OREILLY

Up & Running

BUILD NATIVE-QUALITY CROSS-PLATFORM JAVASCRIPT APPS

Roy Sutton

www.it-ebooks.info

http://www.it-ebooks.info/

Enyo: Up and Running
Roy Sutton

OREILLY"

Beijing « Cambridge * Farnham « Kéln » Sebastopol * Tokyo

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

HTMLS5 technologies hold the promise of providing compelling user experiences through
the web browser. The Web has evolved as a platform for delivering content to users
regardless of the operating system their computers (or smartphones, tablets, and smart
TVs) use. As users spend more time on the Web, they not only expect to receive content
but also perform the actions of their daily lives. The Web is evolving from static pages to
true web applications.

Enyo is a JavaScript framework designed to help developers create compelling interactive
web applications (or apps). What makes Enyo special? Why should you be interested in it?
I’1l try to tackle those questions and, along the way, help you get productive in Enyo.

www.it-ebooks.info

http://www.it-ebooks.info/

Where Did Enyo Come From?

Enyo grew out of the need to create applications for the HP TouchPad tablet. It was
designed to be an easy-to-learn, high-performance framework that provided a pleasing and
consistent user interface. As Enyo grew, HP realized that the technologies could be applied
not only to tablets but also to the larger screens of desktops and the smaller screens of
smartphones.

On January 25, 2012, HP announced they were going to release Enyo as an open source
project under the Apache 2.0 license. Development moved to GitHub and the broader
JavaScript community was invited to participate. Since that time, Enyo has matured and
now offers robust tools for developing web apps on a wide variety of platforms. In March
of 2013, LG Electronics acquired the webOS group from HP and the core Enyo team
focused on adapting the framework for creating smart TV applications.

www.it-ebooks.info

http://www.it-ebooks.info/

Core Beliefs

The Enyo team believes very strongly in the power of the open Web. To that end, Enyo
embraces the following concepts:

e Enyo and its code are free to use, always.

e Enyo is open source — development takes place in the open and the community is
encouraged to participate.

e Enyo is truly cross-platform — you should not have to choose between mobile and
desktop, or between Chrome and Internet Explorer.

e Enyo is extensible.

e Enyo is built to manage complexity — Enyo promotes code reuse and encapsulation.

e Enyo is lightweight and fast — Enyo is optimized for mobile and its core is small.

www.it-ebooks.info

http://www.it-ebooks.info/

What’s Enyo Good For?

Enyo is designed for creating apps. While a discussion of exactly what an app is could
probably fill a book this size, when I say “apps” I’'m referring to an interactive application
that runs in a web browser (even if the browser itself may be transparent to the user).

This is to say Enyo is not designed for creating web pages. Enyo apps run in the browser
and not on the server. This doesn’t mean Enyo cannot interact with data stored on servers;
it certainly can. And it doesn’t mean that Enyo can’t be served to the browser by a web
server; it can.

www.it-ebooks.info

http://www.it-ebooks.info/

Who Is This Book For?

This book is written for web developers looking to learn new ways of developing
applications or for programmers who are interested in learning web app design. It is not
intended as an “introduction to programming” course. While designing with Enyo is easy,
I expect some familiarity with HTML, CSS, or JavaScript.

www.it-ebooks.info

http://www.it-ebooks.info/

Minimum Requirements

The absolute minimum requirement for working through the book is a web browser that is
compatible with Enyo and access to the jsFiddle website. To get the most out of the book,
I recommend a PC (Mac, Windows, or Linux), a code editor, and a modern web browser.
A web server, such as a local installation of Apache or a hosting account, can be helpful
for testing. Git and Node.js round out the tools needed for the full experience.

Information on setting up your environment to develop Enyo applications can be found in
Appendix A. This book was based off Enyo version 2.5.1, though it should apply to later
versions.

www.it-ebooks.info

http://jsfiddle.net
http://git-scm.com/
http://nodejs.org
http://www.it-ebooks.info/

Typographic Conventions
The following conventions are used in this book:
Italic
Ital indicates new terms, URLSs, email addresses, filenames, and file extensions.
Constant width

cw is used for program listings, as well as within paragraphs to refer to program
elements such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

cwB shows commands or other text that should be typed literally by the user.

Constant width italic

cwI shows text that should be replaced with user-supplied values or by values
determined by context.

TIP
This icon precedes a link to runnable code samples on jsFiddle.

TIP
This icon precedes a tip, suggestion, or note.

WARNING
This icon precedes a warning or clarification of a confusing point.

www.it-ebooks.info

http://jsFiddle.net
http://www.it-ebooks.info/

Using Code Examples

This book is here to help you get your job done. In general, if this book includes code
examples, you may use the code in this book in your programs and documentation. You do
not need to contact us for permission unless you’re reproducing a significant portion of the
code. For example, writing a program that uses several chunks of code from this book
does not require permission. Selling or distributing a CD-ROM of examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of example
code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Enyo: Up and Running, 2nd Edition, by Roy
Sutton (O’Reilly). Copyright 2015 Roy Sutton, 978-1-491-92120-3.”

If you feel your use of code examples falls outside fair use or the permission given above,

feel free to contact us at permissions@oreilly.com.

www.it-ebooks.info

mailto:permissions@oreilly.com
http://www.it-ebooks.info/

Safari® Books Online

NOTE

Safari Books Online is an on-demand digital library that delivers expert content in both book and video form from
the world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and creative
professionals use Safari Books Online as their primary resource for research, problem
solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que,
Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan
Kaufmann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For more
information about Safari Books Online, please visit us online.

www.it-ebooks.info

http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/our-library/
http://safaribooksonline.com/
http://www.it-ebooks.info/

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/envo-upandrunning_Z2e.

To comment or ask technical questions about this book, send email to

bookquestions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website at
http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia
Watch us on YouTube: http://www.youtube.com/oreillymedia

www.it-ebooks.info

http://bit.ly/enyo-upandrunning_2e
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
http://www.it-ebooks.info/

Acknowledgments

First and foremost I would like to thank my wife Connie Elliott and son lan for their help
and forbearance as I prepared the book you now hold (even if only virtually). Next, I
would like to thank the team at O’Reilly, in particular Simon St. Laurent and Megan
Blanchette, who really made the process of getting this book finished as painless as
possible, Kara Ebrahim, who slew typos and wrangled words into their proper places, and
Kristen Brown, who made the second edition painless. V. L Elliott played a special role in
helping bring structure to the original thoughts for this book. Further, thanks to those
readers (technical and otherwise) who helped reduce the number of errors herein. Special
thanks to Ben Combee and Arthur Thornton for their efforts in spotting technical errors in
the first edition. Many thanks to Jim Tang for keeping the official Enyo documentation in
order and for spotting errors in the second edition. I’d also like to acknowledge the dozens
of individuals at HP and LG (from Silicon Valley to France, Korea, and India) who have
had a hand in developing, testing, supporting and evangelizing Enyo, and our numerous
contributors from the broader Enyo community. There are far too many people to name
here, but without their hard work and passion, Enyo would not be what it is today. Finally,
special mention goes to the creators of Enyo, Scott Miles and Steve Orvell, without whom
this book wouldn’t exist.

www.it-ebooks.info

http://www.it-ebooks.info/

Content Updates

January 8, 2015

A lot has happened with Enyo since the first edition of the book. Most notable are the
addition of data binding to the core (Bindings and Observers) and the new Moonstone
smart TV UI library (Moonstone Controls). Other changes include the deprecation of
published properties and the introduction of the new set () and get () methods
(Properties), the switch from g11n to iLib for internationalization (Going Global), and the
new Application object (Application). If you read the previous edition of this book, you
will want to focus on the new chapter (Chapter 5) and then check individual chapters for
changes.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1. Light It Up

One of the best ways to get familiar with Enyo is to get a taste for what an Enyo app looks
like. We’re going to do a little virtual time travel and fast-forward to a point just after you
finish reading this book. We’re going to imagine you work for a software company that
produces apps for customers.

www.it-ebooks.info

http://www.it-ebooks.info/

A New Project

Your boss just came and told you that he needs a light implemented in JavaScript right
away. He tells you that your company’s best client needs to be able to embed a light app
on their web page and it must work cross-platform. Fortunately, you’ve just finished
reading this book and are excited to use Enyo on a project.

You decide to make a nice yellow circle and draw that on the screen:

enyo.ready(function() {
enyo.kind({
name: ‘Light’,
style: ‘width: 50px; height: 50px; border-radius: 50%;’ +
‘background: yellow;’
1)

new enyo.Application({ name: ‘app’, view: ‘Light’ });

1,

TIP
Try it out: jsFiddle.

With Enyo, you don’t (usually) have to worry about the HTML that makes up your app.
Enyo creates it all for you. In this case, you’ve created a new kind (Enyo’s building blocks
are called kinds, you recall) called Light and you used a little CSS magic you found on
the Web to draw a circle without the use of images or the canvas.

While using Enyo’s Application component, you placed the new kind into the page’s
body element, causing Enyo to create the HTML. You recall that the enyo.ready()
method executes code when the framework is fully loaded. You inspect the HTML for the
circle using your favorite browser’s debugging tool and see that Enyo created a div
element for you and applied the style you supplied. Not bad for a few minutes’ work.

www.it-ebooks.info

http://jsfiddle.net/gh/gist/enyo/2.5.1/43e92ce63e30289237da/
http://davidwalsh.name/css-circles
http://www.it-ebooks.info/

Improvements

Now that you’re feeling good about what you did, you check in the first version of the
code to the company’s source code management system. You know from past experience
that sales will probably need the light in more colors than yellow. So, you decide to use
Enyo’s property feature to set the color when the kind is created:

enyo.kind({
name: ‘Light’,
color: ‘yellow’,
style: ‘width: 50px; height: 50px; border-radius: 50%; ",
create: function() {
this.inherited(arguments);
this.colorChanged();

iy
colorChanged: function(oldvalue) {

this.applyStyle(‘background-color’, this.color);
}
1)

TIP
Try it out: jsFiddle.

TIP

This code (and the following samples) does not include the enyo.ready() line and the instantiation of the
Application kind, but you’ll still need it. We’ll only focus on the areas that changed.

You note that you’ve added a default color for the light, in case none is defined, and
you’ve added a function that Enyo will call if anyone updates the light color after the kind
has been created. You had to add some code to the create() function that Enyo calls on
all components so that you can set the initial color. First, you test that you can set the color
at create time by passing in a JavaScript object with the color value you want:

new enyo.Application({ name: ‘app’, view: { kind: ‘Light’, color: ‘green’ } });

Looks like that works as expected. Now you can test that you can set the color after
creation:

var app = new enyo.Application({ name: ‘app’, view: Light });
app.set(‘view.color’, ‘blue’);

TIP
Try it out: jsFiddle.

You remember that when you use set (), Enyo will automatically call the colorchanged()
method for you when the color changes. Looks like that works well, too.

You check in the latest version of the code and shoot an e-mail off to your boss. Your
latest change added a bit more code but you know that you’ll be able to use that light
component again and again, regardless of what color sales promises.

www.it-ebooks.info

http://jsfiddle.net/gh/gist/enyo/2.5.1/394bfcbd7e5f738d0ca9/
http://jsfiddle.net/gh/gist/enyo/2.5.1/170bc8cce1936aeecf32/
http://www.it-ebooks.info/

Curveball

Not long after you send off the e-mail, the phone rings. Your boss explains that sales
finally let him know that the light they needed was actually a traffic light, with red on the
top, yellow in the middle, and green on the bottom.

Fortunately, you’ve done the hard work. Getting the traffic light done should be a breeze
now. You recall that Enyo supports composition, allowing you to make a new kind by
combining together other kinds. Diving back into the code, you create a new
TrafficLight kind:

enyo.kind({
name: ‘TrafficLight’,
components: [
{ name: ‘stop’, kind: ‘Light’, color: ‘red’ },
{ name: ‘slow’, kind: ‘Light’, color: ‘yellow’ },
{ name: ‘go’, kind: ‘Light’, color: ‘green’ }

TIP

1,

Try it out: jsFiddle.

Not bad, if you do say so yourself. You reused the Light kind you created and you didn’t
have to copy all that code over and over. You push your changes up, shoot another e-mail
off to your boss and wait for the phone to ring again.

www.it-ebooks.info

http://jsfiddle.net/gh/gist/enyo/2.5.1/643b6b85b9e01f449359/
http://www.it-ebooks.info/

QA on the Line

The next call is not, surprisingly, from your boss, but from the QA department. They did
some testing with the lights and found that they don’t turn off. They mention something
about the specs for the light, saying that tapping the light should toggle it on and off.
While wondering how they managed to get ahold of specs you’d never seen, you begin
thinking about how you’ll implement that. You quickly hang up after asking for a copy of
the specs.

You remember that Enyo has an event system that allows you to respond to various events
that occur. You can add a new property for the power state of the light and you can toggle
it when you receive a tap event (an event you know is optimized to perform well on
mobile devices with touch events). After thinking some more about the problem, you
realize you don’t really want to change your existing light kind. You remember that Enyo
supports inheritance, allowing you to create a new light that has all the same behaviors as
your existing light, plus the new behaviors you need:

enyo.kind({
name: ‘PoweredLight’,
kind: ‘Light’,
powered: true,
handlers: {
‘ontap’: ‘tapped’
+

create: function() {
this.inherited(arguments);
this.poweredChanged();

iy

tapped: function(sender, event) {
this.set(‘powered’, !this.get(‘powered’));

}

poweredChanged: function(oldvalue) {
this.applyStyle(‘opacity’, this.powered ? ‘1’ : ‘0.2");

}

13K

TIP
Try it out: jsFiddle.

You made use of the handlers block to add the events you want to listen for and specified
the name of the method you wanted to call. You recall that in Enyo, you use the name of
the event instead of the event itself because Enyo will automatically bind the methods to
each instance of your kind so it can access the methods and data of your kind’s instance.

In your tap handler, you used the partner to the set () method, get (), to retrieve the
current value of the powered property and toggle it. In the poweredChanged() function,
you apply a little opacity to the light to give it a nice look when it’s powered off (you can
read a local property directly without get ()). You update the TrafficLight kind, give it a
quick test in the browser, and verify that everything looks good.

www.it-ebooks.info

http://jsfiddle.net/gh/gist/enyo/2.5.1/353ebcc64124da89ed2d/
http://www.it-ebooks.info/

The E-mail

Just after you commit the latest changes, you receive a copy of the specs from QA. Looks
like you’ve got everything covered except for a logging feature. The specs call for a log to
be maintained of which light was activated or deactivated and the time of the event.
Events, huh? Sounds like it’s time to revisit Enyo events. You recall from your training
that Enyo allows kinds to create their own events, to which other kinds can subscribe.

