O'REILLY"

eI et
l(\u ;‘“&.x\“
‘{\ 5 “‘{ét{c“s&{f‘

0%
cek [3
A

Performance
Responswe
Design

BUILDING FASTER SITES ACROSS DEVICES

Tom Barker

www.it-ebooks.info

http://www.it-ebooks.info/

O'REILLY"

High Performance Responsive Design

Yes, you can use responsive web design to create high
performance, compelling websites. With this practical
book, author Tom Barker demonstrates that responsive
design is not just a frontend-only approach, but also
a philosophy for taking advantage of the entire web
stack. Responsive design patterns and anti-patterns,
derived from heavily used real-world sites, are guiding
principles throughout the book.

Ideal for frontend-focused web developers, this book
shows you how to incorporate responsiveness and
performance into your project plan, use Node js for
device-specific functionality on the backend, and
write automated tests for a continuous integration
environment. You'll explore many useful tools and
responsive frameworks, and gain useful insights from
Barker's own experience with responsive design along
the way.

m Get a primer on web performance concepts,
web runtime performance, and performance
tracking tools

Write functionality with Node.js that serves
up a device-specific experience to the client

Explore client-side solutions, such as lazy
loading entire sections of a page—including

images, styling, and content

Validate service level agreements (SLAs) by
writing automated tests with PhantomJS

Examine several responsive frameworks,
including the author's server-side framework,
Ripple

Tom Barker, a software engi-
neer, engineering manager, and
solutions architect, is Director

of Software Engineering and
Development at Comcast, and an
adjunct professor at Philadelphia
University.

DESIGN/WEB DESIGN

us

ISBN:

$34.99 CAN $36.99
978-1-491-94998-6

94998

781491
www.it-ebooks.info

]

Twitter: @oreillymedia
facebook.com/oreilly

http://www.it-ebooks.info/

High Performance
Responsive Design

Building Faster Sites Across Devices

Tom Barker

(ONS{]|MAAN Beijing - Cambridge - Farnham - Koln - Sebastopol « Tokyo

www.it-ebooks.info

http://www.it-ebooks.info/

High Performance Responsive Design
by Tom Barker

Copyright © 2015 Tom Barker. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online
editions are also available for most titles (http://safaribooksonline.com). For more information,
contact our corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editors: Mary Treseler and Nick Lombardi Cover Designer: Eleanor Volkhausen
Production Editor: Melanie Yarbrough Interior Designers: Ron Bilodeau and
Copyeditor: Octal Publishing Services Monica Kamsvaag

Proofreader: Jasmine Kwityn lllustrators: Rebecca Demarest
Indexer: Deadline Driven Publishing Compositor: Melanie Yarbrough

November 2014: First Edition.

Revision History for the First Edition:

2014-11-04 First release

See http://oreilly.com/catalog/errata.csp?isbn=0636920033103 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. High Performance
Responsive Design and related trade dress are trademarks of O'Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and O’Reilly Media, Inc.,
was aware of a trademark claim, the designations have been printed in caps or initial caps.

Although the publisher and author have used reasonable care in preparing this book, the
information it contains is distributed “as is” and without warranties of any kind. This book
is not intended as legal or financial advice, and not all of the recommendations may be
suitable for your situation. Professional legal and financial advisors should be consulted,

as needed. Neither the publisher nor the author shall be liable for any costs, expenses, or
damages resulting from use of or reliance on the information contained in this book.

978-1-491-94998-6
(TT]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

| contents |

Preface v
State of the Industry of Responsive Design............. 1
The Problem with Responsive Design.................. 1
SUMMATY ...t 20
Primer on Performance of Web Applications. 21
The Basics of Measuring Performance................ 21
Tools to Track Web Performance 30
Web Runtime Performance............................ 40
SUMMATY ... 48
StartwithaPlan...................................... 49
A Journey Down the Slippery Slope................... 49
Project Plans. ... 50
SUMMATY ...t 61
TheBackend...................................... 63
The Web Stack. ... 63
Web Application Stack.....................LL 69
Responding on the Server Side........................ 70
Implications of Cache 83
Edge Side Includes ..., 84
SUMMATY 86
TheFrontend 87
Working with Images.......................L. 87
Lazy Loading ..., 95
SUMMATY. ... 105

iii

www.it-ebooks.info

http://www.it-ebooks.info/

iv

Chapter 6

Chapter 7

CONTENTS

Continuous Web Performance Testing 107

Maintaining a Steady Course......................... 107
Automating Responsive Web Performance Testing ..108
Continuous Integration............................... 116
SUMMATY ..ot 128
Frameworks ... 129
Looking at the State of Responsive Frameworks. 129
Twitter Bootstrap ... 131
ZURB Foundation..............coooiiiiiiiiiiinnn. 135
Skeleton ... 139
Semantic UL.... 143
A Comparison of Frontend Frameworks 148
RIpple. .. o 150
SUIMMATY . .ot 152
IAex. ... 153

www.it-ebooks.info

http://www.it-ebooks.info/

| Preface]

EVEN THOUGH RESPONSIVE DESIGN IS A FAIRLY UBIQUITOUS TERM AT
THIS POINT, it is still considered mainly a frontend concern. In the
minds of most developers, responsive design is also tightly coupled
with media queries. With this book, however, I propose that respon-
sive design is more of a philosophy rather than a technology: an ideal
that can be approached from many different angles, from the tradi-
tional frontend-only approach, but also that there is enough informa-
tion passed to the web server in each HTTP request to be responsive on
the backend. And, in some cases, it is a better performing solution to
push our responsiveness to the backend.

I originally intended to write this book because although I was see-
ing designers and engineers around me running with the ideas of pro-
ducing responsive websites, I also saw business and product owners
souring from the idea because they were keenly aware of the web per-
formance costs even when we weren't always. By focusing only on the
responsiveness of the client side and not looking for more performant
options, we were slowly disillusioning our stakeholders on the benefits
of responsiveness, and even our own effectiveness.

As T got under way with this book, it began to take on a life of its own.
After we are paying attention to the performance of our responsive
websites, how do we plan for that in our grooming sessions? If we are
creating service-level agreements (SLAs) for the performance of our
pages, how do we test that performance during development, in a con-
tinual integration environment?

I look to answer each of those questions in this book.

www.it-ebooks.info

http://www.it-ebooks.info/

INTENDED AUDIENCE

I wrote this book specifically with web developers in mind, specifically
frontend-focused web developers who might not have ventured onto
the backend yet. It’s for this reason why I didn’t rehash all of the exist-
ing frontend performance best practices for CSS that you can find any-
where else. That is also the reason I kept JavaScript as the primary lan-
guage used in the book, especially Node]S for all of the backend code
samples.

With that said, there are enough introductory materials and explana-
tory notes that designers, technology leaders, and developers of every
experience level and specialization should be able to benefit from the
information within this book.

CHAPTER DESCRIPTIONS

In Chapter 1, I use the top 50 most trafficked sites as a sample dataset
to derive common design patterns and anti-patterns in use for respon-
sive design. These patterns and anti-patterns will be guiding principles
for us throughout the book. We also look at the idea of mdot sites, and
discuss their pros and cons.

Chapter 2 presents a primer on web performance concepts, web
runtime performance, as well as tools to track performance. This is
intended as an introduction if you aren’t already familiar with web per-
formance concepts. It’s also a good refresher on concepts that aren’t
talked about as frequently, such as memory consumption on the client
side.

Chapter 3 explores incorporating responsiveness, specifically an SLA
for specifying performance of our responsive websites, into the plan-
ning and grooming phases of our projects.

Chapter 4 looks at implementing performance-responsive concepts
to the backend. We use NodeJS to write functionality that serves up
a device-specific experience to the client. We also look at using third-
party device libraries to give greater context of client capabilities rather
than just examining the User Agent string and deriving device capa-
bilities ourselves.

In Chapter 5, we look at frontend solutions to implement the perfor-
mance design patterns that we identified in Chapter 1. We look at the
picture element, and the secret attribute to only load device-specific

vi PREFACE
www.it-ebooks.info

http://www.it-ebooks.info/

images. We also look at the concept of lazy loading both images and
whole chunks of a page based on client capabilities. Finally, we explore
client-side device library APIs to determine form factor.

Chapter 6 uses Phantom]S to write automated tests to validate our per-
formance SLAs and integrate these tests into a Jenkins continuous
integration environment.

We close out the book with Chapter 7, in which we look at and evaluate
the current frameworks available to build responsive web pages, using
such criteria as how easy they are to use, what patterns and anti-pat-
terns they use, what dependencies they have, and how much they add
to the overall page payload. We also walk through Ripple, the serv-
er-side boilerplate framework that I open sourced based on the code
examples from Chapter 4.

NOTES

When writing any technology book, the pace of technology will always
be faster than the pace at which we can write, edit, and publish to
scale—though I have to say that O'Reilly does a great job of getting
the content of their books in reader’s hands as quickly as possible with
their Early Access program. That said, the case study of the Alexa top
50 sites in the United States presented in Chapter 1 was conducted back
in December of 2013, and since then, there are new sites in the Alexa
list, the remaining sites have updated their pages, and several browser
iterations with updated handling of resource loading and preloading
have come out. The same is true for any proposed standards that I
talk about; by the time you read this, they might have been updated or
altered before being finalized.

That progress occurs is an inevitability; however, the ideas and con-
cepts behind the tactical implementations are what are most important.

ACKNOWLEDGMENTS

I want to thank my beautiful wife, Lynn, for her patience with me as I
spent the majority of a year writing this book at night and over week-
ends. The same goes for my children—I tried to only write late at night
when they were asleep, but I wasn’t always successful with that, and so
I appreciate their patience and understanding.

PREFACE vii
www.it-ebooks.info

http://www.it-ebooks.info/

I want to thank Mary Treseler for giving the book a chance and for
her feedback. I want to express my gratitude to Colleen Lobner, Nick
Lombardi, Melanie Yarbrough, and Dianne Russell for help getting it
over the finish line. I also want to thank Ilya Grigorik, Lara Swanson,
Clarissa Peterson, and Jason Pamental; their feedback was vital to the
completion of the book.

viii PREFACE
www.it-ebooks.info

http://www.it-ebooks.info/

[1]

State of the Industry of
Responsive Design

The Problem with Responsive Design

I WAS SITTING IN A ROADMAP PLANNING SESSION WITH ONE OF MY
TEAMS AND OUR PRODUCT PERSON, and we were discussing a redesign
of our video section when my team lead started talking about how we
were planning to make the video experience for our website respon-
sive. We described having one page that would load our default HTML5
video player but would resize and load assets and playlists of different
video types depending on what devices our users used to view the page.
It was going to be beautiful, all encompassing, and open our video
viewership up to a range of devices that had previously been locked out
of the video experience that we offered.

Our product owner wrinkled her nose and said, “Well about that, we
have somewhat of a bad taste about the idea of responsiveness after how
the responsive home page turned out.”

That took me by surprise. What was wrong with our responsive home
page? I started doing some research.

The impression from the product team was that it was heavy and slow
to load. When it was demonstrated for them on developer laptops, it
looked great, but when they tried to show it on actual devices for their
executives, it took a long time to load—too long.

www.it-ebooks.info

http://www.it-ebooks.info/

I took a look at waterfall charts' for both the desktop and the smart-
phone rendering of the home page. What I saw was something that in
time I began noticing in a lot of other websites when I became aware
of what to look for.

The smartphone rendering loaded all of the same assets as the desk-
top version, plus an additional CSS and sprite file. Figure 1-1 illustrates
that this made the payload of the smartphone rendering slightly larger
than the desktop version (1.2 MB versus 952 KB), and it added two addi-
tional HTTP requests.

® 0 Vv = Preserve log

Name Status Size Time
Path Method | 1o Type Initiater Content | Latency | Timeline 25005 30005 40005
[on p— wano| o sems
’_l opng oo 200 . lauervminis2 73KB 6lms
) por-chr.ci oK Image/. geripe 71KB 57ms |
| sertevz... o 304 . lauervmins2 2038 109ms |
calendar.c Not Modifi ™%/ seript 9.4k8| 108ms
’l uibg h.. | 200 . lauervminsa 3978 45ms i
L static-cale oK Imagel- coripe 908 44ms 9
Thsel o 200 st/ oaders25 258KB 148ms |
2= swhmixpo oK EXtHR- | Seripe 258KB 19ms 1
= 300x25 200 . hspissa 22.4K8 33ms
!l swi.mixpo feck oK Image/)... | o rine 22.1k8 28ms ¢
@il ss07a6.. | 304 . home 23128 08 39ms _
43 pormimg.c Not Modif. "9/ geripy 35.7k8| 39ms .
ﬂil sss6el. 304 . home 231528 08 107ms
image @
&= por-img.c Not Modifi " 9% script 34.0KB 106ms
Fl seffove.. | 304 . home z3js28 08 s2ms
& por-ima.c Not Modifi ™94 script 17.2k8| 52ms “
’l asrsta. | 304 . home z3js28 0B 4lms)
image @®
2 por-img.c Not Modifi ™% script 756KB 40ms

134 requests | 1.2 MB transferred | 40.96 s (load: 2.64 5, DOMContentloaded: 804 ms)

FIGURE 1-1
A waterfall chart of the home page, rendered for smartphone

Notice in Figure 1-1 that the total payload transferred is 1.2 MB from
134 HTTP requests. But this is the smartphone version; it should be a
smaller payload. And yet it’s not, as illustrated in Figure 1-2.

Observe how the total payload for the desktop is 952 KB from 132 HTTP
requests. Clearly the smartphone version is loading all of the same con-
tent as the desktop version, plus an additional two files. It goes with-
out saying that this is not responsive to the bandwidth concerns of the
mobile experience.

This is completely contrary to our intention in creating a mobile page.

1 Waterfall charts are data visualizations that show the HTTP requests, the time it took to
load the resources requested, and the payload or file size of each request that make up a
web page. A much more in-depth discussion of waterfall charts concepts is presented in
Chapter 2.

2 HIGH PERFORMANCE RESPONSIVE DESIGN
www.it-ebooks.info

http://www.it-ebooks.info/

Q, Elements | Network Sources Timeline Profiles Resources Audits Console

® © W := ()Preservelog

Name Status Size Time
Path Method | et Tpe Initator Content | Latency | e 200 6005 8005
== ajax.google | ™" Not Modifi """ Parser 195KB 47 ms
mintgsfs... | 304 i module:54 3188 106ms
=2 static-calen Not Modifi 2PP'“* parser 47.4K8 103ms
] minte=z. | 304 ‘ module;55 3188 1llms
= static-calen Not Modifi| PP'“®*" parser 114K8 109ms
minPv=2_. T 304 i module:56 3188 132ms
=2 static-calen Not Modifi 2PP'“% parser S.4KE 130ms
] mine=2.. | 304 ‘ module:s7 3188 133ms
= static-calen Not Modifi| PP'“®*" parser 6708 131ms
loadergif 304 mageyqif Module153 2678 62ms)
B static-calen Not Modifi "M%/ parcer 25KB 60ms ~
'| Sprit2... | o 304 . lauervmins2 2038 99ms)
L calendar.cor Not Modifi 29 | seripe 94KB 98ms ol
‘I ui-bg i 304 \magey,. laueruminis:a 2678 47ms
L static-calen Not Modif "9/ script 908 45ms -
| 2-Fandan. o 200 i oh 08 46ms
static.doubl oK Ree “ 41.9KB 16ms
a‘l 88%6c34. 200 \magey;,, home Z3is28 oms
™) por-img.cin oK magefl.. coripe rem e oms

132 requests | 952 KB transferred | 10.78 s (load: 1.83 s, DOMContentLoaded: 691 ms)

10.005

FIGURE 1-2
A waterfall chart of the home page rendered for desktop

And we weren't alone. I opened up a browser on my laptop and con-
sulted HTTPWatch on my iPhone, and I went through the Alexa.com
top 50 sites to do some competitive analysis. What I found was that 30%
of the websites had a larger mobile payload than their desktop equiva-
lent—technology companies, banks, and retailers alike.

Beyond my own research, a number of notable reports also reflected
similar results. The Search Agency (a global digital marketing agency)
analyzed the top 100 retail sites as well as the Fortune 100 companies’
sites and produced the following reports:

« “Multichannel Retailers” (http://bit.ly/1vqY UPh)
- “Fortune 100 Companies” (http://bit.ly/1r1SDIA)

[Tip]

To access these reports, you will need to give The Search Agency your
email address, and it will then send the reports to you.

Among its results is the chart in Figure 1-3, which shows that websites
that used (or more accurately, misused) responsive design took an aver-
age of 1.91 seconds longer to load than plain, vanilla desktop websites.
Most egregious of all, these same websites took 10.74 seconds longer
than dedicated mobile sites.

1. STATE OF THE INDUSTRY OF RESPONSIVE DESIGN 3
www.it-ebooks.info

http://bit.ly/1vqYUPh
http://bit.ly/1r1SDlA
http://www.it-ebooks.info/

Average Load Time by Format (Seconds)

16
1 13.55
1 11.64
10

8

6

4 2.81

2

0

Average Load Time
3 Dedicated Mobile Site 1 RWD [Desktop

FIGURE 1-3

The Search Agency’s comparison of average load times for responsive sites
versus dedicated mobile and dedicated desktop sites

Guy Podjarny, CTO at Akamai, also wrote up a piece on his blog detail-
ing his findings from running similar tests. He compared page sizes
across a number of resolutions and found little difference between
them. You can find his write-up at http://bit.ly/1tBv6cT.

Were we all missing the point of creating a responsive experience?

OBSERVATIONS FROM COMPETITIVE ANALYSIS

My own observations from the Alexa list yielded some interesting data,
as well. Among other things, I noticed the following:

« Of the top websites for the United States, 47% still used dedicated
mdot sites.” Think about that number for a minute. These are the
most trafficked websites on the Internet, arguably the leaders of
their respective industries, with members including YouTube,
eBay, and Target, and they are foregoing a responsive site in favor
of a standalone segmented site.

2 An mdot site is a dedicated website created just for the mobile experience that has its own
URL, usually following the convention of using “m” as a subdomain (e.g., m.comcast.net
or m.homedepot.com). There are even more recent derivations of the mdot for tablets, for
which “t” is a subdomain for a dedicated tablet experience (e.g., t.homedepot.com).

4 HIGH PERFORMANCE RESPONSIVE DESIGN
www.it-ebooks.info

http://www.it-ebooks.info/

- On average, these dedicated sites were 55% smaller than respon-
sive sites. The mean size of the subset that used mdots was 383
KB, whereas the responsive sites had a mean size of 851 KB (see
Figure 1-4). This speaks to a gross discrepancy between intention
and implementation.

800
|

600
|

400
|

200
|

dedicated responsive

FIGURE 1-4
Mean file size for dedicated versus responsive websites (in KBs)

« The payload of responsive websites has a long-tailed distribution
that stretches out into 4 MB, whereas mdot sites are all distrib-
uted across ranges less than 1 MB. In fact, mdots are most thickly
grouped into the 0 to 200 KB and 200 to 400 KB ranges. I created
histograms to look at the distribution of file sizes between mdot
sites and responsive sites, which you can see in Figures 1-5 and 1-6.

1. STATE OF THE INDUSTRY OF RESPONSIVE DESIGN | 5
www.it-ebooks.info

http://www.it-ebooks.info/

Frequency

| I | | 1 |
0 200 400 600 800 1000

file size in KBs

FIGURE 1-5
Distribution of file sizes for dedicated mobile sites (in KBs)

Note the scale of the x-axis in each histogram. The three outli-
ers for the dedicated experiences were up against 1 MB. For the
responsive sites, 1 MB is the second largest grouping and the tail
keeps going out to 4 MB.

6 | HIGH PERFORMANCE RESPONSIVE DESIGN
www.it-ebooks.info

http://www.it-ebooks.info/

10

Frequency

I 1 I | I | I 1
0 500 1000 1500 2000 2500 3000 3500

file size in KBs

FIGURE 1-6
Distribution of file sizes for responsive sites (in KBs)

« Of the responsive websites, 43 percent had nearly the same or
slightly more HTTP requests for their smartphone experiences
compared to their desktop experiences. Contrast this to the 1.5
percent of the dedicated sites that had the same or higher HTTP
requests for their smartphone experience compared to their desk-
top experience. Figures 1-7 and 1-8 depict this breakdown.

1. STATE OF THE INDUSTRY OF RESPONSIVE DESIGN | 7
www.it-ebooks.info

http://www.it-ebooks.info/

B Desktop Requests
@ Smartphone Requests

o
8 4
«

| .L..lli\.\l.l..\...hl

FIGURE 1-7
Grouped bar chart of HTTP requests for desktop and smartphone experiences
on responsive sites

150
1

100
1

5

In Figure 1-7, notice that in each grouping, the blue bar represents
the number of HTTP requests for a page served for the desktop
experience, whereas the yellow bars represent the number of
HTTP requests served for the same page served to a smartphone.

B Desktop Requests
@ Smartphone Requests

Qf Il..illl“l‘l.llllll

FIGURE 1-8
Grouped bar chart of HTTP requests for desktop and smartphone experiences
on dedicated mdot sites

100 150 200 250
L ! 1 |

50
1

Again, note that for each grouping, the blue bar represents the num-
ber of HTTP requests for a page served for the desktop experience;
the yellow bars show the number of HTTP requests for a smartphone.

8 | HIGH PERFORMANCE RESPONSIVE DESIGN
www.it-ebooks.info

http://www.it-ebooks.info/

Clearly there is an issue with how we implement responsive design.
Also, there is a discernable advantage to be gained from serving a ded-
icated experience, at least in terms of total number of HTTP requests
and total payload delivered to render a page (though it is important to
note that mdots do come with their own set of problems, which we
will discuss shortly). My thesis and a recurring theme that you should
notice throughout this book is that responsive design and a dedicated
experience are not mutually exclusive implementations but are instead
aspects of the same philosophy.

In addition to the preceding metrics, I also observed a number of
anti-patterns® and patterns that the websites which I audited seemed
to follow.

Anti-patterns

As I looked at each website on the Alexa list there were some common
issues that they shared, anti-patterns that they each utilized. Let’s iden-
tify and look at these anti-patterns in the following subsections.

Load the same content for all devices

Some of the sites loaded the exact same assets for both smartphone and
desktop rendering. They loaded the same CSS file across experiences,
which contained media queries that handled all of the breakpoints in
resolution. They loaded the same images across experiences that are just
downscaled when the browser detects that the resolution warrants it.

Evidence for this offense is in the HTTP traffic. Websites that had the
exact same number of HTTP requests between experiences most likely
were doing this. This solution doesn’t scale when we begin to talk about
displays of larger resolution such as the Retina display from Apple and
Ultra HD TVs.

Load additional assets

Although loading the same set of assets for all devices ignores the
intrinsic differences between devices, loading additional assets on top
of the common set just for the smartphone experience is completely

3 Anti-patterns are commonly used solutions to problems that are inefficient, ineffective, or
counterproductive. They are the opposite of design patterns, which are tested and reliable
solutions to common problems.

1. STATE OF THE INDUSTRY OF RESPONSIVE DESIGN 9
www.it-ebooks.info

http://www.it-ebooks.info/

contrary to everything we know about the mobile experience. These
additional assets generally were an additional CSS file and an addi-
tional sprite file.

Websites that had more HTTP requests and a larger payload for the
mobile experience than the desktop one were exhibiting this behav-
ior. As previously noted, this was the anti-pattern that my own site was
using.

Load images at twice the size

The greatest offense was that some sites were loading an additional set
of images for the smartphone version that were sized at twice the size
of the desktop images. This is in addition to the regular set of images
for the desktop.

The intent of loading larger images and then resizing them is that they
appear sharper at the smaller size. The unfortunate side effect of this
practice is that it produces websites that have mobile payloads roughly
30 percent larger than their desktop equivalents.

All of these issues had several philosophical points in common:

- They were clearly seeing the desktop version as the base upon
which elements were altered or added, instead of working from the
smallest version up.

« They were not exploiting the benefits or being mindful of the lim-
itations of each platform.

« They were trying to solve the problem exclusively from the client
side.

Patterns

Not all of the sites on the Alexa list were doing it wrong—some clearly
had great experiences that were optimized for the devices and resolu-
tions that they were targeting. Let’s look at some of the design patterns
that they employed.

10 HIGH PERFORMANCE RESPONSIVE DESIGN
www.it-ebooks.info

http://www.it-ebooks.info/

Load device-appropriate assets

Instead of loading images twice the size of desktop images for the
mobile view, some websites loaded images that were half the size of
their desktop counterparts. Figures 1-9 and 1-10 show an example of
this.

@, Elements | Network | Sources Timeline Profiles Resources Audits Console

® © 7 i= [)Preservelog
Name x Headers|Prewew|Response Timing

|_| _get_ads?ajax=1&dc_ref=http¥3IA%2F%2Fm.youtube.com%2Fhome&keyw. ..
|| hadefault,jpg?w=120&h=72&sigh=Uxpy7ff2YBT44avusvMOI-BVZmQ

=] defaultjpg?w=120&h=72&sigh=WNSOf7Q5MxedqGikIUGADYUS

|ﬁ| default jpg?w=120&h=72&sigh=25CAmgtCM3larkws-aaFxIMWMGM
H default jpg?w=120&h=72&sigh=xMtQey4cC lwnthAPFSMHN140Q-8 default.jng

|!| default jpg?w=120&h=72&sigh=PMKjh&8HwSaP_vXD2nbLOoyadzIg Dimensions 120 x 72
[ss| defaultjpgTw=120&h=72&sigh=JefLmlqqRICikKM4tSESn11kEw! File size 2.0KB

Il et foee A VB P00 e VEWARIRAL em Dol Y ARD MIME type. image/jpeg
FIGURE 1-9

Loading device-specific images for the mobile experience, sized at 120 x 72

pixels and 2 KB (seen in Chrome Developer Tools)

Q, Elements | Network | Sources Timeline Profiles Resources Audits Console

® © W = (Preservelog
Name ¥ Headers ‘ Prewew‘ Response
|| pixel-vfi3z5WAW.gif
] tive.png
7| Lipg
|| hadefault.jpg
madefault.jpg
ez mqdefaultjpg
] madefault.jpg
[spf-vflowhyed.js
|| www_base_mod.js
|5 default.jpg
& Lipg
i@ default.jpg

Dimensions 320 x 180

[defauit.jpg File size 8.8KB
0l defauit.jng MIME type image/jpeg

FIGURE 1-10

Loading device-specific images for the desktop experience, sized at 120 x 180
pixels and 8.8 KB (seen in Chrome Developer Tools)

mgdefaultjpg

Notice that the image in Figures 1-9 and 1-10 are the same; they're
just resized to take into consideration the resources of the client

environment.

1. STATE OF THE INDUSTRY OF RESPONSIVE DESIGN | 11
www.it-ebooks.info

http://www.it-ebooks.info/

In the same way, some websites loaded device-specific sprites and CSS
only—not the desktop set plus additional sets for other devices. This
appropriately takes into consideration the bandwidth limitations and
costs of cellular networks. Unfortunately, most of the websites that on
the Alexa list that did this were dedicated mdot sites. But we can utilize
this pattern for responsive sites as well, as you can see in Chapter 4.

Serve a dedicated experience from the backend

The best experiences of all were the websites that served a completely
dedicated experience. Some were separate mdot sites but others had
device-specific layouts and assets written to the page from the server
side. This solution is sometimes called RESS (Responsive Design +
Server-Side Components), but is really just combining the same logic
that we used to segment traffic into an mdot site to load the appropriate
content for a predefined resolution breakpoint. We discuss this solution
in greater detail in Chapter 4.

For a better idea of the architecture of this solution, take a look at the
sequence diagram outlining it in Figure 1-11.

Note that the websites that delivered a dedicated experience gener-
ally had the smallest payload and biggest boost to performance. This
is most likely why 47 percent of the top websites still serve dedicated
content.

Lazy load dedicated experience from the frontend

Some of the sites lazy loaded* not just images but entire modules of
content, both above and below the fold. In this way, they were able to
avoid loading the content for each breakpoint and instead intelligently
load only the content that would be necessary for the experience that is
appropriate for the capabilities of the client. But instead of determin-
ing all of this at the backend, it’s determined on the client side. We talk
about this tactic in Chapter 5.

4 Lazy loading is a design pattern whereby initialization of an object or downloading of a
resource is deferred until it is actually needed.

12 HIGH PERFORMANCE RESPONSIVE DESIGN
www.it-ebooks.info

http://www.it-ebooks.info/

Backend Served Dedicated Experience

Client Server
i i
| |
Get /homepage
Determine client
capabilities
/homepage
. T
| 1
] Get /smartphone_sprite]
/smartphone_sprite
T T
| 1
=l Sl
Get /smartphone_css
/smartphone_css
| 1
| 1
1 1
FIGURE 1-11

Sequence diagram serving device-appropriate experience from the backend

Figure 1-12 presents a sequence diagram detailing this approach.

1. STATE OF THE INDUSTRY OF RESPONSIVE DESIGN 13

www.it-ebooks.info

http://www.it-ebooks.info/

Frontend Served Dedicated Experience

Client Server

Get /homepage

\4

/homepage

Determine client
capabilities

Get /smartphone_sprite

v

/smartphone_sprite

-4
-4

Get /smartphone_css

v

/smartphone_css

— _—
| |
| |
1 '

FIGURE 1-12
Loading device-appropriate content from the client side

HOW DID WE NOT NOTICE THIS?

I described earlier in the chapter how we demonstrated our responsive
home page to our product owners. During a sprint review, we opened
the page on one of our laptops, projected our desktop to a screen,
and resized our browser window to reflect the different breakpoints.
Although it was fun to watch the page reflow and resize on the fly, it
completely missed the point of responding to different devices.

We displayed it the same way that we developed it, on a Macbook
Pro using the corporate network. Of course, the performance looked
fine to us. We weren’t working off of a predetermined performance

14 HIGH PERFORMANCE RESPONSIVE DESIGN
www.it-ebooks.info

http://www.it-ebooks.info/

agreement (i.e., a service-level agreement, or SLA).> We weren’t using
an actual mobile device on a cellular network. At the time, we hadn’t
even acquired any devices for testing, outside of our own personal ones.

