };
console.log(emptyObject.toString()); // [object
Object]

What is important to note is that the assignment operation informs the engine to
evaluate the brackets as an object literal rather than that of a statement. This is necessary
as a block statement employs the use of the same tokens to delimit a block of statements.

Currently our object literal remains absent of any key/value pairs and thus will be
instantiated at runtime without any custom behaviors. However this can be easily changed,
as seen in Listing 2-14.

Listing 2-14. Object Literal with a Key/Value Pair

var literalObject = {
firstProperty:"hello world"
+s
console.log(literalObject.firstProperty); // "hello world"

As revealed by Listing 2-14, a key/value pair is configured by specifying an identifier
along with its value separated by a colon (:) token. Listing 2-14 demonstrates how
firstProperty is assigned the value “hello world” with literal syntax.
Additionally, literals can be designed with multiple key/value pairs. Each key/value pair
must remain separate from one another. This is achieved by separating each key/value pair
with a comma (,). Listing 2-15 outlines an object literal that possesses three key/value
pairs.

Listing 2-15. Object Literal Designed with Multiple Key/Value Pairs

var literalObject = {
firstProperty : "hello world",
name : "i0bjectA",
toString : function(){ return this.name; }
i
console.log(literalObject.toString()); // "iObjectA"

Listing 2-15 revisits our previous object literal from Listing 2-14. This time instead of
configuring a singular key/value pair, it defines three. Note the use of the commas to
separate each key/value pair. Lastly, one thing to note is that the toString method is
assigned with a function that explicitly returns the name property. The use of this
ensures that the identifier being referenced remains scoped to the context of our instance.
Use of this is necessary because the built-in Object does not possess a name property,
only our 1iteralObject. Therefore, we must ensure the scope remains relevant to the
instance invoking the behavior.

The Array Literal

The syntax used to delimit an array literal is the use of the opening and closing bracket ([,
1) symbols. When the JavaScript engine encounters an assignment of a variable that

www.it-ebooks.info

http://www.it-ebooks.info/

employs the aforementioned delimiters, behind the scenes an instance of the Array type is
instantiated and returned. Listing 2-16 employs the array literal syntax to create an empty
instance of the Array type.

Listing 2-16. Syntactical Representation of an array Literal
var literalArray = [];

Currently, our literal remains absent of any key/value pairs and, thus, will be
instantiated at runtime without any custom behaviors. However, this can be easily
changed, as seen in Listing 2-17.

Listing 2-17. array Literal Designed with a Key/Value Pair
var literalArray = ["hello world"];

Listing 2-17 reveals an array literal that’s in possession of a singular string value. You
may notice that the key for which this string value is assigned appears to be missing. In
fact, it is not missing at all. As you may recall, the Array represents an ordered collection.
This means that each value supplied is implicitly provided an index key. In other words,
when our 1iteralArray is instantiated as an object at runtime, we can use the 0
integer and bracket notation to access “hello world”, as shown in Listing 2-18.

Listing 2-18. Array Literal Value Obtainable via Bracket Notation

var literalArray = ["hello world"];
console.log(literalArray[0]); // hello world

As with the object literal syntax, multiple values can be supplied to an ordered
collection by separating multiple values with a comma, as shown in Listing 2-19. Each
value is implicitly provided the next available index as its key.

Listing 2-19. Array Literal Designed with Multiple Key/Value Pairs

var literalArray = ["hello world", "goodbye world"];
console.log(literalArray[0]); // hello world
console.log(literalArray[1]); // goodbye world

Summary

This chapter provided the fundamentals for working with JavaScript objects. Objects are
of great importance not only to the language itself, but to JSON as well.

Key Points from This Chapter

e Absolutely everything is an object.
e All classifications in their most generalized form are objects.

e Object and object have two different meanings.

www.it-ebooks.info

http://www.it-ebooks.info/

Object (with an initial capital letter) refers to the JavaScript Object
type.
An object refers to an instance.

objects are collections.

Special Objects are collections of like-minded behaviors.
All instances implicitly possess their ancestors’ behaviors.
toString returns the string representation of an object.
new is used to create instances of a non-primitive value.
Dot notation relies on identifiers.

Bracket notation relies on strings.

Objects are unordered collections.

Arrays are ordered collections.

Literals can be instantiated with predefined key/value pairs.
All literals are instantiated via objects behind the scenes.

this is used to maintain the scope of the property being accessed.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3

String Manipulation

As I mentioned in Chapter 1, a JavaScript application is written entirely as a sequence of
Unicode characters. This is not at all a feature exclusive to the JavaScript language. Other
examples are HTML and CSS, to name just a few. Even the underlying protocol used by
the World Wide Web is an entirely text-based communications protocol.

Data is often transmitted in the form of text, as it’s highly interoperable. This is due to
the fact that all computers have the ability to work with Unicode. One attribute that makes
JSON highly interoperable is that it’s composed of, and transmitted simply as, Unicode.
For this reason, this book will work extensively with the creation, formation, and general
manipulation of strings designed for both inbound and outbound traffic.

String Concatenation

The incorporation of the string literal makes creating strings an absolute cinch. As you
may recall from Chapter 1, a string value represents a sequence of 0 or more finite
Unicode characters. The reason why the definition of a string contains the word finite is
due to the fact that JavaScript strings are immutable. In other words, a string’s value is a
constant. While strings themselves are immutable, entirely new strings can be created
simply by joining two strings together end-to-end, using the addition operator, as shown in
Listing 3-1.

Listing 3-1. Joining Strings

1 var str = "Hello" + " World";
2 console.log(str); //Hello World

Listing 3-1 demonstrates the union between the two string literals, Hel1lo
and World, via the addition operator (line 1). The result of the union will be that of
Hello World. This joining of strings, known as string concatenation, is the language’s
simplest means of string manipulation. It is the concatenation of strings, which invites our
application to build strings on the fly.

While concatenation is solely limited to strings, we can use the addition operator to
coerce primitive values into their string representations. This offers our application the
ability to capture its state as a singular string value, which can later be transmitted across
the Internet. Consider the demonstration in Listing 3-2.

Listing 3-2. Formatting Data

1 var userName = "Ben";
2 var clickedButton = false;

www.it-ebooks.info

http://www.it-ebooks.info/

3 var stringRepresentation = "username="+userName
+"&clickedButton=" + clickedButton;

4 console.log(stringRepresentation); //
"username=Ben&clickedButton=false"

Listing 3-2 employs the use of the addition operator to convert and append the existing
state of an application into that of a string value. This results in the production of a string
containing the Unicode characters that read as
“username=Ben&clickedButton=false”.

The way in which our data is represented is referred to as a data format. It is the
purpose of the data format to provide a structure that infers the meaning of all
concatenated values. Relying on a lesser-known data format makes it difficult for the
recipient to extract or analyze the individual values. This book will regard a variety of data
formats similar to the preceding one, as well as JSON.

The String Object

The String object is a specialized object whose collective behaviors facilitate the
manipulation of a string value. We will learn more of its behaviors in the upcoming
sections.

Creating String Objects

Like all objects, a String object, is created using the keyword new followed by the
constructor function of the object-type. As revealed by the syntax of the String’s
constructor, String(string);, each instance must be provided with a string value
at the time of its instantiation. Listing 3-3 demonstrates the provision of the string literal
“test”.

Listing 3-3. Instantiating a String object

1 var strObject = new String("test");
2 console.log(strObject) ; //String { o="t", 1="e",
2="S", 3=lltll }

To keep things succinct, the string object in Listing 3-3 is provided with a string literal.
However, it could have just as easily been supplied an identifier that evaluates to a string
value. Upon the instance’s creation, the string object is returned and assigned to the
strObject variable (line 1). As the assignment to a variable, we can continue to
reference it and its many behaviors.

As revealed by the subsequent line (line 2), logging out the reference to our instance
shows that the provided string is no longer retained in its original form. Instead, each
character of the provided string has been separated and cataloged within our collection.
Exploding the string into the individual characters of which it was composed becomes the
foundation from which all manipulation occurs.

www.it-ebooks.info

http://www.it-ebooks.info/

The Interface of the String Object

As outlined in Table 3-1, the interface of the String object offers a wide range of utility.
Furthermore, it is inheritied by each instance to allow for the manipulation and formatting
of the string value for which it is provided.

Table 3-1. String object’s Interface

Properties Type Description

length Property Returns the length of the string

toString Method Returns a string representation of the collection

charAt Method Returns the character at the specified index

index0f Method Returns the position of the first occurrence of a substring

lastIndexOf Method Returns the last occurrence of a substring

match Method Matches a string with a pattern and returns all matches as an array
replace Method Replaces text in a string
slice Method Returns a section of a string, as indicated by a range
substr Method Returns a substring, as indicated by a start index, through a specified length

. Splits a string into substrings, using the specified separator, and returns them
split Method P & & & P P

as an array
toUpperCase Method Converts all characters in the string to uppercase

toLowerCase Method Converts all characters in the string to lowercase

Note A substring can be a singular character or a sequence of characters.

length

The 1ength member is the only behavior that is not a method. The sole purpose of the
length property is to obtain an accurate count of how many characters are retained
within the collection. Both forms of access notation can access the 1ength member, as
well as those outlined in Table 3-1. Listing 3-4 makes use of dot notation.

Listing 3-4. Obtaining a String’s Length

1 var str = "test";

2 var strObject = new String(str);

3 console.log(strObject) ; //String { o="t", 1="e",
2="S", 3:lltll }

4 console.log(strObject.length); // 4

www.it-ebooks.info

http://www.it-ebooks.info/

Listing 3-4 begins by assigning the string literal “test” to the str variable (line 1).
Next, we instantiate a string object and provide our Str variable as the argument. The
instance is then assigned as the reference to strobject (line 2). Utilizing our reference,
we print its contents to the console (line 3). Last, utilizing the dot notation, we access the
length property and print the resulting value to the console (line 4).

As you can see in Listing 3-4, the access of 1ength results in the return of the
amount of characters used to devise the original string. Understanding the total character
count will be a great benefit when manipulating an ordered sequence of characters.

toString

The toString method, whose signature is that of toString();, is used to return the
string representation of the value possessed by our collection. It is worth noting that the
toString method does not return a string object, but rather the primitive-type string.

charAt

The char At method, whose signature is that of charAt(index);, is used to return
the cataloged character whose key matches the specified index. As the string object
represents an ordered collection of characters, the first character’s index is always 0.
Obtaining a character is as simple as providing an index to the method, as seen in Listing
3-5.

Listing 3-5. Obtaining Unicode Characters

var str = "Hello World";

var strObject = new String(str);
console.log(strObject.charAt(0));
console.log(strObject.charAt(1)); // e
console.log(strObject.charAt(2));

Note As an ordered collection, the returned value of 1length -1 will always be the
index to the last character in the collection.

By pairing the charAt and the 1ength property, we can automate our efforts by
way of a for loop, as seen in Listing 3-6.

Listing 3-6. Iterating Through a String’s Characters

1 var str = "Hello World";

2 var strObject = new String(str);

3 var length = strObject.length;

4 for(var 1i=0; i<length; i++) console.log(
strObject.charAt(i));

Listing 3-6 uses a Tor loop to print each sequential character (line 3). The loop begins
with an initial variable, 1, which is assigned the value of 0. In order to ensure that all

www.it-ebooks.info

http://www.it-ebooks.info/

characters are evaluated, the condition for the loop determines whether the current value
of 1 is less than the total length of characters in the collection. As long as this condition
evaluates to true, our statement is executed, and the post-operation increments i by a

value of 1.

indexOf

While the charAt method aims to return a character at the specified index, the
1ndexO0f method provides the inverse behavior. Instead of supplying an index to obtain
its corresponding character, the 1ndexOf enables you to obtain the index whereby the
first use of a specified subset occurs. Its signature, index0f (subString[,
startIndex]);, reveals that the method anticipates a possible two arguments. The
first represents the subString, whose index we seek, while the second parameter,
startIndex, represents an offset from which the search should begin. Because the
startIndex is optional, we will only focus on the required parameter. (See Listing 3-
7).

Listing 3-7. Obtaining the First Location for a Substring

1 var str = "Hello World";
2 var strObject = new String(str);
3 console.log(strObject.indexof("H")); // ©

Listing 3-7 relies on indexOf to obtain the location for the first determined
substring, “H”, within our string value (line 3). As you may have expected, the result
returned and output to the console is 0. It’s worth stressing that indexOf only returns the
index of the first determined substring. Therefore, if the substring used happens to occur
more than once in the collection, only the location of the first occurrence will be returned,
as shown in Listing 3-8.

Listing 3-8. The Index of the First Matched Character ‘1’ is Returned

1 var str = "Hello World";
2 var strObject = new String(str);
3 console.log(strObject.indexof("1")); // 2

If a sought substring does not exist within the collection, the resulting index will be
that of -1. Because our ordered list can only possess a positive sequence of numbers, the
evaluation of -1 offers our application the ability to determine whether or not an operation
should take place via a control statement, as seen in Listing 3-9.

Listing 3-9. If the Index of -1 is Returned, the Substring is Not Present

var str = "Hello World";

var strObject = new String(str);

var index = strObject.indexO0f(";");
if(index>-1) //perform operation

else console.log("substring does not occur");

abwdNBRE

www.it-ebooks.info

http://www.it-ebooks.info/

As shown in Listing 3-9, we can incorporate the value returned by indexOf to
control the flow of our application. Listing 3-9 uses a conditional operation to determine
whether the index returned is greater than -1. This signifies to our application that our
collection possesses the substring being sought after, resulting in some unknown operation
being performed. However, if the condition is not met, the application prints to the console
“substring does not occur”.

It’s worth stressing that indexO0f accepts multiple characters. The preceding listings
have only supplied a singular character. In addition to working with individual characters,
indexO0f can determine the starting index for a sequence of characters. This will be very
beneficial when attempting to obtain the location of a substring that has multiple
occurrences. Consider an example in which we are required to find a particular occurrence
in a phrase that relies on repetition. (See Listing 3-10.)

Listing 3-10. The Index of the First Matched Substring is Returned

var str = "side beside besides the ocean";

var strObject = new String(str);

var index = strObject.indexOf("side");
if(index>-1) console.log(index); // ©

else console.log("substring does not occur");

lastIndexOf

While the 1ndex0f method returns the index of the first found occurrence,
lastIndexOf returns the index of the last found occurrence of a substring. Similarly, if
the string does not possess the provided substring, -1 is returned as the result.

abwdNPRE

The method’s signature, lastIndexOf (subString[, startIndex]);,is
equal to that of 1ndexOf. It expects at most two arguments; however, this book only
employs the first. Listing 3-11 demonstrates how we can obtain the starting index for the
last occurrence of “side” in our previous string.

Listing 3-11. Locating the Index of the Last Matched Substring

var str = "side beside besides the ocean";

var strObject = new String(str);

var index = strObject.lastIndexOf('"side");
if(index>-1) console.log(index); //14

else console.log("substring does not occur");

abwdNPRE

match

The match method, whose signature is match(pattern);, isused to locate
character patterns within a string. An invocation of the match accepts a string value or a
regular expression and returns an array containing all matched substrings of said search.
Listing 3-12 demonstrates the provision of both parameters to the method.

Listing 3-12. Obtaining Matched Substrings

www.it-ebooks.info

http://www.it-ebooks.info/

var str = "username=Ben&clickedButton=false";

var strObject = new String(str);

var stringMatches = strObject.match("username");
console.log(stringMatches); // ["username"]

var patternMatches = strObject.match(/[7&]+/g);
console.log(patternMatches); // ["username=Ben",
'clickedButton=false"]

OO0k~ wWNE

Listing 3-12 begins by assigning a formatted string to the Str variable (line 1). From
there, we provide it as the value to initialize our instance (line 2).

From there, the string “username” is provided as the pattern to locate within our
string (line 3). This results in the return of an array containing all found matches. The
array returned reveals that it has, in fact, located a match (line 4). Alternatively, we
employ a regular expression pattern to locate any and all series of characters that do not
possess the & token (line 5). The array returned reveals that is has, in fact, located two
matches (line 6).

replace

The replace method, whose signature is replace(pattern, replaceText);,
can be used to exchange a matching substring with that of another. Whether or not a match
is found, the method will result in the return of a string value. Listing 3-13 utilizes the
replace method to substitute all found occurrences of the substring “Hell0"” with that
of “Goodbye”.

Listing 3-13. Replacing Matched Substrings

var str = "Hello World";

var strObject = new String(str);

var result = strobject.replace("Hello", "Goodbye");
console.log(result); //Goodbye World

console.log(strObject); //String { 0="H", 1="e", 2="1",
3="1", 4="o", 5="", ...//truncated }

abwdNPRE

Listing 3-13 employs the replace method in order to substitute the substring
“Goodbye” for all determined occurrences of the substring “Hel10”. You may note
that I assign the resulting string to a variable labeled result (line 3). Because strings are
immutable, meaning they cannot be altered, the result of the behavior produces an entirely
new string. It does not attempt to alter the variable it was initially supplied. Furthermore,
as illustrated on line 5, use of the behaviors possessed by our string object will not alter
the initial characters cataloged by the collection.

Note All strings returned by the methods of a string object are the creation of a new
string.

slice

www.it-ebooks.info

http://www.it-ebooks.info/

The s1ice method is used to return a substring of the collection determined by a range of
indexes. The method, as revealed by its signature, replace(start, [end]);,
requires a starting index and an optional ending index. All characters located at the
starting index and up to, but not including, the ending index will be returned to the caller
of the method. If the end index is not specified, the substring reflects every subsequent
character beyond the starting index. Listing 3-14 demonstrates how we can extract the
word Hello from our string literal by utilizing the S11ce method.

Listing 3-14. Extracting Substrings with slice

var str = 'Hello World';

var strObject = new String(str);

var index = strObject.indexO0f('o'); //4;

var result = strObject.slice(0, index);
console.log(result); //Hell
console.log(strObject.slice(0, index + 1)); //Hello

O, WNE

Listing 3-14 demonstrates the extraction of the word Hello from our string with the
use of the s1ice method. Because we know that Hello begins at index 0, we simply have
to determine which index is used to signify the boundary of our substring. It is important
to note that s1ice returns the sequence of characters from the start index up to, but not
including, the ending index. This is why line 4 outputs He11 rather than Hello.

Because the returned substring will always be one character less than that specified,
the supplied index must always reflect one position more than we seek to obtain. The
solution is to add 1 to the determined index (line 6).

substr

The substr method is used to return a substring within a specific range. The substr
method is similar to the s1ice method in that it can be used to obtain a substring within a
given boundary. As depicted by the signature substr(start [, length]);, the
substr method can accept two parameters; however, only the first is required.

The required parameter, start, signifies where the substring to extract begins. This
value can be followed by an optional number of characters to include in the returned
substring. The key difference between substr and slice is that the length does not
indicate an index. Instead, it indicates the total number of characters (including the
character at the specified start) to return in the substring. Listing 3-15 demonstrates how
we can extract the word World from the string, utilizing the substr method.

Listing 3-15. Extracting Substrings with substr

var str = 'Hello World';

var strObject = new String(str);

var startIndex = strObject.indexOf('W'); //6;

var length = (new String('World')).length; //4

var result = strObject.substr(startIndex, length);

abwdNPRE

www.it-ebooks.info

http://www.it-ebooks.info/

6 console.log(result); //world

Listing 3-15 begins by obtaining the starting index for our substring, 'World' (line
3). Once we have obtained its index, we can supply it to our substr method as the
starting index. Additionally, we can provide an optional number of characters, which will
determine how many subsequent characters beyond the starting point to be returned.

In this case, I have opted to supply the length of characters possessed by the substring
'World'. This is achieved by creating a second string object, supplying it with the string
'World', and obtaining its character count by way of the 1ength attribute (line 4).
This value is then supplied as the argument that identifies the total length of characters to
include in the substring (line 5).

Note If the optional parameter length is omitted, all characters, from the start index to
the end of the string, will be returned.

split

The split method is used to split a string into substrings and return them as the values
of an array. As revealed by the method’s signature split(separator[, limit]);,
the method expects to receive at most two arguments. The first argument, labeled
separator, is required, while the latter argument, 1imit, remains optional. This book
will only make use of the separator parameter. The separator argument is used to
define the delimiters that define the boundaries of substrings captured within the provided
string. Listing 3-16 contains one such string, whereby substrings are delimited by way of
an ordinary comma.

Listing 3-16. Separating a Comma-Delimited String
1 var strObject = new String('ben,mike,ivan,kyle');

2 console.log(strObject.split(',')); //
['ben', 'mike', "ivan', 'kyle']

Listing 3-16 instantiates a string object and supplies it with a comma-delimited list of
names (line 1). Next, we invoke the split method and supply it with the substring used
to separate each name. In this particular case, that substring is a comma, resulting in the
return of an ordered collection of all names (line 2).

toUpperCase

The toUpperCase method is used to convert all characters within a string to uppercase.
The method does not accept any parameters, and it will be applied to an entire string, as
seen in Listing 3-17.

Listing 3-17. Capitalizing All Alphabetic Characters

1 var strObject = new String('Hello World');
2 console.log(strObject.toUpperCase()); // HELLO WORLD

www.it-ebooks.info

http://www.it-ebooks.info/

toLowerCase

Conversely, unlike the toUpperCase method, the toLowerCase method is used to
convert all alphabetic characters within a string to lowercase, as seen in Listing 3-18.

Listing 3-18. Applying Lowercase to All Alphabetic Characters

1 var strObject = new String('Hello world');
2 console.log(strObject.toLowerCase()); // hello world

Aside from the obvious use for the toUpperCase and toLowerCase methods,
there is yet another reason they will be used throughout this book. When working with
text, the use of capitalization or lack thereof is to be expected. However, this makes it
difficult to compare two strings within a language that is case-sensitive. Listing 3-19
compares strings that will always fail, due to the inconsistent use of letter casing.

Listing 3-19. Comparisons Are Case-Sensitive

1 console.log('Hello World' === 'hello world'); //false
2 console.log('Hello world' === 'hello world'); //false
3 console.log('HELLO WORLD' === 'Hello World'),; //false

While the characters used in both words may appear equal to us, they are definitely not
viewed as the same by a computer. This is because computers view uppercase and
lowercase letters as different Unicode values. Therefore, to ensure that casing is not an
issue during the comparison of strings, we will often use toUpperCase and
toLowerCase before comparing them.

The Implicit String Object

The preceding listings make explicit use of the string object, in order to tap into its many
behaviors. While a string object adds great value, it comes at the cost of its syntactical
overhead. Consider Listing 3-4, which required the instantiation of a string object simply
to obtain the length of characters used to devise a string. To ease this burden for
developers, the JavaScript language does, in fact, offer us the best of both worlds.

As mentioned in Chapter 1, primitive values are not objects and, therefore, cannot
possibly possess key/value pairs. Any attempt to access a property of a string, or any
primitive type for that matter, would ordinarily throw a SyntaxError. However,
JavaScript seeks to reduce the syntactical overhead by allowing the behaviors of the string
object to be accessed through a primitive string via access notation. Doing so prompts the
engine to instantiate a string object on our behalf, using the target string as its argument.
Once the instance is created, the accessed behavior is fulfilled by the instance itself.
Listing 3-20 demonstrates how the interface of the string object can be accessed indirectly
through a string value.

Listing 3-20. Implicit Use of the String object

www.it-ebooks.info

http://www.it-ebooks.info/

var strlLiteral = 'Hello World';

console.log(strLiteral.toLowerCase()); // hello world
console.log(strLiteral.length); // 11

console.log(strLiteral.substr(@ , 5)); // Hello

HONBR

Listing 3-20 begins by assigning the string literal 'Hello World' to the variable
strLiteral (line 1). From there, each subsequent line of code relies on dot notation to
reference a behavior of the string object. Because the engine recognizes that a string does
not possess any attributes, behind the scenes, it instantiates a string object, supplies it with
the value of strLiteral, and returns the resulting value. The result is precisely the
same as if we instantiated the string object ourselves, only without the syntactical
overhead. For this reason, you should never have to instantiate a string object directly.

Summary

This chapter has introduced you to the behaviors of the String object, which will be
employed extensively in the upcoming chapters. Each behavior covered offers our
applications the necessary ability to work extensively with strings.

When it comes to string manipulation, you will find that there is no right way or wrong
way to get something done. It’s as the old adage goes, “There is more than one way to skin
a cat.”

Key Points from This Chapter

e There is a corresponding object for each primitive type.
¢ A data format refers to the way data is assembled.

e The addition operator is used to capture application logic within a
string.

e The string primitive has pseudo members that can be accessed with
access notation.

e The behaviors of the string object can be used indirectly.
e The HTTP protocol transmits text.
e The comparison between strings does not ignore case.

e Manipulating a string does not alter the original.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4

Introducing JSON

The JavaScript Object Notation data format, or JSON for short, is derived from the literals
of the JavaScript programming language. This makes JSON a subset of the JavaScript
language. As a subset, JSON does not possess any additional features that the JavaScript
language itself does not already possess. Although JSON is a subset of a programming
language, it itself is not a programming language but, in fact, a data interchange format.

JSON is known as the data interchange standard, which subtextually implies that it can
be used as the data format wherever the exchange of data occurs. A data exchange can
occur between both browser and server and even server to server, for that matter. Of
course, these are not the only possible means to exchange JSON, and to leave it at those
two would be rather limiting.

History

JSON is attributed to being the creation of Douglas Crockford. While Crockford admits
that he is not the first to have realized the data format,' he did provide it with a name and a
formalized grammar within RFC 4627. The RFC 4627 formalization, written in 2006,
introduced the world to the registered Internet media type application/json, the file
extension . json, and defines JSON’s composition. In December 2009, JSON was
officially recognized as an ECMA standard, ECMA-404, and is now a built-in aspect of
the standardization of ECMAScript-262, 5th edition.

Controversially, another Internet working group, the Internet Engineering Task Force
(IETF), has also recently published its own JSON standard, RFC 7159, which strives to
clean up the original specification. The major difference between the two standards is that
RFC 7159 states that a valid JSON text must encompass any valid JSON values within an
initial object or an array, whereas the ECMA standard suggests that a valid JSON text can
appear in the form of any recognized JSON value. You will learn more about the valid
JSON values when we explore the structure of JSON.

It is important to remember, as we get further into the structure of JSON, that as a
subset of JavaScript, it remains subject to the same set of governing rules defined by the
ECMA-262 standardization. You can feel free to read about the latest specification at the
following URL: www . ecma -
international.org/publications/files/ECMA-ST/Ecma-262.pdf. At
the time of writing, the current edition of the ECMA-262 standard is 5.1; however, 6 is
just around the corner.

Note While edition 5.1 is today’s current standard, at the time of JSON’s formalization,

www.it-ebooks.info

http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://www.it-ebooks.info/

the ECMA-262 standard was only in edition 3.

Crockford documented JSON’s grammar on http://json.org in 2001, and soon
word began to spread that there was an alternative to the XML data format. With the
widespread adoption of Ajax (Asynchronous JavaScript and XML), JSON’s popularity
began to soar, as people began to note its ease of implementation and how it rivaled that of
XML. You would think that Ajax would have enforced the adoption of XML, as the x
within the acronym strictly refers to XML. However, being modeled after SGML, a
document format, XML possesses qualities that make it very verbose, which is not ideal
for data transmission. One of the reasons JSON has become the de facto data format of the
Web, as you will shortly see in the upcoming section, is due to its grammatical simplicity,
which allows for JSON to be highly interoperable.

JSON Grammar

JSON, in a nutshell, is a textual representation defined by a small set of governing rules in
which data is structured. The JSON specification states that data can be structured in either
of the two following compositions:

1. A collection of name/value pairs

2. An ordered list of values

Composite Structures

As the origins of JSON stem from the ECMAScript standardization, the implementations
of the two structures are represented in the forms of the object and array. Crockford
outlines the two structural representations of JSON through a series of syntax diagrams.
As I am sure you will agree, these diagrams resemble train tracks from a bird’s-eye view
and thus are also referred to as railroad diagrams. Figure 4-1 illustrates the grammatical
representation for a collection of string/value pairs.

1 f'}f"\ |
o/ |

object j
I—@ [string

value J

As the diagram outlines, a collection begins with the use of the opening brace ({), and
ends with the use of the closing brace (}). The content of the collection can be composed
of any of the following possible three designated paths:

@ e

Figure 4-1. Syntax diagram of a string/value pair collection

e The top path illustrates that the collection can remain devoid of any
string/value pairs.

e The middle path illustrates that our collection can be that of a single

www.it-ebooks.info

http://json.org
http://www.it-ebooks.info/

string/value pair.

e The bottom path illustrates that after a single string/value pair is
supplied, the collection needn’t end but, rather, allow for any number
of string/value pairs, before reaching the end. Each string/value pair
possessed by the collection must be delimited or separated from one
another by way of a comma (,).

Note String/value is equivalent to key/value pairs, with the exception that said keys
must be provided as strings.

An example of each railroad path for a collection of string/value can be viewed within
Listing 4-1. The structural characters that identify a valid JSON collection of name/value
pairs have been provided emphasis.

Listing 4-1. Examples of Valid Representations of a Collection of Key/Value Pairs, per
JSON Grammar

//Empty Collection Set

{}/

//Single string/value pair

{"abc":"123"};

//Multiple string/value pairs

{"captainsLog":"starDate 9522.6","message":"I've never trusted
Klingons, and I never will."};

Figure 4-2 illustrates the grammatical representation for that of an ordered list of
values. Here we can witness that an ordered list begins with the use of the open bracket
([) and ends with the use of the close bracket (]).

array J 1
—O i O

[s)

A

Figure 4-2. Syntax diagram of an ordered list
The values that can be held within each index are outlined by the following three
“railroad” paths:
e The top path illustrates that our list can remain devoid of any value(s).

e The middle path illustrates that our ordered list can possess a singular
value.

e The bottom path illustrates that the length of our list can possess any
number of values, which must be delimited, that is, separated, with the
use of a comma (,).

www.it-ebooks.info

http://www.it-ebooks.info/

An example of each railroad path for the ordered list can be viewed within Listing 4-2.
The structural tokens that identify a valid JSON ordered list have been emphasized.

Listing 4-2. Examples of Valid Representations of an Ordered List, per JSON Grammar

//Empty Ordered List

[1/

//0rdered List of multiple values
[”abC”];

//0rdered List of multiple values
["'o0",1,2,3,4,100];

You may have found yourself wondering how it came to be that the characters [,], {,
and } represent an array and an object, as illustrated in Listing 4-1 and Listing 4-2. The
answer is quite simple. These come directly from the JavaScript language itself. These
characters represent the Object and Array quite literally.

As was stated in Chapter 2, both an object and an array can be created in one of two
distinct fashions. The first invokes the creation of either, through the use of the constructor
function defined by the built-in data type we wish to create. This style of object invocation
can be seen in Listing 4-3.

Listing 4-3. Using the new Keyword to Instantiate an object and array

var objectInstantion = new Object(); //invoking the
constructor returns a new Object
var arraylInstantiation = new Array(); //invoking the
constructor returns a new Array

The alternative manner, which we can use to create either object or array, is by literally
defining the composition of either, as demonstrated in Listing 4-4.

Listing 4-4. Creation of an object and an array via Literal Notation

var objectInstantion
var arraylInstantiation

{3}, //creation of an empty object
[1, //creation of an empty array

Listing 4-4 demonstrates how to create both an array and an object, explicitly using
JavaScript’s literal notation. However, both instances are absent of any values. While it is
perfectly acceptable for an array or object to exist without content, it will be more likely
that we will be working with ones that possess values.

Because object literals can be used to design the composition of objects within source
code, they can also be provisioned with properties as they are authored. Listing 4-5 should
begin to resemble the syntax diagrams we just reviewed.

Listing 4-5. Designing an object and array via Literal Notation with the Provision of
Properties

var objectInstantion
var arraylInstantiation

{name:"ben",age:36};
[llbenu’ 36] ;

www.it-ebooks.info

http://www.it-ebooks.info/

Note While Listing 4-4 and Listing 4-5 illustrate the creation of objects through the use
of literals, JSON uses literals to capture the composition of data.

The JSON data format expresses both objects and arrays in the form of their literal. In
fact, JSON uses literals to capture all JavaScript values, except for the Date object, as it
lacks a literal form.

What you may not have noticed, due to its subtlety, is that JavaScript object literals do
not require its key identifiers to be explicitly defined as strings. Take, for example, the
literal declaration of {name:“ben”, age:36}; from Listing 4-5. It could have
equally been declared as {“name” : “ben”, age:36}; . Both declarations will create
the same object, allowing our program to reference the same name property equally.
Consider the code within Listing 4-6.

Listing 4-6. Object Keys Can Be Defined Explicitly or Implicitly As Strings

var objectInstantionA = {name:"ben",age:36},;

var objectInstantionB = {"name":"ben",age:36};
console.log(objectInstantionA.name); // "ben"
console.log(objectInstantionB.name); // "ben"

The reason the preceding example works is because, behind the scenes, JavaScript
turns every key identifier into a string. That said, it is imperative that the key of every
value pair be wrapped in double quotes to be considered valid JSON. This is due to the
many reserved keywords in JSON’s superset and the fact that ECMA 3.0 grammar
prohibits the use of keywords as the properties held by an object. The ECMA 3.0 grammar
does not allow reserved words (such as true and false) to be used as a key identifier or to

the right of the period in a member expression.” Listing 4-7 demonstrates the first JSON
text used to interchange data.>

Listing 4-7. The Very First JSON Message Used by Douglas Crockford

var firstJSON = {to:"session",do:"test", "message'":"Hello
wWorld"}; //Syntax Error in ECMA 3

However, this JSON text produced an error instantly, due to the use of the reserved
keyword do as the property name of a string/value pair. Rather than outlining all words
that would then cause such syntax errors, Crockford found it simpler to formalize that all
property names must be explicitly expressed as strings.

Note If you were to reference the exact preceding code expecting to arrive at a syntax
error, you’ll likely be confused why none is thrown. The ECMAScript, 5th edition allows
for keywords to now be used with dot notation. However the JSON spec continues to
account for legacy.

JSON Values

As mentioned earlier, JSON is a subset of JavaScript and does not add anything that the

www.it-ebooks.info

http://www.it-ebooks.info/

JavaScript language does not possess. So, naturally, the values that can be utilized within
our JSON structures are represented by types, as outlined within the 3rd edition of the
ECMA standard. JSON makes use of four primitive types and two structured types.

The next figure in succession, Figure 4-3, defines the possible values that can be
substituted where the term value appears in Figures 4-1 and 4-2. A JSON value can only
be a representative of string, number, object, array, true, false, and null. The latter three
must remain lowercased, lest you invoke a parsing error. While Figure 4-3 does not clearly
demonstrate it, all JSON values can be preceded and succeeded by whitespace, which
greatly assists in the readability of the language.

value
= ~ string > I
a number A
\ object v
\ array 4
I\ { true) /]
\ { false)} <
o= J
> i) A

Figure 4-3. Syntax diagram illustrating the possible values in JSON

String literals in the JavaScript language can possess any number of Unicode
characters enclosed within either single or double quotes. However, it will be important to
note, as outlined in Figure 4-4, that a JSON string must always begin and end with the use
of double quotes. While Crockford does not justify this, it is for interoperable reasons. The
C programming grammar states that single quotes identify a single character, such as a or
z. A double quote, on the other hand, represents a string literal. While Figure 4-4 appears
verbose, there are only four possible paths.

www.it-ebooks.info

http://www.it-ebooks.info/

string
Any UNICODE character except
“or \ or control character

gquotation mark

9

reserve solidus

solidus

backspace

formfeed

newline

carriage return

horizontal tab

§55835LE

4 hexadecimal digits —

Figure 4-4. Syntax diagram of the JSON string value

e The topmost path illustrates that our string literal can be absent of any
Unicode characters.

e The middle path illustrates that our string can possess any Unicode
characters (represented in literal form), except for the following: the
quotation mark, the backslash (solidus).

e The last several paths illustrate that we can insert into our string
control characters with the use of a solidus (\)character preceding it.
Additionally, the bottommost rung specifies that any character can be
defined in its Unicode representation. To indicate that the preceding u
character is used to identify a Unicode value, it, too, must be escaped.

e The second topmost path represents our loop, which allows the
addition of any of the outlined characters.
Listing 4-8 demonstrates a variety of valid string values.
Listing 4-8. Examples of Valid String Values As Defined by the JSON Grammar

//absent of unicode

4
//random unicode characters

1 n ; Or n n ;
//use of escaped character to display double quotes;
n \ll \" " ;

//use of \u denotes a unicode value
"\u22A0"; // outputs
//a series of valid unicode as defined by the grammar

www.it-ebooks.info

http://www.it-ebooks.info/

"\u22A0 \" vy \n";

A solidus, better known as a backslash, is used to demarcate characters as having an
alternate meaning. Without the use of the \, the lexer might interpret as a token what is
intended to be used as a string, or vice versa. Escaping characters offers us the ability to
inform the lexer to handle a character in a manner that is different from its “normal”
behavior. Table 4-1 illustrates the use of the escaped literals for the prohibited characters.

Table 4-1. Escaped Literals

Unicode Representation Literal Escaped Literal Name

u0022 " % Quotation Mark
ud05c ! W Reverse Solidus
ub02F / \Yi Solidus

u0008 b ‘b Backspace

ud00C f Wf Form Feed

uD00A n \n Line Feed

u00oD Y \Y Carriage Return
ul009 t AN Tab

X NXX LXKNK WL Unicode Character

The last value to discuss is that of the number. A number in JSON is the arrangement
of base10 literals, in combination with mathematical notation to define a real number
literal. Figure 4-5 addresses the syntactical grammar of the JSON number in great detail;
however, it’s rather simple when we view it step-by-step.

number

¥ - [|

TS [\0) 1.)—(digit : ~ fH
digit
1-9

digit

Figure 4-5. Syntax diagram of a JSON number

The first thing to note is that the numbers grammar does not begin or end with any
particular symbolic representation, as our earlier object, array, and string examples did.

As illustrated in Figure 4-5, a JSON number must adhere to the following rules:

1. The number literal will be implicitly positive, unless explicitly
indicated as a negative value.

2. Numbers cannot possess superfluous 0’s.

www.it-ebooks.info

http://www.it-ebooks.info/

3. Can be in the form of a whole number

a. made up of a single BASE10 numeric literal (0-9)

b. made. any number of BASE10 numeric literals (0-9)
4. Can be in the form of a fraction

4.1. Made up of a singular base10 numerical literal at the 10s
placement

4.2. Made up of any base10 numerical literal per placement beyond
the decimal

5. Can possess the exponential demarcation literal

5.1. E notation can be expressed in the form of a uppercase “E” or

€€~

lowercase “e

5.2. Immediately followed by a signed sequence of 1 or more
base10 numeric literals (0-9)

Listing 4-9 reveals valid numerical values as defined by the JSON grammar.

Listing 4-9. Valid Numerical Values

-0.01 //valid use of 0's

00.1 //superfluous 0 produces a SyntaxError
1/3 //fraction form

.3333333333333333 //decimal form

1.2e-1 //scientific notation

Any of the values discussed in this chapter can be used in any combination when
contained within a composite structure. Listing 4-10 illustrates how they can be mixed and
matched. What is necessary is that the JSON grammar covered is followed. The examples
in Listing 4-10 demonstrate proper adherence of the JSON grammar to portray data.

Listing 4-10. Examples of JSON Text Containing a Variety of Valid JSON Values

// JSON text of an array with primitives

[
null, true, 8
]
// JSON text of an object with two members
{
"first": "Ben",
"last": "Smith",
¥
// JSON text of an array with nested composites
[
{ "a.bC" : ll123ll },
["o", 1, 2, 3, 4, 100]
]

www.it-ebooks.info

http://www.it-ebooks.info/

//JSON text of an object with nested composites
{ |
"object": {
"array": [true]
}

}
JSON Tokens

While the Object and Array are conventions used in JavaScript, JavaScript, like many
programming languages, borrowed from the C language in one form or another. While not
every language explicitly implements Arrays and Objects akin to JavaScript, they do often
possess the means to model collections of key/value pairs and ordered lists. These may
take on the form of Hash maps, dictionaries, Hash tables, vectors, collections, and lists.
Furthermore, most languages will be capable of working with text, which is precisely what
JSON is based on.

At the end of the day, JSON is nothing more than a sequence of Unicode characters.
However, the JSON grammar standardizes which Unicode characters or “tokens” define
valid JSON, in addition to demarcating the values contained within.

Therefore, when regarding the interchange of JSON and the many languages that do
not natively possess Objects and Arrays, the tokens that make up the JSON text are all that
is required to interpret if any collections or ordered lists exist and apply all values in a
manner required of that language. This is accomplished with six structural characters, as
listed in Table 4-2.

Table 4-2. Six Structural Character Tokens

Token Escaped Value Unicode Value Literal Name

Array Opening %5b \u005b [Left Square Bracket
Array Closing %5d \u005d | Right Square Bracket
Object Opening %7b Lu07b { Left Curly Bracket
Object Closing &7d YWu007d } Right Curly Bracket
Name/Value Separator #3a Yu003a : Colon

Value Separator #2c \u02c F Comma

One point to note is that JSON will ignore all insignificant whitespace before or after
the preceding six structural tokens. Table 4-3 illustrates the four whitespace character
tokens.

Table 4-3. Four Whitespace Character Tokens

www.it-ebooks.info

http://www.it-ebooks.info/

Token Name Escaped Value Unicode Value

Control Character Space %20 \u0020
Control Character Horizontal Tab %09 \u0009
Control Character Line Feed/New Line HOA “uDO0A
Control Character Carriage Return %0oD \u000D

Because JSON is nothing more than text, you may find it rather difficult to determine
whether your JSON is properly formatted or not. Furthermore, if the syntax is inaccurate
to the grammar specified, then you will find that your malformed JSON causes code to
come to a halt. This would be due to the syntax error that would be uncovered at the time
of trying to parse said JSON. You will learn about parsing in Chapter 6.

For this reason, any attempt to devise JSON by hand should be performed with the aid
of an editor. The following list of JSON editors understand the JSON grammar and are
able to offer some much needed and immediate validation.

e http://jsoneditoronline.org/
e http://jsonlint.com/

The first editor, http://jsoneditoronline.org/, adheres to the ECMA-262
standardization and, therefore, allows your JSON text to represent a singular primitive
value. Whereas the ladder follows the RFC 7159 standardization, thus requiring a JSON
text to represent a structural value, i.e., array or object literal. It should be made known
that the two editors mentioned previously are not the only two in existence. There are
many online and offline editors, each with its own nuances. I favor the two mentioned, for
their convenience.

Summary

In this chapter, I covered the history of JSON and the specifications of the JSON data
format that defines the grammar of a valid JSON text. You learned that JSON is a highly
interoperable format for data interchange. This is achieved via the standardization of a
simplistic grammar that can be translated into any language simply by understanding the
grammar.

As was demonstrated in this chapter, we can use the JSON grammar in conjunction
with predetermined data to create JSON. Because we are simply working with text, it will
be helpful to rely on an editor that understands JSON’s grammar, for validation purposes.
However, JSON can be written with a basic text editor and saved as a JSON document,
using the file extension . json. Furthermore, as a subset of JavaScript, JSON can even be
hard-coded within a JavaScript file directly. Both methods are ideal for devising
configuration files for an application.

The next chapter will reveal how we can use the JavaScript language to produce JSON
at runtime.

www.it-ebooks.info

http://jsoneditoronline.org/
http://jsonlint.com/
http://jsoneditoronline.org/
http://www.it-ebooks.info/

Key Points from This Chapter

e The array represents an ordered list of values, whereas the object
represents a collection of key/value pairs.

e Unordered collections of key/value pairs are contained within the
following opening ({) and closing (}) brace tokens.

¢ Ordered lists are encapsulated within opening ([) and closing (])
square bracket tokens.

e The key of a member must be contained in double quotes.

e The key of a member and its possessed value must be separated by the
colon (:) token.

e Multiple values within an object or array must be separated by the
comma (,) token.

e Boolean values are represented using lowercase true/false literals.

e Number values are represented using double-precision floating
number point format.

e Number values can be specified with scientific notation.
e Control characters must be escaped via the reverse solidus (\) token.

e Null values are represented as the literal: null.

1http://yuiblog.com/yuitheater/crockford—json.m4v.

2Allen Wirfs-Brock, “ES 3.1 ‘true’ as absolute or relative?” https://mail.mozilla.org/pipermail/es-
discuss/2009-April/009119.html, April 9, 2009.

3http://yuiblog.com/assets/crockford—json.zip

www.it-ebooks.info

http://yuiblog.com/yuitheater/crockford-json.m4v
https://mail.mozilla.org/pipermail/es-discuss/2009-April/009119.html
http://yuiblog.com/assets/crockford-json.zip
http://www.it-ebooks.info/

CHAPTER 5

Creating JSON

Serialization is the process of taking a snapshot of a data structure in a manner that allows
it to be stored, transmitted, and reconstructed back into a data structure at a later point in
time. As serialization is merely a process rather than the utilization, its applications are
mainly limited by your application’s needs. This chapter will explore the serialization
methods utilized by the JavaScript language and required of the JSON subset.

While serialization may seem like a mystical concept, the result of the snapshot, at the
most atomic level, is nothing more than a string. The serialization process is simply the
construction of said string, which often occurs behind the scenes. What is important to
note is that in JavaScript, the produced string incorporates the representations of data in
their literal forms. By capturing data in their literal form, each literal can be evaluated
back into its respective JavaScript values.

Note A serialized value could result in a simple-looking string, such as “*“Hello-
World\"”” or “false”.

You learned in Chapter 4 that any C language can easily work with JSON. The most
prominent reason is that all C languages possess a means to represent collections of
name/value pairs, ordered lists, Booleans, and strings. Nevertheless, in the few cases in
which the literals that make up the JSON subset are not inherently understood by a
specific language, a translation among grammars can take place. This occurs by simply
deconstructing the JSON text into a series of tokens and deriving meaningful structures
that are possible within the grammar of that particular language.

Note Grammar translation is the process of converting the syntax of one language
equivalently into that of another.

Conversely, one can construct JSON from any data structure, simply by following the
grammar defined by the JSON specification. In Chapter 6, you will learn more about such
reconstruction. This chapter will focus on how to create a JSON text from JavaScript
values.

The Serialization Process—Demystified

As was discussed in Chapter 3, all JavaScript values can be converted into their string
equivalent form by adding it, via the addition operator, with another string, as seen in
Listing 5-1.

Listing 5-1. Concatenating Primitive Values with Strings

www.it-ebooks.info

http://www.it-ebooks.info/

""+1,; //produces "1"
""+true; //produces "true"
""+null, //produces "null"
""+undefined; //produces "undefined"
""+"Hello"; //produces "Hello"

While the string representations for all primitive values are captured as expected, as
displayed in Listing 5-2, the same cannot be said of non-primitive values.

Listing 5-2. Concatenating Non-Primitive Values with Strings

""+{identifier:"Hello"}; //produces "[object Object]"
""+["Hello", ["hello", "World"]]; //produces
"Hello, hello,World"

As revealed in Listing 5-2, while the JavaScript language possesses the ability to
create objects out of literal forms, there is no easy way to perform the contrary. In order to
deconstruct an object into that of its literal form, the members of an instance must be
traversed, analyzed, and assembled piece by piece into its corresponding literal form.

To accomplish this undertaking, we must rely on the use of loops, string manipulation,
and the appropriate sequencing of the necessary structural tokens, listed in Table 5-1.

Table 5-1. The Six Structural Character Tokens

Token Literal Name

Array Opening [Left Square Bracket
Array Closing] Right Square Bracket
Object Opening { Left Curly Bracket
Object Closing } Right Curly Bracket
Name/Value Separator : Colon

Value Separator ' Comma

The following code in Listing 5-3 demonstrates, as succinctly as possible, a method
that transforms a supplied object into that of its literal form counterpart.

Listing 5-3. Converting an object and Its Property into an object literal

1 var author = new Object();
2 author.name = "Ben";

3 var literal = stringify(author);

4 function stringify(structure){
//1if the structure supplied possesses the string data

type
5 if(typeof structure=="string"){

www.it-ebooks.info

http://www.it-ebooks.info/

6 return '"'+String(structure)+'""';
7

}

//1f the structure supplied possess the object data

type
8 if(typeof structure=="object"){

9 var partial=[];
//for each property held by our structure
10 for(var k in structure){
11 var v= structure[k];
12 v = stringify(v);
13 partial.push(k+" : "+v);
14 }

//1f partial does not possess children capture
opening/closing brackets;

15 v = (partial.length === 0)? '{}'

16 //otherwise, comma delimit all values within
opening/closing brackets

17 " { " + partial.join(' , ') + ' } !

18 return v;

19 }

20 }

21 console.log(literal); // "{ name : "Ben" }"

22 console.log(typeof literal); // "string"

Our demonstration begins (line 1) with the creation of an object author who is
assigned a singular property name. We next supply author to the stringify function
as the object we wish to transform into its literal representation. The stringify
function then analyzes the data type of the structure supplied, in order to determine the
appropriate course of action.

When stringify ascertains that the supplied structure is an object (line 8), the
function then proceeds to traverse all members in its possession. The value of each key
enumerated this way is in turn supplied to the Stringify method, to be transformed
into its literal form. Alas, this time, the data type is found to be that of a string. In order to
capture said string as its literal counterpart, the function surrounds it with double quotes
and returns it back to the caller of the invocation (line 12). From here, the current key, K,
and its value, Vv, are sequenced together, separated by a colon (:) and stored within the
array partial, so that any remaining properties can be enumerated similarly.

To keep this example short, author is in possession of one property. However, were
there more properties possessed by our structure, the preceding process would be repeated
until every single one is deconstructed and converted into its literal counterpart and
appended to the final string representation. When there are no further properties to
analyze, we determine if the length of partial is greater or equal to that of zero. If
partial’s length is 0, it does not possess any values, and, therefore, a string consisting
of a pair of opening/closing braces is devised.

Otherwise, we create a string that joins each value with a comma separator (,) and

www.it-ebooks.info

http://www.it-ebooks.info/

insert it within a pair of opening/closing brace tokens. The serialized literal is then
returned to the invoker (line 3). The demonstration ends by outputting the final
representation, revealing our reverse-engineered object literal (line 21).

Note In the preceding example, Stringify is only capable of converting strings and
objects into their literal counterparts. Crafted for that purpose only, it is not capable of
recognizing all types.

We’re very close to our goal. However, this literal isn’t able to be considered valid
JSON, as it does not fully adhere to the JSON grammar. The key name in our key/value
pair must be surrounded by double quotes. Fortunately, this is easy to remedy with strings:
partial.push('”'+ k+'”"" + “: " +v);.If we were to log our result once
again, we would see the following: “{“name” : “Ben” }".

While the demonstration in Listing 5-1 possessed a singular member, it will not be
unlikely that the data requiring serialization possesses the makeup of objects nested within
objects. Four objects are used in total to represent our author object, as seen in Listing
5-4, and each is used to organize data. One object is used as a list, which includes the pets
owned by yours truly. Another two are used to capture the names and ages of each pet.
While both pets are contained within the ordered list, the ordered list itself is held as just
another property on our author instance.

Listing 5-4. A Nested Data Structure

var author = new Object();

author.name = "Ben";
author.age = 36;
author.pets = |
{ name : "waverly" , age },

3.5
{ name : "Westley" , age : 4 }
]

If we were to serialize author from Listing 5-4 using the stringify function
outlined in Listing 5-3, each property possessed by the top-level element would be
enumerated. Similarly, the value held by each key would be supplied to its own invocation
of the stringify function as the top-level element to have its composition serialized.
This process continues until all values of all structures have been analyzed, serialized, and
concatenated as a valid JSON text.

Note Object properties and Array indexes represent a key.

As the stringify function demonstrates, transforming a JavaScript object into a
valid JSON representation requires the use of identifying data types, recursion, and a
heavy amount of string manipulation. Fortunately for us, the formalizer of JSON, Douglas
Crockford, devised a JSON library that would conveniently produce JSON text from that
of a specified datum. The JSON library is a convenient JavaScript file, which can be
downloaded from the following GitHub URL:

www.it-ebooks.info

http://www.it-ebooks.info/

https://github.com/douglascrockford/JSON-
js/blob/master/json2.js.

The JSON Object

As a JavaScript file, the json2. js library can be included in any existing application, by
referencing the downloaded library within the <head></head> tags on each HTML
page that seeks use of it. Listing 5-5 incorporates the JSON library by referencing the
location of the library, relative to the top directory, within the script tag in the head of the
following HTML file. In this example, the json2. j s file has been downloaded within
the js/1ibs/ directory of the working directory of a project.

Listing 5-5. HTML Markup Referencing the Inclusion of the json2. js JavaScript
Library

<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<link rel="stylesheet" href="css/style.css">
<script src="js/libs/json2.js"></script>
</head>
<body>
</body>
</html>

When the page is viewed in a browser, and as soon as the json2. js file is loaded,
the JSON Object declared by json2. js is added to the global namespace, so that the
serialization method can be accessed from within any scope. Unlike the built-in objects,
such as Object or Array, whose global methods can be used as a constructor to create
instances of these objects via the keyword new, the JSON Object does not possess a
constructor at all. Instead, the JSON Object possesses two methods, parse and
stringify. However, this chapter will only discuss one of them: stringify.

stringify

As the name suggests, Stringify is used for serializing JavaScript values into that of a
valid JSON. The method itself accepts three parameters, value, replacer, and
space, as defined by the signature in Listing 5-6. As I mentioned, the JSON Object is a
global object that does not offer the ability to create any instances of the JSON Object.
Any attempt to do so will cause a JavaScript error. Therefore, one must simply access the
stringify method via the global JSON Object.

Listing 5-6. Syntax of the JSON stringify Method

Json.stringify(value[, replacer [, space]]);

www.it-ebooks.info

https://github.com/douglascrockford/JSON-js/blob/master/json2.js
http://www.it-ebooks.info/

Note The brackets surrounding the two parameters, replacer and space, is just a
way to illustrate in a method definition what is optional. However, while an argument
supplied to the method may be optional, you must follow the proper parameter order, as
outlined by the method. In other words, to specify an argument for space but not
replacer, you must supply null as the second argument to the stringify method.

value

The value parameter of the stringify method is the only required parameter of the
three outlined by the signature in Listing 5-6. The argument supplied to the method
represents the JavaScript value intended to be serialized. This can be that of any object,
primitive, or even a composite of the two. As both Objects and Arrays are composite
structures, the argument supplied can be in possession of any combination of objects and
primitives nested within, much like our author object from Listing 5-4. Let’s jump right
in and serialize our author object as shown in Listing 5-7.

Listing 5-7. HTML Markup Demonstrating the Output of JSON.stringify

<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<link rel="stylesheet" href="css/style.css">
<script src="js/libs/json2.js"></script>
</head>
<body>
<script>
//obtain a reference to the body tag
var body = document.getElementsByTagName("body")[0];

//function log will append a value to the body for
output

function log(jsonText) {

//surround supplied jsonText with double quotes
and append a new line

body.innerHTML += '"' + jsonText + ''
"';
b

var author = new Object();

author.name = "Ben";
author.age = 36;
author.pets = |

{ name : "waverly" , age

3.5 },
{ name : "Westley" , age : 4 }

1;

var JSONtext = JSON.stringify(author)
log(JSONtext);

www.it-ebooks.info

http://www.it-ebooks.info/

</script>
</body>
</html>

Listing 5-7 leverages the markup from Listing 5-5 and inserts within the body a script
defining our author object. Immediately following, we supply author into that of
JSON. stringify, which returns the following JSON text:

Il{llnamell : "Ben", Ilagell : 36, "petS" :
[{"name":"wWaverly", "age":3.5}, {""name":"Westley",6 "age":4}]}"

The produced JSON captures the data precisely as it was housed within the author
object. The great thing about the serialization process is that all of the work is
encapsulated behind the scenes. This allows us to remain unconcerned as to how the
encoding logic works, in order to be able to use it as we just have.

Serializing structures equivalent to author will work out marvelously, as it possesses
only the values that are formalized as valid values of the JSON grammar. On the other
hand, as the needs of an application become more complex than that of author, you may
encounter a few oddities in the way that your data is outputted.

Your program being written in JavaScript will surely take advantage of all the
language has to offer, as well it should. Yet, as JSON is a subset of the JavaScript
language, many objects and primitives employed by your application may not be
serialized as expected. You may come to find that this is both a blessing and a curse.
However, either way you see it, it will be an undeniable fact. Therefore, short of learning
the inner workings of the stringify method, it will be important to understand how the
serializer handles particular values it comes across, in order to be able to anticipate
arriving at the expected or even necessary results.

Tip The serialization process occurs in a synchronous manner. In other words, the
moment you call the stringify method, all remaining code that has to be executed
must wait for the serialization to conclude before it can proceed. Therefore, it will be wise
to keep your objects as concise as necessary during the serialization process.

EXERCISE 5-1. STRINGIFY

Let’s now experiment with a few types of data structures and see what JSON text is
outputted. Create an HTML file within the top root of a working directory, and within
it, copy the code from Listing 5-5. Within that same directory, create a j s/ directory
and a 11bs/ directory within it. If you have not already downloaded json2. js, do
so and save it within js/11bs/. Revisit the created . html file and within the body
tag, include the following lines of code:

O@1. <script>

02. //obtain a reference to the body tag
03. var body = document.getElementsByTagName(“body”)
[0];

www.it-ebooks.info

http://www.it-ebooks.info/

04. //function log will append a value to the body as
a string value for output

05. function log(jsonText) {

06. //wrap all strings with double quotes and
append a new line

07. body.innerHTML += '"' + jsonText

+ Ill<br->|;

08. }

09.

10. log(JSON.stringify(false));

11. 1log(JSON.stringify(undefined));

12. 1log(JSON.stringify([undefined]));

13. log(JSON.stringify([“undefined”, false]));

14. log(JSON.stringify({prop : undefined }));

15. log(JSON.stringify(new Date(“Jan 1 2015")));
16.

17. var obj = new Object();

18. obj.name = “name-test”;

19. obj.f = function() { return “function-
test” 1},

20.

21. 1log(JSON.stringify(obj));

22. log(JSON.stringify(“this example \uG@OOA\UEOOD has
control characters”));

23. 1log(JSON.stringify(“true”));

24, log(JSON.stringify(1/0));

25. log(JSON.stringify(Infinity));

26. log(JSON.stringify([function(){ return “A"}
1))

27 .

28. var selfReference= new Array();

29. selfReference[0]=selfReference;

30. //because line 31 will throw an error, we must
wrap it with a try catch to view the error

31. try{ JSON.stringify(selfReference) } catch(e){
log(e) };

32. </script>

Once you’ve added the following script to your HTML file, open that . html file in
your favorite browser and observe the output for each data serialized. Your results
should be comparable to the results shown in the following table.

Results of the Code Produced

Exercises Outputs

JSON.stringify(false); “false”

www.it-ebooks.info

http://www.it-ebooks.info/

JSON.stringify([undefined]); “Tnull]”
JSON.stringify([“undefined” , false]); “I\"undefined\”, false]”
JSON.stringify({ prop:undefined }); “{r

“*"2015-01-

JSON.stringify(new Date(“Jan 1 2015")); 01T05:00:00.000Z\" "

var obj= new Object();
obj.name=“name-test”;
obj.f=function(){
return “function-test”
i

JSON.stringify(obj);

“{\“name\” :\“name-test\"”}"”

JSON.stringify(“this example \uGOOA\UOOOD “\"this example \n\r has

has control characters”); control characters\””
JSON.stringify(“true”); “\"true\"”
JSON.stringify(1/0); “null”

JSON:.stringify(Infinity); “null”

JSON.stringify([function(){ return “A”}]); “Inull]”

var selfReference= new Array();
TypeError: cyclic object

selfReference[0]=selfReference;
value

JSON.stringify(selfReference);

As you can see from the results of our exercise, the Stringify method doesn’t
acknowledge a few values. First and foremost, you may have realized that an
undefined value is handled in one of two possible manners. If the value undefined
is found on a property, the property is removed entirely from the JSON text. If, however,
the value undefined is found within an ordered list, the value is converted to 'null"'.

Functions are also disregarded by the stringify method, even functions that would
return a string to the key holding it. The stringify method only analyzes and encodes
values; it does not evaluate them. Therefore, functions when encountered by stringify
are replaced with the undefined value. The rules I covered previously regarding an
undefined value will apply to the key that now references the assigned undefined
primitive. There is one method that will be invoked, if found to have that of a particular
method name. I will talk more about this later in the toJSON section.

As JavaScript does not possess a date literal, Dates are automatically serialized as
string literals, based on the (UTC) ISO encoding format.

All number values must be finite. If the number is evaluated to that of an Infinity
or NaN, the number will return as the literal 'null' value.

When the sole value serialized is that of a string value, its literal form is escaped and

www.it-ebooks.info

http://www.it-ebooks.info/

nested within another set of quotes.

The last takeaway from the preceding exercises is that JSON cannot handle cyclic
object values, meaning that neither an array nor object can possess a value that is a
reference to itself. Should you attempt to define a cyclic structure, an immediate error is
thrown.

toJSON

Because dates do not possess a literal form, the st ringify method captures all dates it
encounters as string literals. It captures not only the date but time as well. Because
stringify converts a date instance into a string, you might rationalize that it’s
produced by calling the toString method possessed by the Date object. However,
Date.toString(), does not produce a standardized value, but, rather, a string
representation whose format depends on the locale of the browser that the program is
running.! With this output lacking a standard, it would be less than ideal to serialize this
value for data interchange.

What would be ideal is to transform the contents into that of the ISO 8601 grammar,
which is the standard for handling date and time interchange.

Note A JavaScript Date Object can be instantiated with the provision of an ISO
formatted string.

To enable this feature, Crockford’s library also includes the t0JSON method, which is
appended to the prototype of the Date Object so that it will exist on any date. Listing 5-8
reveals the default toJSON function that will be inherited by any and all dates.

Listing 5-8. Default toJSON Implementation

Date.prototype.toJSON = function(key) {
function f(n) {
// Format integers to have at least two digits.
return n < 10 ? '0' + n : n;

}

return this.getUTCFullYear() + '-' +
f(this.getUTCMonth() + 1) + '-' +
f(this.getUTCDate()) + 'T' +
f(this.getUTCHours()) + ':' +
f(this.getUTCMinutes()) + ':"' +
f(this.getUTCSeconds()) + 'Z';

I

When stringify invokes the toJSON method, it expects to be provided a return
value. In Listing 5-8, the value being returned is a string that is devised from the
concatenation of the methods possessed by the instance being analyzed. The return value
can be of any value that is defined in the JSON subset. Upon returning a value, the logic

www.it-ebooks.info

http://www.it-ebooks.info/

within stringify will continue to ensure that your value is analyzed. It will do so
iteratively if returned in the form of an object or, more simply, if the value returned is a
primitive, it’s converted into a string and sanitized. Because stringify continues to
analyze the retuned value, the rules of Table 5-1 continue to apply.

Note Because t0JSON exists as a method of a Date Object, the this keyword
remains scoped to the particular instance being analyzed. This allows the serialization
logic to be statically defined, yet each instance at runtime will reference its own values.

If you are curious as to the purpose of function f, function f wraps each method and
prefixes each result with 0, if the returned number is less than 10, in order to maintain a
fixed number of digits. Last, each number is arranged in a sequence combined with
various tokens and joined into a string, resulting in a valid grammar, according to the IS0
8601 specification.

What is important to know about the toJSON method is that it can be used on more
than dates. For each object analyzed, the internal logic of the Stringify method
invokes said t0JSON method, if it is in possession of one. This means we can add
t0JSON to any built-in JavaScript Object, and even to custom classes, which, in turn, will
be inherited by their instances. Furthermore, we can add it to individual instances. This
inherit ability to add a toJSON method enables each application to provide the necessary
encoding that might not otherwise be possible by default, such as that of our date.

Note Custom classes, when serialized, are indistinguishable from the built-in objects
types.

Each call to the toJSON method is supplied with a key as an argument. This key
references the holder of the value that Stringify is currently examining. If the key is a
property on an object, that properties label is supplied as the key to the method. If the key
is the index of an array, the argument supplied will be an index. The former provides
useful insight when devising conditional logic that must remain flexible or dependent on
the instances context, whereas the latter is less indicative. Our author object possesses
both a collection of key/value pairs and an ordered collection. By adding a t0oJSON
method to all object instances, we can easily log the key that is provided to each toJSON
invocation, as achieved in Listing 5-9.

Listing 5-9. Attaching the toJSON Function to the Object Will Cause All JavaScript
objects to Possess It

Object.prototype.toJSON=function(key){

//1og the key being analyzed

console.log(key); //outputs the key for the current
context (shown below)

//1og the scope of the method

console.log(this); //outputs the current context (shown
below)

//return the object as is back to the serializer

www.it-ebooks.info

http://www.it-ebooks.info/

return this;

}

var author = new Object();

author.name = "Ben";
author.age = 36;
author.pets = |
{ name : "waverly" , age 3.5 },
{ name : "Westley" , age 4 1}
17

JSON.stringify(author);

/* captured output from the above Listing */
//the author object being analyzed

//(key) mnmn

//(context) Object { name="Ben", age=36, pets=[2],
more...} //truncated

//the pets object being analyzed

//(key) pets
//(context) [Object { name="Wwaverly", age=3.5,
toJSON=function()},

-0bject { name="Westley", age=4,
toJSON=function()}]

//index 0 of array being analyzed

//(key) 0

//(context) Object { name="Waverly", age=3.5,
toJSON=function()}

//index 1 of array being analyzed

//(key) 1

//(context) Object { name="Westley", age=4,
toJSON=function()}

"{"name":"Ben", "age":36, "pets":
[{"name":"wWaverly", "age":3.5}, {"name":"Westley",6 "age":4}]}"

Listing 5-9 demonstrates that each object that possesses the t0JSON method is
supplied with the key by which it is held. These values are logged in the order in which
the properties are enumerated by the JavaScript engine. The first key that is logged from
our t0JSON method is that of an empty string. This is because the stringify
implementation regards key/value pairs. As you can see, the immediate logging of this
reveals the author object. With the return of the invoked method, stringify
continues onto the next object it encounters.

Note The key of the initial value is always that of an empty string.

The next object the stringify method encounters happens to be that of an array.
An array, as a subtype of Object, inherits and exposes the t0JSON method and is,

www.it-ebooks.info

http://www.it-ebooks.info/

therefore, invoked. The key it is passed is the identifier pets. Respectively, both objects

contained within are invoked and provided the index to which they are ordered, those keys
being O and 1.

The £t0JSON method provides a convenient way to define the necessary logic wherein
the default behavior may fall short. While this is not always ideal, it is often necessary.
However, the toJSON method is not the only means of augmenting the default behavior
of the stringify method.

replacer

The second parameter, replacer, is optional, and when supplied, it can augment the
default behavior of the serialization that would otherwise occur. There are two possible
forms of argument that can be supplied. As explained within the ECMA-262
standardization, the optional replacer parameter is either a function that alters the way
objects and arrays are stringified or an array of strings and numbers that acts as a white list

for selecting the object properties that will be stringified.?

replacer Array

Suppose I had the following JavaScript data structure (see Listing 5-10) and decided to
serialize it using the built-in JSON Object and its Stringify method. By supplying the
author instance as the value into the JSON. stringify method, I would be provided
with the result displayed in Listing 5-10.

Listing 5-10. Replaced Pets Property with E-mail

var author = new Object();
author.name="ben";
author.age=35;
author.email="iben@spilled-milk.com";

JSON.stringify(author);
// "{"name":"ben", "age":35, "email":"iben@spilled-
milk.com"}"

As expected, the produced JSON text reflects all of the possessed properties of the
author object. However, suppose that e-mail addresses were not intended to be
serialized by our application. We could easily delete the e-mail property and then pass
author through stringify. While that would prevent the e-mail address from being
serialized, this method could prove problematic if our application continued to require use
of the e-mail address. Rather than delete the value from the author object, we could take
advantage of the replacer method.

Were we to supply the replacer parameter with an array whose values outline the
properties we desire Stringify to serialize, the JSON text would only capture those
key/value pairs. Listing 5-11 white lists the two properties, name and age, that our
application is permitted to serialize.

www.it-ebooks.info

http://www.it-ebooks.info/

Listing 5-11. Supplying a replacer array Can Specify What Keys to Output

//... continuation of Listing 5-10
JSON.stringify(author, ["name","age"]); // "{"
namell : Ilbenll , llagell : 35"}"

Providing an ordered list as the replacer argument filters the properties that are
output during serialization. Any identifiers that are not specified within the replacer
array will not become a part of the JSON text. As an additional point, the order of our
white-listed properties affects the way in which they respectively occur in the serialized
output. Listings 5-11 and 5-12 vary by the order of the white-listed properties supplied in
the replacer. The results reflect the specified order in each JSON text produced.

Listing 5-12. The Order of the White-Listed Properties Determines the Order in Which
They Are Captured

//... continuation of Listing 5-10
JSON.stringify(author, ["age", "name"]); // "
{llagell : 35", llnamell : Ilbenll}ll

Listing 5-11 displays name in the JSON text first, whereas in Listing 5-12, name
appears last. This has to do with the fact that our replacer argument is an array, and an
array is simply an ordered list. In this case, the ordered list just so happens to expresses
our white-listed properties. The serialization process then iterates over each white-listed
identifier in ascending order for each collection of name/value pairs it may come across.

White-listed properties mustn’t be provided in string literal form. They can also be
represented as a primitive number. However, any number the method encounters is
converted into its string equivalent. This is due to the fact that keys are always stored as
strings behind the scenes. This is demonstrated in Listing 5-13.

Listing 5-13. Numbers Used As Keys Are Converted to Strings

var yankeesLineup = new Object();
yankeesLineup['1'] ="Jacoby Ellsbury";
yankeesLineup['2'] ="Derek Jeter";
yankeesLineup['3'] ="Carlos Beltran";
yankeesLineup['4'] ="Alfonso Soriano";
//...etc

JSON.stringify(yankeesLineup, [1,2]);
// "{"1":"Jacoby Ellsbury","2":"Derek Jeter"}"

Note Even array indexes are converted into strings behind the scenes.

Tip While numbers are allowed as white-listed values, it will always be best to supply
a string representation, as it will convey meaning to those who may not know that
numbers are converted to strings behind the scenes when used as keys. Furthermore, using
numbers as a property identifier is not the best choice for a meaningful label.

www.it-ebooks.info

http://www.it-ebooks.info/

replacer Function

The alternate form that can be supplied as the replacer is that of a function. Supplying a
function to the replacer property allows the application to insert the necessary logic
that determines how objects within the st ringify method are serialized, much like that
of the toJSON method. In fact, the replacer function and the t0JSON method are
nearly identical, apart from three distinguishable characteristics. The first is that one is a
function and the other is a method. The second is that the replacer function is provided
iteratively, the key for every property encountered. Last, the replacer function is
provided the value held by each key. As you can see from the method definition in Listing
5-14, the replacer function expects to be provided with two arguments, k and v.

Note Only properties whose values are both owned by the object being traversed, in
addition to being enumerable, are discovered during the iterative process.

Listing 5-14. Signature of the replacer Function
var replacerFunction = function(k, v);

The k argument will always represent the identifier (key) per object the method seeks
to encode, whereas the v parameter represents the value held by said key.

Note If the replacer method is used in conjunction with an object that possesses a
t0JSON method, the value of v will be that of the result provided by the toJSON
method.

The context of the t0JSON method will always be that of the object for which it’s
defined. A method’s scope is always tied to the object for which it exists. Contrary to
methods, a function’s scope is tied to that of where it was declared. However, within the
stringify method, the scope of the replacer function supplied is continuously set
to the context of each object whose key and value are being supplied as arguments. This
means that the implicit this possessed by all functions will always point to the object
whose keys are currently being analyzed within the Stringify method.

Let’s revisit our example from Listing 5-9. However, this time, rather than define a
t0JSON that is inherited by all objects, we will supply stringify witha replacer
function. As we are not concerned with customizing the default serialization of any values
for the purpose of this illustration, Listing 5-15 returns back to stringify the value, V, it has
supplied to us.