You quickly add a new event to the PoweredLight kind called onStateChanged. You know
that Enyo automatically creates a method called doStateChanged() that you can call to
send the event to a subscriber. You quickly add the relevant code:

enyo.kind({

name: ‘PoweredLight’,

kind: ‘Light’,

powered: true,

events: {
‘onStateChanged’ : ”

Iy

handlers: {
‘ontap’: ‘tapped’

1

create: function() {
this.inherited(arguments);
this.poweredChanged();

+

tapped: function(sender, event) {
this.set(‘powered’, !this.get(‘powered’));

+

poweredChanged: function(oldvalue) {
this.applyStyle(‘opacity’, this.powered ? ‘1’ : ‘0.2");
this.doStateChanged({ powered : this.powered });

}

1

Now you just need to subscribe to the event in the TrafficLight kind. You could, of
course, subscribe to onStateChanged in each Light definition, but you remember that the
handlers block lets you subscribe to events a kind receives regardless of which child
originates them. You know you can use the sender parameter to check to see which light
sent the event and you can use the event parameter to access the object sent by the light:

enyo.kind({
name: ‘TrafficLight’,
handlers: {
‘onStateChanged’: ‘logStateChanged’
+

components: [
{ name: ‘stop’, kind: ‘PoweredLight’, color: ‘red’ },
{ name: ‘slow’, kind: ‘PoweredLight’, color: ‘yellow’ },
{ name: ‘go’, kind: ‘PoweredLight’, color: ‘green’ }

1

logStateChanged: function(sender, event) {
enyo.log(sender.name + ‘ powered ‘ + (event.powered ? ‘on’ : ‘off’)
+ ‘ at ’ + new Date());

}
1)

TIP
Try it out: jsFiddle.

A quick logging function and a handlers block later and things are starting to look
finished. After the code has been checked in and QA has signed off, you can relax and
start planning that vacation — as if that will happen.

www.it-ebooks.info

http://jsfiddle.net/gh/gist/enyo/2.5.1/dd093c184570f35d36a5/
http://www.it-ebooks.info/

Summary

We’ve just worked through a simple Enyo application and explored several of the
concepts that make using Enyo productive. We saw how easy it is to quickly prototype an
application and how Enyo kept the code maintainable and potentially reusable. With this
foundation, we’ll be able to explore the deeper concepts of Enyo in the coming chapters.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2. Core Concepts

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction

In this chapter, we’ll cover the core concepts of Enyo that we only touched on in the last
chapter. You will be able to write powerful apps after absorbing the information in just this
chapter. We’ll go over the concepts one by one and illustrate each with code you can run
in your browser.

One of the driving ideas behind Enyo is that you can combine simple pieces to create
more complex ones. Enyo introduces four concepts to assist you: kinds, encapsulation,
components, and layout. We’ll cover components and layout more thoroughly in Chapter 3
and Chapter 4, respectively.

www.it-ebooks.info

http://www.it-ebooks.info/

Kinds

Enyo is an object-oriented framework. It is true that every JavaScript application
regardless of framework (or lack thereof) contains objects. However, Enyo’s core features
provide a layer on top of JavaScript that makes it easier to express object-oriented
concepts such as inheritance and encapsulation.

In Enyo, kinds are the building blocks that make up apps. The widgets that appear on
screen are instances of kinds, as are the objects that perform Ajax requests. Kinds are not
strictly for making visual components. Basically, kinds provide a template from which the
actual objects that make up your app are generated.

Be Kind

One of the simplest possible declarations for a kind is:

enyo.kind({ name: ‘MyKind’ });

NAMES

Kinds don’t even need names. Enyo will automatically assign unique names, though you won’t know what they
are. Anonymous kinds are often used in Enyo apps. You saw one in Chapter 1 when the color of the light was set
to green in the view declaration.

Top-level kinds (those declared outside of other kinds) automatically get a global object created with that name
(for example, Light in the previous chapter). It is possible to put kinds into a namespace by separating name parts
with periods. For example, using name: myApp.Light will result in a myApp object with a Light member.
Namespaces provide a good mechanism for preventing naming conflicts with your apps, particularly when using
reusable components.

As a convention, we use uppercase names for kind definitions and lowercase names for instances of kinds (those
kinds declared in the components block).

enyo.kind() is a “factory” for creating new kinds. In this case, we get a new object that
inherits from the Enyo control kind, enyo.Control. Control is the base component for
objects that will render when placed on a web page.

When creating kinds, you pass in an object that defines the starting state of the kind as
well as any methods it will need. For example, control kinds have a content property:

enyo.kind({ name: ‘MyKind’, content: ‘Hello World!’ });

As you saw in Chapter 1, when rendered onto a page this code will create a div tag with
the content placed in it. To render this into a body on a web page, you specify it as the
view of an Application.

We can add behaviors to our kind by adding methods (for example, the tap handling
method we added to the Light kind). As you may recall, we referenced the method name
in the handlers block using a string. We use strings so Enyo can bind our methods as
kinds are created.

www.it-ebooks.info

http://www.it-ebooks.info/

Encapsulation

Encapsulation is a fancy computer science term that refers to restricting outside objects’
access to an object’s internal features through providing an interface for interacting with
the data contained in the object. JavaScript does not have very many ways to prohibit
access to an object’s data and methods from outside, so Enyo promotes encapsulation by
giving programmers various tools and conventions.

By convention, Enyo kinds should have no dependencies on their parent or sibling kinds
and they should not rely on implementation details of their children. While it is certainly
possible to create Enyo kinds that violate these rules, Enyo provides several mechanisms
to make that unnecessary. Those mechanisms include properties and events.

By being aware of encapsulation, Enyo programmers can tap in to the benefits of code
reuse, easy testing, and drop-in components.

Properties

Kinds can declare properties (for example, the color and powered properties from
Chapter 1). The property system allows for some very powerful features, such as two-way
data binding and notification for changes to values. We’ll discuss the basic features of
properties first and then dive into the more advanced features of bindings and observers.

Basic Properties

Properties are accessed using the get () and set () methods defined on all kinds. In
addition, there is a mechanism for tracking changes to properties. Properties don’t need to
even be declared on a kind, though you should at least document their presence so that
users of your kinds (including yourself) will know (remember) that they exist.

enyo.kind({
name: ‘MyKind’,
myValue: 3
3
As you can see, you also specify a default value for a property. Within MyKind you can
read the property directly using this.myvalue. When you are accessing myvalue
externally (e.g., from a parent control), you should use the get () or set () methods.
Whenever the value is modified using the setter, Enyo will automatically call a “changed”
method. In this case, the changed method is myvalueChanged(). When called, the changed

method will be passed the previous value of the property as an argument.

WARNING

The set () method does not call the changed method if the value to be set is the same as the current value. You
can, however, override this behavior by passing a truthy value as a third argument to set ().

If you look back to our earlier discussion on kinds you may have noticed that we passed in
some values for properties when we were declaring our kinds. Those values set the initial
contents of those properties. Enyo does not call the changed method during construction.
If you have special processing that needs to occur, you should call the changed method
directly within create():

enyo.kind({
name: ‘MyKind’,
myValue: 3,
create: function() {

www.it-ebooks.info

http://www.it-ebooks.info/

this.inherited(arguments);
this.myValueChanged();

myValueChanged: function(oldvalue) {
// Some processing
}

1

If you want to tie the value of a property to another property within your kind (such as the
content of a control), you can use a binding, which is triggered during construction. We’ll
cover bindings in the next section.

WARNING

You should only specify simple values (strings, numbers, booleans, etc.) for the default values of properties and
member variables. Using arrays and objects can lead to strange problems. See Instance Constructors for a method
to initialize complex values.

Bindings and Observers

The set () method makes it possible to set up bindings that tie the value of two properties
together. You can even monitor properties on other kinds. Bindings really stand out when
it comes to associating data with the contents of controls. We’ll cover the use of bindings
with data-driven applications in Chapter 5.

At their simplest, bindings create a one-way association between two properties. The
following example creates a property called copy that will be updated any time the value
of original changes:

enyo.kind({
name: ‘ShadowKind’,
original: 3,
copy: null,
bindings: [
{ from: ‘original’, to: ‘copy’ }
]

iOF

We could have accomplished the same thing using an originalChanged() method —
however, it would have taken more code and we would not be able to monitor the value of
properties declared on components declared within our kind. Further, we would have to
set up a copyChanged() method if we wanted to create a two-way connection. Using
bindings, we can do this with one simple change:

enyo.kind({
name: ‘ShadowKind’,
original: 3,
copy: null,
bindings: [
{ from: ‘original’, to: ‘copy’, oneWay: false }
1

1

Bindings have even more power, including the ability to transform values when they are
triggered. We’ll cover transformations in Chapter 5.

Observers, like bindings, monitor properties for changes. When an observer detects a
value change, it invokes the method specified in the observer declaration. We can rewrite
the earlier changed example as follows:

enyo.kind({
name: ‘MyKind’,
myValue: 3,
observers: [
{ path: ‘myvalue’, method: ‘myValueUpdated’ }

www.it-ebooks.info

http://www.it-ebooks.info/

1
myValueUpdated: function(oldvValue, newValue) {

// Some processing
}
1)

Note that we did not need to override create() to invoke myvalueUpdated() because
bindings and observers will be triggered during initialization.

TIP

With bindings and observers, the path to a property is a string and is relative to this. Binding to a nested
component’s property (see Chapter 3) can be accomplished like so: $. component . value.

Events

If properties provide a way for parent kinds to communicate with their children, then
events provide a way for kinds to communicate with their parents. Enyo events give kinds
a way to be notified when something they’re interested in occurs. Events can include data
relevant to the event. Events are declared like this:

enyo.kind({
name: ‘Eventer’,
handlers: { ontap: ‘myTap’ },
events: { onMyEvent: ” },
content: ‘Click for the answer’,
myTap: function() {

this.doMyEvent({ answer: 42 });

}

3K

Event names are always prefixed with “on” and are always invoked by calling a method
whose name is prefixed with “do”. Enyo creates the “do” helper method for us and it takes
care of checking that the event has been subscribed to. The first parameter passed to the
“do” method, if present, is passed to the subscriber. Any data to be passed with the event
must be wrapped in an object.

Subscribing is easy:

enyo.kind({
name: ‘Subscriber’,
components: [{ kind: ‘Eventer’, onMyEvent: ‘answered’ }],
answered: function(sender, event) {
alert(‘The answer is: ’ + event.answer);
return(true);

}
1

TIP
Try it out: jsFiddle.

The sender parameter is the kind that last bubbled the event (which may be different from
the kind that originated the event). The event parameter contains the data that was sent
from the event. The object will always have at least one member, originator, which is
the Enyo component that started the event.

When responding to an event, you should return a truthy value to indicate that the event
has been handled. Otherwise, Enyo will keep searching through the sender’s ancestors for
other event handlers. If you need to prevent the default action for DOM events, use
event.preventDefault().

TIP

Enyo kinds cannot subscribe to their own events, including DOM events, using the onxxx syntax. If you need to

www.it-ebooks.info

http://jsfiddle.net/gh/gist/enyo/2.5.1/fdb3d75dec84cfbefb6b/
http://www.it-ebooks.info/

subscribe to an event that originates on the kind, you can use the handlers block, as we did for the previous tap
event.

Advanced Events

The standard events described previously are bubbling events, meaning that they only go
up the app hierarchy from the object that originated them through the object’s parent.
Sometimes it’s necessary to send events out to other objects, regardless of where they are
located. While it might be possible to send an event up to a shared common parent and
then call back down to the target, this is far from clean. Enyo provides a method called
signals to handle this circumstance.

To send a signal, call the send() method on the enyo.Signals object. To subscribe to a
signal, include a Signals kind in your components block and subscribe to the signal you
want to listen to in the kind declaration. The following example shows how to use signals:

enyo.kind({
name: ‘Signaller’,
components: [
{ kind: ‘Button’, content: ‘Click’, ontap: ‘sendit’ }

1

sendit: function() {
enyo.Signals.send(‘onButtonSignal’);
}

I3F

enyo.kind({
name: ‘Receiver’,
components: [
{ name: ‘display’, content: ‘Waiting..” },
{ kind: ‘Signals’, onButtonSignal: ‘update’ }
1

update: function(sender, event) {
this.set(’$.display.content’, ‘Got it!’");
}

13K

TIP
Try it out: jsFiddle.

Like regular events, signals have names prefixed with “on”. Unlike events, signals are
broadcast to all subscribers. You cannot prevent other subscribers from receiving signals
by passing back a truthy return from the signal handler. Multiple signals can be subscribed
to using a single Signals instance.

Signals should be used sparingly. If you begin to rely on signals for passing information
back and forth between objects, you run the risk of breaking the encapsulation Enyo tries
to help you reinforce. It might be better to use a shared model to hold the data. We’ll
discuss models in Chapter 5.

TIP

Enyo uses the signals mechanism for processing DOM events that do not target a specific control, such as
onbeforeunload and onkeypress.

Final Thoughts on Encapsulation

While properties and events go a long way towards helping you create robust applications,
they are not always enough. Most kinds will have methods they need to expose (an API, if
you will) and methods they wish to keep private. While Enyo does not have any
mechanisms to enforce that separation, code comments and documentation can serve to

www.it-ebooks.info

http://jsfiddle.net/gh/gist/enyo/2.5.1/427c441f1f3ce57bd739/
http://www.it-ebooks.info/

help other users of your kinds understand what is and isn’t available to outside kinds.

www.it-ebooks.info

http://www.it-ebooks.info/

Inheritance

Enyo provides an easy method for deriving new kinds from existing kinds. This process is
called inheritance. When you derive a kind from an existing kind, it inherits the
properties, events, and methods from that existing kind. All kinds inherit from at least one
other kind. The ultimate ancestor for nearly all Enyo kinds is enyo.0bject. Usually,
however, kinds derive from enyo.Component or enyo.Control.

