Professional

Ajax

Michodas C. fakas, Jerermy MoPeak, Joe Fanvoetl

AN

WO Laes, SOUFDe cooee, g Wi SRCieEl SLODOTT A0 WL WItILCOm

http://www.it-ebooks.info/

Professional
Ajax
27 Edition

Nicholas C. Zakas
Jeremy McPeak

Joe Fawcett

~~~~~~~~~~

1807
| DWILEY |;
42007

>

...........

Wiley Publishing, Inc.

www.it-ebooks.info


http://www.it-ebooks.info/

www.it-ebooks.info


http://www.it-ebooks.info/

Professional
Ajax
27 Edition

Nicholas C. Zakas
Jeremy McPeak

Joe Fawcett

~~~~~~~~~~

1807
| DWILEY |;
42007

>

...........

Wiley Publishing, Inc.

www.it-ebooks.info

http://www.it-ebooks.info/

Professional Ajax, 2nd Edition

Published by

Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2007 by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-0-470-10949-6

Manufactured in the United States of America

10987654321

Library of Congress Cataloging-in-Publication Data:’
Zakas, Nicholas C.
Professional Ajax / Nicholas C. Zakas, Jeremy McPeak, Joe Fawcett. -- 2nd ed.
.cm.

Inclfudes index.

ISBN-13: 978-0-470-10949-6 (paper/website)

ISBN-10: 0-470-10949-1 (paper/website)

1. Ajax (Web site development technology) 2. Web sites--Design--Computer programs. 3. JavaScript (Computer pro-
gram language) 4. Asynchronous transfer mode. 5. World Wide Web. 1. McPeak, Jeremy, 1979- II. Fawcett, Joe, 1962-
II. Title.

TK5105.8885.A52735 2007

005.13'3--dc22

2006103094

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections
107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or
authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood
Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be
addressed to the Legal Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317)
572-3447, fax (317) 572-4355, or online at http:/ /www.wiley.com/go/permissions.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REPRE-
SENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CON-
TENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT
LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED
OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED
HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING
THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROEFES-
SIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT PROEFES-
SIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE
FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO
IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT
MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR
WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE AWARE
THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN
WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services please contact our Customer Care Department within the
United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are
trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other
countries, and may not be used without written permission. All other trademarks are the property of their respective
owners. Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be avail-
able in electronic books.

www.it-ebooks.info

www.wiley.com
http://www.it-ebooks.info/

To mom, dad, Greg, Yiayia, and the rest of my family and friends who have
supported me throughout my cross-country move.

—Nicholas C. Zakas

To the love of my life, Starla. Thank you for your love, patience, and
encouragement.

—Jeremy McPeak

To my parents, Sheila and William, who instilled in me a love of reading.
Thank you!

—Joe Fawcett

www.it-ebooks.info

http://www.it-ebooks.info/

About the Authors

Nicholas C. Zakas has a BS in Computer Science from Merrimack College and an MBA from Endicott
College. He is the author of Professional JavaScript for Web Developers (Wiley 2005) as well as several
online articles. Nicholas works for Yahoo! as a frontend engineer and has worked in web development
for more than 6 years, during which time he has helped develop web solutions in use at some of the
largest companies in the world. Nicholas can be reached through his web site at www.nczonline.net.

Jeremy McPeak began tinkering with web development as a hobby in 1998. Currently working in the IT
department of a school district, Jeremy has experience developing web solutions with JavaScript, PHP,
and C#. He has written several online articles covering topics such as XSLT, WebForms, and C#. He is
also co-author of Beginning JavaScript, 3rd Edition (Wiley 2007). Jeremy can be reached through his web

site at www.wdonline. com.

Joe Fawcett started programming in the 1970s and briefly worked in IT upon leaving full-time educa-
tion. He then pursued a more checkered career before returning to software development in 1994. In
2003 he was awarded the title of Microsoft Most Valuable Professional in XML for community contribu-
tions and technical expertise. He currently works in London as a developer for FTC Kaplan, a leading
international provider of accountancy and business training, where he specializes in systems integration.

www.it-ebooks.info

http://www.it-ebooks.info/

Credits

Senior Acquisitions Editor
Jim Minatel

Senior Development Editor
Kevin Kent

Technical Editor
Alexei Gorkov

Production Editor
Angela Smith

Copy Editor
Jeri Freedman

Editorial Manager
Mary Beth Wakefield

Production Manager
Tim Tate

Vice President and Executive Group Publisher
Richard Swadley

Vice President and Executive Publisher
Joseph B. Wikert

Graphics and Production Specialists
Sean Decker

Jennifer Mayberry

Amanda Spagnuolo

Alicia B. South

Quality Control Technician
Rob Springer

Project Coordinator
Bill Ramsey

Proofreading
Christopher Jones

Indexing
Johnna VanHoose Dinse

Anniversary Logo Design
Richard Pacifico

www.it-ebooks.info

http://www.it-ebooks.info/

Acknowledgments

It takes many people to create a book such as this, and as such, we’d like to thank some people for their
contributions to this work.

First and foremost, thanks to everyone at Wiley for their support: to Jim Minatel for starting the process
once again, and Kevin Kent for putting up with all of the last-minute changes and course diversions
throughout the process. Also, a thanks to our technical editor, Alexei Gorkov, for doing a fantastic job
keeping us honest.

Last, a big thanks to those who provided feedback pre-publication including Peter Frueh, Adam Moore,

Jenny Han, Matt Sweeney, Tyson Guskiken, Steve Carlson, and especially Hedger Wang, who suggested
adding the chapter on request management.

www.it-ebooks.info

http://www.it-ebooks.info/

Contents

Introduction XV
Chapter 1: What Is Ajax? 1
Ajax Is Born 2
The Evolution of the Web 2
JavaScript 2
Frames 3
The Hidden Frame Technique 3
Dynamic HTML and the DOM 3
Iframes 4
XMLHttp 4
The Real Ajax 5
Ajax Principles 6
Technologies behind Ajax 6
Who Is Using Ajax? 7
Google Suggest 7
Gmail 8
Google Maps 9
A9 10
Yahoo! News 11
Bitflux Blog 12
Confusion and Controversy 13
Ajax and Web 2.0 14
Summary 15
Chapter 2: Ajax Basics 17
HTTP Primer 17
HTTP Requests 18
HTTP Responses 20
Ajax Communication Techniques 21
The Hidden Frame Technique 21
XMLHttp Requests (XHR) 37
Ajax with Images 50
Dynamic Script Loading 59
Cache Control 63
Summary 63

www.it-ebooks.info

http://www.it-ebooks.info/

Contents

Chapter 3: Ajax Patterns 65
Communication Control Patterns 65
Predictive Fetch 66
Page Preloading Example 66
Submission Throttling 74
Incremental Form Validation Example 76
Incremental Field Validation Example 82
Periodic Refresh 85
New Comment Notifier Example 86
Multi-Stage Download 90
Additional Information Links Example 91
Fallback Patterns 93
Cancel Pending Requests 94
Try Again 96
Summary 97
Chapter 4: Ajax Libraries 99
The Yahoo! Connection Manager 929
Setup 99
Basic Requests 100
The Callback Object 100
Monitoring and Managing Requests 104
Form Interaction 104
File Uploads 105
GET Example 106
POST Example 107
Additional Features 108
Limitations 108
Prototype 109
The Ajax.Request Object 109
The Options Object 109
GET Example 112
POST Example 113
The Ajax.Updater Object 113
The Ajax.Responders Object 115
Advantages and Disadvantages 117
jQuery 117
Simple jQuery Expressions 117
Executing GET Requests 118
GET Example 119
viii

www.it-ebooks.info

http://www.it-ebooks.info/

Contents

The $.post() Method 120
POST Example 120
The load() Method 122
The $.ajax() Method 123
The ajaxStart() and ajaxStop() Methods 124
Limitations 124
Summary 125
Chapter 5: Request Management 127
Priority Queues 127
The RequestManager Object 131
Request Description Objects 132
Queuing Requests 133
Sending Requests 134
Cancelling Requests 139
Age-Based Promotion 141
Handling Ajax Patterns 142
Using RequestManager 145
Summary 148
Chapter 6: XML, XPath, and XSLT 149
XML Support in Browsers 149
XML DOM in IE 149
XML in Other Browsers 159
Cross-Browser XML 162

A Basic XML Example 163
XPath Support in Browsers 170
Introduction to XPath 170
XPath in IE 172
Working with Namespaces 173
XPath in Other Browsers 175
Working with a Namespace Resolver 177
Cross-Browser XPath 178
XSL Transformation Support in Browsers 179
Introduction to XSLT 180
XSLT in IE 182
XSLT in Other Browsers 187
Cross-Browser XSLT 189
Best Picks Revisited 189
Summary 192
ix

www.it-ebooks.info

http://www.it-ebooks.info/

Contents

Chapter 7: Syndication with RSS and Atom 193
RSS 193
RSS 0.91 194
RSS 1.0 195
RSS 2.0 196
Atom 196
XParser 197
The xparser Namespace 197
Retrieving the Data 198
The Abstract Classes 198
Creating a News Ticker 210
The Server-Side Component 210
The Client-Side Component 211
Styling the News 221
Using the News Ticker Widget 222
Web Search with RSS 223
The Server-Side Component 224
The Client-Side Component 225
Customizing the Web Search Widget 232
Using the Web Search Widget 234
Summary 235
Chapter 8: JSON 237
What Is JSON? 237
Array Literals 237
Object Literals 238
Mixing Literals 239
JSON Syntax 240
JSON Encoding/Decoding 241
JSON versus XML 242
Server-Side JSON Tools 243
JSON-PHP 243
Other Tools 245
Creating an Autosuggest Textbox 246
Functionality Overview 246
The HTML 247
The Database Table 249
The Architecture 249
The Classes 250
The AutoSuggest Control 250

www.it-ebooks.info

http://www.it-ebooks.info/

Contents

The Suggestion Provider 267
The Server-Side Component 268
The Client-Side Component 270
Summary 272
Chapter 9: Comet 273
HTTP Streaming 274
Request Delays 274
File Modification Example 276
Using Iframes 277
Browser-Specific Approaches 282
Server-Sent DOM Events 291
Connection Management 296
Server-Side Support 297
Summary 298
Chapter 10: Maps and Mashups 299
The Rise of Mashups 300
Geocoding 300
Geocoding Web Sites 300
Geocoding Services 301
Google Maps API 301
How Does It Work? 301
Getting Started 302
Google Maps Basics 303
Controls 304
Moving the Map 306
Info Windows 306
Events 311
Map Overlays 313
Additional Information 321
Yahoo! Maps API 321
Getting Started 321
Yahoo! Maps Basics 322
Controls 324
Moving the Map 325
Smart Windows 326
Events 327
Map Overlays 328
Address Lookup 334
Additional Information 334

Xi

www.it-ebooks.info

http://www.it-ebooks.info/

Contents

Other Mapping APls 335
Summary 335
Chapter 11: Ajax Debugging Tools 337
The Problem 337
FireBug 338
Installation and Setup 338
The Interface 339
XHR Logging 340
Ajax Debugging with FireBug 341
FireBug Limitations 342
Microsoft Fiddler 342
Installation and Setup 343
The Interface 344
HTTP Breakpoints 347
Ajax Debugging with Fiddler 348
Summary 349
Chapter 12: Web Site Widgets 351
Creating a Weather Widget 351
The Weather.com SDK 351
The Server-Side Component 352
The Client-Side Component 361
Getting Data from the Server 361
Customizing the Weather Widget 362
Setting Up the Weather Widget as an Application 366
Adding the Weather Widget to the Web Page 370
Watching Stocks 371
Getting Yahoo! Finance Information 371
The Stock Quote Proxy 372
Client Component: The AjaxStockWatcher Class 376
Customizing the Stock Quotes 385
Using the Stock Watcher Widget 387
Creating a Site Search Widget 388
The Server-Side Component 389
The Client-Side Component 398
Customizing the Site Search Widget 403
Adding the Site Search Widget to a Page 405
Summary 406

Xii

www.it-ebooks.info

http://www.it-ebooks.info/

Contents

Chapter 13: Ajax Frameworks 407
JPSpan 407
Using JPSpan 408
JPSpan Example 412
Summary of JPSpan 415
DWR 416
Using DWR 416
DWR Example 419
More about dwr.xml 424
Summary of DWR 427
Ajax.NET Professional 427
Using Ajax.NET Professional 427
Type Conversion 429
Session Access 430
Ajax.NET Professional Example 431
Summary of Ajax.NET Professional 436
Summary 436
Chapter 14: ASP.NET AJAX Extensions (Atlas) 437
Requirements and Setup 438
The AJAX Client Library 438
Accessing the Client Tools with ASENET 438
Accessing the Client Tools without ASPNET 439
Using Classes 440
Writing Code with the ASPNET AJAX Library 440
Using Controls 446
Making HTTP Requests 451
The UpdatePanel Control 455
Adding the UpdatePanel to the Page 455
Adding Content to the UpdatePanel 456
Triggering an Update 457
Finishing Up 458
SiteSearch Revisited 459
The User Interface 459
Getting Started 460
Declaring the Form 460
Performing the Search 462
Clearing the Results 467
Handling Errors 467
Hooking Up the Events 468
Summary 470
Xiii

www.it-ebooks.info

http://www.it-ebooks.info/

Contents

Chapter 15: Case Study: FooReader.NET 471
The Client Components 472
The User Interface 472
Styling the Interface 475
Driving the Ul 481
The Server Application 495
Possible Paradigms 495
Implementation 496
Setup and Testing 506
Summary 508
Chapter 16: Case Study: AjaxMail 509
Requirements 509
Architecture 510
Resources Used 510
The Database Tables 511
The Configuration File 512
The AjaxMailbox Class 513
Performing Actions 535
The User Interface 541
The Folder View 544
Read View 546
Compose View 548
Layout 550
Tying It All Together 550
Helper Functions 552
The Mailbox 553
Callback Functions 571
Event Handlers 573
The Last Step 573
Summary 574
Appendix A: Licenses for Libraries and Frameworks 575
Index 583
GNU General Public License 600

Xiv

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction

With recent advances in JavaScript, web developers have been able to create an unprecedented user
experience in web applications. Breaking free of the “click and wait” paradigm that has dominated the
web since its inception, developers can now bring features formerly reserved for desktop applications
onto the web using a technique called Ajax.

Ajax is an all-encompassing term surrounding the use of asynchronous HTTP requests initiated by
JavaScript for the purpose of retrieving information from the server without unloading the page. These
requests may be executed in any number of ways and using any number of different data transmission
formats. Combining this remote data retrieval with the interactivity of the Document Object Model
(DOM) has bred a new generation of web applications that seem to defy all the traditional rules of what
can happen on the web. Big companies such as Google, Yahoo!, and Microsoft have devoted resources
specifically towards the goal of creating web applications that look and behave like desktop applications.

This book covers the various aspects of Ajax, including the different ways you can initiate HTTP
requests to the server and the different formats that can be used to carry data back and forth. You will
learn different Ajax techniques and patterns for executing client-server communication on your web site
and in web applications.

Who This Book Is For

This book is aimed at two groups of readers:
QO Web application developers looking to enhance the usability of their web sites and web
applications.

QO Intermediate JavaScript developers looking to further understand the language.

In addition, familiarity with the following related technologies is a strong indicator that this book is
for you:

a XML

XSLT

Web Services
PHP

C#

HTML

CSS

O 000 oo

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction

This book is not aimed at beginners without a basic understanding of the aforementioned technologies.
Also, a good understanding of JavaScript is vitally important to understanding this book. Those readers
without such knowledge should instead refer to books such as Beginning JavaScript, Second Edition (Wiley
2004) and Professional JavaScript for Web Developers (Wiley Publishing, Inc., 2005).

What This Book Covers

Professional Ajax provides a developer-level tutorial of Ajax techniques, patterns, and use cases.

The book begins by exploring the roots of Ajax, covering how the evolution of the web and new tech-
nologies directly led to the development of Ajax techniques. A detailed discussion of how frames,
JavaScript, cookies, XML, and XMLHttp requests (XHR) related to Ajax is included.

After this introduction, the book moves on to cover the implementation of specific Ajax techniques.
Request brokers such as hidden frames, dynamic iframes, and XHR are compared and contrasted,
explaining when one method should be used over another. To make this discussion clearer, a brief
overview of HTTP requests and responses is included.

Once a basic understanding of the various request types is discussed, the book moves on to provide in-
depth examples of how and when to use Ajax in a web site or web application. Different data transmis-
sion formats, including plain text, HTML, XML, and JSON are discussed for their advantages and
disadvantages. Also included is a discussion on web services and how they may be used to perform
Ajax techniques.

Next, more complex topics are covered. A chapter introducing a request management framework
explores how to manage all of the requests inside of an Ajax application. Ajax debugging techniques are
also discussed, including the popular FireBug and Fiddler utilities.

The last part of the book walks through the creation of two full-fledged Ajax web applications. The first,
FooReader.NET, is an Ajax-powered RSS reader. The second, called AjaxMalil, is an Ajax-enabled email
system. Both of these applications incorporate many of the techniques discussed throughout the book.

How This Book Is Structured

This book begins by providing background about the origins of Ajax before moving into actual imple-
mentation. Next, the various ways to accomplish client-server communication are discussed, setting the
stage for the rest of the book. It is recommended that you read the book straight through, as each chapter
builds on information in the previous chapters.

The chapter-level breakdown is as follows:
1. WhatIs Ajax? Explains the origins of Ajax, the technologies involved, and where the term origi-

nated. Describes how Ajax developed as the web developed and who, if anyone, can claim own-
ership of the term and techniques.

XVi

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction

10.

11.

12.

13.

14.

15.

16.

Ajax Basics. Introduces the various ways to accomplish Ajax communication, including the hid-
den frame technique and XHR. The advantages and disadvantages of each approach are dis-
cussed, as well as guidelines as to when each should be used.

Ajax Patterns. Focuses on design patterns using Ajax. There are a variety of ways to incorporate
Ajax into web sites and web applications; these have been organized into a handful of design
patterns that describe best practices for Ajax incorporation.

Ajax Libraries. Explores three popular Ajax libraries: the Yahoo! Connection Manager,
Prototype, and jQuery. The different approaches of these libraries are compared and contrasted,
as well as recreating previous examples using the libraries.

Request Management. Discusses the management of XHR requests for an Ajax application,
keeping in mind browser limitations. A methodology for creating a prioritization system is dis-
cussed, tying in aspects of the Ajax patterns discussed in Chapter 3.

XML, XPath, and XSLT. Introduces XML, XPath, and XSLT as complementary technologies to
Ajax. The discussion centers on using XML as a data transmission format and using
XPath/XSLT to access and display information.

Syndication with RSS and Atom. Deals with using Ajax together with the data syndication for-
mats RSS and Atom to create a news-based widgets. Techniques from previous chapters are
used heavily.

JSON. Introduces JavaScript Object Notation (JSON) as an alternate data transmission format
for Ajax communications. Advantages and disadvantages over using XML and plain text are
discussed.

Comet. Discusses the emergence of the server-push architecture called Comet. Several different
techniques are discussed for implementing Comet depending upon browser capabilities.

Maps and Mashups. Explores two of the APIs available for Ajax maps: the Google Maps API
and the Yahoo! Maps APL Each of the APIs is explored for their capabilities and limitations as
well as their use of geocoding.

Ajax Debugging Tools. Discusses various methods of debugging Ajax requests. The FireBug
extension for Firefox and the Fiddler tool for Internet Explorer are introduced as a way to debug
HTTP requests.

Web Site Widgets. Brings the techniques from the previous chapters into focus by creating Ajax
widgets that can be included in your web site.

Ajax Frameworks. Covers three Ajax frameworks: JPSPAN for PHP, DWR for Java/JSP, and
Ajax.NET for the NET framework. Each of these frameworks attempts to automate some part of
the Ajax development process.

ASP.NET AJAX Extensions (Atlas). Introduces ASP.NET AJAX Extensions (formerly called
Atlas) and how they can simplify the creation of Ajax applications. Assumes usage of .NET 2.0
for server-side code.

Case Study: FooReader.NET. Explores the creation of an RSS news aggregator. This application
illustrates the use of server-side proxies, as well as the use of XML in JavaScript.

Case Study: AjaxMail. Walks through the development of a complete web application. This
application, called AjaxMail, is an Ajax-based email system that uses many of the techniques
described earlier in the book.

XVii

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction

What You Need to Use This Book

To run the samples in the book, you will need the following;:

d Windows 2000, Windows Server 2003, Windows XP, or Mac OS X

Q Internet Explorer 5.5 or higher (Windows), Firefox 1.5 or higher (all platforms), Opera 9.0 or
higher (all platforms), or Safari 2.0 or higher (Mac OS X).

The complete source code for the samples is available for download from our web site at
WWW . Wrox . com.

Conventions

To help you get the most from the text and keep track of what’s happening, we’ve used a number of con-
ventions throughout the book.

Boxes like this one hold important, not-to-be forgotten information that is directly
relevant to the surrounding text.

Tips, hints, tricks, and asides to the current discussion are offset and placed in italics like this.
As for styles in the text:

Q We highlight new terms and important words when we introduce them.

Q We show keyboard strokes like this: Ctrl+A.

O We show file names, URLSs, and code within the text like so: persistence.properties.
0 We present code in two different ways:

In code examples we highlight new and important code with a gray background.

The gray highlighting is not used for code that's less important in the present
context, or has been shown before.

Source Code

As you work through the examples in this book, you may choose either to type in all the code manually
or to use the source code files that accompany the book. All of the source code used in this book is avail-
able for download at http: //www.wrox.com. Once at the site, simply locate the book’s title (either by
using the Search box or by using one of the title lists) and click the Download Code link on the book’s
detail page to obtain all the source code for the book.

xviii

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction

Because many books have similar titles, you may find it easiest to search by ISBN; this book’s ISBN is
978-0-471-0949-6.

Once you download the code, just decompress it with your favorite compression tool. Alternately,
you can go to the main Wrox code download page at http: //www.wrox.com/dynamic/books/
download.aspx to see the code available for this book and all other Wrox books.

See Appendix A for more information about what's included with the code download for this book.

Errata

We make every effort to ensure that there are no errors in the text or in the code. However, no one is per-
fect, and mistakes do occur. If you find an error in one of our books, like a spelling mistake or faulty
piece of code, we would be very grateful for your feedback. By sending in errata you may save another
reader hours of frustration and at the same time you will be helping us provide even higher quality
information.

To find the errata page for this book, go to http: //www.wrox.com and locate the title using the Search
box or one of the title lists. Then, on the book details page, click the Book Errata link. On this page you
can view all errata that has been submitted for this book and posted by Wrox editors. A complete

book list including links to each book’s errata is also available at www.wrox.com/misc-pages/
booklist.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/techsupport
.shtml and complete the form there to send us the error you have found. We’ll check the information

and, if appropriate, post a message to the book’s errata page and fix the problem in subsequent editions
of the book.

p2p.wrox.com

For author and peer discussion, join the P2P forums at p2p . wrox. com. The forums are a Web-based sys-
tem for you to post messages relating to Wrox books and related technologies and interact with other
readers and technology users. The forums offer a subscription feature to e-mail you topics of interest of
your choosing when new posts are made to the forums. Wrox authors, editors, other industry experts,
and your fellow readers are present on these forums.

Athttp://p2p.wrox.comyou will find a number of different forums that will help you not only as
you read this book, but also as you develop your own applications. To join the forums, just follow these
steps:

1. Gotop2p.wrox.comand click the Register link.

2. Read the terms of use and click Agree.

Xix

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction

XX

3. Complete the required information to join as well as any optional information you wish to pro-
vide and click Submit.

4. You will receive an e-mail with information describing how to verify your account and com-
plete the joining process.

You can read messages in the forums without joining P2P but in order to post your own messages, you
must join.

Once you join, you can post new messages and respond to messages other users post. You can read mes-
sages at any time on the Web. If you would like to have new messages from a particular forum e-mailed
to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to ques-

tions about how the forum software works as well as many common questions specific to P2P and Wrox
books. To read the FAQs, click the FAQ link on any P2P page.

www.it-ebooks.info

http://www.it-ebooks.info/

What Is Ajax?

From 2001 to 2005, the World Wide Web went through a tremendous growth spurt in terms of the
technologies and methodologies being used to bring this once-static medium to life. Online
brochures and catalogs no longer dominated the Internet as web applications began to emerge as a
significant portion of online destinations. Web applications differed from their web site ancestors
in that they provided an instant service to their users, not just information. Whether for business
process management or personal interests, developers were forced to create new interaction
paradigms as users came to expect richer functionality.

Spurred on by little-known and lesser-used technologies that had been included in web browsers
for some time, the Web took a bold step forward, shattering the traditional usage model that
required a full page load every time new data or a new part of the application’s logic was
accessed. Companies began to experiment with dynamic reloading of portions of web pages,
transmitting only a small amount of data to the client, resulting in a faster, and arguably better,
user experience.

At the forefront of this movement was Google. After the search giant went public, new experi-
ments conducted by Google engineers began popping up through a special part of the site called
Google Labs (1abs.google.com). Many of the projects at Google Labs, such as Google Suggest
and Google Maps, involved only a single web page that was never unloaded but was constantly
updated nevertheless. These innovations, which began to bring the affordances of desktop soft-
ware interfaces into the confines of the browser, were praised around the Web as ushering in a
new age in web development. And indeed they did.

Numerous open source and commercial products began development to take advantage of this
new web application model. These projects explained their technology using a variety of terms
such as JavaScript remoting, web remote procedure calls, and dynamic updating. Soon, however, a
new term would emerge.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Ajax Is Born

In February 2005, Jesse James Garrett of Adaptive Path, LLC published an online article entitled, “Ajax:
A New Approach to Web Applications” (still available at www.adaptivepath.com/publications/
essays/archives/000385.php). In this essay, Garrett explained how he believed web applications
were closing the gap between the Web and traditional desktop applications. He cited new technologies
and several of the Google projects as examples of how traditionally desktop-based user interaction
models were now being used on the Web. Then came the two sentences that would ignite a firestorm
of interest, excitement, and controversy:

Google Suggest and Google Maps are two examples of a new approach to web applications that we at
Adaptive Path have been calling Ajax. The name is shorthand for Asynchronous JavaScript + XML,
and it represents a fundamental shift in what’s possible on the Web.

From that point forward, a tidal wave of Ajax articles, code samples, and debates began popping up all
over the Web. Developers blogged about it, technology magazines wrote about it, and companies began
hitching their products to it. But to understand what Ajax is, you first must understand how the evolu-
tion of several web technologies led to its development.

The Evolution of the Web

When Tim Berners-Lee crafted the first proposal for the World Wide Web in 1990, the idea was fairly
simple: to create a “web” of interconnected information using hypertext and Uniform Resource
Identifiers (URIs). The ability to link disparate documents from all around the world held huge potential
for scholarly endeavors, where people would be able to access referenced material almost instantly.
Indeed, the first version of the HyperText Markup Language (HTML) featured little more than format-
ting and linking commands, a platform not for building rich interactive software but rather for sharing
the kinds of textual and illustrative information that dominated the late age of print. It was from these
static web pages that the Web grew.

As the Web evolved, businesses saw potential in the ability to distribute information about products and
services to the masses. The next generation of the Web saw an increased ability to format and display
information as HTML also evolved to meet the needs and match the expectations of these new media-
savvy users. But a small company called Netscape would soon be ready to push the evolution of the
Web forward at a much faster pace.

JavaScript

Netscape Navigator was the first successful mainstream web browser, and as such, moved web tech-
nologies along quickly. However, Netscape often was ridiculed by standards organizations for imple-
menting new technologies and extensions to existing technologies before the standards were in place
(much as Microsoft is being chastised today for ignoring existing standards in its development of
Internet Explorer). One such technology was JavaScript.

Originally named LiveScript, JavaScript was created by Brendan Eich of Netscape and included in ver-

sion 2.0 of the browser (released in 1995). For the first time, developers were able to affect how a web
page could interact with the user. Instead of making constant trips to the server and back for simple

www.it-ebooks.info

http://www.it-ebooks.info/

What Is Ajax?

tasks such as data validation, it became possible to transfer this small bit of processing to the browser.
This ability was very important at a time when most Internet users were connected through a 28.8 Kbps
modem, turning every request to the server into a waiting game. Minimizing the number of times that
the user had to wait for a response was the first major step toward the Ajax approach.

Frames

The original version of HTML intended for every document to be standalone, and it wasn’t until HTML
4.0 that frames were officially introduced. The idea that the display of a web page could be split up into
several documents was a radical one, and controversy brewed as Netscape chose to implement the fea-
ture before the HTML 4.0 standard was completed. Netscape Navigator 2.0 was the first browser to sup-
port frames and JavaScript together. This turned out to be a major step in the evolution of Ajax.

When the browser wars of the late 1990s began between Microsoft and Netscape, both JavaScript and
frames became formalized. As more features were added to both technologies, creative developers began
experimenting using the two together. Because a frame represented a completely separate request to the
server, the ability to control a frame and its contents with JavaScript opened the door to some exciting
possibilities.

The Hidden Frame Technique

As developers began to understand how to manipulate frames, a new technique emerged to facilitate
client-server communication. The hidden frame technique involved setting up a frameset where one
frame was set to a width or height of 0 pixels, its sole purpose being to initiate communication with the
server. The hidden frame would contain an HTML form with specific form fields that could be dynami-
cally filled out by JavaScript and submitted back to the server. When the frame returned, it would call
another JavaScript function to notify the calling page that data had been returned. The hidden frame
technique represented the first asynchronous request/response model for web applications.

While this was the first Ajax communication model, another technological advance was just around the
corner.

Dynamic HTML and the DOM

In 1996, the Web was still mainly a static world. Although JavaScript and the hidden frame technique
livened up the user interaction, there was still no way to change the display of a page without reloading
it, aside from changing the values contained within form fields. Then came Internet Explorer 4.0.

At this point, Internet Explorer had caught up with the technology of market leader Netscape Navigator
and even one-upped it in one important respect through the introduction of Dynamic HTML (DHTML).
Although still in the development phase, DHTML represented a significant step forward from the days
of static web pages, enabling developers to alter any part of a loaded page by using JavaScript. Along
with the emergence of Cascading Style Sheets (CSS), DHTML reinvigorated web development, despite
deep disparities between the paths Microsoft and Netscape followed during the early years of each dis-
cipline. Excitement in the developer community was justified, however, because combining DHTML
with the hidden frame technique meant that any part of a page could be refreshed with server informa-
tion at any time. This was a genuine paradigm shift for the Web.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

DHTML never made it to a standards body, although Microsoft’s influence would be felt strongly with
the introduction of the Document Object Model (DOM) as the centerpiece of the standards effort. Unlike
DHTML, which sought only to modify sections of a web page, the DOM had a more ambitious purpose:
to provide a structure for an entire web page. The manipulation of that structure would then allow
DHTML-like modifications to the page. This was the next step towards Ajax.

Iframes

Although the hidden frame technique became incredibly popular, it had a downside —one had to plan
ahead of time and write a frameset anticipating the usage of hidden frames. When the <iframe/> ele-

ment was introduced as an official part HTML 4.0 in 1997, it represented another significant step in the
evolution of the Web.

Instead of defining framesets, developers could place iframes anywhere on a page. This enabled devel-
opers to forego framesets altogether and simply place invisible iframes (through the use of CSS) on a
page to enable client-server communication. And when the DOM was finally implemented in Internet
Explorer 5 and Netscape 6, it introduced the ability to dynamically create iframes on the fly, meaning
that a JavaScript function could be used to create an iframe, make a request, and get the response —all
without including any additional HTML in a page. This led to the next generation of the hidden frame
technique: the hidden iframe technique.

XMLHttp

The browser developers at Microsoft must have realized the popularity of the hidden frame technique
and the newer hidden iframe technique, because they decided to provide developers with a better tool
for client-server interaction. That tool came in the form of an ActiveX object called XMLHttp, introduced
in 2001.

One of the Microsoft extensions to JavaScript allowed the creation of ActiveX controls, Microsoft’s pro-
prietary programming objects. When Microsoft began supporting XML through a library called MSXML,
the XMLHttp object was included. Although it carried the XML name, this object was more than just
another way of manipulating XML data. Indeed, it was more like an ad hoc HTTP request that could be
controlled from JavaScript. Developers had access to HTTP status codes and headers, as well as any data
returned from the server. That data might be structured XML, pre-formatted swaths of HTML, serialized
JavaScript objects, or data in any other format desired by the developer. Instead of using hidden frames
or iframes, it was now possible to access the server programmatically using pure JavaScript, indepen-
dent of the page load/reload cycle. The XMLHLttp object became a tremendous hit for Internet Explorer
developers.

With popularity mounting, developers at the open source Mozilla project began their own port of
XMLHttp. Instead of allowing access to ActiveX, the Mozilla developers replicated the object’s principal
methods and properties in a native browser object, XMLHt tpRequest. With both of the major browsers
supporting some form of XMLHittp, the development of Ajax-type interfaces really took off and forced
the fringe browsers, Opera and Safari, to support some form of XMLHttp as well (both chose to do so
natively with an XMLHt tpRequest object, mimicking Mozilla). Ironically enough, the popularity of this
XMLHttp clone reached back to Microsoft, which introduced the native XMLHt tpRequest object in
Internet Explorer 7.

www.it-ebooks.info

http://www.it-ebooks.info/

What Is Ajax?

The Real Ajax

Despite the frequently asked questions attached to the end of Garrett’s essay, some confusion still exists
as to what Ajax really is. Put simply, Ajax is nothing more than an approach to web interaction. This
approach involves transmitting only a small amount of information to and from the server in order to
give the user the most responsive experience possible.

Instead of the traditional web application model where the browser itself is responsible for initiating
requests to, and processing requests from, the web server, the Ajax model provides an intermediate layer —
what Garrett calls an Ajax engine— to handle this communication. An Ajax engine is really just a JavaScript
object or function that is called whenever information needs to be requested from the server. Instead of the
traditional model of providing a link to another resource (such as another web page), each link makes a call
to the Ajax engine, which schedules and executes the request. The request is done asynchronously, mean-
ing that code execution doesn’t wait for a response before continuing.

The server —which traditionally would serve up HTML, images, CSS, or JavaScript—is configured to
return data that the Ajax engine can use. This data can be plain text, XML, or any other data format that
you may need. The only requirement is that the Ajax engine can understand and interpret the data

When the Ajax engine receives the server response, it goes into action, often parsing the data and making
several changes to the user interface based on the information it was provided. Because this process
involves transferring less information than the traditional web application model, user interface updates
are faster, and the user is able to do his or her work more quickly. Figure 1-1 is an adaptation of the figure
in Garrett’s article, displaying the difference between the traditional and Ajax web application models.

Traditional Web Application Model

Web Browser
HTML, Images,]
CSS, JavaScript Data -
— | «———
> B — Database
HTTP Query/Data
Request ! Request

Web Server

Ajax Web Application Model

Web Browser

0
HTML, CSS Data - Data -
4—

User Ajax =
Interface > Engine > s Database

JavaScript HTTP Query/Data

Call Request ;i Request
Web Server
Figure 1-1

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Ajax Principles

As a new web application model, Ajax is still in its infancy. However, several web developers have taken
this new development as a challenge. The challenge is to define what makes a good Ajax web applica-
tion versus what makes a bad or mediocre one. Michael Mahemoff (www.mahemof f . com), a software
developer and usability expert, identified several key principles of good Ajax applications that are worth
repeating;:

a

Minimal traffic: Ajax applications should send and receive as little information as possible to
and from the server. In short, Ajax can minimize the amount of traffic between the client and the
server. Making sure that your Ajax application doesn’t send and receive unnecessary informa-
tion adds to its robustness.

No surprises: Ajax applications typically introduce different user interaction models than tradi-
tional web applications. As opposed to the web standard of click-and-wait, some Ajax applica-
tions use other user interface paradigms such as drag-and-drop or double-clicking. No matter
what user interaction model you choose, be consistent so that the user knows what to do next.

Established conventions: Don’t waste time inventing new user interaction models that your
users will be unfamiliar with. Borrow heavily from traditional web applications and desktop
applications, so there is a minimal learning curve.

No distractions: Avoid unnecessary and distracting page elements such as looping animations
and blinking page sections. Such gimmicks distract the user from what he or she is trying to
accomplish.

Accessibility: Consider who your primary and secondary users will be and how they most
likely will access your Ajax application. Don’t program yourself into a corner so that an unex-
pected new audience will be completely locked out. Will your users be using older browsers or
special software? Make sure you know ahead of time and plan for it.

Avoid entire page downloads: All server communication after the initial page download
should be managed by the Ajax engine. Don’t ruin the user experience by downloading small
amounts of data in one place but reloading the entire page in others.

User first: Design the Ajax application with the users in mind before anything else. Try to make
the common use cases easy to accomplish and don’t be caught up with how you're going to fit
in advertising or cool effects.

The common thread in all these principles is usability. Ajax is, primarily, about enhancing the web expe-
rience for your users; the technology behind it is merely a means to that end. By adhering to the preced-
ing principles, you can be reasonably assured that your Ajax application will be useful and usable.

Technologies behind Ajax

Garrett’s article mentions several technologies that he sees as parts of an Ajax solution. These are:

a
a

HTML/XHTML: Primary content representation languages
CSS: Provides stylistic formatting to XHTML

www.it-ebooks.info

http://www.it-ebooks.info/

What Is Ajax?

DOM: Dynamic updating of a loaded page
XML: Data exchange format
XSLT: Transforms XML into XHTML (styled by CSS)

XMLHttp: Primary communication broker

0O 00 0 O

JavaScript: Scripting language used to program an Ajax engine

In reality, all these technologies are available to be used in Ajax solutions, but only three are required:
HTML/XHTML, DOM, and JavaScript. XHTML is obviously necessary for the displaying of informa-
tion, while the DOM is necessary to change portions of an XHTML page without reloading it. The last
part, JavaScript, is necessary to initiate the client-server communication and manipulate the DOM to
update the web page. The other technologies in the list are helpful in fine-tuning an Ajax solution, but
they aren’t necessary.

There is one major component that Garrett neglected to mention in his article: the necessity of server-
side processing. All of the previously listed technologies relate directly to the client-side Ajax engine, but
there is no Ajax without a stable, responsive server waiting to send content to the engine. For this pur-
pose, you can use the application server of your choice. Whether you choose to write your server-side
components as PHP pages, Java servlets, or NET components, you need only ensure that the correct
data format is being sent back to the Ajax engine.

The examples in this book make use of as many server-side technologies as possible to give you enough
information to set up Ajax communication systems on a variety of servers. Most of the examples cov-
ered in the book are available in PHP, JSP, and ASP.NET versions at www .wrox . com.

Who Is Using Ajax?

A number of commercial web sites use Ajax techniques to improve their user experience. These sites are
really more like web applications than traditional brochureware web sites that just display information
because you visit it to accomplish a specific goal. The following are some of the more well-known and
well-executed web applications that use Ajax.

Google Suggest

One of the first examples that developers cite when talking about Ajax is Google Suggest

(www . google. com/webhp?complete=1). The interface is simply a clone of the main Google interface,
which prominently features a text box to enter search terms. Everything appears to be the same until you
start typing in the textbox. As you type, Google Suggest requests suggestions from the server, showing
you a drop-down list of search terms that you may be interested in. Each suggestion is displayed with a
number of results available for the given term to help you decide (see Figure 1-2).

This simple client-server interaction is very powerful and effective without being obtrusive to the user.
The interface is responsive beyond what you may have learned to expect from a web application; it
updates no matter how quickly you type and, as with autocomplete features in desktop software, you
can use the up and down arrows to highlight and select each item in the suggestions list. Although still
in beta, expect to see this approach make its way into the main Google page eventually.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

(2] Google - Mozilla Firefox 2Ea
File Edit View Go Bookmarks Tools Help (%]

<";| - [} - l@ @ http:/fwww.google.com/webhp?complete=1&hl=en v @ Go [CL

Googie

Suggest

Sign in

Web |mages Wideo Mews Maps Desktop more »

javascript Advanced Search

. Erefersn
50,200,000 results [NTRETEEEE SN

javascript tutorial 8,100,000 results

javascript reference 7,220,000 results

javascripts 1,520,000 results

As you type, Goog javascript array 1,500,000 results peults. Leamn more

javascript alert 2,230,000 results

javascript window.open 526,000 results

javascript redirect 557,000 results

javascript substring 242,000 results

javascript tutorials 4,860,000 results

Done

Figure 1-2

Gmail

Gmail, Google’s free e-mail service, has been raved about as a marvel of client-server interaction in the
age of Ajax. When you first log in to Gmail, a user interface engine is loaded into one of the few iframes
the application uses. All further requests back to the server occur through this user interface engine
through an XMLHttp object. The data being transferred back and forth is JavaScript code, which makes
for fast execution once downloaded by the browser. These requests serve as instructions to the user
interface engine as to what should be updated on the screen.

Additionally, the Gmail application uses several frames and iframes to manage and cache big user inter-
face changes. The extremely complicated use of frames enables Gmail to function properly with the Back
and Forward buttons, which is one of the advantages of using frames or iframes instead of or in conjunc-
tion with XMLHttp (discussed later in the book).

The biggest win for Gmail is its usability. The user interface, as shown in Figure 1-3, is simple and

uncluttered. Interaction with the user and communication with the server is all seamless. Once again,
Google used Ajax to improve on an already simple concept to provide an exceptional user experience.

www.it-ebooks.info

http://www.it-ebooks.info/

What Is Ajax?

& Gmail - Inbox - Mozilla Firefox =IEE)
File Edit View Go Bookmarks Tools Help o
<}EI v L: < @ @ 1 http://gmail.google.com/gmail v @ Go |Gl
@gmail.com | Settings | Help | Sign out
G M - i | [Search Mail] [Search the Web] i:s‘t:s':ﬁ: ticns
by Google
Compose Mail More Actions ... |+ Refiesh 1-10 of 10
Inbox Select: All, Mone, Read, Unread, Starred, Unstarred
Starred ¢ [¢ me, Guilherme (2) Book Update - Hi Nicholas. As | have promised, here is tt £ May 26
Sent Mail [0 = Stephen, me (9) clients Centennial Web Site - Great. Let's plan for Tuesday £ May 26
Drafts [0 Jeremy, me (6) Book Related XParser Update - Yeah, | was thinking of doin & May 25
Al Mail [0 JMinatel, me (4) Book Relatzd Fw: Save 34% at Amazon.com on "Professiol May 24
%;% [Bradley. me (2) AJAX and MSDN - Very cool. On 5/24/05, Bradley Baum: May 24
- [Jeremy, me (6) From Web Site From Web Site: Ajax Book - Hi Jeremy, Yez 2 May 23
Contacts [0 me, JMinatel (5) Bock Relsted Books Updates - Jim, Awesome! | plan on spid? May 23
» Labels [] ¥ Debi. me (3) clients Photos - Nicholas I've attached the thumbnails and & May 19

[Micholas Zakas Code - DOCTYPE HTML PUBLIC * 3C/DTD HTML 4. May 12
w Invite a friend [Guilherme, me (2) AJAX PHP Class Implementation - Thanks Guilhereme, |' @2 May 11
Give Gmail to: Select- All, Mone, Read, Unread, Starred, Unstarred
More Actions ... (] =100
breview invie Get new mail notifications. Download the Gmail Notifier. Learn more
You are currently using 26 MB (1%) of your 2249 MB.
Gmail view: standard | basic HTML Learn more
Done B
Figure 1-3

Google Maps

Another part of Google’s dominant Ajax web applications is Google Maps (maps . google. com).
Designed to compete with well-established mapping sites, Google Maps uses Ajax to avoid reloading its
main page at all (see Figure 1-4).

Unlike other mapping web applications, Google Maps enables you to drag the map to move it in various
directions. The dragging code is nothing new to JavaScript developers, but the tiling of the map and
seemingly endless scrolling effect are another story. The map is broken up into a series of images that are
tiled together to make the appearance of a contiguous image. The number of images used to display the
map is finite, as creating new images every time the user moves the map would quickly lead to memory
problems. Instead, the same images are used over and over to display different segments of the map.

The client-server communication is done through a hidden iframe. Whenever you do a search or ask for
new directions, this information is submitted and returned within that iframe. The data returned is in
XML format and is passed to a JavaScript function (the Ajax engine) to handle. This XML is then used in
a variety of different ways: some is used to call the correct map images, and some is transformed using
XSLT into HTML and displayed in the main window. The bottom line is that this complex Ajax applica-
tion is, as of late 2006, the number two destination for mapping on the Web.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

& Google Maps - kansas city - Mozilla Firefox =IO
File Edit View Go Bookmarks Tools Help o
<:EI - I_: - é,j @ http://maps.google.com/ | @ Go [CL
Maps Local Search Directions
Go ugle Kkansas ciy s
Maps Map - Satellite"="'
= Y- i @ | & Print (2 Email &2 Link to this page
) > —
- 4 I| Kansas City, MO
@ {
|
£
I T : |
] Kansas Clty\ E '/_\
HE Bethany - e {24}
Jpdical Center = 31 Kansas) City 2
] 7o) el =2 =t
A - ol B = ! St Paul School
» . @ Of Theology
Children's
Mercy, Hospital I
e S Troost. 0
a8 : Lake | ;] =
F 4 Penn:Valley. ey B
y Community/ College @ e ,
Welerans Affairs
4 EB Medical Center

Transferring data from mt.google.com._.

Figure 1-4

A9

Amazon.com is world famous for being an online marketplace for just about anything, but when it
released a search engine, it did so with little fanfare and attention. The introduction of A9 (www.a9 . com)
showed off enhanced searching, enabling you to search different types of information simultaneously.
For web and image searches it uses MSN to fetch results. It performs searches of books on Amazon.com

and movies on IMDb (Internet Movie Database). Searches for Yellow Pages, Wikipedia, and
Answers.com debuted in mid-2005.

What makes A9 unique is how its user interface works. When you perform a search, the different types
of results are displayed in different areas of the page (see Figure 1-5).

On the search results page, you have the option of selecting other searches to perform using the same
criteria. When you select a check box corresponding to a type of search, the search is performed behind
the scenes using a combination of hidden iframes and XMLHttp. The user interface shifts to allow room
for the extra search results, which are loaded as soon as they are received from the server. The result is a

more responsive search results page that doesn’t need to be reloaded when you want to search on differ-
ent types of information.

10

www.it-ebooks.info

http://www.it-ebooks.info/

What Is Ajax?

AQ Search: javascript GO

Advanced Web Search

wHide Column Choices

& A9.com Search: javascript - Mozilla Firefox =IEE
File Edit View Go Bookmarks Tools Help o
Qil - LIL:* = @ | @ A7 hitp://ad.comijavascript Iv] © co [C

~

Home = Prefs | Toolbar | Sign Out

Hello Micholas C Zakas. Click here if this is not you. [=

by Nicholas C. Zakas (11 April, 2005)

Web Books Images
[vellow Pages [Reference [Movies
[Blog Search [wikipedia [your History
O Your Diary O Your Bookmarks [| More Choices... [V]
Web Results [full] [close] Book Results [full] [close] Image
Results
Showing 1 - 10 of about 25,400,000 Showing 1 - 10 of about 4,113 [full] [close]
. . JavaScript: The Definitive Guide
p Javascript Errors Fixed by David Flanagan (15 December, 2001 e T e
= Free and simple download! aff Fix v gan (’) | I
® | LR EHTS D JavaSeript & DHTML Cookbook ‘
B www.pcmightymax.net - -
L . by Danny Goodman (01 April, 2003) |
% Java Error? Fix It Now !
c : . .
g E=tbutorfoliffesinovnioad iools: Professional JavaScript for Web s
= Auto-Fix All Java Errors In Minutes D I m Prof . | Guid
FreeDownloadtools.com/ evelopers (Wrox Professional Guides) m

JavaScript Source: Free JavaScripts, | Beginning JavaScript Second Edition :
Tutorials, Example Code ... by Paul Wilton (26 April, 2004)
Resource with free JavaScript examples -
for cut and naste into weh nane DHTMI Litania Madern Weh Dasian sl [v]
Done
Figure 1-5

Yahoo! News

Also introduced in 2005 was a new design for the Yahoo! News site (news . yahoo. com). The new design

features an interesting enhancement: when you move your mouse over a particular headline, a small
box pops up with a summary and, optionally, a photo associated with that story (see Figure 1-6).

The photo information and summary are retrieved from the server using XMLHttp and inserted into the
page dynamically. This is a perfect example of how Ajax can be used to enhance a web page. Rather than
making Ajax the primary usage mode, the Yahoo! News site is completely usable without Ajax; the Ajax

functionality is used only to add a more responsive user experience in browsers that support it.

Underneath is a semantically correct HTML page that is laid out logically even without CSS formatting.

www.it-ebooks.info

11

http://www.it-ebooks.info/

Chapter 1

& The top news headlines on current events from Yahoo! News - Mozilla Firefox =]
File Edit View Go Bookmarks Tools Help (%]
Qﬂ M L:,:’ M @ |:| @ w7 hitp://news.yahoo.com/ [Vl © Go [Cl,

Al News] Advanced &)

Israel Seals Gaza Strip to Begin Pullout FROM Y! SPORTS
AF - 44 minutes ago

KISSUFIM CROSSING, Israel - Israel lowered a road
B barrier sealing the Gaza Strip to Israeli civilians at
midnight Sunday — signaling the start of a historic
withdrawal that will end its 38-year occupation,
redraw borders and reshape prospects for Mideast * More from Y1 Sports
peace.

2k THE p—
HAMEBIONSHIE:

= Follow all the weekend
action from Baltusrol

9 Slideshow: Mideast Confiict

B Video: Israel Sets Up Roadblocks As Pullout Nears

GRAMMATIKO, Greece - A
s Cypriot plane full of Il FULL COVERAGE

m==arel vacationers slammed into a | Shange Layout | Weather +Irag
mountainside north of . Graece
Top Sto| i . Athens on Sunday after at X
E 9% |east one pilot lost \rqn i
ne| CONSCiousness from lack of oxygen, killing all 121 [T o = Mideast Conflict
v people aboard, more than a third of them children * Japan
= Greece Plane Crash Kills 121, 48 Children 2F - 41 minutes ago # Al Full Coverage

- I‘\lal{ﬂ]wwde Gas Prices Set Another Record AF - 1 hour, 25 minutes ago
= Bush Approval a Low for Recent 2-Termers AF - 2 hours, 22 minutes ago

OTO HIGHLIGHT

= Sunnis Want Federalism Shelved for Now AF - 22 minutes ago % *‘!— VL k
= Thousands Fill Church for ‘Justice Sunday’ AP - 12 minutes ago % .
= All Top Stories from AP
- 50
MORE EROM. Voicht Ridd, 15 ik b (A1.1-1 11 > e = e s
http://news.yahoo.com/s/ap/20050814/ap_on_re_eu/greece_plane_crash;_ylt=AqDthDu3B9hiLtY qMIwlriqgsONUE:_ylu=X3eD... &l
Figure 1-6

Bitflux Blog

12

Another great example of using Ajax only as an enhancement is Bitflux Blog (blog.bitflux.ch), which
features a technology called LiveSearch. LiveSearch works in conjunction with the search box on the site.
As you type into the box, a list of possible search results is displayed immediately below (see Figure 1-7).

The search results are retrieved using XMLHttp as an HTML string that is then inserted into the page.

You can search the site the old-fashioned way as well: by filling in the text box and pressing Enter. The
LiveSearch Ajax functionality is just an enhancement to the overall site and isn’t required to search.

www.it-ebooks.info

http://www.it-ebooks.info/

What Is Ajax?

@ Bitflux Blog - Mozilla Firefox [BE=]
File Edit View Go Bookmarks Tools Help o
G- - &) @) [hupiblog bitfux.chf [v] ® e [CL
I =]
Zurich
LiveSearch H
javascript
» Wiki written in JavaScript
We are now already in the train from stralsund to rostock (together with » Tutorial about Venkman
some noisy HSV fans -)). Later we will drive to Hamburg and from there » libxslt gets javascript support.
back to Zurich with the night train. WWas a great week even though the eventually
weather was more late autumn like than middle of surmmer._. » JPSpan - call your (remote)
PHP methods from JavaScript
Cemmants (0) Parmalink » work@bitflux
» Java in XPCOM components
i . » Rotating, scaling and cropping
Hobitt land ;) of images in BxCMS |
by chregu @ 09.08 2005 19:24 CEST (Trips) » Spotlight-like livesearch added

» drag'n'drop for Next Generation
Bitflux Editor

» My first firefox extension

» www.henauer-gugler.ch

» Work @ Bitflux

» Checking for well-fromed XML in
JS

» ApacheCon Europe 2005
» SlideML and Google

i 1 L il » Internn in wehlons = [v]
4 l 1} | [)l
Done

Figure 1-7

Confusion and Controversy

Despite the popularity of the term Ajax, it has been met with its fair share of dissenters and controversy.
Some believe that Ajax is an aberration of what the Web was moving toward before Ajax entered the pic-
ture. The proponents of semantic HTML design, accessibility, and the separation of content and presen-
tation were gaining ground and acceptance among web developers, and some believe that the
popularity of Ajax has pushed that movement into the background. The belief of these detractors is that
Ajax promotes creating presentation within JavaScript, thus turning it into a messy mix similar to the
early days of server-side scripting. Many believe that accessibility will suffer if more developers turn to
Ajax solutions.

13
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Others have spent a significant amount of time dissecting Garrett’s article and disproving several
assumptions that he makes. For instance, the article mentions using XML and XMLHttp repeatedly as
being the core of the Ajax model, but many of the examples he lists don’t use them. Gmail and Google
Maps use these technologies sparingly; Google Suggest uses only XMLHttp and uses JavaScript arrays
instead of XML for data exchange. Critics also point out that the technical explanation of Ajax in the arti-
cle is completely misleading, citing several technologies that are not only unnecessary (such as XML and
XMLHttp) but unlikely to be used in many cases (such as XSLT).

Another big argument surrounding Ajax and Garrett’s Adaptive Path article is that it’s merely a new
name for a technique that has already been used for some time. Although this type of data retrieval
could be enacted in Netscape Navigator 2.0, it really became more prominent in 2001-2002, especially
with the publication of an article on Apple’s Developer Connection site entitled, “Remote Scripting With
IFRAME” (available at http: //developer.apple.com/internet/webcontent/iframe.html). This
article is widely believed to be the first mainstream article published on Ajax-like methodologies. The
term remote scripting never caught on with quite the staying power as Ajax.

Still others scoff at the term Ajax and Garrett’s article, believing that its creation was little more than a
marketing gimmick for Garrett’s company, Adaptive Path, LLC. Some believe that creating a name for a
technique that already existed is disingenuous and a clear sign of ill intent. Regardless of this and other
controversies surrounding Ajax, the approach now has a name that developers are quickly becoming
familiar with, and with that comes a need for a deeper understanding and explanation so that it may be
used in the best possible ways.

Ajax and Web 2.0

Shortly after the term Ajax was coined, another term began popping up. Web 2.0 was originally the
name of a conference held by O'Reilly Media and CMP Media in late 2005. After that, the term Web 2.0
took on a life of its own and began popping up all over the Internet in descriptions of how the Web had
changed. To try to rein in the term before it got out of control, Tim O'Reilly (founder and CEO of
O'Reilly) wrote an article entitled, “What is Web 2.0” (available online at www . oreillynet.com/
pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html), describing the concepts that he
believes Web 2.0 represents. These concepts include:

Q The Web as services, not software

Q The group mentality of the Web — users encouraged to participate (as with tagging, blogging,
networking, and so on)

Q Separation of data and presentation — data can be represented in any number of ways and com-
bined with any other data sources (called mashups)

Q Richer, more responsive user experience

Ajax is tied to the last point, creating a richer experience for the user. To be clear, Ajax is not synonymous
with Web 2.0, and Web 2.0 doesn’t speak just of Ajax; Web 2.0 is about a shift in the very character of the
Web. While Ajax is an important part of creating the next generation user experience that Web 2.0 signi-
fies, it is just a one piece of a much larger puzzle.

14
www.it-ebooks.info

http://www.it-ebooks.info/

What Is Ajax?

Summary

This chapter introduced you to the basic premise of Ajax. Short for Asynchronous JavaScript + XML, the
term Ajax was coined by Jesse James Garrett in an article posted on the Adaptive Path, LLC web site.
The article introduced Ajax as a new user interaction model for web applications in which full page
loads are no longer necessary.

This chapter also explored the evolution of the Web in relation to the development of technologies that
enable Ajax to be a reality today. Ajax owes its existence to the introduction of both JavaScript and
frames into web browsers, which made asynchronous data retrieval using JavaScript theoretically possi-
ble in Netscape Navigator 2.0. Throughout the evolution of new web technologies, Ajax methodologies
such as the hidden frame technique developed. The introduction of iframes and XMLHttp really pushed
Ajax development forward.

Although Ajax can be used to accomplish many things, it is best used to enhance the user experience
rather than providing cool effects. This chapter discussed several Ajax principles, all circling back to the
requirements of the user being paramount to anything else in web application development.

Several of the most popular Ajax applications were also discussed, including Google Suggest, Gmail,
Google Maps, Yahoo! News, and the Bitflux Blog.

Finally, the chapter covered the controversy surrounding Ajax, Garrett’s article, and Ajax’s place on the
Web. Some feel that the popularization of Ajax will lead to an overall lack of accessibility, whereas others
question Garrett’s motive for writing the now-famous article. As with all approaches, Ajax is at its best
when used in a logical enhancement to a well-designed web application.

15
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

|

Ajax Basics

The driving force behind Ajax is the interaction between the client (web browser) and the server.
Previously, the understanding of this communication was limited to those who developed purely
on the server-side using languages such as Perl and C. Newer technologies such as ASP.NET, PHP,
and JSP encouraged more of a mix of client- and server-side techniques for software engineers
interested in creating web applications, but they often lacked a full understanding of all client-side
technologies (such as JavaScript). Now the pendulum has swung in the other direction, and client-
side developers need to understand more about server-side technology in order to create Ajax
solutions.

HTTP Primer

Central to a good grasp of Ajax techniques is hypertext transmission protocol (HTTP), the protocol
to transmit web pages, images, and other types of files over the Internet to your web browser and
back. Whenever you type a URL into the browser, an “http://” is prepended to the address, indi-
cating that you will be using HTTP to access the information at the given location. (Most browsers
support a number of different protocols as well, most notably FTP.)

Note that this section covers only those aspects of HTTP that are of interest to Ajax developers. It
does not constitute an HI'TP reference guide or tutorial.

HTTP consists of two parts: a request and a response. When you type a URL in a web browser, the
browser creates and sends a request on your behalf. This request contains the URL that you typed
in as well as some information about the browser itself. The server receives this request and sends
back a response. The response contains information about the request as well as the data located at
the URL (if any). It's up to the browser to interpret the response and display the web page (or
other resource).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

HTTP Requests

18

The format of an HTTP request is:

<request-line>
<headers>
<blank line>
[<request-body>]

In an HTTP request, the first line must be a request line indicating the type of request, the resource to
access, and the version of HTTP being used. Next, a section of headers indicate additional information
that may be of use to the server. After the headers is a blank line, which can optionally be followed by
additional data (called the body).

There are a large number of request types defined in HTTP, but the two of interest to Ajax developers are
GET and POST. Anytime you type a URL in a web browser, the browser sends a GET request to the
server for that URL, which basically tells the server to get the resource and send it back. Here’s what a
GET request for www . wrox . com might look like:

GET / HTTP/1.1

Host: www.wrox.com

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.7.6)
Gecko/20050225 Firefox/1.0.1

Connection: Keep-Alive

The first part of the request line specifies this as a GET request. The second part of that line is a forward
slash (/), indicating that the request is for the root of the domain. The last part of the request line speci-
fies to use HTTP version 1.1 (the alternative is 1.0). And where is the request sent? That’s where the sec-
ond line comes in.

The second line is the first header in the request, Host. The Host header indicates the target of the
request. Combining Host with the forward slash from the first line tells the server that the request is for
www . wrox . com/. (The Host header is a requirement of HTTP 1.1; the older version 1.0 didn’t require it.)
The third line contains the User-Agent header, which is accessible to both server- and client-side scripts
and is the cornerstone of most browser-detection logic. This information is defined by the browser that
you are using (in this example, Firefox 1.0.1) and is automatically sent on every request. The last line is
the Connection header, which is typically set to Keep-Alive for browser operations (it can also be set
to other values, but that’s beyond the scope of this book). Note that there is a single blank line after this
last header. Even though there is no request body, the blank line is required.

If you were to request a page under the www.wrox.com domain, such as http: //www.wrox.com/
books, the request would look like this:

GET /books/ HTTP/1.1

Host: www.wrox.com

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.7.6)
Gecko/20050225 Firefox/1.0.1

Connection: Keep-Alive

www.it-ebooks.info

http://www.it-ebooks.info/

Ajax Basics

Note that only the first line changed, and it contains only the part that comes after www.wrox.comin
the URL.

Sending parameters for a GET request requires that the extra information be appended to the URL itself.
The format looks like this:

URL?namel=valuel&name2=value2&. . &nameN=valueN
This information, called a query string, is duplicated in the request line of the HTTP request, as follows:

GET /books/?name=Professional%20Ajax HTTP/1.1

Host: www.wrox.com

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.7.6)
Gecko/20050225 Firefox/1.0.1

Connection: Keep-Alive

Note that the text “Professional Ajax” had to be encoded, replacing the space with %20, in order to send
it as a parameter to the URL. This is called URL encoding and is used in many parts of HTTP. (JavaScript
has built-in functions to handle URL encoding and decoding; these are discussed later in the chapter).
The name-value pairs are separated with an ampersand. Most server-side technologies will decode the
request body automatically and provide access to these values in some sort of logical manner. Of course,
it is up to the server to decide what to do with this data.

Browsers often send many more headers than the ones discussed in this section. The
examples here have been kept short for simplicity.

The POST request, on the other hand, provides additional information to the server in the request body.
Typically, when you fill out an online form and submit it, that data is being sent through a POST request.

Here’s what a typical POST request looks like:

POST / HTTP/1.1

Host: www.wrox.com

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.7.6)
Gecko/20050225 Firefox/1.0.1

Content-Type: application/x-www-form-urlencoded

Content-Length: 40

Connection: Keep-Alive

name=Professional%20Ajax&publisher=Wiley

You should note a few differences between a POST request and a GET request. First, the request line
begins with “POST” instead of “GET,” indicating the type of request. You'll notice that the Host and
User-Agent headers are still there, along with two new ones. The Content-Type header indicates how
the request body is encoded. Browsers always encode post data as application/x-www-£form-
urlencoded, which is the MIME type for simple URL encoding. The Content-Length header indicates
the byte length of the request body. After the Connection header and the blank line is the request body.

19
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

As with most browser POST requests, this is made up of simple name-value pairs, where name is
Professional Ajax and publisher is Wiley. You may recognize that this format is the same as that of
query string parameters on URLs.

As mentioned previously, there are other HTTP request types, but they follow the same basic format as
GET and POST. The next step is to take a look at what the server sends back in response to an HTTP
request.

For security purposes, GET requests should be used to retrieve information only. If data needs to be
added, updated, or deleted, a POST request should be used.

HTTP Responses

The format of an HTTP response, which is very similar to that of a request, is:

<status-line>
<headers>

<blank line>
[<response-body>]

As you can see, the only real difference in a response is that the first line contains status information
instead of request information. The status line tells you about the requested resource by providing a
status code. Here’s a sample HTTP response:

HTTP/1.1 200 OK

Date: Sat, 31 Dec 2005 23:59:59 GMT
Content-Type: text/html;charset=I50-8859-1
Content-Length: 122

<html>
<head>
<title>Wrox Homepage</title>
</head>
<body>
<!-- body goes here -->
</body>
</html>

In this example, the status line gives an HTTP status code of 200 and a message of OK. The status line
always contains the status code and the corresponding short message so that there isn’t any confusion.
The most common status codes are:

d 200 (OK): The resource was found and all is well.

O 304 (NOT MODIFIED): The resource has not been modified since the last request. This is used
most often for browser cache mechanisms.

0 401 (UNAUTHORIZED): The client is not authorized to access the resource. Often, this will
cause the browser to ask for a user name and password to log in to the server.

20

www.it-ebooks.info

http://www.it-ebooks.info/

Ajax Basics

O 403 (FORBIDDEN): The client failed to gain authorization. This typically happens if you fail to
log in with a correct user name and password after a 401.

0 404 (NOT FOUND): The resource does not exist at the given location.