Listing 5-15. Logging All Keys, Values, and Context with the replacer Function

var author = new Object();

author.name = "Ben";
author.age = 36;
author.pets = |

{ name : "waverly" , age : 3.5 },

www.it-ebooks.info

http://www.it-ebooks.info/

{ name : "Westley" , age : 4 }
17

JSON.stringify(author,
function(k, v){
console.log(this);
console.log(k);
console.log(v);
return v;

1)

//the initial object wrapper being analyzed

//(context) Object {{...}} //truncated

// (key) (an empty string)

//(value) Object { name="Ben'", age=36, pets=[...]}
//truncated

//the author object ben property being analyzed

//(context) Object { name="Ben", age=36, pets=[...]}
//truncated

// (key) name

//(value) Ben

//the author object age property being analyzed

//(context) Object { name="Ben", age=36, pets=[...]}
//truncated

// (key) age

//(value) 36

//the author object pets property being analyzed

//(context) Object { name="Ben", age=36, pets=[...]}
//truncated

// (key) pets

//(value) [Object { name="waverly", age=3.5}, Object
{ name="Westley", age=4}]

//the pets object 0 index being analyzed

//(context) [Object { name="Wwaverly", age=3.5}, Object
{ name="Westley", age=4}]

//(key) 0]

//(value) Object { name="waverly", age=3.5}

//the 0 index name property being analyzed

//(context) Object { name="Waverly", age=3.5}
//(key) name

//(value) Waverly

//the 0 index age property being analyzed

//(context) Object { name="Waverly", age=3.5}
//(key) age

//(value) 3.5

//the pets object 1 index being analyzed

//(context) [Object { name="Waverly", age=3.5}, Object
{ name="Westley", age=4}]

//(key) 1

www.it-ebooks.info

http://www.it-ebooks.info/

//(value) Object { name="Westley'", age=4}
//the 1 index name property being analyzed
//(context) Object { name="Westley", age=4}
//(key) name

//(value) Westley
//the 1 index age property being analyzed

//(context) Object { name="Westley", age=4}
//(key) age
//(value) 4

//JSON text "{"name":"Ben", "age":36, "pets":
[{"name":"wWaverly", "age":3.5}, {"name":"Westley",6 "age":4}]}"

While Listing 5-15 utilizes the same data structure from our toJSON example, in
Listing 5-9, you will most certainly be able to perceive that the results logged in Listing 5-
15 are far more plentiful. This is due to the fact that, unlike toJSON, the replacer
function is triggered for each property encountered on every object.

The benefit of the keys provided to both the replacer function and toJSON is that
they offer your application a means to flag a property whose value requires custom
serializing. Listing 5-16 demonstrates how we can leverage a supplied key to prevent a
value or values from being captured in the produced JSON text.

Listing 5-16. replacer Function Can Be Used to Provide Custom Serializing

var author = new Object();
author.name = "Ben";
author.age 36;
author.pets [
{ name : "waverly" , age 3.5
{ name : "Westley" , age : 4 }

s
1;

var replacer= function(k,v){
//1if the key matches the string 'age'
lf(===llagell){
//remove 1t from the final JSON text
return undefined;
} //else
return v;
}
JSON.stringify(author, replacer);
// "{"name":"Ben", "pets":[{"name":"Waverly"},
{"name":"Westley"}]}"

Listing 5-16 leverages the uniqueness of the age identifier so that it can determine
when to remove it from the final JSON text, by returning the value of undefined.
While this is a valid example, it could have been equally satisfied by the replacer
array. The takeaway is that the identifier can be extremely instrumental in the

www.it-ebooks.info

http://www.it-ebooks.info/

orchestration of custom serialization.

The return value, much like in the case of t0JSON, can be that of any value outlined
in the JSON subset. The serializer will continue to ensure that your value is iteratively
analyzed if returned in the form of an object, or converted into a string and sanitized, if
returned as a primitive. Furthermore, the rules of Table 5-1 will always apply to any and
all returned values.

space

The third parameter, Space, is also optional and allows you to specify the amount of
padding that separates each value from one another within the produced JSON text. This
padding provides an added layer of readability to the produced string.

The argument supplied to the parameter must be that of a whole number equal or
greater to 1. Supplying a number less than 1 will have no effect on the produced JSON
text. However, if the number supplied is 1 or greater, the final representation of the JSON
text will display each value indented by the specified amount of whitespace from the left-
hand margin. A margin is established by the inclusion of new line characters after each of
the following tokens: {, }, [, and].

In other words, new line-control characters are inserted into the produced JSON after
each opening/closing token, for both an array or object. Additionally, a new line character
is added after each separator token. Listing 5-17 contrasts the produced JSON text with
and without padding.

Listing 5-17. JSON Text with Added Padding
var obj={ primitive:"string", array:["a","b"] };

JSON.stringify(obj,null,e);
-//(n0o padding)
// "{"primitive":"string", "array":["a","b"]}"

JSON.stringify(obj, null,s);
-/* (8 spaces of added padding)

Il{
"primitive": "string",
"array": [
"a",
llbll
]
}Il
*/

The provision of the space parameter will have no effect on a JSON text if it does not
possess either an array or object, regardless of the value specified. Listing 5-18 indicates
that eight spaces should be applied to the produced JSON. However, because it is not in
possession of either an object or array, no padding is applied.

www.it-ebooks.info

http://www.it-ebooks.info/

Listing 5-18. Space Only Works on objects and arrays

var primitive="string",;

var JSONtext= JSON.stringify(primitive , null ,8);
console.log(JSONtext);

// IIIIStr—ingllll

The added padding appended to the final JSON text will have zero impact on its
conversion back into that of a JavaScript object. Additionally, the inclusion of whitespace
and new line characters will not add significant weight that would slow its transmission
across the Internet.

Summary

In this chapter, we covered the JSON library, which enables JavaScript structures to
become serialized for storage and data interchange. This was accomplished via
downloading the JSON library and referencing the JSON global object and its
stringify method. What you may not know is that even though we downloaded the
JSON library and referenced it within our . html files for this chapter, the odds are you
did not require it.

As I mentioned in Chapter 4, JSON is incorporated within the ECMA-262, 5th edition.
What this means is that any browser that aligns with ECMA 5th edition standards or
greater possesses the native JSON Object as the means for both serializing and
deserializing JSON. Table 5-2 lists the versions of each browser that possess the JSON
Object.

Table 5-2. Minimal Browser Versions That Possess the JSON Object

Browser Version
FireFox 3.5+
Chrome 5+
Safari 4.0.5+
Opera 10.5+
Internet Explorer 8+

In any browser whose version is greater or equal to what is listed, you would be
successful in referring to the native JSON Object. There is absolutely zero harm in
incorporating the JSON library as we have, in addition to working with a browser
mentioned in the preceding table. The reason for this is because the library first checks to
see if a JSON Object currently exists before creating one and attaches it to the global
namespace. If one is found to exist when the library is loaded into the script, it does not
take any action. Listing 5-19 demonstrates how if there isn’t already a global JSON
Object, one is created.

www.it-ebooks.info

http://www.it-ebooks.info/

Listing 5-19. JSON Object is Instantiated Only if One Does Not Exist

if (typeof JSON !== 'object') {
JSON = {},;
¥

What this means is that the library will only have an impact on browsers whose
versions are below that of Table 5-2. While it’s becoming increasingly less likely you will
continue to cater to browsers before Internet Explorer 8, some clients continue to require
it.

The benefit of having you download the JSON library rather than reference the native
JSON Object is that at any point during our discussion, you possess the ability to open the
JSON library and review the code within, whereas you would not be as fortunate to do so
with the alternative, because, being native, it’s built into the browser. Therefore, there is
no code to review.

What is important to remember about this chapter is that much like in the Matrix,
knowing the rules allows you to bend the rules in your favor.

Key Points from This Chapter

e Numbers must be finite, or they are treated as null.

e A value that is not recognized as a valid JSON value produces the
undefined value.

¢ A function whose name is not toJSON is ignored.

e Properties whose values are undefined are stripped.

e If the value of an array is that of undefined, it is treated as null.
e The primitive null is treated as the string null.

e A TypeError Exception is thrown when a structure is cyclic.

e t0JSON and the replacer parameter allow applications to supply
necessary logic for serialization.

e t0JSON can be defined on any built-in object and even overridden.
e Areplacer array identifies the properties that should be serialized.

e A replacer function is invoked with every property in the data
structure.

e t0JSON this explicitly refers to the object it’s defined on.

e Areplacer function’s this implicitly refers to the object that is
currently being analyzed.

o A key is either a property possessed by an object or the index of an
array.

www.it-ebooks.info

http://www.it-ebooks.info/

e Custom classes are captured as ordinary objects.

In the next chapter, you will continue to learn how we can use the JSON Object’s
second method, parse, to convert JSON back into a usable JavaScript value.

1Microsoft, Internet Explorer Dev Center, “toString Method (Date),” http://msdn.microsoft.com/en-
us/library/ie/jj155294%28v=vs.94%29.aspx.

2ECMA International, ECMAScript Language Specification, Standard ECMA-262, Edition 5.1, www . ecma -
international.org/publications/files/ECMA-ST/Ecma-262.pdf, June 2011.

www.it-ebooks.info

http://msdn.microsoft.com/en-us/library/ie/jj155294%28v=vs.94%29.aspx
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://www.it-ebooks.info/

CHAPTER 6

Parsing JSON

In the last chapter, I discussed how to convert a JavaScript value into a valid JSON text
using JSON. stringify. In Chapter 4, you learned how JSON utilizes JavaScript’s
literal notation as a way to capture the structure of a JavaScript value. Additionally, you
learned in that same chapter that JavaScript values can be created from their literal forms.
The process by which this transformation occurs is due to the parsing component within
the JavaScript engine. This brings us full circle, regarding the serializing and deserializing
process.

Parsing is the process of analyzing a string of symbols, either in natural language or in
computer languages, according to the rules of a formal grammar. As the grammar of JSON
is a subset of JavaScript, the analysis of its tokens by the parser occurs indifferently from
how the Engine parses source code. Because of this, the data produced from the analysis
of the JSON grammar will be that of objects, arrays, strings, and numbers. Additionally,
the three literals—true, false, and null—are produced as well.

Within our program, we will be able to refer to any of these data structures as we
would any other JavaScript value. In this chapter, you will learn of the manners by which
we can convert valid JSON into usable JavaScript values within our program.

JSON.parse

In our investigation of the JSON Object, I discussed how the JSON Object possesses two
methods. On one hand, there is the stringify method, which produces serialized JSON
from a datum. And on the other hand, there is a method that is the antithesis of
stringify. This method is known as parse. In a nutshell, JSON. par se converts
serialized JSON into usable JavaScript values. The method JSON. parse, whose
signature can be observed in Listing 6-1, is available from the json2. js library, in
addition to browsers that adhere to ECMA 5th edition specifications.

Listing 6-1. Syntax of the JSON . par se Method

JSON.parse(text [, reviver]);

Until Internet Explorer 7 becomes a faded memory only to be kept alive as a myth
when whispered around a campfire as a horror story, it will continue to be wise to include
the json2. js library into your projects that work with JSON. Furthermore, json2.js
is a fantastic way to gain insight into the inner workings of the method, short of
interpreting ECMA specifications.

As outlined in the preceding, JSON. parse can accept two parameters, text and

www.it-ebooks.info

http://www.it-ebooks.info/

reviver. The name of the parameter text is indicative of the value it expects to
receive. The parameter reviver is used similarly to the replacer parameter of
stringify, in that it offers the ability for custom logic to be supplied for necessary
parsing that would otherwise not be possible by default. As indicated in the method’s
signature, only the provision of text is required.

You will learn about the optional reviver parameter a bit later. First, we will begin
an exploration of the text parameter. The aptly named parameter text implies the
JavaScript value, which should be supplied. Of course, this is a string. However, more
specifically, this parameter requires serialized JSON. This is a rather important aspect,
because any invalid argument will automatically result in a par se error, such as that
shown in Listing 6-2.

Listing 6-2. Invalid JSON Grammar Throws a Syntax Error

var str = JSON.parse("abc123"); //SyntaxError: JSON.parse:
unexpected character

Listing 6-2 throws an error because it was provided a string literal and not serialized
JSON. As you may recall from Chapter 4, when the sole value of a string value is
serialized, its literal form is captured within an additional pair of quotes. Therefore,
“abc123"” must be escaped and wrapped with an additional set of quotation marks, as
demonstrated in Listing 6-3.

Listing 6-3. Valid JSON Grammer Is Successfully Parsed

var str = JSON.parse("\"abc123\""); //valid JSON string
value

console.log(str) //abcl123;
console.log(typeof str) //string;

The JavaScript value of a parsed JSON text is returned to the caller of the method, so
that it can be assigned to an identifier, as demonstrated in Listing 6-3. This allows the
result of the transformation to be referenced later throughout your program.

While the preceding example was supplied with a simple JSON text, it could have
been a composite, such as a collection of key/value pairs or that of an ordered list. When a
JSON text represents nested data structures, the transformed JavaScript value will
continue to retain each nested element within a data structure commonly referred to as a
tree. A simple explanation of a data tree can be attributed to a Wikipedia entry, which
defines a tree as a nonlinear data structure that consists of a root node and, potentially,

many levels of additional nodes that form a hierarchy.!

Let’s witness this with a more complex serialized structure. Listing 6-4 revisits our
serialized author object from the previous chapter and renders it into JSON. parse.
Using Firebug in conjunction with console. log, we can easily view the rendered tree
structure of our author object.

Listing 6-4. Composite Structures Create a Data Tree

var JSONtext= '{"name":"Ben", "age":36,"pets":[{"name":"Waverly", "age":3.5},

www.it-ebooks.info

http://www.it-ebooks.info/

{"name" :"Westley",6 "age":4}]}"';
var author = JSON.parse(Jsontext);
console.log(author);

/*Firebug Illustrates the parsed Data Tree of our serialized JSON text
below

age 36

name ''Ben"
> pets [Object { name="Wwaverly", age=3.5 }, Object
{ name="Westley", age=4 }]

VYo Object { name="waverly", age=3.5 }

Vi Object { name="Westley", age=4 }
*/

Once a JSON text is converted into that of a data tree, keys, also called members,
belonging to any level of node structure are able to be referenced via the appropriate
notion (i.e., dot notation/array notation). Listing 6-5 references various members existing
on the author object.

Listing 6-5. Members Can Be Accessed with the Appropriate Notation

var JSONtext= '{"name":"Ben", "age":36, "pets":
[{"name":"wWaverly", "age":3.5}, {"name":"Westley", "age":4}]}";
var author = JSON.parse(JSONtext);

console.log(typeof author) //object;
console.log(author.name) // Ben
console.log(author.pets.length) // 2;
console.log(author.pets[0].name) // Waverly;

The magic of JSON. parse is twofold. The first proponent that allows for the
transformation of JSON text into that of a JavaScript value is JSON’s use of literals. As
we previously discussed, the literal is how JavaScript data types can be “literally” typed
within source code.

The second aspect is that of the JavaScript interpreter. It is the role of the interpreter to
possess absolute understanding over the JavaScript grammar and determine how to
evaluate syntax, declarations, expressions, and statements. This, of course, includes
JavaScript literals. It is here that literals are read, along with any other provided source
code, evaluated by the interpreter of the JavaScript language and transformed from
Unicode characters into JavaScript values. The JavaScript interpreter is safely tucked
away and encapsulated within the browser itself. However, the JavaScript language
provides us with a not-so-secret door to the interpreter, via the global function eval.

eval

The eval function is a property of the global object and accepts an argument in the form
of a string. The string supplied can represent an expression, statement, or both and will be
evaluated as JavaScript code (see Listing 6-6).

www.it-ebooks.info

http://www.it-ebooks.info/

Listing 6-6. eval Evaluates a String As JavaScript Code
eval("alert(\"hello world\")");

Albeit a simple example, Listing 6-6 illustrates the use of eval to transform a string
into a valid JavaScript program. In this case, our string represents a statement and is
evaluated as a statement. If you were to run this program, you would see the dialog
prompt appear with the text hel1lo world. While this is a rather innocent program, and
one created to be innocuous, you must take great caution with what you supply to eval,
as this may not always be the case. Listing 6-7 reveals that eval will also evaluate
expressions.

Listing 6-7. eval Returns the Result of an Evaluation

var answer = eval("1+5");
console.log(answer) //6;

The eval function not only evaluates the string provided, but it can also return the
result of an evaluated expression so that it can be assigned to a variable and referenced by
your application. Expressions needn’t be mere calculations either, as demonstrated in
Listing 6-8. If we were to supply eval with a string referencing an object literal, it, too,
would be evaluated as an expression and returned as a JavaScript instance that
corresponds to the represented object literal.

Listing 6-8. object Literals Can Be Evaluated by the eval Function

var array = eval("['wWaverly',6 '"Westley',6 'Ben']");
console.log(array[1l]) //Westley;

Because JSON is a subset of JavaScript and possesses its own specification, it is
important to always ensure that the supplied text is indeed a sequence of valid JSON
grammar. Otherwise, we could be unaware of welcoming malicious code into our
program. This will become more apparent when we invite JSON text into our program via
Ajax. For this reason, while eval possesses the means to handle the transformation of
JSON into JavaScript, you should never use eval directly. Rather, you should always rely
on the either the JSON2. js library or the built-in native JSON Object to parse your
JSON text.

If you were to open the json2. js library and review the code within the parse
function, you would find that the JSON . par se method occurs in four stages.

The first thing the method aims to accomplish, before it supplies the received string to
the eval function, is to ensure that all necessary characters are properly escaped,
preventing Unicode characters from being interpreted as line terminators, causing syntax
errors. For example, Listing 6-9 demonstrates that you cannot evaluate a string possessing
a carriage return, as it will be viewed as an unterminated string literal.

Listing 6-9. String Literals Cannot Possess Line Breaks

var str="this is a sentence with a new line

www.it-ebooks.info

http://www.it-ebooks.info/

here is my new line";
// SyntaxError: unterminated string literal

// Similarly

eval("\"this is a sentence with a new line \u@0Oa.. here 1is
my new line\"");

// SyntaxError: unterminated string literal

However, as stated by EMCA-262, section 7.3, line terminator characters that are
preceded by an escape sequence are now allowed within a string literal token.? By
escaping particular Unicode values, a line break can be evaluated within a string literal, as
demonstrated in Listing 6-10.

Listing 6-10. String Literals Can Only Possess Line Breaks If They Are Escaped

eval("\"this is a sentence with a new line \\u0@0Oa.. here 1is
my new line\""),; //will succeed

The JSON library does not just ensure that Unicode characters are properly escaped
before they are evaluated into JavaScript code. It also works to ensure that JSON grammar
is strictly adhered to. Because JSON is simply text, its grammar can be overlooked, if it is
not created via JSON. stringify or a similar library. Furthermore, because a string can
possess any combination of Unicode characters, JavaScript operators could be easily
inserted into a JSON text. If these operators were evaluated, they could be detrimental to
our application, whether or not they were intended to be malicious. Consider an innocent
call that has an impact on our system, as shown in Listing 6-11.

Listing 6-11. Assignments Can Impact Your Existing JavaScript Values

var fo0=123
eval("var foo = \'"abc\"");
console.log(foo); // abc

Because JavaScript values can easily be overwritten, as demonstrated in Listing 6-11,
it is imperative that only valid JSON text is supplied to eval.

The second stage of the par se method is to ensure the validity of the grammar. With
the use of regular expressions, stage two seeks out tokens that do not properly represent
valid JSON grammar. It especially seeks out JavaScript tokens that could nefariously
cause our application harm. Such tokens represent method invocations, denoted by an
open parenthesis (() and close parenthesis ()); object creation, indicated by the keyword
new; and left-handed assignments, indicated by the use of the equal (=) operator, which
could lead to the mutation of existing values. While these are explicitly searched for, if
any tokens are found to be invalid, the text will not be further evaluated. Instead, the
par se method will throw a syntax error.

However, should the provided text in fact appear to be a valid JSON, the parser will
commence stage three, which is the provision of the sanitized text to the eval function. It
is during stage three that the captured literals of each JSON value are reconstructed into
their original form. Well, at least as close to their original form as JSON’s grammar allows

www.it-ebooks.info

http://www.it-ebooks.info/

for. Remember: JSON’s grammar prohibits a variety of JavaScript values, such as the
literal undefined, functions and methods, any nonfinite number, custom objects, and
dates. That said, the par se method offers the ability for us to further analyze the
produced JavaScript values in a fourth and final stage, so that we can control what
JavaScript values are returned for use by our application. If, however, the reviver
parameter is not supplied, the produced JavaScript value of the eval function is returned
as is.

The final stage of the par se operation occurs only if we supply an argument to the
method, in addition to the JSON text we seek to be transformed. The benefit of the
optional parameter is that it allows us to provide the necessary logic that determines what
JavaScript values are returned to our application, which otherwise would be impossible to
achieve by the default behavior.

reviver

The reviver parameter, unlike the replacer parameter of the stringify method,
can only be supplied a function. As outlined in Listing 6-12, the reviver function will
be provided with two arguments, which will assist our supplied logic in determining how
to handle the appropriate JavaScript values for return. The first parameter, K, represents
the key or index of the value being analyzed. Complementarily, the vV parameter represents
the value of said key/index.

Listing 6-12. Signature of reviver Function
var reviver = function(k,v);

If a reviver function is supplied, the JavaScript value that is returned from the
global eval method is “walked” over, or traversed, in an iterative manner. This loop will
discover each of the current object’s “own” properties and will continue to traverse any
and all nested structures it possesses as values. If a value is found to be a composite
object, such as array or object, each key that object is in possession of will be iterated over
for review. This process continues until all enumerable keys and their values have been
addressed. The order in which the properties are uncovered is not indicative of how they
are captured within the object literals. Instead, the order is determined by the JavaScript
engine.

With each property traversed, the scope of the reviver function supplied is
continuously set to the context of each object, whose key and value are supplied as
arguments. In other words, each object whose properties are being supplied as arguments
will remain the context of the implicit this within the reviver function. Last, it will
be imperative for our reviver method to return a value for every invocation; otherwise,
the JavaScript value returned will be that of undefined, as shown in Listing 6-13.

Listing 6-13. Members Are Deleted If the Returned Value from reviver Is
undefined

var JSONtext='{"name":'"Ben", "age":36, "pets":

www.it-ebooks.info

http://www.it-ebooks.info/

[{"name":"waverly", "age":3.5}, {"name":"Westley",6 "age":4}]}";
var reviver= function(k,v){},

var author = JSON.parse(JSONtext, reviver);
console.log(author) //undefined

console.log(typeof author) //undefined

If the return value from the reviver function is found to be undefined, the
current key for that value is deleted from the object. Specifying the supplied v value as the
return object will have no impact on the outcome of the object structure. Therefore, if a
value does not require any alterations from the default behavior, just return the supplied
value, Vv, as shown in Listing 6-14.

Listing 6-14. Returning the Value Supplied to the reviver Function Maintains the
Original Value

var JSONtext='{"name":'"Ben'",6 "age":36, "pets":
[{"name":"wWaverly", "age":3.5}, {"name":"Westley", "age":4}]}";
var reviver= function(k,v){ return v },
var author = JSON.parse(JSONtext, reviver);
console.log(author);
/* the result as show in firebug below

age 36

name ''Ben"
P> pets [Object { name="Waverly", age=3.5 }, Object
{ name="Westley", age=4 }]

¥V o Object { name="waverly'", age=3.5 }

vV 1 Object { name="Westley'", age=4 }
*/
console.log(typeof author); //object

As was stated earlier, a well-defined set of object keys is not only useful for your
application to target appropriate data but can also provide the necessary blueprint to our
reviver logic for clues leading to how and when to alter a provided value. The
reviver function can use these labels as the necessary conditions to further convert the
returned values of the eval, in order to arrive at the JavaScript structures we require for
our application’s purposes.

As you should be well aware at this point, JSON grammar does not capture dates as a
literal but, instead, as a string literal in the UTC ISO format. As a string literal, the built-in
eval function is unable to handle the conversion of said string into that of a JavaScript
date. However, if we are able to determine that the value supplied to our reviver
function is a string of ISO format, we could instantiate a date, supply it with our ISO-
formatted string, and return a valid JavaScript date back to our application. Consider the
example in Listing 6-15.

Listing 6-15. With the reviver Function, ISO Date-Formatted Strings Can Be
Transformed into date objects

www.it-ebooks.info

http://www.it-ebooks.info/

var date= new Date("Jan 1 2015");
var stringifiedData = JSON.stringify(date);
console.log(stringifiedData); // "2015-01-
01T05:00:00.000Z"
var dateReviver=function(k,v){

return new Date(V);
}

var revivedDate = JSON.parse(stringifiedData
, dateReviver);

console.log(revivedDate); //pate {Thu Jan 01 2015 00:00:00 GMT-
0500 (EST)}

Because the ISO date format is recognized as a standard, JavaScript dates can be
initiated with the provision of an ISO-formatted string as an argument. Listing 6-15 shows
a program that begins with a known JavaScript date set to January 1, 2015. Upon its
conversion to a JSON text, our date is transformed into a string made up of the ISO 8601
grammar. By supplying a reviver function, which possesses the necessary logic,
JSON. parse is able to return a date to our application.

For purely illustrative purposes, Listing 6-15 does not have to determine if the value
supplied is in fact an ISO-formatted string. This is simply because we know the value
being supplied is solely that. However, it will almost always be necessary for a reviver
function to possess the necessary conditional logic that controls how and when to treat
each supplied value.

That said, we could test any string values supplied to our reviver function against
the ISO 8601 grammar. If the string is determined to be a successful match, it can be
distinguished from an ordinary string and thus transformed into a date. Consider the
example in Listing 6-16.

Listing 6-16. RegEXxp Can Match ISO-Formatted Strings

var book={};
book.title = "Beginning JSON"
book.publishDate= new Date("Jan 1 2015");
book.publisher= "Apress";
book.topic="JSON Data Interchange Format"

var stringifiedData = JSON.stringify(book);
console.log(stringifiedData);

// ["value held by index 0",'"2015-01-
01T05:00:00.000Z2", "value held by index 2", "value held by
index 3"]

var dateReviver=function(k,Vv){

var ISOregExp=/A([\+-]2\d{4}(?'\d{2}\b))((-?)((O[1-
9]111[0-2])(\3([12]\d|0[1-9]|3[01]))?|W([O-4]\d|5[0-2])(-?[1-
71)?1(00[1-9][0[1-9]\d| [12]\d{2}|3([0-5]\d|6[1-6]))) ([T\s]
((([02]N\d|2[0-3])((:?)[0-5]\d)?|24\:?00)([\., J\d+(?!:))?)?

www.it-ebooks.info

http://www.it-ebooks.info/

(\17[0-5]\d([\., INd+)?2)?2([zZ] | ([\+-])([01]\d|2[0-3]):?([O-
5]\d)?)?)?)?%$/;
if(typeof v==="string"){
1f(ISOregExp.test(v)){
return new Date(V);
b
}

return v,
}
var revivedValues = JSON.parse(stringifiedData
, dateReviver);
console.log(revivedvalues);

/* the result as show in firebug below
» publishDate Date {Thu Jan 01 2015 00:00:00 GMT-0500

(EST)} ,

publisher "Apress",

title "Beginning JSON"

topic "JSON Data Interchange Format"
*/

In the preceding example, our application parses a composite structure, which is
simply an array. The value of each key is in the form of a string, one of which, however,
represents a date. Within the reviver function, we first determine if each value supplied
is that of a string, via the operator typeof. If the value is determined to be of the
string type, it is further compared against the ISO grammar by way of a regular
expression. The variable ISOregEXp references the pattern that matches a possible ISO-
formatted string. If the pattern matches the value supplied, we know it is a string
representation of a date, and, therefore, we can transform our string into a date. While the
preceding example produces the desired effect, a regular expression may not prove most
efficient in determining which strings should be converted and which should not.

This is where we can rely on a well-defined identifier. The k value, when supplied as a
clearly defined label, as shown in Listing 6-17, can be incredibly useful for coordinating
the return of the desired object.

Listing 6-17. Well-Defined Label Identifiers Can Be Used to Establish Which objects
Require Added Revival

var book={};
book.title = "Beginning JSON"
book.publishDate= new Date("Jan 1 2015");
book.publisher= "Apress";
book.topic="JSON Data Interchange Format"

var bookAsJSONtext = JSON.stringify(book);

console.log(bookAsJSONtext);

// "{"title":"Beginning JSON",
"publishDate":"2015-01-01T05:00:00.000Z",

www.it-ebooks.info

http://www.it-ebooks.info/

"publisher":"Apress",
"topic":"JSON Data Interchange Format"}"

var reviver = function(k , v){
console.log(k);

/* logged keys as they were supplied to the reviver function */
// title
// publisher

// date

// publishedInfo

// topic

//(an empty string)
if(k ==="publishDate"){

return new Date(v);

}
return v,

}

var parsedJSON = JSON.parse(bookAsJSONtext , reviver);
console.log(parsedJSON);

/* the result as show in firebug below

» publishbate Date {Thu Jan 01 2015 00:00:00 GMT-0500 (EST)}

14

publisher "Apress",

title "Beginning JSON"

topic "JSON Data Interchange Format"
*/

Listing 6-17 achieves the same results as Listing 6-16; however, it does not rely on a
regular expression to seek out ISO-formatted dates. Instead, the reviver logic is
programmed to revive only strings whose key explicitly matches publishDate.

Not only do labels offer more possibility when determining whether the value should
or should not be converted, their use is also more expedient than the former method.
Depending on the browser, the speeds can range from 29% to 49% slower when the
determining factor is based on RegEXp. The results can be viewed for yourself in the
performance test available at http://jsperf.com/regexp-vs-label.

It was briefly mentioned in Chapter 5 that custom classes, when serialized, are
captured indistinguishably from the built-in objects of JavaScript. While this is indeed a
hindrance, it is not impossible to transform your object into a custom object, by way of the
reviver function.

Listing 6-18 makes use of a custom data type labeled Person, which possesses three
properties: name, age, and gender. Additionally, our Person data type possesses
three methods to read those properties. An instance of Person is instantiated using the

www.it-ebooks.info

http://jsperf.com/regexp-vs-label
http://www.it-ebooks.info/

new keyword and assigned to the variable p. Once assigned to p, the three properties are
supplied with valid values. Using the built-in instanceof operator, we determine
whether our instance, p, is of the Person data type, which we soon learn it is. However,
once we serialize our p instance, and parse it back into that of a JavaScript object, we soon
discover via 1nstanceof that our p instance no longer possesses the Person data

type.
Listing 6-18. Custom Classes Are Serialized As an Ordinary object

function Person(){
this.name;
this.age;
this.gender;
}
Person.prototype.getName=function(){
return this.name;
+s
Person.prototype.getAge=function(){
return this.age;
+s
Person.prototype.getGender=function(){
return this.gender;

+s

var p=new Person();
p.name="ben";
p.age="36";
p.gender="male";

console.log(p instanceof Person); // true
var serializedPerson=JSON.stringify(p);

var parsedJSON = JSON.parse(serializedPerson);
console.log(parsedJSON instanceof Person); // false;

Because the reviver function is invoked after a JSON text is converted back into
JavaScript form, the reviver can be used for JavaScript alterations. This means that you
can use it as a prepping station for the final object to be returned. What this means for us
is that, using the reviver function, we can cleverly apply inheritance back to objects
that we know are intended to be of a distinct data type. Let’s revisit the preceding code in
Listing 6-19, only this time, with the knowledge that our parsed object is intended to
become a Person.

Listing 6-19. Reviving an object’s Custom Data Type with the reviver Function

function Person(){
this.name;
this.age;
this.gender;

www.it-ebooks.info

http://www.it-ebooks.info/

+s

Person.prototype.getName=function(){
return this.name;
+s
Person.prototype.getAge=function(){
return this.age;
+s
Person.prototype.getGender=function(){
return this.gender;
+s
//1instantiate new Person
var p=new Person();
p.name="ben";
p.age:"36";
p.gender="male";

//test that p possesses the Person Data Type
console.log(p instanceof Person); // true

var serializedPerson=JSON.stringify(p);

var reviver = function(k,v){
// if the key is an empty string we know its our top level
object
lf(k:::" ") {
//set object’s inheritance chain to that of a Person
instance
V.__proto__ = new Person();
}

return v;

}

var parsedJSON = JSON.parse(serializedPerson , reviver);

//test that parsedJSON possesses the Person Data Type
console.log(parsedJSON instanceof Person); // true
console.log(parsedJSON.getName()); // "Ben"

The __proto___ property used in the preceding example forges the hierarchical
relationship between two objects and informs JavaScript where to further look for
properties when local values are unable to be found. The __proto__ was originally
implemented by Mozilla and has slowly become adopted by other modern browsers.
Currently, it is only available in Internet Explorer version 11 and, therefore, shouldn’t be
used in daily applications. This demonstration is intended for illustrative purposes, to
demonstrate succinctly how the reviver function offers you the ability to be as clever as
you wish, in order to get the parsed values to conform to your application’s requirements.

www.it-ebooks.info

http://www.it-ebooks.info/

Summary

JSON. parse is the available mechanism for converting JSON text into a JavaScript
value. As part of the JSON global object, it is available in modern browsers as well as
older browsers, by way of including the json2. js library into your application. In order
to convert the literals captured, json2. js relies on the built-in global eval function to
access the JavaScript interpreter. While you learned that using the eval function is highly
insecure, the JSON Object seeks out non-matching patterns of the JSON grammar
throughout the supplied text, which minimizes the risk of inviting possibly malicious code
into your application. If the par se method uncovers any tokens that seek to instantiate,
mutate, or operate, a parse error is thrown. In addition, the parse method is exited,
preventing the JSON text from being supplied to the eval function.

If the supplied text to the par se method is deemed suitable for eval, the captured
literals will be interpreted by the engine and transformed into JavaScript values. However,
not all objects, such as dates or custom classes, can be transformed natively. Therefore,
parse can take an optional function that can be used to manually alter JavaScript values,
as required by your application.

When you design the replacer, toJSON, and reviver functions, using clearly
defined label identifiers will allow your application the ability to better orchestrate the
revival of serialized data.

Key Points from This Chapter

e JSON.parse throws a parse error if the supplied JSON text is not
valid JSON grammar.

e parse occurs in four stages.

e eval is an insecure function.

e Supply only valid JSON to eval.

e A reviver function can return any valid JavaScript value.

e [f the reviver function returns the argument supplied for parameter
Vv, the existing member remains unchanged.

e If reviver returns undefined as the new value for a member,
said member is deleted.

e reviver manipulates JavaScript values, not JSON grammar.

1Wikipedia, “Tree (data structure),”
http://en.wikipedia.org/wiki/Tree_%28data_structure%29#Terminology, modified January

2015.

2ECMA International, ECMAScript Language Specification, Standard ECMA-262, Edition 5.1, Section 7.3,

www.it-ebooks.info

http://en.wikipedia.org/wiki/Tree_%28data_structure%29#Terminology
http://www.it-ebooks.info/

www.ecma-international.org/ecma-262/5.1/#sec-7.3, June 2011.

www.it-ebooks.info

http://www.ecma-international.org/ecma-262/5.1/#sec-7.3
http://www.it-ebooks.info/

CHAPTER 7

Persisting JSON: 1

In Chapter 5, you learned how JSON. stringify captures the data possessed by an
identified JavaScript value. This occurs by reverse engineering the specified target into its
literal form, in accordance with the JSON grammar, thus capturing the current state of a
model for a particular application as JSON text. You further learned that JSON. parse
taps into the innate ability of the JavaScript engine to “parse” the literals that make up a
valid JSON text. This revives the state from a previous model for use within the existing
session.

To illustrate how to use JSON. par se, each example in Chapter 6 was preceded by
the stringify method, in order to provide something to be parsed. Furthermore, this
was meant to illustrate the lifecycle of how one method gives rise to the other.

While this is sufficient for the purposes of a demonstration, it will be rare to parse data
immediately after it has been serialized by our application. This would result in a very
linear and limited use case. These two methods really shine, however, when they are
paired with data persistence. It is the persistence of data that enables both methods,
stringify and parse, to be used independently of each other. This offers an
application many more use-case scenarios. This contrast is illustrated in Figure 7-1.

v

Figure 7-1. Contrast between use-case scenarios

Computer science defines the persistence of data as a state that continues to exist after
the process from which it was created.! Much like the phrase, “you can’t step in the same
spot of a moving river twice,” the process that serializes data will cease to exist the
moment the JSON text is produced and the function that ran the process is exited.
Therefore, in order to utilize the produced JSON beyond the given process that created it,
it must be stored for later retrieval.

Believe it or not, in the examples in Chapter 5, we were using a slight form of data

www.it-ebooks.info

http://www.it-ebooks.info/

persistence, according to the aforementioned definition. When the stringify method
exited, the produced JSON returned by each example was able to continue to be
referenced by the application. This is because we had assigned it as the value to a variable,
which was often labeled JSONtext. Therefore, we managed to persist JSON by
definition. However, if we were to navigate away from the application at any point in the
course of running the Chapter 5 examples within a browser, the variable JSONtext
would cease to persist, and the JSON it was assigned would be lost as well.

Because the Internet was founded atop a request-and-response protocol, each request
made of a server, regardless of whether it’s for . html, . jpg, . Js, etc., occurs without
consideration of any previous or subsequent requests by the same visitor. This is even if
requests made are to the same domain. What is returned from the server is simply the
fulfillment of the resource requested. Over the years, many a developer has needed to be
able to string together the isolated requests of a common server, in order to facilitate
things such as shopping carts for e-commerce. One of the technologies that was forged
from this requirement brought forth a technique that we will leverage in order to achieve
the persistence of JSON. That technology is the HTTP cookie.

HTTP Cookie

As was previously mentioned, the HTTP/1.1 protocol is incapable of persisting state;
therefore, it becomes the duty of the user-agent to manage this undertaking. The HTTP
cookie, or cookie for short, was created as a means to string together the actions taken by
the user per “isolated” request and provide a convenient way to persist the state of one
page into that of another. The cookie is simply a chunk of data that the browser has been
notified to retain. Furthermore, the browser will have to supply, per subsequent request,
the retained cookie to the server for the domain that set it, thereby providing state to a
stateless protocol.

The cookie can be utilized on the client side of an application with JavaScript.
Additionally, it is available to the server, supplied within the header of each request made
by the browser. The header can be parsed for any cookies and made available to server-
side code. Cookies provide both front-end and back-end technologies the ability to
collaborate and reflect the captured state, in order to properly handle each page view or
request accordingly. The ability to continue to progress the state from one page to another
allows each action to no longer be isolated and, instead, occur within the entirety of the

user’s interaction with a web site.?

Like JSON, cookies possess a specification and protocol all their own. By
understanding its syntax, we can tap into the persistence of the HTTP cookie and, by
extension, persist JSON for later use with an application. The great news is that HTTP
cookies are extremely simple, in addition to being recognized by all major browsers dating
back to Internet Explorer 3.

Syntax

www.it-ebooks.info

http://www.it-ebooks.info/

At its most atomic unit, the cookie is simply a string of ASCII encoded characters
composed of one or more attribute-value pairs, separated by a semicolon (;) token.
Listing 7-1 outlines the syntax for the HTTP cookie.

Note ASCII is short for “American Standard Code for Information Interchange” and is
composed of 128 characters, which are letters from the English alphabet, digits 0-9, basic
punctuation, and a few control characters.

Listing 7-1. Set - Cookie Syntax as Defined by RFC 6265

set-cookie "Set-Cookie:" cookies

cookies = 1#cookie
cookie = NAME "=" VALUE *(";" cookie-av)
NAME = attr
VALUE = value
cookie-av = "expires" "=" value
"max-age" "=" value

I "domaig" "=" value

| llpathll ll:ll Value

| "secure"

| "httponly"

Listing 7-1 uses the grammar defined by the HTTP/1.1 specification to outline the
syntax of the HTTP cookie. In order to understand the syntax, I would like to direct your
focus to the line cookie = NAME “=" VALUE *(“;"” cookie-av). This line
outlines the entire syntax of the cookie. We will dissect this line in two passes. The first
half will regard only cookie = NAME “=" VALUE. This portion of the syntax
outlines the following: “Set some cookie specified by the indicated NAME, to possess the
assigned VALUE.” A cookie, in short, is nothing more than a key/value pair.

As with all key/value pairs, it will be the purpose of the “key” represented by NAME to
both identify as well as provide the means to access an assigned value. VALUE, on the
other hand, represents the data or state that’s intended to be persisted for the application.
To ensure a cookie is stored uniformly among all browsers, it will be imperative that both
NAME and VALUE be made up of valid ASCII characters, such as those shown in Listing
7-2.

Listing 7-2. Key/Value Pairs Intended to Be Persisted As a Cookie Must Both Be Valid
ASCII Characters

"greetings=Hello World!";
"greetingJSON=[\"Hello World!\"]";

Note Safari as well as Internet Explorer do not correctly handle cookies that contain
non-ASCII characters.

While the tokens that make up JSON text are valid ASCII characters, the values held

www.it-ebooks.info

http://www.it-ebooks.info/

within are not limited to ASCII but, rather, UTF-8. Therefore, if the characters that are
represented in your application fall outside of the ASCII range, it will be necessary to
encode your UTF-8 characters with Base64 encoding. Two libraries you can use for this
purpose are https://jsbase64.codeplex.com/releases/view/89265 and
https://code.google.com/p/javascriptbase64/. While both utilize
different namespaces, Base64 and B64, they both rely on the same methods to encode and
decode. Either of these libraries will be capable of converting your non-ASCII values into
ASCII-encoded values. Listing 7-3 demonstrates the use of one of the aforementioned
Base64 libraries by converting the characters of our string of UTF-8 characters into those
of ASCII, in order to be compliant with the HTTP cookie syntax.

Listing 7-3. UTF-8 Characters Being Converted into ASCII Using a Base64 Library

var unicodeValue = "npuser wup!"; // Hello World! in Russian;
var ascliiString = Base64.encode(JSON.stringify(
unicodevValue));

console.log(asciiString); //
"ItC/OYDQUNCYOLXRgiDQVNC40YAhIg=="

var decodedValue = Base64.decode(asciiString);
console.log(decodedvalue); // "npuser mup!"

The second half of the line in review, * (“;” cookie-av), explains that our cookie
can be supplied a sequence of any of the six optional cookie attribute-value pairs, as
required by an application. The token that must separate them from their successor in the
string is the semicolon (;). While it is not necessary to supply whitespace characters
between the semicolon and the attribute value, it will aid to keep your code clean and
legible. The possible cookie-av values are listed in Listing 7-1 as “expires”,
“max-age”, “domain”, “path”, “secure”, and “httponly”. Each attribute
value defines a specific scope to the defined cookie.

expires

The expires attribute is quite literally the “key,” pun intended, to the duration over the
persistence of the specified cookie. Should the expires attribute be specified, its value
counterpart will inform the browser of the date and time it is no longer necessary to
further store said cookie. The value supplied is required to be in UTC Greenwich Mean
Time format. Being that UTC GMT is a standard, we can achieve this value with ease, by
way of the built-in methods of the Date object as demonstrated in Listing 7-4.

Listing 7-4. toUTCString Produces a UTC Greenwich Mean Time Value
var date= new Date("Jan 1 2015 12:00 AM"),;

var UTCdate= date.toUTCString() ;
console.log(UTCdate); // "Thu, 01 Jan 2015 06:00:00 emT"

Listing 7-4 initiates a date instance with the supplied string of January 1, 2015.
Furthermore, the time is set to exactly 12 AM. Utilizing date’s built-in method,
toUTCString, the date and time it represents is translated into its GMT equivalent and

www.it-ebooks.info

https://jsbase64.codeplex.com/releases/view/89265
https://code.google.com/p/javascriptbase64/
http://www.it-ebooks.info/

then returned to the caller of the method. When we log that value, we can clearly note that
the date has been converted, as it is signified by the appended abbreviation GMT. If you
were to run the code from Listing 7-4, you might receive a different value. That is because
the JavaScript Date Object correlates to your location and time zone. Nevertheless, the
date and time that you specify will be equal to the difference in time zone between your
location and Greenwich.

If we were to assign the date from Listing 7-4 to our author cookie in Listing 7-5, the
cookie would be available until exactly Thursday, 12:00 AM January 1, 2015, or
Thursday, 01 Jan 2015 06:00:00 Greenwich Mean Time.

Listing 7-5. Appending Date to the Key/Value Pair to Provide an Expiration

var date= new Date("Jan 1 2015 12:00 AM"),
"author=test; expires="+ date.toUTCString();

If the value supplied to the expires attribute occurs in the past, the cookie is
immediately purged from memory. On the other hand, if the expires attribute is
omitted, then the cookie will be discarded the moment the session has ended. Essentially,
the browser would continue to persist the cookie only as long as the session remained
open.

It used to be that the moment you exited the browser, all sessions were immediately
closed. Today, however, it’s worth noting that sessions may persist well after the browser
is exited. This is due to the specific features that vendors have incorporated into their
browsers, such as restoring previously viewed pages/tabs if the browser crashes.
Additionally, they provide us the ability to restore pages/tabs from History. Therefore,
session cookies may continue to persist in memory longer than expected.

As we will be looking to persist our JSON indefinitely, we will almost always supply
an expires attribute value to our cookies.

max-age

The max -age attribute, like the expires attribute, specifies how long a cookie should
persist. The difference between the two is that max -age specifies the life span of the
cookie in seconds. While the max -age attribute is defined by the original specification
and continues to exist today, it is not an attribute that is acknowledged by Internet
Explorer 6 through 8. That said, it will be wise to favor the expires attribute and ignore
max-age.

domain

The domain attribute explicitly defines the domain(s) to which the cookie is to be made
available. However, the domain specified must somehow possess a relationship to the
origin setting the cookie. In other words, if www . sandboxed. guru is setting a cookie,
it cannot supply apress . com as the domain. This would prove to be a huge security
concern, if it were possible to set cookies for other domains.

It is the responsibility of the browser to make available, to both JavaScript and the

www.it-ebooks.info

http://www.sandboxed.guru
http://apress.com
http://www.it-ebooks.info/

server, all cookies whose supplied domain attribute matches that of the domain of the
visited URL. To ensure that the domains match, the browser will compare the two. This
comparison can be illustrated with a regular expression (see Listing 7-6).

Listing 7-6. Using a Regular Expression to Demonstrate Matching Origins

var regExp=
(/www.sandboxed.guru$/1i).test('www.sandboxed.guru'); //true

Listing 7-6 defines a pattern that matches against the tail end of a host domain. The
pattern www . Sandboxed . guru represents the cookie’s assigned domain attribute.
The $ token further specifies that the pattern explicitly ends with . guru. This is
necessary to prevent the cookies of sandboxed . guru from being available to another
domain that might just so happen to possess our origin within its subdomain. This would
be quite the security risk. Note the difference between the URLs sandboxed.guru and
guru.com. They are two entirely different domains. Now consider what might occur if
guru.com were to use the following subdomain: www . sandboxed.guru.com (see
Listing 7-7).

Listing 7-7. Matching URLs are Determined Through the Top Level Domain (. com)

(/sandboxed.guru/i).test('sandboxed.guru.com'); //true
(/sandboxed.gurus/1).test('sandboxed.guru.com'); //false

Listing 7-7 demonstrates that without specifying the $ to force a tail-end match, two
completely different properties could potentially be considered a match.

Note To prevent possible matches that could exist within subdomains, browsers
explicitly check that a match must end with the appropriate top-level domain.

The 1 simply informs the pattern to remain case-insensitive during the match. If the
domain attribute and the server domain are determined to be a match, then for each
HTTP request, any and all cookies will be sent to the server and made available to the
JavaScript application of each page.

The domain attribute is optional, but for security purposes, one must be set. By
default, the domain attribute will be set to the absolute origin that the cookie is set from.
This can be slightly limiting if you have subdomains that require visibility of these
cookies, or vice versa. Consider a domadin attribute that is defaulted to
www . sandboxed . guru for a particular cookie. That cookie will never be available to
sandboxed. guru because of the preceding www. Similarly, if the domain attribute is
defaulted to sandboxed . guru, that cookie will not be visible to
json.sandboxed.guru.

However, by assigning the domain attribute value, we have the ability to broaden the
scope of our cookies. For instance, if we specify a domain attribute as the top-level
domain, preceded by the . token (. sandboxed.guru), the domain attribute would
match not only a top-level domain (Ssandboxed . guru) but any and all subdomains as
well (json.sandboxed. guru). This is demonstrated in Table 7-1.

www.it-ebooks.info

http://www.sandboxed.guru
http://guru.com
http://guru.com
http://www.sandboxed.guru.com
http://www.sandboxed.guru
http://www.it-ebooks.info/

Table 7-1. Illustrating Which Origins Are Considered Matches Against the Value
Possessed by the domain Attribute

domain Attribute Origin Match
www . sandboxed. guru sandboxed.guru false
sandboxed.guru www . sandboxed.guru false
.sandboxed.guru sandboxed.guru true
.sandboxed.guru www . sandboxed.guru true
.sandboxed.guru json.sandboxed.guru true

It is not necessary to apply the . token. As long as we explicitly specify a hostname
for the domain attribute, the . token will automatically be prepended to all non-fully-
qualified domains by the user agent.

path

While the domain attribute specifies to which domain(s) a set cookie is scoped, the
path attribute further enforces to which subdirectories a cookie is available. If a path
attribute is not explicitly specified, the value is defaulted to the current directory that set
the cookie. Furthermore, every subdirectory of the defaulted directory will be provided
access. However, explicitly defining the path attribute allows us to narrow or broaden
the scope of the cookie to that of a particular directory and all of its subdirectories. Listing
7-8 demonstrates how cookies can further scope a cookie to that of a particular URL for
any domain that is deemed a potential match.

Listing 7-8. Demonstrating Path Scoping with Cookies Set from
http://json.sandboxed.guru/chapter7/ficticious.html

"cookieDefault=test; domain=.sandboxed.guru";
http://json.sandboxed.guru/chapter7/ //cookieDefault is
provided for this request
http://json.sandboxed.guru/chapter7/css/ //cookieDefault is
provided for this request

https://www.sandboxed.guru/ //cookieDefault is NOT
provided for this request
http://json.sandboxed.guru/chapter3/js/ //cookieDefault is NOT

provided for this request
https://json.sandboxed.guru/chapter3/img/ //cookieDefault is NOT
provided for this request

"cookieA=test; domain=.sandboxed.guru; path=/";

http://json.sandboxed.guruschapter7/ //cookieA is
provided for this request
https://www.sandboxed.guru/s //cookieA is

provided for this request

www.it-ebooks.info

http://www.sandboxed.guru
http://www.sandboxed.guru
http://www.sandboxed.guru
http://json.sandboxed.guru/chapter7/ficticious.html
http://www.it-ebooks.info/

http://json.sandboxed.guruschapter3/js/ //cookieA is
provided for this request

https://json.sandboxed.gurus/chapter3/img/ //cookieA is
provided for this request

"cookieB=test; domain=.sandboxed.guru; path=chapter3/js/";

http://json.sandboxed.guru/chapter7/ //cookieB 1is NOT
provided for this request
http://json.sandboxed.guru/ //cookieB 1is NOT

provided for this request
https://json.sandboxed.guru/chapter3/js/ //cookieB is
provided for this request
https://json.sandboxed.guru/chapter3/ //cookieB is NOT
provided for this request

Note Cookies that are scoped to a particular domain and/or path are able to be used
indistinguishably by HTTP and HTTPS protocols.

secure

The secure attribute is slightly misleading, as it does not provide security. Rather, this
attribute, which does not require being assigned a variable, informs the browser to send
the cookie to the server only if the connection over which it is to be sent is a secure
connection, such as HTTPS. Transmitting data over a secure transport reduces the ability
for any network hijackers to view the contents being transported. This helps to ensure that
the cookie remains concealed from possible snoopers. While this flag ensures that a
cookie’s value remains hidden from an attacker, it does not prevent the cookie from being
overwritten or even deleted by an attacker.

httponly

The httponly attribute, when specified, limits the availability of the cookie to the
server and the server alone. This means the cookie will not be available to the client side,
thereby preventing client-side JavaScript from referencing, deleting, or updating the
cookie. This httponly flag, when used in conjunction with the secure flag, helps to
reduce cross-site scripting from exploiting the cookie. As this chapter is focused on the
persistence of JSON data from a client-side perspective, we will be avoiding this attribute.

Note Cookies set with the httponly flag can only be set by the server.

When specifying any of the preceding attribute-value pairs, there is no particular order
in which they must be specified. Furthermore, each is case-insensitive and can appear in
lowercase or uppercase form.

document.cookie

www.it-ebooks.info

http://www.it-ebooks.info/

A cookie can be created by a server, server-side code, HTML meta tags, and even
JavaScript. In this chapter, we will solely be focused on the creation and the retrieval of
cookies by way of the JavaScript language. Up until now, we have been equating a
particular syntax of string as the representative for a cookie. The reality is that it is not a
cookie until we supply it to our document.

The Document Object Model, or DOM for short, can be referenced via the document
object in JavaScript. This document object possesses a variety of interfaces that allows us
to manipulate HTML elements and more. One interface on which we will be focusing is
the appropriately named document.cookie interface. The cookie attribute of the document
object is responsible for supplying the browser with a provided string of name/value pairs,
enabling the persistence of said key/value pairs. Additionally, this property acts as the
interface for their retrieval from the document. Listing 7-9 uses document.cookie to create
our first cookie.

Listing 7-9. Supplying Our First Key/Value Pair to document.cookie in Order to
Become a Cookie

document.cookie= "ourFirstCookie=abc123";

While it appears in Listing 7-9 that we are assigning a string to the cookie property, in
actuality we are providing a string as the argument to a setter method. A setter method is a
method that is used to control changes to a variable.? Behind the scenes, the document
receives the value being assigned and treats it as an argument to an internal method, which
immediately sets the assignment as the value to be stored within an internal collection.
This collection, which has come to be referred to as the cookie jar, is stored in a file that is
available only to the browser that stores it. Because each browser sets cookies within its
cookie jar, cookies are only available to the browser that is used at the time they are set.

As we are not truly assigning a value to the document . cookie property, we can
add any number of name/value pairs to document . cookie, without fear that we will
overwrite what we had previously set as a cookie, as seen in Listing 7-10.

Listing 7-10. Subsequent Assignments to document .cookie

document.cookie= "ourFirstCookie=abc123";
document.cookie= "ourSecondCookie=doeRayMe";
document.cookie= "ourThirdCookie=faSoLaTeaDoe";

As I stated earlier, the name/value pairs are not being overridden with each new
assignment. All name/value pairs assigned to document . cookie are not held as the
value of cookie but, rather, stored safely within the cookie jar. The cookie jar is simply a
resource located on the file system of the user’s computer, which is why cookies have the
ability to persist.

In order to view all cookies on your machine, follow the outlined steps for the modern
browser of your choice.

For Chrome:

www.it-ebooks.info

http://www.it-ebooks.info/

1. Open Chrome.
2. Navigate your browser to chrome://settings/cookies.

3. Click any site to view all cookies for that particular site.
For Firefox:

Open Firefox.
From the Firefox menu, select Preferences.
Click the Privacy tab.

Click the linked words “remove individual cookies.”

AR

Click any site to view all cookies for that particular site.
For Safari:

1. From the Safari menu, select Preferences.
2. In the preferences window, select Privacy.

3. In the Privacy window, click Details. (Unfortunately, with Safari,
you can only see what sites have set cookies. You won’t be able to
view full details.)

For Internet Explorer:

1. Open Internet Explorer.
2. From the Tools menu (the gear icon), select Internet Options.

3. On the General tab, within the section “Browser History,” select
Settings.

4. From the Settings panel, click “View objects” or “View Files.”

If you only care to view the cookies that are available to the sites you are currently
viewing, this can easily be achieved by way of the developer console. Utilizing the
developer’s tools provided by a modern browser, we can easily witness the cookies we
have created thus far. Figure 7-2 displays the stored cookies of Listing 7-10, by way of the
developer tools provided by Chrome Version 35.0.1916.114.

O, Elements Metwork Sources Timeline Profiles | Resources | Audits Console -ﬂ- =g x
4
» [Frames Name Value Domain Fath Expires /| Max-Age Size ¥ HTTP |Secure
| 1web SqL ourThirdCookie | faSolLaTeaDoe jsonsandbaxed.guru fchapter? Session 26
. -I d dDB ourSecondCoo... | doeRayMe ison.sandboxed.gury chapter? Session 23
naexe _
ourFirstCookie abel23 sonsandboxed.guru chapter? Session 20

» B Local Storage
* 5| Session Storage
v [Cookies

¢ 9 X

Figure 7-2. Chrome’s Developer Tools Console displays the cookies for the currently visited URL
json.sandboxed.guru/chapter7/

As you can note from the Name column in Figure 7-2, each cookie has, in fact, been
stored rather than overwritten. Furthermore, you can see what values are set for each

www.it-ebooks.info

http://www.it-ebooks.info/

optional cookie-av, as follows:

Domain: json.sandboxed.guru
Path: /chapter7
Expires: Session

As you may recall, Listing 7-10 merely supplied the name/value pair and did not
append any optional cookie attribute values. However, the domain, path, and
explres attributes are required of the cookie. Therefore, the values supplied, as shown
in Figure 7-2, have been set to their defaulted values.

As discussed earlier, both the domain and path attribute values are defaulted to the
respective aspects of the URL from which a cookie is set. The domain attribute, which is
set to json.sandboxed. guru, clearly identifies the domain name from which the
application ran. Furthermore, the path set to /chapter?7 is a reflection of the directory
from which the resource set the preceding cookies.

Note The preceding results reflect the cookies set from the following
URL: http://json.sandboxed.guru/chapter7/7-7.html.

Last, the expires attribute is defaulted to a session, which means that the moment
the session ends, the browser is no longer required to store the cookie further. In order to
provide a level of control over the cookie attribute values, we must append them as
required by the syntax of the HTTP cookie. This can be done easily by devising a function
to handle this, as portrayed in Listing 7-11.

Listing 7-11. The setCookie Function Simplifies the Creation of HTTP Cookie Values

function setCookie(name, value, expires, path, domain,
secure, httpoOnly) {

document.cookie = name + "=" + value

//1if expires 1is not null append the specified

GMT date
+ ((expires)? "; expires="
+ explires.toUTCString() : "")
//1if path is not null append the specified path
+ ((path) ? "; path=" + path : "")
//1if domain is not null append the specified
domain

+ ((domain) ? "; domain=" + domain : "'")

//if secure 1s not null provide the secure Flag
to the cookie

+ ((secure) ? ", secure" : "");
I

The function setCookie within Listing 7-11 provides us with a simple means to
create a cookie, by supplying the necessary arguments for each cookie-av parameter.
For each value that you wish to override, the function setCookie may be supplied with

www.it-ebooks.info

http://json.sandboxed.guru/chapter7/7-7.html
http://www.it-ebooks.info/

the appropriate string value. That is, except for the expires attribute, which requires a
date. For any optional cookie attribute value that you wish to omit, you can simply provide
the null primitive. This is demonstrated in Listing 7-12.

Each line within the setCookie function relies on what is known as a tertiary
operator to determine whether an empty string or a supplied value is to be appended to the
cookie. A tertiary operator, which is simply a condensed if ... else statement determines if
a parameter has been provided an argument to append. If the parameter has not been
supplied an argument, an empty string is assigned as the value for the specified cookie
attribute.

Note It is the responsibility of the user-agent to set values for any attribute value that is
not valid. Attributes that possess empty strings will be replaced with a default value.

Listing 7-12. The Function setCooki1e Has Been Created to Help in the Provision of
Cookie Attribute Values

setCookie("ourFourthCookie", //name
"That would bring us back to Doe", //value
new Date('"Jan 1 2016 12:00 AM"), //expires
"/, //path
null); //secure

Listing 7-12 utilizes the setCookie function to create a cookie that will persist until
January 1, 2016. The attribute’s values can be viewed within the cookie jar, as
demonstrated within the Developer Tools Console, as shown in Figure 7-3.

0, Elements Network Sources Timeline Profiles | Resources| Audits Console E+] B, =
» [Frames Name & Value Domain Path | Expires / Max-Age Size |HTTP | Secure

y

Fweb saL ourFourthCoakie | That would bring us back to Doe Jsonsandboxed.gury Fri, 01 Jan 2016 05:00:00 GMT 46
Il IndexedDB

» i Local Storage

* i Session Storage

¥ i3 Cookies

¥ Json.sandboxed.gury [~

Figure 7-3. Developer Tools Console displaying the configured cookie attribute values for the currently viewed URL

While document . cookie is the entry point to the method that controls the storage
of cookies, it can also be used to obtain the many name/value pairs that have been stored,
provided their domain attribute matches the domain from which they are being
requested. In order to read from the cookie jar, we simply reference the cookie property of
the document, without providing it an assignment, as demonstrated in Listing 7-13.

Listing 7-13. Retrieving All Persisted Cookies for the Scoped Origin and Path via
document.cookie

console.log(document.cookie); // "ourFourthCookie=That would
bring us back to Doe"

The code within Listing 7-13 simply logs out the returned value from
document .cookie and sends it to the console for inspection. What is outputted is the
name/value pair that has continued to persist. This is assuming you are running this code

www.it-ebooks.info

http://www.it-ebooks.info/

prior to January 1, 2016. Otherwise, because the expires attribute would be explicitly
set to a date that occurred in the past, it would be removed from memory, and nothing
would appear.

Note Running the preceding code after January 1, 2016,12:00 AM would inform the
browser that it no longer is required to store the cookie.

What you may recognize immediately is that the product returned from document
remains unaltered from what we initially supplied in Listing 7-12. Unfortunately,
document neither separates the supplied key from its assigned value for ease of use, nor
does the document possess a method that can separate them for us. Therefore, in order to
extract the value from the string returned, we will have to separate the value from the key
ourselves. Listing 7-14 accomplishes this with simple string manipulation.

Listing 7-14. Separating the Value from the Supplied Key from a Singularly Returned
Cookie

1 var returnedCookie = "ourFourthCookie=That would bring
us back to Doe";

2 //15 characters in is the = sign

3 var seperatorIndex = returnedCookie.indexO0f("=");

4

5 //extract the first 15 characters

6 var cookieName =

returnedCookie.substring(0, seperatorIndex);

7

8 //extract all characters after the '=' 15th character
9 var cookieValue

= returnedCookie.substring(seperatorIndex+1,
returnedCookie.length);

10

11 console.log(cookieName); //"ourFourthCookie"

12 console.log(cookieValue); //"That would bring us back to
Doe"

Listing 7-14 begins by searching for the first occurrence of the equal (=) token (line
3), as that is the token that separates the key from its value. Once this index is made
known, we can consider everything up to that index the “key” and everything beyond it
the “value.” Utilizing the implicit method of the String Object, we can extract a sequence
of characters within a numeric range. We begin with the range of characters from 0 up to
the 15th character being the = token for Name (line 6). The next set of characters, which
begins at the 16th character, ranges through the remaining characters of the string, thus
successfully extracting the value.

You may also notice that the string returned does not supply us with any of the
attribute-value pairs that it was initially assigned. This is strictly due to the fact that the
cookie-av values are intended to be utilized by the browser alone. It is the browser’s
job to ensure that cookies are being supplied to the necessary domain, path, and over the

www.it-ebooks.info

http://www.it-ebooks.info/

proper transport protocol. Our application merely requires informing the browser, at the
moment the cookie is set, how it is necessary to handle the storage and access to the
cookie.

While Listing 7-14 outputted only one cookie, this will not always be the case. In the
event that numerous cookies are stored and requested from that of a matching origin/path,
each persistently stored cookie will be concatonated and returned by the document. Each
name/value pair is separated from another by way of the semicolon (;) token, as
demonstrated in Listing 7-15.

Listing 7-15. Multiple Cookies Are Concatenated and Delimited by a Semicolon (;)

setCookie("ourFourthCookie",
"That would bring us back to Doe",
new Date("Jan 1 2016 12:00 AM"),"/",null,null);

setCookie("ourFifthCookie",
"Doe a dear a female dear”,
new Date("Jan 1 2016 12:00 AM”),"/",null,null);

console.log(document.cookie);
//"ourFifthCookie=Doe a dear a female dear;
ourFourthCookie=That would bring us back to Doe"

By identifying the tokens of the grammar that make up the cookie syntax, we can
separate the name/value pairs from one another. Additionally, we can separate the value
from the specified name. This can be achieved by searching the provided string for the
semicolon (;) and equal sign (=) tokens.

Listing 7-16. Extracting the Value from a Specified Key Among Many

1 function getCookie(name) {

2 var regExp = new RegExp(name + "=[~\;]1*", "mgi");
3 var matchingValue = (document.cookie).match(regExp);
4 console.log(matchingvalue) //
"ourFourthCookie=That would bring us back to Doe"

5 for(var key in matchingVvalue){

6 var
replacedvValue=matchingValue[key].replace(name+"=",6"");
7 matchingVvValue[key]=replacedValue;

8 }

9 return matchingValue;

10 };

11 getCookie("ourFourthCookie"); // ["That would bring us
back to Doe"]

The function getCookie within Listing 7-16 utilizes a regular expression to seek out
any name/value pairs from the string returned by document . cookie. The pattern
name+"”=[A\;]*", as highlighted on line 2, defines a pattern to match all sequences of

www.it-ebooks.info

http://www.it-ebooks.info/

characters within a string that is found to possess a specified name immediately followed
by the = token. From there, any valid ASCII character is considered to be a match, as long
as that character is not a semicolon (;) token. Should the string returned by the
document.cookie possess any sequences of characters that match this pattern, they
are captured, respectively, within an array and returned for reference (line 3).

At this point, if a match has been made, what will be indexed within the returned array
are the name/value pairs that match the cookie name supplied to the method. If we were to
log out the results found within the array at this point, we should view the following:
“ourFourthCookie=That would bring us back to Doe” (line 4). In order
to separate the value from Name and the equal sign, we iterate over all matched
occurrences and replace the found name and = token with those of an empty string (line
6), thereby exposing the value. The value is then reassigned back to the key to which it is
referenced within the matchingValue array (line 7). Last, the getCookie function
returns the array of all found values (line 9).

Thus far, you have learned how to successfully write and store persistent values by
way of HTTP cookies. Utilizing our new functions, setCookie and getCookie, let’s
revisit the Person object from the previous chapter and store its serialized JSON text
within a cookie (see Listing 7-17).

Listing 7-17. Pairing the JSON Object and the Cookie to Store objects

1 function Person() {

2 this.name;

3 this.age;

4 this.gender;

5 1}

6 Person.prototype.getName = function() {
7 return this.name;

8 1

9 Person.prototype.getAge = function() {
10 return this.age;

11},

12 Person.prototype.getGender = function() {
13 return this.gender;

14 };

15

16 //instantiate new Person
17 var p = new Person();

18 p.name = "ben";

19 p.age = "36";

20 p.gender = "male";
21

22 var serializedPerson = JSON.stringify(p);

23 setCookie("person'", serializedPerson, new Date("Jan
1 2016"),"/","sandboxed.guru",null);

24 console.log(getCookie("person")); "

www.it-ebooks.info

http://www.it-ebooks.info/

{Ilnamell : llbenH, llagell : Il36|l, Ilgenderll : Ilmalell}ll

Running the preceding code within a browser will create a cookie, as previously, only
this time, the cookie created possesses JSON as the supplied value. Also as before, by
opening up the developer consoles provided by modern browsers, we can view all stored
cookies within the cookie jar for the current origin.

As you can clearly see from Figure 7-4, our person cookie, like the others, has been
added to the cookie jar. It will remain available to all JavaScript code from within any
directory of the scoped domain sandboxed . guru, as well as any and all subdomains.

Q, Elements Network Sources Timeline Profiles | Resources | Audits Console ﬁ I_EI‘ o

» [l Frames Mame A | Value Domain Path | Expires [Max-Age Size |HTTP |Secure
| iweb sqL ourfifthCookie Coe 3 dear & female dear jsonsandboxed.guru ! Fri, 01 Jan 2016 05:00:00 GMT i8
ourFourthCookie | That would bring us back to Doe Json.sandboxed.guru f Fri, 01 Jan 2016 05:00:00 CMT 46
IndexedDB = R R - = ; grcn i B AT i
person {"name™"ben”,"age”:"36", "gender™"male”} | .sandboxed.guru f Fri, 01 Jan 2016 05:00:00 GMT 47
* i Local Storage

* i Session Storage
¥ 3 Cookies
S dmhebid ¢ @

* |SC . Qo0
bt el e

Figure 7-4. Developer console exhibiting the persistence of our person cookie and its JSON value

To further illustrate this point, simply navigate to
http://json.sandboxed.guru/chapter7/cookie-test.html and create
your own pPerson cookie to store. After you submit your cookie to the document, either
refresh the page to find the person column populated or navigate to
http://sandboxed.guru/cookie-test.html to find that this top-level domain
has access to your new person cookie. Now hit Delete, to remove the persisted cookie,
and generate another, this time with different data. Once more, visit the subdomain
http://json.sandboxed.guru/chapter7/cookie-test.html, and you
will see that new cookie pre-populated.

For all of its benefits, the cookie does come with a few limitations. Sadly, the cookie
can only store a maximum amount of bytes. In fact, it can only store roughly 4KB, which
would be roughly 4,000 ASCII characters. While 4,000 characters is a lot, it can add up
quickly, depending on what you are storing. Furthermore, Base64 characters can require
up to three times more bytes per character than ASCII.

You learned that document . cookie does not provide any information beyond the
stored name/value pair. This is problematic, because there is no way to truly know how
many bytes are available to us. Another issue that cookies face is that they are scoped to
the browser, which means that the preserved state is only available to the specific browser
that preserves it. Last, because the cookie was originally crafted to help maintain a
visitation between a server and a browser, cookies are automatically sent with every
request made to the server that possesses the allowed origin by the cookie. The issue here
is that the more cookies that are used, each occupying x number of bytes is sent to the
server with every single request. Essentially, unless your server is utilizing the cookie, you
are needlessly transmitting 4KB for each cookie stored for every request.

While the cookie has its advantages, it is also archaic. It was just a matter of time
before another front-end technology came along. That tool is HTML 5’s Web Storage.

www.it-ebooks.info

http://json.sandboxed.guru/chapter7/cookie-test.html
http://sandboxed.guru/cookie-test.html
http://json.sandboxed.guru/chapter7/cookie-test.html
http://www.it-ebooks.info/

Web Storage

HTMLS5 introduced the concept of Web Storage to pick up where the cookie had left off.
While Web Storage may be considered to be the HTTP cookie successor, it would simply
be a matter of the context in which you can make that statement. A better way to view
Web Storage is simply to look at it as cookies’ counterpart. Its creation is not necessarily
to replace the cookie. The cookie itself serves a very important purpose, which is to
maintain the session between a browser and a server. This is something that Web Storage
does not intend to replace, because it exists to meet the growing needs of the times in a
way that the cookie is simply incapable of fulfilling, when it comes to the persistence of

client-side data.*

It strives to reduce the overhead of HTTP requests and offers an incredibly large
amount of storage per origin. In fact, the allowed capacity ranges about 5SMB. Similar to
its predecessor, the Web Storage API enables state to be stored via JavaScript, either
indefinitely or solely for the duration of a session. Much like the cookie, Web Storage
concerns itself with the persistence of name/value pairs. Because each value supplied to
the storage object must be in string form, it can quickly become cumbersome to deal with
a plethora of string values, thereby making JSON data the ideal candidate.

Web Storage is accessible to JavaScript, by way of Window Object and can be
accessed as Window.localStorage and Window.sessionStorage. Because the
window object is global and can always be reached from within any scope, each storage
object can be referenced without the explicit reference of the window object, shortening
each reference to localStorage and sessionStorage.

Both forms of the aforementioned storage objects, whether they be local or session,
allow for the storage of state through a similar API. However, as you may have already
surmised, the difference between the two regards the contrast among the durations for
which the state of data is retained. The sessionStorage, as the name implies, allows
data to persist only as long as the session exists. Whereas the data stored via
localStorage will persist indefinitely, either until the state is deleted by the
application or user, by way of the browser’s interface. Unlike the cookie, all data stored
within localStorage will not be set to expire.