To specify the parent kind, set the kind property during creation:

enyo.kind({
name: “InheritedKind”,
kind: “enyo.Control”

3
As mentioned, if you don’t specify the kind, Enyo will automatically determine the kind
for you. In most cases, this will be control. An example of an instance where Enyo will
pick a different kind is when creating menu items for an Onyx Menu kind. By default,
components created within a Menu will be of kind MenuItem. If you want to specify the
kind for child components in your own components, set the defaultKind property.

If you override a method on a derived kind and wish to call the same named method on
the parent, use the inherited() method. You may recall that we did this for the create()
method in the Light kind. You must always pass arguments as the parameter to the
inherited() method.

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Kinds

Enyo provides two additional features for declaring kinds, which are most often used
when creating reusable kinds: instance constructors and statics.

Instance Constructors

For some kinds, initialization must take place when an instance of that kind is created.
One particular use case is defining array properties. If you were to declare an array
member in a kind definition then all instances would be initialized with the last value set
to the array. This is unlikely to be the behavior you wanted. When declaring a constructor,
be sure to call the inherited() method so that any parent objects can perform their
initialization as well. The following is a sample constructor:

constructor: function() {
this.instanceArray = [];
this.inherited(arguments);

TIP

It’s worth noting that constructor () is available for all kinds. The create () method used in many examples is
only available for descendants of enyo.Component.

Statics

Enyo supports declaring methods that are defined on the kind constructor. These methods
are accessed by the kind name rather than from a particular instance of the kind. Statics
are often used for utility methods that do not require an instance and for properties that
should be shared among all instances, such as a count of the number of instances created.
The following kind implements an instance counter and shows off both statics and
constructors:

enyo.kind({
name: ‘InstanceCounter’,
constructor: function() {
InstanceCounter.count += 1;
this.inherited(arguments);

+
statics: {
count: 0O,
currentCount: function() {
return(this.count);
}
}
1)
TIP
Try it out: jsFiddle.
STRUCTURE OF A KIND

It’s good to be consistent when declaring kinds. It helps you and others who may need to read your code later to
know where to look for important information about a kind. In general, kinds should be declared in the following
order:

® Name of the kind
® Parent kind

® Properties, events, and handlers

www.it-ebooks.info

http://jsfiddle.net/gh/gist/enyo/2.5.1/c4b0f1f63d7ef133d0e4/
http://www.it-ebooks.info/

Kind variables

Classes and styles
Components

Bindings and observers
Public methods

Protected and private methods

Static members

www.it-ebooks.info

http://www.it-ebooks.info/

Summary

We have now explored the core features of Enyo. You should now understand the object
oriented features that allow for creating robust and reliable apps. We’ll build upon this
knowledge in the next chapters by exploring the additional libraries and features that make

up the Enyo framework.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3. Components, Controls, and Other
Objects

In Chapter 2, we covered kinds and inheritance. It should come as no surprise that Enyo
makes good use of those features by providing a rich hierarchy of kinds you can use and
build upon in your apps. In this chapter, we’ll focus on two important kinds that Enyo
provides: Component and Control. We’ll also touch on some of the other kinds that you’ll

need to flesh out your apps.

www.it-ebooks.info

http://www.it-ebooks.info/

Components

Components introduce one of the most-used features of Enyo apps: the ability to create
kinds composed of other kinds. This ability to compose new components from other
components is one of the key features that encapsulation allows. Most kinds you’ll use,
including the Application kind, will be based upon Component or one of its descendants.

Composition

Composition is a powerful feature that lets you focus on breaking down your app into
discrete pieces and then combine those pieces together into a unified app. We used this
feature in Chapter 1 when we built a traffic light out of three individual lights. Each
descendant of Component has a components block that takes an array of component
definitions.

For example, in Advanced Events, the Receiver kind has a Control named display:

enyo.kind({
name: ‘Receiver’,
components: [
{ name: ‘display’, content: ‘Waiting..” },
{ kind: ‘Signals’, onButtonSignal: ‘update’ }
1

Methods within Receiver can access display through this.$.display. For set() and
get (), the path would be $.display.propertyName. Enyo stores references to all owned
components in the $ object. Components without explicit names (such as Signals in the
previous example) are given unique names and added to $.

TIP

Every component declared within a kind will be owned by the kind, even if nested within multiple components
blocks.

Many of the components that Enyo supplies were designed as containers for other
components. We’ll cover many of these kinds in Chapter 4. Some, such as Button, weren’t
intended to contain other components.

Component Methods

Components introduce create() and destroy() methods to assist with the component’s
lifecycle. These methods can be overridden by kinds that derive from Component to
provide extra functionality, such as allocating and deallocating resources. We previously
used the create() method when we wanted to invoke the myvalueChanged() method. We
can use this feature to create a simple heartbeat object:

enyo.kind({
name: ‘Heartbeat’,
events: {
onBeat: ”
H
create: function() {
this.inherited(arguments);
this.timer = window.setInterval(enyo.bind(this, ‘beat’), 1000);
+
destroy: function() {
if(this.timer !== undefined) {
window.clearInterval(this.timer);

}

this.inherited(arguments);

www.it-ebooks.info

http://www.it-ebooks.info/

Iy
beat: function() {

this.doBeat({});
}
1)

TIP
Try it out: jsFiddle.

We used the destroy() method to ensure that we cleaned up the timer we allocated in the
create() method. You may also notice that we introduced a new method: enyo.bind().
In all our previous event handlers, Enyo made sure the context of the event handlers was
set correctly. We’ll need to take care of that ourselves when subscribing directly to non-
Enyo events. For more information on binding and why it’s necessary, please see this

article on Binding Scope in JavaScript.
Dynamic Components

Up to this point we’ve always created components when a kind is being instantiated. It is
also possible to create and destroy components dynamically. Components have a number
of methods for interacting with their owned components. You can use createComponent ()
to create an individual component or create a number of components at once using
createComponents(). To remove a component from its owner, call the component’s
destroy() method. It is also possible to destroy all owned components by calling
destroyComponents(). The following example shows how to create a component
dynamically:

enyo.kind({
name: ‘DynamicSample’,
components: [
{ kind: ‘Button’, content: ‘Click’, ontap: ‘tapped’ }
1

tapped: function(sender, event) {
this.createComponent({ content: ‘A new component’ });
this.render();
return true;

}
13K

TIP
Try it out: jsFiddle.

New controls are not rendered until requested. Call the render () method on a control to
ensure that it and its children are rendered to the DOM.

www.it-ebooks.info

http://jsfiddle.net/gh/gist/enyo/2.5.1/3370efc8a45fa912875b/
http://www.robertsosinski.com/2009/04/28/binding-scope-in-javascript/
http://jsfiddle.net/gh/gist/enyo/2.5.1/2fc584b20662437a7b96/
http://www.it-ebooks.info/

Controls

Control, a descendant of Component, is the kind responsible for providing the user
interface to your apps. A large part of what makes an app an app is the user interface. The
Enyo core provides wrappers around the most basic type of controls found natively in
browsers. The Onyx and Moonstone libraries expand upon those basic controls and
provide the more specialized elements expected in modern apps.

Controls are important because they map to DOM nodes. They introduce a number of
properties and methods that will be important for your apps. By default, controls render
into a div element. You can override this behavior by specifying the tag property when
defining the control (e.g., tag: ‘span’).

Core Controls

The core visual controls in Enyo are wrappers around the basic elements you can create
directly with HTML. Of course, because they’re Enyo controls, they’ll have properties and
events defined that make them easy to use within your apps. The core controls include:
Button, Checkbox, Image, Input, RichText, Select, and TextArea.

The following code sample creates a simple app with several controls:

enyo.kind({
name: ‘ControlSample’,
components: [

{ kind: ‘Button’, content: ‘Click’, ontap: ‘tapped’ },

{ tag: ‘br’},

{ kind: ‘Checkbox’, checked: true, onchange: ‘changed’ },

{ tag: ‘br’},

{ kind: ‘Input’, placeholder: ‘Enter something’, onchange: ‘changed’ },
{ tag: ‘br’},

{ kind: ‘RichText’, value: ‘<i>Italics</i>’, onchange: ‘changed’ }

1

tapped: function(sender, event) {
// React to taps
}

changed: function(sender, event) {
// React to changes
}

3
| Click |
™

ftalics

TIP
Try it out: jsFiddle.

You will note that the controls themselves are unstyled, appearing with the browser’s
default style. In Onyx Controls, we’ll see how the Onyx versions of these controls
compare to the base versions. You may also note that some controls use the content
property to set the content of the control. The exceptions to this rule are the text field
controls: Input, TextArea, and RichText. These controls use the value property to get
and set the text content. In these samples we use simple br tags to arrange the controls. In
an actual app, you’ll want to use CSS or the layout controls described in the next chapter.

TIP

www.it-ebooks.info

http://jsfiddle.net/gh/gist/enyo/2.5.1/0ae8afcdbfa20d6dba95/
http://www.it-ebooks.info/

By default, most Enyo controls escape any HTML in their content or value properties. This is to prevent the
inadvertent injection of JavaScript from unsafe sources. If you want to use HTML in the contents, set the
allowHtml property to true. By default, RichText allows HTML content.

Onyx Controls

The Onyx library (an optional piece of Enyo) includes professionally designed widgets.
These controls expand upon the basic set available in the Enyo core. The Onyx controls
that correspond to the core controls use the same interface as those core controls:

enyo.kind({

3K

1

name: ‘ControlSample’,
components: [

{ kind: ‘onyx.Button’, content: ‘Click’, ontap: ‘tapped’ },
{ tag: ‘br’},
{ kind: ‘onyx.Checkbox’, checked: true, onchange: ‘changed’ },
{ tag: ‘br’},
{ kind: ‘onyx.InputDecorator’, components: [
{ kind: ‘onyx.Input’, placeholder: ‘Enter something’,
onchange: ‘changed’ }
1},
{ tag: ‘br’},
{ kind: ‘onyx.InputDecorator’, components: [
{ kind: ‘onyx.RichText’, value: ‘<i>Italics</i>’,
onchange: ‘changed’ }

1}

tapped: function(sender, event) {

3

// React to taps

changed: function(sender, event) {

}

// React to changes

Click

2

talics

TIP

Try it out: jsFiddle.

As you can see, the Onyx widgets are much more pleasing to look at. With Onyx, we
wrapped the text input controls in an InputDecorator. This is a control that allows for
additional styling and should be used for all Onyx input controls.

The Onyx library also provides a number of new controls, including Groupbox,
ProgressBar, Toolbar and TimePicker, among others. Here’s a sample of some of the
new Onyx controls that shows off their important properties and events:

enyo.kind({
name: ‘OnyxSample’,
components: [

{ kind: ‘onyx.Toolbar’, components: [
{ content: ‘Toolbar’ },
{ kind: ‘onyx.Button’, content: ‘Toolbar Button’ }

1},

{ content: ‘Radio Group’ 3},

{ kind: ‘onyx.RadioGroup’, onActivate: ‘activated’, components: [
{ content: ‘One’, active: true },

www.it-ebooks.info

http://jsfiddle.net/gh/gist/enyo/2.5.1/140179170e81ff4ce9bb/
http://www.it-ebooks.info/

{ content: ‘Two’ },
{ content: ‘Three’ }
13
{ content: ‘Groupbox’ },
{ kind: ‘onyx.Groupbox’, components: [
{ kind: ‘onyx.GroupboxHeader’, content: ‘Groupbox Header’ },
{ content: ‘Groupbox item’ }
13
{ content: ‘ProgressBar’ },
{ kind: ‘onyx.ProgressBar’, progress: 25 }
1,
activated: function(sender, event) {
// React to radio button activation change
}

1

Toolbar Toolbar Button

Radio Group

Two | Three |
Groupbox
Groupbox item

ProgressBar
[o a4)

TIP
Try it out: jsFiddle.

Moonstone Controls

Another Ul library available for use with Enyo is the Moonstone library. Moonstone was
designed specifically for use on smart TVs. The use cases for smart TVs are very different
from those for touch-based devices. Moonstone is a lot more styled than Onyx and
includes many more components. Here are the basic controls we showed previously,
rendered with the Moonstone styling:

enyo.kind({
name: ‘View’,
classes: ‘moon’,
components: [
{ kind: ‘moon.Button’, content: ‘Hello’, ontap: ‘tapped’ },
{ kind: ‘moon.CheckboxItem’, checked: true, content: ‘Check me’,
onchange: ‘changed’ 1},
{ kind: ‘moon.InputDecorator’, components: [
{ kind: ‘moon.Input’, placeholder: ‘Enter something’,
onchange: ‘changed’ }
13

{ kind: ‘moon.InputDecorator’, components: [
{ kind: ‘moon.RichText’, value: ‘<i>Italics</i>’,
onchange: ‘changed’ }
11
1,

tapped: function(sender, event) {
// React to taps
+

changed: function(sender, event) {
// React to changes
}

1

www.it-ebooks.info

http://jsfiddle.net/gh/gist/enyo/2.5.1/4c029f7c5f93ddaf1e25/
http://www.it-ebooks.info/

HELLO

v Check me

Enter something

TIP
Try it out: jsFiddle.

Moonstone components are designed to work with the Enyo Spotlight library, which
supports both five-way navigation (up, down, left, right, select) and cursor selection. If
you mouse over the components, you will see them highlight to indicate they have focus.
You can also switch to using the arrow keys on your keyboard to navigate among the
components. Spotlight is a topic unto itself and we won’t cover it here. If you’re interested
in learning more about it, see the Spotlight documentation.

There are too many Moonstone controls to get into here, so here’s a screenshot of the
Moonstone Always Viewing VideoPlayer sample:

www.it-ebooks.info

http://jsfiddle.net/gh/get/enyo/2.5.1/dependencies/dark,spot,iLib/Enyo-UpAndRunning/jsFiddle/tree/master/moonstone-controls
http://enyojs.com/docs/building-apps/spotlight.html
https://github.com/enyojs-samples/always-viewing-videoplayer-sample
http://www.it-ebooks.info/

For more information on Moonstone, see the “Building TV Applications” section of the
Enyo docs site.

Methods and Properties

Controls have a number of methods and properties that focus on their special role in
interacting with the DOM. These methods include rendered(), hasNode(), and a number
of others for manipulating the DOM. The important properties include classes and style,
which we’ll cover in Chapter 6.

The first method, rendered(), can be overridden to perform processing that only takes
place when the DOM node associated with the control is available. By default, controls
are not rendered into the DOM until they are required. In our samples, the Application
kind takes care of rendering its view at startup. As always, be sure to call the inherited()
method within rendered().