Most important, we also were not working against a performance SLA.
Parity with our existing home page was an acceptable target and didn’t
set off any red flags in our existing performance monitors. We talk at
length about this problem in Chapter 3.

HOW DID WE GET HERE?

In the long ago days of 2008 or thereabouts, before responsive design,
we would maintain two URLSs: mysite.com and of course m.mysite.com
(our mdot site). Each website could be different pages in the same web
app, or could even be different apps, possibly even maintained by dif-
ferent teams of people. But this would have been the case only if we
were really forward thinking and even had mobile sites to begin with,
which at the time was somewhat rare.

Then, in 2011, The Boston Globe website relaunched, and the terms
responsive design and progressive enhancement became the topic of every
blog post and brainstorming session. We all read the articles coming
out about how to create sites that are responsive to the capabilities of
the user’s device, and we all played with these concepts and became
enamored with the idea. There were curmudgeons who remembered
creating fluid layouts with relative heights and widths back in the early
2000s; they didn't see the difference at first, but after seeing how font
sizes and images could be scaled as well, even they were turned on to
the idea.

Books were written, speaking engagements were arranged, and every-
one started making responsive websites. We all began talking about
and using media queries to encapsulate the styles for different screen
sizes. And we experimented with different ways to scale our images.

5 SLAs define the terms of a service contract. This definition can be as formal or informal
as needed. It could apply to an application programming interface (API) provider agreeing
that their API will maintain a certain amount of uptime and respond in a predetermined
amount of time. It could also apply to an engineering or product team agreeing that they
will fix bugs discovered in their product in a certain amount of time.

1. STATE OF THE INDUSTRY OF RESPONSIVE DESIGN 15
www.it-ebooks.info

http://www.it-ebooks.info/

When the time came to try out these new ideas in the office “for real,”
we all knew that we should be starting with the smallest screen first and
progressively enhance based on that. In reality, however, stakeholders
wanted to see the “complete” version (i.e., the desktop version) of what
they would be showing to their executives, so the design teams priori-
tized that work, and we all ended up building those versions first. But we
could craft media queries to hold the CSS for the breakpoints and degrade
the visual experience from there, so it all seemed to work out, right?

Our base CSS and JavaScript files ended up being the desktop versions
(in all likelihood several hundred kilobytes in size), and we would layer
on the smartphone and tablet CSS and JavaScript files after we deter-
mined client capabilities on the frontend. After that was complete, we
could demonstrate the projects for stakeholders, they would demon-
strate for their executives, and the project would go to production.
Inevitably, one or two developers would bring up that we really should
think about refactoring, because our base CSS is the desktop CSS, and
oh yeah, all of our links connected out to desktop versions anyway. Yet,
there was never any appetite to refactor, because the project worked,
and there was no time anyway given that the next project would be
starting soon, for which we needed all hands on deck to groom.

The project worked, but the problem was that we were all looking only
at the frontend. Media queries and scaling images looked cool, but
focusing only on those intrinsically missed the point of tailoring the
holistic experience for the device that the user is currently using. It was
the appearance of responsiveness without really being responsive.

We didn’t just focus on how the frontend appeared; we also put all of
our logic on the frontend. Relying solely on media queries to handle
different device resolutions, or capability testing in JavaScript on the
frontend, meant that we were already downloading unnecessary assets
to the client side. This is the behavior that led to the anti-patterns that
we have already identified. Figure 1-13 shows a sequence diagram that
exhibits all of the anti-patterns that we identified earlier.

Differences between devices, including network infrastructure, pro-
cessing power, battery life, and on-board memory, are ignored when
we focus only on the frontend or only on how the page looks. In reality,
these are all factors that you would need to include in any response.
They are the reasons why a good percentage of the major players on the
Web are still maintaining dedicated mdot sites.

16 ‘ HIGH PERFORMANCE RESPONSIVE DESIGN
www.it-ebooks.info

http://www.it-ebooks.info/

Frontend Served Dedicated Experience

Client Server
[[
| |
] Get /homepage]
/homepage
-) -
| |
| |
] Get /desktop_sprite]
/desktop_sprite
- -
| |
| |
] Get /desktop_css]
/desktop_css
T T
| |
t |
: Determine client :
I capabilities I
1 |
| |
| |
] Get /smartphone_sprite]
/smartphone_sprite
- -y
| |
- ke
Get /smartphone_css
/smartphone_css
| |
| |
] Get /2x_images]
/2x_images
FIGURE 1-13

A sequence diagram of anti-patterns

1. STATE OF THE INDUSTRY OF RESPONSIVE DESIGN

www.it-ebooks.info

17

http://www.it-ebooks.info/

WHY NOT USE AN MDOT?

With all this talk about the benefits of mdot sites, you might be won-
dering why I'm not instead writing about why we all should start using
them, instead. Make no mistake; I'm not endorsing mdots. Although
they do have a performance advantage over how people are currently
using responsive design, they have several downsides.

Resource overhead

When I created my first mdot website in the early 2000s, I had to staff
an entire new team of engineers to create and maintain it. This was
mainly because our product team did not want to sacrifice the velocity
on the main site to set up this mobile experience. It was also because
mobile sites were—and still can be—extremely laborious endeav-
ors because they support not just the mainstream iOS and Android
devices, but an enormous array of feature phones which have different
screen sizes and capabilities, including lack of JavaScript, or even sup-
port of only a subset of JavaScript functionality.

Even if you don’t maintain a separate team, you would still need to
track work for the mdot website as a separate body of work from your
main site work; in fact, some features might not even be possible on
certain feature phones.

Segmented source code

Maintaining a separate website most likely means that you need to
maintain a separate web app and separate code base. Maintaining par-
ity between code bases is an age-old problem, solved mainly through
vigilance and supervision, which means that eventually it will suc
cumb to entropy and get out of sync. When the code bases fall out of
sync, the experiences will differ between websites, and more effort will
be needed to update in the future.

Segmented URL

Having a separate mdot website means creating and maintaining a
separate URL. This is contrary to the entire idea of URLSs being a sin-
gle location for a resource. An mdot is a second location for your site.
Moreover, where is the line drawn for what goes to the mdot site? Do
you set it at feature phones? Smartphones? Do tablets go as well? And

18 HIGH PERFORMANCE RESPONSIVE DESIGN
www.it-ebooks.info

http://www.it-ebooks.info/

what about phablets? Do they all go to the same mdot website, or do you
maintain separate sites based on screen size and capability? You see
how this segmentation can quickly become cumbersome.

Pointless redirects

Having physically separate URLs also means adding in a redirect for
the client to step through. Adding a redirect technically adds unneeded
latency to your experience because the server has to respond back to the
client with a 302 or a 304 status code, and the client must then make an
additional request for the new location, as is illustrated in Figure 1-14.

Redirect for MDot Site
Client Server
| i
! 1
Get mysite.com N
Determine client
capabilities
N HTTP 302/304
- -
! 1
]) 1
Get m.mysite.com R
} m.mysite.com

-
-

FIGURE 1-14
Separate URLs for a mobile site introduce HTTP redirects

THIS MATTERS BECAUSE OF SCALE

So far, we have been talking mainly about the smartphone and desk-
top experience, because those, along with tablets, are the main devices
that people are thinking about right now. But the industry is constantly
changing and growing, and the past few years have seen a number of
new devices with their own resolutions, network infrastructure, and
sets of client-side assets to include.

1. STATE OF THE INDUSTRY OF RESPONSIVE DESIGN 19
www.it-ebooks.info

http://www.it-ebooks.info/

For example, when Apple’s new Retina display came out, we had to
work with the design team to create unique images to include that
would look great on devices using that display. This trend will con-
tinue as web development begins to show up on television guides and
apps, and television displays continue to increase with 4K and 8K Ultra
HDTVs.

As Google Glass becomes more pervasive, we will need to think about
what the Glass experience for our websites will be. Right now, Google
provides an API called the Mirror API and makes available client-side
libraries to interact with the Mirror API (http://bit.ly/1rXkSpb).

These are just some of the new form factors that are on the leading
edge. There are many more beyond that.

If we continue treating responsive design as a frontend tool, we will see
the problem of bloated pages just continue to grow worse. Or we will
see more companies going back to mdot sites.

Summary

The industry is slowly turning against responsive design. Almost half
of the sites that I audited are using dedicated experiences—the same
solutions that we came up with in the early 2000s—instead of provid-
ing responsive sites.

Responsive design is not a flawed methodology; it is only when it is
misused and treated as an add-on instead of an overarching philosophy
that it can result in a bloated and counterintuitive experience. Likewise,
it is only when we focus on a single aspect of responsiveness, specifi-
cally the frontend, that we lose sight of the performance of our respon-
sive sites. Yet, performance is an aspect of responsiveness and needs to
be part of the conversation, starting in planning and design. It needs to
be baked into how we architect our solutions.

We have identified some design patterns in this chapter to build perfor-
mance into responsiveness. We will explore these patterns, and more,
in the coming chapters.

If we don’t do this and build performance into our responsive solu-
tions, the problem will only worsen as new products and devices with
greater and greater resolutions are introduced along with new form fac-
tors that will require unique client interactions.

20 HIGH PERFORMANCE RESPONSIVE DESIGN
www.it-ebooks.info

http://bit.ly/1rXkSpb
http://www.it-ebooks.info/

[2]

Primer on Performance
of Web Applications

The Basics of Measuring Performance

IF YOU ARE READING THIS BOOK, the chances are good that you have an
idea of what performance is, or at the very least, you have had some dis-
cussion around the performance of your web applications. But before
we go any further, let’s make sure we are on the same page with respect
to terminology.

If this is your first time hearing the term web performance optimization,
quickly go pick up a copy of Steve Souders’s books High Performance
Web Sites and Even Faster Web Sites (both from O’Reilly). These are
the standards in web performance, and they represent the base level of
knowledge that all web developers should have.

The goal of this chapter is not to cover every nuance of performance.
There is an enormous corpus of work that already achieves that goal,
starting with the aforementioned publications of Steve Souders. Rather,
the goal of this chapter is to give an overview of performance, both web
performance and web runtime performance, including some of the
tools used to measure performance. This way, when we reference these
concepts in later chapters, there should be no confusion or ambiguity.

When talking about the performance of websites and web applications,
we are speaking either of web performance or runtime performance. We
define web performance as a measurement of the time from when an end
user requests a piece of content to when that content is available on the
user’s device. We define runtime performance as an indication of how
responsive your application is to user input at runtime.!

1 Runtime is when an application is running or executing.

21
www.it-ebooks.info

http://www.it-ebooks.info/

Being aware of, quantifying, and crafting standards around the perfor-
mance of your web applications is a critical aspect of application owner-
ship. Both web performance and runtime performance have indicators
that you can empirically measure and quantify. In this chapter, we will be
looking at these indicators and the tools that you can use to quantify them.

[NOTE]

Performance indicators are measurable objectives that organizations use
to define success or failure of an endeavor. They are sometimes called key
performance indicators, or KPIs for short.

The types of performance indicators that we will be talking about in
this chapter are as follows:

Quantitative indicator
An objective that can be measured empirically (think quantity of
something)

Qualitative indicator
An objective that cannot be measured empirically (think quality of
something)

Leading indicator
Used to predict outcomes

Input indicator
Used to measure resources consumed during a process

WHAT IS WEB PERFORMANCE?

Think about each time you've surfed the Web. You open a browser, type
in a URL and wait for the page to load. The time it takes from when you
press Enter after typing the URL (or clicking a bookmark from your
bookmark list, or clicking a link on a page) until the page renders is the
web performance of the page you are visiting. If a site is performing
properly, this time should not even be noticeable.

The quantitative indicators of web performance are numerous enough
to list:

- Page load time

- Page file size

22 ‘ HIGH PERFORMANCE RESONSIVE DESIGN
www.it-ebooks.info

http://www.it-ebooks.info/

- Number of HTTP requests
- Page render time

The qualitative indicator of web performance can be summed up much
more succinctly: perception of speed.

Before we look at these indicators, let’s first discuss how pages make
it to the browser and are presented to our users. When you request a
web page by using a browser, the browser creates a thread to handle the
request and initiates a Domain Name System (DNS) lookup at a remote
DNS server, which provides the browser with the IP address for the
URL you entered.

Next, the browser negotiates a Transmission Control Protocol (TCP)
three-way handshake with the remote web server to establish a
Transmission Control Protocol/Internet Protocol (TCP/IP) connection.
This handshake consists of synchronize (SYN), synchronize-acknowl-
edge (SYN-ACK), and acknowledge (ACK) messages that are passed
between the browser and the remote server.

After the TCP connection has been established, the browser sends an
HTTP GET request over the connection to the web server. The web
server finds the resource and returns it in an HTTP response, the sta-
tus of which is 200 to indicate a good response. If the server cannot
find the resource or generates an error when trying to interpret it, or
if it is redirected, the status of the HTTP response will reflect these as
well. You can find the full list of status codes at http://bit.ly/stat-codes.
Following are the most common of them:

« 200 indicates a successful response from the server

- 301 signifies a permanent redirection

« 302 indicates a temporary redirection

+ 403 is a forbidden request

+ 404 means that the server could not find the resource requested
- 500 denotes an error when trying to fulfill the request

- 503 specifies the service is unavailable

« 504 designates a gateway timeout

2. PRIMER ON PERFORMANCE OF WEB APPLICATIONS 23
www.it-ebooks.info

http://bit.ly/stat-codes
http://www.it-ebooks.info/

Figure 2-1 presents a sequence diagram of this transaction.

Browser DNS Server Web Server
| | I
| | |
I DNS Name :
' I
DNS Lookup IP Address .
1
- |
[! 1
=l =l
SYN
Establish TCP SYN-ACK
Connection <
ACK N
T T
1 1
HTTP GET N
HTTP Transaction . HTTP Response
2XX| 3XX | 4XX | 5XX
T -re
| |
1 1
FIN
Close TCP FIN-ACK
Connection <
ACK R
FIGURE 2-1

The negotiation process between a browser and web server

24 HIGH PERFORMANCE RESONSIVE DESIGN
www.it-ebooks.info

http://www.it-ebooks.info/

Keep in mind that not only is one of these transactions necessary
to serve up a single HTML page, but your browser needs to make
an HTTP request for each asset to which the page links—all of the
images, linked CSS and JavaScript files, and any other type of external
asset. (Note, however, that the browser can reuse the TCP connection
for each subsequent HTTP request as long as it is connecting to the
same origin.)

When the browser has the HTML for the page, it begins to parse and
render the content.

The browser uses its rendering engine to parse and render the content.
Modern browser architecture consists of several interacting modules:

The Ul layer
This draws the interface or GUI for the browser. These are items
such as the location bar, the refresh button, and other elements of
the user interface (UI) that is native to the browser.

The network layer
This layer handles network connections, which entails tasks such
as establishing TCP connections and handling the HTTP round
trips. The network layer handles downloading the content and
passing it to the rendering engine.

The rendering engine

Rendering engines are responsible for painting the content to the
screen. Browser makers brand and license out their render and
JavaScript engines, so you've probably heard the product names
for the more popular render engines already. Arguably the most
popular render engine is WebKit, which is used in Chrome (as a
fork named Blink), Safari, and Opera, among many others. When
the Render engine encounters JavaScript, it hands it off to the
JavaScript interpreter.

The JavaScript engine
This handles parsing and execution of JavaScript. Just like the
render engine, browser makers brand their JavaScript engines
for licensing, and you most likely have heard of them. One pop-
ular JavaScript engine is Google’s V8, which is used in Chrome,
Chromium, and as the engine that powers Node.js.

You can see a representation of this architecture in Figure 2-2.

2. PRIMER ON PERFORMANCE OF WEB APPLICATIONS | 25
www.it-ebooks.info

http://www.it-ebooks.info/

Draws browser Ul
Ul Layer < (location bar, forward
and back buttons)
Draws content o " .
to the screen » Rendering Engine
Retrieves content .| Network JavaScript | Executes the
from the network i Layer Interpreter |~ JavaScript
FIGURE 2-2

Modern browser architecture split into module components

Picture a use case in which a user types a URL into the location bar
of the browser. The UI layer passes this request to the network layer,
which then establishes the connection and downloads the initial page.
As the packets containing chunks of HTML arrive, they are passed to
the render engine. The render engine assembles the HTML as raw text
and begins to perform lexical analysis—or parsing—of the characters
in the text. The characters are compared to a rule set—the document
type definition (DTD) that we specify in our HTML document—and
converted to tokens based on the rule set. The DTD specifies the tags
that make up the version of the language that we will use. The tokens
are just the characters broken into meaningful segments.

Here’s an example of how the network layer might return the follow-
ing string:
<IDOCTYPE html><html><head><meta charset="UTF-8"/>

This string would be tokenized into meaningful chunks:

<IDOCTYPE html>

<html>

<head>

<meta charset="UTF-8"/>

26 HIGH PERFORMANCE RESONSIVE DESIGN
www.it-ebooks.info

http://www.it-ebooks.info/

The render engine then takes the tokens and converts them to
Document Object Model (DOM) elements (the DOM is the in-memory
representation of the page elements, and the API that JavaScript uses
to access page elements). The DOM elements are laid out in a render
tree over which the render engine then iterates. In the first iteration,
the render engine lays out the positioning of the DOM elements; in the
next iteration, it paints them to the screen.

If the render layer identifies a script tag during the parsing and tokeni-
zation phase, it pauses and evaluates what to do next. If the script tag
points to an external JavaScript file, parsing is paused, and the network
layer is engaged to download this file prior to initializing the JavaScript
engine to interpret and execute the JavaScript. If the script tag contains
inline JavaScript, the rendering is paused, the JavaScript engine is ini-
tialized, and the JavaScript is interpreted and executed. When execu-
tion is complete, parsing resumes.

This is an important nuance that impacts not just when DOM elements
are available to JavaScript (our code might be trying to access an ele-
ment on the page that has not yet been parsed and tokenized, let alone
rendered), but also performance. For example, do we want to block the
parsing of the page until this code is downloaded and run, or can the
page be functional if we show the content first and then load the page?

Figure 2-3 illustrates this workflow for you.

Understanding how content is delivered to the browser is vital to under-
standing the factors that impact web performance. Also note that as a
result of the rapid release schedule of browser updates, this workflow
is sometimes tweaked and optimized and even changed by the browser
makers.

Now that we understand the architecture of how content is delivered
and presented, let’s look at our performance indicators in the context of
this delivery workflow.

2. PRIMER ON PERFORMANCE OF WEB APPLICATIONS 27
www.it-ebooks.info

http://www.it-ebooks.info/

User

Enter URL

ul
Layer

Network
Layer

I | Retrieve content in chunks

Render Engine

Parse, tokenize, Build DOM Layout Paint DOM
and lex content = nodesin = positioningof =f
into DOM render tree DOM elements
7y 7Y 4 +

X Execute JavaScript

JavaScript
Engine

FIGURE 2-3
A workflow describing the loading and rendering of content in the browser

Number of HTTP requests

Keep in mind that the browser creates an HTTP request when it gets
the HTML page, and additional HTTP requests for every asset to which
the page links. Depending on network latency, each HTTP request
could add 20 to 200 milliseconds to the overall page load time (this
number changes when you factor in browsers being able to parallel

28 HIGH PERFORMANCE RESONSIVE DESIGN
www.it-ebooks.info

http://www.it-ebooks.info/

load assets). This is almost negligible when talking about a handful of
assets, but when you're talking about 100 or more HTTP requests, this
can add significant latency to your overall web performance.

It only makes sense to reduce the number of HTTP requests that your
page requires. There are a number of ways developers can accomplish
this, from concatenating different CSS or JavaScript files into a sin-
gle file,? to merging all of their commonly used images into a single
graphic file called a sprite.

Page payload

One of the factors impacting web performance is the total file size of
the page. The total payload includes the accumulated file sizes of the
HTML, CSS, and JavaScript that comprise the page. It also includes all
of the images, cookies, and any other media embedded on the page.

Page load time

The number of HTTP requests and the overall page payload by them-
selves are just input, but the real KPI to focus on for web performance
is page load time.

Page load time is the most obvious performance indicator and the eas-
iest to quantify. Simply stated, it is the time it takes a browser to down-
load and render all of the content on the page. Historically, this has
been measured as the elapsed time from page request to the page’s
window onload event. More recently, as developers are becoming more
adept at creating a usable experience before the page has finished load-
ing, that end point has been moving in or even changing completely.

Specifically, there are certain use cases in which you could load content
dynamically after the window.onload event has fired—as would be the
case if, for instance, content is lazy loaded—and there are use cases in
which the page can be usable and appear complete before the window.
onload event has fired (such as when you can load content first, and
load ads afterward). These cases skew the usefulness of tracking spe-
cific page load time against the window.onload event.

2 Per llya Grigorik’s excellent book High Performance Browser Networking (O’Reilly), this
practice, although useful in HTTP 1.1, becomes an anti-pattern in HTTP 2 and SDPY.

2. PRIMER ON PERFORMANCE OF WEB APPLICATIONS 29
www.it-ebooks.info

http://www.it-ebooks.info/

I

There are some options to circumvent this dilemma. Pat Meenan, who
created and maintains WebPageTest, has included in WebPageTest a
metric called Speed Index that essentially scores how quickly the page
content is rendered. Some development teams are creating their own
custom events to track when the parts of their page that they determine
as core to the user experience are loaded.

However you choose to track it, page load (i.e., when your content is
ready for user interaction) is the core performance indicator to monitor.

Tools to Track Web Performance

The most common and useful tool to track web performance is the
waterfall chart. Waterfall charts are visualizations that you can use
to show all of the assets that make up a web page, all of the HTTP
transactions needed to load these assets, and the time it takes for each
HTTP request. All of these HTTP requests are rendered as bars, with
the y-axis being the name or URL of the resource; sometimes the size
of the resource and the HTTP status of the response for the resource
are also shown in the y-axis. The x-axis, sometimes shown explicitly,
sometimes not, portrays elapsed time.

The bars of a waterfall chart are drawn in the order in which the
requests happen (see Figure 2-4), and the length of the bars indicates
how long the transaction takes to complete. Sometimes, we can also see
the total page load time and the total number of HTTP requests at the
bottom of the waterfall chart. Part of the beauty of waterfall charts is
that from the layout and overlapping of bars we can also ascertain when
the loading of some resources blocks the loading of other resources.

| Console HTML Css Script DOM | Netv | Cookies Yslow » ©6e

¢ Al WML css @EZETTD XHR Images Plugins Media Fonts

> GETicp

Statws. Protocol _Size Timeline

200 0k htp 59K
Zkey=KLHEA-LWA..0.9.1387 200 C 4448
SeY 140K

3088

tps SPOY 35.2 KB
ttps SPOY 181K
224.2K8 . 2o

hps 221k8 334ms

hup 218
htp 12K8

b GET 2=VVM6OjoxMDM20jkyMjUw..388¢ 200 O hup 1048

> GET rjs

21 requests

hup 818 M 128ms
3215 K8 6.44s (onload: 5.565)

FIGURE 2-4
A waterfall chart generated from Firebug

30 HIGH PERFORMANCE RESONSIVE DESIGN
www.it-ebooks.info

http://www.it-ebooks.info/

These days, there are a number of different tools that can create water-
fall charts for us. Some browsers provide built-in tools, such as Firebug
in Firefox, or Chrome’s Developer Tools. There are also free, hosted
solutions such as webpagetest.com.

Let’s take a look at some of these tools.

The simplest way to generate a waterfall chart is by using an in-browser
tool. These come in several flavors, but at this point have more or less
homogenized, at least in how they generate waterfall charts (some
in-browser tools are far more useful than others, as we will see when
we begin discussing web runtime performance).

Firebug was the first widely adopted in-browser developer tool. Available
as a Firefox plug-in and first created by Joe Hewitt, Firebug set the stan-
dard by not just creating waterfall charts to show the network activity
needed to load and render a page, but also to give developers access to
a console to run ad hoc JavaScript and show errors, and the ability to
debug and step through code in the browser.

If you aren’t familiar with Firebug, you can install it by visiting http://
mzlla/lvDXigg. Click the “Add to Firefox” button and follow the
instructions to install the add-on.

[NOTE]

Firebug is available for other browsers, but generally in a “lite” version that
doesn’t provide the full functionality that’s available for Firefox.

Register or Login | Other Applications ~ mozillav

) ADD-ONS [

EXTENSIONS | THEMES | COLLECTIONS | MORE...

A& » Extensions » Firebug

a2 Firebug 1.12.

1,592 user reviews
by Joe Hewitt, Jan Odvarko, robeee, FirebugWorkingGroup 59

2,448,068 users
Firebug integrates with Firefox to put a wealth of development tools at your fingertips
while you browse. You can edit, debug, and monitor CSS, HTML, and JavaScript live in
any web page...

FIGURE 2-5
The Firebug download page

2. PRIMER ON PERFORMANCE OF WEB APPLICATIONS 31
www.it-ebooks.info

http://mzl.la/1vDXigg
http://mzl.la/1vDXigg
http://www.it-ebooks.info/

To access a waterfall chart in Firebug, click the Net tab.

The industry has evolved since Firebug first came out, and now most
modern web browsers come with built-in tools to measure at least some
aspects of performance. Chrome comes with Developer Tools, Internet
Explorer has its own developer tools, and Opera has Dragonfly.

In Chrome, to access Developer Tools, click the Chrome menu icon,
select Tools, and then, click Developer Tools on the menu that opens,
as demonstrated in Figure 2-6.

Zesrem-@aEE

New Tab 8T
New Window %N
New Incognito Window {r3N
Bookmarks >
Recent Tabs >
Edit Cut | Copy | Paste
Zoom = | 100% | + e
Save Page As... %5
Find... 3BF
Print... %P
Extensions
Task Manager i
Clear Browsing Data... {#¥& History Y
Downloads {r38)
Report an Issue...
- Sign in Again...
Encoding >
View Source HU Settings 3,
Developer Tools A About Google Chrome
JavaScript Console g | Help
r
FIGURE 2-6

Accessing Developer Tools in Chrome

In Internet Explorer, you click Tools and then select Developer Tools.

Even mobile devices now have HTTPWatch as a native app that canrun a
browser within the app and show a waterfall chart for all of the resources
that are loaded. HTTPWatch is available at http://bit.ly/1rY322j. Figures
2-7 and 2-8 give you a glimpse of HTTPWatch in action.

32 HIGH PERFORMANCE RESONSIVE DESIGN
www.it-ebooks.info

http://bit.ly/1rY322j
http://www.it-ebooks.info/

10:17 PM

Browser Requests —

V tom-barker.com

= I\i\/ww.tom—barker.com/blog/?p:x
{} fonts.googleapis.com/css?family=Metrophobic&v2
|

tyle/base.
{} slye ase.css

% lib/perfLogger.js
|

% | tom-barker.com/images/disaster_needs_venn.png
enel |
(. | tom-barker.com/images/PrepStrategy.png
[PNG]
N tom-barker.com/images/JavaScriptTimeline.jpg
|gpc
, assoc-amazon.com/e/ir?t=webdevelandar-20&l=as2&0=1&a=0156029065
[
N echmanagementbook.com/blog/wordpress-content/uploads/2011/12/baudolino_lg.jpg
wea ||
N echmanagementbook.com/blog/wordpress-content/uploads/2011/12/manofico.jpg
)

E: youtube.com/embed/n3ovgi6Y-sk

T-zl> rcm.amazon.com/e/cm?It1=_blank&bc1=FFFFFF&IS2=1&nou=1&...80=1&p=8&I=as4&m=amazon&f=ifr&ref=ss_til&asins=0156029065

s.amazon.com/widgets/q?rt=ss_mfw&ServiceVersion=200708224&...bdevelandar-20/8001/e649f015-2e38-4bdd-b91e-6cala604d136
oa] images/book_techmanage_small.jpg
lwes| |

N images/book_prodatavis_small.jpg

|JpG

. | images/book_jsperf_small.png

eng| |

. | images/book_foundationweb_small.png
[PNG|

= images/twitter.png

ieng| |

. | inl'nages/github.png

|PNG

|PNG

= iTages/Iinkedin.png

% https://count.carrierzone.com/app/count_server/count.js
i

FIGURE 2-7
Resources loading in HTTPWatch on iOS 7

2. PRIMER ON PERFORMANCE OF WEB APPLICATIONS | 33
www.it-ebooks.info

http://www.it-ebooks.info/

10:26 PM

Requests Request

Vv Overview

URL http://www.tom-barker.com/blog/?p=x
Result 200
ID 1
Started At 24-Jan-2014 22:16:29.953
Offset in Page +0.000 s
Time 1.051s

Vv HttpWatch Professional

Extended information is only displayed for sites in the Alexa Top 20 (e.g. eBay, Amazon, Twitter)
or httpwatch.com.

HttpWatch Professional (paid upgrade) would also show Timings, Query Strings, Content,
Request Headers, Response Headers and Network sections for this URL

#_ Available on the

¢ App Store

FIGURE 2-8
Web performance information from HTTPWatch on iOS7

In-browser tools are great for debugging, but if you want to start look-
ing at automated solutions that can work in your continuous integration
(CI) environment, you need to start expanding your range of options to
include platform or headless solutions.

[TP]

We talk at great length about headless testing and Cl integration in Chapter 6.

As mentioned earlier, one of the leading platform solutions is
WebPageTest (www.webpagetest.org), which was created and continues
to be maintained by Pat Meenan. WebPageTest is available as a hosted
solution or open source tool that you can install and run on your net-
work as a local copy to test behind your firewall. The code repository to
download and host is available at http://bit.ly/Iwu4Zdd.

34 HIGH PERFORMANCE RESONSIVE DESIGN
www.it-ebooks.info

http://www.webpagetest.org
http://bit.ly/1wu4Zdd
http://www.it-ebooks.info/

WebPageTest is a web application that takes a URL (and a set of config-
uration parameters) as input and runs performance tests on that URL.
The amount of parameters that we can configure for WebPageTest is
enormous.

You can choose from a set of worldwide locations from which your tests
can be run. Each location comes with one or more browsers that you
can use for the test at that location. You can also specify the connection
speed and the number of tests to run.

WebPageTest provides a wealth of information about the overall perfor-
mance of a website, including not just waterfall charts but also charts
to show the content breakdown of a given page (what percentage of the
payload is made up of images, what percentage JavaScript, etc.), screen-
shots to simulate the experience of how the page loads to the end user,
and even CPU usage, which we will discuss in more detail later in this
chapter.