Web Storage Interface

Web Storage allows for the storing of data, the retrieval of data, and the removal of data.
The means by which we will be working with data and the storage object is via the Web

Storage API. As Table 7-2 outlines, there are six members that make up the Web Storage
API, and each provides a specific need for working with data persistence.

Table 7-2. Six Members of the Web Storage API

Members Parameter Return

setltem string (key), string (value) void

www.it-ebooks.info

http://www.it-ebooks.info/

getltem string (key) string (value)

removeltem string (key) void

clear void

key Number (index) string (value)
length Number

Unlike the singular interface of the HTTP cookie, which is used to store, retrieve, and
delete data, Web Storage possesses an API to make working with the persistence of data
all the more practical. Furthermore, regardless of the storage object you intend to use,
whether it’s local or session, the API remains uniform.

setltem

The Storage Object method setItem possesses the signature of Listing 7-18 and is the
method that we will use to persist data. As was mentioned previously, much like the HTTP
cookie, Web Storage persists data in the form of name/value pairs. However, while the
cookie itself did not distinguish the name from the value it retained, Web Storage does.
Therefore, set Item does not merely accept a singular string but, rather, requires two
strings to be provided. The first string represents the name of the key, and the second
string will represent the value to be held.

Listing 7-18. Signature of the setItem Method
setItem(key , value)

When a value is set, it will occur without providing a response back to the invoker of
the method. However, if a value is unable to be set, either because the user has disabled
the storage or because the maximum capacity for storage has been reached, an Error will
be thrown. It’s as they say, “no news is good news.” In other words, if an error does not
occur on setItem, you can rest assured the data has been set successfully.

Because a runtime error can cause your script to come to a halt, it will be imperative to
wrap your call to setItem with a try/catch block. Then, you can catch the error and
handle exceptions gracefully.

Listing 7-19. Storing Our First Item

localStorage.setItem("ourFirstItem, "abc123");

As with the key/value pairs of a JavaScript object, each key must possess a unique
label. If you were to store a value with the name of a key that currently exists, that value
would effectively replace the previously stored value.

Listing 7-20. Replacing the Value Possessed by the ourFirstItem Key

localStorage.setItem("ourFirstItem", "abc123");
localStorage.setItem("ourFirstItem", "sunday Monday happy-
days");

www.it-ebooks.info

http://www.it-ebooks.info/

At this point in time, if we were to retrieve the value set for ourFirstItem, we
would witness that the previous value of “abc123"” had been replaced with the theme
song from the television sitcom Happy Days.

Tip Because an error will be thrown if the user has disabled Web Storage, it would be
wise to wrap every call to the Storage Object API within a try/catch block.

getltem

The Storage Object method getItem (see Listing 7-21) is the counterpart to the
setItem method. It, like our getCookie method from Listing 7-16, allows us to
retrieve the persisted state that corresponds to the key provided to the method (see Listing
7-22).

Listing 7-21. Signature of getItem

getItem(key)

Listing 7-22. Obtaining a Value for a Specified Key

console.log(localStorage.getItem("ourFirstItem"));
//sunday Monday happy-days

console.log(localStorage.getItem("oursecondItem"

)); //null

The key is the only expected parameter, as indicated in Listing 7-22, and will return
the corresponding state for the supplied key. If, however, the name of the key supplied
does not exist on the Storage Object, a value of null will be returned.

removeltem

The Storage Object method removeItem is the sole means of expiring the persistence of
an individual key/value pair. Its signature is similar to that of getItem, in that it accepts
one parameter, as shown in Listing 7-23. This parameter is the key that pertains to the data
that you no longer wish to persist (see Listing 7-24).

Listing 7-23. Signature of removeItem
removeltem(key)
Listing 7-24. Utilizing removeItem to Expire a Persisted State

console.log(localStorage.getItem("ourFirstItem"
)); //sunday Monday happy-days

localStorage.removeltem("ourFirstItem");
console.log(localStorage.getItem("ourFirstItem"
)i //null

clear

www.it-ebooks.info

http://www.it-ebooks.info/

As indicated in Listing 7-25, the method clear does not require any parameters. This is
because this method is simply used to instantly purge each and every key/value pair
retained by the targeted Storage Object.

Listing 7-25. Signature of the clear Method

clear()

key

The Storage Object method key is used to obtain the identities of all stored keys that
possess accompanying data retained by the given Storage Object. As the signature
outlined in Listing 7-26 demonstrates, the method can be provided with that of an index,
which will return in kind with the member at the supplied index. If a value does not exist
for the provided index, the method will return a value of null.

Listing 7-26. Signature of the key Method

key(index)

length

As it will not be beneficial to supply indexes that are beyond the boundaries of stored
keys, the Storage Object provides us with access to the length of all values stored by the
Storage Object in question. This total can be obtained via the 1ength property. The
length property, when used in conjunction with a loop, as demonstrated in Listing 7-27,
provides us with the ability to remain within the boundaries of the values stored.

Listing 7-27. Obtaining the Stored Keys from a Storage Object Is Simple with a Loop

var maxIndex= localStorage.length;
for(var 1=0; i<maxIndex; i++){

var foundKey = localStorage.key(i);
}

Reusing the key/value pair used by our first cookie, we will demonstrate the ease of
the Web Storage API.

Listing 7-28. Utilizing Web Storage to Persist the Value Supplied to Our Person
Instance

1 function setItem(key , value){

2 try{

3 localStorage.setItem(key , value);

4 }catch(e){

5 //WebStorage is either disabled or has exceeded
the Storage Capacity

6 }

7}

8 function getItem(key){

www.it-ebooks.info

http://www.it-ebooks.info/

9 var storagevValue;

10 try{

11 storageValue= localStorage.getItem(key);
12 }catch(e){

13 //WebStorage is disabled

14 }

15 return storagevValue;

16 }

17

18 function Person() {

19 this.name;

20 this.age;

21 this.gender;

22 };

23 Person.prototype.getName = function() {
24 return this.name;

25 1}

26 Person.prototype.getAge = function() {
27 return this.age;

28 1}

29 Person.prototype.getGender = function() {
30 return this.gender;

31 };

32

33 //instantiate new Person
34 var p = new Person();

35 p.name = "ben";

36 p.age = "36";

37 p.gender = "male";
38

39 var serializedPerson = JSON.stringify(p);
40 setItem("person" , serializedPerson);
41 console.log(getItem("person")); // "
{Ilnamell : llbenII, Ilagell : "36", Ilgenderll : Ilmalell}ll | |
"undefined"

Listing 7-28 revisits our person example from Listing 7-17 to point out how the Web
Storage API and cookie interface vary. The examples similarly use their component to
store and retrieve the same value. However, the use of the API provided by Web Storage
simplifies things greatly. Unlike in our cookie example, Web Storage requires less work
for setting—and especially retrieving—data. Line 41 of Listing 7-28 simply requests the
data of the supplied key and logs it for inspection to the developer console. The reason
why the value returned may be either what is stored or (signified by the | | operator)
“undefined”, is due to the fact that Web Storage may be disabled, which will prevent
the variable storageValue (line 9) from being set. Unlike its cookie counterpart,
getItem handles the management of key/value pairs for us, so that we don’t have to

www.it-ebooks.info

http://www.it-ebooks.info/

manipulate the returned string. Could you imagine performing a JavaScript search over
5MB worth of ASCII characters? The application would become nonresponsive.

What you may have also noticed is that we never specified a domain or path at any
point in time during our review of Web Storage. This is because, unlike the cookie, the
Storage Obiject strictly adheres to the same-origin policy, meaning that resources can only
be shared/accessed from the same document origin, if the two share the same protocol,
hostname, and port. You will learn more about the same-origin policy in Chapter 9.

Summary

The HTTP cookie and Web Storage are extremely useful client-side tools for storing and
persisting JSON data. They can be utilized to retain the state of a user’s engagement with
a web site, web app, or even a game. As cookies and Web Storage are stored on the user’s
browser, each visitor can potentially possess different information, which can further add
to the benefit of local persistence. Such benefit would be personalization/optimization.
However, for all their benefits, the cookie and Web Storage are not without their
limitations.

The first and foremost concern surrounds security. As both the cookie and a Storage
Object can be set and retrieved with JavaScript, it’s best practice to store information that
is not particularly sensitive. While it may not be understood by the average visitor of your
site how data is being utilized between your application and their browser, those who are
seeking to exploit these technologies do understand. As this data is accessible to
JavaScript, by utilizing the same techniques covered in this chapter, a user or a site
hijacker can manipulate or alter persisted state at any point in time, for malicious or
benign intent. This, of course, will vary, based on the data as well as the nature of the
application that makes use of it.

As I previously indicated, the HTTP cookie and Web Storage are scoped to a visitor’s
browser. Data that may have been set to persist, whether by cookie or Storage Object, is
dependent on the browser the visitor previously used to interact/view your application.
This means the persistence of state has the potential to vary from one browser to the other,
each time a user visits your application. This inconsistency may prove to be problematic,
depending on your application’s needs. Last, as the data that is being retained will persist
on the visitor’s file system and not the server’s, it can easily be removed by the visitor at
any point he or she chooses, through the interface provided by the browser.

These aforementioned issues can be avoided when used in conjunction with a server-
side database, which will be the topic of discussion in Chapter 12. In the next chapter, I
will discuss how to transmit JSON to and from our applications via JavaScript.

Key Points from This Chapter

e Data persistence is the continued existence of state after the process
that created it.

e HTTP/1.1 is a stateless protocol.

www.it-ebooks.info

http://www.it-ebooks.info/

e Cookies and Web Storage are used to retain state.

e Cookies are sent with every HTTP/1.1 request.

e Session data will cease to exist after the session exits.

e Sessions do not necessarily end when a browser is closed.

e Cookies are exchanged via HTTP and HTTPS, unless flagged as
secure.

e Cookies can only store 4KB worth of ASCII characters.
e Cookies can be shared among subdomains.

e Web Storage can store 5SMB of data.

e FEach origin possesses its own Storage Object.

e Web Storage strictly adheres to a same-origin policy.

1Wikipedia, “Persistence (computer science),”
http://en.wikipedia.org/wiki/Persistence_%28computer_science%29, 2014.

2Wikipedia, “Stateless protocol,” http://en.wikipedia.org/wiki/Stateless_protocol, 2014.
3Wikipedia, “Mutator method,” http://en.wikipedia.org/wiki/Mutator_method, 2014.

4W3C, W3C Recommendation, “Web Storage,” http://www.w3.0rg/TR/webstorage/#introduction,
July 30, 2013.

www.it-ebooks.info

http://en.wikipedia.org/wiki/Persistence_%28computer_science%29
http://en.wikipedia.org/wiki/Stateless_protocol
http://en.wikipedia.org/wiki/Mutator_method
http://www.w3.org/TR/webstorage/#introduction
http://www.it-ebooks.info/

CHAPTER 8

Data Interchange

Thus far, you have been learning how to work with JSON data that has been stringified,
parsed, persisted, and retrieved—all from within the scope of a running application.
However, as JSON is a data-interchange format, it is capable of being transmitted across
the Internet, which offers our applications much more possibility than we have currently
been allowing them.

With the use of data interchange, we can send JSON across the Internet into a database
that is owned/controlled by us. The visitor cannot as easily delete data this way, as it could
be with Web Storage and the HTTP cookie. Furthermore, the ability to transmit data
allows our application the ability not only to push out JSON but also to load it into our
applications. In other words, not only can we load into our application the data that we’ve
stored, but we can also tap into the data that others are willing to share as well. This may
be data that is available to the general public free of charge or by a paid service. Consider
the vast array of social sites out there that offer to the public free of charge the data that
they capture. Twitter, Facebook, and Instagram are prime examples of social properties
that are willing to offer aspects of their data via an API. Because of the many positive
attributes that JSON possesses, it is the favored data format of nearly every social API.

In upcoming discussions, you will learn how to load JSON into our application,
transmit JSON from our application, and persist JSON into a database over which we have
control. Then, we will look at how to incorporate the data from the API of the social
property Twitter. However, before we jump into those topics, it will be of great benefit to
understand the communication that takes place under the hood of our browser during the
request for a resource and the response from a server, as well as the underlying
technologies that we will utilize to enable both.

Hypertext Transfer Protocol

The Hypertext Transfer Protocol, or simply HTTP, is the underlying mechanism
responsible for our daily interactions with the Internet. It is used in conjunction with many
underlying networks of protocols, in order to facilitate the appropriate request/response
between a client and a server. Typically, the client utilized in the request/response
exchange is that of a web browser, such as Chrome, Firefox, Internet Explorer, or Safari.
However, it can also be that of another server. Regardless of whether the client is a
browser or a server, the request/response can only take place upon the initiation of a
request. Furthermore, a response can only be provided from a web server.

Anytime a resource is requested from a server, whether it’s a document, an image, a
style sheet, etc., a request must be initiated.

www.it-ebooks.info

http://www.it-ebooks.info/

HTTP-Request

It is the role of the request to outline the specifics that detail the required resource from the
server. It will be these details that help to ensure that the server provides the appropriate
response. A request can be thought of as your order at a restaurant. When you provide a
waiter with your order, you are outlining what you are expecting from the kitchen.
Additionally, it may include your preferences of how you would like it to be cooked or
served. In the preceding analogy, the HTTP protocol is the waiter, the order is the HTTP
request, and the food provided represents the HTTP response.

The HTTP request consists of three general components, each with a particular use for
detailing what resource is required from a server. These three components can be viewed
in Table 8-1.

Table 8-1. Structure of the HTTP Request

Parts Required
1 Request Line Yes
2 Headers No
3 Entity Body No
Request Line

The first component, known as the request line, is absolutely mandatory for any request. It
alone is responsible for the type of request, the resource of the request, and, last, which
version of the HTTP protocol the client is making use of. The request line itself is
composed of three parts, separated from one another by whitespace. These three
components are Method, Request-URI, and HTTP-Version.

Method represents the action to be performed on the specified resource and can be one
of the following: GET, POST, HEAD, PUT, LINK, UNLINK, DELETE, OPTIONS, and
TRACE. For the purposes of this chapter, I will only discuss the first two.

The method GET is used to inform the server that it possesses a resource that we wish
to obtain. GET is most commonly used when navigating to a particular URL in a browser,
whereas the POST method is used to inform the server that you are providing data along
with your request. The POST method is commonly used with HTML forms. The response
that is supplied upon a form’s submission often reflects content that accounts for the form
submission.

Because the GET method does not concern itself with any alterations to a server, it is
commonly referred to as a safe method. The POST method, on the other hand, is referred
to as an unsafe method, as it concerns working with data.

The URI of the request line simply identifies the resource, which the request method
applies. The specified URI may be that of a static resource, such as a CSS file, or that of a
dynamic script whose content is produced at the moment of a request.

www.it-ebooks.info

http://www.it-ebooks.info/

Last, the request line must indicate the HTTP-Version utilized by the client. Since
1999, the Request-Version of browsers has been HTTP/1.1. Examples of a request line are
shown in Listing 8-1.

Listing 8-1. Syntactic Structure of a Request Line

GET
http://json.sandboxed.guru/chapter8/css/style.css HTTP/
GET
http://json.sandboxed.guru/chapter8/img/physics. jpg HTTP/

POST http://json.sandboxed.guru/chapter8/post.php
HTTP/1.1

Headers

The second component of the request concerns the manner by which the request is able to
provide supplemental meta-information. The meta-information is supplied within the
request in the form of a header, whereas a header, at its most atomic unit, is simply a
key/value pair separated by the colon (:) and made up of ASCII characters. The server
can utilize this information in order to best determine how to respond to the request.

The HTTP protocol has formalized a plethora of headers that can be utilized to relay a
variety of detail to the server. These headers fall under one of three categories: general
headers, request headers, and entity headers.

General Headers

The first category of header is that of the general headers. The headers that apply to this
category identify general information pertaining to the request. Such general information
may regard the date of the request, whether or not to cache the request, etc. The following
are general headers:

e (Cache-Control

e Connection

e Date

e Pragma

e Trailer

¢ Transfer-Encoding

e Upgrade

e Via

e Warning

Request Headers

The second category of headers is that of the request headers. These headers can be

www.it-ebooks.info

http://www.it-ebooks.info/

supplied with the request to provide the server with preferential information that will assist
in the request. Additionally, they outline the configurations of the client making the
request. Such headers may reveal information about the user-agent making the request or
the preferred data type that the response should provide. By utilizing the headers within
this category, we can potentially influence the response from the server. For this reason,
the request headers are the most commonly configured headers.

One very useful header is the Accept header. It can be used to inform the server as to
what MIME type or data type the client can properly handle. This can often be set to a
particular MIME type, such as application/json, or text/plain. It can even be set to */*,
which informs the server that the client can accept all MIME types. The response provided
by the server is expected to reflect one of the MIME types the client can handle. The
following are request headers:

e Accept

e Accept-Charset

e Accept-Encoding

e Accept-Language

e Authorization

e Expect

e From

e Host

e [f-Match

¢ If-Modified-Since

e [f-None-Match

e [f-Range

¢ [f-Unmodified-Since
e Max-Forwards

e Proxy-Authorization
e Range

e Referer

e TE

e User-Agent

At this point, feel free to navigate the browser of your choice to the following URL:
http://json.sandboxed.guru/chapter8/headers.php. The content that is
displayed is the response to that of an HTTP request. Ironically, the content displayed

presents the HTTP request for the requested URI. Here, you can view the combination of
general headers and the request headers submitted with the request. Generally speaking, as

www.it-ebooks.info

http://json.sandboxed.guru/chapter8/headers.php
http://www.it-ebooks.info/

we navigate the Internet, the browser supplies the various headers with each request on
our behalf. Therefore, some of the request headers supplied possess values that reflect
those configured within our browser settings. Because each browser may vary in its values
supplied to the reflected headers, your results may not reflect mine, shown in Listing 8-2.

Listing 8-2. The Composition of an HTTP GET Request

GET /chapter8/headers.php HTTP/1.1

Host: json.sandboxed.guru

Cache-Control: max-age=0

Connection: close

X-Insight: activate

Cookie: person={"age":"36","name":"ben", "gender":"male"}
Dnt: 1

Accept-Encoding: gzip, deflate

Accept-Language: en-us,en;q=0.7,fr;q=0.3

Accept:

text/html, application/xhtml+xml, application/xml;q=0.9,*/*;q=¢
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac 0S X 10.9;
rv:30.0) Gecko/20100101 Firefox/30.0 FirePHP/0.7.4

Note The Referer header is the result of a spelling mistake that was not caught before it
was incorporated within the HTTP specification.

As you can clearly see, the first line, the request line, details the method to apply to the
indicated URI of /chapter8/headers. php. While the URI is that of a dynamic
page, the request line states: GET the resource provided by headers. php. That
resource, of course, generates its content upon receipt of the HTTP request, in order to
reveal the headers as your browser configures them.

While this information will only be present for the particular URI utilizing our
developer console, we will be able to view any and all HTTP requests and their responses
for any resource. This can be accomplished by profiling the network activity from within
the developer’s console of your favorite modern browser. Feel free to refresh the page
once you have your developer console open and the network tab in view. Figure 8-1
displays the HTTP request and its headers for the request URI
http://json.sandboxed.guru/chapter8/headers.php.

www.it-ebooks.info

http://json.sandboxed.guru/chapter8/headers.php
http://www.it-ebooks.info/

anoe Developer Tools - http://json.sandboxed.guru/chapter8/headers.php
Q. Elements | Network! Sources Timeline Profiles Resources Audits Console =R - = |
® O T = Preserve log

Name "
Path Headers | Preview Response Timing

ﬂ headers.php Remote Address: 23.229.188.82: 80
Request URL: http://json.sandboxed.gurufchapter8/headers.php

Request Method: GET
Status Code: & 200 OK

v Request Headers view parsed
GET fchapterB/headers.php HTTP/1.1
Host: json.sandboxed.guru
Connection: keep-alive
Cache-Control: no-cache
Pragma: no=-cache
Accept: text/htsl,application/xhisl»xml,application/xml;q=8.9, inage/webp,*/+;q=08.8
User-Agent: Mozilla/s5.8 (Macintosh; Intel Mac 05 X 18_95_3) AppleWebKit/537.36 (KHTML, like Geecko) Chrome
/£35.8.1916.153 Safarif537.36
ONT: 1
Accept-Encoding: gzip,deflate,sdch
Accept-Language: en=US,en;q=08.8

» Response Headers (7)

Figure 8-1. The request headers exhibited by the Chrome developer console

Entity Headers

The third category of headers is that of the entity headers. These headers are used to
supply meta-information regarding any data that is being sent to the server along with the
request. The provision of data that accompanies a request is always tied to the unsafe
HTTP methods, such as PUT and POST. Safe methods, on the other hand, will never
possess an entity body. However, when data is supplied, it will be these headers that
describe the data type being sent, the character encoding it possesses, and the amount of
bytes of data being transferred. The following are entity headers:

e Allow

e Content-Encoding

e Content-Languages

e Content-Length

e Content-Location

e Content-MD5

e Content-Range

e Content-Type

e Expires

e Last-Modified

Entity Body

The final component of the request is the entity body. While the entity headers carry the
meta-information, the entity body is strictly the nomenclature for the data being sent to the
server. The syntax of the entity can reflect that of HTML, XML, or even JSON. However,
if the Content-Type entity header is not supplied, the server, being the receiving party of
the request, will have to guess the appropriate MIME type of the data provided.

www.it-ebooks.info

http://www.it-ebooks.info/

I will now review the request of an unsafe method, so that you can observe a request
that is in possession of an entity body. Feel free to navigate your browser to the following
URL: http://json.sandboxed.guru/chapter8/post. php. By filling out the
two form fields and clicking submit, the form post will automatically trigger an HTTP
request that will supply the filled-in fields as data. The response that will be outputted to
the screen will reflect the captured headers of the POST request. Listing 8-3 reveals the
HTTP request and the entity it possesses. Feel free to utilize your developer’s console, to
compare the request with the results shown below.

Listing 8-3. The Composition of an HTTP POST Request

POST /chapter8/headers.php HTTP/1.1

Host: json.sandboxed.guru

Cache-Control: max-age=0

Connection: close

X-Insight: activate

Referer: http://json.sandboxed.guru/chapter8/post.php
Dnt: 1

Accept-Encoding: gzip, deflate

Accept-Language: en-us,en;q=0.7,fr;q=0.3

Accept:

text/html, application/xhtml+xml, application/xml;q=0.9,*/*;q=¢
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac 0S X 10.9;
rv:30.0) Gecko/20100101 Firefox/30.0 FirePHP/0.7.4
Content-Length: 37

Content-Type: application/x-www-form-urlencoded

fname=ben&lname=smith&mySubmit=submit

As you can see from Listing 8-3, an empty line following the other two request
components separates the entity body. Furthermore, the two supplied entity headers,
Content-Length and Content-Type, provide the server with an understanding of what is
being supplied, relieving the server from having to guess how to properly parse the data.

HTTP Response

For every HTTP request there is an HTTP response. Additionally, the structural
composition of the HTTP response, as displayed in Table 8-2, is identical to that of the
HTTP request with one major exception: the request line is replaced with a status line.

Table 8-2. Structure of the HTTP Response

Parts Required
1 Status Line Yes
2 Headers No
3 Entity Body No

www.it-ebooks.info

http://json.sandboxed.guru/chapter8/post.php
http://www.it-ebooks.info/

Status Line

The first component of the HTTP response is the status line, which details the result of the
request. The composition of the status line is composed of three parts: the version of the
HTTP protocol utilized by the server, a numeric status code, and an associated textual
phrase that describes the status of the request. Each component is separated from the other
with whitespace.

The HTTP version simply reflects the version of the HTTP protocol used by the server.

The status code represents a three-digit number that reflects the status of the request. It
is the duty of the status code to inform the client whether the request was understood, if it
resulted in an error, and/or if the client must take further action. There are five categories
of statuses, and each three-digit status code is a member of an appropriate status class.

The status classes, as illustrated in Table 8-3, are divided into groups of hundreds,
meaning that the indicated classes can possess 100 different unique status codes. While
this is not currently the case, by providing each class with ample padding, additional
statuses can be incorporated in the future.

Table 8-3. Response Status Classes of the HTTP-Request

Status Reason Phrase

Class

100-199 This class of status code indicates a provisional response, consisting only of the status line and
optional headers.

200-299 This class of status code indicates that the client’s request was successfully received, understood,
and accepted.

300-399 This class of status code indicates that further action needs to be taken by the user-agent, in order

to fulfill the request.
400-499 This class of status code is intended for cases in which the client seems to have erred.

This class of status code indicates cases in which the server is aware that it has erred or is

500-599 incapable of performing the request.

The most common classes that will be used by the average user will be among the
following: 200’s, 400’s, and 500’s. These represent the response messages from the server
that will help to indicate if the resource requested has been satisfied or if there were errors
along the way. The most common status codes encountered by front-end developers are
the following: 200, 204, 404, and 500.

e 200 OK: The server has successfully recognized the request.

e 204 No Content: The server has successfully recognized the request;
however, there is no new entity body to return.

e 404 Page Not Found: The indicated resource is unable to be located
by the server.

www.it-ebooks.info

http://www.it-ebooks.info/

e 500 Internal Server Error: The server has encountered an issue
preventing the request from being fulfilled.

The textual phrase of the status line is utilized, so that it can be easily read and
interpreted by humans. Each phrase details the meaning of its associated status code.

Note You can read more on the existing status codes here:
http://www.w3.0rg/Protocols/rfc2616/rfc2616-secl10.html.

Headers

The second component of the response concerns the mechanism by which the response is
able to provide the client with supporting meta-information. As with requests, response
headers are grouped into three categories: general headers, request headers, and entity
headers.

General Headers

The first category of headers is the general headers. The headers that apply to this
category identify general information. Such general information may regard the date of the
response or whether the connection should remain open or closed. The following are
general headers:

Cache-Control

Connection

e Date

e Pragma

e Trailer

¢ Transfer-Encoding
e Upgrade

e Via

e Warning

Response Headers

The second category of headers is the response headers. These headers provide the client
of the request with information pertaining to the configurations of the server, as well as the
requested URI. For example, the server can provide response headers to inform the request
of what HTTP methods are accepted, as well as whether authorization is required in order
to access the specified URI. These headers can even inform the request whether it should
occur at a later point in time. The following are response headers:

e Accept-Ranges

www.it-ebooks.info

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://www.it-ebooks.info/

e Age

e ETag

e [ocation

e Proxy-Authentication
e Retry-After

e Server

e Vary

e WWW-Authenticate

Entity Headers

The third category of headers is the entity headers. These headers are used to supply meta-
information regarding the data being sent along with the response. As with entity headers
for a request, the most beneficial entity headers for a response will be those that describe
the MIME type of the entity provided, so that it may be parsed/read properly. This is
achieved via the Content-Type header. The configured value of the Content-Type will
often reflect a MIME type that was indicated as the value of the Accept header within the
request. The following are entity headers:

e Allow

e Content-Encoding

e Content-Languages

e Content-Length

e Content-Location

e Content-MD5

e Content-Range

e Content-Type

e Expires

e Last-Modified

Entity Body

The final component of the response is that of the entity body. Whereas entity headers
outline the meta-information, the entity body is the data provided by the server.

Let’s now revisit our earlier HTTP request from Figure 8-1, only this time, let’s focus
on the response captured in Figure 8-2. Figure 8-2 reveals the response that is returned by
the server for the following URL.:
http://json.sandboxed.guru/chapter8/headers.php. The first thing to
note is the status line located below the response headers heading. It begins by revealing

www.it-ebooks.info

http://json.sandboxed.guru/chapter8/headers.php
http://www.it-ebooks.info/

the HTTP version and is immediately followed by the status of the request.

ann Developer Tools - http://ison.sandboxed.gurufchapter8/headers.php
Q. Elements | Network| Sources Timeline Profiles Resources Audits Console = 4 ==
® & ¥ = Preserve log

¥

Mame
" | Headers | Preview Response Cookies Timing

{}'i headers.php Remote Address: 23.229.180.82:80
= Request URL: http://json.sandboxed.guru/chapter8/headers.php
Regquest Method: GET
Status Code: & 288 0K
» Request Headers (10)
v Response Headers view parsed
HTTP/1.1 206 OK
Date: Sun, 15 Jun 2814 22:18:11 GMT
Server: Apache mod_fogid/2.3.1e-dev
X-Powered-By: PHP/5.4.26
Content-Length: 482
Keep-Alive: timeout=3
Connection: Keep-Alive

Content-Type: text/html
1 requests | 694 B transferred | 317

Consale Search Emulation Rendering

® Y <topframe> v
>

Figure 8-2. The response headers exhibited by the Chrome developer console

In this particular case, the response is successfully fulfilled, as indicated by the status
code of 200. Furthermore, from the textual phrase that follows the status code, we can
read that the messaging is that of OK. Below the status line, we are able to observe a
variety of headers, which belong to the general headers and entity headers categories. I
want to draw your attention to the final header in the listing. This particular entity header
is configured to define the MIME type of the entity body being returned. This enables the
browser to parse it accordingly and display it upon its arrival. In this particular case, the
data being provided is HTML and, therefore, possesses the Content-Type of text/HTML.

The actual data that is returned can be viewed in the response tab, which is none other
than the markup that is being presented upon arrival of the URL.

If the preceding content is new to you, don’t worry, for you are not alone. In fact,
typically, only those who are server-side developers know the preceding information. This
is because they generally write the code to analyze the request headers and, in turn,
configure the appropriate response. Typically, HTTP requests are made behind the scenes
and handled by the browser, allowing front-end developers like us to remain ignorant of
the communications taking place. However, in the upcoming section, I will discuss the
technique that enables us to initiate and configure our own HTTP requests, allowing us to
send and receive JSON via JavaScript.

Ajax

Ajax itself is not a technology but, rather, a term coined by Jesse James Garrett in 2005.
Ajax stands for Asynchronous JavaScript and XML (a.k.a. Ajax) and has become
synonymous with modern-day front-end development, and for great reason. It offers the
ability to initiate HTTP-Requests such as GET and POST on demand and without having
to navigate away from the current web page, as shown in Figure 8-3.

www.it-ebooks.info

http://www.it-ebooks.info/

no
-] jron_sandboned gura/c

| POST jchapterais-1.php HITPALY T —

&~ o son.sandboxed.guru/chapterd | B-1.php = |B 3 Hestijzonsandboxed.gun
4 9 o [Accapt ecthtmi application/shtml +um| spphcationimlged. 5 mageiwebp, /" qed 8
P apps M Learn moce. ' Gat Processing an | Arduing Ectipse De » [Other Bookmark Accept-Encoding: grp deflate sdch

' Accept-Language: en-USeng=04
First-Name: ben First-Name: {smah subemit Content-Longth: 37

Content-Type: apphcationfewww-forme-prilencoded

Raferer: htpijsonsandboxed guenichaptersia-1.php

User-Agent: Mozibla/5.0 (Macintosh; Inted Mac 05X 10_9_3)

AppleWebkin/s37. 36 (KHTML, ke Gecko) Cheomel/35.001916.114 Safari/537.36
json_sandbowed gura/ch "

= friaiive =benliname=smahmySubnmit=submit

- 4 json sandboxed. guru/ chapterd/8-1.php = 5 v —
i &8 Learn mi b Gt P img am Ardwing [[+ .
Apps T mgde rocessing 4 h wing Cclipse 111 200K
Welcome Back userlD: 1 Content-Length: 22
Date: Fri, 06 Jun 2014 17:36:19 GMT

Server Apache: mod_fogid/2.3.10-dev
Content-Type: text/html

ann

<ldoctype html>
<htmil lang="en">

<body>
Welcorne Back userlC: 1
= ibody>
=il

Figure 8-3. The full life cycle of an HTTP GET request

Figure 8-3 demonstrates the process by which data is integrated into a web page when
solely handled by the server. The demo begins with a user landing on a web page and
being invited to sign in to the site experience via a simple form. Upon clicking submit, the
browser initiates a new request to the server, in order to retrieve the appropriate response
that reflects the data that has been provided by the user. The headers within that request
detail the necessary information for the server to respond accordingly. Once the server
receives the request, it fetches the resource being requested, retrieves some information
from the database, and inserts it within the content to be returned, thereby revealing an
updated page for the visited URL: json.sandboxed.guru/chapter8/8-1.php.

The terms Asynchronous JavaScript and XML refer to the various web technologies
that are used to incorporate the exchange of data between the current web page and a
server in the background. You might be thinking that if the x in Ajax stands for XML, and
this is a book on the use of JSON, why then should we care about Ajax? While the x does
stand for XML, the request/response initiated via Ajax continues to remain bound to the
rules of the HTTP protocol. Therefore, the server can return any and all valid data types,
such as HTML, Text, XML, JSON, etc. We, of course, will be working with JSON. The x
in Ajax came to be simply because the original XMLHt t pRequest only supported XML

parsing.’

The XMLHt tpRequest object provides the interface by which JavaScript can initiate
an HTTP-Request directly from within a running application, enabling communication
with a server. This allows for data to be pushed out or consumed. Furthermore, as the A in
Ajax suggests, this communication occurs asynchronously, implying non-blocking. This
allows the executing application and the user to continue, without requiring either to stop
what they’re doing, until the request has been fulfilled by the server. The HTTP request
occurs outside of the process used to run our JavaScript application. More specifically, it
occurs in a separate process that is used only by the browser. When the server has fulfilled
the request, the browser will alert our application to its availability, by notifying our
application via an event. By listening in on this event, we can obtain the response from the
server to parse and use, as our application requires.

The XMLHt tpRequest object, which is the ECMAScript HTTP API,? originated as
a proprietary feature within Internet Explorer 5, as a part of the Active X framework. Its
practicality and implications became immediately recognized and were quickly

www.it-ebooks.info

http://json.sandboxed.guru/chapter8/8-1.php
http://www.it-ebooks.info/

implemented by competing browsers. Anticipating the possible variations and problems
that could soon arise among vendor implementations, the W3C urged to formalize the
standard of the syntax, which can be read at the following URL.:
www.w3.0rg/TR/2014/WD-XMLHttpRequest-20140130/. This standard
outlines the API that developers can leverage to invoke an HTTP request that will
facilitate the invocation of an HTTP request.

XMLHttpRequest Interface

The HTTP API, as exposed by the XMLHt t pRequest object, consists of a variety of
methods, event handlers, properties, and states, all of which provide our JavaScript
application the ability to successfully facilitate an HTTP request, in addition to obtaining
the response from a server. For this reason, each method, property, handler, and state will
be integral in a particular aspect of the request or the response.

Global Aspects

The sole global method of the XMLHt t pRequest interface is that of the constructor (see
Table 8-4), which, when invoked, will return to our application a new instance of the
XMLHttpRequest object. It will be through the interface inherited by this object that
we will initiate and manage our requests. Furthermore, by instantiating multiple instance
of the XMLHt tpRequest object, we can manage simultaneous requests.

Table 8-4. XMLHt tpRequest Constructor

Method/Property Parameter Returned Value

constructor N/A XMLHttpRequest (object)

Listing 8-4 demonstrates the instantiation of an XMLHt tpRequest object and
assigns the instance to a variable labeled xhr. It will be fairly common to see xhr as the
reference, as this is simply the acronym for the XMLHt tpRequest object.

Listing 8-4. Creating an Instance of the XMLHt tpRequest Object
var xhr = new XMLHttpRequest();

Whether you are working with one Xhr or many, as the HTTP request occurs
asynchronously, it is necessary for our application to be notified of any change in state, for
the duration of the request. Such notifications may be whether the response has been
fulfilled or the connection has timed out. The XMLHttpRequest Level 2 standard outlines
the event handlers possessed by each xhr instance, so that we may remain aware of the
status of the request. These event handlers can be viewed in Table 8-5.

Table 8-5. The xhr Event Handlers for Monitoring the Progress of the HTTP Request

Event Handlers Event Handler Event Type

www.it-ebooks.info

http://www.w3.org/TR/2014/WD-XMLHttpRequest-20140130/
http://www.it-ebooks.info/

onloadstart * loadstart *

onprogress progress

onload load

onloadend * loadended *
onerror error

ontimeout timeout

onabort * abort *
onreadystatechange readystatechange

Note The progress events that do not appear with an asterisk (*)beside them are
implemented by all modern browsers, in addition to Internet Explorer 8. However, those
beside an asterisk require IE 10 or greater.

The event handlers in Table 8-5 will alert our application to a variety of notifications
pertaining to the state of the request. Furthermore, they can be utilized in one of two
possible implementations.

The first is that we can remain object-oriented and register the event of the state to
which we choose to listen. For each event to which we listen, we can assign a particular
function to be triggered upon notification, such as that in Listing 8-5. As different
browsers implement various ways to register an event, it is necessary to make use of a
cross-browser solution, as I have on line 11.

Listing 8-5. The Registration for Event Listeners Belonging to the Xhr object for Each
Notification of State

1 var xhr = new XMLHttpRequest();

2 addListener(xhr, 'loadstart', function() { alert("load-
start"); });

3 addListener(xhr, 'progress', function()

{ alert("progress"); 1});

4 addListener(xhr, 'load', function() { alert("load");
1);

5 addListener(xhr, 'loadended', function()

{ alert("loadended"); });

6 addListener(xhr, 'timeout', function()

{ alert("timeout");});

7 addListener(xhr, 'abort', function() { alert("abort");
1);

8 addListener(xhr, 'readystatechange', function()

{ alert("readystatechange");});

9

10 //cross browser addListener

www.it-ebooks.info

http://www.it-ebooks.info/

11 function addListener(elem, eventName, handler) {

12 if (elem) {

13 elem.addEventListener(eventName, handler,
false);

14 } else if (elem.attachEvent) {

15 elem.attachEvent('on' + eventName, handler);
16 } else {

17 elem['on' + eventName] = handler;

18 }

19 }

The alternative to being notified of a change in a particular state is to assign a function
as the callback to the event handler, which exists as a property of the object itself. This
manner of implementation is demonstrated in Listing 8-6.

Listing 8-6. Assigning Callback Functions to Each of the xhr Status Event Handlers

1 var xhr = new XMLHttpRequest();

2 xhr.onloadstart = function()
{ alert("onloadstart"); },;

3 xhr.onprogress = function()
{ alert("onprogress"); };

4 xhr.onload = function()
{ alert("onload"); };

5 xhr.onloadend = function()
{ alert("onloadend"); };

6 xhr.ontimeout = function()
{ alert("ontimeout"); };

7 xhr.onabort = function()
{ alert("onabort"); };

8 xhr .onreadystatechange = function()
{ alert("onreadystatechange"); };

Whether the implementation you choose to be made aware, regarding state
notifications of the HTTP request, reflects that of Listing 8-5 or that of Listing 8-6, both
will produce the equivalent results. The result produced is the invocation of the
corresponding function that has been assigned as the receiver of a particular notification,
when that event is dispatched.

There are eight progress notifications in total that will inform an application as to the
particular state of the HTTP request. These notifications are the following: loadstart,
progress, error, load, timeout, abort, loadend, and
onreadystatechange.

The loadstart event is dispatched the moment the HTTP request begins. This is
not to be confused with the moment communication occurs between the client and the
server. As the 1loadstart event reflects the start of a request, it should be expected to be
dispatched a total of one time for each request initiated.

www.it-ebooks.info

http://www.it-ebooks.info/

The progress event is dispatched the moment the HTTP connection is established
and the request/response is effectively relaying data. During the course of the
transmission, the progress event will continue to fire until there is no further data to

transmit. This, however, does not always indicate that a successful request has been
fulfilled.

The error event will be dispatched exactly once, or not at all, during the course of
each HTTP request initiated by the Xhr object. Should the request result in an error, the
error event will immediately be dispatched. This event is useful for being informed that
the request was unsuccessful.

The 1oad event will be dispatched exactly once, or not at all, during the course of
each HTTP request initiated by the Xhr object. Should the request be successfully
fulfilled, the 1oad event will be immediately dispatched. This event is useful for being
informed that the request has been completed. It should be mentioned that just because a
load is considered completed by the Xhr object does not necessarily mean that the request
was successfully satisfied. Therefore, it will be imperative to provide your callback
method with the logic to determine the status code, in order to ensure that it was truly
successful. The status code, in addition to the status text, can be obtained by the status
and statusText properties of the Xhr. I will discuss these two properties a bit later in
the chapter.

The timeout event will be dispatched exactly once, or not at all, during the course of
each HTTP request initiated by the Xhr object. Should the duration of the request be
determined to have surpassed a particular interval, the connection will have been deemed
to be timed out, notifying our application of the matter.

The abort event is dispatched exactly once, or not at all, during the course of each
HTTP request initiated by the Xhr object. Should the request at any time be aborted, the
abort event will be immediately dispatched.

The 1loadend event is dispatched exactly once during the course of each HTTP
request initiated by the Xxhr object. The 1oadend notification is dispatched the moment
the HTTP request is no longer active in its attempt to fulfill a request. This event is
dispatched after the following possible notifications: error, abort, load, and
timeout.

The onreadystatechange is the original, and at one time the only, event handler
of the XMLHt tpRequest implemented by earlier browsers. This event is used to notify
a supplied function of the progress of the initiated HTTP request. The
onreadystatechange event is dispatched multiple times during the course of each
HTTP request initiated by the xhr instance. In fact, the event is dispatched each time the
readyState property of the xhr instance is assigned a new state. The possible states
that can be assigned to the readyState property are those outlined in Table 8-6.

Table 8-6. The Possible States of the xhr object and Numeric Representation

States Numeric Representation

UNSENT (0]

www.it-ebooks.info

http://www.it-ebooks.info/

OPENED 1

HEADERS_RECEIVED 2
LOADING 3
DONE 4

The states outlined in Table 8-6 are assigned to that of the readyState property that
exists on each xXhr instance. The assigned state reflects the progress of the HTTP request
itself. There are five possible states that can be assigned to the readyState property,
and each infers the given state of the request.

The state UNSENT is the default state of the readyState property. This state is used
to inform our application that the Xhr object, while instantiated, is not yet initialized. The
readyState property during this state returns a value of 0.

The state OPENED replaces the UNSENT state the moment the request method, open,
has been invoked, initializing our Xhr instance. The readyState property during this
state returns a value of 1.

The state HEADERS_RECEIVED is assigned as the value of the readyState
property upon receiving the headers that accompany the response that will ultimately be
received from a server. The readyState property during this state returns a value of 2.

The state LOADING is assigned as the value of the readyState property as the
transmission of data pertaining to the response entity body is received. The readyState
property during this state returns a value of 3.

The state DONE is assigned as the value of the readyState property upon the
conclusion of the HTTP request. This state reflects only the closure of the request. As with
the 1oad event, the done state does not identify if the request resulted in an error, a time-
out, or a successful fulfillment of a request. Therefore, it will be imperative to determine
the statusCode when determining how to process the request. The readyState
property during this state returns a value of 4. Listing 8-7 demonstrates an event handler
that monitors all states of the readyState property.

Listing 8-7. Determining the State of the Xxhr object for Each Change in State

1 var xhr = new XMLHttpRequest();

2 xhr.onreadystatechange = handlStateChange;
3

4 function handleStateChange() {

5 if (xhr.readyState === 0) {

6 alert("XHR is now instantiated");

7 } else if (xhr.readyState === 1) {

8 alert("XHR is now Initialized");

9 } else if (xhr.readyState === 2) {

10 alert("Headers are now Available");
11 } else if (xhr.readyState === 3) {

www.it-ebooks.info

http://www.it-ebooks.info/

12 alert("Receiving Data");

13 } else if (xhr.readyState === 4) {
14 alert("HTTP Request ended");
15 }

As an older implementation, the onreadystatechange does not offer an
application as accurate a notification system as the other seven progress events.
Furthermore, the processing that is required by our JavaScript to determine the state of the
HTTP request, if extensive, has the ability to block the thread, thereby delaying the events
from being triggered.

The Request Aspect

The methods and properties that are outlined within this section make up the facade that
enables one to correctly configure the metadata of the HTTP request. (See Table 8-7.)

Table 8-7. The Request Methods of the xhr object

Method Parameters Returned
Value
open String (method), String (URI), Boolean (async), String N/A

(user), String (password)

String (field),
setRequestHeader N/A
String (value)

send String (entity body) N/A
abort N/A N/A
open

The open method, whose signature can be viewed in Listing 8-8, acts as the starting point
that will be used to configure the HTTP request.

Listing 8-8. The Signature of the open Method of the Xxhr object

open(HTTP-Method, request-URI [, async [, user [,
password]]]);

As revealed by Listing 8-8, the open method accepts five arguments. Three are
optional, and two are required.

The first parameter, HTTP -Method, indicates to the server what method it requires to
be performed on the specified request URI. A resource may be the target of a “safe” or
“unsafe” method. As discussed in the earlier sections of the chapter, the two types of
methods this chapter will focus on are GET and POST.

The second parameter, request -URI, identifies the target of our request. The
argument supplied to the request -URI can be specified either as a relative URL or,

www.it-ebooks.info

http://www.it-ebooks.info/

alternatively, an absolute URL. As the XMLHt tpRequest object is subject to the same-
origin policy, the URI supplied must possess the same origin as the application
configuring the request. If, however, the URL provided is that of another host outside of
the current origin, the server of the URL being targeted must allow for cross-origin
resource sharing. I will discuss cross-origin resource sharing in the next chapter.

Note The XMLHttpRequest object is subject to the same-origin policy.

The required parameters will be appended together, along with the HTTP protocol
version, which is typically 1.1, to form the very first line of the request, which is the
request line, as shown in Listing 8-9.

Listing 8-9. A GET Request for the URI xFile.php viathe HTTP/1. 1 Protocol
GET /xFile.php HTTP/1.1

The third parameter of the open method does not supply metadata to the request but,
rather, indicates if the request will occur asynchronously or synchronously. When this
parameter is left undefined, it defaults to true, thereby processing the HTTP request in
another thread.

The final two optional parameters, user and password, are used to supply
credentials that may be required of a resource whose access requires basic authentication.
These values will add to the metadata of the request only if the server responds with a 401
Unauthorized status code.

setRequestHeader

The next method, setRequestHeader, offers our application the opportunity to
specify particular headers that will complement the request by providing supplemental
information. These can be any of the recognized standard HTTP/1. 1 attribute-value
fields. As indicated by the signature of the setRequestHeader defined in Listing 8-
10, the field and value are to be supplied as individual strings. Behind the scenes, the xhr
object will append them together, separated by a colon (:) token. Furthermore, any
number of request headers can be supplied to the request in question.

Listing 8-10. Signature of the setRequestHeader Method of the Xxhr object
setRequestHeader(field , value);

Via setRequestHeader, our application can supply any attribute value that aids in
the fulfillment of the response from the server. Such headers, as illustrated in Listing 8-11,
are the Accept headers, which outline the preferred media types that our application
recognizes. As the content we will be requesting most commonly from the server will be
that of JSON, we will be using the application/json media type.

Additionally, if the HTTP-Method is specified to be that of an “unsafe” method, we
can assign the Content-Type as a request header, to outline the encoding and MIME type
of the supplied entity body provided with the request. I will discuss how to append an

www.it-ebooks.info

http://www.it-ebooks.info/

entity body in the send method later in this section.

The headers supplied can also represent custom attribute values, which can be useful
for supporting custom requests. It’s common practice to precede all custom headers with
an X.

Listing 8-11. The Provision of the Accept Header and a Custom Header via the
setRequestHeader Method

setRequestHeader("Accept" , "application/json");
//requesting JSON as the response

setRequestHeader("X-Custom-Attribute" , "Hello-world"
); //custom header

For the most part, all standard HTTP/1. 1 headers can be supplied. However, there
are a few particular headers that cannot be overridden, due to security measures as well as
maintaining the integrity of data.® These values are listed in Table 8-8. If your application
attempts to supply values for any of the listed headers in Table 8-8, they will be
overridden to their default values.

Table 8-8. The Assorted HTTP Headers That Cannot Be Set Programmatically via
JavaScript

Accept-Charset Cookie Keep-Alive Trailer
Accept-Encoding Cookie2 Origin Transfer-Encoding
Access-Control-Request-Headers Date Referer Via
Access-Control-Request-Method DNT Upgrade

Connection Expect User-Agent

Content-Length Host TE

send

The send method of the Xxhr object is what prompts the submission of the request. As
indicated by its signature in Listing 8-12, the send method can be invoked with an
argument supplied. This argument represents the entity body of the request and is typically
used if the request method is specified as one of the “unsafe” methods, such as POST.

Listing 8-12. The Signature of the send Method of the xhr object
send (data);

The data supplied can consist of nearly anything; however, it must be supplied in the
form of a string. Data can be as simple as a word or a series of key/value pairs strung
together to resemble a form post, or even that of JSON text. Listing 8-13, Listing 8-14 and
Listing 8-15 demonstrate three different Content-Types being submitted via a form post.

Listing 8-13. Data Sent As the Entity Body of the Request with the Content-Type
Defaulted to text/plain

www.it-ebooks.info

http://www.it-ebooks.info/

var xhr = new XMLHttpRequest();
xhr.open("POST",
"http://json.sandboxed.guru/chapter8/xss-post.php");
xhr.send("fname=ben&lname=smith");
//content-type will be defaulted to text/plain;
charset=UTF-8.

Listing 8-14. Data Sent As the Entity Body of the Request with the Content-Type
Specified As X-www-form-urlencoded

<form action="8-1.php" method="post" onsubmit="return
formSubmit();">
First-Name:<input name="fname" type="text" size="25" />
Last-Name:<input name="lname" type="text" size="25" />
</form>
<script>
function formSubmit(){
var xhr = new XMLHttpRequest();
xhr.open("POST",
"http://json.sandboxed.guru/chapter8/xss-post.php");
xhr.setRequestHeader ("Content-Type", "application/x-
www-form-urlencoded");
xhr.send("fname=ben&lname=smith&mySubmit=submit") ;
return false;

}

</script>

Listing 8-15. Data Sent As the Entity Body of the Request with the Content-Type
Specified As JSON

var person={name:"ben", gender:"male"};

var xhr = new XMLHttpRequest();
xhr.open("POST",

"http://json.sandboxed.guru/chapter8/xss-post.php");
xhr.setRequestHeader ("Content-Type", "application/json");
xhr.send(JSON.stringify(person));

Whatever the supplied data, if you do not define the MIME type of the data by way of
the Content-Type header, the type for the data provided will be defaulted to text/plain;
charset=UTF-8, as in Listing 8-13. At this point, if you were to run the preceding listings
(8-13 through 8-15) from your local machine, the request would fail. This is due to the
fact that Xhr strictly adheres to the same-origin policy. Requests can only be to a server if
the request is initiated from the same origin. There is a way around this, which I will
discuss further in the next chapter. In the meantime, feel free to run these listings and
monitor the HTTP request via the developer console. Each listing can be viewed at the
following URLs:

e http://json.sandboxed.guru/chapter8/8-12.html

www.it-ebooks.info

http://json.sandboxed.guru/chapter8/xss-post.php
http://json.sandboxed.guru/chapter8/xss-post.php
http://json.sandboxed.guru/chapter8/xss-post.php
http://json.sandboxed.guru/chapter8/8-12.html
http://www.it-ebooks.info/

e http://json.sandboxed.guru/chapter8/8-13.html
e http://json.sandboxed.guru/chapter8/8-14.html

Note If you have been following along with the supplied URLs and have yet to clear
your cookies, you may have witnessed some of the cookies from the previous chapter sent
within the above requests.

abort

The final method of the request, abor t, informs the HTTP request to discontinue/cancel
the request. This method effectively closes any connection that has been made to a server
or prevents one from occurring if a connection has not yet been made.

In addition to methods, the Xxhr object provides a few attributes that can help us with
configuring our request. These properties can be found in Table 8-9.

Table 8-9. The Request Attributes of the xhr object

Properties Returned Value

Timeout Number (duration)
withCredentials * Boolean (credentials)

upload * XMLHttpRequestUpload (object)

Note The request properties that are not distinguished by an asterisk (*) are
implemented by all modern browsers, in addition to Internet Explorer 8. Those marked by
an asterisk require IE 10 or greater.

timeout

The timeout property can be set in milliseconds to that of any duration. The value
supplied will be the maximum allotted time for a request to complete. If a request
surpasses the provided time, the time-out event is dispatched to notify our application.

withCredentials

The withCredentials property can be set to that of either true or false. The
value supplied is used to inform the server that credentials have been supplied with a
Cross-origin resource request.

upload

The upload property, when read, provides our application with a reference to an
XMLHttpRequestUpload object. This object provides our application with the ability
to monitor the transmission progress for the entity body of a supplied request. This will be

www.it-ebooks.info

http://www.it-ebooks.info/

useful for any entity body that contains an excessive amount of data, such as when
allowing users to post various file attachments, such as images, or media.

At this point in time, you should possess the necessary understanding of the various
methods and properties possessed by the xhr object that will allow for devising and
configuring an HTTP request from a JavaScript application. The Xhr provides us the
vehicle we can leverage to transmit JSON to and from our application.

EXERCISE 8-1. AJAX FORM POST

With this newfound knowledge, you should be able to convert the HTML <form>
element of the following code into an Ajax call.

<body>
<div class="content">
<form
action="http://json.sandboxed.guru/chapter8/exercise.php"
method="post" onsubmit="return ajax();">
First-Name:<input name="fname" type="text"
size="25" />
Last-Name: <input name="lname" type="text"
size="25" />
<input name="mySubmit" type="submit"
value="submit" />
</form>
</div>
<script>
function ajax() {
// ... insert HTTP Request here
b

</script>
</body>

As we will be controlling the request via JavaScript, and because our favored
Content-Type is JSON, make sure that the data of the entity body is provided as
JSON. You can compare your answer to that of the preceding code.

Normally, the XMLHt tpRequest object is incapable of making successful requests
to servers that do not possess the same origin as the document from which the request it
initiated. However, I have employed a technique, which you will learn about in Chapter 9,
that will allow your xhr instances to successfully make requests to the following request
URI: http://json.sandboxed.guru/chapter8/exercise.php.

Unfortunately, if you are authoring your code using Internet Explorer 8 or 9 to make
requests against varying origins, you cannot utilize the XMLHt tpRequest object.
Instead, you must initialize the XDomainRequest object. Furthermore, while the
XMLHttpRequest enables you to specify the Content-Type via the
setRequestHeader, the XDomainRequest does not possess this capability.

www.it-ebooks.info

http://json.sandboxed.guru/chapter8/exercise.php
http://www.it-ebooks.info/

The Response Aspect

While the Xhr object enables us to configure the request, it will serve no purpose without
the understanding of how to extract the response provided. Therefore, the Xhr object also
incorporates various methods and properties that are concerned solely with working with
the response provided by the server.

As you learned earlier in the chapter, both the HTTP request and the response of said
request are broken into three components. These represent the request-line/status-line,
headers, and the payload. While both the headers and the payload are used in collaboration
to arrive at a parsed response, they are obtained separately via the Xhr interface. The
methods listed in Table 8-10 reflect the three methods of the xhr interface that are utilized
for working with the headers of the HTTP response, which will ultimately inform our
application of any details pertaining to the response.

Table 8-10. Response Methods of the xhr object

Method Parameters Returned Value
getAllResponseHeaders N/A String (value)
getResponseHeader String (key) String (value)
overrideMimeType String (Content-Type) N/A

getAllResponseHeaders

The getAllResponseHeaders method of the Xhr interface is used to return the
various headers that have been configured by the server to accompany the supplied
response. When invoked, Xhr returns a string of all headers of the response as key/value
pairs, each of which remains separated from another by a carriage return and new line
control characters. These control characters are represented by the following Unicode
values respectively: \u@OOD and \UOOOA. Furthermore, each key/value pair is separated
from another via the colon (:) token.

Knowing the syntax of the value returned, we can parse the string and simply extract
each header into an array, with the help of some minor string manipulation, as revealed in
Listing 8-16.

Listing 8-16. Extracting All Values That Are Configured to the Provided Response
Headers

...truncated code
//when the xhr load event is triggerd parse all headers
xhr.onload = parseHeaders;

//parseHeaders will manipulate the string
function parseHeaders() {
10 var headers = new Object();

5
6
7
8
9

www.it-ebooks.info

http://www.it-ebooks.info/

11 var responseHeaders = (this.getAllResponseHeaders());

12 //match sequences of characters that preceded control
characters into an array

13 var headerArray

= (responseHeaders.match(/[A\u000D\u000A].*/g1i));

14 for (var 1 = 0; i < headerArray.length; i++) {
15 var akeyValuePalir = headerArray[i];

16 var colonIndex = akeyValuePair.indexOf(“:");
17 var headerKey = akeyValuePair.substring(O0,
colonIndex);

18 var headerValue

= akeyValuePair.substring(colonIndex + 1);

19 headerValue = (headerValue.charAt(0) == " *“
? headerValue(1l) : headerValue;

20 headers[headerKey] = headerValue;

21 }

22 }

Listing 8-16 demonstrates how all headers can be extracted with a simple function
labeled parseHeaders. Once the Xhr load event notification is dispatched,
parseHeaders is invoked (line 6). Once the parseHeaders function runs, we
initialize an object, which will be used to retain any and all found headers and their values.

As parseHeaders is invoked by xhr, references to this remain implicitly set to
the context of the Xxhr object. Therefore, referencing this enables our function to invoke
the getA11ResponseHeaders method, obtaining the string of all header-value pairs
(line 11). The returned string is assigned as the value to the variable labeled
responseHeaders.

Utilizing a regular expression, we can extract any sequence of characters that precede
the two control characters, thereby separating one header-value pair from another. All
found matches are then appended to an array in the order they are encountered. Once the
entire string has been compared against the pattern, an array is returned, containing all
matches respectively. In order to manipulate these matches further, we assign the array as
the value to variable headerArray (line 13). From there, we iterate over each indexed
value, so that we can separate the key from its value. Knowing that a colon (:) token is
used to separate the two, we can determine the location of said token (line 16), allowing
us to extract everything up to the token (line 17) and everything after the token (line 18).
The two substrings, respectively, reflect the header and its value. While the HTTP protocol
states that headers and values are separated via the colon (:) token, they are also separated
by an additional space. Therefore, if the first character of the substring that represents our
value is that of a space, it is effectively removed (line 19). From there, we apply each key
and its correlating value to the headers object.

While it may not be immediately apparent why you would have to analyze all supplied
headers, it will simply come down to the use case. The getA11ResponseHeaders is
essential when your actions rely on the metadata of the response. Such a use case would
be when you pair an HTTP request with that of the request method HEAD, which is used to

www.it-ebooks.info

http://www.it-ebooks.info/

solely fetch header information from a server.

getResponseHeader

The getResponseHeader method, whose signature can be viewed in Listing 8-17, can
be utilized to obtain the value for the specified response header, as configured by the
server. The key supplied can be either uppercase or lowercase, but the format of the
argument must be that of a string.

Listing 8-17. The Signature of the getResponseHeader Method of the Xxhr object
getResponseHeader(key);

If the key supplied is not a configured header among those possessed by the response,
the value returned will be that of null. Much like getAl1ResponseHeaders, being
able to analyze the meta-information supplied within the response can be vital in
coordinating how you display, update, or even utilize the data provided.

As was explained earlier, the X in Ajax represents XML, because, at the time, XML
was the only data type outside of plain/text able to be parsed by the xhr object. While
many browsers have been making great strides to offer a variety of natively returned data
types, ranging from plain text to JSON, Internet Explorer 8 and 9 continue to provide us
only with the original two flavors. This makes for a particularly strong case as to why one
would require the use of getResponseHeaders. If the data type supplied from the
server is not in fact XML, with the use of the getResponseHeaders method, one is
able to obtain the correct Content-Type of the supplied entity body and correctly parse the
string per the syntax of said data format, as demonstrated in Listing 8-18.

Listing 8-18. HTTP POST to exercise.php with Configured Content-Type and
Accept Headers

1 var xhr = new XMLHttpRequest();

2 xhr.open("POST",
"http://json.sandboxed.guru/chapter8/exercise.php");
xhr.setRequestHeader ("Content-Type", "application/json");
xhr.setRequestHeader ("Accept", "application/json");
xhr.onreadystatechange = changeInState;
xhr.send('{"fname":"ben", "lname":"smith"}");

function changelInState() {
var data;
10 if (this.readyState === 4 && this.status === 200) {
11 var mime = this.getResponseHeader('content-
type'").toLowerCase();
12 if (mime.indexOf('json'))) {
13 data = JSON.parse(this.responseText);
14 } else if (mime.indexOf('xml'))) {
15 data = this.responseXML;
16 }

©o0O~NO Ol W

www.it-ebooks.info

http://json.sandboxed.guru/chapter8/exercise.php
http://www.it-ebooks.info/

17 }
18 }

Listing 8-18 leverages our earlier exercise to help demonstrate the benefit of the
getResponseHeader method. Thus far, I have not discussed what data type the earlier
exercise returns as the response entity. I also have not yet discussed any of the properties
that enable you to read the obtained request. Unless you looked at the headers provided by
the response via the developer console, you may not have known whether the entity body
returned was that of XML, HTML, plain text, or JSON. Odds are you cleverly deduced it
was JSON, as you realized the context of this book. However, the point is that you may
not have known for certain. Therefore, rather than assuming, it’s best to account for the
varying possibilities, so that you are able to work with the supplied data accordingly.

Listing 8-18 begins with the initialization of our Xhr object and supplies it with the
necessary HTTP-Method and request-URI (line 2). As our request method is specified as
POST and will be supplying data to the server, we continue to configure the Content-Type
of the provided data (line 3), informing the server how to parse it correctly. As this book
concerns working with JSON, we inform the server that our application accepts the
Content-Type of application/json (line 4). In order to monitor the state of the
request, the changeInState function is assigned as the callback (line 5). While I chose
to make use of the onreadystatechange to monitor the state of the request, I could
have just as easily used the onload event handler. However, as the event handlers are only
available in Internet Explorer 8, I wanted to demonstrate how to achieve the results of the
onload notification, for those who must continue to work with older browsers.

Last, we use the send method of the Xhr object to invoke the HTTP request and, in
doing so, provide it with the necessary JSON data to POST (line 6).

The function changeInState (line 8) supplied as the callback to the
onreadystatechange is not only used to determine the change in state but also the
Content-Type, if the request is successful (line 11). If you relied on the onload event
handler, you would not have to determine the state, as the event suggests it’s done.
However, because the onreadystatechange is triggered each time the
readyState property of the Xxhr object is updated, it’s imperative to query the status of
the request.

In order to distinguish among the five various states of the Xxhr object, it is necessary
to determine the value of the readyState property. If the readyState value is 4, we
know the current state of the Xhr object is DONE. However, in order to determine if the
response has successfully provided us with an entity body, the status code is also analyzed
(line 10). If the status code is found to be 200, which signifies that a response is
successful, we can begin to determine how to parse the data of the response.

We begin by utilizing the getResponseHeader to obtain the lowercase value of
the specified Content-Type for the response, as configured by the server (line 11). Once
we have obtained the value, we determine if it matches the JSON MIME type (line 12) or
that of XML (line 14). Depending on the outcome of the determined type, the appropriate
value is assigned to the data variable. If the Content-Type is found to be that of XML,

www.it-ebooks.info

http://www.it-ebooks.info/

the value is obtained via the responseXML property of the Xhr object (line 15).
However, should it be determined that the response has been provided in the JSON data
format, we must obtain the raw string from the responseText and supply it to the
native JSON Object to be parsed (line 13). I will discuss the responseXML and
responseText properties in the next section.

overrideMimeType

The overrideMimeType method enables our application to override the configured
Content-Type of the response body when obtained. FireFox, Chrome, and Safari have
implemented this method, which was added in the XMLHttpRequest Level 2 draft
standard. However, at the time of this writing, it is currently unavailable in Internet
Explorer 11.

Obtaining the Response

The variety of properties of the Xxhr object listed in Table 8-11 provides us with the
necessary means to obtain the provided response of the HTTP request. It will be with the
help of these attributes that we will come full circle in our ability to initiate a request and,
ultimately, obtain the response of that request.

Table 8-11. The Response Properties of the xhr object

Properties Access type Returned Value

readyState Read Integer (state)

status Read Integer (HTTP status Code)

statusText Read string (HTTP status)

responsexML Read XML (value)

responseText Read string (value)

responseType Read/Write XMLHt tpRequestResponseType (object)
response Read * (value)

readyState

The readyState property of the Xxhr object exhibits the current state of the HTTP
request. Throughout the asynchronous process of the HTTP request, the readyState
attribute will be updated regularly to reflect the status of the request. The values for which
it can be assigned are the integers discussed previously in Table 8-6.

Note As the states reflected are rather broad, the readyState property will often be
paired with other properties, such as the status or statusText properties, in order to
arrive at the necessary outcome.

www.it-ebooks.info

http://www.it-ebooks.info/

status

The status property of the Xhr object supplies an application with the ability to obtain
the HTTP status code of the response. Currently, there are five classes for the status codes.
These classes are those outlined earlier in the chapter in Table 8-3.

Listing 8-18 relied on both the readyState and the status property to determine
if the load had completed successfully. As shown on line 10, 1f(this.readyState
=== 4 && this.status === 200), we determined via the readyState if the
Xhr request had ended, in addition to determining whether the status of the response is
that of 200. A status code of 200 indicates that the request has been acknowledged.

statusText

statusText, like the status, is yet another property of the Xxhr object that is
concerned with providing us the appropriate status regarding the fulfillment of the
response. Each status code is accompanied by a textual phrase that provides additional
information regarding the status. Via statusText, the description that accompanies the
status code can be obtained and read by our application.

Using our 200 status code as an example, it is accompanied with the textual phrase OK.
This is very helpful when obtaining descriptive issues that can be relayed back to the user,
or even a developer, during the course of debugging.

Note The textual phrase that accompanies the status code is intended more for
debugging than for controlling the flow of an application.

responseXML

responseXML is the attribute of the Xxhr object that enables an application to obtain an
XML response provided by the server. As the data supplied within the response will not
always be configured as one of the XML Content-Types, application/xml or
text/xml, the responseXML attribute will not always provide a value. In the case of a
server providing a response with the Content-Type that is not indicative of XML, a value
of null will be returned when read from our application.

It should be made known that responseXML is not solely for an XML document.
Due to the resemblance, the responseXML attribute can also be used to retrieve HTML
documents identified by the text/html Content-Type.

response Text

responseText is a property of the Xhr object that provides our applications with the
ability to obtain the raw text of the entity body, as provided by the response. While
responseXML may often possess a value of null, responseText will always
possess a value.

Because the responseText attribute provides our application with the raw entity

www.it-ebooks.info

http://www.it-ebooks.info/

body received as a string, we must obtain the value of the Content-Type header. The
configured Content-Type header will give us insight as to the syntax required for parsing
the string. Once this is obtained, we can parse the string into the intended format, as
demonstrated on line 13 of Listing 8-18.

responseType

The responseType property of the Xhr object is concerned with the parsing of data
types natively, beyond that of mere XML. As has been previously stated, the Xhr object
has the ability to parse a response as XML data. However, as XML is not today’s data
interchange standard, and has not been for quite some time, much of the parsing that
occurs is forced to take place on the client side. Unfortunately, this puts the onus on the
application to parse a string. Essentially, this increases the odds of blocking the single
thread of the JavaScript engine. By allowing the browser to parse the request, the
JavaScript thread is less likely to become blocked.

The responseType property has been added to the XMLHttpRequest Level 2 draft
standard in an attempt to offload the parsing from the client side for five particular
Content-Types. These are the following: arraybuffer, blob, document, text, and
json. This is great news for JSON because, as you may recall, JSON. parseisa
blocking method. In order to offload the parsing of our response entity to the process
handling the request, we must configure the responseType before we invoke the send
method. Any one of five aforementioned data types can be assigned as the value for the
responseType attribute.

By configuring our request with a responseType attribute, we are able to inform
the Xxhr process to parse the entity body against the indicated syntax. In Listing 8-19, I’ve
indicated that the syntax is that of JSON.

Listing 8-19. HTTP Request Configured to Parse JSON

1 var xhr = new XMLHttpRequest();

2 xhr.open("POST",
"http://json.sandboxed.guru/chapter8/exercise.php");
xhr.setRequestHeader ("Content-Type", "application/json");
xhr.setRequestHeader ("Accept", "application/json");
xhr.onreadystatechange = changeInState;

xhr.responseType = "json";

xhr.send(' {"fname":"ben", "1lname":"smith"}");

~NOo Oo1bhWw

response

The response property of the xhr object, like responseXML and responseText,
provides our application with a way to obtain the entity body of the fulfilled request.
However, the major difference is that the value read will be parsed, that is, if we have
configured the HTTP request with responseType. Otherwise, the value returned is an
empty string.

Listing 8-20 revisits the previous listing and configures the request to utilize the

www.it-ebooks.info

http://json.sandboxed.guru/chapter8/exercise.php
http://www.it-ebooks.info/

responseType of JSON (line 6). As the parsing will now occur within a separate
process from our application, we no longer need to parse the JSON ourselves. Therefore,
we can replace line 14 with that of the response attribute, which should now hold a
JavaScript object.

Listing 8-20. HTTP Request Obtaining the Parsed JSON from the Xxhr Response Property

1 var xhr = new XMLHttpRequest();

2 xhr.open("POST",
"http://json.sandboxed.guru/chapter8/exercise.php");
3 xhr.setRequestHeader ("Content-Type",

"application/json");

4 xhr.setRequestHeader ("Accept", "application/json");
5 xhr.onreadystatechange = changeInState;

6 xhr .responseType = "json";

7 xhr.send('{"fname":"ben", "1name":"smith"}"),;

8
9

function changeInState() {

10 var data;

11 if (this.readyState === 4 && this.status === 200) {
12 var mime = this.getResponseHeader("content-
type'").toLowerCase();

13 if (mime.indexOf('json'))) {

14 data = this.response;

15 } else if (mime.indexOf('xml'))) {

16 data = this.responseXML;

17 }

18 }

19 }

While the responseType and response properties have been implemented in
most browsers, Internet Explorer continues to remain behind the times. XMLHttpRequest
Level 2 methods and attributes are only available in IE 10 or greater.

The preceding examples relied on the provision of dynamic data from a database on
my server. However, Ajax does not necessarily have to work with dynamic data. In fact,
Ajax is fantastic at loading static files as well. Listing 8-21 exposes the content body of a
file labeled images . json, which reveals the following JSON within.

Listing 8-21. JSON Content Within /data/imagesA. json

{
"images": [
{
"title": "Image One",
"url": "img/AndroidDevelopment.jpg"
+ {
"title": "Image Two",

www.it-ebooks.info

http://www.it-ebooks.info/

"url": "img/php.jpg"
3 o
"title": "Image Three",
"url": "img/Rails. jpg"
3 o
"title": "Image Three",
"url": "img/Android.jpg"

Listing 8-21 reveals an object that possesses a singular member labeled “images”.
Images, as a key, reference the value of an ordered list, where each index of said ordered
list references an object. These objects represent the necessary details pertaining to various
images that will be added dynamically to our page. The key ur 1l reflects the location from
which the image is supplied, while the title is used to populate the alt tag of the
dynamically inserted image. Listing 8-22 reveleals the code that will load, parse and insert
data/imagesA. json into an HTML document.