The second important method, hasNode(), allows us to test whether the DOM node for the
control exists and to retrieve it, if available. hasNode () will return null if no node is
available. This is most useful when you are creating new controls that will need to
manipulate the DOM, or when you want to wrap a widget from another UI library.

The following example shows a naive way to implement a scalable vector graphic (SVG)
container object. The only purpose is to show off the rendered() and hasNode () methods:

enyo.kind({
name: ‘Svg’,
svg: 7,
rendered: function() {
this.inherited(arguments);
this.svgChanged();
// Can only call when we have a node

www.it-ebooks.info

http://enyojs.com/docs/
http://www.it-ebooks.info/

+
svgChanged: function() {
var node = this.hasNode();
if(node !== null) {
node.innerHTML = ‘<embed src="' + this.svg +
"7 type=“image/svg+xml” />';

}
1

TIP
Try it out: jsFiddle.

There are many additional methods and properties available on Control. Please see the
API documentation for details.

www.it-ebooks.info

http://jsfiddle.net/gh/gist/enyo/2.5.1/740c53794f8a12964081/
http://enyojs.com/docs/api.html
http://www.it-ebooks.info/

Other Important Objects

Not all functionality in an app is provided by visible elements. For many apps, there is
processing that must be done in the background. Enyo provides a number of objects that
handle such processing. These objects include Application, Router, Animator, Ajax, and
JsonpRequest. See Chapter 5 for more information on other important non-visual objects.

Application

One important component that we have not discussed yet is the Application component.
Application is a type of controller that takes care of rendering the app. Each of the
samples we’ve looked at uses Application. In general, an app will derive a new kind
based on Application and specify the startup view.

The view property can contain either the name of a Control to render or a kind definition.
When rendered, the view property will contain the instance of the view that was created.
By default, the view is rendered as soon as the Application object is created. If you need
to do some processing before the view is rendered, set the renderonStart property to
false and then call render () when ready.

The Application component is also a good place to keep track of data shared among
various controls. All controls will have an app property that contains the instance of
Application. This property can be used to bind to shared models and collections.

Router

Enyo has a Router component that handles routing. Routing, for our purposes, is the
process of setting application state through the use of the URL. Specifically, Router uses
the URL location hash to store information about the state of the app. The hash allows
apps to maintain state between page loads and respond to the back button in the browser.
Changing the location hash does not force a page reload.

The router works by monitoring and updating the location hash. Routers have routes,
which are patterns for the data in the location hash and specify methods to be invoked.
The following is an example router definition:

enyo.kind({
name: ‘Routing’,
components: [
{ name: ‘router’, kind: ‘Router’, routes: [
{ path: ‘user/:userid’, handler: ‘routeUser’ },
{ path: ‘about’, handler: ‘routeAbout’ },
{ path: ‘home’, handler: ‘home’, default: true }

1}
1,

routeUser: function(userID) {
// Display user profile

3
routeAbout: function() {
// Show about screen

+
home: function() {

// Default route if no other path matches
}

1)

In the route declarations, any portions of the route that are prefixed with a colon (:) are
converted into arguments to the handler method. By default, the router will trigger an

www.it-ebooks.info

http://en.wikipedia.org/wiki/Fragment_identifier
http://www.it-ebooks.info/

update when it is created. In our example, the location hash will be tested against the
paths, and if none match, home () will be executed (because it’s the default). The
trigger () method is used to trigger the routing and, optionally, update the location hash.
The following command updates the location hash and triggers the home action:

this.$.router.trigger({ location: ‘home’, change: true });

Routing is a powerful way to centralize app state changes and pairs very well with
Application. For example, route handlers can set the active view, apply models and
collections (see Chapter 5), or change the active panel (see Panels).

Animator

Animator is a component that provides for simple animations by sending periodic events
over a specified duration. Each event sends a value that iterates over a range during the
animation time. The following example shows how you could use Animator to change the
width of a div:

enyo.kind({
name: ‘Expando’,
components: [
{ name: ‘expander’, content: ‘Presto’,
style:
‘width: 100px; background-color: lightblue; text-align: center;’ },
{ name: ‘animator’, kind: ‘Animator’, duration: 1500, startValue: 100,
endvalue: 300, onStep: ‘expand’, ontEnd: ‘done’ },
{ kind: ‘Button’, content: ‘Start’, ontap: ‘startAnimator’ },
1,
startAnimator: function() {
this.set(’$.expander.content’, ‘Presto’);
this.$.animator.play();
s
expand: function(sender, event) {
this.$.expander.applyStyle(‘width’, Math.floor(sender.value) + ‘px’);
s
done: function() {
this.set(’$.expander.content’, ‘Change-o0’);
}

13K

TIP
Try it out: jsFiddle.

Enyo also has some kinds for dealing with sprite animation. Find out more from this blog
post.

Ajax and JsonpRequest

Ajax and JsonpRequest are both objects that facilitate performing web requests. It is
worth noting that they are objects and not components. Because they are not components,
they cannot be included in the components block of a kind definition. We can write a
simple example to show how to fetch some data from a web service:

enyo.kind({
name: ‘AjaxSample’,
components: [
{ kind: ‘Button’, content: ‘Fetch Repositories’, ontap: ‘fetch’ },
{ name: ‘repos’, content: ‘Not loaded..”, allowHtml: true }
1,
fetch: function() {
var ajax = new enyo.Ajax({
url: ‘https://api.github.com/users/enyojs/repos’
1)
ajax.go();
ajax.response(this, ‘gotResponse’);

www.it-ebooks.info

http://jsfiddle.net/gh/gist/enyo/2.5.1/0cd8698f23aac9ee0327/
http://blog.enyojs.com/post/93812705854/sprite-tastic
http://www.it-ebooks.info/

iy

gotResponse: function(sender, inResponse) {
var i, output = ";
for(i = 0, i < inResponse.length; i++) {
output += inResponse[i].name + ‘
';

this.set(‘$.repos.content’, output);
}
1)

TIP
Try it out: jsFiddle.

In this sample we use the GitHub API to fetch the list of the Enyo repositories. In the
button’s tap handler, we create an Ajax object, populate it with the appropriate API URL,
and set the callback method for a successful response. We could have passed additional
parameters for the service when we called the go() method. In general, we would trap
error responses by calling ajax.error () with a context and error handling method.

TIP

The Ajax object performs its request asynchronously, so the call to go() does not actually cause the request to
start. The request is not initiated until after the fetch() method returns.

A general discussion of when and how to use Ajax and JSON-P are outside the scope of
this book.

WARNING

By default, Enyo adds a random query string onto Ajax requests to prevent aggressive browser caching. This can
interfere with some web services. To disable this feature, add cacheBust: false to the Ajax configuration object.

We’ll touch more on using web data sources in Chapter 5.

www.it-ebooks.info

http://jsfiddle.net/gh/gist/enyo/2.5.1/ffced5f262d63e0380e6/
http://developer.github.com/v3/
http://www.it-ebooks.info/

Community Gallery

The Enyo developers decided to keep the core of Enyo very simple. The additional
libraries supplied with Enyo are also similarly focused. No framework can provide all the
possible components that users will need. Fortunately, all the features of Enyo that we’ve
discussed up to this point mean that it’s very easy to create reusable components. The
developers have created a community gallery to make it easy to find and share these
reusable components. The gallery includes a variety of components that can be easily
dropped in to your apps.

android HSnapScroller FilelnputDecorator Time Picker Pin Entry
by Chris Van Hooser by Jason Robitaille by GlitchTech Science by MachiApps

Enlod PIN

e 1 .
i
Titled Menu Expandable Radio Gro... Video Griddable Layout
by Chris Vian Hooser by Chris Van Hooser by Doug Reeder by MacFJA

1
. - m
N -
L — 1

Hopefully you will feel motivated to create new components and share them with the
community.

www.it-ebooks.info

http://enyojs.com/gallery/
http://www.it-ebooks.info/

Summary

In this chapter, we explored components and the visual controls that Enyo developers use
to make beautiful apps. We explored the various widgets that Onyx and Moonstone have
to offer and learned a bit about using them. We also covered some non-visual objects Enyo
provides. In the next chapter, we’ll take Enyo to the next level by exploring how to
arrange controls.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4. Layout

In this chapter we’ll explore how to enhance the appearance of Enyo apps by using
various layout strategies to place controls where we want them. By combining the
knowledge gained in the previous chapters with the layout tools in this chapter, you’ll
have most of the knowledge you need to create compelling apps using Enyo. We’ll
explore each of the layout tools using examples you can run in your browser.

As with visual controls, Enyo provides both core layout strategies and an optional library
called Layout. The core strategies provide the “simpler” approach to layout while the
Layout library provides some more advanced features. The Onyx library also provides a
layout tool in the form of the brawer component and the Moonstone library has a number
of enhanced layout controls.

www.it-ebooks.info

http://www.it-ebooks.info/

Responsive Design

Before we begin talking about layout strategies we should discuss responsive design.
Responsive design means that an app or web page changes its appearance (or
functionality) depending upon the device or display size it is used on. It’s important to
consider how your app will look on different displays when designing a cross-platform
app. Responsive web design is a topic that probably deserves a book of its own. You are
encouraged to research the associated tools and techniques on the Web. Many of those
same tools are used both within Enyo and by Enyo app developers. In particular, CSS
media queries are often used in Enyo apps. We’ll discuss the tools that Enyo makes
available for designing responsive apps, but you may need to supplement these tools in
certain circumstances.

www.it-ebooks.info

http://www.it-ebooks.info/

Core Layout Features

Enyo provides two useful mechanisms for layout in the core: scrollers and repeaters. The
Scroller kind implements a section of the display that is scrollable by the user while the
Repeater kind is useful for making repeating rows of items. There are also data-aware
controls for list and grid layout that we will cover in Chapter 5.

Scrollers

One of the bigger challenges in a mobile app is presenting a scrolling area of information
that would otherwise be too big to fit. While many solutions exist, their cross-platform
performance varies greatly. The Enyo team has spent a considerable amount of time
analyzing performance issues and bugs across various browsers to produce the Scroller
component.

Scrollers require very little configuration but do have some settings you can control. The
vertical and horizontal properties default to automatically allow scrolling if the content
of the scroller exceeds its size. Setting either to ‘hidden’ disables scrolling in that
direction while setting either to ‘scroll’ causes scroll thumbs to appear (if enabled) even
if content otherwise fits. The touch property controls whether desktop browsers will also
use a touch-based scrolling strategy (instead of thumb scrollers).

For more information on scrollers, visit the scroller documentation page.

Repeaters

Another challenge is to display a list of repeating rows of information. The Repeater
component is designed to allow for the easy creation of small lists (up to 100 or so items)
of consistently formatted data. A repeater works by sending an event each time it needs
data for a row. The method that subscribes to this event fills in the data required by that
row as it is rendered. The following sample shows a repeater that lists the numbers 0
through 99:

enyo.kind({
name: ‘RepeaterSample’,
kind: ‘Scroller’,
components: [{
kind: ’‘Repeater’,
count: 100,
components: [{ name: ‘text’ }],
onSetupItem: ‘setupItem’,
ontap: ‘tapped’
1,
setupItem: function(sender, event) {
var item = event.item;
item.set(’$.text.content’, ‘This is row ‘ + event.index);
return(true);
+
tapped: function(sender, event) {
enyo.log(event.index);
}
i9F

www.it-ebooks.info

http://enyojs.com/docs/building-apps/layout/scrollers.html
http://www.it-ebooks.info/

Thisis row 0 m
This is row 1
This is row 2
This is row 3
Thisisrow 4
Thisisrow 5
Thisis row 6
Thisisrow 7
Thisis row 8
Thisis row 9

TIP
Try it out: jsFiddle.

You’ll notice that we placed the Repeater into a Scroller. As the contents would (likely)
be too large to fit onto your screen, we needed the scroller to allow all the content to be
viewable. The components block of the Repeater is the template for each row and can
hold practically any component, though it is important to note that fittables (see Fittable)
cannot be used inside a repeater.

Also of note is the fact that each time we respond to the onSetupItem event, we reference
the component(s) in the components block directly off the item passed in through the
event. The repeater takes care of instantiating new versions of the components for each
row. If you need to update a specific row in a repeater, you should call the renderRow()
method and pass in the index of that row.

TIP

To redraw the whole repeater, such as when the underlying data has changed, set a new value for the count
property. It is a good idea to pass a truthy value for the third parameter to set () in the case where only the data
but not the number of records has changed (e.g., this.set(‘$.repeater.count’, 100, true);). Alternately,
you can call the build() method to redraw the list.

www.it-ebooks.info

http://jsfiddle.net/gh/gist/enyo/2.5.1/61994e43b3556b2d0dae/
http://www.it-ebooks.info/

Layout Library Features

The modular Layout library includes several kinds for arranging controls. Three of the
kinds we’ll discuss are Fittable, List, and Panels. Visit the Enyo docs website to find
out more information on the Layout library and the kinds not covered here.

Fittable

One aspect of layout that Enyo makes easier is designing elements that fill the size of a
given space. Enyo provides two layout kinds, FittableColumnsLayout and
FittableRowsLayout, to accomplish this. Fittable layouts allow for a set of components to
be arranged such that one (and only one) component expands to fill the space available
while the others retain their fixed size. FittableColumnsLayout arranges components
horizontally while FittableRowsLayout arranges them vertically. To specify the child
component that will expand to fit the space available, set the fit property to true.

To apply the fittable style to controls, set the layoutKind property. To make it easier to
use, the Layout library includes two controls with the layout already applied:
FittableColumns and FittableRows. Fittables can be arranged within each other, as the
following code sample shows:

enyo.kind({
name: ‘Columns’,
kind: ‘FittableColumns’,
components: [
{ content: ‘Fixed width’, classes: ‘dont’ },
{ content: ’‘This expands’, fit: true, classes: ‘do’ },
{ content: ‘Another fixed width’, classes: ‘dont’ }
1
1

enyo.kind({
name: ‘FittableSample’,
layoutKind: ‘FittableRowsLayout’,
components: [
{ content: ’‘Fixed height’, classes: ‘dont’ },
{ kind: ‘Columns’, fit: true, classes: ‘do’ },
{ content: ’‘Another fixed height’, classes: ‘dont’ }

1
13K

TIP
Try it out: jsFiddle.