Best of all, WebPageTest is fully programmable. It provides an API that
you can call to provide all of this information. Figure 2-9 presents a
waterfall chart generated in WebPageTest.

But when looking at web performance metrics, the ideal numbers to
look at are the results from real user monitoring (sometimes called
RUM) harvested from your own users. For a fully programmable solu-
tion to achieve this, the World Wide Web Consortium (W3C) has stan-
dardized an API that you can use to capture and report in-browser per-
formance data. This is done via the Performance DOM object, an object
that is native to the window object in all modern browsers.

In late 2010, the W3C created a new working group called simply the
Web Performance Working Group. According to its website, the mis-
sion for this working group is to provide methods to measure aspects
of application performance of user agent features and APIs. What that
means in a very tactical sense is that the working group has developed
an API by which browsers can expose to JavaScript key web perfor-
mance metrics.

2. PRIMER ON PERFORMANCE OF WEB APPLICATIONS 35
www.it-ebooks.info

http://www.it-ebooks.info/

Waterfall View

I NS Lookup | [Initial Connection | [l SSL Negotiation | Il Time to First Byte | [lll Content Download | 3xx response | [EXRHIBSpORSE|

| Start Render | | msFirstPaint DOM Content Loaded ©On Load | | Document Complets
http 2w . bon-barker .comb og/ 7p=x 62 04 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 24 2.6 2.8
1
1. . ton-barker .com - blog/ 1107 ns
2. fonts.googleapis.com - oss B 13w
3. wuw.ton-barker .com - base.css 77 ns |
4. wuw.tom-barker.con - perflogger.js L 199 ns

5. tom-barker .com. ..ster_needs_venn.png
6. tom-barker.con - Prepstratesu.mng

7. ton-barker .com. ..aScriptTineline. jog
5. themes.googleus. . KelrRFURSjdjVE. ot
9. won.youtube .com - n3ovEiEY-sk

10, WM . ASSOC-ANAZON.COM = ir

11, wuw.technanagen. . .- baudolino_1g. jpg
12. ws.anazon.con - o

13, wuw.ton-barkerchuanage_snall. jpg
14, wow.ton-barkerodatavis_snall. jpg
15, wuw.ton-barkerk_jsperf_snall.png
16. . tom-barker .con - github.png

17. . ton-barker .con ~ Linkedin.png
15, count.carrierzone.com - caunt.js
19, oW .ANAZON.COM ~ T

20, wun.tow-barker.com - tuitber.png

21, wun.technanagen. . .Com - ManoFico. jpg
22, s.Uting.com - W...ayer-wFl4TLGL0.Co8
23, wun.ton-barkerationuen_snall.png
24, s.gting.com - w...layer-vF15JevSH . js
25, eox.inages-anaz. . .3PUYEL._SL110_. jpg
26. eox.inages-anaz.. .- buy-From-tan.gif
27. uns.assoc-anazon.con - 8001_6.js

28. uns.assoC-anazon.con - popup. js

3. uns .assoc-anazon.con - nifty.js

30. Wns.assoc-anazon.con - colors.s [186 ms
3. s.uting.com - watch_asd.suf 554 n3
32. count.carrierzons.com - cbin.php] 350 ns

A waterfall chart generated by WebPageTest

Google’s Arvind Jain and Jason Weber from Microsoft chair this work-
ing group. You can access the home page at http://bit.ly/1t87d]O0.

The Web Performance Working Group has created a number of new
objects and events that we can use to not only quantify performance
metrics, but also optimize performance. Here is a high-level overview
of these objects and interfaces:

The performance object
Thisobjectexposesseveralobjects,suchasPerformanceNavigation,
PerformanceTiming, MemoryInfo, as well as the capability to record
high resolution time for submillisecond timing

The Page Visibilty API
This interface gives developers the capability to check whether a
given page is visible or hidden, which makes it possible to optimize
memory utilization around animations, or network resources for
polling operations.

36 HIGH PERFORMANCE RESONSIVE DESIGN
www.it-ebooks.info

http://bit.ly/1t87dJ0
http://www.it-ebooks.info/

If you type window.performance in a JavaScript console, you will see
that it returns an object of type Performance with several objects and
methods that it exposes. As of this writing, the standard set of objects is
window.performance.timing for type PerformanceTiming and window.
performance.navigation for type PerformanceNavigation. Chrome
supports window.performance.memory for type MemoryInfo. We will
discuss the MemoryInfo object in the “Web Runtime Performance” sec-
tion later in this chapter.

It is the PerformanceTiming object that is most useful for monitoring of
real user metrics; see Figure 2-10 for a screenshot of the Performance
object and the PerformanceTiming object in the console.

window.performance
v Performance {onwebkitresourcetimingbufferfulls null, memory: MemoryInfo, timing: PerformanceTiming, navigation: PerformanceNavigation, getEntries: function.}

gation
nobutferfull: null
ing

1391363061356
+ 1301363061110

Sonstart

1391363061118
art: o

FIGURE 2-10
The Performance object viewed in the console with the Performance.Timing
object expanded

Keep in mind that the purpose of real user monitoring is to gather
actual performance metrics from real users, as opposed to synthetic
performance testing, which generates artificial tests in a lab or with an
agent following a prescribed script. The benefit of RUM is that you cap-
ture and analyze the real performance of your actual user base.

2. PRIMER ON PERFORMANCE OF WEB APPLICATIONS 37
www.it-ebooks.info

http://www.it-ebooks.info/

Table 2-1 lists the properties in the PerformanceTiming object.

TABLE 2-1. The PerformanceTiming object properties

PROPERTY DESCRIPTION

navigationStart

Captures when navigation begins, either
when the browser starts to unload the pre-
vious page if there is one, or if not, when it
begins to fetch the content. It will either con-
tain the unloadEventStart data or the fetch-
Start data. If you want to track end-to-end
time, you will often begin with this value.

unloadEventStart/unloadEventEnd

Captures when the browser begins to unload
and finishes unloading the previous page (if

there is a previous page at the same domain
to unload).

domainLookupStart/domainLookupEnd

Captures when the browser begins and com-
pletes the DNS lookup for the requested
content.

redirectStart/redirectEnd

Captures when the browser begins and com-
pletes any HTTP redirects.

connectStart/connectEnd

Captures when the browser begins and fin-
ishes establishing the TCP connection to the
remote server for the current page.

fetchStart Captures when the browser first begins to
check cache for the requested resource.
requestStart Captures when the browser sends the HTTP

request for the requested resource.

responseStart/responseEnd

Captures when the browser first registers and
finishes receiving the server response.

domLoading/domComplete

Captures when the document begins and fin-
ishes loading.

domContentLoadedEventEnd/
domContentlLoadedEventStart

Captures when the document’s
DOMContentLoaded event begins and finishes
loading, which corresponds to when the
browser has completed loading all of the con-
tent and running all of the included scripts on
the page.

domInteractive

Captures when the page’s Document.ready
State property changes to 'interactive’,
causing the readystatechange event to be
fired.

loadEventEnd/loadEventStart

Captures directly before the point at which
the load event is fired and right after the load
event is fired.

38 HIGH PERFORMANCE RESONSIVE DESIGN

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 2-11 shows the order in which these events occur.

navigationStart

unloadEventStart

unloadEventEnd

[«— Unload previous document

redirectStart

redirectEnd

(&— Timing for any HTTP redirects

fetchStart
domainLookupStart domainLookupEnd [«—— DNS Lookup
s cufggg:;gtt?(;;/ﬁ art connectEnd <4— TCP Connection
requestStart [— HTTP Request
responseStart responseEnd <«— HTTP Response
domLoading
dominteractive
dom(ontentLoaded || domContentloaded
EventStart EventEnd
domComplete ~ [@————————— DOM rendered
loadEventStart loadEventEnd [«¢—— Document loaded
FIGURE 2-11

The performance timing events

You can craft your own JavaScript libraries to embed in your pages and
capture actual RUM from user traffic. Essentially, the JavaScript cap-
tures these events and sends them to a server-side endpoint that you
can set up to save and analyze these metrics. I have created just such a
library at https://github.com/tomjbarker/perfLogger that you are wel-

come to use.

2. PRIMER ON PERFORMANCE OF WEB APPLICATIONS | 39

www.it-ebooks.info

http://www.it-ebooks.info/

Web Runtime Performance

As we've been discussing, web performance tracks the time it takes to
deliver content to your user. Now it’s time to look at web runtime per-
formance, which tracks how your application behaves when the user
begins interacting with it.

For traditional compiled applications, runtime performance is about
memory management, garbage collection, and threading. This is because
compiled applications run on the kernel and use the system’s resources
directly.

Running web applications on the client side is different from running
compiled applications. This is because they are running in a sandbox,
or to put it more specifically, the browser. When they are running, web
applications use the resources of the browser. The browser, in turn, has
its own footprint of pre-allocated virtual memory from the kernel in
which it runs and consumes system resources. So, when we talk about
web runtime performance, we are talking about how our applications
are running on the client side in the browser, and making the browser
perform in its own footprint in virtual memory. Figure 2-12 offers a
diagram of a web app running in the browser’s footprint within resi-
dent memory.

Resident Memory

Browser Footprint

Web App

FIGURE 2-12
A web application running in the browser’s pre-allocated footprint in resident
memory

Following are some of the factors we need to consider that impact web
runtime performance:

40 HIGH PERFORMANCE RESONSIVE DESIGN
www.it-ebooks.info

http://www.it-ebooks.info/

Memory management and garbage collection
One of the first things we need to look at is whether we are clog-
ging up the browser’s memory allocation with objects that we don’t
need and retaining those objects while creating even more. Do we
have any mechanism to cap the creation of objects in JavaScript
over time, or will the application consume more memory the more
and longer it is used? Is there a memory leak?

Garbage collecting unneeded objects can cause pauses in render-
ing or animation that can make your user experience seem jagged.
We can minimize garbage collection by reducing the amount of
objects that we create and reusing objects when possible.

Layout
Are we updating the DOM to cause the page to be re-rendered
around our updates? This is generally due to large-scale style
changes that requires the render engine to recalculate sizes and
locations of elements on the page.

Expensive paints

Are we taxing the browser by making it repaint areas as the user
scrolls the page? Animating or updating any element property
other than position, scale, rotation or opacity will cause the render
engine to repaint that element and consume cycles. Position, scale,
rotation, and opacity are the final properties of an element that
the render engine configures, and so will take the least amount of
rework to update these.

If we animate width, height, background, or any other property,
the render engine will need to walk through layout and repaint
the elements again, which will consume more cycles to render or
animate. Even worse, if we cause a repaint of a parent element, the
render engine will need to repaint all of the child elements, com-
pounding the hit on runtime performance.

Synchronous calls
Are we blocking user action because we’re waiting for a synchro-
nous call to return? This is common when you have checkboxes or
some other way to accept input and update state on the server, and
wait to get confirmation that the update happened. This will make
the page appear sluggish.

2. PRIMER ON PERFORMANCE OF WEB APPLICATIONS 41
www.it-ebooks.info

http://www.it-ebooks.info/

Q Elements | Netw

CPU usage
How hard is the browser working to render the page and execute
our client-side code?

The performance indicators that we will be looking at for web runtime
performance are frames per second and CPU usage.

FRAMES PER SECOND

Frames per second (FPS) is a familiar measurement for animators,
game developers, and cinematographers. It is the rate at which a system
redraws a screen. Per Paul Bakaus’s excellent blog post “The Illusion
of Motion” (http://bit.ly/10u97Zn), the ideal frame rate for humans to
perceive smooth, life-like motion is 60 FPS.

There is also a web app called Frames Per Second (http://frames-per-
second.appspot.com) that demonstrates animations in a browser at dif-
ferent frame rates. It’s interesting to watch the demonstration and dis-
cern how your own eyes react to the same animations at different frame
rates.

FPS is also an important performance indicator for browsers because it
reflects how smoothly animations run and the window scrolls. Jagged
scrolling especially has become a hallmark for web runtime perfor-
mance issues.

Monitoring FPS in Google Chrome

Google is currently the leader in creating in-browser tools to track run-
time performance. It has included the ability to track FPS as part of
Chrome’s built-in Developer Tools. To see this, click the Rendering tab
and then check the “Show FPS meter” box (see Figure 2-13).

ork| Sources Timeline Profiles Resources Audits Console

® O v =
Name

_| datatext/hemlchro

Preserve log

Method Status Type Initiator Size

GET (data) text/htmi Othes

e
[+ data:image/png;base eT (data) image/png datatext/htmichrome... (from cache)

2 requests | 08 trans

Console Search E

Show paint rectas

ferred

mulation | Rendering

ngles

Show composited layer barders

@ Show FPS meter

Enable continuous page repainting

Show potential scroll bottlenecks

FIGURE 2-13
Enabling the FPS meter in Chrome Developer Tools

42 HIGH PERFORMANCE RESONSIVE DESIGN
www.it-ebooks.info

http://bit.ly/1ou97Zn
http://frames-per-second.appspot.com
http://frames-per-second.appspot.com
http://www.it-ebooks.info/

This renders a small time series chart at the upper right of the browser
that shows the current FPS as well as how the number of frames per
second have been trending, as depicted in Figure 2-14. Using this, you
can explicitly track how your page performs during actual usage.

€« c www.tom-barker.com/blog/?p=x

ton- BARKER <on

home.

+ Older posts

- Your
Posted on December 12, 2013 by Tom Barker

FIGURE 2-14
Chrome’s FPS meter, in the upper-right corner of the web page

Although the FPS meter is a great tool to track your frames per second,
the most useful tool, so far, to debug why you are experiencing drops
in frame rate is the Timeline tool, also available in Chrome Developer
Tools (see Figure 2-15).

Using the Timeline tool, you can track and analyze what the browser is
doing as it runs. It offers three operating modes: Frames, Events, and
Memory. Let’s take a look at Frames mode.

Frames mode
In this mode, the Timeline tool exposes the rendering performance
of your web app. Figure 2-15 presents the Frames mode screen layout.

You

can see two different panes in the Timeline tool. The top pane displays
the active mode (on the lefthand side) along with a series of vertical
bars that represent frames. The bottom pane is the Frames view, which
presents waterfall-like horizontal bars to indicate how long a given
action took within the frame. You can see a description of the action in
the left margin; the actions correspond to what the browser is perform-
ing. At the far right side of the Frames view is a pie chart that shows a
breakdown of what actions took the most time in the given frame. The
actions included are the following:

- Layout

- Paint Setup

2. PRIMER ON PERFORMANCE OF WEB APPLICATIONS 43
www.it-ebooks.info

http://www.it-ebooks.info/

tom- BARKER zom

home

. Paint

Recalculate Style
« Timer Fired

- Composite Layers

+= Older posts

My Talk at Philly.rb - Owning Your Domain

Posted on De

cember 12, 2013 by Tom Barker

Philly.tb December <o
Q_Elements Network Sources | Timeline | Profiles Resources Audits Console 0201 = # O
® oV i @ Capture stacks

=5 Events
| it Frames

| Memory

3015

B0fss

O 79360ms 120782ms | 135083ms 311808 ms |
» = Receive Data x 62 >/ =

DETAILS: 13.24 5 - 14.115 (11 frames)

» 5 Timer Fired (www-embed-pl

» = Receive Data x 24

» 5 Evaluate Script (8001 6.s:1) > 1055
= Finish Loading (8001_6.]s)]

» = Receive Data x 25 >8

= Finish Loading (avascriptT [39.212 ms Loading
» B Receive Data x 12 g

® Finish Loading (s.ytimg.com.

= Recalculate Style
= Layout
= Recalculate Style
= Paint (1526 x 256)
= Composite Layers
» 5 Timer Fired x 2
B Recelve Response

525.717 ms Scripting

[28.383 ms Rendering

37329 ms Painting
179.434 ms Other
239.258 ms Idle

) Minimum Time: 14.727 ms (68 FPS)

Average Time: 79.331ms (13 FPS)
> Maximum Time: 311.898 ms (3 FPS)
(popup.js) L Standard Deviation: 83.121ms

FIGURE 2-15

Chrome’s Timeline tool in Frames mode

Figure 2-15 shows that running JavaScript took around half of the time,
525 milliseconds out the 1.02 second total.

Using the Timeline tool, in Frame mode, you can easily identify the

biggest impacts on your frame rate by looking for the longest bars in
the Frame view.

MEMORY PROFILING

Memory profiling is the practice of monitoring the patterns of mem-
ory consumption that our applications use. This is useful for detecting
memory leaks or the creation of objects that are never destroyed—in
JavaScript, this is usually when we programmatically assign event han-
dlers to DOM objects and forget to remove the event handlers. More
nuanced than just detecting leakages, profiling is also useful for opti-
mizing the memory usage of our applications over time. We should
intelligently create, destroy, or reuse objects and always be mindful of
scope to avoid profiling charts that trend upward in an ever-growing
series of spikes. Figure 2-16 depicts the JavaScript heap.

44 HIGH PERFORMANCE RESONSIVE DESIGN
www.it-ebooks.info

http://www.it-ebooks.info/

FIGURE 2-16
Objects in the JavaScript heap

Although the in-browser capabilities are much more robust than they
have ever been, this is still an area that needs to be expanded and stan-
dardized. So far, Google has done the most to make in-browser mem-
ory management tools available to developers.

The Memoryinfo Object

Among the memory management tools available in Chrome, the first
that we will look at is the MemoryInfo object, which is available via the
Performance object. The screenshot in Figure 2-17 shows a console
view.

3
26000000
7100000

FIGURE 2-17
The MemoryInfo object

You can access the MemoryInfo object like so:

>>performance.memory
MemoryInfo {jsHeapSizelLimit: 793000000, usedJSHeapSize:
37300000, totallSHeapSize: 56800000}

Table 2-2 presents the heap properties associated with MemoryInfo.

2. PRIMER ON PERFORMANCE OF WEB APPLICATIONS 45
www.it-ebooks.info

http://www.it-ebooks.info/

TABLE 2-2. MemoryInfo object properties

OBJECT PROPERTY DEFINITION

jsHeapSizelimit The upper boundary on the heap size

usedJSHeapSize The amount of memory that all of the current objects in the heap

are using

totalJSHeapSize The total size of the heap including free space not used by

objects

These properties reference the availability and usage of the JavaScript
heap. The heap is the collection of JavaScript objects that the inter-
preter keeps in resident memory. In the heap, each object is an inter-
connected node, connected via properties such as the prototype chain
or composed objects. JavaScript running in the browser references the
objects in the heap via object references. When you destroy an object in
JavaScript, what you are really doing is destroying the object reference.
When the interpreter sees objects in the heap with no object references,
the garbage collection process removes the object from the heap.

Using the MemoryInfo object, we can pull RUM around memory
consumption for our user base, or we can track these metrics in our
lab to identify any potential memory issues before our code goes to
production.

The Timeline tool

In addition to offering the Frames mode for debugging a web appli-
cation’s frame rate, Chrome’s Timeline tool also has Memory mode
(shown in Figure 2-18) to visualize the memory used by your applica-
tion over time and exposes the number of documents, DOM nodes,
and event listeners that are held in memory.

Network Sources | Timeline | Profiles Resources Audits Console # 0, x

I

L

o Capture stacks 16 of 32021 records shown
L7 min 33min s.0min 67min 83min 100min 117 min 133 min 15.0min 16.7min 183min

RECORDS
» 8 Paint (1526 x 256)
& Composite Layers.
COUNTERS
M Documents [3:3]
Nodes [2848:2848]
I Listeners [204:204]

8005 R02c 8045 8065 8085 8105 [3TH (i DETAILS: 7.995 - 8.155

158.709ms

FIGURE 2-18
The Chrome Timeline tool in Memory mode

46 HIGH PERFORMANCE RESONSIVE DESIGN
www.it-ebooks.info

http://www.it-ebooks.info/

The top pane shows the memory profile chart, whereas the very bot-
tom pane shows the count of documents, nodes, and listeners. Note
how the blue shaded area represents memory usage, visualizing the
amount of heap space used. As more objects are created, the memory
usage climbs; as those objects are destroyed and garbage collected, the
memory usage falls.

You can find a great article on memory management from the Mozilla
Developer Network at http://mzl.la/1r1RzOG.

Firefox has begun to expose memory usage as well, via an “about:mem-
ory” page, though the Firefox implementation is more of a static infor-
mational page rather than an exposed API. As such, because it can’t
be easily plugged into a programmatic process and generate empiri-
cal data, the about:memory page is tailored more toward Firefox users
(albeit advanced users) rather than being part of a developer’s toolset
for runtime performance management.

To access the “about:memory” page in Firefox, in the browser’s location
bar, type about:memory. Figure 2-19 shows how the page appears.

Show memory reports [verbose Save memory reports Free memory

Measure || Load... || Load and diff... || Read from clipboard Measure and save... GC || €€ || Minimize memory usage

Main Process

Explicit Allocations

564.29 MB (100.0%) — explicit
|-~157.75 MB (27.96%) -- window-objects
| 95.88 MB (16.99%) — top(none)/detached/window([system])
| -95.68 MB (16.96%) —- Js-compartment ([System Principall, about:blank}
|-~38.16 MB (06.76%) ++ objects
28.86 MB (05.11%) ++ scripts
27.35 MB (04.85%) ++ shapes
1.31 MB (00.23%) ++ (3 tiny)
0.15 MB (00.033) ++ dom
43.37 MB (07.69%) —- top(chrome://browser/content/browser.xul, id=3)
|-—26.72 MB (04.73%) ++ active
l-16.65 MB (02.95%) — js-zane(0x10bc5dE00)
9.55 MB (01.69%) — strings
7.52 MB (01.333) ++ notable
2.03 MB (00.363) ++ (2 tiny)

6.66 MB {01.18%) — unused-ge-things
0.42 MB {00.083}) ++ (5 tiny)
10.52 MB (01.868) —- top(http://wwe. tom-barker.com/blog/2p=x, id=10}
|——7.62 MB (01.35%) -- active
3.14 MB {00.56%) ++ window(http://g-ecd. images/C/01/ tes/widgets/20070822/US/html fpreload retail asset. .

2.37 MB (00.42%) ++ window(http://www.youtube.com/embed/n3ovgibY¥-sk#t=3041)
1.65 KB (00.29%) ++ window(http://www. tom-barker.con/blag/?p=x)

0.45 MB (00.08%) ++ window(http://rom.amazon.com/e/cn?1k1=_blanksbcl=FFPFEFS182=15nou=15bg]l =FPPFFFs£o1=00000051e1=0000FFst=webde.

2.91 MB (00.52%) ++ js-zome(0x11411d800)
7.98 MB (01.41%) ++ (6 tiny)

|-—137.99 MB (24.453) — heap-unclassified
|—132.38 MB (23.453) - js-non-window
| 84.97 MB (15.06%) — zonmes

|-~56.63 MB (10.04%) —- zone(0x107227000)

|~40.37 MB (07.15%) ++ (364 tiny)

FIGURE 2-19
Firefox’s about:memory page

Looking at Figure 2.19, you can see the memory allocations made by
the browser at the operating system level as well as heap allocations
made for each page that the browser has open.

2. PRIMER ON PERFORMANCE OF WEB APPLICATIONS 47
www.it-ebooks.info

http://mzl.la/1r1RzOG
http://www.it-ebooks.info/

Summary

This chapter explored web performance and web runtime performance.
We looked at how content is served from a web server to a browser and
the potential bottlenecks in that delivery as well as the potential bottle-
necks in the rendering of that content. We also looked at performance
indicators that speak to how our web applications perform during run-
time, which is the other key aspect of performance: not just how fast we
can deliver content to the end user but also how usable our application
is after it has been delivered.

We looked at tools that quantify and track both types of performance.

Most important, we level-set expectations with respect to concepts that
we will be talking about at length throughout the rest of this book. As
we talk about concepts such as reducing page payload and number of
HTTP requests or avoiding repainting parts of a page, you can refer
back to this chapter for context.

Chapter 3 looks at how you can start building responsiveness into your
overall business methodology and the software development life cycle.

48 HIGH PERFORMANCE RESONSIVE DESIGN

www.it-ebooks.info

http://www.it-ebooks.info/

[3]

Start with a Plan

A Journey Down the Slippery Slope

[REMEMBER THE FIRST TIME | STARTED A PROJECT THAT HAD ASPIRA-
TIONS OF BEING responsive. Everyone on the team bought in: the prod-
uct owner, the design group, engineering. We groomed and groomed,
exploring together what our collective ideas of what being responsive
meant. We were excited about the possibilities and giddy with the taste
of something new.

Until that point, we maintained an mdot website with a separate devel-
oper dedicated to keeping it current and aligned with the main site. In
engineering, we were looking forward to folding that developer back
into the main team, and we were enjoying the collaboration we were
experiencing with the design group.

We were a few weeks in and had nothing yet to demonstrate or even
show to the executive team, but we nonetheless glowed about what
a great learning experience we were having. Naturally, the executive
team wasn't glowing quite as brightly and wanted to have something
concrete that they could talk about with their leadership team and their
peers. A section of the design team was split off from the working team
to mock up what the website would look like on the desktop, just as a
talking point. Of course, after that mock-up was shown around, it was
approved and suddenly became the final design from which we had to
work and on which we had to base an end date.

Even though we conceptually knew that we should have started with
the mobile view first and layered on from there, we quickly deferred all
intentions to craft the small view for a later iteration and began to focus
on creating the vision of the final product. It was only a year later that
we started to craft what the experience on other devices might be, but

49
www.it-ebooks.info

http://www.it-ebooks.info/

by then the main desktop experience had become so feature rich that
it was slow going, and it became a pet project that spanned months to
mock up what the responsive site could be.

By then, it was too late; the mockup had about the same page payload as
the desktop version, but it performed poorly when displayed on actual
devices. The site remained a desktop-only experience.

How closely does that mirror your own experiences, either with previ-
ous projects or current ones? How did it all go wrong? I thought on this
for a while: what learnings could I carry out from this to benefit future
projects?

Atahigh level, we did ourselves in. From within the team, itall appeared
to be fun exploration and collaboration, feeling out the boundaries of
something that was new to us. From outside the team, it looked as if
we had no plan and no end goal in sight—which was true. In the long
term, our lack of planning undermined the executive team’s trust in
the working team, and set the precedent that we needed intervention
and an end goal outlined for us.

In this chapter, I outline how to craft a plan for your team so that you
can quickly create deliverables that can become talking points for the
leadership team, all while still sticking to the goals of having a respon-
sive, high-performing site.

Project Plans

Responsive projects really are no different from any other project, in
so much as they generally will benefit from having a project plan. In
program and project management literature, there are several flavors of
project plans, depending on methodology, organization, business sec-
tor, and whom you ask (among other factors), but in general, project
plans will consist of the following steps:

1. Assess/summarize the overall task
2. Establish rough milestones and timelines
3. List dependencies and risks

4. List key performance indicators (KPIs) that measure success

50 HIGH PERFORMANCE RESPONSIVE DESIGN
www.it-ebooks.info

http://www.it-ebooks.info/

The only difference with a responsive project is that requirements
which speak to the various device experiences should be explicit in
each of the aforementioned steps. Let’s look at each of these steps in
greater detail.

ASSESSING AND SUMMARIZING THE OVERALL TASK

Assessing the overall task involves collecting requirements and deter-
mining the content strategy for your project. This could mean having
a discussion with your stakeholders or product manager to establish
the philosophy or vision of your site and the intended use cases that
you are developing for. This could also mean working with them to do
extensive user testing and competitive analysis to determine the con-
tent strategy.

Part of assessing the task is to answer certain relevant questions. For
example, are you trying to re-create the viewing experience of a 10-foot
video screen, or are you trying to serve textual content? Are you creat-
ing a companion experience to a television product, or are you crafting
an intranet experience available to a locked-down set of users.

Does your project even need to be responsive? A number of years ago I
worked on a web app project that aimed to assist construction manag-
ers in identifying obvious hazards such as upturned dirt that was not
surrounded by silt fences. By the very nature of this single use case, the
project never needed a desktop experience, so we built for the smart-
phone dimensions and just let the size of the page naturally scale up for
desktop experiences (there were no tablets back then).

The use cases and overall project vision should explicitly answer the
question: what are the viewports that I am targeting for this project?
These viewports should be part of your requirements, and as we prog-
ress through each step in the project plan, we will refer back to them,
but again the very first step is to identify which ones we are explicitly
targeting. Figure 3-1 depicts a sampling of potential viewports that you
might target as well as their relative size differences.

3. START WITH A PLAN 51
www.it-ebooks.info

http://www.it-ebooks.info/

DDD

FIGURE 3-1
A sample of viewports ranging from smartphones, tablets, laptops, and
HDTVs, covering differences not only in size, but also orientation

Beyond just the difference in size, you also need to consider the differ-
ence in viewing distance, battery life, and network speed and reliability
for each device experience.

Studies have revealed that the average distance from a user’s face to
the screen for smartphones is only 12.6 inches.! Compare this to an
average of 25 inches for laptops,? and 96 inches for televisions.® (See
Figure 3-2.)

1 http://bit.ly/lupRIDu
2 http://bit.ly/10pmjDm
3 http://bit.ly/1x32EG6

52 HIGH PERFORMANCE RESPONSIVE DESIGN
www.it-ebooks.info

http://bit.ly/1upRIDu
http://bit.ly/10pmjDm
http://bit.ly/1x32EG6
http://www.it-ebooks.info/

Average Viewing Distance by Device

distance in inches

20
1

o - -

smartphone laptop television

hitg:l hiield.comiS-yL v

ittp:/wwnw wave-fem com/Attachments/_Laptop_Notebook_Computers_and_Ergonomics. pdf

FIGURE 3-2
Average viewing distance by device, in inches

These variations in viewing distances mean differences in, among
other things, image and font sizes, each of which require different CSS
rules and potentially different images for each experience. You need to
account for these when assessing the size of the overall tasks.

Average network speeds are equally staggered across mediums.
According to Akamai’s 2013 report “State of the Internet” (http://bit.
ly/1tDGysM), the average broadband connection speed in the United
States was 11.6 megabits per second (Mbps), whereas the average
mobile connection speed was 5.3 Mbps. See Figure 3-3.