Listing 8-22. The Body of an HTML File That Utilizes Ajax to Load the JSON Document
data/imagesA.json

1 <body>

2 <input type="submit" value="load

images" onclick="loadImages('data/imagesA.json')"/>

3 <script>

4 function loadImages(url) {

5 var body = document.getElementsByTagName('"body")
[0];
6 var xhr = (window.XDomainRequest) ? new
XDomainRequest() : new XMLHttpRequest();

7 xhr.open("GET", url);

8 xhr.onload function() {

9 var data = JSON.parse(this.responseText);
10 var list = data.images;

11 for (var 1 = 0; 1 < list.length; i++) {
12 var image = list[i];

13 var listItem

= document.createElement("11i");

14 var img = document.createElement("img");
15 img.src = image.url;

16 img.alt = image.title;

17 listItem.appendChild(img);

18 body.appendChild(listItem);

19 }

20 iy

21 xhr.onerror = function() {

www.it-ebooks.info

http://www.it-ebooks.info/

22 alert(this.status + " "
+ this.statusText);

23 Iy

24 xhr.send();
25 i

26 </script>

27 </body>

Listing 8-22 demonstrates the use of Ajax to load the static file from Listing 8-21,
populating a variety of images within the page. The document reveals nothing but a
submit button within the page (line 2). This button, when clicked, will trigger the
JavaScript code that will both load the 1image . json file and dynamically insert each
found image into the body of our page. This will allow users to load our image set at a
time of their choosing, rather than adding to the initial file size of the web page. When the
button is clicked, the function 1loadImages (line 4) initiates the HTTP request. Because
only modern browses and later versions of Internet Explorer possess the
XMLHttpRequest object, we must first determine what object must be instantiated, to
make the proper request. We do so by determining whether the window object possesses
the XDomainRequest object (line 6). If the XDomainRequest object is available, we
use our tertiary operator as a condensed 1f/else block, to instantiate an
XDomainRequest instance. If, however, the evaluation to determine whether the
XDomainRequest is available fails, our code will instantiate the more modern
XMLHttpRequest. Once our Xhr object is instantiated, we configure it with the
appropriate request method and URL (line 7).

Because we are working with static content, rather than making a POST request, we
will rely on the GET HTTP-Method to obtain the provided URI. Using the onload and
onerror event handlers of the Xhr object, we will monitor the state of the request. If the
request is successful, the onload event handler will initiate the body of code that will
obtain the request body from responseText. Knowing that the content provided within
is JSON, we will obtain the plain/text from responsetText and parse it utilizing the
JSON Object (line 9). Once we obtain our data tree, we can reference the ordered list of
images via the images key (line 10). From there, using a for loop, we iterate over each
and every index possessed by our ordered list (line 11). By regarding each image object
individually, we can obtain the values held within to construct the necessary markup that
will be used to present our images.

In order to have our images display as a vertical list, we create a list item for each
image. By using the document.createElement method, we are able to create
HTML elements simply by providing the method with a string representing the tag we
wish to create. In this case, as we wish to create a list item, we supply the
document.createElement method with the string 11 and retrain the reference to
the HTMLobject returned (line 13); Next we create another HTMLobject (line 14),
only this time it will be an element that represents the 1mg tag. Using the reference to the
image, we supply its attributes Src and alt with the details that were extracted from the
image objects (line 15 and line 16). Next, we use the appendChild method to append
the image as a child of our list item (line 17). Additionally, we add the list item as a child

www.it-ebooks.info

http://www.it-ebooks.info/

of the body of the page, so that it will be visible to the document (line 18). This process is
repeated until all images have been account for.

If the request fails, our application will alert us to the status code and the status
description of the failure (line 22). Last, we invoke the request to begin by calling the
send method on the instantiated Xhr object (line 24). The preceding code should result
as shown in Figure 8-4.

8006 127.0.0.1:8020/Beginnin. > ’5
c 127.0.0.1:8020/Beginning]SON/chapter8/8-12 html il _- B =
i apps *f Learn more. ! GetProcessinganc |y Arduino Eclipse De & bit, 12 bir, 14 bir Visual Event » [Other Bookmarks

load images

Figure 8-4. Use of Ajax to load and display images

It should be mentioned that the object that enables HTTP requests are strictly for
making requests from a web server. Therefore, attempting to load files via Ajax locally
will not work, unless they are run from a web server. Many web editors, such as
WebStorm, Aptana, and VisualStudio, will run your local code within a temporary server,
in which case, you would have no trouble following along with the provided source code.

Despite earlier discussions surrounding Content-Type and how the server should
always configure it, you may have recognized that we did not have to configure the
Content-Type, even though we were being provided JSON. Yet, if by some chance you
were to have inspected the response header of Listing 8-22 with the developer console,
you would have witnessed that the Content-Type of the response read
“application/json,” as indicated in Figure 8-5.

www.it-ebooks.info

http://www.it-ebooks.info/

v Response Headers view parsed
HTTP/1.1 2080 0K
Date: Sat, 14 Jun 2014 17:38:17 GMT
Server: HttpComponents/4.1.3
Content-Length: 270
Content-Type: application/json
Connection: keep-alive

Figure 8-5. The response header for imagesA. j son exhibits the configured Content-Type as application/json

As was mentioned in the history of JSON in Chapter 4, Douglas Crockford’s
formalization of JSON included the registered Internet media type
application/json, in addition to the file extension . json. While a file extension
doesn’t explicitly define the encoding of the content contained within, servers are able to
infer Content-Types for commonly recognized file extensions. As JSON is the preferred
interchange format, it should come as no surprise that most servers can equate the . json
extension with the Content-Type of application/json. Therefore, the response is
configured with the inferred Content-Type: application/json.

EXERCISE 8-2. LOAD MORE IMAGES

If you haven’t done so already, click the “load images” button from the previous
listing two more times and take note of what’s occurring. With each click, a new xhr
object is instantiated, initiating a new HTTP request. Providing the request is being
fulfilled, the page should now display duplicates of the images loaded. As it serves
little use to display duplicate content, rewrite the code from Listing 8-22, so that each
subsequent request will load a new JSON file containing no more than four different
images.

You will find more images within the 1mg folder that accompanies the source code
for this chapter. (You can find the code samples for this chapter in the Source
Code/Download area of the Apress web site [www .apress.com]). Reference these
images within two more static JSON documents to be loaded in and displayed via
Ajax. Feel free to duplicate the images. json file located within the data folder
and simply replace the titles and URLs. Or, you can devise the JSON with the
assistance of one of the editors discussed in Chapter 4.

Summary

This chapter covered the essentials of the Hypertext Transfer Protocol (HTTP), which is
necessary to comprehend when working with the interchange of data. By applying this
knowledge, combined with the built-in objects that enable HTTP requests via JavaScript,
we have been able to send, as well as receive, JSON in the background of our applications.
Furthermore, using the techniques that make up Ajax, we were able to incorporate data
without the need for full-page refreshes.

Ajax has surely broadened the scope of possibility for modern-day front-end

www.it-ebooks.info

http://www.apress.com
http://www.it-ebooks.info/

development. Conversely, its popularity has also resulted in an increase of security
concerns. As browsers continue to improve measures to thwart malicious behavior, the
ease of data interchange across origins has often been a difficult task to circumvent. In the
upcoming chapters, you will not only learn how to overcome these issues from a server-
side implementation, you will also set up a local server, so that you can employ these
techniques.

Key Points from This Chapter

e A request/response possesses three components.

e Arequest is initiated by a client.

e A response can only be provided from a web server.
e The GET method is a safe method.

e The POST method is an unsafe method.

e The request URI identifies the resource that the request method
applies.

e The current HTTP version is 1.1.
¢ General headers pertain to general information.
e Request headers communicate preferential information.

¢ Entity headers supply informative information regarding the supplied
entity body.

e General headers and entity headers can be configured by both client
and server.

e Response status codes are used to indicate the status of the request.
e The Content-Type header regards the MIME type of an entity.

e The Accept header is used to inform the server of the data types it can
work with.

e The XMLHt tpRequest Object enables HTTP requests from
JavaScript.

e The XMLHttpRequest Object is available in all modern browsers
as well as IE 8.

e XMLHttpRequest cannot be used for cross-origin requests in IE
8/9.

e XDomainRequest can be used for cross-origin requests in IE 8/9.
e XDomainRequest lacks the setRequestHeader method.

e XMLHttpRequest and XDomainRequest expose event handlers
to notify of state.

www.it-ebooks.info

http://www.it-ebooks.info/

e The . json extension is recognized by servers and will default the
Content-Type to application/json.

e Custom headers begin with an X.

e Status code 200 represents a successful request.

e Prior to IE 10, XMLHt tpRequest could only parse XML/HTML
documents.

LMDN: Mozilla Developer Network, “HTML in XMLHttpRequest,” https://developer.mozilla.org/en-
US/docs/Web/API/XMLHttpRequest/HTML_in_XMLHttpRequest, May 26, 2014.

2World Wide Consortium (W30), “XMLHttpRequest,” www .w3.0rg/TR/2012/WD-XMLHt tpRequest -
20121206/#introduction, December 6, 2012.

3A. van Kesteren et al., “XMLHttpRequest,” dvcs.w3.0org/hg/xhr/raw-file/tip/Overview.html, May
2014.

www.it-ebooks.info

https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest/HTML_in_XMLHttpRequest
http://www.w3.org/TR/2012/WD-XMLHttpRequest-20121206/#introduction
http://www.it-ebooks.info/

CHAPTER 9

X-Origin Resources

The browser’s inclusion of the XMLHt t pRequest object offers front-end developers a
means of interchanging data simply, with the use of JavaScript. Prior to Ajax becoming a
highly recognized term, the exchange of data was primarily made possible through a series
of full-page requests. Only through front-end hacks could data appear to be loaded-in
dynamically. Therefore, when it became possible to make HTTP requests from within
JavaScript, it instantly became a hot topic.

Such a prevalence of network access has much cause for concern, however. As Ajax
became regular practice, web sites were becoming more and more exposed to the possible
injection of malicious code. Needless to say, this is a serious matter for sites transmitting
data, let alone sensitive data such as credit cards, bank accounts, or even personally
identifiable information. In order to reduce web sites’ being exposed to malicious requests,
the XMLHt tpRequest restricts network access only to resources that can be considered
trusted. However, therein lies part of the problem: How do you define what resources are
considered trustworthy?

The policy that prevents data from being usable from varying origins is the same-
origin policy (or SOP). This chapter will discuss the impact of the SOP when regarding
the interchange of resources between two varying origins. Additionally within this
chapter, I will discuss the techniques that can be used to combat said limitations.

Same-Origin Policy

The same-origin policy (SOP) has been in effect since the introduction of JavaScript and
continues to remain an important aspect of web security. The SOP is the security model
commonly adhered to by all user-agents. While the policy has been revisited many times
since its genesis (largely in an ad hoc fashion), today, the SOP governs a variety of front-
end securities, such as matters surrounding DOM access, cookies, Web Storage, and
network access. The SOP even applies to web plug-ins, such as Flash, Java, and
Silverlight. While the latter list is not complete, it’s certainly more than enough to
demonstrate how the SOP can be a major obstacle for modern-day web development.

In the previous chapter, I presented you with an exercise that required the use of an
HTTP request that would POST data to the specified resource exercise.php, residing
at the address http://json.sandboxed.guru/chapter8/. Upon a successful
reception of the request, the server would respond in kind with an entity body, which
could be used by any application. However, you may recall that I mentioned that this is
behavior not typically allowed by the user-agent. In that particular example, I employed a
technique for that particular resource that enables an Ajax request to be successful.

www.it-ebooks.info

http://json.sandboxed.guru/chapter8/
http://www.it-ebooks.info/

Ordinarily, the user-agent wouldn’t allow the request to succeed, as the origin from which
your request initiated did not reflect the same origin as the resource.

Generally speaking, the SOP restricts which network messages one origin can send to
another. The purpose of this policy is to prevent a resource such as a JavaScript
application from origin-A from obtaining the resources provided by origin-B, as the intent
may be malicious. This policy is, of course, enforced by the user-agents that are being
used to make such network requests.

Note Due to legacy purposes, SOP policies vary to the degree by which they are
enforced between the various web technologies.

At this point in time, I’d like for you to attempt to load another static file from my
server. Only this time, I have not employed the same techniques as the exercise in Chapter
8.

EXERCISE 9-1. XHR AND SOP

Open your preferred browser and navigate to http://sandboxed.guru/xss-
exercise.html. Next, open the developer tools provided by your browser and
ensure that the console tab is in view. Using the free-form field within the console,
construct an HTTP request that makes use of the GET method to enact on the
following resource:
http://json.sandboxed.guru/chapter9/data/images. json.

Be sure to use the 10g method of the console, console.log(string);,to
print to the console the raw text of the response (responseText), in order to
witness the returned data once the load is complete. Last, be sure to log out an error
message if the onerror event handler is dispatched, should anything go wrong with
our request.

If you are using Internet Explorer 8 or 9, it will be essential to instantiate the
XDomainRequest over the XMLHt tpRequest object, as we will be making a
cross-origin request. A convenient way of determining whether your script must
instantiate the XDomainRequest object over the XMLHt tpRequest object for
cross-origin requests is to test whether the browser executing the request possesses a
particular attribute that belongs to the XMLHttpRequest Level 2 interface. This
attribute is particular to cross-origin requests and exists in modern browsers as well
as Internet Explorer 10 and up. The attribute is the withCredentials attribute.
Utilizing the JavaScript 1n operator, we can test whether or not the
withCredentials attribute exists on an XMLHt t pRequest instance. If the
attribute does not exist, we must instantiate an XDomainRequest instance. This
technique eases our efforts to determine if the browser should rely on
XDomainRequest, or not, for these types of requests. If you were to incorporate
this conditional logic along with the necessary code required by the exercise, your
code should resemble that of Listing 9-1.

Listing 9-1. Determining Whether to Use the XDomainRequest or the

www.it-ebooks.info

http://sandboxed.guru/xss-exercise.html
http://json.sandboxed.guru/chapter9/data/images.json
http://www.it-ebooks.info/

XMLHttpRequest Level 2 Interface for a Cross-Origin Request

1 var xhr= new XMLHttpRequest();

2 if(!"withCredentials" in xhr){

3 xhr= new XDomainRequest();

4 }

)

xhr.open("GET", "http://json.sandboxed.guru/chapter9/data/imac
6 xhr.onload=function(){

7 console.log(this.responseText);

8 Iy

9 xhr.onerror=function(){

10 console.error("Error Occurred");
11 }

12 xhr.send();

Listing 9-1 begins by creating an instance of the XMLHt t pRequest and assigns the
instance as the reference to a variable labeled xhr (line 1). Utilizing the 1n operator,
along with the instance held by xhr, we can determine if the withCredentials
attribute is exposed by the object (line 2). If the value returned by the expression is
false, the instance is incapable of fulfilling cross-origin requests; therefore, we
replace the existing Xhr reference with an instance of the XDomainRequest (line
3).

Once you have coded the request within the console of the developer’s tools, such as
in Figure 9-1, execute the code and observe the result.

sandboxed. guru/xss-ex

& = C sandboxed.guru/xss-exercise.htm| gl v EE‘.'! D ® =
5T Apps -'" Learn more, ' Get Processing anc }-, Arduino Eclipse De & bit, 12 bit, 14 bit Visual Event » (1] Other Bookmarks

: [NSNS Developer Tools - http:/ /sandboxed.guru/xss-exercise.html w :
| © Elements Network Sources Timeline Profiles Resources Audits |Console| = £ O :
:' ® ¢ <topframe> v :
ll » war xhr= new XMLHttpRequest{); L}
! if{!"withCredentials" in xhr){ 1
: xhr= new XDOmainReguest(): :
: ;h.—.cfr,r_-ni"GET”,' json. sandbaxed. guru/chapteri/data/images. json™); 1'
i xhr.onload=func i 1
I _ console. log responseText); 1
1 ki I
1 xhr.onerror=functiond j{]
1 console. logl “"Error Occurred"] 1
1]
] hr.send]
1 I
1 1
1]
I I
1 I
1 I
1 I
I]
I |
1 I
1 I
1 L]
i]

[

Figure 9-1. Cross-origin request being made to json.sandboxed. guru from sandboxed. guru
Next navigate your browser to

http://json.sandboxed.guru/chapter9/xss-exercise.html; run
the preceding code once more; and observe the results.

www.it-ebooks.info

http://www.it-ebooks.info/

If you followed along with the exercise, you should have witnessed the alert box
containing the raw JSON data during the execution of the latter request, as seen in Figure
9-2. However, while executing the same request from the initial origin,
sandboxed. guru, the alert box was not presented. Instead, messaging was output to
the console, alerting us to the fact that the request cannot occur (see Figure 9-3).

__| json.sandboxed.guru/chs

= C [7 json.sandboxed.guru/chapter9/xss-exercise.html by [1a] & » =
%' apps M Learnmore. ! Cet Processing and |y Arduino Eclipse Dev [B] 8 bit, 12 bit, 14 bit Visual Event » (L] Other Bookmarks
——— 199291 ® 413;”‘

00 Do gres i e Ll s AT S A Ao LA R e e e et | &

Q, Elements Network Sourc

® W <topframe>

*» var xhr= new XMLHttpRegul
xhre{"withCredent
xhr.open{“GET" ,"h
xhr.onload=functia
xhr.sendl];

= & =,

The page at json.sandboxed.guru says:
i
. 4 “images”: [
" {

Title”; "Image One”,

“url™: “img/AndroidDevelopment.jpg”
undefined ! title*: “Image Two®,

X “url™: “img/php.jpg”

“title™: ‘Imaga Three®,
“url™: “img/Rails.jpg"

“title®: "Image Three®,
“url™ "img/Android.jpg”

Console | Search Emulation

-
Ve m mm m m m m m mm m m o m o mm m o m m mom mom mom o w

.-
i

Figure 9-2. Same-origin request being made to json. sandboxed. guru from json.sandboxed. guru, resulting
in response

|| sandboxed.guru/xss-exc X

& = C | [Y sandboxed.quru/xss-exercise.html g [ia] 9 =
g 1] "]
% oapps *f Learnmore. ! GetProcessingand |y Arduino Eclipse De. 8 bit, 12 bix, 14 bt Visual Event » [Other Bookmarks
e e e e e e e e e R e
: CHaNs) Developer Tools - http://sandboxed.guru/xss-exercise.html .
| @ Elements Newwork Sources Timeline Profiles Resources Audits | Console| o1 > &% O,
& 7 <topframe> v

» var xhr= new XMLHttpRequest();
ifl !I"withCredentials" in xhr){
xhr= new XDDmainRequest();
}
xhr.openi{"GET", "http://json.sandboxed. guru/chaptera/datasimages. json");
xhr.onload=function(){
) consale. loglthis. responseText):

xhr.onerrorsfunction{){
console.logl "Error Occurred");

}
xhr.sendl);
undefined
1| © XMLHttpRequest cannot Lload http://ison.sandboxed.gurufchapterS/data/images. json. No 'Access-Control-Allow-—
origin' header is present on the requested resource. Origin °“http://sandboxed.guru’ is therefore not allowed
access. xss-exercise.html:l
Error Occurred WMiBRT:11
>

Figure 9-3. Chrome developer tools indicating that the request is not allowed access

g -

As shown in Figure 9-3, Chrome’s developer console reveals the following error
messaging:

XMLHTttpRequest cannot load
http://json.sandboxed.guru/chapter9/data/images.json. ~No 'Access-Control-

www.it-ebooks.info

http://www.it-ebooks.info/

Allow-Origin' header is present on the requested resource. Origin
'http://sandboxed. guru'is therefore not allowed access.

From the preceding message, we can ascertain that the request cannot be completed,
because the response for the resource exercise. php is not configured to possess the
Access-Control-Allow-Origin header. Depending on the browser used to make the request,
you will most assuredly receive a different message. For example, Firefox, as shown in
Figure 9-4, sends the following error messaging:

Cross-Origin Request Blocked: The Same Origin Policy disallows reading the
remote resource at
http://json.sandboxed.guru/chapter9/data/images. json.

This can be fixed by moving the resource to the same domain or enabling CORS.

http: [/sandbox...-exercise.htmil +

<3

sandboxed.gury/xss-exercise. htm & | (B~ Google Q -
[whatFont |} jQuerify

® Disable = L Cookies = # €55 + Jl Forms = [E Images = § Information = & Miscellaneous = # Outline = # Resize = 4 Tools = <3 View Source = {1} Options =

... N

Console - http://sandboxed.gurufxss-exercise. html

ﬂ:
L3} Inspector i) Debugger [¥ style Editor (@ Profiler T Newwork R M| E
|

® Net 8 58 5 @ Security Logging Clear

var xhrs new XMLHttpRequest();
if(!"withCredentials™ in xhr){
ahre new XDOmainRequest();
3
xhr.open|"GET","http://json. sandboxed. gurufchapter9/data/images. json") ;
xhr.onlead=Tunct ion{){

i
xhr.enerrorsfunction{){

console. logl “Error Occurred™ };
}

xhr.sendl);
fined
& Cross=-0Origin Request Blocked: The Same Origin Policy disallows reading the remote resource at images. json
http: /fjson.sandboxed. guru/chapterd/data/images. jsen. This can be fixed by moving the resource
to the same domain or enabling CORS.

"Error Occurred™

1
i
]
L
1
1
1
1
i
L]
1
1
1
1
1 console. log(this. responseText);
i
i
1
1
1
1
I
i
1
1
1
1
1
]

Figure 9-4. Firefox alert stating that the request is not allowed access

Unfortunately, Internet Explorer’s implementation of the XDomainRequest will not
alert us to any error messaging, other than the one provided by us to be output upon a
possible dispatch of the onerror notification. On the other hand, if you were using
Internet Explorer 10 or greater, as those versions implement a vast majority of the
XMLHttpRequest Level 2 standardization, they would inform you of the failed incident.
Furthermore, the error message reveals that incorporating Cross-Origin Resource Sharing
(CORS), similar to Chrome and Firefox, can resolve the problem. Before I begin to
discuss CORS, I will continue to discuss our findings further.

Depending on the browser you are using to make the request, you may not witness any
HTTP response headers from within the network panel of the developer console. This,
unfortunately, might lead you to believe that the request is prevented from even taking
place. While the response may not appear in the network tab of the developer toolbar, I
can assure you that the request has, in fact, been submitted to the requested resource.
However, being that the request is not considered trusted or authorized, the user-agent
shields us from being able to witness a response from the server.

www.it-ebooks.info

http://sandboxed.guru
http://json.sandboxed.guru/chapter9/data/images.json
http://www.it-ebooks.info/

If you were to make the same request with the popular Firebug add-on for Firefox, you
would continue to receive the same error message as with the other browsers. Yet, upon
navigating to the network panel, you would be able to see a series of response headers for
the request. Furthermore, the Content-Length entity header, as configured by the response,
suggests there is an entity body of precisely 270 bytes, and that the MIME type of the
data, as configured by the Content-Type header, is that of application/json. Last,
the status line reveals that the request was understood as it is configured, with the status
code 200 and the text phrase of OK (see Figure 9-5). These aspects should demonstrate
unquestionably that the request is being received. However, if you were to view the
Response tab from within the navigation view, you will find the data to be missing.

http:/ fsandbex. , ~exercise. hymi

sandboxed.guru/xss-exercie_ btm & | (B~ coot Q = ::_) "
i WhatFo [| jueridy
& Disable = L Cockies = # €35 - i Forms = [Images F Information = @@ Misceflaneous = # Outline = @ Resize = 4* Tools = €3 ViewSouwce = [l Options - v X
cHala) Firebug
[L - ¥ £ >)= Console HTRIL €55 Script DOM | Met - Cookies ¥Slow Changes Omnibug L S ALY SO0
! il Clear Persist "._\' HTML O35 JawaSeript EHE Images Plugins Media Fonts

URL Status | Dawmain Size Remote IF Tiirmed e al
¥ CET imagesjson K jsonsandboxed.guru 2T0E 23.229.180.82:80 T

[Headers Responie

W Response Headers
HTTRS1.1 200 OR

ified Pri, 3T Jum 2014 11035100 GwT
il 20 ibd-10e-sfociblloded?”
angesi bytes

Coatent-Typo: applicaticn/jean

¥ Request Headers

1 request 2708 126ms

Figure 9-5. Firebug developer tool revealing the response status line as successful

Based on the outcome of the earlier exercise, it should be evident that resources are
limited in their ability to be requested from varying origins, regardless of whether the two
origins involved are owned by the same individual. It should be evident that a domain and
its subdomain are not considered trusted by default and, therefore, cannot make resource
requests of one another. Resource requests are inherently trusted only from resources that
have the same origin. This is why the subsequent request of our exercise alerted us to
JSON data, while the former attempt did not.

In short, the following resource
http://json.sandboxed.guru/chapter9/data/images. json is available
only to another resource that has the same origin, i.e.,
http://json.sandboxed.guru. While these two URLs are considered to have the
same origin, it is for reasons that may not be as obvious as you might think. Origins aren’t
considered to be of the same origin solely because they possess the same hostname.
Specifically, a resource is considered authorized to obtain/retrieve content from another
resource only if the two resources possess the exact same scheme, domain, and port.

I hope that Listing 9-2 looks familiar, as this is the general schema for a web URL. If

www.it-ebooks.info

http://json.sandboxed.guru/chapter9/data/images.json
http://json.sandboxed.guru
http://www.it-ebooks.info/

you are thrown by the : port/ component, that is okay, as it’s not always required to
incorporate the port into a URL. However, that does not detract from the fact that it’s
always accounted for behind the scenes.

Listing 9-2. Syntax of an HTTP URL

scheme://domain:port/path/?key=value

Scheme: The scheme, sometimes referred to as the protocol, defines
how an indicated resource will be obtained. There are a variety of
protocols that can be specified, such as ftp, http, and even https.
Typically, the scheme that is used when viewing web sites will be
that of http. However, it can also be that of https, where the s means
that the transmission occurs securely. This is commonly used when
you log in to a site such as a bank or web mail.

Domain: As you may have guessed, the domain is the human-
friendly means of referring to a specific destination. However, this
domain name itself is actually converted behind the scenes to a
static IP address.

Port: The port number is an optional endpoint that can be used to
specify a specific application running on a common IP address.
When a port is not defined, it falls back to the default port for the
supplied scheme. In the case of an HTTP scheme the default port is
80. In the case of HTTPS, the default port is 443.

These three distinct aspects of the HTTP-URL scheme are used by the user-agent to

determine whether it must enforce the SOP. Table 9-1 demonstrates which requests will be

considered authorized and which won’t.

Table 9-1. The Same-Origin Policy in Effect, Demonstrating Whether a Source Origin Is
Authorized to a Request

Request Origin Resource Origin Allowed Reason
http://json.sandboxed.guru/a.html http://json.sandboxed.guru/b.php True
http://json.sandboxed.guru/a.html http://json.sandboxed.guru/chapter8/b.php True
http://json.sandboxed.guru/a.html https://json.sandboxed.guru/b.php False Scheme
http://json.sandboxed.guru/a.html http://json.sandboxed.guru:81/b.php False Port
http://json.sandboxed.guru/a.html http://json.sandboxed.guru:80/b.php True
http://json.sandboxed.guru/a.html http://sandboxed.guru/b.php False Domain

To further prevent any script from forging the request, certain headers are unable to be

defined via the setRequestHeader method of the XMLHt tpRequest object.
Instead, they are explicitly defined by the user-agent. Any attempt to provide a value for

these headers via the setRequestHeader will be overridden by the user-agent. These

headers are the following:

e Host

www.it-ebooks.info

http://www.it-ebooks.info/

e Origin
e Referer
e Via

The requests made by browsers work on our behalf, hence the term user-agent.! It is
they who enforce the SOP, to ensure that our daily Internet interactions remain as safe as
possible. The SOP is an extremely important concept to understand, which is why this
chapter is important to a subject that looks to network access to exchange JSON data. The
fact that the user-agent acts on our behalf is an important concept for a front-end
developer to grasp. The reason, as you will soon see, is because the power to bypass the
limitations of the SOP lies on the back-end side of programming, rather than the front end.
Unfortunately, not all back-end developers are aware of these SOP requirements, simply
because server-side programing does not involve a user-agent that governs HTTP requests.
To put it plainly, they don’t have to deal with these issues. As the adage goes “there’s
more than one way to skin a cat,” and there is an exuberant amount of server-side
languages. In this chapter, all back-end programming will be demonstrated with the use of
the highly popular PHP language. However, the programming language could just as
easily be Java, .NET, etc.

If you are a Chrome user, such as myself, there is a fantastic HTTP request plug-in that
I use to conveniently test web services. This plug-in is known as Postman and can be
obtained from the browser via the extensions URL
https://chrome.google.com/webstore/search/postman%20rest%20c]
Alternatively, the browser extension can be obtained from the developer’s web site:
www . getpostman.com/. Once the extension is installed, navigate to the following
URL: chrome: //apps/, within your Chrome browser, and launch Postman by clicking
the visible shortcut. Upon launch of the application, you should witness an interface that is
not unlike that shown in Figure 9-6.

i Apps

g v, &y 3l =N —
¢ C [} chrome://apps ¢ & D =
H am & - - =] e e - R o PO i B o . = -
Heoe s

POSTMAN

Normal 4% Moenvironment~

GET : & URL params & Headers (0)
Eﬁf Add preset ~ Manage presets

m Preview Tests Add to collection

—.

www.it-ebooks.info

https://chrome.google.com/webstore/search/postman%20rest%20client
http://www.getpostman.com/
http://www.it-ebooks.info/

Figure 9-6. Interface of Postman

Figure 9-6 reveals the interface of the Postman HTTP request builder. As an extension
to the browser, Postman doesn’t rely on the XMLHt t pRequest or XDomainRequest
objects to fulfill network requests. Therefore, any request from Postman occurs
unencumbered by the SOP. Utilizing the applications interface, we will re-create the
request from our earlier exercise, to obtain the following resource:
http://json.sandboxed.guru/chapter9/data/images. json.

Within the form field that states “Enter request URL here,” supply the aforementioned
URL. To the right-hand side of this field, you can witness a combo-box. This input field
represents the request method. By giving focus to this field, we are able to select the
necessary method to enact on the supplied resource. Fortunately for us, GET is the default
selection, so we will leave that as is. To the right of the combo-box is the button labeled
“Headers,” which, when clicked, will reveal a pair of input fields below the URL field of
the request. Utilizing the Header and Value fields, respectively, we can configure specific
headers of the request. Figure 9-7 illustrates the provision of two familiar headers, Accept-
Language and Accept.

5 Apps

3 el Lo 7 Y = !
- C [chrome://apps 7 & lal (555 » =
Heoe 5
POSTMAN
Normal 4 MNoenvironment
http:/fison.sandboxed.guru/chapterd/data/images.json GET ¥ & URL params & Headers (2)
Accept-Language en-us Add preset~ = Manage presets
Accept ur
&
m Preview Tests Add to collection
, Body 200 0K E:’__ﬂ;jzum
; Chrome Wzll Store ;

Figure 9-7. Configuring a GET request with Postman

At this point, locate the Send button at the lower left of the screen, to initiate the
request. Upon sending the request, depending on your Internet connection, you should be
provided with a status line of 200, revealing that the request was successful. Following the
status, you should see the JSON content for the requested resource. The results should
reflect those captured in Figure 9-8.

www.it-ebooks.info

http://json.sandboxed.guru/chapter9/data/images.json
http://www.it-ebooks.info/

2t Apps X

« C [chrome://apps 7o O E 2 5 I =
Heoo ') =)) i
POSTMAN : : - ters
Normal Basic Auth 8 Noenvironment~
http://json.sandboxed.guru/chapterS/data/images.json GET : & URL params & Headers (2)
Accept-Language en-us Add preset* Manage presets
Accept ¥
Header Value B

Send -~ Preview Tests Add to collection m

STATUS P10 ql TIME P

Body

Pretty Raw Preview " Q g | JSON- Copy

- images:|[
o |
title: "Image One",
url: "img/AndroidDevelopment.jpg”

title: "Image Two",
url: "img/php.jpg"

title: "Image Three",
url; "img/Rails.jpg"”

title: "Image Three",
url: "img/Android.jpg"

Figure 9-8. A successful response is provided

Circumventing Same-Origin Policy

As has been revealed, the browser limits the network access occurring between two
varying origins, in order to enforce the same-origin policy. However, as the SOP has been
adjusted in an ad hoc fashion over time, a couple of loopholes do exist, which we will
leverage, in order to facilitate cross-origin requests.

CORS

The first technique that I will discuss, which sidesteps the same-origin policy (SOP), is
that of CORS. CORS, as mentioned previously, is an acronym that stands for Cross-Origin

www.it-ebooks.info

http://www.it-ebooks.info/

Resource Sharing. CORS, which is the W3C-approved technique to handle cross-origin
requests, does not eliminate the SOP. It elaborates upon the model in a way that enables
servers to opt in to requests that may not be trusted, thus, informing the user-agent that it
should not prevent the response from being obtained from Ajax requests of varying
origins. The CORS specification defines how a server, as well as a user-agent, is to
coordinate the authorization of a request by a web application from a varying origin.

The overview of how CORS works is simple. For every Ajax request, the user-agent is
notified that a request is to be initiated via the send method of the Xxhr object. As a result
of this invocation, the request begins. However, during the request, the user-agent and the
server communicate via the inclusion of special HTTP headers, in order to determine if the
request should be facilitated.

In our earlier exercise, we received notice from the browser that our request was
unable to be carried out, due to the fact that the received response lacked the Access-
Control-Allow-Origin header. Access to our origin was refused. The fact that the response
did not possess a particular response header was all it took to inform the user-agent that
the provided data was not intended for the origin that initiated the request. Therefore,
whether or not the server successfully received the request was moot, as the user-agent
denied our application access.

Access-Control-Allow-Origin is just one header among a handful that is defined by the
CORS specification. In fact, there are fewer than ten in total. Three are configured by the
user-agent to accompany the request, and six can be configured by the server to
accompany the response. However, not all nine must be used to coordinate the
authorization of an HTTP-Request. In fact, most of the time, a maximum of four headers
will be exchanged. However, for the purposes of this chapter, we will consider two:

e Access-Control-Allow-Origin

e Origin

What determines which of the nine CORS headers are necessary to authorize the
request depends on whether the request is deemed “simple” or requiring “preflight.” What
distinguishes a request as being the former or the latter ultimately boils down to the
request method chosen to enact on the indicated resource, in addition to the configured
request headers.

A simple request, as defined by the specification, is one that identifies GET, POST, or
HEAD as its request method. Additionally, a simple request cannot specify headers that are
not among those white-listed. Those headers are the following:

e Accept

Accept-Language

Content-Language

Content-Type

While you may initially find the preceding headers reasonable for GET requests, I

www.it-ebooks.info

http://www.it-ebooks.info/

think you will find them rather limiting for POST, after you realize that Content-Type can
only be configured as application/x-www-form-urlencoded,
multipart/form-data, or text/plain. What this means is that when a POST
request is accompanied by an entity body whose Content-Type is configured as
application/json, a preflight request must occur prior to the actual request.

A preflight request is simply an initial HTTP request submitted by the user-agent to the
requested server, using the OPTIONS request method to obtain the necessary server
information and configured headers that might suggest the Ajax request is authorized. In
other words, before attempting to make a request that is not considered simple, and,
therefore, may be considered malicious, the user-agent determines if the remote server
indicates any interest in receiving such a request. As indicated earlier, this is accomplished
via the OPTIONS method, which simply informs the remote server to provide a list of all
acceptable headers and methods that can accompany a request to the indicated resource. If
the response is not configured to handle the headers/methods as they are explicitly
outlined by the user-agent, the actual request will be canceled.

I will discuss how to configure a server’s response to accommodate preflight requests
in more detail in Chapter 11. In the meantime, feel free to review the CORS headers
required of preflight requests, in Table 9-2.

For every “simple” cross-origin request, the user-agent, in addition to configuring any
default headers, must configure a header that is essential to the CORS specification. This
header, which is simply labeled “Origin,” indicates, as its configured value, the source
origin of the request. On receiving the request, the server can use the configured value
possessed by the Origin header to configure the fulfillment of the request. As briefly
discussed, an origin is considered authorized by a user-agent if, and only if, the fulfillment
of the request possesses the Access-Control-Allow-Origin header and is configured to
indicate as trusted the origin that initiated the request. If the Access-Control-Allow-Origin
header is not present, access to the response will not be permitted. However, if the header
is present, the user-agent will determine via an algorithm whether the configured value
matches the source origin. This algorithm makes up Section 7.2 of the CORS
specification, Resource Sharing Check.

Resource Sharing Check

The configured headers provided by the server are merely the mechanism by which to
communicate with the user-agent. They do not guarantee that a source origin can bypass
the same-origin policy (SOP). As the user agent governs the SOP, it is the user-agent’s
responsibility to determine whether the source origin and the value accompanying the
Access-Control-Allow-Origin header meet the authorization requirements. The user-agent

accomplishes this via the following steps of an algorithm:?

1. If the response includes zero or more than one Access-Control-
Allow-Origin header value, return fail and terminate this algorithm.

2. If the Access-Control-Allow-Origin header value is the * character
and the omit credentials flag is set, return pass and terminate this

www.it-ebooks.info

http://www.it-ebooks.info/

algorithm.

3. If the value of Access-Control-Allow-Origin is not a case-sensitive
match for the value of the Origin header as defined by its
specification, return fail and terminate this algorithm.

4. If the omit credentials flag is unset and the response includes zero
or more than one Access-Control-Allow-Credentials header value,
return fail and terminate this algorithm.

5. If the omit credentials flag is unset and the Access-Control-Allow-
Credentials header value is not a case-sensitive match for true,
return fail and terminate this algorithm.

6. Return pass.

In short, the value of the Access-Control-Allow-Origin header, as configured by the
server, must satisfy all origins via the provision of the wild card token * or be provided as
a case-sensitive match for the indicated origin, as supplied within the request. On the other
hand, if the resource-sharing check determines that authorization should not be allowed,
we are provided with the aforementioned network error indicating that the origin lacks

sufficient authorization. As the SOP specifies trust per URI,> the preceding outlined steps
occur for each requested cross-origin resource. Listing 9-3 demonstrates how a resource
can grant proper authorization to all source origins, utilizing PHP.

Listing 9-3. Authorizing All Source Origins per the Current Resource

1 <?php

2 header('Access-Control-Allow-0Origin: *');

3 $headers=getallheaders();

4 $origin =$headers["Origin"];

3 echo '{"message":"congratulations '.$origin .', your

origin has been successfully authorized by your
user-agent"}';

4 ?>

The most minimal configuration required on the server’s behalf, as demonstrated in
the preceding listing, is to configure the Access-Control-Allow-Origin header with the
value of the wild-card * token. With the preceding Access-Control-Allow-Origin header
in place, any simple request made via XMLHt t pRequest or XDomainRequest and
occurring from any origin will be provided the appropriate authorization. If you were to
run the following code from Listing 9-4, the source origin of your request would be
entitled access to the JSON provided.

Listing 9-4. A GET Request Being Made of cors. php
1 <script>
2 var xhr= new XMLHttpRequest();

3 if(!"withCredentials" in xhr){
4 xhr= new XDomainRequest();

www.it-ebooks.info

http://www.it-ebooks.info/

5 3

6 xhr.open("GET",
"http://json.sandboxed.guru/chapter9/cors.php");
7 xhr.onload = function() {

8 alert(this.responseText);

9 };

10 xhr.send();

11 </script>

No matter the source origin of the request, executing the request from the preceding
listing will result in an alert box prominently appearing to inform the user that the source
origin of the request has been granted authorization to the JSON response, as revealed in
Figure 9-9.

1 127.0.0.1:8020/Beginnin: ——1)
C 127.0.0.1:8020/Beginning)SON/chapterd/9-2.html : é\ﬂ =

1 Apps » [Other Bookmarks

The page at 127.0.0.1:8020 says:
0 ["message”:"congratulations http://127.0.0.1:8020,
your origin has been successfully authorized by your

user-agent”}

[ok

Figure 9-9. Successful attempt at Cross Origin Resource Sharing

As you can clearly witness from the URL in Figure 9-9, our local request, signified by
the IP address 127 .0.0.1, is able to receive access to the JSON body provided by the
resource, whose origin is http://json.sandboxed.guru. By reviewing the
headers of the request, as captured by the developer’s console, we can witness the
inclusion of the Origin and Access-Control-Allow-Origin headers used to coordinate the
source origin’s authorization, as shown in Figure 9-10.

www.it-ebooks.info

http://json.sandboxed.guru
http://www.it-ebooks.info/

806 Developer Tools - http://127.0.0.1:8020/Beginning)S0M fchapterd/9-2.html "

lq Elements | Network| Sources Timeline Profiles Resources Audits Console = ﬁ- D‘
i. ® ¥ = (Preserve log

|Na:hc 5)
| Path Headers | Preview Response Timing

| #-e:html ¥ Request Headers view parsed
== /Beginning)30ON/chapterd GET /chapterS/cors.php HTTP/1.1

lagTobody.js Host: json.sandboxed.guru
; e Connection: keéep=alive

Cache=Control: no=cache

cors.php Pragma: no=cache
Origin: http://127.8.0.1:B028
User-Agent: Mozilla/5.@ (Macintosh; Intel Mac 05 X 18_%_3) AppleWebKit/537.36 (KHTML, like Gecko) Chr
ome/35.08.1916.153 Safari/537.36
Accept: =S+
DNT: 1
Referer: http://127.0.0.1:8020,/BeginninglS0ON/chapterd/9-2.html
Accept-Encoding: gzip,deflate,sdch
Accept-Language: en-US,en;q=0.8

v Response Headers view parsed

HTTP/1.1 200 OK
Date: Sat, 85 Jul 2014 17:55:49 GMT
Server: Apache mod_fecgid/2.3.1@-dev
X-Powered-By: PHP/5.4.26
Access-Control-Allow-0rigin: http:// 127.0.0.1:8028
Access-Control-Expose-Headers: Content-Length
Content-Length: 116
Keep-Alive: timeouts=5S
Connection: Keep-Alive

3 requests | 4.2 KB transferred | 197 .. Content-Type: text/html

Console | Search Emulation Rendering
® W <topframe> v

%

Figure 9-10. CORS response exhibiting the configuration of the Options and Access-Control-Allow-Origin headers

With the use of the two aforementioned CORS headers, we can successfully bypass
the SOP and successfully enable cross-origin requests. However, this does not entitle a
cross-origin request to be treated similarly to that of an SOP. Although the server has
authorized the request, the user-agent continues to refrain from providing information that
may reduce the security of either the client or response. For this reason, cookies, basic-
authorization, and custom headers are prevented from reaching their destination, unless
otherwise coordinated between the user-agent and server via two more headers.
Furthermore, the user-agent will limit the application’s exposure to any headers provided
by the server that are not considered to be among the following six white-listed simple
response headers:

e Cache-Control

e Content-Language

e Content-Type

e Expires

e Last-Modified

e Pragma

To further broaden the scope of the authorization, to enable these aspects as required

by your application, the server must coordinate with the user-agent by configuring any
necessary header as supplied by the CORS specification. Following are two tables that

outline the various CORS headers, as utilized by the two request categories simple and
preflight.

www.it-ebooks.info

http://www.it-ebooks.info/

The headers in Table 9-2 are concerned with all aspects of simple requests.
Table 9-2. CORS Simple Headers

Header Role Configured
by

Origin Indicates where the cross-origin request originates User-Agent
Access-Control- Indicates whether a resource can be shared by returning the value Server
Allow-Origin configured for the Origin request header, *, or null
Access-Control- Indicates whether the response to the request can be exposed when the

. . . . Server
Allow-Credentials omit credentials flag is unused
Access-Control- Indicates which headers are safe to expose to the API Server
Expose-Headers XMLHttpRequest object via the getResponseHeaders method

The headers within Table 9-3 are concerned with the more complex requests, which
require an initial request, in order to determine if the server acknowledges the configured
aspects of the request that are not recognized as simple. If the server indicates that it is
willing to handle said aspects, only then will the actual request be sent to the server. If,
however, the server does not indicate that it can handle those aspects, the user-agent will
cancel the request altogether, once again resulting in the same network error indicating
insufficient authorization.

Table 9-3. CORS Preflight Headers

Header Role Configured
by
Access-Control-
Indicates which headers will be used in the actual request User-Agent
Request-Headers
Access-Control-
Indicates which method will be used in the actual request User-Agent
Request-Method
Access-Control-Allow- Indicates which methods can be used during the request for a
Server
Methods targeted resource
Access-Control-Allow- Indicates which header field names can be used during the request
Server
Headers of the targeted resource
Access-Control-Max- Indicates how long the results of a preflight request can be cached Server

Age

Although CORS is the official W3C technique to abide by when working with cross-
origin requests, the CORS headers can only be used by the user-agent that conforms to the
algorithms of the CORS specification. This is to say that only those browsers that
implement the XMLHttpRequest Level 2 specification can fully support CORS. As you
learned in Chapter 8, modern browsers, in addition to Internet Explorer 10 and greater,
support the XMLHttpRequest Level 2 specification. For this reason, this chapter will
continue to outline two other techniques that enable cross-origin requests.

www.it-ebooks.info

http://www.it-ebooks.info/

The Proxy

While the same-origin policy (SOP) is enforced by the browser, I did recently discuss that
the SOP is not at all a component of the HTTP protocol. Rather, it’s a security model that
is strictly adhered to by the browsers of which we make use. As demonstrated by our
earlier use of Postman, when we use tools that do not rely on the browser, we are able to
make requests indiscriminately. This is because the foundations of the HTTP protocol rely
on the ability for any server to fulfill a request. However, it is up to the targeted server to
determine whether or not that request should be allowed.

As the name suggests, the concept of a server proxy is to forward an authorized
request to a local server to a remote server. (Remember: An authorized request comes
from the same origin.) The process begins with an HTTP request being made to a same-
origin web server. From there, either the same request, or a new request, is provided to a
remote server by the local web server, unhindered by the user-agent. Provided the request
is successful, the response is returned up the chain from the remote server to the local
server that made the request and back to the client who invoked the request, our Ajax call.
The forwarding of requests can be observed from the diagram in Figure 9-11.

Y]

[NaNa] =

andbamed e x

v > GET /proxy php HTTP/11 |
L] o sandboxed.guru /proxy.php Host: sandboved guru
3 ' = Accapt: '/
= Apps = Learn mose, Gt Processing asc h Ardeino Cclipse De “‘(‘Pl'hmu.'.: NI-US\emq-D 8

Rolerer: hitpasandboxed gun/chapters proxy php

User-Agent: Mozillas 0 (Macintosh; Intel Mac 05 X 10_9_3)
AppleWebKit/537.35 (KHTML, like Gecko) Chrome/35.0.1916.114 Safani/537.36

&« [sandbowed.guru proxy.php =2 = B =

3 Apps M Learn moce. ! Get Processing an by Arduing Ecipse De her Bookmarks
q
"images”: | HTTR/1.1 200 0K J—
{

T — . Caontent-Length: 271
Bty P i Date: Sun, 29 Jun 2014 13:36:19 GMT

wrl”s "isglAndroidbovelopmont.ipg” 7
L be d ; Server: Apache: mod_fogid/2.3.10-dev

“title"r "Image Two", Content-Type: text/htm|
BEl": “imglphp.ipg

"title”: "Image Threo", [Mimages™ [

. img/Baile. ipg {"tithe”: "Image One’,

“title”: "Image Three®, “url®: “imgy/ AndroidDevelopment jpg”™
“nri*: *imgfAndroid.jpg” 1§ "title™ "Image Twa",

] “url™: "ima/phpjpg

}

Figure 9-11. Proxy diagram from sandboxed. guru to json.sandboxed. guru and back

Because the communications that take place via the user-agent remain between the
same origin, all proxy requests are considered trusted and, therefore, authorized to view
the response. We will begin with a review of the Xhr code, as seen in Listing 9-5.

Listing 9-5. HTTP Request to the Authorized /proxy . php Resource

1 var xhr= new XMLHttpRequest();

xhr.open("GET", "http://sandboxed.guru/proxy.php");

xhr.onload=function(){
console.log(this.responseText);

¥

xhr.onerror=function(){
console.log("Error Occurred");
}

cONO O h WN

www.it-ebooks.info

http://www.it-ebooks.info/

9 xhr.send();

Listing 9-5 should not appear new, as we have been using the same code from both the
previous chapter as well as this chapter. Ultimately, we initiate a GET request to
http://sanboxed.guru/proxy.php. The only thing to point out is that Listing 9-
5 does not make use of the XDomainRequest. This is strictly because the
XDomainRequest is only required in Internet Explorer versions 8 and 9, to make
requests to varying origins. However, as the proxy technique utilizes a server program that
runs on the same server from which the request will occur, we can utilize the
XMLHttpRequest from IE 8+. This will provide us with more control over the request
as well. Remember: The XDomainRequest object does not possess the
setRequestHeader, whereas the XMLHt tpRequest object does.

Upon the submission of the request, the target of the request, local resource
/proxy.php, whose code can be observed in Listing 9-6, will be executed.

Listing 9-6. PHP Server-Side Proxy Implementation

1 <?php
2 if ($_SERVER['REQUEST_METHOD'] === 'GET') {
3 $ch = curl_init();
4 curl_setopt($ch,
CURLOPT_URL, "http://json.sandboxed.guru/chapter9/data/images.
5 curl_setopt($ch, CURLOPT_RETURNTRANSFER, false);
6 $output = curl_exec($ch);
7 curl_close($ch);
8 }
9 ?>

Listing 9-6 demonstrates the minimal PHP code required to create a request using a
library known as cURL, which is simply a command-line utility that enables the
interchange of data. Let’s walk through the preceding code to understand what is taking
place.

The script begins by ensuring that the request method to be enacted on proxy . php is
a GET (line 1). This is necessary to ensure that extraneous use of the proxy is prevented
from occurring from requests other than GET requests.

Once we have determined that the request method is in fact GET, we proceed with
initializing our cURL object (line 3). The cURL object, when initialized, returns an
instance, which is stored on a variable labeled $ch. As with the Xhr object, we configure
our instance of the cURL object with the necessary headers and values to initiate the
request. Our first line provides the URL of our resource,
http://json.sandboxed.guru/chapter9/data/images. json (line 4).
The next configuration is used to obtain the response as a string, rather than outputting the
response directly (line 5). In this particular case, we set the value to false, as we will
have no need to further modify the response from the remote server. The next line (line 6)
executes the request. Once the response is obtained, we close the cURL resource (line 7).

www.it-ebooks.info

http://sanboxed.guru/proxy.php
http://json.sandboxed.guru/chapter9/data/images.json
http://www.it-ebooks.info/

It should be noted that the use of cURL is code blocking, and, therefore, the response
awaited by our Xhr object continues, until either the connection times out or a response is
finally provided. However, once the cURL request is provided a response from the remote
server, the response provided is sent back to the client request, which was prompted by
Ajax, whereby either the onload or onerror event handler will be triggered.

While the preceding code successfully demonstrates how a proxy can be used to
successfully bypass the SOP, the proxy is rather limited. As the indicated resource on line
4 of Listing 9-6 is hard-coded, we would require multiple proxies, if there were multiple
files that our application required. While this can get quite cumbersome, we can eliminate
that issue with relative ease, either by appending a query string parameter to the end of our
resource or by providing the URI as a value belonging to a custom header.

In order to make this something that can be witnessed from a browser, in addition to
an Ajax request, the code that follows (Listing 9-7) makes use of the former option (the
query string parameter).

Listing 9-7. An xXhr object Whose Target Resource Possesses a Query String Parameter
Indicating the URI for the Proxy to Obtain

1 var xhr= new XMLHttpRequest();
2 xhr.open("GET", "http://sandboxed.guru/proxy.php2?
uri=images.json");
xhr.onload=function(){
console.log(this.responseText);
i
xhr.onerror=function(){
console.log("Error Occurred");
}

xhr.send();

©o0o~NO Ol W

Listing 9-7 remains unchanged from that of Listing 9-5, with the minor appendage to
the indicated resource (line 2). We have supplied the resource with a key/value pair,
which, when supplied in a URL, is a query string parameter. In this case, the key is that of
uri, and its value represents the desired resource to be obtained by our proxy. Our proxy
must then be modified slightly to anticipate the use of a query string value. These changes
that account for the new query string parameter are outlined in bold in Listing 9-8.

Listing 9-8. PHP Code Accounting for the Added jsonp URL Parameter

1 <?php

2 if (strtolower ($_SERVER['REQUEST_METHOD']) === 'get') {
3 $uri = (isset($_GET[uri]));

4 if (suri) {

5 $uri = htmlentities($_GET[uri]);

6 $ch = curl_init();

7 curl_setopt($ch, CURLOPT_URL,
"http://json.sandboxed.guru/chapter9/data/' . $uri);

8 curl_setopt($ch, CURLOPT_RETURNTRANSFER, false);

www.it-ebooks.info

http://www.it-ebooks.info/

9 $output = curl_exec($ch);

10 curl_close($ch);

11 } else {

12 header ('HTTP/1.1 400 Bad Request');

13 echo 'Append ?uri=xxxx to the target resource where xxxx is the

value of the URI on
json.sandboxed.guru/chapter9/data/xxxx"';

14 }

15 }

16 7>

Listing 9-8 revisits our proxy from Listing 9-6, with the new query string parameter
being taken into account. We begin by determining if the uri key has been provided with
the request and assign the returned Boolean value produced by the evaluation onto a
variable labeled $ur 1 (line 3). From there, we determine what block of code should be
executed, depending on whether the $ur i value is set (line 4). If the $ur i variable is
evaluated to be true, we continue to execute the code block that initiates the proxy. At
this point, we have only determined if the uri parameter has been provided with the
request. Now, we must obtain the value that it possesses. Repurposing the $ur i variable,
we reassign it with the obtained value held by the key (line 5). The period (.) token, in
PHP, is used to concatenate strings, thereby joining the URL with the dynamic resource.
Being that our Ajax request provided the uri as images. json, line 7 will result in the
final URL of
http://json.sandboxed.guru/chapter9/data/images. json. While this
is precisely the same URL we previously targeted, the required resource is specified
dynamically and, therefore, can request a variety of resources stored within the preceding
path.

Should the uri parameter not be present for the provided request, the proxy will not be
triggered to provide a response from the remote source. Instead, the request will be
fulfilled with that of a response from our proxy server. As the request is not properly
formed, the server configures the status line to possess a status code of 400 (line 12). It
further specifies the textual phrase that accompanies the status code, which is Bad
Request. This status code is utilized to inform the client that he/she should not continue
to repeat the request without further modification. Last, in order to further clarify how to
correct the request, we output a message stating that a query string must be provided (line
13).

At this point, feel free to navigate your browser to
http://sandboxed.guru/proxy.php to see the results of the proxy for yourself.
Upon reception of the provided messaging, append the ur 1 parameter to the URL, whose
value can be any of the following resources: images.json, string.json, or
script.json.

JSONP

The final technique that enables us to interchange JSON between two varying origins is

www.it-ebooks.info

http://json.sandboxed.guru/chapter9/data/images.json
http://sandboxed.guru/proxy.php
http://www.it-ebooks.info/

that of JSON with padding. JSON with padding, or JSONP, as Bob Ippolito coined it in
2005, regards a particular technique in which a client can obtain JSON simply by
leveraging the HTML <script> element.

The same-origin policy (SOP) does not govern the requests of externally referenced
content via specific HTML tags. Such tags are those of , <style>, <iframe>,
and <script>. As you may recall from your past experiences in web development,
script tags are able to embed externally referenced JavaScript files, regardless of whether
the requesting origin matches the origin of the targeted resource. Such an example that
may be familiar is shown in Listing 9-9.

Listing 9-9. Script Tag Targeting the Externally Hosted jQuery Script from a CDN

<script src="//code.jquery.com/jquery-1.11.0.min.js">
</script>

Listing 9-9 utilizes the script tag to retrieve the jQuery library from the jQuery CDN,
regardless of the origin of the request. Furthermore, once the resource is obtained, the
external script gains total access to our document, and vice versa, making this ideal
transport for JSON. Unfortunately, as you will shortly see, not all JSON values can be
properly parsed when obtained via the HTML <script> element.

Listing 9-10 demonstrates grammatically valid JSON, as the content of an indicated

resource located at the URL
http://json.sandboxed.guru/chapter8/data/imagesA. json.

Listing 9-10. JSON Content Within imagesA. json

{
"images": [
{
"title": "Image One",
"url": "img/AndroidDevelopment.jpg"
+{
"title": "Image Two",
"url": "img/php.jpg"
+ {
"title": "Image Three",
"url": "img/Rails. jpg"
+o{
"title": "Image Three",
"url": "img/TSQL.jpg"
}
]
}

As with our earlier jQuery inclusion, we should be able to load imagesA. json into
an application as an external reference, via the script tag, as shown in Listing 9-11.

Listing 9-11. Script Tag Referencing imagesA. json

www.it-ebooks.info

http://json.sandboxed.guru/chapter8/data/imagesA.json
http://www.it-ebooks.info/

<script
src="http://json.sandboxed.guru/chapter8/data/imagesA.json">
</script>

Unfortunately, if we were to incorporate the code from Listing 9-11 into an HTML
document and view that document in a browser, we would arrive at the following syntax
error, as shown in Figure 9-12.

& O © Developer Tools - http://json.sandboxed.guru/chapter8/data/imagesA.json "

Q. Elements Network Sources Timeline Profiles Resources Audits | Console | 81 >= ﬂv E‘
8 W <topframe> v

=script src="http:/fison.sandboxed.gurufchapter8/datafimagesA. json"></script>
© Uncaught SyntaxError: Unexpected token : imagesA.json:2

Figure 9-12. Loading /data/imagesA. json via the <script> tag results in a syntax error

The preceding error is not the result of our HTML Document loading a JSON
document as an external reference but, rather, how the script engine evaluates JavaScript.
Consider the more succinct JSON example being supplied to the eval function in Listing
9-12. When the following JSON is provided to the JavaScript engine, it, too, results in an
erTor.

Listing 9-12. Supplying a JSON Collection to the Script Engine via eval
eval('{ "test":"abc" }'), //fails

This error occurs for no other reason than the fact that the provided content is not
considered syntactically valid JavaScript. However, as explained earlier, the error is not
due to the fact that we are supplying JSON. As you should recall, JSON is a subset of
JavaScript. The issue simply lies in the fact that the engine favors the evaluation of
statements, rather than those of expressions. According to Section 12.4, Expression
Statements, of the ECMA-262 standardization:

An ExpressionStatement cannot start with an opening curly brace because
that might make it ambiguous with a Block.

While this can be viewed as a setback, it is certainly not a roadblock. We simply
require a way to coax the parser into seeing the provided script as an expression.
Fortunately, JavaScript provides us with the operator that can manage this. That operator,
of course, is the grouping operator signified by the open and closed parenthetical (())
tokens.

Note Only the initial ({ }) braces cause the parser to throw a syntax error. No other
object literal suffers the same fate.

By wrapping our script with the grouping operator, we can inform the parser to
handle the evaluation in the context of an expression. It is the padding of the parentheses
for which the phrase JSON with padding refers.

By padding our object literal within the grouping operator, as seen in Listing 9-13, the

www.it-ebooks.info

http://www.it-ebooks.info/

script engine no longer alerts us to a syntax error. However, having crossed one hurdle, we
find ourselves facing yet another.

Listing 9-13. Wrapping JSON with the Grouping Operator
eval('({ "test":"abc" })'), //Successfully parsed

Once the script engine properly parses the provided JSONP, we find ourselves without
a means of obtaining the parsed data. However, this can be easily overcome using the
JSONP model. By preceding our JSONP with a function name, that function will be
invoked upon the script’s evaluation, essentially acting as an event handler. Furthermore,
the evaluated object literal, wrapped within parentheses, will be parsed into a valid
JavaScript object and provide as the argument the indicated function, allowing our
function to obtain the parsed JSON. The structural composition of JSONP is
CALLBACK_IDENTIFIER(JSONtext);. Listing 9-14 is an example of this.

Listing 9-14. Example of the JSONP Model
someMethod({ "test" : "abc" });

As you might expect, this requires our HTML document to be in possession of a
function whose identifier is equal to that of the function name prepended to our JSONP,
lest the parser throw a ReferenceError, as indicated in Figure 9-13.

& O © Developer Tools - http://json.sandboxed.guru/chapter8/data/imagesA.json e
Q. Elements MNetwork Sources Timeline Profiles Resources Audits | Console | @1 = 'l:l' D‘
& Y <topframe> v

evall 'someMethod{ { "test":"abc"})}'): //Successfully pared

& > ReferenceError: someMethod is not defined

*

Figure 9-13. Reference error, can’t find someMethod

In Listing 9-15, the object literal, padded by the parentheses on both sides, is properly
recognized by the engine as an expression and, therefore, parsed into a proper JavaScript
object. From there, the evaluation is provided to the indicated function as the argument.
Upon the invocation of someMethods, the statement(s) within the body of the function
are able to reference the parsed data (line 3). In this case, the statement simply logs out the
test key, resulting in abc being sent to the developer console.

Listing 9-15. Invocation of the Method Evaluated, and the Provision of a JSON Argument

1 eval('someMethod(({ "test" : "abc" }))');
2 function someMethod(data){

3 console.log(data.test); //abc;

4 }

It is the function name that forges the contract between the provider of the JSONP and
the client that seeks to make use of it. This is an important fact, because if the name is
defined statically, it reduces the interoperability among applications. Therefore, to keep

www.it-ebooks.info

http://www.it-ebooks.info/

the method name from conflicting with any application, the JSONP model requires that
the resource allow the client of the request to define the name of the function that will
precede the JSONP.

The manner by which the client informs the server to the preferred callback is quite
simple. The client appends a j sonp query string parameter to the targeted URL and
assigns its value the name of the function to invoke (see Listing 9-16).

Listing 9-16. JSONP Request

1 <script>

2 var test=function(data){

3 //do something with data here.
4 }

)

</script>
6 <script
src="http://json.sandboxed.guru/chapter9/data/jsonp.php?
jsonp=test'></script>

Listing 9-16 declares a function, which will operate on a supplied piece of data and
assigns it to the variable test (line 1), where it can be referenced later. Next, utilizing the
script tag (line 6), we make a request to our JSONP resource and append to it the jsonp
parameter, whose value is that of the preferred function to invoke upon the evaluation of
the received script.

Now, while Listing 9-16 accounts for the front end, the resource must account for the
supplied parameter. Once again, any server-side language can manage this easily enough.
I, however, will demonstrate the code as it appears in PHP (see Listing 9-17).

Listing 9-17. Fulfillment of JSON or JSONP, Pending the Provision of the jsonp
Parameter

1 <?php
2 header('Content-Type: application/javascript');
3 $callback = (isset($_GET["jsonp"])) ? $_GET["jsonp"] : "";

4 $isontext = ' {
"images": [

{

"title": "Image One",

"url": "img/AndroidDevelopment.jpg"
3 {

"title": "Image Two",

"url": uimg/php.jpg"
3 {

"title": "Image Three",
"url": "img/Rails.jpg"
3 Ao

"title": "Image Three",
"url": "img/Android.jpg"

www.it-ebooks.info

http://www.it-ebooks.info/

}
]
}I
5 echo $callback . '(' .$ISONtext. ');';
6 7>

Listing 9-17 reveals the PHP code for the requested URI:
http://json.sandboxed.guru/chapter9/data/jsonp.php. For the most
part, the content within can be recognized as the imagesA. json from Listing 9-10.
However, the lines that appear in bold have been added to serve JSONP. The script begins
by properly indicating the header of the response. As the body of the response is no longer
JSON, but rather JavaScript, we must ensure that clients treat the body as JavaScript.
Therefore, we set the Content-Type to application/javascript (line 2). Next,
utilizing the parameters of the URL, we determine if the key labeled j sonp has been
provided. If it has indeed been set, we assign its value to a variable labeled $callback. If
the j sonp parameter is not present with the GET request, we assign an empty string to
said variable (line 3). Next, to keep the code clean for review, I assign the intended JSON
text to a variable labeled $JSONtext (line 4). This value will later be padded with
parentheses and a possible callback identifier. Last, using PHP’s concatenation operator .,
we join the provided callback with that of our padded JSON and output the final
representation as the response of the request (line 5).

While Listing 9-16 demonstrates the implementation of a <script> element, along
with a collaborating function to receive JSONP, the fact that they were defined at design
time results in the immediate request, upon the execution of the HTML document.
However, this may not always be the desired effect. Utilizing JavaScript, we can resort to
script tag injection, thereby obtaining the results at a time of our choosing.

Dynamic Script Tag Injection

When an HTML document is opened within the browser, the parser scans from the top
down the markup of the document for any tags that reference external content. For each
, <style>, or <script> encountered that may reference an external resource,
an HTTP request is initiated. This, however, is not always the desired effect.

Dynamic script tag injection is a technique that relies on JavaScript to configure an
HTML <script> element at runtime. By creating said tag on the fly, the tag remains
absent from the markup, which prevents a resource from being fetched prematurely. Yet,
at a point of our choosing, we can insert the configured tag into the body of the document,
thereby initiating a request for the indicated JSONP resource. The necessary code to
achieve this on demand behavior can be viewed in Listing 9-18.

Listing 9-18. Dynamic Script Tag Injection

1 function getScript(url){

2 var script = document.createElement("script");
3 script.src=url;

4 document.getElementsByTagName('head')

www.it-ebooks.info

http://json.sandboxed.guru/chapter9/data/jsonp.php
http://www.it-ebooks.info/

[0].appendChild(script);

5 }

6
getScript('http://json.sandboxed.guru/chapter9/data/jsonp.phg
jsonp=someMethod');

Listing 9-18 reveals a function that, when invoked, is responsible for the creation,
configuration, and the injection of a script tag within the document of the application
being run. The code solely responsible for the dynamic script tag injection has been
encapsulated within the getScript function, so that we can generate any number of
scripts through a single endpoint (line 1). Furthermore, to account for any possible URL to
be supplied as the resource of the request, the getScript function accepts a URL as a
parameter.

Upon an invocation, we utilize the createElement method of the document object to
create an HTML element of our choosing. As the tag we require is that of a script element,
we provide script as the parameter and assign the returned element to a variable
labeled script (line 2). Utilizing the script reference, we supply the URL argument as
the referenced source via the src attribute (line 3). From there, we utilize the document
object to obtain a reference to the HTML <head> element, whereby we will insert our
newly crafted HTML <script> element. Last, to generate a dynamic tag and trigger our
resource to be loaded, we invoke getScript and supply to it our JSONP URL. By using
JavaScript to inject a script tag into our markup, we have more control over when the
resource is loaded. The invocation can be the result of an event, such as a button click.

While getScript makes loading JSONP resources on demand a simple task, there are
many available libraries, such as jQuery, that extend the code even further, so that it’s
possible to provide anonymous functions for invocation upon the evaluation of the
indicated JSONP request. Such a function that enables this type of behavior can be viewed
in Listing 9-19.

Listing 9-19. Dynamic Script Tag Injection with Anonymous Callback Behavior

1 var getJSONP = (function () {

2 jsonp_callbacks={};

3 return function(url, fName, callback) {

4 scriptNode = document.createElement('script');

5 scriptNode.setAttribute('type', 'text/javascript');
6 scriptNode.src = url + '"?jsonp="'

+ encodeURIComponent('jsonp_callbacks["' + fName +

III]I);

7 jsonp_callbacks[fName] = function (data) {
8 delete jsonp_callbacks[fName];

9 callback(data);

10 Iy

11 document.body.appendChild(scriptNode);

12 3}

13 }());

www.it-ebooks.info

http://www.it-ebooks.info/

14

getJSONP('http://json.sandboxed.guru/chapter9/data/jsonp.php'
"callback', function (data) {

15 console.log(data);

16 });

Summary

This chapter pointed out three techniques that can be used to initiate cross-origin requests
that fulfill the interchange of JSON. As was indicated, the majority of front-end code
remains unchanged. However, it does require a slight amount of modification, with regard
to requesting a JSONP resource. In contrast, it will be the onus of the server administrator
to configure a resource to be made available to a cross-origin request.

With the conclusion of this chapter, you should find yourself one step closer toward
being able to harness the full power of JSON. In the next chapter, we will install and work
with Node.js, a platform built on Chrome’s JavaScript runtime, so that you can host your
own local web server, which can be used to receive, store, retrieve, and transmit JSON,
utilizing the configurations required of each of the tactics discussed in this chapter.

The wonderful news is that because Node.js works entirely on the V8 JavaScript
engine, you won’t be asked to follow along with a language that you might not be used to.

Key Points from This Chapter

e The same-origin policy (SOP) is the security model adhered to by all
user-agents.

e The SOP governs a variety of front-end securities.
e The SOP restricts network messages between varying origins.

e SOPs vary according to the degree by which they are enforced
between different technologies.

e Use the in operator to test whether the widthCredentials
attribute exists on the xhr instance.

e Cross-network errors can be corrected by moving the resource to the
same domain as the source origin, or by enabling Cross-Origin
Resource Sharing (CORS).

e A domain and its subdomain are not considered authorized by default.

e Origins are considered similar if they possess the same scheme, port,
and domain.

e The port address for HTTP is 80, while that for HTTPS is 443
e Certain headers are unable to be altered via setRequestHeader .

e SOPs can be circumvented via server-side programming.

www.it-ebooks.info

http://www.it-ebooks.info/

e The Access-Control-Allow-Origin header is required to fulfill
“simple” requests from varying origins.

e If a request is not simple, it requires “preflight.”

e Simple requests use GET, POST, or Head and are limited to four
white-listed headers.

e The simple header Content-Type can only be configured as
application/x-www-form-urlencoded,
multipart/form-data, or text/plain.

e CORS headers can only be used with user-agents that conform to the
algorithms of the CORS specification.

e JSONP is JSON wrapped in parentheses and preceded by a function
name.

e The client request specifies the function name via the jsonp query
parameter.

e The SOP does not govern requests of externally referenced content via
<script>.

e An ExpressionStatement cannot start with an opening curly
brace.

e A server proxy forwards an authorized request to a remote server.

Iwhat’s My User Agent, “What’s a User Agent String,” www . whatsmyuseragent.com/WhatsAUserAgent,
2015.

2World Wide Consortium (W3CQ), “Cross-Origin Resource Sharing,” www .w3.0rg/TR/cors/#resource-
sharing-check, January 16, 2014.

3Adam Barth, Internet Engineering Task Force (IETF), “The Web Origin Concept,”
www.ietf.org/rfc/rfc6454. txt, 2011.

www.it-ebooks.info

http://www.whatsmyuseragent.com/WhatsAUserAgent
http://www.w3.org/TR/cors/#resource-sharing-check
http://www.ietf.org/rfc/rfc6454.txt
http://www.it-ebooks.info/

CHAPTER 10

Serving JSON

Up until this point, we have been focusing on JSON primarily from a front-end
perspective. However, as a data interchange format, JSON plays an important role on the
back end of our applications as well. Therefore, in order to further empower ourselves in
the ways of JSON, we will explore how to set up our very own web server, utilizing an
open source technology known as Node.js.

Once we have our own server up and running, you will learn how to utilize said server
to provide JSON, receive JSON, and even store/persist JSON.

Node.JS

Node.js, commonly referred to as Node, is a runtime environment created by Ryan Dahl
that allows us to devise a web server using nothing other than JavaScript. That’s right,
JavaScript. Now before you begin to presume that this can’t be considered a true server,
let me assure you that Node is incredibly powerful and extremely efficient. So much so,
that it’s used by many popular brands, such as Walmart, PayPal, and eBay, to name a few.

Node is built on top of Chrome’s V8 JavaScript engine, making JavaScript the ideal
language of our server. Furthermore, because Node makes use of the latest V8 code base,
our server can utilize the cutting-edge inclusions of the JavaScript API, such as File-
System, Web Workers, etc. The benefits don’t just stop there either. Because JavaScript is
an event-driven language, the functions within Node remain asynchronous and are capable
of handling data-intensive applications. Last, Node can run without additional software,
such as Apache, being installed, making it simple and convenient to install on either
Windows or Mac.

Windows Installation

Upon navigating to nodejs.org/download/, we are immediately presented with the
tools that will get us up and running. As there is no reason to take anything but the path of
least resistance, we will download and install the Windows Installer (. ms1i). Whether you
chose the 32-bit vs. the 64-bit version is dependent on your current operating system.
While most programs designed for the 32-bit versions of Windows are compatible with
64-bit versions, the same cannot be stated for 64-bit software on 32-bit Windows.

To find out if your computer is running a 32-bit or 64-bit version of Windows, in
Windows 8 or Windows 8.1, do the following:

1. Open System by right-clicking the Windows button and selecting

www.it-ebooks.info

http://www.it-ebooks.info/

System from the list.
2. Within the System pane, you can view the system type.

To find out if your computer is running a 32-bit or 64-bit version of Windows, in
Windows 7 or Windows Vista, do the following:

1. Open System by clicking the Start button, right-clicking Computer,
and then clicking Properties.

2. Under System, you can view the system type.
If your computer is running Windows XP, do the following:

1. Click Start.
2. Right-click My Computer and then click Properties.

a. If you don’t see “x64 Edition” listed, then you’re running
the 32-bit version of Windows XP.

b. If “x64 Edition” is listed under System, you’re running the
64-bit version of Windows XP.