In the previous sample, we used both styles of applying a fittable layout, using a
layoutKind for the row layout and using the FittableColumns for the column layout. We
applied a simple CSS style that added colored borders to the expanding regions. If you
resize the browser window, you’ll see that the area in the middle will expand while the
areas above and to the sides have fixed heights and widths, respectively.

www.it-ebooks.info

http://enyojs.com/docs
http://jsfiddle.net/gh/gist/enyo/2.5.1/08e05637be815e50fcb9/
http://www.it-ebooks.info/

Fixed height
Fixed width| This expands Another fixed width

Another fixed height

TIP

Fittables only relayout their child controls in response to a resize event. If you need to relayout the controls
because of changes in the sizes of components, call the resize() method on the fittable component.

While fittables provide an easy way to create specific layouts, they should not be
overused. Reflows are performed in JavaScript and too many nested fittables can affect
app performance.

Lists

Earlier we covered repeaters, which display a small number of repeating items. The List
component serves a similar purpose but allows for a practically unlimited number of
items. Lists include a built-in scroller and support the concept of selected items (including
multiple selected items). Lists use a flyweight pattern to reduce the number of DOM
elements that get created and, therefore, speed up performance on mobile browsers.

All this performance doesn’t come without downsides, though. Because list items are
rendered on the fly it is difficult to have interactive components within them. It is
recommended that only simple controls and images be used within lists:

enyo.kind({
name: ‘ListSample’,
kind: ‘List’,
count: 10000,
handlers: {
onSetupItem: ‘setupItem’,
ontap: ‘tapped’
i
components: [{ name: ‘text’ }],
setupItem: function(sender, event) {
this.set(’$.text.content’, ‘This is row ’ + event.index);
return(true);
}
tapped: function(sender, event) {
enyo.log(event.index);
}
oK

TIP
Try it out: jsFiddle.

In both this example and the Repeater example, we knew the number of items to display
and set the count property when creating them. Often, you won’t know how many items
to display while writing your app. In that case, leave the count property undefined and

www.it-ebooks.info

http://jsfiddle.net/gh/gist/enyo/2.5.1/4ef31f02ed94b01b76d4/
http://www.it-ebooks.info/

set () it once you have received the data. Once set, the List will render itself. If the
underlying data changes, call refresh() to redraw at the current position or reset () to
redraw from the start.

In order to make a List row interactive, you must first use the prepareRow() method.
Then, a call to performonRow() can be used to act on the row. Finally, lockRow() should
be called to return the row to its non-interactive state. Let’s modify the tap handler from
the last example to show how to add an interactive element to a row:

enyo.kind({

name: ‘ListSample’,

kind: ‘List’,

count: 1000,

items: [],

handlers: {
onSetupItem: ‘setupItem’

s

components: [
{ name: ‘text’, kind: ‘Input’, ontap: ‘tapped’,

onchange: ‘changed’, onblur: ‘blur’ }

1,

create: function() {
this.inherited(arguments);
for(var i = 0; i < this.count; i++) {

this.items[i] = ‘This is row * + 1i;

}

s

setupItem: function(sender, event) {
this.$.text.setValue(this.items[event.index]);
return(true);

}

tapped: function(sender, event) {
this.prepareRow(event.index);
this.set(’$.text.value’, this.items[event.index]);
this.$.text.focus();
return(true);

}

changed: function(sender, event) {
this.items[event.index] = sender.getValue();

}

blur: function(sender, event) {
this.lockRow();

}

13K

TIP
Try it out: jsFiddle.

www.it-ebooks.info

http://jsfiddle.net/gh/gist/enyo/2.5.1/09445bc43095f97a9a6c/
http://www.it-ebooks.info/

This is row 0
This is row 1
This is row 2
This is row 3
Updated row
This is row 5
This is row 6
This is row 7

In this version, we detect a user tapping into a row and then lock that row so that we can
make the Input editable. If we did not prepare the row, then the input control would not be
properly associated with the row being edited and our changes would not be preserved.
We look for the onblur event so we can call lockRow() to put the list back into non-
interactive mode.

TIP

This sample isn’t complete, as there are ways to move out of fields without triggering the blur event correctly. A
better way to handle this kind of situation would be to use Popup to open a dialog on top of the list in response to a
click on the row.

List and Repeater have data-aware versions that are easier to work with. We’ll cover
data-aware components in Chapter 5.

Panels

Panels are one the most flexible layout tools Enyo has to offer. Panels give you the ability
to have multiple sections of content that can appear or disappear as needed. You can even
control how the panels arrange themselves on the screen by using the arrangerkind
property. The various arrangers allow for panels that collapse or fade as moved, or that are
arranged into a carousel or even a grid.

Panels have an index property that indicates the active panel. Although the various
arrangers can present more than one panel on the screen at a time and all such visible
panels can be interactive, the active panel is important. You can easily transition the active
panel by using the previous() and next () methods, or detect when a user has moved to a
new panel (e.g., by swiping) by listening for the onTransitionFinish event.

A quick example of how to use Panels will help explain. In this example, we’ll set up a
layout that can have up to three panels, depending on the available width. As the available
width shrinks, the number of panels visible will also shrink, until only one remains:

enyo.kind({
name: ‘PanelsSample’,
kind: ‘Panels’,
arrangerKind: ‘CollapsingArranger’,

www.it-ebooks.info

http://www.it-ebooks.info/

classes: ‘panels-sample’,
narrowFit: false,

handlers: {
onTransitionFinish: ‘transitioned’

iy

components: [
{ name: ‘panell’, style: ‘background-color:
{ name: ‘panel2’, style: ‘background-color:
{ name: ‘panel3’, style: ‘background-color:

1

transitioned: function() {
this.log(this.index);
}

1

.panels-sample > * {
width: 200px;
}

@media all and (max-width: 500px) {
.panels-sample > * {
min-width: 200px;
max-width: 100%;
width: 50%;

}
@media all and (max-width: 300px) {
.panels-sample > * {

min-width: 100%;
max-width: 100%;

TIP

Try it out: jsFiddle.

blue’ 3},

grey’ 1},
green’ }

In order to achieve the sizing, we’ll use a little CSS and some media queries to size the
panels appropriately:

For this sample, we set the narrowFit property to false. By default, the individual panels
in a CollapsingArranger panel will fill the available space when the screen size is below
800px. We overrode the default in order to use 200px as the minimum width of a panel.
The CSS we used detects when the screen gets below 500px and we limit each panel to
half the space. Then, when the screen gets below 300px, we cause the panels to take up all
the space. The user can still swipe left and right to reveal panels that aren’t currently

www.it-ebooks.info

http://jsfiddle.net/gh/gist/enyo/2.5.1/337d1a76bf5d4e888433/
http://www.it-ebooks.info/

visible.

We have only touched on the power of the Panels component. You should check out the
Panels documentation for more ideas on how to use them.

www.it-ebooks.info

http://enyojs.com/docs/building-apps/layout/panels.html
http://www.it-ebooks.info/

Summary

You are now well on your way to producing beautiful apps that perform well on mobile
and desktop platforms. We looked at some techniques for designing responsive apps that
make the best use of a user’s display size. In the next chapter we’ll learn how to create

data-driven applications using Enyo.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5. Writing Data-Driven Applications

Enyo provides first-class support for creating rich, data-driven applications. Along with

the data binding and observer features we touched on briefly in Chapter 2, there are
models, collections, data-driven controls, and ways to synchronize data with remote data

sources. In this chapter we’ll explore these concepts and components.

www.it-ebooks.info

http://www.it-ebooks.info/

Models

The bindings in Enyo work with any object, which makes it easy to associate the data
from one component to another. Sometimes, however, the data that needs binding doesn’t
live neatly within any one component in the app. To handle such situations, Enyo has
Model. Model, which is not actually an object but does support get () and set (), is
designed to wrap plain-old JavaScript objects and make the data available for binding. The
following illustrates the creation of a simple model:

var restaurant = new enyo.Model({
name: ‘Orenchi’,
cuisine: ‘Japanese’,
specialty: ‘ramen’

1,

You can derive from Model to create new model types and specify default attributes and
values:

enyo.kind({
name: ‘RestaurantModel’,
kind: ‘enyo.Model’,
attributes: {
name: ‘unknown’,
cuisine: ‘unknown’,
specialty: ‘unknown’,
rating: ©
}
1)

Whenever a RestaurantModel is instantiated, the defaults will be applied to any properties
whose values are not explicitly defined:

var mcd = new RestaurantModel({ name: ‘McDonalds’ });

mcd.get(‘specialty’);
// returns ‘unknown’

TIP
Try it out: jsFiddle.

TIP

In this sample and some that follow, there is an interactive console that allows you to experiment with the code.
You can type JavaScript statements into the gray box and run them to see what happens. Try creating new models
or changing some of the values around and see what happens. The console is based on a lightly modified version
of JS Console by Remy Sharp.

In addition to defaults, you can add methods, computed properties (discussed later in this
chapter), observers, and bindings to models. For example, to track how often the name of
a restaurant has changed, you can add a nameChanged() method:

enyo.kind({
name: ‘RestaurantModel’,
kind: ‘enyo.Model’,
attributes: {
name: ‘unknown’,
cuisine: ‘unknown’,
specialty: ‘unknown’,
rating: O
3
nameChanged: function(was, is) {
if(is) {
this.changeCount = this.changeCount ?
this.changeCount++ : 1;

www.it-ebooks.info

http://jsfiddle.net/gh/gist/enyo/2.5.1/4f55c778aee7c7bf4ddc/
https://github.com/remy/jsconsole
http://www.it-ebooks.info/

}
1

TIP
Try it out: jsFiddle.

The previous code checks to ensure that the name is being set to a new value and, if so,
increments the count (unless it was undefined, in which case it is assigned a value of 1).

TIP

The nameChanged method is not invoked during model creation, as the example shows. Also, note that the
changeCount property is not fetchable using get () because it was not declared in the attributes block. When
calling get () or set() on a model, you are interacting with properties on the attributes member, not the model
itself. Always use get () and set () when working with model properties.

It is very easy to design components that work with models. Let’s create a component to
view our restaurant model:

enyo.kind({
name: ‘RestaurantView’,
components: [
{ name: ‘name’ },
{ name: ‘cuisine’ 3},
{ name: ‘specialty’ },
{ name: ‘rating’ }
1,
bindings: [
{ from: ‘model.name’, to: ‘$.name.content’ },
{ from: ‘model.cuisine’, to: ‘$.cuisine.content’ },
{ from: ‘model.specialty’, to: ‘$.specialty.content’ },
{ from: ‘model.rating’, to: ‘$.rating.content’ }
]
3);

TIP
Try it out: jsFiddle.

The RestaurantView component uses bindings to map the fields from its model property
to the appropriate controls. Whenever a new model is assigned or one of the properties in
the assigned model changes, the contents of the control will be updated. To assign the
model to the view, set the model property during creation, use set (), or bind the model
property to a model stored elsewhere.

www.it-ebooks.info

http://jsfiddle.net/gh/gist/enyo/2.5.1/806bfb70741a304822b6/
http://jsfiddle.net/gh/gist/enyo/2.5.1/73e14b8ff016eeef87f5/
http://www.it-ebooks.info/

Collections

While Model wraps a single object, Collection is a Component that wraps arrays of
objects. A collection can be initialized with an array, in which case each object in the array
is upgraded to a model as it’s added:

var fruits = new enyo.Collection([
{ name: ‘apple’ 3},
{ name: ‘cherry’ },
{ name: ‘banana’ }
1);
Individual models can be retrieved with the at () method. Models can be added by calling
the add () method and passing in an object, a model, or an array of either:

fruits.at(0).get(’name’);
// returns “apple”

fruits.add({ name: ‘rambutan’ });
fruits.at(fruits.length-1).get(‘name’);
// returns “rambutan”

TIP
Try it out: jsFiddle.

In many ways, collections behave like arrays. They have a 1ength property that reflects
the number of items in the collection. They also support various Array methods like
find() and forEach(). For a comprehensive list of methods supported by Collection,
see the full API documentation.

Like Model, Collection can be subclassed to specify additional configuration and
methods. For example, you can specify a default model to be used when objects are added
to the array:

enyo.kind({
name: ‘RestaurantCollection’,
kind: ‘enyo.Collection’,
model: ‘RestaurantModel’

13K

Collections are very powerful when they are teamed up with data-aware components.
We’ll explore those later in this chapter.

www.it-ebooks.info

http://jsfiddle.net/gh/gist/enyo/2.5.1/54af9d65929abdef5f9f/
http://enyojs.com/docs/latest/api.html#enyo.Collection
http://www.it-ebooks.info/

Computed Properties

Applications often need to alter or combine data before it can be used. For example, it is
convenient to combine a person’s first and last names into a full name. Enyo provides
computed properties to centralize this work instead of requiring you to write repetitive
code. Computed properties can be used on any Object or Model and work just like other
properties.

Let’s adjust the RestaurantModel to have a property that contains the rating expressed in
number of stars:

enyo.kind({
name: ‘RestaurantModel’,
kind: ‘enyo.Model’,
attributes: {
name: ‘unknown’,
cuisine: ‘unknown’,
specialty: ‘unknown’,
rating: ©
s
computed: [
{ method: ‘starRating’, path: ‘rating’ }
1

starRating: function() {
var rating = this.get(’rating’);
return rating + ‘ star’ + ((rating == 1) ? ” : ’‘s’);
}
3

var rest = new RestaurantModel({
name: ‘The French Laundry’,
rating: 5

3K

rest.get(‘starRating’);
// returns “5 stars”

TIP
Try it out: jsFiddle.

A computed property requires a method with the same name to compute the value. The
path in the declaration refers to the property (or properties) it is dependent upon, much
like observers. The path can be either a string (if there is only one property) or an array of
strings. If one of its path properties changes, a computed property is recalculated the next
time it is needed.

www.it-ebooks.info

http://jsfiddle.net/gh/gist/enyo/2.5.1/42159bfab3b72bb2e9d4/
http://www.it-ebooks.info/

Data-Aware Components

Using bindings, any component can be linked with data from another component or with a
model. When dealing with collections, you need controls that know how to render the
contents. Unsurprisingly, these components deal with displaying data in lists or tables. The
core data-aware components include DatalList, DataRepeater, and DataGridList. The
Moonstone library includes some additional data-aware components.