3. START WITH A PLAN | 53
www.it-ebooks.info

http://bit.ly/1tDGysM
http://bit.ly/1tDGysM
http://www.it-ebooks.info/

speed in Mbps

mobile

broadband

Average Connection Speeds (in Mbps) in the US

I I T T 1
2 4 6 8 10

o

Source: http:ffwww.akamai i i-soti-q313.pdf

FIGURE 3-3
Average connection speeds (Mbps) in the United States in 2013

This discrepancy in connection speed obviously speaks to the issue of
how long it will take to deliver and render content to a device. This
means that you need to plan your feature set and your performance
budget accordingly.

Establishing rough milestones and timelines

Don'’t plan in a vacuum; after you have established the target view-
ports, you should perform competitive analysis. Make the effort to
research internal and external applications that serve similar functions
and come up with a performance baseline for each device experience

54 | HIGH PERFORMANCE RESPONSIVE DESIGN
www.it-ebooks.info

http://www.it-ebooks.info/

based on this competitive analysis. Intelligently plot out what the cur-
rent landscape is for performance and make an intentional decision of
where in that landscape you want your application to be.

Figure 3-4 presents the results of a theoretical competitive analysis of
page load times for mobile experiences. In this theoretical data set, we
can see that the majority of our internal and external competitors fall in
the 500-millisecond to 1-second range. Is that an acceptable range for
our web application, or do we want to be performance leaders and aim
for the sub-500-millisecond tier? What sort of features do the sites in
that range have, and are we OK paring down our feature set to get our
page load times that low?

Distribution of Page Load Times in Milliseconds

25

20

Frequency
15

10

| [| | I | I
0 500 1000 1500 2000 2500 3000

Page Load Times

FIGURE 3-4
Histogram of result from theoretical analysis of competitor page load times

3. START WITH A PLAN | 55
www.it-ebooks.info

|
3500

http://www.it-ebooks.info/

In Figure 3-4, note the outliers that take up to 3.5 seconds. This deci-
sion—this line in the sand—is where you are intentionally position-
ing your application in the performance baseline. This is your perfor-
mance service-level agreement.

Determining a performance service-level agreement

A service-level agreement (SLA) is a commitment of quality from a ser-
vice provider, traditionally stipulating aspects such as response times,
up times, and error rates. As owners of a website, that site is a ser-
vice we are providing and we should feel compelled to provide an SLA
to our end users as well as internal stakeholders for how our website
performs.

Your performance SLA should be explicit both in what it is stating and
in how it will be measured. A good performance SLA might read as
follows:

For the 95th percentile, the page load times of our website will be 1
second or less on a small screen experience, and 3 seconds or less on a
large screen experience, measured via synthetic testing.

When you determine your performance SLA, this decision should
influence what features you put on each experience and how you show
them. You should also publish this SLA in your documentation to
make it available to your team and stakeholders.

CRAFTING ROUGH MILESTONES AND TIMELINES

Now that you have an understanding based not only on what the prod-
uct request is, but also of what it would really involve from a perfor-
mance perspective, you can begin to flesh out its implementation. This
can be as rich and complex as a hierarchical tree structure of user sto-
ries, to as high level as a spreadsheet of T-shirt sized steps.*

But all of your device/resolution/viewport—specific states are explicitly
called out and accounted for as milestones in the overall timeline, as
illustrated in Figure 3-5.

4 T-shirt sizing is a way to practice agile estimating. Estimates are bucketed in small-,
medium-, or large-sized efforts, relative to each other. Rally has a write-up on the practice
here: http://bit.ly/1w020Gt.

56 HIGH PERFORMANCE RESPONSIVE DESIGN
www.it-ebooks.info

http://www.it-ebooks.info/

User Story Risks Depende
Create environments
Identify Endpoints

Create 1024 x 768 view of
homepage (for older laptops
and Ipad 1 and 2s)

Create 2048 x 1536 view of
homepage (for Ipad 3 and
up)

Create 768 = 1024 view of
homepage (for iPad minis)
Create 2560 x 1440 view of
homepage (for laptops)
Create 640 = 1136 view of
homepage (for iPhone 5s)

FIGURE 3-5

A sample of high-level plan with milestones built in for each resolution and

device targeted

T-Shirt Size
1sprint
1sprint

ncies

1sprint

1sprint
1sprint
1sprint

1sprint

To be clear, the high-level stories that we are indicating in Figure 3-5
(Create 1024 x 768 view, Create 2560 x1440 view) are not assuming that
these are distinct pages or anything of the sort—this is just a collection
of milestones that will be accomplished (objectives, if you will); the tac-

tics of how to accomplish that are not implied.

[NOTE]

Radu Chelariu wrote a great article for Smashing Magazine that outlines
a broad swath of resolutions by device. You can read it at http://bit.ly/

ZqcGUb.

Oh, one more thing: because we have committed to adhering to a per-

formance SLA, we should be sure to include high-level stories that

define the setup of the infrastructure and process for monitoring our
SLA. Let’s add these supporting stories to our existing list, as shown

in Figure 3-6.

www.it-ebooks.info

3. START WITH A PLAN

57

http://www.it-ebooks.info/

User Story Risks Dependencies T-Shirt Size

Create environments 1sprint

Identify Endpoints 1 sprint

Create 1024 x 768 view of

homepage (for older laptops

and Ipad 1 and 2s) 1 sprint

Create 2048 x 1536 view of

homepage (for Ipad 3 and

up) 1 sprint
Create 768 = 1024 view of

homepage (for iPad minis) 1 sprint
Create 2560 x 1440 view of

homepage (for laptops) 1 sprint
Create 640 = 1136 view of

homepage (for iPhone 5s) 1 sprint

Create environments for
internal WebPageTest

instance 1sprint

Set up and configure internal

WebPageTest instance 1sprint

Integrate SLA check into Cl

workflow 1 sprint
FIGURE 3-6

Our high-level story list, updated to account for tracking our SLA

LIST DEPENDENCIES AND RISKS

After we have the high-level stories mapped out with time estimates for
each one, we can begin to flesh out the risks and dependencies for each
story. These should be fairly straightforward and commonsensical, but
you still need to call them out both to properly account for the steps
needed to accomplish the stories and to show your stakeholders that
those steps are being taken. Figure 3-7 is a continuation of the previous
example, this time fleshed out with dependencies and risks.

Figure 3-7 illustrates how we can see that the dependencies have the
designs or wireframes, have environments set up, and have a defined
performance SLA. By calling these out explicitly, we can see what sto-
ries need to be predicated by other stories. It also makes it possible for
us to craft a meaningful timeline by staggering these stories.

58 HIGH PERFORMANCE RESPONSIVE DESIGN
www.it-ebooks.info

http://www.it-ebooks.info/

User Story Risks Dependencies T-Shirt Size

Create environments Infrastructure 1sprint
APl Team,
Connectivity to API

Identify Endpoints endpoints 1 sprint
MNeed designs or

Create 1024 x 768 view of wireframes for this

homepage (for older laptops Must adhere to resolution, need SLA

and Ipad 1 and 2s) SLA for tablets for this device 1 sprint
MNeed designs or

Create 2048 x 1536 view of wireframes for this

homepage (for Ipad 3 and Must adhere to resolution, need SLA

up) SLA for tablets for this device 1 sprint

MNeed designs or
wireframes for this
Create 768 x 1024 view of Mustadhereto resolution, need SLA
homepage (for iPad minis) SLA for tablets for this device 1 sprint
MNeed designs or
Must adhere to wireframes for this
Create 2560 x 1440 view of SLA resolution, need SLA
homepage (for laptops) laptop/desktop for this device 1 sprint
MNeed designs or
Must adhere to wireframes for this
Create 640 x 1136 view of SLA for resolution, need SLA
homepage (for iPhone 5s) smartphones for this device 1 sprint
Create environments for
internal WebPageTest

instance Infrastructure 1sprint

Set up and configure internal need environments

WebPageTest instance setup 1sprint

Integrate SLA check into Cl

workflow 1 sprint
FIGURE 3-7

Dependencies and risks outlined in the overall project story plan

Crafting timelines

Now that we know the steps that will be involved in completing the
task, we can construct very rough timelines. By using high-level T-shirt
sizes for each task we can group them in a meaningful manner and lay
them horizontally across a timeline.

For this example, let’s assume that we have two-week iterations.
Assuming that we know our team’s velocity, we can construct a very
rough swag of what would fit in each iteration. We can group all of the
research and set up stories into a single iteration. Then we can group a
handful of stories into another iteration, and the remainder of the sto-
ries into a third iteration.

3. START WITH A PLAN 59
www.it-ebooks.info

http://www.it-ebooks.info/

With the following methodology, we can see that the task is probably
at least a six-week project, if not longer, as demonstrated in Figure 3-8.

Week 1 Week 2 Week 3 Week 4
Sprint A Sprint B
Create environments Create 640 = 1136 view of homepage (for iPhone 5s)
Identify Endpaints Create 768 x 1024 view of homepage (for iPad minis)
Create environments for internal WebPageTest instance Create 1024 x 768 view of homepage (for older laptops and Ipad 1 and 2s)
Set up and configure internal WebPage Test instance Integrate SLA check into Cl workflow
Week 5 Week 6 Week 7 Week B
Sprint C

Create 2048 x 1536 view of homepage (for Ipad 3 and up)
Create 2560 x 1440 view of homepage (for laptops)

FIGURE 3-8
Our high-level stories laid out across very rough timelines

The important thing to note here is that these are very rough timelines.
A moment ago, I intentionally used the word “swag,” which stands for
Scientific Wild-Ass Guess. In slightly more polite society, it’s some-
times called a guesstimate, or back of the napkin calculation. As long
as you are clear with your stakeholders that this timeline is subject to
change as you find out more information, and you continue to commu-
nicate as new developments arise, you should be good.

KPIs THAT MEASURE SUCCESS

We have so far assessed the task, created rough timelines around it,
and listed dependencies involved in achieving those timelines. Next,
we need to ensure that we have clearly defined criteria for success. In
truth, the KPIs that measure the success of the project should already
exist before our product or business team come to us with the ask, but
we need to work with them to ensure that first these KPIs are visible
and obvious to the entire team, and second that our solution to the ask
actually is aligned to satisfy the intended criteria.

If KPIs are not determined at this point, we need to collaborate with
our stakeholders to establish them. How else will we know if our proj-
ect is a success, and how else will we be able to iterate to improve on
those results?

60 HIGH PERFORMANCE RESPONSIVE DESIGN
www.it-ebooks.info

http://www.it-ebooks.info/

KEEP TO YOUR PERFORMANCE SLA

We now have a plan of what we need to get done, we have identified
milestones, and we are communicating when we will have each mile-
stone complete. We have a performance SLA for each experience; we
are ready to start the work.

But during development it is imperative to stick to our performance SLA.
You need to ensure that performance testing is a part of your continu-
ous integration workflow and that you have alerts go off when you violate
your SLA. We talk at length about how to do this in Chapter 6.

Use your SLA as a discussion point when evaluating new features. Will
these new features impact your performance? Will slight alterations in
the business rule result in a higher-performing product?

Summary

The purpose of this chapter was not to cover how to manage a project,
but to discuss a way to incorporate responsiveness and performance
into a project plan. With a responsive project plan we can communicate
meaningful milestones to our stakeholders, without sacrificing all of
the device experiences that we want to cover as part of our final product.

3. START WITH A PLAN 61
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[4]

The Backend

THE THESIS OF THIS chapter—and really that of the entire book—is that
to think about responsive web design as a frontend-only skill set is to
limit the scope of what you can do and what tools are available to you.
We are web developers, and as such we should be able to take advantage
of the entire web stack in everything that we do. This chapter outlines
how we can start thinking responsively from the backend.

The Web Stack

Before we begin, I should define what the web stack is, because it is in
fact a collection of several stacks. And, as we are talking about the Web,
let’s start with the network stack.

THE NETWORK STACK

The network stack is a collection of protocols that outline how net-
worked systems communicate. It is made up of the following layers:

Data link layer
This usually corresponds the standard way that hardware connects
to the network. For our purposes, this is either via Ethernet, specif-
ically the IEEE 802.3 standard for physically interconnected devices
(http://bit.ly/ethernet-standards), or via WiFi, specifically the IEEE
802.11 standard for wirelessly interconnected devices (http://bit.
ly/1p8UWGP).

Network layer
This layer corresponds to the standards that define communication
and identification of nodes on a network, specifically the protocol IP,
or Internet Protocol. It is through the Internet Protocol that nodes
are identified via IP addresses and data is sent via packets between
these hosts. The standard for Internet Protocol is maintained in
IETF RFC 794, which you can read at http://bit.ly/11j30uQ.

63
www.it-ebooks.info

http://www.it-ebooks.info/

Transport layer

This usually corresponds to TCP, or Transmission Control Protocol,
defined in IETF RFC 793 (http://www.ietf.org/rfc/rfc793.txt).
TCP is the protocol used to establish connections between hosts.
Whereas IP handles transmitting the data as packets, TCP divides
the packets into segments, attaches headers to each segment to
identify the destination IP address of the segment, and re-assem-
bles and verifies the segments upon delivery.

Application layer
This top layer corresponds to HTTP, or Hyper Text Transport
Protocol. The standard for HTTP is IETF RFC 2616, which you
can see at http://tools.ietf.org/html/rfc2616. HTTP is the language
of the Web, made up of verbs that make up the request/response
structure.

Together this stack represents the steps that are traversed when send-
ing and receiving data over the Internet, as illustrated in Figure 4-1.

o,
“@%
Client Web Application
' Application ‘ V Application |
r Transport ' Transport
' Network Network
' Data Link V Data Link

FIGURE 4-1

A user sending a request down the TCP/IP stack, and the same request
traversing up the TCP/IP stack to make it to the web application residing on a
remote server

64 HIGH PERFORMANCE RESPONSIVE DESIGN
www.it-ebooks.info

http://www.ietf.org/rfc/rfc793.txt
http://tools.ietf.org/html/rfc2616
http://www.it-ebooks.info/

THE APPLICATION LAYER

Knowledge of all of the stacks is important, but for our purposes, as
web developers, the primary layer with which we interface and have
programmatic control is in the application layer, specifically HTTP.

Chapter 2 shows that an HTTP transaction happens within a TCP con-
nection. It consists of a request from a client and a response from a
server, but let’s take a deeper dive into what constitutes a request and
a response.

The HTTP Request

An HTTP request is made up of two parts: a request line, and a set of
request headers. The request line specifies the HTTP method, or verb,
used in the request as well as the URI of the requested resource; or
more plainly, it specifies what action I am looking to perform (get a file,
send a file, get information about a file) and where I am looking to per-
form this action (the location of the file or resource). The following are
some of the methods that are supported in HTTP 1.1:

OPTIONS
Queries the HTTP request methods that a server will support.

GET
Requests a remote resource. This becomes a conditional GET when
you specify If-Modified-Since, If-Unmodified-Since, If-Match,
If-None-Match, or If-Range in the HTTP header section, at which
point the server will only return the resource if it has satisfied those
requirements. Usually, you use conditional GETs when checking
whether to retrieve a new asset or use the asset currently in cache.

HEAD
Requests only the HTTP header of a remote resource. This is used

mainly to check the last modified date or to confirm that a URI is
valid.

POST
Requests that the server update or modify an existing resource.

PUT
Requests that the server create a new resource.

DELETE
Requests that the server remove a resource.

4. THE BACKEND 65
www.it-ebooks.info

http://www.it-ebooks.info/

The request header allows the client to specify parameters that aug-
ment the request, similar to how you can pass in parameters to a func-
tion. The following are some of the more interesting request headers:

Host
The domain name specified in the URL

If-Modified-Since
This instructs the server to return the asset only if it has been
updated since the date specified in this request header field. If the
asset has been updated the server should respond with the asset
and a status of 200; if it has not, the server simply responds with a
status of 304.

User-Agent
A string that identifies characteristics of the client making the
request. This is the header that we will make the most use of this
chapter.

By using network tracing tools such as Charles or Fiddler, you can
inspect the contents of an HTTP request. The following example shows
an HTTP request:

GET /style/base.css HTTP/1.1

Host: www.tom-barker.com

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac 0S X 10.7;

rv:27.0) Gecko/20100101 Firefox/27.0

Accept: text/css,*/*;q=0.1

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Referer: http://www.tom-barker.com/blog/?p=x

Connection: keep-alive

The HTTP Response
When the server receives and processes a request, it sends a response
to the client that issued the request. Just like the HTTP request, the

HTTP response is made up of two parts: the status line and the header
fields.

The status line lists the protocol version (HTTP 1.1), the status code,
and a textual phrase that describes the status of the request.

66 HIGH PERFORMANCE RESPONSIVE DESIGN
www.it-ebooks.info

http://www.it-ebooks.info/

The status codes consist of three-digit numeric values that are broken
up into five distinct high-level categories of response. The first digit of
the status code indicates its category. Per the W3C’s HTTP specifica-
tion, which you can reference at http://bit.ly/rfc-http, the categories are
the following:

1xx: Informational
Request received, continuing process

2xx: Success
The action was successfully received, understood, and accepted

3xx: Redirection
Further action must be taken to complete the request

4xx: Client Error
The request contains bad syntax or cannot be fulfilled

Sxx: Server Error
The server failed to fulfill an apparently valid request

The header fields are much like the request headers in that they are
passed name-value pairs with which the server can specify additional
information about the response. Here are some of the more interesting
response headers are:

Age
Denotes the server’s estimate of the amount of time since the
requested resource was created or update.

ETag
Lists the entity tag identifier that the server assigns to a resource.
This is useful for conditional matching.

Vary
Indicates what request headers should be used to determine if a
request can be served by cache. Later in the chapter, we look at
sending different responses from the server based on user agent
information. The Vary header is important because it allows us
to specify the User-Agent request header to be part of the cache
evaluation.

4. THE BACKEND 67
www.it-ebooks.info

http://www.it-ebooks.info/

Here’s a sample HTTP response:

HTTP/1.1 200 OK

Date: Sat, 29 Mar 2014 19:53:24 CMT

Server: Apache

Last-Modified: Sat, 05 May 2012 22:11:12 GMT
Content-Length: 2599

Keep-Alive: timeout=10, max=100

Connection: Keep-Alive

Content-Type: text/css

CHARLES

There are a number of tools available for inspecting your network traf-
fic. There are the in-browser developer tools (covered in Chapter 2), but
there are also more in-depth traffic analysis tools; one of the favorites
among web developers is Charles (see Figure 4-2).

Charles is an HT'TP monitoring tool that you can use to watch and edit
HTTP traffic over the network. Charles is also an HTTP proxy that you
can use to throttle the bandwidth and latency of connections, inter-
cept requests, spoof DNS calls, and even map local files to appear as if
they are part of a remote website. Charles is available to download from
http://www.charlesproxy.com/.

»
‘V».—. [@ N WEB DEBUGGING PROXY APPLICATION
| ‘;:‘ﬁ l C harles for Windows, Mac OS and Linux

Charles is an HTTP proxy / HTTP monitor / Reverse Proxy that enables a DOWNLOAD
developer to view all of the HTTP and SSL / HTTPS traffic between their
machine and the Internet. This includes requests, responses and the HTTP
headers (which contain the cookies and caching information).

Download a free trial
Version 3.8.3

READ MORE

nno Charkes 3.2 - Session 1

CAMHTN - ¥ B/ X
{Stmactine |_sequence Generu [Contents’| Summary__Chant__Notes ke A e

Develop a Full

Mabile Strategy

onaCMS

Platform!

vo?®
e
Take advantage of the
full spectrum of mobile
opticns with Stefinity
CMS

ads via Carbon

Recording Sogped

FEATURES

FIGURE 4-2
The Charles home page

68 HIGH PERFORMANCE RESPONSIVE DESIGN
www.it-ebooks.info

http://www.charlesproxy.com/
http://www.it-ebooks.info/

Figure 4-3 depicts the Charles interface. This particular screenshot is
showing all of the transactions that were recorded in a given section,
in sequence; note the fields that are exposed, including HTTP status,
HTTP method, host, payload of the transaction, and duration.

B e M A ~¢@ 8 /7¢v X @

[Structure [ETTET
RC Mthd Host Path Duration Size Status Info
Q 200 GET www.tom-barker.com /blog/7p=x 559 ms 27.80KB Complete
B 504 GET_fwom-barkercom—sie/basecss —————————la3m [orbpes Gompewe |
304 GET www.tom-barker.com /lib/perflLogger.js 80 ms 689 bytes Complete
304 GET tom-barker.com fimages/disaster_needs_venn.png 113 ms 507 bytes Complete
" 304 GET tom-barker.com /images/PrepStrategy.png 84 ms 500 bytes Complete

Filter: ' tom-barker

[Overview JTZTTS0] Response | Summary | Chart Motes |

GET /style/base.css HTTP/1.1
Host www.tom-barker.com
Cache-Control max-age=0
Accept text/ess,”/*q=0.1
If-Modified-Since Sat, 05 May 2012 22:11:12 GMT
User-Agent Mozilla/5.0 (Macintosh; Intel Mac 05 X 10_7_5) AppleWebKit/537.36 (HTML, like Gecko) Chrome/33.0.1750.152 Safari/537.36
Referer http:/www.tom-barker.com/blog/7p=x
Accept-Encoding gzip,deflate,sdch
Accept-Language en-US,en;q=0.8

Cookie NodeWurfiCloud_Client=ey)kYXRIX3NICIGMTMSNjg4 ODYyNywiY2FwYW)pbGIaWVzljp 7ImizX 3NtYXJOcGhvb mUIOmZhbHNILCIpc 1 90YW)sZXQIOMZh. .

[T Cookies | Raw |

FIGURE 4-3
HTTP transactions recorded in Charles

Web Application Stack

So far, we've talked about the underlying infrastructure and network-
ing protocols on which our web applications run. Let’'s make sure we
understand the software stack that our web applications run on.

Most, if not all, web applications operate in a client-server model,
which is just a distributed computing methodology in which, if I were
to describe it in grossly oversimplified terms, clients request data from
servers. Servers process the requests and respond; oftentimes, these
servers are distributed across a network for the sake of scalability.

In the interest of giving concrete examples of this model, let’s assume
that a browser is a client, and a web server is a server. When I say web
server, I can be referring to either a piece of software such as Apache

4. THE BACKEND 69
www.it-ebooks.info

http://www.it-ebooks.info/

(https://httpd.apache.org/) or Microsoft’s Internet Information Server
(http://www.iis.net/), or I can be referring to the actual hardware on
which the software runs on.

Continuing with our example scenario, the web servers listen on cer-
tain ports—application endpoints denoted by number—for HTTP
requests to come in; HTTP requests come in on port 80, and HTTPS
requests come in on port 443. When the web server gets a request it
routes the request to the appropriate resource.

The resource could be code that is evaluated and interpreted on the
server side, as in the case of Ruby or PHP, or it could be static content
such as an HTML page. Either way, the routed request is met with a
response from the server that goes back to the client.

In the case of a response that has an HTML document as its body,
the HTML is parsed and rendered on the client device. If there is any
JavaScript on the page, that is interpreted on the client side as well.

Internet
Client Server
g Linux
‘ Chrome ’ Apache '

FIGURE 4-4
An example of a client-server transaction

Responding on the Server Side

Now that you understand the protocol and software stacks in the web
stack, the first thing you should establish is the earliest point in the
stack at which you can determine client capabilities. Right now, the
norm for responsive design is to determine client capabilities on the cli-
ent side after the server has sent the HT'TP response and the client has
received, parsed, and rendered contents of the response. Architecturally,
that looks like Figure 4-5, in which the browser requests the page; the
web server receives the request at port 80 and passes it to the web appli-
cation, the web application processes the request and responds, the

70 HIGH PERFORMANCE RESPONSIVE DESIGN
www.it-ebooks.info

https://httpd.apache.org/
http://www.iis.net/
http://www.it-ebooks.info/

client receives the response, parses the page, renders the page, runs
the code on the client device to determine capabilities, and then finally
reacts appropriately based on those capabilities.

TR Parse page
Determine dlient capabilities

A

HTTP Request

port 80 HTTP Response

s ~

Web Server

Web Application

Java/Ruby/
Node.js

Database
Server

Application
Server

FIGURE 4-5
Determining capabilities on the client side

Even just describing all of that in written words feels overly and unnec-
essarily complicated.

But what we can glean from the HTTP request description is that the
user agent is passed to the web server and the web application, and that
the user agent describes the client. We could instead push the logic
to determine client capabilities to our backend, our server side. This
would make it possible for us to streamline what we send to the cli-
ent, sending device-specific code instead of all of the code for all of the
devices (see Figure 4-6 for what that amended architecture would look
like).

4. THE BACKEND 71
www.it-ebooks.info

http://www.it-ebooks.info/

‘ Browser I Parse page

A

HTTP Request

port 80 HTTP Response

(A

Web Server

Web Application

Java/Ruby/
Node.js

Database
Server

Application
Server

FIGURE 4-6

Determining client capabilities on the server-side and responding with device

appropriate content

To understand how we determine client capabilities based on the User

Determine client capabilities

Respond with appropriate
content

Agent, let’s first take a look at the User Agent.

INSPECTING THE USER AGENT

The specification for the User Agent field is defined in section 14.43
of RFC 2616, the HTTP specification, which you can read at http://bit.

Iy/1tDGOZ0.

The User Agent is a string that is composed of different tokens that
describe the browser, browser version, and system information such as
operating system and version. Some example User Agent strings are

presented in Table 4-1.

72

HIGH PERFORMANCE RESPONSIVE DESIGN

www.it-ebooks.info

http://bit.ly/1tDGOZ0
http://bit.ly/1tDGOZ0
http://www.it-ebooks.info/

TABLE 4-1. Sample User Agent strings by browser type

BROWSER USER AGENT STRING

Chrome 34 on a Mac Mozilla/5.0 (Macintosh; Intel Mac 0S X
10 7 5) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/34.0.1847.116 Safari/537.36

Safari on an iPhone running 0S 7 | Mozilla/5.0 (iPhone; CPU iPhone 0S 7 0 like
Mac 0S X) AppleWebKit/537.51.1 (KHTML, like
Gecko) Version/7.0 Mobile/11A465 Safari/9537.53

Safari on an iPad running OS 6 Mozilla/5.0 (iPad; CPU 0S 6 0 like Mac 0S
X) AppleWebKit/536.26 (KHTML, like Gecko)
Version/6.0 Mobile/10A5355d Safari/8536.25

Chrome on an Android phone Mozilla/5.0 (Linux; U; Android 4.0.3; ko-kr;
running Ice Cream Sandwich LG-L160L Build/IML74K) AppleWebkit/534.30
(KHTML, like Gecko) Version/4.0 Mobile
Safari/s34.30

You can fairly easily parse the string and pull out the relevant infor-
mation by using regular expressions. As an example, you could craft a
function to determine an idea of the client device, and from there estab-
lish an idea of client capabilities. A simple example, using JavaScript, of
a function that checks for mobile devices might look like the following:
function detectMobileDevice(ua){
var re = new RegExp(/iPhone|iPod|iPad|Android/);
if(re.exec(ua)){
return true;

Yelse{
return false;
}

}

Note that we pass the User Agent into the detectMobileDevice()
function, search through the User Agent with a regular expression for
instances of the strings iPhone, iPad, or Android, and return true if
any of those strings are found.

This is a fairly rudimentary example that only cares about the platform
or operating system of the client device. A much more robust example
would check for capabilities, such as touch support, and for the maxi-
mum size that a device would support.

Both Google and Apple publish their User Agent string standards at
http://bit.ly/1Tu0cHqv and http://bit.ly/ZX VAT, respectively

4. THE BACKEND 73
www.it-ebooks.info

http://www.it-ebooks.info/

A word of caution about the reliability of User Agent strings: when
reading the specification, you will notice that clients SHOULD include
the User Agent information with their request. That is a very explicit
declaration in the spec, in fact SHOULD is listed as a keyword by the
IETF and there is a specification around what keywords mean, which
you can see at http://tools.ietf.org/html/rfc2119. The specification for
the word SHOULD states the following:

... there may exist valid reasons in particular circumstances to ignore a
particular item, but the full implications must be understood and care-
fully weighed before choosing a different course.

Stated plainly, this just means that clients are not obligated to use the
User Agent field, or even to correctly represent themselves with the
correct User Agent. Users can spoof their User Agent if they choose
to, bots or spiders can and often will give unexpected results. But these
are the exceptions, and when developing for the general public there
is nothing wrong with trusting what you get as the User Agent. The
biggest pain point with User Agents is keeping current with all of the
new ones as they come out, and being able to correlate User Agents to
a known feature and capability set. Which is why we may want to use a
device detection service.

DEVICE DETECTION SERVICES

The previous example is great if we only care to establish that our cli-
ents are coming from a known set of devices, but what if we wanted
to instead check for the capabilities and size of the devices? We could
either use the User Agent to look up a table of our own design that lists
User Agents and client capabilities, or we could take advantage of a ser-
vice that provides that table and look-up capability for us.

There are several such services, called device detection services, to which
we can pass the request to ascertain the client’s capabilities for us.

The architecture for such a solution is depicted in Figure 4-7, where
client requests come over the Internet, are received by our server, and
at the server level we make a back door call out to the device detection
service.

74 HIGH PERFORMANCE RESPONSIVE DESIGN
www.it-ebooks.info

http://tools.ietf.org/html/rfc2119
http://www.it-ebooks.info/

. J Device Detection
| Client g Server H Service

|

FIGURE 4-7
Using a device detection service from the server side

One of the oldest and widely used device detection services is theWurfl.