Following the status line are some headers. Typically, the server will return a Date header indicating the
date and time that the response was generated. (Servers typically also return some information about
themselves, although this is not required.) The next two headers should look familiar as well, as they are
the same Content-Type and Content-Length headers used in POST requests. In this case, the
Content-Type header specifies the MIME type for HTML (text/html) with an encoding of ISO-8859-1
(which is standard for the United States English resources). The body of the response simply contains
the HTML source of the requested resource (although it could also contain plain text or binary data for
other types of resources). It is this data that the browser displays to the user.

Note that there is no indication as to the type of request that asked for this response; however, this is of
no consequence to the server. It is up to the client to know what type of data should be sent back for
each type of request and to decide how that data should be used.

Ajax Communication Techniques

Now that you understand the basics of how HTTP communication works, it’s time to look into enacting
such communication from within a web page. As you know, there are a lot of requests going back and
forth between the browser and server while you are surfing the Web. Initially, all these requests hap-
pened because the user made an overt action that required such a step. Ajax techniques free developers
from waiting for the user to make such an action, allowing you to create a call to the server at any time.

As discussed in Chapter 1, Ajax communication supports a number of different techniques. Each of these
techniques has advantages and disadvantages, so it’s important to understand which one to use in
which situation.

The Hidden Frame Technique

With the introduction of HTML frames, the hidden frame technique was born. The basic idea behind this
technique is to create a frameset that has a hidden frame that is used for client-server communication.
You can hide a frame by setting its width or height to 0 pixels, effectively removing it from the display.
Although some early browsers (such as Netscape 4) couldn’t fully hide frames, often leaving thick bor-
ders, this technique still gained popularity among developers.

The Pattern

The hidden frame technique follows a very specific, four-step pattern (see Figure 2-1). The first step
always begins with the visible frame, where the user is interacting with a web page. Naturally, the user
is unaware that there is a hidden frame (in modern browsers, it is not rendered) and goes about interact-
ing with the page as one typically would. At some point, the user performs an action that requires addi-
tional data from the server. When this happens, the first step in the process occurs: a JavaScript function
call is made to the hidden frame. This call can be as simple as redirecting the hidden frame to another
page or as complicated as posting form data. Regardless of the intricacy of the function, the result is the
second step in the process: a request made to the server.

21

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Web Browser
Visible Frame
@ JavaScript
Call
JavaScript
Call Hidden Frame @ 5
weopage | ¢ >
— | «—
_ Database
Request
@ Web Server

Figure 2-1

The third step in the pattern is a response received from the server. Because you are dealing with frames,
this response must be another web page. This web page must contain the data requested from the server
as well as some JavaScript to transfer that data to the visible frame. Typically, this is done by assigning
an onload event handler in the returned web page that calls a function in the visible frame after it has
been fully loaded (this is the fourth step). With the data now in the visible frame, it is up to that frame to
decide what to do with the data.

Hidden Frame GET Requests

Now that the hidden frame technique has been explained, it’s time to learn more about it. As with any
new technique, the best way to learn is to work through an example. For this example, you'll be creating
a simple lookup page where a customer service representative can look up information about a cus-
tomer. Since this is the first example in the book, it is very simple: The user will enter a customer ID and
receive in return information about the customer. Since this type of functionality will most often be used
with a database, it is necessary to do some server-side programming as well. This example uses PHP, an
excellent open source server-side language, and MySQL (available at www.mysql . org), an open source
database that ties together very well with PHP.

In PHP 5, MySQL support is disabled by default. For information on enabling
MySQL support in PHP 5, visit www .php .net /mysql/.

First, before customer data can be looked up, you must have a table to contain it. You can create the cus-
tomer table by using the following SQL script:

CREATE TABLE "Customers’ (
‘“CustomerId’ int(11l) NOT NULL auto_increment,
"Name' varchar (255) NOT NULL default '',
“Address’ varchar (255) NOT NULL default '',
‘City’ varchar (255) NOT NULL default '',
“State’ varchar (255) NOT NULL default '',
‘zip' varchar(255) NOT NULL default '',
‘Phone® varchar (255) NOT NULL default '',

22
www.it-ebooks.info

http://www.it-ebooks.info/

Ajax Basics

‘Email’ varchar (255) NOT NULL default '',
PRIMARY KEY (CustomerId’)
) TYPE=MyISAM COMMENT='Sample Customer Data';

The most important field in this table is Customer1d, which is what you will use to look up the cus-
tomer information.

You can download this script, along with some sample data, from www . wrox . com.

With the database table all set up, it’s time to move on to the HTML code. To use the hidden frame tech-
nique, you must start with an HTML frameset, such as this:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"
"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-frameset.dtd">
<html>
<head>
<title>Hidden Frame GET Example</title>
</head>
<frameset rows="100%,0" style="border: Opx">
<frame name="displayFrame" src="DataDisplay.php" noresize="noresize" />
<frame name="hiddenFrame" src="about:blank" noresize="noresize" />
</frameset>
</html>

The important part of this code is the rows attribute of the <frameset/> element. By setting it to

100%, 0, browsers know not to display the body of the second frame, whose name is hiddenFrame.
Next, the style attribute is used to set the border to 0, ensuring that there isn’t a visible border around
each frame. The final important step in the frameset declaration is to set the noresize attributes on each
frame so that the user can’t inadvertently resize the frames and see what’s in the hidden one; the con-
tents of the hidden frame are never meant to be part of the visible interface.

Next up is the page to request and display the customer data (DatabDisplay.php). This is a relatively
simple page, consisting of a textbox to enter the customer ID, a button to execute the request, and a

<div/> element to display the retrieved customer information:

<p>Enter customer ID number to retrieve information:</p>

<p>Customer ID: <input type="text" id="txtCustomerId" value="" /></p>
<p><input type="button" value="Get Customer Info"
onclick="requestCustomerInfo ()" /></p>

<div id="divCustomerInfo"></div>

You'll notice that the button calls a function named requestCustomerInfo (), which interacts with the
hidden frame to retrieve information. It simply takes the value in the textbox and adds it to the query
string of GetCustomerData . php, creating a URL in the form of GetCustomerData.php?id=23. This
URL is then assigned to the hidden frame. Here’s the function:

function requestCustomerInfo() {

var sId = document.getElementById("txtCustomerId") .value;
top.frames["hiddenFrame"] .location = "GetCustomerData.php?id=" + sId;

23
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

The first step in this function is to retrieve the customer identification number from the textbox. To do
S0, document .getElementById () is called with the textbox ID, "txtCustomerId", and the value
property is retrieved. (The value property holds the text that is inside the textbox.) Then, this ID is
added to the string "GetCustomerData.php?id=" to create the full URL. The second line creates the
URL and assigns it to the hidden frame. To get a reference to the hidden frame, you first need to access
the topmost window of the browser using the top object. That object has a frames array, within which
you can find the hidden frame. Since each frame is just another window object, you can set its location
to the desired URL.

That’s all it takes to request the information. Note that because the request is a GET (passing information
in the query string), it makes the request very easy. (You'll see how to execute a POST request using the
hidden frame technique shortly.)

In addition to the requestCustomerInfo () function, you'll need another function to display the cus-
tomer information after it is received. This function, displayCustomerInfo (), will be called by the
hidden frame when it returns with data. The sole argument is a string containing the customer data to be
displayed:

function displayCustomerInfo (sText) {
var divCustomerInfo = document.getElementById("divCustomerInfo");
divCustomerInfo.innerHTML = sText;

In this function, the first line retrieves a reference to the <div/> element that will display the data. In the
second line, the customer info string (sText) is assigned into the innerHTML property of the <div/>
element. Using innerHTML makes it possible to embed HTML into the string for formatting purposes.
This completes the code for the main display page. Now it’s time to create the server-side logic.

The basic code for GetCustomerData.php is a very basic HTML page with PHP code in two places:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" >
<head>
<title>Get Customer Data</title>

<?php
//php code
?>
</head>
<body>
<div id="divInfoToReturn"><?php echo $sInfo ?></div>
</body>
</html>

In this page, the first PHP block will contain the logic to retrieve customer data (which is discussed
shortly). The second PHP block outputs the variable $sInfo, containing customer data, into a <div/>. It
is from this <div/> that the data is read and sent to the display frame. To do so, create a JavaScript func-
tion that is called when the page has loaded completely:

24

www.it-ebooks.info

http://www.it-ebooks.info/

Ajax Basics

window.onload = function () {
var divInfoToReturn = document.getElementById("divInfoToReturn") ;
top.frames|["displayFrame"] .displayCustomerInfo (divInfoToReturn.innerHTML) ;

¥

This function is assigned directly to the window.onload event handler. It first retrieves a reference to the
<div/> that contains the customer information. Then, it accesses the display frame using the

top. frames array and calls the displayCustomerInfo () function defined earlier, passing in the
innerHTML of the <div/>. That’s all the JavaScript it takes to send the information where it belongs. But
how does the information get there in the first place? Some PHP code is needed to pull it out of the
database.

The first step in the PHP code is to define all of the pieces of data you'll need. In this example, those
pieces of data are the customer ID to look up, the $sInfo variable to return the information, and the
information necessary to access the database (the database server, the database name, a user name, a
password, and the SQL query string):

<?php

$sID = $_GET["id"];

$sInfo ",

SsDBServer = "your.databaser.server";

$sDBName = "your_db_name";

SsDBUsername = "your_db_username";

SsDBPassword = "your_db_password";

SsQuery = "Select * from Customers where CustomerId=".S$sID;

//More here
?>

This code begins with retrieving the id argument from the query string. PHP organizes all query string
arguments into the $_GET array for easy retrieval. This id is stored in $sID and is used to create the SQL
query string stored in $sQuery. The $sInfo variable is also created here and set to be an empty string.
All the other variables in this code block contain information specific to your particular database config-
uration; you'll have to replace these with the correct values for your implementation.

Having captured the user’s input and set up the foundation for the connection to the database, the next
step is to invoke that database connection, execute the query, and return the results. If there is a cus-
tomer with the given ID, $sInfo is filled with an HTML string containing all the data, including the cre-
ation of a link for the e-mail address. If the customer ID is invalid, $sInfo is filled with an error message
that will be passed back to the display frame:

<?php

$sID = $_GET["id"];

$sInfo e,

$sDBServer = "your.databaser.server";
$sDBName = "your_db_name";
$sDBUsername = "your_db_username";

$sDBPassword = "your_db_password";

25
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

26

$sQuery = "Select * from Customers where CustomerId=".$sID;

SoLink = mysqgl_connect ($sDBServer, $sDBUsername, SsDBPassword) ;
@mysqgl_select_db($sDBName) or $sInfo="Unable to open database";

if ($sInfo == "") {
if (SoResult = mysqgl_query($sQuery) and mysgl_num_rows (SoResult) > 0) {
SaValues = mysqgl_fetch_array(SoResult,MYSQL_ASSOC) ;

$sInfo = $avalues['Name']."
".SaValues['Address']."
".
SaValues['City']."
".S$aValues|['State']."
".
SaValues|['Zip']."

Phone: ".S$aValues|['Phone']."
".

"".
Savalues['Email']."";

mysqgl_free_result (SoResult) ;

} else {
$sInfo = "Customer with ID $sID doesn't exist.";

}
}

mysgl_close($oLink) ;
2>

The first two lines in the highlighted section contain the calls to connect to a MySQL database from PHP.
Following that, the mysgl_query () function is called to execute the SQL query. If that function returns a
result and the result has at least one row, then the code continues to get the information and store it in
$sInfo; otherwise, $sInfo is filled with an error message. The last line cleans up the database connection.

It’s beyond the scope of this book to explain the intricacies of PHP and MySQL programming. If you'd
like to learn more, consider picking up these other Wrox titles: Beginning PHP, Apache, MySQL Web
Development (Wiley 2004) or Beginning PHP5, Apache, MySQL Web Development (Wiley 2005).

One final step is necessary before moving on. The preceding code, though functional, has a major secu-
rity flaw. Because the customer ID is being passed in on the query string, it is not safe to take that value
and add it directly into a SQL query. What if the user passed in some additional SQL that was inserted at
that point? This is what is called a SQL injection attack and is very dangerous to have in a production
environment. The fix for this is simple: just make sure that customer ID is actually a number and nothing
more. To do this, the PHP is_numeric () function is very useful, as it determines if a string (or any
other value) represents a number:

<?php

$sID = $_GET["id"];
$sInfo = "";

if (is_numeric($sID)) {
$sDBServer = "your.databaser.server";
$sDBName = "your_db_name";
$sDBUsername = "your_db_username";
$sDBPassword = "your_db_password";
$sQuery = "Select * from Customers where CustomerId=".$sID;

SoLink = mysqgl_connect ($sDBServer, $sDBUsername, $sDBPassword) ;

www.it-ebooks.info

http://www.it-ebooks.info/

Ajax Basics

@mysqgl_select_db($sDBName) or $sInfo="Unable to open database";

if ($sInfo == "") {
if (SoResult = mysqgl_query($sQuery) and mysqgl_num_rows (SoResult) > 0) {
SaValues = mysqgl_fetch_array($SoResult,MYSQL_ASSOC) ;
$SsInfo = $aValues|['Name']."
".$aValues['Address']."
".

SaValues['City']."
".$aValues|['State']."
".
SaValues['Zip']."

Phone: ".$aValues['Phone']."
".
"".
SavValues['Email']."";
mysqgl_free_result (SoResult);
} else {
$sInfo = "Customer with ID $sID doesn't exist.";
}
}
} else {
$sInfo = "Invalid customer ID.";
}
mysqgl_close(SoLink) ;
?>

Adding this very simple data check avoids possible SQL injection attacks by returning an error message
instead of database information.

Now when $sInfo is output into the <div/>, it will contain the appropriate information. The onload
event handler reads that data out and sends it back up to the display frame. If the customer was found,
the information will be displayed, as shown in Figure 2-2.

%) hidden Frame Example 1 - Mozilla Firefox

Fle Edt View Go Bookmarks Took Help [7)
<§| = LL:’ - @ |:‘ @ | HiddenFrameExample 1. htm v‘ @ o “Qv |

Enter customer ID number to retrieve information:

Get Customer Info!

Michael Smith

123 Somewhere Road
Beverly Hills
California

90210

Phone: (555) 555-1234
michael@somewhere com

Dane

Figure 2-2
27
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

If, on the other hand, the customer doesn’t exist or the ID isn’t a number, an error message will be dis-
played in that same location on the screen. Either way, the customer service representative will have a
nice user experience. This completes your first Ajax example.

This example and all of the examples in the book are also available in ASPNET and JSP in the code
download for this book, available at www . wrox . com.

Hidden Frame POST Requests

The previous example used a GET request to retrieve information from a database. This was fairly sim-
ple because the customer ID could just be appended to the URL in a query string and sent on its way.
But what if you need to send a POST request? This, too, is possible using the hidden frame technique,
although it takes a little extra work.

APOST request is typically sent when data needs to be sent to the server as opposed to a GET, which
merely requests data from the server. Although GET requests can send extra data through the query
string, some browsers can handle only up to 512KB of query string information. A POST request, on the
other hand, can send up to 2GB of information, making it ideal for most uses.

Traditionally, the only way to send POST requests was to use a form with its method attribute set to
post. Then, the data contained in the form was sent in a POST request to the URL specified in the
action attribute. Further complicating matters was the fact that a typical form submission navigates the
page to the new URL. This completely defeats the purpose of Ajax. Thankfully, there is a very easy
workaround in the form of a little-known attribute called target.

The target attribute of the <form/> element is used in a similar manner to the target attribute of the
<a/> element: it specifies where the navigation should occur. By setting the target attribute on a form,
you effectively tell the form page to remain behind while the result of the form submission is displayed
in another frame or window (in this case, a hidden frame).

To begin, define another frameset. The only difference from the previous example is that the visible
frame contains an entry form for customer data:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-frameset.dtd">
<html>
<head>
<title>Hidden Frame POST Example</title>
</head>
<frameset rows="100%,0" style="border: Opx">
<frame name="displayFrame" src="DataEntry.php" noresize="noresize" />
<frame name="hiddenFrame" src="about:blank" noresize="noresize" />
</frameset>
</html

The body of the entry form is contained within a <form/> element and has textboxes for each of the
fields stored in the database (aside from customer ID, which will be autogenerated). There is also a
<div/> that is used for status messages relating to the client-server communication:

<form method="post" action="SaveCustomer.php" target="hiddenFrame">

<p>Enter customer information to be saved:</p>
<p>Customer Name: <input type="text" name="txtName" value="" />

28
www.it-ebooks.info

http://www.it-ebooks.info/

Ajax Basics

Address: <input type="text" name="txtAddress" value="" />

City: <input type="text" name="txtCity" value="" />

State: <input type="text" name="txtState" value="" />

Zip Code: <input type="text" name="txtZipCode" value="" />

Phone: <input type="text" name="txtPhone" value="" />

E-mail: <input type="text" name="txtEmail" value="" /></p>
<p><input type="submit" value="Save Customer Info" /></p>

</form>

<div id="divStatus"></div>

Note also that the target of the <form/> element is set to hiddenFrame so that when the user clicks
the button, the submission goes to the hidden frame.

In this example, only one JavaScript function is necessary in the main page: saveResult (). This func-
tion will be called when the hidden frame returns from saving the customer data:

function saveResult (sMessage) {
var divStatus = document.getElementById("divStatus");
divStatus.innerHTML = "Request completed: " + sMessage;

It’s the responsibility of the hidden frame to pass a message to this function that will be displayed to the
user. This will either be a confirmation that the information was saved or an error message explaining
why it wasn’t.

Next is SaveCustomer . php, the file that handles the POST request. As in the previous example, this
page is set up as a simple HTML page with a combination of PHP and JavaScript code. The PHP code is
used to gather the information from the request and store it in the database. Since this is a POST request,
the $_POST array contains all the information that was submitted:

<?php

SsName = mysql_real_escape_string($_POST["txtName"]) ;
$sAddress = mysql_real_escape_string($_POST["txtAddress"]);
$sCity = mysqgl_real_escape_string($_POST["txtCity"]);
SsState = mysqgl_real_ escape_string($S_POST["txtState"]);
$sZipCode = mysql_real_ escape_string($_POST["txtZipCode"]) ;
SsPhone mysgl_real_ escape_string ($_POST["txtPhone"]) ;
S$SsEmail = mysqgl_real_escape_string ($S_POST["txtEmail"]) ;

$sStatus = "";

$sDBServer = "your.database.server";
$SsDBName = "your_db_name";
SsDBUsername = "your_db_username";

$sDBPassword = "your_db_password";

$sSQL = "Insert into Customers (Name,Address,City,State,Zip,Phone, 'Email’) ".
" values ('S$sName', 'S$SsAddress', 'S$sCity', '$SsState', 'S$sZipCode'".
", '$sPhone', 'S$sEmail')";

//more here
2>

29
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

This code snippet retrieves all the POST information about the customer; moreover, it defines a status
message ($sStatus) and the required database information (same as in the previous example). The SQL
statement this time is an INSERT, adding in all the retrieved information.

To protect against SQL injection attacks, each of the datum retrieved from the $_POST array is escaped
using mysqgl_real_escape_string(),a function that inserts the necessary escape sequences to ensure
a string is wholly contained as a string (for example, all apostrophes are escaped so that data containing
an apostrophe doesn’t break the query).

The code to execute the SQL statement is very similar to that of the previous example:

<?php

$sName = mysql_real_escape_string ($_POST["txtName"]);
$sAddress = mysqgl_real_escape_string($_POST["txtAddress"]);
$sCity = mysqgl_real_escape_string($_POST["txtCity"]);
$sState = mysql_real_escape_string($_POST["txtState"]);
$sZipCode = mysqgl_real_escape_string($_POST["txtZipCode"]);
$sPhone = mysql_real_escape_string ($_POST["txtPhone"]) ;
$sEmail = mysql_real_escape_string ($_POST["txtEmail"]);

$sStatus = "";

$sDBServer = "your.database.server";

$sDBName = "your_db_name";

$sDBUsername = "your_db_username";

$sDBPassword = "your_db_password";

$sSQL = "Insert into Customers (Name,Address,City, State,Zip, Phone, "Email’) ".
" values ('$sName', '$SsAddress', '$SsCity', '$sState', 'S$sZipCode'".
", '$sPhone', 'S$sEmail')";

SoLink = mysqgl_connect ($sDBServer, $SsDBUsername, SsDBPassword) ;
@mysqgl_select_db(S$SsDBName) or S$sStatus = "Unable to open database";

if ($sStatus == "") {
if (mysql_query ($sSQL)) {
$sStatus = "Added customer; customer ID is ".mysqgl_insert_id();
} else {
$sStatus = "An error occurred while inserting; customer not saved.";

}

mysgl_close($oLink) ;
2>

Here, the result of the mysql_query () function is simply an indicator that the statement was executed
successfully. In that case, the $sStatus variable is filled with a message indicating that the save was
successful and the customer ID assigned to the data. The mysgl_insert_id() function always returns
the last auto-incremented value of the most recent INSERT statement. If for some reason the statement
didn’t execute successfully, the $sStatus variable is filled with an error message.

30
www.it-ebooks.info

http://www.it-ebooks.info/

Ajax Basics

The $sStatus variable is output into a JavaScript function that is run when the window loads:

<script type="text/javascript">

window.onload = function () {
top.frames["displayFrame"] .saveResult ("<?php echo $sStatus ?>");
}
</script>

This code calls the saveResult () function defined in the display frame, passing in the value of the PHP
variable $sStatus. Because this variable contains a string, you must enclose the PHP echo statement in
quotation marks. When this function executes, assuming that the customer data was saved, the entry
form page resembles the one shown in Figure 2-3.

3 Hidden Frame Example 2 - Mozilla Firefox @
(]

Fle Edit View Go Bookmarks Tools Help

<§| - LL\,’ - @ ‘_l @ ‘ HiddenFrameExample2.htm v| @ G “Qv ‘

Enter customer nformation to be saved:

Customer Name: | Test Name

Address: 14 bbb st.
Ciy:
State:
Zip Code:

Phone: |(555) 555-5555
E-mail: | Test@nczonline.net

iSave Customer Info!

Request completed: Added customer; customer ID is 7

Dane

Figure 2-3

After this code has executed, you are free to add more customers to the database using the same form
because it never disappeared.

Hidden iFrames

The next generation of behind-the-scenes client-server communication was to make use of iframes (short
for inline frames), which were introduced in HTML 4.0. Basically, an iframe is the same as a frame with
the exception that it can be placed inside of a non-frameset HTML page, effectively allowing any part of
a page to become a frame. The iframe technique can be applied to pages not originally created as a
frameset, making it much better suited to the incremental addition of functionality; an iframe can even

31
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

be created on the fly in JavaScript, allowing for simple, semantic HTML to be supplied to the browser
with the enhanced Ajax functionality serving as a progressive enhancement (this is discussed shortly).
Because iframes can be used and accessed in the same way as regular frames, they are ideal for Ajax
communication.

There are two ways to take advantage of iframes. The easiest way is to simply embed an iframe inside of
your page and use that as the hidden frame to make requests. Doing this would change the first example

display page to:

<p>Enter customer ID number to retrieve information:</p>

<p>Customer ID: <input type="text" id="txtCustomerId" value="" /></p>
<p><input type="button" value="Get Customer Info"
onclick="requestCustomerInfo()" /></p>

<div id="divCustomerInfo"></div>
<iframe src="about:blank" name="hiddenFrame" style="display: none"></iframe>

Note that the iframe has its style attribute set to "display:none"; this effectively hides it from view.
Since the name of the iframe is hiddenFrame, all the JavaScript code in this page will continue to work
as before. There is, however, one small change that is necessary to the GetCustomerData.php page. The
JavaScript function in that page previously looked for the displayCustomerInfo () function in the
frame named displayFrame. If you use this technique, there is no frame with that name, so you must
update the code to use parent instead:

window.onload = function () {
var divInfoToReturn = document.getElementById("divInfoToReturn");
parent.displayCustomerInfo (divInfoToReturn.innerHTML) ;

Y

When accessed inside of an iframe, the parent object points to the window (or frame) in which the
iframe resides. Now this example will work just as the first example in this chapter did.

The second way to use hidden iframes is to create them dynamically using JavaScript. This can get a lit-
tle bit tricky because not all browsers implement iframes in the same way, so it helps to simply go step
by step in creating a hidden iframe.

The first step is easy; you create the iframe using the document . createElement () method and assign
the necessary attributes:

function createIFrame() {
var oIFrameElement = document.createElement ("iframe");

oIFrameElement.style.display = "none";
oIFrameElement .name = "hiddenFrame";
oIFrameElement.id = "hiddenFrame";

document .body .appendChild (oIFrameElement) ;

//more code

The last line of this code is very important because it adds the iframe to the document structure; an
iframe that isn’t added to the document can’t perform requests. Also note that both the name and id
attributes are set to hiddenFrame. This is necessary because some browsers access the new frame by its
name and some by its id attribute.

32

www.it-ebooks.info

http://www.it-ebooks.info/

Ajax Basics

Next, define a global variable to hold a reference to the frame object. Note that the frame object for an
iframe element isn’t what is returned from createElement (). In order to get this object, you must look
into the frames collection. This is what will be stored in the global variable:

var oIFrame = null;

function createIFrame() {
var oIFrameElement = document.createElement ("iframe");

oIFrameElement.style.display = "none";
oIFrameElement.name = "hiddenFrame";
oIFrameElement.id = "hiddenFrame";

document .body .appendChild (oIFrameElement) ;

oIFrame = frames["hiddenFrame"];

}

If you place this code into the previous iframe example, you can then make the following modifications
to requestCustomerInfo():

function requestCustomerInfo() {
if (!oIFrame) {
createIFrame () ;
setTimeout (requestCustomerInfo, 10);
return;

}

var sId = document.getElementById("txtCustomerId") .value;
oIFrame.location = "GetCustomerData.php?id=" + sId;
}

With these changes, the function now checks to see if oIFrame is null or not. If it is, it calls
createIFrame () and then sets a timeout to run the function again in 10 milliseconds. This is necessary
because only Internet Explorer recognizes the inserted iframe immediately; most other browsers take a
couple of milliseconds to recognize it and allow requests to be sent. When the function executes again, it
will go on to the rest of the code, where the last line has been changed to reference the oIFrame object.

Although this technique works fairly easily with GET requests, POST requests are a different story. Only
some browsers will enable you to set the target of a form to a dynamically created iframe; IE is not one
of them. So, to use the hidden iframe technique with a POST request requires a bit of trickery for cross-
browser compatibility.

Hidden iFrame POST Requests

To accomplish a POST request using hidden iframes, the basic approach is to load a page that contains a
form into the hidden frame, populate that form with data, and then submit the form. When the visible
form (the one you are actually typing into) is submitted, you need to cancel that submission and forward
the information to the hidden frame. To do so, you'll need to define a function that handles the creation
of the iframe and the loading of the hidden form:

function checkIFrame() {

if (!oIFrame) {
createIFrame () ;

33
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

}

setTimeout (function () {
oIFrame.location = "ProxyForm.php";
}, 10);

This function, checkIFrame (), first checks to see if the hidden iframe has been created. If not, create
IFrame () is called. Then, a timeout is set before setting the location of the iframe to ProxyForm.php,
which is the hidden form page. Because this function may be called several times, it’s important that this
page be loaded each time the form is submitted.

The ProxyForm.php file is very simple. It contains only a small bit of JavaScript to notify the main page
that it has been loaded:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.o0rg/1999/xhtml" >
<head>

<title>Proxy Form</title>

<script type="text/javascript">

/ /<! [CDATA [

window.onload = function () {
parent.formReady () ;
}

/711>
</script>
</head>
<body>
<form method="post" action="#">
</form>
</body>
</html>

As you can see, the body of this page contains only an empty form and the head contains only an
onload event handler. When the page is loaded, it calls parent . formReady () to let the main page
know that it is ready to accept a request. The formReady () function is contained in the main page itself
and looks like this:

function formReady () {
var oForm = document.forms[0];
var oHiddenForm = oIFrame.document.forms[0];

for (var i=0 ; 1 < oForm.elements.length; i++) {
var oField = oForm.elements[i];

switch (oField.type) {
//ignore buttons
case "button":

case "submit":
case "reset":

34
www.it-ebooks.info

http://www.it-ebooks.info/

Ajax Basics

break;

//checkboxes/radio buttons - only return the value if the control is checked.
case "checkbox":
case "radio":
if (!oField.checked) {
break;
}

//text/hidden/password all return the value

case "text":

case "hidden":

case "password":
createInputField(oHiddenForm, oField.name, oField.value);
break;

default:
switch(oField.tagName.toLowerCase()) {

case "select":

createInputField(oHiddenForm, oField.name,
oField.options[oField.selectedIndex] .value) ;

break;

default:
createInputField(oHiddenForm, oField.name, oField.value);

oHiddenForm.action = oForm.action;
oHiddenForm. submit () ;

¥

The first step in this function is to get a reference to the form in the hidden iframe, which you can do by
accessing the document . forms collection of that frame. Because there is only one form on the page, you
can safely get the first form in the collection (at index 0); this is stored in oHiddenForm. Following that, a
reference to the form on the main page is saved into oForm. Next, a for loop iterates through the form
elements on the main page (using the elements collection). For each form element, a new hidden input
element is created in the hidden frame using the createInputField () function (defined in a moment).
Since there can be many different types of form elements, this code takes into account the different ways
that values are stored. Buttons are ignored, since their values are usually unimportant; checkboxes and
radio buttons are included only if they are checked; textboxes are always included; select boxes are given
the correct value for the selected option. The function to create the fields is defined as follows:

function createInputField(oHiddenForm, sName, sValue) {
oHidden = oIFrame.document.createElement ("input") ;
oHidden.type = "hidden";
oHidden.name = sName;
oHidden.value = sValue;
oHiddenForm.appendChild (oHidden) ;

This function accepts three arguments: the hidden form, the name of the input field, and the value of the
input field. Then, an <input/> element is created and added into the hidden form.

35
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

After each form element has been added, the hidden form is assigned the same action as the main page
form. By reading the action out of the form instead of hard-coding it, you can use formReady () on any
number of pages. The last step in the function is to submit the hidden form.

The only thing left to do is to make sure the main page form doesn’t submit itself in the normal way. To
do this, assign an onsubmit event handler that calls checkIFrame () and returns false:

<form method="post" action="SaveCustomer.php"
onsubmit="checkIFrame () ;return false">
<p>Enter customer information to be saved:</p>

<p>Customer Name: <input type="text" name="txtName" value="" />

Address: <input type="text" name="txtAddress" value="" />

City: <input type="text" name="txtCity" value="" />

State: <input type="text" name="txtState" value="" />

Zip Code: <input type="text" name="txtZipCode" value="" />

Phone: <input type="text" name="txtPhone" value="" />

E-mail: <input type="text" name="txtEmail" value="" /></p>
<p><input type="submit" value="Save Customer Info" /></p>
</form>

<div id="divStatus"></div>

By returning false in this way, you are preventing the default behavior of the form (to submit itself to
the server). Instead, the checkIFrame () method is called and the process of submitting to the hidden
iframe begins.

With this complete, you can now use this example the same way as the hidden frame POST example; the
SaveCustomer . php page handles the data and calls saveResult () in the main page when completed.

Note that the examples in this section have been simplified in order to focus on the
Ajax techniques involved. If you were to use these in a real web application, you
would need to provide more user feedback, such as disabling the form while a
request is being made.

Advantages and Disadvantages of Hidden Frames

Now that you have seen the powerful things that you can do using hidden frames, it’s time to discuss
the practicality of using them. As mentioned previously, this technique has been around for many years
and is still used in many Ajax applications.

One of the biggest arguments for using hidden frames is that you can maintain the browser history and
thus enable users to still use the Back and Forward buttons in the browser. Because the browser doesn’t
know that a hidden frame is, in fact, hidden, it keeps track of all the requests made through it. Whereas
the main page of an Ajax application may not change, the changes in the hidden frame mean that the
Back and Forward buttons will move through the history of that frame instead of the main page. This
technique is used in both Gmail and Google Maps for this very reason.

36
www.it-ebooks.info

http://www.it-ebooks.info/

Ajax Basics

Be careful, because iframes don’t always store browser history. Whereas IE always
stores the history of iframes, Firefox does so only if the iframe was defined using
HTML (that is, not created dynamically using JavaScript). Safari never stores
browser history for iframes, regardless of how they are included in the page.

Hidden frames do have some disadvantages. For one, you cannot make requests outside of your own
domain. Due to security restrictions in browsers, JavaScript can only interact with frames that are from
the same domain. Even a page from a subdomain (such as p2p . wrox. com instead of www.wrox . com)
can’t be accessed.

Another downside of hidden frames is that there is very little information about what’s going on behind
the scenes. You are completely reliant on the proper page being returned. The examples in this section all
had the same problem: If the hidden frame page fails to load, there is no notification to the user that a
problem has occurred; the main page will continue to wait until the appropriate JavaScript function is
called. You may be able to provide some comfort to a user by setting a timeout for a long period of time,
maybe five minutes, and displaying a message if the page hasn’t loaded by then, but that’s just a
workaround. The main problem is that you don’t have enough information about the HTTP request that
is happening behind the scenes. Fortunately, there is another option.

XMLHttp Requests (XHR)

When Microsoft Internet Explorer 5.0 introduced a rudimentary level of XML support, an ActiveX
library called MSXML was also introduced (discussed at length in Chapter 6). One of the objects pro-
vided in this library quickly became very popular: XMLHt tp.

The XMLHt tp object was created to enable developers to initiate HTTP requests from anywhere in an
application. These requests were intended to return XML, so the XMLHt tp object provided an easy way
to access this information in the form of an XML document. Since it was an ActiveX control, XMLHt tp
could be used not only in web pages but also in any Windows-based desktop application; however, its
popularity on the Web has far outpaced its popularity for desktop applications.

Picking up on that popularity, Mozilla duplicated the XMLHt tp functionality for use in its browsers, such
as Firefox. They created a native JavaScript object, XMLHt t pRequest, which closely mimicked the behav-
ior of Microsoft’s XMLHt tp object. Shortly thereafter, both the Safari (as of version 1.2) and Opera (ver-
sion 7.6) browsers duplicated Mozilla’s implementation. Microsoft even went back and created their
own native XMLHt tpRequest object for Internet Explorer 7. Today, all four browsers support a native
XMLHt tpRequest object, commonly referred to as XHR.

Creating an XHR Object

The first step to using an XHR object is, obviously, to create one. Because Microsoft’s implementation
prior to Internet Explorer 7 is an ActiveX control, you must use the proprietary ActiveXObject class in
JavaScript, passing in the XHR control’s signature:

var oXHR = new ActiveXObject ("Microsoft.XMLHttp") ;

37
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

38

This line creates the first version of the XHR object (the one shipped with IE 5.0). The problem is that
there have been several new versions released with each subsequent release of the MGXML library. Each
release brings with it better stability and speed, so you want to make sure that you are always using the
most recent version available on the user’s machine. The signatures are:

a

U 0000

Microsoft. XMLHttp
MSXML2 XMLHttp
MSXML2.XMLHttp.3.0
MSXML2 XMLHttp.4.0
MSXML2 XMLHttp.5.0
MSXML2 XMLHttp.6.0

Windows Vista ships with version 6.0, which is the preferable version to use if able. However, those run-
ning other versions of Windows won'’t have this available, so Microsoft recommends using the 3.0 sig-
nature as a fallback. All other versions aren’t recommended for use due to varying issues with security,
stability, and availability.

Unfortunately, the only way to determine which version to use is to try to create each one. Because this
is an ActiveX control, any failure to create an object will throw an error, which means that you must
enclose each attempt within a try. . . catch block. The end result is a function such as this:

function createXHR() {

}

var aVersions = ["MSXML2.XMLHttp.6.0", "MSXML2.XMLHttp.3.0"];

for (var i = 0; i < aVersions.length; i++) {
try {
var oXHR = new ActiveXObject (aVersions[i]);
return oXHR;
} catch (oError) {
//Do nothing
}
}

throw new Error ("MSXML is not installed.");

The createxHR () function stores an array of valid XHR signatures, with the most recent one first. It iter-
ates through this array and tries to create an XHR object with each signature. If the creation fails, the
catch statement prevents a JavaScript error from stopping execution; then the next signature is
attempted. When an object is created, it is returned. If the function completes without creating an XHR
object, an error is thrown indicating that the creation failed.

Fortunately, creating an XHR object is much easier in other browsers. Mozilla Firefox, Safari, Opera, and
Internet Explorer 7 all use the same code:

var oXHR = new XMLHttpRequest () ;

Naturally, it helps to have a cross-browser way of creating XHR objects. You can create such a function by
altering the createXHR () function defined previously:

www.it-ebooks.info

http://www.it-ebooks.info/

Ajax Basics

function createXHR() {

if (typeof XMLHttpRequest != "undefined") {
return new XMLHttpRequest () ;
} else if (window.ActiveXObject) {
var aVersions = ["MSXML2.XMLHttp.6.0", "MSXML2.XMLHttp.3.0"];

for (var i = 0; i1 < aVersions.length; i++) {
try {
var oXHR = new ActiveXObject (aVersions[i]);
return oXHR;
} catch (oError) {
//Do nothing
}
}

}
throw new Error ("XMLHttp object could not be created.");

}

Now this function first checks to see if an XMLHt tpRequest class is defined (by using the typeof opera-
tor). If XMLHt tpRequest is present, it is used to create the XHR object; otherwise, it checks to see if the
ActiveXObject class is present and, if so, goes through the same process of creating an XHR object for IE
6 and below. If both of these tests fail, an error is thrown.

The other option for creating cross-browser XHR objects is to use a library that already has cross-browser
code written. The zXml library, written by two of your authors, is one such library and is available for
download at www.nczonline.net/downloads/. This library defines a single function for the creation
of XHR objects:

var oXHR = zXmlHttp.createRequest();

The createRequest () function, and the zXml library itself, will be used throughout this book to aid in
cross-browser handling of Ajax technologies.

Using XHR

After you have created an XHR object, you are ready to start making HTTP requests from JavaScript. The
first step is to call the open () method, which initializes the object. This method accepts the following
three arguments:

QO Request Type: A string indicating the request type to be made —typically, GET or POST (these
are the only ones currently supported by all browsers)
QO URL: A string indicating the URL to send the request to
O Async: A Boolean value indicating whether the request should be made asynchronously
The last argument, async, is very important because it controls how JavaScript executes the request.
When set to true, the request is sent asynchronously, and JavaScript code execution continues without
waiting for the response; you must use an event handler to watch for the response to the request. If

async is set to false, the request is sent synchronously, and JavaScript waits for a response from the
server before continuing code execution. That means if the response takes a long time, the user cannot

39

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

interact with the browser until the response has completed. For this reason, best practices around the
development of Ajax applications favor the use of asynchronous requests for routine data retrieval, with
synchronous requests reserved for short messages sent to and from the server.

To make an asynchronous GET request to a file such as info. txt, you would start by doing this:

var oXHR = zXmlHttp.createRequest();
OoXHR.open ("get", "info.txt", true);

Note that the case of the first argument, the request type, is irrelevant even though technically request
types are defined as all uppercase.

Next, you need to define an onreadystatechange event handler. The XHR object has a property called
readyState that changes as the request goes through and the response is received. There are five possi-
ble values for readyState:

0 (Uninitialized): The object has been created but the open () method hasn’t been called.
1 (Loading): The open () method has been called but the request hasn’t been sent.
2 (Loaded): The request has been sent.

3 (Interactive). A partial response has been received.

U 00 oo

4 (Completed): All data has been received and the connection has been closed.

Every time the readyState property changes from one value to another, the readystatechange event
fires and the onreadystatechange event handler is called.

As a result of differences in browser implementations, the only reliable readyState
value is 4. Some browsers neglect states 1 and 2 altogether, and some fire 3 multiple
times until the response is complete. For these reasons, it’s best to only rely on
readyState 4.

The onreadystatechange event handler is typically defined as:

var oXHR = zXmlHttp.createRequest () ;

OoXHR.open("get", "info.txt", true);
OXHR.onreadystatechange = function () {
if (oXHR.readyState == 4) {

alert ("Got response.");
by
The last step is to call the send () method, which actually sends the request. This method accepts a sin-
gle argument, which is a string for the request body:. If the request doesn’t require a body (remember, a

GET request doesn’t), you must pass in null (you cannot just omit the argument):

var oXHR = zXmlHttp.createRequest () ;
oXHR.open ("get", "info.txt", true);

40
www.it-ebooks.info

http://www.it-ebooks.info/

Ajax Basics

OXHR.onreadystatechange = function () {
if (oXHR.readyState == 4) {
alert ("Got response.");
}
Y
OXHR.send (null) ;

That'’s it! The request has been sent and when the response is received, an alert will be displayed. But
just showing a message that the request has been received isn’t very useful. The true power of XHR is
that you have access to the returned data, the response status, and the response headers.

To retrieve the data returned from the request, you can use the responseText or responseXML proper-
ties. The responseText property returns a string containing the response body, whereas the
responseXML property is an XML document object used only if the data returned has a content type of
text/xml. (XML documents are discussed in Chapter 6.) So, to get the text contained in info. txt, the
call would be as follows:

var sData = oXHR.responseText;

Note that this will return the text in info. txt only if the file was found and no errors occurred. If, for
example, info. txt didn’t exist, then the responseText would contain the server’s 404 message.
Fortunately, there is a way to determine if any errors occurred.

The status property contains the HTTP status code sent in the response, and statusText contains the
text description of the status (such as “OK” or “Not Found”). Using these two properties, you can make
sure that the data you've received is actually the data you want or tell the user why the data wasn’t
retrieved:

if (oXHR.status == 200) {

alert ("Data returned is: " + oXHR.responseText) ;
} else {
alert ("An error occurred: " + oXHR.statusText) ;

}

Generally, you should always ensure that the status of a response is 200, indicating that the request was
completely successful. The readyState property is set to 4 even if a server error occurred, so just check-
ing that is not enough. In this example, the responseText property is shown only if the status is 200;
otherwise, the error message is displayed.

The statusText property isn’t implemented in Opera and sometimes returns an
inaccurate description in other browsers. You should never rely on statusText
alone to determine if an error occurred.

Another thing to watch out for is browser caching. You may end up with a status code of 304 on a
response in IE and Opera. If you are going to be accessing data that won’t be changing frequently, you
may want to alter your code to also check for a 304:

if (oXHR.status == 200 || oXHR.status == 304) {
alert ("Data returned is: " + oXHR.responseText) ;

41
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

} else {
alert ("An error occurred: " + oXHR.statusText);

}

If a 304 is returned, the responseText and responseXML properties will still contain the correct data.
The only difference is that data comes from the browser’s cache instead of from the server. Caching
issues are discussed later in the chapter.

As mentioned previously, it’s also possible to access the response headers. You can retrieve a specific
header value using the getResponseHeader () method and passing in the name of the header that you
want to retrieve. One of the most useful response headers is Content-Type, which tells you the type of
data being sent:

var sContentType = oXHR.getResponseHeader ("Content-Type") ;

if (sContentType == "text/xml") {
alert ("XML content received.");
} else if (sContentType == "text/plain") {
alert ("Plain text content received.");
} else {

alert ("Unexpected content received.");

}

This code snippet checks the content type of the response and displays an alert indicating the type of
data returned. Typically, you will receive only XML data (content type of text/xml) or plain text (con-
tent type of text/plain) from the server, because these content types are the easiest to work with using
JavaScript.

If you’d prefer to see all headers returned from the server, you can use the getAl1ResponseHeaders ()
method, which simply returns a string containing all of the headers. Each header in the string is sepa-
rated by either a new line character (\n) or a combination of the carriage return and new line (\r\n), so
you can deal with individual headers as follows:

var sHeaders OXHR.getAllResponseHeaders () ;
var aHeaders = sHeaders.split(/\r?\n/);

for (var i=0; i < aHeaders.length; i++) {
alert (aHeaders[i]) ;

This example splits the header string into an array of headers by using the JavaScript split () method
for strings and passing in a regular expression (which matches either a carriage return/new line couple
or just a new line). Now you can iterate through the headers and do with them as you please. Keep in
mind that each string in aHeaders is in the format headername: headervalue.

It’s also possible to set headers on the request before it’s sent out. You may want to indicate the content
type of data that you'll be sending, or you may just want to send along some extra data that the server
may need to deal with the request. To do so, use the setRequestHeader () method before calling
send():

var oXHR = zXmlHttp.createRequest () ;
OoXHR.open ("get", "info.txt", true);

42
www.it-ebooks.info

http://www.it-ebooks.info/

Ajax Basics

OXHR.onreadystatechange = function () {
if (oXHR.readyState == 4) {
alert ("Got response.");
}
Y
OXHR.setRequestHeader ("myheader", "myvalue");
OXHR.send(null) ;

In this code, a header named myheader is added to the request before it’s sent out. The header will be
added to the default headers as myheader: myvalue.

Synchronous Requests

Up to this point, you've been dealing with asynchronous requests, which are preferable in most situa-
tions. Sending synchronous requests means that you don’t need to assign theonreadystatechange
event handler, because the response will have been received by the time the send () method returns.
This makes it possible to do something like this:

var oXHR = zXmlHttp.createRequest();
oXHR.open ("get", "info.txt", false);
OXHR.send(null) ;

if (oXHR.status == 200) {

alert("Data returned is: " + oXHR.responseText);
} else {
alert ("An error occurred: " + oXHR.statusText);

}

Sending the request synchronously (setting the third argument of open () to false) enables you to start
evaluating the response immediately after the call to send (). This can be useful if you want the user inter-
action to wait for a response or if you're expecting to receive only a very small amount of data (for exam-
ple, less than 1K). In the case of average or larger amounts of data, it’s best to use an asynchronous call.

There is a chance that a synchronous call will never return. For instance, if the server
process is long-running, perhaps due to an infinite loop or distributed data lookup,
this could lock the entire web browser (including other tabs) for a long period of
time.

XHR GET Requests

It’s time to revisit the hidden frame GET example to see how the process could be improved using XHR.
The first change will be to GetCustomerData.php, which must be changed from an HTML page to sim-
ply return an HTML snippet. The entire file now becomes streamlined:

<?php
header ("Content-Type: text/plain");

$sID = $_GET["id"];
$sInfo = "";

if (is_numeric($sID)) {

43
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

$sDBServer = "your.databaser.server";

$sDBName = "your_db_name";

$sDBUsername = "your_db_username";

$sDBPassword = "your_db_password";

$sQuery = "Select * from Customers where CustomerId=".$sID;

SoLink = mysqgl_connect ($sDBServer, $sDBUsername, $sDBPassword) ;
@mysqgl_select_db($SsDBName) or $sInfo="Unable to open database";

if ($sInfo == "") {
if (SoResult = mysqgl_query($sQuery) and mysgl_num_rows (SoResult) > 0) {
Savalues = mysql_fetch_array(SoResult,MYSQL_ASSOC) ;

$sInfo = $avValues['Name']."
".SaValues|['Address']."
".
Savalues['City']."
".$SaValues['State']."
".
Savalues|['Zip']."

Phone: ".$aValues['Phone']."
".
"".
SavValues['Email']."";
mysqgl_free_result ($oResult) ;
} else {
$sInfo = "Customer with ID $sID doesn't exist.";
}
}
} else {
$sInfo = "Invalid customer ID.";
}
mysgl_close($oLink) ;
echo $sInfo;
?>

As you can see, there are no visible HTML or JavaScript calls in the page. All the main logic remains the
same, but there are two additional lines of PHP code. The first occurs at the beginning, where the
header () function is used to set the content type of the page. Even though the page will return an
HTML snippet, it’s fine to set the content type as text/plain, because it’s not a complete HTML page
(and therefore wouldn’t validate as HTML). You should always set the content type in any page that is
sending non-HTML to the browser. The second added line is towards the bottom, where the $sInfo
variable is output to the stream by using the echo command.

In the main HTML page, the basic setup is this:

<p>Enter customer ID number to retrieve information:</p>

<p>Customer ID: <input type="text" id="txtCustomerId" value="" /></p>
<p><input type="button" value="Get Customer Info"
onclick="requestCustomerInfo()" /></p>

<div id="divCustomerInfo"></div>

The requestCustomerInfo () function previously created a hidden iframe but now must be changed
to use XHR:

function requestCustomerInfo() ({
var sId = document.getElementById("txtCustomerId") .value;

44
www.it-ebooks.info

http://www.it-ebooks.info/

Ajax Basics

var oXHR = zXmlHttp.createRequest();

OXHR.open ("get", "GetCustomerData.php?id=" + sId, true);
OXHR.onreadystatechange = function () {
if (oXHR.readyState == 4) {
if (oXHR.status == 200 || oXHR.status == 304) {
displayCustomerInfo (oXHR.responseText) ;
} else {
displayCustomerInfo ("An error occurred: " + oXHR.statusText);

}
}
V5
OXHR.send(null) ;

Note that the function begins the same way, by retrieving the ID the user entered. Then, an XHR object is
created using the zXml library. The open () method is called, specifying an asynchronous GET request
for GetCustomerData.php (which has the aforementioned ID added to its query string). Next comes
the assignment of the event handler, which checks for a readyState of 4 and then checks the status of
the request. If the request was successful (status of 200 or 304), the displayCustomerInfo () func-
tion is called with the response body (accessed via responseText). If there was an error (status is not
200 or 304), then the error information is passed to displayCustomerInfo().

There are several differences between this and the hidden frame/iframe example. First, no JavaScript
code is required outside of the main page. This is important because any time you need to keep code in
two different places there is the possibility of creating incompatibilities; in the frame-based examples,
you relied on separate scripts in the display page and the hidden frames to communicate with one
another. By changing GetCustomerInfo.php to return just the data you're interested in, you have elim-
inated potential problems with JavaScript calling between these locations. The second difference is that
it’s much easier to tell if there was a problem executing the request. In previous examples, there was no
mechanism by which you could identify and respond to a server error in the request process. Using XHR,
all server errors are revealed to you as a developer, enabling you to pass along meaningful error feed-
back to the user. In many ways, XHR is a more elegant solution than hidden frames for in-page HTTP
requests.

XHR POST Requests

Now that you've seen how XHR can simplify GET requests, it’s time to take a look at POST requests.
First, you need to make the same changes to SaveCustomer.php as you did for
GetCustomerInfo.php, which means you need to remove extraneous HTML and JavaScript, add the
content type information, and output the text:

<?php
header ("Content-Type: text/plain");
SsName = mysqgl_real_escape_string($_POST["txtName"]) ;
$sAddress = mysqgl_real_escape_string($_POST["txtAddress"]);
$sCity = mysqgl_real_escape_string($_POST["txtCity"]);
SsState = mysqgl_real_escape_string($S_POST["txtState"]);

$szipCode = mysqgl_real_escape_string($_POST["txtZipCode"]) ;
$sPhone = mysqgl_real_escape_string ($_POST["txtPhone"]) ;

45
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

?>

$sEmail = mysql_real_escape_string($_POST["txtEmail"]);

SsStatus = "";

$sDBServer = "your.database.server";
$sDBName = "your_db_name";
$sDBUsername = "your_db_username";

$sDBPassword = "your_db_password";

$sSQL = "Insert into Customers (Name,Address,City,State,Zip, Phone, "Email™) ".
" values ('$sName', 'SsAddress', '$SsCity', 'S$sState', '$SsZipCode'".
", '$sPhone', 'S$sEmail')";

$oLink = mysqgl_connect ($sDBServer, $sDBUsername, $sDBPassword) ;

@mysqgl_select_db($sDBName) or S$sStatus = "Unable to open database";
if ($sStatus == "") {
if (SoResult = mysqgl_query($sSQL)) {
$sStatus = "Added customer; customer ID is ".mysqgl_insert_id();
} else {
$sStatus = "An error occurred while inserting; customer not saved.";

mysgl_close($oLink) ;

echo $sStatus;

This now represents the entirety of SaveCustomer . php. Note that the header () function is called to set
the content type, and echo is used to output $sStatus.

In the main page, the simple form that was set up to allow entry of new customer info is the following;:

<form method="post" action="SaveCustomer.php"

onsubmit="sendRequest (); return false">
<p>Enter customer information to be saved:</p>
<p>Customer Name: <input type="text" name="txtName" value="" />

Address: <input type="text" name="txtAddress" value="" />

City: <input type="text" name="txtCity" value="" />

State: <input type="text" name="txtState" value="" />

Zip Code: <input type="text" name="txtZipCode" value="" />

Phone: <input type="text" name="txtPhone" value="" />

E-mail: <input type="text" name="txtEmail" value="" /></p>

<p><input type="submit" value="Save Customer Info" /></p>

</form>
<div id="divStatus"></div>

You'll note that the onsubmit event handler has now changed to call the function sendrequest ()
(although the event handler still returns false to prevent actual form submission). This method first
assembles the data for the POST request and then creates the XHR object to send it. The data must be sent
in the format as a query string:

namel=valuel&name2=value2&name3=value3

46

www.it-ebooks.info

http://www.it-ebooks.info/

Ajax Basics

Both the name and value of each parameter must be URL-encoded in order to avoid data loss during
transmission. JavaScript provides a built-in function called encodeURIComponent () that can be used to
perform this encoding. To create this string, you’ll need to iterate over the form fields, extracting and
encoding the name and value. A helper function is used to do this encoding:

function encodeNameAndValue (sName, sValue) {
var sParam = encodeURIComponent (sName) ;
sParam += "=";
sParam += encodeURIComponent (sValue) ;
return sParam;

The actual iteration over the form fields takes place in the getRequestBody () function:
function getRequestBody (oForm) {

//array to hold the params
var aParams = new Array();

//get your reference to the form
var oForm = document.forms[0];

//iterate over each element in the form
for (var i=0 ; 1 < oForm.elements.length; i++) {

//get reference to the field
var oField = oForm.elements[i];

//different behavior based on the type of field
switch (oField.type) {

//buttons - we don't care
case "button":
case "submit":
case "reset":
break;

//checkboxes/radio buttons - only return the value if the control is
checked.
case "checkbox":
case "radio":
if (!oField.checked) {
break;

//text/hidden/password all return the value

case "text":

case "hidden":

case "password":
aParams .push (encodeNameAndValue (oField.name, oField.value)) ;
break;

//everything else
default:

switch(oField.tagName.toLowerCase()) {

47

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

case "select":
aParams . push (encodeNameAndValue (oField.name,
oField.options[oField.selectedIndex] .value)) ;
break;
default:
aParams.push (encodeNameAndvValue (oField.name,
oField.value)) ;

return aParams.join("&");

This function assumes that you will supply a reference to the form as an argument. An array (aParams)
is created to store each individual name-value pair. Then, the elements of the form are iterated over,
building up a string using encodeNameAndvalue (), which is then added to the array. Doing this pre-
vents multiple string concatenation, which can lead to slower code execution in some browsers. The last
step is to call join() on the array, passing in the ampersand character. This effectively combines all the
name-value pairs with ampersands, creating a single string in the correct format.

String concatenation in most browsers is an expensive process because strings are immutable, meaning
that once created, they cannot have their values changed. Thus, concatenating two strings involves first
allocating a new string and then copying the contents of the two other strings into it. Repeating this
process over and over causes a severe slowdown. For this reason, it’s always best to keep string concate-
nations at a minimum and use the array’s join () method to handle longer string concatenation.
Firefox actually has very efficient string concatenation, but for the purposes of cross-browser coding, it's
still best to use an array and the join () method.

The sendRequest () function calls getRequestBody () and sets up the request:

function sendRequest () {
var oForm = document.forms[O0];
var sBody = getRequestBody (oForm) ;

var oXHR = zXmlHttp.createRequest () ;
OXHR.open ("post", oForm.action, true);

OXHR.setRequestHeader ("Content-Type", "application/x-www-form-urlencoded") ;
OXHR.onreadystatechange = function () {
if (oXHR.readyState == 4) {

I

if (oXHR.status == 200) {
saveResult (oXHR.responseText) ;
} else {
saveResult ("An error occurred: " + oXHR.statusText);

OXHR.send (sBody) ;

48

www.it-ebooks.info

http://www.it-ebooks.info/

Ajax Basics

As with previous examples, the first step in this function is to get a reference to the form and store it in a
variable (oForm). Then, the request body is generated and stored in sBody. Next comes the creation and
setup of the XHR object. Note that the first argument of open () is now post instead of get, and the sec-
ond is set to oForm.action (once again, so this script can be used on multiple pages). You'll also notice
that a request header is being set. When a form is posted from the browser to a server, it sets the content
type of the request as application/x-www-form-urlencoded. Most server-side languages look for
this encoding in order to parse the incoming POST data properly, so it is very important for it to be set.

The onreadystatechange event handler is very similar to that of the GET example; the only change is
the call to saveResult () instead of displayCustomerInfo (). The last line is very important, as the
sBody string is passed to send () so that it will become part of the request body. This effectively mimics
what the browser does, so all server-side logic should work as expected.

Advantages and Disadvantages of XHR

Undoubtedly, you can see the advantage of using XHR for client-server communication instead of hidden
frames. The code you write is much cleaner and the intent of the code is much more apparent than using
numerous callback functions with hidden frames. You have access to request and response headers as
well as HTTP status codes, enabling you to determine if your request was successful.

The downside is that, unlike hidden frames, there is no browser history record of the calls that were
made. The Back and Forward buttons do not tie in to XHR requests, so you have effectively cut off their
use. It is for this reason that many Ajax applications use a mixture of XHR and hidden frames to make a
truly usable interface.

Another disadvantage, which applies to Internet Explorer 6 and earlier only, is that you depend on
ActiveX controls being enabled. If the user has your page set up in a particular security zone that doesn’t
allow ActiveX controls, the code cannot access the XHR object. In that case, you may have to default to
using hidden frames.

It is also worth noting that XHR has the same restrictions as hidden frames when it comes to cross-
domain communication. Even XMLHttp was designed for making ad hoc requests from JavaScript, it
still doesn’t break the cross-domain scripting rules. An XHR object is still only allowed to access
resources from the same domain. If you need to access a URL located in a different origin, you must cre-
ate a server-side proxy to handle the communication (see Figure 2-4).

Server-Side Proxies

Web Browser
HTTP g HTTP 3
Response Response
< = < —
> >
HTTP HTTP
Request ; Request .
Web Server External

Web server
Figure 2-4

49

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Using a server-side proxy, the browser makes a request to the web server. The web server then contacts
another web server outside of the domain to request the appropriate information. When your web
server receives the response, it is forwarded back to the browser. The result is a seamless transmission of
external data. You'll be using server-side proxies later in this book.

Ajax with Images

Since Netscape Navigator 3, it has been possible to change the src attribute of an image using
JavaScript. Changing this attribute actually sends a request to the server for the image, allowing an
opportunity to return data to the client. Clearly, the data is sometimes simply what is stored in the
image, but there is a much greater capability for client-server communication using images.

Dynamically Creating Images

The basic technique behind using images for Ajax communication is similar to preloading images. You
need to create a element and then assign its src attribute. To tell when the image is loaded,
assign an onload event handler:

var oImg = document.createElement ("img") ;
oImg.onload = function () {
alert ("Image is ready");
}
oImg.src = "/path/to/myimage.gif";

The downloading of an image begins as soon as the src attribute is assigned, meaning that you don’t
even need to add the image to the page. In fact, you don’t even need to use an element at all;
you can use the Image object:

var oImg = new Image();
oImg.onload = function () {
alert ("Image is ready");
}
oImg.src = "/path/to/myimage.gif";

There is also an error event that you can use to determine when something has gone wrong. This is
most often fired when something other than an image has been returned from the server (such as
HTML):

var oImg = new Image();
oImg.onload = function () {
alert ("Image is ready");
}
oImg.onerror = function () {
alert ("ERROR!") ;
B
oImg.src = "/path/to/myimage.gif";

These two events, load and error, give enough information to be a reliable communication medium
from client to server. Imagine that instead of changing the src to point to another image, you have it
point to a PHP, ASPNET, or JSP page. That page can do any amount of processing that you’'d like so long
as it returns an image at the end. You can easily send small bits of information on the query string of the
page, such as:

50

www.it-ebooks.info

http://www.it-ebooks.info/

Ajax Basics

var oImg = new Image();
oImg.onload = function () {
alert ("Image is ready");
}
oImg.onerror = function () {
alert ("ERROR!") ;
};
oImg.src = "/path/to/myimage.php?message=ok";

Once again, as long as myimage . php returns an image, everything will behave as expected. You can
return an image in one of two ways:

O redirecting to an image

0 writing an image to the output stream

Redirecting to an Image

To redirect to an image with PHP, you need to first set the appropriate content type and then use the
Location header:

<?php
header ("Content-type: image/gif");

header ("Location: pixel.gif");
?>

This example uses a GIF image. If you are redirecting to a JPEG image, you need to set the content type
to image/jpeg.

In ASP.NET, you need only do a redirect:
<%@ Page Language="C#" %>

<script runat="server">

private void Page_Load (object sender, System.EventArgs e)

{
Response.Redirect ("pixel.gif");
}
</script>
And in JSP:
<%
response.sendRedirect ("pixel.gif");
%>

Note that this redirect to an image, regardless of your server-side language, should be done after other
processing has occurred.

Creating an Image

To output an image using PHP, you'll need to use the GD library (which is included in most PHP
installations):

<?php
header ("Content-type: image/jpeg");

51
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

52

$image = imagecreate(1l,1);

Swhite = imagecolorallocate($image, 255, 255, 255);
imagejpeg ($image) ;

imagedestroy ($image) ;

2>

The first command outputs the content type for a JPEG image (GIF image creation/manipulation isn’t
supported in all version of GD, so it’s best to use another image format). After that, a 1x1 image is cre-
ated and has white allocated as a color on it. The imagejpeg () function outputs the image to the
response stream and imagedestroy () frees up the memory it used.

To create and output an image using .NET, you'll need to use the System.Drawing and System
.Drawing.Imaging namespaces:

<%@ Page Language="C#" ContentType="image/jpeg"%$>
<%@ Import Namespace="System.Drawing" %>
<%@ Import Namespace="System.Drawing.Imaging" %>
<script runat="server">
private void Page_Load(object sender, System.EventArgs e)

{
Bitmap image = new Bitmap(l, 1);
image.Save (Response.OutputStream, System.Drawing.Imaging.ImageFormat.Jpeg) ;
image.Dispose() ;
}
</script>

This code mimics the previous PHP code, setting the content-type for a JPEG image, then creating a 1x1
image and outputting it to the response stream. Lastly, the image’s memory is freed by calling the
dispose () method.

Dynamically creating images is very similar in JSP:

<%@page contentType="image/jpeg"%>
<%@page import="java.awt.*" %>
<%@page import="java.awt.image.*" %>
<%@page import="com.sun.image.codec.jpeg.*"%>
<%
BufferedImage image = new BufferedImage(l, 1, BufferedImage.TYPE_INT RGB) ;

Graphics2D g = (Graphics2D) image.getGraphics();
g.setColor (Color.white) ;

g.fillRect(0,0,1,1);

g.dispose() ;

ServletOutputStream output = response.getOutputStream() ;

JPEGImageEncoder encoder = JPEGCodec.createJPEGEncoder (output) ;
encoder.encode (image) ;

www.it-ebooks.info

http://www.it-ebooks.info/

Ajax Basics

Here, the Java AWT library is used with the Sun JPEG codec. First, a Buf feredImage is created to draw

upon. Next, the graphics interface is extracted, and the image is filled with white. The last step is to out-
put the image using a JPEGImageEncoder.

From these examples, it’s easy to see that creating images dynamically is fairly straightforward, regard-
less of your server-side language preference.

As with redirecting to an image, the creation of an image should be done after all other processing has
taken place.

Creating images dynamically or redirecting to an image provides the beginnings of Ajax communica-
tion, since both are requests that send data to the server. But this is only one part of the equation; the sec-
ond part is returning data back to the client.

Images and Cookies

When people think about cookies in this age of cyber threats, most think about security concerns, spy-
ware, and evil corporations tracking their every move. Certainly, those fears are warranted given what
goes on in the world of the Web, but cookies really are just small pieces of data that can be accessed by

both the client (through JavaScript) and the server. There are also several restrictions placed on cookies
that you need to be aware of before using them:

O Each domain can store a maximum of 20 cookies on a user’s machine. It’s best to reuse cookies
whenever possible instead of creating new ones.

Q The total size of the cookie (including name, equals sign, and value) cannot exceed 4096 bytes
(512 characters), meaning cookies are useful for storing small amounts of data only.

Q The total number of cookies allowed on a machine is 300.