Once you determine which bit operating system your machine is running, click the
corresponding Windows Installer. As I am running a 32-bit version of Windows, as shown
in Figure 10-1, I will be installing the 32-bit Node Windows Installer.

4+ 1% » Control Panel » System and Security » System v & Search Control Panel

Control Panel Home

View basic information about your computer

-!: Device Manager Windows edition
% Remote settings Windows 8.1 Pro - g
% System protection @ 2013 Microsoft Corparation. Al rights reserved. =. W | n d O WS 8
% Advanced system settings Get more features with a new edition of Windows u
System

Processon Intel(R) XeoniR) CPU E5462 @ 2.80GHz 2.79 GHz

Installed memory (RAM): 2,00 GB

System type: 32-bit Operating Systemn, x84-based processor

Pen and Touch: Mo Pen or Touch Input is available for this Display

Computer name, domain, and workgroup settings
Computer name: FeZEC ¥ Change settings
Full computer name: FeZEC
Computer description:
Workgroup: WORKGROUP

See also Windows activation
Action Center Windows is not activated. Read the Microsoft Software License Terms

Winsioer st Product ID: 00178-10579-78714-AB320 Activate Windows

Figure 10-1. Determining Windows operating system type: 32-bit vs. 64-bit

By clicking either the 32-bit or 64-bit button, depending on your browser, the .ms1i
should begin downloading. Depending on the browser, you may have to acknowledge that
you wish the file to be saved. Once the file has been downloaded successfully, navigate to

www.it-ebooks.info

http://www.it-ebooks.info/

the directory in which it has been downloaded and double-click the installer, to initiate the
installation wizard. At this point, the Node setup wizard will walk you through the
installation step-by-step. To begin the processes, click Next.

The second screen of the wizard presents us with the license agreement of Node.
Before continuing on to the next screen, you must accept the terms in the license
agreement. Take this opportunity to read and accept the End-User License Agreement and
then click Next to configure the installation.

The following few screens enable you to change the default configurations of the
installation. Such configurations determine in which directory to install Node, or how
corresponding features should be installed. Unless you feel comfortable enough to modify
these settings, you should leave them as they are and continue to the installation screen
shown in Figure 10-2.

54 View Downloads - Internet Explorer =i el

View and track your downloads Search downloads P

Mame R R R R RRRRRRRRRRRRRRRRRRRRRRRRRORRROBRBRRRORRREERRRER

node-v0.10.29..J] Ready toinstall Node.js n d Qi

Joyent Inc

Firefox Setup St. Click Install to begin the installation. Click Back to review or change any of your
Mozilla Corporation installation settings. Click Cancel to exit the wizard.

ChromeSetup.ex

Google Inc

node-v(0.10.29....

Joyent Inc

curl_737_0zip

pashl.com

Options
| - —

Figure 10-2. Node setup wizard

Once you reach this screen, simply click Install, and then sit back and relax for a short
moment. You will be presented with confirmation that the Node setup wizard has
completed. At this point, feel free to click Finish to exit the wizard. By default, Node and
its features are installed globally, and often, system-wide variable changes may not always
be recognized until after a reboot. Therefore, before we verify that the installation of Node
was successful, it will be wise to reboot.

Once Windows loads, we can verify the installation of Node. We will achieve this with
the assistance of the command-line interpreter, also known as the command prompt. To

www.it-ebooks.info

http://www.it-ebooks.info/

access the command prompt application, right-click your desktop’s Start button and
choose Run from the list of options. Within the input field, simply type cmd . exe, then
click the button labeled “OK.”

Figure 10-3 reveals the command terminal in which we can enter commands. The
terminal will open to a defaulted folder that exists on the hard drive. Which folder depends
on whether you run cmd . exe as an administrator or as a user. If you run it as an
administrator, the default folder will be that of a system folder, whereas if you open it as a
user, it will reflect your user’s folder. Figure 10-3 reveals my directory as
C:\Users\UrZA>, which simply reflects the directory that corresponds to the account
that I logged in to on the machine. Of course, that account user is named UrZA.

icrosoft Windows [Verszion 6.3.96881]
(c) 2013 Microsoft Corporation. All rights reserved.

sliserssUrEn >

Figure 10-3. Command prompt interface

In order to ensure that Node was installed and configured successfully, type node
—version within the terminal, then hit Enter. If Node has successfully been configured
for your user account, you should be provided with the numerical version of Node that has
been installed.

If you are presented with something that reflects the vX.XX.XX format, as shown in
Figure 10-4, then congratulations; you can begin work with Node right away. Feel free to
fast-forward to the “Building an HTTP Server” section.

www.it-ebooks.info

http://www.it-ebooks.info/

Pode.ond D~ nodejs

Download the Mode.js source code or a pre-built instalter for your platform, and stan

developing today.

Current version: v, 10,29

Source Code

Mote: Python 2.6 or 2.7 15 required 1o build from source tarballs, W

Figure 10-4. The Node —version command outputs the installed version of Node.js

If, on the other hand, the terminal outputs the message that Node is not recognized as
an internal or external command, operable program, or batch file, it’s evident that Node
has not been correctly installed. In order to correct this, there are a few steps that can be
taken.

The Node installation will install node . exe within the C: \Program
Files\nodejs\ directory by default. Take a moment to verify that this executable is
indeed present within this folder. If you have altered the destination during the setup
process, please navigate to that directory instead. If you do not witness the node . exe
executable within the determined directory, the installation may not have successfully
completed. Please run the installation wizard once again to rerun the setup process
followed by a system reboot.

If you are able to verify the presence of node . exe within the chosen directory, the
failure of the command prompt to execute the command node —version may be due
to the fact that the directory to which it is installed lies outside the directories utilized by
the shell. To be certain as to whether this is the case, type the command PATH within the

command prompt. The output shown in Figure 10-5 lists the default directories used by
the shell.

www.it-ebooks.info

http://www.it-ebooks.info/

icrosoft Windows [Uersion 6.2.92881]
c) 2812 Hicrosoft Corporation. All rights weserved.

sUsers UrZA>PATH

PATH=C=*WINDOWS s ysten32 ; CoAWINDOUWS ; CxUINDOWE~SystemndZ2 When; C:xHINDOUHENSystend 2
HindowsPoverShe 11wl @5

sUserssUrZA>

Figure 10-5. Output of the PATH variable

As you can see, C: \Program Files\nodejs\ is not among the outputted
directories. In this case, we may have to include the installed directory as one of the
directories to be used by the shell. This can be achieved by adding the node j s directory
to that of the PATH environment variable. In order to add the necessary directory to our
PATH environment, we must navigate to the Control Panel window and type
“environment variables” within the input field that reads “Search Control Panel” and hit
Enter. This will filter the results in the panel, revealing a result labeled “Edit the system
environment variables.” Click this result and, on the window that opens thereafter, click
the button labeled “Environment Variables....” At this point, you should be presented with
a window displaying both User and System variables, as shown in Figure 10-6.

www.it-ebooks.info

http://www.it-ebooks.info/

(=] environment variable - Control Panel =

:f"z L | Jﬁ + Control Panel v O environment variable *

i h System System Properties
"= Edit environment variables for your account

ﬁl' Edit the system environment variables Computer Name ! Hardware | Advanced | System Protection | Remote

amake most of these changes.

) Search Windows Help and Support

sage, and virtual memory
User variables for UrZA

Variable Value e
TEMP YISERPROFILE%:\AppDatalLocal\Temp
TP SUSERPROFILE%:\AppData\Local\Temp
System variables rformation
Variable Value Settings...
NUMBER_OF _P... 1
0s Windows_NT
Path C:\WINDOWS \system32;C: \WINDOWS:... Environment Variables...

| PATHEXT .COM;.EXE; BAT;.CMD;.VBS; VBE;.JS;.... v |

New... Edit... Delete

Figure 10-6. Add environment variables to Windows

Next, click the New... button immediately below the System variables box. Where it
asks for the “Variable name:”, supply “PATH.” Additionally, for the “Variable value:”,
supply “C:\Users\UrzZA \AppData\Roaming\npm.” (Do not use quotations, and
replace Ur ZA with your user name.) Once those fields are supplied, click OK.

Next, within the System variables section, locate a variable labeled “Path,” select it,
and click the button labeled “Edit...”, located directly below the System variables section.
As the Path already exists, we simply have to append our nodejs directory to the list.
This is accomplished by typing ; C:\Program Files\nodejs\ to the end of the
Variable value field. Note the use of the semicolon (;) before the actual directory. This is
used to delimit one path from another.

Note If you changed the default installation directory, you would have to supply that
directory to the PATH environment variable instead.

Once the nodej s directory has been added to our PATH environment variable, accept
the changes by hitting OK on all remaining windows. Next, reopen the Command Prompt
window and run the following command: node —version.

Mac Installation

www.it-ebooks.info

http://www.it-ebooks.info/

Upon navigating to nodejs.org/download/, we are immediately presented with the
tools that will get us up and running. As there is no reason to take anything but the path of
least resistance, we will download and install the Mac OS X Installer (. pkg). Unlike the
installers for Windows/Linux, the Mac Installer provides a universal installer. Go ahead
and click the button labeled “Universal,” to begin the download of the Mac Installer.
Depending on which browser you are currently using, such as Chrome or Firefox, you
may receive some form of notification that requires you to confirm that you wish to
download the indicated file.

Once the download has completed, locate the Node installer on your system.
Ordinarily, files are downloaded to your Downloads folder. Once you locate the installer,
double-click the installer, to initiate the installation wizard. At this point, the Node setup
wizard will walk us through the installation step-by-step. The initial screen simply informs
us of where the package will install node and npm. Feel free to click the button labeled
“Continue.”

The second screen of the wizard presents us with the Node license agreement. Before
continuing to the next screen, you must accept the terms in the agreement. Take this
opportunity to read the software license agreement, then click Continue, to agree to the
terms of the agreement. Upon agreeing to the terms, we will continue into the
configuration portion of the installation.

The next screen enables us to configure the default destination of the installation.
Unless you have multiple hard drives, you may only have one option available, as
reflected in Figure 10-7. Select the appropriate destination and continue to the installation
screen.

ann « Install Node a8

Select a Destination

How do you want to install this software?
& Introduction
@ Lcense . Install for all users of this computer
& Destination Select

@ Installation Type

@ Installation

® Summary

Installing this software requires 39.3 MB of space.

You have chosen to install this software for all users of this
computer.

Go Bac;!:c Contin_ue

Figure 10-7. Node Mac setup wizard

www.it-ebooks.info

http://www.it-ebooks.info/

Once you reach this screen, simply click Install, then sit back and relax for a short
moment. You will be presented with confirmation that the Node setup wizard has
completed successfully. You might note that the Summary screen displays the paths to
where both node and the Node Package Manager, or npm, binaries are located.
Additionally, it recommends that we ensure that /usr/local/bin is specified as a
directory within our $PATH environment variable.

The $PATH environment variable is a colon-delimited list of directories that your shell
searches through when you enter a command. The shell searches through each of these
directories, one by one, until it finds a directory in which the executable exists. If the path
is not configured with the directory that holds our two bin files, they will not be found
and, therefore, never executed.

In order to verify that our $PATH variable possesses the /usr/local/bin
directory, we must utilize the built-in command line of the Unix OS known as Terminal.
There are a few ways to access Terminal, but we will rely on Spotlight. Simply clicking
the magnifying glass in the top-right corner, or pressing Command and Space at the same
time, will provide access to Spotlight. Within the input field to the right of where it states
Spotlight, type in “Terminal,” without the quotations. This will begin the search and
display access to the Terminal application. Select the result shown as the Top Hit, to bring
up the Terminal interface.

Within the terminal, type echo $PATH, then hit the Enter key on your keyboard to
execute the statement. The list of directories that are configured for your environment
should be outputted to the terminal. The directories that are listed within my environment
can be viewed in Figure 10-8.

8009 GREEIEChash 1ald

Macintoshi~ FeZECS echo $PATH

-bash: Sfusr/bin:/bin:fusr/sbin:/sbin:fusr/locals/bin: fusrflocalfgit/bin: fusr/local/mysql/bin
Macintosh:~ FeZECS

Figure 10-8. Exported $PATH configuration

Among the directories listed, if you are able to verify /usr/local/bin, it should
be safe to presume that the node and npm binaries are accessible. If, however, the
preceding path is not found within the $PATH environment variable, we will have to
configure it. Utilizing the terminal, type nano ~/.bash_profile, then hit Enter.
This will bring up the personal initialization file. It is here that we will configure our
$PATH variable.

If your . bash_profile is empty, as shown in Figure 10-9, simply add the line
export PATH=$PATH:/usr/local/bin, then, on your keyboard, hold down the
Control key and press the X key to exit. Before the application terminates, you will be
promoted to save the changes, as shown in Figure 10-10. Simply hit Y to save, and

www.it-ebooks.info

http://www.it-ebooks.info/

proceed to exit .bash_profile.

| 800 % FeZEC — nano — 80x17 Pl
GNU nano 2.8.6 File: /Users/FeZE(/.bash
I':H"Ei'[':h'
e I \ji,llr
20 TS SRS SIEN
-
BE Get Help JT WriteDut ﬁ Read File E Prev Page i Cut Text E Cur Pos CeTeen|Shot
E Exit h Justify @i Where Is Next Page UnCut Tex To Spell 20 TS 6 P M
I
Figure 10-9. Empty . bash_profile content
M
| & 00 %+ FeZEC — nano — 80x17 e Ahan
GNU nano 2.0.6 File: /Users/FeZEC/.bash
export PATH=$PATH:/usr/local/bin
o CEECT
U IS
G
i U 15
Save modified buffer (ANSWERING "No" WILL DESTROY CHANGES) 7 B
B8 cancel

Figure 10-10. Configuring the $PATH environment variable to include /usr/local/bin

Note The preceding code (shown in Figure 10-10) will not impair your existing
environment variables. It will merely append the /usr/local/bin directory to the
existing list.

As the code within the . bash_profile is only run prior to a terminal session, close
the existing Terminal application and open the application once again. This time, when
you type echo $PATH and then hit the Enter key on your keyboard to execute the
statement, you should see /usr/local/bin among the list of directories shown.

In order to know whether or not Node was installed and configured successfully, type
the command node --version within the console, then hit Enter. If Node has
successfully been configured, you should be provided with the version of Node that has
been installed.

If you are presented with output that reflects the format vX.XX.XX, such as that
shown in Figure 10-11, then congratulations; we can begin working with Node right away.

www.it-ebooks.info

http://www.it-ebooks.info/

Feel free to click Close, to exit the Node installation wizard and proceed to the section
“Building an HTTP Server.”

anon % FeZEC — bash — B0x11]

Last login: Sat Jul 12 15:13:10 on ttys@ee -
Macintosh:~ FeZEC$ node ——version ELSTT
vd.18.29

Macintosh:~ FeZecs I

Figure 10-11. node —version resulting in the output of the installed version of Node.js

Building an HI'TP Server

With Node installed and configured properly, it is high time to begin building an HTTP
server that we can continue to build on in the upcoming chapters. As it was stated at the
beginning of this chapter, Node is a platform that utilizes the JavaScript language.
Therefore, much of the code that we will be working with will be simply vanilla
JavaScript.

Node HTTP Web Server

In this chapter, I will be discussing the components and methods that make up a Node
server. While all code will be utilizing pure JavaScript, some of these concepts may seem
new to you. With that in mind, I will attempt to keeps things as simple as possible.
However, I wish to provide you with an example of what we will be working with. This
will, T hope, provide you with a concrete example that you can keep in mind throughout
this chapter. Listing 10-1 illustrates an introductory Node server that acts as our
foundation for this chapter.

Listing 10-1. Extremely Basic Node Server

1 var http = require('http');

2 var server = http.createServer();
server.addListener('request', requestHandler);
server.listen(1337, '127.0.0.1");

console.log(request.url);
console.log(request.headers);

3
4
)
6 function requestHandler(request, response) {
y
8
9 var body="Hello World";

10 response.statusCode = 200;
11 response.setHeader ("Content-Type", "text/plain");
12 response.setHeader ("Content-Length",

www.it-ebooks.info

http://www.it-ebooks.info/

Buffer.byteLength(body, 'utf8'));

13 response.end(body);

14 3};

15 console.log('Server running at http://127.0.0.1:1337/"');

Listing 10-1, displays 15 lines of code that make up the content of a simple Node
server. The first four lines are all that are required to devise a Node Web Server. The latter
nine lines of code demonstrate how to configure a simple response for any and all
incoming HTTP requests. Let’s walk through the code and discuss each statement.

We begin by loading the built-in HTTP module of the Node platform via the
require function. As each module is simply a JavaScript object, we assign the loaded
module and then assign it to a well-labeled variable. In this case, that variable is labeled
“http” (line 1). Utilizing the createServer method exposed by the HTTP object, we
establish a new instance of a web server. Next, we assign it to the variable labeled
“server,” in order to configure the web server (line 2). From there, we begin with our
first configuration, which is to provide a function to the server as the default handler for
all incoming requests to this server instance. When the server receives an incoming
request, it dispatches a “request” event notification, to which the associated handler is
invoked, thereby handling the request (line 3). Last, we configure the server to monitor
any incoming transmissions to the specified domain (127.0.0.1), along with the specified
port (1337) (line 4).

The final portion of code (lines 6—15) represents the business logic of the response.
The handler that is provided to the server will consistently be provided two arguments for
every incoming request. The first argument, the request, represents an object that retains
the configurations of the client’s request. This object can be used to obtain the method,
URL, and the headers of the request, as seen in lines 2—3. The second argument is the
response, which, as an object, exposes the necessary properties to configure an HTTP
response, as seen in lines 10—13.

Within the body of the request handler, we obtain the reference to the response object
and begin to provide it with a status code. We will set this to 200, to reflect the
acknowledgment of the request provided (line 10). Next, we configure the headers of the
response. As we will be providing back the text “Hello World,” we use the setHeader
method to inform the client of the Content-Type (line 11).

Last, we invoke the response object’s end method, which not only enables us to
provide the response with an entity body, it also signifies the response has been fully
crafted, fulfilling the request and providing the response back to the client. The very last
line of code serves only to output to the Terminal console that the server has been initiated
(line 13).

If at this point, if you were to navigate to http://127.0.0.1:1337, you would
not be provided with any response from our server. That is because, at this point, we
haven’t started our Node application. We must inform the Node engine to parse the
preceding JavaScript, in order for our server to be operational. To accomplish this, it will
be necessary to save the base_server. js within a directory that you will be able to
easily navigate to via the command-line utility. You can obtain the location of a file simply

www.it-ebooks.info

http://www.it-ebooks.info/

by right-clicking the document and selecting “Get Info” for Mac or “Properties” for a PC.
To obtain the location of the file in question, you will have to look in the General tab. I
have mine saved in the following directory:

//PC
C:\Users\UrzA\Desktop\BeginningJSON\chapterl0\server

//Mac
/Users/FeZEC/Desktop/BeginningJSON/chapterl0/server

At this point, if you have closed the Terminal or Command Prompt window, open it
once more and type the following:

//For PC:
cd C:\Users\UrzZzA\Desktop\BeginningJSON\chapterl0\server

//For Mac:
cd /Users/FeZEC/Desktop/BeginningJSON/chapterl0/server

However, rather than referencing the location of my file, replace the preceding path
with the directory that holds your file. Note that I did not add the name of the file. At this
point, within the Terminal application, type node 10-1.js and then hit Return on your
keyboard. If you have successfully navigated to the proper directory and provided Node
with the proper file name, you should see the statement Server running at
http://127.0.0.1:1337/ outputted to the terminal. If, however, you are provided
with an error, Error: Cannot find module, you may have accidentally misspelled
the file name or navigated into the incorrect directory.

If the problem persists, and the error continues to state that it is unable to find the
module provided, simply move base_server. js directly to your desktop. Then, open
the console window and type: node ~/Desktop/10-1.js (Mac)or node
C:\Users\YourUserNameHere\Desktop\10-1. js (PC), then hit Enter. This
time, rather than navigating into the desktop directory before informing Node of the file
name to run, execute the Node shell and explicitly specify the full path of the script.

We could have just as easily navigated to the desktop directory first, then typed node
10-1. js. The difference is that when you are within the directory that holds the file, you
do not require specifying the path.

Now that we have our server up and running, let’s open our preferred browser and
navigate to http://127.0.0.1:1337. Upon your arrival, you should see “Hello
World” outputted to the screen, as in Figure 10-12.

www.it-ebooks.info

http://www.it-ebooks.info/

127.0.0.1:1337
- C 127.0.0.1:1337 kil ~ | =\ P =
i Apps '-" Learn more. * Get Processing anc h Arduino Eclipse D« 8 bit, 12 bit, 14 bit Visual Event w [0 Other Bookmarks

Hello World

Figure 10-12. Our first “Hello World” Node Server

If you were to open your developer console, bring the network pane into view, and
refresh the page, you would be able to view the headers of our response, however minimal
they may be. What you should see are the following headers:

HTTP/1.1 200 OK

Content-Type: text/plain
Content-Length: 11

Date: Mon, 14 Jul 2014 00:19:09 GMT

Over the course of this chapter, we will continue to modify the body of code that exists
within requestHandler, so that we can serve JSON to our web applications.

Now, exit out of the browser and locate the console window that was used to start up
our server and give it focus. While holding the Control key on the keyboard, press the
letter C, to shut down the application. A running server will not reflect changes to the
JavaScript code. It will be necessary to shut down the server instance and start it back up,
for any changes to be present.

Node API

The great thing about the Node API is that it’s relatively small, given how powerful it is.
You can view the entire documentation from the Node web site located at
http://nodejs.org/api/. If you find yourself feeling a bit overwhelmed from
looking at the table of contents, let me assure you that I am only going to talk about a few
aspects of the API. Those aspects are the following modules: HTTP, Path, URL, and File
System. Furthermore, for the purpose of this chapter, we will only be regarding a subset of
said modules.

Modules

Modules, for all intents and purposes, are nothing more than JavaScript objects. By
referencing a specific module, we are able to utilize the interface to which the object
exposes. Additionally, as they are broken out into their own context, we can choose to
load in only the objects that our server requires, thereby lowering the amount of overhead

www.it-ebooks.info

http://nodejs.org/api/
http://www.it-ebooks.info/

on the server. While it is possible to create your own modules (following the CommonJS
architecture), we will only be considering built-in modules of Node.

Each module in Node (built-in or custom) can be imported into an application via a
simple function call. That function is simply require. As demonstrated by the signature
in Listing 10-2, the require function simply expects a singular argument, which
represents the module to load in.

Listing 10-2. Signature of the require Method
require('module');

For all built-in modules, we can simply specify the name of the module. The
aforementioned modules HTTP, Path, URL, and File System can be imported using their
respective names: http, path, url, and fs.

For each module specified, a corresponding object is loaded into the application and
evaluated. It will be necessary to assign the object returned to an appropriately labeled
variable, so that its interface can be utilized at a later point in time. Listing 10-3
demonstrates how we can load and reference the preceding modules.

Listing 10-3. Imported Modules via the require Method

var http require('http');

var path require('path');

var url = require('url');

var fileSystem = require('fs');

The first module referenced is that of ht tp, and it is essential for any Node server. It

is responsible, with the help of several internal objects, for facilitating the mechanisms of
an HTTP server.

The HT'TP Module

The HTTP module is responsible for devising a server instance and initiating server-side
HTTP requests (which will be used for our proxy). It concerns the handling of streams, as
well as parsing messages into headers and, possibly, an entity body. In order to remain
flexible for any and all possible applications, the HTTP module possesses an extremely
low-level API. What this means is that, much like a box of LEGOs, all the individual parts
required to build a server have been packaged within Node. However, it will be up to us to
connect the individual pieces as we see fit.

The parts that have shipped within the HTTP module box that we will be exploring for
the duration of this chapter are http.IncomingRequest,
http.ServerResponse, http.Server, http.ClientRequest, and
http.Streams. The two methods outlined in Table 10-1 will be the two methods of the
HTTP module that we will use throughout this chapter.

Table 10-1. Methods of the HTTP Module

www.it-ebooks.info

http://www.it-ebooks.info/

Methods Description

createServer([requestListener]) Returns a new web server object

Enables the ability to issue server requests. *Returns an

request(options, [callback]) instance ClientRequest

http.createServer

The HTTP method createServer is solely responsible for instantiating a server
instance that will be used for monitoring connections to our server. I will discuss the
server shortly. As you can see from the signature in Table 10-1, an optional callback can
be supplied as an argument of the method. This will be the method that will be invoked the
moment a request is made of our server. Any provided requestListener must
possess the following signature: function (request, response);.

http.IncomingMessage

The first argument provided, request, is an instance of the IncomingMessage
Object. IncomingMessage exposes an API that is instrumental in obtaining all parts of
the request. Through it, we can obtain the requested URL, the request method, the
supplied headers of the request, and the entity body, if one was supplied.

Table 10-2 outlines the interface of the IncomingMessage object that makes it
simple for our application to obtain key aspects of the request. However, you may notice
there is no attribute for obtaining the entity body. As this is a slightly more complex task, I
will discuss how to obtain the entity body in the “The Proxy Server” section.

Table 10-2. Methods of the IncomingMessage Object

Methods Description

url Returns as a string the URL that is present in the actual HTTP request
Method Returns the HTTP request method as a string

Headers Returns an object containing the request headers and values. *Header names are lowercased.

http.ServerResponse

The second argument, the response, is an instance of an object member of the HTTP
module known as ServerResponse. It will be through the interface of the response
instance that we can provide a response back to the client of the request. The exposed
interface of the ServerResponse Object that we will make use of can be viewed in
Table 10-3.

Table 10-3. Methods of the ServerResponse Object

Methods Description

www.it-ebooks.info

http://www.it-ebooks.info/

response.setHeader (name,

value) Sets a single header value for the response
response.write(chunk, Sends a chunk of the response body. *Can be called multiple times.
[encoding]) Possible encodings are binary or utf8.

Setter method used to generate the status-line of the response.

response.statusCode
P *Expected assignment is a valid HTTP status code.

response.end([data], Signals the end of the response. It can be called with an entity body.
[encoding]) *Data must be in string form.
http.Server

The request and response instances supplied to the requestListener method
are always supplied by our server instance and for any incoming request. In short, the
server instance is an event dispatcher or event emitter, notifying any event listeners to the
incoming event via the “request” notification (See Table 10-5). Because the server is an
event dispatcher, it’s a matter of preference if you wish to designate requestListener
at the time of creating the server instance. As an alternative, if you prefer the more object-
oriented route, you can choose to listen for the “request” notification, via the server’s
addListener method (See Table 10-4). The two possible manners, as shown in Listing
10-4, are equivalent.

Listing 10-4. Providing a Callback as the Function to Trigger, per Incoming Request

var serverA= http.createServer(requestListener);

//0or

var serverB=http.createServer();
serverB.addListener ('"request", requestListener);

Table 10-4. Methods of the Server object

Members Description

addListener(event callback
) (! Assigns an event handler for a particular event

14
Begins accepting connection on the specified port and

listen(port, [hostname]) hostname

Table 10-5. Events of the Server object

Event Description

Emitted each time there is a request. The event handler will receive a request and response

request
1nstance.

In order for our server to monitor the request, we must first establish which
connections it is responsible for. In order to do this, we will use the 1isten method of
our server instance. The 1isten method, as shown in Listing 10-5, can be supplied with

www.it-ebooks.info

http://www.it-ebooks.info/

two arguments. The first parameter, por t, is required, while the second parameter,
hostname, remains optional. For the purposes of this book, both will be used.

Listing 10-5. Signature of the 1isten Method
listen(port, [hostname]);

Where hostname is required, we will always use the IP address 127.0.0.1, which is
simply a way to access one’s own computer’s network services. The value of the port, on
the other hand, is used to afford multiple servers the ability to listen to the same IP.
However, by specifying a port, all running servers on 127.0.0.1 will be able to distinguish
their incoming requests from the others.

At this point, you should have an understanding of the basic components that are used
to craft a rudimentary Node server. Before we continue to learn the remaining parts, let’s
review, in a simple exercise, what we have learned.

EXERCISE 10-1. YOUR FIRST JSON SERVER

Use the HTTP module and its members to create a server that monitors all incoming
traffic on port 1337. Furthermore, utilizing the interface of both the response and
request objects, provide the necessary implementation that results in the response
headers shown following. The response should satisfy only the target resource of the
request (shown following).

Request Headers

GET /message.json HTTP/1.1
Host: 127.0.0.1:1337
Accept: application/json

Response Headers

HTTP/1.1 200 OK

Content-Type: application/json
Content-Length: 25

{"message":"hello-world"}

Hint In order to arrive at the correct Content-Length for the entity body, you must
supply the body to the following method: Buffer.byteLength(data ,
'utf8'));.

Test if you are correct by navigating your browser to your server. Be sure to append a
few paths after the URL and port to ensure that only the request is satisfied:
http://127.0.0.1:1337/[paths-here].

Listing 10-6 reveals the answer to the previous exercise. We begin by importing our
HTTP module (line 1). We then invoke its createServer method to initialize our
server (line 2). Additionally, using the optional parameter, we supply the callback

www.it-ebooks.info

http://127.0.0.1:1337/
http://www.it-ebooks.info/

method that will be triggered for each incoming request. Utilizing the 1isten method,
inform the server to monitor our localhost, with a focus on port 1337 (line 3).

Listing 10-6. Answer to Our JSON Exercise

1 var http = require('http');
2 var server = http.createServer(requestHandler);

3 server.listen(1337);

4 function requestHandler(request, response) {
5 if (request.url === "/message.json") {

6 var body = JSON.stringify({

7 message : "hello-world"
8 1),

9 response.statusCode = 200;

10 response.setHeader ("Content-Type",
"application/json");

11 response.setHeader("Content-Length",
Buffer.byteLength(body, 'utf8'));

12 response.end(body);

13 }

14 };

15 console.log('Server running at http://127.0.0.1:1337/"');

When an incoming request notification occurs, our requestHandler function will
be invoked and supplied two objects: request and response (line 4). Per the exercise,
our task was to ensure that the response was provided only for the requested
/message. json resource. To ensure that we respond only to that resource, we must
obtain the requested URL and compare it before we handle it (line 5). This is
accomplished with strict equality. If, and only if, the requested resource matches
/message. json do we configure a response.

Utilizing the JSON . stringify method (remember: Node runs on JavaScript), we
convert an object into a string (line 6). From there, utilizing the set ter method of the
statusCode attribute of the response object, we assign it a value of 200. This will
inform the client that the request was understood (line 9). Next, utilizing the setHeader
method, we supply the Content-Type, which, of course, is application/json (line
10). In order to calculate the Content-Length, we supply the body variable, which is
currently assigned our JSON text, to the Buffer .byteLength method. Utilizing the
proper encoding, we can arrive at the proper Character-Length (line 11).

Remember that Character-Length is not simply the character length but, rather, the
length in bytes. While ASCII characters require 1 byte per character, you should
remember that JSON is UTF8. Therefore, it is simply safer to rely on the
Buffer.bytelLength method to determine the length of our UTF8-encoded JSON

values.

Last, we use the end method of our response object to signify that our response
has been configured at last. Additionally, we supply our body variable as an argument to

www.it-ebooks.info

http://www.it-ebooks.info/

the optional parameter.

If we were to run this server and navigate to http://127.0.0.1:1337/, we
should not be provided with anything. In fact, the request should never be fulfilled. A
response is only completed with the invocation of response. end(). However, this
method will only be triggered if we navigate to
http://127.0.0.1:1337/message . json. Upon arriving at this URL, we will
also be faced with our JSON message outputted to the viewport, as shown in Figure 10-13.

800 127.0.0.1:1337 /message ™
L & 127.0.0.1:1337/message.json ¢ = B =
S Apps -" Learn rmore. * Cet Processing and |q Arduino Eclipse De 8 bit, 12 bit, 14 bit Visual Event »] Other Bookmarks

{"message":"hello-world"}

Figure 10-13. message. json outputs the expected JSON

To keep things simple, the previous exercise only required that you configure a
response for a particular request. However, it should be known that all requests be
provided a proper response. Failure to use the end method of the response object will

result in the client waiting until a time-out occurs. You can experience a time-out simply
by navigating to 127.0.0.1:1337/.

A request can be handled in any manner you see fit. The preceding exercise created an
object on the fly, but we could just as easily have provided the contents of a JSON
document, by tapping into the File System module.

Nevertheless, by monitoring the interface of the IncomingRequest instance,
whether it’s by the exposed URL or any of its configured headers, we can determine how
to best satisfy the request. This takeaway will be essential for the remainder of this
chapter.

CORS-Enabled Server

If you are following along with the source code provided, take a moment to locate the file
labeled “xss-server . js” within Chapter 10. Right-click the file and select “Get-
Info,” if you’re on Mac, or “Properties,” for a PC. Within the General tab, locate the
absolute path for the file and copy it.

Now, open up a second window of the Command Prompt (PC) or Terminal.app (Mac).
Within this second command window, we are going to start our XSS-server. At this
point, type “node” and then paste the location to the aforementioned XsS-server. js.

If the address is found, you should see a message informing you that a server is running at
http://127.0.0.1:8080.

www.it-ebooks.info

http://www.it-ebooks.info/

Ensure that your previous server is still running, by navigating to
http://127.0.0.1:1337/message.json. [hope {“message”:“hello-
world”?} is outputted to the screen. If so, the server is ready to receive our request;
otherwise, we must start up our exercise server once again.

Now, with both servers running, proceed to http://127.0.0.1:8080. If you are
not following along with the source code, navigate your browser to
http://json.sandboxed.guru/chapterl10/xss-exercise.html. Upon
arriving at either of the two destinations, you will be presented with the code for an xhr
object configured to make a request to http://127.0.0.1:1337/message. json.
Now, open the developer’s console, copy and paste the code provided for the request, and
execute the code to observe the results. As in our previous chapter, you should be
confronted with the infamous network error, as shown in Figure 10-14.

127.000.1:1337 fenessage 127.0.0.1:B080
. — 3 =
127.0.0.1:8080 = =
c) on 1]
I Apps -.! Learn more, * Get Processing anc b Arduinag Eclipse B+ 8 bix, 12 bit, 14 bit Visual Event B Minstad Corner o (4 Custom Manstad ! =[] Other Bookmarks

!
!
]
|
|
|
|
!
|
'
'
i I
O MMLHttpRequest cannot Load hitp:s 127.90.0.1:103 0 neddage. fion. No "Accessi-Control-Allow-0rigin® hepder i< present on the réequeited !
reseurce. Orlgln ‘RuUtp://127.0.9.1:8080" &5 therefore Aot allowed access. 127:8.8.1/:3 :
I
I
|
i
|
!
!
'
I
I
|

Console Search Emulation Rendering

Figure 10-14. Cross-origin network error

However, as we are in control of the server and can configure the headers for
message . json, we can resolve this in one of three manners. The first is to incorporate
the necessary headers, as outlined by the W3C CORS standard. Second, we can utilize a
proxy to make authorized requests on our client’s behalf. Third, we can exchange JSON as
valid JavaScript via JSONP.

At this point in the chapter, we have everything we require to fulfill a request via the
first and third option; however, we have yet to discuss a few particulars that would enable
us to devise a proxy. That being said, let’s resolve the matter by way of incorporating the
CORS header Access-Control-Allow-Origin (see Listing 10-7).

Listing 10-7. message . json with CORS Enabled

1 var http = require('http');

2 var server = http.createServer(requestHandler);
3 server.listen(1337, '127.0.0.1");

4 function requestHandler(request, response) {
5 if (request.url === "/message.json") {

6 var body = JSON.stringify({

7 message : "hello-world"

8 1);

9 response.statusCode = 200;

www.it-ebooks.info

http://json.sandboxed.guru/chapter10/xss-exercise.html
http://127.0.0.1:1337/message.json
http://www.it-ebooks.info/

10 response.setHeader("Access-Control-Allow-Origin", '*');

11 response.setHeader ("Content-Type",
"application/json");

12 response.setHeader ("Content-Length",
Buffer.byteLength(body, 'utf8'));

13 response.end(body);

14 3}

15 };

16 console.log('Server running at http://127.0.0.1:1337/"');

Listing 10-7 reveals in bold the inclusion of the CORS header and configures its value
to that of the wildcard * token. This will provide authorization to all requests from any
origin. However, we could have determined whether the source origin via the origin
header was exposed via request.headers, to determine if the indicated source origin
should be authorized to access the resource. If we determine the source origin to be
authorized, we can simply configure the value for the header with the source origin of the
incoming message, as seen in Listing 10-8.

Listing 10-8. message . json CORS Enabled for json.andboxed.guru Only

8 //.. code truncated

9 var sourceOrigin = request.headers.origin;

10 var originAllowed = (sourceOrigin ===
"http://json.sandboxed.guru") ? sourceOrigin : null;

11 response.setHeader("Access-Control-Allow-Origin",
originAllowed);

12 //.. code truncated

The preceding code in Listing 10-8 obtains the origin header from the incoming
message via the request object. (In Node, all exposed headers are lowercase.) Utilizing
the value returned from this header, we can determine if it is a source origin we are
expecting, such as that of json.sandboxed.guru. We can match the value against
more values; however, as this is simply for demonstrative purposes, I chose just the one.
Utilizing a tertiary operator (a succinct, if else, evaluation), we determine if the source
origin should be provided as the value to the Access-Control-Allow-Origin header. If it is

a match, we will provide the origin. However, if it is not a match, we will supply the value
with null.

With the new line in place, let’s restart our server. First, we must shut down the server
by pressing Control+C, then we can initialize our server by typing node, followed by the
name of the exercise. js file. Alternatively, you could hit the up key on your
keyboard within the console to use a previous command. Either way, hit Enter, once the
proper command is in place, to run the server.

At this point, an attempt to obtain the message . json resource from either
http://127.0.0.1:8080 or
http://json.sandboxed.guru/chapterl10/xss-exercise.html will be
successful. Congratulations, you have just configured your first CORS-enabled resource to

www.it-ebooks.info

http://127.0.0.1:1337/
http://json.sandboxed.guru/chapter10/xss-exercise.html
http://www.it-ebooks.info/

handle simple requests. At this point, feel free to shut down both servers, as we will
shortly modify our code to provide JSONP also.

JSONP Server

A JSONP server, as you recall from Chapter 9, requires us to pad our JSON entity, so that
the script engine views it as valid JavaScript. In other words, we cannot return JSON as an
entity body whose structural composition is that of a collection (signified by the beginning
and ending of the { and } tokens).

While this will not prohibit us from returning JSON, whose structural composition is
that of an ordered list, we will still be confronted with the dilemma of obtaining the data
upon being evaluated by the script engine. In order to combat this, our JSON must be
wrapped or padded by the grouping operator and prepended with a function name supplied
by the requesting client. The JSONP model establishes that this identifier should be
provided as the value to a query string parameter labeled “jsonp.”

Let’s leverage our existing JSON server to support the JSONP format also, so that if a
request for the resource message. json arrives, we can continue to supply it with
JSON. However, should the URL possess the jsonp parameter, we can manipulate the
JSON to reflect the JSONP model. Because the request . url provides us with a string
reflecting the entire URL as it pertains to the request, it will be necessary to use string
manipulation to mask the various components that could possibly be reflected in the
string. In other words, we will have to isolate any and all query strings from the path of
our resource from the provided string. Furthermore, for any query string key provided, it
will be necessary to obtain its corresponding value. Only by taking this route can we be
certain our conditions for a particular URL will be a match. Additionally, it will allow our
server to determine whether to respond with JSON or JSONP. We can validate the
conditions accordingly, utilizing some vanilla JavaScript, as demonstrated in Listing 10-9.

Listing 10-9. Skeletal Body of a requestHandler to Extract the Possible jsonp Key-
Value from the request.url

1 function requestHandler(request , response){

3 if(request.url === '/message.json') {
4 // return JSON entity
5 } else

if(request.url.toLowerCase().1indexOf('/message.json?jsonp=")

>-1) {

6 // return JSONP entity;
7 } else {

8 // 404 file not found;
9 }

10 }

11 function getParamKey(key, str) {
12 var regExp = new RegExp(key.toLowerCase() + '=[A&]*');
13 var matchingValue = (str.toLowerCase()).match(regExp);

www.it-ebooks.info

http://www.it-ebooks.info/

14 for (var 1 = 0; i < matchingvalue.length; i++) {

15 var replacedvalue = matchingValue[i].replace(key
+ |:|’ II);

16 matchingvalue[i] = replacedVvValue;

17 }

18 return decodeURIComponent(matchingvalue[0]);
19 },

Listing 10-9 reflects the skeletal structure to assess whether the requested
/message. json resource should be returned as JSON or JSONP. The code begins by
assessing whether the request . url matches exactly that of the /messages. json
(line 3). If this is the case, we will continue to provide the response in JSON form. If,
however, the URL requested does not explicitly match that of /messages. json, we
further analyze it to determine if the URL in question contains the following substring:
/message. json?jsonp= (line 5). This is accomplished through the inherited
indexO0f method possessed by all strings. If the substring is found within the request
URI, the character index, as to the beginning of the match, will be supplied as the value of
the evaluation. However, if the substring is not found, it returns the integer -1. Therefore,
should the value be greater than -1, we can be sure that the request is for
message . json and that the client wishes to receive the response as JSONP. If the URL
does not reflect any of these conditions, we shall supply the status code of 404 (File Not
Found).

Last, in order to extract the value possessed by the jsonp parameter, we will utilize a
modified version of our getCookie function, discussed in Chapter 7. This time,
however, rather than extracting a particular key from a cookie, we will be extracting the
value of a particular parameter. As we will no longer be “getting-cookies” but, rather,
obtaining a “parameter-key,” we will name this method getParamKey.

The function getParamKey is called with two arguments. The first represents the
key to extract, while the second represents the string that is in possession of the key we
seek to obtain (line 11). Utilizing a regular expression, we analyze the provided string for
a possible pattern match (line 12). That pattern, of course, is the name of the key, followed
by the = token and any subsequent characters, providing that character is not the & token
(which would denote the beginning of another key). From there, if the pattern is matched,
we store those matches in the matchingValue variable (line 13). Next, as our match
will reflect the key = value format, we must isolate the value (line 15). We can
achieve this easily by replacing our key= with and empty string ' ', essentially deleting
that portion of our string. Last, we decode the value, in case it is URL-encoded, and then
return it to the caller of the function (line 18).

Note When dealing with JSONP, it will be beneficial to ensure that the returned value
is not URL encoded, lest we wrap our JSON with a label such as %20someMethod%20.

Let’s now revisit our previous code from Listing 10-7 and begin serving up our
JSON/JSONP server (see Listing 10-10).

www.it-ebooks.info

http://www.it-ebooks.info/

Listing 10-10. Simple JSON and JSONP Server

1 var http = require('http');

2 var server = http.createServer();

3 server.addListener("request", requestHandler);

4 server.listen(1337, '127.0.0.1');

5 function requestHandler(request, response) {

6 var body;

7 if (request.url === '/message.json') {

8 // return JSON entity;

9 response.statusCode = 200;

10 response.setHeader ("Access-Control-Allow-0Origin",
ll*ll);

11 response.setHeader ("Content-Type",
"application/javascript");

12 body = JSON.stringify({ message : "hello-world"
12/ } else if (request.url.toLowerCase().indexOf('/message.json?jsonp=")
> -1

14 rt // return JSONP entity;

15 response.statusCode = 200;

16 response.setHeader ("Content-Type", "application/javascript");
17 var jsonText = JSON.stringify({ message : "hello-world" });

18 body = getParamKey("jsonp", request.url) + "(" + jsonText

+ ")

19 } else {

20 // 404 file not found;

21 response.statusCode = 404,

22 response.setHeader ("Content-Type", "text/html");
23 body = "<h1>404<h1> page not found";

24 }

25 (body) ? response.end(body) : response.end();

26 };

27 function getParamKey(key,str) {
28 var regéxp = new RegExp(key.toLowerCase() + '=[~r&]*');

29 var matchingValue = (str.toLowerCase()).match(regExp);

30 for (var i = 0; i < matchingValue.length; i++) {

31 var replacedvalue = matchingvalue[i].replace(key + '=', '');
32 matchingValue[i] = replacedValue;

33 }

34 return decodeURIComponent(matchingValue[0]);

35 };

36 console.log('Server running at http://127.0.0.1:1337/"');

Listing 10-10 reflects in bold the latest code changes inserted into our earlier
json.server, in order to fulfill a request for JSONP. At this point in time, let’s run

Listing 10-10 and navigate your browser to
http://127.0.0.1:1337/message . json. You should find that your browser

www.it-ebooks.info

http://127.0.0.1:1337/message.json
http://www.it-ebooks.info/

continues to output the previous message, as shown in Figure 10-13. Now, if you were to
append ?jsonp=someMethod to the current URL
(http://127.0.0.1:1337/message.json?jsonp=someMethod), you should
be presented with the same JSON text, only now it should reflect the JSONP model, as
seen in Figure 10-15.

ann

127.0.0.1:1337 fmessag '

1 ' i LGt B ; = =

- c 127.0.0.1:1337/message.json?jsonp=someMeathod 2 » =
% ppps M Learn more. ! Get Processing and |y Arduino Eclipse De 8 bit, 12 bit, 14 bit Visual Event » [Other Bookmarks

somemethod({ "message” s "hello-world"});

Figure 10-15. Output of JSONP, demonstrating the client-supplied value as the prepended function name

Any value you provide for the jsonp key will continue to be prepended to the padded
JSON. As our server is now serving JSONP, let’s test its acquisition from another origin.
For those following along with the source code, feel free to run the jsonp.html from
within the BeginingJSON/chapter10/ directory; otherwise, navigate your browser
tohttp://json.sandboxed.guru/chapterl10/jsonp.html. What you
should be witnessing is a button labeled “1oad jsonp,” such as that in Figure 10-16.

=
aono jaen san_riftpens e |

& fasdband. guns ol Lo+ O - A
iy A Bookmarkie: HTML Cocelimitier (0] 10N - W ot

& Diabie + § Cociies = % 038 = ff form + [imager + f indormateon « @) Miscrtanescy O Outher + g Reiine * F Toois = €3 View Soorce = ||| Ootiens = w X ¥

load jsong

Figure 10-16. jsonp.html from y, configured to load in JSONP from your local server

By clicking this button, we will dynamically inject a script tag into our document. As
you may have already guessed, the resource that is specified as the external resource to
obtain is none other than that of your server. With that being said, and with our server up
and running, let’s do as the button suggests and load some JSONP.

Much as is illustrated in Figure 10-17, no matter how many times you click the button,
the result will always be the same. That result is the reception of JSONP from your server.

www.it-ebooks.info

http://127.0.0.1:1337/message.json?jsonp=someMethod
http://json.sandboxed.guru/chapter10/jsonp.html
http://www.it-ebooks.info/

Congratulations! At this point, you have successfully configured a server to fulfill a
JSONP request.

. uin. r10 aop M +

€ sanbaned.guns o Y Qi m & & - =
Fohwrity PR ok madkben WM Codebnatler [J508 = WharFot
& ooabie ~ L Cookis + A 055 0)l Feems v @ images v J nformation «) Mizcellanacus + 20 Cutne v Resine v " Tosit v €r Wiew Source v [Opsiom - LA S |

[mepsage : "hella-world® }
®)

Figure 10-17. json. sandboxed. guru successfully receiving JSONP from your server

The Proxy Server

Before we delve into the proxy server, we must revisit our previous discussion pertaining
to the members of the HTTP module. As you may recall, I had previously mentioned that
the HTTP module possesses the ability to make client requests directly from the server.
This is achieved via the request method belonging to the HTTP module.

http.request

The request method, the second method of the HTTP module shown in Table 10-2,
whose signature is the request (options, [callback]);, provides the server
with the ability to configure a client request. This method, as witnessed in the signature, is
able to receive two parameters. The first parameter, options, must be provided with an

object whose member’s make up the request line, in addition to the headers of the request.
Such members can be seen in Table 10-6.

Table 10-6. Possible Keys That Can Belong to the Argument of the options Parameter

Properties Description

host A domain name or IP address of the server that issues the request
port Port of the provided host

method A string specifying the HTTP request method

path Requested resource. *Defaults to /

headers An object containing request headers

The second parameter, callback, represents the function to be triggered as the
handler on receiving a response from the remote server. In order to obtain the response,
the function indicated as the callback must possess the signature shown in Listing 10-11.

www.it-ebooks.info

http://www.it-ebooks.info/

Listing 11-11. Signature of the Request callback Parameter
callback(response);

As in the case of our earlier review of the requestHandler, the callback function
supplied to the method will receive an instance of the IncomingMessage object, from
which it will be able to reference the headers and status code of the response. At this point,
let’s take a moment to put all of this information together into code and walk through it.

Listing 10-12 demonstrates the minimal amount of code to configure a server-side
request. We begin by devising an object that will be used to represent the request line of
our request. It is supplied with necessary values for the properties host, path, and
method (line 2). We then provide our configured object as our first argument to the
http.request method. Next, we provide an argument as the callback. This function
will be used to handle the IncomingMessage object provided by the remote server
(line 3). Once the request is fulfilled, and a response has been provided, it will be made
available to our called function, from which our application can extract the headers and
status of the response (line 5-line 6).

Listing 10-12. Minimal Code Required to Handle a Server-Side Request Using the
http.request Method

1 var http = require('http');

2 var options = { host:"json.sandboxed.guru",
path:'/chapterl0/data/imagedata.txt’',
method:"GET"

i

http.request(options, callback);

function callback(response){

console.log(response.statusCode);
console.log(response.headers);

~NOo Oo1lbhWw

iy

What should, I hope, be apparent is that our code is missing a means of extracting the
entity body of the response. In order to receive the entity body for our
IncomingMessage object, we must learn how to consume the data directly from the
stream.

http.Stream

The IncomingMessage object, and all of its instances, is a subclass of a stream. What
this simply means is that the interface possessed by a stream is also possessed by any
IncomingMessage instance.

Note Obtaining data from IncomingMessage applies to any IncomingMessage
object that possesses an entity body, even for all incoming requests to our server.

A stream, as defined by Node.org, is an abstract interface implemented by various

www.it-ebooks.info

http://www.it-ebooks.info/

objects in Node. I like to equate a stream to a common garden hose. If you can bring to
mind a garden hose, the first thing that you might visualize is a long tube that possesses a
relatively small diameter. This small diameter is what ultimately restricts the flow of
water, thereby allowing only a finite volume of water to exit per second. Now, envision
that garden hose as the cable that connects your computer to a server across the Internet.
Similarly, the diameter of this hose represents your bandwidth. The bytes sent from the
server are streamed, much like running water through the restricting tube, and arrive at
your computer, where they accumulate, only instead of water molecules, our stream
consists of data-packets.

There are two events that are dispatched by Node streams, as outlined in Table 10-7,
that enable us to consume the streaming data. Those events are data and end.

Table 10-7. Events of http.Stream

Properties Description
data Enough bytes are available for the stream to consume.
end All bytes from the stream have been consumed.

The data event is fired when enough data becomes available to consume from the
stream. Depending on the amount of bytes that make up an entity body, this event may fire
multiple times. Each time the data event is fired, any callback function will be provided
“chunks” of available data. This allows our application to consume the available bytes as
they arrive.

The second event, end, informs our application that the handler reading from the
stream has consumed every bit of data and should not expect anymore.

In order to listen for either of these events, we can attach listeners directly to the
provided IncomingMessage instance. Listing 10-13 reveals the necessary code
required to consume an entity body from our response.

Listing 10-13. Skeletal Body of Code Required to Consume an Entity Body from an
IncomingMessage object

1 var http = require('http');

2 var options = { host:"json.sandboxed.guru",
path:'/chapterl0/data/imagedata.txt’',
method: "GET"

I
http.request(options, callback);
function callback(proxy_response){
console.log(response.statusCode);
console.log(response.headers);
proxy_response.addListener('data', function(chunkOfData) {
//do something with a chunk of data

1)

proxy_response.addListener ('end', function() {

(IR
O OO~ Uh W

www.it-ebooks.info

http://www.it-ebooks.info/

11 //end of stream reached

12 1)
13},

Listing 10-13 incorporates (in bold) the necessary listeners for the data and end
events to properly work with incoming data, to receive a possible entity body from a
response. While Listing 10-13 does not currently provide any particular implementation to
handle the provided data, we can honestly do anything with it. We could piece it all back
together onto a variable, so that we can read it in its entirety, once the data has been
consumed fully. Or, as it will be in the case of our proxy, we can pipe it directly into our
response.

At this point in time, if the preceding code from Listing 10-13 were to be executed on
the server, the request would never be initiated. Calling the request method does not
initiate the actual request. Much like the Xxhr object in JavaScript, we must trigger the
submission of the request. This is accomplished through the ClientRequest instance.

http.ClientRequest

When the request method is invoked, an instance of the ClientRequest object is
created and returned to the caller of the method. It will be through the interface possessed
of this method that we can provide, along with our request, an entity body.

As shown in Table 10-8, the ClientRequest interface possesses an end method.
This method signifies that our request is fully configured, thereby initiating the actual
request. Additionally, the end method can accept an optional argument, which allows for
the submission of an entity body, along with our request.

Table 10-8. ClientRequest Methods

Properties Description

end([data], Finishes sending the request. *It can be called with an entity body. *Data must be
[encoding]) in string, binary, or UTF-8 form.

abort Aborts a request

Listing 10-14 demonstrates the bare bones of code required when working with a
client request. To better understand the code, let’s walk through it.

Listing 10-14. Entire Skeletal Structure for Facilitating Proxy Calls

1 var http = require('http');

2 var options = {hostname:"json.sandboxed.guru",
path:'/chapterli0/data/imagedata.txt', method:"GET"};

3 var clientRequest=http.request(options, responseHandler);
4 clientRequest.end();

5 function responseHandler(proxy_response) {

6 console.log('STATUS: ' + proxy_response.statusCode);
7 console.log('HEADERS: ' +proxy_response.headers);

www.it-ebooks.info

http://www.it-ebooks.info/

8 proxy_response.addListener('data’',
function(chunkOfData) {

9 //do something with a chunk of data

10 1)

11 proxy_response.addListener ('end', function() {
12 //end of stream reached

13 7))

14 }

The code begins with the inclusion of an ht tp instance (line 1). Next, we configure
an object with the particulars of the request and assign it to a variable labeled “options”
(line 2). From there, we initialize our ClientRequest through the http.request
method and supply it with the options variable as well as the handler of the provided
response (line 3). Much as with the response object from our earlier discussions, the
ClientRequest has the ability to contain an entity body. For this reason, the request is
not invoked immediately. It will be a requirement to use its exposed end method to
signify that the request is ready. That being said, and with no body to supply for the
request, we invoke the end method on the referenced ClientRequest (line 4).

The next block of code pertains to the management of the response from the remote
network. Our callback responseHandler is invoked upon the reception of the
IncomingMessage. This IncomingMessage is supplied as the argument to our
proxy_response parameter (line 5), from which we are able to obtain the existing
headers (line 6) and status code (line 7).

From there, we are able to monitor the stream for any incoming data that makes up the
entity of the response. Adding an event listener via the addListener method and
specifying which event to listen for, we can monitor the incoming bytes of data. The data
event will supply the event handler with a chunk of data that can either be used to send
back a response with the use of response.write or assembled for internal processing
(line 8). In the preceding listing, I have opted to assemble the incoming transmission.
Each chunk of data provided to the handler is appended onto our existing data variable
(line 9).

Last, we attach an event listener to monitor for the end event, so that we can be made
aware that we have read all the bytes on the provided stream (line 11).

EXERCISE 10-2. YOUR FIRST PROXY SERVER

Leveraging the code from Listing 10-14, as well as what you learned earlier in the
chapter, building a proxy server should be no sweat. In this exercise, you are asked to
devise the necessary implementation that would result in the following (proxy)
request headers for the resulting incoming request headers.

Request Headers (Proxy)

GET /chapterl0/data/imagedata.txt HTTP/1.1
Host: json.sandboxed.guru

Accept: *

www.it-ebooks.info

http://www.it-ebooks.info/

Request Headers (Incoming)
GET /proxy/ HTTP/1.1
Host: 127.0.0.1:1337
Accept: *

As this is a proxy, be sure to write all incoming chunkOfData directly to the
response. Similarly, don’t forget about the headers. Once the stream has been
exhausted of all data, be sure to end the response. The answer can be seen in Listing
10-15.

Listing 10-15. Answer to the Proxy Exercise

1 var http = require('http');
2 var server = http.createServer();

3 server.addListener('request', requestHandler);

4 server.listen(1337, '127.0.0.1");

5 function requestHandler(request, response) {

6 if (request.url.toLowerCase().indexOf("/proxy/") >-1) {

7 var options = { host:"json.sandboxed.guru",
path:'/chapterl0/data/imagedata.txt’,
method:"GET" };

8 var clientRequest=http.request(options,

responseHandler);

9 clientRequest.end();

10 function responseHandler (proxy_response) {

11 response.writeHead(proxy_response.statusCode,

proxy_response.headers);

12 proxy_response.addListener('data’,

function(chunkOfData) {

13 response.write(chunkOfData);

14 1),

15 proxy_response.addListener ('end', function()

{

16 response.end();

17 1)

18 }

19 } else {

20 response.statusCode = 200;

21 body = 'proxy calls occur at /proxy/';

22 response.setHeader ("Content-Type", "text/plain");

23 response.setHeader ("Content-Length",

Buffer.bytelLength(body, 'utf8'));

24 (body) ? response.end(body) : response.end();

25 }

26 };

27 console.log('Server running at http://127.0.0.1:1337/"');

Listing 10-15 reveals, in bold, the necessary code required to fulfill the requirements

www.it-ebooks.info

http://www.it-ebooks.info/

of the preceding exercise. As the code builds on Listing 10-14, I will discuss only the lines
that are required to satisfy the exercise.

Per the exercise, a proxy should only occur if it has been determined that an incoming
request seeks a resource located within the /proxy/ directory. Utilizing indexOf, we
can determine if the /proxy/ substring exists within request . url. If the substring is
found, the index returned will be greater than -1, and, therefore, the subsequent block of
code will be able to run (line 6). Of course, within that subsequent block of code resides
our proxy.

Once we initiate our proxy, the supplied callback is provided a reference to an
IncomingMessage object. As our proxy is merely making a request on behalf of our
client in order to circumvent the same-origin policy, we must simply provide all aspects of
the request, unaltered, as the response from our server. Therefore, once we can obtain the
headers and status line of the proxy_response, we simply relay them onto the
response that we will provide back to our client. This is achieved via the expose
writeHead method (line 11).

Similarly, we have to route any incoming data chunks to the response of our incoming
request. This is accomplished via the write method (line 13). Last, once all data has
been consumed from the stream, we invoke response.end() to deliver the response
back to the requesting client (line 16).

If you were to run this server and navigate to the URL,
http://127.0.0.1/proxy/, you should be presented with similar results, as shown
in Figure 10-18.

8086 ! 127.0.0.1:1337fprony/ % L =
€ - C |[}127.0.0.1:1337/proxy/ e O g B E
i mpps o Learn more. ! GetProcessingand by Arduine Eclipse Dev. [I 8 bit, 12 bir, 14 bin Wisual Event »- (L] Other Bookmarks

data:image/jpg;baseéd, /35 /4ANISKEIRGABAQAARDABARD/ fgATQLIFQVRPUj0g220LanBl2yBZMS4wIChilc2 luZyBISkegSLBFRYB2NIIpLCExdWFSaXR5IDD
gOTUK/ 9sA0wRCAQEBAQECADEBAGICAYIEAWICAYIFBAQDBAYFBGYCBOYCRgeJCAYHCOeCBygLOAKKCeoKCgY ICwWLogwICoK / 9 sAOWECAG ICAG IFAWME CocOBwok
CgoKCgoKCgoKCgokCyoKCagoklgoKCgoKlgoKCgoKlgoUgoKgoKlgokCgokCgol /BAREQqEORe ARWE I AR T RAOMERAL /EABEAANEFAQEBAQEBAANARAANAANBAGUMER
QYHBCRAKKC/ / EALUQARA I BAWHCBAMEBOQEAARDQECAWAEEQUSITFBBANRYDcicROYgZChCCNCScEVULEWIDN 00T JChYXCRkaTSYnKCkgHDU2ZN2g SOKNERUZESELRUL
RVV1dYWVpi2G6VmZ2hpanN0dX23eBl6g4SPhoeliYgSk5SVipetmlqiotSlpgecgagqys TS ltredubrOwB TP xafIycrS09TVILEY2drhéuPkSebnbOngl Lz 9PX259 /5
S4v/EABEBAANBAQEBAQERADEAMAANAMABAGMEBOYHCAKKC /EALURAAIBAGOEAWDHBOOEARECAWABAGHRBAURMOYSOVERYXETI JRBCARCkaGxwlk M 1 LuFHIy 000w
JDThIJEEXCEkaTicoKSolNjedOTpDREVCROAIS INUVVEXUF LAY 2R EmdoaWpzdEV2dIh5coKDRhIWCh4 i JipKT 1 IWWIS i ZmqK ipKRmpb i pgrEzt LW2 £ TiSusLDxMECx
BiTYLLTINNHLIY§22uLj50Xm5+jpovLz9PX29/35+v/ahAwDAQACEOMRADEBA/CIx14TOrS£EKINMm4+HIa 2 X+ 3pPulKiz fEdvDEIRFBKz9N102WGCH 1D TiNIELdLSL
eVE2LIg/ IvI0 L W4 £ AN E+ BTV IP4ct TudsWihTUYKZ2or Ny p Y ZLEDI Y IvaToPhvxDo+rald £ lyRKBhuoTntbpn2 /ZICIbvkPovTRIPOewBUpUscksvie£727vh
JIVantITViurabbXW/1EYEMk1S9huNvIidWEIInifub2 /uldghnuPtVegqy +RuhbSX2 £EUL 3+ n/ALNTC+ 1 HEWBuE 12q/ 2L9phRayHlyve 2pLjUNNLIS /a9 1 £ 26 12vEX
BEImyTORBISuSENLSO/ FbmzdPIC/ lrxVndxYIDxIiImSHT/ lmolHy 7T Tuk9DERalaalpSoat 8+ L lomD Tk 2pul T CoP4 ixTenNeMBGLT T X4 / JWEISBED YL fwDi-+oaby
pLPHPCIiie2e?VrSCEMeSp/Bfulv/zouleXiakgd s iekYpX WA 6 XMV W2 ValUI0eml 6 2Hv+ 2o+ HEGQWHNpZPGPiE6D2t R) foloB23224bRluggfr X EWOHREX - Cpp B
kSpJﬁnUtFZTUiboﬂwb+Zi?pUqHIQETx6&tmiiGJUKyk!Ksm1eifuaiﬂ*LTalpHnﬁ[v{bi]uLW*]IvEHi]quELﬂUEPSnVuwGlSOIxHERUuJpGXSKQPgsDSwUHlSvL
dvg2ZRinwF4YBVmaGCoR ihme 2 P2Weld fyz++rY /iH3caBgi TeHNbE0O3 £ 2LWrDyZCudW T Mv+eleb 6 £ falaZDf ZTuuFut BUUWIbasOS 3ZVZ4XPEWbgIroms 3g20in5ztd
LF9ivD/eNE6/alK2007 LOYPEVMO+VEx/ESclyWhidqUlye 7208y /pnA/DEdud/ hyd jedfH2yxlpvipvlillchVidf 9 2v09BvrPxhpysxd fu¥ 1L TPPN2xPhl IMyriug
F33xXAaSBCrIPtUmifLIb/62KXTu/LL5a2+9236VieErrWEhhafIpbtpl 19mk ITPEY £ TLAVOOy/CumvRwmMiS0HaXbvE jzMEicyy2apYtXp/wAZunzIténon i fwdD
410ubnlLEP2RAkVSoud /N/ nmvF10+687y40WEELSRUVECE+hel EQ /hbUNLBVACrL+TsLyLZvBALlaRctuDAL/d2 8L 9K5nd g/ /DCbxThSy 6 fcPNgMcSpEGTLRONwT foz
2PYYHCPDydEpt+ T/ rebBdyg00pguSikl/4Eul+TPENNG+ / kh2w2 TSINE23Tu T+ Tub VoWt x { 2CTEXEEqwt EqSp/ n T 3+cVHZ6be2 bnibIF5Fa+ Y37 16dmde /wATHEPY
1Y0xbaBs Tyt /PIBIWNAId1bav+ T /ARS TV T MRz M+ 205 ErPEXNNvAHubW+ h leMEETBRBIdEnbEb4 96 I n+ TLWExMBepXan/ TIVHPSVXLe /1 2Do3 1ebB IMnLaAVNANvE JBP
NeBeOuGT UTkN/46eblkéhomb 6BrU2 jaSABLrBgTvmVaen+ yanDiPyvd 14K/ fzLrOnKj20vyS38mu /6 Pa7CXEbe 06 fadH+bISSTEKrKF /e TH2zbH27d1T2C0Y 1+ba
prh3IN221duNizNG0fyx/Lt+b5arXEabivyMP4NIIgeFKSS586ai tDOMX 2+ EWT x2TE0N2 v/ Ags 3IBIPS JRUUT+S/FULbL k+at jhkeMSNnKbY A4 F/tVbELE /AEdrjzl
mblepdiVEYZm/528ulp/MmVPsa/d+86 /dakxx 0 INKETARUNVAN 2 vInk2riKXos0X8TDELEXg 10 tvENgD 2dxdWé taxxMgOSp+6 1 90wvBXgirVb4 2WFkga 32a+tnmt 2
128ynTydxe unidRZraNWedS IWaH+2r 701 ZVAT TN Ty LvBAMv YWl r 2cTHS anL 1 PEWGEUG XOI L PWEEX IO Inh+ Bh ZNPVRawiVI+ 1 1 8vExggiS56Fazdi 1 CzEmsS00
2y fMrbvI2 TReRL/ABUI0SEINEA EN9mmlBY S faHRnbS Y 2L+ L f4W/ TRagkt TmSy+w3Ub/6PBEW 7 S ENG25v4evwE L JaXEEE 3T IWShRE £ T TR buyywNu+XE3s /Lhald/
BOhEUsPnallWeht TgI21 2R Svyt jrb+ghzNPHtulikckizRySalxK25nlY /wBT /ghbv R rvhnwnBLvCvwruvi/ jaduln+zt9ianTT 1252y InBRvvACVEWR IvBghFy l
p07nz58R72WI0dM+RY IV vLXr 14bHEI2 1 TEPABuR06bWASTob bt JBoKy B 3vmz 4 QoL IVELIF4vHWPZY Iy T g TWu I xCRYICT SKAKOTO L4 Y+ LY n+0aLpEEOFE 1 Xa TWE L

Figure 10-18. A rather large image whose data has been encoded into Base64

Currently, our proxy will always and only request, on our behalf, the preceding Base64
data. However, as this is rather limiting, let’s modify it to possess the ability to fetch other
files as well. On my server, json.sandboxed. guru, within the
/chapteri10/data/ directory, I have placed the following files: imagesA. json,
imagesB. json, and imagesC. json. You may remember these from Chapter 8.

www.it-ebooks.info

http://127.0.0.1/proxy/
http://www.it-ebooks.info/

Utilizing a singular line of JavaScript, we ensure that these files can be fetched in addition
to the existing imagesdata. txt file (see Listing 10-16).

Listing 10-16. Altering Our Proxy to Fetch Additional Files from
json.sandboxed.guru

1 var http = require('http');
2 var server = http.createServer();

3 server.addListener('request', requestHandler);

4 server.listen(1337, '127.0.0.1");

5 function requestHandler(request, response) {

6 if (request.url.toLowerCase().indexOf("/proxy/") >-1
) {

7 var options = { hostname:"json.sandboxed.guru",

path:'/chapterie/data/' + request.url.substr(7) ,
method:"GET" },;

8 var clientRequest=http.request(options,
responseHandler);

9 clientRequest.end();

10 function responseHandler (proxy_response) {

11 response.writeHead(proxy_response.statusCode,
proxy_response.headers);

12 proxy_response.addListener('data’',
function(chunkOfData) {

13 response.write(chunkOfData);

14 1);

15 proxy_response.addListener ('end', function()
{

16 response.end();

17 1)

18 }

19 } else {

20 response.statusCode = 200;

21 body = 'proxy calls occur at /proxy/';

22 response.setHeader ("Content-Type", "text/plain");
23 response.setHeader ("Content-Length",
Buffer.byteLength(body, 'utf8'));

24 (body) ? response.end(body) : response.end();

25 }

26 };

27 console.log('Server running at http://127.0.0.1:1337/"');

Listing 10-16 demonstrates how, through simple string manipulation, we can
dynamically specify the resource to be requested from the remote server. Through the
request.url, we can extract any resource that follows the first seven characters, which
are precisely how many characters are used to specify /proxy/. From there, the
remaining characters within the string can be appended to the value for our path. At this

www.it-ebooks.info

http://www.it-ebooks.info/

point, let’s shut down the currently running server, so that we can insert this amendment.
Once it’s in place, we can start our server back up and navigate to the following:

http://127.0.0.1:1337/proxy/imagedata. txt
http://127.0.0.1:1337/proxy/1imagesA.json
http://127.0.0.1:1337/proxy/1imagesB. json
http://127.0.0.1:1337/proxy/1imagesC.json

When navigating to any of the preceding destinations, you should be provided with the
exact response, as if you directly obtained them from
http://json.sandboxed.guru/chapterl0/data/. The reason why is
because we did obtain them directly from the preceding URL, via our proxy.

Congratulations! You have constructed a functioning proxy server.

Summary

This chapter contained a lot of advanced concepts, and you should be truly proud of
yourself for making it through. A server is an integral component when it comes to the
Internet, and not just for fetching static resources, as you have surely observed. A server,
while capable of fetching static files, can in concert with server-side programming,
generate the content of the response, evaluate the request, and even initiate requests of its
own.

With the ease of the JavaScript language, and Chrome’s V8 engine, we were able to
conveniently run and manage our own server. With it, we learned how to handle incoming
requests, as well as how to configure a response. This chapter also provided a hands-on
approach toward circumventing the same-origin policy of the browser. Additionally, you
had a glimpse into the concepts of server-side programming, which will serve you well in
the future or, at the very least, the next chapter.

In the upcoming chapter, we will continue to leverage the Node platform to create a
simple JSON database. This database will allow incoming JSON data to be captured and
stored locally on the file system, so that it can be retrieved by later requests.

Key Points from This Chapter

¢ A Node server can be programmed entirely in JavaScript via the
Node’s HTTP module.

e end must be invoked on the response instance for a request to be
completed.

e Neglecting to invoke end will result in the client’s request to time out.

¢ You must restart your server anytime a change is introduced to the
code.

e Node possesses an extremely low-level API.

www.it-ebooks.info

http://127.0.0.1:1337/proxy/imagedata.txt
http://127.0.0.1:1337/proxy/imagesA.json
http://127.0.0.1:1337/proxy/imagesB.json
http://127.0.0.1:1337/proxy/imagesC.json
http://json.sandboxed.guru/chapter10/data/
http://www.it-ebooks.info/

Node is non-blocking/event-driven.

IncomingMessages instances represent request/response
arguments.

You can obtain the headers, URLSs, and request/status lines from
IncomingMessages.

To obtain an entity body from IncomingMessages, you must
consume data from their stream.

127.0.0.1 is a way to access one’s own computer’s network services.
Content-Length must specify bytes not character length.

Ensure that the value supplied with the j sonp parameter is not URL-
encoded when appending it to the padded JSON.

With string manipulation, you can respond accordingly to any request.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11

Posting JSON

As should be evident by now, a server has the ability to provide a tailored response to best
match the indicated method, resource, and the configured headers of an incoming request.
This protocol, when paired with static content, can be utilized by the server software to
translate an incoming request into a location for said resource located on its file system.
The specified path of the resource is translated via the server software into that of a
determined directory, for which a file is thought to exist. The response is either the content
of the file or a 404 page.