The Wurfl

Prior to 2011, the Wurfl, which stands for Wireless Universal Resource
File, was an open and freely available XML file that listed devices and
capabilities. It looked something like the following:

<device id="generic_android ver3 0" user_agent="DO NOT_MATCH_
ANDROID 3_0" fall back="generic_android ver2 4">
<group id="product_info">
<capability name="is tablet" value="true"/>
<capability name="device os version" value="3.0"/>
<capability name="can_assign phone number" value="false"/>
<capability name="release date" value="2011 february"/>
</group>
<group id="streaming">
<capability name="streaming preferred protocol" val-
ue="http"/>
</group>
<group id="display">
<capability name="columns" value="100"/>
<capability name="physical screen height" value="217"/>
<capability name="dual orientation" value="true"/>
<capability name="physical screen width" value="136"/>
<capability name="rows" value="100"/>
<capability name="max_image width" value="980"/>
<capability name="resolution width" value="1280"/>
<capability name="resolution_height" value="768"/>
<capability name="max_image height" value="472"/>
</group>
<group id="sms">
<capability name="sms_enabled" value="false"/>
</group>
<group id="xhtml_ui">
<capability name="xhtml_send_mms_string" value="none"/>
<capability name="xhtml send sms_string" value="none"/>
</group>
</device>

4. THE BACKEND 75
www.it-ebooks.info

http://www.it-ebooks.info/

Since 2011, however, the founders of the Wurfl formed the company
Scientiamobile to provide services based around the Wurfl and ceased
supporting the open document for individual consumption. They
instead provide a series of products around the Wurfl, including Wurfl
Cloud, which provides access to the device database via an API; Wurfl
Onsite, which is a local install of the device database; and Wurfl Infuze,
which makes the Wurf database available via environmental variables
on the server side.

In theory, the best performing solution should be Wurfl Infuze because
there would be no file I/O or transactional latency costs involved when
querying for device data. But the solution with the lowest barrier to
entry—because it involves no internal hosting, no infrastructure setup,
and even has a free option—is the Wurfl Cloud. As such, we will look
at how to integrate with the Wurfl Cloud in this chapter.

To begin, take a moment and go to the Scientiamobile home page at
http://www.scientiamobile.com/, which you can see in Figure 4-8.

Tum Barker (Log Out | My
scientiam@é b| |e Product Downloads Pricing Support Documentation Resources

next level. WURFL InFuze s a set

WURFL Cloud WURFL OnSite WURFL InFuze WURFL InSight
Access our always-updated, Localy install our highly Take device detection to the Analyze your web traffic with
scalable WURFL Onsite. g v

eed control and flexibility of separate product

y or Apache expose
needs grow. to web servers and applications running on

FIGURE 4-8
Scientiamobile home page

76 HIGH PERFORMANCE RESPONSIVE DESIGN
www.it-ebooks.info

http://www.scientiamobile.com/
http://www.it-ebooks.info/

From there, we can click on the Wurfl Cloud link at the bottom of the
page, which takes us to a pricing page. We can click on the Sign Up link
under the free option, which takes us to the page we can see in Figure
4-9, where we create our account. This screen is available at http://bit.
ly/1x34Psg.

SCIentIa mﬁ bl |e Product - Downloads~ Pricing~ Support - Documentation ~

WURFL Signup

‘Already have a ScientiaMobile account? Login to skip this section Your plan: Free

First Name (Required) $0 /monn
5 capabilities
Last Name (Required) 5,000 detections

11P

Company Name (Required)

Phone Billing Info

No charges for free accounts
Email (Required)

Username (Required)

Your username wil be displayed when you pest n the forum.
Password (Required)

FIGURE 4-9
Signing up for an account

After you have set up an account, you need to get an API key. You can
do this on the Account Settings page, shown in Figure 4-10.

4. THE BACKEND 77
www.it-ebooks.info

http://bit.ly/1x34Psg
http://bit.ly/1x34Psg
http://www.it-ebooks.info/

Account Settings

Account Type Detections

Free 0/5000 monthly detections used (0%)

Account List: | BookExample 3
Capabilities

5allowed, 5 active, 0 inactive

Upgrade to a Basic account for just $10/mo and get 10x more detections!

& Getting Started
& AP Keys

Getting Started
@ Capabilities

n Create an API Key
Choose your Capabilties

i Usage History
4 Download Client Code

R Terms and Conditions

Download and install the WURFL Cloud Client for PHP, Java, .NET, Python or

Ruby

scientiamabile

Thank you, your WURFL Cloud accountis now active

ScientiaMobile's WURFL Cloud Mobile Device ... < @

Paste the User-Agent string of a device below: .

Mozilla/5.0 (Macintosh; Intel Mac OS X 10_7_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/34.0.1847.116 Safari/53 = Test

FIGURE 4-10

Configuring our account in the account settings page

From the Account Settings page, you can also choose what device capa-

bilities you will want to be able to test for (the free account offers only

five capabilities). To choose capabilities, drag them from an available
capabilities list to your own selected capabilities list. The names of the
capabilities will also be how you reference them in your code, as you

can see in Figure 4-11.

Cloud Capabilities

Search:

Return to your account.

{example searches: video’, Tabler, pointing method)

Group:

display $

Capabilities

Drag capablliies o the right 0 add 10 your account. Press save when dane.

.
L —
physical_screen_width
physical_screen_height
L —

FIGURE 4-11

Your Capabilities

“is_smartphone

“is_smarttv.

is_wireless_device

Trash

Save

Capabilies in red are Inactiv.

Selecting capabilities that you are checking for from the Wurfl Cloud

78 | HIGH PERFORMANCE RESPONSIVE DESIGN
www.it-ebooks.info

http://www.it-ebooks.info/

The final step you will need to take will be to download the Wurlf
Cloud client code for the language that you will be using and then start
to code your solution. As of this writing, the Wurfl Client code is avail-
able for the following languages and technologies:

« Java

- PHP

« Microsoft .Net
« Python

« Ruby

- Node.js
 Perl

Figure 4-12 depicts the Wurfl Cloud client download page.

PHP .NET Python
Microsoft*
& Php) AVIRET @ python

Java

Download Download Download Download Download

Download Cloud API
for ASP.NET 2.x and 3.x

Node.js Perl

nede perlm

Download
Download Get Started

Get Started

FIGURE 4-12
Choosing the Wurfl Cloud client that is right for you

The Wurfl Cloud client downloads as a ZIP file and contains classes
that you can use in your projects to interface with the Wurfl Cloud.

Sample Code
Let’s next take a look at how we can create an application that uses

the Wurfl Cloud. Before we dive into the code, let’s first cover some
assumptions.

4. THE BACKEND 79
www.it-ebooks.info

http://www.it-ebooks.info/

You will use Node.js and have downloaded the Wurfl Cloud client for
Node.js. The Wurfl Cloud client comes in a ZIP file that you just have
unzipped and placed somewhere that is accessible to the Node.js appli-
cation. Like most Node.js applications, you already have a server.js that
listens for incoming requests and a router.js that routes requests appro-
priately. You already have an index.js file that pulls together your server.js
and application logic (from a file named responsiveApp.js that you will be
creating shortly). Here’s the content of index.js:
var server = require('./server/server.js');

var router = require('./server/router.js');
var responsiveApp = require("./responsiveApp.js");

var handle = {}

handle["/"] = responsiveApp.start;
handle["/start"] = responsiveApp.start;
handle["/favicon.ico"] = responsiveApp.favicon;

server.start(router.route, handle);

The index.js file loads the server.js and router.js files, as well as the respon-
siveApp.js file (even though you haven't yet created it). It creates an object
that you call handle and then pass into the server to instruct it how to han-
dle paths that could be called; in this example, we just map all requests
(except the favicon request) to the start function in the responsiveApp.js
file. And finally, you call the server.start function to get started.

The server.start function just creates an event handler that fires
whenever HTTP requests come in. The event handler passes requests
to router,js, which examines the request, compares it to the handler
object, and calls the appropriate function.

Exploring a deep dive into Node.js is beyond the scope of this book, if
you would like further reading to learn more about Node.js definitely
check out Learning Node by Shelley Powers (O’Reilly).

OK, let’s create the application logic that will reside in the responsive-
App.js file. First, load the HTTP module. Then load the two main files
that came with the download (i.e., WurflCloudClient.js and Config.js):
var http = require('http');
var wurfl cloud client = require("./NodeWurflCloudClient/Wurfl

CloudClient");
var config = require("./NodeWurflCloudClient/Config");

80 HIGH PERFORMANCE RESPONSIVE DESIGN
www.it-ebooks.info

http://www.it-ebooks.info/

Next, we’ll create the start function, but we will have it just call a func-
tion that we will create called getCapabilities. We will also create our
favicon function to respond with our favicon file if we have one:

function start(response, request) {
getCapabilities(response, request);

function favicon(response) {
response.writeHead (200, {
"Content-Type': 'image/x-icon'

})s

//write favicon here
response.end();

Now let’s get to the meat of the functionality. We’ll create our get-
Capabilities function. Remember that the start function passes the
response and request objects into this function:

function getCapabilities(response, request) {

}

We’ll begin by creating two variables: one an object that called
result capabilities, and the other an array that we’ll call request
capabilities. The request capabilities array lists out the capa-
bilities for which we want to check—the same capabilities that you
configured in your Wurfl account earlier in the chapter:
function getCapabilities(response, request) {
var result capabilities = {};
var request capabilities = ['is smartphone','is tablet',
'is_touchscreen', 'is wireless device']
Create a variable called api_key in which you enter the API key that you
got from the Wurfl Account Configuration screen. We will also create a
variable called configuration that will hold the configuration object that
is returned when we call config.WurflCloudConfig with the API key:
var api_key = "XXXXX ";
var configuration = new config.WurflCloudConfig(api key);
We will next instantiate an instance of wurfl cloud client.
WurflCloudClient with the configuration object (with the API key)
and the request and the response objects all passed in. Call this object
WurflCloudClientObject.

4. THE BACKEND 81
www.it-ebooks.info

http://www.it-ebooks.info/

This object is the key to accessing the capabilities from the Wurfl. We
need to call the detectDevice method of that objet, pass in the request,
request_capabilities, and an anonymous function that will be fired
when the results of our query return:

WurflCloudClientObject.detectDevice(request, request capabili-
ties, function(err, result capabilities){

Within that anonymous function, we will put our logic to render the
correct HTML, CSS, and JavaScript tailored for that experience. In our
simplified example, we are just calling functions that will output the
correct data (drawSmartphoneHomepage, etc.), but with the idea being
that instead of putting all of our device- or experience-specific code in
media queries and as part of client-side interpretation, we instead have
the server output only the device- or experience-specific code in this
branching logic:
if(err!=null){
console.log("
Error: " + err + "
");

}
else{
if(result capabilities['is smartphone']){
drawSmartphoneHomepage (response);
}else if(result capabilities['is tablet']){
drawTabletHomepage(response);
}else{
drawDesktopHomepage(response);
}
}

For reference, the complete code example looks like the following:

var http = require('http');

var wurfl cloud client = require("./NodeWurflCloudClient/Wurfl
CloudClient");

var config = require("./NodeWurflCloudClient/Config");

function start(response, request) {
getCapabilities(response, request);

function favicon(response) {
response.writeHead(200, {

'Content-Type': 'image/x-icon'

})s

//write favicon here
response.end();

82 ‘ HIGH PERFORMANCE RESPONSIVE DESIGN
www.it-ebooks.info

http://www.it-ebooks.info/

function getCapabilities(response, request) {

var result capabilities = {};

var request_capabilities = ['is_smartphone','is tablet',
'is_touchscreen', 'is_wireless_device']

var api_key = "XXXXX ";

var configuration = new config.WurflCloudConfig(api_key);

var WurflCloudClientObject = new wurfl cloud client.Wurfl-
CloudClient(configuration, request, response);

WurflCloudClientObject.detectDevice(request, request capa-
bilities, function(err, result capabilities){

console.log(result_capabilities);
if(err!=null){
console.log("
Error:

+err + "
");

else{
if(result_capabilities['is smartphone']){
drawSmartphoneHomepage (response) ;
telse if(result capabilities['is tablet']){
drawTabletHomepage(response);

Yelse{

drawDesktopHomepage (response);
}

}

};
}

exports.start = start;
exports.favicon = favicon;
exports.getCapabilities = getCapabilities;

Implications of Cache

When you develop websites for an enormous scale, you tend to rely very
heavily on cache to minimize the hits to your origin servers. The dan-
ger here is that when we move our responsiveness to the server side but
we are caching our responses, we serve the cached version of whatever
our last response was, regardless of what the User Agent information
being passed in from the client is.

To get around this, we can use the Vary HTTP response header when
sending our responses from the server. This informs the cache layers
that the server does some negotiating based on the User Agent string,
and to cache responses based on the User Agent field when requests
come in.

4. THE BACKEND 83
www.it-ebooks.info

http://www.it-ebooks.info/

[Tip]

As of this writing, most content delivery networks (CDNs) will not cache
responses that use the Vary response header. If this is the case for your
CDN, you should be able to work with it for alternate solutions, potentially
moving the User Agent detection to the CDN’s edge layer by using Edge
Side Includes.

Edge Side Includes

Using CDNs such as Akamai to serve your content cached from the
edge is a great strategy to reduce traffic to your origin servers. This
lessens the amount of hardware that you need to maintain, and makes
it possible for you to deliver content to your end users much faster.

Figure 4-13 provides a high-level overview of what this architecture
might look like.

Edge Network
Serving Cached Content

Edge Edge Edge
Server Server Server
Edge Server
Server Server
Edge Edge
Server

A

Refreshing cache

~
J

Origin v
Load
Balancer
v v v

Web Web Web
Server Server Server

—/

~

FIGURE 4-13
Serving cached content from an edge network

84 HIGH PERFORMANCE RESPONSIVE DESIGN
www.it-ebooks.info

http://www.it-ebooks.info/

As just stated a moment ago, the problem we could run into with this
architecture is that if the CDN provider doesn’t allow us to cache User
Agent—specific content (again by using the Vary HTTP header), all of
our clients will get the same cached content, not device-specific content.

A solution around this is to use Edge Side Include (ESI) language. ESI
was created by a consortium of companies, including Akamai and
Oracle, and submitted to the W3C. You can read the specification for
ESI at http://bit.ly/1rY5WUO.

ESI is a mark-up—based language that is embedded inline in an HTML
document. The edge servers have an ESI processor that reads the ESI
tags, interprets the logic, and renders the output inline in the HTML.
ESI functions very much like a server-side scripting language such as
PHP that can be interpreted on the server side and output inline in the
HTML. Just like PHP, the ESI tags are not shown to the client; only
their output is rendered.

The following code is an example of an ESI script that looks at incom-
ing User Agent data and loads appropriate content:

<html>

<head></head>

<body>

<esi:choose>

<esi:when test="$(HTTP_USER_AGENT{'os'})=="iPhone'">
<esi:comment text="Include iPhone specific resources

here" />

</esi:when>
<esi:when test="$(HTTP_USER AGENT{'os'})=="iPad'">
<esi:comment text="Include iPad specific resources here"

/>

</esi:when>

<esi:when test="$(HTTP_USER_AGENT{'os'})=='Android'">
<esi:comment text="Include Android specific resources

here" />

</esi:when>
<esi:otherwise>

<esi:comment text="Include desktop specific resources
here" />

</esi:otherwise>
</esi:choose>
</body>
</html>

4. THE BACKEND 85
www.it-ebooks.info

http://bit.ly/1rY5WUO
http://www.it-ebooks.info/

Summary

This chapter widened the lens through which we look at our appli-
cations. We explored the protocol and software stack on which our
applications reside, and over which transactions to and from our appli-
cations need to traverse. With this larger perspective, we asked this
question: how soon from the user’s initial request can we know the
capabilities of the client device, and most important, how soon can we
begin to act upon that request?

To answer that question we looked at inspecting the User Agent field
of the incoming HTTP request, and even utilizing a third-party device
detection service such as the Wurlf.

One potential pitfall of this solution is how to handle highly cached con-
tent. One solution is to use the Vary HTTP response header to instruct
our cache servers that responses should be cached differently based on
the User Agent. Another solution is to push the device or capabilities
detection logic from our origin servers out to our CDN edge servers by
using ESI.

Whatever our solution, if we can push our responsiveness upstream
in the HTTP transaction, to the server (or edge) and not have it all
take place on the client side, we can avoid the anti-patterns of serving
double the content or extraneous content in our payload to the client,
instead serving a more streamlined tailored response that perform bet-
ter because it is respectful of both the bandwidth, battery life, and CPU
limitations of the end user’s device.

86 HIGH PERFORMANCE RESPONSIVE DESIGN
www.it-ebooks.info

http://www.it-ebooks.info/

[5]

The Frontend

CHAPTER 4 EXPLORES HOW TO MIGRATE THE RESPONSIVENESS PARA-
DIGM FROM THE CLIENT SIDE TO THE BACKEND. The concept is two-fold:
first, load device-appropriate content and serve a dedicated experience
from the backend; second, avoid the anti-pattern of loading the content
for all devices. This lowers the overall payload of the page, and reduces
what the client device has to do to finally render a page.

But what if your infrastructure, business model, or team’s skill set
aren’t conducive to a server-side solution? In this case, there are ways
to achieve similar performance gains from purely client-side solutions.

In this chapter, we direct our focus back to the frontend and discuss
other ways to facilitate the same patterns.

Working with Images

As Steve Souders shows us via his Interesting Stats page in the HTTP
Archive, the biggest contributor to page payload are the images on a
page (see Figure 5-1). Thus, arguably the biggest impact we can have on
responsive performance from the client side is to optimize the delivery
of images to mobile clients.

Responsive images in the past have been looked at as needing to scale
with a page as the viewport shrinks. Chapter 1 presents a competitive
analysis that illustrates how this has usually been achieved by either
just resizing images via CSS, or saving images twice as large as neces-
sary and then scaling them down via CSS. But again, these solutions
are actually performance anti-patterns: loading the same assets for all
devices, and loading assets at twice the size.

For a site to be truly responsive to users’ performance needs—includ-
ing bandwidth constraints, battery life, pixel density, and viewport
size—we must instead follow the pattern of loading device appropriate
assets.

87
www.it-ebooks.info

http://www.it-ebooks.info/

Average Bytes per Page by Content Type

Scripts - 282 kB

— Stylesheets - 50 kB

«— Flash - 76 kB
—Other - 135 kB

DR - TIIL - 56 kB

Images - 1104 kB

B total 1762 kB

FIGURE 5-1
From the HTTP Archive, accounting for how page payload is distributed across
resource types

This aspect of responsiveness, specifically responsive images, is clearly
an area in need of standardization, as evidenced by the proposed solu-
tions currently in working-draft status. Let’s take a look at these, as well
as some other options.

THE SRCSET ATTRIBUTE

One of the current options in draft to serve responsive images is the
srcset attribute for the tag, recently added by the W3C. The
draft for the srcset attribute is available at http://bit.ly/1tDH5Lr. At a
high level, the srcset attribute is an update to the tag by which
you can specify different images to use for the different pixel ratios of
client devices. Let’s take a look at what exactly that means.

Device Pixel Ratio

Looking at the preceding source code, you can see that a default image,
1x.jpg, is specified in the src attribute of the tag. The default is there
for backward compatibility, in case the browser doesn’t support srcset.
Then, you set the srcset attribute and point to a different image—in this
case, 2x.jpg—that the browser should use if the device pixel ratio is 2.

Device pixel ratio is the ratio between physical pixels and device-inde-
pendent pixels on a device. The classic example is of an iPad Retina dis-
play being 1,024 physical pixels wide, but because it is a Retina display,

88 HIGH PERFORMANCE RESPONSIVE DESIGN
www.it-ebooks.info

http://bit.ly/1tDH5Lr
http://www.it-ebooks.info/

it packs more informational pixels, or device-independent pixels, so it
has an actual pixel width of 2,048. So, the calculation to determine the
device pixel ratio for a Retina display iPad would be the following:

[device independent pixels] divided by [physical pixels]
or
2,048/1,024 =2

If you'd like to read more about this, try Peter-Paul Koch’s in-depth
Quirksmode.org article at http://bit.ly/TuBP6R1.

The value of a device’s pixel ratio is exposed to the browser via the win-
dow.devicePixelRatio property. Figure 5-2 offers a screenshot of our
srcset example, in which we see Google Chrome emulating a Motorola
Droid Razr HD, which has a devicePixelRatio of 1.

Q, Elements | Network| Sources Timeline Profiles Resources Audits Console EditThisCookie PageSpeed = I g, x
® O ¥ = [Preservelog

Name Me(hongtams 'Type Initiator jS\ze 'Time | Timeline

|:| chpt5.htm “GFI' ”F\ms... nlexl,fhv.ml “:Od'ler l:le lms? @ j .
|:| 1x.jpg CET Finis... image/jpeg chpt5.htm:4 0B 2ms :F ‘
FIGURE 5-2

Emulating a Motorola Droid Razr HD

The Droid Razr HD has a 720 x 1280 resolution display and a
devicePixelRatio of 1, causing our 1x image to be loaded. Here is the
User Agent string:

Mozilla/5.0 (Linux; U; Android 2.3; en-us; DROID RAZR 4G
Build/6.5.1-73 DHD-11 M1-29) AppleWebKit/533.1 (KHTML, like
Gecko) Version/4.0 Mobile Safari/533.1

5. THE FRONTEND | 89
www.it-ebooks.info

http://www.it-ebooks.info/

Q, Elements | Netwerk | Sources Timeline Profiles Resources Audits Console EditThisCookie PageSpeed &

Figure 5-3 shows Chrome emulating an iPad 4 which has a Retina dis-
play and a devicePixelRatio of 2.

2xImg

0
%

= Preserve log

Method Status Type Initiator Size Time Timeline
GET Finis... | text[.. Other 0B Lms
CET Finis... imag... chptS.htm:4 0B 1ms

2 requests | 0B transferred | 11 ms (load: 18 ms, DOMContentLoaded: 11 ms}

FIGURE 5-3
Emulating an Apple iPad 4

The Apple iPad 4 has a resolution of 2,048 x 1,536 and a devicePixel
Ratio of 2, causing our 2x image to be loaded. Following is the User
Agent string for the iPad:

Mozilla/5.0 (iPad; CPU 0S 7_0 like Mac 0S X) AppleWebKit/

537.51.1 (KHTML, like Gecko) Version/7.0 Mobile/11A465 Safari/
9537.53.

In both of the previous examples, we can see on the Network tab in
Developer Tools that only the required image file is downloaded. Also
note in both screenshots that these are emulated devices. Full support
for the srcset attribute is still being rolled out, and you are advised to
check your usage logs to get a list of your top devices and test on those
devices to ensure that they support the srcset attribute.

920 HIGH PERFORMANCE RESPONSIVE DESIGN
www.it-ebooks.info

http://www.it-ebooks.info/

The downside of using the srcset attribute is that you are sending extra-
neous bytes in the payload by specifying all of the different images we
might need. If you're interested in optimizing even further, Ilya Grigorik,
author of High Performance Browser Networking (O’Reilly), outlines an
elegant way to move the mapping of the device pixel ratio to the backend,
which you can see at http://bit.ly/1qnPSeY.

The upside of the srcset attribute, aside from making it possible for
you to specify multiple images to use for device-specific requirements
and not needing to download multiple images, is that it is starting to
be supported in modern browsers unlike our next topic of discussion,
the picture element.

THE PICTURE ELEMENT

Another part of the proposed option for handling responsive images is
the <picture> element. You can view the working draft from the W3C
at http://www.w3.org/TR/html-picture-element.

The <picture> element is a new element to be added to HTMLS.
Conceptually, it is a container element that holds different source tags that
specify images to use based on device constraints, viewport width, and
pixel density. It can also hold an tag that allows for graceful fallback.

The <source> element supports a media attribute that specifies the
media type and CSS property that you can target, and a src element
that you can specify an image to download for that targeted media type
and CSS property.

If you were to re-create the earlier srcset example in which we targeted
high pixel density tablets and phones, using the <picture> element, it
would look similar to the following:

<picture>

<source media="(min-width: 640px, min-device-pixel-ratio:
2)" src=" hi-res small.jpg ">

<source media="(min-width: 2048px, min-device-pixel-ratio:
2)" src=" hi-res large.jpg ">

</picture>

5. THE FRONTEND 91
www.it-ebooks.info

http://www.w3.org/TR/html-picture-element/
http://www.it-ebooks.info/

What makes the <picture> element really interesting is that is also sup-
ports the srcset attribute. The combination of the two would look like
the following:
<picture>
<source srcset="big.jpg 1x, big-2x.jpg 2x, big-3x.jpg 3x"
type="image/jpeg" media="(min-width: 40em)" />
<source srcset="med.jpg 1x, med-2x.jpg 2x, med-3x.jpg 3x"
type="image/jpeg" />

</picture>

Both the srcset attribute and the <picture> element are interesting
potential solutions. If we were to compare the two solutions from a
performance perspective, in theory they both should only download
the appropriate resource based on the client capabilities, but the <pic-
ture> element is clearly more verbose than simply using the tag
with the srcset attribute. If we were to quantify that statement, just in
the examples that we’ve used so far in this chapter, the image with the
srcset attribute used 95 bytes, whereas the <picture> element example
used 231 bytes—the srcset example used 60 percent less bytes than
the <picture> element. Figure 5-4 presents a side-by-side comparison.

When viewed by themselves, the numbers 95 and 231 bytes seem fairly
innocuous. But that’s for a single tag. Take a moment to review
the data set for the Alexa top site in Chapter 1. If we were to use that
data set of websites, and pull just the tags from all of those sites,
the data on the byte size would look like that shown in Table 5-1 (note
that those numbers are in kilobytes).

TABLE 5-1. Summary of byte size data set
MIN. 0.000
1ST QUARTILE 0.305
MEDIAN 3.650
MEAN 56.507
3RD QUARTILE 62.125
MAX 371.100

92 HIGH PERFORMANCE RESPONSIVE DESIGN
www.it-ebooks.info

http://www.it-ebooks.info/

Difference in bytesize using IMG element
with srcset attribute and Picture element

Bytesize
150 200
| |

100
|

50
|

srcset attribute picture element

FIGURE 5-4
Difference in byte size from the examples of using the IMG tag with the srcset

attribute versus using the <picture> element to achieve the same ends

At the maximum, that is 371 kb just in tag text, not counting
any other HTML, CSS, or JavaScript on the page. Granted, some of
that file size is most likely tracking beacons and spacers that wouldn’t
require multiple versions for different devices, but if we extrapolate
those numbers, we get the performance implications shown in Figure
5-5 just for using the <picture> element instead of the element.

5. THE FRONTEND | 93
www.it-ebooks.info

http://www.it-ebooks.info/

Kilobytes

500

400

300

200

100

Extrapolation of byte size comparison
for Picture element vs Img element

O Picture Element (KBs)
O Srcset Attribute (KBs)

N 1 | R

google yahoo linkedin craigslist blogspot cnn tumblr

FIGURE 5-5
Extrapolation of byte size difference

With this extrapolation, the summary of our data using the <picture>
element now looks like Table 5-2.

TABLE 5-2. Summary of extrapolated byte size data set
MIN. 0.000
1ST QUARTILE 0.488 (+0.183 KB)
MEDIAN 5.840 (+2.19 KB)
MEAN 90.411 (+33.904 KB)
SHPRElVEIE= 99,400 (+37.275 KB)
MAX 593.760 (+222.66 KB)

94 | HIGH PERFORMANCE RESPONSIVE DESIGN
www.it-ebooks.info

http://www.it-ebooks.info/

So, pragmatically, the increase in size for 75 percent of sites tested was
smaller than if we were to load an additional image, but it’s in the out-
liers that the concern could lie. Just look at our maximum size from
the data set—it is now almost 600 KB! Clearly, although the <picture>
element—at one time fully supported by modern browsers—will offer
a robust way to load responsive images, because of its impact on file
size of the page delivered, it should be treated as a potential solution for
evaluation, not the default go-to solution for every responsive image.

It is important to note though that the trade-off of using the <picture>
element in these examples would be additional tens of bytes of markup,
whereas not using the picture element would be additional hundreds
and thousands of bytes of images. Also, you can use compression to
negate much of this impact to the payload.

Lazy Loading

Thus far, we've touched upon images in this chapter. Let’s now step
back and look at how we might take a client-side approach to employ-
ing a strategy of only loading device-appropriate assets for the page that
is being rendered. Chapter 1 demonstrates that from the perspective of
the client-side, this solution would involve lazy loading.

With lazy loading, you load content only when it is actually needed. A
familiar example of lazy loading is infinite scroll: only the content that is
needed to draw “above the fold” (the content that is actually in view on a
device) is brought in on page load, and more content is downloaded and
rendered to the screen as a user scrolls. For our purposes, we might
load in a bare-bones HTML skeletal structure with semantically struc-
tured content, determine the client capabilities, and then lazy load the
associated CSS and JavaScript.

The architecture would look like Figure 5-6.

5. THE FRONTEND 95
www.it-ebooks.info

http://www.it-ebooks.info/

Browser Server

Get/ N
HTTP 304
1
|
|
Parse response |
Render empty divs |
Determine client capabilities |
|
|
[
Get /640w_assets N
HTTP 304
-
1
]
FIGURE 5-6

Lazy loading device appropriate content from the client-side

Let’s take a look at an example. To begin, we’ll start with our base
HTML skeletal structure. We'll include only the bare minimum, no
formatting, and only <div>s that have ids that indicate what content we
will be loading into them (head, body, and footer, respectively):

<html>

<head></head>

<body>

<h2>Lazy Loading Example</h2>

<div id="head">

</div>

<div id="body">
Loading Content

</div>

<div id="footer">

</div>

</body>

</html>

96 HIGH PERFORMANCE RESPONSIVE DESIGN
www.it-ebooks.info

http://www.it-ebooks.info/

We will next make a <script> tag at the bottom of the body and create a
function named determineClient(). Within determineClient, we will
create an object named client that has its own object named sectio-
nURLs, with the properties head, body, and footer, all named after the
<div>s that we have on the page:
<script>
function determineClient(){
var client = {
sectionURLs: {
head: "/components/head/",
body: "/components/body/",
footer: "/components/footer/"
}
};
}

</script>

The idea is that we will populate these properties with the URLS to the
device- or experience-specific content after we have determined what
those should be. We will create the object with default data in case we
aren’t able to determine capabilities.

Now, we’ll add in some branching logic to test window.innerWidth and
window.devicePixelRatio and populate the sectionURLs accordingly.
For our example, we are assuming that we have directory structures set
up based on sizes, such as those shown in Figure 5-7.

In Figure 5-7, there are directories with content for each viewport width,
including directories for pixel-dense devices. Also note that each high-
level section directory (head, body, footer) has its own index.htm files
so that default content can be loaded. Of course, these don’t need to
be physical files as they are in the diagram; they can be Apache mod_
rewrite rules or any other sort of URL manipulation that you want to
implement.