Each request to and response from the server contains cookie information, regardless of what type of
resource is being requested. This means that setting the src attribute of an image brings back updated
cookie information from the server. Assuming that an onload event handler has been assigned to the

image, this is where you can retrieve the new cookie information. The following function can be used to
access specific cookie values:

function getCookie (sName) {

var sRE = "(?:;)?" + encodeURIComponent (sName) + "=([";]1*);?";
var oRE = new RedgExp (sRE) ;

if (oRE.test (document.cookie)) {

return decodeURIComponent (RegExp["$1"]);
} else {

return null;

}

This function looks through the document . cookie property, which is a series of name-value pairs rep-
resenting each cookie accessible by the page. The pairs are URL-encoded and separated by semicolons,

which is why a regular expression is used to extract the appropriate value. If the cookie with the given
name doesn’t exist, the function returns null.

53
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

It is also considered a best practice to delete cookies once they are no longer used. The following func-
tion deletes a cookie with a given name:

function deleteCookie (sName) {
document.cookie = encodeURIComponent (sName) + "=0; " +
"expires=Thu, 1 Jan 1970 00:00:00 UTC; path=/";

Setting the expiration date of a cookie to some date that has already passed effectively removes the
cookie from the client machine. This function uses January 1, 1970, in GMT format to delete the cookie
(the JavaScript Date object has a toGMTString () method that can be used to get this format for any
date). The path argument is important as well, as it ensures that the cookie is removed for every location
on the domain, not just the current page.

It’s possible to recreate an earlier example, pulling customer data from a database, using this technique.
Since cookies are an insecure means of storing data, this example will only pull the customer’s name.
The GetCustomerData.php used with the XHR example must be updated slightly to this end:

<?php
header ("Content-Type: image/gif");

$sID = S_GET["id"];
SsInfo = "";

if (is_numeric($sID)) {
$sDBServer = "your.databaser.server";
$sDBName = "your_db_name";
$sDBUsername = "your_db_username";
$sDBPassword = "your_db_password";
$sQuery = "Select * from Customers where CustomerId=".$sID;

$oLink = mysqgl_connect ($sDBServer, $sDBUsername, $sDBPassword) ;
@mysqgl_select_db($sDBName) or $sInfo="Unable to open database";

if ($oResult = mysqgl_qguery($SsQuery) and mysqgl_num_rows ($SoResult) > 0) {
SaValues = mysqgl_fetch_array($oResult,MYSQIL_ASSOC) ;
$sInfo = S$aValues|['Name'];
mysql_free_result (SoResult) ;

} else {
$sInfo = "Customer with ID $sID doesn't exist.";
}
} else {
$sInfo = "Invalid customer ID.";

}

mysgl_close($oLink) ;
setcookie("info", $sInfo);
header ("Location: pixel.gif");

?>

Note that only four lines of code have changed from the XHR example. The first sets the content-type to
be image/gif, so the browser knows to expect an image back from the server; the second retrieves only

54
www.it-ebooks.info

http://www.it-ebooks.info/

Ajax Basics

the person’s name and stores it in $sInfo. The other two lines (highlighted in the example code) set a
cookie named "info" to contain the value of $sInfo and then redirect to the image pixel.gif.

On the client side, make sure to include the getCookie () function defined earlier in this section. This
function will be used to retrieve the data sent back from GetCustomerInfo.php. The function
requestCustomerInfo (), which previously used XHR, now can be updated to use an image instead:

function requestCustomerInfo() {
var sId = document.getElementById("txtCustomerId") .value;
var oImg = new Image();
oImg.onload = function () {
displayCustomerInfo (getCookie("info")) ;
deleteCookie("info");
b3
oImg.onerror = function () {
displayCustomerInfo("An error occurred while processing the request.");
b
oImg.src = "GetCustomerData.php?id=" + sId;

In this code, an Image is created and its event handlers assigned. The same displayCustomerInfo ()
function used in the XHR example is called to display any message returned from the server or any error
message. Lastly, the src of the image is set to GetCustomerData.aspx with an ID passed in. This will
yield the same user experience as the XHR example without any cross-browser compatibility issues. It is
important to mention, though, that this example works because there is only a small amount of data
being returned to the server. The data comfortably fits inside of a cookie; any large strings would end up
being concatenated.

Be very careful about the type of data you assign to cookies. This information is not
encrypted, and it is considered poor practice to create a cookie that contains personal
information such as addresses, credit card numbers, and so on. Always delete cook-
ies once you have retrieved data from them.

Using Image Size

Another way to indicate information to the client is through the size of an image. Suppose that you want
to save some information into a database, but there’s the possibility the insert won’t be successful. You
could set up an Ajax request using images so that an image of size 1x1 means success and an image of
size 2x1 is a failure. Or perhaps the request simply needs to determine if someone is logged in or not, in
which case a 1x1 image indicates the user is not logged in whereas a 2x1 image indicates the user is
logged in. This technique is useful when you don’t need to be returning text back to the client and only
need to indicate some sort of server or request state.

To check the dimensions of the image, just use the width and height properties inside of the onload
event handler:

oImg.onload = function () {

if (this.width == 1 && this.height == 1) ({
alert ("Success!");

55
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

} else {
alert ("Error!") ;
}
b g

Since this anonymous function is assigned to the image as an event handler, the this object points to the
image itself. The image’s width and height are then available (because the call returned successfully)
and can be interrogated to see what information the server is sending back. Of course, this technique
assumes that you are merely doing something simple such as updating a customer’s name, because you
are not receiving specific information from the server.

This next example sends a customer ID and a name to UpdateCustomerName . php. This information is
then used to update the customer’s name in the database, and an image is returned to determine if this
update is successful or not. Since the user must provide a customer ID to be updated, it is entirely possi-
ble that this customer may not exist in the database, in which case an error code (specific image size)
must be returned. The possible return conditions are:

O Success: 1x1 image
Q Invalid ID: 2x1 image
Q Other error: 3x1 image
The UpdateCustomerName . php file is:
<?php
header ("Content-Type: image/jpeg");

$sID = $_GET["id"];
$sName = mysqgl_real_escape_string($_GET["name"]) ;

if (is_numeric($sID)) {
$iwidth = 1;

$sDBServer = "your.database.server";
$sDBName = "your_db_name";
$sDBUsername = "your_db_username";

$sDBPassword = "your_db_password";
$sSQL = "Update Customers set "Name' = 'S$sName' where CustomerId=$sID";

SoLink = mysqgl_connect ($SsDBServer, $sDBUsername, SsDBPassword) ;
@mysqgl_select_db($sDBName) or $iWidth = 3;

if ($iwidth == 1) {
if (mysqgl_query($sSQL)) {
$iwidth = (mysgl_affected_rows() > 0) 2 1 : 2;
mysgl_close(SoLink) ;
} else {
$iWidth = 3;
}

} else {

56
www.it-ebooks.info

http://www.it-ebooks.info/

Ajax Basics

$iwidth = 2;

Simage = imagecreate($iWidth,1);
Swhite = imagecolorallocate($image, 255, 255, 255);
imagejpeg ($image) ;
imagedestroy ($Simage) ;
2>

This file runs a simple SQL UPDATE statement on the customer database. The $iwidth variable deter-
mines what the width of the created image will be. If an error occurs at any time during the execution of
this page, $iwidth is set to 3 to indicate the error. If, on the other hand, the ID isn’t in the database,

$iwidth is set to 2. This situation can occur in two different ways:

O The ID isn’t numeric, so the statement is never executed.

QO The statement executes but no rows are affected.
The very last step is to create and output the image as discussed earlier.

On the client side, you need a textbox to input a customer ID, a textbox to input a name, and a button to
send the request:

<form method="post" action="UpdateCustomerName.php"

onsubmit="sendRequest (); return false">
<p>Enter the customer ID: <input type="text" name="txtID" value="" /></p>
<p>New customer name: <input type="text" name="txtName" value="" /></p>
<p><input type="submit" value="Update Customer Name" /></p>

</form>
<div id="divStatus"></div>

The sendRequest () method is responsible for sending the information and interpreting the response:

function sendRequest () {
var oForm = document.forms[0];
var sQueryString = "id=" + encodeURIComponent (oForm.txtID.value)
+ "&name=" + encodeURIComponent (oForm.txtName.value) ;
var oImg = new Image();
oImg.onload = function () {
var divStatus = document.getElementById("divStatus");
switch(this.width) {

case 1:
divStatus.innerHTML = "Customer name updated successfully.";
break;
case 2:
divStatus.innerHTML = "Invalid customer ID; name not updated.";
break;
default:
divStatus.innerHTML = "An error occurred.";
}
b5
oImg.onerror = function () {

var divStatus = document.getElementById("divStatus") ;

57
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

divStatus.innerHTML = "An error occurred.";

bg

oImg.src = "UpdateCustomerName.php?" + sQueryString;

There’s nothing very different in this function versus the earlier examples. The first step is to construct
the query string for the request. Next, an image is created and event handlers are assigned to it. The
onload event handler is of the most importance because it is the one that interrogates the image
response to determine what message to show to the user. In this case, it makes sense to use a switch
statement on the image’s width so that the status message can be supplied.

It’s always a good idea to assign an onerror event handler to provide as much feedback as possible to
the user. For this example, the event handler just outputs a simple error message. The last step is to set
the src of the image to initiate the request.

Although you could create different image sizes for different conditions, try to
refrain from making an image too big. You don’t want to affect user experience
while waiting for a simple status from the server.

Advantages and Disadvantages

As with the other techniques mentioned to this point, using images for Ajax communication is not the
solution to every task. However, the image techniques discussed in this section do offer advantages:

Q

Q

They are supported in all modern browsers as well as some older ones (such as Netscape
Navigator 4, Internet Explorer 5, and Opera 6), offering a high level of compatibility.

Unlike hidden frames, there is some indication as to when a request is successful and when it
has failed.

Yet another upside to using images for Ajax is that, unlike hidden frames and XHR, images are
free to access images on any server, not just the one on which the containing page resides. The

ability to communicate cross-domain using images has long been used by advertisers and link
tracking systems to capture information; you can also use this to your advantage.

There are also disadvantages to using images for Ajax communication:

a

58

Not the least of these disadvantages is that images can only send GET requests, so the amount
of data that can be sent back to the server is limited to the length of the URL that your browser
supports (2MB in most cases). When using cookies, the amount of data that can be sent back
from the server is fairly limited as well (as mentioned previously, 512 characters is the maxi-
mum size of a cookie).

There’s a possibility that images are disabled on the client.

You should also be aware that some users disable cookies, so it is important to always test for
cookie support before relying on any cookie-based Ajax solutions.

www.it-ebooks.info

http://www.it-ebooks.info/

Ajax Basics

Dynamic Script Loading

A little-known and little-utilized Ajax technique is called dynamic script loading. The concept is simple:
create a new <script/> element and assign a JavaScript file to its src attribute to load JavaScript that
isn’t initially written into the page. The beginnings of this technique could be seen way back when
Internet Explorer 4.0 and Netscape Navigator 4.0 ruled the web browser market. At that time, develop-
ers learned that they could use the document .write () method to write out a <script/> tag. The
caveat was that this had to be done before the page was completely loaded. With the advent of the
DOM, the concept could be taken to a completely new level.

The basic technique behind dynamic script loading is very easy, just create a <script/> element using
the DOM createElement () method and add it to the page:

var oScript = document.createElement ("script");
oScript.type = "text/javascript";

oScript.src = "/path/to/my.Jjs";

document .body . appendChild (oScript) ;

Downloading and evaluation of the JavaScript file doesn’t begin until the new <script/> element is
actually added to the page, so it’s important not to forget this step. (This is the opposite of dynamically
creating an element or Image object, which automatically begins downloading once the src
attribute is assigned.)

Once the download is complete, the browser interprets the JavaScript code contained within. Now the
problem becomes a timing issue: how do you know when the code has finished being loaded and inter-
preted? Unlike the element, the <script/> element doesn’t have an onload event handler, so
you can’t rely on the browser to tell you when the script is complete. Instead, you'll need to have a call-
back function that is the executed at the very end of the source file.

Simple Example

The page in this example contains a single button which, when clicked, loads a string (“Hello world!”)
from an external JavaScript file. This string is passed to a callback function, named callback() for sim-
plicity, which displays the text in an alert. The HTML for this page is:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Dynamic Script Loading Example 1</title>
<script type="text/javascript">
/ /<! [CDATA[
function makeRequest () {
var oScript = document.createElement ("script");
oScript.type = "text/javascript";
oScript.src = "examplel.js";
document .body . appendChild (oScript) ;
}

function callback (sText) {
alert("Loaded from file: " + sText);

59
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

}
//11>
</script>
</head>
<body>
<input type="button" value="Click Me" onclick="makeRequest()" />
</body>
</html>

The JavaScript file examplel. js contains a single line:

callback("Hello world!") ;
When the button is clicked, the makeRequest () function is called, initiating the dynamic script loading.
Since the newly loaded script is in context of the page, it can access and call the callback () function,

which can do with the returned value as it pleases. This example works in any DOM-compliant
browsers (Internet Explorer 5.0+, Safari, Firefox, and Opera 7.0+).

Dynamic Example

60

The previous example illustrated loading data from a static file that already exists on the server. While
this may occur, it’s much more likely that you’ll want to load dynamic data, as with examples in the pre-
vious sections. The basic technique for this is very similar to that of using images for Ajax communica-
tion: create a dynamic page (using PHP, ASP.NET, or JSP) that accepts query string arguments and
outputs JavaScript code.

Among the data being passed to the dynamic page on the server should be the name of the callback
function call. This is the most optimal thing to do for maintenance purposes. Imagine what would hap-
pen if you changed the name of the function in the static page or script file and forgot to change it in the
dynamic file. So, in the interest of avoiding such tight coupling and the problems that accompany it, it is
much safer to pass in the name of the function that should be called.

The dynamic page then has several important jobs to do. First, it must set its content type to be
text/javascript so as to identify the output as JavaScript code and not HTML or some other format.
Next, the page needs to pull the callback function name from the query string and then output it, pass-
ing in any relevant data.

Suppose that the request to the dynamic page looks like this:

/path/to/js.php?id=25&callback=myCallbackFunc

The file creating the JavaScript then must look similar to this:

<?php

header ("Content-type: text/javascript");
2>
var sMessage = "Hello world!";

<?php echo $_GET["callback"] ?>(sMessage) ;

www.it-ebooks.info

http://www.it-ebooks.info/

Ajax Basics

The first part of this file sets the content type to text/javascript so that the browser recognizes it as
JavaScript. Next, a JavaScript variable called sMessage is defined as a string, "Hello world! ". The last
line outputs the name of the callback function that was passed through the query string, followed by
parentheses enclosing sMessage, effectively making it a function call. If all works as planned, the last
line becomes:

myCallbackFunc (sMessage) ;

Taking all of this into account, it’s possible to recreate the XHR example that retrieves data from the
server about a specific customer. The only part that needs to change on the client side is the
requestCustomerInfo () function:

function requestCustomerInfo() {
var sId = document.getElementById("txtCustomerId") .value;
var oScript = document.createElement ("script");
oScript.type = "text/javascript";
oScript.src = "GetCustomerData.php?id=" + sId
+ "&callback=displayCustomerInfo";
document .body .appendChild (oScript) ;

Note that the same displayCustomerInfo () function will be used, so its name is passed in on the
query string.

The GetCustomerData.php page also must change, though only slightly, to accommodate this technique:

<?php
header ("Content-Type: text/javascript");

$sID = $_GET["id"];
$sCallbackFunc = $_GET["callback"];
$sInfo = "";

if (is_numeric($sID)) {
SsDBServer = "your.databaser.server";
$sDBName = "your_db_name";
$sDBUsername = "your_db_username";
SsDBPassword = "your_db_password";
$sQuery = "Select * from Customers where CustomerId=".$sID;

SoLink = mysqgl_connect ($sDBServer, $sDBUsername, SsDBPassword) ;
@mysqgl_select_db($sDBName) or $sInfo="Unable to open database";

if($sInfo == "") {
if ($SoResult = mysqgl_query($sQuery) and mysgl_num_rows ($SoResult) > 0) {
SaValues = mysqgl_fetch_array($SoResult,MYSQL_ASSOC) ;

$sInfo = $aValues['Name']."
".$aValues['Address']."
".
SavValues['City']."
".S$aValues|['State']."
".
SaValues|['Zip']."

Phone: ".$aValues['Phone']."
".
"".
SaValues['Email']."";

mysqgl_free_result (SoResult) ;

61
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

} else {
$SsInfo = "Customer with ID $sID doesn't exist.";
}
}
} else {
SsInfo = "Invalid customer ID.";

}

mysgl_close($oLink) ;

$sEncodedInfo = str_replace("\"", "\\\"", $sInfo);
$sEncodedInfo = str_replace("\n", "\\n", $sEncodedInfo);
echo "$sCallbackFunc (\"S$sEncodedInfo\");";

?>

The first change to the code is setting the content type to text/javascript, which as previously men-
tioned is necessary to identify the type of content the page is outputting. Then, the callback function
name has to be retrieved from the $_GET array and stored in $sCallbackFunc. The $sInfo variable is
then encoded so it will be a proper JavaScript string. To do so, all the quotation marks and new line char-
acters have to be escaped. The resulting string is stored in $sEncodedInfo and output on the last line as
a literal being passed into the callback function. This is the only line that will be output by the page.

With these changes, this example acts just as the XHR version does, including all error messages and
client-side behavior.

Advantages and Disadvantages

Though dynamic script loading is a quick and easy way to establish client-server communication, it does
have some drawbacks.

Q For one, there is no feedback as to what is going on once the communication is initiated. If, for
example, the file you are accessing doesn’t exist, there is no way for you to receive a 404 error
from the server. Your site or application may sit, waiting, because the callback function was
never called.

Q Also, you can’t send a POST request using this technique, only a GET, which limits the amount
of data that you can send. This could also be a security issue: make sure that you don’t send
confidential information such as passwords using dynamic script loading, as this information
can easily be picked up from the query string.

Dynamic script loading does offer a couple of advantages over other techniques as well.
Q First, just like using images, it is possible to access files on other servers. This can be very pow-
erful if you are working in a multidomain environment.

Q Further, dynamic script loading offers the ability to execute an arbitrary amount of JavaScript as
the result of server-side calculations. You aren’t limited to simply one callback function; use as
many as necessary to achieve the desired results.

62
www.it-ebooks.info

http://www.it-ebooks.info/

Ajax Basics

Cache Control

Whenever you are dealing with repeated calls to the same page, you should be concerned about browser
caching. For those unaware, web browsers tend to cache certain resources to improve the speed with
which sites are downloaded and displayed. This can result in a tremendous speed increase on frequently
visited web sites, but can also cause problems for pages that change frequently. If you are making sev-
eral Ajax calls, you need to be aware that caching may cause you problems.

The best way to deal with caching is to include a header with caching information on any data being
sent from the server to the browser. This can be done using the Cache-Control and Expires headers,
which should be set up as follows:

Cache-Control: no-cache
Expires: Fri, 30 Oct 1998 14:19:41 GMT

This tells the browser not to cache the data coming from the specific URL. Instead, the browser always
calls a new version from the server instead of a saved version from its own cache. Most browsers sup-

port the Cache-Control header, and almost all support the Expires header (which is set to a date in

the past to prevent caching). Using a combination of the two headers ensures that all browsers will not
cache the page.

It is important to note that technically the no-cache directive simply requires the
browser to ensure that the resource in question is the most up-to-date version avail-
able. If the version in the cache is the most recent version, then the cached version is
used. To force the browser never to store a copy of the resource locally, use the no-
store directive with the Cache Control header.

Summary

This chapter introduced you to several Ajax techniques for client-server communication. It began with
an HTTP primer, exploring HTTP requests and responses. You learned about the format of HTTP mes-
sages and the differences between a GET request and a POST request. The concepts of headers and mes-
sage bodies were introduced.

The first Ajax technique you learned was the hidden frame technique, which uses a frame with a width
or height of zero, effectively hiding it from the user. This technique uses JavaScript calls to and from the
hidden frame to facilitate the client-server communication. Using the hidden frame technique, you
learned how to send both GET and POST requests.

Next, you learned about replacing hidden frames with hidden iframes. Because iframes can be created
dynamically using JavaScript, this may be a preferable way to initiate client-server communication in
modern browsers. The same techniques were used as with hidden frames, although iframes provide a
bit more flexibility in the design of your pages.

63
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

64

The chapter also introduced the use of XHR for client-server communication. You learned that Internet
Explorer, Mozilla Firefox, Safari, and Opera all support some form of XHR object, and some extra coding
is necessary to detect these differences. The differences between asynchronous and synchronous requests
were explained, and you learned how to make GET and POST requests using XHR. You also learned
how to use request and response headers along with HTTP status codes to better handle requests.

You learned about two alternate Ajax techniques using images and dynamic script loading. It was dis-
cussed how these two techniques allow cross-domain communication, unlike XHR and hidden frames.
Two different methods of using images were covered and the advantages and disadvantages of each
were discussed.

The last topic covered in this chapter was cache control and its importance in Ajax. You learned to
always set the cache control headers to avoid possible caching-related issues.

www.it-ebooks.info

http://www.it-ebooks.info/

1

Ajax Patterns

Design patterns describe programming techniques to solve common problems. Given that pro-
gramming has been around for several decades, chances are that many of the problems you face
every day have already been solved by someone else. Since the mid-1990s, a lot of attention has
been drawn to design patterns as a way to cut development time.

Even though the term Ajax has been around only since early 2005, the techniques that Ajax
describes have been used since the late 1990s, giving rise to several Ajax patterns that solve spe-
cific problems. You've already seen some of these patterns in action, namely the hidden frame
technique and asynchronous XHR calls. These are communication patterns between the client and
server using JavaScript. As you may have expected, there are many more types of patterns.

Author and programmer Michael Mahemoff was the first to attempt to document Ajax design pat-
terns at his web site, www.ajaxpatterns.org. The patterns presented in this chapter are a mix-
ture of Mahemoff’s and others that your authors have identified. Note that design patterns,
whether described on a web site or in a book, can never be official, only accepted. Design patterns
are not standards to be followed, but merely designs of solutions that have worked previously. It is
up to the development community to generate a “collective wisdom” around specific patterns; it’s
up to the individual developer to decide whether to implement a given pattern in his or her own
application.

Communication Control Patterns

You already know, from Chapter 2, how to communicate with the server from JavaScript. The real
question is: What is the best way to initiate and continue to make requests back to the server? In
some cases, it may be best to preload information from the server so that it is available immedi-
ately upon some user action. In other cases, you may want to send data to, or receive data from,
the server in varying intervals. Perhaps everything shouldn’t be downloaded at once, and instead
should be downloaded in a particular sequence. Ajax affords you fine granularity in controlling
the communication between client and server to achieve your desired behavior.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Predictive Fetch

In a traditional web solution, the application has no idea what is to come next. A page is presented with
any number of links, each one leading to a different part of the site. This may be termed “fetch on
demand,” where the user, through his or her actions, tells the server exactly what data should be
retrieved. While this paradigm has defined the Web since its inception, it has the unfortunate side effect
of forcing the start-and-stop model of user interaction upon the user. With the help of Ajax, however, this
is beginning to change.

The Predictive Fetch pattern is a relatively simple idea that can be somewhat difficult to implement: the
Ajax application guesses what the user is going to do next and retrieves the appropriate data. In a per-
fect world, it would be wonderful to always know what the user is going to do and make sure that the
next data is readily available when needed. In reality, however, determining future user action is just a
guessing game depending on your intentions.

There are simple use cases where predicting user actions is somewhat easier. Suppose that you are read-
ing an online article that is separated into three pages. It is logical to assume that if you are interested in
reading the first page, you're also interested in reading the second and third page. So, if the first page
has been loaded for a few seconds (which can easily be determined by using a timeout), it is probably
safe to download the second page in the background. Likewise, if the second page has been loaded for a
few seconds, it is logical to assume that the reader will continue on to the third page. As this extra data is
being loaded and cached on the client, the reader continues to read and barely even notices that the next
page comes up almost instantaneously after clicking the Next Page link.

Another simple use case happens during the writing of an e-mail. Most of the time, you'll be writing an
e-mail to someone you know, so it’s logical to assume that the person is already in your address book. To
help you out, it may be wise to preload your address book in the background and offer suggestions. This
approach is taken by many web-based e-mail systems, including Gmail and AOL Webmail. The key,
once again, is the “logical-to-assume” criterion. By anticipating and preloading information related to
the user’s most likely next steps, you can make your application feel lighter and more responsive; by
using Ajax to fetch information related to any possible next step, you can quickly overload your server
and make the browser bog down with extra processing. As a rule of thumb, only prefetch information
when you believe it’s logical to assume that information will be requisite to completing the user’s next
request.

Page Preloading Example

As mentioned previously, one of the simplest and most logical uses of the Predictive Fetch pattern is in
the preloading of pages in an online article. With the advent of weblogs, or blogs for short, everyone
seems to have been bitten by the publishing bug, writing their own articles on their own web sites.
Reading long articles online is very difficult on the eyes, so many sites split them into multiple pages.
This is better for reading, but takes longer to load because each new page brings with it all of the format-
ting, menus, and ads that were on the original page. Predictive Fetch eases the load on both the client
and server by loading only the text for the next page while the reader is still reading the first page.

To begin, you'll need a page that handles the server-side logic for page preloading. The file
ArticleExample.php contains code for displaying an article online:

<?php
$page = 1;
SdataOnly = false;

66
www.it-ebooks.info

http://www.it-ebooks.info/

Ajax Patterns

if (isset($_GET["page"])) {
$page = (int) $_GET["page"];

}

if (isset($S_GET["dataonly"]) && $_GET["dataonly"] == "true")
SdataOnly = true;

}

if (!SdataOnly) {
?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Article Example</title>
<script type="text/javascript" src="zxml.js"></script>
<script type="text/javascript" src="Article.js"></script>

{

<link rel="stylesheet" type="text/css" href="Article.css" />
</head>
<body>
<hl>Article Title</hl>
<div id="divLoadArea" style="display:none"></div>
<?php
Soutput = "<p>Page ";
for ($i=1; $i < 4; $i++) |
Soutput .= "<a href=\"ArticleExample.php?page=$i\" id=\"aPage$i\"";
if ($i==$page) {
Soutput .= "class=\"current\"";
}
Soutput .= ">$i ";
}
echo Soutput;
}
if ($page==1) {
?>
<div id="divPagel"><!-- contents of page 1 --></div>
<?php
} else if (Spage == 2) {
?>
<div id="divPage2"><!-- contents of page 2 --></div>
<?php
} else if ($page == 3) {
?>
<div id="divPage3"><!-- contents of page 3 --></div>
<?php
}
if (!SdatalOnly) {
?>
</body>
</html>
<?php
}
?>

www.it-ebooks.info

67

http://www.it-ebooks.info/

Chapter 3

68

By default, this file displays the first page of text for the article. If the page query string parameter is
specified, such as page=2, then it shows the given page of the article. When the query string contains
dataonly=true, the page outputs only a <div/> element containing the article text for the given page
(not the <html/>, <head/>, or <body/> tags). Combining this with the page parameter enables you to

retrieve any page of the article that you need.

the extra markup that already exists in the page.

Note that this page calls itself to get more data. When using an Ajax call, it passes in
dataonly=true on the query string to ensure that it gets only the data and none of

The HTML in this page has a space for the article title as well as a <div/> element used for loading extra
pages. This <div/> element has its display property set to none to ensure that its contents are not dis-
played accidentally. The PHP code immediately following contains logic to output a list of pages avail-
able for the article. In this example, there will be three pages of content, so there are three links output at

the top (see Figure 3-1).

& Article Example - Mozilla Firefox =OE&a
File Edit View Go Bookmarks Tools Help

<:ZI © © @ @ £ http:/Awww.nczonline.net/_book/ArticleExample.php | ® Go [GL

Article Title

Pagel23

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Donec interdum cursus risus. In pharetra commodo nunc.
Pellentesque sapien mauris, placerat quis, condimentum en, ultrices 11%(; arcu. Morbi et magna ac massa lobortis facilisis.
Fusce molestie nulla sit amet arcu. Pellentesque sollicitudin, ligula vel anctor aliquam. enim nulla posuere lectus. id tincidunt
enim lacus ac enim. Suspendisse luctus, arcu ut ultrices lobortis, dolor ante volutpat justo, et cursus nisi lectus a urna. Duis
cursus tortor vel justo. Maecenas libero. Nam lacinia. eros ac facilisis congue, leo erat ultricies orci, in sodales ante nulla vel
sem. Phasellus tincidunt. Quisque laoreet, pede ut accumsan thoncus, diam arcu fringilla sem, ac commodo odio justo non
ante. In eget ligula et sapien laoreet tempor. Vestibulum cursus dui. Integer egestas nulla sed milla. Pellentesque habitant morbi
tristique senectus et netus et malesuada fames ac turpis egestas. Suspendisse consequat magna vel elit. Phasellus id sem eget
nisi lobortis congue. Nullam vehicula pede et quam.

Donec a nunc sed velit porttitor auctor. Quisque sapien augue, tincidunt pretium, laoreet sit amet, ultricies sit amet, neque.
Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. In fringilla tristique est. Ut vel
pede. Nulla nec urna ac leo commodo sagittis. Praesent convallis nisl en dolor. Aenean faucibus ultrices nisi. Nulla risus libero,
accumsan nec, iaculis quis, pretium sed, quam. Maecenas feugiat eleifend orci. Donec sed turpis ac ligula eleifend adipiscing.
Nunc quis ipsum ac nunc hendrerit tincidunt. In nibh magna, sollicitudin nec, luctus ac, aliquam vel, erat.

Nune tempor pede condimentum enim. Cras ipsum enim, tristique et. suscipit vehicula. dapibus id. augne. Maecenas dui
magna, iaculis in, tempor vitae, convallis sit amet. nunc. Nullam cursus, nunc a rutrum sagittis, enim diam venenatis fpsum, ut
mollis ligula munc vitae dui. Aliquam venenatis molestie turpis. Maecenas eleffend tincidunt orci. Proin pulvinar. Duis placerat

Done

Figure 3-1

The current page is assigned a CSS class of current so that the user knows which page he or she is
viewing. This class is defined in Article.css as:

a.current {

color: black;
font-weight: bold;
text-decoration: none;

www.it-ebooks.info

http://www.it-ebooks.info/

Ajax Patterns

When the reader is viewing a particular page, the link for that page becomes black and bold, and is no
longer underlined, providing a clear indication of the page that he or she is reading. By default, these
links simply load the same page and change the page parameter of the query string; this is the way that
most web sites handle multipage articles. Using Predictive Fetch, however, will improve the user’s expe-
rience and the speed with which the data is available.

Several global JavaScript variables are required to implement Predictive Fetch for this example:

var oXHR = null; //The XHR object

var iPageCount = 3; //The number of pages

var iCurPage = -1; //The currently displayed page

var iWaitBeforeLoad = 5000; //The time (in ms) before loading new page
var iNextPageToLoad = -1; //The next page to load

The first variable is a global XHR object that is used to make all requests for more information. The sec-
ond, iPageCount, is the number of pages used in this article. (This is hard-coded here, but in actual
practice this would have to be generated.) The iCurPage variable stores the page number currently
being displayed to the user. The next two variables deal directly with the preloading of data:
iWaitBeforeLoad is the number of milliseconds to wait before loading the next page, and
iNextPageToLoad contains the page number that should be loaded once the specified amount of time
has passed. For this example, a new page is loaded behind the scenes every 5 seconds (5000 millisec-
onds), which should be long enough for someone to read the first few sentences of an article to deter-
mine if it’s worth reading the rest. If the reader leaves before 5 seconds are up, chances are they have no
intention of reading the rest of the article.

To begin the process, you'll need a function to determine the URL for retrieving a particular page. This
function, getURLForPage (), accepts a single argument that specifies the page number you want to
retrieve. Then, the current URL is extracted and the page parameter is appended to the end:

function getURLForPage (iPage) {
var sNewUrl = location.href;
if (location.search.length > 0) {
sNewUrl = sNewUrl.substring (0, sNewUrl.indexOf ("?"))
}
sNewUrl += "?page=" + iPage;
return sNewUrl;

}

This function begins by extracting the URL from location.href, which gives the complete URL for the
page, including the query string. Then, the URL is tested to see if there is a query string specified by
determining if the length of 1ocation.search is greater than 0 (lLocation. search returns just the
query string, including the question mark, if there is one specified). If there is a query string, it is
stripped off using the substring () method. The page parameter is then appended to the URL and
returned. This function will come in handy in a number of different places.

The next function is called showPage (), and as you may have guessed, it is responsible for displaying
the next page of the article:

function showPage (sPage) {
var divPage = document.getElementById("divPage" + sPage);

if (divPage) {

69
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

for (var i=0; i < iPageCount; i++) {
var iPageNum = i+1;
var divOtherPage = document.getElementById("divPage" + iPageNum) ;
var aOtherLink = document.getElementById("aPage" + iPageNum) ;
if (divOtherPage && sPage != iPageNum) {
divOtherPage.style.display = "none";
aOtherLink.className = "";
}
}
divPage.style.display = "block";
document .getElementById("aPage" + sPage).className = "current";
} else {
location.href = getURLForPage (parselnt (sPage)) ;

}

This function first checks to see whether the given page has a <div/> element already loaded. The <div/>
element would be named divPage plus the page number (for example, divPagel for the first page,
divPage?2 for the second, and so on). If this <div/> element exists, the page has been prefetched already;,
s0 you can just switch the currently visible page. This is done by iterating through the pages and hiding all
pages except the one indicated by the argument sPage. At the same time, the links for each page are given
an empty string for their CSS class. Then, the <div/> element for the current page has its display prop-
erty set to block in order to show it, and the link for the page has its CSS class set to current.

If, on the other hand, the <div/> element doesn’t exist, the page navigates to the next page in the article
the old-fashioned way, by getting the URL (using the getURLForPage () function defined previously)
and assigning it to location.href. This is a fallback functionality so that if the user clicks a page link
before 5 seconds are up, the experience falls back to the traditional web paradigm.

The loadNextPage () function is used to load each new page behind the scenes. This function is respon-
sible for ensuring that requests are made only for valid pages and that pages are retrieved in order and
in the specified intervals:

function loadNextPage() {
if (iNextPageToLoad <= iPageCount) ({

if (!oXHR) {
OXHR = zXmlHttp.createRequest();
} else if (oXHR.readyState != 0) {
OXHR.abort () ;
}

OXHR.open ("get", getURLForPage (iNextPageToLoad)
+ "&dataonly=true", true);
OXHR.onreadystatechange = function () {
//more code here

¥
OXHR.send (null) ;

70
www.it-ebooks.info

http://www.it-ebooks.info/

Ajax Patterns

The function begins by ensuring that the page number stored in iNextPageToLoad is valid by compar-
ing it to 1PageCount. Passing this test, the next step is to see if the global XHR object has been created
yet. If not, it is created using the zXml library’s createRequest () method. If it has already been instan-
tiated, the readyState property is checked to ensure that it’s 0. If readyState is not 0, the abort ()
method must be called to reset the XHR object.

Next, the open () method is called, specifying that the request will get an asynchronous GET request.
The URL is retrieved by using the getURLForPage () function and then appending the string
"&dataonly=true" to ensure that only the page text is returned. With all of that set, it’s time to move
on to the onreadystatechange event handler.

In this case, the onreadystatechange event handler is responsible for retrieving the article text as well
as creating the appropriate DOM structure to represent it:

function loadNextPage() {
if (iNextPageToLoad <= iPageCount) {

if (!oXHR) {
OXHR = zXmlHttp.createRequest();
} else if (oXHR.readyState != 0) {
OXHR.abort () ;
}

oXHR.open ("get", getURLForPage (iNextPageToLoad)
+ "&dataonly=true", true);
OXHR.onreadystatechange = function () {

if (oXHR.readyState == 4) {
if (oXHR.status == 200) {
var divLoadArea = document.getElementById("divLoadArea") ;
divLoadArea.innerHTML = oXHR.responseText;
var divNewPage = document.getElementById("divPage"
+ iNextPageToLoad) ;
divNewPage.style.display = "none";
document .body .appendChild (divNewPage) ;
divLoadArea.innerHTML = "";
iNextPageToLoad++;
setTimeout (loadNextPage, iWaitBeforeLoad) ;

Y
oXHR.send(null) ;

As discussed in the previous chapter, the readyState property is checked to see when it is equal to 4,
and the status property is checked to make sure there was no error. Once you've passed those two con-
ditions, the real processing begins. First, a reference to the load area <div/> element is retrieved and
stored in divLoadArea. Then, the responseText from the request is assigned to the load area’s
innerHTML property. Since the text coming back is an HTML snippet, it will be parsed and the appropri-

71
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

ate DOM objects will be created. Next, a reference to the <div/> element that contains the next page is
retrieved (you know the ID will be divPage plus iNextPageToLoad) and its display property is set to
none to ensure it remains invisible when it is moved outside of the load area. The next line appends
divNewPage to the document’s body, putting it into the regular viewing area for usage. Then the load
area’s innerHTML property is set to an empty string to prepare for another page to be loaded. After that,
the iNextPageToLoad variable is incremented and a new timeout is set to call this function again after
the specified period of time. This function will continue to be called every 5 seconds until all pages have
been loaded.

Because this page should be functional without JavaScript, all this code is attached at runtime after
determining if the browser is capable of using XHR. Fortunately, the zxm1Ht tp object in the zXml
library has a function, isSupported (), that can be used to determine this:

window.onload = function () {
if (zXmlHttp.isSupported()) {
//begin Ajax code here

b g

Inside this code block is where all the Predictive Fetch code will go, ensuring that browsers without
XHR support will not have their usability adversely affected by half-functioning code.

The first step in the process of setting up Predictive Fetch for the article is to determine which page the
user is currently viewing. To do so, you must look into the URL’s query string to see if the page parame-
ter is specified. If it is, you can extract the page number from there; otherwise, you can assume that the
page number is 1 (the default):

window.onload = function () {
if (zXmlHttp.isSupported()) {
if (location.href.indexOf ("page=") > -1) {
var sQueryString = location.search.substring(1l);
iCurPage = parselnt (sQueryString.substring (sQueryString.indexOf ("=")+1));
} else {

iCurPage = 1;

}
iNextPageToLoad = iCurPage+l;
//more code here

}i

In this section of code, the page’s URL (accessible through location.href) is tested to see if page= has
been specified. If so, the query string is retrieved by using location.search (which returns only the
query string, including the question mark, that the call to substring (1) strips out). The next line
retrieves just the part of the query string after the equals sign (which should be the page number), con-
verts it to an integer using parseInt (), and stores the result in iCurpage. If, on the other hand, the
page parameter isn’t specified in the query string, the page is assumed to be the first one, and 1 is
assigned to iCurPage. The last line in this section sets the iNextPageToLoad variable to the current
page plus one, ensuring that you don’t end up reloading data that is already available.

72
www.it-ebooks.info

http://www.it-ebooks.info/

Ajax Patterns

The next step is to override the functionality of the page links. Remember, by default, these links reload
the same page with a different query string to specify which page should be displayed. If XHR is sup-
ported, you need to override this behavior and replace it with function calls to the Ajax functionality:

window.onload = function () {
if (zXmlHttp.isSupported()) {
if (location.href.indexOf ("page=") > -1) {
var sQueryString = location.search.substring(1l);
iCurPage = parselnt (sQueryString.substring(sQueryString.indexOf ("=")+1));
} else {

iCurPage = 1;
}

iNextPageToLoad = iCurPage+1;

var colLinks = document.getElementsByTagName("a") ;
for (var i=0; i < colLinks.length; i++) {
if (colLinks[i].id.indexOf ("aPage") == 0) {
colLinks[i].onclick = function (oEvent) {
var sPage = this.id.substring(5) ;
showPage (sPage) ;

if (oEvent) {
oEvent.preventDefault () ;

} else {
window.event.returnValue = false;

}

}

setTimeout (loadNextPage, iWaitBeforeLoad) ;

Y

Here, a collection of links (<a/> elements) is retrieved using getElementsByTagName (). If the link has
an ID beginning with aPage, it is a page link and needs to be addressed; this is determined by using
indexOf () and checking for a value of 0, which indicates that aPage is the first part of the string. Next,
an onclick event handler is assigned to the link. Within this event handler, the page number is
extracted by using the ID of the link (accessible through this.id) and using substring () to return
everything after aPage. Then, this value is passed into the showPage () function defined earlier in this
section, which displays the appropriate page. After that point, you need only worry about canceling the
default behavior of the link, which is to navigate to a new page. Because of differences in the Internet
Explorer (IE) and DOM event models, an if statement is necessary to determine the appropriate course
of action. If the event object was passed in to the function (the argument oEvent), then this is a DOM-
compliant browser and the preventDefault () method is called to block the default behavior. If, how-
ever, oEvent is null, that means it’s IE and so the event object is accessible as window. event. The
returnvValue property is then set to false, which is the way IE cancels default event actions.

After the links have been properly handled, a timeout is created for the initial call to 1oadNextPage ().
This first call will take place after 5 seconds and will automatically load the second page at that point.

73
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

When you test this functionality yourself, try clicking the page links at different points in time. If you
click it before 5 seconds have passed, you will see the page navigate to a new URL with the query string
changed. The next time, wait about 10 seconds and click a page link. You should see that the text
changes while the URL does not (it is also noticeably faster than navigating to a URL).

Submission Throttling

74

Predictive Fetch is one pattern for retrieving data from the server; the other side of an Ajax solution is
the sending of data to the server. Since you want to avoid page refreshes, the question of when to send
user data is important. In a traditional web site or web application, each click makes a request back to
the server so that the server is always aware of what the client is doing. In the Ajax model, the user inter-
acts with the site or application without additional requests being generated for each click.

One solution would be to send data back to the server every time a user action occurs, similar to a tradi-
tional web solution. Thus, when the user types a letter, that letter is sent to the server immediately. The
process is then repeated for each letter typed. The problem with this approach is that it has the possibil-
ity to create a large number of requests in a short amount of time, which not only may cause problems
for the server but also may cause the user interface to slow down as each request is being made and pro-
cessed. The Submission Throttling design pattern is an alternative approach to this problematic issue.

Using Submission Throttling, you buffer the data to be sent to the server on the client and then send the
data at predetermined times. The venerable Google Suggest feature does this brilliantly. It doesn’t send a
request after each character is typed. Instead, it waits for a certain amount of time and sends all the text
currently in the textbox. The delay from typing to sending has been fine-tuned to the point that it doesn’t
seem like much of a delay at all. Submission Throttling, in part, gives Google Suggest its speed.

Submission Throttling typically begins either when the web site or application first loads or because of a
specific user action. Then, a client-side function is called to begin the buffering of data. Every so often,
the user’s status is checked to see if he or she is idle (doing so prevents any interference with the user
interface). If the user is still active, data continues to be collected. When the user is idle, which is to say
he or she is not performing an action, it’s time to decide whether to send the data. This determination
varies depending on your use case; you may want to send data only when it reaches a certain size, or
you may want to send it every time the user is idle. After the data is sent, the application typically con-
tinues to gather data until either a server response or some user action signals to stop the data collection.
Figure 3-2 outlines this process.

The Submission Throttling pattern should never be used for mission-critical data. If
information must be posted to the server within a specific amount of time, you are
better off using a traditional form to ensure the correct and timely delivery of the
information.

www.it-ebooks.info

http://www.it-ebooks.info/

Ajax Patterns

A

Collect data

Is user idle?

Yes

Is it
time to
send
data?

Yes

Send data

Yes Continue
collecting
data?

No

Done

Figure 3-2

www.it-ebooks.info

No

75

http://www.it-ebooks.info/

Chapter 3

Incremental Form Validation Example

76

As mentioned previously, Submission Throttling can be achieved through various user interactions.
When using forms, it’s sometimes useful to upload data incrementally as the form is being filled out.
The most common usage is to validate data as the user is filling in the form instead of waiting until the
end to determine any errors. In this case, you would most likely use the onchange event handler of each
form element to determine when to upload the data.

The change event fires for a <select/> element whenever a different option is selected; it fires for other
controls when its value has changed and it has lost focus. For example, if you typed a couple of letters
into a textbox and then clicked elsewhere on the screen (causing the textbox to lose focus), the change
event fires, and the onchange event handler is called. If you click in the textbox again, and then click
elsewhere (or press the Tab key), the textbox will lose focus but the change event will not fire because no
changes have been made. Using this event handler for Submission Throttling can prevent extraneous
requests.

Normally, the form validation is simply a precursor to submission. The form’s submit button starts out
disabled, becoming enabled only when all fields in the form have been validated by the server. For
example, suppose you are running a web site where users must sign up to gain access to certain features.
This may be a shopping site that requires sign-in to purchase items or a site that requires membership to
access the message board. The items you’ll want to be sure of when creating this new account are:

d The user name must not be taken.
d The e-mail address must be valid.

Q The birthday must be a valid date.

Of course, the type of data required will differ depending on your usage, but these items provide a good
starting point for most applications.

The first step in creating such interaction is to define the HTML form that will collect the data. This form
should stand alone so that it can be used even if Ajax calls aren’t possible:

<form method="post" action="Success.php">
<table>
<tr>
<td><label for="txtFirstName">First Name</label></td>
<td><input type="text" id="txtFirstName" name="txtFirstName" /></td>
</tr>
<tr>
<td><label for="txtLastName">Last Name</label></td>
<td><input type="text" id="txtLastName" name="txtLastName" /></td>
</tr>
<tr>
<td><label for="txtEmail">E-mail</label></td>
<td><input type="text" id="txtEmail" name="txtEmail" /></td>
</tr>
<tr>
<td><label for="txtUsername">Username</label></td>

www.it-ebooks.info

http://www.it-ebooks.info/

Ajax Patterns

<td><input type="text" id="txtUsername" name="txtUsername" /></td>
</tr>
<tr>
<td><label for="txtBirthday">Birthday</label></td>
<td><input type="text" id="txtBirthday" name="txtBirthday" />
(m/d/yyyy)</td>
</tr>
<tr>
<td><label for="selGender">Gender</label></td>
<td><select id="selGender"
name="selGender"><option>Male</option><option>Female</option></select></td>
</tr>
</table>
<input type="submit" id="btnSignUp" value="Sign Up!" />
</form>

You should note a few things about this form. First, not all fields will be validated using Ajax calls. The
fields for first and last name as well as gender (represented by a combo box) don’t require validation.
The other fields — for e-mail, user name, and birthday — will make use of Ajax validation. Second, you'll
note that these fields have a hidden image after the textbox. This image is used only in the event that
there is a validation error. Initially the images are hidden, because those browsers without Ajax capabili-
ties should never see them. There is absolutely no JavaScript on this form; all the appropriate functions
and event handlers are defined in a separate file.

A single function called validateField() is used to validate each form field. This is possible because
each field uses the same validation technique (call the server and wait for a response). The only differ-
ences are the types of data being validated and which image to show if validation is unsuccessful.

The server-side functionality is stored in a file named validateForm. php. This file expects a name-
value pair to be passed in the query string. The name should be the name of the control whose value is
being checked, and the value should be the value of that control. Depending on the name of the control,
this page runs the appropriate validation tests on the value. Then, it outputs a simple string in the fol-
lowing format:

<true|false>||<error message>
The first part of this string indicates whether the value is valid (true if it is; false if not). The second
part, after the double pipes (| |), is an error message that is provided only when the value is invalid.

Here are a couple of examples of what the returned string might look like:

truel |
false||Invalid date.

The first line represents a valid value; the second represents an invalid date.

This is a plain-text message, although later in the book you will learn about using
other data formats, such as XML and JSON for this same purpose.

é
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

The code that does the validation is as follows:

<?php
Svalid = "false";
$message = "An unknown error occurred.";

if (isset(S_GET["txtUsername"])) {

//load array of usernames
Susernames array () ;
S$usernames = "SuperBlue";
Susernames "Ninjal23";
Susernames = "Daisyl724";
Susernames = "NatPack";

[]
[]
(]
[]

//check usernames
if (in_array ($_GET["txtUsername"], Susernames)) {
Smessage = "This username already exists. Please choose another.";
} else if (strlen($_GET["txtUsername"]) < 8) {
Smessage = "Username must be at least 8 characters long.";
} else {
Svalid = "true";
Smessage = "";

}
} else if (isset(S_GET["txtBirthday"])) {

Sdate = strtotime(S_GET["txtBirthday"]);
if (!is_numeric ($date) or $date < 0) {
Smessage = "This is not a valid date.";
} else {
Svalid = "true";
Smessage = "";
}

} else if (isset($S_GET["txtEmail"])) {

if (leregi (
"A_a-z0-9-1+(\.[_a-z0-9-]1+) *@[a-z0-9-1+(\.[a-z0-9-1+) *(\.[a-2z]1{2,3})s",

S_GET["txtEmail"])) {
Smessage = "This e-mail address is not valid";
} else {
Svalid = "true";
Smessage = "";

}

echo "S$valid| |Smessage";
2>

In this file, the first step is to determine which field to validate. This is done using the isset () function
to test the $_GET array for a value. If there is a value for a particular field, then the validation com-
mences. For the user name, the value is checked to see if it already exists in an array of user names and
then checked to ensure that it is at least eight characters long. The birthday is passed directly into PHP’s

78
www.it-ebooks.info

http://www.it-ebooks.info/

Ajax Patterns

built-in strtotime () function, which converts a date string in any number of U.S. formats into a UNIX
timestamp (the number of seconds since January 1, 1970). If there is an error, this function returns -1 or
false (depending on the version of PHP), indicating that the string passed in was not a valid date. The
e-mail address is checked against a regular expression to ensure that it is in the correct format. This regu-
lar expression was devised by John Coggeshall in his article, “E-mail validation with PHP 4,” available
online at www. zend. com/zend/spotlight/evl2apr.php.

Note that the user names in this example are stored in a simple array and hard-coded
into the page. In an actual implementation, the user names should be stored in a
database and the database should be queried to determine whether the user name
already exists.

The $valid and $message variables are initialized to false and "An unknown error occurred" . This
ensures that if the file is used incorrectly (passing in an unrecognized field name, for example), a nega-
tive validation will always be returned. When a positive validation occurs, however, this requires that
both variables be reset to appropriate values (true for $valid, an empty string for $message). In the
case of a negative validation, only the $message variable has to be set since $validis already false.
The very last step in this page is to output the response string in the format mentioned previously.

Next, the JavaScript to perform the validation must be created. A single function, validateField(),
can be used to validate each field as long as it knows which field it should be validating. This takes a lit-
tle bit of work to counteract cross-browser compatibility issues:

function validateField (oEvent) {
oEvent = oEvent || window.event;
var txtField = oEvent.target || oEvent.srcElement;

//more code to come

}

The first two lines of code inside this function equalize the differences between event models in IE and
DOM-compliant browsers (such as Mozilla Firefox, Opera, and Safari). DOM-compliant browsers pass
in an event object to each event handler; the control that caused the event is stored in the event object’s
target property. In IE, the event object is a property of window; therefore, the first line inside the func-
tion assigns the correct value to the oEvent variable. Logical OR (| |) returns a non-null value when
used with an object and a null object. If you are using IE, oEvent will be undefined; thus, the value of
window. event is assigned to oEvent. If you are using a DOM-compliant browser, oEvent will be reas-
signed to itself. The second line does the same operation for the control that caused the event, which is
stored in the srcElement property in IE. At the end of these two lines, the control that caused the event
is stored in the txtField variable. The next step is to create the HTTP request using XHR:

function validateField(oEvent) {

oEvent = oEvent || window.event;
var txtField = oEvent.target || oEvent.srcElement;
var oXHR = zXmlHttp.createRequest();
OoXHR.open ("get", "ValidateForm.php?" + txtField.name + "="
+ encodeURIComponent (txtField.value), true);
OXHR.onreadystatechange = function () {
//more code to come
79

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

I g
OXHR.send (null) ;

As in Chapter 2, you are using the zXml library for cross-browser XHR support. The XHR object is cre-
ated and stored in oXHR. Next, the connection is initialized to a GET request using open () . Note that the
query string for ValidateForm.php is created by combining the name of the field, an equals sign, and
the value of the field (which is URL encoded using encodeURIComponent ()). Also note that this is an
asynchronous request. This is extremely important for this use case, because you don’t want to interfere
with the user filling out the rest of the form while you are checking the validity of a single field; remem-
ber that synchronous requests made using XHR objects freeze most aspects of the user interface (includ-
ing typing and clicking) during their execution. The last part of this function is to handle the response
from the server:

function validateField(oEvent) ({

oEvent = oEvent || window.event;
var txtField = oEvent.target || oEvent.srcElement;
var oXHR = zXmlHttp.createRequest();
oXHR.open("get", "ValidateForm.php?" + txtField.name + "="
+ encodeURIComponent (txtField.value), true);

OXHR.onreadystatechange = function () {

if (oXHR.readyState == 4) {

if (oXHR.status == 200 || oXHR.status == 304) {

var arrInfo = oXHR.responseText.split("||");
var imgError = document.getElementById("img"

+ txtField.id.substring(3) + "Error");
var btnSignUp = document.getElementById("btnSignUp") ;

if ('eval(arrInfo[0])) {
imgError.title = arrInfo[l];
imgError.style.display = "";
txtField.valid = false;

} else {
imgError.style.display = "none";
txtField.valid = true;

}

btnSignUp.disabled = !isFormvalid() ;
} else {
alert ("An error occurred while trying to contact the server.");
}
}
Y
oXHR.send (null) ;

After checking for the correct readyState and status, the responseText is split into an array of
strings (arrInfo) using the JavaScript split () method. The value in the first slot of arrInfo will be
the value of the PHP variable $valid; the value in the second slot will be the value of the PHP variable
$message. Also, a reference to the appropriate error image and the Sign Up button is returned. The error
image is gained by dissecting the field name, removing the “txt” from the front (using substring()),
prepending “img” and appending “Error” to the end (so for the field “txtBirthday”, the error image
name is constructed as “imgBirthdayError”).

80
www.it-ebooks.info

http://www.it-ebooks.info/

Ajax Patterns

The value in arrInfo[0] must be passed into eval () in order to get a true Boolean value out of it.
(Remember, it’s a string: either true or false.) If this value is false, the error image’s title property
is assigned the error message from arrInfo[1], the image is displayed, and the custom valid property
of the textbox is set to false (this will come in handy later). When a value is invalid, the error image
appears, and when the user moves the mouse over it, the error message appears (see Figure 3-3). If the
value is valid, however, the error image is hidden and the custom valid property is set to true.

Sign Up!
Please fill in the following information to sign up.

First Name
Last Name

E-mail me@@somewhere.con

Username |This e-mail address is not valid

Birthday (m/'dyyyy)

Gender Male v

Figure 3-3

You'll also notice that the Sign Up button is used in this function. The Sign Up button should be disabled
if there is any invalid data in the form. To accomplish this, a function called isFormvalid() is called. If
this function returns false, the Sign Up button’s disabled property is set to true, disabling it. The
isFormvalid() function simply iterates through the form fields and checks the valid property:

function isFormvalid() {
var frmMain = document.forms[0];
var blnValid = true;

for (var i=0; i < frmMain.elements.length; i++) {
if (typeof frmMain.elements[i].valid == "boolean") {
blnvalid = blnvalid && frmMain.elements([i].valid;

}

return blnValid;

For each element in the form, the valid property is first checked to see if it exists. This is done by using
the typeof operator, which will return boolean if the property exists and has been given a Boolean
value. Because there are fields that aren’t being validated (and thus won’t have the custom valid prop-
erty), this check ensures that only validated fields are considered.

The last part of the script is to set up the event handlers for the textboxes. This should be done when the
form has finished loading, but only if XHR is supported (because that is how the Ajax validation is being
performed here):

//if Ajax is enabled, disable the submit button and assign event handlers
window.onload = function () {

81
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

if (zXmlHttp.isSupported()) {
var btnSignUp = document.getElementById("btnSignUp") ;
var txtUsername = document.getElementById("txtUsername") ;
var txtBirthday = document.getElementById("txtBirthday") ;
var txtEmail = document.getElementById("txtEmail") ;

btnSignUp.disabled = true;
txtUsername.onchange = validateField;
txtBirthday.onchange = validateField;
txtEmail.onchange = validateField;
txtUsername.valid = false;
txtBirthday.valid = false;
txtEmail.valid = false;

b g

This onload event handler assigns the onchange event handlers for each textbox as well as initializes
the custom valid property to false. Additionally, the Sign Up button is disabled from the start to pre-
vent invalid data from being submitted. Note, however, that the button will be disabled only if XHR is
supported; otherwise, the form will behave as a normal web form and the validation will have to be
done when the entire form is submitted.

When you load this example, each of the three validated text fields will make a request to the server for
validation whenever their values change and you move on to another field. The user experience is seam-
less using the Submission Throttling pattern, but the form remains functional even if JavaScript is turned
off or XHR is not supported.

Even when using this type of validation, it is essential that all the data be validated
again once the entire form is submitted. Remember, if the user turns off JavaScript,
you still need to be sure the data is valid before performing operations using it.

Incremental Field Validation Example

Whereas the previous example validated each field when its value changed, the other popular form of
the Submission Throttling design pattern involves submitting a single field periodically as changes are
made. This is the version of Submission Throttling used for both Bitflux LiveSearch and Google Suggest,
where data is repeatedly sent to the server as the user types. In both of these cases, the submission acti-
vates a search on the server; however, the same method can be used to validate a single field repeatedly
as the user types.

Suppose that instead of asking you to fill in a whole form, the sign-up for a given site requires you first
to select a user name (maybe as step 1 of a multistep sign-up process). In this case, you’d want to ensure
that only a nonexistent user name be used. Instead of waiting for the form to be submitted, you can peri-
odically upload the data to the server for validation, making sure that the data can’t be submitted until a
valid user name is entered.

82

www.it-ebooks.info

http://www.it-ebooks.info/

Ajax Patterns

Note that this example is for demonstration purposes. If you were to use the tech-
nique described in a production environment, you would have to protect against
spam bots that may use this feature to harvest user names and passwords.

The form for this example is much simpler, made up of a single textbox and a Next button:

<form method="post" action="Success.php">
<table>
<tr>
<td><label for="txtUsername">Username</label></td>
<td><input type="text" id="txtUsername" name="txtUsername" />
<img src="error.gif" alt="Error" id="imgUsernameError"
style="display:none" /></td>
</tr>
</table>
<input type="submit" id="btnNext" value="Next" />
</form>

Note that the same basic format of the previous example has been kept, including the hidden error
image. Next, the validateField () function from the previous example is used, with a few changes:

var oXHR = null;
var iTimeoutId = null;

function validateField (oEvent) {
oEvent = oEvent || window.event;
var txtField = oEvent.target || oEvent.srcElement;

var btnNext = document.getElementById("btnNext") ;
btnNext.disabled = true;

if (iTimeoutId != null) {
clearTimeout (iTimeoutId) ;
iTimeoutId = null;

if (!oXHR) {
OXHR = zXmlHttp.createRequest() ;
} else if (oXHR.readyState != 0) {

oXHR.abort () ;
}
OXHR.open("get", "ValidateForm.php?" + txtField.name + "="
+ encodeURIComponent (txtField.value), true);
OXHR.onreadystatechange = function () {
if (oXHR.readyState == 4) {
if (oXHR.status == 200 || oXHR.status == 304) {
var arrInfo = oXHR.responseText.split("||");

var imgError = document.getElementById("img"

83
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

+ txtField.id.substring(3) + "Error");

if (l'eval (arrInfo[0])) {
imgError.title = arrInfo[l];
imgError.style.display = "";
txtField.valid = false;

} else {
imgError.style.display = "none";
txtField.valid = true;

}

btnNext.disabled = !txtField.valid;
} else {
alert ("An error occurred while trying to contact the server.");

}

Y

iTimeoutId = setTimeout (function () {
OXHR.send(null) ;
}, 500);

Y

The first thing to note about this updated function is the inclusion of two global variables: oXHR and
iTimeoutId. The first, oXHR, holds a global reference to an XHR object that is used repeatedly (as
opposed to being used just once in the previous example); the second, iTimeoutId, holds a timeout
identifier used to delay sending a request. Inside the function, the first new part sets the Next button to
be disabled right away. This is important because a request may not be sent out immediately following a
call to this function. The next block after that clears the timeout identifier if it’s not nul1l, which prevents
the sending of too many requests in succession. (If there is a pending request, this cancels it.)

Next, the global oXHR object is tested to see if it is null. If so, a new XHRobject is created and assigned
to it. If an XHR object already exists, its readyState is checked to see if it’s ready for a request. As men-
tioned in the previous chapter, the readyState changes from 0 to 1 when the open () method is called;
therefore, any readyState other than 0 indicates that a request has already been started, so the

abort () method must be called before attempting to send a new request. Note that the same
ValidateForm.php page is used for validation purposes.

Inside of the onreadystatechange event handler, the only new line is one that changes the Next but-
ton’s disabled state based on the validity of user name. Toward the end of the function, the

setTimeout () function is called to delay the sending of the request by half a second (500 milliseconds).
The identifier from this call is saved in iTimeoutId, so it is possible to cancel the request the next time
the function is called. By using the timeout functionality of JavaScript in this way, you are ensuring that
the user hasn’t typed anything for at least half a second. If the user types something quickly, the timeout
will repeatedly be cleared and the request aborted. It’s only when there is a pause that the request will
finally be sent.

The only part left now is to set up the event handler. Since this method uploads information as the user

types, you can’t rely on the onchange event handler alone (although it is still needed). In this case, you
need to use the onkeyup event handler, which is called every time a key is pressed and then released:

84
www.it-ebooks.info

http://www.it-ebooks.info/

Ajax Patterns

window.onload = function () {

}i

if (zXmlHttp.isSupported()) {
var btnNext = document.getElementById("btnNext") ;
var txtUsername = document.getElementById("txtUsername") ;

btnNext.disabled = true;
txtUsername.onkeyup = validateField;
txtUsername.onchange = validateField;
txtUsername.valid = false;

Once again, this is very similar to the previous example. The only changes are the name of the button
(which is now btnNext) and the assignment of validateField () to the onkeyup event handler. As the
user types, the user name will be checked for validity. Every time a valid user name is entered, the Next
button becomes enabled. Whenever a request is being made, the button is first disabled to accommodate
a specific situation. It is possible that the user will continue typing even after a valid user name has been
entered. As a side effect, the extra characters may cause the user name to become invalid, and you don’t
want to allow invalid data to be submitted.

Although it’s a nice feature, incremental field validation should be used sparingly
because it creates a high volume of requests. Unless your server configuration is set
up specifically to handle an increased volume of requests, it is best to forego this
approach.

Periodic Refresh

The Periodic Refresh design pattern describes the process of checking for new server information in spe-
cific intervals. This approach, also called polling, requires the browser to keep track of when another
request to the server should take place.

This pattern is used in a variety of different ways on the Web:

a

ESPN uses Periodic Refresh to update its online scoreboards automatically. For example, the
NFL Scoreboard, located at http: //sports.espn.go.com/nfl/scoreboard, shows up-to-
the-minute scores and drive charts for every NFL game being played at the time. Using XHR
objects and a little bit of Flash, the page repeatedly updates itself with new information.

Gmail (http://gmail.google.com) uses Periodic Refresh to notify users when new mail has
been received. As you are reading an e-mail or performing other operations, Gmail repeatedly
checks the server to see if new mail has arrived. This is done without notification unless there is
new mail, at which point the number of new e-mails received is displayed in parentheses next
to the Inbox menu item.

XHTML Live Chat (www.plasticshore.com/projects/chat) uses Periodic Refresh to imple-
ment a chat room using simple web technologies. The chat room text is updated automatically
every few seconds by checking the server for new information. If there is a new message, the
page is updated to reflect it, thus creating a traditional chat room experience.

85
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Q The Magnetic Ajax demo (www.broken-notebook.com/magnetic) re-creates online the expe-
rience of magnetic poetry (using single word magnets that can be rearranged to make sen-
tences). The full version polls the server for new arrangements every few seconds, so if you and
someone else are rearranging words at the same time, you will see the movement.

Clearly, there are many different ways that Period Refresh can increase user experience, but the basic
purpose remains the same: to notify users of updated information.

New Comment Notifier Example

A feature that has been creeping into blogs across the Web since the beginning of 2005 is a New
Comment Notifier. A New Comment Notifier does exactly what it says it does: it alerts the user when a
new comment has been added. This can take the form of a simple text message displayed on the page or
an animated message that slides in from out of view, but the basic idea is the same. In this example,
Periodic Refresh is used to check a database table containing comments to see which is the newest.

Suppose that you have a simple MySQL table, defined as follows:

CREATE TABLE " BlogComments' (

‘CommentId’ INT NOT NULL AUTO_INCREMENT ,
‘BlogEntryId® INT NOT NULL |,

‘Name' VARCHAR(100) NOT NULL ,
‘Message' VARCHAR(255) NOT NULL ,
‘Date’ DATETIME NOT NULL ,

PRIMARY KEY (' CommentId')

) COMMENT = 'Blog Comments';

The SQL query to run this is:

select CommentId,Name, LEFT (Message, 50)
from BlogComments order by Date desc
limit 0,1

This query returns the comment ID (which is autogenerated), the name of the person who left the com-
ment, and the first 50 characters of the message text (using the LEFT () function) for the most recent
comment. The 50 characters are used as a preview of the actual comment (you probably don’t want to
get the entire message because it could be long).