Each of these components looks for a collection property that will contain the data to be
rendered. Let’s implement a DataRepeater that can display the collection of restaurants
we created earlier:

enyo.kind({
name: ‘RestaurantRepeater’,
kind: ‘enyo.DataRepeater’,
components: [{
components: [
{ name: ‘name’ },
{ name: ‘cuisine’ },
{ name: ‘specialty’ },
{ name: ‘rating’ }
1
bindings: [
{ from: ‘model.name’, to: ‘$.name.content’ 3},
{ from: ’‘model.cuisine’, to: ‘$.cuisine.content’ },
{ from: ’‘model.specialty’, to: ‘$.specialty.content’ },
{ from: ‘model.rating’, to: ‘$.rating.content’ }
]
1]
1)

TIP
Try it out: jsFiddle.

As with Repeater, the components block is the template for each row. The bindings
section in the preceding code references a model property, which is automatically set from
the collection for each row that needs to be rendered. This allows for a simple mapping
from the properties of the model to the components in the DataRepeater.

We can simplify the previous code by reusing our RestaurantView component:

enyo.kind({
name: ‘RestaurantRepeater’,
kind: ‘enyo.DataRepeater’,
components: [{ kind: ‘RestaurantView’ }]
1
TIP

Try it out: jsFiddle.

Some of the benefits of using data-aware components over their non-data-aware versions
include automatic updates when any of the underlying models change, built-in support for
selection, and simpler binding of data to the components. You can find out more about the
data-aware components in the API viewer.

www.it-ebooks.info

http://jsfiddle.net/gh/gist/enyo/2.5.1/500a5aaafeb37924c745/
http://jsfiddle.net/gh/gist/enyo/2.5.1/1c1254f2a7879e25e834/
http://enyojs.com/docs/api.html
http://www.it-ebooks.info/

Fetching Remote Data

It’s a rare app these days that doesn’t interact with data stored somewhere in the cloud or
locally in the browser. Enyo uses the concept of data sources to work with persistent data.
There are three data sources included with Enyo: AjaxSource, JsonpSource, and
LocalStorageSource. Apps can use or extend these to fetch and commit data.

TIP

The Ajax and JSONP sources are intended to be extended by app developers. They will work as-is in cases where
the server interaction is very simple.

Let’s revisit the sample from Chapter 3 where we fetched the list of repos from GitHub.
We’ll update that sample to use a collection, a source, and a DataRepeater:

enyo.ready(function() {
enyo.AjaxSource.create({ name: ‘ajax’ });
var collection = new enyo.Collection({
source: ‘ajax’,
url: ‘https://api.github.com/users/enyojs/repos’

I3F

enyo.kind({
name: ‘RepoView’,
kind: ‘DataRepeater’,
collection: collection,
components: [{
components: [{ name: ‘repoName’ }],
bindings: [
{ from: ‘model.name’, to: ‘$.repoName.content’ }
]

3]
13K

new enyo.Application({ name: ‘app’, view: ‘RepoView’ });

collection.fetch();
3
TIP
Try it out: jsFiddle.

In the preceding code, we created a new instance of AjaxSource (the Ajax source
component) and assigned it to a new collection. We then assigned the collection to the
collection attribute of the DataRepeater. Finally, we called the fetch() method on the
collection to get the list of repositories from GitHub.

In addition to the fetch() method, models and collections support commit () and
destroy(). All three methods can take an optional parameter hash that affects the way the
source treats the data. If not supplied, the options will be taken from the model or
collection’s options property. In this way, you can override the default options for a
specific method call.

WARNING

fetch(), commit (), and destroy() require that the model or collection not be in an error state. You must call the
clearError () method on a model after an error occurs. You should define an error handler either in the options
hash for the collection or when passing the options to those methods.

TIP

Enyo has a feature that will attempt to consolidate models to reduce memory usage and avoid out-of-sync data.
For example, if two collections use the same model, they will share any instances of models that have the same

www.it-ebooks.info

http://jsfiddle.net/gh/gist/enyo/2.5.1/fc80269608520e7d0b0a/
http://www.it-ebooks.info/

primaryKey (by default ‘id").

www.it-ebooks.info

http://www.it-ebooks.info/

Putting It All Together

To get a feel for what a full Enyo application is like, take a look at a restaurant list app
online. This app implements several of the features we’ve covered in previous chapters,
including the Onyx Ul library, Router, Collections, and a collection-aware list. The app

also uses local storage to persist the restaurants between loads. You can view the source on
GitHub.

www.it-ebooks.info

http://enyo-upandrunning.github.io/restaurant-app/
https://github.com/Enyo-UpAndRunning/restaurant-app
http://www.it-ebooks.info/

Summary

In this chapter, we touched on just a few of the features Enyo provides for creating data-
driven applications. We covered models, the basic building blocks of data-driven
applications, and collections. We discussed computed properties and how to use them.
Lastly, we covered how to fetch data from remote sources. There are even more features
that we didn’t get to explain, including collection filters and relational data. With all these
rich features, it is easy to create data-driven applications with Enyo.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6. Fit and Finish

In the preceding chapters we laid down the foundations you need to create Enyo apps. In
this chapter, we’ll explore some of the pieces necessary to make those apps more
memorable. We’ll cover how to style your apps, how to tune them to perform well on less
powerful platforms, how to prepare them for translation to other languages, and how to
troubleshoot bugs that inevitably arise. As always, we’ll explore these concepts through

interactive samples.

www.it-ebooks.info

http://www.it-ebooks.info/

Styling

Enyo provides some very nice looking controls with the Onyx and Moonstone libraries.
However, an app can set itself apart from others by having a unique user interface.
Fortunately, it’s very easy to change the look of controls. We’ll explore several ways to
accomplish that.

Styles and Classes

All Enyo controls have two properties to aid in styling: style and classes. These two
properties correspond to an HTML element’s style and class attributes. The style
property can be used to apply a specific style to a single control. To work with the
classes property, you must add CSS classes to a style sheet. In general, it is better to use
classes in an app for two reasons: first, components are more reusable if styling is not
embedded within them; second, using CSS classes allows you to keep the styling in a
single, centralized location.

Enyo provides applyStyle() to update an individual style and addStyles() to add styles
onto the existing styles of a control. We used the applyStyle() function in the traffic light
sample at the start of the book. Passing a null as the second parameter to applyStyle()
removes the style. For updating classes, Enyo provides addClass(), removeClass(), and
addRemoveClass().

WARNING

It might seem like calling set () with the style and classes properties would be a good way to update a control.
However, doing so completely replaces the styles and classes of the control. Use set () carefully with these
properties.

Overriding Onyx Styles

Each Onyx control includes one or more classes. It is possible to override some (or all) of
the default styling by overriding those styles in your CSS file. One simple way to discover
the class names to override is to use your browser’s inspector to see what classes are
applied to a particular control. You can then use those classes to override the way that
control looks everywhere in your app. The following image shows the Chrome inspector
output of the Onyx sample from Chapter 3:

¥adiv id="controlSample" class="enyo-fit enyo-clip"=

<button class="enyo-tool-decorator onyx-button enyo—unselectable" id="controlSample_button"=(lick</button=
<br id="controlSample_control”=
=div class="enyo-checkbox onyx-checkbox" id="controlSample_checkbox" type="checkbox" checked="checked"=</div=
<br id="controlSample_control2"=

p=label class="enyo-tool-decorator onyx-input-decorator" id="controlSample_inputDecorator"=.=/label=
<br id="controlSample_control3"=

p=label class="enyo-tool-decorator onyx-input-decorator" id="controlSample_inputDecoratorz"s.=/labels

<fdiv=

The Onyx button has, among its classes, onyx-button. If we want to override the styling
on all the buttons in our app without having to manually add a class to each one, we could
write our own CSS rule for onyx-button:

.onyx-button {
background-color: cyan;
}

www.it-ebooks.info

http://www.it-ebooks.info/

 Click |

talics

TIP
Try it out: jsFiddle.

In general, you will need to use a CSS selector that is more specific than the styles in the
Enyo CSS. One method is to add a base class to your view component and then use that in
combination with your CSS selector. In the Onyx sample, we cannot override the
background color of the actual input control without a more specific selector:

.myapp .onyx-input {
background-color: tomato;
}

 Click |

TIP

Try it out: jsFiddle.

In general, it’s better to style the input decorator rather than the input itself.
Less Is More

You could, of course, simply go into the Onyx library directory and directly edit the CSS
file. Knowing that app developers would want to do this, the Enyo developers provide
Less files for generating the CSS used by Onyx (and Moonstone as well). Less provides a
programmatic approach to creating CSS while keeping most of the flavor of CSS. In order
to compile Less you will need to have Node.js installed, and it helps to be working on a
Bootplate project (see Appendix A).

TIP

Less can be used “live” in a browser. The debug build of Bootplate projects loads a JavaScript library that
processes Less files in the browser. Because of the additional processing needed, it isn’t recommended to use that
method with deployed code. You can disable Less by commenting out the line in debug.html that loads less.js.

Less files can be found in the css directory of the Onyx library, along with a previously
compiled CSS file. Of particular interest is the onyx-variables.less file, which contains
some common settings used throughout the library. Here’s a sample from that file:

/* Background Colors */

@onyx-background: #EAEAEA;
@onyx-light-background: #CACACA;
@onyx-dark-background: #555656;
@onyx-selected-background: #C4E3FE;

www.it-ebooks.info

http://jsfiddle.net/gh/gist/enyo/2.5.1/53aa1a2e6f5548fe3415/
http://jsfiddle.net/gh/gist/enyo/2.5.1/40f357b8dd37fd5d825b/
http://www.it-ebooks.info/

@onyx-button-background: #E1E1E1;

By overriding a particular variable, we can affect a wide range of Onyx styles. If you want
to create your own overrides, you can modify your app as follows:

¢ In source/package.js, change $1ib/onyx to $1ib/onyx/source.
¢ In source/style/package.js, uncomment the reference to Theme.less.
o Edit source/style/Theme.less and place your overrides into the places indicated.

To change all Onyx buttons to lime green, you could place the following where variable
overrides go:

@onyx-button-background: lime;

For more information on Less, see the Less website. For more information on theming
Enyo, visit the Enyo Ul Theming page.

Moonstone provides Less files as well and the override process is very similar.

www.it-ebooks.info

http://lesscss.org/
https://github.com/enyojs/enyo/wiki/UI-Theming
http://www.it-ebooks.info/

Performance Tuning

With all of the styling options available to you it can be very tempting to pull out all the
stops and add drop shadows, rounded corners, and all sorts of bells and whistles to your
app. You need to be careful, though. While Enyo enables you to make native quality apps
with HTML5 and CSS, you need to test the performance on mobile devices and older
browsers (such as Internet Explorer 8), if you target them.

In desktop environments you can expect very good performance regardless of the CSS
tricks you use. In the mobile world, where there’s less processing power and less memory,
things can get bogged down very quickly. Particular performance hogs include the afore-
mentioned drop shadows and rounded corners. Other offenders include computed
gradients, overlarge images, and long-running JavaScript. It’s very important that you test
how your app performs on the least capable system you’re targeting. You may need to
disable some features by using enyo.platform to detect the platform you are running on.

One of the most important factors in how an app is perceived is its responsiveness. It is
very important that when a user taps on buttons, there is visual feedback that something
happened. If you attempt to perform a long running calculation in a tap handler, the user
will not see the button respond properly to the tap. Attempt to return as quickly as possible
from event handlers and perform the calculations in response to a timer or animation
frame request. Enyo includes an Async object for performing asynchronous actions.

TIP

With mobile devices, the simpler the HTML and CSS, the faster the performance. It can be tempting to create
every single object that your app might use. However, placing all those components into the DOM, even if they’re
hidden, affects performance. Create only the objects you need and get rid of those you don’t need anymore.

Lastly, with installable apps you should be careful about loading remote resources. Mobile
users may not always have an Internet connection and, when they do, it may be slow. If
your app depends on particular images, package them with your app. If your resources
change over time, use caching techniques.

A full discussion of performance tuning is outside the scope of this book. For more
information on some of the pitfalls, you can read HTML5 Techniques for Optimizing
Mobile Performance and other sites.

www.it-ebooks.info

http://www.html5rocks.com/en/mobile/optimization-and-performance/
http://www.it-ebooks.info/

Debugging

So far we’ve painted a rosy picture of life with Enyo. Of course, sometimes things don’t
go so well. Fortunately, you have a number of tools at your disposal to figure out what
went wrong. First and foremost, because Enyo is truly cross-platform, many problems can
be detected and fixed by running your apps in a desktop browser. All the modern browsers
have JavaScript debuggers available that make it very easy to see errors and even inspect
the state of the DOM. In general, problems come in two varieties: code issues and layout
issues.

TIP

One of the most common errors in Enyo apps is forgetting to call this.inherited(arguments) when overriding
methods on a parent object. This occurs most often with the create() and render () methods but can also happen
with others. Leaving out this call can cause components to render incorrectly or not appear at all. Another
common error is failing to return a truthy value from event handlers and having the event handled by more than
one component. This can be especially bad in the case of nested List components.

Layout Issues

We covered some of the great layout features that Enyo offers in Chapter 4. However,
even with these features at your disposal, things can go wrong. One common problem app
developers experience occurs when they fail to provide a height to List or Scroller
components. Without a height, these elements will end up invisible. Providing a height or
placing the component in a fittable layout can solve that issue. Fittables themselves can
also cause problems. Forgetting to assign fit: true to one and only one of the
components of a fittable component can lead to rendering issues.

Sometimes things just end up in the wrong place or have the wrong style. A quick way to
see what has happened is to use the DOM inspector in your browser to see what styles
have been applied to the elements in question. Sometimes, CSS precedence can be the
source of problems. Use the DOM inspector to check whether a component rendered at all
or if it’s merely hidden. Other times, it can help to add !important to a style.

<

Layout is a complex topic. Some links that might help include: “Four simple techniques to
quickly debug and fix your CSS code in almost any browser” and “Diagnose and fix
layout problems” (IE-specific, but the same concepts exist in other browsers). Also check
out “CSS In Your Pocket - Mobile CSS Tips From The Trenches” by Angelina Fabbro for
a great introduction to CSS debugging tools and techniques.

Code Issues

Bugs are unavoidable. Fortunately, there are lots of ways to squash them. One of the best
ways to detect code errors is to keep the JavaScript console open while testing Enyo apps.
If there’s an error or typo in your code, it can cause strange problems. Seeing errors as
they occur really helps in trapping the problem.

Enyo apps can also write to the JavaScript console with the info(), warn(), and error()
methods on the enyo object. In addition, every Enyo kind can call this.log() to send
output that includes the kind’s name and the name of the method that generated the log
message.