5. THE FRONTEND 97
www.it-ebooks.info

http://www.it-ebooks.info/

88:components tbarke808% tree

1824
L— index.htm
2848

t index.htm
retin

L— index.htm

index.htm

ind
retina
L— index.htm
— index.htm
footer
1824
L— index.htm
2848
r—— index.htm
— retin
L— index.htm
L— index
648
t index. htm
retina
L— index.htm
— index.htm

1824
L— index.htm

index.htm
retin
L— index.htm

index.htm

index.htm

retina

L— index.htm
index.htm

21 directorie 21 files
HQSML-12 mponents tbarkesees [

FIGURE 5-7
Directory structure of the example website

After our branching logic populates the client object, the determine-
Client() function returns the client, as demonstrated here:

<script>
function determineClient(){
var client = {
sectionURLs: {
head: "/components/head/",
body: "/components/body/",
footer: "/components/footer/

};

98 HIGH PERFORMANCE RESPONSIVE DESIGN
www.it-ebooks.info

http://www.it-ebooks.info/

if(window.innerWidth == 320){
client.sectionURLs.head = "/components/head/320/";
client.sectionURLs.body = "/components/body/320/";
client.sectionURLs.footer = "/components/footer/320/";
Yelse if(window.innerWidth == 640){
if(window.devicePixelRatio == 1){
client.sectionURLs.head = "/components/head/640/";
client.sectionURLs.body = "/components/body/640/";
client.sectionURLs.footer = "/components/foot-
er/640/";
}else if(window.devicePixelRatio >=2){
client.sectionURLs.head = "/components/head/640/
retina/";
client.sectionURLs.body = "/components/body/640/
retina/";
client.sectionURLs.footer = "/components/footer/
640/retina/";

telse if((window.innerWidth == 1024) || (window.innerWidth
== 1440)){
client.sectionURLs.head = "/components/head/1024/";
client.sectionURLs.body = "/components/body/1024/";
client.sectionURLs.footer = "/components/footer/
1024/";
}else if(window.innerWidth == 2048){
if(window.devicePixelRatio ==2){
client.sectionURLs.head = "/components/head/2048/
retina/";
client.sectionURLs.body = "/components/body/2048/
retina/";
client.sectionURLs.footer = "/components/foot-
er/2048/retina/";

}
}
return client;
}
</script>

If we were to output our client object to the console, it would look like
the following:

Object {sectionURLs: Object}

sectionURLs: Object

body: "/components/body/1024/"

footer: "/components/footer/1024/"
head: "/components/head/1024/"

5. THE FRONTEND 99
www.it-ebooks.info

http://www.it-ebooks.info/

Next, we create a function named loadSection into which we pass the
client object as well as a parameter that specifies the <div> that we
will be targeting. This function is pretty much standard boilerplate
XMLHttpRequest object code; to load in content from the server, our
main customizations are the following:

- We create a section property on the xhr object ad hoc and assign
it to the section parameter that has been passed into the function.

« In the callback function called when the data is loaded, we over-
write the innerHTML of the element with the ID that matches the
section data with the responseText in our xhr object:

function loadSection(section, client){

var xhr = new XMLHttpRequest();

xhr.open("get", client.sectionURLs[section], true);
xhr.section = section;

xhr.send();

xhr.onload = function(){

document.getElementById(xhr.section).innerHTML = xhr.
responseText;

}
}
All thatis left at this point is to wire all of this logic together. We will cre-
ate a function that will execute when the window.load() event occurs,
and this function will act as our controller, creating a variable to hold
the client object passed out of our determineClient() function call,
and then calling our loadSection() function for each section we have:
window.onload = function(){
var client = determineClient();
var sections = ["head", "body", "client"];

for(var n=0;n<sections.length(),n++){
loadSection(n, client);
}

}

When we run this in a web browser, the Network tab should look sim-
ilar to Figure 5-8.

Note that the base page loads and renders in 171 ms, whereas the lazy
loaded content took an additional 131 ms to load.

100 HIGH PERFORMANCE RESPONSIVE DESIGN
www.it-ebooks.info

http://www.it-ebooks.info/

Q, Elements | Network | Sources Timeline Profiles Resources Audits Console

» = 0, x

Pl

® ©® Y = [Preserve log

Name Status - Size

Path Met... Text Type Initiator Content
lazyload.htm o 304 text/html | Oth 1398

22| jdemo/hprd Not Modified | " e 2.1KB
1024) GET 304 text/hem lazyload.htm:31 1388
/components/head Not Modified o m Script 438
1024/ 304 extiheml lazyload.htm:31 1388

L /components/body Not Modified ex m Script 438
1024) GET 304 text/hem lazyload.htm:31 1398
Jcomponents/footer Not Modified o m Script 43 B

4 requests | 554 B transferred | 306 ms (load: 171 ms, DOMContentLoaded: 171 ms)

FIGURE 5-8

Time

Latency
155 ms |
154 ms |

Timeline

58ms
57ms

113ms
112 ms

135ms
134 ms

Waterfall chart showing the head, body, and footer being lazy loaded after the

page load

Following is the complete code example, which you can download from

http://tom-barker.com/demo/hprd/lazyload.htm:

<html>
<head></head>
<body>
<h2>Lazy Loading Example</h2>
<div id="head">
</div>
<div id="body">
Loading Content ...
</div>
<div id="footer">
</div>
<script>

window.onload = function(){
var client = determineClient();
var sections = ["head", "body", "client"];
for(var n=0;n<sections.length(),n++){
loadSection(n, client);
}

function loadSection(section, client){
var xhr = new XMLHttpRequest();

xhr.open("get", client.sectionURLs[section], true);

xhr.section = section;

5. THE FRONTEND

www.it-ebooks.info

101

http://tom-barker.com/demo/hprd/lazyload.htm
http://www.it-ebooks.info/

xhr.send();
xhr.onload = function(){
document.getElementById(xhr.section).innerHTML =
xhr.responseText;

}
}

function determineClient(){
var client = {
sectionURLs: {
head: "/components/head/",
body: "/components/body/",
footer: "/components/footer/"

}
b
if(window.innerWidth == 320){
client.sectionURLs.head = "/components/head/320/";
client.sectionURLs.body = "/components/body/320/";
client.sectionURLs.footer = "/components/footer/
320/";

}else if(window.innerWidth == 640){
if(window.devicePixelRatio == 1){
client.sectionURLs.head = "/components/
head/640/";

client.sectionURLs.body = "/components/
body/640/";

client.sectionURLs.footer = "/components/foot-
er/640/";

}else if(window.devicePixelRatio >=2){

client.sectionURLs.head = "/components/
head/640/retina/";

client.sectionURLs.body = "/components/
body/640/retina/";

client.sectionURLs.footer = "/components/foot-
er/640/retina/";

}else if((window.innerWidth == 1024) || (window.inner-
Width == 1440)){
client.sectionURLs.head = "/components/
head/1024/";
client.sectionURLs.body
body/1024/";
client.sectionURLs.footer = "/components/foot-

"/components/

er/1024/";
}else if(window.innerWidth == 2048){
if(window.devicePixelRatio ==2){
client.sectionURLs.head = "/components/
head/2048/retina/";
client.sectionURLs.body = "/components/
body/2048/retina/";

102 ‘ HIGH PERFORMANCE RESPONSIVE DESIGN
www.it-ebooks.info

http://www.it-ebooks.info/

client.sectionURLs.footer = "/components/foot-
er/2048/retina/";

}

return client;

}

</script>
</body>
</html>

[NOTE]

This is an extreme example in which we are lazy loading formatting as well
as content. In some cases, you might just need to lazy load formatting or
functionality. But there will also be some cases for which you will find it
useful to lazy load content as well. Maybe you are experimenting with new
image formats, such as WebP or JPEG XR, that are not yet fully supported
by all browsers, so you load your lighter content only for the browsers
that support it. Maybe, like one of my teams has been doing lately, you are
developing web content for a television set-top box, and different boxes
support different video playback formats. In that case, you might lazy load
only the videos available for that supported format on that particular box.

Something else to keep in mind: the browser will automatically lazy
load CSS background images; if the display is set to none, the back-
ground image will not be loaded until the element is made visible. This
can be another tactic to lazy load certain images on the page.

DEVICE DETECTION LIBRARIES

Testing capabilities is natural and easy on the client side, but it’s still
difficult determining form factor and the exact device. You could make
the argument that as long as we know the capabilities, we don’t need
to know the form factor, but that doesn’t take into consideration things
such as network reliability. We could parse the User Agent to deter-
mine the form factor, but then we’d have to keep a look-up table to cor-
relate tokens from the User Agent to specific devices and form factors.

What if instead of maintaining that look-up table, we wanted to rely on
a third party to do that? Relying on a third party would make it possi-
ble for us to accurately target specific form factors such as TVs without
having to maintain our own User Agent to device database. We could

5. THE FRONTEND | 103
www.it-ebooks.info

http://www.it-ebooks.info/

again look to the world of device-detection databases. Both Wurfl and
Device Atlas have client-side libraries that expose device capabilities
within native JavaScript libraries. Device Atlas bundles its JavaScript
library with its client download. Scientiamobile has a site, http://wurfl.
io/, dedicated to distributing their client-side solution: wurfljs. Figure
5-9 depicts the home page of wurfl.io.

Hello WUREFL.js

Client side, meet server side intelligence.

Learn more

FIGURE 5-9
Scientiamobile’s wurfl.io web page

To use the wurfl.js, simply include a link to the hosted JavaScript file:

<script type='text/javascript' src="http://wurfl.io/wurfl.js">
</script>

104 | HIGH PERFORMANCE RESPONSIVE DESIGN
www.it-ebooks.info

http://wurfl.io/
http://wurfl.io/
http://www.it-ebooks.info/

This creates an object in the global scope named WURFL. If you output
the WURFL object to the console, it looks similar to the following:
>WURFL

Object {is mobile: true, complete device name: "Apple iPad",
form _factor: "Tablet"}

As you can see, the WURFL object identifies whether a client is on a
mobile device, the name of the device, and the device’s form factor.
Clearly this isn’t a full capabilities list as much as it is an augmentation
of the information we already have on the frontend.

The downside, of course, is that it involves an additional external call
that our page needs to make, thus increasing the potential page payload
and latency in delivering the page to our end users.

Summary

This chapter focused your attention on the frontend of the web software
stack. We first talked about the issue of responsive images and looked
at new working drafts to the HTML5 standard to address responsive
images. We compared the new srcset attribute in the tag with
the upcoming <picture> element and looked at the page payload impli-
cations of using them.

We then pulled back and looked at lazy loading entire sections of a page
to avoid downloading unneeded styling and content. This was very
much like the examples in Chapter 4 in which we employ the strategy
of only loading device-appropriate content and formatting. But whereas
Chapter 4 achieved this from the backend, the example in this chapter
did so from the frontend.

There are advantages and disadvantages to either approach. When
parsing the experience from the backend you need to be very aware
and careful of your cache semantics because different experiences will
be coming from the same URI. When parsing the experience from the
frontend, you are at the mercy of the client device being able to run your
code, and maintaining the network connection to load your additional
assets.

In Chapter 6, we delve into continuous integration and talk about how
to include checking responsiveness and the performance of our respon-
sive sites into our continuous integration environment.

5. THE FRONTEND 105
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[6]

Continuous Web
Performance Testing

Maintaining a Steady Course

As ANY STUDENT OF SYSTEMS THEORY KNOWS, when you've made a pos-
itive change to a system, you can maintain that change via feedback
loops to check state and course correct as necessary. This is as true for
a thermostat regulating the temperature of an area as it is to keep the
web performance metrics of a website within range of an SLA during
new feature development.

Essentially, feedback loops are tools used in control systems to assess
the output of the system and thus correct the system’s course if needed.
At a very high level, they work like the flow shown in Figure 6-1, in
which the output of a process is evaluated, giving feedback which
becomes input that then feeds the process again.

Il Feedback

‘ Input —P[Process —b[Output]

FIGURE 6-1
Basic feedback loop diagram

For software engineering, one of the most effective procedural feed-
back loops is the practice of continuous integration. Continuous inte-
gration (CI) is essentially having mechanisms in place that build your

107
www.it-ebooks.info

http://www.it-ebooks.info/

code as new code is committed, check for different success criteria,
and break the build—effectively putting a stop to check-ins and deploy-
ments—until the success criteria is again satisfied. Figure 6-2 depicts
the feedback look diagram updated to represent a continuous integra-
tion workflow.

| Test
G

[Code ‘(—P[Commit (—bl Build I

FIGURE 6-2
A Cl feedback loop

At this point, you most likely have a CI environment set up in your
department that is running automated tests against your builds. Maybe
you use Jenkins or Anthill Pro or any other number of CI tools avail-
able. But I would bet that right now your automated test suite does not
check for web performance or for web performance at different view-
port sizes and different experiences. Let’s change that.

Automating Responsive Web Performance Testing

If we were talking web development 5 to 10 years ago, the concept of
web—test-driven development was barely known. But over the last five-
plus, years the idea of what is possible and what is mainstream around
web—test-driven development has exploded.

Unit testing frameworks such as Jasmine from Pivotal Labs came out,
and web developers began unit testing the logic in their JavaScript.
Then, headless web browser® testing frameworks came out and demon-
strated what could be done with integration testing.

1 A headless web browser is a web browser without a graphical user interface. With a
headless web browser we can programmatically access web pages for tasks like testing and
automation.

108 HIGH PERFORMANCE RESPONSIVE DESIGN
www.it-ebooks.info

http://www.it-ebooks.info/

For the purposes of responsive web performance testing, headless web
browsers are perfect because they do the following:

- Allow scripting of a browser from a terminal

- Integrate into CI software

- Allow automated resizing of the viewport

- Allow programmatic User Agent assignment

- Give insight into what assets are being loaded on a page

One of the most popular headless browser—testing libraries available is
Phantom]S (http://phantomjs.org). Phantom]S is a JavaScript API cre-
ated by Ariya Hidayat that exposes programmatic access to WebKit (or
to be very specific, QtWebKit). Best of all, you can run Phantom]S from
a command line, so you can integrate your tests into your CI workflow.

Let’s take a look at how you can use Phantom]S to test website perfor-
mance at different viewport sizes and with different User Agents.

AUTOMATED HEADLESS BROWSER TESTING
First, you need to install Phantom]S. To do this, simply go to the con-
sole or terminal and type the following command:

sudo npm inst
all -g phantomjs

This installs Phantom]S at the global level so that we can run it no
matter what directory we happen to be in. To ensure that Phantom]S
is installed, check the version number from the command line, like so:

phantomjs --version

1.9.7
The core workflow when using Phantom]S is to create a page object and
use that page object to load and analyze a web page:

var page = require('webpage').create();
page.open('http://localhost:8080/", function (status) {
D;

The way to run this with Phantom]S is to save your code to a file and
run the file from the command line:

>phantomjs filename.js

6. CONTINUOUS WEB PERFORMANCE TESTING 109
www.it-ebooks.info

http://phantomjs.org
http://www.it-ebooks.info/

Functionality in Phantom]S is broken out into API modules that pro-
vide distinct areas of focus. The modules built into Phantom]S include
the following:

The System module

This module makes it possible to, among other things, pull argu-
ments from the command line so that you can make your scripts
more generalized and simply pass in parameters such as lists of
URLs (or viewport sizes, or paths to User Agent lists) instead of
hard coding them in the script. We can also use the system module
to access environmental variables and operating system informa-
tion. To access the System module type the following:

var system = require('system');
console.log(system.args, system.env);

The Web Page module

Using this module, you can download and evaluate web pages. The
beauty of the Web Page module is that in addition to giving you the
ability to inspect a page and the network transactions that it took to
create the page, you can also inject content into the page as well as
insert HTTP header information when requesting the page. Here’s
how to access it:

var page = require('webpage').create();

page.open('http://localhost:8080/", function (status) {

1;

The Web Server module
Use this module to listen and proxy transactions between the web
page and remote resources. You can also use the Web Server mod-
ule to output to a local port. Use the following to access it:
var webserver = require('webserver');
var server = webserver.create();

var service = server.listen('127.0.0.1', function(request,
response) {

b

The File System module
The File System module gives you access to local file system func-
tionality such as reading and writing files and directories. To access
this module, type the following:

var fs = require('fs');
var file = fs.open('[local file] ', '[Open mode]")

110 HIGH PERFORMANCE RESPONSIVE DESIGN
www.it-ebooks.info

http://www.it-ebooks.info/

You can find the full API documentation for Phantom]S at http://bit.
Iy/13DeMD2.

With this in mind, here are a couple of things you would want to test
by using Phantom]S:

- Are the appropriate assets being loaded based on the client
capabilities?

« Are the payloads for each experience within our determined SLA?

Let’s take a look at how you can use Phantom]S to achieve this.

Evaluate experiential resource loading

The first test case we’ll look at is ensuring that our page is loading
the correct assets. We've already talked at length about why we want
to serve only the assets that are appropriate to a given client device
(to reduce size payload, account for different bandwidth qualities and
levels of availability, and accommodate different viewport sizes), and
we’ve looked at ways to accomplish this both from the backend and the
frontend, but now we will look at how to programmatically verify that
this is happening.

We can do this by spoofing the viewport size and or User Agent of our
headless browser and then evaluating specific assets that are loaded on
the page. In the example that follows, we will use the Web Page mod-
ule to create a simulated page, set the viewport property (which accepts
a JavaScript Object Notation (JSON) object for width and height val-
ues), and assign the userAgent property to make the web page and web
server that is serving up the web page think that an iPhone 5 is making
the request:
var page = require('webpage').create();
//simulating an iPhone 5
page.viewportSize = {
width: 640,
height: 1136
1
page.settings.userAgent = 'Mozilla/5.0 (iPad; CPU 0S 4 3 5
like Mac 0S X; en-us) AppleWebKit/533.17.9 (KHTML, like Gecko)
Version/5.0.2 Mobile/8L1 Safari/6533.18.5"';
page.zoomFactor = 1;
page.open('http://localhost:8080/', function (status) {

B

6. CONTINUOUS WEB PERFORMANCE TESTING 111
www.it-ebooks.info

http://bit.ly/13DeMD2
http://bit.ly/13DeMD2
http://www.it-ebooks.info/

We want to validate that the page is rendering as it should and with the
appropriate content. We can do this several ways:

« Take a screenshot of the rendered page to visually confirm, usu-
ally in a manual fashion, that the expected layout is rendered. The
code snippet that follows opens a web page, checks to ensure it
was opened successfully, and saves a screenshot by using the page.
render function:

page.open('http://localhost:8080/", function

(status) {
if(status == 'success'){
page.render('./screenshots/iPhone5.png');
}
1

« Programmatically examine the page elements to see if the assets
that we expect to be rendered are actually rendered. In the code
snippet that follows, on successful page loading, the page.evalu-
ate function retrieves the URI in the src attribute of the element
that has an id of description-image. Assuming we are still eval-
uating the iPhone 5 experience, we then check this URI to see if it
is being loaded from the directory that we know holds the size-ap-
propriate resources:

page.open('http://localhost:8080/", function (status) {
if(status == 'success'){
var image source = page.evaluate(function(s) {
return document.querySelector(s).src;
}, 'description-image');
if (image_source){

1

- Inspect the network requests that the web page makes to validate
that the expected resources, and only the expected resources, are
being downloaded. In the code snippet that follows, we create call-
back functions to capture HTTP requests that the page is making.
Assuming we are still validating only the iPhone 5 scenario, each
request fires off an anonymous function that will inspect the path
to the resource to check to see if it is coming from a path that is
known to hold images that are device inappropriate; for example,
does the path contain the directory /nav/320/?

112 ‘ HIGH PERFORMANCE RESPONSIVE DESIGN
www.it-ebooks.info

http://www.it-ebooks.info/

page.onResourceRequested = function (request) {
//check request to see if the requested resource is
coming from a known device
// inappropriate directory

)

page.open(address, function (status) { .. });

Validate web performance

So far, we've just looked at validating that what we are expecting to be
downloaded and rendered in the page is actually there. Next, we will
look at capturing the web performance of our web page in each experi-
ence. There are several ways we could do that:

- Within Phantom, measure how much time elapses between
requesting a page and when the page completes rendering. The
following code snippet takes a snapshot of the current time before
calling the page. When the page is loaded, it takes another snap-
shot of the time and subtracts the start time from that to determine
the page load time:

var startTime = Date.now(),
loadTime;

page.open(address, function (status) {

if (status == 'success') {
loadTime = Date.now() - startTime;
console.log("page load time: " + loadTime + "ms")

b

- Use YSlow for Phantom]S to generate a YSlow report. Yahoo! has
created their own Phantom]S JavaScript file to make their YSlow
services available from the command line. It is called yslow.js and is
available at http://yslow.org/phantomjs/. Using yslow.js we can pass
in specific User Agents to use, as well as viewport sizes. We can
also pass in the format that we want the data to be output as well
as the level of detail in the data. Figure 6-3 presents a screenshot of
the succinct help section for yslow.js.

Figure 6-3 shows all of the arguments that the script accepts and even
some example usage. This Help screen is also available at the com-
mand line by typing phantomjs yslow.js -help.

6. CONTINUOUS WEB PERFORMANCE TESTING 113
www.it-ebooks.info

http://yslow.org/phantomjs/
http://www.it-ebooks.info/

Help

$ phantomjs yslow.js —-help

Usage: phantomjs [phantomjs options] yslow.js [yslow optioms] [url ...
PhantomJS Options:

http://y.ahoo.it/phantomjs/options
¥Slow Options:

-h, --help output usage information

-V, —-version output the version number
-i, --info <info> specify the information to display/log (basic|grade|st
-f, ——format <format> specify the output results format (json|xml|plain|tap|

-r, --ruleset <ruleset> specify the YSlow performance ruleset to be used (ydef]

-b, --beacon <url> specify an URL to log the results

-d, --diet include dictionary of resulte fields

-v, —--verbose output beacon response information

-t, —-threshold <score> for test formats, the threshold to test scores ([0-100
e.g.: -t B or -t 75 or -t '{"overall": "B", "ycdn": "F

-u, --pa "<user agent>" specify the user agent string sent to server when the

-vp, —--viewport <WxH> specify page viewport size WxY, where W = width and H

—-ch, --headers <JSON> specify custom request headers, e.g.: -ch '{"Cookie":

-c, —-console <level> output page console messages (0: none, 1: message, 2@

--cdns "<list>" specify comma separated list of additional CDMs

Examples:

phantomjs yslow.js http://yslow.org

phantomjs yslow.js -i grade -f xml www.yahoo.COm WWW.CNHN.COm WwWw.nytimes.com
phantomjs yslow.js --info all --format plain --ua "MSIE 9.0" http://yslow.org
phantomjs yslow.js -i basic --rulseset yslowl -d http://yslow.org

phantomjs yslow.js -i grade -b http://www.showslow.com/beacon/yslow/ -v yslow.ad
phantomjs --load-plugins=yes yslow.js -vp BOOx600 http://www.yahoo.com
phantomjs yslow.js -i grade -f tap -t B5 http://yslow.org

FIGURE 6-3
The Help section for YSlow.js

To continue with our example of testing our iPhone 5 experience, let’s
pass in our User Agent and viewport height and width, as shown in the
following example:

> phantomjs yslow.js --info stats --format plain --vp 640x1136
--ua 'Mozilla/5.0 (iPad; CPU 0S 4 3_5 like Mac 0S X; en-us)
AppleWebKit/533.17.9 (KHTML, like Gecko) Version/5.0.2 Mo-
bile/8L1 Safari/6533.18.5"' http://localhost:8080

version: 3.1.8

size: 846.4K (846452 bytes)

overall score: B (86)

114 HIGH PERFORMANCE RESPONSIVE DESIGN
www.it-ebooks.info

http://www.it-ebooks.info/

url: http://localhost:8080/
of requests: 46
ruleset: ydefault
page load time: 187
page size (primed cache): 10.2K (10290 bytes)
of requests (primed cache): 1
statistics by component:
doc:
of requests: 1
size: 10.2K (10290 bytes)
css:
of requests: 8
size: 154.7K (154775 bytes)
js:
of requests: 20
size: 617.0K (617056 bytes)
cssimage:
of requests: 6
size: 32.6K (32694 bytes)
image:
of requests: 10
size: 14.0K (14095 bytes)
favicon:
of requests: 1
size: 17.5K (17542 bytes)
statistics by component (primed cache):
doc:
of requests: 1
size: 10.2K (10290 bytes)

Note the level of detail exposed: we get total payload of the page, the
number of HTTP requests, and then a breakdown of number of HTTP
requests and total payload by content type.

There are other alternatives to YSlow.js that work in much the same
manner (e.g., James Pearce’s confess.js, which you can get at http://bit.
ly/1ofArub).

In both use cases, remember that the intent would be to run through
all of the different experiences for which we are accounting. Imagine
for a moment that the tests that we just talked about were built in to
your CI workflow, and your team was alerted every time a change was
made that broke your service-level agreement. Let’s make that a reality
by next looking at how we can work these verification steps into a CI
workflow.

6. CONTINUOUS WEB PERFORMANCE TESTING 115
www.it-ebooks.info

http://bit.ly/1ofAru5
http://bit.ly/1ofAru5
http://www.it-ebooks.info/

Continuous Integration

CI is the practice of real-time merging and testing of code check-ins.
ClI originally started life as a tenet of Kent Beck’s Extreme Programming
methodology, but it has spread to become the de facto practice of inte-
grating changes within teams of developers. It follows the same prin-
ciple as Beck’s other best-known (and equally as ubiquitous) practice—
test-driven development—in that moving the feedback loop closer to
the resolver (in both cases the developer checking in code) saves both
time and effort downstream in the process.

The core workflow of Cl is to check in code and then follow these steps:

1. Confirm that the project builds (ensure that it compiles, or that the
static content gets minified and gzipped, or that assets are renamed

with a timestamp fingerprint for cache busting); if it does not, the
build breaks

2. Run the integration and unit tests, and if they fail, break the build

Breaking the build should involve messaging out to the team and would
require a code check-in to fix the cause of the build breakage. Figure
6-4 illustrates this workflow.

There are a number of software solutions that exist today to manage the
workflow shown in Figure 6-4. One of the most popular among them
is Jenkins. The beauty of Jenkins is that it is open source and easy to
install and configure. A little later in this chapter, we will look at inte-
grating our Phantom]S scripts into the CI workflow by using Jenkins.

First, however, we will take the concepts we just covered and make a
script that we can run from Jenkins.

AN EXAMPLE PHANTOMJS SCRIPT

To integrate your performance tests into Jenkins, we need to do several
things. To begin, you must create a JavaScript file that will evaluate
your performance SLAs. This file will output by using the JSUnit XML
format, which Jenkins can easily read in. Jenkins will run this script
and generate the XML file during each build, and it will read in the
XML file as the test results after each build.

116 HIGH PERFORMANCE RESPONSIVE DESIGN
www.it-ebooks.info

http://www.it-ebooks.info/

Continuous Integration v
CE—

> Code <

1

Checkin

-

Build

[Pass]

Integration Test

FIGURE 6-4
A Cl work flow

6. CONTINUOUS WEB PERFORMANCE TESTING 117
www.it-ebooks.info

http://www.it-ebooks.info/

[TP]

Before we begin creating the script, we are going to add async.js to our
project, which will make it possible for us to run our tests asynchronously.
When we try to capture how long a page takes to load while we add up the
byte size of each asset as they get downloaded, the act of interfacing with
assets as they are downloading would add latency to the overall page load
time and give us inaccurate results for that particular test.

To install asyncjs, go to the project directory and type npm install
async.

This creates the directory structure shown in Figure 6-5 within our
project and makes async available to our code.

— node_modules

L nc

FIGURE 6-5
Tree view of the async module in the project directory

OK, let’s begin. First, we'll create the variables that we will be using.
We will load async into a variable that we will call async. Next, we’ll
create an array named testsToRun with the names of the tests that we
will be running—for this example, rendertime and payload. Finally,
we will create an object named results that will hold the values of each
of the tests, including the human-readable display name for each test,
the threshold for each test, and the actual results of the tests.

For readability purposes, this example hard codes several items. For an
actual production script, you would seek to move all of the hardcoded
values to be configurable and read in at runtime. Let’s look at the code:

var async = require('async'),
testsToRun = ["rendertime","payload"],
results = {
testnames: {
rendertime:"Time to Render",
payload: "Total Page Payload"

)

118 HIGH PERFORMANCE RESPONSIVE DESIGN
www.it-ebooks.info

http://www.it-ebooks.info/

threshold: {
rendertime: 500,
payload: 1000

)
actual: {
rendertime: o,
payload:0

)

test_results: {
rendertime: "fail",
payload: "fail"

}

Next, create a function called test. This will encapsulate all of the tests
that we will be running. We will pass in the test type and a callback
function. We pass in the test type so that we can determine which tests
to run at a given invocation. We pass in the callback function so that we
can call it after our tests are complete; this way, async knows that the
function invocation is complete.