The page that runs this query is called CheckComments . php, and it outputs a string in the following format:
<comment ID>||<name>||<message>

This format allows the JavaScript Array.split () method to be used in order to extract the individual
pieces of information with little effort. If there are no comments or there is an error, the comment ID will
be -1 and the other parts of the string will be blank. Here is the complete code listing for
CheckComments . php:

<?php
header ("Cache-control: No-Cache");

header ("Expires: Fri, 30 Oct 1998 14:19:41 GMT");

//database information

86
www.it-ebooks.info

http://www.it-ebooks.info/

Ajax Patterns

$sDBServer = "your.database.server";
$SsDBName = "your_db_name";
SsDBUsername = "your_db_username";

$sDBPassword = "your_db_password";

//create the SQL query string
$sSQL = "select CommentId,Name, LEFT (Message, 50) as ShortMessage from
BlogComments order by Date desc limit 0,1";

SoLink = mysqgl_connect ($sDBServer, $sDBUsername, $sDBPassword) ;
@mysql_select_db($sDBName) or die("-1|| || "):

if (SoResult = mysqgl_qguery($sSQL) and mysgl_num_rows (SoResult) > 0) {
SaValues = mysqgl_fetch_array($SoResult,MYSQL_ASSOC) ;
echo $avalues['CommentId']."||".$aValues['Name']."||".
$aValues|['ShortMessage'];
} else {
echo "-1|| || ":
}

mysqgl_free_result (SoResult) ;
mysqgl_close(SoLink) ;
2>

Perhaps the most important parts of this file are the two headers included at the top. By setting Cache-
control and Expires headers, you are telling the browser to always retrieve this file from the server and
not from the client cache. Without this, some browsers would return the same information repeatedly,
effectively nullifying this functionality altogether. The rest of this file should look very familiar, because it
uses essentially the same algorithm as previous examples that make use of MySQL database calls.

You can also avoid caching problems by changing the query string every time a request is made to this
file. This is often done by assigning a timestamp into the query string to trick the browser into getting a

fresh copy from the server.

Next comes the JavaScript that calls this file. To start, you'll need a few global variables once again:

var oXHR = null; //The XHR object
var iInterval = 1000; //The interval to check (in milliseconds)
var iLastCommentId = -1; //The ID of the last comment received

var divNotification = null; //The layer to display the notification

As usual, the first global variable is an XHR object called oxHR, which will be used for all requests. The
second variable, iInterval, specifies the number of milliseconds that should occur between each check
for new comments. In this case, it is set to 1000 milliseconds, or 1 second, although this can and should be
customized based on your needs. Next, the i LastCommentId variable is used to store the last comment
ID in the database. It is by comparing this value to the most recently retrieved comment ID that you can
determine whether a new comment has been added. The last variable, divNotification, holds a refer-
ence to the <div/> element that is used to display a notification to the user about new comments.

When a new comment is detected, divNotification is filled with information about the new com-
ment, including the name of the person making the comment, a summary of the message, and a link to
view the entire comment. If the <div/> element hasn’t yet been created, it must be created and assigned
the appropriate style information:

87
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

88

function showNotification (sName, sMessage) {
if (!divNotification) {
divNotification = document.createElement ("div") ;
divNotification.className = "notification";
document .body . appendChild (divNotification) ;
}

divNotification.innerHTML = "New Comment
" + sName
+ " says: " + sMessage + "...
<a href=\"ViewComment.php?id="
+ iLastCommentId + "\">View";

divNotification.style.top = document.body.scrollTop + "px";

divNotification.style.left = document.body.scrollLeft + "px";

divNotification.style.display = "block";

setTimeout (function () {

divNotification.style.display = "none";
}, 5000);

As you can see, the showNotification () function accepts two arguments: a name and a message.
However, before this information is used, you must ensure that divNotification is not null. If neces-
sary, a new <div/> element is created and its CSS class set to notification before being added to the
document’s body. After that, the innerHTML property is used to set the notification HTML, which says
“New Comment” in bold, followed by the name, the message, and the link to view the comment. The
link points to ViewComment . php and assigns a query string parameter id the value of
iLastCommentId, which indicates the comment to view. Then, the position of the notification is set by
using the scrollTop and scrollLeft properties of document .body. This ensures that the notification
is always visible at the upper-left corner of the page regardless of the scroll position (if you have scrolled
down or right). Following that, the display property is set to block to make the notification visible.

The document .body . scrollLeft and document .body.scrollTop properties
should be used only in the quirks mode of Internet Explorer, Firefox, and Opera. If
your page uses standards mode (using an XHTML doctype), you must instead use
document .documentElement . scrollLeft and document .documentElement
.scrollTop.

The last part of this function is a timeout that hides the notification after 5 seconds (5000 milliseconds).
It’s not a good idea to leave the notification up unless you have a spot specifically designated for such a
purpose in your design; otherwise, you could be covering up important information.

In this example, the notification CSS class is defined as follows:

div.notification ({
border: 1px solid red;
padding: 10px;
background-color: white;
position: absolute;
display: none;
top: Opx;
left: Opx;

www.it-ebooks.info

http://www.it-ebooks.info/

Ajax Patterns

This creates a white box with a red border around it. Of course, you'll want to style this in a manner
that’s appropriate for the site or application in which it is used. The important parts for this example are
that position is set to absolute and display is set to none. Setting both properties ensures that when

the <div/> element is added to the page, it won't interrupt the normal page flow or move any elements
around. The result is a notification area, as displayed in Figure 3-4.

& Home page - Mozilla Firefox
File Edit View Go Bookmarks Tools Help

CZI - I_: - @ @\[Example.php V: © Go |[CL

New Comment

Mike says: I don't think that's entirely true. Afterall, if v...
View

D[]

lity have to be a blog page or even an important one. The only thing
juded.

eave s

Page open m one browser wmdow and open up Comment php m another. Using that page, post a comment. Within a
mitiite or so. you should see a notification on this page indicating that a new comment was posted.

Done

Figure 3-4

The JavaScript function that does the most work is checkComments (), which is responsible for checking
the server for updates. The code is very similar to the previous examples:

function checkComments () {
if (!oXHR) {
OXHR = zXmlHttp.createRequest();

} else if (oXHR.readyState != 0) {
OXHR.abort () ;

}

OoXHR.open("get", "CheckComments.php", true);

OXHR.onreadystatechange = function () {

if (oXHR.readyState == 4) {
if (oXHR.status == 200 || oXHR.status == 304) {

var aData = oXHR.responseText.split (" |
if (aData[0] != iLastCommentId) {

™) g

iLastCommentId = aDatal[0];

if (iLastCommentId != -1) {

89
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

showNotification (aDatal[l], aDatal2]);
}

setTimeout (checkComments, iInterval);

Y
OXHR.send(null) ;

}

This function creates an XHR object and calls CheckComments . php asynchronously. The important part
of this code is highlighted (the rest is almost exactly the same as the previous examples). In this section,
the responseText is split into an array using the split () method. The first value in the array,
aData[0], is the comment ID that was added last. If it isn’t equal to the last comment ID stored, then a
notification may be needed. Next, if the last comment ID is -1, no comment IDs have been retrieved and
thus a notification should not be shown. If the last comment ID is not -1, at least one comment ID has
been retrieved, and since it’s different from the one just received from the server, the notification should
be displayed. After that, the new ID is assigned to iLastCommentId for future use. The very last step in
the event handler is to set another timeout for checkComments (), to continue checking for more com-
ments.

The final step in the process is to initiate a call to checkComments () once the page has loaded. This will
retrieve the most recent comment ID in the database but won't display a notification (because
iLastCommentId will be equal to -1 initially). When the next call is made to checkComments (), the ID
retrieved from the database can be checked against the one stored in iLastCommentId to determine if a
notification must be displayed. As usual, this functionality should be initiated only if the browser sup-
ports XHR:

window.onload = function () {
if (zXmlHttp.isSupported()) {
checkComments () ;

}
by

That'’s all it takes to create this Periodic Refresh solution. You need only remember to include the neces-
sary JavaScript and CSS files in any page that you would like this functionality on.

The files for this example are available for download at www.wrox . com. Along with
those files are other pages you can use to add and view comments for the purpose
of testing.

Multi-Stage Download

One of the lasting problems on the Web has been the speed at which pages download. When everyone
was using 56 Kbps modems, web designers were much more aware of how much their pages “weighed”
(the size of the page in total bytes). With the popularity of residential broadband Internet solutions,

90
www.it-ebooks.info

http://www.it-ebooks.info/

Ajax Patterns

many sites have upgraded, including multimedia, more pictures, and more content. This approach,
while giving the user more information, also leads to slower download times as everything is loaded in
seemingly random order. Fortunately, there is an Ajax solution for this problem.

Multi-Stage Download is an Ajax pattern wherein only the most basic functionality is loaded into a page
initially. Upon completion, the page then begins to download other components that should appear on
the page. If the user should leave the page before all of the components are downloaded, it’s of no conse-
quence. If, however, the user stays on the page for an extended period of time (perhaps reading an arti-
cle), the extra functionality is loaded in the background and available when the user is ready. The major
advantage here is that you, as the developer, get to decide what is downloaded and at what point in time.

This is a fairly new Ajax pattern and has been popularized by Microsoft’s start.com. When you first visit
start.com, it is a very simple page with a search box in the middle. Behind the scenes, however, a series
of requests is being fired off to fill in more content on the page. Within a few seconds, the page jumps to
life as content from several different locations is pulled in and displayed.

Although nice, Multi-Stage Download does have a downside: the page must work in its simplest form
for browsers that don’t support Ajax technologies. This means that all the basic functionality must work
without any additional downloads. The typical way of dealing with this problem is to provide graceful
degradation, meaning that those browsers that support Ajax technologies will get the more extensive
interface while other browsers get a simple, bare-bones interface. This is especially important if you are
expecting search engines to crawl your site; since these bots don’t support JavaScript, they rely solely on
the HTML in the page to determine your site’s value.

Additional Information Links Example

When reading through an article online, frequently there are Additional Information links included for
further reading on the topic. The key question here is this: What is the main content? Clearly the article
text is the main content on the page, so it should be downloaded when the page is initially loaded. The
additional links aren’t as important, so they can be loaded later. This example walks you through the
creation of such a solution.

First, you'll need to lay out a page to hold the article. For this example, it’s a very simple layout:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.o0rg/1999/xhtml">
<head>
<title>Article Example</title>
<script type="text/javascript" src="zxml.js"></script>
<script type="text/javascript" src="Article.js"></script>
<link rel="stylesheet" type="text/css" href="Article.css" />
</head>
<body>
<hl>Article Title</hl>
<div id="divAdditionalLinks"></div>
<div id="divPagel">
<!-- article content here -->
</div>
</body>
</html>

91
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

The important part of the HTML is the <div/> with the ID of divAdditionalLinks. This is the con-
tainer for the additional links that will be downloaded for the article. By default, it is styled to be right
aligned and invisible:

#divAdditionalLinks {
float: right;
padding: 10px;
border: 1px solid navy;
background-color: #cccccc;
display: none;

It’s very important that the CSS display property be set to none so that the empty <div/> element
doesn’t take up any space in the page layout. Without this, you would see a small empty box to the right
of the article.

Unlike the previous examples, the content to download is just plain text contained in a text file contain-
ing links and a header. This file, AdditionalLinks. txt, contains some simple HTML code:

<h4>Additional Information</h4>

Wrox</1li>
NCzZOnline</1li>
XWeb</1i>

This file could just as well be created dynamically using server-side logic, but for the purposes of this
example, static content works just as well.

The JavaScript that makes this work is very simple and quite similar to all the previous examples in this
chapter:

function downloadLinks () {
var oXHR = zXmlHttp.createRequest();

oXHR.open("get", "AdditionalLinks.txt", true);
OXHR.onreadystatechange = function () {
if (oXHR.readyState == 4) {
if (oXHR.status == 200 || oXHR.status == 304) {

var divAdditionalLinks =

document .getElementById("divAdditionalLinks") ;
divAdditionalLinks.innerHTML = oXHR.responseText;
divAdditionalLinks.style.display = "block";

}
}
OXHR.send (null) ;

}

window.onload = function ()
if (zXHR.isSupported())
downloadLinks () ;

{
{

92
www.it-ebooks.info

http://www.it-ebooks.info/

Ajax Patterns

The function that does the work is downloadLinks (), which is called only if the browser supports XHR
and only once the page is completely loaded. The code inside of downloadLinks () is the standard XHR
algorithm that you've used before. After the content from AdditionalLinks. txt has been retrieved, it
is set into the placeholder <div/> using the innerHTML property. The last step in the process is to set the
<div/> element’s display property to block so that it can be seen. The end result is displayed in
Figure 3-5.

@ Article Example - Mozilla Firefox =I@lE
File Edit View Go Bookmarks Tools Help

<ZI - - @ @ ArticleExample htm hdl @ Go @,

Article Title

Lorem ipsum dolor sit amet. consectetuer adipiscing elit. Donec interdum cursus risus. In pharetral
commodo nunc. Pellentesque sapien mauris, placerat quis, condimentum eu, ultrices nec, arcu.

Morbi et magna ac massa lobortis facilisis. Fusce molestie milla sit amet arcu. Pellentesque Additional Information
sollicitudin, ligula vel auctor aliquam. enim milla posuere lectus. id tincidunt enim lacus ac enim.
Suspendisse luctus, arcu ut ultrices lobortis, dolor ante volutpat justo, et cursus nisi lectus a urna. * "‘fﬂ

+ NCZOnline

Dhuis cursus tortor vel justo. Maecenas libero. Nam lacinia, eros ac facilisis congue, leo erat
ultricies orci, in sodales ante milla vel sem. Phasells tincidunt. Quisque Jaoreet, pede ut accumsan|
rthoncus, diam arcu fringilla sem. ac commodo odio fusto non ante. In eget ligula et sapien laoreet
tempor. Vestibulum cursus dui. Integer egestas nulla sed nulla. Pellentesque habitant morbi
tristique senectus et netus et malesuada fames ac turpis egestas. Suspendisse consequat magna vel elit. Phasellus id sem eget
nisi lobortis congue. Nullam vehicula pede et quam.

+ XWeb

Donec a mnc sed velit porttitor auctor. Quisque sapien augue. tincidunt pretium, laoreet sit amet. ultricies sit amet. neque.
Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. In fringilla tristique est. Ut vel
pede. Nulla nec urna ac leo commodo sagittis. Praesent convallis nisl en dolor. Aenean faucibus ulirices nisi. Nulla risus libero,
accumsan nec, iaculis quis, pretivm sed, quam Maecenas fengiat eleiffend orci. Donec sed turpis ac ligula eleifend adipiscing.
Nunc quis ipsum ac nunc hendrerit tincidunt. In nibh magna. sollicitudin nec. luctus ac. aliquam vel. erat.

Nunc tempor pede condimentum enim. Cras ipsum enim, tristique et, suscipit vehicula, dapibus id. augue. Maecenas dui

magna. iaculis in, tempor vitae. convallis sit amet. mmc. Nullam cursus, mnc a rutrum sagittis, enim diam venenatis ipsum. ut

mollis ligula nunc vitae dui. Aliquam venenatis molestie turpis. Maecenas eleifend tincidunt orci. Proin pulvinar. Duis placerat)
Done

Figure 3-5

If XHR isn’t supported in the browser, the block containing the additional links will never appear and so
the first paragraph will stretch all the way across the top.

This technique can be done numerous times for any number of sections of a page; you certainly aren’t
restricted to having only one section that is loaded after the initial page is complete. You can create new
XHR objects for each request and then send them off one after the other, or you can do it sequentially,
waiting until a response has been received before sending off the next request. The choice is completely
up to you and your desired functionality.

Fallback Patterns

The previous section dealt with when to send or receive data from the server, which presupposes that
everything goes according to plan on the server side: the request is received, the necessary changes are
made, and the appropriate response is sent to the client. But what happens if there’s an error on the
server? Or worse yet, what if the request never makes it to the server? When developing Ajax applica-
tions, it is imperative that you plan ahead for these problems and describe how your application should
work if one of these should occur.

93
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Cancel Pending Requests

If an error occurs on the server, meaning that a status of something other than 200 or 304 is returned,
you need to decide what to do. Chances are that if a file is not found (404) or an internal server error
occurred (302), trying again in a few minutes isn’t going to help, since both of these require an adminis-
trator to fix the problem. The simplest way to deal with this situation is to simply cancel all pending
requests. You can set a flag somewhere in your code that says, “don’t send any more requests.” This
clearly has the highest impact on solutions using the Periodic Refresh pattern.

The comment notification example can be modified to take this into account. This is a case where the
Ajax solution provides additional value to the user but is not the primary focus of the page. If a request
fails, there is no reason to alert the user; you can simply cancel any future requests to prevent any fur-
ther errors from occurring. To do so, you must add a global variable that indicates whether requests are
enabled:

var oXHR = null;

var iInterval = 1000;

var iLastCommentId = -1;

var divNotification = null;
var blnRequestsEnabled = true;

Now, the blnRequestsEnabled variable must be checked before any request is made. This can be
accomplished by wrapping the body of the checkComments () function inside of an i £ statement:

function checkComments () {
if (blnRequestsEnabled) {

if (!oXHR) {
OXHR = zXmlHttp.createRequest();

} else if (oXHR.readyState != 0) {
OXHR.abort () ;
}
OoXHR.open ("get", "CheckComments.php", true);
OXHR.onreadystatechange = function () {
if (oXHR.readyState == 4) {
if (oXHR.status == 200 || oXHR.status == 304) {
var aData = oXHR.responseText.split("||");
if (abatal[0] !'= iLastCommentId) {
iLastCommentId = aDatal0];
if (iLastCommentId != -1) {

showNotification(aDatal[l], aDatal[2]);
}
}
setTimeout (checkComments, iInterval);

Y

OXHR.send (null) ;

94
www.it-ebooks.info

http://www.it-ebooks.info/

Ajax Patterns

But that isn’t all that must be done; you must also detect the two different types of errors that may occur:
server errors that give status codes and a failure to reach the server (either the server is down or the
Internet connection has been lost).

To begin, wrap everything inside of the initial i f statement inside a try. . . catch block. Different
browsers react at different times when a server can’t be reached, but they all throw errors. Wrapping
the entire request block in a try. . . catch ensures that you catch any error that is thrown, at which
point you can set blnRequestsEnabled to false. Next, for server errors, you can also set
blnRequestsEnabled to false whenever the status is not equal to 200 or 304. This will have

the same effect as if the server couldn’t be reached:

function checkComments () {

if (blnRequestsEnabled) {
try {
if (!oXHR) {
OXHR = zXmlHttp.createRequest();
} else if (oXHR.readyState != 0) {
OXHR.abort () ;
}

oXHR.open("get", "CheckComments.php", true);

OXHR.onreadystatechange = function () {
if (oXHR.readyState == 4) {
if (oXHR.status == 200 || oXHR.status == 304) {

var aData = oXHR.responseText.split("| ") ;

if (abhata[0] != iLastCommentId) {

if (iLastCommentId != -1) {
showNotification(aData[l], aData[2]);
}

iLastCommentId = aDatal[0];
}

setTimeout (checkComments, iInterval);
} else {
blnRequestsEnabled = false;

}
Y
oXHR.send (null) ;
} catch (oException) {

blnRequestsEnabled = false;
}

Now, when either of the two error types occurs, an error will be thrown (either by the browser or by
you), and the blnRequestsEnabled variable will be set to false, effectively canceling any further
requests if checkComments () is called again.

95

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

You may also have noticed that a timeout for another request is created only if the
status is 200 or 304, which prevents another request from occurring for any other
status. That works fine for server errors, but it doesn’t do anything for communica-
tion errors. It’s always better to have more than one way to handle errors when
they occur.

Try Again

Another option when dealing with errors is to silently keep trying for either a specified amount of time
or a particular number of tries. Once again, unless the Ajax functionality is key to the user’s experience,
there is no need to notify him or her about the failure. It is best to handle the problem behind the scenes
until it can be resolved.

To illustrate the Try Again pattern, consider the Multi-Stage Download example. In that example, extra
links were downloaded and displayed alongside the article. If an error occurred during the request, an
error message would pop up in most browsers. The user would have no idea what the error was or what
caused it, so why bother displaying a message at all? Instead, it would make much more sense to con-
tinue trying to download the information a few times before giving up.

To track the number of failed attempts, a global variable is necessary:

var iFailed = 0;
The iFailed variable starts at 0 and is incremented every time a request fails. So, if iFailedis ever
greater than a specific number, you can just cancel the request because it is clearly not going to work. If,

for example, you want to try 10 times before canceling all pending requests, you can do the following;:

function downloadLinks () {
var oXHR = zXmlHttp.createRequest();

if (iFailed < 10) {

try {
oXHR.open("get", "AdditionalLinks.txt", true);
OXHR.onreadystatechange = function () {

if (oXHR.readyState == 4) {

if (oXHR.status == 200 || oXHR.status == 304) {

var divAdditionalLinks =
document.getElementById("divAdditionalLinks") ;

divAdditionalLinks.innerHTML = oXHR.responseText;
divAdditionalLinks.style.display = "block";

} else {
iFailed++;
downloadLinks () ;

}

OoXHR.send (null) ;

96
www.it-ebooks.info

http://www.it-ebooks.info/

Ajax Patterns

} catch (oException) {
iFailed++;
downloadLinks () ;

This code is constructed similarly to the previous example. The try. . .catch block is used to catch any
errors that may occur during the communication, and a custom error is thrown when the status isn’t
200 or 304. The main difference is that when an error is caught, the iFailed variable is incremented
and downloadLinks () is called again. As long as iFailed is less than 10 (meaning it’s failed less than
10 times), another request will be fired off to attempt the download.

In general, the Try Again pattern should be used only when the request is intended to occur only once,
as in a Multi-Stage Download. If you try to use this pattern with interval-driven requests, such as
Periodic Refresh, you could end up with an ever-increasing number of open requests taking up memory.

Summary

In this chapter, you learned about various design patterns for Ajax solutions. You first learned how to
use Predictive Fetch to improve the user experience through preloading information that is likely to be
used in the future. You created an example using Predictive Fetch to preload pages in an article after a
few seconds, when it is likely that the user intends to read the entire article.

Next, you learned about Submission Throttling, which is a way of incrementally sending data to the
server instead of doing it all at once. You learned how to use this pattern for data validation in a form.
It’s sibling pattern, Periodic Refresh, was also discussed, which periodically receives information from
the server. You built an example using Periodic Refresh that displays a notification when a new com-
ment has been posted to a blog or message board.

This chapter also introduced you to the Multi-Stage Download pattern, which is a way of continuing to
download extra information after the page has loaded. You learned that this would lead to faster initial
download time for pages and that you can control the frequency and sequence of requests in any way
you see fit.

The last section discussed fallback patterns that are used to handle errors in client-server communica-
tion. You learned that there are two types of errors you may encounter: server errors (such as 404 not
found) or communication errors (where the server cannot be contacted). Two patterns, Cancel Pending
Requests and Try Again, were discussed as ways of dealing with these errors.

97
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Ajax Libraries

With the popularity of Ajax applications exploding in 2005, developers and companies began look-
ing for ways to streamline the process. As with many common programming practices, Ajax
involves a lot of repetitive procedures that can be identified and simplified for common use. It
wasn’t long before JavaScript developers started introducing libraries to ease the redundant and
sometimes quirky behavior of Ajax communication techniques. These libraries sought to break
outside of the hidden frame and XHR modalities of communication and introduce their own
methods (which typically are just wrappers for already accepted forms of Ajax communication).
All of the libraries discussed in this chapter use interfaces that resemble but do not mimic the tech-
niques discussed in Chapter 2. Remember, the goals of such libraries are to free the developer from
worrying about cross-browser Ajax issues by hiding the details.

The Yahoo! Connection Manager

In late 2005, Yahoo! introduced its Yahoo! User Interface (YUI) library to the open source commu-
nity. Available under a BSD-style license at http: //developer.yahoo.com/yui, the YUI com-
prises several JavaScript libraries used within the company to aid in the rapid development of web
applications such as Yahoo! Mail and Yahoo! Photos. One of these libraries is the Yahoo!
Connection Manager.

With Ajax making heavy use of XHR, many developers are looking for ways to equalize the differ-
ences between browser implementations. The Yahoo! Connection Manager does this by handling
all of the processing behind the scenes, exposing a simple API that frees developers from cross-
browser concerns.

Setup

Before beginning, download the YUI library at http: //sourceforge.net/projects/yui. A
single ZIP file contains all of the JavaScript files necessary to use the Connection Manager. For
basic Connection Manager usage, you need two required JavaScript files: YAHOO. js, which sets up

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

the YAHOO namespace (this file is used by all Yahoo! JavaScript components), and connection.js,
which contains the Connection Manager code. The files must be included in this order:

<script type="text/javascript" src="/js/YAHOO.js"></script>
<script type="text/javascript" src="/js/connection.js"></script>

With these files included in your page, you are now ready to begin using the Connection Manager.

Basic Requests

The Yahoo! Connection Manager uses a different interface for sending XHR requests than the default one
provided by modern browsers. Instead of creating objects, the Connection Manager exposes several
static methods to handle requests. The method you’ll use most often is asyncRequest (), which has the
following signature:

transaction=YAHOO.util.Connect.asyncRequest (request_type, url, callback, postdata);

The first argument is the type of HTTP request to make: “GET” or “POST” (these are case-sensitive). The
second argument is simply the URL of the request. The third argument is a callback object containing
methods to handle the response from the request. The final argument of asyncRequest () is the data to
post to the server. For POST requests, this value is a string of URL-encoded values to be sent; for GET
requests, this value can either be omitted or set to null.

When the call is completed, asyncRequest () returns a transaction object that can be used to monitor
and interact with the currently executing request.

The Callback Object

The most important Connection Manager concept to understand is the role of the callback object. As
opposed to having a simple event handler assignment, the callback object allows you to specify a num-
ber of options. In its simplest form, the callback object provides two methods: a success () method that
is called when a valid response has been received and a failure () method that is called when an
invalid response is received. For example:

var oCallback = {
success: function (oResponse) {
//handle a successful response
B o
failure: function (oResponse) {
//handle an unsuccessful request

B

Each of the two methods is passed an object (oResponse) containing response information from the
server and/or the Connection Manager itself. The response object has the following properties:

Q argument: A developer-defined value to be returned with the response

0 responseText: The text response from the server

100

www.it-ebooks.info

http://www.it-ebooks.info/

Ajax Libraries

QO responsexML: An XML DOM containing XML from the server (if the content type is
“text/xml”)

O status: The HTTP status code returned from the server or an error code provided by the
Connection Manager

QO statusText: The HTTP status description or an error message provided by the Connection
Manager

Q tId: The transaction ID uniquely assigned to this request by the Connection Manager
Additionally, the response object has two methods:

0 getAllResponseHeaders (): Returns a string containing all header information

0 getResponseHeader (name): Returns the value of the named HTTP header
Some of these properties and methods are direct carryovers from the XHR object.

The Connection Manager’s goal is to free developers from worrying about small details, and part of that
is in determining when a response was successfully received and when it was not. If the status of the
response is between 200 and 300, the success () method is called; otherwise, the failure () method is
called. Unlike using XHR directly, the developer needn’t be bothered by checking the status property
to take an appropriate action. Here’s a simple example:

var oCallback = {
success: function (oResponse) {
alert ("Response received successfully.");

I

failure: function (oResponse) {
alert ("The request failed.");

Y
YAHOO.util.Connect.asyncRequest ("GET", "test.php", oCallback) ;

This example sends a GET request to test . php, passing in the callback object. When the response is
received, either success () or failure() is called. A POST request can be sent in a similar fashion, just
by changing the first argument of the asyncRequest () method and appending the post data:

var oCallback = {
success: function (oResponse) {
alert ("Response received successfully.");

Y,

failure: function (oResponse) {
alert ("The request failed.");

Y

var sPostData = "title=Professional%20Ajax&authors=Zakas%20McPeak%20Fawcett";
YAHOO.util.Connect.asyncRequest ("POST", "test.php", oCallback, sPostData);

101
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Here, the post data is added as a fourth argument. Note that the post data must be URL encoded before
being passed to the method. Connection Manager handles setting the appropriate content type for the
request, which by default is the HTTP form submission content type of “application/x-www-form-
urlencoded”. It’s possible to turn this header off for submission of non-form data by calling
setDefaultPostHeader (false):

var sPostData = "raw text data";
YAHOO.util.Connect.setDefaultPostHeader (false) ;
YAHOO.util.Connect.asyncRequest ("POST", "test.php", oCallback, sPostData);

The callback object isn’t limited to just two methods; a few additional properties are provided for ease
of use.

The argument Property

Suppose that there’s some additional information necessary to process either a successful or an unsuc-
cessful HTTP request. Using the techniques described in Chapter 2 would require some additional
thought and planning. The Connection Manager makes this easy by using the argument property on the
callback object. This property can be set to any value or object, and that same value or object is passed
into both the success () and failure () methods as a property on the response object. For example:

var oCallback = {
success: function (oResponse) {

//retrieve the argument
var sArg = OResponse.argument;

alert ("Request was successful: " + sArg);

}
failure: function (oResponse) {

//retrieve the argument
var sArg = oResponse.argument;

alert ("Request failed: " + sArg);
I

argument: "string of info"

Y

In this code, the argument property is specified as a string on the callback object. The success () and
failure () methods access the argument property on the response object and use it as part of a mes-
sage displayed to the user.

Note that the argument property is client side only, so the server never sees the value.

The scope Property

You may have a case when you want the success () and failure () methods to call methods on
another object. To facilitate this case, the callback object offers the scope property.

102

www.it-ebooks.info

http://www.it-ebooks.info/

Ajax Libraries

Suppose you have an object that is responsible for executing server requests.

Further suppose you have an object oAjaxObject that has the methods handleSuccess () and
handleFailure () that should be called for success () and failure (), respectively:

var oAjaxObject = {
name : "Test Object",

handleSuccess : function (oResponse) {
alert (this.name + " Response received successfully.");

b

handleFailure : function (oResponse) {
alert (this.name + " An error occurred.");

b
One might think of creating a callback object such as this:

var oCallback = {
success: oAjaxObject.handleSuccess,
failure: oAjaxObject.handleFailure

¥

This code would work if the methods didn’t both reference the this object. Since this always refers to
the scope of the function being called, it would evaluate to oCallback if this callback object were used.
In order to execute the function in the proper scope, as a method of oAjaxObject, add the scope prop-
erty to the callback object:

var oCallback = {
success: oAjaxObject.handleSuccess,
failure: oAjaxObject.handleFailure,
scope: oAjaxObject

Y

The scope property says, “run the success () and failure () functions as methods of this object.”
Since good object-oriented design requires all functions to be methods of an object, this ends up being a
very common case.

The timeout Property

There is one last optional property for a callback object: timeout. The timeout property specifies how
long, in milliseconds, it should take for the response to be received. If the response is not received within
that time period, the request is cancelled and the failure () method is called. Only if the response is
received within the specified time period will the success () method be called. For instance, if a request
must return within 5 seconds to be considered successful, the following callback object may be used:

var oCallback = {
success: oAjaxObject.handleSuccess,
failure: oAjaxObject.handleFailure,
scope: oAjaxObject,
timeout: 5000

103
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

If the failure () method is called due to a timeout, the status property of the response object is set to
-1 and the statusText property is set to “transaction aborted.”

Though this property is helpful, you can create a race condition using it. Since the
Connection Manager uses a timeout to periodically check the condition of requests,
a response may have been received but not registered before the timeout expires. For
this reason, make sure that the timeout specified is large enough to allow ample
time for a response to be received and recognized.

Monitoring and Managing Requests

One of the limitations of XHR is the lack of a built-in method to monitor and manage multiple requests.
The Yahoo! Connection Manager has implemented features that allow the monitoring of multiple
requests as well as the ability to abort a request that has not yet completed.

As mentioned previously, the asyncRequest () method returns an object representing the request trans-
action. This object can be used to determine if the request is still pending by passing it to the
isCallInProgress () method, like this:

var oTransaction = YAHOO.util.Connect.asyncRequest ("GET", "info.htm", oCallback) ;
alert (YAHOO.util.Connect.isCallInProgress (oTransaction)); //outputs "true"

The isCallInProgress () method returns true if the transaction hasn’t completed yet or false
otherwise.

You might have a case when a request was initiated but should not be allowed to complete. In this case,
the Connection Manager provides an abort () method. The abort () method expects the transaction
object to be passed in:

var oTransaction = YAHOO.util.Connect.asyncRequest ("GET", "info.htm", oCallback) ;
i1f (YAHOO.util.Connect.isCallInProgress (oTransaction)) {
YAHOO.util.Connect.abort (oTransaction) ;

}

Calling abort () stops the current request and frees the resources associated with it. Of course, it only
makes sense to abort requests that haven’t received a response yet, so it’s good practice to call
isCallInProgress () prior to calling abort ().

Form Interaction

It is becoming more and more common to submit form values through an Ajax request instead of using the
traditional form posting technique. The Yahoo! Connection Manager makes this easy by allowing you to
set a form whose data should be sent through the request. For instance, suppose that you have a form with
the ID of "frmInfo". A POST request to submit the data contained in the form can be created like this:

var oForm = document.getElementById("frmInfo");

YAHOO.util.Connect.setForm(oForm) ;
YAHOO.util.Connect.asyncRequest ("POST", "datahandler.php", oCallback);

104
www.it-ebooks.info

http://www.it-ebooks.info/

Ajax Libraries

Using the setForm() method, the Connection Manager creates a string of data to be sent in the next
request. Because of this, there is no need to specify the fourth argument for the asyncRequest ()
method, since all the data is already retrieved from the form.

It's important to note that the data string to post is constructed when you call
setForm (), not when asyncRequest () is called. The data being sent is the data at
the time when setForm () was called, so this method should be called only right
before a call to asyncRequest () to ensure that the data is the most recent available.

File Uploads

Unlike XHR, the Connection Manager allows file uploads through forms. Before using this feature, be
sure to include the Yahoo! Event utility:

<script type="text/javascript" src="/js/YAHOO.js"></script>
<script type="text/javascript" src="/js/event.js"></script>
<script type="text/javascript" src="/js/connection.js"></script>

Next, set the second argument of setForm () to true to indicate that a file upload needs to occur:

var oForm = document.getElementById("frmInfo");
YAHOO.util.Connect.setForm(oForm, true);
YAHOO.util.Connect.asyncRequest ("POST", "datahandler.php", oCallback);

When supplying this argument, the Connection Manager switches to using an iframe to send the
request. This means that the URL receiving the POST (datahandler.php in the previous example) must
output HTML code. Since the transaction takes place in an iframe, status codes aren’t available for file
upload operations, and thus, success () and failure () can’t be used to monitor the status of the
request. Instead, define an upload () method on the callback object:

var oCallback = {
upload: function (oResponse) {
alert (oResponse.responseText) ;
}
Y

A response object is passed into upload (), just as it is for success () and failure(). The
responseText property of the response object is then filled with the text contained within the resulting
page’s <body/> element (the status and statusText properties are not available when uploading a
file). If the text returned in the iframe is valid XML code, the responseXML property of the response
object is filled with an XML document. It is, however, up to you to determine from responseText or
responseXML whether the upload was successful or not.

As with success () and failure (), you can also use the scope and argument prop-
erties to provide additional information for the upload () method.

105
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

As a final note, if you are uploading a file over SSL, set the third argument of setForm() to true:

var oForm = document.getElementById("frmInfo");
YAHOO.util.Connect.setForm(oForm, true, true);
YAHOO.util.Connect.asyncRequest ("post", "datahandler.php", oCallback);

This is necessary due to an issue in Internet Explorer when unloading the iframe used for the transac-
tion, but is good to use regardless of the browsers you intend to support.

GET Example

By revisiting the XHR GET example from Chapter 2, you can see how the Yahoo! Connection Manager
simplifies the JavaScript code

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Connection Manager GET Example</title>
<script type="text/javascript"src="yahoo.js"></script>
<script type="text/javascript"src="connection.js"></script>
<script type="text/javascript">
/ /<! [CDATA [
function requestCustomerInfo() {
var sId = document.getElementById("txtCustomerId") .value;
var oCallback = {
success: function (oResponse) {
displayCustomerInfo (oResponse.responseText) ;
}
failure: function (oResponse) {
displayCustomerInfo ("An error occurred: " +
OResponse.statusText) ;

¥
YAHOO.util.Connect.asyncRequest ("GET",
"GetCustomerData.php?id=" + sId, oCallback) ;

function displayCustomerInfo (sText) {
var divCustomerInfo = document.getElementById("divCustomerInfo");
divCustomerInfo.innerHTML = sText;

}

/711>
</script>
</head>
<body>
<p>Enter customer ID number to retrieve information:</p>
<p>Customer ID: <input type="text" id="txtCustomerId" value="" /></p>
<p><input type="button" value="Get Customer Info"
onclick="requestCustomerInfo()" /></p>
<div id="divCustomerInfo"></div>
</body>
</html>

106

www.it-ebooks.info

http://www.it-ebooks.info/

Ajax Libraries

Using the same displayCustomerInfo () function and updating the requestCustomerInfo () func-
tion, the example works perfectly. The major difference is that the code doesn’t have to check for a fail-
ure case; the Connection Manager handles that. Since the response object returns the same information
as an XHR object, the success and error messages are handled using the responseText and
statusText properties, respectively, mimicking the original example.

POST Example

When you are using the Connection Manager for POSTing information back to the server, the simplifica-
tion of the JavaScript code is even more dramatic. Consider the second XHR example from Chapter 2,
which involves adding a customer record to a database. In that example, code had to be written to
encode the form’s values, which included a large function designed specifically for that task. Since the
Connection Manager handles that for you, the code becomes very simple:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>

<title>Connection Manager POST Example</title>

<script type="text/javascript"src="yahoo.js"></script>

<script type="text/javascript"src="connection.js"></script>

<script type="text/javascript">

/ /<! [CDATA[

function sendRequest () {
var oForm = document.forms[0];

var oCallback = {
success: function (oResponse) {
saveResult (oResponse.responseText) ;

b o

failure: function (oResponse) {
saveResult ("An error occurred: " + oResponse.statusText);

¥
YAHOO.util.Connect.setForm(oForm) ;

YAHOO.util.Connect.asyncRequest ("POST", oForm.action, oCallback);

function saveResult (sMessage) {
var divStatus = document.getElementById("divStatus");

divStatus.innerHTML = "Request completed: " + sMessage;
}

/711>

</script>
</head>
<body>

<form method="post" action="SaveCustomer.php"

onsubmit="sendRequest (); return false">
<p>Enter customer information to be saved:</p>
<p>Customer Name: <input type="text" name="txtName" value="" />

107
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Address: <input type="text" name="txtAddress" value="" />

City: <input type="text" name="txtCity" value="" />

State: <input type="text" name="txtState" value="" />

Zip Code: <input type="text" name="txtZipCode" value="" />

Phone: <input type="text" name="txtPhone" value="" />

E-mail: <input type="text" name="txtEmail" value="" /></p>
<p><input type="submit" value="Save Customer Info" /></p>
</form>
<div id="divStatus"></div>

</body>

</html>

What previously took more than 90 lines of JavaScript code using XHR now takes only 19 lines of code.
Most of the savings comes with the use of setForm () to encode the form values. When completed, this
example behaves exactly the same as its XHR counterpart.

Additional Features

As mentioned previously, the Connection Manager uses a polling mechanism to check the status of
request transactions it initiates. If you find that the default polling interval isn’t good enough for your
needs, the setPollingInterval () method can be called to reset the interval as desired:

YAHOO.util.Connect.setPollingInterval (250) ;

This method should be called before any requests have been sent, since this new setting takes effect on
all requests, both those that are in process and all those that have yet to be initiated.

Another method, initHeader (), allows specification of request headers:

YAHOO.util.Connect.initHeader ("MyName", "Nicholas");
YAHOO.util.Connect.asyncRequest ("get", "info.php", oCallback) ;

In this example, an extra header with a name of "MyName" and a value of "Nicholas" is sent to the
server. Note that this header is good for only one request; all headers reset to default values after each
call to asyncRequest ().

Limitations

While the Yahoo! Connection Manager does make some requests easier, it does have its limitations.

Q Currently, only asynchronous requests are supported, so you'll be stuck using old school XHR
if you need to make a synchronous request. Though many argue that synchronous requests
should never be used, sometimes there are practical reasons for using them.

Q Itis also worth noting that as of this writing the current version of the Connection Manager
is 0.12.0 , so undoubtedly there will be some additions and changes in the future. However,
for the time being, it remains one of the most compact libraries for cross-browser Ajax
communication.

108
www.it-ebooks.info

http://www.it-ebooks.info/

Ajax Libraries

Prototype

One JavaScript library that has gained considerable popularity with the emergence of Ajax is Prototype,
available at http: //prototype.conio.net. Prototype is not simply an Ajax library; it is actually a
complete JavaScript framework designed to ease the development of all types of JavaScript solutions.

It is beyond the scope of this book to fully explore all of Prototype’s features, so the focus here is on its
Ajax capabilities.

The Ajax.Request Object

Most of Prototype’s low-level Ajax features are contained on the aptly named 2Ajax object. The Ajax
object has several properties containing methods and constructors for useful objects. The simplest object,
and the most similar to XHR, is the Ajax.Request object, which has the following constructor:

request = new Ajax.Request (url, options);

The first argument is the URL to send the request to. The second argument is an object containing any
number of options for the request. As soon as the creation of the Ajax.Request object is complete, the
request is sent (think of it as combining XHR’s open () and send () methods in one call). For this reason,
the options object is very important.

The Options Object

The options object, as used in the Ajax.Request () constructor, contains all of the information about the
request except for the URL. In its simplest form, the options object contains the following properties:

O method: Either “get” or “post.”

0O parameters: The data to be sent to the URL. Typically, a URL-encoded string of name-value
pairs, but can also be other data formats when method is “post.”

0 onSuccess: Function to call when the response has been successfully received. Similar to the
success () method in the Yahoo! Connection Manager, it fires when the status of a response
is between 200 and 300.

O onFailure: Function to call when the response has failed. Similar to the failure () method in the
Yahoo! Connection Manager, it fires when the status of a response is not between 200 and 300.

Also like the Connection Manager callback object, the Ajax.Request options object is defined with a
simple object literal, such as:

var oOptions = {
method: "get",
parameters: "first%20name=Nicholas&last%20name=Zakas",
onSuccess: function (oXHR, oJson) {
//your code here
Vg
onFailure: function (oXHR, odson) {
//your code here
}

109
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

The onSuccess () and onFailure () methods are functions that are passed two arguments: the XHR
object used to make the request and an optional JSON object with additional information about the
request (JSON is discussed in Chapter 8). The second argument is used mostly in conjunction with a fea-
ture in Ruby on Rails (www . rubyonrails. org), so it won’t be discussed here.

There is an important distinction between GET requests made using Ajax.Request
and GET requests made with traditional XHR or with the Yahoo! Connection
Manager: the Ajax.Request object automatically adds the parameters property
value to the end of the URL specified in the constructor.

When using Ajax.Request, the URL should be specified without a query string and the parameters
property should be used:

var oOptions = {
method: "get",
parameters: "name=Nicholas",
onSuccess: function (oXHR, odson) {
alert ("Response received successfully.");
}
onFailure: function (oXHR, oJdson) {
alert ("Request was unsuccessful.");
}
}:
var oRequest = new Ajax.Request("test.php", oOptions);

The combining of the URL and the parameters property is handled by Prototype behind the scenes.
This same methodology can be used for POST requests by just changing the method property:

var oOptions = {
method: "post",
parameters: "name=Nicholas",
onSuccess: function (oXHR, oJdson) {
alert ("Response received successfully.");
}
onFailure: function (oXHR, oJdson) {
alert ("Request was unsuccessful.");
}
Y
var oRequest = new Ajax.Request("test.php", oOptions);

In this way, Prototype simplifies Ajax requests so that the switch between a GET and a POST request is
simply a one-step change. Prototype also handles setting the default POST content type on the XHR
request, further simplifying things for the developer.

The requestHeaders Property

To add headers to the outgoing request, specify the requestHeaders property in the options object.
This must be an array with an even number of items so that the first item is the name of a header, the
second item is the value of that header, and so on. For example:

110
www.it-ebooks.info

http://www.it-ebooks.info/

Ajax Libraries

var oOptions = {
method: "get",
parameters: "name=Nicholas",
requestHeaders: ["headerl", "headerl value", "header2", "header2 wvalue"l],
onSuccess: function (oXHR, oJson) {
alert ("Response received successfully.");
+
onFailure: function (oXHR, odson) {
alert ("Request was unsuccessful.");

Y

This code adds two headers to the request: "header1", which has a value of "headerl value", and
"header2", which has a value of "header2 value". This is the same as calling setRequestHeader ()
on an XHR object for each header.

The asynchronous Property

By default, all requests initiated using Ajax.Request are sent asynchronously, meaning that the
JavaScript doesn’t wait for a response. If, for some reason, you need to send a request synchronously,
which locks the JavaScript code execution and the user interface, it can be accomplished by setting the
asynchronous property to false:

var oOptions = {
method: "get",
parameters: "name=Nicholas",
asynchronous: false

Y

In this case, there is no need for onSuccess () or onFailure (), because the next line of code after the
request is sent can handle all conditions. After the call has been completed, the XHR object can be
accessed directly via Ajax.Request. transport.

Remember, synchronous requests should be used sparingly and only for small amounts of data, since
they lock the user interface while the request is being processed.

Other Events

The Ajax.Request object supports several custom events outside of the success/failure realm. Each of
these events can be handled with developer-defined functions through the options object. The complete
list of event handlers is as follows:

O onException(): Called when an error occurred in the JavaScript code while trying to execute
the request or during a callback function call.

O onLoaded(): Called when the response has been received but not evaluated. The same as XHR
ready state 2. Not recommended for use due to cross-browser differences.

0 onLoading (): Called repeatedly while a request is waiting for or receiving a response.

QO onInteractive (): Called when the response has been received and parsed; some information
is available. The same as XHR ready state 3. Not recommended for use due to cross-browser
differences.

111
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

QO onComplete (): Called when the response has been completely received and parsed. The same
as XHR ready state 4.

Each of these event handlers are passed the same two arguments as onSuccess () and onFailure():
the XHR object used to make the request and an optional second object containing response information.

In general, onException () is probably the most useful of these event handlers, since onSuccess () and
onFailure () handle most of the important cases.

GET Example

Revisiting the first XHR example from Chapter 2 again, you can see that the code for the Prototype ver-
sion is fairly straightforward and similar, in many respects, to the Yahoo! Connection Manager version:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0org/TR/xhtmll/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Prototype GET Example</title>
<script type="text/javascript"src="prototype.js"></script>
<script type="text/javascript">
/ /<! [CDATA [
function requestCustomerInfo() {
var sId = document.getElementById("txtCustomerId") .value;
var oOptions = {
method: "get",
parameters: "id=" + sId,
onSuccess: function (oXHR, oJson) {
displayCustomerInfo (oXHR.responseText) ;
}
onFailure: function (oXHR, odson) {
displayCustomerInfo ("An error occurred: " +
OXHR.statusText) ;

¥
var oRequest = new Ajax.Request ("GetCustomerData.php", oOptions) ;

function displayCustomerInfo (sText) {
var divCustomerInfo = document.getElementById("divCustomerInfo");
divCustomerInfo.innerHTML = sText;

}

/711>
</script>
</head>
<body>
<p>Enter customer ID number to retrieve information:</p>
<p>Customer ID: <input type="text" id="txtCustomerId" value="" /></p>
<p><input type="button" value="Get Customer Info"
onclick="requestCustomerInfo()" /></p>
<div id="divCustomerInfo"></div>
</body>
</html>

112
www.it-ebooks.info

http://www.it-ebooks.info/

Ajax Libraries

The important thing to note here is that the query string is not appended directly to the URL, as in the
previous examples.

POST Example

The XHR POST example can also be changed to use Prototype. Unfortunately, since Prototype doesn’t
include a method to encode the data in a form, you'll still need all the code that was in the original
example. The only thing that changes is the sendrRequest () function:

function sendRequest () {
var oForm = document.forms[0];
var sBody = getRequestBody (oForm) ;

var oOptions = {
method: "post",
parameters: sBody,
onSuccess: function (oXHR, oJson) {
saveResult (oXHR.responseText) ;
P
onFailure: function (oXHR, oJson) {
saveResult ("An error occurred: " + oXHR.statusText) ;

¥

var oRequest = new Ajax.Request ("SaveCustomer.php", oOptions) ;

Note that the data to POST is still passed in using the parameters property of the options object.

The Ajax.Updater Object

Each of the two XHR examples had something in common: they outputted a status message to an ele-
ment on the page once the response had been received. This is actually a fairly common use case of Ajax
calls, and Prototype has made it easy to handle this automatically using the Ajax.Updater object.

The Ajax.Updater object is created using a constructor similar to that of Ajax.Request:
request = new Ajax.Updater (element_id, url, options);

Behind the scenes, Ajax.Updater uses Ajax.Request to initiate a request, so it should come as no sur-
prise that the arguments to the constructor include the ones needed for Ajax.Request. The only differ-

ence is the insertion of an additional argument at the beginning of the list: an HTML element’s ID. When
a response is received, Ajax.Updater takes the responseText from the XHR object and puts it into the
HTML element with the given ID using the innerHTML property.

When you are using Ajax.Updater, it’s not necessary to assign the onSuccess () or onFailure(),

methods because the responseText is output to the HTML element either way. For example, consider
how the GET example can change using Ajax.Updater:

113
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0org/TR/xhtmll/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Prototype Updater Example</title>
<script type="text/javascript"src="prototype.js"></script>
<script type="text/javascript">
/ /<! [CDATA [
function requestCustomerInfo() {
var sId = document.getElementById("txtCustomerId") .value;
var oOptions = {
method: "get",
parameters: "id=" + sId
}i
var oRequest = new Ajax.Updater ("divCustomerInfo",
"GetCustomerData.php", oOptions) ;

/711>
</script>
</head>
<body>
<p>Enter customer ID number to retrieve information:</p>
<p>Customer ID: <input type="text" id="txtCustomerId" value="" /></p>
<p><input type="button" value="Get Customer Info"
onclick="requestCustomerInfo()" /></p>
<div id="divCustomerInfo"></div>
</body>
</html>

In this code, the displayCustomerInfo () function has been completely removed since its only pur-
pose was to display text in divCustomerInfo. Note that the ID is passed in as the first argument of the
Ajax.Updater () constructor as well. That’s all that is necessary to maintain the functionality of the
example.

Of course, there is the possibility that a 404 or other error status may occur, and it may bring with it
some ugly HTML. To handle this case, there is an alternate constructor for Ajax.Updater where the
first argument is an object that can direct the output to one HTML element for a successful response and
another for a failure, such as:

var oRequest = new Ajax.Updater ({
success: "success_element_id",
failure: "failure_element_id"
}, url, options);

Realistically, however, you probably want the output to be displayed only when the request was success-
ful. In that case, just assign the success element ID and add an onFailure () method to the options
object, such as:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>

114

www.it-ebooks.info

http://www.it-ebooks.info/

Ajax Libraries

<title>Prototype Updater Failure Example</title>
<script type="text/javascript"src="prototype.js"></script>
<script type="text/javascript">
/ /<! [CDATA[
function requestCustomerInfo() {
var sId = document.getElementById("txtCustomerId") .value;
var oOptions = {
method: "get",
parameters: "id=" + sId,
onFailure: function (oXHR, oJson) {
alert ("An error occurred: " + oXHR.status);

¥
var oRequest = new Ajax.Updater ({
success: "divCustomerInfo"
}, "GetCustomerData.php", oOptions) ;
}

//11>
</script>
</head>
<body>
<p>Enter customer ID number to retrieve information:</p>
<p>Customer ID: <input type="text" id="txtCustomerId" value="" /></p>
<p><input type="button" value="Get Customer Info"
onclick="requestCustomerInfo()" /></p>
<div id="divCustomerInfo"></div>
</body>
</html>

In this revision of the previous example, data is displayed on the page only if the request was successful
because only the success property is provided in the first argument. If a request fails, then an alert is
displayed using the onFailure () method of the options object.

The Ajax.Responders Object

Suppose that you want the same action to take place each time an Ajax request takes place. Why would
you want to do this? Think in terms of a generic loading message that should be displayed every time
there is a request in progress (to ensure the user interface is consistent). Using other libraries or XHR
directly, you’d be forced to manually call a specific function each time. Prototype makes this easy using
the Ajax.Responders object.

To set up event handlers for all Ajax requests, define an options object containing onCreate () and/or
onComplete () methods, such as:

var oGlobalOptions = {
onCreate: function (oXHR, odson) {
alert ("Sending request...");
Yo
onComplete: function (oXHR, odson) {
alert ("Response received.");
}
¥

115
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

This options object can then be passed to the register () method:
Ajax.Responders.register (oGlobalOptions) ;

Adding this code, means there is no need to make any changes to the previously existing example
JavaScript code. All that is required is the addition of an area to display request status:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>

<title>Prototype Responders Example</title>

<script type="text/javascript"src="prototype.js"></script>

<script type="text/javascript">

/ /<! [CDATA[

var oGlobalOptions = {
onCreate : function (oXHR, odson) {
document .getElementById("divStatus") .innerHTML =
"Contacting the server...";
}
onComplete : function (oXHR, oJson) {
document .getElementById("divStatus") .innerHTML =
"Response received.";

¥
Ajax.Responders.register (oGlobalOptions) ;

function requestCustomerInfo() {
var sId = document.getElementById("txtCustomerId") .value;
var oOptions = {
method: "get",
parameters: "id=" + sId,
onFailure: function (oXHR, odson) {
alert ("An error occurred: " + oXHR.status);

Y

var oRequest = new Ajax.Updater ({
success: "divCustomerInfo"

}, "GetCustomerData.php", oOptions);

/711>
</script>
</head>
<body>
<p>Enter customer ID number to retrieve information:</p>
<p>Customer ID: <input type="text" id="txtCustomerId" value="" /></p>
<p><input type="button" value="Get Customer Info"
onclick="requestCustomerInfo()" /></p>

<div id="divStatus" style="color: blue"></div>
<div id="divCustomerInfo"></div>

</body>

</html>

116

www.it-ebooks.info

http://www.it-ebooks.info/

Ajax Libraries

When the button is clicked to retrieve customer information in this example, the divStatus element is
filled with status information about the request. Specifically, when the request is first sent, the status
changes to “Contacting the server...” and when the response is received, the status is set to “Response
received.” As you can see, the Ajax.Responders object allows seamless interaction with all Ajax
requests without the need to change the code that already exists.

Advantages and Disadvantages

Prototype offers a fairly straightforward approach to Ajax communication that allows both synchronous
and asynchronous communication (unlike the Yahoo! Connection Manager, which supports only asyn-
chronous requests). The Ajax.Updater object offers a clean interface for updating HTML elements, and
the Ajax.Responders object allows developers to respond to all requests and responses with ease.
Clearly, Prototype has some major advantages as far as ease of use and practicality.

That being said, some things are noticeably missing from the library.

Q Unlike Yahoo! Connection Manager, Prototype lacks the ability to encode all of the values in a
form, necessitating developers to write their own function to do so.

Q Further, Prototype lacks support for non-XHR types of communication, making it impossible to
upload files.

O And of course, Prototype is not simply an Ajax communication library, so loading the file auto-
matically brings in many other functions, objects, etc., that you may not use. However, this is
the same for all JavaScript libraries, and ultimately, it is up to your individual requirements as
to whether or not Prototype is a right fit.

jQuery

The jQuery library (available at www. jquery . com) is another library that does much more than simply
Ajax communication, but at its small size (15KB), the extra features can be helpful in some situations.

Unlike the previous two libraries discussed in this chapter, jQuery aims to change the way you write
JavaScript. It uses a querying interface to find specific nodes in the web page. The basic expression lan-
guage used by jQuery is a mix of CSS selectors (from CSS Levels 1-3) and simple XPath expressions.
Using this mix, it’s possible to find specific nodes or groups of nodes without manipulating the DOM
directly.

Simple jQuery Expressions

Since jQuery relies to heavily on its querying system, it’s important to first understand how it works.
The function used to query the DOM is $ (), which accepts a string argument containing an expression.
The expression may match one or many nodes in the DOM document, and the return value is another
jQuery object that can be used to manipulate the result set (you won’t be receiving any arrays or DOM
elements back from most jQuery methods). This allows you to chain together jQuery methods into long
groups of actions. Here are some sample queries:

117
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

//get all <p> elements
$("p");

//get the <div> element with an ID of myDiv
S ("div#myDiv") ;

//get all textboxes (all <input> elements with type attribute equal to "text")
$("input [@type=text]") ;

As mentioned previously, each of these calls returns another jQuery object that can be used to manipu-
late the result set. Here are the same queries with actions attached:

//get all <p> elements and hide them
$("p") .hide () ;

//get the <div> element with an ID of myDiv and change its font to Arial
$("div#myDiv") .css("font-family", "Arial");

//get all textboxes (all <input> elements with type attribute equal to "text")
//and set their width to 400 pixels
$("input[@type=text]") .width("400px") ;

For each of these result sets, an action is now taking place. The first line hides all <p> elements on the
page; the second changes the font of the <div> element with an ID of “myDiv”; the third sets the width
of all textboxes to 400 pixels. Programming JavaScript in this manner takes some getting used to, but
jQuery already has a pretty strong following among developers due to its simple interface.

It's beyond the scope of this book to discuss all of the features of jQuery. Please visit
www . jquery . com to learn more.

Executing GET Requests

There are several options for performing GET requests using jQuery. The simplest method is to use
$.get (), which accepts a URL and a callback function as arguments. The callback function receives two
arguments, the text sent back from the server and a status string (“success” or “error”), such as:

$.get ("path/to/data.php?name=value", function (sData, sStatus) {
alert(sStatus + ":" + sData);

)

It’s also possible to pass in an associative array of name-value pairs to pass with the URL instead of
specifically defining a query string:
$.get ("path/to/data.php", { name: "value" }, function (sData, sStatus) {
alert(sStatus + ":" + sData);

)

The properties of the associative array are encoded and added to the query string, taking this responsi-
bility away from the developer.

118
www.it-ebooks.info

http://www.it-ebooks.info/

Ajax Libraries

There are also several specialized GET methods in jQuery, each designed for a different purpose:

a $.getIfModified(): Performs a GET request only if the resource has been modified since the
last time it was requested. Same arguments as $.get ().

O $.getdsoN(): Performs a GET request and evaluates the JSON response into a JavaScript
object. Same arguments as $. get () except the callback function receives a JavaScript object
instead of text. JSON is discussed in Chapter 8.

0O $.getScript(): Performs a GET request and expects JavaScript code as a response. The code is
executed upon response. Same arguments as $.get () except that the callback function doesn’t
receive any information.

Of course, it is up to your individual requirements as to which method is appropriate.

GET Example

By revisiting the first XHR example, you can see that jQuery can be used to simplify the code necessary
to retrieve information from the server:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>jQuery GET Example</title>
<script type="text/javascript"src="jquery.js"></script>
<script type="text/javascript">
/ /<! [CDATA[
function requestCustomerInfo() {
var sId = $("input#txtCustomerId").val();
S.get ("GetCustomerData.php?id=" + sId, displayCustomerInfo);
}

function displayCustomerInfo(sText, sStatus) ({

if (sStatus == "success") {
S ("div#divCustomerInfo") .html (sText) ;
} else {

S ("div#divCustomerInfo") .html ("An error occurred.");

}

/711>
</script>

</head>

<body>
<p>Enter customer ID number to retrieve information:</p>
<p>Customer ID: <input type="text" id="txtCustomerId" value="" /></p>
<p><input type="button" value="Get Customer Info"

onclick="requestCustomerInfo()" /></p>

<div id="divCustomerInfo"></div>

</body>

</html>

119

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

All of the JavaScript code in this example has been changed to use jQuery, which drastically reduces the
amount of code necessary to perform this operation. The value of the textbox is retrieved by the expres-
sion $ ("input#txtCustomerId") .val() and stored in sId (the val () method retrieves the value of a
form field). Next, the $.get () method is called, passing in displayCustomerInfo () as the callback
function. Since callback functions receive only one argument, text back from the server, the
displayCustomerInfo () method can be used directly as the callback. The function itself has also been
changed to use jQuery in order to show the html () method, which gets or sets the HTML content of a
given element or set of elements.

Using the $.get () method with an associative array of requestCustomerInfo () can be rewritten as:

function requestCustomerInfo() ({
var sId = $("input#txtCustomerId").val();
$.get ("GetCustomerData.php", { id : sId }, displayCustomerInfo) ;

This takes responsibility for properly formatting the query string out of the developer’s hands, allowing
jQuery to handle the encoding and formatting.

The S.post() Method

POST requests are sent in jQuery using the $.post () method. This method accepts the same arguments
as $.get ():a URL, an associative array of parameters, and a callback function to receive the returned
data. For example:

$.post ("path/to/data.php", { name: "value" }, function (sData, sStatus) {
alert(sStatus + ":" + sData);

1)

As with GET requests, jQuery encodes the POST parameters in the associative array and sends that data
as the request body.

Both the second and third arguments to $.post () are optional; however, there’s no reason to send a
POST without data (the second argument). It’s also recommended that a callback function always be
provided to monitor the status of the response.

POST Example

To illustrate using the $.post () method, recall the POST example using XHR from Chapter 2. In that
example, it was necessary to serialize a form into a string. Since the $.post () method doesn’t accept a
string for data, the getRequestBody () function must be changed to create an associative array of data
instead of a string:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>jQuery POST Example</title>
<script type="text/javascript"src="jquery.js"></script>
<script type="text/javascript">

120
www.it-ebooks.info

http://www.it-ebooks.info/

Ajax Libraries

/ /<! [CDATA[
function sendRequest () {
var oForm = document.forms[0];
var oBody = getRequestBody (oForm) ;
S .post ("SaveCustomer.php", oBody, saveResult);

function getRequestBody (oForm) {
var oParams = {};

for (var i=0 ; i < oForm.elements.length; i++)
var oField = oForm.elements[i];
switch (oField.type) {

case "button":

case "submit":

case "reset":
break;

case "checkbox":
case "radio":
if (!oField.checked) {
break;

case "text":
case "hidden":
case "password":

oParams [oField.name] = oField.value;

break;

default:

switch (oField.tagName.toLowerCase())

case "select":
oParams [oField.name] =

oField.options[oField.selectedIndex] .value;

break;
default:
oParams [oField.name] = oField.value;
}
}
}
return oParams;
}
function saveResult (sMessage, sStatus) {
if (sStatus == "success") {
S ("div#divStatus") .html ("Request completed:
} else {

S ("div#divStatus") .html ("An error occurred.");

www.it-ebooks.info

" + sMessage) ;

121

http://www.it-ebooks.info/

Chapter 4

}

/711>
</script>

</head>

<body>
<form method="post" action="SaveCustomer.php"

onsubmit="sendRequest (); return false">

<p>Enter customer information to be saved:</p>
<p>Customer Name: <input type="text" name="txtName" value="" />

Address: <input type="text" name="txtAddress" value="" />

City: <input type="text" name="txtCity" value="" />

State: <input type="text" name="txtState" value="" />

Zip Code: <input type="text" name="txtZipCode" value="" />

Phone: <input type="text" name="txtPhone" value="" />

E-mail: <input type="text" name="txtEmail" value="" /></p>
<p><input type="submit" value="Save Customer Info" /></p>
</form>
<div id="divStatus"></div>

</body>

</html>

The only other changes are to saveResult (), to use jQuery to access the divsStatus element. There
isn’t a large amount of code savings for this particular example, but there are several other ways to initi-
ate Ajax communication using jQuery.

The load() Method

The previous two examples simply fill an HTML element with the data returned from the server, which
is a common Ajax pattern. The Prototype library provided Ajax.Updater to simplify this pattern;
jQuery provides the 1oad () method for the same purpose.

The 1oad () method can be called on any element or group of elements in jQuery and has two modes:
GET and POST. To use GET mode, provide a URL (with a query string) and an optional callback func-
tion; for POST, provide a URL, an associative array of values, and an optional callback function.