Sometimes a passive approach to debugging a problem isn’t enough. In these cases you

www.it-ebooks.info

http://bigemployee.com/4-simple-techniques-to-quickly-debug-and-fix-your-css-code-in-almost-any-browser/
http://msdn.microsoft.com/en-us/library/ie/dn255008(v=vs.85).aspx
https://www.youtube.com/watch?v=vBHt61yDO9U
http://www.it-ebooks.info/

can set breakpoints in your code and step through methods that are misbehaving. A handy
trick that is supported by the major browsers is putting the debugger command into code
you want to inspect. When the browser reaches that code, it will stop and allow you to
inspect the state of the app. Just remember to remove that command before publishing

your app!

Once you’ve identified a place in the code that you want to inspect, it’s easy to see all the
components belonging to a component. this.$ will contain a hash of all the owned
components. Also, enyo.$ contains a hash of all named components in your app. You can
easily walk through these by inspecting deeper and deeper into a kind.

TIP

When inspecting an element in the DOM you can use its id (e.g., “panelsSample_panel1”) to find the reference
within the enyo.$ hash. To make things even simpler, Firefox, Chrome, and Safari all set $0 to the last element
inspected in the DOM. To find the associated Enyo control simply use enyo.$[$0.1id].

JSFIDDLE DEBUGGING

There’s no doubt that jsFiddle is a great environment for quickly testing ideas. It does have some drawbacks,
though. Among them is that debugging can be a little more difficult and there aren’t a lot of options for working
with complex apps. jsFiddle runs your code in an iframe. Because the code you are executing gets reloaded into
the iframe each time you click Run, it can be a little tricky keeping breakpoints in line.

Using the debugger command mentioned previously can be helpful, as can using the Inspector window that shows
you active source files. The source for your app will be launched from fiddle.jshell.net and will be in-line with the
HTML source for the page. If your app does not appear to be working at all, make sure you have selected the
correct framework:

Frameworks & Extensions

Enyo (nightly)
v Onyx
\f Layout
l'_h!" Canvas
glin
Moonstone (dark)
Maoonstone (light)
Spotlight
iLib

ik

No wrap - in <head>

If you have the wrong settings, you may see the following error message:
Uncaught TypeError: Cannot read property ‘className’ of undefined

If you run into an issue with a specific version of Enyo, you can try using the nightly build, which contains the
most recent code submissions to Enyo. Conversely, if you run into a problem using the nightly build, try using the
last released version. Released versions are tested more thoroughly, while nightly builds have the most recent
fixes and features.

When using the JavaScript console, unless you use a breakpoint, you will be in the wrong context to execute
commands to inspect the state of Enyo. Both Chrome and Safari support selecting the context through a drop-
down list.

www.it-ebooks.info

http://www.it-ebooks.info/

Going Global

Now that you’ve produced a beautiful (and bug-free) app, you’ll want to share it with the
world. Enyo provides a wrapper for the open source internationalization library iLib. This
library provides facilities for substituting translated strings as well as formatting names,
dates, and other data based upon a user’s locale. The name of the enyo wrapper is enyo-
ilib.

The library will attempt to figure out the locale based on cues from the browser. The
current locale can be retrieved by calling i1ib.getLocale(). In cases where the locale
can’t be determined, you can explicitly create a locale by calling new ilib.LocaleInfo()
with the desired locale.

WARNING

The enyo-ilib library is not included if you are using a standard (non-Moonstone) Bootplate-based setup (see
Appendix A). To enable the library in a Bootplate setup, execute the command: git submodule add
https://github.com/enyojs/enyo-ilib.git lib/enyo-ilib and then add the library to your package.js with
the line ‘$1ib/enyo-ilib’.

Globalization Basics

In its most basic form, iLib handles string substitutions. Substitutions are performed using
the $L() global function. At run time, the $L () function searches for an appropriate
translation file for the user’s locale (or the locale you set manually) and then attempts to
locate the string that was passed in as the first argument. If a match is found, the translated
string is used. If not, the original string is used.

Translation files should be placed in the resources directory of your app. Each locale
translation should be in its own JSON file. Translation files are named strings.json and are
stored in directories named after the language and optional subdirectories for the country
code and variant. For example, a Canadian English translation file would be found in
resources/en/CA/strings.json. Such a file might look like this:

{
}

“Click”: “Click, eh?”

Names, Dates, and Measures

App developers can add some extra polish to their apps by correctly formatting
information for the user’s region. The iLib library includes the ability to format names,
phone numbers, dates, times, and more. For more information on the options supported by
these formatters, please refer to the localization documentation page. The following
example shows some of the basic routines for formatting these items:

enyo.kind({

name: ‘ILibSample’,

components: [
{ name: ‘date’ },
{ name: ‘number’ }

1,

create: function() {
this.inherited(arguments);
var dateFmt = new ilib.DateFmt({ length: ‘short’ });
this.$.date.set(‘content’, dateFmt.format(new Date()));
var numFmt = new 1ilib.NumFmt({maxFractionDigits: 1});
this.$.number.set(‘content’, numFmt.format(‘86753.09"));

www.it-ebooks.info

http://sourceforge.net/projects/i18nlib/
http://enyojs.com/docs/building-apps/localization.html
http://www.it-ebooks.info/

3)i
TIP
Try it out: jsFiddle.

Two Onyx components are locale-aware: DatePicker and TimePicker. If enyo-ilib is
loaded, they will use the current locale to format their contents. If the library isn’t loaded,
then they will default to the US format. All of the number and date components in
Moonstone are locale-aware.

There is a lot more power in iLib. You can find out more at the Enyo localization
documentation page and the iL.ib documentation page.

www.it-ebooks.info

http://jsfiddle.net/gh/get/enyo/2.5.1/dependencies/iLib/Enyo-UpAndRunning/jsFiddle/tree/master/iLib
http://enyojs.com/docs/building-apps/localization.html
http://docs.jedlsoft.com/ilib/jsdoc/
http://www.it-ebooks.info/

Summary

You’ve now picked up some more tools for creating beautiful and functional Enyo apps
and you know what to do when things go wrong. If you get stuck, there are many good
resources available to you, including the Enyo forums and the Enyo IRC channel.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7. Deploying

So now you’re a budding Enyo developer looking to deploy your app to all the supported
platforms. The only question you have is: how? In this chapter we’ll explore the tools and
techniques you’ll need to structure your apps and deploy them to various targets. At this
point, we’ll need to set up a “real” development environment, since we can’t deploy apps
by directing users to a page on jsFiddle.

For this chapter you should follow the Bootplate environment setup guide in Appendix A.
Bootplate is a ready-to-use template that includes tools for easy deployment. Even if you
ultimately choose a different structure for your app, you may still be able to apply some of
these tools.

www.it-ebooks.info

http://www.it-ebooks.info/

Bootplate App Structure

It’s worth taking a few moments to discuss how an Enyo Bootplate app is structured. Until
now, all of our samples have been run on jsFiddle and have consisted of, at most, three
files. We haven’t had to concern ourselves with where the Enyo framework files are
coming from or how to add assets. Here’s the Bootplate directory structure:

debug.html

index.html

assets/

build/

deploy/

enyo/

1ib/

source/

tools/
There are some additional files included but these are the most important. debug.html is
the file to load during debugging. It includes non-minified versions of Enyo and the
libraries. index.html will load a deployed version of the app that has been minified
(compressed). If a non-minified build of the application is not available, index.html will
redirect to debug.html. The assets directory is a place to store images, fonts and other
assets your app requires. The build directory contains the minified source of your app,
including Enyo and the libraries. These files are loaded by index.html. The deploy
directory contains a ready-to-deploy version of your application. These directories (deploy
and build) are generated by the deployment scripts located in the tools directory. The enyo
directory contains the framework source for Enyo, while the lib directory contains the

various Enyo libraries needed for the app

The most interesting directory is the source directory. Within it will live the files you
create to breathe life into your app. The source directory structure looks like this:

app.js
package.js
data/
data.js
package.js
style/
main.less
package.js
Theme.less
views/
package.js
views.js
app.js contains the source for the Application object that forms the base of the app. This
file can be used to set the initial view and instantiate any global models. package.js is part
of a system that tells Enyo what source and stylesheets to load. Inside package.js is a call
to enyo.depends (). Each line in the call adds either a file or directory to the app. Each
directory specified should have its own package.js. This system makes it so that reusable
components can be easily added to a project simply by adding the directory and including

it in package.js.

The data directory is useful for defining models and collections needed by the app. The
style directory contains main.less, which is where the app’s CSS is specified. The
Theme.less file allows for overriding the UI library’s styles and is discussed in Chapter 6.

views contains source for the Ul of your application. This is where you will define the

www.it-ebooks.info

http://www.it-ebooks.info/

controls and components that make up your application. A simple app may only need to
modify views.js, while a more complex app will have many files or directories.

Don’t be too constrained by the directories Enyo provides. Feel free to add more; just be
sure to modify package.js to include all of your files and directories.

www.it-ebooks.info

http://www.it-ebooks.info/

Web Targets

One of the simplest ways to deploy Enyo is to host it on a server and serve the apps
embedded into a web page. Although all our examples have shown rendering Enyo objects
into the document body;, it is possible to render them into any element on the page (by
setting the renderTarget property of the Application kind to the id of the element). For
web deployment, simply copy the Enyo library and app source code up to a directory on
your server and include them in your HTML source.

Bootplate makes this process easy by including a Grunt deploy task. For more on using
Grunt with Bootplate see Using Grunt. If you are not using Grunt, Bootplate includes a
deploy script that packages all the files and minimizes the source. For Windows, this script
is called deploy.bat; for Mac and Linux, it’s called deploy.sh.

Deploying speeds up loading and combines everything into the deploy directory. Once
deployed, simply transfer the files from the deploy directory to your destination (e.g., a
web host). Keep in mind, though, that deployed, minified code is much tougher to debug
than unminified code.

www.it-ebooks.info

http://gruntjs.com
http://www.it-ebooks.info/

Desktop Targets

JavaScript apps might not seem like the best choice when targeting the desktop; however,
many of the features that make it great for creating Web apps also make it good for
creating desktop apps. Particularly with Node.js for communicating with the system, a
browser engine for displaying a user interface, and, of course, Enyo to simplify writing the
app, you can quickly bring up a cross-platform desktop app without having to learn the
nuances of each platform.

Two projects have brought together the Chromium browser with Node.js: Atom Shell and
node-webkit. To demonstrate how a desktop JavaScript app looks, we’ll use Atom Shell
along with the default Bootplate app. First, download the appropriate version of Atom
Shell for your system from the releases page and unzip it to a directory on your computer.

Create a new directory to house the Atom Shell project. Copy the sample package.json
and main.js files from the Atom Shell quick-start guide into the directory. You can modify
either file to your liking.

Next, execute the deploy script of a Bootplate project to create the minified project files.
Copy the files from the deploy directory into your Atom Shell project directory. You can
now test the app by executing the Atom Shell binary (follow the directions in the quick-
start guide). To create a distributable app, follow the directions in the application

distribution guide.

www.it-ebooks.info

https://github.com/atom/atom-shell
https://github.com/rogerwang/node-webkit
https://github.com/atom/atom-shell/releases
https://github.com/atom/atom-shell/blob/master/docs/tutorial/quick-start.md
https://github.com/atom/atom-shell/blob/master/docs/tutorial/application-distribution.md
http://www.it-ebooks.info/

Enyo Bootplate App

Hello World

Tap me

A completed project directory is available on GitHub.

www.it-ebooks.info

https://github.com/Enyo-UpAndRunning/atom-shell-sample
http://www.it-ebooks.info/

Smart Devices

One of the most interesting places for apps these days is on smartphones, tablets, smart
TVs and other such devices. Enyo is perfectly suited to this environment. Enyo itself
doesn’t provide any kinds that give direct access to the hardware components of these
devices, and not all device features have an HTML-standard method for access. However,
Cordova, an Apache open source project, handles direct access to these features on many
devices and provides a method for creating natively installable apps.

Enyo supports Cordova events natively and has a library called enyo-cordova available on
GitHub. For more information on Cordova support with Enyo, please see Making Use of
Cordova’s Native Functions.

There are two ways to create apps using Cordova: by using the online PhoneGap Build
tool or by downloading the Cordova library. We’ll look briefly at both options.

PhoneGap Build

One of the simplest ways to get started with deploying mobile apps is to use Adobe
PhoneGap Build. PhoneGap Build is a web-based tool for packaging cross-platform
JavaScript apps. Among other things, it allows you to create installable apps for multiple
targets quickly and easily.

PhoneGap requires that its JavaScript library be loaded in index.html. To do this, add the
PhoneGap script tag just before the line that loads the Enyo source, as follows:

<l—- js —>
<script src=“phonegap.js”></script>
<script src="build/enyo.js” charset=“utf-8"></script>

After registering for a PhoneGap build account, you can pull projects directly from
GitHub or, for private (as opposed to public, open source) projects, upload a .zip file. It is
very easy to zip the contents of the deploy directory and upload it to PhoneGap Build. For
some platforms, you will need to supply developer credentials before you have an
installable app. Additionally, you’ll want to set up app icons and other metadata needed by
the various mobile stores.

If you want to test PhoneGap build, use the following repository link to create a test
package: https://github.com/Enyo-UpAndRunning/phonegap-build-sample.git.

If you use Bootplate and a GitHub-based PhoneGap build, you will either need to have a

separate repository for the deployed files (as in the preceding sample) or you will need to
commit your deployed source along with your app and use a .pgbomit file to omit all the

unminified source from being included in your final application.

Local Cordova Builds

PhoneGap Build is easy to use but it doesn’t give you a lot of flexibility. Installing
Cordova locally gives you much finer-grained control, as well as access to the build tools
available on your platform of choice. In general, you will want to start with a shell app
appropriate for the platform you wish to deploy on and then copy the deploy files to the
www directory. Be careful to ensure that you load cordova.js, or your app may not work

www.it-ebooks.info

https://github.com/enyojs/enyo-cordova
http://enyojs.com/docs/latest/deploying-apps/cordova-native-functions.html
https://build.phonegap.com/
https://github.com/Enyo-UpAndRunning/phonegap-build-sample.git
http://www.it-ebooks.info/

correctly.