Similarly, the very same protocol, when paired with a dynamic programming language
(such as PHP, .NET, or Java), provides cooperating developers a means of incorporating
web services. Such services can be used to persist, update, and retrieve existing data. The

difference, per the HTTP/1.1 Specification,' lies with the particular method of the request.
In this chapter, I will focus on the use of the POST method to provide an entity body to
our Node application.

Request Entity Body

There are two sets of HTTP request methods: those that are considered safe, and those that
are considered unsafe. Generally speaking, safe methods merely retrieve a resource,
whereas unsafe methods seek to provide data with an HTTP request. This resource is
referred to as a payload. The payload itself may be as complex as a file or as simple as an
e-mail address. However, once this information is received, it is often written to a database
for later retrieval.

While the preceding sentence may make immediate sense, what might not be so
obvious is that without the use of a server-side code to receive and process the incoming
payload, the entity provided to a server would serve little to no use. However, once that
data is received and handled appropriately, its usefulness is limited to our imaginations
and business goals or, as seen in the case of Twitter or Facebook, your fan base.

With the proxy example from the previous chapter, you learned that in order to obtain
the payload of an IncomingMessage object, we must consume it via the inherited
interface of the stream object. This is accomplished, as demonstrated in Listing 11-1, by
attaching an event listener to the incoming request instance, in order to monitor the
stream for a data payload. Furthermore, by pairing the listener with a callback capable of
receiving incremental chunks of data as an argument, we can consume data from the
stream as it is received.

Listing 11-1. Monitoring the Stream for Data

www.it-ebooks.info

http://www.it-ebooks.info/

1 function requestHandler(request, response) {
2 request.addListener('data’', function(chunk) {

3 //do something with data chunk
4

1)
//...truncated

8 }

Depending on the format of the payload, whether it’s in binary or ASCII, our
application may begin to utilize the individual chunks as they enter it. Additionally, by
monitoring the stream for the end event, our application can be made aware of when there
is no further data to be consumed from the stream, as demonstrated in Listing 11-2.

Listing 11-2. Monitoring the Stream for the end of Data

1 function requestHandler(request, response) {
//...truncated
request.addListener(end, function() {

//stream no longer has data

1),

00 ~NOoO O

}

The preceding lines of code, outlined in bold in both Listing 11-1 and 11-2, are
essential for obtaining an entity body from an incoming request. However, the actual
implementation of code that is utilized within the body is dependent on the needs of the
application. Whether the incoming data chunks are immediately parsed or amassed until
the stream is drained is a matter of your application’s needs and data expectancies.
Furthermore, how the data is parsed is absolutely dependent on the Content-Type of the
incoming payload. While GET requests can only provide data in the URL-encoded format,
POST requests can supply data in a variety of formats. Such formats are the following:
multipart/form-data, application/x-www-form-urlencoded,
application/xml, text/xml, application/json, and more.

Note In order to recognize how to parse the incoming information accordingly, it will
be helpful to utilize the Content-Type header held by the incoming request via the
following snippet: 1f (request.headers['content-
type'].indexOf(substring-to-match-here)>-1){ //condition
block }.

HTML Form POST

As a front-end developer, it is likely that you have previously used the standard HTML
<form> element to POST data to a server. The <form> element provides a convenient
and standard way for a user to supply data via a series of semantic components, such as
input fields, check boxes, radio buttons, etc., to a web service that is capable of processing
the supplied information on the server.

In order to demonstrate a form POST, we must first devise the HTML markup that can

www.it-ebooks.info

http://www.it-ebooks.info/

be returned as a resource by our Node application. Listing 11-3 demonstrates the markup
that will be provided to any incoming requests for the following resource /index.html.

Listing 11-3. An HTML Form POST

1 <!ldoctype html>

2 <html lang="en">

3 <head>

4 <meta charset="utf-8">

5 </head>s

6 <body>

7 <form action="formPost" method="POST" content="application/x-www-
form-urlencoded">

8 First-Name: <input name="fname" type="text" size="25"/>
9 Last-Name: <input name="lname" type="text" size="25"/>
10 <input type="submit"/>

11 </form>

12 </body>
13 </html>

The preceding code should not come as a surprise to you, as this is standard HTML
markup. The only five lines that we should discuss are those that make up our form. We
use the HTML <form> element not only to declare the container, which will hold
relevant form elements, but also to configure key aspects of the request (line 7). The
attribute labeled “action” defines the target resource for which the method is enacted. In
this case, I have set the resource to that of formPost. The second attribute, labeled
“method,” defines the method to be used on the request. This can be a method such as
GET or POST, but in this case, we will specify POST. These two attributes will be used in
conjunction to make up the request line of our HTTP request.

Last, utilizing the attribute labeled “content,” we specify the Content-Type of the
data accompanying the request. While there are many possible Content-Types in
existence, only three possible values can be applied to an HTML form. These three
Content-Types are the following: application/x-www-form-urlencoded,
multipart/form-data, and text/plain.

Note If a form is not configured with the content attribute, the Content-Type that
will be used will be that of application/x-www-form-urlencoded.

The next two lines (line 8 and line 9) simply define the input fields that will be used to
capture an individual aspect of data. Utilizing the attribute labeled “name,” we can
establish the key that is used to transport the supplied value. As this form will capture a
user’s first and last name, I have used fname and 1name as the respective keys. Next, we
assign the value text to the type attribute. This will identify the input field as requiring
user input, so that the browser renders it accordingly.

Last, in order to invoke the submission of the data, we must include a Submit button
(line 10). This is simply achieved by utilizing yet another input field. However, as you

www.it-ebooks.info

http://www.it-ebooks.info/

may expect, this input field’s type attribute is supplied with that of submit. This will
inform the browser to render this input field as a button. Upon the user’s click of the
button, it will prompt the form to initiate the request.

EXERCISE 11-1. YOUR FIRST NODE FORM POST

ExerciseA. js has begun to incorporate the HTML document from Listing 11-3
into the appropriate conditional block. Continue to supply the remaining ten lines of
markup to the following code (Listing 11-4) to complete our index . html resource.

Listing 11-4. EXerciseA.js, a Local Form POST Application

1 var http = require('http');

var server = http.createServer();
server.addListener('request', requestHandler);
server.listen(1337, '127.0.0.1");

A WDN

5 function requestHandler(request, response) {

6 console.log(request.url);

7 request.addListener('data', function(chunk) {
8 console.log(chunk);
9 1)
10
11

request.addListener(“end”, function() {
console.log(“end of stream \n");

12 1)
13 if(request.url==="/index.html”){
14 response.statusCode = 200;
15 response.setHeader (“Content-type”, “text/html”);
16 response.write('<!doctype html>"');
17 response.write('<html lang=“en”>");
18 response.write('<body>");
//.. add code here;
28 }else{
29 response.statusCode=204;
30 }
31 response.end();
32 };

33 console.log('Server running at
http://127.0.0.1:1337/index.html");

Once the document has been incorporated into exerciseA. js, use the command-
line interface to initiate our server. With the server running, navigate to
http://127.0.0.1:1337/index.html, fill in the form with your first and
last name, hit Submit, and take note of the data outputted to the command-line
window.

If your name coincidently happens to be Ben Smith, then you should have witnessed
the following output as shown following:

www.it-ebooks.info

http://www.it-ebooks.info/

Server running at http://127.0.0.1:1337/index.html

/index.html
end of stream

/favicon.ico
end of stream

/formPost
<Buffer 66 6e 61 6d 65 3d 42 65 6e 26 6¢c 6e 61 6d 65 3d 53 6d 69 74 68>
end of stream

For those whose names are not the equivalent, you should witness something very
close to what has been shown in the preceding code. In fact, the data shown in bold is
present in your output as well. Let’s examine the output in detail, to gain a better
understanding of what is occurring.

The moment our server is initialized, our console first outputs a reminder of the URL
and PORT, for which our server is running. Additionally, to remind ourselves that we must
request the index . html to be presented with our form, I have chosen to include it
within the initial output.

By navigating to the URL that is outputted, we arrive at our HTML form. Because the
exerciseA application logs each requested resource, the line that immediately follows
is /index.html. While that should make sense, what might not be clear are the next
three lines.

Following the output of our /index.html request, a message informs us that we
have reached the end of our stream. This might be confusing, as you may have expected
the end event to fire only after we had submitted our form. However, the reality is that
our Node application has been written to monitor for incoming data with each incoming
request. As the request for our index.html page was not accompanied by any data
what so ever, as the stream is empty, the end event naturally fires. This check happens
needlessly for every single incoming request and is made evident with each subsequent
request.

The next line is one I wanted to discuss because it often confuses a lot of Node
newcomers. Often, when debugging code, newcomers are curious as to why their code
appears to fire multiple times after receiving an HTML document. The reason is that user-
agents initiate a request that is not apparent to the end user. That request is for the icon that
appears in the browser’s window tab for the displayed HTML Document. This is known as
the favicon and is a 16x16 image that can be used as the icon that will identify your page
should someone choose to bookmark it. An example of a favicon can be seen in Figure 11-
1. As this is yet another incoming request on our server, the messaging end of stream
follows. Lastly, as initiated by the submission of our form, an incoming request for
/formPost is outputted to our console.

=
e (] J :ﬂ Micrasoft US | Devices an B

L2 wnw.microsoft.com/en-usfdefault

LD fQuerify | i RWD Bookmarklet [| HTML_CodeSniffer [JSON = | WhatFont
& Disable » L Cookies = # €35 « Jil Forms » [Images = § Information = g Miscellinesus » # Outline » J* Resize = 4 Tools » €> View Source = jl} Options =

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 11-1. Microsoft favicon

Note So as not to cause added throughput on our server, an application should only
attempt to consume data from the stream of a client the requested method has determined
to be an unsafe method, such as POST.

Following the output of said resource appears to be a sequence of alphanumeric
characters. To keep things as simple as possible, I can assure you this is not gibberish but,
rather, hexadecimal format. I won’t go into too much detail, but, ultimately, each grouping
of characters represents an alphanumeric character. In the preceding output, 66 represents
f, 6e represents n, 61 represents a, etc. If I were to continue to explain the next three
values, you would be able to recognize the gibberish is actually spelling out “fname=.”

While reading hexadecimal is far better than reading binary, it is absolutely no
substitute for plain text. Therefore, let’s shut down our current server and modify the
buffer to output plain text. This is accomplished by defining the encoding via the
setEncoding method exposed on our request instance. The code,
request.setEncoding('utf8');, defaults all incoming data as UTF-8. At this
point in time, let’s shut down our server and incorporate this line of code just before our
data event listener. Once this code is in place, restart our exerciseA application and
perform a form POST once again. This time, you should observe the following output:

//..truncated output
fname=Ben&lname=Smith
end of stream

Congratulations! You have received your first HTML form POST. As you can clearly
read from the output, the entity body is provided in the form of a key/value pair, similar to
that of a GET. The notable difference is that the data is not preceded by the ? token. As we
have been working rather extensively with key/value pairs, it should be a cinch to extract
our data values from their keys, utilizing our getParamKey function from the previous
chapter. Once again, let’s shut down our server and incorporate the getParamKey
function, shown in Listing 11-5, into our existing server.

Listing 11-5. The getParamKey Function

function getParamKey(key, str) {
var regExp = new RegExp(key.toLowerCase() + '=[N&]*');
var matchingValue = (str.toLowerCase()).match(regExp);
for (var 1 = 0; 1 < matchingValue.length; i++) {
var replacedvValue = matchingValue[i].replace(key

+ |=|, II);

matchingValue[i] = replacedValue;
}

return decodeURIComponent(matchingValue[0]);

+s

The incorporation of getParamKey will enable us to extract the values for the

www.it-ebooks.info

http://www.it-ebooks.info/

supplied keys that make up the entity body. For the form POST we have been working
with, those keys are fname and 1name. By providing these identifiers along with the
received data chunk to getParamKey, we can easily obtain their values. At this point in
time, let’s shut down our currently running server and insert the necessary code required to
log out the value for our two variables, by tapping into the getParamkey function.

Once you have implemented the code that would result in Listing 11-6, restart the server,
use the form to submit your name once again, and observe the results.

Listing 11-6. Parsing X -www-form-urlencoded Data

var http = require('http');

var server = http.createServer();
server.addListener('request', requestHandler);
server.listen(1337, '127.0.0.1");

function requestHandler(request, response) {
console.log(request.url);
request.setEncoding('utf8');

request.addListener('data', function(chunk) {
console.log(getParamKey("fname", chunk));
console.log(getParamKey("1lname", chunk));

1)
request.addListener("end", function() {
console.log("end of stream \n\r");

1))

if(request.url === "/index.html") {
response.statusCode = 200;
response.setHeader ("Content-Type", "text/html");
response.write('<!doctype html>"');
response.write('<html lang="en">");
response.write('<body>");
response.write('<form action="formPost" method="POST"
content="application/x-www-form-urlencode">");
response.write('First-Name:"');
response.write('<input name="fname" type="text"
size="25"/>");
response.write('Last-Name:"');
response.write('<input name="lname" type="text"
size="25"/>");
response.write('<input type="submit"/>");
response.write(' </form>");
response.write(' </body>'");
response.write('</html>");
} else {
response.statusCode = 204;
}

www.it-ebooks.info

http://www.it-ebooks.info/

response.end();

Iy

function getParamKey(key, str) {

var regexp = new RegExp(key.toLowerCase() + '=["&]*');

var matchingvValue = (str.toLowerCase()).match(regExp);

for (var 1 = 0; i < matchingValue.length; i++) {
var replacedvalue = matchingvalue[i].replace(key + '=', '');
matchingValue[i] = replacedValue;

}

return decodeURIComponent(matchingVvalue[0]);
iy
console.log('Server running at
http://127.0.0.1:1337/1index.html"');

Running the preceding code, should no errors be present, will have undoubtedly
outputted the values that had been supplied to both input fields. Now that we have this
extracted information, we could potentially alter the data of the response or even store the
supplied information within a database. You will learn more about persisting data via
back-end programming in the next chapter.

While forms are a convenient way for a visitor to supply a few fields of basic
information, such as first name and last name, the possible Content-Types that can be used
with a form lack the ability to maintain the structure of data such as that of JSON.
However, in order to transmit the JSON data type, we will have to leverage an
XMLHttpRequest object.

Processing a JSON POST

As has been stated throughout this book, JSON is a highly interoperable data format with
many advantages. It can easily be read by humans; it is succinct, thereby keeping file size
to a minimum; it can group as well as retain the structure of data; and, as a text-based
format, JSON can be stored/retrieved and parsed without degrading its integrity. Of
course, to utilize this functionality, our server-side application must possess the ability not
only to obtain any and all incoming JSON but to parse it as well. In order to keep things
backward compatible, we will build upon our code base from exerciseA. This way, if a
visitor has JavaScript enabled, the data contents will be provided to our server via Ajax as
JSON. However, if the user does not have JavaScript enabled, our form will continue to
work as intended in the URL-encoded data format, via a full-page load.

As was stated earlier, an HTML form element can only send one of three Content-
Types, and JSON is not one of them. Therefore, in order to send JSON, we must leverage
our acquired knowledge of Ajax. Listing 11-7 reveals the ajax function that was
discussed in Chapter 8. For the most part, the ajax function remains unchanged, with the
exception that the request line has been updated to reflect the new formPost resource.

Listing 11-7. Progressively Enhancing Our HTML Form with Ajax

<script>

www.it-ebooks.info

http://www.it-ebooks.info/

function ajax() {
var xhr = new XMLHttpRequest();
xhr.open("POST", "formPost");
xhr.setRequestHeader ('"Content-Type",
"application/json");
var input = document.getElementsByTagName("input");
var obj = {
fname : input[0].value,
lname : input[1].value
3
Xhr.send(JSON.stringify(obj));
return false;

}

</script>

If you recall from Chapter 8, we used the preceding function to POST two HTML
form fields, First Name and Last Name, to a server, using the application/json
Content-Type. Obtaining the values directly from the input fields, and then adding them as
the members of an object, which was immediately serialized, accomplished this. The
form, with the use of its onsubmit attribute, invoked the ajax function when its Submit
button was clicked.

If you are following along with the source code provided for Chapter 11, locate the
json-form. js file. This file incorporates the ajax function, shown in Listing 11-7,
along with a few additional code amendments. One such amendment is the assignment of
our function as the value of the form’s onsubmit attribute: <form action=“formPost”
method=“POST” onsubmit=“return ajax();”>.

Furthermore, as this application will be used to demonstrate the reception of JSON,
rather than our previous key/value pairs, I have incorporated a means to isolate the values
for fname and 1name in a manner befitting of JSON. Because our Node application is
written entirely in JavaScript, I have merely incorporated the use of JSON. parse, as
shown in Listing 11-8. In order to distinguish the X -www-form-urlencoded format
from that of incoming JSON, we will incorporate conditions that determine whether a
particular Content-Type exists as a substring of request.headers|['content-

type'].

Note The implementation of the ajax function progressively enhances the capability
of our form to transmit the captured data of a user via Ajax, without impairing the
experience for those visitors who may have JavaScript turned off.

Listing 11-8. Determining the Content-Type of Incoming Data

request.addListener('data', function(chunk) {
1f (request.headers['content-type']].indexOf('application/json')>-1){
var json=JSON.parse(chunk);
console.log(json.fname);

www.it-ebooks.info

http://www.it-ebooks.info/

console.log(json.lname);
}else if(request.headers['content-type'].index0f('application/x-www-
form-urlencoded)>-1){

}
1))

Be sure to shut down any Node applications that you may have running, and start up
json-form. When you navigate to http://127.0.0.1:1337/1ndex.html, you
should not witness any visual differences, as we have not altered our form, only the format
for which it is supplied. This time, when you submit the form, the output displayed in the
command-line interface should resemble that of Figure 11-2.

@& 00 server — node — 80x13 "

Macintosh:server FeZEC$ node json—form.js

Server running at http://127.@.0.1:1337/index.html
/index.html

end of stream

/favicon. ico
end of stream

/formPost

ben

smith

end of stream

Figure 11-2. Logging out end of stream when all data has been consumed

As clearly illustrated in Figure 11-2, the fields of our data have been successfully
parsed and individually outputted. Congratulations, you have parsed your first, albeit
simple, JSON POST! Before you begin your celebration dance, I do wish to point out one
thing. In our json-form application, in addition to our exercise application, we were
attempting to parse the incoming data before we had reached the end of the stream, as
illustrated in Figure 11-2. While this is not a problem for these two simple examples, we
could easily run into issues when the incommoding data is extremely large. As you
witnessed in the previous chapter, the data event is capable of firing multiple times, each
time supplying more data to our application. In that particular example, the file that was
being transferred was 1.5MB in size.

As the data being transmitted to our application within this chapter is minimal, there is
no need to expect the data event to fire multiple times. However, this might not always
be the case. Therefore, in order to ensure that we have received every last chunk of
incoming data before attempting to parse it, we should accumulate all incoming data onto
a variable (see Listing 11-9). Only once the end event has fired should our application
attempt to parse our data.

Listing 11-9. Retaining All Incoming Data onto a Variable

1 function requestHandler(request, response) {
2 console.log(request.url);
3 console.log(request.headers);

www.it-ebooks.info

http://127.0.0.1:1337/index.html
http://www.it-ebooks.info/

var incomingEntity = '';
request.setEncoding(‘utf8’);
request.addListener('data', function(chunk) {
incomingEntity += chunk;

coO~NO 01~

1)
9 request.addListener("end", function() {
10 console.log("end of stream \n");
11 console.log(incomingEntity);
12 if (request.headers['content-
type'].index0f("application/json") > -1){
13 //handle JSON payload
14 telse if(request.headers['content-
type'].index0Of("application/x-www-form-urlencoded")> -1){
15 //handle x-www-form-urlencoded payload
16 }
17 1),
18 if (request.url === "/index.html") {
19 response.statusCode = 200;
20 response.setHeader ("Content-type", "text/html");
21 //...truncated code
22 } else {
72 response.statusCode = 204;
73 response.end();
74}
75 }

76 console.log("response-end");

Listing 11-9 demonstrates the use of a variable labeled “incomingEntity,” which
will be used to retain all incoming chunks of data. Because UTF-8 is a text-based format,
we can use string manipulation to join incoming chunks of data together. However, we
will not attempt to read said data until we are certain we have received it all. Once the
end event is dispatched, we can safely log, parse, or inspect the accumulated data retained
by an incoming entity.

EXERCISE 11-2. INCOMING ENTITY BODY

In order to minimize the amount of code used within the preceding sections, our
server has neglected to respond to any request for /formPost. Instead, we have
been informing the browser, via the 204-status code, that the resource being
requested is without content. However, now that we have the ability to parse the
information as it enters, let’s output, as the response, the full name received.

Because our existing form has been enhanced utilizing JavaScript, it is certain that
visitors who do not have JavaScript enabled will require a proper response to be
provided in the HTML format. This, of course, will result in a full-page load.
However, for those individuals who do have JavaScript enabled, we should continue
to provide them with JSON.

www.it-ebooks.info

http://www.it-ebooks.info/

Be sure to check the responses from the application via the Network tab of the
developer console, with JavaScript both turned on as well as off. Compare your
results with Listing 11-10.

Regardless of whether JavaScript is enabled or disabled, our exercise application,
whose code should reflect that of Listing 11-10, is capable of properly parsing the payload
provided. Furthermore, the application responds with a corresponding Content-Type,
which enables the results to be viewed by our visitor, regardless of whether JavaScript is
on or off.

Listing 11-10. Answer to Exercise/Incoming Entity Body

1 var http = require('http');

2 var server = http.createServer();

3 server.addListener('request', requestHandler);
4 server.listen(1337, '127.0.0.1');

5 function requestHandler(request, response) {

6 console.log(request.url);

7 if (request.method === “POST") {

8 var incomingEntity = '';

9 var data;

10 request.addListener('data', function(chunk) {
11 incomingEntity += chunk;

12 1)

13 request.addListener(“end”, function() {

14 console.log(“end of stream \n");

15 console.log(“Raw entity: ”

+ incomingEntity);

16 if (request.headers['content-
type'].index0f(“application/json”) > -1){

17 data = JSON.parse(incomingEntity);

18 if (request.url === “/formPost”) {

19 response.statusCode = 200;

20 response.setHeader (“Content-Type”,
“application/json”);

21 response.end(incomingEntity);

22 }

23 }else if(request.headers['content-
type'].indexOf (“application/x-www-form-urlencoded”)>-1){
24 if (request.url === “/formPost”) {
25 response.statusCode = 200;
26 response.setHeader (“Content-Type”,
“text/html”);

www.it-ebooks.info

http://www.it-ebooks.info/

27 var fname = getParamKey(“fname”,
incomingEntity);

28 var lname = getParamKey(“lname”,
incomingEntity);

29 response.write('<!doctype html>"),;
30 response.write('<html lang=“en”>");
31 response.write('<body>"'),;

32 response.write('' + fname+ '
‘ +1lname +'');

33 response.write('</body>");

34 response.end();

35 return,;

36 }

37 }

38 1)

39 } else if (request.method === “GET") {

40 if (request.url === “/index.html”) {

41 response.statusCode = 200;

42 response.setHeader (“Content-Type”,
“text/html™);

43 response.write('<!doctype html>"');

44 response.write('<html lang=“en”>");

45 response.write('<body>");

46 response.write('<form action=“formPost”

method="“POST"” onsubmit=“return ajax();"”
content=“application/x-www-
form-urlencoded”>");

47 response.write('First-Name:');

48 response.write('<input name=“fname”
type=“text” size="25"/>");

49 response.write('Last-Name:");

50 response.write('<input name=“1lname”
type=“text” size="25"/>");

51 response.write('<input type=“submit”/>");

52 response.write('</form>"');

53 response.write('<script>');

54 response.write('function ajax(){');

55 response.write('var xhr = new
XMLHttpRequest();"');

56 response.write('xhr.open(“POST”,
“formPost”);"');

57 response.write('xhr.setRequestHeader(“Content
Type”, *“application/json”);');

58 response.write('xhr.setRequestHeader (“Accept”

“application/json”);"');

www.it-ebooks.info

http://www.it-ebooks.info/

59 response.write('var input
= document.getElementsByTagName(“input”);"');

60 response.write('var obj = {');

61 response.write('fname : input[O].value,');
62 response.write('lname : input[1].value');
63 response.write('};");

64 response.write('xhr.send(JSON.stringify(obj))
65 response.write('return false;"');

66 response.write('}');

67 response.write('</script>');

68 response.write(' </body>");

69 response.write('</html>");

70 response.end();

71 } else {

72 response.statusCode = 204;

73 response.end();

74 }

75 console.log(“response-end”);

76 };

77 function getParamKey(key, str) {

78 var regExp = new RegExp(key.toLowerCase() + '=
[A&]*");

79 var matchingValue

= (str.toLowerCase()).match(regExp);

80 for (var 1 = 0; 1 < matchingvValue.length; i++) {
81 var replacedValue

= matchingValue[i].replace(key + '=', '");

82 matchingvValue[i] = replacedValue;

83 }

84 return decodeURIComponent(matchingvalue[0]);

85 };

86 console.log('Server running at
http://127.0.0.1:1337/index.html");

As it stands now, our application possesses the ability to handle two varieties of

incoming payloads. This, of course, can always be enhanced to further handle even more.
The code, as it stands now, can only satisfy incoming payloads from the same origin, and
not simply because our code neglects to configure the Access-Control-Allow-Origin
header. Rather, our code neglects to satisfy a user-agent’s preflight request.

Preflight Request

As you may recall from Chapter 9, while our application is able to receive
communications from other servers, the user-agents of modern browsers will interfere
with most client requests when they are made from varying source origins. Previously, we
discussed how user-agents prohibit our applications from receiving a response provided by

www.it-ebooks.info

http://127.0.0.1:1337/index.html
http://www.it-ebooks.info/

a server located at originA from being obtained by a client request from originB, due to
the same-origin policy (SOP).

In Chapters 9 and 10, you learned how to circumvent the SOP so that we could obtain
the response. We learned of three ways in which we could successfully do so, with the
simplest of all techniques being the inclusion of the Access-Control-Allow-Origin header.
While the aforementioned header has the ability to authorize the source origin, thereby
allowing the client to obtain a proper response, the Access-Control-Allow-Origin header
alone is not responsible for authorizing an HTTP POST from varying origins.

As explained earlier, GET requests are considered safe methods because they generally
fetch a resource. I state generally because, as you have seen earlier, an application can be
programmed to do as it sees fit. However, per the specification, GET requests do not incur
side effects such as that of a POST method. Therefore, the only matter at hand is whether
or not the source origin is authorized to receive the resource provided, which, of course, is
determined with the Access-Control-Allow-Origin header.

On the other hand, a method such as POST is considered an unsafe method. This
means that it can cause side effects on the server and even the response. Therefore, the
user-agent can’t shoot first and then ask for authentication later. In other words, the user-
agent can’t simply allow the request to occur and then determine if the source origin has
proper authorization before returning the response. Instead, it must first proceed with what
is referred to as a preflight request.

Preflight is a term that is defined by Webster as “preparing for or preliminary to

flight.”?> As you may have guessed, preflighting is a term that originated in the aviation
industry and represents a series of checks and tests that are conducted by the pilot
preflight, to ensure that it will be a safe and successful one. Generally speaking, the use of
preflight is to determine the risks, if any exist. While the term certainly better suits
aircrafts than Ajax, the process of preflighting reduces the likelihood of irreparable
damage that could otherwise take place by blindly allowing an unsafe request to occur.

In order to preflight our request, the user-agent acts sort of like a bouncer at a club—
checking everybody’s identification and comparing them against the club’s rules and
regulations. Such rules may be the maximum number of total occupants, in addition to
minimum age restrictions. Should all club criteria be met, the bouncer allows a patron to
enter the premises. Otherwise, the bouncer turns them away, forcibly, if need be.

As discussed previously, HTTP headers are used to facilitate the request/response
between the client and the server. However, in the case of preflight, our bouncer, the user-
agent, utilizes headers to determine if the server has any rules that may prevent an unsafe
request from entering, by preceding our actual request with that of another, as depicted in
Figure 11-3.

www.it-ebooks.info

http://www.it-ebooks.info/

806 json.sandboxed.guru/ch

- c json.sandboxed.guru/chapterl1/out-bound-entity.html aedll - T Q9 Kk =
e Apps -"I Learn more. ? Get Processing and h Arduino Eclipse De 8 hit, 12 bit, 14 bit Visual Event » |_| Other Bookmarks
First-Name: ‘ben " Last-Name: [smith | [Csubmit |
Q, Elements | Network| Sources Timeline Profiles Resources Audits Console 212 = £ g, =
® O ¥V = Preserve log [Disable cache
Documents Stylesheets Images Media 5Scripts XHR Fonts TextTracks WebSockets Other O Hide data URLs
Name ize Tirr
:‘I_‘_‘(Method E_'t'_nf'lls Type Initiatar Sc-. s ”_N_‘ . |Mr
formPost.php = 200 g put-bound-en.. 08 405ms
sandboxed.gury OFTIONS oK hext fivtand Script OB 404 ms

1 requests | 0 B transferred

Figure 11-3. An unauthorized preflight request

Figure 11-3 demonstrates the necessary preflight request and its use of the OPTIONS
request method.

OPTIONS Request Method

The request method OPTIONS, as outlined in the original 1999 HTTP/1.1 specifications,
can be used to determine the options and/or requirements associated with a given resource.
Additionally, it can be used to reveal the capabilities of a server. Furthermore, the request
receives such information without implying any action to be performed on the specified
resource. Therefore, it will not initiate the retrieval of said resource. For this reason,
OPTIONS is considered a safe method.

Generally speaking, a request for a resource utilizing the OPTIONS method reveals,
by way of the configured headers, which request headers and possible request methods are
capable of being used with incoming requests for the indicated resource.

As this point in time, if you are following along with the source code that accompanies
this chapter, locate and run, within your browser, out -bound-entity.html. If you
are not following along with this chapter’s source code, you can navigate the browser of
your choice to the following URL:
http://json.sandboxed.guru/chapterll/out-bound-entity.html.
Upon your arrival to either the local or online version of the out -bound -
entity.html resource, you will view the form shown in Figure 11-4.

800 json.sandboxed.gurufch]

i / terll/ =} | i t , =Y 1 =
& c json.sandboxed.guru/chapterll/out-bound=-entity.html " e (1»] R =
% apps M Learn more. ! GerProcessingand |- Arduino Eclipse De [s bit, 12 bit, 14 bit Visual Event » [Other Bookmarks
First-Name: Last-Name: submit | M send as JISON?

Figure 11-4. Form that makes cross-origin requests to http://127.0.0.1:1337/formPost

www.it-ebooks.info

http://json.sandboxed.guru/chapter11/out-bound-entity.html
http://www.it-ebooks.info/

You may note that it’s not unlike the one used by our incomingEntityBody
application. The most notable difference between this form and the previous form is the
inclusion of a check box located to the right of the Submit button. In the previous exercise,
I had you disable JavaScript, which caused the form post to be submitted in a different
format from when JavaScript was turned on. The result is that when JavaScript was turned
off, the browser parsed the response rather than the Xxhr object. This resulted in a new
page being presented on the screen. As the source origin of the request and the response
occurred from the same origin, the response appeared natural. However, this would not be
the case if the form from exampleA. com resulted in a full-page reload from
exampleB. com, as this would be rather apparent to the end user. Therefore, I have
included this check box, which uses JavaScript to toggle between the application/x-
www-form-urlencoded format and the application/json format. We will keep
it checked to send as JSON for the meantime.

If you no longer have the incomingEntityBody application running, start the
server once again, so that we can attempt to submit our form from a varying origin.
Additionally, open the Network tab on your developer toolbar, to observe the HTTP
request. Upon the submission of your form, the results, as shown in your developer
toolbar, should reflect those shown in Figure 11-3. Rather than a POST occurring, an
OPTIONS request takes place. In fact, our POST does not even appear in the list at all.
The reason why is because the user-agent has not yet received the proper preflight
authorization from the server regarding the formPost resource that would result in our
request taking place. Let’s inspect the headers of the OPTIONS request that occurred.

By navigating to the “Headers” aspect within the Network tab, you should be able to
review the configured headers of the preflight request. Those headers should reflect the
ones that I have listed below, with the exception of the headers outlined in bold.

Access-Control-Request-Headers: accept, content-type
Access-Control-Request-Method: POST

Cache-Control: no-cache

origin: http://json.sandboxed.guru

Pragma: no-cache

Referer: http://json.sandboxed.guru/chapterlil/out-bound-
entity.html

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac 0S X 10_9_4)
ApplewWebKit/537.36 (KHTML, like Gecko) Chrome/36.0.1985.143
Safari/537.36

Of the headers listed, there are three that you might recognize from Chapter 9, which
defined the headers of the CORS specifications. Those headers are Access-Control-
Request-Headers, Access-Control-Request-Method, and Origin.

As you may recall, the Origin header is added by the user-agent to inform the server as
to the source origin of the request, of which the server can determine whether or not to
authorize the source origin, via the Access-Control-Allow-Origin header. What you may
not know is that the other two headers are intended for similar use. However, rather than
communicate the need for authorization among origins, they require authorization for the

www.it-ebooks.info

http://www.it-ebooks.info/

configured headers of our request, as well as the specified method to be enacted on the
target resource.

To ensure the safety of the request, the user-agent, as per the CORS specification,
extracts all headers from the actual Ajax request and configures them as a comma-
delimited value for the preflight CORS-supported header Access-Control-Allow-Headers.
Likewise, the request method specified in the request line of our actual request is extracted
and configured as the value to yet another preflight CORS header labeled “Access-
Control-Request-Method.”

Once the server receives these three headers, it is able to authorize or deny the request
simply by configuring the request with the corresponding preflight CORS response
headers. Those headers, as shown in Table 11-1, are the following: Access-Control-Allow-
Headers and Access-Control-Allow-Methods.

Table 11-1. CORS Preflight Headers

Header Role Configures
Access-
Control- Indicates which headers will be used in
User-Agent
Request- the actual request
Headers
Access-
Control- Indicates which method will be used in
User-Agent
Request- the actual request
Method
Access-
Control- Indicates, which methods can be used
. Server
Allow- during the request for a targeted resource
Methods
Access- Indicates which header field names can
Control- be used during the request of the targeted Server

Allow-Headers resource

If, and only if, all values configured by the user-agent, are reflected in the configured
values of the response will the actual request take place. Unlike the Access-Control-
Allow-Origin header, which can be configured with the wildcard * token, the Access-
Control-Allow-Methods and Access-Control-Allows-Headers headers must explicitly
declare, in a comma-delimited fashion, all accepted header fields and methods for the
identified resource.

As it stands now, we are unable to review the response within the network tab, and for
good reason. Up until this moment, our incomingEntityBody application has only
required the ability to respond to incoming requests that utilize GET and POST. Until we
implement a response for the OPTIONS request method, the request will continue to wait
for one.

Currently, the requestHandler within our incomingEntityBody application
distinguishes between GET and POST methods. Depending on which request method is

www.it-ebooks.info

http://www.it-ebooks.info/

being used, the appropriate code block is run, resulting in the fulfillment of the request.
Monitoring for the OPTIONS request is as simple as adding yet another condition, as seen
in Listing 11-11.

Listing 11-11. Including the Ability to Respond to Preflight Requests

1 //... code 1is truncated
6 function requestHandler(request, response) {
7 console.log(request.url);

8 if (request.method === "POST") {

9 //... code is truncated

51 } else if (request.method === "GET") {
52 //... code is truncated

88 } else if(request.method==="OPTIONS"){

89 }

920 console.log("response-end");

91 };

To keep things simple, Listing 11-11 reveals the code as it stands within
incomingEntityBody, only I have condensed the areas that are not relevant to the
current discussion. As you can see on lines 88 and 89, a new code block has been added to
respond to any incoming OPTIONS request. Within this block, we can properly configure
a response to reflect which headers and methods are allowed on either a global level or for
an individual resource. For the purpose of this demonstration, we will be configuring the
headers on a per-resource basis.

Listing 11-12 begins by configuring the appropriate status code that acknowledges the
request was properly received (line 89). From there, we determine if the resource being
requested by the client is for that of /formPost (line 90). If this is, in fact, the resource
being requested, the response will be configured utilizing the appropriate CORS headers.

Listing 11-12. Demonstrating the Configuration of the Preflight CORS Headers

88 } else if(request.method==="0OPTIONS"){
89 response.statusCode = 200;

90 if (request.url === "/formPost") {

91 response.setHeader('Access-Control-Allow-0Origin',
I*I);

92 response.setHeader ('Access-Control-Allow-Headers',

"Content-Type, Accept,

Accept-Language, Accept-
Encoding, User-Agent, Host,

Content-Length, Connection,
Cache-Control');
93 response.setHeader ("Access-Control-Allow-Methods",
'GET, POST, OPTIONS');
94 1}
95 response.end();
96 }

www.it-ebooks.info

http://www.it-ebooks.info/

The first configured header is used to authorize the source origin. The second
configured header is used to inform the user-agent of any and all headers that are
authorized for the following resource. As you can see, each header field that our resource
requires must be added to the Access-Control-Allow-Headers header. These configured
values may regard valid HTTP/1.1 headers in addition to custom headers. In this case, I
have configured the values with typical fields (line 92). These configured fields for the
Access-Allow-Request-Headers header can certainly possess more that what I have listed.
The third configured header regards the authorized methods that can enact upon the
targeted resource. As this book only considers three HTTP/1.1 methods, GET, OPTIONS,
and POST, I have provided all three (line 93).

Last, regardless of which resource is requested, we submit the response, as it is
currently configured, and conclude the incoming request (line 95). Upon the reception of
the response, the user-agent will compare and contrast its configured headers with those
returned by the server.

CORS Preflight Request Headers
Access-Control-Request-Headers: accept, content-type
Access-Control-Request-Method: POST

Origin: http://json.sandboxed.guru

CORS Preflight Response Headers
Access-Control-Allow-Headers: Content-Type, Accept, Accept-
Language, Accept -

Encoding, User-Agent, Host, Content-Length,
Connection, Cache-Control
Access-Control-Allow-Methods: GET, POST, OPTIONS
Access-Control-Allow-0Origin: *

If the configured values of the CORS preflight request headers can be matched (case-
insensitive) against the corresponding CORS preflight response headers, only then will the
actual request be initiated. Otherwise, the actual request will be canceled.

With our new configured headers in place, let’s run the application that possesses the
code, as shown in Listing 11-12, and perform another form submission once again. Upon
the submission of the form, you should see that the preflight request has been performed
and succeeds and, therefore, is followed by our actual request, as shown in Figure 11-5.

www.it-ebooks.info

http://www.it-ebooks.info/

8006 127.0.0.1:8020/Beginni X L

- 5 127.0.0.1:8020/Beginning)SON/chapter1 1/out-bound-entity.html 7 [0 w’ =

i Apps r-" Learn more. * Get Processing and h Arduino Eclipse De & bir, 12 bix, 14 bit Visual Event » [L] Other Bookmarks

First-Name: ben Last-Name: smith submit | A send as JSON?

Q, Elements | Network| Sources Timeline Profiles Resources Audits Console @5 = # I.Q‘ bl

® 9 ¥ = Preserve log [Disable cache

L i T

I:n.. . Method St_:'"_m Type Initiatar _S.zc_. o || [T
formPp, 200 ut-bound : 34lB im
ormPost OPTIONS : Sotiolaln QUL Im. a0 ms
formP: 08 2
ccbicne POST icanceled) splication)]s 3

application/|s thi 08

2 requests | 341 B transferred

Figure 11-5. Authorized preflight request followed by an unauthorized source origin request for formPost

As depicted by Figure 11-5, the preflight request has been approved and follows up
with our actual request. However, due to a network error, our request for the /formPost
resource is canceled. The reason for the network error is outputted within the console tab.
While the network error will vary depending on the browser being used to make the
request, it should be immediately apparent as to why the request was canceled.

XMLHttpRequest cannot load http://127.0.0.1:1337/formPost.
No 'Access-Control-Allow-0Origin' header is present on the
requested resource. Origin 'http://127.0.0.1:8020"' is
therefore not allowed access.

As explained via the preceding messaging provided by Chrome, the request resulted in
a network error. This is due to the fact that the source origin has not been provided
sufficient authorization to receive the response. However, this is simple enough to resolve
by including the Access-Control-Allow-Origin header as a configured header of the
response. At this point in time, let’s make this proper amendment, shown in bold in
Listing 11-13, and then initiate the request once more.

Listing 11-13. Authorizing formPost for All Source Origins

1 ...//truncated code

13 request.addListener("end", function() {

14 console.log("end of stream \n");

15 console.log("Raw entity: " + incomingEntity);
16 if (request.headers['content-
type'].indexOf("application/json")>-1) {

17 data = JSON.parse(incomingEntity);

18 if (request.url === "/formPost") {

19 response.setHeader("Access-Control-Allow-

originll’ |l*ll) ;

www.it-ebooks.info

http://www.it-ebooks.info/

20 response.statusCode = 200;

21 response.setHeader ("Content-Type",
"application/json");

22 response.end(incomingEntity);

23 }

24 }else if(request.headers|['content-
type'].indexOf("application/x-www-form-urlencoded")>-1) {
25 if (request.url === "/formPost") {

26 response.statusCode = 200;

27 response.setHeader("Access-Control-Allow-
Origin","*");

28 response.setHeader ("Content-Type",
"text/html");

29 var fname = getParamKey("fname",
incomingEntity);

30 var lname = getParamKey("lname",
incomingEntity);

31 response.write('<!doctype html>"');
32 response.write('<html lang="en">'");
33 response.write('<body>"');

34 response.write('' + fname+ "
+lname +'');

35 response.write('</body>");

36 response.end();

37 return,;

38 }

39 }

40 1)

41 ...//truncated code

If we were to run the application with the inclusion of the bold code from Listing 11-
13 and resubmit our form, the results this time would be authorized, resulting in the output
above our form, as shown in Figure 11-6.

(2]
8oe json.sandboxed.gurufcha
« (5 json.sandboxed.guru/chapterll/out-bound-entity.html v &’ O R =
12 Apps -"l Learn more. ® Get Processing and h Arduino Eclipse De & bit, 12 bit, 14 bit Visual Event » I_| Other Bookmarks

"{"name" :"ben" ,"lname":"Smith"}"

First-Name: ben ~ Last-Name: Smith | [submit | & send as JSON?

Figure 11-6. Successful Ajax POST from a remote origin

Additionally, if you were to uncheck the check box beside the Submit button, we could

www.it-ebooks.info

http://www.it-ebooks.info/

alter the Content-Type of the payload from application/json to
application/x-www-form-urlencoded. Because our server is implemented to
respond with an appropriate Content-Type that reflects the format of an incoming payload,
the transmission of the two Content-Types can be clearly identified via the response, as
shown in Figure 11-7.

ison.sandboxed.gurufch

“ C [} json.sandboxed.guru/chapterl1/out-bound-entity.html e [é'::: Q% % =
i Apps -'l Learn more. * Get Processing and h Arduino Eclipse De B bit, 12 bit, 14 bit Visual Event » |_| Other Bookmarks
"{"name"”:"ben", "lname" : "Smith"}"

‘ben smith’

First-Name: ben | Last-Name: Smith | | submit send as JSON?

Figure 11-7. Successful form POST

Congratulations! You have just created a server that can accept incoming JSON
payloads from both local and remote origins.

What Determines Preflight

It should be made known that the real reason I had incorporated the check box into the
preceding form was not truly to demonstrate the ability for our form to alternate between
two Content-Types. Rather, I incorporated it to emphasize the conditions under which the
user-agent determines if a preflight request is deemed necessary.

If you were to monitor the network traffic that occurred in Figure 11-7, you would
notice that the there was only one preflight request, as signified by the OPTIONS request
method. This can be observed in Figure 11-8.

8006 json.sandboxed.guru/ch 2 \ ¥ .
&« C json.sandboxed.guru/chapterll/out-bound-entity.html| el | E’E;‘..n Q% &k =|
i Apps o Learn more. ! Get Processing and b, Arduine Eclipse De 8 bit, 12 bit, 14 bit Visual Event B Minstad Corner so » [L Other Bookmarks
*{"name® :"ben” , "lname”: "smith"} "’
‘ben amith’
First-Name: ben | Last-Name: smith B | | submit send as JSON?
Q, Elements | Network| Sources Timeline Profiles Resources Audits Console o1 = 4% =
® B ¥V = Preserve log o Disable cache |
r?‘_:l:\t Method SI::I.I:us Type Imiviator _S_I!::_ S _I ll:l"_‘.:.l_ Timeline
formPost 200 out-bound-entity, hmi: 41 418 9ms
G OPTIONS pe et/ plain : : i
= 127.00.1 WK Br
formPost a 200 1948 5ms
ity POST application|son Otk A
farmPe 300] dm
ﬁfh” POST ;# text/himl ;?f i
3 requests | 765 B transferred

Figure 11-8. One reflight request, two POST requests

As clearly shown in Figure 11-8, the form received two responses of varying Content-

www.it-ebooks.info

http://www.it-ebooks.info/

Types. One response was supplied as application/json, while the other was
supplied as text/html. Both responses are output as they are received in the upper-left
corner of the document. However, as seen in the Network tab, three requests were made,
of which only one is a preflight request.

As was stated in Chapter 9, for legacy purposes, HTTP requests that are only
configured with simple request headers and simple request methods do not require the use
of preflight. However, if the requests are made from varying origins, they will require
proper authorization to obtain the response. This is achieved by configuring the Access-
Control-Allow-Origin header. While simple request methods refer to requests that utilize
either GET, POST, or HEAD as their request methods, what constitutes simple request

headers is slightly more elaborate, as quoted by the CORS specification.?

A header is said to be simple, if the header field name is an ASCII case-
insensitive match for Accept, Accept-Language, or Content-Language or if it is
an ASCII case-insensitive match for Content-Type and the header field value
media type (excluding parameters) is an ASCII case-insensitive match for
application/x-www-form-urlencoded, multipart/form-data, or text/plain.

What this means for varying origins is that if your server is expecting an incoming
payload whose Content-Type is not among the three that can be configured with an HTML
form element, such as JSON, it will be mandatory for your application to anticipate a
browser’s need for preflight. Conversely, your Ajax request may be denied if the server
does not utilize these headers.

Summary

Typically, when we use APIs belonging to Twitter or Facebook, we tend to overlook what
might be required of a server to make these interactions possible. Generally, we take a lot
of what is taking place behind the scenes for granted. This chapter has attempted to shed
some light on this matter.

We regarded what it takes to receive and process incoming data. As it turns out,
POSTing JSON data can be slightly more intricate than you may have previously believed,
especially when dealing with cross-origin requests.

When considering a request from a varying origin, any attempt to use an unsafe
method immediately results in what is regarded as a preflight request. Only requests that
use simple methods and simple headers are able to make a request without the use of
preflight. Furthermore, as you have learned, any attempt to transmit the Content-Type
application/json results in a preflight request. Preflight, of course, is only required
when the request occurs from a source origin that varies from the origin of the server
being posted to. In either case, this chapter has now prepared you to account for both.

Now that you have learned to process data, you will be able to apply this knowledge in
the next chapter.

Key Points from This Chapter

www.it-ebooks.info

http://www.it-ebooks.info/

e GET requests only have one MIME type, whereas POST requests have
many.

e Incoming payloads can be both simple and complex.

¢ One must consume incoming data by monitoring the stream for the
data event.

e When all data has been consumed from the stream, the end event is
fired.

e The HTML <form> element can only transmit three Content-Types.

¢ Determining the Content-Type for incoming data is beneficial with
regard to processing the received data.

o Buffers are used to read bytes from the stream.
o Preflight reduces the likelihood of malicious behavior.
o Preflight makes use of the OPTIONS request method.

e There are two preflight headers that must be properly configured by
the server in order to authorize a source origin.

IR. Fielding et al., Hypertext Transfer Protocol—HTTP/1.1, http://tools.ietf.org/html/rfc2616, 1999.

2Merriam Webster Online Dictionary, “preflight,” http://www.merriam-
webster.com/dictionary/preflight, 2015.

3World Wide Web Consortium (W3C), Anne van Kesteren, ed. “Cross-Origin Resource Sharing,”
www.w3.0rg/TR/cors/, January 16, 2014.

www.it-ebooks.info

http://tools.ietf.org/html/rfc2616
http://www.merriam-webster.com/dictionary/preflight
http://www.w3.org/TR/cors/
http://www.it-ebooks.info/

CHAPTER 12

Persisting JSON: I1

The last time I discussed the persistence of JSON, it was strictly from a front-end
perspective. However, as promised, this chapter will consider the persistence of JSON
from a back-end perspective.

You may be familiar with the terms SQL and MySQL, as they are both rather popular
databases. These databases store data in rows, within a table. With the assistance of the
SQL, Structured Query Language, data can be extracted from the table and returned to the
requesting client. However, what you may not be so familiar with is the term NoSQL
databases, which, as you may surmise, refers to a category of databases that do not rely on
the SQL query language (or at least not heavily).

NoSQL databases, such as CouchDB and MongoDB, store their data as JSON within
individual documents, rather than as rows within a table. Storing data in this fashion has
been shown to provide a great amount of scalability, as well as flexibility, compared to
traditional SQL databases.

CouchDB

As prominently stated on the CouchDB web site, located at
http://couchdb.apache.org, Apache CouchDB™ is a database that uses JSON
for documents, JavaScript for MapReduce indexes, and regular HTTP for its API. Because
CouchDB leverages the open source technologies of the Web, it itself is an entirely open
source project.

Installing CouchDB, as with Node, requires very little effort and is as easy as
downloading the appropriate installation package. CouchDB is available for Mac,
Windows, and Ubuntu Linux, but this book will only cover the installation on Mac and
Windows.

Windows Installation

Open your browser to http://couchdb.apache.org/ and scroll down until you
find the red Windows (x86) download button. At the time of this writing, the version of
CouchDB that will be downloaded is 1.6.1. This will direct you to the Apache Download
Mirrors site, which makes a few suggestions pertaining to where you should download the
CouchDB setup executable. Unless you have a preference for which mirror you make use
of, click the mirror link directly below the words “We suggest the following mirror site for
your download.” This will initiate the download. Depending on the browser being used,
you may be prompted to run, save, or cancel the download.

www.it-ebooks.info

http://couchdb.apache.org
http://couchdb.apache.org/
http://www.it-ebooks.info/

When the download has completed, and you are ready to begin the installation, locate
the directory for which the download was saved and run the executable. Once the
application runs, you’ll be presented with the initial screen of the setup wizard. At this
point, feel free to click Continue and accept the Apache license agreement.

The third screen of the installation presents you with the default location for the
installation. Unless you have a reason for this to change, continue with the defaulted
location by clicking Next. Unless you would like to place the program’s shortcut within a
folder other than Apache CouchDB, click Next.

The final screen presents you with two check boxes that have already been checked
off. Keep these both active and continue once again by clicking Next, to proceed to the
installation screen. The installation screen reflects the chosen configurations for one final
review before the installation begins. If you are satisfied with the present settings, click
Install.

When the installation has concluded, and you receive the “Completing the Apache
CouchDB Setup Wizard” message, you can click Finish. At this point, and only if you left
both check boxes selected, CouchDB will already be running. To ensure that the
installation has been successful, navigate your browser to the following address:
http://127.0.0.1:5984/. You should be presented with similar JSON output
shown in Figure 12-1.

- o N

uchdb®:"Welcome®™, "uuld®:"68dd941f7bda547a3c3edb858b24fbee™, "version™:1"1.6.0%, "vendor™: {"nama"™ : "The hpache Software Fount

<

s
Figure 12-1. Successfully running CouchDB

If you are seeing this message, congratulations; CouchDB has been successfully
installed.

Mac Installation

Open your browser to http://couchdb.apache.org/ and scroll down until you
find the red Mac OS X (10.6+) download button. At the time of this writing, the version of
CouchDB that will be downloaded is 1.6.1. This will direct you to the Apache Download
Mirrors site, which makes a few suggestions pertaining to where you should download the
CouchDB setup executable. Unless you have a preference for which mirror you make use
of, click the mirror link directly below the words “We suggest the following mirror site for
your download.” This will initiate the download. Depending on the browser being used,
you may be prompted to run, save, or cancel the download. Feel free to hit Save.

www.it-ebooks.info

http://127.0.0.1:5984/
http://couchdb.apache.org/
http://www.it-ebooks.info/

Once the download has completed, and you are ready to begin the installation, locate
the directory for which the download was saved. Locate the Apache -CouchDB file and
double-click it to unzip the contents of the archive, to reveal the Apache CouchDB
application. The beauty of the Mac installation is that the application is self-contained and
ready to run simply by double-clicking the app. As the file is an app, feel free to move the
file into the Applications directory before running.

At this point, if you are ready to launch the CouchDB application, go ahead and
double-click the Apache CouchDB. app. Now you should have CouchDB running in the

background. To ensure that you have successfully launched CouchDB, simply navigate
your browser to the following URL: http://127.0.0.1:5984/.

You should be presented with similar JSON output to that shown in Figure 12-2.

8ano

sl hepcff127.000,.1:5984 4

= 127.0.0.1:5984 e | (K- yahoo A% B @ 2 - =
{7 jauerify [| RWD Bookmarket | HTML CodeSniffer [[3] JSON ~ [WhatFont
@ Disable ~ & Cookies * # CS5 - i Forms = (& Images = § Information = @ Miscellaneous + o Outline = 4 Resize » 4* Tools = €» View Source = jb

{"couchdb” : "Welcome™ , "uuid™: "abeebocefE754Jalb4bbedoaciT95ad9”, "vergion™: "1.6.0", "vendor ™ : {"vorsion”:"1.6.07, "name™ : "The
Apache Software Foundation®™}}

Figure 12-2. Successfully running CouchDB

If you are seeing this message, congratulations; CouchDB has been successfully
installed.

Working with CouchDB

What makes CouchDB unique as a database, other than storing data within individual
documents, is the fact that its API is nothing more simple than HTTP requests. Whether
we’re taking about databases or the documents within them, our ability to receive, update,
add, and delete are all made possible via the eight standard HTTP request methods to
http://127.0.0.1:5984. As with our Node applications, CouchDB is running a
server that monitors all incoming requests on the port 5984. For each incoming request, an
appropriate response is provided.

Because the API is nothing more than standard requests, incorporating CouchDB with
Node is a piece of cake. Before we begin to incorporate CouchDB with our Node
application, let’s first take a look at the interface that accompanies CouchDB.

Futon

As was stated earlier, the API of CouchDB is made up entirely of HTTP requests. Rather
than requiring new adopters of CouchBD to create an interface of their own to monitor
and work with databases instantly, the developers at CouchDB have provided us with a
local interface that wraps all HTTP requests for us within a series of visual elements. This
interface has been dubbed “Futon.”

www.it-ebooks.info

http://127.0.0.1:5984/
http://127.0.0.1:5984
http://www.it-ebooks.info/

Futon is a simple HTML interface that leverages HTTP requests to provide us with an
easy way to work with our data. At this point, navigate your browser to
http://127.0.0.1:5984/_utils/. Upon your arrival you will be presented with

the view shown in Figure 12-3.

G & hitpe/ 127.0.0.0: 5584/ _utils D=3 «& Apache CouchDB - Futon: ...

Overview

Hama Size Mumber of Documants Update Saq
replicator 41KB 1

S _— ' CouchDB

s per page: |10 [w | relax

—

Configuration
Replicator
Status

Manual

Verify Installation

Figure 12-3. Futon utilities interface

Each Futon interface is divided into two halves. The left-hand portion of the view is
the prominent view and is used to easily work with and create data. The second
component, toward the right-hand side of the screen, provides us with an easy way to
access a variety of utilities provided by the CouchDB application. From within this
column of the Futon interface, you can access documentation, update the configurations
for the application, and even run diagnostics.

The view reflected in Figure 12-3 represents the overview interface. Within this view,
we are presented with a table of currently existing databases. By default, CouchDB comes
preinstalled with two. These are the following: _replicator and _users. While it’s
nice that Couch provides us with these, it will be more interesting to work with our own.
New databases can be easily created directly from this interface via the Create Database
button located just above the table of existing databases.

Constructing Your First Database

Creating our first database via Futon is as easy as can be. Simply click the Create
Database button to begin the process. Upon clicking, Futon provides us with a prompt
asking for us to label our database. As this chapter will work toward the creation of a
guestbook for our Node applications, we will provide the label “guestbook.” Clicking
Create will create the database and results in the updated interface shown in Figure 12-4.

Note A guestbook is a way for visitors who arrive at a site to leave their names and

www.it-ebooks.info

http://127.0.0.1:5984/_utils/
http://www.it-ebooks.info/

possible comments.

e - 127.0.0.%: 55847 ut siabase.ht esthook Pp~-c »@ Apache CouchDB - Futon: ...

Jump to: Decument ID Vi | All documents w | Stale views

B”
€ New Document () Security
) compact & Cleanug £ Delele Database
Koy A Value

<y CouchDB

relax

Overview
Configuration
Replicator
Slalus

Manual
Verity Installation

_meplicator
Walsoma to Admin Party!

Everyona it admin

Futon on Apache CouchDB 1 8.C
Figure 12-4. No documents within guestbook

As identified by the breadcrumbs in the upper-left-hand corner, this interface no longer
regards the overview but, rather, our recently created database. This Futon interface
provides us with the necessary tools to work with a particular database. In this case, that
particular database is our guestbook database.

Here, we would be able to see all JSON documents that have been stored within;
however, as we have just created this database, it remains empty for the time being. Let’s
add our first piece of content by clicking the button labeled “New Document.” By clicking
this button, we find ourselves viewing yet another interface that resembles that shown in
Figure 12-5.

Overview guestbook 03e68a3bac3fd452bf6b136eT6001222

| l |
@ save Document §3 Add Field) Upload Amachment |
Fields Sournce
Fieid vaive ,
23eEiadbacIfdd52bFEb136eTE0B1222

' CouchDB

relax

Figure 12-5. Overview of a guestbook document

This interface, as illustrated by the breadcrumb, concerns an individual document.
Remember that all data is saved individually as a JSON document. By default, each
document created is provided with a GUID (Globally Unique Identifier). Because GUIDs
are globally unique, the value shown in my figure will undoubtedly be different from the
GUID your document has been provided with. Although this view provides you with an
input field allowing you to adjust this value, you are generally discouraged from doing so.
The reason is that this GUID is the identifier that will be used to locate this file.
Depending on how many documents you are expecting to store, you may find yourself

www.it-ebooks.info

http://www.it-ebooks.info/

running out of proper names to provide each document.

Because the document _1id represents the resource itself, if you were to have visited
http://127.0.0.1:5984/guestbook/03e68a3bac3fd452bf6b136e76001]
replacing my GUID with yours, you would have made a GET request for the contents of
the file we are currently modifying.

As this interface shows, you can see that this view provides us with a few more
buttons, such as Save Document, Add Field, and even Upload Attachment. Just below
these buttons within the tab labeled “Fields,” resides a singular field and value. From this
view, we will be able to provide key/value pairs to our JSON document simply by
assigning as many keys and values as we desire.

Utilizing the button labeled “Add Field,” we will add two more fields to this
document. Upon clicking Add Field, a new “unnamed” row will appear. Let’s change the
name from “unnamed” to “handle.” Next, by hitting Tab, the focus will switch from the
Field to the Values column. Within the Value field, provide the string value @CouchDB
and hit Enter.

Note It’s important to note that fields should not be provided with double quotes, as
they will be applied behind the scenes. Furthermore, all strings provided for Values should
always have double quotes.

Once again, click Add Field and replace the “unnamed” field with that of “message.”
Then once again hit Tab, to provide the value of “greetings and salutations” and hit Enter.
Last, click the button labeled “Save Document,” to write these changes into the document.
CouchDB provides versioning to ensure the ability to roll back to any previous changes.
For this reason, you may note that CouchDB has inserted a field on your behalf labeled
“_rev.” This simply refers to the current document revision.

While we utilized the Add Field button to include key/value pairs to our document,
you could have switched the manner in which we inputted our members by toggling from
the Fields view to the Source view. Once within Source view, by double-clicking the
presented source, you would note that the presented JSON becomes editable, as shown in
Figure 12-6. If you are utilizing the Source route, always make sure that you are providing
valid JSON.

Overview guestbook 03e68a3bac3fd452bf6b136e76001222
@ save Document & addField) Upload Attachment £} Delete Document
Fialis Source
- h o
{ L <]

®_id": “@3eb8a3bac3ifda5ibfebliceTEad1222", h D B
"_rev': “1-2c4223T72¢71cTodbETacad289ddTRE2T", O uc
“handle": "@CouchDE™, relax
“message”: "greetings and salutations®

Owverview

Configuration

Figure 12-6. JSON Source input field

Congratulations, you have created your very first data entry in the guestbook database.
In order to view the JSON text of this entry, click the icon shown in Figure 12-7.

www.it-ebooks.info

http://127.0.0.1:5984/guestbook/03e68a3bac3fd452bf6b136e76001222
http://www.it-ebooks.info/

03e68a3bac3fd452bféb136e76001222

1 7 =

Figure 12-7. Performing a quick request for the current view

Clicking the button shown in Figure 12-7 is simply an easier way to navigate our
browser to the current document similarly, as shown previously. Whether you use the
button or physically type in the full URI, you will be presented with the raw JSON, as
revealed in Figure 12-8. Figure 12-8 shows our recently created document with
accompanying handle and message.

T
ana

| WS http /127, 36e76000222 + =r2
(4) @ 127.0.0.1:5984 /guestbook/03e68a3bac3fd452bi6h1 36676001222 e | (Kl vahoo AfE A & - | =
7 jQuerfy | RWD Bookmarklet |} HTML CodeSnitfer [J5ON ~ [| whatFont
©® Disable = L Cookies = 4 €55 = il Forms = = Images = F Information = & Miscellaneous = ° Outline = # Resize + 4 Tools = €3 ViewSource = [!f Options - X X «

{"_id":"03e6Balbac3fdisibitblIGeT6001222"," rov i "1-22422372071c79dbiTacaB2 894478827, "handla" : "#CouchDD” , "measage” : "greetings and salutationa®})

Figure 12-8. JSON revealed for @CouchDB signature

At this point, let’s revisit the overview interface by navigating to
http://127.0.0.1:5984/_utils/. This time, arriving at the overview interface
lists our guestbook among the default two. From here, we can easily access our guestbook
database by clicking the name “guestbook” within the list.

By selecting the guestbook database, the Futon interface drills down from the
overview to our guestbook database specifically. The last time we were within this
interface, the table possessed zero documents. However, this time, a single document is
presented within the table, as shown in Figure 12-9.

ano

3 Apache CowchDl - Futan J +
€d 127.0.0.1:5584/_utils /darabase. himiiguestbook & | (K- vanon FRIE A= T B
[juerify [RWD Bookmarkiet | | HTML CedeSniffer [150N = [| WhatFone

@ Disable = L Cookles = # €55 - il Forms =] Images = § Information = @ Miscellaneous = # Outline = # Resize = o Tools = €3 View Scurce + {lf Options =
Overview guestbook

M

v X ¥
&P NewDocument) Security &) Compaci & Cleanu £} Delete Database. ump to cu Wiaw: | All Sacunsents =| Stale viows
Ky A alue
"B3cEfadbac3fdasabIEb1I5eTERR1 22" rev: “1-2cd223T2eTicTOdRdTacab2R0ddTEATT

s CouchDB

L
-]
[
=

relay

Figure 12-9. All existing documents listed for guestbook

Figure 12-9 shows a two-columned table consisting of the labels “Key” and “Value”
and, within it, our recently created document. This can be identified by the GUID we were
working with earlier. Furthermore, by clicking the GUID listed in the column labeled
“Key,” we can review the individual content retained by that document.

As I stated earlier, Futon, similar to a user-agent, initiates a series of HTTP requests on
our behalf behind the scenes. If you were to open up your developer’s toolbar and navigate
to the Network tab, you would be able to find a GET request for the following request:
http://127.0.0.1:5984/guestbook/_all_docs.

At any point in time, we can query our database for any and all entries it holds, by

www.it-ebooks.info

http://www.it-ebooks.info/

navigating to the aforementioned URL. As the later portion of the URL, _all_docs,
suggests, we should expect to view every saved document pertaining to our guestbook
database. Upon your arrival to the preceding URL, you should be presented with
something that resembles the following JSON:

{"total_rows":1,"offset":0, "rows":[
{"1d":"03e68a3bac3fd452bf6b136e76001222", "key" : "03e68a3bac3fc
{"rev":"1-2c422372e71c79db87aca8289dd78827"}}]}

The preceding output displays a complex JSON structure providing an overview of all
documents possessed by our guestbook database. Held within the member labeled “rows,”
it reveals an array whereby each reflected document can be easily traversed, and its “id”
can be obtained. As you recall, this is the identifier by which the server refers to a
document.

The resource used before, _all_docs, reflects a unique JSON document. What
makes this document unique is that all of its retained data reflects the results for a
particular query. That query being the following:

Capture the id and current revision for documents affiliated
with our guestbook database. Additionally insert the id as
the value of the "key" field.

In the CouchDB nomenclature, all documents that are used to reveal the results of a
query are referred to as a view.

Creating Views

Creating a custom JSON representation of the data held by our database is what the
CouchDB nomenclature refers to as a view. A view, in its most atomic form, is a
JavaScript map function whose signature and implementation reflect the following code:

function(doc){
emit(key , value);

}

Note A map function is applied against all elements within a list, to produce a
particular result set.

The initial parameter doc represents the parsed JSON content of a document, which
exists within the database. With a process similar to a JavaScript for loop, each and
every document that exists within our database is supplied to this very function. From
within the body of the function, and utilizing pure JavaScript, we can analyze the provided
JavaScript object to extract particular keys and values to construct a new object that
reflects the needs of a particular view. Once we have determined what we wish to provide
as a row within this result, we will supply it as the value argument of the emit method.
The emit method is a global method provided by CouchDB to capture a key and data

www.it-ebooks.info

http://www.it-ebooks.info/

value as a row within a particular view.

The great thing about the em1t method is that it can be called as many or as few times
as you like per document. Additionally, the key provided mustn’t be unique. Unlike a
traditional key/value pair, the parameter labeled “key” is used strictly to sort or filter
results that are captured within this view. By providing taxonomy, we can obtain all rows
that exhibit this particular key.

Note Each call to emit creates a corresponding row in the produced document.

While this may sound inefficient, depending on the amount of saved documents within
the database, the reality is that it’s only inefficient the very first time this view is queried.
Any subsequent request for a view that has previously been run will only be executed
against any documents that may have been updated, deleted, or added.

Creating Our First Custom View

Let’s begin to devise our first view. If you are not currently within the guestbook view,
navigate your browser to http://127.0.0.1:5984/_utils/ and click the
guestbook database. On the right-hand side of the screen, you will see a drop-down menu
labeled “View:”, as seen in Figure 12-10. Be sure to select “Temporary view....”

Overview guestbook
g
&P New Document &) Security. Jump to; [Document i0 View: | All documents j Stale views
":}" Campact & Cleanup. _‘r Delete Database All '?‘M"'m'm“
Design docurnents

Key A Value
6764226000 Tdct 1856020 c20edBO215a" rev: “1-acfd986435faead1dad91dd IbSd61037 COUCh D B

relax
Showing 1 ¢ Rows perpage: | 10 | %t Pag

Figure 12-10. Creating a temporary view

Upon your selection, you will be presented with a screen similar to that shown in
Figure 12-11.

Overview guestbook

€ New Document) Security Jump to: [Document IC View: | Temporary view... =| Stals views
© Compact & Cleanup €) Delete Database
¥ View Code

e | | CouchDB

emit(null, doc); re|a)(
}
Run Language: | javascript j v Save As._.. Ve lools
Overview
Warning: Please note that temporary views are not suitable for use in production, as they ane really slow for any database with more than a few Configuration

dozen documents. You can use a temposary view to experiment with view functions, but switch lo a8 permanent view before using them in an
application. Woicomo to Admin Party!
Evoryona is admin. Fox !

Fubon on Apache CouchDB 160

Figure 12-11. An anonymous map function

The interface illustrated in Figure 12-11 is what we will use to design a custom query,
a.k.a. a view. On the left-hand side of the screen, just below the label “Map Function,” you
can see the anonymous function I was discussing earlier. Utilizing the interface, we can

www.it-ebooks.info

http://www.it-ebooks.info/

begin reading particular members from the supplied document and begin the retrieval for
the rows of our view.

While we have a view that provides the IDs and revisions to all documents, let’s create
a view that will output all captured handles and their corresponding message, by updating
the map function to reflect the following code (Listing 12-1):

Listing 12-1. A Specific map Function Implementation

function(doc) {
if(doc.handle){
emit(doc.handle, { "handle":doc.handle, "message":
doc.message, "_id":doc._id});

}
}

Listing 12-1 demonstrates an implementation that constructs a view, which will reveal
the handles, messages, and the ID of each document within the guestbook database.
Furthermore, using a simple condition to determine if a handle does not exist, we can
choose whether or not a particular document should be present. With this code in place,
click the button labeled “Run” to observe the results of our view.

Clicking Run should reveal a singular row reflecting its findings, as seen in Figure 12-
12. As we only have one document in our database, only one document has been supplied
to our function. Let’s add a second entry to our guestbook database, but first, let’s save this
temporary view as a permanent one. Any temporary view can be converted into a
permanent one simply by clicking “Save As...” on the right-hand side of the screen.

Overview guestbook

™ Mew Document &) Security &) Compact & Cleanup '_ Delete Database Jump to: |Document View: Temporary view. 'J Stale views
¥ View Code
B LA UUL. (T
}
}
Run Language: | javascript ﬂ t Save As...

Waming: Please note thal iemporary views are nol Suitable for use in production, as they are really siow for any database with more than a few dozen documents. You can use a lemporary view
0 experimant with view functions, but switch to a permanent view before using them in an application.

Key A Value

*&CouchDB" handle: "GCouchD™, message: “grestings and sslutations”, _id
"83e68a3bac3fddS2b T 6b136eTERGL1222"

Rows per page: | 10 Ll

View reguest duration: 00:00:00.522

Figure 12-12. Results for our custom query

Clicking this button will bring up a prompt asking for the name of a design document,
as well as the unique name for our recently created query (a.k.a. view). At this point,
provide the name of a document as _design/guests and provide the view name
“signatures,” as shown in Figure 12-13. Once you have entered the appropriate names,
click Save. Because everything is saved as a JSON document, you, too, can access the raw
JSON for the view we just devised.

www.it-ebooks.info

http://www.it-ebooks.info/

(o] 5
Run P ; ~des ion/ TN
exinin sgnatures

oy

Save Cancel

Figure 12-13. Creating a permanent view

The design document labeled “guests” is an example of a string 1d versus a GUID.
Because design documents are more likely to be requested specifically rather than iterated
over, it makes more sense to use a name that is easy to remember. Because the name of the
resource, “guests,” is the actual name of the file, we can always obtain its raw JSON by
simply visiting the following URL.:
http://127.0.0.1:5984/guestbook/_design/guests.

It is worth noting that all documents pertaining to a view are prefixed with
_design/. This denotes a view from an ordinary document.

Once more, let’s get back to our database by navigating your browser once more to
http://127.0.0.1:5984/_utils/ and clicking the guestbook database. To create
another entry into our database, click New Document. Let’s add a second document, to
reflect the handle @apache, and provide it with the following message: “Hello World.”
When this is completed, click Save.

At this point, you should now have two entries within the guestbook database. You can
easily navigate back to our guestbook database by selecting it from the breadcrumb in the
header. Upon your arrival, you should witness the two documents of our database, as
revealed in Figure 12-14. You may immediately recognize that the rows of our view no
longer resemble the outputted table as previously shown in Figure 12-9.

B”
:-:' Mew Document U Security. G Compact & Cleanup: Jump W |\ Do ement 1D View': | signatures :J Stale views
\":‘ Delete Database
P View Code
o CouchDB
"Bapache” _id re F d X
=aCouchDE™ "greetings and salutations™, _ie fools
: nr Overview
Configuration
Rows par paga: | 10 =] | HNext o
Replicator
View reguest duration: 00:00:00.305 Status

Documentation

Whelcome ko Admin Partyl
Everyore = admn. Fi

Futor an Aot CouchDB 1.6.0

Figure 12-14. Two rows of signatures within the guestbook

This is because the database currently makes use of the “signature” view we recently
created. Feel free to toggle between any views by using the drop-down menu in the upper-
right-hand corner. For whichever view is selected, choosing the icon shown in Figure 12-

www.it-ebooks.info

http://www.it-ebooks.info/

14 will initiate an HTTP GET request for the chosen resource. The response will reveal for
the chosen query all matches presented in JSON.