Changing the GET example to use 1oad () really simplifies the JavaScript necessary to achieve the
desired effect:

function requestCustomerInfo() {
var sId = $("input#txtCustomerId") .val();
$("div#divCustomerInfo") .load("GetCustomerData.php?id=" + sId);

The first step in this example is to get a reference to divCustomerInfo. Once that has been completed,
the 1oad () method is called with only a URL as an argument. The callback function isn’t necessary here,
since the default behavior is to place the returned data into the <div/>.It’s also important to note that
the displayCustomerInfo () function is no longer needed, reducing the amount of code dramatically.

In the POST example, it’s also possible to reduce the amount of code by updating the sendrequest ()
function:

122
www.it-ebooks.info

http://www.it-ebooks.info/

Ajax Libraries

function sendRequest () {
var oForm = document.forms[0];
var oBody = getRequestBody (oForm) ;

S ("div#divStatus") .load("SaveCustomer.php", oBody) ;

By changing just one line, it’s possible to eliminate the saveResult () function completely. This code
now gets a reference to divStatus and then calls 1oad (). Since the second argument is an associative
array (oBody), the 1load () method assumes the request is a POST. Once again, a callback function isn’t
necessary.

The 1oad () method provides a quick way to load content into an element, though you do lose the abil-
ity to handle individual cases of success or failure. There is, however, another method that allows more
fine-grained control over Ajax communication.

The S.ajax() Method

All of the other methods discussed in this section are high level, hiding a lot of the communication detail
from developers. These methods all have one thing in common: under the covers, they all use the
$.ajax () method to initiate and handle requests. This method provides more fine-grained control over
requests and responses.

The $.ajax () method accepts a single argument, which is an associative array of options, not unlike
Prototype’s Ajax.Request constructor. This options object is made up of the following properties:

Q type: The type of request, either GET or POST.

Q url: The URL to request.

0 data: Anencoded string of data. Used for POST requests only.

0 dataType: The type of data expected as a response: “script,” “xml,” “html,” or “json.” If
“script” is specified, then the returned data is loaded as JavaScript into the page.

QO success(): A function to call when a successful response is received. A successful response is

anything with a status of 2xx or 304. This function receives two arguments: the XHR object and
a status string.

QO error(): A function to call when an error occurs. Anything that isn’t considered a success is
considered an error. This function receives two arguments: the XHR object and a status string.

a complete (): A function to call when a response is received; called for both successful and
unsuccessful responses. This function receives two arguments: the XHR object and a status
string.

So to recreate the GET example using $.ajax (), the requestCustomerInfo () function is changed to
the following;:

123
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

function requestCustomerInfo() {
var sId = $("input#txtCustomerId").val();

$.ajax({
type : "GET",
url : "GetCustomerData.php?id=" + sId,
success : function (oXHR, status) {
S ("div#divCustomerInfo") .html (oXHR.responseText) ;
}
error : function (oXHR, status) {
S ("div#divCustomerInfo") .html ("An error occurred.");
}
})
}

Since this is a low-level operation in jQuery, the success () and error () functions must look at the
XHR object for additional information about the request, including the returned data.

The ajaxStart() and ajaxStop() Methods

Prototype isn’t the only library that has global event handlers for Ajax requests; jQuery supports similar
functionality by using the ajaxStart () and ajaxStop () methods. The ajaxStart () method fires
when there are no Ajax requests pending and one is started. Likewise, the ajaxStop () method is called
when all Ajax requests have completed. Both methods accept a function that should be called when the
event occurs.

The first step to using these methods is to retrieve a reference to an element. Then, the ajaxStart () and
ajaxStop () methods can be called on that element. For instance, to use a <div/> element with an ID of
divStatus, the following code can be used:

$("div#divStatus") .ajaxStart (function () {
$(this) .html ("Contacting the server...");
}) .ajaxStop (function () {

$(this) .html ("Response received.");

1)

This code calls both methods on divStatus. Since the ajaxStart () and ajaxStop () methods return
jQuery objects, the two can be chained together. Because it is divStatus itself that should be updated,
the $ (this) object is used inside the functions along with the html () method to set the status text.

Limitations

The jQuery library provides a very interesting interface not only for Ajax communication but also for
JavaScript in general; this is also one of the limitations. Using jQuery means abandoning some of the
more common methods of JavaScript programming, including DOM manipulation. The library makes
you more dependent on itself, since many of the features are implemented only as methods of jQuery
objects. Still, there are some powerful methods that can enable simple or complex Ajax communication.

124

www.it-ebooks.info

http://www.it-ebooks.info/

Ajax Libraries

Summary

In this chapter, you learned about several Ajax communication libraries. These libraries facilitate Ajax
communication by wrapping XHR behind methods that handle all of the details. All of the libraries men-
tioned in this chapter introduce different interfaces for Ajax designed to save developers from the mun-
dane details.

The first library introduced was the Yahoo! Connection Manager. Created by Yahoo!, this open source
library allows Ajax requests with a minimal amount of additional code. The library handles the determi-
nation of success and failure based on the HTTP status of a response as well as handling scoping issues
with callback functions. The Yahoo! Connection Manager is a pure Ajax library that does only Ajax com-
munication and nothing else.

Next, you learned about Prototype, an open source JavaScript library. Prototype, unlike the Yahoo!
Connection Manager, is a complete JavaScript library that isn’t solely used for Ajax communication. The
library has several objects that make Ajax communication and monitoring much easier for developers.

The last library discussed was jQuery. Unlike the other two libraries previously mentioned, jQuery aims
to change the way you write JavaScript. It wraps common DOM methods inside its own object structure,
which allows advanced querying of DOM documents. The library also introduces several convenient
methods to enable Ajax communication.

Choosing to use an Ajax library is a decision that must be based on requirements. One may be more

appropriate for your project than another. Make sure to do some research into any library you choose
before committing to it to ensure that it can grow and evolve with your application.

125
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Request Management

Ajax applications, while powerful and user-friendly, do have some issues relating to the requests
sent from the client to the server and the responses received back. A major concern is the number
of times that communication occurs between the client and server. If the requests are initiated fre-
quently, the server can get bogged down trying to handle requests from multiple users. Further,
the client can become unresponsive while waiting for a large number of responses from the server.

Central to this problem is part of the HTTP 1.1 specification that states a client can have no more
than two simultaneous connections to a single domain name at a time. While there are ways of
working around this strict limitation, such as using subdomains to handle some requests, most
browsers do have a maximum number of connections that can be open at a single time. When using
XHR, this limitation is handled behind the scenes: you simply initiate requests as you see fit, and
the browser queues them up for sending when there’s an open connection. This works fine when
requests are few and far between, but when requests are being sent from various parts of an appli-
cation at different times, the built-in queuing mechanism just doesn’t provide enough control over
when requests are sent and what requests should be sent first. Fortunately, it’s not too difficult to
implement a custom request manager that can handle more complex communication patterns.

Priority Queues

Whenever pieces of data need to be arranged in order of priority, the typical solution is to use a
priority queue. A standard queue is a first-in, first-out data structure: items are added at the back of
the queue, wait in line, and eventually are removed from the front of the queue. A priority queue
augments that methodology by inserting new values into the queue based on a priority, so a new
value with a higher priority doesn’t go to the back of the queue, but rather, gets inserted into an
appropriate location. In a priority queue where 0 is the highest priority and 4 is the lowest, items
with a priority of 3 will always be inserted into the queue before any items with a priority of 4.
Likewise, items with a priority of 2 are inserted ahead of those with a priority of 3, and so on. This
is the perfect paradigm for managing multiple XHR requests. Unfortunately, JavaScript doesn’t
have a built-in priority queue, so it’s necessary to create one.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

A generic priority queue can be made with a single Array object, making use of the built-in sort ()
method. When values are added to this custom priority queue, they are added to the array, which is then
sorted. By providing a custom comparison function to the sort () method, it’s possible to determine the
order in which the values should appear within the array, making it perfect for assigning priorities. A
comparison function has the following generic form:

function compare(oValuel, oValue2) {
if (ovaluel < ovalue2) {
return -1;
} else if (oValuel > ovValue 2) {
return 1;
} else {
return 0;
}
}

Very simply, a comparison function returns a negative number when the first value is less than the sec-
ond (when the first should come before the second), a positive number when the first value is greater
than the second (when the first should come after the second), and zero if the values are equal (don’t
change position in the array).

The constructor for the PriorityQueue object is:

function PriorityQueue (fnCompare) ({
this._items = new Array();
if (typeof fnCompare == "function") {
this._compare = fnCompare;

}

This constructor accepts a single argument, £nCompare, which is a comparison function to use when
determining priorities. If this argument is provided, it’s assigned to the _compare property; otherwise,
the default _compare () method is used (the default method is defined on the prototype). There is also a
single property, i tems, which holds the Array object used to manage the values.

Note that the single underscore (_) prefixed to these names indicates that they are
not intended to be publicly accessible.

Next, the methods for the PriorityQueue need to be defined. The first method is the default
_compare () method to use when one isn’t supplied. Since this method isn’t intended to be publicly
accessible, a prioritize () method is implemented to use it:

PriorityQueue.prototype = {

_compare : function (oValuel, oValue2) {
if (ovaluel < ovalue2) {
return -1;
} else if (oValuel > ovValue2) {
return 1;
} else {

128
www.it-ebooks.info

http://www.it-ebooks.info/

Request Management

¥

return 0;
Yo
//more code here
prioritize : function () {
this._items.sort(this._compare) ;

}

//more code here

The _compare () method is just a basic comparison function that uses the primitive values of each item
to figure out which goes before which (using the less-than and greater-than operators caused a behind-
the-scenes call to valueOf () on each item). When an item is added to the queue, the prioritize ()
method is called to ensure that items appear in the correct order. This is also important in case a value
inside of the queue changes, at which point it’s necessary to call prioritize () explicitly to ensure that
the ordering is valid.

There are five methods that deal with the normal operation of a priority queue: get (), item(), peek (),
put (), and size().

a
a
a

a
a

The get () method retrieves the next item in the queue.
item() returns an item in a given position.

peek () gets the next item in the queue without actually removing it (just a preview of the next
item).

put () is responsible for adding a new value to the queue.

size () simply returns the number of items in the queue.

These methods are all fairly simple:

PriorityQueue.prototype = {

_compare : function (oValuel, oValue2) {
if (ovaluel < oValue2) {
return -1;
} else if (ovaluel > ovValue2) {
return 1;
} else {
return 0;
}
+

get : function() {
return this._items.shift();

b

item : function (iPos) {
return this._items[iPos];

129
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Y

},

peek : function () {
return this._items[0];

b

prioritize : function () {
this._items.sort(this._compare) ;

b,

put : function (ovalue) {
this._items.push(oValue) ;
this.prioritize();

}
//more code here
size: function () {

return this._items.length;

}

In the preceding code, you see all five methods in action:

a

The get () method uses the array’s shift () method to remove and return the first item in the
array (if the array is empty, shift () returns null).

The next method, item (), returns an item in the specified position in the queue.

peek () just gets the first item in the array using the 0 index, which returns the value without

removing it.

The put () method is the one that adds a value to the queue. It first adds the value to the array

and then calls prioritize ().

Last, the size () method simply returns the length of the array, so it’s possible to tell how many

items are in the queue.

The final method for the PriorityQueue object is remove (), which searches the queue for a specific
value and then removes it. This can be very important if an item loses priority and no longer needs to be
in the queue:

130

PriorityQueue.prototype = {

_compare : function (oValuel, oValue2)

if (oValuel < oValue2) {
return -1;

} else if (ovValuel > ovValue2) {
return 1;

} else {
return 0;

}

}

get : function() {

{

www.it-ebooks.info

http://www.it-ebooks.info/

Request Management

}i

return this._items.shift();

Y,

peek : function () {
return this._items[0];

I

prioritize : function () {
this._items.sort(this._compare) ;

I

put : function (ovalue) {
this._items.push(oValue) ;
this._items.sort(this._compare) ;

I

remove : function (oValue) {
for (var i=0; i < this._items.length; i++) {
if (this._items[i] === oValue) {
this._ items.splice(i, 1);
return true;
}
}
return false;

b

size : function () {
return this._items.length;

The remove () method uses a for loop to search for a specific value in the array. The value is deter-
mined by using the identically equal operator (===) to ensure that types aren’t converted when making
the comparison. If the matching value is found, it is removed from the array using the splice ()
method and a value of true is returned; if no matching value is found, it returns false.

This PriorityQueue object is the base upon which a robust request management object can be created.

The

Although this object will be used for XHR request management, the
PriorityQueue is generic enough that it can be used in any application that needs
prioritizes data items.

RequestManager Object

The RequestManager object is the main object used for handling XHR requests. Its main job is to man-
age two simultaneous XHR requests, since no more than two can be sent on any client that obeys the
HTTP 1.1 specification. This object handles the creation and destruction of all XHR objects used to make

131

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

the requests, meaning that the developer never has to worry about creating an XHR object directly.
Additionally, the RequestManager object handles the monitoring of all requests and the marshaling of
results to particular event handlers.

Since requests are metered by connections that the client is making, the RequestManager is implemented
using the singleton pattern (meaning that only one instance can be created per page). It wouldn’t make
sense to allow more than one instance to be created, since there’s only ever two available requests for an
entire page (for example, it wouldn’t make sense to create three RequestManager objects because there
are still only two requests to manage). The basic pattern used to define this object is:

var RequestManager = (function () {

var oManager = {
//properties/methods go here

I g
//initialization goes here

//return the object
return oManager;

1) ()

This is one of several ways to implement a singleton pattern in JavaScript. The outermost function is
anonymous and is called immediately as the code is executed, creating the object, initializing it, and
returning it. In this way RequestManager becomes a globally available object with its own properties
and methods without creating a prototype.

Before delving into the inner workings of this object, consider the information that is to be handled. All
of the information about each request must be handled by RequestManager in order for it to be effec-
tive. However, the goal is to free developers from instantiating XHR objects directly, which is where
request description objects come in.

Request Description Objects

Instead of creating XHR objects directly, developers can define an object describing the request to exe-
cute. Since there are no methods on this object, there’s no reason to define a constructor; just use an
object literal with the following format:

var oRequest = {
priority: 1,
type: "post",
url: "example.htm",
data: "post_data",

oncancel: function () {},
onsuccess: function () {},
onnotmodified: function () {},
onfailure: function () {},

scope: oObject

132

www.it-ebooks.info

http://www.it-ebooks.info/

Request Management

This object literal contains all of the information used by the RequestManager object. First is the
priority property, which should be a numeric value where the smaller the number, the higher the
priority (priority 1 is higher than priority 2, for example); this property is required. Next come the type
and url properties, which should be set to the type of request (typically “get” or “post”) and the URL

to request, respectively. If you are sending a POST request, then the data property should be assigned to
the post data to be sent to the server; otherwise, it can be omitted.

Next come the event handlers. Each of these methods is called according to the HTTP status of the
response from the server:

0 oncancel () is called when a request is canceled before a response has been received.
QO onsuccess() is called to handle a response with a status in the 200 range.

O onnotmodified() is called to handle a response with a status of 304.
a

onfailure () is called to handle a response with all other statuses.

The scope property works with each of these methods, setting the scope in which the function should
be called (this allows for methods on other objects to be called for any of the three methods). If the scope
isn’t specified, then all of the functions are run in the global (window) scope.

Request description objects are stored and used by RequestManager in the handling of Ajax communica-
tion. These are the only other objects that developers interact with, so they are passed around repeatedly.

Queuing Requests

All pending requests (represented by request description objects) in the RequestManager are stored in
a priority queue. The property name _pending (a private property) is used to store the PriorityQueue
object, which is created with a custom comparison function to sort the objects by priority:

var RequestManager = (function () {
var oManager = {
_pending: new PriorityQueue (function (oRequestl, oRequest2) {
return oRequestl.priority - oRequest2.priority;

1)

//more code here
Y

//initialization goes here

//return the object
return oManager;

IONON

The comparison function used here simply subtracts the value of each object’s priority property, which
will return a negative number if oRequestl.priority isless than oRequest2.priority, a positive

133
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

number if the opposite is true, and 0 if they’re equal. Simply subtracting the two priorities is a much faster
way of implementing this function versus creating the full 1 £. .. else structure discussed previously.

With the pending request queue is set up, there needs to be a publicly accessible way for developers to
add requests to the queue. The method responsible for this is called send (), which expects a request
description object to be passed in:

var RequestManager = (function () {
var oManager = {
DEFAULT_PRIORITY: 10,

_pending: new PriorityQueue (function (oRequestl, oRequest2) ({
return oRequestl.priority - oRequest2.priority;
)

//more code here

send : function (oRequest) {
if (typeof oRequest.priority != "number") {
oRequest.priority = this.DEFAULT_PRIORITY;
}
oRequest.active = false;
this._pending.put (oRequest) ;

Y
//initialization goes here

//return the object
return oManager;

DN

The first step in the send () method is to check for a valid priority on the request description object. If
the property isn’t a number, then a default priority of 10 is defined so as not to cause an error in the pri-
ority queue (this priority is stored in the constant DEFAULT_PRIORITY). Next, the active property is set
to false; this property is used to determine if the request is currently being executed. The last step is to
add the object into the priority queue so that it’s prioritized among other pending requests.

Sending Requests

Now that requests can be queued, there must be a way to send them. To accomplish this, several methods
are necessary. The first, _createTransport (), is a private method that creates an XHR object appropriate
for the browser being used. This code is essentially the same as the XHR creation code discussed in
Chapter 2 (note that to save space, other properties and methods have been shortened to “...”):

var RequestManager = (function () {

var oManager = {

134
www.it-ebooks.info

http://www.it-ebooks.info/

Request Management

DEFAULT_PRIORITY: 10,
//more code here

_pending: new PriorityQueue (function (oRequestl, oRequest2) {...}),

_createTransport : function (){

if (typeof XMLHttpRequest != "undefined") {
return new XMLHttpRequest () ;

} else if (typeof ActiveXObject != "undefined") {
var oHttp = null;
try {

oHttp = new ActiveXObject ("MSXML2.XmlHttp.6.0") ;
return oHttp;
} catch (oEx) {

try {
oHttp = new ActiveXObjct ("MSXML2.XmlHttp.3.0");

return oHttp;

} catch (oEx2) {
throw Error ("Cannot create XMLHttp object.");

ip

send : function (oRequest) {...}
Y

//initialization goes here

//return the object
return oManager;

IDNON

Now that an appropriate XHR object can be created, the next pending request needs to be sent. Remember,
there can be two active requests at a time, so there must be a way to track this. The active property con-
tains a simple array of request description objects whose requests are active.

Initiating Requests
It’s the job of the _sendNext () method to get the next request from the queue, assign it to the active list,
and send it:

var RequestManager = (function () {
var oManager = {
DEFAULT_PRIORITY: 10,
_active: new Array (),

_pending: new PriorityQueue (function (oRequestl, oRequest2) {...}),

_createTransport : function (){...},

135

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

_sendNext : function () {
if (this._active.length < 2) {
var oRequest = this._pending.get();
if (oRequest != null) {
this._active.push (oRequest) ;
OoRequest.transport = this._createTransport();
oRequest.transport.open (oRequest.type, oRequest.url, true);
oRequest.transport.send(oRequest.data) ;
oRequest.active = true;

},

send : function (oRequest) {...}

Y
//initialization goes here

//return the object
return oManager;

DO

The sendNext () method starts by checking to see if there’s an available connection. If the active array
has less than two items in it, that means a connection is available and the function continues, calling get ()
on the priority queue to retrieve the next request. Since there may be no next request, it must be checked to
ensure it’s not null. If it’s not null, then the request is added to the active list and an XHR object is created
and stored in the transport property (this makes it easier to keep track of which XHR object is executing
each request). Next, the open () and send () methods are called with the information inside the request
description object. The last step is to set the active property to true, indicating that the request is currently
being processed.

Monitoring Requests

It may seem odd that an XHR object is used asynchronously without an onreadystatechange event
handler. This decision is intentional, since binding to the onreadystatechange event handler can cause
memory issues in Internet Explorer. Instead, the RequestManager polls the status of the active requests,
monitoring each XHR object every 250 milliseconds (four times a second) for changes to the readyState
property. When the readyState changes to 4, then a sequence of event-handling steps takes place. This
takes place in the _checkActiveRequests () method which, along with _sendNext (), is called in a
function that exists outside of the RequestManager object so that it can be called via setInterval ():

var RequestManager = (function () {
var oManager = {
DEFAULT_PRIORITY: 10,
INTERVAL : 250,
_active: new Array(),

_pending: new PriorityQueue (function (oRequestl, oRequest2) {...}),

136
www.it-ebooks.info

http://www.it-ebooks.info/

Request Management

_checkActiveRequests : function () {

var oRequest = null;
var oTransport = null;

for (var i=this._active.length-1; i >= 0; i--) {
oRequest = this._activelil];
oTransport = oRequest.transport;
if (oTransport.readyState == 4) {
oRequest.active = false;
this._active.splice(i, 1);
var fnCallback = null;
if (oTransport.status >= 200 && oTransport.status < 300) {
if (typeof oRequest.onsuccess == "function") {
fnCallback = oRequest.onsuccess;

}
} else if (oTransport.status == 304) {
if (typeof oRequest.onnotmodified == "function") {
fnCallback = oRequest.onnotmodified;
}
} else {
if (typeof oRequest.onfailure == "function") {
fnCallback = oRequest.onfailure;
}

}
if (fnCallback != null) {
setTimeout ((function (fnCallback, oRequest, oTransport) {
return function () {
fnCallback.call (oRequest.scope| |window, {
status : oTransport.status,
data : oTransport.responseText,
request : oRequest});

}
}) (fnCallback, oRequest, oTransport), 1);
}
}
}
Yo
_createTransport : function (){...},
_sendNext : function () {...},
send : function (oRequest) {...}

Y

//initialization

setInterval (function () {
RequestManager._checkActiveRequests () ;

RequestManager._sendNext () ;
}, oManager.INTERVAL) ;

//return the object
return oManager;

IDNON

137
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

The checkActiveRequests () method is the longest function, but it’s also the one that does most of the
work. Its job is to check the status of each active request to see if readyState is equal to 4. To accom-
plish this, a for loop is used to loop over each request in the active array (since items will be removed,
the loop goes in reverse order to avoid skipping items). For convenience, the request description object is
stored in oRequest, and the XHR object is stored in oTransport. Next, the readyState property is
checked; if it’s equal to 4, then some processing occurs.

The first step in processing a completed request is to set the active property to false, to indicate that it
has returned and is complete. Then, the request is removed from the _active array using splice (). Next
comes the decision as to which callback function should be executed. A variable, fncallback, is created to
store the callback function. This variable is assigned a value based on the status of the response and the
availability of the callback function. If the status is between 200 and 299, then fnCallback is assigned the
value of onsuccess; for a status of 304, fnCallback is set equal to onnotmodified; all other statuses
force fnCallback to be assigned to onfailure. Each of these assignments takes place only if the given
callback function is available (typeof is used to ensure that the function is defined).

After the assignment of fnCallback, the variable is checked to see if it’s a valid function. If so, then a
timeout is created to execute it. The timeout is important because it’s possible for a callback function to
take longer than 250 milliseconds to execute, which creates a race condition where the first call inside the
interval may not have been completed by the time the next call begins. Delaying the execution of the
callback ensures that the interval function executes completely before it is executed again.

In order to ensure proper scoping, a special time of function is created to pass into the setTimeout ()
function. This anonymous function accepts three arguments: fncallback, oRequest, and oTransport
(the same variables necessary to execute the callback function). These arguments are passed in immedi-
ately to the anonymous function in order to create proper copies of each variable. Inside of the anony-
mous function, another function is returned that actually executes the callback. It is safe to execute the
callback within that scope because the variables are no longer the ones used within the for loop; they
are copies. This technique is a bit involved, so consider the step-by-step buildup. First, the anonymous
function is defined:

function (fnCallback, oRequest, oTransport) {

Next, the anonymous function defines and returns a function in its body:

function (fnCallback, oRequest, oTransport) {
return function () {

I
}

The returned function is written to execute the callback function:

function (fnCallback, oRequest, oTransport) {
return function () {
fnCallback.call (oRequest.scope
status : oTransport.status,
data : oTransport.responseText,
request : oRequest});

|window, {

138
www.it-ebooks.info

http://www.it-ebooks.info/

Request Management

Then, the outer function is called, passing in the necessary variables:

(function (fnCallback, oRequest, oTransport) {
return function () {
fnCallback.call (oRequest.scope | |window, {
status : oTransport.status,
data : oTransport.responseText,
request : oRequest});
Y
}) (fnCallback, oRequest, oTransport)

This effectively creates and returns a function to execute, so the result can be passed into setTimeout ():

setTimeout ((function (fnCallback, oRequest, oTransport) {
return function () {
fnCallback.call (oRequest.scope| |window, {
status : oTransport.status,
data : oTransport.responseText,
request : oRequest});
Y
}) (fnCallback, oRequest, oTransport), 1);

Now, the callback function will be executed with the proper variables by using call () and passing in the
appropriate scope in which to run and a data object. The first argument is a logical OR of the scope prop-
erty and the window object, which returns scope if it’s not null; otherwise, it returns window. The second
argument is an object literal with three properties: status, which is the HTTP status of the request; data,
which is the response body; and request, which returns the request description object that was used to
make the request. This function call takes place inside a timeout, which is delayed for 1 millisecond.

After checkActiveRequests () is called in the interval function, it’s time to see if there’s room to make
another request. The sendNext () method is then called to initiate the next request (if another request is

pending).

As mentioned previously, this whole function is called using setInterval () every
250 milliseconds. The interval setting is stored as INTERVAL on the RequestManager
object. For most uses, this rate of polling is fine, but this interval length can and
should be customized according to individual needs.

Cancelling Requests

It’s entirely possible that a request may need to be canceled before it’s executed. The cancel () method
handles this, accepting the request description object as an argument and ensuring that it doesn’t get
sent. This is accomplished by removing the object from the list of pending requests. If the request is
already active (it’s in the active array, not the priority queue), then the XHR request must be aborted
and the request removed from the active list:

var RequestManager = (function () {

var oManager = {

139
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Y

DEFAULT_PRIORITY: 10,
INTERVAL : 250,
_active: new Array(),

_pending: new PriorityQueue (function (oRequestl, oRequest2)

_checkActiveRequests : function (){...},
_createTransport : function (){...},
_sendNext : function () {...},

cancel : function (oRequest) {
if (!this._pending.remove (oRequest)) {

oRequest.transport.abort () ;

if (this._active[0] === oRequest) {
this._active.shift();
} else if (this._active[l] === oRequest) {

this._active.pop();

}
if (typeof oRequest.oncancel == "function") {

oRequest .oncancel.call (oRequest.scope| |window,
{request : oRequest});

b,

send : function (oRequest) {...}

//initialization
setInterval (function () {...}, 250);

//return the object
return oManager;

DN

The cancel () method begins by attempting to remove the request description object from the priority
queue. Remember that the priority queue’s remove () method returns true if the item was found and
removed, and false if not. So, if this call to remove () returns false, it means that the request is active.
When the request is active, the first step is to call abort () on the XHR object being used by the request.
Since there are only two possible items in the array, it’s easy to check each item in _active to see if it’s
the request of interest. If the request is the first item, then shift () is called to remove it; if the request is
the second item, pop () is called to remove it. The last step is to execute the oncancel () callback func-

tion if it’s defined.

140

www.it-ebooks.info

{..

-1y

http://www.it-ebooks.info/

Request Management

Age-Based Promotion

With priority queues, there’s a danger that a low-priority item will remain at the back indefinitely. This
means that, in the case of the RequestManager, there may be low priority requests that are never exe-
cuted. Obviously, this is an undesirable occurrence, since even the lowest-priority requests should be
executed eventually. Age-based promotion seeks to resolve this issue by automatically bumping up the pri-
ority of requests that have remained in the queue for a longer-than-normal time.

The actual time considered to be “longer than normal” is directly related to the functionality that your
application requires. In this case, assume that the time limit is 1 minute (60,000 milliseconds). Any
request that hasn’t been executed for 1 minute will receive an automatic priority promotion. Doing this
ensures that a request will only be in the queue for a maximum of 1 minute times its initial priority (a
request with a priority of 4 will be in the queue for a maximum of 4 minutes).

To accomplish age-based promotion, the RequestManager needs to add an additional property to each
request description object. The age property tracks how long the request has been at a given priority.
When age reaches the maximum, the priority property is automatically decremented (remember, the
lower the number, the higher the priority), and age is reset back to 0. This functionality takes place in the
_agePromote () method:

var RequestManager = (function () {
var oManager = {
AGE_LIMIT : 60000,
DEFAULT_PRIORITY: 10,
INTERVAL : 250,
_active: new Array(),
_pending: new PriorityQueue(function (oRequestl, oRequest2) {...}),

_agePromote : function() {
for (var i=0; i < this._pending.size(); i++) {
var oRequest = this._pending.item(i);
oRequest.age += this.INTERVAL;
if (oRequest.age >= this.AGE_LIMIT) {
oRequest.age = 0;
oRequest.priority--;
}
}
this._pending.prioritize();

b

_checkActiveRequests : function (){...},
_createTransport : function (){...},
_sendNext : function () {...},

cancel : function (oRequest) {...},

send : function (oRequest) {

141
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

if (typeof oRequest.priority != "number") {
oRequest.priority = this.DEFAULT_PROPERTY;

}

OoRequest.active = false;

oRequest.age = 0;

this._pending.put (oRequest) ;

Y

//initialization

setInterval (function () {
RequestManager._checkActiveRequests () ;
RequestManager._sendNext () ;
RequestManager._agePromote () ;

}, oManager.INTERVAL) ;

//return the object
return oManager;

IONON;

This new code adds a constant, AGE_LIMIT, to define how long a request should remain at the given pri-
ority. The constant is used inside of _agePromote () to determine when a request should be promoted.
Before a request can be checked, its age property must be initialized; this takes place in the send ()
method with one additional line. The _agePromote () method is called inside of the interval function,
just after _sendNext () to ensure that all of the pending requests are in the correct order for the next
interval. Inside of _agePromote (), each item in the _pending queue has its age updated by adding the
INTERVAL value to its current age. If age is greater than or equal to the limit, age is reset to 0 and the
priority is decremented. The last step is to call prioritize () on the queue, since this method effec-
tively changes the priority of an item already in the queue.

Handling Ajax Patterns

Having a prioritized list of requests is very helpful in managing traffic between the client and server, but
it does require the developer to determine the relative priority of each request. In some cases, this is
quite simple. For example, if a user action (a mouse click, a key press, etc.) initiated a request, clearly it is
very important because the user is waiting for a response, so a priority of 0 would be most appropriate.
In other cases, however, it’s not always clear what the priority should be. To remedy this situation, it
may be necessary to provide methods that decide priorities according to the Ajax pattern being used.
Recall the patterns discussed earlier in the book:

Q Predictive Fetch: Guesses what the user will do next and preloads the necessary information
from the server.

QO Submission Throttling: Incrementally sends data to the server.

(]

Periodic Refresh: Also known as polling, periodically polls the server for updated information.

QO Multi-Stage Download: Downloads only the most important information first and then sends
subsequent requests for additional information.

Consider the relative priorities among these four patterns. None of them is as important as a user action,
so that means a priority of 1 or lower.

142
www.it-ebooks.info

http://www.it-ebooks.info/

Request Management

While helpful, Predictive Fetch is far from high priority. Its intent is to improve the user experience, not to
control it. In an Ajax application that is making requests using various patterns, chances are that Predictive
Fetch requests are a fairly low priority. Assuming that priorities are assigned from 0 to 10, Predictive Fetch
may accurately be described as a priority of 5.

Submission Throttling is more important than Predictive Fetch because it is sending user information to
the server as opposed to retrieving information from the server. Once again, this is not as important as a
user action, so it falls somewhere between a priority of 0 and 5, probably landing at 2.

Periodic Refresh is very similar to Predictive Fetch, though the fact that it’s sent on a recurring basis
indicates that it’s more important. More than likely, Periodic Refresh is waiting to indicate some new
information to the user as soon as it’s available. Because it’s receiving data from the server, however, it
would be a lower priority than Submission Throttling, which sends data to the server. So, Periodic
Refresh is a priority of 3.

The last pattern is Multi-Stage Download, which is actually just another form of Predictive Fetch. The
only difference between the two is when the request(s) take place. For Multi-Stage Download, the
requests typically take place at the initial page load, while Predictive Fetch can occur at any time,
depending on user action. Really, the two patterns are too close to consider one a higher priority than the
other, so Multi-Stage Download can also be considered a 5.

Now that the priorities are clear among these patterns, what can be done to make this easier for developers?
The best approach is to add a method for each pattern, along with one for a user action, so that developers
don’t need to remember these priorities on their own. Also, by encapsulating this functionality and auto-
assigning priorities, this frees you to easily change priorities later without changing code in multiple places.

Each of these methods works the same way: accept a request description object as an argument, assign
the given priority, and then pass the modified object to the send () method to be queued. Since the
names of the Ajax patterns are rather verbose, the method names have been shortened:

O poll(): Use for Periodic Refresh.

QO prefetch(): Use for Predictive Fetch and Multi-Stage Download.
0 submit(): Use for a user action.
a

submitPart (): Use for Submission Throttling.
The code for each is as follows:
var RequestManager = (function () {
var oManager = {
AGE_LIMIT : 60000,
DEFAULT_PRIORITY: 10,
INTERVAL : 250,

_active: new Array(),

143
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

_pending: new PriorityQueue (function (oRequestl,
_agePromote : function() {...},
_checkActiveRequests : function (){...},
_createTransport : function (){...},

_sendNext : function () {...},

cancel : function (oRequest) {...},

poll : function (oRequest) {
oRequest.priority = 3;
this.send (oRequest) ;

},

prefetch : function (oRequest) {
OoRequest.priority = 5;
this.send (oRequest) ;

}

send : function (oRequest) {...},

submit : function (oRequest) {
OoRequest.priority = 0;
this.send (oRequest) ;

}

submitPart : function (oRequest) {

(
oRequest.priority = 2;
this.send (oRequest) ;
}
Y
//initialization
setInterval (function () {...}, oManager.INTERVAL) ;

//return the object
return oManager;

IDNON;

These methods can be used in place of send (), such as:

144

RequestManager.poll ({
type: "get",
url: "example.htm",
data: "post_data",
onsuccess: function () {},

1)

RequestManager . submitPart ({
type: "post",

www.it-ebooks.info

oRequest2)

{..

-1y

http://www.it-ebooks.info/

Request Management

url: "handler.php",
data: "name=Nicholas",
onsuccess: function () {},

1)

Note that a priority property isn’t assigned in these request description objects, as it is not needed. If a
priority property were assigned, however, it would be overridden by the method being called.

Using RequestManager

To try out the RequestManager object, it’s easiest to set up a page that sends multiple requests in a row
and reports back when the results have been received. In this way, the order in which the responses are
received indicates the order in which the requests were sent (with a small margin of error due to differ-
ent server response times per request). Consider the following simple HTML page:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Request Manager Example</title>
<script type="text/javascript" src="PriorityQueue.js"></script>
<script type="text/javascript" src="RequestManager.js"></script>
<script type="text/javascript" src="RequestManagerExample.js"></script>
</head>
<body>
<fieldset>
<legend>Responses</legend>
<div id="divResponses"></div>
</fieldset>
</body>
</html>

This page includes the necessary RequestManager files and has a <fieldset/> surrounding a <div/>
called "divResponses". This <div/> element is responsible for outputting the results of each request
so that it’s obvious as to what has occurred. The RequestManagerExample. js file contains the
JavaScript for this example, beginning with some callback functions to handle various responses:

function outputResult (oResponse, sColor) {
var divResponses = document.getElementById ("divResponses") ;
var oRequest = oResponse.request;

var sMessage = "<div style=\"background-color:" + sColor + "\">"
+ OResponse.status + " (" + oRequest.priority + ") "
+ OoRequest.type + " " + oRequest.url + " " + oRequest.age + "</div>";

divResponses.innerHTML += sMessage;

function outputSuccessResult (oResponse) {
outputResult (oResponse, "white");

function outputFailureResult (oResponse) {

145
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

outputResult (oResponse, "red");

function outputNotModifiedResult (oResponse) {
outputResult (oResponse, "silver");

Each of these functions handles a different case and is used as the values of onsuccess, onfailure, and
onnotmodified for each request. They each output a message, including the HTTP status, the priority
(in parentheses), the request type, the URL, and the age of the request. The outputSuccessResult ()
function prints its message with a white background, outputFailureResult () uses a red background,
and outputNotModifiedResult () has a silver background. This color-coding makes it easier to differ-
entiate which function was called. Since the color is the only thing that changes, the outputResult ()
function provides the basic functionality used by the other functions.

Next, there are some functions to create specific types of requests:

function addPoll () {
RequestManager.poll ({
type : "get", url : "poll.txt",
onsuccess : outputSuccessResult,
onfailure : outputFailureResult,
onnotmodified : outputNotModifiedResult
}) i

function addSubmit () {
RequestManager . submit ({
type : "post", url : "post.txt", data : "name=Nicholas",
onsuccess : outputSuccessResult,
onfailure : outputFailureResult,
onnotmodified : outputNotModifiedResult
}) i

function addSubmitPart () {
RequestManager . submitPart ({
type : "post", url : "post.txt", data : "name=Nicholas",
onsuccess : outputSuccessResult,
onfailure : outputFailureResult,
onnotmodified : outputNotModifiedResult
b)) g

function addPreFetch() {
RequestManager .prefetch({
type : "get", url : "data.txt",
onsuccess : outputSuccessResult,
onfailure : outputFailureResult,
onnotmodified : outputNotModifiedResult
2

function addLowPriority () {

146
www.it-ebooks.info

http://www.it-ebooks.info/

Request Management

}

RequestManager.send ({
priority: 10, type : "get", url : "data.txt",
onsuccess : outputSuccessResult,
onerror : outputFailureResult,
onnotmodified : outputNotModifiedResult
1)

Each of these functions creates a different type of request to be placed in the queue. The addpol1 ()
function creates a poll request to poll. txt, which doesn’t exist; this should result in a 404 error. Next,
the addSubmit () and addSubmitPart () functions create POST requests to a text file, post . txt, which
should fail with a 405 error (most servers won't let you post data to a plain text file). The

addpreFetch () function creates a GET request for data. txt, while addLowPriority () creates a very
low-priority request that should be executed only after everything else has been completed.

The onload event handler is then assigned to initiate a few requests using these methods:

window.onload = function () {

¥

addpoll () ;
addpPoll () ;
addSubmit () ;
addPreFetch() ;
addLowPriority () ;
addSubmitPart () ;
addLowPriority () ;
addPreFetch () ;
addpoll () ;
addSubmit () ;

This creates a series of different requests with varying priorities. Since these requests are added in rapid
succession, they effectively end up being added to the queue simultaneously, which means that the out-
put on the page should be very similar to this:

405
405
405
404
404
404
200
200
200
200

) post post.txt 0

) post post.txt 250
) post post.txt 500
) get poll.txt 750

) get poll.txt 1000
) get poll.txt 1250
) get data.txt 1500
) get data.txt 1750
0) get data.txt 2000
0) get data.txt 2250

In this output, it’s clear to see that the calls to submit () were executed first; they each returned a 405
error, had a priority of 0, used POST, and were 0 and 250 milliseconds old, respectively. Next up is the
call created via submitPart (), which had a priority of 2. After that, the various polling requests were
executed at a priority of 3, and requests created using prefetch () were executed with a priority of 5.
The two low-priority requests were executed last.

It is possible to see differing results due to the differences in client machines, how long it takes to create
an XHR object, and how long it takes to get a response from the server. However, most browsers should

147

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

execute very similarly, producing output resembling the output reproduced in the preceding examples,
with maybe one or two higher-priority requests not executing correctly (although, all other requests
should still complete before the lowest-priority ones).

Summary

In this chapter, you learned about the challenges in managing Ajax requests from a single application.
The two-connection HTTP 1.1 limit was discussed as it pertains to XHR objects, and a discussion of why
this limitation is important followed.

Next, an alternate approach to create XHR objects was discussed, involving developer-defined prioritiza-
tions to ensure that important requests are executed before lower priority communication takes place. You
were led through the creation of a priority queue data structure in JavaScript, making use of the Array
object’s built-in sort () method for prioritizing values in the queue. This generic PriorityQueue object
became the basis for a request management object.

With the basic data structure created, you began creating the RequestManager object, which uses the
priority queue to determine the requests to execute next. The RequestManager object expects request
description objects to be provided that describe the request that should take place. It then uses this
description to make the request at an appropriate time, without tying functions to XHR objects (which
can cause memory leaks).

Four different callback functions were made available on each request description object, one for success
(HTTP code in the 200-299 range), one for “not modified” (HTTP code 304), one for “failure” (all other
codes), and one to call if the request is canceled before being sent. Each of these callback functions can be
a standalone function or an object method whose scope can be provided using the scope property.

Last, you learned how to implement an age-based promotion system so that lower-priority requests will
be ensured of execution. This works by automatically promoting requests to the next priority after
they’ve been in the queue for a specified amount of time. By adding this to the RequestManager object,
you now have a robust Ajax connection management object.

148
www.it-ebooks.info

http://www.it-ebooks.info/

XML, XPath, and XSLT

As the popularity of XML grew, web developers wanted to use the technology on both the server
and client side, but only the former initially offered XML functionality. Starting with Internet
Explorer 5.0 and Mozilla 1.0 (predecessor to Firefox), Microsoft and Mozilla implemented
JavaScript support for XML in their browsers. Opera 8 and Safari 1.2 introduced some basic XML
support, and while Opera’s JavaScript XML support is catching up, Safari still lags behind the
pack with the least amount of implemented support. With that being said, browser makers con-
tinue to broaden the availability of XML support with new features, giving web developers pow-
erful tools akin to those formerly found only on the server.

XML Support in Browsers

Many web browsers are available today, but few have complete support for XML and its related
technologies. Internet Explorer (IE) and Mozilla Firefox lead the pack in support, followed closely
by Opera (as of version 9). Apple’s Safari trails significantly behind, supporting only rudimentary
XML features. Despite these differences in support, all browsers implement basic XML functional-
ity; therefore, this section covers all four major browsers.

XML DOM in IE

When Microsoft added XML support to IE 5.0, they did so by incorporating the MSXML ActiveX
library, a component originally written to parse Active Channels in IE 4.0. This initial version
wasn’t intended for public use, but developers discovered the component and began using it.
Microsoft responded with a fully upgraded version of MSXML, which was included in IE 4.01.

MSXML was primarily an IE-only component until 2001 when Microsoft released MSXML 3.0, a
separate distribution available through the company’s web site. Later that year, version 4.0 was
released and MSXML was renamed Microsoft XML Core Services Component. Since its inception,
MSXML has gone from a basic, non-validating XML parser to a full-featured component that can
validate XML documents, perform XSL transformations, support namespace usage, the Simple

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

API for XML (SAX), and the W3C XPath and XML Schema standards, all while improving performance
with each new version.

Creating an XML DOM Object

To facilitate ActiveX object creation in JavaScript, Microsoft implemented a class called ActivexObject.
Its constructor takes a single argument, a string containing the name and version of the ActiveX object to
create; in this case, it is the version of the XML document. The first XML DOM ActiveX object was called
Microsoft.XmlDom, and its creation looks like this:

var oXmlDom = new ActiveXObject ("Microsoft.XmlDom") ;

The newly created XML DOM object behaves like any other DOM object, enabling you to traverse the
DOM tree and manipulate DOM nodes.

At the time of this writing, there are six different versions of the MSXML DOM document; the version
strings are as follows:

Microsoft.XmlDom

MSXML2.DOMDocument

MSXML2.DOMDocument.3.0

MSXML2.DOMDocument.4.0

MSXML2.DOMDocument.5.0

MSXML2.DOMDocument.6.0

U 00U u o

MSXML is available only on Windows-based Internet Explorer. IE 5 on the Mac has
no XML DOM support.

Since there have been many improvements with each new release of MSXML, you always want to use
the latest version. Microsoft recommends checking for the latest version (MSXMLS6 as of this writing)
and to use MSXMLS3 as the fallback version. Therefore, it is helpful to create a function to determine
which version to use. The following function, createDocument (), creates an MSXML6 DOM if the
client machine supports it. Otherwise, a MSXML3 DOM is created:

function createDocument () {
var aVersions = [
"MSXML2 . DOMDocument .6.0",
"MSXML2 . DOMDocument .3.0",
15

for (var i = 0; i1 < aVersions.length; i++) {
try {
var oXmlDom = new ActiveXObject (aVersions[i]);
return oXmlDom;
} catch (oError) {
//Do nothing
}

150
www.it-ebooks.info

http://www.it-ebooks.info/

XML, XPath, and XSLT

}
throw new Error ("MSXML is not installed.");

}

This function iterates through the aversions array, which contains the version strings. It starts with the
latest version, MSXML2 . DOMDocument . 6 . 0, and attempts to create the DOM document. If the object cre-
ation is successful, it is returned and createDocument () exits; if it fails, an error is thrown and then
caught by the try. . .catch block, so the loop continues and the next version is tried. If the creation of
an MSXML DOM document fails after trying the two versions, an error is thrown stating that MSXML is
not installed. Call the function like this:

var oXmlDom = createDocument () ;

Now that you have an XML document at your disposal, it is time to load some XML data.

Loading XML Data in IE

The MSXML DOM document supports two methods of loading XML data: 1oad () and loadxML (). The
load () method accepts a single argument, which is a URL from which to download an XML file; the
loadxML () method also accepts a single argument, though it is a string of XML data. Both methods
have the effect of parsing XML data and creating an XML DOM structure.

The 1oad () method behaves similar to XHR in that it can load data from an external file in two modes:
asynchronous or synchronous. This is controlled by the async property. By default, async is set to
true, so the 1oad () method is asynchronous; to use synchronous mode, async must be set to false,
as follows:

oXmlDom.async = false;

Generally, it’s considered poor practice to initiate requests in synchronous mode due
to the possibility of freezing the user interface. Synchronous mode should be used
sparingly and only when small amounts of data are being sent from the server.

When in asynchronous mode, the MSXML object exposes the readyState property, which almost has
the same five states as the XHR readyState property (discussed in Chapter 2). The exception is that the
MSXML object does not have the 0 (UNITIALIZED) state. Additionally, the DOM document supports the
onreadystatechange event handler, enabling you to monitor the readyState property:

oXmlDom.onreadystatechange = function () {
if (oXmlDom.readyState == 4) {
//Do something when the document is fully loaded.
}
¥

oXmlDom. load ("myxml.xml") ;

In this example, the fictitious XML document named myxm1 . xm1 is loaded into an XML DOM. When

readyState reaches the value of 4, the document is fully loaded and the code inside the i f block will
execute.

151
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Note that unlike XHR, there is no status property on the XML DOM object.

The second way to load XML data, 1oadXML (), is a bit simpler and doesn’t require any HTTP requests
since its data is already present on the client. The data passed in must contain well-formed XML, as in
the following example:

var sXml = "<root><person><name>Jeremy McPeak</name></person></root>";
oXmlDom. loadXML (sXml) ;

Here, the XML data contained in the variable sxm1 is loaded into the oxm1Dom document. There is no
reason to check the readyState property or to set the async property when using loadxML () because
it doesn’t involve a server request; the data is loaded synchronously and is immediately available.

Validating XML Data While Loading

By default, an MSXML DOM object validates the XML document when it parses the data. A valid XML
document is one that references a Document Type Definition (DTD) in a DOCTYPE declaration and con-
forms to that DTD.

There are times when this behavior is not desired, and instead, the document should be checked only for
well-formedness. To allow this, the MSXML DOM object exposes the validateOnParse property. It
accepts with a true (the default) or false value, and it should be set before the DOM object loads the
document.

var oXmlDom = createDocument () ;
oXmlDom.async = false;
oXmlDom.validateOnParse = false;
oXmlDom. load ("myxml.xml") ;

In this code, when the XML DOM object loads and parses the XML, it will be checked only to see if the
document is well formed.

Preserving White Space

The MSXML DOM treats white space differently than standards-compliant DOM implementations. By
default, the MSXML DOM removes white space—only nodes from the document, leaving nothing but
XML and text nodes. While many consider this behavior to be a more common sense issue, the fact
remains that it is not standards compliant.

The MSXML DOM, however, does offer the preserveWhiteSpace property that tells the parser to
either throw out the white space—only nodes or to keep them. The property accepts a Boolean value, and
the default is false. The following code loads an XML document and preserves its white space:

var oXmlDom = createDocument () ;
oXmlDom.async = false;
oXmlDom.preserveWhiteSpace = true;

oXmlDom. load ("myxml.xml") ;

When true, this property allows an MSXML DOM object to behave like a standards-compliant DOM.

152
www.it-ebooks.info

http://www.it-ebooks.info/

XML, XPath, and XSLT

Traversing the XML DOM in IE

Navigating an XML DOM document is much like navigating an HTML DOM document; it is a hierarchi-
cal node structure. At the top of the tree is the documentElement, which contains the root element of the
document. From there, you can access any element or attribute in the document using the properties
listed in Table 6-1.

Table 6-1 XML DOM Properties

Property Description

attributes Collection of attributes for this node.

childNodes Collection of child nodes.

firstChild First child of the node.

lastChild Last child of the node.

nextSibling The node immediately following the current node.

nodeName The qualified name of the node.

nodeType The XML DOM node type.

nodeValue The text associated with the node, if any.

ownerDocument The XML DOM document of which this node is a part.

ParentNode Parent node of the current node.

PreviousSibling The node immediately before the current node.

Text Returns the content of the node or the concatenated text of the
current node and its descendants. This is an IE-only property.

Xml Returns the XML string representing the current node and its
children. This is an IE-only property.

Traversing and retrieving data from the DOM is a straightforward process. Consider the following XML
document:

<?xml version="1.0" encoding="utf-8"?>

<books>
<book 1sbn="9780470109496">Professional Ajax</book>
<book isbn="0764579088">Professional JavaScript for Web Developers</book>
<book isbn="0764557599">Professional C#</book>
<book isbn="1861002025">Professional Visual Basic 6 Databases</book>
</books>

This simple XML document includes a root element, <books />, with four child <book/> elements.
Using this document as a reference, you can explore the DOM. The DOM tree is based on the relation-
ships nodes have with other nodes. One node may contain other nodes, which are called child nodes
(each <book/> element is a child node of the <books /> element). Another node may share the same par-
ent as other nodes, in which case these nodes are siblings (each <book/> element is a sibling of the other
<book/> elements).

153
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Perhaps you want to retrieve the first <book/> element in the document. This is easily achieved with the
firstChild property:

var oFirstBook = oXmlDom.documentElement.firstChild;

Using the firstChild property, the first <book/> element is referenced and assigned to the variable
oFirstBook because it is the first child element of the root element <books/>.

You can also use the childNodes collection to achieve the same results:
var oFirstBook2 = oXmlDom.documentElement.childNodes[0];

Selecting the first item in the childNodes collection (at index 0) returns the first child of the node, just as
if accessing the firstChild property. You can determine the number of children a node has by using
the 1length property, as follows:

var iChildren = oXmlDom.documentElement.childNodes.length;

If nodes can have children, that means they can also have parents. The parentNode property returns the
parent of the given node:

var oParent = oFirstBook.parentNode;

Recall that oFirstBook is the first <book/> element in the document. The parentNode property of this
node refers to the <books/> element, the documentElement of the document.

The <book/> elements are siblings to each other because they share the same direct parent. Two proper-

ties, nextSibling and previousSibling, exist to access these adjacent nodes. The nextSibling prop-
erty references the next occurring sibling, whereas the previousSibling property selects the preceding
sibling:

var oSecondBook = oFirstBook.nextSibling;

var oFirstBook2 = oSecondBook.previousSibling;

In this code, the second <book/> element is referenced and assigned to oSecondBook. The
oFirstBook2 variable is then assigned to the previous sibling of oSecondBook, resulting in
oFirstBook2 containing the same value as oFirstBook. If a node has no previous or next siblings,
previousSibling and nextSibling will be null.

Now that you know how to traverse through the document hierarchy, the next step is to extract from
nodes in the tree. For example, to retrieve the text contained within the third <book/> element
(Professional C#), you can use the text property as follows:

var sText = oRoot.childNodes[2].text;
The text property retrieves all the text contained within this node and is a Microsoft proprietary prop-

erty, but it is extremely helpful. Without the text property, you would have to access the text node as
follows:

154
www.it-ebooks.info

http://www.it-ebooks.info/

XML, XPath, and XSLT

var sText = oRoot.childNodes[2].firstChild.nodevValue;

This code achieves the same results as using the text property. Like the previous example, the third
<book/> element is referenced using the childNodes collection; the text node of the <book/> element is
then referenced with the use of firstChild because a text node is still a node in the DOM. The text is
then retrieved by using the nodevalue property (which is always set to the text contents for a text node).

The results from these two examples are identical; however, the text property behaves in a different
way than using the nodevalue property on a text node. The text property retrieves the value of all text
nodes contained within the element and its children, whereas the nodevalue property gets only the
value of the current node. The text property is helpful, but it has the potential to return more text than
desired. For example, consider this modified XML document:

<?xml version="1.0" encoding="utf-8"?>

<books>
<book isbn="9780470109496">
<title>Professional Ajax</title>
<author>Nicholas C. Zakas, Jeremy McPeak, Joe Fawcett</author>
</book>
<book isbn="0764579088">Professional JavaScript for Web Developers</book>
<book isbn="0764557599">Professional C#</book>
<book isbn="1861002025">Professional Visual Basic 6 Databases</book>
</books>

This new XML document adds two new children to the first <book/> element: the <title/> element,
which contains the title of the book, and the <author/> element, which holds the author data. Once
again, use the text property:

alert (oFirstBook.text) ;

There is nothing new in this code, as you have already seen it. However, look at the results, as shown in
Figure 6-1.

Notice that the text nodes from the <title/> and <author/> elements are retrieved and concatenated.
If oFirstBook.nodevalue had been used, it would have returned null, because oFirstBook isnot a
text node.

There are a number of methods to retrieve nodes and values from an XML node; the two most often
used are getAttribute () and getElementsByTagName ().

The getAttribute () method takes a string argument containing the name of the attribute to retrieve. If
the attribute does not exist, the value returned is null. Using the same XML document introduced ear-
lier in this section, consider the following code:

var sAttribute = oFirstBook.getAttribute("isbn");
alert (sAttribute) ;

This code retrieves the value of the isbn attribute of the first <book/> element and assigns it to the
sAttribute variable. This value is then displayed using alert ().

155
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

€] Book XML Exercise - Microsoft Internet Explorer

]
"

eBack M Iﬂ |EL| ;‘J /-‘: Search ‘i“‘\'{FavnntEs &_—‘? M= ﬁ - _J ‘i‘i

address] http: /fyoda/4/figure%201/book him v|BJeo ks 7 -

Microsoft Internet Explorer

!} Professional Ajax Nicholas C. Zakas, Jeremy McPeak, Joe Fawcett

&] Done 4 Local intranet

Figure 6-1

The getElementsByTagName () method returns a NodeList of child elements with the specified tag
name. This method searches for elements within the given node’s descendants only, so the returned
NodeList does not include any elements that are ancestors or children of ancestors. For example:

var cBooks = oRoot.getElementsByTagName ("book") ;
alert (cBooks.length) ;

This code retrieves all <book/> elements within the document and returns the NodeList to cBooks.
With the sample XML document, an alert box displays that four <book/> elements were found. To
retrieve all descendant elements, pass " *" as the parameter to getElementsByTagName (), as follows:

var cElements = oRoot.getElementsByTagName("*");

In this example, the cElements collection contains both the <book/> elements as well as the <title/>
and <author/> elements.

Retrieving XML Data in IE

Retrieving XML data is as simple as using a property, the xm1 property. This property serializes the XML
data of the current node. Serialization is the process of converting objects into an easily storable or trans-
mittable format. The xm1 property converts XML into a string representation, complete with tag names,
attributes, and text:

var sXml = oRoot.xml;
alert (sXml) ;

156
www.it-ebooks.info

http://www.it-ebooks.info/

XML, XPath, and XSLT

This code serializes the XML data starting with the document element, which is then passed to the
alert () method. A portion of the serialized XML looks like this:

<books><book isbn="9780470109496">Professional Ajax</book></books>

You can load serialized data into another XML DOM object, send it to a server application, or pass it to
another page. The serialized XML data returned by the xm1 property depends on the current node.
Using the xm1 property at the documentElement node returns the XML data of the entire document,
whereas using it on a <book/> element returns only the XML data contained in that <book/> element.

The xml property is read-only. If you want to add elements to the document, you
will have to use DOM methods to do so.

Manipulating the DOM in IE

To this point, you have learned how to traverse the DOM, extract information from it, and convert XML
into string format. You also have the ability to add to, delete from, and replace nodes in the DOM.

Creating Nodes

You can create a variety of nodes using DOM methods, but the most often used is the
createElement () method. This method takes one argument, a string containing the tag name of the
element to create, and returns an XMLDOMElement reference:

var oNewBook = oXmlDom.createElement ("book") ;
oXmlDom.documentElement . appendChild (oNewBook) ;

This code creates a new <book/> element and appends it to documentElement using the
appendChild () method. The appendchild () method adds the new element, specified by its argu-
ment, after the last child node. This code appends an empty <book/> element to the document, so the
element needs some text:

var oNewBook = oXmlDom.createElement ("book") ;

var oNewBookText = oXmlDom.createTextNode ("Professional .NET 2.0 Generics");
oNewBook . appendChild (oNewBookText) ;

oXmlDom.documentElement . appendChild (oNewBook) ;

This code creates a text node with the createTextNode () method and appends it to the newly created
<book/> element with appendChild (). The createTextNode () method takes a string argument speci-
fying the text contents for the text node.

At this point, you have programmatically created a new <book/> element, provided it a text node, and
appended it to the document. One last piece of information is required to get this new element on par
with its other siblings, the isbn attribute. Creating an attribute is as simple as using the
setAttribute () method, which is available on every element node:

157
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

var oNewBook = oXmlDom.createElement ("book") ;

var oNewBookText = oXmlDom.createTextNode ("Professional .NET 2.0 Generics");
oNewBook . appendChild (oNewBookText) ;
oNewBook.setAttribute("isbn", "0764559885") ;

oXmlDom.documentElement . appendChild (oNewBook) ;

The new line of code in this example creates an isbn attribute and assigns it the value of 0764559885.
The setAttribute () method takes two string arguments: the first is the name of the attribute, and the
second is the value to assign to the attribute. IE also provides other methods to add attributes to an ele-
ment; however, they hold no real advantage over setAttribute () and require much more coding.

Removing, Replacing, and Inserting Nodes

If you can add nodes to a document, it seems only natural to be able to remove them as well; the
removeChild () method does just that. This method accepts a single argument, the node to remove. To
remove the first <book/> element from the document, the following code can be used:

var oRemovedChild = oRoot.removeChild(oRoot.firstChild);

The removeChild () method returns the child node that was removed, so oRemovedChild now refer-
ences the removed <book/> element. With a reference to the old node, it can be placed anywhere else in
the document.

Perhaps you want to replace the third <book/> element with oRemovedChild. The replaceChild()
method can be used to that end:

var oReplacedChild = oRoot.replaceChild(oRemovedChild, oRoot.childNodes[2]);

The replaceCchild () method accepts two arguments: the node to add and the node to replace. In this
code, the node referenced by oRemovedchild replaces the third <book/> element, and the removed
node is returned and stored in oReplacedChild.

Because oReplacedChild references the replaced node, you can easily insert it back into the document.
You could use appendchild () to add the node to the end of the child list, or you can use the
insertBefore () method to insert the node before another sibling:

oRoot.insertBefore (oReplacedChild, oRoot.lastChild) ;

This code inserts the previously replaced node before the last <book/> element. The insertBefore ()
method takes two arguments: the node to insert and the node to insert before. You'll notice the use of the
lastChild property, which retrieves the last child node, effectively inserting oReplacedChild as the
second-to-last child node. The insertBefore () method also returns the value of the inserted node, but
it is not necessary for this example.

Error Handling in IE

When XML data is loaded, errors can occur for a variety of reasons. For example, the external XML file
may not be found or the XML code may not be well formed. To handle these occasions, MSXML pro-
vides the parseError property, which contains error information.

158
www.it-ebooks.info

http://www.it-ebooks.info/

XML, XPath, and XSLT

The parseError object provides a number of properties to enable you to better understand an error:

0 errorCode: The error code as a long integer

filepos: Along integer specifying the position in the file where the error occurred
line: The line number that contains the error as a long integer

linepos: The character position in the line where the error occurred (long integer)

reason: A string specifying why the error happened

0O 0 0 o0 o

srcText: The text of the line where the error happened

QO url: The URL of the XML document as a string

To check for errors, the parseError object exposes the errorCode property, which can be compared to
the integer 0; if errorCode does not equal 0, an error has occurred. The following example is designed
specifically to cause an error:

var sXml = "<root><person><name>Jeremy McPeak</name></root>";
var oXmlDom = createDocument () ;
oXmlDom.loadXML (sXml) ;

if (oXmlDom.parseError.errorCode != 0) {
alert ("An Error Occurred: " + oXmlDom.parseError.reason);
} else {

//Code to do for successful load.

}

In the highlighted line, notice that the <person/> element is not closed. Since the XML being loaded is
not well formed, an error occurs during the parsing process. The errorCode is then compared to 0; if
they do not match (and they don’t in this example), an alert displays the error’s cause by using the
reason property.

The errorCode property can be positive or negative; only when errorcCode is 0 can
you be sure that no error occurred.

XML in Other Browsers

The developers of Firefox, Opera, and Safari took a more standards-centric approach when implement-
ing XML support. Instead of an external component, these developers made it a part of the JavaScript
implementation. In the case of Firefox and Opera, doing this ensured XML DOM support on all plat-
forms in all Gecko and Opera browsers.

To create an XML DOM,, the createDocument () method of the document . implementation object is
called. This method takes three arguments: the first is a string containing the namespace URI for the doc-
ument to use, the second is a string containing the qualified name of the document’s root element, and
the third is a DocumentType object (also called doctype), which is usually null. To create an empty DOM
document, you can do this:

159
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

var oxXmlDom = document.implementation.createDocument ("", "", null);

By passing in an empty string for the first two arguments, and nul1l for the last, you ensure a completely
empty document. To create an XML DOM with a document element, specify the tag name in the second
argument:

var oXmlDom = document.implementation.createDocument ("", "books", null);

This code creates an XML DOM whose documentElement is <books/>. You can take it a step further
and specify a namespace in the creation of the DOM by specifying the namespace URI in the first
argument:

var oXmlDom = document.implementation.createDocument ("http://www.sitel.com",
"books", null);

When a namespace is specified in the createDocument () method, the browser uses the it as the default
namespace like the following XML node:

<books xmlns="http://www.sitel.com" />

From here, you can populate the XML document programmatically; generally, however, you will want to
load preexisting XML documents into a blank XML DOM object.

Loading XML Data

Firefox and Opera support the same load () method as IE. Therefore, you can use the same code to load
external XML data in all three browsers:

oXmlDom. load ("books.xml") ;

Also like IE, Firefox and Opera implement the async property: setting async to false forces the docu-
ment to be loaded in synchronous mode; otherwise, the document is loaded asynchronously. There are,
however, some differences in the implementations.

One major difference is that Firefox and Opera don’t have the readyState property or the
onreadystatechange event handler. Instead, they support the 1oad event and the onload event
handler. The 1oad event fires after the document is completely loaded:

oXmlDom.onload = function () {

//Do something when the document is fully loaded.
by
oXmlDom. load ("books.xml") ;

Currently, Safari doesn’t support the 1oad () method. The only way to retrieve
XML documents is to use the XMLHt tpRequest object and retrieve the responseXML

property.

160
www.it-ebooks.info

http://www.it-ebooks.info/

XML, XPath, and XSLT

Firefox, Opera, and Safari do not implement the 1oadxML () method; however, it is possible to emulate
this method’s behavior through the DoMParser object. This object has a method called
parseFromString (), which loads a string and parses it into a document:

var sXml = "<root><person><name>Jeremy McPeak</name></person></root>";
var oParser = new DOMParser () ;
var oXmlDom = oParser.parseFromString (sXml, "text/xml");

In this code, a string of XML is created to pass to the DoMParser. The two arguments for
parseFromString () are the XML string and the content type of the data (typically set to "text/xml").
The parseFromString () method returns an XML DOM object as if it were created using
createDocument ().

Opera 9 also supports DOM 3 Load/Save specification; however, it is beyond the scope of this book to
cover these interfaces in detail.