The Enyo Yeoman generator includes an option to create a full Cordova project, including
the Cordova command-line tools. To create a new Cordova project, use the following
command:

yo enyo —cordova myProject

For more information on getting started with Cordova, visit the Cordova site.

www.it-ebooks.info

http://cordova.apache.org/
http://www.it-ebooks.info/

webOS Smart TVs

LG has made it easy to deploy Enyo applications to webOS Smart TVs. Included in the
SDK (see Appendix A) are command-line tools for creating, packaging, testing, and
deploying apps. The ares-package command uses the Bootplate deploy script to minify
an app and then it creates a deployable package. The following command packages the
app in the current directory:

ares-package .

To install the app to the emulator or a TV, use the ares-install tool. To deploy a sample
app created by the ares-generate tool to the emulator, issue the following command:

ares-install —device emulator com.example.sample_0.0.1_all.ipk

For more information about developing for webOS TVs, visit the webOS TV for
developers site.

www.it-ebooks.info

http://developer.lge.com/webOSTV/
http://www.it-ebooks.info/

Summary

You should now be familiar with some of the ways to package and deploy Enyo apps.
Using this knowledge, you can deploy your apps on various platforms and know that your

apps will work.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8. Conclusion

By now you should be up and running with Enyo. You’ve seen the major features and
dabbled with many of the minor ones. Enyo, while remaining small, fast, and focused, has
a lot of power and there is still more to learn. I encourage you to go out and interact with
the Enyo community through the Enyo forums and the #enyojs freenode.net IRC channel
(irc://chat.freenode.net/enyojs). You’ll find me there under the handle Roy__.

Enyo is an active project and there are always new features and updates being worked on.
Follow Enyo on Twitter and read the official Enyo blog for the latest news and events.

Finally, I encourage you to share your thoughts on this book with me. I intend for this
book to also be an active project that attempts to keep pace with the changes to Enyo.
Keep up with the latest updates, errata, and more at this book’s O’Reilly page.

Now, get out there and start using Enyo. Who knows? Your boss may come to your desk
and ask you to produce a fantastic cross-platform app...

www.it-ebooks.info

http://forums.enyojs.com/
http://twitter.com/EnyoJS
http://blog.enyojs.com/
http://oreil.ly/enyo-upandrunning
http://www.it-ebooks.info/

Appendix A. Setting Up a Development
Environment

At some point, you’ll need to set up a copy of Enyo on your local computer or a server, if
only to package up the applications you’ve developed. We’ll cover a few methods of
setting up Enyo and discuss the prerequisites for each.

www.it-ebooks.info

http://www.it-ebooks.info/

Prerequisites

Two basic tools are used by Enyo, which you may need to install: Node.js and Git. Let’s
look at why they are needed and where to get them.

Node.js

Node.js is a platform for running JavaScript outside of a browser. It allows JavaScript to
be used as a general purpose scripting language. Node is available for Windows, Linux,
and Mac OS X. Visit the Node.js download page to download the appropriate version of
Node for your system.

TO NODE OR NOT TO NODE

There are several features of Enyo that rely upon Node.js. In Enyo, Node is used for minimizing Enyo source,
packaging apps derived from Bootplate, and compiling Less files into CSS. It is also a requirement for the Enyo
Yeoman generator. If you plan to release an Enyo app, you will need to install Node. If you just want to play
around with Enyo and you don’t mind running the non-minimized, debug version of Enyo, you don’t need Node.

Git
Git is a distributed source-code management tool. It allows software developers to keep
versioned copies of their source code. It is also the tool the Enyo team uses for Enyo

development and the tool required to work with GitHub, an online source code repository
that hosts the Enyo source.

Git is not required to use the basic parts of Enyo. You’ll want to install Git if any of the
following is true:

1. You want to keep up with the latest developments with Enyo.

You want to contribute to Enyo.

3. You want to use a system that makes it easy to keep past versions of your source
code.

N

GitHub has instructions for setting up Git. The basic installation installs a command-line
client. There are also GUI clients available for all the major platforms.

www.it-ebooks.info

http://nodejs.org/
http://nodejs.org/download/
http://git-scm.com/
https://github.com/
https://help.github.com/articles/set-up-git
http://www.it-ebooks.info/

Installing Enyo

There are two general methods for installing Enyo, and one method specific to developing
webOS Smart TV apps. The easiest way to make Enyo apps is to start with Bootplate.
Bootplate includes all the scaffolding you’ll need to debug and deploy an app. We’ll cover
Bootplate and the other methods for installing Enyo.

Bootplate

Bootplate is a scaffold upon which to build an Enyo app. It includes tools that allow you
to easily debug your app in a browser and then deploy a minified version of Enyo with
your app. It also provides an easy-to-use structure for your app. There are two versions of
Bootplate available: Onyx Bootplate (for mobile and desktop apps) and Moonstone
Bootplate (for smart TV apps).

There are three ways to install Bootplate: use the Yeoman generator, download a zipped
archive from the Enyo site, or clone the archive from GitHub.

The simplest method is to download the zip archive from the Get Enyo page. As of this
writing, the latest version is 2.5.1. After downloading, simply unzip the archive.

The next easiest method is to use the Enyo Yeoman generator. After installing Node on
your computer, install the generator using the following command:

npm install -g generator-enyo
Once installed, a new bootplate can be generated by executing the following command:
yo enyo MyProject

In this command, MyProject is a directory name. This method will create an Onyx
Bootplate. To create a Moonstone Bootplate, use the following:

yo enyo -m=moonstone

For more information on the generator and its options, see the Bootplate guide.

The last method is cloning Bootplate from GitHub. Use the following command to
download the Onyx Bootplate:

git clone —recursive https://github.com/enyojs/bootplate.git

To clone Moonstone Bootplate from GitHub:

git clone —recursive https://github.com/enyojs/bootplate-moonstone.git
Full Source

You can also download the full source-code tree for Enyo from GitHub. To set up Enyo,
you will need to clone the Enyo repository and then create a lib directory within the
directory that contains the cloned repo. Inside the Ilib directory, clone the Enyo libraries
you need for your application. The following diagram shows the directory structure and
the Git repos:

enyo/ git@github.com:enyojs/enyo.git
1ib/ (mkdir the 1ib folder)
onyx/ git@github.com:enyojs/onyx.git

layout/ git@github.com:enyojs/layout.git

www.it-ebooks.info

http://enyojs.com/get-enyo/
http://yeoman.io
http://enyojs.com/docs/latest/developer-guide/getting-started/bootplate.html
http://www.it-ebooks.info/

Using the webOS Developer Tools

Enyo is the primary method for developing smart TV applications for LG webOS Smart
TVs. To make it easier for developers to get started, LG has prepared a Software
Development Toolkit (SDK). This SDK includes a TV Emulator and command-line tools.
One of the command-line tools, ares-generate, can be used to generate app templates
based on the Moonstone version of Bootplate. To create a new application template in the
directory sampleProj, issue the following command:

ares-generate sampleProj

To see the list of available templates, use:

ares-generate -1
Other command-line tools are discussed in webOS Smart TVs.

TIP

The version of Enyo that is included with the SDK may not be the latest. You can use more recent versions of
Enyo with the TV and the SDK. Use one of the other methods to install Enyo and add any needed files to the
project.

www.it-ebooks.info

http://developer.lge.com/webOSTV/sdk/web-sdk/
http://www.it-ebooks.info/

Using Bootplate

Bootplate gives you a head start in creating your app by providing a ready-to-use structure
for your app. Among other things, it provides a source directory that contains your app’s
controller (app.js), a views directory that contains your views, and a style directory to
house CSS. You can modify the included package.js to add additional source files and
directories.

Bootplate provides scripts to create a ready-to-deploy version of your app, including a
minified version of Enyo. For general testing, you will load debug.html into your browser.
When you have created a production version, you can load it by opening index.html. To
produce a deployable production version of your app, issue the following command:

tools/deploy.sh (tools\deploy.bat on Windows)

When all the source has been combined and minified, it will be placed into the deploy
directory. The contents of that directory can be copied up to a web server or packaged with
one of the various packaging tools. For more about the layout of Bootplate, see Bootplate

App Structure.

WARNING

When testing Enyo apps by loading a file directly into the browser (as opposed to serving it from a web server),
you can run into security restrictions in the browser, particularly when attempting to perform requests to load
resources. Some browsers allow you to override those security restrictions. For best results, test your app by
serving it with a web browser (such as Apache) or using the node-based server included with Bootplate (see Using
Grunt).

Using Grunt

Bootplate includes an easy-to-use script for deploying Enyo apps. This script uses Grunt
(a node package) to execute tasks. If you have installed Enyo using the Yeoman generator,
Grunt is set up and ready to use. If not, you will need to initialize the dependencies and
install the Grunt command-line tool. Execute the following commands from the Bootplate
directory to initialize Grunt:

npm install -g grunt-cli
npm install

Once initialized, a minified version of the app can be created by issuing the command:

grunt

The script (Gruntfile.js) also includes tasks to start a simple HTTP server, check the app
source for warnings using JSHint, and remove deployed files. The commands, in order,

dre:
grunt serve

grunt jshint
grunt clean

www.it-ebooks.info

http://gruntjs.com/
http://jshint.com/
http://www.it-ebooks.info/

About the Author

Roy Sutton is a member of the HP webOS Developer Relations team and a contributor to
the Enyo project. He has been a mobile developer for longer than the term has existed.

www.it-ebooks.info

http://www.it-ebooks.info/

Colophon

The animal on the cover of Enyo: Up and Running is the rustic sphinx moth (Manduca
rustica).

The cover image is from Dover Pictorial Archive. The cover font is Adobe ITC
Garamond. The text font is Adobe Minion Pro; the heading font is Adobe Myriad
Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

www.it-ebooks.info

http://www.it-ebooks.info/

Enyo: Up and Running
Roy Sutton

Editor
Meg Foley

Revision History
2015-01-08 First release

Copyright © 2015

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available
for most titles (http://safaribooksonline.com). For more information, contact our corporate/institutional sales department:
800-998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O’Reilly Media,
Inc. Enyo: Up and Running, the image of the rustic sphinx moth, and related trade dress are trademarks of O’Reilly
Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trademark claim, the
designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume no responsibility
for errors or omissions, or for damages resulting from the use of the information contained herein.

O’Reilly Media

1005 Gravenstein Highway North
Sebastopol, CA 95472
2015-01-08T07:42:42-08:00

www.it-ebooks.info

http://safaribooksonline.com
mailto:corporate@oreilly.com
http://www.it-ebooks.info/

Enyo: Up and Running
Table of Contents

Preface

Where Did Enyo Come From?
Core Beliefs

What’s Enyo Good For?

Who Is This Book For?

Minimum Requirements
Typographic Conventions

Using Code Examples
Safari® Books Online

How to Contact Us

Acknowledgments
Content Updates
January 8, 2015

1. Light It Up

A New Project

Improvements
Curveball

QA on the Line
The E-mail
Summary

2. Core Concepts
Introduction

Kinds

Be Kind

Encapsulation

Properties

Basic Properties

Bindings and Observers

Events

Advanced Events

Final Thoughts on Encapsulation
Inheritance

Advanced Kinds

Instance Constructors

Statics

Summary

3. Components, Controls, and Other Objects
Components

www.it-ebooks.info

http://www.it-ebooks.info/

Composition
Component Methods

Dynamic Components
Controls

Core Controls
Onyx Controls
Moonstone Controls

Methods and Properties
Other Important Objects

Application
Router

Animator

Ajax and JsonpRequest
Community Gallery
Summary

4. Layout

Responsive Design
Core Layout Features
Scrollers

Repeaters

Layout Library Features
Fittable

Lists

Panels

Summary

5. Writing Data-Driven Applications
Models

Collections

Computed Properties

Data-Aware Components

Fetching Remote Data

Putting It All Together

Summary
6. Fit and Finish

Styling

Styles and Classes
Overriding Onyx Styles
Less Is More
Performance Tuning
Debugging

Layout Issues

www.it-ebooks.info

http://www.it-ebooks.info/

Code Issues

Going Global

Globalization Basics

Names, Dates, and Measures

Summary

7. Deploying

Bootplate App Structure
Web Targets

Desktop Targets

Smart Devices
PhoneGap Build

Local Cordova Builds
webOS Smart TVs
Summary

8. Conclusion

A. Setting Up a Development Environment
Prerequisites

Node.js

Git

Installing Enyo
Bootplate

Full Source

Using the webOS Developer Tools
Using Bootplate

Using Grunt

About the Author
Colophon

Copyright

www.it-ebooks.info

http://www.it-ebooks.info/

	Preface
	Where Did Enyo Come From?
	Core Beliefs
	What’s Enyo Good For?
	Who Is This Book For?
	Minimum Requirements
	Typographic Conventions
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments
	Content Updates
	January 8, 2015
	1. Light It Up
	A New Project
	Improvements
	Curveball
	QA on the Line
	The E-mail
	Summary
	2. Core Concepts
	Introduction
	Kinds
	Be Kind
	Encapsulation
	Properties
	Basic Properties
	Bindings and Observers
	Events
	Advanced Events
	Final Thoughts on Encapsulation
	Inheritance
	Advanced Kinds
	Instance Constructors
	Statics
	Summary
	3. Components, Controls, and Other Objects
	Components
	Composition
	Component Methods
	Dynamic Components
	Controls
	Core Controls
	Onyx Controls
	Moonstone Controls
	Methods and Properties
	Other Important Objects
	Application
	Router
	Animator
	Ajax and JsonpRequest
	Community Gallery
	Summary
	4. Layout
	Responsive Design
	Core Layout Features
	Scrollers
	Repeaters
	Layout Library Features
	Fittable
	Lists
	Panels
	Summary
	5. Writing Data-Driven Applications
	Models
	Collections
	Computed Properties
	Data-Aware Components
	Fetching Remote Data
	Putting It All Together
	Summary
	6. Fit and Finish
	Styling
	Styles and Classes
	Overriding Onyx Styles
	Less Is More
	Performance Tuning
	Debugging
	Layout Issues
	Code Issues
	Going Global
	Globalization Basics
	Names, Dates, and Measures
	Summary
	7. Deploying
	Bootplate App Structure
	Web Targets
	Desktop Targets
	Smart Devices
	PhoneGap Build
	Local Cordova Builds
	webOS Smart TVs
	Summary
	8. Conclusion
	A. Setting Up a Development Environment
	Prerequisites
	Node.js
	Git
	Installing Enyo
	Bootplate
	Full Source
	Using the webOS Developer Tools
	Using Bootplate
	Using Grunt
	About the Author
	Colophon
	Copyright