Within the test function, first declare some variables and values. We
will capture a snapshot of the current time, load the WebPage module
into a variable named page, and we will hardcode the viewport as well
as the User Agent. Again, the hardcoded values would normally be con-
figurable at runtime, but for the sake of having an example that is easy
to follow, they are hardcoded here:
function test(testType, callback){
var startTime = Date.now(),
loadTime;
var page = require('webpage').create();
page.viewportSize = {
width: 640,
height: 1136
};

page.settings.userAgent = 'Mozilla/5.0 (iPad; CPU 0S
4 3 5 like Mac 0S X; en-us) AppleWebKit/533.17.9 (KHTML, like
Gecko) Version/5.0.2 Mobile/8L1 Safari/6533.18.5';
page.zoomFactor = 1;
}

Next, within the test function, create the onResourceReceived event
handler for the page object. This executes when remote resources that
have been requested are received. Within this function, we will check

6. CONTINUOUS WEB PERFORMANCE TESTING 119
www.it-ebooks.info

http://www.it-ebooks.info/

to see whether any other tests to measure the page payload are under
way (so that we don’t add latency to those other tests), and if so, we then
increment the payload property in the results.actual object:
page.onResourceReceived = function (resp) {
//increment the payload by the size of the resource received
if(testType == "payload"){
if(resp.bodySize != undefined){
results.actual.payload += resp.bodySize
}

}

};
While still within the test function, call the page.open function to load
the web page that is being performance tested. For our purposes, we
will hardcode a local address, but in reality this should also be con-
figurable at runtime. After the page is loaded, we capture the current
time, and subtract the start time from that to establish the actual ren-
der time. We then call a function which we will define momentarily
that uses the name calculateResults. Finally, we close the page and
call the callback function to signal async that the function is complete:

page.open('http://localhost:8080/", function (status) {

if(status == 'success"'){
results.actual.rendertime = Date.now() - startTime;
}

calculateResults()
page.close();
callback.apply();

)

Before we leave the test function, let’s define calculateResults. In this
function, we’ll us testType as the index and compare the actual test
results with the threshold and then assign a passing or failing grade to
the results property:

function calculateResults(){

if(results.actualtestType] <= results.threshold[testType]){
results.test results[testType] = "pass"”;
}

}

OK, returning to the root of our script, let’s add the controller logic.
Using async.each, we asynchronously call the test function with each
value in the testsToRun array. When the function calls are complete,
the anonymous function that we pass in as the third parameter to
asynch.each executes. This function calls a function formatOutput
that we will define shortly, and then exits Phantom]S:

120 ‘ HIGH PERFORMANCE RESPONSIVE DESIGN
www.it-ebooks.info

http://www.it-ebooks.info/

async.each(testsToRun,test,

function(err){
formatOutput();
phantom.exit();
}
)5

Finally, let’s define a function called formatOutput. This function
formats our output to adhere to the JUnit XML format that Jenkins
accepts. We can find the XSD for this format at http://bit.ly/Ze9809.

For the purposes of this exercise, we’ll just create a suite for all of our
tests and then a test case for each test that ran. We’ll map a function
to the array testsToRun to create test case nodes for each test. After we
have the output assembled, we’ll output it to the console:

function formatOutput(){
var output = '<?xml version="1.0" encoding="utf-8"?>\n"'+
"<testsuite tests="'+ testsToRun.length +'">\n'
testsToRun.map(function(t){
output += '<testcase classname="'+ t +'"
results.testnames[t] +'">\n'
if(results.test results[t] == "fail"){
output += '<failure type="fail"> threshold: '+
results.threshold[t] + ' result: '+ results.actual[t] +' </
failure>\n'

}

output += '</testcase>\n'

name=""+

)

output += '</testsuite>'
console.log(output)

}

Following is the complete code for this example (you can also find it
on GitHub at https://github.com/tomjbarker/HP_ResponsiveDesign):

//simulating an iPhone 5
var async = require('async'),
testsToRun = ["rendertime”,"payload"],
results = {
testnames:{
rendertime:"Time to Render",
payload: "Total Page Payload"

)
threshold: {
rendertime: 500,
payload: 1000

b

6. CONTINUOUS WEB PERFORMANCE TESTING 121
www.it-ebooks.info

https://github.com/tomjbarker/HP_ResponsiveDesign
http://www.it-ebooks.info/

actual: {
rendertime: o,
payload:0

)
test_results: {
rendertime: "fail",
payload: "fail"

}

function test(testType, callback){
var startTime = Date.now(),
loadTime;

var page = require('webpage').create();
page.viewportSize = {
width: 640,
height: 1136
};

page.settings.userAgent = 'Mozilla/5.0 (iPad; CPU 0S
4 3 5 like Mac 0S X; en-us) AppleWebKit/533.17.9 (KHTML, like
Gecko) Version/5.0.2 Mobile/8L1 Safari/6533.18.5';
page.zoomFactor = 1;

page.onResourceReceived = function (resp) {
//increment the payload by the size of the re-
source received
if(testType == "payload"){
if(resp.bodySize != undefined){
results.actual.payload += resp.bodySize

}
}
};
page.open('http://localhost:8080/", function (status)
{
if(status == 'success'){
results.actual.rendertime = Date.now() - start-
Time;
}
calculateResults()

page.close();
callback.apply();

)

function calculateResults(){
var output = "";
if(results.actual[testType] <= results.thresh-
old[testType]){

122 ‘ HIGH PERFORMANCE RESPONSIVE DESIGN
www.it-ebooks.info

http://www.it-ebooks.info/

results.test results[testType] = "pass";

}

function formatOutput(){
var output = '<?xml version="1.0" encoding="utf-8"?>\n"'+
"<testsuite tests="'+ testsToRun.length +'">\n'
testsToRun.map(function(t){
output += '<testcase classname="'+ t +'" name="'+
results.testnames[t] +'">\n'
if(results.test results[t] == "fail"){
output += '<failure type="fail"> threshold: '+
results.threshold[t] + ' result: '+ results.actual[t] +' </
failure>\n'
}
output += '</testcase>\n'
)
output += '</testsuite>'
console.log(output)

}

async.each(testsToRun,test,
function(err){
formatOutput();
phantom.exit();

}
);

Save the script to a file named iphone5test.js and run it from the
Terminal. You should see output similar to that shown in Figure 6-6.

endertime" name="Time to Render">

d" name

shold: 1888

FIGURE 6-6
Our script running in the Terminal (notice the output in JUnit XML format)

Next, we will install Jenkins and get our script running in the build
process for a project.

6. CONTINUOUS WEB PERFORMANCE TESTING 123
www.it-ebooks.info

http://www.it-ebooks.info/

JENKINS

Jenkins started life as Hudson, an open source CI tool created by
Kohsuke Kawaguchi while at Sun Microsystems. After Oracle pur-
chased Sun, the Jenkins CI project split off from Hudson. Hudson
would continue under Oracle’s stewardship (Oracle eventually trans-
ferred the project to the Eclipse Foundation), whereas Jenkins CI would
continue on through the contributions of the community.

Jenkins is available from http://jenkins-ci.org/, where you can, among
other things, download the latest build, create your own copy, register
a bug, or read documentation around Jenkins. Figure 6-7 presents the

Jenkins CI home page.

An extendable open source continuous integration server

BLOG CONNECT BUG TRACKER v (-] TUTORIALS ARCHIVES DONATION ABOUT

—' «:@ r Jenkins User Conference 2014

Using Jenkins for Continuous Integration? Learn from the community.

L A4 :
)l - |a Y BOSTON e BERLIN e HERZLIYA e SANFRANCISCO

Download Jenkins
Release Long-Term Support Release

Meet Jenkins

Find out what Jenkins is and get started Java Web Archive (.war)

Latest and greatest (1.565)
changelog | past releases | RC

upgrading from Hudson?
Or native package
gfﬁ\gggg'ﬂi out of your Jenkins. Windows
[©7 ubuntupepian

‘a Red HatlFedora/CentOS

‘g Mac OS X
Customize Jenkins —
Choose from over 600 plugins to customize Jenkins exactly to your needs. ‘@ openSUSE
3
‘d FreeBSD

‘Q OpenBSD

FIGURE 6-7
The Jenkins Cl home page

From the Jenkins home page, you can download a native package to
install. In Figure 6-8, you can see the installer for Mac OS.

124 HIGH PERFORMANCE RESPONSIVE DESIGN
www.it-ebooks.info

http://jenkins-ci.org/
http://www.it-ebooks.info/

8 00

w Install Jenkins 1.565

@ Introduction

@ License

@ Destination Select
@ Installation Type
@ Installation

® Summary

FIGURE 6-8
The Jenkins Mac OS installer

Welcome to the Jenkins 1.565 Installer

Jenkins monitors executions of repeated jobs, such as building a
software project or jobs run by cron. Among those things, current Jenkins
focuses on the following two jobs:

* Buildinghesting sofiware projects continuously, just like
CruiseControl or DamageControl. In a nutshell, Jenkins provides
an easy-to-use so-called continuous integration system, making it
easier for developers to integrate changes to the project, and
making it easier for users to obtain a fresh build. The automated,
continuous build increases the productivity.

* Monitoring executions of externally-run jobs, such as cron jobs
and procmail jobs, even those that are run on a remote machine.
For example, with cron, all you receive is regular e-mails that
capture the output, and itis up to you to look at them diligently and
notice when it broke. Jenkins keeps those outputs and makes it
easy for you to notice when something is wrong

For information on Cl see hitp:/fiwww.martinfowler.com/articles/
continuousintegration.html

Go Back | Continue

After you've completed installation, Jenkins is available locally at http://
localhost:8080/, as demonstrated in Figure 6-9.

Jenkins

Jenkins

T New Item

& People

....} Build History

pa Manage Jenkins
%‘ Credentials
Build Queue

Mo builds in the queue.

Build Executor Status
Status
1 Idle
2 ILdle

E Help us localize this page

FIGURE 6-9

Q:e:—rch

ENABLE AUTO REFRESH

[#add description
Welcome to Jenkins! Please create new jobs to get started.

Page generated: Jun 26, 2014 7:2B8:56 AM REST API Jenkins ver. 1.565

The Jenkins home page following a fresh installation

6. CONTINUOUS WEB PERFORMANCE TESTING | 125
www.it-ebooks.info

http://localhost:8080/
http://localhost:8080/
http://www.it-ebooks.info/

For this example, we will assume that the GitHub plug-in is installed (if
itisn’t, go to Manage Jenkins, click Manage Plugins, and then install it)
and that we are using GitHub as our source control.

To begin, we need to have a project in Jenkins. To create a new project,
on the Jenkins home page, click New Item. A window similar to that
depicted in Figure 6-10 opens. For our example, we will create a free-
style project and give it a name.

Jenkins All
=+ New Item Item name |pacponsive Examplel]
L People (=) Build a free-style software project
. This is the central feature of Jenkins. Jenkins will build your project, combining any
= Build History SCM with any build system, and this can be even used for something other than

Manage Jenkins

software build.

& | Build a maven2/3 project

4 Credentials Build a maven 2/3 project. Jenkins takes advantage of your POM files and drastically
reduces the configuration.

Build Queue = | () Build multi-configuration project

Mo builds in the queue. Suitable for projects that need a large number of different configurations, such as

testing on multiple environments, platform-specific builds, etc.

Build Executor Status =

Status (_) Monitor an external job
1 Idle This type of job allows you to record the execution of a process run outside Jenkins,
even on a remote machine. This is designed so that you can use lenkins as a
2 ldle dashboard of your existing automation system. See the documentation for more
details.
E Help us localize this page Page generated: Jun 26, 2014 7:31:20 AM REST API Jenkins ver. 1.565

FIGURE 6-10
Creating a new project in Jenkins

Now, it’s time to configure the new project. On the Source Code
Management page, choose Git as the source code management tech-
nology and type the location of our project in GitHub, as depicted in
Figure 6-11.

Next, we add a build step to execute our Phantom]S script, with the out-
put piped to an XML file called results.xml (see Figure 6-12). This runs
our script and generates a new XML file every time the project is built.

Finally, while still on the Source Code Management page, add a post-
build action to publish the JUnit test result report, or specifically the
results.xml file that we created with our script (see Figure 6-13).

126 HIGH PERFORMANCE RESPONSIVE DESIGN
www.it-ebooks.info

http://www.it-ebooks.info/

Source Code Management

) cvs

() CVS Projectset
= Git

Repositories

Repository URL [etns: /github.com/tamjbarker/HP_RespansiveDesign.git (2] @

Credentials | tomjbarkerj***+*= +]
&= Add
Add Repasitary || Delete Repository |
Branches ta build Branch Specifier (blank for 'any') [+« @

Add Branch || Delete Branch |

| (Auto) : @

Repository browser

FIGURE 6-11
Pointing our Jenkins project to our GitHub project

Build

Execute shell

Command

phantomjs iphoneStest.js > results.xml

See the list of svailsble environment varizbles

Add build step v

FIGURE 6-12

Running our PhantomJS script from the shell during the build process and
piping the output to an XML file

Post-build Actions

Publish JUnit test result report

Test report XMLS [oo ike el

Fileset ‘includes’ setting that specifies the genersted raw XML report files, such 2 ‘myproject/target/test-reports/* xml. Basedir of the fileset is the warkspac
oot

™ Retain long standard cutput/error

@

Add post-build action =

FIGURE 6-13
Reading in the XML that was generated during the build as a post-build test

6. CONTINUOUS WEB PERFORMANCE TESTING | 127
www.it-ebooks.info

http://www.it-ebooks.info/

From here, we can manually kick off builds from Jenkins, and our
script is run and the report is generated. If we want our project to build
every time we push a change to GitHub, we would need to configure a
web hook in GitHub to POST to our Jenkins installation.

After the build runs, we can see the for the web performance test in
Jenkins. Figure 6-14 shows the results.

Jenkins ©)
Jenkins HP_ResponsiveDesign #22 Test Results ENABLE AUTO REFRESH
A Back to project T
est Result
0, status
- failures (20
> Changes —
2 tests (+1)
ook 0 ms.
Console Output Took 0 ms.
B comot 0 e
"% EditBuild Information
g Historv All Failed Tests
A Giouio b Test Name Duration Age
Ne Tags = pavload.Total Page Payload
~ Stack Trace oms L
Lok threshold: 1000 result: 14918
48 Previous Buld
All Tests
Package Duration Fail (i) Skip (diff) Pass (i) Total (aim
(root) ams 1w o o 2| 42
E Help us localize this page Page generated: Jun 29, 2014 12:46:25 AM REST APIL Jenkins ver. 1.565

Results of our tests output in Jenkins!

With this flow in place, we can now get real-time feedback as changes
we make in the code base impact our web performance.

Summary

This chapter explored continuous web performance testing. We looked
at using Phantom]S to create headless browser tests. We talked at
length about how to verify that the patterns of best practice that we
established in previous chapters were being maintained, from load-
ing only device-specific assets, to maintaining a page payload and ren-
der-time SLA.

Finally, we looked at incorporating that logic into a CI workflow using

Jenkins.

Chapter 7 takes a survey of the current state of frameworks addressing
the issues of performant responsive websites.

128 HIGH PERFORMANCE RESPONSIVE DESIGN
www.it-ebooks.info

http://www.it-ebooks.info/

[7]

Frameworks

Looking at the State of Responsive Frameworks

So FAR, WE HAVE looked at web performance patterns and anti-patterns
in the world of responsive design. We’ve looked at crafting our own solu-
tions to implement these patterns of best practices, both from the client
side and the server side. Chapter 6 shows how to create automated tests
via Phantom]S to verify the adherence to our performance-responsive
design patterns and include them in a continuous integration (CI) work-
flow using Jenkins. In this chapter, we will explore some of the frame-
works that are available, and analyze how they handle web performance.
Different types of responsive frameworks exist: there are boilerplates
that give predetermined page layouts; there are grid systems that just
define responsive grid layouts; and then there are complete solutions
that include different page layouts with reusable modules, web fonts,
and JavaScript functionality.

If you look at the overall landscape of frameworks, the first thing you’'ll
note is that they are all implemented for the frontend. In these frame-
works, there will generally be predefined CSS that describes the styl-
ing of a module such as a button or a grid, or even complex UI ele-
ments such as accordions and sliders and guided navigation. You can
use these modules by assigning their classes to elements on your page.
Some frameworks have a JavaScript API with which you can program-
matically create styled elements on your page.

As of this writing, the biggest names in frameworks are Twitter’s
Bootstrap and Foundation from ZURB. In fact, when we look at Google
Trend to compare relative search interest in Bootstrap and Foundation
to other frameworks, we need to create two different charts because the
interest in Bootstrap is a full order of magnitude greater than interest in
the other frameworks, which is amply illustrated in Figures 7-1 and 7-2.

129
www.it-ebooks.info

http://www.it-ebooks.info/

T0p| cs Subscribe ot

ZURB Foundation Twitter Bootstrap +Add term

Search term Search term

nterest over time

Average Jul 2011 Jan 2012 Jul2012 Jan 2013 Jul 2013 Jan 2014

FIGURE 7-1
Comparing relative search interest between Twitter Bootstrap and ZURB’s
Foundation framework

TOpiCS Subscribe <t
ZURB Foundation Skeleton CSS Semantic Ul +Add term
Search term Search term Search term

iterest over time

L ﬁi\;

Avarmne i 2044 Ian 2042 i 2042 lan 2043 il 2043 Ian 2044

FIGURE 7-2
Comparing relative search interest in ZURB’s Foundation, Skeleton, and
Semantic Ul

130 | HIGH PERFORMANCE RESPONSIVE DESIGN
www.it-ebooks.info

http://www.it-ebooks.info/

In Figures 7-1 and 7-2, note the difference in scale between the two
Google Trend images, with Foundation being the common link
between the two charts (the blue line in both charts).

We will begin by establishing criteria that we will be using to evaluate
these frameworks.

Our criteria will be the following:

What patterns and/or anti-patterns does the framework use?
How easy is it to use?

What is the size of the framework, including dependencies?

What, if any, dependencies does the framework have, including depen-
dencies on other frameworks or libraries?

Let’s commence the evaluation by first looking at Twitter’s Bootstrap.

Twitter Bootstrap

Bootstrap is a frontend, open source framework created in 2011 by
Mark Otto and Jacob Thornton at Twitter and is available at http://get-
bootstrap.com/. Figure 7-3 shows the Bootstrap home page.

Bootstrap’s base installation comes with predefined CSS and JavaScript
to implement a set of frontend components that have responsiveness
built in to them. These components include buttons, tabs, progress
bars, grid systems, patterns for alerts, and even specific page layouts.

7. FRAMEWORKS 131
www.it-ebooks.info

http://getbootstrap.com/
http://getbootstrap.com/
http://www.it-ebooks.info/

Bootstrap Gettigstarted CSS Compononts JavaScript Customizo Expo Blog

Bootstrap is the most popular HTML, CSS, and JS framework for
developing responsive, mobile first projects on the web.

Download Bootstrap

SendGrid

Designed for everyone, everywhere.

Bootstrap makes front-end web development faster and easier.
It's made for folks of all skill levels, devices of all shapes, and
projects of all sizes.

Grtesd [T3 ==

Preprocessors One framework, Full of features
Bootstrap ships with vanila every device. With Bootstrap, you got
88, but od d beautiful
y for common
Less and HTML clements, dozens of
‘Sass. Quickly get started with with a single code base, from custom HTML and CSS
o desktops. nt
th source. with CSS media queries. iQuery plugins.

Bootstrap is open source. It's hosted, developed, and
maintained on GitHub.

View the GitHub project

Built with Bootstrap.
Milions of amazing sites across the web are being buift with
Bootstrap. Get started on your own with our growing collection
of examples or by exploring some of our favorites.

-

We showcase dozens of inspiring projects built with Bootstrap
on the Bootstrap Expo.

Explore the Expo

Qs wpw Qron man ¥ roiowswboouwp 1K ones| | Tweet (4776
Designad and buit with all the love in the worid by Gmdo and Ofat.
Maintained by the core team with the help of our contributors.

Code licansad under MIT, documentation undar CC BY 3.0

Gurenty v3.2.0 - GitHub - Examples - v2.3.2 docs - About - Expo - Blog - Issues - Releases

FIGURE 7-3
The Bootstrap homepage

132

HIGH PERFORMANCE RESPONSIVE DESIGN
www.it-ebooks.info

http://www.it-ebooks.info/

The install consists of the directory structure, which you can see in
Figure 7-4.

n
A
]

[MTTTT:

rap.min.css

i
£
i

FIGURE 7-4
The core Bootstrap installation

Using Bootstrap is as simple as including the core CSS and JavaScript
files on your page, and then you begin using predefined components.
Also note that Bootstrap requires JQuery:

<link href="css/bootstrap.min.css" rel="stylesheet">

<script src="js/bootstrap.min.js"></script>

<script src="https://ajax.googleapis.com/ajax/libs/jquery/

1.11.1/jquery.min.js"></script>

It’s easy to see why Bootstrap is so popular: in around 20 minutes,
using the built-in components and styles from Bootstrap, I was able to
construct the website shown in Figure 7-5 (it’s available at http://tom-
jbarker.github.io/).

7. FRAMEWORKS 133
www.it-ebooks.info

http://tomjbarker.github.io/
http://tomjbarker.github.io/
http://www.it-ebooks.info/

Tom Barker

Technologist, Author, Professor

g in]

TOMBARKER

TECHNICAL MANAGEMENT

T Pro

Data Visualization

using R and JavaScript
A
Performance
Responsive
Design

TomBarker

Pro
JavaScript
Performance

Articles

g 1 4042014147040 G 4

FIGURE 7-5
An example website created in Bootstrap

134 HIGH PERFORMANCE RESPONSIVE DESIGN

www.it-ebooks.info

Tom Barker

Technologist, Author, Professor

e {in}

Responsive
Design

Tom Barker

TOMBARKER

TECHNICALMANAGEMENT

Data Visualization
using R and JavaScript

ApTESS'

Pro _
JavaScript
Performance

Articles

http://www.it-ebooks.info/

EVALUATION

Take a look at Table 7-1 to see how Bootstrap fared in our evaluation.

TABLE 7-1. Evaluating Bootstrap

PARREENSZANIEN RSN Out of the box, Bootstrap will load the same assets for
each experience. Images will be resized on the client
side to fit the viewport. There are JQuery plug-ins that
you can use to somewhat address this. A popular one is
HiSRC (available at https://github.com/teleject/hisrc),
that loads a smaller, mobile-friendly image first and
then, depending on the connection speed and the client
device pixel ratio, loads additional larger images. Though
this fixes the small-screen scenario, in that it loads a
device-specific asset, it then must load additional assets
for larger screen experiences.

EASE OF USE Using existing Bootstrap modules and styling, | was
able to construct a responsive website in less than 20
minutes.

DEPENDENCIES JQuery

SIZASOI I ISEAVISNTIEE S The minimum installation requires Bootstrap’s CSS and
(AND DEPENDENCIES) JavaScript as well as JQuery. As of this writing, the totals
for these are:

bootstrap.min.css: 107 KB
jquery.min.js: 82.6 KB
bootstrap.min.js: 31KB
Grand total: 220.6 KB

Keep in mind that this is just the minimum installation.
There are themes and web fonts that you might also
want to use which would add to that total.

ZURB Foundation

The next framework we will evaluate is Foundation by ZURB, a design
firm from California. Foundation was created and made available as
open source in 2011. You can download it from http://foundation.zurb.
comy/. Figure 7-6 depicts the Foundation home page.

7. FRAMEWORKS | 135
www.it-ebooks.info

https://github.com/teleject/hisrc
http://foundation.zurb.com/
http://foundation.zurb.com/
http://www.it-ebooks.info/

Responsive design gets a whole lot faster for users.

- - ;

Faster for Users Fasterto Code Fasterto Learn

Foundation 5 is the professional choice for
designers, developers and teams.

-
QD90

Semantic Mobile First Customizable Professionat

o, coes fonsze andccosuingtonap

Foundation Forum Is Here To Help

m Foundation 4.x tabs and dynamic content "

oundation 5 and Compass?

Sites Using Foundation

Get a running start with
Foundation

FIGURE 7-6
The home page for ZURB Foundation

136 | HIGH PERFORMANCE RESPONSIVE DESIGN
www.it-ebooks.info

http://www.it-ebooks.info/

Downloading and unzipping the framework creates the directory struc-
ture shown in Figure 7-7.

is

F—— foundation

| foundation.abide.js
foundati

| foundati

| foundati

| foundation.
foundation.

| foundati

| foundati

| foundati
foundati

| foundati

| foundati

| foundati
foundati

| foundation.

| foundation. tooltip.js

— foundation. topbar.js

.js

FIGURE 7-7
Tree view of the Foundation installation

Just like Bootstrap, Foundation comes with prestyled components,
including media queries to handle different viewport sizes. Also, like
Bootstrap, pages are arranged in rows and columns with CSS classes
assigned to <div>s to specify explicit grid structure and which compo-
nent to load.

Using the built-in components from Foundation, I constructed the
website presented in Figure 7-8. You can look at the site at http://bit.
ly/10RjT1n. Table 7-2 provides the evaluation data.

7. FRAMEWORKS 137
www.it-ebooks.info

http://bit.ly/10RjT1n
http://bit.ly/10RjT1n
http://www.it-ebooks.info/

Tom Barker

‘Technologist, Author, Professor

TOMBARKER

TECHNICAL MANAGEMENT
APRMER

Pro
Data Visualization

using R and JavaScript

Apress

Pro
JavaScript
Performance

Articles

Safari Online dotNet Magazine IBM
DATA VISUALIZATION PRIVE WY DATA IS YOUR GREATEST ASSET VISUALIZE TN BROWSER.

- JAVASCRIPT LSING THE WAC

e PERFORMANCE QRIECT
Rz
o WM
R METRICS FOR A SCRUM TEAM
NTROTOINFOVIS: ADAT.

Syllabi

Philadelphia University

WER DEVEL OPMEN
INTROTO ACTIONSCRIPT3

FIGURE 7-8
A website created by using Foundation

138 HIGH PERFORMANCE RESPONSIVE DESIGN
www.it-ebooks.info

http://www.it-ebooks.info/

Let’s look at how Foundation fared, see Table 7-2.

TABLE 7-2. Evaluating Foundation

PANRLEHNSZANIENRRSNNES Same assets loaded for every experience, images resized

client-side
EASE OF USE Same as Bootstrap, using the prepackaged modules
DEPENDENCIES Modernizr, JQuery

SIA=IOI | =S SR 2WIGINE] foundation.css: 153.6 KB
(AND DEPENDENCIES) modernizrjs: T KB
Jjquery.js: 82.6 KB

foundation.js: (minified) 89.9 KB

Grand total: 337.1 KB

Skeleton

Skeleton was created and released in 2011 by Dave Gamache, formerly

of Twitter. You can download it from http://www.getskeleton.com)/.
Figure 7-9 shows the Skeleton home page.

7. FRAMEWORKS | 139
www.it-ebooks.info

http://www.getskeleton.com/
http://www.it-ebooks.info/

Skeleton

A Beautiful Boilerplate for
Responsive, Mobile-Friendly
Development

W Tweet 4,051

What Is It?

Skeleton is a small collection of CSS files that can help you rapidly
develop sites that look beautiful at any size, be ita 17- laptop
screen or an IPhone. Skeleton is built on three core principles:

Responsive Grid Down To Mobile

Skeleton has a familiar, lightweight 960 grid as its base, but
elegantly scales down to downsized browser windows, tablets,
mobile phones (in landscape and portrait). Go ahead, resize this
page!

9

Fast to Start

Skeleton is a tool for rapid development. Get started fast with CSS
best practices, a well-structured grid that makes mobile
consideration easy, an organized file structure and super basic Ul
elements like lightly styled forms, buttons, tabs and more.

/ Skeleton AN

Style Agnostic

Skeleton is not a Ul framework. It's a development kit that
provides the most basic styles as a foundation, but is ready to
adopt whatever your design or style is.

FIGURE 7-9
The Skeleton home page with instructions and inline code examples

140 | HIGH PERFORMANCE RESPONSIVE DESIGN
www.it-ebooks.info

http://www.it-ebooks.info/

If you download and unzip the Skeleton framework, you can see that
it is more of a boilerplate, with an index.html page for us to edit and an
existing directory hierarchy with the necessary CSS and images that
the code references. Figure 7-10 illustrates the unzipped Skeleton direc-
tory tree structure.

-icon-114x114.png

FIGURE 7-10
Skeleton website boilerplate, unzipped

Whereas Bootstrap comes with prestyled components such as the
Jumbotron, Skeleton takes a much more minimalist approach. There is
barely any styling to speak of; mainly it offers just buttons, forms, and
typography, along with layout definitions. The idea is to use Skeleton
for minimal layout and layer your own styles on top of it.

Using the included boilerplate, you can construct a website similar in
structure to the previous examples, styled in in the minimalist vein of
Skeleton, as shown in Figure 7-11. You can obtain Skeleton at http://
tomjbarker.github.io/skeleton/.

7. FRAMEWORKS 141
www.it-ebooks.info

http://tomjbarker.github.io/skeleton/
http://tomjbarker.github.io/skeleton/
http://www.it-ebooks.info/

Tom Barker

chhlﬂogisi, Author, Professor

g in]

TOMBARKER

TECHNICAL MANAGEMENT

APRIMER

Pro
Data Visualization
using R and JavaScript

High ‘
Performance
Responsive
Design

BUILDING FASTER SITES ACROSS DEVICES

Tom Barker 5 Apress

Foundation

Website Creation

Pro
JavaScript

Performance

Monitoring and Visualization

e ®

Articles

Safari Online dotNet Magazine IBM

A Data Visualization Primer Why data is your greatest asset (after people) Visualize in-browser performance data with R
Intro to R with Data Visualization and JavaScript using the W3C performance
Intro to D3: A Data Visualization Primer object

Intro to InfoVis: A Data Visualization Primer Data visualization with R: How to get and show
Intro to Processing.js: A Data Visualization meaningful metrics for a scrum team

Primer

Intro to Flot: A Data Visualization Primer
Reading and Parsing External Data in &
Oblect-Oriented Programming in R: Part 1. 53
Oblects

Oblect Oriented Programming in R: Part 2. 54
Oblects

RStudio. R Markdown, and Distributing Your R
Scripts on the Web using RPubs

Craiting Data Maps in R

Implementing Pie Charts in R

Syllabi
Philadelphia University
Data Visualization with JavaScript and R
Database Management and Scripting

Web Development
Intro to ActionSeript 3

FIGURE 7-11
A website created by using Skeleton

142 HIGH PERFORMANCE RESPONSIVE DESIGN
www.it-ebooks.info

http://www.it-ebooks.info/

EVALUATION

Let’s see how Skeleton fared in our evaluation criteria, see Table 7-3.

TABLE 7-3. Evaluating Skeleton

PARLEHNSZANIENRIESSNEE Skeleton loads the same assets for all device experi-
ences. The upside is that there is so little to the frame-
work that it is the smallest possible footprint anyway.

EASE OF USE Easy-to-use, baked-in styles, but if you want to have any
sort of styling you must add your own.

DEPENDENCIES None

SIZASSOI IS SRV VISIOIIE] Skeleton really is a minimal install. We only need two
(AND DEPENDENCIES) of the CSS files that come with the install, base.css and
skeleton.css. These files don’t come minified, but for my
example | minified them. The totals for these, at the time
of this writing, are:

base.css: (minified) 6.1KB
skeleton.css: (minified) 5.4 KB
layout.css: 1.7 KB

Grand total: 13.2 KB

Keep in mind that this doesn’t count any styling we
might want to layer on top of Skeleton. And, unless you
want the bare minimum of design (any you might actu-
ally want that), you will need to add additional styling.