Retrieving XML Data in the Other Browsers

Despite all of their differences, IE and the other browsers do share many properties and methods used to
retrieve XML data contained in the document. As in IE, you can retrieve the root element of the docu-
ment by using the documentElement property, as follows:

var oRoot = oXmlDom.documentElement;

The non-IE browsers also support the W3C standard properties of attributes, childNodes,
firstChild, lastChild, nextSibling, nodeName, nodeType, nodeValue, ownerDocument,
parentNode, and previousSibling. Unfortunately, these browsers do not support the Microsoft-
proprietary text and xml properties, but it is possible to emulate their behavior.

As a quick recap, the text property returns the content of the node or the concatenated text of the cur-
rent node and its descendants. Therefore, it returns not only the text of the existing node but also the text
of all child nodes; this is easy enough to emulate. A simple function that takes a node as an argument
can provide the same result:

function getText (oNode) {
var sText = "";
for (var 1 = 0; 1 < oNode.childNodes.length; i++) {
if (oNode.childNodes[i].hasChildNodes()) {
sText += getText (oNode.childNodes[i]);
} else {
sText += oNode.childNodes[i] .nodeValue;
}
}

return sText;

In getText (), sText stores every piece of text that is retrieved. As the for loop iterates through
oNode’s children, each child is checked to see if it contains children. If it does, the childNode is passed
into getText () and goes through the same process. If no children exist, then the nodevalue of the cur-
rent node is added to the string (for text nodes, this is just the text string). After all children have been
processed, the function returns sText.

161
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

The IE xm1 property serializes all XML contained in the current node. This can be accomplished by using
an XMLSerializer object, common to Firefox, Opera, and Safari. This object has a single method called
serializeToString (), which is used to serialize a DOM node:

function serializeXml (oNode) {
var oSerializer = new XMLSerializer();
return oSerializer.serializeToString (oNode) ;

}

The serializexml () function takes an XML node as an argument. The result of this method, a string
representation of the XML data, is returned to the caller.

IE, Firefox, Opera, and Safari share the same W3C DOM methods for manipulating nodes. Refer to the
“Manipulating the DOM in IE” section earlier in this chapter for a refresher.

Cross-Browser XML

In an Ajax application, and most JavaScript code, you always need to consider cross-browser differences.
When using an XML-based solution in multiple browsers, you have two options: create your own func-
tions that use the correct code based on the browser, or use a ready-made library. Most of the time it’s
easiest to use a preexisting library, such as the zZXml library introduced in Chapter 2. Along with XHR
support, zXml also provides common interfaces for XML operations.

For example, to create an XML DOM document, you can use zxXmlDom. createDocument ():

var oXmlDom = zXmlDom.createDocument () ;
This single line of code can be used instead of writing separate browser-dependent code each time a
DOM document is needed. Additionally, zZXml adds a variety of IE functionality to the standard DOM
document.
One of the major things zZXml does for convenience is to add support for the readyState property and
the onreadystatechange event handler. Instead of needing to use the separate onload event handler
in Firefox, you can write one set of code without browser detection, such as:

oXmlDom.onreadystatechange = function () {

if (oXmlDom.readyState == 4) {
//Do something when the document is fully loaded.

¥

The zXml library also adds the xm1 and text attributes to all nodes in Firefox. Instead of using an
XMLSerializer or a standalone function to get these values, you can use them the same way as in IE:

var oRoot = oXmlDom.documentElement;
var sFirstChildText = oRoot.firstChild.text;

var sXml = oRoot.xml;

162
www.it-ebooks.info

http://www.it-ebooks.info/

XML, XPath, and XSLT

Note that these properties will only work in IE and Firefox. Opera and Safari do not currently support
getters and setters; so, the getText () and getxml () methods are provided for these browsers. To get
the text or XML code from a node in all browsers, the JavaScript would look like this:

var oRoot = oXmlDom.documentElement;
var sFirstChildText = oRoot.firstChild.text || oRoot.firstChild.getText () ;
var sXml = oRoot.xml || oRoot.getXml();

The zXml library also provides a loadxML () method for the non-IE browsers, eliminating the need to
use a DOMParser object.

var oXmlDom2 = zXmlDom.createDocument () ;
oXmlDom2 .loadXML (sXml) ;

Lastly, the zXml library adds a parseError object for non-IE browsers, which emulates the correspond-
ing object in IE. The one major difference is the errorcode property, which is simply set to a non-zero
number when an error occurs. Therefore, you shouldn’t use this property to look for a specific error,
only to see if an error has occurred. Other than that, you can use the other properties as you would in IE:

if (oXmlDom.parseError.errorCode != 0) {
var str = "An error occurred!!\n" +
"Description: " + oXmlDom.parseError.reason + "\n" +
"File: " + oXmlDom.parseError.url + "\n" +
"Line: " + oXmlDom.parseError.line + "\n" +
"Line Position: " + oXmlDom.parseError.linePos + "\n" +
"Source Code: " + oXmlDom.parseError.srcText;
alert (str);
} else {

//Code to do for successful load.
}

You certainly aren’t required to use a cross-browser XML library for your solutions, but it can definitely
help.

A Basic XML Example

XML is a semantic, descriptive language. Generally, the elements contained in any given XML document
describe the data of that document, thus making it a decent data store for static information, or informa-
tion that doesn’t change often.

Imagine you run an online bookstore and have a list of Best Picks whose information is stored in an
XML document, books . xm1. This information can be displayed to the user without a server component.
The following example uses the zXml library to load the XML file, parse through it, and display the
information on a web page using DOM methods.

163
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

The books . xm1 file contains the following XML data:
<?xml version="1.0" encoding="utf-8"?>

<bookList>

<book isbn="9780470109496">
<title>Professional Ajax</title>
<author>Nicholas C. Zakas, Jeremy McPeak, Joe Fawcett</author>
<publisher>Wrox</publisher>

</book>

<book isbn="0764579088">
<title>Professional JavaScript for Web Developers</title>
<author>Nicholas C. Zakas</author>
<publisher>Wrox</publisher>

</book>

<book isbn="0764557599">
<title>Professional C#</title>
<author>Simon Robinson, et al</author>
<publisher>Wrox</publisher>

</book>

<book isbn="1861006314">
<title>GDI+ Programming: Creating Custom Controls Using C#</title>
<author>Eric White</author>
<publisher>Wrox</publisher>

</book>

<book isbn="1861002025">
<title>Professional Visual Basic 6 Databases</title>
<author>Charles Williams</author>
<publisher>Wrox</publisher>

</book>

</bookList>

The document element <bookList /> contains a few <book/> elements, which include information
about a given book.

Loading XML Data

The first step is to create an XML DOM document and load the XML data into it. Because books . xm1
will be loaded asynchronously, the onreadystatechange event handler must be set:

var oXmlDom = zXmlDom.createDocument () ;
oXmlDom.onreadystatechange = function () {
if (oXmlDom.readyState == 4) {

¥

When the readystatechange event fires and the event handler is called, the readyState property is
checked; a value of 4 indicates that the document is completely loaded and the DOM is ready to use.

164
www.it-ebooks.info

http://www.it-ebooks.info/

XML, XPath, and XSLT

The next step is to check for errors; even though the document is loaded, it does not mean that no errors
were found by the XML parser:

var oXmlDom = zXmlDom.createDocument () ;
oXmlDom.onreadystatechange = function () {
if (oXmlDom.readyState == 4) {
if (oXmlDom.parseError.errorCode == 0) {
parseBookInfo (oXmlDom) ;
} else {
var str = "An error occurred!!\n" +
"Description: " + oXmlDom.parseError.reason + "\n" +
"File: " + oXmlDom.parseError.url + "\n" +
"Line: " + oXmlDom.parseError.line + "\n" +
"Line Position: " + oXmlDom.parseError.linePos + "\n" +
"Source Code: " + oXmlDom.parseError.srcText;
alert (str);

}i

If no error occurred (parseError is 0), the XML DOM document is passed to parseBookInfo (), the
function that parses the book list. If an error did occur, the error information collected in the
parseError object is displayed in an alert box.

With the onreadystatechange event handler written, the 1oad () method is used to load the XML
data:

oXmlDom. load ("books.xml") ;

The next step in the process is to parse the XML data.

Parsing the Book List

The parseBookInfo () function is in charge of parsing the DOM document. This function accepts one
argument, which is the DOM document itself:

function parseBookInfo (oXmlDom) {
var oRoot = oXmlDom.documentElement;
var oFragment = document.createDocumentFragment () ;

The variable oRoot is set to the documentElement of the XML document for convenience. Next, a docu-
ment fragment is created. Since the parseBookInfo () function generates many HTML elements and,
thus, many changes to the HTML DOM loaded in the browser, this fragment is used to efficiently build
up the new elements before adding them to the HTML document; adding each element to the HTML
DOM individually is an expensive process in terms of the time it takes to display the changes. Instead,
each element is added to the document fragment, which will be added to the document once all HTML
elements are created. Doing so allows the HTML DOM to be updated only once instead of multiple
times, resulting in faster rendering.

165
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Only <book/> elements are children of the document element, so it’s possible to retrieve a NodeList of
<book/> elements and iterate through it:

var cBooks = oRoot.getElementsByTagName ("book") ;

for (var i = 0, iLen=cBooks.length; i < iLen; i++) {
var sIsbn = cBooks[i].getAttribute("isbn");
var sAuthor, sTitle, sPublisher;

Inside the for loop, the actual parsing begins. To start, the isbn attribute of the <book/> element is
retrieved with getAttribute () and stored in sIsbn. This value is used to display the book cover as
well as the actual ISBN value to the user. The variables sAauthor, sTitle, and sPublisher are also
declared; these variables will hold the values of the <author/>, <title/>, and <publisher/> ele-
ments, respectively.

Note that since getElementsByTagName () returns a NodeList, it is more efficient
to store the length of the list in a variable, iLen, and use it to control the for loop.
Putting cBooks . length in a loop control field causes a DOM lookup every time it is
checked, which is an expensive process. By storing the length of the list in a variable
and comparing against that, the performance is greatly improved.

Next, the book data is retrieved, which can be done in a number of different ways. You could use the
childNodes collection and loop through the children, but this example uses a different approach. The

same result can be achieved using a do. . .while loop, which makes use of the firstchild and
nextSibling properties:

var oCurrentChild = cBooks[i].firstChild;

do {
switch (oCurrentChild.tagName) {
case "title":
sTitle = oCurrentChild.text;
break;
case "author":
sAuthor = oCurrentChild.text;
break;
case "publisher":
sPublisher = oCurrentChild.text;
break;
default:
break;
}
} while (oCurrentChild = oCurrentChild.nextSibling) ;

166

www.it-ebooks.info

http://www.it-ebooks.info/

XML, XPath, and XSLT

In the first line, the variable oCurrentChild is assigned the first child of the current <book/> element.
(Remember, this occurs inside of the for loop.) The child’s tagName is used in a switch block to deter-
mine what should be done with its data. When a match to the tagName is found, the node’s text is
retrieved and stored in the sTitle, sAuthor, or sPublisher variables. After that, the oCurrentchild
variable is assigned the node immediately following the current node by using the nextSibling prop-
erty. If a next sibling exists, the loop continues; if not, oCurrentChildis null and the loop exits.

When all data variables contain the needed data, you can start generating HTML elements to display
that data. The HTML structure of the elements looks like this:

<div class="bookContainer">

<div class="bookContent">
<h3>Professional Ajax</h3>
Written by: Nicholas C. Zakas, Jeremy McPeak, Joe Fawcett

ISBN #9780470109496
<div class="bookPublisher">Published by Wrox</div>
</div>
</div>

To add some readability to the list, the containing <div/> elements have alternating background colors.
Books that are an odd number in the list (book number 1, 3, and so on) have a grayish background color
and a class name of bookContainer-odd, whereas even-numbered books (book number 0, 2, and so on)
have a white background defined by the bookContainer CSS class.

Generating this HTML output through DOM methods is an easy but lengthy process. The first step is to
create the containing <div/>, the , and the content <div/> elements, which is done using the
createElement () DOM method once for each:

var divContainer = document.createElement ("div");
var imgBookCover = document.createElement ("img") ;
var divContent = document.createElement ("div");

var sOdd = (i % 2)?"":"-odd";
divContainer.className = "bookContainer" + s0dd;

Along with the element creation, the differing class names are processed here as well. The current book
is judged to be odd or even by using the modulus (%) operator. The sodd variable is assigned the appro-
priate suffix, an empty string for even and "-odd" for odd, and used in the className assignment.

You can then assign the properties of the book cover image. These PNG images use the ISBN number as
their file names:

imgBookCover.src = "images/" + sIsbn + ".png";

imgBookCover.className = "bookCover";
divContainer.appendChild (imgBookCover) ;

167
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Here, the src and className properties are assigned and the image is appended to divContainer.
With the image finished, the text content can be added. The first piece of information to be added is the
book’s title, which is a level 3 heading element (<h3/>). Again, this element is created with
createElement ():

var h3Title = document.createElement ("h3");
h3Title.appendChild (document.createTextNode (sTitle)) ;
divContent.appendChild (h3Title) ;

To create a text node containing the title, the createTextNode () method is used, the result of which is
appended to the <h3/> element. Then, the completed heading is appended to divContent.

The author and ISBN information are next to be added. These two pieces of information are text nodes
and have no parent element other than divContent. There is, however, one breaking element (
) in
between the two text nodes:

divContent.appendChild (document.createTextNode ("Written by: " + sAuthor));
divContent.appendChild (document.createElement ("br")) ;
divContent.appendChild (document.createTextNode ("ISBN: #" + sIsbn));

In this code, the text node containing the author information is appended to divContent, followed by
the creation and appending of the breaking element (
). On the third line, the text node containing
the ISBN information is created and appended.

The last piece of information to add is the publisher:

var divPublisher = document.createElement ("div") ;

divPublisher.className = "bookPublisher";

divPublisher.appendChild (document.createTextNode ("Published by: " + sPublisher)) ;
divContent.appendChild (divPublisher) ;

The publisher is displayed in a <div/> element. After its creation, the className "bookPublisher" is
assigned and the text node containing the publisher’s name is appended to the element. The
divPublisher element is complete, and so can be appended to divContent.

At this point, all data operations are complete. However, divContent still lacks its class name and must
be appended to divContainer, which in turn must be appended to the document fragment. The fol-
lowing three lines of code do this:

divContent.className = "bookContent";

divContainer.appendChild(divContent) ;

oFragment .appendChild (divContainer) ;

The last step is to append the document fragment to the page body after the book nodes are iterated
through:

document .body . appendChild (oFragment) ;

168
www.it-ebooks.info

http://www.it-ebooks.info/

XML, XPath, and XSLT

This code doesn’t actually append the document fragment itself; instead, it appends all the child nodes
of the document fragment, making all the changes to the HTML DOM at once. With this final line of
code, parseBookInfo () is complete.

Tying It Together

The body of this web page is generated entirely by JavaScript. Because of this, the element creation and
insertion code must execute after the document is loaded. To do this, define a function called init () to
house the XML DOM creation code:

function init() {
var oXmlDom = zXmlDom.createDocument () ;
oXmlDom.onreadystatechange = function () {
if (oXmlDom.readyState == 4) {
if (oXmlDom.parseError.errorCode == 0) {
parseBookInfo (oXmlDom) ;
} else {
alert ("An Error Occurred: " + oXmlDom.parseError.reason) ;
}
}
Y
oXmlDom. load ("books.xml") ;

The init () function handles the window 1oad event. This ensures that the JavaScript-generated ele-
ments are added to the page without causing errors.

The example must be run as part of an HTML document. All that is required are two <script/> ele-
ments, a <link/> element for the CSS, and the assignment of the onload event handler:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.0rg/TR/xhtml11/DTD/xhtml1l.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml" >
<head>
<title>XML Example</title>
<link rel="stylesheet" type="text/css" href="books.css" />
<script type="text/javascript" src="zxml.js"></script>
<script type="text/javascript" src="books.js"></script>
</head>
<body onload="init()">

</body>
</html>

When this example is run, it yields the result shown in Figure 6-2.

169
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[#7] Book XML Exercise - Microsoft Internet Explorer BR[|
File Edit View Favorites Tools Help l.;'
e Back - </ |ﬂ @ _l\J /..) Search *:‘/‘\'(Favorites E} = ..'7 l/_/] < _J ﬂ '3
Adéress [{8] heosfyodajabook.htm B

DevToolBar View DOM Disable View Outline Validate Images Resize Misc Show Ruler

Professional Ajax
Written by: Nicholas C. Zakas, Jeremy McPeak, Joe Fawcett
ISBN: #0471777781

Professional

Ajax

Published by: Wrox

Professional JavaScript for Web Developers
Written by: Nicholas C. Zakas
ISBN: #0764379088

Professional

JavaScript

for Web Developers

Published by: Wrox

e e e e Professional C# [v]

@j Done ‘j Local intranet

Figure 6-2

XPath Support in Browsers

As XML grew in popularity, the need to access specific pieces of data contained within large amounts of
code became apparent. In July 1999, XML Path Language (XPath) was introduced in the eXtensible
Stylesheet Language (XSL) specification as a means to find any node within an XML document. XPath
uses a non-XML syntax that closely resembles the path syntax of a file system, allowing the construction
of paths to any part of a document. The language consists of location paths and other expressions, as
well as a few helpful functions to aid in retrieving specific data.

Introduction to XPath

An XPath expression consists of two parts: a context node and a selection pattern. The context node is
the context from which the selection pattern begins. Referring to books . xm1 from the previous section,
consider this XPath expression:

book/author

170
www.it-ebooks.info

http://www.it-ebooks.info/

XML, XPath, and XSLT

If this expression were executed at the root level context, all <author/> nodes would be returned
because the <book/> element is a child of the document element and contains an <author/> element.
This expression is not very specific, so all <author/> elements are returned.

What if you want to retrieve only the <book/> element that has a specific ISBN? The XPath expression
would look like this:

book[@isbn="'9780470109496"]

The book part of the expression describes which element to retrieve. Inside of the square brackets is a
condition that this element must match. The @isbn part represents the isbn attribute (@ being short for
attribute). So, this expression reads “find the book elements that have an isbn attribute of
9780470109496 ' .”

XPath expressions can also be very complex. Consider the following expression:
book [author [contains (text (), 'McPeak')]]

This expression reads, “find the book elements that have author elements whose text contains the string
‘McPeak’.” Since this is a more complicated expression, it helps to break it down, working from the out-
side towards the inside. Removing all conditions, you have this expression:

book[...]

First, you know that a <book/> element will be returned, since it is the outermost element; next come
the conditions. Inside the first set of brackets is the <author/> element:

author([...]

So, now you now know you are looking for a book element with a child <author/> element. However,
the children of the <author/> element need to be checked as well because the expression doesn’t end
there:

contains (text (), 'McPeak')

The contains () function takes two arguments and returns true if the first string argument contains
the second string argument. The text () function, which is an XSL function, returns a node-set of all
descendent nodes. When passed to the contains () function, the node-set is implicitly converted to a
string, essentially resulting in the text contents of the <author/> element being passed as the first argu-
ment in contains (). The second argument passed to contains () is the search text, in this case
'McPeak"'.

Note that the contains () function, like all XPath functions, is case-sensitive.

The resulting node set is one <book/> element, because there is only one book with an author (or coau-
thor) whose name is McPeak.

171
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

As you can see, XPath is a useful language that makes finding specific nodes in XML data rather simple.
It is no wonder that browser makers are implementing XPath in their browsers for client-side use.

XPath in IE

Microsoft’s implementation of XPath is a part of MSXML 3.0 and later. If you are using any version of
Windows XP, or have IE 6.0 or higher installed, then your browser has this capability. If not, you will
need to download and install the latest MSXML package.

Before using XPath, however, it is important to set the SelectionLanguage property. In MSXML3, the
default selectionLanguage is XSLPattern, not XPath. To set this property, use the setProperty ()
method:

oXmlDom.setProperty ("SelectionLanguage", "XPath");

Once SelectionLanguage is set, it is safe to use XPath to select nodes.

All MSXML versions after 3.0 have XPath as the default value of
SelectionLanguage.

Microsoft chose to implement two methods that select nodes based on XPath expressions. The first,
selectSingleNode (), returns the first node within its context that matches the expression or null if
there is no match. For example:

var oFirstAuthor = oXmlDom.documentElement.selectSingleNode ("book/author") ;

This code returns the first <author/> element that is a child of a <book/> element in the context of
documentElement. The result of this is the following node:

<author>Nicholas C. Zakas, Jeremy McPeak, Joe Fawcett</author>

The second method in Microsoft’s XPath implementation is selectNodes (). This method returns a
NodeList, a collection of all nodes that match the pattern in the XPath expression:

var cAuthors = oXmlDom.documentElement.selectNodes ("book/author") ;

As you may have guessed, all <author/> elements with a parent of <book/> in the context of the docu-
ment element are returned. If the pattern cannot be matched in the document, a NodeList is still
returned, but it has a 1ength of 0. It is a good idea to check the length of a returned NodeList before
attempting to use it:

var cAuthors = oXmlDom.documentElement.selectNodes ("book/author") ;

if (cAuthors.length > 0) {
//Do something

172
www.it-ebooks.info

http://www.it-ebooks.info/

XML, XPath, and XSLT

Working with Namespaces

The X in XML stands for eXtensible. There are no predefined elements in an XML document; every ele-
ment in any given XML document was created by a developer. This extensibility is part of what makes
XML so popular, but it also inherently causes a problem: naming conflicts. For example, consider the fol-
lowing XML document:

<?xml version="1.0" encoding="utf-8"?>

<addresses>
<address>
<number>12345</number>
<street>Your Street</street>
<city>Your City</city>
<state>Your State</state>
<country>USA</country>
</address>
</addresses>

There is nothing out of the ordinary in this document. It simply describes an address located in the USA.
But what if the following lines are added?

<?xml version="1.0" encoding="utf-8"?>

<addresses>

<address>
<number>12345</number>
<street>Your Street</street>
<city>Your City</city>
<state>Your State</state>
<country>USA</country>

</address>

<address>
<ip>127.0.0.1</ip>
<hostname>localhost</hostname>
</address>
</addresses>

This document now describes two types of addresses: a physical mailing address and a computer
address. While both are legitimate addresses, handling this information requires different approaches,
especially since both <address/> elements contain completely different child elements. This is where
namespaces come into play.

Namespaces consist of two parts: a namespace URI and a prefix. The namespace URI identifies the name-
space. Generally, namespace URIs are web site URLs, because they must be unique to access different
web sites. The prefix is a local name in the XML document for the namespace. Every tag name in the

namespace uses the namespace prefix. The syntax of namespace declarations is:

xmlns:namespace-prefix="namespaceURI"

173
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

The xmlns keyword tells the XML parser that a namespace declaration is taking place. The namespace-
prefix is the local name used in the elements that fall under this namespace, and namespaceURI is the
universal resource identifier that the prefix represents.

Namespace declarations must appear before the namespace is used in the XML document. In the exam-
ple, the root element contains the namespaces declarations:

<?xml version="1.0" encoding="utf-8"?>

<addresses xmlns:mail="http://www.wrox.com/mail"
xmlns:comp="http://www.wrox.com/computer">

<mail:address>
<mail :number>12345</mail : number>
<mail:street>Your Street</mail:street>
<mail:city>Your City</mail:city>
<mail:state>Your State</mail:state>
<mail:country>USA</mail:country>

</mail:address>

<comp:address>
<comp:ip>127.0.0.1</comp:ip>
<comp:hostname>localhost</comp:hostname>

</comp:address>

</addresses>

This newly edited XML document defines two namespaces: one with the prefixmail to represent a mail-
ing address, and the other with a prefix of comp to represent a computer address. Every element associ-
ated with a certain address type is associated with the corresponding namespace, so every element
associated as a mailing address has the mail prefix, whereas every computer-based address has the
comp prefix.

The use of namespaces avoids naming conflicts, and XML processors now understand the difference
between the two address types.

Namespaces in XPath add a slight complication when using selectSingleNode () and
selectNodes (). Consider the following modified version of books . xml:

<?xml version="1.0" encoding="utf-8"?>

<bookList xmlns="http://sitel.com" xmlns:pub="http://site2.com">

<book i1sbn="9780470109496">
<title>Professional Ajax</title>
<author>Nicholas C. Zakas, Jeremy McPeak, Joe Fawcett</author>
<pub:name>Wrox</pub:name>

</book>

<book isbn="0764579088">
<title>Professional JavaScript for Web Developers</title>
<author>Nicholas C. Zakas</author>
<pub:name>Wrox</pub:name>

</book>

<book isbn="0764557599">
<title>Professional C#</title>
<author>Simon Robinson, et al</author>

174
www.it-ebooks.info

http://www.it-ebooks.info/

XML, XPath, and XSLT

<pub:name>Wrox</pub:name>

</book>

<book isbn="1861006314">
<title>GDI+ Programming: Creating Custom Controls Using C#</title>
<author>Eric White</author>
<pub:name>Wrox</pub:name>

</book>

<book isbn="1861002025">
<title>Professional Visual Basic 6 Databases</title>
<author>Charles Williams</author>
<pub:name>Wrox</pub:name>

</book>

</bookList>

This newly revised document has two namespaces in use: the default namespace specified by xmlns=
"http://sitel.com", followed by the pub namespace specified as xmlns:pub="http://site2.com".
A default namespace does not have a prefix; therefore, all non-prefixed elements in the document use
the default namespace. Notice that the <publisher/> elements are replaced by <pub:name/> elements.

When dealing with an XML document that contains namespaces, these namespaces must be declared in
order to use XPath expressions. The MSXML DOM document exposes a method called setProperty (),
which is used to set second-level properties for the object. The property "SelectionNamespaces"
should be set with an alias namespace for any default or external namespace. Aside from using the
setProperty () method, namespace declarations are assigned just as they are in XML documents:

var sNameSpace = "xmlns:na='http://sitel.com' xmlns:pub='http://site2.com'";
oXmlDom. setProperty ("SelectionNamespaces", sNameSpace) ;

The namespaces na and pub represent the namespaces used in the XML document. Notice that the
namespace prefix na is defined for the default namespace. MSXML will not recognize a default name-
space when selecting nodes with XPath, so the declaration of an alias prefix is necessary. Now that the
SelectionNamespace property is set, you can select nodes within the document:

var oRoot = oXmlDom.documentElement;
var sXPath = "na:book/pub:name";
var cPublishers = oRoot.selectNodes (sXPath) ;

if (cPublishers.length > 0) {
alert (cPublishers.length + " <pub:name/> elements found with " + sXPath) ;

The XPath expression uses the namespaces specified in the SelectionNamespaces property and selects
all <pub:name/> elements. In the case of this example, a NodeList consisting of five elements is
returned, which you can then use.

XPath in Other Browsers

The XPath implementation in the non-IE browsers follow the DOM standard, which is quite different
from the IE implementation. This different implementation allows XPath expressions to be run against
HTML and XML documents alike. At the center of this are two primary objects: XxPathEvaluator and
XPathResult.

175
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

At the time of this writing, Safari does not support XPath; however, the latest ver-
sion of WebKit (the engine behind Safari) supports XPath to some extent. You can
download the latest WebKit nightly at http: //www.webkit .org.

Firefox is the only browser that allows you to explicitly create XPathEvaluator objects by calling the
class’ constructor. The W3C documentation, however, describes that a DOM object should implement
the XPathEvaluator interface. Therefore, you do not need to create a separate XPathEvaluator object
in order to use XPath.

An object implementing the XPathEvaluator interface evaluates a given XPath expression using the
evaluate () method, which takes five arguments: the XPath expression to be evaluated, the context
node that the expression should be run against, a namespace resolver (which is a function that handles
mapping prefixes to namespaces), the result type (10 different result types are available), and an
XPathResult object to contain the results (if this argument is nul1, then a new XPathResult object
is returned).

Before moving on, it’s important to understand the various result types that can be returned from
evaluate (). These are:

O XPathResult.ANY_TYPE, which returns no specific type. The method returns the type that nat-
urally results from the evaluation of the expression.

Q XPathResult.ANY_UNORDERED_NODE_TYPE, which returns a node set of one node that is
accessed through the singleNodevalue property; null is returned if there are no matching
nodes. The returned node may or may not be the first occurring node.

0 XPathResult.BOOLEAN_TYPE, which returns a Boolean value.

0O XPathResult.FIRST_ORDERED_NODE_TYPE, which returns a node set consisting of one node.
This node is accessed with the singleNodevalue property of the XPathResult class. The node
returned is the first occurring one in the document.

0 XPathResult.NUMBER_TYPE, which returns a number value.

0 XPathResult.ORDERED_NODE_ITERATOR_TYPE, which returns a document-ordered node set
that can be iterated through using the iterateNext () method; therefore, you can easily access
each individual node in the set.

d XPathResult.ORDERED_NODE_SNAPSHOT_ TYPE, which returns a document-ordered node set
that is a snapshot of the result set. Any modifications made to the nodes in the document do not
affect the retrieved results.

QO XPathResult.STRING_TYPE, which returns a string value.

0 XPathResult.UNORDERED_NODE_ITERATOR_TYPE, which returns a node set that can be iter-
ated through; however, the results may or may not be in the same order as they appear in the
document.

0 XPathResult.UNORDERED_NODE_SNAPSHOT_TYPE, which returns an unordered snapshot node
set. Any modifications made to the nodes in the document do not affect the result set.

176
www.it-ebooks.info

http://www.it-ebooks.info/

XML, XPath, and XSLT

The most common result type is XPathResult .ORDERED_NODE_ITERATOR_TYPE:

var sXPath = "book/author";
var oResult = oXmlDom.evaluate (sXPath, document, null,
XPathResult.ORDERED_NODE_ITERATOR_TYPE, null);

var aNodes = new Array;

if (oResult != null) {
var oElement;
while (oElement = oResult.iterateNext()) ({
aNodes .push (oElement) ;

This code uses the evaluate () method of a DOM object to evaluate the XPath expression book/author
in the context of the document’s root element. Because the result type is
ORDERED_NODE_ITERATOR_TYPE, the evaluation returns a node set that you can iterate through using
the iterateNext ().

The iterateNext () method resembles the nextSibling property of a DOM node in that it selects the
next node in the result set and returns null when the end of the result set is reached. This function
enables you to use it in a while loop as in the previous example; as long as oElement is not null, it is
added to the aNodes array through the push () method. Populating an array gives you IE-like function-
ality; therefore, you can use it in a for loop or access separate array elements easily.

Working with a Namespace Resolver

A namespace resolver translates an element’s namespace prefix in an XPath expression into the namespace
URI associated with that prefix. The W3C specification states that an XPathNSResolver object can be
used as a resolver, but it also states that you can define a function to handle the translation. This particu-
lar function can have any name.

Writing a namespace resolver is simple. The function must accept a string value as an argument, and it
must return a string. The string argument is a namespace prefix, for which the function must return a
namespace URI The following namespace resolver function uses the values from the IE example:

function nsResolver (sPrefix) {
switch (sPrefix) {

case "na":
return "http://sitel.com";
break;

case "pub":
return "http://site2.com";
break;

default:
return null;
break;

177
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

With the resolver written, you can use the following XPath expression on the modified books . xm1 docu-
ment from the IE namespace example:

var sXPath = "na:book/pub:name";

var oResult = oXmlDom.evaluate (sXPath, oXmlDom.documentElement,nsResolver,
XPathResult.ORDERED_NODE_ITERATOR_TYPE, null);

var aNodes = new Array;

if (oResult != null) {
var oElement;
while (oElement = oResult.iterateNext()) {
aNodes.push (oElement) ;
}
}

This example resembles the last evaluation code. However, notice the addition to the evaluate ()
method: the pointer to the nsResolver () function, written earlier, is passed in to handle the name-
spaces in the XPath expression. The resulting NodeList is converted to an array by using the
iterateNext () method of the XPathResult class to iterate through the result.

As you can see, the W3C XPath implementation is quite different from the Microsoft approach; so it is
helpful to use a cross-browser library that enables you to perform XPath evaluations easily.

Cross-Browser XPath

The zXml library provides cross-browser XPath functionality through a common interface. The object
responsible for providing XPath functionality is zxPath, which has two methods.

The first method is selectSingleNode (). This method, like the IE method of the same name, returns
the first node that matches a pattern. Unlike the IE implementation, this method accepts three argu-
ments: the context node, the XPath expression string, and a hashtable with the prefix as keys and the
namespace URIs as values. Following are a couple of examples of how these hashtables can look:

//Assigning each key a value

var oXmlNs = {};

oXmlNs["na"] = "http://sitel.com";
oXmlNs ["pub"] = "http://site2.com";
oXmlNs ["ns"] = "http://site3.com";

//Using object literal notation to create a hashtable
var oXmlNs = {

na : "http://sitel.com",
pub : "http://site2.com",
ns : "http://site3.com"

¥

If you are not working with namespaces, then the first two arguments of selectSingleNode () are the
only required arguments.

178
www.it-ebooks.info

http://www.it-ebooks.info/

XML, XPath, and XSLT

The returned result of selectSingleNode () is the selected XML node, or null if a match cannot be
found. If the browser does not support XPath, an error is thrown stating that the browser does not have
an XPath engine installed. The following example evaluates an XPath expression against the document
element:

var oRoot = oXmlDom.documentElement;
var oNode = zXPath.selectSingleNode (oRoot, "book/author", null);

if (oNode) {
alert (oNode.xml || oNode.getXml()) ;
}

This example searches for the first <author/> element contained in a <book/> element in the context of
the document root. If found, the serialized form of the XML data is displayed to the user in an alert box.

The second method of zXPath is selectNodes (), which returns a node set much like the IE
selectNodes () method. The syntax closely resembles that of the selectsingleNode () method above,
and the arguments are exactly the same, and the same namespace rules apply. Also as with
selectSingleNode (), an error is thrown in the event that the browser does not have an XPath engine
installed. The next example demonstrates the selectNodes () method:

var oNamespaces = {
na : "http://sitel.com",
pub : "http://site2.com"
b5

var oRoot = oXmlDom.documentElement;
var sXPath = "na:book/pub:name";
var oNodes = zXPath.selectNodes (oRoot, sXPath, oNamespaces);

if (oNodes.length > 0) {
alert (oNodes.length) ;
}

This example, much like the selectSingleNode () example, searches for all author elements of a docu-
ment that incorporates namespaces. If the result set has a length greater than 0, the length of the result is
displayed to the user.

XPath is a powerful tool to navigate through and select certain nodes in an XML document, although it
was never intended to be used as a standalone tool. Instead, it was created for use in XSL
Transformations.

XSL Transformation Support in Browsers

eXtensible Stylesheet Language (XSL) is a family of languages that are designed to transform XML data.
XSL refers to three main languages: XSL Transformations (XSLT), which is a language that transforms
XML documents into other XML documents; XPath, which was discussed in the previous section;

and XSL Formatting Objects (XSL-FO), which describes how the transformed data should be rendered
when presented. Since no browser currently supports XSL-FO, all transformations must be accom-
plished through the use of XSLT.

179
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Introduction to XSLT

XSLT is an XML-based language designed to transform an XML document into another data form. This
definition may make XSLT to be a not-so-useful technology, but the truth is far from the matter. The most
popular use of XSLT is to transform XML documents into HTML documents, which is precisely what
this introduction covers.

XSLT documents are nothing more than specialized XML documents, so they must conform to the same
rules as all XML documents: they must contain an XML declaration, they must have a single root ele-
ment, and they must be well formed.

As an example, consider books . xm1. The information contained in this file can be transformed into
HTML using XSLT, without the need to build the DOM structure manually. For starters, you need an
XSLT document, books . xs1, which begins with an XML declaration and a root element:

<?xml version="1.0" encoding="UTF-8" ?>

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">
<xsl:output method="html" omit-xml-declaration="yes" indent="yes" />

</xsl:stylesheet>

The document element of an XSLT document is <xs1:stylesheet/>. In this element, the XSL version is
specified and the xs1 namespace is declared. This required information determines the behavior of the
XSLT processor; without it, an error will be thrown. The xs1 prefix is also important, as this allows all
XSL directives to be visibly and logically separate from other code in the document.

The <xs1:output/> element defines the format of the resulting output. In this example, the resulting
transformation results in HTML data, with the XML declaration omitted and the elements indented. You
can specify the format to be plain text, XML, or HTML data.

Just like any application, a transformation must have an entry point. XSLT is a template-based language,
and the processor works on an XML document by matching template rules. In this example, the first ele-
ment to match is the root of the XML document. This is done by using the <xs1:template/> directive.
Directives tell the processor to execute a specific function. The <xs1:template/> directive creates a tem-
plate that is used when the pattern in the match attribute is matched:

<?xml version="1.0" encoding="UTF-8" ?>

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">
<xsl:output method="html" omit-xml-declaration="yes" indent="yes" />

<xsl:template match="/">

<html>
<head>
<link rel="stylesheet" type="text/css" href="books.css" />
<title>XSL Transformations</title>
</head>

180
www.it-ebooks.info

http://www.it-ebooks.info/

XML, XPath, and XSLT

<body>
<xsl:apply-templates />
</body>
</html>

</xsl:template>

</xsl:stylesheet>

The match attribute takes an XPath expression to select the proper XML node. In this case, it is the root
element of books . xml (the XPath expression / always selects the root node of the document). Inside of
the template, you'll notice HTML elements. These elements are a part of the transformation’s output.
Inside of the <body /> element, another XSL directive is found. The <xs1:apply-templates /> element
tells the processor to start parsing all templates within the context of the document element, which
brings the next template into play:

<?xml version="1.0" encoding="UTF-8" ?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">
<xsl:output method="html" omit-xml-declaration="yes" indent="yes" />

<xsl:template match="/">

<html>
<head>
<link rel="stylesheet" type="text/css" href="books.css" />
<title>XSL Transformations</title>
</head>
<body>
<xsl:apply-templates />
</body>
</html>

</xsl:template>

<xsl:template match="book">
<div class="bookContainer">
<xsl:variable name="varIsbn" select="@isbn" />
<xsl:variable name="varTitle" select="title" />

<div class="bookContent">
<h3><xsl:value-of select="S$varTitle" /></h3>
Written by: <xsl:value-of select="author" />

ISBN #<xsl:value-of select="S$varIsbn" />
<div class="bookPublisher"><xsl:value-of select="publisher" /></div>
</div>
</div>
</xsl:template>

</xsl:stylesheet>
This new template matches all <book/> elements, so when the processor reaches each <book/> in the

XML document, this template is used. The first two XSL directives in this template are <xs1:variable/>,
which define variables.

181
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Variables in XSL are primarily used in XPath expressions or attributes (where elements cannot be used
without breaking XML syntax). The <xs1:variable/> element has two attributes: name and select.
As you may have guessed, the name attribute sets the name of the variable. The select attribute speci-
fies an XPath expression and stores the matching value(s) in the variable. After the initial declaration,
variables are referenced to with the $ sign (so, the variable defined as varIsbn is later referenced as
$varIsbn).

The first variable, $varIsbn, is assigned the value of the <book/> element’s isbn attribute. The second,
$varTitle, is assigned the value of the <title/> element. These two pieces of information are used in
the attributes of the HTML element. To output variables in attributes, you surround the variable
name in braces:

Without the braces, the output would use the string literals "$varTitle" and "$varIsbn" instead.

Using variables in attributes of XSL directives, such as the select and name
attributes to name a few, is the exception to this rule. Using curly braces in these
types of attributes will cause an error, and the document transformation will fail.

The remainder of XSL directives in this example are <xs1:value-of/> elements. These elements
retrieve the value of the matched variable or node according to the select attribute. The select
attribute behaves in the same way as the select attributes of <xs1:variable/> do: they take an XPath
expression and select the node or variable that matches that expression. The first instance of
<xsl:value-of/> in this template references the $varTitle variable (notice the lack of braces), so the
value of the variable is used. Next, the value of the <author/> element is used; the same with
$varTitle and <publisher/>.

In order for an XML document to transform in the browser, it must have a stylesheet specified. In
books.xml, add the following line immediately after the XML declaration:

<?xml-stylesheet type="text/xsl" href="books.xsl"?>

This tells the XML processor to apply the stylesheet books.xs1 to this document. Viewing this modified
XML document in a web browser will no longer show the XML structure, but it will show the resulting
transformation to HTML. However, using this directive won't work through JavaScript. For that, you'll
need to use some special objects.

XSLT in IE

There are two ways to transform an XML document in IE, both of which require the use of MSXML.
Starting with version 3.0, MSXML has full support for XSLT 1.0. If you don’t have Windows XP or IE 6, it
is time to upgrade. You can find the latest MSXML downloads at
http://msdn.microsoft.com/XML/XMLDownloads/.

The first and easiest method loads both the XML and XSLT documents into separate XML DOM objects:

182
www.it-ebooks.info

http://www.it-ebooks.info/

XML, XPath, and XSLT

var oXmlDom = zXmlDom.createDocument () ;
var oXslDom = zXmlDom.createDocument () ;

oXmlDom.async = false;
oXslDom.async = false;

oXmlDom. load("books.xml") ;
oXslDom.load ("books.xsl") ;

When both documents are loaded, you call the transformNode () method to start the transformation:
var sResults = oXmlDom.transformNode (oXslDom) ;

The transformNode () method takes an XML DOM object as an argument (in this case, the XSL docu-

ment) and returns the transformed data as a string. But you don’t have to call transformNode () at the

document level; it can be called from any element in the XML document:

var sResults = oXmlDom.documentElement.firstChild.transformNode (oXslDom) ;

The transformNode () method will transform only the element it was called from and its children. In
this example, the first <book/> element is transformed, as shown in Figure 6-3.

[©7 Book XML Exercise - Microsoft Internet Explorer =)=ES

File Edit View Favorites Tools Help f,'
A @ vy » B R

Qs+ © B @ G P rrown @2+ 5 0 - L B

address |] httpsffyoda/4/figure3book.him [v| B e

DevToolBar Wiew DOM Disable View Outlne Validate Images Resize Misc Show Ruler

Professional Ajax
Written by: Nicholas C. Zakas, Jeremy McPeak, Joe Fawcett
ISBN #0471777781

Professional

Ajax

@ Done ‘:ﬁ Local intranet

Figure 6-3

183
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

The second method of transformations in IE is a bit more involved, but it also gives you more control
and features. This process involves creating multiple objects in the MSXML library. The first step in this
somewhat lengthy process is to create a thread-safe XML DOM object, which the XSL stylesheet is
loaded into:

var oXmlDom = zXmlDom.createDocument () ;
oXmlDom.async = false;
oXmlDom. load ("books.xml") ;

var oXslDom = new ActiveXObject ("Msxml2.FreeThreadedDOMDocument.3.0");
oXslDom.async = false;
oXslDom.load ("books.xsl") ;

The FreeThreadedDOMDocument class is yet another ActiveX class and a part of the MSXML library.
You must use the FreeThreadedDomDocument class to create XSLTemplate objects, which this example
does (the next example shows the creation of a XSLTemplate object). In early versions of MSXML, every
call to the transformNode () method forced a recompile of the XSL stylesheet slowing the transforma-
tion process considerably. With a FreeThreadedDoOMDocument, the compiled stylesheet is cached and
ready to use until it’s removed from memory.

After the XML DOM object creation, you must create another ActiveX object, an XSL template:

var oXslTemplate = new ActiveXObject ("Msxml2.XSLTemplate.3.0");
oXslTemplate.stylesheet = oXslDom;

The xSLTemplate class is used to cache XSL stylesheets and create an XSLProcessor; so, after the tem-
plate is created, the XSL document is assigned to the XSLTemplate class’s stylesheet property, which
caches and loads the XSL stylesheet.

The next step in this process is to create an XSLProcessor, which is created by calling the
createProcessor () method of the XSLTemplate class:

var oXslProcessor = oXslTemplate.createProcessor();
oXslProcessor.input = oXmlDom;

After creation of the processor, its input property is assigned oxmlDom, the XML DOM object containing
the XML document to transform. At this point, everything the processor requires is in place, so all that
remains is the actual transformation and the retrieval of the output:

oXslProcessor.transform() ;
document .body.innerHTML = oXslProcessor.output;

Unlike transformNodes (), the transform() method does not return the resulting output as a string.
To retrieve the output of the transformation, use the output property of the XSLProcessor object. This
entire process requires much more coding than the transformNode () method and yields the same
result. So, why use this process?

MSXML provides a few extra methods that can be used in these transformations. The first is

addobject (). This method adds a JavaScript object to the stylesheet, and can even call methods and
output property values in the transformed document. Consider the following object:

184
www.it-ebooks.info

http://www.it-ebooks.info/

XML, XPath, and XSLT

var oBook = {

propertyOne : "My Current Books",
methodOne : function () {
alert ("Welcome to my Book List");
return "";
}

¥

What if you wanted to use this information in the transformation? Using the addobject () method, you
can pass this information into the XSLT stylesheet, passing in two arguments: the oBook object and a
namespace URI to identify it. So, to add this object with a namespace URI of "http://my-object", you
could do the following:

var oXmlDom = zXmlDom.createDocument () ;
oXmlDom.async = false;
oXmlDom.load ("books.xml") ;

var oXslDom = new ActiveXObject ("Msxml2.FreeThreadedDOMDocument.3.0");
oXslDom.async = false;
oXslDom. load("books.xsl") ;

var oXslTemplate = new ActiveXObject ("Msxml2.XSLTemplate.3.0");
oXslTemplate.stylesheet = oXslDom;

var oXslProcessor = oXslTemplate.createProcessor () ;
oXslProcessor.input = oXmlDom;

oXslProcessor.addObject (oBook, "http://my-object");

oXslProcessor.transform() ;
document .body.innerHTML = oXslProcessor.output;

The oBook object is now passed to the XSLProcessor, meaning that the XSLT stylesheet can use it.
Now, the XSL document must be changed to look for this object and use its information. The first
requirement is to add a new namespace to the root element, <xs1:stylesheet/>. This namespace will
match the one used in addObject ():

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:bookObj="http://my-object">

The prefix bookOb3j will be used to access this information. Now that the namespace and prefix are
ready to go, some <xs1:value-of/> elements should be added to the document to retrieve the object’s
members:

<xsl:template match="/">
<html>
<head>
<link rel="stylesheet" type="text/css" href="books.css" />

</head>
<body>

185
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

<xsl:value-of select="bookObj:methodOne()" />
<div align="center">
<xsl:value-of select="bookObj:get-propertyOne ()" />
</div>
<xsl:apply-templates />
</body>
</html>

</xsl:template>

Remember that the <xs1:value-of/> XSL directive retrieves the value of an element, or in this case, an
object. The first <xs1:value-of/> directive retrieves (or calls) methodone (), which sends an alert wel-
coming the user to the page. The second <xs1:value-of/> directive is similar to the first, except that it
retrieves the value of the propertyOne property of the oBook object. When the transformed output is
displayed in the browser, the user will see the phrase My Current Books at the top of the page.

When using an object in transformations, all properties and methods must return a
value that the XSLProcessor can understand. String, number, and Boolean values
all work as expected; returning any other value that cannot be coerced into an XSL
data type will throw a JavaScript error when the transformation executes.

The next useful feature of the XSLProcessor is the addpParameter () method. Unlike sending an object
into a transformation, parameters are a standard part of XSLT. Parameters are passed to the XSL
stylesheet and used as variables. To specify a parameter, pass the name and its value, like this:

var oXslProcessor = oXslTemplate.createProcessor () ;

oXslProcessor.input = oXmlDom;

oXslProcessor.addParameter ("message", "My Book List");
This code adds the "message" parameter to the XSLProcessor. When the XSL transformation executes,
the processor uses the value of the parameter, "My Book List", and places it in the according location.
Parameters in XSL use the <xs1 :param/> directive:

<xsl:param name="message" />

Notice that the name attribute matches the name passed in addparameter (). This parameter receives
the value "My Book List" which is retrieved using the variable syntax you learned earlier:

<xsl:value-of select="$message" />

In this example, the <xs1:value-of/> directive retrieves the parameters value. The updated XSL
stylesheet would look like this:

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">
<xsl:param name="message" />

<xsl:template match="/">

186

www.it-ebooks.info

http://www.it-ebooks.info/

XML, XPath, and XSLT

<html>
<head>
<link rel="stylesheet" type="text/css" href="books.css" />
</head>
<body>
<xsl:value-of select="Smessage" />
<xsl:apply-templates />
</body>
</html>

</xsl:template>

The updated stylesheet adds two new lines of code. The first is the addition of the <xs1:param/> direc-
tive, and the second is the <xs1:value-of/> directive that retrieves the value of the parameter.
Parameter declarations can exist anywhere in the XSL document. This code shows the parameter decla-
ration at the top of the document, but you are not limited to this location.

One final feature of using an XSLProcessor is its speed; it compiles the XSL stylesheet, so subsequent
transformations using the same stylesheet result in faster transformations (compared to using
transformNode ()). To do this, use the reset () method of the XSLProcessor object. This method
clears the input and output properties but not the stylesheet property. This readies the processor for
the next transformation with the same stylesheet.

XSLT in Other Browsers

Like XML and XPath, the implementation of XSLT transformations in non-IE browsers varies from the IE
implementation. These browsers do implement an XSLTProcessor class to perform transformations,
but the similarities end there.

Like XPath, Safari currently doesn’t support XSLT transformations.

The first step in performing a transformation is to load the XML and XSL documents into a DOM object:

var oXmlDom = zXmlDom.createDocument () ;
var oXslDom = zXmlDom.createDocument () ;

oXmlDom.async false;
oXslDom.async = false;

oXmlDom. load ("books.xml") ;
oXslDom.load ("books.xsl") ;

The XSLTProcessor class exposes the importStylesheet () method, which takes an XML DOM object
containing the XSLT document as an argument:

var oXsltProcessor = new XSLTProcessor () ;
oXsltProcessor.importStylesheet (oXslDom) ;

187
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Last, the transformation methods are called. There are two of these methods: transformToDocument ()
and transformToFragment (). The transformToDocument () method takes an XML DOM object as an
argument and returns a new XML DOM document containing the transformation. Normally, this is the
method you want to use:

var oNewDom = oXsltProcessor.transformToDocument (oXmlDom) ;

The resulting DOM object can be used like any other XML DOM object. You can select certain nodes
with XPath, traverse the node structure with properties and methods, or even use it in another
transformation.

The transformToFragment () method returns a document fragment, as its name suggests, to append
to another DOM document. This method takes two arguments: the first is the XML DOM object you

want to transform, and the second is the DOM object you intend to append the result to:

var oFragment = oXsltProcessor.transformToFragment (oXmlDom, document) ;
document .body . appendChild (oFragment) ;

In this example, the resulting document fragment is appended to the body of the document object. Note
that you can append the resulting fragment to any node within the DOM object passed to the
transformToFragment () method.

But what if you wanted a string returned as the result of transformation like the transformNode ()
method implemented by Microsoft? You could use the XMLSerializer class you learned of earlier. Just

pass the transformation result to the serializeToString () method:

var oSerializer = new XMLSerializer();
var str = oSerializer.serializeToString (oNewDom) ;

When using the zXml library, this is simplified by using the xm1 property:

var str = oFragment.xml;
The XSLTProcessor class also enables you to set parameters to pass to the XSL stylesheet. The
setParameter () method facilitates this functionality; it accepts three arguments: the namespace URI,
the parameter name, and the value to assign the parameter. For example:

oXsltProcessor.importStylesheet (0XslDom) ;

oXsltProcessor.setParameter (null, "message", "My Book List");
var oNewDom = oXsltProcessor.transformToDocument (oXmlDom) ;

In this example, the parameter message is assigned the value "My Book List". The value of null is
passed for the namespace URI, which allows the parameter to be used without having to specify a prefix
and corresponding namespace URI in the stylesheet:

<xsl:param name="message" />

The setParameter () method must be called before the calling of transformToDocument () or
transformToFragment (), or else the parameter value will not be used in the transformation.

188
www.it-ebooks.info

http://www.it-ebooks.info/

XML, XPath, and XSLT

Cross-Browser XSLT

In the previous sections, you've seen how the zXml library makes handling XML data across both main
platforms easier. Now you will use the library to perform XSLT transformations. There is only one
method for XSLT in the library: transformToText (). This method, which returns text from a transfor-
mation, takes two arguments: the XML document to transform and the XSL document:

var sResult = zXslt.transformToText (oXmlDom, oXslDom) ;

As the name of the method suggests, the returned result is a string. You can then add the result of the
transformation (sResult) to an HTML document:

var oDiv = document.getElementById("transformedData") ;
oDiv.innerHTML = sResult;

This is perhaps the simplest object in the zXml library.

Best Picks Revisited

Imagine once again that you run an online bookstore. Your visitors like the Best Picks feature you imple-
mented, but you start to receive feedback that they want the picks of the previous week as well. You
decide to roll with an Ajax solution.

Using XHR, the browser retrieves the book list and the request’s responseText is loaded into an XML
DOM object. The stylesheet also is loaded into its own XML DOM object, and the XML data from the
book list is transformed into HTML, which is then written to the page. To provide some usability, you
provide a link in the upper-right corner to change from one list to another.

The first step in this solution is to retrieve the XML file with XHR. This is the beginning of the code and
the entry point for the mini-application, so you'll encapsulate the code in a function called init ():

function init (sFilename) {
var oReq = zXmlHttp.createRequest();
oReq.onreadystatechange = function () {
if (oReqg.readyState == 4) {
// only if "OK"
if (oReg.status == 200) {
transformXml (oReq.responseText) ;
}
}
¥
oReqg.open ("GET", sFilename, true);
oReq.send() ;
}

The init () function accepts one argument: the file name of the XML file to load. For cross-browser
compatibility (not to mention easier coding for you), you create an XHR object using the zXml library.
This is an asynchronous request, so the readyState property must be checked using the
onreadystatechange event handler. When the request returns as OK, the responseText is sent to
the transformxml () function:

189
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

function transformxXml (sResponseText) {
var oXmlDom = zXmlDom.createDocument () ;
oXmlDom.async = false;
oXmlDom. loadXML (sResponseText) ;

var oXslDom = zXmlDom.createDocument () ;
oXslDom.async = false;
oXslDom.load ("books.xsl") ;

var str = zXslt.transformToText (oXmlDom, oXslDom) ;
document .getElementById("divBookList") .innerHTML = str;

Calling transformxml () loads the passed response text into an XML DOM object using the 1oadxML ()
method. The XSL stylesheet is also loaded, and both objects are passed to the transformToText ()
method in the zXml library. The transformation’s result, a string, is then added to an element in the doc-
ument via the innerHTML property. As a result of this function, this week’s book list is visible to the user.

A good portion of the code is written, but you still lack the list-changing feature. To facilitate this ability,
another function needs writing, but first, the application needs to know what list to load as the user
clicks the link. This is easily handled by Boolean variable called bIsThisweek. When this week’s book
list is loaded, bIsThiswWeek becomes true; otherwise, it's false. Since this week’s list is already loaded,
bIsThisWeek is set to true:

var bIsThisWeek = true;

The link that the user clicks to change the list uses the onclick event, so the next function will handle
that event:

function changeList() {
var aChanger = document.getElementById("aChanger");

if (bIsThisWeek) {
aChanger.innerHTML = "This Week's Picks";
init ("lastweekbooks.xml") ;
bIsThisWeek = false;

} else {
aChanger.innerHTML = "Last Week's Picks";
init ("thisweekbooks.xml") ;
bIsThisWeek = true;

}

return false;

In this code, the link (aChanger) is retrieved with the getElementById () method. The variable
bIsThisWeek is checked. According to its value, the proper list is loaded by sending the file name to the
init () function. This retrieves the new list, transforms the data, and writes it to the page. Also, note
that the link text changes to cue users of what happens the next time they click the link. The
bIsThisWeek variable also changes so that the correct list is loaded the next time the user clicks the link.
Last, the function returns false. Since this function is an event handler for a link, returning any other
value would cause the link to behave as a link and could take the user away from the application.

190
www.it-ebooks.info

http://www.it-ebooks.info/

XML, XPath, and XSLT

Finally, you can complete the mini application with the HTML, and here is the entire document:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.0rg/TR/xhtml111/DTD/xhtml11.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" >
<head>
<title>Book XML Exercise</title>
<link rel="stylesheet" type="text/css" href="books.css" />
<script type="text/javascript" src="zxml.js"></script>
<script type="text/javascript">
function init (sFilename) {
var oReq = zXmlHttp.createRequest();
oReq.onreadystatechange = function () {
if (oReqg.readyState == 4) {
// only if "OK"
if (oReqg.status == 200) {
transformXml (oReq.responseText) ;

¥
oReq.open ("GET", sFilename, true);
oReq.send() ;

function transformXml (sResponseText) {
var oXmlDom = zXmlDom.createDocument () ;
oXmlDom.async = false;
oXmlDom. loadXML (sResponseText) ;

var oXslDom = zXmlDom.createDocument () ;
oXslDom.async = false;
oXslDom. load ("books.xsl") ;

var str = zXslt.transformToText (oXmlDom, oXslDom) ;
document .getElementById ("divBookList") .innerHTML = str;

var bIsThisWeek = true;

function changeList () {
var aChanger = document.getElementById("aChanger") ;
if (bIsThisWeek) {
aChanger.innerHTML = "This Week's Picks";
init ("lastweekbooks.xml") ;
bIsThisWeek = false;
} else {
aChanger.innerHTML = "Last Week's Picks";
init ("thisweekbooks.xml") ;
bIsThisWeek = true;

}
return false;
}
</script>

</head>

191
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

<body onload="init ('thisweekbooks.xml') ">

Last Week's Picks
<div id="divBookList"></div>

</body>

</html>

To run this mini-application, you must run it from a web server because XHR is used. Any web server
software will work fine. Just place this HTML file, the zXml library, and the CSS file into a directory
called booklists on your web server. Then fire up your browser and point it to http: //localhost/
booklists/book.htm.

Summary

In this chapter, you learned how to create and traverse the XML DOM objects in the major browsers of
today, as well as the differences between IE and non-IE implementations. You once again used the cross-
browser XML library zZXml, which enables you to create, traverse, and manipulate XML DOM objects
easily using a single interface. You also learned how to load XML data using JavaScript and output it to
the page.

In the second section, a brief introduction to XPath showed you the power the language offers for XML
documents. You learned how IE and the other browsers implement XPath and namespace support and
how they differ from each other. To ease this difficulty, the zZXPath object of the zXml library was intro-
duced, again providing one interface to select desired nodes easily for both browsers.

Finally, you learned about XSLT transformations and how to perform them using MSXML and the
XSLTProcessor class. Although the two interfaces have a few things in common, another cross-browser
object of the zXml library was introduced to smooth out the wrinkles: the zXslt object, which allows
XSLT transformations to be performed on both platforms with one method call.

192
www.it-ebooks.info

http://www.it-ebooks.info/

Syndication with RSS
and Atom

The introduction of XML ushered in a new era of information sharing. Previously, data sharing
was difficult at best as companies used proprietary transmission protocols and data formats that
were unavailable to the public. The idea of transmitting information on a web site using anything
other than HTML was a strange, if not unheard of, idea. But this changed in 1998 when Microsoft
introduced Internet Explorer 4.0 with a new feature called Active Channels. Built upon the
Microsoft-developed Channel Definition Format (CDF), Active Channels allowed web site content
to be transmitted (or syndicated) to users’ desktops using the bundled Active Desktop. The prob-
lem with Active Channels, however, was its poor support for the everyday user. Anyone could
make a channel from scratch, but the industry lacked tools to create and manage CDF files easily.
The primary users of Active Channels, big media companies, pushed users away with excessive
ads that increased the amount of bandwidth the channels used. Additionally, there was little
demand for or perceived value in using Active Channels. The whole concept of syndication
seemed to have died with Active Channels and the failure of CDF to reach recommendation status
from the World Wide Web Consortium. Then came RSS.

RSS

In March of 1999, Netscape launched the My Netscape portal, a single place for users to visit for all
of their news. The idea was simple: to pull information from any number of news sources and dis-
play it on My Netscape. To facilitate this idea, Dan Libby of Netscape Communications developed
an XML data format based on the Resource Description Framework (RDF) called RDF Site
Summary (RSS). This format would later become known as RSS 0.9.

Shortly after the introduction of RSS 0.9, Dave Winer of Userland Software contacted Libby regarding

the RSS 0.9 format. Winer had developed an XML format to use with his site, ScriptingNews, and
believed that it and RSS 0.9 could be combined with it and simplified to make a better, more usable,

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

format. In July of 1999, Libby released a prototype of the new Rich Site Summary (also abbreviated as RSS),
which became RSS 0.91. My Netscape then began using RSS 0.91 and continued to do so until 2001, when
support for external RSS feeds was dropped. Netscape soon lost interest in RSS and left it without an owner.
What would follow splintered the RSS format into two different versions.

A mailing list of developers and other interested parties formed in order to continue the development of
RSS. This group, called RSS-DEV (http: //groups.yahoo.com/group/rss-dev), produced a specifi-
cation called RSS 1.0, in December 2000. RSS 1.0 was based on the original RDF Site Summary (RSS 0.9)
and sought to extend it by modularizing the original 0.9 version. These modules are namespaces that
can be created by anyone, allowing new functionality to be added without changing the specification.
It’s important to note that RSS 1.0 is a descendant of RSS 0.9 but not related to RSS 0.91.

At the same time, Winer declared himself the owner of RSS and continued to develop his own version,
releasing what he deemed RSS 2.0 (Really Simple Syndication). This new RSS format was based on RSS
0.91, the version that Winer and Libby developed together. The emphasis for RSS 2.0 was the simplicity of
the format. When Winer ended up working at Harvard, he assigned ownership of RSS 2.0 to Harvard’s
Berkman Center for the Internet & Society, which now manages and publishes the specification at
http://blogs.law.harvard.edu/tech/rss. RSS 2.0 is the most widely used RSS format today.

Today, the term RSS encompasses three different versions of the RSS format: RSS 0.91, RSS 1.0, and
RSS 2.0.

RSS 0.91

RSS 0.91 is based upon Document Type Declarations (DTDs) and was possibly the most popular RSS
version until the release of RSS 2.0. Some statistics show RSS 0.91 capturing 52 percent of the syndication
market in 2001, with a steady increase until the introduction of 2.0. Only a handful of 0.91 feeds were in
use as of 2006, but RSS 2.0 owes much of its current success to RSS 0.91.

RSS 0.91’s DTD lists 24 elements (14 more than RSS 0.9); it is easily read by humans and machines alike.
Here’s a simple 0.91 example:

<?xml version="1.0" encoding="UTF-8" ?>

<!DOCTYPE rss PUBLIC "-//Netscape Communications//DTD RSS 0.91//EN"
"http://my.netscape.com/publish/formats/rss-0.91.dtd">

<rss version="0.91">
<channel>
<title>My Revenge</title>
<link>http://sithboys.com</link>
<description>Dedicated to having our revenge</description>
<item>
<title>At last!</title>
<link>http://sithboys.com/atlast.htm</link>
<description>
At last we will reveal ourselves to the Jedi. At last we
will have our revenge.
</description>
</item>
</channel>
</rss>

194
www.it-ebooks.info

http://www.it-ebooks.info/

Syndication with RSS and Atom

Like Microsoft’s CDF, RSS 0.91 (and 2.0, for that matter) feeds are channel-based; a defining feature of
the two RSS formats is the inclusion of all data inside the <channel /> element. All site information, (the
<title/>, <link/>, <description/>, and so forth elements), as well as the <item/> elements, are
contained by <channel/>. This is in stark contrast to RSS 1.0.

RSS 1.0

RSS 1.0 is a departure from the 0.91 standard and follows the RDF format of 0.9. RSS 1.0 is far more ver-
bose than other versions but is also more extensible. This extensibility makes it an attractive format for
developers of RDF-based applications.

Although it maintains some resemblance to RSS 0.91, RSS 1.0 is structurally different:

<?xml version="1.0"?>

<rdf:RDF xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns="http://purl.org/rss/1.0/">

<channel rdf:about="http:// sithboys.com/about.htm">
<title>My Revenge</title>
<link> http://sithboys.com</link>
<description>
Dedicated to having our revenge
</description>
<image rdf:resource="http://sithboys.com/logo.jpg" />
<items>
<rdf:Seqg>
<rdf:1i resource="http://sithboys.com/atlast.htm" />
</rdf:Seqg>
</items>
<textinput rdf:resource="http://sithboys.com/search/" />
</channel>

<image rdf:about="http://sithboys.com/logo.jpg">
<title>The Logo of the Sith</title>
<link>http://sithboys.com/</link>
<url>http://sithboys.com/logo.jpg</url>
</image>

<item rdf:about="http://sithboys.com/atlast.htm">
<title>At last!</title>
<link>http://sithboys.com/atlast.htm</link>
<description>
At last we will reveal ourselves to the Jedi. At last we will have
our revenge.
</description>
</item>
</rdf :RDF>

The <item/> elements outside of <channel/> contain the data of each entry; on the other hand, the
<items/> element inside of <channel/> contains a list of values (the <rdf : Seq/> element) that refer-
ence the <item/> elements outside of <channel/>. As you can see, it is far more complex than RSS 0.91,
and although RSS 1.0 has gained a following, it does not have the popularity that the other formats enjoy.