No matter how many entries your guestbook DB is provided, you can always obtain
the results of your signature view by navigating your browser to the following URL:
http://127.0.0.1:5984/guestbook/_design/guests/_view/signhatur
Visiting the aforementioned URL reveals the handles, message, and __id for each
document that matched our query. Furthermore, because we utilized the key label when
emitting our values, we can further filter our search to that of a particular key/value simply
by appending a query string parameter to the preceding URL, like so:
http://127.0.0.1:5984/guestbook/_design/guests/_view/signhatur
key="apache”. Appending the key parameter with a string matching our @apache
handle returns only the results that match the provided key. It’s important to note that all
strings provided to the key parameter must be wrapped in double quotes.

We can even sort our list by providing yet another query parameter. At our disposal for
sorting, we can use either ascending or descending. Regardless of which parameter you
choose to use, the value which it requires is that of a true or false. Visiting the
following URL will present our rows, in alphabetical order:
http://127.0.0.1:5984/guestbook/_design/guests/_view/signhatur
ascending=true.

Connecting Node and CouchDB

As was stated earlier, CouchDB possesses its own REST API for working with databases,
documents, and views. In fact, it’s 100% possible to add/remove documents, views, and
databases with nothing other than standard HTTP requests. I hope from what you have
previously observed that this will not come as a shock to you.

Because CouchDB’s API is available through the URL, we can both persist and query
data from either a browser or server. If we were to work with CouchDB via the client side,
we could rely on Ajax, whereas on the server side, we can incorporate the use of an
instance of the http.ClientRequest.

It must be made known that because CouchDB runs on its own port, any and all client-
side requests beyond those made by Futon will require the incorporation of all appropriate
CORS headers. By default, CouchDB does not have these enabled, but it does offer the
ability to activate them via the configuration view, shown in Figure 12-15, located at
http://127.0.0.1:5984/_utils/config.html. We will discuss how to
properly configure CouchDB to enable CORS in Chapter 14.

www.it-ebooks.info

http://www.it-ebooks.info/

n R
L) e | &@ Apache CouchDE - Futon: L+ L

@- 127.0.0.1:5984/ utils/config.html o E- Yahao Q -ﬁ. B & 2 =~ ==
;.__‘ jQuerify [: RWD Bookmarklet { ! HTML_CodeSniffer (] JSON = | WhatFont
(® Disable » L Cockies v # CS5 v il Forms » & Images » § Information * @ Miscellaneous » # Outline » & Resize v 4 Tools ~ <> View Source + !} Options
Overview Configuration
Section Option Value Delete
cors credentials false %
methods GET ,POST
origins * X
httpd default_handler {couch_httpd_db, handle_request} » 5 -L:‘;“:"ﬁ; :" Aty
enable_cors ks n an Apache CouchDB 1.8.0

Figure 12-15. CouchDB configuration interface

Simply because the HTTP methods required to work with CouchDB are beyond the
scope of this book, for simplicity, we will incorporate CouchDB with Node and use yet
another module to streamline such HTTP calls into a simple API. The module that we will
be working with is known as Cradle.

Cradle for Node

While Node itself includes a variety of modules, one that it does not ship with is Cradle.
Cradle is a third-party, high-level CouchDB client module that has been created to easily
and asynchronously work with CouchDB and Node applications. Due to its extremely
high-level API, we will remain shielded from the HTTP methods that have not been

covered in this book. If you wish to learn more about Cradle, feel free to navigate to its
GitHub page: https://github.com/flatiron/cradle.

Installing Cradle is very easy. Simply use the command-line interface to navigate to
the top directory, which contains the chapter12 source code. For me, that would be the
following locations:

//PC
C:\Users\UrZA\Documents\Aptana Studio
3 Workspace\BeginningJSON\chapteri12\
//Mac
/Users/FeZEC/Documents/Aptana Studio
3 Workspace/BeginningJSON/chapterl12/

Simply type cd, followed by the location of your chapter12 directory, and hit
Enter. Next, type in the following command and hit Return on your keyboard:

npm install cradle

This will initiate a download of all required packages for the particular module into a
folder labeled node_modules, within the chapter12 directory. If your console
outputs a series of lines that all display errors, as shown in Figure 12-16, you will be
required to run the same command as the administrator.

www.it-ebooks.info

https://github.com/flatiron/cradle
http://www.it-ebooks.info/

Macintosh:chapterl2 FeZEC$ npm install cradle
f package.json cradle@d.6.7 No repository field.
Error: Attempt to unlock cradle, which hasn't been locked
at unlock (/usr/local/lib/node_modules/npm/1lib/utils/locker.js:44:11)
at ¢b (/usr/local/lib/node_modules/npm/1ib/cache/add-local.js:30:5)
at fusr/local/lib/node_modules/npm/1lib/cache/add-local. js:47:20
at fusr/local/lib/node_modules/npm/lib/utils/locker.js:30:7
at /usr/local/lib/node_modules/npm/node_modules/lockfile/lockfile.js:167:38
at OpenReq.Req.done (/usr/local/lib/node_modules/npm/node_modules/graceful-fs/graceful-fs.js:144:5)
at OpenReqg.done (/usr/local/lib/node_modules/npm/node_modules/graceful-fs/graceful-fs,js:64:22)
at Object.oncomplete (fs.js:187:15)
If you need help, you may report this =entirex log,
including the npm and node versions, at:
<http://github.com/npm/npm/issues=>

System Darwin 13.3.8

command "node" "/usr/local/bin/npm" "install" "cradle"

owd fUsers/FeZEC/Documents/Aptana Studio 3 Workspace/Beginning]SON/chapterl2
node -v v@.10.29

npm =v 1.4.14

Additional logging details can be found in:
fUsers/FeZEC/Documents/Aptana Studio 3 Workspace/BeginningJSON/chapterl2/npm-debug. log
not ok code @

Figure 12-16. Cradle installation error

On a Mac, this can be achieved by preceding the aforementioned command with
sudo, making the entire command sudo npm install cradle. Once you press
Enter, you will be asked for your login password.

On a PC, you will have to close the command prompt and open it from the Start menu.
Depending on the version of Windows, you may find within your startup menu two
listings for the command prompt; only one is followed by “Admin.” Choose this particular
command prompt and retry the preceding command.

If, on the other hand, you do not see the Admin command prompt within your startup
menu, right-click on the singularly listed command prompt, to reveal the menu option “run
as admin.” Go ahead and run as admin and retry the command.

A successful installation reveals a node_module folder within the specified path, at
which point our module is ready to be used.

Note Due to a bug in the latest Node.js Windows installable, Windows users may be
receiving the following message: “Error: ENOENT, stat 'C:\Users\
[USER_NAME]\AppData\Roaming\npm.” If this is the case, to correct the problem,
you will have to type the command mkdir C:\Users\

[USER_NAME]\AppData\Roaming\npm, where [USER_NAME] is replaced with
the login name of your user.

Incorporating the Cradle Module

Once the Cradle module has been successfully installed into our top-level directory, we
can begin working with it by incorporating it into a Node application via require().
Furthermore, as long as the CouchDB server is running, we can use the following snippet
of code shown in Listing 12-2 to configure our http.ClientRequest to connect to it.

Listing 12-2. Including and Configuring Cradle with CouchDB

www.it-ebooks.info

http://www.it-ebooks.info/

1 var cradle = require('../node_modules/cradle');

2 var DBConnection = cradle.Connection;

3 var couchDB = new DBConnection('127.0.0.1', 5984, {
4 cache : true,

5 raw : false,

6 forceSave : true

7

1)

The code shown in Listing 12-12 simply demonstrates the inclusion of the Cradle
module within the Node application, in addition to opening a connection to our CouchDB
server. The path provided to the require method reflects the path our node_module
folder created, relative to the directory holding our Node application. Once the Cradle
object is obtained via the require method, it is assigned to a variable labeled “cradle”
and then used to open a connection to the CouchDB server.

Working with Databases

As you will soon come to learn, Cradle possesses an extremely high-level API that allows
us to simply and conveniently work with databases and CouchDB. Furthermore, the API
that we will be working with is object-oriented. This means that the API is exposed solely
as an inherited interface of an initialized object. In this particular case, that object is a
database instance. Listing 12-3 demonstrates how to create such a reference.

Listing 12-3. Creating a DB Reference
var gbDataBase = couchDB.database('guestbook');

The code shown in Listing 12-3 leverages the method labeled “database,” exposed
by our couchDB instance, to initialize a Cradle database object. With this object, we will
be able to work with documents and views that pertain to this particular database. What is
important to understand is that the preceding code is not actually connected to CouchDB
at the moment. Remember that HTTP is a stateless protocol. The moment a response is
provided, the connection between the client and server are closed. Instead, our gb
reference is nothing more than a wrapper that will be used to concentrate requests for a
particular database. In this particular case, that database is labeled “guestbook.” Once a
reference to a particular database is created, we can reference its exposed API, to begin
receiving and sending data between Node and CouchDB.

Cradle Database API

Because CouchDB’s interface is exposed via mere HTTP requests, what will actually
occur under the hood of the Cradle API will be a series of HTTP requests to the CouchDB
server. However, as Cradle itself is a wrapper, it will perform these low-level tasks on our
behalf. This allows us to focus on the five key methods of the API, shown in Table 12-1.

Table 12-1. Methods of a Cradle Wrapper

Methods Description

www.it-ebooks.info

http://www.it-ebooks.info/

create(); Used to create a database

exists(callback); Used to determine if a database currently exists

get(id[,id] , [object], .

callback): Used to fetch a particular document

view(id, [object] - :

,callback); Used to query an existing view

save([id], object , Used to save a document to the current database. This can be used to
callback); save either a view or an entry.

The methods shown in Table 12-1 are the sole methods we will be working with in this
chapter. Now, if that is not simple enough, then consider the following: four out of the five
methods outlined above provide functionality of the sort we have already become familiar
with from the previous sections.

Create

The first method that we will review is the create method. Use of the create method
provides our Node application with the ability to initialize a database within CouchDB.
Use of the method is as simple as invoking the method upon a database reference, as seen
in Listing 12-4.

Listing 12-4. Invoking the Creation of Our Database Reference

1 //..truncated code
8 var gbDataBase = couchDB.database('guestbook');
9 gbDataBase.create();

Listing 12-4 invokes the create method upon our existing gbDataBase instance.
The code is equivalent to us having pressed the “Create Database...” button within the
Futon interface.

Apache CouchDB prevents us from creating a database that possesses the same name
as a database that currently exists. Because our CouchDB application is currently in
possession of a database labeled “guestbook,” the code from Listing 12-4 silently fails.
This can be considered both a good thing and a bad thing. On one hand, it’s great to know
that you don’t have to be concerned with possibly overwriting an existing database by
mistake. However, on the other hand, you may rather be made aware if a database of the
same name exists, so that you can provide a new name to the DB. For that, our DB
instance exposes the exists method.

exists

The exists method is an asynchronous method used to determine if a database currently
exists. The advantage of such a method is to determine whether a database already exists,
lest we insert values to a table we did not intend to.

As an asynchronous method, the invocation of the exists call must be provided with

www.it-ebooks.info

http://www.it-ebooks.info/

a callback function. It is this function, whose signature reflects that of Listing 12-5, that
will be triggered once Cradle has determined whether the database exists or not.

Listing 12-5. Callback Signature of the exists Method
function(err, exists);

As Listing 12-5 reveals, the callback supplied must be capable of receiving two
arguments. The first parameter, err, accounts for any error that may have occurred, such
as a network error. If no error has occurred, the argument provided will be that of null.
The second parameter, exists, indicates whether the given database exists or not. The
argument it will be provided if an error is not thrown will be that of a Boolean value.

Using these two parameters, we can determine the appropriate conditions that
determine which code blocks to execute, as shown in Listing 12-6.

Listing 12-6. Determining If a Database Exists

1 //...truncated code

9 gbDataBase.exists(function(err, exists) {
10 if(err) {

11 console.log('error', err);

12 }else if (exists) {

13 console.log('the guestbook db exists');
14 }else {

15 console.log('database does not exists.');
16 gbDataBase.create();

17}

18 });

Utilizing our gbDataBase reference, Listing 12-6 invokes the ex1sts method
exposed by the gbDataBase instance and supplies an anonymous function as the
callback (line 9). Upon the callbacks invocation, it will be supplied with either an error
instance or that of a Boolean. Utilizing both of these parameters, we can determine
whether or not they possess a value to determine what blocks of code should be run.

If there is an error, our application will be provided with the ability to handle it (line
10). If the file exists, we can perform the invocation of another database (line 13). Last, if
the database does not exist, we can successfully create it, utilizing the previously
discussed create method (line 16).

If you were to execute Listing 12-6 in its totality, you would notice that the following
is output in the command line: the guestbook db exists. Of course, this is
expected, as we already had created the guestbook database. One good thing about this is
that we also have a few documents stored within our guestbook database. This will
become helpful when we review the next method in the Cradle interface.

get

The get method, as you may suspect, initiates HT'TP requests utilizing the GET request

www.it-ebooks.info

http://www.it-ebooks.info/

method. The get method is used to obtain documents that are associated with the targeted
database in an asynchronous fashion. The method’s signature, as outlined in Table 12-1,
reveals that the get method expects to be invoked with a possible three arguments. These
arguments represent the document by its ID, an object, and a callback function.

The first parameter, 1d, can be provided either as a singular identifier or as an array of
multiple document IDs supplied as an array. If you recall, a document ID is generally a
GUID, such as 03e68a3bac3fd452bf6b136e76001222, unless the document you
seek is the result of a design document, in which case, it’s you who must supply the full
path to the query you are seeking to utilize, such as
_design/guests/_view/signatures.

Note Every document possessed by a database can be obtained by supplying
_all_docs as the string.

The second parameter of our get method is that of an object. The object itself
represents the provision of optional query string parameters that we wish to accompany
the request. Such parameters can be ascending, descending, 1limit, key,
startkey, and, last, endkey, used to manipulate the resulting rows returned by our
views.

The first two keys, ascending and descending, are self-explanatory. These
parameters are used to sort the set of results in either an ascending or descending manner.
The factor that determines whether an item comes before or after depends on the value
that established the “key” used with the query. In the case of our guest/signature, the key
was each user handle. The value that can be supplied to either of these keys is 1 or 0,
whereby 1 equals true and 0 is false.

The parameter 1imit is used to express the maximum amount of desired results to be
returned. This value should be expressed in the form of an integer.

The key parameter, as you may recall, must be provided a value of a string wrapped
with double quotes. Providing this parameter can reduce the entire result set to that of a
subset of rows whose keys match the value supplied. Providing key="@CouchDB"”
would result in our signature’s query only displaying one result.

The final two parameters, startkey and endkey are used to return a subset of the
original set of results whose keys are determined to exist within the indicated boundaries.

The provision of any query string you choose to apply to the GET request is required
to appear as a key/value member of the object. Listing 12-7 demonstrates the use of the
optional parameter to establish the use of the 1imit and key parameters. If you do not
plan on using any parameters, just provide null as the value.

Listing 12-7. Query String Parameters Supplied As Members of an object
var queryString = { limit:1, key:"@CouchDB" };

The final parameter that must be provided to get is that of a callback. The callback
whose signature can be seen in Listing 12-8 is required to possess two parameters.

www.it-ebooks.info

http://www.it-ebooks.info/

Listing 12-8. Callback Signature for get
function(err, res);

Because get is an asynchronous method, it is necessary to provide a callback, so as to
be informed when the operation has concluded. Furthermore, as outlined in Listing 12-8,
our callback will be provided with an argument for either of the two outlined parameters,
err and res. The first parameter, err, will be provided with an instance in the event
that an error has occurred. Such an error may be related to network traffic or a server error.
On the other hand, if everything is successful, our callback function will be provided with
the appropriate JSON response.

Utilizing these two parameters, we can ensure the appropriate body of code is
executed, lest we cause our own errors. Listing 12-9 demonstrates a GET request for our
all_docs query.

Listing 12-9. Obtaining All Documents for the Target DB

1 var cradle = require('../node_modules/cradle');

2 var DBConnection = cradle.Connection;

3 var couchDB = new DBConnection('127.0.0.1', 5984, {
4 cache : true,

5 raw : false,

6 forceSave : true

-

1))

8 var gbDataBase = couchDB.database('guestbook');

9 gbDataBase.exists(function(err, exists) {
10 if (err) {
11 console.log('error', err);
12 } else if (exists) {
13 console.log('the guestbook db exists');
14 } else {
15 console.log('database does not exists.');
16 gbDataBase.create();
17}
18 });

/*obtain all documents*/
19 gbDataBase.get('_all_docs', { limit:1 }, function(err,
res) {
20 if (err) {

21 console.log('error', err);
22 } else if (res) {

23 console.log(res);

24 } else {

25 //.. do something else

26}

www.it-ebooks.info

http://www.it-ebooks.info/

27 });

Listing 12-9 demonstrates the use of the get method to obtain a particular document
from the guestbook database. In this particular case, that document is a query for all
documents. Furthermore, we have chosen to limit the returned results to a maximum of
one document. Running the preceding Node application results in the following output:

[{ 1d: '03e68a3bac3fd452bf6b136e76001222"',
key: '03e68a3bac3fd452bf6b136e76001222"',
value: { rev: '2-d91cl1f744felOe74dc5a2e8f23c13315"' } }]

As you can see, we have received a single result from the original set of results.
Because we could potentially be working with a vast amount of results, CouchDB
conveniently inserts each JSON result within an array structure, so that it can be easily
traversed. As I hope you may be able to witness, the preceding output is no longer JSON
but, rather, a JavaScript object. You can note this is the case, owing to the missing double
quotes that would otherwise surround the keys if it were JSON. What this means is that we
don’t have to attempt to parse the returned JSON text, as Cradle has already performed
this for us. Therefore, the response provided can immediately be traversed, and its
members accessed. Let’s remove the 11mit parameter and output only the ID of each
row. Listing 12-10 outlines in bold the changes to our get method.

Listing 12-10. Logging the ID of Each Returned JSON Document

1 //..truncated code
/*obtain all documents*/

19 gbDataBase.get('_all_docs', { limit:1 }, function(err,
res) {

20 if (err) {

21 console.log('error', err);

22 } else if (res) {

23 var len = res.length;

24 for (var i = 0; i < len; i++) {
25 console.log(res[i].id);

26 }

27 } else {

28 .. do something else

29 }

30 });

Listing 12-10 traverses each of the indexes within the provided JavaScript array until
all have been reached. With each value obtained, we log out the corresponding ID,
resulting in the following output below:

0@3e68a3bac3fd452bfeb136e76001222
0@3e68a3bac3fd452bfeb136e76001eec
_design/guests

As you can see from the output, our guestbook database is currently in possession of

www.it-ebooks.info

http://www.it-ebooks.info/

three documents, two of which possess GUIDs as their identifiers, and one of which
utilizes a string. Knowing what is currently retained within our database and what was
outputted, we could easily deduce that these two GUIDs represent our two guestbook
entries, while the latter represents our query. However, now that we have obtained the
resulting identifiers, we could easily obtain the values retained by each ID with
subsequent use of the get method.

view

While the results of a view can be obtained via get, a simpler method is to use the view
method. Because view actually wraps get, it invites us to provide a more succinct path
to our query. As I mentioned within the section on get, a design document can be
obtained by specifying a full path, such as the following:
'_design/guests/_view/signatures'. However, this path can appear rather
long and be cumbersome to work with.

With view, you have the ability to query a view simply by omitting _design and
_view from the preceding path, resulting in the more succinct path
guest/signatures. Each design document and its view can easily be fetched by
simply joining the two names together with a forward slash. You may recall “Design
Document” and “View Name” as the titles of fields shown in Figure 12-13.

The view method possesses a few more behaviors that can improve efficiency, but
they are beyond the scope of this book. However, aside from those unmentionables, the
view method continues to function in precisely the same manner as get. It continues to
require the object parameter for added query parameters, and last, because it is an
asynchronous function, it requires a callback function whose signature is the same as that
provided to get. At this point, let’s query our guestbook database for any and all
signatures left behind (see Listing 12-11).

Listing 12-11. Querying Our DB for All Signatures

var cradle = require('../node_modules/cradle');

var DBConnection = cradle.Connection;

var couchDB = new DBConnection('127.0.0.1"', 5984, {
cache : true,

raw : false,

forceSave : true

1)

var gbDataBase = couchDB.database('guestbook');

gbDataBase.exists(function(err, exists) {
if (err) {

console.log('error', err);

} else if (exists) {

console.log('the guestbook db exists');
} else {

www.it-ebooks.info

http://www.it-ebooks.info/

console.log('database does not exists.');
gbDataBase.create();

}
1)

/*obtain an existing view*/
gbDataBase.view('guests/signatures', null, function(err, res) {
console.log(res);

1)

Listing 12-11 reveals in bold the latest change to our running base code. Rather than
using the get method exposed by our gbDataBase instance, we opt for the more
succinct method of defining our path with view. Running the preceding Node application
results in the following output:

[{ 1d: '03e68a3bac3fd452bf6b136e76001eec’,
key: '@apache',
value:
{ handle: '@apache',
message: 'Hello World',
_id: '03e68a3bac3fd452bf6b136e76001eec' } 1},
{ id: '03e68a3bac3fd452bf6b136e76001222",
key: '@CouchDB',
value:
{ handle: '@CouchDB',
message: 'greetings and salutations',
_id: '03e68a3bac3fd452bf6b136e76001222"' } }]

The preceding code outputs the two presently saved signatures and messages provided
by both @apache and @CouchDB. Because view leverages the get method, we can opt
to provide our request with the addition of query string parameters. Listing 12-12
demonstrates a query that filters the preceding results with the use of the key parameter.

Listing 12-12. Filtering All Signatures for a Particular Key
//.. truncated code

/*obtain an existing view*/
gbDataBase.view('guests/signatures', {key:"@CouchDB"} ,
function(err, res) {

console.log(res);

1)

Listing 12-12 replaces the null primitive with that of an object whose sole member is
that of the key parameter. The preceding code will result in the HTTP GET request for the
following URL.:
127.0.0.1:5984/guestbook/_design/guests/_view/signatures?
key="@CouchDB". By providing a key, the result set will be filtered there by returning
a subset of results whose keys match those of “@CouchDB”. Running the preceding

www.it-ebooks.info

http://www.it-ebooks.info/

listing outputs the following:

[{ 1id: '03e68a3bac3fd452bf6b136e76001222",
key: '@CouchDB',
value:
{ handle: '@CouchDB',
message: 'greetings and salutations',
_id: '03e68a3bac3fd452bf6b136e76001222" } }]

As you can see, the output displayed only reveals a signature left by the handle
@CouchDB. If it just so happened that @CouchDB signed our guestbook more times, all
of those results would be returned.

With that being said, the next method will provide us with the ability to create more
documents.

sdve

The save method, as the name suggests, allows us to save documents for the targeted
database. As its signature reveals in Table 12-1, the save method anticipates three
parameters: 1d, object, and callback.

The first parameter, 1d, is used to provide an identity to the document being created.
As you have undoubtedly witnessed, any and all documents have a corresponding ID.
These are usually generated as GUIDs by CouchDB; however, they can also represent the
name of a design document. To keep things flexible, save enables us to opt in to
supplying an ID as the first parameter. If an ID is not provided, CouchDB will generate it
automatically. If, however, an ID is provided, it will replace the ID that will have been
generated by CouchDB.

If the document being created represents a view, you will be required to supply an
appropriate ID. Remember: All views must be prefixed with _design/ in order for
CouchDB to differentiate between ordinary documents and design documents.

The second parameter that will be supplied to save is that of the document’s content.
If we were to re-create our initial document with save, it would be provided with the
following object:

{
"handle": "@CouchDB",

"message": '"greetings and salutations"

}

Providing ordinary document content is fairly straightforward. On the other hand, if
we were to re-create our “signatures” view, the object that would be required reflects the
one following:

views: {
signatures: {
map:'"function(doc) {emit(doc.handle, {handle:doc.handle,

www.it-ebooks.info

http://www.it-ebooks.info/

message:doc.message, _id:doc.id}); }";

}
+s

Because a design document will be saved as its own JSON document, it is necessary to
use the members that define its content appropriately. While at a glance this might be
confusing, the reality is that this will always be the format for constructing a map
function.

Note the complex structure of the preceding object. All design documents begin with a
key labeled views, where views represents the top-level object and is used to reference
yet another complex structure.

The complex structure of views consists of any number of object members, in which
each member represents an individual query. In the preceding outline, the member
signatures represents a possible query associated with our view.

Each query references an object whose only allowable members are the following two:
map and reduce. While both map and reduce can be used simultaneously, this chapter
does not make use of the reduce member and, therefore, it has been omitted. We will be
working exclusively with map.

The member map holds a string value whereby that string can be evaluated by
CouchDB to produce our actual query.

The final parameter of the Save method is that of a callback. As an asynchronous
method, save requires a callback to invoke when the operation has concluded. As
outlined in Listing 12-13, the callback provided should possess the following parameters:
err and res.

Listing 12-13. Callback Signature for save
function(err, res);

Depending on whether an error has occurred, the err parameter will either be
supplied with an object or a null primitive. Furthermore, if an error has not occurred and
the response is successful, we will be able to reference that response via the res
parameter. Using these two parameters, we can ensure that the appropriate body of code is
executed, lest we cause our own errors.

Creating Documents via Cradle

Having learned how to work with the save method, let’s attempt to create some new
documents, beginning with yet another guestbook signing, as seen in Listing 12-14.

Listing 12-14. Creating a Document via Cradle
1 //..truncated code

/*signing of our guestbook*/
19 gbDataBase.save({

www.it-ebooks.info

http://www.it-ebooks.info/

20 handle : "@CouchDB",

21 message : "welcome and thank you",
22 time : new Date()

23 }, function(err, res) {

24 if (err) {

25 console.log('error', err);
26 } else if (res) {

27 console.log(res);

28 }

29 });

Listing 12-14 demonstrates the implementation required by Cradle to create a new
document for our guestbook database. As you can see, we opted out of providing this
document with a specific ID. As I have previously stated, it’s often best to allow this value
to be generated by CouchDB.

The body of our document has been devised to possess a user’s name and message, in
fields labeled “handle” and “message.” In addition to the previous fields, this document
also possesses a field that reflects the time of its creation. While our previous documents
lack this “time” field, it is one of the benefits of using NoSQL databases over SQL
databases. I will discuss this in more detail shortly.

Note Cradle methods require the provision of an object that will be stringified prior to
its transmission to CouchDB, where it will be encapsulated within a document as JSON.

Last, we have provided a callback to be notified as to whether the document has been
successfully created or not. Running Listing 12-14, should no network issues be present,
will result in the following output:

{ ok: true,
id: '03e68a3bac3fd452bf6b136e760064b4',
rev: '1-66821f76618071el197e2c3aa79ecf722' }

As you can see, upon the creation of a document, CouchDB responds with the details
of that newly created document. As signified by the ok field and its value of true, we
can rest assured that CouchDB has successfully stored our document, in which case, we
would be able to see it through the Futon interface.

Upon navigating your browser to
http://127.0.0.1:5984/_utils/database.html?
guestbook/_design/guests/_view/signatures, CouchDB will present you
with three signatures. Sure enough, as seen in Figure 12-17, our most recent document
appears within the signature results. Furthermore, the inclusion of the new field, time,
did not have any negative impact on our signature query. Because our query did not
anticipate a field labeled as “time,” that value, whether it exists or not, has no bearing on
that particular function.

www.it-ebooks.info

http://www.it-ebooks.info/

&d MNew Document .. SeCurity &) Compact & Cleanup Delete Database Jump to: [Documer View: | slgnatures j Stabe vier L

Rows per page: | 10 v|
Figure 12-17. Cradle document successfully created in CouchDB

The last time we visited the preceding URL, only two documents were presented.
Upon this query, as discussed early on in this chapter, any new changes are resubmitted to
the anonymous function and accounted for as a row within the provided results.

Now that we have more than one result whose key is that of @CouchDB, let’s revisit
our ability to filter results for an identified key simply by appending ?
key="@CouchDB" to the preceding URL. Upon receiving a response to
http://127.0.0.1:5984/guestbook/_design/guests/_view/signhatur
key="@CouchDB", you will find yourself presented with two rows.

SQL databases that make use of tables to store data require all fields that will be used
for a project to be made known up front, so that a column can be used to retain that value.
This behavior requires that all data utilize each predetermined field. If a value for those
fields is not specified, a default value must be provided, lest there be an error while
running a query.

On the other hand, NoSQL databases do not rely on tables to store data. Instead, they
store data in individual documents, like those we have been working with. Because each
document represents its own body of data, it can possess any variety of fields it chooses.

Creating Design Documents via Cradle

As we have just recently stored a document that makes use of the time in which it was
created, we should devise a query that can map all documents for our guestbook database
into their own view. One thing we will have to keep in mind is that if an object does not
possess the t ime field, we must make certain not to populate our view with the current
document. Such a query is reflected in Listing 12-15.

Listing 12-15. Creating a Design Document to Possess Multiple Views

1 //..truncated code

19 /*saving of a view*/

20 gbDataBase.save('_design/guests', {

21 views : {

22 sigTime : {

23 map : "function(doc){ "+

24 "if(doc.time){" +

25 "emit (doc.handle, { handle:doc.handle,

www.it-ebooks.info

http://www.it-ebooks.info/

time:doc.time, message:doc.message });" +
26 II}II +

27 II}II

28 },

29 signatures @ {

30 map : "function(doc) {" +

31 "emit (doc.handle, {
handle:doc.handle, message:doc.message });" +
32 II}II

33 }

34 }

35 }, function(err, res) {

36 if (err) {

37 console.log('error', err);

38 } else if (res) {

39 console.log(res);

40 }

41 });

Listing 12-15 outlines in bold the key elements of our new design document. The first
item I will discuss is that saving a design document with the name of a document that
exists will overwrite the original content of that document. In the preceding listing, I am
opting to save the current design document with the name of an existing one, in order to
show you that you can have multiple views within a design document.

Using the save method and the required complex structure for a design document,
this view will be used to provide two queries regarding our guestbook. These two queries
are signatures and sigTime. The view signatures is, in fact, the same query
used previously; however, as this update will be overwriting the existing
_design/guests document, we must provide this view in addition to our sigTime,
lest it be deleted. However the view sigTime reflects an entirely new query, which will
be used to create a view to reveal only documents that possess the t ime field.

As you can see within the lines of 24 and 26, our map function determines if the
document supplied does indeed possess a field labeled t ime. Only if the field is present
will our function emit a new row for this view. Running, Listing 12-15, should no network
issues be present, will result in the following output:

{ ok: true,
id: '_design/guests’',
rev: '2-b0723b44888089eeecf790alc3e37824' }

You may be able to note that the result returned is no different than that we received
when saving an ordinary document. However, what is different, aside from the IDs, is that
as this file has been updated, its revision now reflects version 2.

Now that we have two views, let’s visit our Futon interface once again and take a
moment see the results it provides. Figure 12-18 reveals our two views within the drop-

www.it-ebooks.info

http://www.it-ebooks.info/

down menu at the top-right-hand side of the interface.

View request durabon: OO0H0C00 151 L-vu.-..--. -..;.‘-

Figure 12-18. sigTime and signatures successfully created as queries of guests

As you can see from Figure 12-18, both queries reside under the same document ID,
yet either can be used to provide its own set of results. Feel free to toggle between the two
views and note how the results vary.

EXERCISE 12-1. PERSISTING INCOMING DATA

In Chapter 11, you learned how to receive, authorize, and process incoming JSON.
Using a form along with Ajax, we have been posting users’ first and last names to our
Node application. Up until now, we have not been retaining those names. In fact, all
we have been doing is returning the extracted values as the entity body of the request.
Using Cradle, create a new database labeled “visitors” and retain all incoming
names.

Last, provide the incoming request with the response supplied by CouchDB with
each use of the save method. You can compare your code with that of Listing 12-16.

Hint: Remember that Cradle provides all response as JavaScript objects. However, a
response can only be supplied as a string.

Listing 12-16 leverages the code in Listing 11-3 from Chapter 11 and incorporates the
changes discussed in this chapter. The additions from this chapter appear in bold.

Listing 12-16. Incorportaing Cradle with an Existing HTTP Node Application

/*require*/
var cradle = require('../node_modules/cradle');
var http = require('http');

/*HTTP*/

var server = http.createServer();
server.addListener('request', requestHandler);
server.listen(1337, '127.0.0.1'");

/*Cradle*/

var DBConnection = cradle.Connection;

var couchDB = new DBConnection('127.0.0.1', 5984, {
cache : true,
raw : false,

forceSave : true

1);

/*create visitors database*/

var ghDataBase = couchDB.database('visitors');

www.it-ebooks.info

http://www.it-ebooks.info/

ghDataBase.create();

/* handle incoming requests */
function requestHandler(request, response) {

if (request.method === "POST") {
var incomingEntity = '';
var data;

request.addListener('data', function(chunk) {
incomingEntity += chunk;

1))

request.addListener("end", function() {
if (request.headers['content-
type'].indexOf("application/json") > -1) {
data = JSON.parse(incomingEntity);
} else if (request.headers['content-
type'].indexOf("application/x-www-form-urlencoded") > -1) {
data = parseQueryStringToObject(incomingEntity);

return;

b

saveToDB(data, response);
1)
} else if (request.method === "GET") {
if (request.url === "/index.html") {

response.statusCode = 200;

response.setHeader ("Content-type", "text/html");

response.write('<!doctype html>"');

response.write('<html lang="en">");

response.write('<body>"');

response.write('<form action="formPost" method="POST"
onsubmit="return ajax();" content="application/x-www-form-
urlencoded">");

response.write('First-Name:"');

response.write('<input name="fname" type="text"
size="25"/>");

response.write('Last-Name:"');

response.write('<input name="lname" type="text"
size="25"/>");

response.write('<input type="submit"/>");

response.write('</form>"');

response.write('<script>"');

response.write('function ajax(){');

response.write('var xhr = new XMLHttpRequest();');
response.write('xhr.open("POST", "formPost");');

www.it-ebooks.info

http://www.it-ebooks.info/

response.write('xhr.onload=function(){ alert(this.responseText);};"');
response.write('xhr.setRequestHeader("Content-Type",
"application/json");");
response.write('xhr.setRequestHeader ("Accept",
"application/json");");
response.write('var input
= document.getElementsByTagName("input");");

response
response
response
response
response
response
response
response
response
response

write('var objy = {');
.write('fname
.write('lname
write('}; "),
.write('xhr.send(JSON.stringify(obj));"');
.write('return false;"');
write('}"');
write('</script>"');
write(' </body>'");
write('</html>");

input[0].value, ');
input[1].value');

response.end();

} else {
response.statusCode =
response.end();

b

} else if (request.method === "OPTIONS") {

response.statusCode = 200;

if (request.url === "/formPost") {
response.setHeader ("Access-Control-Allow-Origin",
response.setHeader ("Access-Control-Allow-Headers",

"Content-Type, Accept,
Accept-Language, Accept-Encoding, User-Agent, Host,
Content-Length, Connection, Cache-Control');
response.setHeader ("Access-Control-Allow-Methods",
POST, OPTIONS');
}

response.end();

}

console.log("response=-end");

¥

console.log('Server running at
http://127.0.0.1:1337/index.html");

204;

l*l);

'GET,

var saveToDB = function(obj, response) {
gbDataBase.save(obj, function(err, res) {
response.setHeader ("Access-Control-Allow-Origin",
if (err) {
response.statusCode = 500;
console.log('error', err);
} else if (res) {

|l*ll);

www.it-ebooks.info

http://www.it-ebooks.info/

response.statusCode = 200;

var stringResponse = JSON.stringify(res);
response.setHeader("Content-Type", "application/json");
response.setHeader ("Content-Length", Buffer.byteLength(stringResponse,

'utfs'));
response.write(stringResponse);
}
response.end();
});
};

var parseQueryStringToObject = function(queryString) {
var params = {}, queries, temp, i, 1;
// Split into key/value pairs
queries = queryString.split("&");
// Convert the array of strings into an object
for (1 =0, 1 = queries.length; i1 < 1; i++) {
temp = queries[i].split('=");
params[temp[0]] = temp[1];
}

return params;

+s

Summary

This chapter demonstrated the persistence of JSON from the perspective of the server. In
contrast to persisting data via the client, as we achieved in Chapter 7, persisting data on
the server can offer a whole lot more advantages.

For starters, visitors cannot delete their data simply by clearing cache or deleting their
cookies. As the database resides behind HTTP requests, our application can safeguard the
data from specific requests, thereby offloading the control of what is saved/deleted to our
application. Additionally, because all data is being retained in a centralized location rather
than on visitors’ browsers, we can perform unique queries to organize our data and make
connections between those using our applications.

CouchDB is a convenient way in which we can construct a document-oriented
database. Furthermore, because the content within each document is JSON, our
applications are more flexible than those of traditional SQL databases.

Key Points from This Chapter

e CouchDB is a NoSQL database.

e NoSQL databases store their data as JSON within individual
documents.

e CouchDB leverages the power of JSON and JavaScript to create a
powerful and open source database.

www.it-ebooks.info

http://www.it-ebooks.info/

CouchDB’s API is simply HTTP requests.

Futon is a wrapper that allows us to get up and running with CouchDB
immediately.

A query in CouchDB is referred to as a view.

A document that contains a view is referred to as a design document.
The emit function populates a new row.

emit can be called as many or as few times per document as you like.

Cradle is a Node module that can be installed to wrap all HTTP
requests.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 13

Working with Templates

Generally speaking, a template is a tool that is used to structure as well as provide
consistency among interchangeable parts. The benefit, with regard to interchangeable
parts, is that they can be used both interchangeably and indistinguishably within an
existing structure, provided they adhere to a template. The ability to allow for
interchangeability is beneficial in all walks of life. The flexibility that templates offer has
reinforced their utility as dependable tools in the development of modern web sites. The
pairing of templates and web development has been proven to alleviate the tightly coupled
architecture concerning layout and the data that it utilizes.

Owing to their nature, templates have become the backbone of many platforms,
resulting in the prevalence of content management systems (CMS) such as WordPress,
Drupal, and more. For the most part, these platforms use dynamic server-side
programming to embed content from a database layout. However, with the prevalence of
Ajax, and the fact that change is constant, it was only a matter of time before templates
were being applied to the front end. Today, there is a variety of templating engines
available to choose from. A few examples are Dust, JSRender, Moustache, and
Handlebars, all of which rely on JSON.

Templating Engine

A templating engine, with regard to front-end development, is simply a library that binds
data with markup on the fly or otherwise dynamically. This could occur at runtime or even
performed at design time.

Up until now, while we have not been using a templating engine, we have been
performing a similar functionality nonetheless. You may recall that in Chapter 8, we used
JavaScript not only to trigger an XMLHt t pRequest but to additionally append the
returned JSON result set of book covers to our HTML document. This was achieved by
the code shown in Listing 13-1.

Listing 13-1. An Ajax Request with the Incorporation of Markup

<!DOCTYPE html>
<html lang="en'">
<head></head>

<body>

<ul id="image-container">

<script>

function loadImages() {
var ul= document.getElementById("image-container");

www.it-ebooks.info

http://www.it-ebooks.info/

var xhr= new XMLHttpRequest();
Xhr.open("GET", "data/imagesA.json");
xhr.onload = function() {

var data= JSON.parse(this.responseText);
var list = data.images;
for (var 1 = 0; i < list.length; i++) {
var image = list[i];
var listItem = document.createElement("1li");
var img = document.createElement("img");
img.src = image.url;
img.alt = image.title;
listItem.appendChild(img);
ul.appendChild(listItem);

i

i
xhr.send();

i

loadImages();

</script>
</body>
</html>

The preceding listing relies on string manipulation and DOM scripting to augment the
returned JSON data set at runtime into a presentable list of images utilizing HTML
elements, as shown in Figure 13-1.

@ [|Elements| Network Sources Timeline Profiles Resources Audits Console 2 = O, =
':_‘_ldfr?-r:r; Styles | Computed Event Listeners DOM Breakpoints »
¥ <body> 5 element.style { + Ui
¥ <ul id="image-container"> }
Telis g . i o i ul, menu, dir { user agent stylesheet
«img src="img/Androidbevelopment. jpg” alt=" g kS ¥
o Bt S display: block;
el List-style-type: disc;
¥ —webkit-margin-before: lem;
<img srce"img/php.ipg" altes""Image Two'» —-webkit-margin-after: lem;
zfli= =webkit-margin-start: @px;
T -webkit-margin—end: @px;
y sre="imgsRails. ing" alt="Irage Three'= -webkit-padding-start: 48px;
}
<img src="img Android. jng”® alt="Image Thres"=
.1 ==
ul=> margin 16 1
B escript>.</script> | e -)

Figure 13-1. Revealing the markup of our dynamic inclusion of loaded data

In the preceding example, the HTML elements required to produce the layout have
been entangled with our HTTP request, which makes our application convoluted. Not only
is our markup not located where it ought to be, in an HTML document, but in their object-
oriented form, the elements are not instantly recognizable as HTML elements.

var listItem = document.createElement("11i"),;
var img = document.createElement("img");

www.it-ebooks.info

http://www.it-ebooks.info/

img.src image.url;
img.alt image.title;
listItem.appendChild(img);

The preceding isolated code is the presentational style that will be adopted by each
item that exists within our data set, making the JavaScript code our template. While this
works, the code itself is not very optimal or legible, for that matter. Furthermore, as we are
integrating HTML within JavaScript, we are thereby making readability and
maintainability all the more challenging. Last, as JavaScript, we lose the innate ability of
most IDE’s to validate our template as proper markup at design time.

Use of a templating engine has the ability to change all of that; however, it requires
that we think a bit more abstractly, as you will soon see.

Handlebars

Handlebars itself is not a programming language but, rather, a JavaScript templating
engine. However, it does, for all intents and purposes, possess its own lingua franca and
syntax, to enable the desired templating behavior.

As stated on the Handlebars web site, located at handlebarsjs.com, “Handlebars
provides the power necessary to let you build semantic templates effectively with no
frustration.” What this means is that rather than using JavaScript to define our templates,
as in the preceding example, Handlebars utilizes a more elegant templating system that
employs the semantic tags of HTML. This will manage to keep our code clean and
extensible.

Installation

In order to make use of the Handlebars library, we must first obtain the latest source code
to incorporate into our HTML documents. We can obtain the latest source code by
navigating to http://handlebarsjs.com/ and clicking the bright orange button
labeled “Download: 2.0.0.” (See Figure 13-2.) This will download the latest version of the
Handlebars source code (currently version 2.0.0).

www.it-ebooks.info

http://handlebarsjs.com/
http://www.it-ebooks.info/

n_;(:;ﬂumwun.m [@ | Kll- wgual francs A Ea R P, e
{9 Disabde » R Coockies » # 55 = i Forms = 5 bmages v f Wnformanion v i Miscellaneous v 7 Outine g Resize * oF Took = €3 Veew Source * [Options «

handlebars

Handlebars provides the power necassary to let you build semantic templates
affectivaly with no frustration.

Handlebars is largely compatible with Mustache templates. In most cases it is possible
o swap out Mustache with Handlebars and continue using your curment templates.
Complete details can be found here.

Downiload: 2.0.0

Downioad: munime-2 0.0

Getting Started

Handiebars templates look Iike regular HTML. with embedded handlebars expressions.

e, |
Figure 13-2. Handlebars main page

As shown in Figure 13-2, you can witness a link just below the orange button. This
hyperlink reads “Download: runtime-2.0.0.” These two items are not one in the same and
are used for different purposes, so be sure to click directly on the button. Clicking this
button will begin the download process. Feel free to save the file to a location of your
choosing.

Note The runtime 2.0.0 library is only to be utilized by templates that have been pre-
compiled.

Once the download has completed, navigate to the directory in which it was saved.
Once you have located the handlebars-v2.0.0. js file, move it to a more suitable
location for use in our exercises. If you are following along with the source code for this
chapter, you will note that I have already provided this chapter with the handlebars-
v2.0.0 JavaScript file located within the directory structure at
BeginningJSON/chapter13/js/1ibs/. If you have been working with your own
folder structure, feel free to move handlebars-v2.0.0 to a location relative to your
HTML documents.

Once the Handlebars library has been downloaded, all one must do is incorporate it
within each HTML document intended to use the templating engine. This is easily
achieved by incorporating an external script via the HTML <script> element, as seen
in Listing 13-2.

Listing 13-2. Including the Handlebars Library

<!DOCTYPE html>
<html lang="en">
<head>
<script src="js/libs/handlebars-v2.0.0.js"></script>
</head>

<body>

www.it-ebooks.info

http://www.it-ebooks.info/

<script>
alert(Handlebars);
</script>
</body>
</html>

Listing 13-2 incorporates the Handlebars version 2.0.0 templating engine into the head
of the page utilizing the HTML <script> tag. Furthermore, to ensure that the library is
properly incorporated, I have chosen to output the global Handlebars reference. If an alert
of [Object, Object] is displayed within the alert box, then congratulations, you
have successfully loaded the Handlebars object. This is a global object that exposes a few
methods that will be used to work with our Handlebars templates. We are now ready to
begin defining templates with Handlebars.

Working with Handlebars

The libraries name, Handlebars, is a nod to the tokens it makes use of to demarcate
placeholders within a template. These tokens are the opening and closing curly braces, ({,
}), which, when turned in the appropriate 90-degree direction, resemble a handlebar
moustache, hence the name Handlebars. These handlebars are then used to demarcate an
expression within a template.

A Basic Expression

A basic expression, or placeholder, as it is commonly referred to, is the building block of
the Handlebars templating engine. Simply enough, the placeholder syntax is none other
than the reference to a key, wrapped within two curly braces, such as the following
{{key}}. This placeholder is referred to as an expression, because, at runtime, it will be
replaced by the value of a key/value pair possessed by a collection with a member that
matches the specified key. Furthermore, it is the most basic expression within Handlebars
and is used to replace static elements, such as strings and/or numbers. You will learn about
more complex expressions in a later section. First, however, let’s ease into the immersion
of Handlebars by analyzing the use of a Handlebars basic expression (see Listing 13-3).

Listing 13-3. Simplest Use of a Handlebars Template

<!DOCTYPE html>
<html lang="en">
<head>

<meta charset="utf-8">

<script src="js/libs/handlebars-v2.0.0.js"></script>
</head>
<body>

<script type="application/x-handlebars" id="Handlebar -
Name-Template'">

 {{name}}

www.it-ebooks.info

http://www.it-ebooks.info/

</script>
<script type="application/javascript">
var initialTemplateWrapper
= document.getElementById('"Handlebar-Name-Template");
var initialTemplateContent
= initialTemplateWrapper.innerHTML;
var dynamicTempate
= Handlebars.compile(initialTemplateContent);
var markupOutput = dynamicTempate({ "name" : "ben" });
document.getElementsByTagName('"body")[0].innerHTML
= markupOutput;
</script>
</body>
</html>

Listing 13-3 reveals in its entirety a succinct Handlebars template and the few lines of
JavaScript code required to make our template functional. Running the preceding listing
results in the document revealing the name ben, surrounded by opening and closing span
tags. In order to best understand what is taking place in Listing 13-3, the upcoming
sections will break down the preceding code into four topics.

Defining a Handlebars Template

Defining a Handlebars template is a simple process of designing a semantic layout using
ordinary HTML elements and denoting, inline, any basic expression to be replaced with
actual data at a later point in time. Before we get into the syntax of the language, let’s
begin by analyzing the design of a simple template. The most basic implementation of a
template that can be designed in Handlebars is one that uses a single placeholder, as
shown in Listing 13-4.

Listing 13-4. A Single Expression Template

1 <!DOCTYPE html>

2 <html lang="en">

3 <head>

4 <meta charset="utf-8">

5 <script src="js/libs/handlebars-v2.0.0.js"></script>
6 </head>

7 <body>

8 <script type='"text/x-handlebars-template"
id="Handlebar-Name-Template">

9 {{name}}
10 </script>

11 </body>

12 </html>

Listing 13-4 demonstrates a simple template that makes use of a single placeholder to
be filled in dynamically once data is provided. The lines in bold define our Handlebars

www.it-ebooks.info

http://www.it-ebooks.info/

template. Let’s walk through these lines of code, to better understand what is taking place.

Listing 13-4 begins as any ordinary HTML document. However, what makes this page
extraordinary is the incorporation of the Handlebars library. We utilize the script tag to
load into the document the external Handlebars library, so that we can begin making use
of its templating engine (line 5). Of course, along with a template engine, we require a
template. The code highlighted in bold makes up a Handlebars template. However, the
surrounding <script> tag plays a rather important part in the template as well.

It may come as a shock, but our template is not considered JavaScript, as noted in the
type attribute of the script tag. Rather, the script type is assigned the value of text. To
be more specific, it’s a particular subset of text that defines a Handlebars template. I will
explain why this is important shortly. The content within our script tag, as denoted by the
type, is that of our Handlebar template.

Within the template, which we have defined, is nothing more than a single placeholder
contained within a element. The two braces that surround our placeholder easily
identify a basic expression within a Handlebars template. An expression, as we have
learned in JavaScript, is simply the evaluation and return of data. In other words, the basic
expression, { {name} }, will later be interpolated with the value retained by a member
that matches the expression, within the given context of the data provided. Furthermore, as
the term template implies, every time we reference this particular template, we can expect
to generate an HTML span tag with an arbitrary name within.

If we were to run the preceding listing, I’m afraid we’d be presented with an empty
document, as shown in Figure 13-3. The reason why is simple. Currently, our document
lacks any HTML markup to render. If you were expecting our template to render, the
reason why it doesn’t is owing to the use of the <script> tag that surrounds it.

8006 127.0.0.1:8020/Beginn|
e 127.0.0.1:8020/Beginning)SON/chapter13/Listing13-3.html 2 O B A =
it apps »§ Learn more. ! GetProcessing and |- Arduino Eclipse De 8 bit, 12 bit, 14 bit Visual Event » | Other Bookmarks

Figure 13-3. An empty document

Note By default, the <script> tag exhibits a CSS display property of none.

The Role of <script>

Wrapping our template within the script element provides several advantages. The first is
that it cleverly removes our template from being rendered by the document, lest we reveal

www.it-ebooks.info

http://www.it-ebooks.info/

our placeholders to our visitors. Per the W3C spec, any script tag will forgo rendering, as
it will be supplied to the appropriate script engine to be evaluated. However, as our
Handlebars template does not define JavaScript, the last thing we want to do is supply our
Handlebars template to the script engine, where it would be parsed as such. For this
reason, we provision the type attribute with a scripting language that our browser will not
be able to recognize. In our example, we have provided the scripting language of
text/x-handlebars-template.

Signifying that our script contains a Handlebars template not only thwarts the user-
agent from supplying it to a script engine but helps to immediately identify it as a
Handlebars template to any and all developers.

Provided we use the script tag as outlined previously, our template provides zero
impact to the document. This is one of the greatest advantages that accompanies our
Handlebar templates. This enables us to define a template inline. While this may not seem
to be much at first, there is a lot to be said from a maintainability standpoint, by
associating our template within the markup that will utilize it.

Last, a final benefit of our script element is that, as with all elements, we can refer to it
by a particular ID. In our existing example, our template can be referenced via the identity
Handlebar-Name-Template. Having the ability to reference our template by ID will
become necessary, as you will soon see in the upcoming section.

Compiling a Template

At this point, all we have managed to do is define a template that our template engine will
use. However, as you have just recently discovered, a template alone has no effect on our
document. In order for a template to work, it must be provided to the Handlebars library,
so that it can be compiled into a JavaScript function. For this, we are required to provide
the content for the script ID, Handlebar -Name-Template, to the compile method
exposed by the global Handlebars object. Adding five lines of code to our existing markup
achieves this, as shown in Listing 13-5.

Listing 13-5. Compiling Our Handlebar -Name-Template

1 <!DOCTYPE html>

2 <html lang="en">

3 <head>

4 <meta charset="utf-8">

5 <script src="js/libs/handlebars-v2.0.0.js"></script>
6 </head>

7 <body>

8 <script type="text/x-handlebars-template"
id="Handlebar-Name-Template">

9 {{name}}

10 </script>

11 <script type="application/javascript">

12 var templateWrapper = document.getElementById("Handlebar-Name-

www.it-ebooks.info

http://www.it-ebooks.info/

Template");

13 var templateContent = templateWrapper.innerHTML;

14 var tempateFunction = Handlebars.compile(templateContent);
16 </script>

17 </body>

18 </html>

Listing 13-5 reveals, in bold, the five lines that are used to transform our template into
a function that can be called repeatedly and be provided a JSON argument. As indicated
by line 11, the ability to compile a template requires just a bit of good old-fashioned
JavaScript.

The first line of JavaScript code (line 12) is used to target the specific template that we
wish to compile. Leveraging the document method getElementById and supplying
the value of Handlebar -Name-Template easily obtains a reference to the HTML
script element containing our template. To keep our code clean and readable, I assign the
returned element to that of a variable labeled templateWrapper.

The next step is to extract the text that occurs between the script element’s opening
and closing tag. For this we use the 1nnerHTML property, and once again, we assign the
returned value to another variable. In this case, that variable is labeled
templateContent. Once we have a reference to our template, all that is left is to
provide it as the argument to the compile method exposed by our global Handlebars
object.

Giving Context to Our Template

Supplying a template to the compile method results in the return of a JavaScript
function, which can be assigned to a variable so that it can be called over and over again.
As revealed by the signature displayed in Listing 13-6, this function, when invoked,
accepts a JSON argument.

Listing 13-6. Signature of Our Template Function
function(object);

The object provided to the function is referred to in Handlebars nomenclature as the
context. The context is named such because it represents the model and/or data set from
which all Handlebars expressions (placeholders) derive their value. (See Listing 13-7.)

Listing 13-7. A Compiled Template Is Used to Render JSON Data into Markup
10 //..truncated code

11 <script type="application/javascript">

12 var templateWrapper

= document.getElementById("Handlebar-Name-Template");

13 var templateContent = templateWrapper.innerHTML;
14 var templateFunction

= Handlebars.compile(templateContent);

www.it-ebooks.info

http://www.it-ebooks.info/

15 var outputMarkup = templateFunction({ "name":"ben" });
17 alert(outputMarkup);

16 </script>
17 </body>
18 </html>

Listing 13-7 adds to our existing code base the two lines shown in bold. The first new
line (line 15) invokes templateFunction and provisions it with a JSON collection
consisting of one key/value pair. You may note that the key which our JSON possesses is
equivalent to the label with the placeholder used by our template. This is not simply a
matter of coincidence. I mentioned earlier that interchangeable parts could be used both
interchangeably and indistinguishably within an existing structure, providing they adhere
to the structure of a template. In other words, the label used to represent our placeholder is
replaced, or interpolated, with the corresponding value of a key of the same name, if it
exists as a member on the context provided. When a template is compiled via
Handlebars.compile, it is transformed into a JavaScript function. When said
function is invoked with JSON as an argument, the implementation of the function relies
on string manipulation to assign values from our JSON to our placeholders and returns,
upon its conclusion, a string. This is not unlike our Ajax request in Listing 13-1. The only
difference is that the JavaScript function is not created at design time, but, rather, it is
created on the fly at runtime. This takes place the moment the reference to
Handlebars.compile is parsed by the script engine. Once the function has been
executed, the result is provided back to the caller of the function.

The second line of code added to our page simply alerts us to the result, as shown in
Figure 13-4.

0
e 6 127.0.0.1:8020/Beginn

C [127.0.0.1:8020/Beginning)SON/chapter13/Listing13-7.html L~ | (19} i
i Apps -’l Learn more. * Get Processing anc h Arduino Eclipse De 8 bit, 12 bit, 14 bit Visual Event »

g The page at 127.0.0.1:8020 says:
.°;~ ben

OK

[Other Bookmarks

Figure 13-4. The rendered output of data

As revealed by Figure 13-4, the output that results from templateFunctionis
none other than the string representation ben . At this point, we can
append the resulting string to our HTML document with some very simple DOM
scripting. Furthermore, each invocation of our template function can be provided with
varying contexts, thus allowing the resulting output to vary with each invocation, as
shown in Listing 13-8.

Listing 13-8. Repeated Use of templateFunction with Varying Contexts

www.it-ebooks.info

http://www.it-ebooks.info/

var outputMarkup;
outputMarkup = templateFunction({ "name":'"ben" });
console.log(outputMarkup); // ben
outputMarkup = templateFunction({ "name":"ivan" });
console.log(outputMarkup); // ivan
outputMarkup = templateFunction({ "name":'"michael" });
console.log(outputMarkup); // michael

Multiple Placeholders

A template needn’t consist of a single placeholder. Because a placeholder is simply a
reference to a key within a provided context, it’s entirely possible to construct templates
that reference multiple placeholders. However, it generally helps to begin with just the
one. Listing 13-9 demonstrates how multiple placeholders can be used to produce a more
complex template.

Listing 13-9. Use of Multiple Placeholders Within a Template
//..truncated code

8 <body>

9 <section id=“directory”>

10 <script type=*“application/x-handlebars” id="“Handlebar -
Employee-Template”>

11 <div class=“employee”>

12 <p> firstName: {{fName}} </p>

13 <p> lastName: {{1Name}} </p>

14 <p> contact: {{phone}} </p>

15 </div>

16 </script>
17 </section>
18 <script>
19 </script>
20 </body>

The markup used within Listing 13-9 reveals a template, labeled “Handlebar -
Employee-Template.” This particular template is intended to house within an
individual <p> element the first and last name, as well as the contact number, of one of
my colleagues. Each of the three paragraphs is, furthermore, contained within a parenting
<div> tag that has been provided employee as the value of the class attribute. By
providing a class identifier to the template, each context, when rendered, will reveal a
uniformly styled element upon its inclusion into the document.

With our template having been defined, all that remains is to provide the
implementation that compiles Handlebar -Employee-Template, as well as supply
it a context or two to be rendered. (See Listing 13-10.)

Listing 13-10. The JavaScript Code Required to Insert Data into a Document, with the
Proper Presentation

www.it-ebooks.info

http://www.it-ebooks.info/

17 //Truncated code..

18 <script type="application/javascript'">

19 var initialTemplateWrapper

= document.getElementById("Handlebar-Employee-Template");
20 var initialTemplateContent

= initialTemplateWrapper.innerHTML;

21 var templateFunction

= Handlebars.compile(initialTemplateContent);

22 var dataA = templateFunction({"fName" : "Ben",
"IName" : "Smith", "phone" : "555-1234"});
23 var dataB = templateFunction({"fName"

"Ivan", "IName" : "Bravo" , "phone" : "555-5678"});
24 var dataC = templateFunction({"fName" : "Michael",

"IName" : "Chang" , "phone" : "555-9090"});

24 var directory = document.getElementById("directory");
directory.innerHTML = dataA;
directory.innerHTML += dataB;
directory.innerHTML += dataC;

25 </script>

As the code from Listing 13-10 reveals, the implementation and utilization of a
template are equivalent, regardless of the number of placeholders. This is due to the magic
of the Handlebars scripting engine. Executing the preceding code results in the rendering
of each context to be included within the directory, as shown in Figure 13-5.

firstName: Ben
lastName: Smith
contact: 555 - 1234

firstName: Micahel
lastName: Chang
contact: 555-9080

Q |:] | Elements | Metwork Sources Timeline Profiles Resources Audits Console = -n- Q.x
Styles Computed Ewvent Listeners »
v<html lang="en"'>
» <hedd=.</head= » sectionfdirectory
¥ <hody> * HTMLElement

¥ <section id="directory">

» Element
k<seript type="application/x-handlebars" id="Handlebar-Directory-Template''>.</script>
wadiv class="contact"> » Node
=p> firsthame: Ben </p> k EventTarget
<p> Lasthame: Smith </p>
<p> contact: 555 — 1234 <fp»> b Object
=/ div>

¥ <div class="contact">
<p=> firstName: Ivan </p>
<p> lastMame: Bravo </p>
<p= contact: 555 — S67E =/p>
= dive
¥ <div class='contact">
=p>= firstMame: Micahel =/p=
=p= LastName: Chang </p>
<p> contact: 555 — 9999 </p>
<fdlive
=/section>
F=script type="application/javascript"=_=/script>
</bedy>

htotl body ESIGTLLIRT. LT div.contact

Figure 13-5. Directory listing of my coworkers

www.it-ebooks.info

http://www.it-ebooks.info/

Note I have not revealed any styling in the listings, to keep code to a minimum.
However, I have applied a minimal amount of styling to the employee class.

One of the features that makes JSON a superior data format is that it is capable of
retaining the hierarchical structure of data. As we have seen in previous chapters, JSON
allows us to nest structural composites, resulting in more complex JSON structures.

Complex JSON Structures

A great templating engine can easily work with complex data, and Handlebars is definitely
up to the task. Because all Handlebars placeholders reference the topmost structure of the
provided context, any and all nested members within a data collection can be referenced
with the simple use of dot notation.

Our previous example demonstrated how we could use Handlebars to output an
employee directory, revealing the contact number per colleague. However, in the case of
an urgent matter, it’s always best to have alternate methods of contacting an individual.
Let’s revisit our previous Handlebar -Employee-Template, and reconstruct it to
make use of the nested structure shown in Listing 13-11.

Listing 13-11. A Complex JSON Structure

var complexJSON =

{
"fName" : "Ben'",
"IName" : "Smith",
"contact" : {
"phone" : "555 - 1234",
"cell" : "555 - 5678",
"email" : "ben@example.com"
}
i

Listing 13-11 reveals a JSON structure whose member, labeled “contact?”, is that of
a nested collection. Within the aforementioned collection are three possible forms of
contact: phone, cell, and email. In order to incorporate a reference to the nested
values into our template, we simply employ the use of dot notation within our
placeholders, as seen in Listing 13-12.

Listing 13-12. Handlebar Template Relying on Dot Notation to Reference a Nested
Collection

<section class="directory">
<script type="application/x-handlebars" id="Handlebar -
Employee-Template'">
<div class="employee'">
<p> firstName: {{fName}} </p>
<p> lastName: {{1Name}} </p>

www.it-ebooks.info

http://www.it-ebooks.info/

<p> work: {{contact.phone}} </p>

<p> email: {{contact.cell}} </p>
<p> cell: {{contact.email}} </p>
</div>
</script>
</section>

If we were to compile the template from Listing 13-12 and supply as the context
complexJSON from Listing 13-11, our document would render the results shown in
Figure 13-6.

Figure 13-6. Rendered template utilizing dot notation

While dot notation can be sufficient for working with nested structures, it can become
rather cumbersome and repetitive. Furthermore, when working with many properties or
deeply nested structures, our template can become bloated and unwieldy. For this reason,
the Handlebars engine supplies us with more versatile expressions.

Block Expressions

As stated on the Handlebars web site, “Block expressions allow you to define helpers that
will invoke a section of your template with a different context than the current.” Although
I have yet to discuss helpers, the key takeaway from the previous sentence is that block
expressions are special expressions that can be used to change the working context within
our templates. In the upcoming section “Block Helpers,” you will see how they can be
paired with helpers.

As the term block implies, a lock expression is used to define a subset or group of
expressions within a template. In other words, block expressions are used as containers for
other expressions, wherein the expressions residing within a block expression are subject
to the context defined by the block itself. This is similar to the CSS cascading effect,
which child HTML elements can inherit from their parents. Furthermore, because a block
expression is a special form of expression, a block expression has the capability to be the
parent for another block expression. Listing 13-13 reveals the syntax of a block
expression.

Listing 13-13. Syntax of a Block Expression

{{#Expression}}

//anything that happens here is within the context of
Expression
{{/Expression}}

As shown in Listing 13-13, the syntax of a block expression is much more complex

www.it-ebooks.info

http://www.it-ebooks.info/

than that of its counterpart the basic expression. Further examination of the syntax reveals
similarities between the two. It would appear that a block expression is made up of two
special basic expressions. The first expression is prefixed by a hash token (#), while the
latter basic expression is simply prefixed by the solidus token (/). The two tokens that I
have mentioned are used to denote the beginning and end of a block.

Any and all expressions contained within said block will inherit the context
established by the block expression. What do I mean by “established by the block
expression”? Like any basic expression, the block references a placeholder that will be
replaced with the value for the defined key shown in Listing 13-13 as “Expression”,
thus altering the context for any nested expressions.

Incorporating block expressions within a template is as simple as determining where
our template would benefit from a change in context. Let’s revisit Handlebar -
Employee-Template from Listing 13-12 and establish a new context that will allow
us to remove all uses of dot notation. (See Listing 13-14.)

Listing 13-14. Use of a Block Expression to Alter the Current Context

<section class="directory'">
<script type="application/x-handlebars" id="Handlebar -
Employee-Template'">
<div class="employee">
<p> firstName: {{fName}} </p>
<p> lastName: {{1lName}} </p>
{{#contact}}
<p> work: {{phone}} </p>
<p> email: {{cell}} </p>
<p> cell: {{email}} </p>
{{/contact}}
</div>
</script>
</section>

Listing 13-14 employs a block expression in order to reflect, as the new context,
contact, exposed by the current context. Mind you, the item held at contact is a
collection of three keys, phone, cell, and email. From there, all placeholders
contained within our block will be replaced with the values possessed by the matching
keys held by the new context, thus eliminating the need for dot notation, in order to obtain
references to phone, cell, and email.

Tip A block expression can be used to work your way down a complex JSON
structure.

If we were to compile the template from Listing 13-14 and supply as the context
complexJSON from Listing 13-11, our document would render the same result shown
previously in Figure 13-6.

www.it-ebooks.info

http://www.it-ebooks.info/

Block Expressions and Arrays

One extremely powerful inclusion of the block expression, aside from being used to
establish a new context, is how it will loop over the indexes of an array, if that is what the
expression evaluates to. In other words, if the key defined by our block expression
evaluates to that of an array, each item held by all indexes of said array are individually set
as the new context for any and all expressions within the block. This is especially
important, because the Handlebars engine will assemble, in one shot, several data sets
contained within an ordered list.

With that being said, Listing 13-15 incorporates within our initial Handlebar -
Employee-Template from Listing 13-9 a block expression, shown in bold.

Listing 13-15. Incorporating a Block Expression

<body>
<section id="directory'">
<script type="application/x-handlebars" id="Handlebar -
Employees-Template">
{{#employees}}
<div class="employee">
<p> firstName: {{fname}} </p>
<p> lastName: {{1name}} </p>
<p> contact: {{phone}} </p>
</div>
{{/employees}}
</script>
</section>
</body>

This very minor inclusion adds an extremely large amount of automation to our
template. Up until this point, the code required to augment multiple individuals into our
directory consisted of obtaining computed data, augmenting it, and inserting this into our
DOM three times over. However, the inclusion of the new block expression can supply an
arbitrary number of employees to our template with a single data provision.

Because both our template and data must possess a relationship in order for our
template to work, it requires the provision of JSON that complements our block
expression. The JSON provided must possess at least one key/value pair whose label is
that of employees. Furthermore, the value which employees must retain is that of an
array, whose indexes are composed of individual collections pertaining to a particular
employee, as shown in Listing 13-16.

Listing 13-16. An Ordered List of Individual Employees
{

"employees'" : [
{"fName" : "Ben", "Iname" : "Smith", "phone" : "555
- 1234" 3,

www.it-ebooks.info

http://www.it-ebooks.info/

{"fName" : "Ivan", "1name" : "Bravo'", '"phone" : "555
- 5678" 1},

{"fName" : '"Michael", "1name" : '"Chang", '"phone" : "555
- 9090"}

]
Iy

Listing 13-16 reveals a JSON structure that complements the block expression shown
in Listing 13-15. If we were to compile the template from Listing 13-15 and provide the
preceding JSON to the resulting function, the resulting string returned would reflect the
following markup:

<div class="employee">

<p> firstName: Ben </p>

<p> lastName: Smith </p>

<p> contact: 555 - 1234 </p>
</div>

<div class="employee">

<p> firstName: Ivan </p>

<p> lastName: Bravo </p>

<p> contact: 555 - 5678 </p>
</div>

<div class="employee">

<p> firstName: Michael </p>

<p> lastName: Chang </p>

<p> contact: 555 - 9090 </p>
</div>

All that would be left for our code to do would be to append the preceding string into
our document so that it can be rendered. The full source code can be viewed in Listing 13-
17.

Listing 13-17. Utilizing a Block Expression to Render Three Employees from One JSON
Argument

<body>
<section id="directory'">
<script type="application/x-handlebars" id="Handlebar -
Employee-Template'">
{{#employees}}
<div class="employee'">
<p> firstName: {{fName}} </p>
<p> lastName: {{1lName}} </p>
<p> contact: {{phone}} </p>
</div>
{{/employees}}
</script>
</section>

www.it-ebooks.info

http://www.it-ebooks.info/

<script type="application/javascript">

var initialTemplateWrapper
= document.getElementById('"Handlebar-Employee-Template");
var initialTemplateContent
initialTemplateWrapper.innerHTML;
var templateFunction
= Handlebars.compile(initialTemplateContent);

var dataA = templateFunction({

"employees" : [

{"fName" : "Ben", "lName" : "Smith",
"phone" : "555 - 1234" 1},

{ "fName" : "Ivan", "lName" : "Bravo",
"phone" : "555 - 5678" },

{"fName" : "Michael", "1lName" : "Chang",
"phone" : "555 - 9090"}

]

1))

var directory = document.getElementById("directory");
directory.innerHTML += dataA;

</script>

</body>

Executing Listing 13-17 renders the results shown in Figure 13-5. While the results are
the same, the difference in labor speaks for itself.

EXERCISE 13-1. ENHANCING THE DIRECTORY

While our employee directory is making use of the latest Handlebars techniques,
thereby reducing the amount of JavaScript required to add new employees to our
directory, we have managed to revert back to displaying only one form of contact per
employee. Using the information learned thus far about Handlebars expressions,
rewrite the directory template to account for the following JSON as its context:

{

“employees” : [

{
“fName” : “Ben”,
“1Name” : “Smith”,
“contacts” : {
“phone” : #“555 - 1234”7,
“cell” . “555 - 5678",
“email” : “ben@example.com”
}
3 £

“fName” : “Ivan”,
“1Name” : “Bravo”,

www.it-ebooks.info

http://www.it-ebooks.info/

“contacts” : {
“phone” : “555 - 9012",
“cell” : “555 - 9034”",
“email” : “ivan@example.com”

}

“fName” : “Michael”,
“1Name” : “Chang”,
“contacts” : {

“phone” : “555 - 9035”7,
}

3]
}

You may note that Michael does not possess a cell or e-mail for this exercise. Take
note of this when your template is rendered. You can compare your template to
Listing 13-18.

If your template resembles that of Listing 13-18, then, congratulations; you are on
your way to mastering the Handlebars engine.

Listing 13-18. Answer to the Preceding Exercise

<section id="directory'">
<script type="application/x-handlebars" id="Handlebar -
Employee-Template'">
{{#employees}}
<div class="employee">
<p> firstName: {{fName}} </p>
<p> lastName: {{1Name}} </p>
{{#contacts}}
<p>phone: {{phone}}</p>
<p>cell: {{cell}}</p>
<p>email: {{email}}</p>
{{/contacts}}
</div>
{{/employees}}
</script>
</section>

Rendering the template from Listing 13-18 reveals that a Handlebars template outputs
fields, whether or not an existing member within the provided context can replace the
basic expression. As in the case of Michael, who lacked a cell as well as an e-mail
address, Handlebars did not omit these fields, as shown in Figure 13-7.

www.it-ebooks.info

http://www.it-ebooks.info/

firstName: Ben
lastName; Smith

phone: 555 - 1234

cell; 555 - 5678

email: ben@example.com

firstName: Michael
lastName: Chang
phone: 555 - 9035
cell:

email;

Figure 13-7. Rendering of empty fields

Applying Logic to Logic-less Templates

As was stated earlier, Handlebars templates are logic-less, which simply means that they
do not incorporate the use of JavaScript operators. This is extremely beneficial, because it
increases the readability, reusability, and maintainability of our templates, by ensuring the
separation of presentation from functionality. Similarly, it separates our HTML from our
JavaScript. However, at times, we will find it quite necessary to apply logic into our
presentation. For this reason Handlebars incorporates helpers.