Semantic Ul

Semantic UI is another web framework, again implemented on the

frontend, that provides prestyled Ul components with client-side
responsiveness built in. It is available at http://semantic-ui.com/.
Figure 7-12 presents a screenshot of the Semantic UI home page.

7. FRAMEWORKS | 143
www.it-ebooks.info

http://semantic-ui.com/
http://www.it-ebooks.info/

Er— o4 >

Semantic Ul -

Ul'is the vocabulary of the web.

Semantic empowers designers and developers by creating a
language for sharing UL.

B VIEWUI & DOWNLOAD

g Losethe Hieroglyphics

Growing Every Day

12 6 4 1

FIGURE 7-12
The Semantic Ul home page

144 HIGH PERFORMANCE RESPONSIVE DESIGN
www.it-ebooks.info

http://www.it-ebooks.info/

From the home page, you can download a ZIP file that contains the
directory structures that shown in Figure 7-13. There is an examples
directory that contains a couple of sample pages that demonstrate how
to use the framework, a less directory that contains individual LESS files
for each component, a minified directory that holds individual mini-
fied CSS files for each component. There is also a packaged directory
that contains all of the UI components and the JavaScript API aggre-
gated into a single CSS and JavaScript file (plus the minified version of
these packaged files). Figure 7-14 shows the contents of the packaged
directory. Finally, there is an uncompressed directory that contains all
of the individual components as (uncompressed) CSS files.

examples
— 1images

collections
elements
fonts

modules

L— behavior
— views
minified

collections

elements

ges
modules

L— behavior

compre
collections
elements
F—— fonts
images
modules
L— behavior
L— views

FIGURE 7-13
Tree view of the directories in the Semantic Ul download

7. FRAMEWORKS 145
www.it-ebooks.info

http://www.it-ebooks.info/

mantic.css

-medium-inverted.gif
mediu T

r-mini-inverted.gif
r-min
11-inverted.gif
ader-small.gif
ript

r—— semantic.js

semantic.min.js

FIGURE 7-14
Tree view of the packaged files from the Semantic Ul download

In Figure 7-14, observe that the download also included CSS files for
individual components so that we can choose to only utilize the files for
the modules that we are using

Using the packaged CSS and based on the homepage.html example
from the download, I was able to construct the example website dis-
played in Figure 7-15. The example is available at http://tomjbarker.
github.io/semantic/.

146 HIGH PERFORMANCE RESPONSIVE DESIGN
www.it-ebooks.info

http://tomjbarker.github.io/semantic/
http://tomjbarker.github.io/semantic/
http://www.it-ebooks.info/

Tom Barker

‘Technologist, Author, Professor

[40

TOMBARKER

TECHNICAL MANAGEMENT

APRIMER

Pro
Data Visualization

using R and JavaScript

Responsive
Design

BULOING FASTERSTE ACHOSS DEVICES

Apress

Tom Barker

Pro

JavaScript
Performance

Apress:

Articles

Safari Online dotNet Magazine IBM
DATA VISUAL IZATION PRIMER WHY DATA IS YOUR GREATEST ASSET VISUALIZE I BROWSER
IROTORWIDATS JAVASCRIPTUSNG THE WAC
. 8 (. ‘DATAVISUA ZATION TR o
.y MEANN
s METRICS FOR ASCRUNCTEAM
VISUALIZATIONFRIMER

i PROCESSING IS: A DAT:
SUALIZATION PRIMER

I ORIENTED PROGRAMMINGIN
R:PART2.S4 OBIECTS

RSTUDIO.R MARKDOWN, AND
e € e e

Syllabi

Philadelphia University

FIGURE 7-15
A website created using Semantic Ul

7. FRAMEWORKS 147
www.it-ebooks.info

http://www.it-ebooks.info/

EVALUATION

Let’s see how Semantic UT fared in our evaluation criteria (Table 7-4).

TABLE 7-4. Evaluating Semantic Ul

FARIENSZNIEZARISNNSE Again, Semantic is a frontend framework that has all of
the same anti-patterns with which we are all too familiar.

EASE OF USE Same as Bootstrap and Foundation
DEPENDENCIES JQuery

SVASNOI N | SRV VIRWIOIIS semantic.css: (minified) 231KB
(AND DEPENDENCIES)

jquery.js: 82.6 KB
semantic.js: (minified) 134.4 KB

Grand total: 448 KB

A Comparison of Frontend Frameworks

When you compare the raw numbers, you can see that from the pool
of frameworks that we’ve looked at, Semantic is the heaviest of the
group—if you are using the packaged files and not cherry-picking com-
ponents to include. Figure 7-16 provides a side-by-side comparison of
the sheer size of the frameworks.

Figure 7-16 illustrates clearly that the sizes vary drastically, from 13 KB
for Skeleton, up to 448 KB for Semantic Ul Taking this a step further,
if you then look at the example websites using these frameworks—all
with the same exact content—and look at the total payload for each site,
breaking out the total payload for each asset type, you can see that the
page size gets inflated from 460 KB, in the case of our Skeleton exam-
ple, up to 907 KB for our Semantic Ul example. Figure 7-17 depicts this
break out.

148 | HIGH PERFORMANCE RESPONSIVE DESIGN
www.it-ebooks.info

http://www.it-ebooks.info/

Comparison of File Sizes of
Responsive Frameworks

[=]
[-
2
[=]
o —
o
w
i}
X
£
.g g_ I
[5]) o™
[=]
[et
o - IS
Skeleton Bootstrap Foundation Semantic Ul
Frameworks
FIGURE 7-16

Framework payload comparison

What is evident in Figure 7-17 is how the size of the frameworks impact
the size of the overall page payload, where the red segments represents
the size of the frameworks, whereas the blue segments represents the
size of the HTML needed to create the pages, and the yellow segments
represent the size of the images used in the pages. Notice that all the
pages use the same images, and require roughly the same amount of
HTML (within a 2 KB difference) to implement.

7. FRAMEWORKS | 149
www.it-ebooks.info

http://www.it-ebooks.info/

Size in KBs

800

600

400

200

Comparison of File Sizes of Example Site
by Responsive Frameworks

O Images
B Framework
7| m HTML

S
Skeleton Bootstrap Foundation Semantic Ul

Frameworks

FIGURE 7-17
The impact of framework sizes on page payload

Ripple

When I surveyed the landscape of responsive frameworks, it became
clear to me that they are all frontend frameworks, and with the excep-
tion of Skeleton, they are not designed with performance in mind.
Armed with this knowledge, I decided to create a bare-bones boiler-
plate using NodeJS to set up a full-stack responsive website using the
principles that we have been discussing in this book. I named the boil-
erplate Ripple, and made it available for you at https://github.com/tom
jbarker/Ripple. Following is the source code for Ripple:

150 HIGH PERFORMANCE RESPONSIVE DESIGN
www.it-ebooks.info

https://github.com/tomjbarker/Ripple
https://github.com/tomjbarker/Ripple
http://www.it-ebooks.info/

var http = require("http");
var url = require("url");

var handle = {}
handle["/"] = checkUA;
handle["/favicon.ico"] = favicon;

var uaViewPortCategories = {

"320": new RegExp(/Nexus S|iPhone|BB10|Nexus 4|Nexus 5|
HTC|LG|GT/),

"640": new RegExp(/Nexus 7/),

"1024": new RegExp(/Silk|iPad|Android/)
};

var assetPath = {
"css": "assets/css/1024/",
"img": "assets/img/1024/",
"js": "assets/js/1024/"

|5

var serv = http.createServer(function (req, res) {
var pathname = url.parse(req.url).pathname;
route(pathname, res, req);

};

function route(path, res, req){
console.log("routing " + path)
handle[path](res, req);

function checkUA(res, req) {
var ua = req.headers["user-agent"]
var re = new RegExp(/iPhone|iPod|iPad|Mobile|Android/);
if(re.exec(ua)){
getMobileCapabilities(ua, res);
}

renderExperience(res);

function getMobileCapabilities(ua, res){

res.writeHead(200, { "Content-Type": "text/html" });

var viewPortWidth = 1024;

if(uaViewPortCategories["320"].exec(ua)){
viewPortWidth = 320

telse if(uaViewPortCategories["640"].exec(ua)){
viewPortWidth = 640

telse if(uaViewPortCategories["1024"].exec(ua)){
viewPortWidth = 1024

}

7. FRAMEWORKS 151
www.it-ebooks.info

http://www.it-ebooks.info/

assetPath.css = "assets/css/"+viewPortWidth+"/";
assetPath.img = "assets/img/"+viewPortWidth+"/"
assetPath.js = "assets/js/"+viewPortWidth+"/"

}

function renderExperience(res){
res.writeHead(200, { "Content-Type": "text/html" });
res.write(assetPath.css + "
");
res.write(assetPath.img + "
");
res.end(assetPath.js);

function favicon(res, req){

res.writeHead(200, {
"Content-Type': 'image/x-icon'
b

res.end();

serv.listen(80);

To run the boilerplate, simply download the project from GitHub,
change directory into the project directory, and then run the engine.js
file from node, as follows:

node engine.js

The engine file checks the User Agent from the HTTP request, runs a
series of regular expressions against the User Agent to determine the
client, and based on the determination creates paths to static assets that
are appropriate to the viewport size of the client device.

Summary

As of this writing, all of the frameworks available are frontend frame-
works. With the exception of Skeleton, most are heavy—some would
say bloated—and all follow the same anti-patterns of loading the same
assets for every device experience.

Again, as of this writing, there are no mainstream server-side frame-
works or boilerplates available; if you are interested in what you've read
so far and want to explore the concepts further, I hope you will check
out Ripple and begin exploring the performance benefits that can be
gained from focusing on responsiveness from the server side.

152 HIGH PERFORMANCE RESPONSIVE DESIGN
www.it-ebooks.info

http://www.it-ebooks.info/

| Index |

Symbols
1xx: Informational (HTTP re-
sponse), 67

2xx: Success (HTTP response), 67
3xx: Redirection (HTTP re-

sponse), 67

4xx: Client Error (HTTP re-
sponse), 67

5xx: Server Error (HTTP re-
sponse), 67

A

Account Settings page (Scientiamo-
bile), 77-78

ACK (acknowledge) messages, 23
acknowledge (ACK) messages, 23
active mode (Timeline tool), 43
Age (HTTP response header), 67
Alexa, competitive analysis, 3
anti-patterns, competitive analysis
observations, 9-10
Application layer (network
stack), 64-67
HTTP requests, 65-66
HTTP Responses, 66-68
apps (Web)
continuous performance testing
automated headless browser
testing, 108-115
CI (Continuous Integra-
tion), 116-128
feedback loops, 107-108
performance
measuring, 21-30
runtime performance, 40-47
tracking tools, 30-39

assessment of task, planning respon-

sive design, 51-56
async variable, 118
automated headless browser test-
ing, 108-115

experiential resource load-
ing, 111-113
Phantom]S modules, 110
validating web performance, 113-
115

backend, responsive design
edge networks, 84-85
implications of cache, 83-84
server-side response, 70-83
device detection services, 74—
78
inspection of User Agent, 72—
74
sample code, 79-83
Web Application Stack, 69-70
Web Stack, 63-69
Charles (inspecting network
traffic), 68—69
network stack, 63-64
Bakaus, Paul, 42
bar charts, HTTP requests, 8
boilerplates
Ripple, 150-152
Skeleton, 141
Bootstrap (Twitter), 131-135
evaluation, 135
home page, 132
installation, 133
sample website, 134
browsers
architecture, 25-26
negotiations with web server, 24

o

cache, backend responsive de-
sign, 83-84
callback function, 120

153

www.it-ebooks.info

http://www.it-ebooks.info/

CDNs (Content Delivery Net-
works), 84
Charles (HTTP monitoring
tool), 68-69
Chrome (Google), Developer
Tools, 31-32
FPS Monitor, 42—43
Timeline tool, 43-44
CI (Continuous Integration), 116—
128
feedback loop, 108
Jenkins, 124-128
sample Phantom]SScript, 116—
123
work flow, 117
client-server transaction, 70
code, backend server-side re-
sponse, 79-83
comparison of frontend frame-
works, 148-150
competitive analysis, 1-11
anti-patterns, 9-10
patterns, 10-13
Config.js file, 80
connectEnd property (PerformanceT-
iming object), 38
connection speeds, 53-54
connectStart property (Perfor-
manceTiming object), 38
content delivery networks
(CDNs), 84
Continuous Integration (CI), 116-
128
feedback loop, 108
Jenkins, 124-128
sample Phantom]SScript, 116—
123
work flow, 117
continuous Web performance testing
automated headless browser test-
ing, 108-115
experiential resource load-
ing, 111-113
Phantom]S modules, 110
validating web perfor-
mance, 113-115
CI (Continuous Integra-
tion), 116-128
Jenkins, 124-128
sample Phantom]SS-
cript, 116-123

154 INDEX

feedback loops, 107-108
CPU usage, impact on runtime per-
formance, 42

D

Data Link layer (network stack), 63

dedicated experience (pattern), 12

dedicated sites, responsive sites
versus, 5-7

DELETE method, 65

dependencies, planning responsive
design, 58-60

design (responsive). See responsive
design

detection services, 74-78

Developer Tools, Chrome, 31-32

FPS Monitor, 42-43
Timeline tool, 43—44

device detection libraries, 103-105

device detection services, 74-78

device pixel ratio, 88-91

devices, average viewing distance, 53

directories, Semantic Ul, 145

directory structure, lazy loading, 98

distribution of file size, dedi-
cated sites vs responsive
sites, 5-7

DNS (Domain Name System)
lookup, 23

Document Object Model (DOM) ele-
ments, 27

document type definition (DTD), 26

domainLookupEnd property (Perfor-
manceTiming object), 38

domainLookupStart property (Perfor-
manceTiming object), 38

Domain Name System (DNS)
lookup, 23

domComplete property (Perfor-
manceTiming object), 38

domContentLoadedEventEnd prop-
erty (PerformanceTiming
object), 38

domContentLoadedEventStart prop-
erty (PerformanceTiming
object), 38

DOM (Document Object Model) ele-
ments, 27

domInteractive property (Perfor-
manceTiming object), 38

www.it-ebooks.info

http://www.it-ebooks.info/

domLoading property (Perfor-
manceTiming object), 38

DTD (Document Type Descrip-
tion), 26

E

edge networks, backend responsive
design, 84-85
Edge Side Include (ESI) language, 85
ESI (Edge Side Include) language, 85
ETag (HTTP response header), 67
evaluations
experiential resource loading, 111
Semantic Ul, 148
Skeleton, 143
Twitter Bootstrap, 135
ZURB Foundation, 139
Even Faster Websites (italic), 21
event handlers, onResourceRe-
ceived, 119
expensive paints, impact on runtime
performance, 41
experiential resource loadiong, 111

F

feedback loops, continuous Web per-
formance testing, 107-108
fetchStart property (PerformanceTi-
ming object), 38
file size, dedicated versus responsive
sites, 5-7
File System module (Phantom-
JS), 110
Firebug (Firefox), 31-32
Firefox, Firebug, 31-32
formatOutput function, 120
Fortune 100 Companies (quotes)
report, 3
Foundation (ZURB), 135-139
evaluation, 139
home page, 136
installation, 137
sample website, 138
FPS (Frames Per Second) Moni-
tor, 42-44
Frames mode (Timeline tool), 43-44
Frames Per Second (FPS) Moni-
tor, 42-44
Frames Per Second web app, 42
Frames view (Timeline tool), 43

frameworks
comparison of frontend frame-
works, 148-150
Ripple, 150-152
Semantic UI, 143-148
directories, 145
evaluation, 148
homepage, 144
sample website, 147
Skeleton, 139-143
evaluation, 143
homepage, 140
sample website, 142
website boilerplate, 141
state of frameworks, 129-131
Twitter Bootstrap, 131-135
evaluation, 135
homepage, 132
installation, 133
sample website, 134
ZURB Foundation, 135-139
evaluation, 139
homepage, 136
installation, 137
sample website, 138
frontend, responsive design
images, 87-95
picture element, 91-95
srcset attribute, 88-91
lazy loading, 95-105
functions
callback, 120
formatOutput, 120
page.open, 120
test, 119

G

Gamache, Dave, 139
garbage collection, impact on run-
time performance, 41
GET method, 65
Github plug in, 126
Google Chrome, Developer
Tools, 31-32
FPS Monitor, 42-43
Timeline tool, 43-44
Google Glass, 20
Google V8, 25
Grigorik, Ilya, 91
grouped bar charts, HTTP re-
quests, 8

INDEX

www.it-ebooks.info

155

http://www.it-ebooks.info/

H

header fields (HTTP Responses), 66
headless browser testing, 108-115
experiential resource load-
ing, 111-113
Phantom]S modules, 110
validating web performance, 113-
115
HEAD method, 65
Hewitt, Joe, 31
Hidayat, Ariya, 109
High Performance Browser Network-
ing (italic), 91
High Performance Websites
(italic), 21
history, responsive design, 15-17
home pages
Jenkins, 124-125
Scientiamobile, 76
Semantic Ul, 144
Skeleton, 140
Twitter Bootstrap, 132
ZURB Foundation, 136
Host request header, 66
HTTP requests, 65-66
as performance indicator, 28-29
HTTP requests, grouped bar
charts, 8
HTTP Responses, 66-68
HTTPWatch, 32-34
Hudson, 124

If-Modified-Since request header, 66
images, frontend responsive de-
sign, 87-95
picture element, 91-95
srcset attribute, 88-91
implications of cache, backend re-
sponsive design, 83-84
index.js, 80
indicators, Web app perfor-
mance, 22-23
number of HTTP requests, 28-29
page load time, 29-30
page payload, 29
input indicators, 22
inspection of User Agent, 72-74
installation
Phantom]S, 109
Twitter Bootstrap, 133

156 INDEX

ZURB Foundation, 137
Interesting Stats page (HTTP Ar-
chive), 87
issues with responsive design, 1-20

J
Jain, Arvind, 36
Jasmine (Pivotal Labs), 108
JavaScript engines, 25
JavaScript heap, 4445
JavaScript Object Notation (JSON)
object, 111
Jenkins, 124-128
creating a new project, 126
home page, 124-125
Mac OS installer, 125
test result output, 128
jsHeapSizeLimit property (Memory-
info object), 46
JSON (JavaScript Object Notation)
object, 111

K

Kawaguchi, Kohsuke, 124

key performance indicators
(KPIs), 50, 60-61

KPIs (Key Performance Indica-
tors), 50, 60-61

L

layout, Web runtime perfor-
mance, 41
lazy loading, 95-105
dedicated experiences from the
frontend, 12
device appropriate content from
client side, 96
directory structure, 98
waterfall chart, 101
leading indicators, 22
lexical analysis, text characters, 26
loadEventEnd property (Perfor-
manceTiming object), 38
loadEventStart property (Perfor-
manceTiming object), 38
loading
additional assets (anti-pat-
tern, 9-10
device-appropriate assets (pat-
terns), 11

www.it-ebooks.info

http://www.it-ebooks.info/

images at twice the size (anti-
pattern), 10

same content for all devices (anti-
pattern), 9

M

Mac OS installer, Jenkins, 125
mdots, 18-20
pointless redirects, 19-20
resource overhead, 18-19
segmented source code, 18
segmented URLs, 18
mean file size, dedicated vs respon-
sive sites, 5
measuring Web app perfor-
mance, 21-30
number of HTTP requests, 28-29
page load time, 29-30
page payload, 29
Meenan, Pat, 30
Memorylnfo object, 45-46
memory management, impact on
runtime performance, 41
Memory mode (Timeline tool), 46—
47
memory profiling, 44-47
methods
DELETE, 65
GET, 65
HEAD, 65
OPTIONS, 65
POST, 65
PUT, 65
milestones, planning responsive
design, 56-58
Mirror API (Google Glass), 20
modern browser architecture, 25-26
modules, Phantom]S, 110
Multichannel Retailers (quotes)
report, 3

N

navigationStart property (Perfor-
manceTiming object), 38
Network layer (network stack), 63
network speeds, 53-54
network stack, 63-64
Application layer, 64—67
HTTP requests, 65-66
HTTP Responses, 66-68
Data Link layer, 63

Network layer, 63
Transport layer, 64

o

observations, competitive analy-
sis, 1-11
anti-patterns, 9-10
patterns, 10-13
onResourceReceived event han-
dler, 119
Opera, 25
OPTIONS method, 65
Otto, Mark, 131

P

page load time, performance indica-
tor, 29-30
page.open function, 120
page payload
comparison of frontend frame-
works, 150
performance indicator, 29
Page Visibility API, 36
paints, impact on runtime perfor-
mance, 41
parsing text characters, 26
patterns, competitive analysis obser-
vations, 10-13
payload
comparison of frontend frame-
works, 149
responsive sites versus dedicated
sites, 5
perception of speed, 23
performance
continuous Web performance
testing
automated headless browser
testing, 108-115
CI (Continuous Integra-
tion), 116-128
feedback loops, 107-108
SLAs (Service Level Agree-
ments), 14-15
Web applications
measuring, 21-30
runtime performance, 40-47
tracking tools, 30-39
Performance DOM objects, 35
performance indicators, Web app
performance, 22-23, 28-30

INDEX 157

www.it-ebooks.info

http://www.it-ebooks.info/

performance object, 36-38
PerformanceTiming object, 37-39
Phantom]S
installation, 109
modules, 110
sample script, 116-123
picture element, 91-95
Pivotal Labs, Jasmine, 108
planning responsive design, 49-61
assessment and summarization of
task, 51-56
crafting rough milestones/time-
lines, 56-58
dependencies and risks, 58-60
KPIs (Key Performance Indica-
tors), 60
SLAs (Service Level Agree-
ments), 61
pointless redirects, mdots, 19-20
POST method, 65
properties
Memoryinfo object, 46
PerformanceTiming object, 38-39
userAgent, 111
PUT method, 65

Q

qualitative indicators, 22-23
quantitative indicators, 22

R

real user monitoring (RUM), 35

redirectEnd property (PerformanceTi-
ming object), 38

redirectStart/ property (Perfor-
manceTiming object), 38

rendering engines, 25

request headers (HTTP Re-
quests), 65, 66

request line (HTTP Requests), 65

requestStart property (PerformanceT-
iming object), 38

resource loadiong, 111

resource overhead, mdots, 18-19

responseEnd property (Perfor-
manceTiming object), 38

responseStart property (Perfor-
manceTiming object), 38

responsive design

absence of SLAs (Service Level

Agreements), 14-15

158 INDEX

backend
edge networks, 84-85
implications of cache, 83-84
server-side response, 70-83
Web Application Stack, 69-70
Web Stack, 63-69
continuous Web performance
testing
automaterd headless browser
testing, 108-115
CI (Continuous Integra-
tion), 116-128
feedback loops, 107-108
frameworks
comparison of frontend frame-
works, 148-150
Ripple, 150-152
Semantic Ul, 143-148
Skeleton, 139-143
state of frameworks, 129-131
Twitter Bootstrap, 131-135
ZURB Foundation, 135-143
frontend
images, 87-95
lazy loading, 95-105
history of, 15-17
issues with responsive de-
sign, 1-20
mdots, 18-20
pointless redirects, 19-20
resource overhead, 18-19
segmented source code, 18
segmented URLs, 18
observations from competitive
analysis, 1-11
project plans, 49-61
assessment and summariza-
tion of task, 51-56
crafting rough milestones/
timelines, 56-58
dependencies and risks, 58-60
KPIs (Key Performance Indica-
tors), 60
SLAs (Service Level Agree-
ments), 61
scale, 19-20
Web application performance
measuring, 21-30
runtime performance, 40-47
tracking tools, 30-39
Responsive Design + Server-Side
Components (RESS), 12

www.it-ebooks.info

http://www.it-ebooks.info/

responsive sites, dedicated sites
versus, 5-7
RESS (Responsive Design + Server-
Side Components), 12
Ripple, 150-152
risks, planning responsive de-
sign, 58-60
rsponsive sites
dedicated sites versus, 5
RUM (real-user monitoring), 35
runtime performance (web
apps), 4047
Frames per second (FPS), 42-44
memory profiling, 44-47

S

Safari, 25
Scientiamobile home page, 76
Search Agency, 3—4
segmented source code, mdots, 18
segmented URLs, mdots, 18
Semantic Ul, 143-148
directories, 145
evaluation, 148
home page, 144
sample website, 147
sequence diagrams
anti-patterns, 17
negotiation between browser and
web server, 24
serving device-appropriate experi-
ence, 13
server-side response, backend, 70-83
device detection services, 74-83
inspection of User Agent, 72-74
sample code, 79-83
Service Level Agreements
(SLAs), 14-15, 61
serving a dedicated experience (pat-
tern), 12
Skeleton, 139-143
evaluation, 143
home page, 140
sample website, 142
website boilerplate, 141
SLAs (Service Level Agree-
ments), 14-15, 61
Souders, Steve, 87
Source Code Management page (jen-
kins), 126
source element, 91

Speed Index (WebPageTest), 30
speed, perception of, 23
srcset attribute, 88-91
state of responsive frameworks, 129-
131
state of the industry
absence of SLAs (Service Level
Agreements), 14-15
history leading to current
state, 15-17
issues with responsive de-
sign, 1-20
mdots, 18-20
pointless redirects, 19-20
resource overhead, 18-19
segmented source code, 18
segmented URLs, 18
observations from competitive
analysis, 1-11
scale, 19-20
status codes (HTTP responses), 23
status line (HTTP Responses), 66
summarization of task, planning
responsive design, 51-56
SYN-ACK (synchronize-acknowledge)
messages, 23
synchronize-acknowledge (SYN-ACK)
messages, 23
synchronize (SYN) messages, 23
synchronous calls, impact on run-
time performance, 41
SYN (synchronize) messages, 23
System module (Phantom]S), 110

-

TCP/IP (Transmission Control
Protocol/Internet Protocol)
connections, 23

TCP (Transmission Control Protocol)
three-way handshake, 23

test function, 119

testing Web performance

automated headless browser test-
ing, 108-115

CI (Continuous Integra-
tion), 116-128

feedback loops, 107-108

testsToRun array, 118

Thornton, Jacob, 131

timelines, planning responsive de-
sign, 56-60

INDEX | 159

www.it-ebooks.info

http://www.it-ebooks.info/

Timeline tool (Google Chrome), 43—
44, 46-47
total]SHeapSize property (Memory-
info object), 46
tracking tools, Web app perfor-
mance, 30-39
PerformanceTiming object, 37-39
waterfall charts, 30-36
Web Performance Working
Group, 35-36
Transmission Control Protocol/
Internet Protocol (TCP/IP)
connections, 23
Transmission Control Protocol (TCP)
three-way handshake, 23
Transport layer (network stack), 64
Twitter Bootstrap, 131-135
evaluation, 135
home page, 132
installation, 133
sample website, 134

U

Ul layer, browser, 25
unit testing frameworks, 108
unloadEventEnd property (Perfor-
manceTiming object), 38
unloadEventStart property (Perfor-
manceTiming object), 38
used]SHeapSize property (Memory-
info object), 46
User Agent
inspection, 72-74
strings, 73
userAgent property, 111
User-Agent request header, 66

\'}

validating web performance, 113-
115

variables, async, 118

Vary (HTTP response header), 67

viewing distance, average distances
for various devices, 53

viewports, 52

w

waterfall charts, 30-36
home page, rendered for desk-
top, 3

160 INDEX

home page, rendered for smart-
phone, 2
lazy loading, 101
Web Application Stack, 69-70
Weber, Jason, 36
WeDbKit, 25
Web Page module (Phantom]S), 110
WebPageTest, 30, 34-35
web performance optimization
continuous performance testing
automated headless browser
testing, 108-115
CI (Continuous Integra-
tion), 116-128
feedback loops, 107-108
measuring, 21-30
runtime performance, 40-47
tracking tools, 30-39
Web Performance Working
Group, 35-36
Web Server module (Phantom-
JS), 110
Web Stack, 63-69
Charles (inspecting network traf-
fic), 68-69
network stack, 63—-64
Application layer, 64—67
Data Link layer, 63
Network layer, 63
Transport layer, 64
Wireless Universal Resource FiLe
(Wurfl), 75-79
work flow, CI (Continuous Integra-
tion), 117
Wurfl Cloud, 76-79
WurflCloudClient.js file, 80
Wurfl (Wireless Universal Resource
FiLe), 75-79

Y
YSlow reports (Phantom]S), 113

z

ZURB Foundation, 135-139
evaluation, 139
home page, 136
installation, 137
sample website, 138

www.it-ebooks.info

http://www.it-ebooks.info/

| About the Author |

Tom Barker has been a software engineer since the 90s,
focusing on the full stack of web development. Currently,
he is Director of Software Development and Engineering at
Comcast, an adjunct professor at Philadelphia University,

a husband, a father, an amateur power lifter and armchair
philosopher. He is obsessed with elegant software solutions,
continual improvement, refining process, data analysis, and
visualization.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

	Preface
	Chapter 1: State of the Industry of Responsive Design
	The Problem with Responsive Design
	Summary

	Chapter 2: Primer on Performance of Web Applications
	The Basics of Measuring Performance
	Tools to Track Web Performance
	Web Runtime Performance
	Summary

	Chapter 3: Start with a Plan
	A Journey Down the Slippery Slope
	Project Plans
	Summary

	Chapter 4: The Backend
	The Web Stack
	Web Application Stack
	Responding on the Server Side
	Implications of Cache
	Edge Side Includes
	Summary

	Chapter 5: The Frontend
	Working with Images
	Lazy Loading
	Summary

	Chapter 6: Continuous Web Performance Testing
	Maintaining a Steady Course
	Automating Responsive Web Performance Testing
	Continuous Integration
	Summary

	Chapter 7: Frameworks
	Looking at the State of Responsive Frameworks
	Twitter Bootstrap
	ZURB Foundation
	Skeleton
	Semantic UI
	A Comparison of Frontend Frameworks
	Ripple
	Summary

	Index