195
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

RSS 1.0 is not DTD-based like version 0.91, so it is not necessary to have one in the document.

RSS 2.0

RSS 2.0 almost exactly mirrors RSS 0.91 but introduces some new elements, such as <author/> , while
allowing modularized extensions like RSS 1.0. To further simplify things, RSS 2.0 also does away with
the required DTD. Given the simplicity it has inherited from RSS 0.91, and the extensibility similar to
RSS 1.0, it is no wonder that RSS 2.0 is the most-used RSS format at the time of this writing.

The following is an example of a basic RSS 2.0 document:

<?xml version="1.0" encoding="UTF-8" ?>

<rss version="2.0">
<channel>
<title>My Revenge</title>
<description>Dedicated to having our revenge</description>
<link>http://sithboys.com</link>
<item>
<title>At last!</title>
<link>http://sithboys.com/atlast.htm</link>
<author>DarthMaul@sithboys.com</author>
<description>
At last we will reveal ourselves to the Jedi. At last we will have
our revenge.
</description>
</item>
</channel>
</rss>

Atom

Atom is the newest entry on the syndication scene. Since its inception in mid-2003, Atom has received
quite a bit of coverage and usage. Atom, unlike RSS, is a strict specification. One of the problems of the
RSS specification is the lack of information on how a developer handles HTML markup in its elements.
Atom’s specification addresses this issue and gives developers strict rules they must follow, as well as a
host of new features, enabling developers to choose the content type of an element and specify attributes
that designate how a specific element should be handled. With such features, it is no wonder power-
houses like Google and Movable Type are getting behind Atom.

Atom resembles RSS in the sense that they both have the same data constructs. Most of Atom’s element
names differ from RSS, and the document structure is slightly different:

<?xml version="1.0" encoding="iso-8859-1"?>
<feed version="1.0" xmlns="http://www.w3.0rg/2005/Atom" xml:lang="en">
<title>My Revenge</title>

<link rel="alternate" type="text/html" href="http://sithboys.com" />
<modified>2006-06-30T15:51:21-06:00</modified>

196
www.it-ebooks.info

http://www.it-ebooks.info/

Syndication with RSS and Atom

<tagline>Dedicated to having our revenge</tagline>
<id>tag:sithboys.com</id>
<copyright>Copyright (c) 2006</copyright>
<entry>
<title>At last!</title>
<link rel="alternate" type="text/html" href="
http://sithboys.com/atlast.htm" />
<modified>2005-06-30T15:51:21-06:00</modified>
<issued>2005-06-30T15:51:21-06:00</issued>
<id>tag:sithboys.com/atlast</id>
<author>
<name>Darth Maul</name>
</author>
<content type="text/html" xml:lang="en"
xml :base="http://sithboys.com">
At last we will reveal ourselves to the Jedi. At last we will
have our revenge.
</content>
</entry>
</feed>

According to the Atom specification, all elements in the Atom format must reside in the http: //www.w3
.org/2005/Atom namespace, or else many parsers will not parse the feed. All site-defining elements
exist as direct children to the document element. An Atom feed can also contain many <entry/>
elements, resembling the <item/> elements of an RSS feed.

XParser

News aggregation sites using syndication formats are gaining popularity as the formats become more
widely used. Many sites use server-side logic to parse RSS and Atom feeds, displaying them in some
sort of user-friendly format. However, it may be necessary to perform the same functions on the client-
side using JavaScript. This is where XParser comes in.

XParser is a JavaScript library that parses RSS and Atom feeds into JavaScript objects, making the feed’s
data easy to access in web applications. Its primary goal is to provide an interface for JavaScript devel-
opers to quickly access a feed’s most important elements. The code is object-oriented, broken into
abstract classes that the Atom- and RSS-specific classes inherit from. Such a design allows the different
feed types to be parsed according to their specific differences while leaving room for extensions. This
section explains how the XParser code is designed and implemented.

The xparser Namespace

XParser begins with the xparser namespace. A namespace contains the library’s code in one simple
package and protects the contained code from external naming conflicts. Of course, JavaScript does not
implement an official namespace construct; however, you can simulate the behavior of a namespace
quite easily with a simple object.

var xparser = {};

197
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

This code defines the xparser object using object literal notation. It is this object that holds data, meth-
ods, and classes for XParser.

Because the script deals with different types of feeds, it needs some way to identify the feed it is parsing.
This is easily accomplished with the feedType object:

xparser. feedType = {
rss g 1,
atom 2

B

The feedType object contains two properties (rss and atom), which are assigned numeric values. These
numeric constants allow assignment and comparison of a feed’s format.

Retrieving the Data

To retrieve data from a specific XML node, the XParser library depends upon the FeedNode class. As its
name implies, it represents a DOM node contained in the feed and is responsible for accessing and
retrieving the node’s value. The class accepts one argument, the XML node:

xparser.FeezdNode = function (oNode) {
this.value = (oNode && (oNode.text || oNode.getText())) || null;
Yi

FeedNode exposes one property called value, which either contains the node’s text or a null value.

The text property does not exist in Firefox’s DOM, and getText () doesn’t exist in Opera. To gain
this functionality, XParser uses the zXml library introduced in Chapter 2, which extends Firefox’s
and Opera’s DOM.

The Abstract Classes

As stated earlier, XParser is responsible for parsing two types of feeds, RSS and Atom. While there are
many ways to accomplish this, the best is to have one class responsible for parsing each of the two dif-
ferent feed types. Despite their differences, the feed types share some similarities, and finding that com-
mon ground can save time and code. To facilitate this design, XParser contains two abstract classes:
BaseFeed and BaseItem.

The BaseFeed Class

The BaseFeed class represents the feed as a whole, defining several properties that each feed uses to
describe itself. The constructor accepts three arguments: the feed type (1 or 2, as defined in the
FeedType object), a function pointer to call when parsing is complete, and the scope in which the call
back function should execute. Here’s the code for the BaseFeed class:

xparser .BaseFeed = function (iFeedType, fpCallBack, oCallBackScope) {

this.type = iFeedType || null;
this.title = null;
this.link = null;
this.description = null;

198
www.it-ebooks.info

http://www.it-ebooks.info/

Syndication with RSS and Atom

this.copyright = null;
this.generator = null;
this.modified = null;
this.author = null;

this.items = [];

this.callBack =

(typeof fpCallBack == "function") ? fpCallBack : function () {};
this.callBackScope =
(typeof oCallBackScope == "object") ? oCallBackScope : this;

¥

The first line assigns the feed type, which defaults to null if no argument is passed to the constructor.
This ensures that no errors are thrown when prototype chaining subclasses (discussed later).

Thetitle,link,description,copyright,generator,modified,andauthorfﬂoperﬁesaregenep
alized properties that both Atom and RSS feeds contain. These properties, at some point, will hold
FeedNode objects. The items array represents the feed’s <rss:item/> or <atom:entry/> elements.
The final four lines of the BaseFeed constructor assign the default values for the callback and
callBackScope properties. The former defaults to an empty function, while the latter defaults to the
BaseFeed instance.

This class exposes a method called parse (), which accepts a context node, an associative array (object)
of property and element names as keys and values, respectively, and an associate array of namespace
prefixes and namespace URIs as arguments:

xparser .BaseFeed.prototype = {
parse : function (oContextNode, oElements, oNamespaces) {

}
¥

With the information provided, it’s possible to evaluate XPath expressions to extract the desired data. To
do this, loop through oElements and use the zXPath class to perform the XPath evaluation:

xparser.BaseFeed.prototype = {
parse : function (oContextNode, oElements, oNamespaces) {
//Loop through the keys
for (var sProperty in oElements) {
if (oElement.hasOwnProperty (sProperty)) {
//Create FeedNode objects with the node
//returned from the XPath evaluation
this[sProperty] = new xparser.FeedNode (
zXPath.selectSingleNode (
oContextNode,
oElements[sPropertyl],
oNamespaces

199
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

o

The associative array passed to the oElements parameter contains “title”, “link”, “description”, “copy-
right”, “generator”, “modified”, and “author” as the keys. These keys correspond directly to the proper-

ties of the BaseFeed class. This provides a quick and easy way to assign values to these properties.

It's important to note that BaseFeed is an abstract class and as such should not be
instantiated directly. These types of classes are designed to be inherited from; there-
fore, only the child classes need to worry about providing the information in the
correct format.

The Baseltem Class

The BaseItem class follows the same pattern. Like the BaseFeed class, BaseItem’s constructor initial-
izes its properties as null:

xparser.Baseltem = function () {
this.title = null;
this.author = null;
this.link = null;
this.description = null;
this.date = null;

¥

These properties are a generalized equivalent to the feed’s item (or entry) elements. Also, like the
BaseFeed class, this class exposes a parse () method, which is implemented similarly:

Xparser.Baseltem.prototype = {
parse : function (oContextNode, oElements, oNamespaces) {
//Loop through the keys
for (var sProperty in oElements) ({
if (oElements.hasOwnProperty (sProperty)) {
//Create FeedNode objects with the node
//returned from the XPath evaluation
this[sProperty] = new xparser.FeedNode (
zXPath.selectSingleNode (
oContextNode,
oElements[sPropertyl],
oNamespaces

i
These two classes provide a basis that the RSS and Atom classes can inherit from. Also, this design

future-proofs the library, allowing easy addition of new feed types (provided any new feed type uses a
compatible format).

200

www.it-ebooks.info

http://www.it-ebooks.info/

Syndication with RSS and Atom

Parsing RSS Feeds

The RSSFeed class is in charge of parsing RSS feeds. The constructor accepts three arguments: the root
element of the XML document, the callback function, and the scope in which the callback function
should run:

xparser.RssFeed = function (oRootNode, fpCallBack, oCallBackScope) {
xparser .BaseFeed.apply (this,
[xparser.feedType.rss, fpCallBack, oCallBackScope]
) 7
Yi

xparser .RssFeed.prototype = new xparser.BaseFeed() ;

Two things are taking place in this code. First, the BaseFeed constructor is called using the apply ()
method and passing in the appropriate arguments (including xparser. feedType.rss as the feed
type). This is a common way of inheriting properties from a superclass in JavaScript; it ensures that all
inherited properties are instantiated with the appropriate values. Second, the RssFeed prototype is set
to a new instance of BaseFeed, which inherits all methods from BaseFeed.

For more information on inheritance and object-oriented design in JavaScript, see Professional
JavaScript for Web Developers (Wiley Publishing, Inc., 2005).

The next step is to parse the XML data supplied by the oRootNode argument. This is a simple matter of
creating an associative array of class properties as keys and the corresponding XML element name as
values.

xparser.RssFeed = function (oRootNode, fpCallBack, oCallBackScope) {
xparser.BaseFeed.apply (this,
[xparser.feedType.rss, fpCallBack, oCallBackScope]
)

var oChannelNode = zXPath.selectSingleNode (oRootNode, "channel");

var oElements = ({

title : "title",

link : "link",
description : "description",
copyright : "copyright",
generator : "generator",
modified : "lastbuilddate",
author : "managingeditor"

¥

this.parse (oChannelNode, oElements, []);

Y

This new code first retrieves the <rss: channel /> element. Remember, the <rss: channel/> element
serves as a container for the entire feed. Next, create the oElements associative array by supplying the
values of the XML element names. This information is passed to the parse () method, which retrieves the
desired elements, creates FeedNode objects with the elements, and assigns them to the class properties.

201
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Next, populate the items array:
xparser.RssFeed = function (oRootNode, fpCallBack, oCallBackScope) {
xparser.BaseFeed.apply (this,
[xparser.feedType.rss, fpCallBack, oCallBackScopel) ;

var oChannelNode = zXPath.selectSingleNode (oRootNode, "channel");

var oElements = {

title : "title",

link : "link",
description : "description",
copyright : "copyright",
generator : "generator",
modified : "lastbuilddate",
author : "managingeditor"

Y

this.parse(oChannelNode, oElements, []);
var cItems = zXPath.selectNodes (oChannelNode, "item");

for (var i = 0, oItem; oItem = cItems[i]; i++) {
this.items.push(new xparser.RssItem(oIltem)) ;

}

this.callBack.call (this.callBackScope, this);
Y

The first new line uses XPath to retrieve the <rss:item/> nodes. Next, the code loops through the
selected XML nodes and creates an RssItem object with the element. The new object is added to the
items arrayusing the push () method. After the items array is fully populated, the feed is completely
parsed; thus, the final line executes the callback function in the specified scope. Also, the RssFeed object
is passed to the callback function. This allows easy access to the feed object in case those using the
library need easy access to the information the object houses.

Just as a RssFeed extends BaseFeed, an RssItem class extends BaseItem. This item class is quite simple;
the RssItem constructor accepts one parameter, the <rss:item/> node:

xparser.RssItem = function (oItemNode) {
xparser.Baseltem.apply (this) ;

var oElements = {

title : "title",

link : "link",
description : "description",
date : "pubdate",
author : "author"

I g

this.parse(oItemNode, oElements, {});
}i

xparser.RssItem.prototype = new xparser.Baseltem() ;
202
www.it-ebooks.info

http://www.it-ebooks.info/

Syndication with RSS and Atom

This code resembles that of RssFeed. The first line calls the parent class constructor to initialize proper-
ties. Next, the oElements associative array is created and passed, along with the XML node, to the
parse () method. Since the RSS specification does not specify a namespace, an empty object is passed as
the namespace parameter of the parse () method.

Parsing Atom

The code for parsing Atom feeds is very similar to the RSS-parsing code. There are just a few key differ-
ences to take into account.

The first difference is the use of namespaces. According to the Atom specification, all elements in the
feed must reside in the http: //www.w3.0org/2005/Atom namespace. XParser may also come across an
Atom feed that uses a previous version, in which case, the aforementioned namespace will not work.
You can work around this issue, however, by retrieving the namespace URI of the root element:

xparser.AtomFeed = function (oRootNode, fpCallBack, oCallBackScope) {
xparser .BaseFeed.apply (this,
[xparser.feedType.atom, fpCallBack, oCallBackScope]
) 3

var oNamespaces = {
atom : oRootNode.namespaceURI
¥
¥

The first few lines are very similar to the code in the RssFeed constructor, the only difference being the
feedType passed to the BaseFeed constructor. The next block of code creates an associative array called
oNamespaces, which is responsible for holding key/value pairs consisting of the element prefix and the
associated namespace URI. In this case, the atom key corresponds to the namespaceURI of the root ele-
ment. This ensures that an attempt to parse the Atom feed, regardless of version, takes place.

The next key difference is, of course, the elements to retrieve. As a result of XParser’s design, however,
this obstacle is easily overcome:

xparser.AtomFeed = function (oRootNode, fpCallBack, oCallBackScope) {
xparser.BaseFeed.apply (this,
[xparser.feedType.atom, fpCallBack, oCallBackScope]
)
var oNamespaces = {
atom : oRootNode.namespaceURI

Y

var oElements = {

title : "atom:title",

link : "atom:1link/@href",
description : "atom:tagline",
copyright : "atom:copyright",
generator : "atom:generator",
modified : "atom:modified",
author : "atom:author"

b
this.parse (oRootNode, oElements, oNamespaces) ;
203
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

The first new block of code creates the oElements associative array with the Atom element names. The
element’s prefix, atom, matches the prefix contained in oNamespaces. The combined information is then
passed to the parse () method to assign the properties their proper value.

Next, populate the items array:

xparser.AtomFeed = function (oRootNode, fpCallBack, oCallBackScope) {
xparser .BaseFeed.apply (this,
[xparser.feedType.atom, fpCallBack, oCallBackScopel]
)

var oNamespaces = {
atom : oRootNode.namespaceURI
Y

var oElements = {

title : "atom:title",

link : "atom:link/@href",
description : "atom:tagline",
copyright : "atom:copyright",
generator : "atom:generator",
modified : "atom:modified",
author : "atom:author"

bi
this.parse(oRootNode, oElements, oNamespaces);
var cEntries = zXPath.selectNodes (oRootNode, "atom:entry", oNamespaces) ;
for (var i = 0, oEntry; oEntry = cEntries[i]; i++) {
this.items.push(new xparser.AtomItem(oEntry, oNamespaces)) ;
this.callBack.apply(this.callBackScope, [this]);
}i

The new code selects the <atom:entry/> elements and assigns the collection to cEntries. Next, the
code loops through the collection and adds new AtomItem objects to the items array. When the parsing
is complete, the callback function is executed in the specified scope.

Also, like the RssFeed class, the AtomFeed class’s prototype is set to a new instance of BaseFeed to
inherit methods:

xparser.AtomFeed.prototype = new xparser.BaseFeed() ;

Naturally, the code for AtomItem resembles that of RssItem. In fact, the only difference between the two
is the XML element names contained in oElements:

xparser.AtomItem = function (oEntryNode, oNamespaces) {
xparser.Baseltem.apply (this, []1);

var oElements = {
title : "atom:title",

204
www.it-ebooks.info

http://www.it-ebooks.info/

Syndication with RSS and Atom

link : "atom:1link/@href",
description : "atom:content",
date : "atom:issued",
author : "atom:author"

i
this.parse (oEntryNode, oElements, oNamespaces) ;
bi
And of course, you need to assign this new class’s prototype as well:

xparser ..AtomItem.prototype = new xparser.BaseItem() ;

This last line of code completes the parsing aspect of XParser. Of course, this approach is helpful only if
you know what type of feed to parse. The library needs some way of creating a feed object, regardless of
the feed’s type.

Putting It Together

To address this issue, XParser contains a factory method called getFeed (), whose purpose is to
retrieve the feed, determine if the feed is usable, and create the feed object. The method relies upon an
XHR object to retrieve the feed. In order to do this, the zXml library is used once again, as the zXm1Http
.createRequest () factory method is called to create the XHR object in a cross-browser fashion.

The getFeed () method accepts three arguments: the feed’s URL, the callback function pointer, and the
callback function’s scope.

xparser.getFeed = function (sUrl, fpCallBack, oCallBackScope) {
var oReq = zXmlHttp.createRequest();

oReq.onreadystatechange = function () {
if (oReqg.readyState == 4) {
if (oReq.status == 200 || oReg.status == 304) {

//more code here

b5

oReqg.open ("GET", sUrl, true);
oReq.send(null) ;
¥

This code for creating and handle the XHR object is similar to other examples in this book, as the
readystatechange handler checks for status codes of both 200 and 304.The next step is to determine
the requested feed’s type. In order to do this, you need to load the XHR’s responseText into an XML
DOM:

xparser.getFeed = function (sUrl, fpCallBack, oCallBackScope) {
var oReq = zXmlHttp.createRequest();

oReq.onreadystatechange = function () {
if (oReqg.readyState == 4) {
if (oReq.status == 200 || oReg.status == 304) {

205
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

var oFeed = null;

var oXmlDom = zXmlDom.createDocument () ;
oXmlDom.loadXML (oReq.responseText) ;

if (oXmlDom.parseError.errorCode != 0) {
throw new Error ("XParser Error: The requested feed is not " +
"valid XML and could not be parsed.");
} else {
var oRootNode = oXmlDom.documentElement;

//more code here

Y

oReq.open ("GET", sUrl, true);
oReq.send(null) ;
};

In this new code, an XML DOM is created and loaded with data. The XML document’s
documentElement is assigned to a variable for easy access to the node. Also, the variable oFeed is
initialized as null; this variable eventually assumes the value of a feed object.

A simple way to determine the feed’s format is to check the documentElement’s nodeName property, since
Atom uses <feed/> as its root element and RSS uses <rss/>. You also need to take into consideration that
the Atom feed may or may not use a default namespace. This concern is easily addressed by checking
whether or not the root element uses a prefix:

xparser.getFeed = function (sUrl, fpCallBack, oCallBackScope) {
var oReqg = zXmlHttp.createRequest () ;

oReq.onreadystatechange = function () {
if (oReqg.readyState == 4) {
if (oReqg.status == 200 || oReg.status == 304) {

var oFeed = null;

var oXmlDom = zXmlDom.createDocument () ;
oXmlDom.loadXML (oReq.responseText) ;

if (oXmlDom.parseError.errorCode != 0) {
throw new Error ("XParser Error: The requested feed is not " +
"valid XML and could not be parsed.");
} else {
var oRootNode = oXmlDom.documentElement;

//Get the name of the document element.

var sRootName;

if (oRootNode.nodeName.indexOf(":") > -1) //a prefix exists
sRootName = oRootNode.nodeName.split(":")[1];

else
sRootName = oRootNode.nodeName;

switch (sRootName.toLowerCase()) {
case "feed": //It's Atom.

206
www.it-ebooks.info

http://www.it-ebooks.info/

Syndication with RSS and Atom

Y

//more code here
break;
case "rss": //It's RSS
//more code here
break;
default: //The feed isn't supported.
//more code here
break;

Y

oReqg.open ("GET", sUrl, true);
oReq.send(null) ;

In the newly added code, the root element’s name is checked to see if it contains a colon (:). If it does,
this means that the element name contains a prefix, so it’s split into two parts: the prefix and the tag
name. The tag name is assigned to the sRootName variable. If no prefix exists, then sRootName takes on
the value of the element’s name.

Once the element’s name is known, it can be handled accordingly. The swi tch block determines the next
step based on the root element’s name. Using this code, the desired AtomFeed or RssFeed object is created:

xparser.getFeed = function (sUrl, fpCallBack, oCallBackScope) {

var oReq = zXmlHttp.createRequest();

oReq.onreadystatechange = function () {
if (oReqg.readyState == 4) {
if (oReq.status == 200 || oReg.status == 304) {

var oFeed = null;

var oXmlDom = zXmlDom.createDocument () ;
oXmlDom. loadXML (oReq.responseText) ;

if (oXmlDom.parseError.errorCode != 0) {
throw new Error ("XParser Error: The requested feed is not " +
"valid XML and could not be parsed.");
} else {
var oRootNode = oXmlDom.documentElement;

//Get the name of the document element.
var sRootName;
if (oRootNode.nodeName.indexOf (":") > -1)
sRootName = oRootNode.nodeName.split(":")[1];
else
sRootName = oRootNode.nodeName;

switch (sRootName.toLowerCase()) {
case "feed": //It's Atom.
oFeed = new xparser.AtomFeed (
oRootNode,
fpCallBack,

207
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

oCallBackScope

¥

break;

case "rss": //It's RSS

//Check the version.

if (parselnt (oRootNode.getAttribute("version")) < 2)
throw new Error ("XParser Error! RSS feed " +

"version is not supported"

) g

oFeed = new xparser.RssFeed (
oRootNode,
fpCallBack,
oCallBackScope

) §

break;

default: //The feed isn't supported.

throw new Error ("XParser Error: The supplied feed " +
"is currently not supported."

) 5

break;

Y

oReq.open ("GET", sUrl, true);
oReq.send(null) ;
Y

The newly added code creates an AtomFeed object and passes it the required arguments. Creating an RSS
feed, however, requires a few more steps. First, the RSS version is checked (by checking the version
attribute in the root element). If the version is less than 2, the code throws an error stating the RSS version
isn’t supported. If the feed is the correct version, however, an RssFeed object is created. Last, if the docu-
ment’s root could not be matched, the feed isn’t supported, so an error is thrown. Throwing errors allows
a developer using the library to anticipate these types of errors and handle them accordingly.

While we’re on the subject of errors, the getFeed () method needs one more in case the XHR request
fails:

xparser.getFeed = function (sUrl, fpCallBack, oCallBackScope) {
var oReq = zXmlHttp.createRequest () ;

oReq.onreadystatechange = function () {
if (oReq.readyState == 4) {
if (oReq.status == 200 || oReg.status == 304) {

var oFeed = null;

var oXmlDom = zXmlDom.createDocument () ;
oXmlDom.loadXML (oReq.responseText) ;
if (oXmlDom.parseError.errorCode != 0) {
throw new Error ("XParser Error: The requested feed is not " +
"valid XML and could not be parsed.");
} else {

208
www.it-ebooks.info

http://www.it-ebooks.info/

Syndication with RSS and Atom

Y

var oRootNode = oXmlDom.documentElement;

//Get the name of the document element.
var sRootName;
if (oRootNode.nodeName.indexOf (":") > -1)
sRootName = oRootNode.nodeName.split(":")[1];
else
sRootName = oRootNode.nodeName;

switch (sRootName.toLowerCase()) {
case "feed": //It's Atom. Create the object.
oFeed = new xparser.AtomFeed (
oRootNode,
fpCallBack,
oCallBackScope
);
break;
case "rss": //It's RSS
//Check the version.
if (parselnt (oRootNode.getAttribute("version")) < 2)
throw new Error ("XParser Error! RSS feed " +
"version is not supported"
)

oFeed = new xparser.RssFeed (
oRootNode,
fpCallBack,
oCallBackScope

)

break;

default: //The feed isn't supported.

throw new Error ("XParser Error: The supplied feed " +

"is currently not supported."

);

break;
}
}
} else { //The HTTP Status code isn't what we wanted; throw an error.
throw new Error ("XParser Error: XHR failed. " +
"HTTP Status: " + oReq.status

) g

Y

oReqg.open ("GET", sUrl, true);
oReq.send(null) ;

This new code throws an error if the HTTP status is anything other than 200 or 304, making it easier to
debug and realize that the request failed for some reason. Also, notice that the errors are prepended with
the string “XParser Error” to clearly indicate that the error occurred within the library.

With these final lines of code, the XParser library can now be used in any web application. The remain-
der of this chapter walks you through the creation of two components that utilize the XParser library.

209
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Creating a News Ticker

Popular on both television news networks and web sites, a news ticker displays information in a
scrolling format. Unlike the static nature of television, the Web enables users to interact with these tick-
ers. If something catches their eye, they can click the news item and it takes them to their desired infor-
mation. Because of this interactivity, news tickers are quite popular on web sites, and as it turns out, easy
to implement using Ajax (see Figure 7-1).

Like any other Ajax-enabled application, a web-based news ticker comes in two parts: a server applica-
tion and a client application. Since RSS feeds can exist on any server, a PHP server-side proxy is used to
retrieve requested feeds for the client. The client application is, of course, a mix of HTML and JavaScript.

E3 Ajax News Ticker - Mozilla Firefox BE=
File Edit View Go Bookmarks Tools Help [+]
©-2-w s &M

| http:/fyoda/newsticker/ V [),‘ Go

aDisah\ev 0SSy [@Formse #lmagess @ Information= [Z]Miscellaneous- #outlines TBResize- [E,View Source |t £[Optior

1hoo! News: Top Stories Senate's 'Gang of 14' Fractures Over Alito (AP) Six Gls Killed in Irag; 20 Die in Bombing (AP) Tho

[5~ Daone LTI 0 10 [1 P =

Figure 7-1

The Server-Side Component

The PHP server application is extremely simple. Its only function is to retrieve data from a URL and
return it back to the client. To do so, the page expects a url variable in the query string to indicate which
data to retrieve. For instance:

newsticker.php?url=http://rss.news.yahoo.com/rss/topstories

This URL tells newsticker.php, the server-side component, to retrieve data from the Yahoo! News Top
Stories RSS feed.

210
www.it-ebooks.info

http://www.it-ebooks.info/

Syndication with RSS and Atom

Because the server’s only job is to retrieve remote information, the code is only a few lines long;:

<?php
header ("Content-Type: text/xml");
header ("Cache-Control: no-cache");

if (isset($S_GET["url"])) {
SremoteUrl = $_GET["url"];

sxml = file_get_contents (SremoteUrl) ;

echo $xml;
} else {

header ("HTTP/1.1 400 Bad Request");
}

?>

The first two lines set the Content-Type and Cache-Control headers, respectively. It is important
to set the MIME content type to text/xml; otherwise, Mozilla Firefox doesn’t recognize the data as
XML and won’t automatically parse it into an XML DOM document. It also is important to set the
Cache-Control header to no-cache because Internet Explorer caches all data retrieved via XHR
unless explicitly told not to.

In the next line of code, the query string is checked for the url parameter. To do this, use the isset ()
function, which returns a Boolean value based on whether a variable, function, or object exists. If

a value has been passed in, the value of url is assigned to the $remoteUr1l variable and passed to
file_get_contents (). This function opens a file (local or remote), reads the file, and returns its
contents as a string. The last step is to write the file’s contents, stored in the $xm1 variable, to the page.
This concludes the server-side code.

If the url parameter cannot be found in the query string, PHP returns an HTTP status of 400, which
signifies a bad request. Because XParser is responsible for making requests to the server, it will handle
this HTTP status and throw an error specifying that XHR failed to retrieve the data.

The Client-Side Component

Before delving into the code, consider the client’s required functionality. The client:

1. Builds the HTML to display the news feeds.

2. Requests data from the server application. When the server responds with the requested data,
the client parses the data with XpParser.

w

Places the parsed data into the HTML.

P

Uses JavaScript to animate the ticker.

5. Polls for updated data every 1.5 minutes.

211
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

In addition, a few user interface criteria must be met:

0 The data in the ticker, news article titles, should be links that take the user to the specified news
article.

Q The ticker should stop scrolling when the user’s mouse enters the ticker and should resume
scrolling when the user mouses out.

To implement this functionality, the client-side code consists of two classes: the NewsTicker class, which
builds the ticker in HTML format, animates the ticker, and provides the ability to add news feeds into
the ticker, and the NewsTickerFeed class, which requests the feed, parses it, places it in the HTML, and
polls for new data.

The NewsTicker Class

The NewsTicker class is the main class of the client-side code. The constructor accepts one argument,
which is the HTMLEl ement to append the news ticker:

function NewsTicker (oAppendTo) {
var oThis = this;
this.timer = null;
this.feeds = [];

//more code to come

These first few lines of code initialize the properties of the NewsTicker class. First, a pointer to the
object is created by assigning the variable oThis. The timer property, initially set to null, will control
the scrolling animation (setTimeout () returns a unique timer identifier). The feeds property is an
array that will contain NewsTickerFeeds objects.

Next, elements are created for the primary user interface of the news ticker:

function NewsTicker (oAppendTo) {
var oThis = this;
this.timer = null;
this.feeds = [];
this.tickerContainer = document.createElement ("div") ;
this.ticker = document.createElement ("div");
this.tickerContainer.className = "newsTickerContainer";
this.ticker.className = "newsTicker";

//more code to come

These properties, tickerContainer and ticker, reference newly created <div/> elements. The
tickerContainer element does what its name implies: it contains all elements of the widget, whereas
the ticker element scrolls the news feeds contained in it. The HTML code output by this constructor is:

<div class="newsTickerContainer">

<div class="newsTicker"></div>
</div>

212

www.it-ebooks.info

http://www.it-ebooks.info/

Syndication with RSS and Atom

As a part of the user interface, remember that the scrolling animation stops when users move their
mouse over the news ticker. To facilitate this functionality, event handlers are assigned for the
onmouseover and onmouseout events of tickerContainer:

function NewsTicker (oAppendTo) {
var oThis = this;
this.timer = null;
this.feeds = [1];
this.tickerContainer = document.createElement ("div") ;
this.ticker = document.createElement ("div");

this.tickerContainer.className = "newsTickerContainer";

this.ticker.className = "newsTicker";

this.tickerContainer.onmouseover = function () {
oThis.stopTick() ;

¥

this.tickerContainer.onmouseout = function () {
oThis.tick() ;

¥

In the onmouseover event handler, the stopTick () method clears the timer property, which stops the
animation. Notice the use of the oThis pointer, since the scope changes inside the event handler. The
onmouseout event handler causes the animation to begin again by calling the tick () method, which
performs the animation.

The next step is to append the ticker element to tickerContainer and to append the widget's HTML
to its parent HTMLElement:

function NewsTicker (oAppendTo) {
var oThis = this;
this.timer = null;
this.feeds = [];
this.tickerContainer = document.createElement ("div") ;
this.ticker = document.createElement ("div");

this.tickerContainer.className = "newsTickerContainer";

this.ticker.className = "newsTicker";

this.tickerContainer.onmouseover = function () {
clearTimeout (oThis.timer) ;

Y

this.tickerContainer.onmouseout = function () {
oThis.tick();

Y

this.tickerContainer.appendChild (this.ticker) ;

var oToAppend = (oAppendTo)?oAppendTo:document.body;
oToAppend.appendChild (this.tickerContainer) ;

//more code to come

213
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

The first line of this code appends ticker to tickerContainer, which completes the HTML layout.
The next line offers a convenience for developers: if oAppendTo exists, then the widget is appended to
the value of oAppendTo. If it doesn’t, the HTML is appended to document . body. This gives the argu-
ment a default value; to append the widget directly to the document, the argument can be omitted.

The final lines of the constructor initialize the ticker:

function NewsTicker (oAppendTo) {
var oThis = this;
this.timer = null;
this.feeds = [];
this.tickerContainer = document.createElement ("div");
this.ticker = document.createElement ("div");

this.tickerContainer.className = "newsTickerContainer";
this.ticker.className = "newsTicker";
this.tickerContainer.onmouseover = function () {

clearTimeout (oThis.timer) ;

Y

this.tickerContainer.onmouseout = function () {
oThis.tick();
Y

this.tickerContainer.appendChild(this.ticker);

var oToAppend = (oAppendTo) ?oAppendTo:document.body;
oToAppend.appendChild(this.tickerContainer) ;

this.ticker.style.left = this.tickerContainer.offsetWidth + "px";
this.tick();

This code positions the ticker at the farthest right edge of tickerContainer (the animation scrolls from
right to left) and calls tick () to start the animation.

Internet Explorer and Firefox have different modes in which they render markup differently according
to the doctype specified in the HTML page. Under what is known as standards mode, you must add
"px" to any pixel measurement or the browser will not position the element.

Animating the Ticker

The basic logic of any animation is to move an element by a set amount of pixels repeatedly and at set
intervals until the element reaches a specific location. The scrolling animation used in this widget is
probably the simplest type of animation you can perform: a linear, right-to-left movement until the
ticker’s right edge reaches the container’s left edge. The leftmost limit of the animation can be expressed
by this.ticker.offsetWidth, which gives the element’s width in pixels and then negates it to ensure
that the entire element is not visible. When the ticker reaches this position in the page, the animation
restarts. The tick () method begins by gathering this information:

NewsTicker.prototype.tick = function () {
var iTickerLength = this.ticker.offsetWidth;

214
www.it-ebooks.info

http://www.it-ebooks.info/

Syndication with RSS and Atom

var oThis = this;

//more code to come

¥

The iTickerwWidth variable contains the ending point of the animation: the negative of fsetwidth of
the ticker. Once again, a pointer to the NewsTicker object is assigned to oThis for later event handler
assignments.

The first step in the animation is to decide whether the ticker contains any data, because there’s no use in
scrolling an empty <div/> element:

NewsTicker.prototype.tick = function () {
var iTickerLength = this.ticker.offsetWidth;
var oThis = this;

if (this.ticker.innerHTML) {
if (this.ticker.offsetLeft > -iTickerLength) {
var iNewLeft = this.ticker.offsetLeft - 1;
this.ticker.style.left = iNewLeft + "px";
} else {
this.ticker.style.left = this.tickerContainer.offsetWidth + "px";

//more code to come

Y

This code checks the element’s innerHTML property; any HTML present in the ticker means that data
exists and the animation should begin. The location of the ticker (offsetLeft) is checked against the
animation’s boundary (iTickerLength). If the location is greater than the limit, the animation contin-
ues. The next line gets the new left position of the ticker: one pixel to the left. The last line of this code
block sets the left position to reflect the value contained in iNewLeft. This, however, is only one part of
the animation. The ticker continues to move until it reaches the boundary; therefore, the ticker must be
reset to its original location.

The last step is to perform an animation. Animations are implemented in JavaScript using a timeout that
repeatedly calls a function in charge of moving an element. In the case of this animation, that function is
the tick () method itself, so a wrapper function must be created and passed into the setTimeout ()
function:

NewsTicker.prototype.tick = function () {
var iTickerLength = this.ticker.offsetwWidth;
var oThis = this;

if (this.ticker.innerHTML) {
if (this.ticker.offsetlLeft > -iTickerLength) {
var iNewLeft = this.ticker.offsetLeft - 1;
this.ticker.style.left = iNewLeft + "px";
} else {
this.ticker.style.left = this.tickerContainer.offsetWidth + "px";

215
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

}

var doSetTimeout = function() {
oThis.tick();
I
this.timer = setTimeout (doSetTimeout,1);
Y

This last bit of code sets a timeout for the doSetTimeout () function, which simply calls tick () again.
Doing so causes tick() to run every millisecond, so the animation continues until it is stopped by clear-
ing the timeout (when the user mouses over the container).

Stopping the Animation

Anything that is started must, at some point, be stopped; so it is with the news ticker animation: the ani-
mation stops when the user moves their mouse pointer over the ticker. The mouseover event handler
calls the stopTick () method:

NewsTicker.prototype.stopTick = function () {
clearTimeout (this.timer) ;
this.timer = null;

by

The timer property is passed to the clearTimeout () function, canceling the next code execution. Even
though the timeout is cleared at that point, the t imer property still holds the numeric value of that time-
out; therefore, assign the property the value of null.

Adding Feeds

Now that the animation and HTML layout are complete, the only step left is to add feeds to the ticker. To
facilitate this action, the NewsTicker class needs an add () method. This method accepts a single argu-
ment, which is the URL of a remote feed:

NewsTicker.prototype.add = function (sUrl) {
this.feeds.push(new NewsTickerFeed(this, sUrl));

by

When this code executes, it creates a new NewsTickerFeed object and adds the object to the feeds
array. This array is only used to initially load the feed data when the news ticker is created.

Removing the News Ticker

The final method of the NewsTicker class is the dispose () method. This method’s job is to remove the
ticker from the Web page and clean up the associated memory:

NewsTicker.prototype.dispose = function () {
for (var i = 0; 1 < this.feeds.length; i++) {
this.feeds[i] .dispose();
}

//more code to come

B g

216
www.it-ebooks.info

http://www.it-ebooks.info/

Syndication with RSS and Atom

The first step in this process is the removal of all feeds associated with this ticker, as this code demon-
strates by looping through the feeds array and calling the dispose () method of the individual
NewsTickerFeed objects. Next, the animation must be stopped by calling the stopTick () method, and
the references to the various DOM elements must be deleted:

NewsTicker.prototype.dispose = function () {
for (var 1 = 0; i1 < this.feeds.length; i++) {
this.feeds[i] .dispose();

this.stopTick() ;

this.tickerContainer.parentNode.removeChild(this.tickerContainer) ;
this.ticker = null;
this.tickerContainer = null;

Y

This code stops the animation and removes the HTML elements from the page, setting the ticker and
tickerContainer properties to null (doing so prepares the object for the garbage collector).

The NewsTickerFeed Class

A news ticker isn’t very useful without content to display. The NewsTickerFeed class pulls the required
feeds, parses them with XParser, and assembles the HTML for the ticker. The constructor accepts two
arguments: a reference to its the NewsTicker object (this allows access to the NewsTicker properties
and methods when needed) and the URL of the feed to download:

function NewsTickerFeed(oParent, sUrl) {
this.parent = oParent;
this.url = sUrl;
this.timer = null;
this.container = null;

this.poll();

Compared to the NewsTicker class’s constructor, the NewsTickerFeed constructor is relatively simple.
This class has four properties: parent (a reference to the parent NewsTicker object); url (the URL of
the feed); timer (the reference used in the timeout for updating the feed); and container (the
element containing the feed’s information in the ticker). The last step in the constructor is to call the
poll () method, which makes a request to the server to retrieve the feed.

Polling for New Information

The poll () method automatically checks for feed updates every minute and a half (this can be config-
ured based on your needs):

NewsTickerFeed.prototype.poll = function () {
var oThis = this;
var sFullUrl = "newsticker.php?url=" + encodeURIComponent (this.url);

xparser.getFeed (sFullUrl, this.populateTicker, this);

217
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

This code uses XParser to retrieve the XML feed. Before calling xparser.getFeed (), the URL is built,
with the feed URL string being encoded by the encodeURIComponent () JavaScript function. It is
important to encode the URL, because this ensures that any characters such as white space, ampersands,
quotation marks, and so on are converted to their corresponding escape sequence for proper transmis-
sion. The code uses populateTicker as the callback for the request and asks it to be fired within the
NewsTickerFeed object’s scope.

One final addition to pol1 () is the automatic updating. To facilitate this, use an approach similar to the
tick () method of the NewsTicker class:

NewsTickerFeed.prototype.poll = function () {
var oThis = this;
var sFullUrl = "newsticker.php?url=" + encodeURIComponent (this.url);

xparser.getFeed (sFullUrl, this.populateTicker, this);

var doSetTimeout = function () {
oThis.poll();
I g

this.timer = setTimeout (doSetTimeout, 90000) ;

This new code creates a function called doSetTimeout () to pass to the setTimeout () method. Because
this version of doSetTimeout () exists only in the scope of the pol1 () method, it will not interfere with
the previous function of the same name in tick (). The poll () method is now set to run every 1.5 min-

utes (every 90,000 milliseconds) and will update the feed.

Stop Automatic Polling
There may be instances where you want to stop a feed from updating. Doing so is as simple as the

calling stopPolling():

NewsTickerFeed.prototype.stopPolling = function () {
clearTimeout (this.timer) ;
this.timer = null;

Yi
This method simply clears the timeout used for polling and assigns the value of nul1 to the timer property.

Adding Content

When xParser finishes parsing the remote feed, it calls the populateTicker () method and passes
itself as an argument. With the supplied XParser object, you can start to create the HTML:

NewsTickerFeed.prototype.populateTicker = function (oParser) {
var spanTickerLinks = document.createElement ("span") ;

var aFeedTitle = document.createElement ("a");

aFeedTitle.className = "newsTicker-feedTitle";
aFeedTitle.href = oParser.link.value;
aFeedTitle.target = "_new";

218

www.it-ebooks.info

http://www.it-ebooks.info/

Syndication with RSS and Atom

aFeedTitle.innerHTML = oParser.title.value;
spanTickerLinks.appendChild (aFeedTitle) ;

//more code to come

The first step is to create an element to encapsulate all the links. This element serves the purpose of con-
venience: when the feed is updated, it is easier to remove one element with several children than it is to
remove several elements one at a time. Also, don’t confuse this container with the container property.
The latter contains spanTickerLinks.

To separate the different feeds in the ticker, the feed’s title is used. This is also a link, so if the user clicks
on the title, a new window pops up taking him or her to the feed’s web site. This link is given a CSS
class of newsTicker-feedTitle and is appended to spanTickerLinks.

Next, create the link items by iterating through the items array of the XParser object:

NewsTickerFeed.prototype.populateTicker = function (oParser) {
var spanTickerLinks = document.createElement ("span") ;

var aFeedTitle = document.createElement ("a");

aFeedTitle.className = "newsTicker-feedTitle";
aFeedTitle.href = oParser.link.value;
aFeedTitle.target = "_new";

aFeedTitle.innerHTML = oParser.title.value;
spanTickerLinks.appendChild (aFeedTitle) ;

for (var i = 0; i < oParser.items.length; i++) {
var item = oParser.items[i];

var aFeedLink = document.createElement ("a");
aFeedLink.href = item.link.value;
aFeedLink.target = "_blank";
aFeedLink.className = "newsTicker-feedItem";
aFeedLink.innerHTML = item.title.value;

spanLinkContainer.appendChild (aFeedLink) ;

Each link opens a new window when clicked and has a CSS class of newsTicker-feedItem. When the
link is completed, it is appended to spanLinkContainer, which is then added to the ticker:

NewsTickerFeed.prototype.populateTicker = function (oParser) {
var spanLinkContainer = document.createElement ("span");

var aFeedTitle = document.createElement ("a");

aFeedTitle.className = "newsTicker-feedTitle";
aFeedTitle.href = oParser.link.value;
aFeedTitle.target = "_new";

219
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

aFeedTitle.innerHTML = oParser.title.value;
spanLinkContainer.appendChild (aFeedTitle) ;

for (var i = 0, itemsLength = oParser.items.length; i < itemsLength; i++) {
var item = oParser.items[i];

var aFeedLink = document.createElement("a");
aFeedLink.href = item.link.value;
aFeedLink.target = "_new";
aFeedLink.className = "newsTicker-feedItem";
aFeedLink.innerHTML = item.title.value;

spanLinkContainer.appendChild (aFeedLink) ;
}
if (!this.container) {
this.container = document.createElement ("span") ;

this.container.className = "newsTicker-feedContainer";
this.parent.ticker.appendChild(this.container) ;
} else {

this.container.removeChild(this.container.firstChild) ;

}

this.container.appendChild (spanLinkContainer) ;

When a NewsTickerFeed class is first created, the container property is declared but given a null
value. This is done for a couple of reasons. First, the ticker’s animation does not begin until it contains
HTML. To keep the animation from running prematurely, the element referenced by container should
not be added until the feed’s data is retrieved, parsed, and assembled into HTML. This means that
appending the container to the ticker should occur in populateTicker ().

Second, because this operation takes place in populateTicker (), it is important not to add the same
container to the ticker over and over again). Therefore, when the previous code executes, it checks

if container has been initialized. If not, the element is created and appended to the ticker;
otherwise, the link container is removed from container, and the newly created link container is added
to the widget.

Removing Data

There may be a case where a feed needs to be removed from the ticker, either to be replaced or just sim-
ply to free up space. In that case, it’s important to free up any memory used by the NewsTickerFeed
object. This is where the dispose () method takes over.

Like the NewsTicker method of the same name, the NewsTickerFeed’s dispose () method performs
the removal of the feed from the ticker:

NewsTickerFeed.prototype.dispose = function () {
if (this.timer) this.stopPolling();

if (this.container) {
this.parent.ticker.removeChild(this.container) ;

220

www.it-ebooks.info

http://www.it-ebooks.info/

Syndication with RSS and Atom

this.container = null;

}

this.parent = null;

¥

The first line checks to see if the feed still automatically updates itself (remember, the timer property is
assigned the value of null when stopPolling () is called). If so, then it is stopped from doing so. It
then checks for, and removes, the HTML elements used by the NewsTickerFeed object. And last, it
removes the reference to the NewsTicker object that contained the feed.

Styling the News

Since no two sites are the same visually, the ability to style the news ticker is very important. Before
looking at the CSS, however, it is important to review the HTML structure of the news ticker:

<div class="newsTickerContainer">
<div class="newsTicker">

<a />
<a />

<a />
<a />

</div>
</div>

The outermost <div/> element is important for two reasons. First, it encapsulates every part of the wid-
get. Second, it is the viewing box for the news items. Because it contains every element in the widget, it
must be an extremely wide box, but you don’t want to all the data seen until it enters the visible area.
Therefore, the CSS overflow property must be set to “hidden”:

.newsTickerContainer {
overflow: hidden;
position: relative;
background-color: silver;
height: 20px;
width: 100%;
padding-top: 2px;

Setting the overflow property to “hidden" hides any content that is not positioned within the specified
area. Next, the position property is set to “relative. " Other CSS properties can be customized
depending on where the news ticker is being used; in this example code, height, width, padding, and
background-color are assigned.

221

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

The next element contains all the feed links. This <div/> element is absolutely positioned so that it can
be moved with JavaScript:

.newsTicker ({
white-space: nowrap;
position: absolute;
height: 25px;

Note also that the white-space property is set to nowrap, which disallows line breaks in the text. This
is important because, otherwise, the text could end up on multiple lines instead of a single line.

The last two elements exposing CSS classes are the links: newsTicker-feedTitle and
newsTicker-feedItem. The first is the link to the news site. Although none of the following properties
is required, they set the feed’s title apart from the remaining links:

.newsTicker-feedTitle {
margin: Opx 6px 0px 6px;
font-weight: bold;
color: black;
text-decoration: none;

}

There are six pixels of space on the left and right sides, giving distance between the feed items. The text
is bold, is black, and has no underline, thus causing more separation in likeness between this link and
the others.

The only formatting the feed items have are four pixels of space on each side, giving the links a defined
look while still maintaining what the user expects:

.newsTicker-feedItem {
padding: 4px;
}

The beauty of CSS is its ability to change the look and feel of any page or widget, regardless of markup
(in most circumstances). Feel free to experiment with different CSS properties to format the news ticker
to your specifications.

Using the News Ticker Widget

Since the back-end code is PHP, setting up this widget is as simple as uploading files and referencing
them in your HTML. To add the JavaScript and CSS into your page, simply add the <script/> and
<link/> tags:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtmlll.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml" >

<head>
<title>Ajax News Ticker</title>

222

www.it-ebooks.info

http://www.it-ebooks.info/

Syndication with RSS and Atom

<link rel="stylesheet" type="text/css" href="css/newsticker.css" />
<script type="text/javascript" src="js/zxml.js"></script>
<script type="text/javascript" src="js/xparser.js"></script>
<script type="text/javascript" src="js/newsticker.js"></script>
</head>
<body>

</body>
</html>

You’ll also need to instantiate a new instance of NewsTicker. Remember, NewsTicker adds itself to an
HTMLElement, so it’s best to create the object when the page loads with the onload event:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.0rg/TR/xhtml11/DTD/xhtml11.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml" >
<head>
<title>Ajax News Ticker</title>
<link rel="stylesheet" type="text/css" href="css/newsticker.css" />
<script type="text/javascript" src="js/zxml.js"></script>
<script type="text/javascript" src="js/xparser.js"></script>
<script type="text/javascript" src="js/newsticker.js"></script>
<script type="text/javascript">
window.onload = function() {
var newsTicker = new NewsTicker();
newsTicker.add("http://rss.news.yahoo.com/rss/topstories") ;
}

</script>
</head>
<body>

</body>
</html>

Because this widget uses XParser to parse the news feeds, any RSS 2.0 and Atom feed can be used with
this widget. (The preceding example pulls the Yahoo! Top Stories feed.) The news ticker elements will be
created inside the document’s <body/> element because no container object was passed in to the
NewsTicker constructor.

Web Search with RSS

With the ever-expanding technology of the Web, conventional search engines are opening the doors to
more unconventional means to get you to the content you desire. The first to jump onto the scene was
Yahoo! with their Y!Q service (http://yq.search.yahoo.com/publisher/index.html). This new
service enables developers to embed search functionality into any web page. Y!Q provides search results
related to the content of the page, giving readers more information without leaving the page.

223
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

The Y!Q service is a great idea, but it hasn’t surfaced without criticism. The main argument? It requires
the use of Yahoo!’s JavaScript, and you have to add a <form/> element meeting the Yahoo! requirements
to perform a search. For many web site authors, it takes too much effort to use the service. And after all
the work, the search results are presented in the Yahoo! style, breaking the look and feel of the web site.

Thankfully, Yahoo! isn’t the only search engine breaking into this type of service. MSN Search
(http://search.msn.com) provides a similar service, but it also enables the web developer to control
the look, feel, and implementation. This ability comes from MSN Search providing RSS versions of its
search results, making it possible to subscribe to a particular search or add the results to your page using
Ajax methods.

In mid-2006, Google also jumped into competition for “search from your site” functionality, releasing
Google BlogSearch (http: //blogsearch.google. com), which provides results returned in either
RSS or Atom formats.

The Server-Side Component

To run a search and get the results back in RSS format, a request can be made in the following format:
http://search.msn.com/results.aspx?g=[SEARCHTERM] &format=rss

With this knowledge, it’s possible to write server-side code to retrieve the remote feed. Once again, it’s
necessary to create a server-side proxy to access this information, since it exists on a different server. The
URL to request information from the server application looks like this:

websearch.php?search=[SEARCHTERM]

There’s only one variable in the query string: search. Therefore, the application should look for this
query item:

<?php
header ("Content-Type: text/xml");
header ("Cache-Control: no-cache");
if (isset($_GET["search"])) {
$searchTerm = urlencode(stripslashes($_GET["search"]));
Surl = "http://search.msn.com/results.aspx?g=S$searchTerm&format=rss";
$Sxml = file_get_contents(Surl) ;
echo $xml;
} else {

header ("HTTP/1.1 400 Bad Request");
}

?>

224

www.it-ebooks.info

http://www.it-ebooks.info/

Syndication with RSS and Atom

As you know, the first two lines set the required headers so that the browser will handle the data cor-
rectly. The next line of code uses the isset () function to determine whether the search key is present in
the query string.

The search term must go through a variety of functions in order to send a proper request to the remote
host. First, it is passed to the stripslashes () function. If magic quotes are enabled in the PHP configu-
ration (which is the default), any quote that reaches the PHP engine is automatically escaped with a
slash: \ "search query\". The stripslashes () function removes these escape sequence, leaving only
"search query". After the slashes’ removal, it then goes to the urlencode () function, which properly
encodes characters to be used in a query string. Spaces, quotes, ampersands, and other characters are

all encoded.

If the search term is not encoded like this, the MSN server will return a code 400 :
Bad Request.

When the search term is ready for transmission, it is included into the URL and stored in the $ur1l vari-
able. Finally, the file_get_contents () function opens the remote file, reads the contents, and returns
it as a string to the $xml variable, which is printed to the page using the echo command.

The Client-Side Component

The client-side code departs from the classes created earlier in this chapter. Instead of creating a class
and using instances of that class, this widget consists of a static object called msnitebSearch:

var msnWebSearch = {};

This object is created using object literal notation and exposes several methods to get the search results
and to draw and position the HTML that contains the data. The first method is drawResultBox (),
which draws the HTML for search results in the following format:

<div class="ajaxWebSearchBox">
<div class="ajaxWebSearchHeading">MSN Search Results
X
</div>

<div class="ajaxWebSearchResults">

</div>
</div>

The result box is divided into two parts: a heading and a results pane (see Figure 7-2). The heading tells

the user that this new box contains results from an MSN search. It also contains an X, which will close
the box. The results pane contains block-style links, which opens a new window when clicked.

225
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

o

File Edit View Go

- @

__] http:/iyodafwebsearch/

@ Ajax WebSearch - Mozilla Firefox ==E
Beookmarks Toels Help @

@ e &M
[v] ® 6o

HDisabler FXCSS- @iFormse #Flmages- @ Information- [E]Miscellaneous- E20utline- [@Resizer [[)View Source | HOptior

Search for Professional Aj

Search for "Professional Ajax"

Wiley::Professional Ajax
Arnazon.com: Professional Ajax : Books

http:/fweww.microsoft.com/communities/ mvp/

Bookpool: Professional Ajax
Ajax.MET Professional - Ajax.MET Professional

AJAX Matters - Asynchronous JavaScript and XML and XMLHTTP development ...

Lehmanns Weblog » Professional AJAX

Jim Minatel's Wrox Book Editor Blog: Congrats to Apress on first Ajax ...

NCZOnline - Professional Ajax Outline

[S~ hitp://yoda/websearch/#

Figure 7-2

Positioning the Search Results

The position () method, as you may have guessed, positions the search box. It accepts two arguments:
an event object and the HTMLElement object referencing the result box:

msnWebSearch.position

var x =
var y =

e.clientX
e.clientyY

+ o+

function (e, divSearchBox) {
document .documentElement .scrollLeft;
document .documentElement.scrollTop;

divSearchBox.style.left = x + "px";
divSearchBox.style.top = y + "px";

B g

The first two lines get the left and top positions to place the search results box. Two pieces of information
are required to perform this operation. First is the x and y coordinates of the mouse. This information is
stored in the clientX and clientY properties.

These coordinates, however, are insufficient to properly position the results box because the clientx
and clientY properties return the mouse position in relation to the client area in the browser window,
not the actual coordinates in the page. To account for this, use the scrollLeft and scrollTop proper-
ties of the document element. With the final coordinates calculated, you can finally position the box
where the user clicked the mouse.

226

www.it-ebooks.info

http://www.it-ebooks.info/

Syndication with RSS and Atom

Using documentElement to retrieve the scrollLeft and scrollTop properties
only works in the browser’s standards mode. In “quirks mode,” document . body
.scrollLeft and document .body.scrollTop must be used.

Drawing the Results User Interface

The code to generate this HTML is rather lengthy because the elements are generated using DOM meth-
ods. The drawResultBox () method accepts one argument, an event object:

msnWebSearch.drawResultBox = function (e) {

¥

var divSearchBox= document.createElement ("div");
var divHeading = document.createElement ("div") ;
var divResultsPane = document.createElement ("div") ;
var aCloselLink = document.createElement ("a");

//more code to come

These first lines create the HTML elements via the createElement () method. After the elements have
been created, their properties can be assigned. The first two elements to finalize are a CloseLink and
divHeading:

msnWebSearch.drawResultBox = function (e) {

Y

var divSearchBox= document.createElement ("div");
var divHeading = document.createElement ("div");
var divResultsPane = document.createElement ("div");
var aCloseLink = document.createElement ("a");

aCloseLink.href = "#";

aCloseLink.className = "ajaxWebSearchCloseLink";
aCloseLink.onclick = this.close;
aCloseLink.appendChild (document.createTextNode ("X")) ;

divHeading.className = "ajaxWebSearchHeading";

divHeading.appendChild (document.createTextNode ("MSN Search Results"));

divHeading.appendChild (aCloseLink) ;

//more code to come

A method, close (), becomes the handler for the close link’s onclick event. The next group of lines
populate the heading <div/> with text and the closing link.

When this result box is drawn into the page, a response from the server application has not yet been
received. To show the user that something is happening, a loading message is displayed (see Figure 7-3).

www.it-ebooks.info

227

http://www.it-ebooks.info/

Chapter 7

& Ajax WebSearch - Mozilla Firefox (=)= 3
File Edit View Go Bookmarks Tools Help [+]
©-2-@ xBWE &M

__] http:/iyodafwebsearch/ ["] P,‘ Go
HDisabler FXCSS- fiForms- #Flmages- @ Information- [E]Miscellaneous- E20utline- [@Resize- [[View Source {Optior

Search for "Professional Ajax"

MSN Search Results

Loading Search Feed

Search for Professional Ajax

[S% | http:/fyodafwebsearch/# DI

Figure 7-3

To create this loading message, create another element and append it to the divResultsPane element:

msniWebSearch.drawResultBox = function (e) {
var divSearchBox= document.createElement ("div");
var divHeading = document.createElement ("div");
var divResultsPane = document.createElement ("div") ;
var aCloseLink = document.createElement ("a");

aCloseLink.href = "#";

aCloselLink.className = "ajaxWebSearchCloseLink";

aCloseLink.onclick = this.close;

aCloseLink.appendChild (document.createTextNode ("X")) ;
divHeading.className = "ajaxWebSearchHeading";

divHeading.appendChild (document.createTextNode ("MSN Search Results"));
divHeading.appendChild (aCloseLink) ;

var divLoading = document.createElement ("div") ;
divLoading.appendChild (document.createTextNode ("Loading Search Feed")) ;

divResultsPane.className = "ajaxWebSearchResults";
divResultsPane.appendChild (divLoading) ;

//more code to come

228

www.it-ebooks.info

http://www.it-ebooks.info/

Syndication with RSS and Atom

This code creates the loading message and appends it to divResultsPane, while also assigning a CSS
class name to divResultsPane.

With these elements completed, all that remains is to add them to the divSearchBox element:

msnWebSearch.drawResultBox = function (e) {

Y

var divSearchBox= document.createElement ("div");
var divHeading = document.createElement ("div");
var divResultsPane = document.createElement ("div");
var aCloseLink = document.createElement ("a");

aCloseLink.href = "#";

aCloseLink.className = "ajaxWebSearchCloseLink";
aCloselLink.onclick = this.close;
aCloseLink.appendChild (document.createTextNode ("X")) ;

divHeading.className = "ajaxWebSearchHeading";
divHeading.appendChild (document.createTextNode ("MSN Search Results"));
divHeading.appendChild(aCloseLink) ;

var divLoading = document.createElement ("div");
divLoading.appendChild (document.createTextNode ("Loading Search Feed"));

divResultsPane.className = "ajaxWebSearchResults";
divResultsPane.appendChild(divLoading) ;

divSearchBox.className = "ajaxWebSearchBox";
divSearchBox.appendChild (divHeading) ;
divSearchBox.appendChild (divResultsPane) ;

document .body .appendChild (divSearchBox) ;

//more code to come

This code appends the divHeading and divResultsPane elements to the search box and appends the
search box to the page.

The final step in drawResultBox () is to position the newly drawn box and return divSearchBox to its

caller:

msnWebSearch.drawResultBox = function (e) {

var divSearchBox= document.createElement ("div");
var divHeading = document.createElement ("div");
var divResultsPane = document.createElement ("div");
var aCloseLink = document.createElement ("a");

aCloseLink.href = "#";

aCloseLink.className = "ajaxWebSearchCloseLink";
aCloseLink.onclick = this.close;
aCloseLink.appendChild (document.createTextNode ("X")) ;

divHeading.className = "ajaxWebSearchHeading";

229
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

divHeading.appendChild (document.createTextNode ("MSN Search Results"));
divHeading.appendChild(aCloseLink) ;

var divLoading = document.createElement ("div");
divLoading.appendChild (document.createTextNode ("Loading Search Feed")) ;

divResultsPane.className = "ajaxWebSearchResults";
divResultsPane.appendChild (divLoading) ;

divSearchBox.className = "ajaxWebSearchBox";
divSearchBox.appendChild (divHeading) ;
divSearchBox.appendChild (divResultsPane) ;
document .body .appendChild (divSearchBox) ;

this.position(e, divSearchBox) ;

return divSearchBox;

Y

The way the msnWebSearch object is set up, divSearchBox must be returned to its caller for other oper-
ations.

Displaying the Results

The populateResults () method populates the result pane with the search results. It accepts two argu-
ments: the element to contain the results and an XParser object.

msnWebSearch.populateResults = function (divResultsPane,oParser) {
var oFragment = document.createDocumentFragment () ;

divResultsPane.removeChild(divResultsPane.firstChild);

//more code to come

This method generates <a/> elements programmatically with DOM methods; these elements are
appended to a document fragment created in the first line. The next line removes the loading <div/>
element appended in drawResultBox () .The next step is to create the links:

msnWebSearch.populateResults = function (divResultsPane,oParser) {
var oFragment = document.createDocumentFragment () ;

divResultsPane.removeChild(divResultsPane.firstChild) ;

for (var i = 0; 1 < oParser.items.length; i++) {
var oltem = oParser.items[i];

var aResultLink = document.createElement ("a");
aResultLink.href = oItem.link.value;

aResultLink.className = "ajaxWebSearchLink";
aResultLink.target = "_new";

230
www.it-ebooks.info

http://www.it-ebooks.info/

Syndication with RSS and Atom

aResultLink.appendChild (document.createTextNode (oItem.title.value)) ;

oFragment .appendChild(aResultLink) ;
}

divResultsPane.appendChild (oFragment) ;

This code cycles through the items of the feed, generates links from the data, and appends the <a/> ele-
ment to the document fragment. When the loop exits, the document fragment is appended to
divResultsPane to display the search results.

Closing the Results Box

To close the search results box, the msnwebSearch object provides the close () method:

msnWebSearch.close = function () {
var divSearchBox = this.parentNode.parentNode;
document .body . removeChild (divSearchBox) ;

return false;

¥

The search box isn’t really closed; in fact, it is removed from the document. To do this, retrieve the
divSearchBox element. The first line does this by retrieving the parent node of this element’s parent.
Because close () handles the onclick event, this references the link. The next line removes the
divSearchBox element from the document. The last line, return false, forces the browser not to fol-
low the default behavior of a link (going to the location noted in the href attribute).

Building the Search Interface

The last method of the msnwebsearch object is search (), which provides the interface to perform a

search. You can call search () with the onclick event of an element. It accepts two methods, an event
object and the search term:

msnWebSearch.search = function (e,sSearchTerm) {
var divSearchBox = this.drawResultBox(e) ;
var url = "websearch.php?search=" + encodeURIComponent (sSearchTerm) ;

function parserCallback (oParser) ({
msnWebSearch.populateResults (divSearchBox.childNodes[1], oParser) ;

}

xparser.getFeed (url, parserCallback, this);

b5

The first line calls the drawResultBox () method and passes the event, e, to it. The next line encodes the
URL for proper transmission. The enclosed parsercallback () function is the callback function for
XParser, and it will call the populateResult () method when the search feed is finished loading to

populate the search box with results. The last line uses the xparser.getFeed () method to retrieve the
search feed.

Of course, one of the reasons for building this widget is to make it fit the look of your own site.

231
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Customizing the Web Search Widget

Thanks to CSS, you can easily customize the widget for your existing site and any redesign you may
have later down the road.