Helpers

In order to decouple logic from presentation, Handlebars does not permit the coupling of
logic within a template—and rightfully so. HTML, CSS, and JavaScript should remain as
separate from one another as possible. However, this is not to say that Handlebars
templates cannot reflect the use of logic at all. In fact, the Handlebars library provides us
with the necessary framework in which we can pair logic with templates in a way that is
sure to decouple the logic from our layout.

In order to decouple the two, the Handlebars library relies on what are referred to as
helpers. A helper is merely an expression, which, at runtime, resolves to a function of the
same name. Only in the runtime environment are our template and logic intertwined. This
is contrary to design time (our source code), during which our template will only exhibit
what appears to be yet another expression, thus ensuring an optimal amount of separation
from our presentation.

There are two types of helpers: custom and built-in. Because custom helpers are an
advanced topic, this chapter will not discuss them. Rather, I will discuss the variety of
remarkably useful helpers that Handlebars includes, so that we can incorporate them into
our templates immediately.

Built-in Helpers

Unlike custom helpers, which, as you may suspect, offer more fine-tuned logic, hence

www.it-ebooks.info

http://www.it-ebooks.info/

increased complexity, built-in helpers are included to supply basic logic to Handlebars
templates. The helpers that I will be discussing are each, if, unless, and else.

As you may surmise from their names, the aforementioned built-in helpers facilitate
the most basic of JavaScript faculties. As you will find, the built-in helpers that I will be
discussing will all coincide with a block expression. Helpers that are used with block
expressions are referred to in the Handlebars nomenclature as block helpers.

Block Helpers

The syntax for a block helper, as seen in Listing 13-19, reveals a similar resemblance to
that of a block expression. The sole difference between the two is that it is the name of the
helper that defines the block.

Listing 13-19. Syntax of a Block Helper

{{#helper Expression}}
// Within the context of Expression

{{/helper}}

As you can see from Listing 13-19, a block helper is a block used to apply specific
logic to some context, EXpression. In the case of the block helper, it is the name of the
helper that succeeds the beginning and ending tokens of the block. Although the syntax
varies from our earlier discussion of a block expression, a block helper is still a block, and,
therefore, for all expressions within, is business as usual. In other words, all expressions
within are subject to the new context brought about by the block helper.

The each Helper

The each helper is a remarkable helper that traverses all keys for a given context. The
difference between each and the default behavior of the block expression, however, is
that each will iterate over both collections as well as an ordered list. As with a block
expression, each item held by the traversed key will be set to the current context for any
and all expressions within the block. Listing 13-20 reveals the syntax for the each block
helper.

Listing 13-20. Syntax of the each Helper

{{#each Expression}}
//evaluate against the current context

{{/each}}

As shown in Listing 13-20, the each block helper defines a block that will traverse all
keys belonging to the evaluated context, Expression. The each key provides a
tremendous amount of automation that can be added to our template. It can be used like a
block expression to iterate an array, or it can also be used to iterate over a collection of
key/value pairs. Listing 13-21 makes use of both, to reveal the each helper’s versatility.

Listing 13-21. Revisiting Our Directory with the Assistance of the each Helper

www.it-ebooks.info

http://www.it-ebooks.info/

<script type="application/x-handlebars" id="Handlebar -
Employee-Template'">
{{#each employees}} //traverse an array
<div class="employee">
<p> firstName: {{fName}} </p>
<p> lastName: {{1lName}} </p>
{{#each contacts }} //traverse a collection
<p>{{@key}}: {{this}}</p>
{{/each}}
</div>
{{/each}}
</script>

Listing 13-21 updates our previous Handlebar-Employee-Template. This
time, it reflects the necessary code that takes advantage of the each helper. As you can
see, our template will traverse our array, employees, and our object, contacts. You
may notice that our template no longer explicitly includes the placeholders phone, cell,
and email. In their place is a single line of code: <p>{{@key}}: {{this}}</p>.
Because the use of each sets the value of each traversed key as the current context for all
subsequent expressions within the block, our aforementioned placeholders will not be
evaluated. This is because each value of each key held by our contacts collection is a
string. For this particular reason, the Handlebars engine provides special placeholders that
can be used to refer to specific parts of a context.

These special placeholders are { {@key}} and {{this}}. The placeholder
{{@key}} refers to the key for which the current context is held, while, conversely, the
placeholder {{this}} refers to the value of said key. These come in especially handy
when iteration is involved.

Utilizing these two special placeholders, we can achieve the original output of our
various methods of contact. Providing the data model shown in Listing 13-22 results in the
rendering of Figure 13-8.

Listing 13-22. Complex JSON

{
"employees" : [
{
"fName" : "Ben",
"lName" : "Smith",
"contacts" : { "phone" : "555 - 1234", "cell" : "555
- 5678", "email" : ben@example.com }
3 Ao
"fName" : "Ivan",
"lIName" : "Bravo'",
"contacts" : { "phone" : "555 - 9012", '"cell"
"555 - 9034", "email" : ivan@example.com }
3 Ao

www.it-ebooks.info

http://www.it-ebooks.info/

"fName" : "Michael",

"IName" : '"Chang",
"contacts" : { "phone" : "555 - 9035", }
1]

}

firstMame: Ben

lastMame: Smith

phone: 555 - 1234

cell: 555 - 5678

email: ben@example.com

firstName: Michael
lastName: Chang
phone: 555 - 9035

Figure 13-8. Rendering of fields that exist

As you can see, the effect is nearly the same as the output from the earlier exercise
within this chapter. What you may recognize, however, is that only phone has been
outputted for Michael. This is because the each helper traverses only the keys that exist.

The if Helper

The 1f helper is a handy helper that can be used to add conditional logic to a block
expression and takes on the implementation shown in Listing 13-23.

Listing 13-23. Syntax of the 1T Helper

{{#1f Expression}}
//evaluate against the current context Expression

{{/1f}}

Listing 13-23 reveals the syntax of the block helper. Use of the if helper conveniently
renders our block, in addition to any expressions contained within, only if Expression
evaluates as truthy. In other words, if Expression evaluates to null, 0, false, or
undefined, the block will be bypassed. Let’s apply our 1f helper to the template from

our earlier exercise, in order to prevent the output of contact methods that do not exist.
(See Listing 13-24.)

Listing 13-24. Incorporation of the 1T Helper

<script type="application/x-handlebars" id="Handlebar -
Employee-Template'">
{{#employees}}

<div class="employee'">

<p> firstName: {{fName}} </p>

<p> lastName: {{1Name}} </p>

{{#contacts}}
{{#1if phone}}

www.it-ebooks.info

http://www.it-ebooks.info/

<p>phone: {{phone}}</p>

{{/if}}
{{#if cell}}

<p>cell: {{ cell }}</p>

{{/if}}
{{#1if email}}

<p>email: {{email}}</p>
{{/if}}
{{/contacts}}
</div>

{{/employees}}
</script>

As shown in bold, the 1T helper is used to devise a block that may or may not render.
This, of course, depends on the resulting evaluation of each expression: phone, cell,
and emaill. Remember that if an expression evaluates to null, 0, false, or
undefined, each if block helper will be skipped. Executing the previous template with
the data set from Listing 13-24 results in the same output as that shown in Figure 13-9.

firstNarme: Ben

lastMame: Smith

phone: 555 - 1234

cell: 555 - 5678

email: ben@example.com

firstName: Michael
lastName: Chang
phone: 555 - 9035

Figure 13-9. Rendering of a member, if it possesses a value

The unless Helper

The unless helper is used to render a block only if the expression succeeding it
evaluates to falsy. The syntax for the unless helper can be seen in Listing 13-25.

Listing 13-25. Syntax of the unless Helper

{{#unless Expression}}

//evaluate against the current context Expression
{{/unless }}

The unless helper is used inversely to that of our if helper, in that it is used to
render a block, if and only if EXpression evaluates to null, 0, false, or
undefined. You may be asking yourself when might this be useful. However, such a
helper is useful when rendering invalid or empty form fields. Listing 13-26 uses the
unless helper to output into our directory all contacts that have not supplied an e-mail.

Listing 13-26. Incorporation of the unless Helper

www.it-ebooks.info

http://www.it-ebooks.info/

<script type="application/x-handlebars" id="Handlebar -
Employee-Template'">
{{#employees}}
{{#unless contacts.email}}
<div class="employee">
<p> firstName: {{fName}} </p>
<p> lastName: {{1Name}} </p>
{{#contacts}}
<p>phone: {{phone}}</p>
<p>cell: {{ cell }}</p>
<p>email: {{email}}</p>
{{/contacts}}
</div>
{{/unless}}
{{/employees}}
</script>

Listing 13-26 demonstrates how the unless helper can be used to render colleagues
that have yet to supply an e-mail address. Because we know that Michael only possesses a
phone number, executing the preceding template against the data set from Listing 13-22
results in the output shown in Figure 13-10.

firstName: Michael

lastName: Chang {
phone: 555 - 9035 |
cell:

email:

Figure 13-10. Use of the unless block to render a contact whose e-mail is not present

The else Helper

The else helper is a complementary helper for our two previously discussed helpers,
unless and if. This special helper can be incorporated within the body of either
if/unless blocks in order to render content, provided the conditions for unless/if
are unsuccessfully met. The syntax of our else helper for both unless and 1if blocks
can be seen in Listing 13-27.

Listing 13-27. Syntax of the else Helper

{{#1f Expression}}

//Evaluate for the current context if truthy
{{else}}

//Evaluate for the current context if falsy

{{/1f}}

{{#unless Expression}}
//Evaluate for the current context if falsy
{{else}}

www.it-ebooks.info

http://www.it-ebooks.info/

//Evaluate for the current context if truthy
{{/unless}}

Utilizing the el se helper offers our templates the ability to provide presentation to an
unmet outcome. Consider our previous unless example. If we wanted to highlight for
Human Resources those colleagues who currently lack a valid e-mail address, while
similarly displaying those that did, utilizing the e1se helper would make this possible.
(See Listing 13-28.)

Listing 13-28. Incorporation of the e1lse Helper

<script type="application/x-handlebars" id="Handlebar -
Employee-Template'">
{{#employees}}
{{#unless contacts.email}}
<div class="lacksEmail'">
<p> requires contact for{{fName}}{{1Name}} </p>
</div>
{{else}}
<div class="haskEmail">
<p> congratulations {{fName}} {{1Name}} </p>
</div>
{{/unless}}
{{/employees}}
</script>

Listing 13-28 reveals the use of the e1se helper to render an alternate presentation for
when our condition is not met. Executing the preceding template with the data set from
Listing 13-22 results in the same output as that shown in Figure 13-11.

congratulations Ben Smith
congratulations Ivan Bravo |

reguires contact forMichael Chang

Figure 13-11. Use of the e1se helper to render an alternate condition

EXERCISE 13-2. TEMPLATIZING REMOTE JSON

With the lessons you’ve learned in this chapter, see if you can revise the exercise in
Chapter 8 to incorporate Handlebars. There is no right or wrong answer.

Summary

The Handlebars library makes it easy to combine data with presentation. However, it does
so cleanly and semantically, which makes it highly extensible as well as maintainable. In

www.it-ebooks.info

http://www.it-ebooks.info/

our industry, in which change is constant, the ability to isolate data from presentation
allows for things to change independently of one another. Handlebars does this by simply
taking advantage of the clear distinctions between design time and runtime.

Key Points from This Chapter

e Handlebars is a templating engine.
e Handlebars templates are encapsulated as text within script tags.

e To prevent our templates from being parsed by the JavaScript engine,
we mark the type of script as an unidentifiable language.

e A placeholder is the atomic unit in Handlebars.
e All expressions are references to keys held by JSON data.

¢ A Handlebars template is converted into a JavaScript function at
runtime.

e The JavaScript function accepts JSON data against which all
placeholders are evaluated.

e Handlebar templates are logic-less.

e Basic logic can be added to a template in the form of a helper.
e The built-in helpers are used within blocks.

e Block expressions are used to alter the current context.

e Block expressions can be used to traverse arrays.

e {{this}} and {{@key}} are special placeholders that refer to
current key/value pairs.

e The each helper can traverse members of an ordered list or
collection.

e The if helper is used to add conditional logic to a block.
e The unless helper is used to add conditional logic to a block.

e The else helper can be used when if or unless conditions are
unmet.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14

Putting It All Together

Each previous chapter has aimed to discuss the various components of the Web that
circulate around JSON. Owing to this common thread, they are typically paired, rather
than considered in isolation. In this chapter, I will piece together the various concepts
discussed throughout this book as building blocks for an actual project. Each component
will play its own critical role.

Within this chapter, I will use JavaScript, JSON, CORS, Node.js, CouchDB,
Handlebars, and, finally, Ajax to harness the data from the social media powerhouse that is
Twitter.

Twitter

For those who live under a rock, Twitter is the latest social trend enabling users to
communicate via a short, 140-character message. For all intents and purposes, Twitter can
be thought of as the modern-day soapbox. Registered users can read and respond to other
users’ messages. But even more important is that unregistered users can still read and
search the tweets of all registered users. This is because Twitter stores in a database every
tweet and publicizes them, thereby allowing all the world to view the voices of the many.

Furthermore, Twitter has crafted a simple API that welcomes web developers to
harness their database, to power the simplest or most complex campaign initiatives. While
there are many ways to utilize Twitter’s API, this chapter seeks to extract, at near-real-
time, broadcast tweets that contain a specific hashtag or phrase. At the time of writing, the
iPhone 6 had just been released, and the hashtag #bendgate instantly trended. For this
chapter, I will make use of the hashtag #bendgate, but feel free to replace any #bendgate
reference with one that is trending today.

Twitter Apps

Much as with all modern-day social APIs, in order to leverage Twitter’s API, we must
register a Twitter app. This is easily accomplished by visiting
http://apps.twitter.com and clicking the Create New App button, as shown
Figure 14-1.

W Application Management

& -
L

Twitter Apps Gt o

Figure 14-1. Create New App button

www.it-ebooks.info

http://apps.twitter.com
http://www.it-ebooks.info/

If you are not greeted with a page that resembles that in Figure 14-1, it may be that
Twitter has either updated this page or that you have yet to sign in with your Twitter
account. Take this opportunity to click “Sign in to twitter,” if you have an existing account
with Twitter, or click “Sign up now” to create one. As a registered Twitter user, you are
allowed to create as many apps as you see fit. Let’s begin by creating an app. Clicking
Create New App will direct us to a page enabling us to create an application, as seen in
Figure 14-2.

W Application Management @ 4
e e e e R R Ve s e i =i}

Create an application

Application Details

Name *
Description *

Website *

Callback URL

77 OAuth 1.0a

Figure 14-2. Application Details form

In the fields shown in Figure 14-2, we will need to provide some required information.
First is the provision of a name for our application. Normally this field is presented to the
end user, to approve the application to use the Twitter account. However, the app we will
be creating is strictly for our own purposes. That being said, you can fill out any name that
is not already in use by other Twitter developers. I have labeled my application
“BeginningJSON.”

The second field seeks a description defining the behavior of our application. What is
it for? What are its intentions? Again, this is another user-facing field. However, as it’s an
internal project, we can call it whatever we wish. I have supplied the following
description: “crawls the search API.”

The third field is used to provide authority to the source of the application. If your
application creates tweets on behalf of a user who authorized your app, the URL you
provide here will be listed as the source attribute for the tweet. Our app will not be making

www.it-ebooks.info

http://www.it-ebooks.info/

any tweets on anyone’s behalf; therefore, we can provide a placeholder, in order to satisfy
the requirement of the field. I have listed http://127.0.0.1 as my web site.

The final field, which is not required, is mandated by the OAuth authorization
protocol. As we will not be making use of this field, we can leave it blank.

The last step in creating a Twitter app requires that we read and acknowledge the
policies surrounding the use of the Twitter API. If you agree to the rules laid out by
Twitter, then click “Yes, I agree,” then click the button labeled “Create your Twitter
application.”

If the form did not possess any errors, upon its submission, you will be navigated to a
portal from which you can manage the particulars of your app. The landing page for your
application is the Details page, which provides the overview of your application. Your
details should reflect those shown in Figure 14-3.

W Application Management 6 -

BeginningJSON rest OAutn

Details Settings Keys and Access Tokens Permissions

crawls the search API

http/M127.0.0.1
Organization
Organization None
Organization website None
Application Settings
Your application's Consumer Key a ad fo authenticate requests to the Twitter Platforr
Access level Read-only (modify app permissions)
Consumer Key (AP] Key) 4TaS6eSBFSHUeIUWIZBSYxPso (manage keys and access tokens)
Callback URL None
Sign in with Twitter No

App-only authentication hitps://api.twitter.com/oauth2/token

Request token URL https://api.twitter.com/oauth/request_token
Authorize URL https://apitwitter.com/oauth/authorize
Access token URL hitps://api.twitter.com/oauth/access_token

Figure 14-3. Application Details page

Figure 14-3 displays the basic details for our recently created application. The major
difference between your app and mine begins with the presented name of the application.

www.it-ebooks.info

http://www.it-ebooks.info/

In the top left-hand corner, you can see that my app is labeled “BeginningJSON.” Further
below, our application’s settings are listed. Here is yet another obvious difference between
your app and mine. Where it states Consumer Key (API Key), the number that appears on
your Details page is guaranteed to be that of a different value. This is necessary for your
app and my app to be recognized as two separate applications. I’1l talk more about this
shortly.

By default, all applications are enabled to provide “Read-only” status from Twitter.
This is evident, as the first field within the Application Settings section reveals our access
level. To the right of “Access level” are the following words: “Read-only.” This is always
the default value, as it is the safest for any user who wants to use your application. If your
application requires write privileges, the existing permissions will require modification.
However, for the purposes of this chapter, we will continue to leave the permission set to
Read-only. At this point, let’s click the Keys and Access Tokens tab within the topmost
navigation.

Keys and Access Tokens

This section pertains to our application/user tokens and is integral to a Twitter application.
In fact, it’s integral to nearly every API out there today. You see, the Twitter application
for which we are creating strictly adheres to the OAuth 2.0 protocol. As the topic of
OAuth is far beyond the topic of this book, I will simply explain that OAuth is an industry
standard for allowing a third party access to your first-party data, while ensuring that the
service requesting your data remains ignorant of your credentials. In this particular case,
that service would be Twitter. In order to keep all parties isolated, thereby not exposing a
user’s password to the application creator, a series of access tokens are used and
exchanged instead.

Every Twitter application is provided a Consumer Key upon its creation. It is this
Consumer Key that distinguishes my application from your application. Furthermore, it is
used to establish the identity of my application with Twitter. Much like a Twitter handle, I
have the option of changing my application name at any point in time. However, the
Consumer Key will always remain the same, that is, unless I regenerate them or change
the app permissions, which would provide my app with a brand-new Consumer Key. A
change in Consumer Keys, then, represents a different app and, therefore, requires anyone
who has previously authorized your app to do so once again. This ensures that users who
authorize your read-only app today cannot be taken advantage of tomorrow, without
having to authorize any changes made to your app.

While the Consumer Key is intended to be public information, all Public Keys are
paired with a secret key that must be safeguarded at all times. For this reason, I have
blurred mine out from Figure 14-4.

www.it-ebooks.info

http://www.it-ebooks.info/

BeginningJSON Test Outh

Details Settings Keys and Access Tokens Permissions
Application Settings

Consumer Key (APl Key) 4TaS6eS8F5HUeIUWIZBSYxPso

Consumer Secret (APl Secret)

Access Level Read-only (modify app permissions)
Owner fezec
Owner ID 52740263

Application Actions

Regenerate Consumer Key and Secrat Change App Permissions

Figure 14-4. Application Keys and Access Tokens tab

If anyone ever obtains a secret key, he/she can impersonate your app. These two keys,
when paired, establish the rightful ownership. Therefore, make certain that the Private Key
you are provided remains a secret from anyone.

Tip The safest way to utilize the Private Key is on the server side.

At this point, we have successfully registered a read-only Twitter application that can
be used to begin interacting with the Twitter API. All that is required is the understanding
of the Twitter API. The Twitter API is bountiful and has loads of methods for us to tap
into. To cover them all requires a book in itself; however, now that we have created an
app, you may find it interesting to discover the potential that Twitter can offer. Feel free to
learn about the various API methods from the online documentation at
https://dev.twitter.com/overview/documentation.

The clear and concise documentation outlines the methods we can make use of, the
type of authorization required, whether or not there is a limit to how many times it can be
called, and the response format to be expected. While not every method will provide
different answers, what remains a constant is that all response formats will be provided as
JSON.

Public Stream

The interaction that this chapter will make use of is the public stream’s statuses/filter, and
its resource information is provided in Figure 14-5.

www.it-ebooks.info

https://dev.twitter.com/overview/documentation
http://www.it-ebooks.info/

POST statuses/filter

Resource Information

Yas
JS50N

Requires user context

Figure 14-5. Public stream’s Resource Information page

The pubic stream, as defined on the Twitter web site, provides “developers low latency
access to Twitter’s global stream of tweet data.” This is achieved by devising a socket
between our server and Twitter’s, so they can post to our servers public tweets as they
receive them.

As I mentioned earlier, both registered and unregistered users have the same ability to
view Tweets. However, only registered users have the ability to perform more specialized
operations. As shown in Figure 14-5, you can see that the type of authorization required
for the public stream is that of a user context. Unlike the Consumer Keys, which we
currently have, in order to use this interface, we will require a User Key as well.
Fortunately for us, in order to create a Twitter application, one must have access to a
registered Twitter account. In other words, we can generate a User Key for our account
and pair it to work with our Twitter application.

Your User Access Token

One thing that Twitter provides us from the Keys and Access Tokens menu is the ability to
generate an access token that can be authorized to work with our application. In order to
obtain an access token, simply click “Create my access token,” just below the CTA “Token
Actions,” shown in Figure 14-6. This will generate an access key for this particular
application, thereby satisfying the requirements of the public stream interface.

www.it-ebooks.info

http://www.it-ebooks.info/

BeginningJSON Tost Outh

Details Settings Keys and Access Tokens Permissions

Application Settings

HEC] id never be human-readable in your appflication

Consumer Key (APl Key) 4TaS6eSB8FSHUelUWTZBSYxPso

Consumer Secret (API Secret)

Access Level Read-only (modify app permissions)
Owner fezec
Owner ID 52740263

Application Actions

Regenerate Consumer Key and Secret Change App Permissions

Your Access Token

Token Actions

Create my access token

Figure 14-6. Generated user token

As shown in Figure 14-6, clicking “Create my access token” will generate an access
token as well as its access token secret counterpart. Never reveal this access token secret
to anyone; otherwise, he/she can use it to access your account via the Twitter API. By
clicking “Generate My Access Token,” Twitter will authorize your account with your
Twitter app. If you were to navigate to
https://twitter.com/settings/applications, you would find a list of all
the applications that you have authorized. The most recent application should reflect
yours, just as Figure 14-7 reveals mine.

www.it-ebooks.info

https://twitter.com/settings/applications
http://www.it-ebooks.info/

Applications

BeginningJSON b
crawls the search AP

Revoke access

Figure 14-7. Authoring our account to make use of our application

At this point, we have all the credentials we require to monitor in near-real time the
Twitter database for the tweets of our choosing.

#Trending

Now that we have the required keys to consume data from the Twitter stream, all that
remains is the implementation for our application. But what exactly are we building? you
ask. We are going to build an application that monitors, as close to real time as possible, a
topic that is currently trending. Furthermore, because the trend may be gone tomorrow, we
will store within a database the data received from the stream. This will allow us the
ability to filter, sort, or search for particular tweets even after the trend subsides.

Last, because the data will be locked away within a database, we will devise a way to
extract the data and incorporate it within an HTML document. In order to present the data
as a tweet, we will stylize the extracted data upon its inclusion within the HTML
document. For this, you will have to use your gleanings from each preceding chapter.

Node.js

The first piece of the puzzle is creating a server from which we can interchange data
between our application and Twitter. In order to make our lives easier, we will leverage a
Node module, which will conceal our application from the nitty-gritties of the Twitter
API. For this challenge, we will leverage the npm Twitter module. You can read more
about it at the following site: www.npmjs.org/package/twitter.

Twitter Module

In order to utilize the Twitter module, we must first install it as a module with Node.js. In
order to do so, we will follow the practices similar to those that were employed with
Cradle, discussed in Chapter 12.

Simply use the command-line interface to navigate to the top directory, which contains
the chapter14 source code. For me, that would be the following locations:

//PC

C:\Users\UrzZA\Documents\Aptana Studio
3 Workspace\BeginningJSON\chapter14\

//Mac

/Users/FeZEC/Documents/Aptana Studio

www.it-ebooks.info

http://www.npmjs.org/package/twitter
http://www.it-ebooks.info/

3 Workspace/BeginningJSON/chapterl14/

Open Terminal for Mac or CMD for PC, and simply type cd, followed by the location
of your chapter14 directory and hit Enter. Next, type in the following command and hit
Return on your keyboard.

npm install twitter

This will initiate the installation process for our Twitter module. Remember that to
install a module, you may require administration rights.

Incorporating the Twitter Module

Once the Twitter module has been successfully installed into our top-level directory, we
can begin working with it, by incorporating it into a Node application via require().
As outlined at www . npmjs.org/package/twitter, the setup for our Twitter
application requires a mere eight lines of code, as shown in Listing 14-1.

Listing 14-1. Twitter Module Setup
1 var util = require('util');

2 var twitter = require('twitter');
3 var twitr = new twitter({

4 consumer_key : ""REPLACE_WITH_YOUR_CONSUMER_KEY'",

5 consumer_secret : "REPLACE_WITH_YOUR_CONSUMER_KEY_SECRET",
6 access_token_key

"REPLACE_WITH_YOUR_CONSUMER_ACCESS_TOKEN',

7 access_token_secret

: '""REPLACE_WITH_YOUR_CONSUMER_ACCESS_TOKEN_SECRET"

8 1)

As I hinted at earlier, a Twitter application relies on an exchange among keys. This is
why the setup requires us to insert the appropriate keys that reflect the application we are
devising. The module then utilizes these keys to generate the proper calls to Twitter’s API.
Because this logic is complex, we are leveraging our module to perform this labor.

Now, as it currently stands, the code from Listing 14-1 simply configures our
application to properly access the Twitter API with the appropriate credentials. It does not
begin to make any requests or receive any data. For that, we must utilize the relevant
methods of the module.

Streaming API (Stable)

The Twitter module has a few methods that we can tap into; however, for the purposes of
this chapter, we will make sole use of the Streaming API. The Streaming API is a wrapper
to accessing Twitter’s public streams. As you can learn from Twitter’s documentation on
public streams, https://dev.twitter.com/streaming/public, there are
three possible end points. We will use statuses/filter.

www.it-ebooks.info

http://www.npmjs.org/package/twitter
https://dev.twitter.com/streaming/public
http://www.it-ebooks.info/

Statuses/Filter

The documentation for the statuses/filter URI states: “Returns public statuses that match
one more filter predicates.” In other words, the end point,
stream.twitter.com/1.1/statuses/filter, will monitor for public tweets
that match any of the delimited terms or hashtags that we specify. Furthermore, because
our application will be listening to a stream, Twitter will provide us data in near real time.

In order to specify the terms or tags that our application requires, we will use the
track property. Simply put, track is a parameter that can be provided phrases or
keywords. Multiple phrases or keywords can be separated by the comma (,) token.
Listing 14-2 reveals the eight lines of code required to devise a connection to the
status/filter stream.

Listing 14-2. Incorporating the Stream API

8 //..truncated code

9 var hashTag=
“REPLACE_WITH_A_COMMA_DILIMITED_SET_OF_HASHTAG(s)”;
10 twitr.stream('statuses/filter', {

11 track : hashTag

12 }, function(stream) {

13 stream.on('data', function(data) {

14 console.log(data); //outputs JSON
15 7))

16 });

Listing 14-2 shows all the code we will require for devising a stream for the chosen
list of hashtags or phrases. I, however, have chosen to monitor the single hashtag knows as
“#BendGate” (the latest trend following the iPhone 6). Incorporating Listing 14-2 with
Listing 14-1 and replacing all references appropriately is all that remains to make this
Node application fully operational.

If you were to execute the code from the command-line interface, via the node
command, depending on the topic you had chosen to monitor, you would notice JSON
being output to the console immediately. If the topic was truly trending, you might find it
impossible to determine one tweet from another. Remember: We are streaming data, which
means that everything is happening in real time or as close to it as it can.

Note The stream outputs JSON and not raw data, because the Twitter module parses it.

Because it’s coming in at near-real time, we will have to save the incoming data, lest it
never reappear in our application, that is, unless it is re-tweeted by another user. In order
to ensure that we retain the incoming tweets of the stream, we must incorporate a database
on which we can persist them.

CouchDB

www.it-ebooks.info

http://www.it-ebooks.info/

There is an expression, “You could not step twice into the same river,” that is used to
imply that things change. The tweets provided to our application may wind up being
deleted by the originator of the tweet moments after they are published. This tweet will,
for all intents and purposes, no longer be obtainable by public searches. By applying the
preceding expression to our Twitter stream, the incoming tweets will be lost to our HTML
document unless we devise a way to capture and store them for later use. For this, we will
incorporate CouchDB.

Incorporating the Cradle Module

As you should already have CouchDB installed on your machine, the only thing that will
be required of our application is the installation of the Cradle module into our current
working directory. This can be achieved by typing cd, followed by the location of your
chapter14 directory, and hitting Enter. Next, type in npm install twitter.
Remember: You may require administration privileges to do so.

Once the Cradle module is installed, all that remains is to incorporate it into our
existing Node application. Listing 14-3 reflects in bold the code required.

Listing 14-3. Incorporation of Cradle into Our Node Application

1 var util = require('util');
2 var twitter = require('twitter');
3 var cradle = require('cradle');

4 var twitr = new twitter({
consumer_key : "REPLACE_WITH_YOUR_CONSUMER_KEY",
consumer_secret
"REPLACE_WITH_YOUR_CONSUMER_KEY_SECRET",
access_token_key :
"REPLACE_WITH_YOUR_CONSUMER_ACCESS_TOKEN",
access_token_secret
"REPLACE_WITH_YOUR_CONSUMER_ACCESS_TOKEN_SECRET"

1))

5 var hashTag=
"REPLACE_WITH_A_ COMMA_DILIMITED_SET_OF_HASHTAG";

6 var couchDB = new (cradle.Connection)('127.0.0.1', 5984, {
cache : true,
raw : false,
forceSave : true

1),

7 var twitterDataBase = couchDB.database('twitter');
8 twitterDataBase.exists(function(err, exists) {

9 if (err) {
10 console.log('error', err);
11 } else if (exists) {

www.it-ebooks.info

http://www.it-ebooks.info/

12 console.log('the twitter db exists');
13 } else {

14 console.log('twitter database does not exists.');
15 twitterDataBase.create();

16 }

17 °1});

18 twitr.stream('statuses/filter', {
track : hashTag
}, function(stream) {

stream.on('data', function(data) {
twitterDataBase.save(data, function(err, res) {
if (lerr) {
console.log(res); //logs out saved couchDB _id

}
1),

1),
1),

Listing 14-3 outlines in bold the inclusion of CouchDB via the Cradle module. As you
can see in lines 5 through 16, we establish a connection to our CouchDB service and
determine the existence of the database labeled “twitter.” If a database of that name
does not currently exist, we create it via the create method.

Once our database is devised, and with a reference to it, we can pipe the incoming
JSON into our database. Because the Twitter module converts any data read from the
stream into JSON, we can simply provide it as the body to Cradle’s save method.

If you don’t currently have the CouchDB service running on port 5984, take this
opportunity to start the CouchDB application. Once you have verified that CouchDB is
running via the Futon interface, go ahead and restart our Node application. In lieu of
Twitter data being outputted to the console, you should now be viewing JSON data
returned by CouchDB. This data, as you may remember, represents the individual
documents used to persist the provided JSON. Feel free to allow this application to run for
a short while, in order to fill our twitter database. Before long, you will surely see an
abundant amount of tweets that will have been saved to our database.

When you are satisfied, navigate your browser to the Futon Overview
(http://127.0.0.1:5984/_utils)to bear witness to the fruits of your labor. As
revealed in Figure 14-8, I managed to receive a total of 7,173 tweets before deciding to
shut down my application. This amounted to nearly 50 megs in saved documents. While
hard-drive space is nearly infinite for the penny these days, my desire to save 50 megs’
worth of people complaining about their bent phone is sadly finite.

www.it-ebooks.info

http://127.0.0.1:5984/_utils
http://www.it-ebooks.info/

8 00 wd Apache CouchDB - Futon .

C [} 127.0.0.1:5984/_utils/ w DN 09 R A=
% ppps M Learn more. ! GetProcessingand |y Arduino Eclipse De [8 bit, 12 bit, 14 bit Visual Event » [Other Bookmarks
Overview
S
@9 Create Database
Name Size MNumber of Documents Update Seq
_replicator 4.1KB 1 1

_users B.1 KB 1 2 c hDB
counting 16.1 KB 4 4 Ou c

relax
guestbook 108.1 KB 4 28
twitter 49.1 MB 7173 7185
visitors 20.1 KB 5 5 Configuration
Rows perpage:| 10 § MNaxt P Replicator

Status
ocumantation
Manual
Diagnostics
Varify Installation

Figure 14-8. Overview of my Twitter database

Because Twitter does not understand what attributes our app may or may not wish to
utilize, each JSON document saved possesses an exuberant amount of information. Such
information addresses whom the tweet is in reply to or the location from which the tweet
originated, etc. Feel free to delve into your Twitter database and observe at random a
single document. As you will undoubtedly find, there is an expansive amount of
information pertaining to the captured tweet. As this will be less than ideal for HTTP
transport, we will have to create a view that reflects the sole aspects required by this
chapter.

Creating a View

As was seen in Chapter 12, creating a view entails the creation of a design document, for
which the map function we devise will reflect the rows for this particular view. For the
purpose of our application, we will require a mere fraction of the values held within each
JSON document. These values are the following: message, profile_pic, handle,
full_name, created_time, media, and tweet_1id. Each of these aforementioned
labels will play an integral role in the presentation of the tweet.

Last, as the key that will be used to sort our results, our map function will reference
the captured timestamp of the tweet. Referencing this value as the primary key to our view
will enable the ability to sort tweets by their creation time. Currently, the creation time is
represented as a string rather than as a number. However, we can easily convert the
timestamp to a number via the built-in JavaScript function Number (string), as seen
in Listing 14-4.

Listing 14-4. Devising a Tweet map Function

function(doc) {

www.it-ebooks.info

http://www.it-ebooks.info/

var mediaURL=undefined;

if(doc.extended_entities){
mediaURL=doc.extended_entities.media[0].media_url;

i

emit(Number(doc.timestamp_ms), {

"message" :doc. text,
"profile_pic" :doc.user.profile
"handle"

:doc.user.screen_name,
"full_name" :doc.user.name,
"created_time" :doc.created_at,
"media" : mediaURL,
"tweet_id" rdoc.id_str

1))

Listing 14-4 reveals the map function that will be used to create the data set that will
be used within our HTML document. As you can see, the emit function obtains the
reference to our document and, from it, captures only the properties our application
requires. Because media will not accompany every tweet, I have also created a condition
in which the mediaURL is set to undefined if media does not exist. This will
effectively remove the media key from the returned JSON. This will be important to
remember when we devise our template.

With our map function devised, click the Run button to extract our data set against the
entries within our Twitter database. Once the operation completes, you should witness the
results of your query, as shown in Figure 14-9. The amount of time required to query the
existing database will vary. Remember that the initial render is the slowest, and
subsequent rendering of the same query only occurs on recently added/removed or
updated documents.

Run | Leguage | javasrpt o) Savm ha

Warning: Pisase note that tsmporsry views are not suitabis for use in production, as Sy are really siow for ey database with more than o few dogen documents. You Gan use @ lemporary view 10 BEpariment with view functions, bt pwitch 1o 8 permanant view befors
wing P in an appiication

Hoy A il
141 1H3BSTA64 nessage: AT @hyesTerris b turut tid k ket

141LEIEESIIDE

J4L1E3ESETELS

Figure 14-9. Specialized query

www.it-ebooks.info

http://www.it-ebooks.info/

Once your view has successfully resulted in a valid data set, you will want to save it.
You may recall that this is achieved by clicking the Save As... button, which will display
the Save View As... dialog box shown in Figure 14-10.

Figure 14-10. Save dialog for a temporary view

I have labeled my design document “twitter” and the view’s name “tweets.” Once the
fields are properly filled in, click Save, so that we can now reference our view via the
following URL:
http://127.0.0.1:5984/twitter/_design/twitter/_view/tweets.

Visiting this URL reveals JSON to be the data set captured by our query.

Enabling CORS

If we wish our HTML application to obtain and utilize the preceding JSON resource, we
will require the use of Ajax. However, because CouchDB runs on a specific port, any and
all Ajax requests that do not get initiated from within Futon will be denied, per the same-
origin policy.

However, as CouchDB invites us to modify its configurations, we can enable CORS
with ease. Navigating to http://127.0.0.1:5984/_utils/config.html
reveals, via a Futon interface, the ability for us to modify, add, and alter the default
configurations of CouchDB.

By default, CouchDB disables CORS, to ensure that data captured within remains
safeguarded. However, enabling CORS is as simple as scrolling to the ht tpd section and
locating the enable_cors option. While it may appear that the value is uneditable,
double-clicking the value will reveal an input box, thereby allowing us to replace the
current value with that of true. (See Figure 14-11.)

Seclion Crption il Dotete

hitipd allow_jsonp L

false
authentication handlers [eouch_nitpd_ssuth, ssuth_authentication handlerk, {(couch huitpd suth, cosikie asuthonticatisn_handlerd, leouch henpd auth,
o defoult_suthentication_handler)

bind_address 1a7.0.0.1

defauli_handler {couch_nttpa_db, handle_request)
onable_cors false

log_max_churk_sizo LabbabE

podt 0

Bcure_rowrites

socket_options: [{racbut, 262144}, {pamaf, 262144})
vhiat_global_handiers ~utils, _weids, _sessien, _oauth, _wsers

Figure 14-11. Configuring CouchDB with CORS capability

Once we have configured CouchDB to utilize CORS, we will have to include the
proper CORS headers within the CORS section. By default, the CORS section does not
possess any CORS headers as an option and, therefore, will have to be added. This is

www.it-ebooks.info

http://127.0.0.1:5984/twitter/_design/twitter/_view/tweets
http://127.0.0.1:5984/_utils/config.html
http://www.it-ebooks.info/

achieved by locating, at the bottom of the interface, the button labeled “Add a new
section,” as seen in Figure 14-12.

verify_ssi_certificates false)

atats rate TR
samplos [, &2, 3J3b, S8

wuleds algorithm sequential
A _couny T :
rendor namse The Bgache Soltware Foussation

versbon 1.6.2

view_compaciien Knyvalun_biffor_size B

Figure 14-12. Adding a new section button

On clicking this button, a dialog box will appear, as shown in Figure 14-13, and to it,
we specify a key/value pair into a given section.

socket_options [weepalive, truet, {nodslay. fa

ssl_certificate_max_dapth 3 Create New Conﬂg Optlon

verify_ssi_certificates

worker_batch_size
workor_processes

port
ssl_certificate_max_depth
verify_ssl_certificates

rate

samples
Figure 14-13. Configuring the origins header

For the purposes of this chapter, our application will only initiate a GET request for the
Twitter view. Per the CORS specification, in order to authorize GET requests for data from
origin A to a source origin B, we must use the origins header. As its value, we must
configure any and all approved origins. To make things easy, we can use the wildcard after
all the information we are exposing is already public on Twitter. On clicking Create, we
will have successfully configured our data set from being obtained via varying origins.

Ajax

In order to fetch the JSON data from CouchDB, we must configure the Ajax request
accordingly. This can be as simple as configuring an xhr object and defining the request
line, as shown in Listing 14-5.

Listing 14-5. Ajax Request to Obtain Tweets
var ajax = new XMLHttpRequest();

ajax.open("GET",
"http://127.0.0.1:5984/twitter/_design/twitter/_view/tweets")

ajax.responseType = "json";

ajax.onload = function() {

console.log(this.response);
i

ajax.send();

Listing 14-5 initializes an XMLHt t pRequest object and configures the request line

www.it-ebooks.info

http://127.0.0.1:5984/twitter/_design/twitter/_view/tweets
http://www.it-ebooks.info/

to make a GET request for the Twitter design document. Submission of the request,
provided the CORS headers are properly configured in CouchDB, should result in the
output of the received JSON data to the developer’s console. At this point, all that would
remain is to append our JSON to the document.

Note To keep things simple, Listing 14-5 solely makes use of XMLHt tpRequest
Level 2.

If you were to open a simple HTML document, make reference to the external
Ajax. js file, and run it within a browser with the developer’s network pane opened, you
would be able to witness a successful Ajax request. If your database is as bountiful as
mine, you might have witnessed that your request received an incredibly large number of
tweets. Receiving this many tweets will require the viewer of our document to wait until
the transmission/parsing of JSON has been fulfilled, which is less than ideal.

Requesting Ranges

For our Ajax to be prompt and provide a good user experience, we will incorporate into
our URI the following recognized parameters of CouchDB: descending, 1imit,
startkey, and skip. These parameters can be used to inform CouchDB to return a
subset of data. This will allow us to paginate our data rather than receive it in one lump
sum. Each parameter will provide a specific functionality in defining the range of our
subset. Let’s begin with the descending parameter.

var
url="http://127.0.0.1:5984/twitter/_design/twitter/_view/twee
descending=true" ;

ajax.open("GET",url);

As you can see from the preceding code, I have appended the descending
parameter to the end of our resource URI. Furthermore, I have specified the value of the
descending parameter as true. This will ensure the sorting order of the original data
set, from which we will define our subset. Next, we will utilize the parameter 1imit.

var
url="http://127.0.0.1:5984/twitter/_design/twitter/_view/twee
descending=true&limit=20;

ajax.open("GET",url);

Appending the 1imit parameter to our resource will allow us to cap the amount of
rows returned by the view. In this particular case, I have specified the value of 20. If you
were to navigate to the preceding URI, you would note that only 20 rows are presented.
Furthermore, those 20 rows are sorted in the order they were extracted, that order being
descending order.

By default, the 20 values being returned will simply reflect the first 20 rows that
appear, beginning with the most recent. However, we can manipulate the starting index

www.it-ebooks.info

http://127.0.0.1:5984/twitter/_design/twitter/_view/tweets
http://127.0.0.1:5984/twitter/_design/twitter/_view/tweets?descending=true&
http://www.it-ebooks.info/

with the incorporation of our next parameter, startkey.

var
url="http://127.0.0.1:5984/twitter/_design/twitter/_view/twee
descending=true&limit=20

&startkey=1412433722297" ;
ajax.open("GET",url);

Use of startkey invites us to specify a known key as the index from which our
subset begins. In this case, I have specified the key 1412433722297. However, as you
may or may not have a tweet that reflects this key, it’s best to make this value dynamic.
This, of course, can be obtained easily from each Ajax request. We simply obtain the key
from the very last row of JSON in our data set. I will demonstrate this shortly.

Because we will use the last key to indicate the key from which we begin our subset,
we will undoubtedly obtain in each subset a tweet that has already been provided in our
previous subset. Therefore, the final parameter we will utilize will inform CouchDB to
skip over a specified number before beginning our subset. That parameter is, of course,
skip.

var
url="http://127.0.0.1:5984/twitter/_design/twitter/_view/twee
descending=true&limit=20

&startkey=1412433722297&skip=1";
ajax.open("GET",url);

Providing the value of 1 to our Skip parameter informs CouchDB to offset our subset
by one from the established star tkey. This will effectively skip the row identified by
the startkey from being provided in this data set.

Now that we have a firm understanding of the parameters involved, all that remains
are the operations that can manipulate our URI accordingly. Such operations can be seen
in Listing 14-6.

Listing 14-6. js/mylibs/ajaxRange. js Incorporates the Pagination of Tweets

1 var url
= 'http://127.0.0.1:5984/twitter/_design/twitter/_view/tweets
2 var lastKey = null;

3 function render() {
4 var ajax = new XMLHttpRequest();

5 ajax.open("GET", incrementRange(lastKey));
6 ajax.responseType = "json";

7 ajax.onload = function() {

8 var data = (this.response);

9 var rows = data.rows;

10 lastKey = rows[rows.length - 1].key;

11 console.log(data);

www.it-ebooks.info

http://127.0.0.1:5984/twitter/_design/twitter/_view/tweets?descending=true&limit=20
http://127.0.0.1:5984/twitter/_design/twitter/_view/tweets?descending=true&limit=20
http://127.0.0.1:5984/twitter/_design/twitter/_view/tweets
http://www.it-ebooks.info/

12 };
13 ajax.send();
14 }

15 function incrementRange(lastCount) {
16 var range = "?descending=true";

17 var limit = 20;

18 if (lastCount) {

19 range += "&startkey="
+ lastCount.toString()+"&skip=1",;
20},

21 range += "&limit=" + limit;
22 return url + range;
23 };

Listing 14-6 incorporates the use of two functions to append the appropriate
parameters and their values that enable the appropriate and linear subset of the original
data contained in our twitter database.

The first function, labeled “render,” is the main entry into our Ajax request. This
function is responsible for the actual request that will take place. However, the render
function will defer to our second function, labeled “incrementRange,” which is
responsible for appending the appropriate parameters for the Ajax call. As discussed
earlier, three of our four parameters are known constants. We will always work in
descending order; we will limit our data set to 20 rows; and, last, we will always skip one.
However, what varies is the key that will represent our starting index, from which our
subset is derived.

In order to satisfy the star tkey parameter, we must retain the key value from the
last row provided in each data set to a variable that can be referenced by the
incrementRange function. The variable that will be assigned the key value is that of
lastKey (line 10). With each data set returned, we must access the final collection in the
array and obtain the value of key.

With each call to render, lastKey will be provided as an argument to
incrementRange, where, if and only if the value is not null, will it be set as the
value to startkey. Next, startkey and the skip parameter are appended to the
current URI, along with 1imit.

With each invocation to render, the data set will continue to be incremented by the
next 20 rows in the database. To make it easy to request a data set, we could easily bind
the render function to that of a button in our HTML, as shown in Listing 14-7.

Listing 14-7. HTML Document’s Incorporation of Our ajaxRange Script

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8'">

www.it-ebooks.info

http://www.it-ebooks.info/

</head>
<body>
<input type="submit" value="load tweets" onclick="return
render()"/>
<script src="js/mylibs/ajaxRange.js"></script>
</body>
</html>

Tip Scripts should always be referenced at the end of your document, to increase page
load.

If we were to run the document from Listing 14-7, we would only be able to witness
on the page a Submit button that reads “load tweets.” Although clicking the button does
initiate the appropriate Ajax request, we have yet to perform any options that would insert
the returned data into our page.

Handlebars

The final piece of the puzzle is the incorporation of our template, which will not only
apply presentation to our data but also insert our data into the document. To assist in our
template creation, it will be of great use to know exactly what the composition of our data
is. Listing 14-8 reveals the composition of a data whose range is limited to the return of
two rows.

Listing 14-8. A Subset of Our Data Context Received from CouchDB

{
"total_rows'":3976,

"offset":0,
"rows": [

{
"id":"83f4b7105a3aad630fb06e036600176b",
"key" :1412433722297,

"value": {
"message" : "truncated",
"profile pic":'"truncated. jpeg",
"handle" :"truncated",
"full_name" :"truncated",
"created_time" :"truncated",
"media" : truncated.jpg",
"tweet_id'":'"518410721529307136"

}

3o A
"id":"83f4b7105a3aad630fh06€03660016ch",

"key" :1412433721956,
"value": {

www.it-ebooks.info

http://www.it-ebooks.info/

"message" : "truncated",

"profile pic":'"truncated. jpeg",
"handle'" :"truncated",

"full_name" :"truncated",
"created_time" :"truncated",
"media":truncated. jpg",
"tweet_id":"518410719986216960"}

Listing 14-8 reveals that each tweet is a collection of key/value pairs, held sequentially
within the ordered list labeled rows. Because our context is made up of collections and
ordered lists, our template will have to rely on block expressions and block helpers to
traverse the contexts appropriately. Listing 14-9 reflects the template I have chosen to
represent our tweets.

Listing 14-9. index.html Handlebar-Tweet-Template

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<link href="'css/tweet.css' rel="'stylesheet'
type="'text/css'>
</head>
<body>
<section id="tweets'">
<script type="application/x-handlebars" id="Handlebar-Tweet-Template">
{{#each rows}} //for each item contained within rows
{{#value}} //set the current context to value
<div class="social-article">
<a target="_blank" href="{{profile_pic}}" class="profile-
plC Il>

<div class="social-text">
<p class="socialprofilelink">

{{full_name}}

{{handle}}
</p>
<a target="_blank"
href="https://twitter.com/{{handle}}/status/{{tweet_id}}"
class="created-time">{{created_time}}
<p>{{message}}</p>
</div>

www.it-ebooks.info

https://twitter.com/
https://twitter.com/
https://twitter.com/
http://www.it-ebooks.info/

{{#if media}} //if a media is supplied add it
<img class="media" src="
{{media}}'">
{{/1f}}
<div id="twitter-actions">
<a target="_blank"
href="https://twitter.com/intent/tweet?in_reply_to=
{{tweet_id}}"
title="Reply" id="intent-reply" class="intent">

<a target="_blank"
href="https://twitter.com/intent/retweet?tweet_1id=
{{tweet_id}}"
title="Retweet" id="intent-retweet"
class="intent'">
<a target="_blank"
href="https://twitter.com/intent/favorite?tweet_id=
{{tweet_id}}"
title="Favorite" id="intent-fave" class="intent">

</div>
</div>
{{/value}} //return to the original context

{{/each}}
</script>

</section>

<input type="submit" value="load tweets" onclick="return
render()"/>

<script src="js/libs/handlebars-v2.0.0.js"></script>
<script src="js/mylibs/ajaxRange.js"></script>

</body>

</html>

If you were to open the HTML document within a browser, all that would be shown at
this point is what appears in Figure 14-14. Furthermore, clicking the “load tweets” button
continues to make Ajax requests; however, it will not insert any tweets into our page.

800 127.0.0.1:8020/Beginnin. % K
[5 127.0.0.1:8020/Beginning)SON/chapter 14 /index.html v} é\l D F’ e =
EEe Apps t" Learn maore. * Cet Processing and |n Arduing Eclipse De 8 bir, L2 bit, 14 bit Wisual Event B Minstad Corner 5o " |__ Other Bookmarks

load twaets

Figure 14-14. Only a “load tweets” button is rendered to the page

This is because we have yet to supply our data to our template. However, before we

www.it-ebooks.info

https://twitter.com/intent/tweet?in_reply_to=
https://twitter.com/intent/retweet?tweet_id=
https://twitter.com/intent/favorite?tweet_id=
http://www.it-ebooks.info/

are able to do so, we must compile our template, so that we can reference it as a function,
as seen in Listing 14-10.

Listing 14-10. js/mylibs/engine. js Incorporates the Template with
ajaxRange.js

1 var initialTemplateWrapper = document.getElementById("Handlebar-Tweet-
Template");

2 var initialTemplateContent = initialTemplateWrapper.innerHTML;
3 var templateFunction = Handlebars.compile(initialTemplateContent);

4 var url

= 'http://127.0.0.1:5984/twitter/_design/twitter/_view/tweets
5 var lastKey = null,;

6 function render() {

7 var ajax = new XMLHttpRequest();

9 ajax.open("GET", incrementRange(lastKey));
10 ajax.responseType = "json";

11 ajax.onload = function() {

12 var data (this.response);

13 var rows data.rows;

14 lastKey = rows[rows.length - 1].key;

15 document .getElementById("tweets").innerHTML += templateFunction(
data);

16 };
17 ajax.send();
18 }

19 function incrementRange(lastCount) {

20 var range = "?descending=true";

21 var limit = 20;

22 1if (lastCount) {

23 range += "&startkey=" + lastCount.toString()
+ "&skip=1";

24},

25 range += "&limit=" + limit;

26 return url + range;

27 };

Listing 14-10 begins by prepending into our ajaxRange JavaScript file the
necessary lines both to obtain and compile our Handlebar -Tweet-Template into a
JavaScript function. We begin first by obtaining a reference to the HTML <script>
element whose ID is that of Handlebar-Tweet-Template (line 1). From there, we
extract the value within via the element’s innerHTML attribute (line 2). Once we have a
reference to the template markup, we can supply it as the argument to
Handlebars.compile (line 3). This will result in the transformation of our template
into a function, which can be assigned for later reference. In this particular instance, I have

www.it-ebooks.info

http://127.0.0.1:5984/twitter/_design/twitter/_view/tweets
http://www.it-ebooks.info/

labeled that reference templateFunction. The variable templateFunction,
when called, can be provided with our data set to produce the markup that can be added to

our document. The final touch is then to invoke the templateFunction with our
returned JSON data (line 15).

At this point, if we were to open our HTML document within a browser and click the

“load tweets” button, our document would render each returned tweet with the appropriate
presentation, as seen in Figure 14-15.

c 127.0.0.1:8020/Beginning/SON/chapter14 /index.html ady O O ® A=

2 apps M Learnmore. ¢ Get Processing and |- Arduino Eclipse De 8 bir, 12 bit, 14 bit Visual Event w | Other Bookmarks

I

' iPhone 6

Bend it like Beckham

20 lek hang lake lakexo 53l Sep 27 2014 N25:25 GM 70400 (DT Hwister

BT #WS1: Slbendgaie: § durability tests Apple used on the {Phome & Flus hipi (ab heip:fitea'd Y55 Hognd

s

for your back pocket.
I o
.pbs.tw:mg.{n.-n,'mc:li.‘l.l’BrIClmDCQMQS'\."E'.jpg

Fal
LT

Figure 14-15. Handlebars automates the presentation

As you can see from Figure 14-15, each tweet is clearly added to the document. All
that remains is the incorporation of the appropriate styling. The styling, much like the

template, can take on any form. The styling I have chosen to apply can be seen in Listing
14-11, resulting in the rendering of Figure 14-16.

Listing 14-11. css/tweet . css Provides Style to Coincide with Our Template

@import url("//fonts.googleapis.com/css?
family=0Open+Sans+Condensed: 300 |0pen+Sans");

#tweets {

www.it-ebooks.info

http://www.it-ebooks.info/

font-family: 'Open Sans' sans-serif;
width: 30%;
margin: auto;
overflow: hidden;
}
.recent-activity img, img {
border: O none;
}

a img.media {
width: 100%;
height: auto;
margin: 10px O;
-webkit-border-radius: 7px;
-moz-border-radius: 7px;
border-radius: 7px;

}

.social-article {
border-top: 1px slategray dotted;
width: 100%;
padding: 8px Opx 8px 0OpxX;
margin: 0 0 10px O;
position: relative;
overflow: hidden;

}

.social-article .profile-pic a {
position: absolute;
z-index: 99;
float: left;

}

.profile-pic {
position: absolute;
}

.profile-pic img {
float: left;
border: none;
-webkit-border-radius: 20px;
-moz-border-radius: 20px;
border-radius: 20px;
width: 42px;
height: 42px;

}

.social-article .social-text {
width: 100%;
float: left;
font-size: 11px;

www.it-ebooks.info

http://www.it-ebooks.info/

padding-left: 52px;
-moz-box-sizing: border-box;
-webkit-box-sizing: border-box;
box-sizing: border-box;
position: relative;
}
.social-article .social-text p {
margin: 0Opx;
min-height: l1em;
line-height: 15px;
-ms-word-break: break-all;
word-break: break-all;
/* Non standard for webkit */
word-break: break-word;
-webkit-hyphens: auto;
-moz-hyphens: auto;
-ms-hyphens: auto;
hyphens: auto;
}
.social-article .social-text a, .social-article .social-text
hli a {
color: #00acee;
text-decoration: none;
}
.social-article .social-text a:hover, .social-article
.social-text hl a:hover {
text-decoration: underline;
color: #00acee;

}

.Created-time {
font-size: 10px;
color: #878787;
clear: both;
display: block;
margin: 0 0 5px O;
}
.Created-time a, .created-time a:hover {
color: #878787;
}

.socialprofilelink a, .socialprofilelink a:hover {
color: #444;
}

/¥ eeema-- FEED ACTIONS ------ */
#twitter-actions {

www.it-ebooks.info

http://www.it-ebooks.info/

width: 75px;

float: right;
position: relative;
margin-right: 5px;
display: block;

}

.intent {
width: 16px;
height: 16px;
float: left;

}

.intent a {
width: 16px;
height: 16px;
display: block;
background-image: url(../img/everything-spritev2.png);
float: left;
}

#intent-retweet a { background-position: 48px Opx; }
#intent-retweet a:hover { background-position: 32px Opx; }
#intent-fave a { background-position: 95px Opx; }
#intent-fave a:hover { background-position: 79px Opx; }
#intent-reply a { background-position: Opx Opx; }
#intent-reply a:hover { background-position: -16px 0Opx; }

www.it-ebooks.info

http://www.it-ebooks.info/

e 0o ‘_' [127.0.0.1:8020/Beginnin: ®

et

& - @ [J 127.0.0.1:8020/Beginning}SON/chapter14 index.htm|
i Apps MY Learn more.

* GetProcessing and |y Arduine Eclipse Dey

[E & bir, 12 bir, 14 bin

wOED 09 K,

= H Other Bookmarks

[Wisual Event

L

RT @petroshad: Clever response of
Kbrands to Mapple #BendGate
@Heineken_ML @EITKAT
@MoklaHomebase @Pringles
hittpe it colangFeBafy

NO WORRIES...
T HAPPENS TO U5 AL THE TIME.

twitter

RT @zab_greich: Oui bon M'NiPhone se
plie un peu dans la poche mals rien de
grive Ihitpo/iLoolFgfkFRmy L3
hitpefft.cofkSEhdRpIE @Nfluendi..,

Apurva learsolfwhisky

twitter

¥pendgate #iPhonebplus
hipsit cofuippCgdkCi

> LEFORT-BRUNET Myriam
myriambefort
Sar Sep 27 2014 16:06:31 GMT-D400 [EDT)

Sat Sep 27 2014 160827 GMT-0400 [EDT)

RT @HKITKAT: We don't bend, we Sbreak.

Figure 14-16. Fully stylized #bendgate tweets

Summary

As this chapter has shown, JSON is not simply a data format but, rather, the kernel from
which modern-day applications blossom. Owing to its convenience, simplicity, and ability
to maintain the hierarchical structure of data, JSON has become the substance that fuels

the Web.

It is true that we could have transmitted XML in lieu of JSON. However, the
convenience of working with JSON far outweighs the tediousness and bloat that comes

with XML.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Index

A

Arithmetic operators

Assignment operator

Asynchronous JavaScript and XML (Ajax)

requesting ranges
descending parameter
limit parameter
operations
render function
skip parameter
startkey
XMLHttpRequest object

B

Block statements
Boolean type
Bracket notation

Buffer.byteLength method

C

changelnState function
charAt method
Contrasting expression

Control statements

CORS. See Cross-origin resource sharing (CORS)

CouchDB

CORS

Cradle module
Node application
twitter database

custom view
definition
emit method
guestbook database
map function
output

permanent view

www.it-ebooks.info

http://www.it-ebooks.info/

signature view
temporary view
URL
Futon
Add Field button
@CouchDB signature
document list
guestbook
GUIDs
HTML interface
query
Save Document
Source view
Upload Attachment
URL
Mac installation
Node application
configuration interface
Cradle process See (see Cradle module)
HTTP methods
REST API
view creation
map function
query
temporary view
Windows installation
Cradle module
configuration
CouchDB
Node application
twitter database
Cradle Wrapper
create method
database instance
design document
creation
existing HTTP Node application
output
save method
sigTime and signatures
exists method

get method

www.it-ebooks.info

http://www.it-ebooks.info/

all_docs query
callback function
document ID
key parameter
limit parameter
logging
query string parameters
sorting
startkey and endkey parameters
installation
new documents
require method
save method
view method
Cross-origin resource sharing (CORS)
Access-Control-Allow-Origin
Ajax request
authorization
configuration
CORS-enabled server
GET request
JSON response
preflight headers
response headers
simple headers
specification

user-agent

D

Data interchange. See Hypertext Transfer Protocol (HTTP)
Designing literals

array

object

Dot notation

E

ECMAScript
emit method
Escaped literals
eval function
assignments

evaluate expression

www.it-ebooks.info

http://www.it-ebooks.info/

object literals

string literals

F

for loop
syntax
array
charAt

Futon
Add Field button
@CouchDB signature
document list
guestbook
GUIDs
HTML interface
query
Save Document
Source view
Upload Attachment
URL

G

get method
all_docs query
callback function
document ID
key parameter
limit parameter
logging
query string parameters
sorting
startkey and endkey parameters

Globally Unique Identifier (GUID)

H

Handlebars
ajaxRange.js
basic expression/placeholder
block expressions
compile method

complex JSON structures

www.it-ebooks.info

http://www.it-ebooks.info/

CSS style
HTML span tag
implementation
index.html Handlebar-Tweet-Template
installation
JSON structure
load tweets button
multiple placeholders
outputs fields
presentation
script tag
source code
templateFunction
Hypertext Transfer Protocol (HTTP)
Ajax (see XMLHttpRequest interface)
cookies
ASCII characters
domain attribute
expires attribute
httponly attribute
max-age attribute
path attribute
secure attribute
syntax
modules
addListener method
Buffer.byteLength method
createServer method
http.createServer
http.IncomingMessage
http.ServerResponse
JSON message output
JSON.stringify method
listen method
requestListener method
HTTP-request
entity body
entity headers
general headers
request headers
request line

structure of

www.it-ebooks.info

http://www.it-ebooks.info/

response
entity body
entity headers
general headers
response headers
status line
structure of

Node API server

Node server

server modules

I

indexOf method
Internet Engineering Task Force (IETF)

ISO date-formatted strings

J, K

JavaScript
declarations
expressions
arithmetic operator
assignment operator
comparison operator
contrasting
instanceof operator
NOT operator
statements
typeof operator
functions
line terminators (see Line terminators)
values
non-primitive types
primitive types (see Primitive types)
JavaScript Object Notation (JSON)
grammer
composite structures
escaped literals
number values
string value
text
history
object

www.it-ebooks.info

http://www.it-ebooks.info/

HTML file
stringify (see Stringify method)
serialization process
structural character token
whitespace character token
json2.js JavaScript Library
JSON.parse method
data tree creation
eval function
assignments
evaluate expression
object literals
string literals
notation
parameters
parse error
reviver function
custom data type
ISO date-formatted strings
label identifiers
__proto__
returned values
undefined value
stringify method (see JSON.parse method)
string value
JSONP server
code implementation
getParamKey function
load jsonp
output
requestHandler
server configurations

JSON.stringify method

L,M

Line terminators
block statements
control statements
loop statements
truthy/falsy value

Loop statements

www.it-ebooks.info

http://www.it-ebooks.info/

N

Node.JS
Mac installation
empty .bash_profile
node setup wizard
node-version command
$PATH configuration
$PATH environment variable
terminal
Windows installation
32-bit vs. 64-bit
command prompt interface
configurations
End-User License Agreement
node setup
node-version command
output
user and system variables
Twitter application
module
statuses/filter URI states
Streaming API
Non-primitive values
NoSQL databases. See CouchDB
null type

Q)

Objects
access notation
bracket
dot
aCollection
array
built-in objects
designing literals (see Designing literals)
key/value pair
toString
unordered collection
OPTIONS request method
Access-Control-Allow-Headers

Access-Control-Allow-Methods

www.it-ebooks.info

http://www.it-ebooks.info/

Access-Control-Request-Headers
Access-Control-Request-Method
Content-Type

Cross-origin requests

formPost resource

header configuration
incomingEntityBody application
Network tab

output

remote origins

source origins

unauthorized source origin request

P,Q

Persisting JSON

document cookie
assigning value
creation
expires
getCookie function
modern browser
setCookie function
setter method
storing cookies

HTTP cookie
ASCII characters
domain attribute
expires attribute
httponly attribute
max-age attribute
path attribute
secure attribute
syntax

JSONtext

stringify and parse method

web storage
clear method
getltem method
key method
length
removeltem method

setltem method

www.it-ebooks.info

http://www.it-ebooks.info/

Window.localStorage
Window.sessionStorage
POST method

code implementation

HTML Form POST
action attribute
code implemention
Content-Types
exerciseA application logs
getParamKey function
local form POST application
method attribute
microsoft favicon
Node application
setEncoding method
URL and PORT

JSON POST
ajax function
Content-Types
exercise/incoming entity body
incoming entity variable
json-form.js file
output

payload

preflight request
Access-Control-Allow-Origin header
definition
OPTIONS request (see OPTIONS request method)
preflight header
safe methods
same-origin policy
unauthorized preflight request
unsafe method
user-agent acts

Primitive values

Boolean type

null type

number

strings
alternate quotations
ASCII character encoding

escaped quotations

www.it-ebooks.info

http://www.it-ebooks.info/

undefined type

Proxy server
ClientRequest methods
code implementation
http.request
http.Stream

string manipulation

R

render function
reviver function
custom data type
ISO date-formatted strings
label identifiers
returned values
__proto__

undefined value

S

Same-origin policy (SOP)
Chrome developer tools
Chrome user
CORS (see Cross-origin resource sharing (CORS))
cross-origin request
definition
domain
effects
Firebug developer tool
Firefox alert
GET request
HTTP URL
JSONP

dynamic script tag injection
eval function

Expression Statements
function declaration
grouping operator
imagesA.json

parameter

ReferenceError

script tags targeting

someMethods

www.it-ebooks.info

http://www.it-ebooks.info/

output
port
Postman HTTP request
proxy
$uri variable
cURL
diagram
GET requests
HTTP protocol

jsonp URL parameter

PHP server-side implementation

query string parameter
xhr code
scheme
setRequestHeader method
user-agent
XDomainRequest
Serialization process
split method
Stringify method
replacer
array
function
serializing JavaScript values
space
value parameter
cyclic object
functions
number
serialization process
toJSON
undefined value
String object
concatenation
creation
implicit
interface
charAt method
indexOf method
length
match method

replace method

www.it-ebooks.info

http://www.it-ebooks.info/

split method

substr method
toLowerCase method
toString method
toUpperCase method

Structural character tokens

T

Templating engine
block helpers
built-in helpers
code implementation
each helper
else helper
Handlebars
basic expression/placeholder
block expressions
compile method
complex JSON structures
HTML span tag
implementation
installation
JSON structure
multiple placeholders
outputs fields
script tag
source code
templateFunction
if helper
string manipulation and DOM script
unless helper
toJSON method
toLowerCase method
toString method
toUpperCase method
Twitter application
description
Details page
keys and access tokens
API methods
authorization

Consumer Key

www.it-ebooks.info

http://www.it-ebooks.info/

OAuth
user token
New App button creation
Node.js
module
statuses/filter URI states
Streaming API
OAuth authorization protocol
public stream
Read-only status
registered users
trending
URL

U,V

Undefined type

Unordered collection

W

Web storage
clear method
getltem method
key method
length
removeltem method
setltem method
Window.localStorage
Window.sessionStorage

Whitespace character tokens

X, Y, Z

XMLHttpRequest (xhr) interface
abort event
callback functions
constructor
cross-browser solution
error event
event handlers
HTTP GET request
instances

loadend event

www.it-ebooks.info

http://www.it-ebooks.info/

load event
loadstart event
onreadystatechange event
progress event
readyState property
request method
abort method
open method
send method
setRequestHeader
timeout property
upload property
withCredentials property
response method
getAllResponseHeaders method
getResponseHeader method
overrideMimeType method
readyState property
response property
responseText property
responseType property
responseXML property
status property
statusText property

timeout event

www.it-ebooks.info

http://www.it-ebooks.info/

	Title
	Copyright
	Dedication
	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: JavaScript Basics
	JavaScript History
	JavaScript Essentials
	Values
	Primitive Types

	Expressions
	Operators

	Statements
	Line Terminators
	Control Statements
	Block Statements
	Truthy/Falsy
	Loop Statements

	Declarations
	Variables

	Functions
	Summary
	Key Points from This Chapter

	Chapter 2: Special Objects
	Objects
	Objects Are Collections
	Built-in Objects
	Object
	Creating Objects
	Access Notation
	Array
	Object Literals
	Designing Literals
	The Object Literal
	The Array Literal

	Summary
	Key Points from This Chapter

	Chapter 3: String Manipulation
	String Concatenation
	The String Object
	Creating String Objects
	The Interface of the String Object
	length
	toString
	charAt
	indexOf
	lastIndexOf
	match
	replace
	slice
	substr
	split
	toUpperCase
	toLowerCase

	The Implicit String Object
	Summary
	Key Points from This Chapter

	Chapter 4: Introducing JSON
	History
	JSON Grammar
	Composite Structures
	JSON Values

	JSON Tokens
	Summary
	Key Points from This Chapter

	Chapter 5: Creating JSON
	The Serialization Process—Demystified
	The JSON Object
	stringify

	Summary
	Key Points from This Chapter

	Chapter 6: Parsing JSON
	JSON.parse
	eval
	reviver

	Summary
	Key Points from This Chapter

	Chapter 7: Persisting JSON: I
	HTTP Cookie
	Syntax

	document.cookie
	Web Storage
	Web Storage Interface

	Summary
	Key Points from This Chapter

	Chapter 8: Data Interchange
	Hypertext Transfer Protocol
	HTTP-Request
	HTTP Response

	Ajax
	XMLHttpRequest Interface
	Global Aspects
	The Request Aspect
	The Response Aspect
	Obtaining the Response

	Summary
	Key Points from This Chapter

	Chapter 9: X-Origin Resources
	Same-Origin Policy
	Circumventing Same-Origin Policy
	CORS
	The Proxy
	JSONP

	Summary
	Key Points from This Chapter

	Chapter 10: Serving JSON
	Node.JS
	Windows Installation
	Mac Installation

	Building an HTTP Server
	Node HTTP Web Server
	Node API
	Modules

	The HTTP Module
	http.createServer
	http.IncomingMessage
	http.ServerResponse
	http.Server

	CORS-Enabled Server
	JSONP Server
	The Proxy Server
	http.request
	http.Stream
	http.ClientRequest

	Summary
	Key Points from This Chapter

	Chapter 11: Posting JSON
	Request Entity Body
	HTML Form POST
	Processing a JSON POST

	Preflight Request
	OPTIONS Request Method
	What Determines Preflight

	Summary
	Key Points from This Chapter

	Chapter 12: Persisting JSON: II
	CouchDB
	Windows Installation
	Mac Installation

	Working with CouchDB
	Futon
	Creating Views
	Creating Our First Custom View

	Connecting Node and CouchDB
	Cradle for Node
	Working with Databases
	Cradle Database API
	Creating Documents via Cradle
	Creating Design Documents via Cradle

	Summary
	Key Points from This Chapter

	Chapter 13: Working with Templates
	Templating Engine
	Handlebars
	Installation

	Working with Handlebars
	A Basic Expression
	The Role of <script>
	Compiling a Template
	Giving Context to Our Template
	Multiple Placeholders
	Complex JSON Structures
	Block Expressions
	Block Expressions and Arrays

	Applying Logic to Logic-less Templates
	Helpers

	Summary
	Key Points from This Chapter

	Chapter 14: Putting It All Together
	Twitter
	Twitter Apps
	Keys and Access Tokens
	Public Stream
	Your User Access Token
	#Trending

	Node.js
	Twitter Module
	Incorporating the Twitter Module
	Streaming API (Stable)
	Statuses/Filter

	CouchDB
	Incorporating the Cradle Module
	Creating a View
	Enabling CORS

	Ajax
	Requesting Ranges

	Handlebars
	Summary

	Index