The first CSS class is ajaxWebSearchBox, the class for the search box. Because the box is positioned to
where the mouse was clicked, it must have a position of “absolute":

.ajaxWebSearchBox

{
position: absolute;
background-color: #0dleda;
width: 500px;
padding: 1lpx;

The absolute position is the only requirement. All other properties are optional according to your needs.
In this example, the box has a dark-blue background, a width of 500 pixels, and 1 pixel of padding on all
four sides. This padding will give the box a 1-pixel border around the box’s contents.

The next class is ajaxWebSearchHeading, which contains the box’s heading text and the closing link.

.ajaxWebSearchHeading
{
position: relative;
background-color: #11l62cc;
font: bold 14px tahoma;
height: 21px;
color: white;
padding: 3px Opx Opx 2px;
}

Once again, the only required property is position. The remaining properties help to give the element
a heading-like look. The background color is a lighter blue with white, bold text 14 pixels high and in the
Tahoma font. The element’s height is 21 pixels, and it is padded on the top and left edges.

The closing link is absolutely positioned in order to place it in the top-right corner:

a.ajaxWebSearchCloseLink

{
position: absolute;
right: 5px;
top: 3px;
text-decoration: none;
color: white;

}
a.ajaxWebSearchCloseLink:hover
{

color: red;
}

232

www.it-ebooks.info

http://www.it-ebooks.info/

Syndication with RSS and Atom

The element is positioned 5 pixels from the right and 3 pixels from the top, placing the element in the
top-right corner. This link does not have any text decoration and is colored white. When the user hovers
over the link, the text color turns red.

Note that no visited or active pseudo-classes are used. This is because the win-
dow always ignores the href attribute of this link (it has return false in its event
handler). Therefore, the link is never truly active or visited.

Next, the ajaxWebSearchResults class styles the results pane:

.ajaxWebSearchResults

{
background-color: #d3e5fa;
padding: 5px;

}

There are no required CSS properties for this element. The existing properties are merely to define the
results pane and make it relatively easy to read. The background color is a light blue, and 5 pixels of
padding surround the edges. You can also style the loading message:

.ajaxWebSearchResults div

{
text-align: center;
font: bold 1l4px tahoma;
color: #0a246a;

}

This element does not have a class name, but you can still style it by using the parent child notation
shown in the preceding example. This example places the text in the center of the <div/> element and
gives it a bold, blue font 14 pixels high.

The last elements you need to style are the result links. These have a class name of ajaxWebSearchLink:

a.ajaxWebSearchLink

{
font: 12px tahoma;
padding: 2px;
display: block;
color: #0a246a;

}

a.ajaxWebSearchLink:hover
{
color: white;
background-color: #316ach;
}

a.ajaxWebSearchLink:visited
{

color: purple;

}

233
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

The only required property is display, which is set to block. This gives every link its own line. The
padding, two pixels worth, gives a bit of separation between the links, making them easier to read. The
font-face is Tahoma and is 12 pixels high. Their color is a dark blue, giving a nice contrast to the light
blue background of ajaxWebSearchResults. When the user hovers over these links, the background
color is set to blue, whereas the text color changes to white.

The visited pseudo-class is set, in the last rule in the previous code. This is to provide users with user
interface cues they are already used to. By having the visited pseudo-class set to display a color of
purple, users know they’ve already visited that link, which can save them time by not visiting a page
they may not want to.

Using the Web Search Widget

Using this widget is simple. First, upload the websearch. php file to your web server. Next, you need an
HTML document to reference all the components. The msnwebSearch object relies on the XParser class,
which in turn depends on the zXml library. You must reference these files:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-transitional.dtd">
<html xml:lang="en" lang="en" xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Ajax WebSearch</title>
<link rel="stylesheet" type="text/css" href="css/websearch.css" />
<script type="text/javascript" src="js/zxml.js"></script>
<script type="text/javascript" src="js/xparser.js"></script>
<script type="text/javascript" src="js/websearch.js"></script>
</head>

<body>

</body>
</html>

To perform a search, set the msniWebSearch.search () method as the element’s onclick handler:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">
<html xml:lang="en" lang="en" xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Ajax WebSearch</title>
<link rel="stylesheet" type="text/css" href="css/websearch.css" />
<script type="text/javascript" src="js/zxml.js"></script>
<script type="text/javascript" src="js/xparser.js"></script>
<script type="text/javascript" src="js/websearch.js"></script>

234
www.it-ebooks.info

http://www.it-ebooks.info/

Syndication with RSS and Atom

</head>
<body>

<a href="#" onclick='msnWebSearch.search(event, "\"Professional Ajax\"");
return false;'>Search for "Professional Ajax"

<a href="#" onclick='msnWebSearch.search (event, "Professional Ajax");
return false;'>Search for Professional Ajax

</body>
</html>

The first new link performs a search for the exact phrase Professional Ajax, whereas the second searches
for all the words. Also note the return false in the onclick event. Once again, this forces the browser
to ignore the href attribute and is required. Clicking these links will draw the search box at the mouse’s
cursor, and you’'ll have the search results just pixels away.

Summary

In this chapter, you learned a brief history of online syndication, including the rise of RSS and Atom as
the two dominant XML formats for syndication. Next, you learned how to create XParser, a JavaScript
RSS/Atom parser that provides an easy-to-use interface for developers of web applications based on
RSS and Atom. Using this library, you built two widgets that can easily be used in any Web application.

You first learned how to create a news ticker built upon PHP, DHTML, and Ajax to display news feeds in
a scrolling format. You also enabled this widget to auto-update, making sure that the latest information
is available for your readers.

The second widget implemented an Ajax search, using MSN'’s search capabilities to display the search

results. Through PHP, this widget retrieved the search result RSS feed, and a static JavaScript object dis-
played the results to the user.

235
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

JSON

With the popularity of web services around 2004, XML practically became the de facto standard
for data transmission. However, XML is not without its detractors. Some consider it to be overly
verbose for data transmission purposes, necessitating the sending of many more bytes across the
Internet to accomplish what could have been done in a much smaller form. Because of this consid-
eration, new forms of XML compression and even entirely new XML formats, such as Binary XML,
have been developed. All these solutions work on extending or adding on to XML, making back-
ward compatibility an issue. Douglas Crockford, a long-time software engineer, proposed a new
data format built on JavaScript, called JavaScript Object Notation (JSON).

What Is JSON?

JSON is a very lightweight data format based on a subset of the JavaScript syntax, namely array
and object literals. Because it uses JavaScript syntax, JSON definitions can be included within
JavaScript files and accessed without the extra parsing that comes with XML-based languages. But
before you can use JSON, it’s important to understand the specific JavaScript syntax for array and
object literals.

Array Literals

Array literals are specified by using square brackets ([and]) to enclose a comma-delimited list of
JavaScript values (meaning a string, number, Boolean, or null value), such as:

var aNames = ["Benjamin", "Michael", "Scott"];
This is functionally equivalent to the following, more traditional form:

var aNames = new Array("Benjamin", "Michael", "Scott");

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Regardless of how the array is defined, the result is the same. Values are accessed in the array by using
the array name and bracket notation:

alert (aNames[0]) ; //outputs "Benjamin"
alert (aNames[1]) ; //outputs "Michael"
alert (aNames[2]) ; //outputs "Scott"

Note that the first position in the array is 0, and the value in that position is "Benjamin".

Because arrays in JavaScript are not typed, they can be used to store any number of different datatypes:
var aValues = ["string", 24, true, null];

This array contains a string, followed by a number, followed by a Boolean, followed by a null value.

This is completely legal and perfectly fine JavaScript (though not recommended for maintainability
purposes).

It’'s important to note that both methods of creating arrays are acceptable when writ-
ing JavaScript, but only array literals are valid in JSON.

Object Literals

Object literals are used to store information in name-value pairs, ultimately creating an object. An object
literal is defined by two curly braces ({ and }). Inside of these can be placed any number of name-value
pairs, defined with a string, a colon, and the value. Each name-value pair must be followed with a
comma, except for the last one (making this more like defining an associative array in Perl). For example:

var oCar = {

"color" : "red",
"doors" : 4,
"paidFor" : true

B

This code creates an object with three properties named color, doors, and paidFor, each containing
different values. These properties are accessed by using the object name and dot notation, such as:

alert (oCar.color) ; //outputs "red"
alert (oCar.doors) ; //outputs "4"
alert (oCar.paidFor) ; //outputs "true"

Bracket notation can also be used by passing in the name of the property as a string value (similar to the
way it was defined using object literal notation):

alert (oCar["color"]) ; //outputs "red"

)
alert (oCar|["doors"]) ; //outputs "4"
alert (oCar["paidFor"]) ; //outputs "true"

238

www.it-ebooks.info

http://www.it-ebooks.info/

JSON

The same object could be created using the JavaScript Object constructor, like this:

var oCar = new Object();
oCar.color = "red";

oCar.doors = 4;

oCar.paidFor = true;

As you can see, the object literal notation requires much less code than using the 0bject constructor.

Once again, although either approach is valid in JavaScript, only object literal nota-
tion is valid in JSON.

Mixing Literals

It’s possible to mix object and array literals, creating an array of objects or an object containing an array.
Suppose that you wanted to create an array of car objects similar to the one created in the last section:

var aCars = [
{
"color"
"doors"
"paidFor"

"color"
"doors"
"paidFor"

"color"
"doors"
"paidFor"

1 5

||red|| ,
2,
true

"blue",
4,
true

"white",
2,
false

This code defines an array, aCars, which has three objects in it. The three objects each have properties
named color, doors, and paidFor. (Each object represents a car, of course.) The information in the
array is accessible by using a combination of bracket and dot notation. For example, the following line
will get the number of doors on the second car in the array:

alert (aCars[1] .doors) ; //outputs "4"

In this example, you are first getting the value in the second position of the array (position 1) and then
getting the property named doors.

239
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

You can also define the array to be inside of object literals, such as:

var oCarInfo = {
"availableColors" : ["red", "white", "blue" 1,
"availableDoors" : [2, 4]

¥

This code defines an object called oCarInfo that has two properties, availableColors and
availableDoors. Both of these properties are arrays, containing strings and numbers, respectively. To
access a value here, just reverse the order of the bracket and dot notation. So, to get to the second avail-
able color, do this:

alert (oCarInfo.availableColors[1]);

In this example, you are first returning the property named availableColors and then getting the
value in the second position (position 1). But what does all this have to do with JSON?

JSON Syntax

JSON syntax is really nothing more than the mixture of object and array literals to store data. The only
difference from the examples in the last section is that JSON doesn’t have variables. Remember, JSON
represents only data; it has no concept of variables, assignments, or equality. Therefore, the JSON code
for the last example is simply:

{
"availableColors" : ["red", "white", "blue"],
"availableDoors" : [2, 4]

Note that the variable oCarInfo has been removed, as has the semicolon following the closing curly
brace. If this data were transmitted via HTTP to a browser, it would be fairly quick because of the small
number of characters. Suppose that this data was retrieved by using XHR (or some other form of client-
server communication) and stored in a variable named sJsoN. You now have a string of information, not
an object, and certainly not an object with two arrays. To transform it into an object, simply use the
JavaScript eval () function:

var oCarInfo = eval("(" + sJSON + ")");
This example surrounds the JSON text with parentheses and then passes that string into the eval ()
function, which acts like a JavaScript interpreter. The result of this operation is a JavaScript object identi-
cal to the oCarInfo object defined in the last section. Information in this object can be accessed in the

exact same way:

alert (oCarInfo.availableColors[0]); //outputs "red"
alert (oCarInfo.availableDoors[1]); //ouputs "4"

240
www.it-ebooks.info

http://www.it-ebooks.info/

JSON

It's very important to include the extra parentheses around any JSON string before
passing it into eval (). Remember, curly braces also represent statements in
JavaScript (such as used with the if statement). The only way the interpreter knows
that the curly braces represent an object and not a statement is by looking for an
equals sign before it or to look for parentheses around it (which indicates that the
code is an expression to be evaluated instead of a statement to be run).

There are obvious benefits to using JSON as a data format for JavaScript communication: it takes the
evaluation of the data out of your hands and, therefore, grants you faster access to the information con-
tained within.

JSON Encoding/Decoding

To aid JavaScript developers with JSON usage, Crockford has written a JavaScript library that adds
several methods for translating data between JSON and JavaScript. This library is available at

www . json.org/Jjson. js. Unlike other JavaScript libraries, this one takes advantage of JavaScript’s
extensibility, adding methods to Object, Array, and String.

The first method is parseJSoN (), which is accessible on any string. For instance, if you have a string
sJSON that contains JSON code, it can be translated into a JavaScript object like this:

var oObject = sJSON.parsedSON() ;

This method provides safer evaluation of JSON code than eval (), which evaluates all JavaScript code
and could potentially allow the execution of arbitrary code. The parseJdSoN () method ensures that the
JSON code contains only data and will not result in code being executed.

The library also adds the toJSONString () method to all objects, including Array. This method recur-
sively serializes any object into a JSON string. Consider the following example:

var oCar = new Object();
oCar.doors = 4;

oCar.color = "blue";
oCar.year = 1995;
oCar.drivers = new Array("Penny", "Dan", "Kris");

document.write(oCar.toJSONString()) ;
This code outputs the following JSON string:
{"doors":4,"color":"blue", "year":1995, "drivers": ["Penny", "Dan", "Kris"]}
The ability to encode and decode between JavaScript and JSON is an important ability and one that

Crockford’s library provides in a secure manner. With this tool, you're now ready to use JSON in an
enterprise-level web application.

241
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

JSON versus XML

As mentioned previously, one of the advantages of JSON over XML is that it’s more compact. XML is
considered by some to be overly verbose for its purpose. But what does this mean exactly? Consider the
following XML data:

<classinfo>
<students>

<student>
<name>Michael Smith</name>
<average>99.5</average>
<age>17</age>
<graduating>true</graduating>

</student>

<student>
<name>Steve Johnson</name>
<average>34.87</average>
<age>17</age>
<graduating>false</graduating>

</student>

<student>
<name>Rebecca Young</name>
<average>89.6</average>
<age>18</age>
<graduating>true</graduating>

</student>

</students>
</classinfo>

This example contains information about three students in a class. Right away, there is some XML infor-
mation that isn’t entirely necessary: the <classinfo> and <students/> elements. These elements help
to define the overall structure and meaning of the information, but the actual information you're inter-
ested in is the students and their information. Plus, for each piece of information about the students, the
name of the information is repeated twice, although the actual data appears only once (for example,
"name" appears both in <name> and </name>. Consider the same information formatted as JSON:

{ "classinfo"
{
"students" : [
{

"name" : "Michael Smith",
"average" : 99.5,
"age" : 17,
"graduating" : true

"name" : "Steve Johnson",
"average" : 34.87,

"age" : 17,

"graduating" : false

242
www.it-ebooks.info

http://www.it-ebooks.info/

JSON

"name" : "Rebecca Young",
"average" : 89.6,

"age" : 18,

"graduating" : true

}

Alot of the superfluous information isn’t present in this JSON form. Since closing tags aren’t necessary
to match opening tags, this greatly reduces the number of bytes needed to transmit the same informa-
tion. Not including spaces, the JSON data is 224 bytes, whereas the comparable XML data is 365 bytes,
saving more than 100 bytes. (This is why Crockford, JSON's creator, calls it the “fat-free alternative

to XML.”)

The disadvantage to JSON-formatted data as compared to XML is that it’s far less readable to the naked
eye. Because XML is verbose, it’s fairly easy to understand what data is being represented with a simple
glance. JSON, with its shorthand notation, can be difficult to decipher without other software tools.

Of course, an argument can be made that data exchange formats should never be viewed with the naked
eye. Thus, it makes sense that server-side JSON tools are necessary to create the data being sent to the
client.

Server-Side JSON Tools

When Crockford first proposed JSON, he was the only one creating tools for encoding and decoding. As
the popularity of JSON grew, others started to step up and create client- and server-side libraries to facil-
itate its use. Although it is beyond the scope of this book to discuss every one of these tools, it is useful
to take a look at one and then develop a solution using it.

JSON-PHP

JSON-PHP is a PHP library for encoding and decoding JSON information. This utility, written by Michal
Migurski, is available for free at http: //mike.teczno.com/json.html. To use this library, simply
include the JSON . php file and create an instance of the Services_JSON object:

<?php
require_once ("JSON.php") ;
SoJSON = new Services_JSON() ;
2>

The first line includes the JSON. php file that contains the Services_JsoN object definition. The second
line simply instantiates the object and stores it in the variable $oJS0ON. Now, you're ready to start encod-
ing and decoding JSON in your PHP page.

The encode() Method

To encode a PHP object into a JSON string, use the encode () method, which accepts a single argument:
an object to encode, which can be an array or a full-fledged object. It doesn’t matter how the object or

243
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

array was created, by using a class definition or not; all objects can be encoded using this method.
Consider the following class definition:

<?php
class Person {

var Sage;

var ShairColor;
var S$name;

var $siblingNames;

function Person ($name, S$Sage, S$hairColor) {
Sthis->name = $name;
Sthis->age = Sage;
Sthis->hairColor = ShairColor;
Sthis->siblingNames = array();

?>

This PHP code defines a class called Person that stores some personal information. The class would be
used as follows:

<?php
SoPerson = new Person("Mike", 26, "brown");
SoPerson->siblingNames[0] = "Matt";
SoPerson->siblingNames[1] = "Tammy";

?>

To encode the $oPerson object, simply pass it into the encode () method, like this:
<?php

$sJSONText = $0JSON->encode ($SoPerson) ;
2>

This creates a JSON string of:
{"age":26, "hairColor": "brown", "name": "Mike", "siblingNames": ["Matt",6 "Tammy"] }

The $oPerson object is now ready to be transferred to JavaScript or any other language that can support
JSON-encoded information.

The decode() Method

The decode () method is used to perform the opposite function, taking a JSON string and parsing it into
an object. Suppose that you have the JSON string displayed previously and want to create a PHP object
from it. Just pass the string into the decode () method:

<?php

SoPerson = $oJSON->decode ($SsJSONText) ;
2>

244

www.it-ebooks.info

http://www.it-ebooks.info/

JSON

Now, the $oPerson variable can be used just like the one in the previous example, as if it were created
using the Person class:

<?php
print ("<h3>Person Information</h3>");
print ("<p>Name: ".SoPerson->name."
");
print ("Age: ".S$SoPerson->age."
");
print ("Hair Color: ".$oPerson->hairColor."
");
print ("Sibling Names:</p>") ;

for ($i=0; $i < count (SoPerson->siblingNames); S$i++) {
print ("".SoPerson->siblingNames[$i]."</1i>");

}
print ("");

?>

This code prints out the information contained in the $oPerson object, proving that the object has been
constructed appropriately. [SON-PHP is in several projects throughout this book because it is quite sim-
ply the easiest way to deal with JSON in a server-side language.

Other Tools

As of 2006, there are JSON libraries for use with every popular server-side language. Depending on your
environment, you may find these resources useful:

QO C#/.NET: The Json.NET library is a free JSON parser/serializer that mimics the built-in XML
functionality of .NET. Json.NET is available at www.newtonsoft.com/products/json

QO ColdFusion: The CFJSON library, written by Jehiah Czebotar, is available at http: //jehiah
.com/projects/cfjson.

O Java/JSP: The JSON in Java utilities, written by Douglas Crockford, are available at www. json
.org/java/.

Q Perl: The JSON library, written by Makamaka Hannyaharamitu, is available at http: //search
.cpan.org/dist/JSON/.

QO PHP: In addition to JSON-PHP, there is also php-json, a C extension for PHP written by Omar
Kilani and available at www.aurore.net /projects/php-json/. You must be comfortable
with compiling PHP with extensions.

O Python: The json-py library, written by Patrick D. Logan, is available at ht tps: //sourceforge
.net/projects/json-py/.

Douglas Crockford also maintains a fairly comprehensive list of JSON utilities at www. json.org. It's a
good idea to check there for other language needs.

245
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Creating an Autosuggest Textbox

The best way to learn about any new programming concept is to put it into a practical example. Google
Suggest (located at www.google.com/webhp?complete=1) is a very simple Ajax application that many
programmers have spent time dissecting, analyzing, and re-creating. If you haven’t yet taken a look at
the live application, please do so now; it will greatly aid in your understanding of the following exam-
ple.

Functionality such as this, suggesting to the user values to type in, has been around in desktop applica-
tions for some time now. Google Suggest brought the idea to the Web and generated a lot of excitement
while doing it. As mentioned earlier in the book, Google Suggest was one of the very early Ajax applica-
tions that got developers excited about the concept. It seems fitting to attempt to emulate the behavior of
Google Suggest to help others understand Ajax.

The example built in this section aids in the selection of states or provinces in a personal information
form. For sites that deal with international customers, it is often vital to include the state or province
along with the country. However, it’s not optimal to load every state and province in the entire world
into a drop-down box for the user to select from. It’s much easier to let the user start typing and then
retrieve only those results that would make the most sense. Autosuggest functionality is perfect for this
use case.

Functionality Overview

Before building anything, it’s always helpful to understand exactly what you're building. Anyone can
say they are going to emulate the functionality of Google Suggest, but what does that mean? The exam-
ple you will build in this section has the following functionality:

Q Typeahead: As the user is typing, the rest of the textbox fills in with the best suggestion at the
time. As the user continues to type, the textbox automatically adjusts its suggestion. The sug-
gested text always appears selected (highlighted). This should work no matter how fast the user

types.
0 Suggestions list: Also as the user is typing, a drop-down list of other suggestions is displayed.

These suggestions are generated automatically while the user types so that there is no dis-
cernible delay.

QO Keyboard controls: When the suggestions are displayed, the user is able to scroll up and down
the list by using the up and down arrows on the keyboard and select a suggestion. Pressing
Enter places the value into the textbox and hides the suggestion list. The Esc key can also be
used to hide the suggestions.

Q Hide suggestions: The drop-down suggestion list is smart enough to hide itself whenever the
textbox is not used or when the browser window is hidden.

As with many applications, it may be shocking how much is actually going on behind the scenes. This is
the key with Ajax: you don’t stop and think about what’s going on, because it works in an intuitive way.

246
www.it-ebooks.info

http://www.it-ebooks.info/

JSON

The HTML

The first step in any client-side component is to build the HTML to use. For the autosuggest textbox, this
includes the textbox itself as well as the drop-down list of suggestions. You're probably familiar with the
HTML textbox:

<input type="text" name="txtAutosuggest" value="" />

In most cases, this line would be enough to use a textbox. The problem is that some browsers (notably
Internet Explorer on Windows and Mozilla Firefox on all operating systems) provide autocomplete func-
tionality that drops down a list of suggestions based on values you've entered before. Since this would
compete directly with the suggestions you'll be providing, this has to be turned off. To do so, set the
autocomplete attribute to of f:

<input type="text" name="txtAutosuggest" value="" autocomplete="off" />

Now, you can be assured that there will be no interference from the autocomplete browser behavior. The
only other user interface component to design is the drop-down list of suggestions.

The suggestion drop-down list is nothing more than an absolutely positioned <div/> element that is
positioned below the textbox so as to give the illusion of being a drop-down list (see Figure 8-1).

Marvland

Massachusetts

Figure 8-1

Inside of this <div/> element are several other <div/> elements, one for each suggestion. By changing
the style of these elements, it’s possible to achieve the look of highlighting a given suggestion. The
HTML to create the list displayed in Figure 8-1 is as follows:

<div class="suggestions">
<div class="current">Maine</div>
<div>Maryland</div>
<div>Massachusetts</div>
<div>Michigan</div>
<div>Minnesota</div>
<div>Mississippi</div>
<div>Missouri</div>
<div>Montana</div>

</div>

247
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

This HTML isn’t coded directly into the main HTML file; instead, it is created dynamically by JavaScript
code. However, you need to know the general format of the HTML in order to create it appropriately.

Of course, some CSS is needed to make the drop-down list function properly. The outermost <div/> has
a class of suggestions, which is defined as:

div.suggestions {
-moz-box-sizing: border-box;
box-sizing: border-box;
background-color: white;
border: 1px solid black;
position: absolute;

}

The first two lines of this CSS class are for browsers that support two forms of box sizing: content box
and border box (for more information, read www . quirksmode.org/css/box.html). In quirks mode,
Internet Explorer defaults to border box; in standards mode, Internet Explorer defaults to content box.
Most other DOM-compliant browsers (Mozilla, Opera, and Safari) default to content box, meaning that
there is a difference in how the <div/> element will be rendered among browsers. To provide for this,
the first two lines of the CSS class set rendering to border box. The first line, -moz-box-sizing, is
Mozilla-specific and used for older Mozilla browsers; the second line is for browsers that support the
official CSS3 box-sizing property. Assuming that you use quirks mode in your page, this class will
work just fine. (If you use standards mode, simply remove these first two lines.)

The remaining styles simply add a border and specify that the <div/> element be absolutely positioned.
Next, a little bit of formatting is needed for the drop-down list items:

div.suggestions div {
cursor: default;
padding: 0Opx 3px;
}

The first line specifies the default cursor (the arrow) to be displayed when the mouse is over an item in
the drop-down list. Without this, the cursor would display as the caret, which is the normal cursor for
textboxes and web pages in general. The user needs to believe that the drop-down item is not a part of
the regular page flow, but an attachment to the textbox, and changing the cursor helps. The second line
simply applies some padding to the item (which you can modify as you wish).

Last, some CSS is needed to format the currently selected item in the drop-down list. When an item is
selected, the background will be changed to blue and the text color will be changed to white. This pro-
vides a basic highlight that is typically used in drop-down menus:

div.suggestions div.current {
background-color: #3366c¢cc;
color: white;

}

All of these styles are to be contained in an external CSS file named autosuggest.css.

248
www.it-ebooks.info

http://www.it-ebooks.info/

JSON

The Database Table

In order to easily query the states and provinces that match a particular text snippet, it is necessary to
use a database table. The database table can be very simple for this example, although you may need
more information to make it practical for your needs. To get this to work, you really need only a single
column to store the state and province names. However, it’s always best to define a primary key, so this
table will include a second column containing an auto-incremented ID number for each state or
province. The following SQL statement creates a table named StatesAndProvinces with two columns,
Id and Name:

CREATE TABLE StatesAndProvinces (
Id INT NOT NULL AUTO_INCREMENT,
Name VARCHAR (255) NOT NULL,
PRIMARY KEY (Id)

) COMMENT = 'States and Provinces';

Of course, the time-consuming part is to fill in state and province names from various countries

around the world. The code download for this example, available at www . wrox . com, includes a SQL file
that populates the table with all U.S. states as well as one that will insert all Canadian provinces and
territories.

Setting up this information in a database table enables you to quickly get a list of suggestions for text the
user has typed in. If the user has typed the letter M, for example, you can run the following query to get
the first five suggestions:

SELECT *

FROM StatesAndProvinces
WHERE Name LIKE 'M%'
ORDER BY Name ASC
LIMIT 0, 5

This statement returns a maximum of five suggestions, in alphabetical order, for all names starting with
M. Later, this will be used in the PHP code that returns the suggestions.

The Architecture

In Chapter 1, you saw the basic architecture of an Ajax solution involving the user interface and Ajax
engine on the client. The autosuggest architecture follows this general format, where the user interface is
the autosuggest control and the Ajax engine is a suggestion provider (see Figure 8-2).

In this architecture, the autosuggest control has no idea where the suggestions are coming from; they
could be coming from the client or the server. All the autosuggest control knows is how to call the sug-
gestion provider to get suggestions for the text contained within the textbox. The suggestion provider
handles all the server communication and notifies the autosuggest control when the suggestions are
available. To accomplish this, both the autosuggest control and the suggestion provider need to imple-
ment specific interfaces so that each knows what method to call on the other.

249
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Autosuggest Control Architecture

Web Browser

JavaScript 3

Call Data Data -
< -—
Autosuggest Suggestion =
Control Provider > B Database

JavaScript HTTP Query/Data

Call Request : Request
Web Server

Figure 8-2

The Classes

Two classes are necessary to represent the two client-side components of the autosuggest functionality,
appropriately called AutoSuggestControl and SuggestionProvider. The AutoSuggestControl is
assigned a SuggestionProvider when it is created so that all requests go through it. The
SuggestionProvider has only one method, requestSuggestions (), which is called by the
AutoSuggestControl whenever suggestions are needed. This method takes two arguments: the
AutoSuggestControl itself and a Boolean value indicating whether the control should type ahead
when the suggestions are returned.

When the suggestions have been retrieved, the SuggestionProvider calls the autosuggest () method
of the AutoSuggestControl, passing in the array of suggestions as well as the typeahead flag that was
passed into it. This allows for a delay between the request for suggestions and the response, making it
possible to use asynchronous requests. This approach sounds more complicated than it is; Figure 8-3
represents the interaction between these two objects in a clearer manner.

AutoSuggestControl SuggestionProvider
G —> | requestSuggestion()
L0

autosuggest() «——

Figure 8-3

With the architecture designed, it’s time to start coding.

The AutoSuggest Control

The AutoSuggestControl class is the wrapper for all autosuggest functionality. To work properly, the
control needs to know which textbox to work on and the suggestion provider to use. This makes for a
relatively simple constructor:

250
www.it-ebooks.info

http://www.it-ebooks.info/

JSON

function AutoSuggestControl (oTextbox, oProvider) {
this.provider = oProvider;
this.textbox = oTextbox;

It’s upon this simple base that the complex functionality of an autosuggest textbox is built.

Since the AutoSuggestControl class is quite complicated, it’s much simpler to break up its explanation
into specific types of functionality. The following sections build on each other, and the complete code can
be downloaded from www . wrox . com.

Implementing Typeahead

Typeahead textboxes look at what the user has typed and then make a suggestion, highlighting only the
part that was added automatically. For example, if you were to type Ma into a textbox, the suggestion
may be Maine, but only ine would be highlighted. Doing this allows the user to continue typing without
interruption because any new characters simply replace the highlighted section.

Originally, the only type of highlighting possible using JavaScript was to highlight all the text in the
textbox using the select () method, as follows:

var oTextbox = document.getElementById("txtState");
oTextbox.select () ;

This code gets a reference to a textbox with the ID of txtState and then selects all the text contained
within it. Although this functionality is fine for many everyday uses, it’s not very helpful for implement-
ing typeahead. Thankfully, both Internet Explorer and Firefox have ways of selecting parts of the text
instead of the entire item (for other browsers, this feature is not available). But as usual, the two biggest
combatants in the browser world do things in two completely different ways.

The Internet Explorer solution is to use a text range. Not to be confused with DOM ranges, an Internet
Explorer text range is an invisible selection of text on the page, beginning on a single character and end-
ing on a single character. When a text range is filled out, you can highlight just the text contained within
it, which is perfect for typeahead. To create a text range for a specific textbox, you use the
createTextRange () method that Internet Explorer provides on every textbox.

Once you have a text range, its methods enable you to select certain parts of the text. Although there are
many text range methods, the only ones of interest for this example are moveStart () and moveEnd (),
both of which accept two arguments: a unit and a number. The unit can be character, word, sentence,
or textedit, whereas the number indicates the number of units to move from the start or end of the
text (this should be a positive number for moveStart () and a negative for moveEnd ()). When the end-
points of the text range are set, you can call its select () method to highlight just those characters. For
example, to select just the first three characters in a textbox, you could do this:

var oRange = oTextbox.createTextRange () ;
oRange.moveStart ("character", 0);

oRange.moveEnd ("character", 3 - oTextbox.value.length) ;
oRange.select () ;

oTextbox. focus () ;

251
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Note that to get the appropriate value for moveEnd (), it's necessary to subtract the length of the text
in the textbox from the number of characters to select (3). The last step is to set the focus to the
textbox so that the selection is visible. (Text can be selected only when the textbox has focus.) The pro-
cess is a bit involved in Internet Explorer, but pretty easy to script. Firefox, on the other hand, is very
straightforward.

Textboxes in Firefox have a nonstandard method called setSelectionRange (), which accepts two
arguments: the index of the character to start with and the index of character after the last character to
select. So, to select the first three characters in a textbox using Mozilla, you need only two lines of code:

oTextbox.setSelectionRange (0, 3) ;
oTextbox. focus () ;

The first method you’'ll need in the AutoSuggestControl class is a method to select a range of charac-
ters in a browser-specific way. This method, called selectRange (), handles all the dirty work for you:

AutoSuggestControl.prototype.selectRange = function (iStart, iEnd) {

if (this.textbox.createTextRange) {
var oRange = this.textbox.createTextRange() ;
oRange.moveStart ("character", iStart);
oRange.moveEnd ("character", iEnd- this.textbox.value.length) ;
oRange.select () ;

} else if (this.textbox.setSelectionRange) {
this.textbox.setSelectionRange (iStart, iEnd);

}

this.textbox.focus() ;

¥

This method uses feature detection, the process of detecting certain browser features, to determine how
to select the characters. It tests for the existence of the createTextRange () method to determine
whether the Internet Explorer text ranges should be used, and tests for the setSelectionRange ()
method to determine whether the Firefox method should be used. The arguments are the first character
to select and the number of characters to select. These values are then passed to the browser-specific
methods of text selection.

The typeAhead() Method

Now that you can select specific parts of the textbox, it’s time to implement the typeahead functionality.
To do this, a typerhead () method is defined that accepts a single argument: the suggestion to display
in the textbox. The suggestion being passed in is assumed to be appropriate (and assumed to have at
least one character). This method then does three things:

1. Gets the length of the text already in the textbox.

2. Places the suggestion into the textbox.

3. Selects only the portion of the text that the user didn’t type using the information from step 1.

252
www.it-ebooks.info

http://www.it-ebooks.info/

JSON

Additionally, since typeahead can be supported only in Internet Explorer and Firefox, you should check
to make sure that one of those browsers is being used. If the browser doesn’t support text selection, then
none of the steps should be executed so as not to interrupt the user’s typing. Once again, testing for the
createTextRange () and setSelectionRange () methods of the textbox is the way to go:

AutoSuggestControl .prototype.typeAhead = function (sSuggestion) {
if (this.textbox.createTextRange || this.textbox.setSelectionRange) {
var iLen = this.textbox.value.length;
this.textbox.value = sSuggestion;
this.selectRange (iLen, sSuggestion.length) ;

¥

With this method complete, you now need another method to call it and pass in the suggestion.

The autosuggest() Method

Perhaps the most important method in the control is autosuggest (). This single method is responsible
for receiving an array of suggestions for the textbox and then deciding what to do with them.
Eventually, this method will be used to implement the full autosuggest functionality (including drop-
down suggestions), but for now, it’s used to implement typeahead only.

Because autosuggest () will be passed an array of suggestions, you have your pick as to which one to
use for the typeahead value. It's recommended that you always use the first value in the array to keep
things simple. The problem is that there may not always be suggestions for a value, in which case an
empty array will be passed. The typeAhead () method shouldn’t be called if there are no suggestions, so
it’s important to check the length of the array first:

AutoSuggestControl .prototype.autosuggest = function (aSuggestions) {
if (aSuggestions.length > 0) {
this.typeAhead (aSuggestions|[0]) ;

b5

But where do the suggestions come from? It’s actually the job of the suggestion provider to call this
method and pass in the suggestions. Implementation of this feature is discussed later in the chapter.

Handling Key Events

Of course, the autosuggest functionality has to be tied to the textbox using events. There are three events
that deal with keys: keydown, keypress, and keyup. The keydown event fires whenever the user presses
a key on the keyboard but before any changes occur to the textbox. This obviously won't help with auto-
suggest because you need to know the full text of the textbox; using this event would mean being one
keystroke behind. For the same reason, the keypress event can’t be used. It is similar to keydown but
fires only when a character key is pressed. The keyup event, however, fires after changes have been
made to the textbox, which is exactly when autosuggest should begin working.

253
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Setting up an event handler for the textbox involves two steps: defining a function and assigning it as an
event handler. The function is actually a method of the autosuggest control, called handlekeyUp (). This
method expects the event object to be passed in as an argument (how to accomplish this is discussed
later) so that it can tell whether the key being pressed should enact the autosuggest functionality. Since
keyup fires for all keys, not just character keys, you'll receive events when someone uses a cursor key,
the Tab key, and any other key on the keyboard. To avoid interfering with how a textbox works, sugges-
tions should be made only when a character key is pressed. This is where the event object’s keyCode
property enters the picture.

The keyCode property is supported by most modern browsers (including Internet Explorer on Windows
and Macintosh, Firefox, Opera, and Safari) and returns a numeric code representing the key that was
pressed. Using this property, it’s possible to set up behaviors for specific keys. Since the autosuggest
functionality should happen only when character keys are pressed, you need to check this property for
an appropriate value before proceeding. Believe it or not, the easiest way to do this is actually to detect
the keys that you want to ignore. This approach is more efficient because there are more character keys
than non-character keys. The following table displays the key codes for all keys that should be ignored.

Key Code Key Code
Backspace 8 Print Screen 44
Tab 9 Delete 46
Enter 13 F1 112
Shift 16 F2 113
Ctrl 17 F3 114
Alt 18 F4 115
Pause/Break 19 F5 116
Caps Lock 20 F6 117
Esc 27 F7 118
Page Up 33 F8 119
Page Down 34 F9 120
End 35 F10 121
Home 36 F11 122
Left Arrow 37 F12 123
Up Arrow 38
Right Arrow 39
Down Arrow 40

254

www.it-ebooks.info

http://www.it-ebooks.info/

JSON

You may notice a pattern among the key codes. It looks like all keys with a code less than or equal to 46
should be ignored, and all keys with codes between 112 and 123 should be ignored. This is generally
true, but there is an exception. The space bar has a key code of 32, so you actually need to check to see if
the code is less than 32 (but not 16, which is the Shift key), between 33 and 46, or between 112 and 123.
If it’s not in any one of these groups, then you know it’s a character key.

Here’s what the handleKeyUp () method looks like:

AutoSuggestControl.prototype.handleKeyUp = function (oEvent) {
var iKeyCode = oEvent.keyCode;

if ((iKeyCode != 16 && iKeyCode < 32) || (iKeyCode >= 33 && iKeyCode <= 46)
|| (iKeyCode >= 112 && iKeyCode <= 123)) {

//ignore
} else {
this.provider.requestSuggestions (this) ;

}
¥

When a user presses a character key, the autosuggest functionality begins by calling the suggestion
provider’s requestSuggestions () method and passing a pointer to the autosuggest control as an
argument. Remember, it’s the suggestion provider that will call the autosuggest () method defined
earlier. The requestSuggestions () method begins the process of retrieving suggestions for usage.

With this method defined, it must be assigned as the event handler for the textbox. It’s best to create a
separate method to handle initializations for the control such as this (there will be more in the future).
The init () method serves this purpose:

AutoSuggestControl.prototype.init = function () {
var oThis = this;
this.textbox.onkeyup = function (oEvent) {
if (!oEvent) {
oEvent = window.event;
}
oThis.handleKeyUp (oEvent) ;
¥
¥

The init () method starts by creating a pointer to the this object so that it may be used later. An
anonymous function is defined for the textbox’s onkeyup event handler. Inside of this function, the
handleKeyUp () method is called using the oThis pointer. (Using this here would refer to the textbox
instead of the autosuggest control.)

Since this method requires the event object to be passed in, it’s necessary to check for both DOM and
Internet Explorer event objects. The DOM event object is passed in as an argument to the event han-
dler, whereas the Internet Explorer event object is a property of window. Instead of doing a browser
detect, you can check to see if the oEvent object is passed into the event handler. If not, then assign
window.event into the oEvent variable. The oEvent variable can then be passed directly into the
handleKeyUp () event handler.

255
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

The init () method should be called from within the AutoSuggestControl constructor:

function AutoSuggestControl (oTextbox, oProvider) {
this.provider = oProvider;
this.textbox = oTextbox;
this.init();

}

That'’s all it takes to implement the typeahead functionality of the autosuggest control. At this point, you
are displaying a single suggestion to the user as he or she types. The goal is, of course, to provide multi-
ple suggestions using a drop-down list.

Showing Multiple Suggestions

Earlier in the chapter, you took a look at the HTML and CSS used for the drop-down list of suggestions.
Now, the task is to create the HTML programmatically and apply the CSS to create the actual functional-
ity; this is a multistep process. First, a property is needed to store the <div/> element because various
methods of the AutoSuggestControl need access to it. This property is called layer and is initially set
tonull:

function AutoSuggestControl (oTextbox, oProvider) {
this.layer = null;
this.provider = oProvider;
this.textbox = oTextbox;
this.init();

The drop-down list will be created after you define a few simple methods to help control its behavior.
The simplest method is hideSuggestions (), which hides the drop-down list after it has been shown:

AutoSuggestControl .prototype.hideSuggestions = function () {
this.layer.style.visibility = "hidden";
¥

Next, a method is needed for highlighting the current suggestion in the drop-down list. The
highlightSuggestion () method accepts a single argument, which is the <div/> element containing
the current suggestion. The purpose of this method is to set the <div/> element’s class attribute to
current on the current suggestion and clear the class attribute on all others in the list. Doing so pro-
vides a highlighting effect on the drop-down list similar to the regular form controls. The algorithm is
quite simple: iterate through the child nodes of the layer. If the child node is equal to the node that was
passed in, set the class to current; otherwise, clear the class attribute by setting it to an empty string;:

AutoSuggestControl.prototype.highlightSuggestion = function (oSuggestionNode) {

for (var i=0; i < this.layer.childNodes.length; i++) {
var oNode = this.layer.childNodes[i];
if (oNode == oSuggestionNode) {
oNode.className = "current"
} else if (oNode.className == "current") {
oNode.className = "";

}

256
www.it-ebooks.info

http://www.it-ebooks.info/

JSON

With these two methods defined, it’s time to create the drop-down list <div/>. The createDropDown ()
method creates the outermost <div/> element and defines the event handlers for the drop-down list. To
create the <div/> element, use the createElement () method and then assign the various styling
properties:

AutoSuggestControl .prototype.createDropDown = function () {

this.layer = document.createElement ("div");
this.layer.className = "suggestions";
this.layer.style.visibility = "hidden";
this.layer.style.width = this.textbox.offsetWidth;
document .body .appendChild (this.layer) ;

//more code to come
¥

This code first creates the <div/> element and assigns it to the layer property. From there, the
className (equivalent to the class attribute) is set to suggestions, as is needed for the CSS to work
properly. The next line hides the layer, since it should be invisible initially. Then, the width of the layer is
set equal to the width of the textbox by using the textbox’s of fsetwWidth property (this is optional
depending on your individual needs). The very last line adds the layer to the document. With the layer
created, it’s time to assign the event handlers to control it.

At this point, the only concern is making sure that the drop-down list is functional if the user uses the
mouse. That is, when the drop-down list is visible, moving the mouse over a suggestion should high-
light it. Likewise, when a suggestion is clicked on, it should be placed in the textbox and the drop-down
list should be hidden. To make this happen, you need to assign three event handlers: onmouseover,
onmousedown, and onmouseup.

The onmouseover event handler is used simply to highlight the current suggestion; onmousedown is
used to select the given suggestion (place the suggestion in the textbox and hide the drop-down list),
and onmouseup is used to set the focus back to the textbox after a selection has been made. Because all
these events are fired by the drop-down list itself, it’s best just to use a single function for all of them, as
follows:

AutoSuggestControl.prototype.createDropDown = function () {

this.layer = document.createElement ("div");
this.layer.className = "suggestions";
this.layer.style.visibility = "hidden";
this.layer.style.width = this.textbox.offsetWidth;
document .body.appendChild(this.layer) ;

var oThis = this;

this.layer.onmousedown = this.layer.onmouseup =
this.layer.onmouseover = function (oEvent) {

oEvent = oEvent || window.event;
oTarget = oEvent.target || oEvent.srcElement;
if (oEvent.type == "mousedown") {

oThis.textbox.value = oTarget.firstChild.nodeValue;
oThis.hideSuggestions () ;

257
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

} else if (oEvent.type == "mouseover") {
oThis.highlightSuggestion (oTarget) ;
} else {

oThis.textbox. focus () ;
}
b g

Y

The first part of this section is the assignment that makes oThis equal to the this object. This is
necessary so that a reference to the AutoSuggestControl object is accessible from within the event
handler. Next, a compound assignment occurs, assigning the same function as an event handler for
onmousedown, onmouseup, and onmouseover. Inside of the function, the first two lines are used to
account for the different event models (DOM and IE), using a logical OR (| |) to assign the values for
oEvent and oTarget. (The target will always be a <div/> element containing a suggestion.)

If the event being handled is mousedown, then set the value of the textbox equal to the text inside of the
event target. The text inside of the <div/> element is contained in a text node, which is the first child
node. The actual text string is contained in the text node’s nodevalue property. After the suggestion is
placed into the textbox, the drop-down list is hidden.

When the event being handled is mouseover, the event target is passed into the
highlightSuggestion () method to provide the hover effect; when the event is mouseup, the focus is
set back to the textbox (this fires immediately after mousedown).

Positioning the Drop-Down List

To get the full effect of the drop-down list, it’s imperative that it appear directly below the textbox. If the
textbox were absolutely positioned, this wouldn’t be much of an issue. In actual practice, textboxes are
rarely absolutely positioned and more often are placed inline, which presents a problem in aligning the
drop-down list. To calculate the position where the drop-down list should appear, you can use the
textbox’s of fsetLeft, offsetTop, and offsetParent properties.

The offsetLeft and offsetTop properties tell you how many pixels away from the left and top of the
offsetParent an element is placed. The offsetParent is usually, but not always, the parent node of
the element, so to get the left position of the textbox, you need to add up the offsetLeft properties of
the textbox and all of its ancestor elements (stopping at <body/>), as shown here:

AutoSuggestControl .prototype.getLeft = function () {

var oNode = this.textbox;
var ilLeft 0;

while (oNode != document.body) {
iLeft += oNode.offsetLeft;
oNode = oNode.offsetParent;

}

return iLeft;

258
www.it-ebooks.info

http://www.it-ebooks.info/

JSON

The getLeft () method begins by pointing oNode at the textbox and defining iLeft with an initial
value of 0. The while loop will continue to add oNode . offsetLeft to iLeft as it traverses up the
DOM structure to the <body/> element.

The same algorithm can be used to get the top of the textbox:

AutoSuggestControl .prototype.getTop = function () {

var oNode = this.textbox;
var iTop = 0;

while (oNode != document.body) {
iTop += oNode.offsetTop;
oNode = oNode.offsetParent;
}

return iTop;

¥

These two methods will be used to place the drop-down list in the correct location.

Adding and Displaying Suggestions

The next step in the process is to create a method that adds the suggestions into the drop-down list and
then displays it. The showSuggestions () method accepts an array of suggestions as an argument and
then builds up the necessary DOM elements to display them. From there, the method positions the drop-
down list underneath the textbox and displays it to the user:

AutoSuggestControl.prototype.showSuggestions = function (aSuggestions) {

var oDiv = null;
this.layer.innerHTML = "";

for (var i=0; i < aSuggestions.length; i++) {
oDiv = document.createElement ("div") ;
oDiv.appendChild (document.createTextNode (aSuggestions[i])) ;
this.layer.appendChild (oDiv) ;

}

this.layer.style.left = this.getLeft() + "px";
this.layer.style.top = (this.getTop()+this.textbox.offsetHeight) + "px";
this.layer.style.visibility = "visible";

¥

The first line simply defines the variable oDiv for later use. The second line clears the contents of the
drop-down list by setting the innerHTML property to an empty string. Then, the for loop creates a
<div/> element and a text node for each suggestion before adding it to the drop-down list layer.

The next section of code starts by setting the left position of the layer using the getLeft () method. To
set the top position, you need to add the value from getTop () to the height of the textbox (retrieved by
using the offsetHeight property). Without doing this, the drop-down list would appear directly over
the textbox. (Remember, getTop () retrieves the top of the textbox, not the top of the drop-down list
layer.) Last, the layer’s visibility property is set to visible to show it.

259
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Updating the Functionality

In order to show the drop-down list of suggestions, you'll need to make several changes to the function-
ality defined previously.

The first update is the addition of a second argument to the autosuggest () method, which indicates
whether the typeahead functionality should be used (the reason why will be explained shortly).
Naturally, the typeaAhead () method should be called only if this argument is true. If there’s at least one
suggestion, typeahead should be used and the drop-down list of suggestions should be displayed by
calling showSuggestions (); if there are no suggestions, the drop-down list should be hidden by calling
hideSuggestions():

AutoSuggestControl .prototype.autosuggest = function (aSuggestions, bTypeAhead) ({
if (aSuggestions.length > 0) {
if (bTypeAhead) {
this.typeAhead(aSuggestions[0]);
}
this.showSuggestions (aSuggestions) ;
} else {
this.hideSuggestions() ;
}
Y

It’s also necessary to update the handlekeyUp () method for a couple of different reasons. The first rea-
son is to add the bTypeAhead argument to the requestSuggestions () call. When called from here,
this argument will always be true:

AutoSuggestControl.prototype.handleKeyUp = function (oEvent) {

var iKeyCode = oEvent.keyCode;

if ((iKeyCode != 16 && iKeyCode < 32) || (iKeyCode >= 33 && iKeyCode <= 46)
|| (iKeyCode >= 112 && iKeyCode <= 123)) {
//ignore

} else {

this.provider.requestSuggestions (this, true);
}
Y

Remember, the requestSuggestions () method is defined on the suggestion provider, which is
described later in this chapter.

This functionality now works exactly as it did previously, but there are a couple of other keys that
require special attention: Backspace and Delete. When either of these keys is pressed, you don’t want to
activate the typeahead functionality because it will disrupt the process of removing characters from the
textbox. However, there’s no reason not to show the drop-down list of suggestions. For the Backspace
(key code of 8) and Delete (key code of 46) keys, you can call requestSuggestions (), but this time,
pass in false to indicate that typeahead should not occur:

AutoSuggestControl.prototype.handleKeyUp = function (oEvent) {

var iKeyCode = oEvent.keyCode;

260
www.it-ebooks.info

http://www.it-ebooks.info/

JSON

if (iKeyCode == 8 || iKeyCode == 46) {
this.provider.requestSuggestions (this, false);

} else if (((iKeyCode != 16 && iKeyCode < 32) || (iKeyCode >= 33 && iKeyCode <=
46)
|| (iKeyCode >= 112 && iKeyCode <= 123)) {
//ignore
} else {
this.provider.requestSuggestions (this, true);
}
Y

Now when the user is removing characters, suggestions will still be displayed and the user can click one
of them to select the value for the textbox. This is acceptable, but to really be usable, the autosuggest
control needs to respond to keyboard controls.

Adding Keyboard Support

The desired keyboard functionality revolves around four keys: the up arrow, the down arrow, Esc, and
Enter (or Return). When the drop-down suggestion list is displayed, the user should be able to press the
down arrow to highlight the first suggestion, then press it again to move to the second, and so on. The
up arrow should then be used to move back up the list of suggestions. As each suggestion is highlighted,
the value must be placed in the textbox. If the user presses Esc, the suggestions should be hidden and
the suggestion removed from the textbox. When the Enter key is pressed, the suggestions should also be
hidden, but the last suggestion should remain highlighted in the textbox.

In order for the user to use the up and down arrow keys, you'll need to keep track of the currently
selected item in the suggestions list. To do this, you must add two properties to the
AutoSuggestControl definition, as follows:

function AutoSuggestControl (oTextbox, oProvider) {
this.cur = -1;
this.layer = null;
this.provider = oProvider;
this.textbox = oTextbox;
this.userText = oTextbox.value;
this.init();
}

The cur property stores the index of the current suggestion in the suggestions array. By default, this
value is set to -1 because there are no suggestions initially. When the arrow keys are pressed, cur will
change to point to the current suggestion. The second added property, userText, holds the current
value of the textbox and changes to reflect what the user actually typed.

As cur changes, the highlighted suggestion changes as well. To encapsulate this functionality, a method
called goToSuggestion () is used. This method accepts only one argument, a number whose sign indi-
cates which direction to move in. For instance, any number greater than 0 moves the selection to the next
suggestion; any number less than or equal to 0 moves the selection to the previous suggestion. Here’s
the code:

261
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

AutoSuggestControl.prototype.goToSuggestion = function (iDiff) {
var cSuggestionNodes = this.layer.childNodes;

if (cSuggestionNodes.length > 0) {
var oNode = null;

if (iDiff > 0) {
if (this.cur < cSuggestionNodes.length-1) {
oNode = cSuggestionNodes[++this.cur];
}
} else {
if (this.cur > 0) {
oNode = cSuggestionNodes[--this.cur];

}

if (oNode) {
this.highlightSuggestion (oNode) ;
this.textbox.value = oNode.firstChild.nodeValue;

¥

This method begins by obtaining the collection of child nodes in the drop-down layer. Since only
<div/> elements containing suggestions are child nodes of the layer, the number of child nodes accu-
rately matches the number of suggestions. This number can be used to determine if there are any sug-
gestions (in which case it will be greater than zero). If there are no suggestions, the method need not do
anything.

When there are suggestions, a variable named oNode is created to store a reference to the suggestion
node to highlight, and the method checks to see which direction to go in. If iDi £ £ is greater than 0, it
tries to go to the next suggestion. In doing so, the method first checks to ensure that cur isn’t greater
than the number of suggestions minus 1 (because the index of the last element in a collection with

n elements is n-1). Assuming that there is a next suggestion, cur is prefix incremented (meaning it
assumes its new value before the line it's on executes) to retrieve the node for the next suggestion.

If iDiff is less than or equal to zero, then that means the previous suggestion needs to be highlighted.
In that case, you must first check to ensure cur is greater than 0 (if cur isn’t at least 1, then there isn’t a
previous suggestion to go to). Passing that test, cur is then prefix decremented to get a reference to the
correct suggestion node.

The last step in the method is to ensure that oNode isn’t null. If it’s not, then the node is passed to

highlightSuggestion() and the suggestion text is placed into the textbox; if it is null, then no action
is taken.

Another part of keeping track of the selected suggestion is to be sure that cur is reset at the correct

point; otherwise, you can get some very odd behavior. The correct place to reset cur to -1 is in the
autosuggest () method, just before the drop-down list is displayed:

262
www.it-ebooks.info

http://www.it-ebooks.info/

JSON

AutoSuggestControl.prototype.autosuggest = function (aSuggestions, bTypeAhead) {
this.cur = -1;
if (aSuggestions.length > 0) {

if (bTypeAhead) {
this.typeAhead (aSuggestions[0]) ;

this.showSuggestions (aSuggestions) ;
} else {
this.hideSuggestions () ;

Y

Along the same lines, it’s important to set userText to the correct value. This should be done in the
handleKeyUp () method:

AutoSuggestControl .prototype.handleKeyUp = function (oEvent) {

var iKeyCode = oEvent.keyCode;
this.userText = this.textbox.value;

if (iKeyCode == 8 || iKeyCode == 46) {
this.provider.requestSuggestions (this, false);

} else if (((iKeyCode != 16 && iKeyCode < 32) || (iKeyCode >= 33 && iKeyCode <=
46)
|| (iKeyCode >= 112 && iKeyCode <= 123)) {
//ignore
} else {

this.provider.requestSuggestions (this, true);
}i

This small addition saves what the user typed before asking for suggestions. This will be very useful
when dealing with the Esc key. With these two methods updates, all that’s left is to make sure that
goToSuggestion () gets called at the right time.

To handle the up arrow, down arrow, Esc, and Enter keys, a handleKeyDown () method is necessary.
Similar to handleKeyUp (), this method also requires the event object to be passed in. And once again,
you'll need to rely on the key code to tell which key was pressed. The key codes for the up arrow, down
arrow, Esc, and Enter keys are 38, 40, 27, and 13, respectively. The handleKeyDown () method is defined
as follows:

AutoSuggestControl .prototype.handleKeyDown = function (oEvent) {
switch (oEvent.keyCode) {

case 38: //up arrow
this.goToSuggestion(-1) ;
break;

case 40: //down arrow
this.goToSuggestion (1) ;
break;

263
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

case 27: //esc
this.textbox.value = this.userText;
this.selectRange (this.userText.length, 0);
/* falls through */
case 13: //enter
this.hideSuggestions () ;
oEvent.returnvValue = false;
if (oEvent.preventDefault) {
oEvent .preventDefault () ;
}

break;
¥

When the up arrow is pressed (key code 38), the goToSuggestion () method is called with an argument
of -1, indicating that the previous selection should be selected. Likewise, when the down arrow is
pressed (key code 40), goToSuggestion () is called with 1 as an argument to highlight the next sugges-
tion. If Esc is pressed (key code 27), there are a couple of things to do.

First, you need to set the textbox value back to the original text that the user typed. Second, you need to
set the selection in the textbox to be located after what the user typed so that he or she can continue typ-
ing. This is done by setting the selection range to the length of the text with a selection length of zero.
Then, this case falls through to the Enter key’s case (key code 13), which hides the suggestions list. This
way, the code contains only one call to hideSuggestions () instead of two. Remember, when the user
presses the up or down arrows, the suggestion is automatically placed into the textbox. This means that
when the Enter key is pressed, you need only hide the drop-down list of suggestions.

For both Esc and Enter, you also must block the default behavior for the key press. This is important to
prevent unintended behavior, such as the Enter key submitting the form when the user really just
wanted to select the current suggestion. The default behavior is blocked first by setting
event.returnvValue equal to false (for IE) and then calling preventDefault () (if it’s available, for
DOM-compliant browsers).

Updating init()

Now that all this new functionality has been added, it must be initialized. Previously, the init ()
method was used to set up the onkeyup event handler; now it must be extended to also set up the
onkeydown and onblur event handlers, as well as to create the drop-down suggestion list. The
onkeydown event handler is set up in a manner similar to onkeyup:

AutoSuggestControl.prototype.init = function () {
var oThis = this;
this.textbox.onkeyup = function (oEvent) {
if (!oEvent) {
oEvent = window.event;

}

oThis.handleKeyUp (oEvent) ;
Y

264
www.it-ebooks.info

http://www.it-ebooks.info/

JSON

this.textbox.onkeydown = function (oEvent) {

if (!oEvent) {
oEvent = window.event;

}

oThis.handleKeyDown (oEvent) ;
b3

//more code to come

Y

As you can see, the same algorithm is used with the onkeydown event handler: first, determine the loca-
tion of the event object, and then pass it into the handleKeyDown () method.

Up to this point, the only time the drop-down list is hidden is when the user presses the Enter key. But
what if the user clicks elsewhere on the screen or uses the Tab key to switch to a new form field? To pre-
pare for this event, you must set up an onblur event handler, which hides the suggestions whenever the
textbox loses focus:

AutoSuggestControl.prototype.init = function () {
var oThis = this;

this.textbox.onkeyup = function (oEvent) {
if (!'oEvent) {
oEvent = window.event;

}

oThis.handleKeyUp (oEvent) ;
Y

this.textbox.onkeydown = function (oEvent) {

if (!'oEvent) {
oEvent = window.event;

}

oThis.handleKeyDown (oEvent) ;
Y

this.textbox.onblur = function () {
oThis.hideSuggestions() ;
b 5

this.createDropDown () ;

i
You'll also notice that the createDropDown () method is called to create the initial drop-down list struc-

ture. This completes the keyboard support for the autosuggest control, but there is one more thing to
take into account.

265
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Fast-Type Support

Because the handleKeyUp () method requests suggestions whenever a key is pressed, you may be won-
dering if it can keep up when someone is typing quickly. The answer is no. You may be surprised to
know that it is possible to type too fast for the event handling to keep up. In this case, you get sugges-
tions that are too late (including letters you never typed) and a very choppy user experience (with long
pauses as you type). So, how can you make sure that fast typists aren’t left out of this functionality?

Quite simply, you should wait a short amount of time before requesting suggestions from the server.
This can be done using the setTimeout () method, which delays the calling of a function for a set time
interval. The new functionality works like this: a timeout ID is saved in the AutoSuggestControl
object. If another key is pressed before the timeout has been activated, the existing timeout is cleared and
anew one is put in its place. So basically, when a user presses a key, the control waits a certain amount
of time before requesting suggestions. If another key is pressed before the request is made, the control
cancels the original request (by clearing the timeout) and asks for a new request to be made after the
same amount of time. In this way, you can be sure that the request for suggestions goes out only when
the user has paused during typing.

To implement this functionality, the first thing you need is a property to hold the timeout ID. You can
add the timeoutId property directly to the AutoSuggestControl class, as follows:

function AutoSuggestControl (oTextbox, oProvider) {
this.cur = -1;
this.layer = null;
this.provider = oProvider;
this.textbox = oTextbox;
this.timeoutId = null;
this.userText = oTextbox.value;
this.init();

Next, update the handleKeyUp () method to make use of this new property:

AutoSuggestControl .prototype.handleKeyUp = function (oEvent /*:Event*/) ({

var iKeyCode = oEvent.keyCode;
var oThis = this;

this.userText = this.textbox.value;

clearTimeout (this.timeoutId) ;

if (iKeyCode == 8 || iKeyCode == 46) {

this.timeoutId = setTimeout(function () {

oThis.provider.requestSuggestions (oThis, false);

}, 250);

} else if (((iKeyCode != 16 && iKeyCode < 32) || (iKeyCode >= 33 && iKeyCode <
46)
|| (iKeyCode >= 112 && iKeyCode <= 123)) {

//ignore

} else {

266

www.it-ebooks.info

http://www.it-ebooks.info/

JSON

this.timeoutId = setTimeout(function () {
oThis.provider.requestSuggestions (oThis, true);
Y, 250);

Y

The first new line in this method stores a reference to the this object, which is important when using
the setTimeout () method. The second new line of code clears any timeout that may have already been
started; this cancels any suggestion request that may have been initiated. The other two sections of new
code change the call to the requestSuggestions () to occur after 250 milliseconds (which is plenty of
time for this purpose). Each call is wrapped in an anonymous function that is passed in to

setTimeout (). The result of setTimeout (), the timeout ID is stored in the new property for later
usage. All in all, this ensures that no requests will be made unless the user has stopped typing for at least
250 milliseconds.

This completes the code for the AutoSuggestControl class. All of the functionality has been imple-
mented, and all that’s left is to create a suggestion provider to call.

The Suggestion Provider

The suggestionProvider class is relatively simple compared to the AutoSuggestControl, since it has
only one purpose: to request suggestions from the server and forward them to the control. To do so,
SuggestionProvider needs an instance of XHR. Instead of using a new object for each request, the
same object will be used over and over, to avoid the overhead of creating and destroying objects in rapid
succession. This single instance is created using the zZXML library’s zxm1Ht tp factory and is stored in a
property called xhr:

function SuggestionProvider () {
this.xhr = zXmlHttp.createRequest () ;
}

The lone method of the suggestion provider is requestSuggestions (), which you may remember
from the architecture discussion. This method accepts two arguments: the AutoSuggestControl to
work on and a flag indicating whether typeahead should be used. The complete code is as follows:

SuggestionProvider.prototype.requestSuggestions = function (oAutoSuggestControl,
bTypeAhead) {

var oXHR = this.xhr;

//cancel any active requests

if (oXHR.readyState != 0) {
OXHR.abort () ;

}

//define the data

var oData = {
requesting: "StatesAndProvinces",
text: oAutoSuggestControl.userText,
limit: 5

¥

267
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

//open connection to server

OXHR.open ("post", "suggestions.php", true);
OXHR.setRequestHeader ("Content-type", "text/html");
OXHR.onreadystatechange = function () {
if (oXHR.readyState == 4) {
if (oXHR.status == 200 || oXHRo.status == 304) {

//evaluate the returned text JavaScript (an array)
var aSuggestions = oXHR.responseText.parseJSON() ;

//provide suggestions to the control
oAutoSuggestControl .autosuggest (aSuggestions, bTypeAhead) ;

I g

//send the request
OXHR.send(oData.toJSONString()) ;

b g

The first line inside the method sets oXHR equal to the stored XHR object. This is done simply for conve-
nience and to keep the code clean. Next, you check to make sure that there isn’t already a request wait-
ing for a response. If the XHR object is ready to be used cleanly, its readyState will be 0; otherwise, you
must cancel the existing request (by calling abort ()) before making another request.

Because the data being sent to the server is to be JSON-encoded, you first need to create an object
(oData) to hold the information. There are three pieces of information being sent: the table to get the
data out of, the current value in the textbox, and the maximum number of suggestions to retrieve (5).
The maximum number of suggestions is important because it prevents long database queries from being
executed repeatedly.

Next, a request is opened to suggestions.php, the server-side component of the control. This

request is asynchronous (last argument of open () is set to true), so it’s necessary to provide an
onreadystatechange event handler. The event handler first checks to ensure that the readyStateis 4,
and then parses the returned text as a JSON array of values. This array, along with the original type-
ahead flag, is then passed back to the AutoSuggestControl via the autosuggest () method.

The last step in this method is, of course, to send the request. Note that since the request is doing a
POST, the data has to be passed into the send () method. The oData object is first encoded into JSON
before being sent.

With that, the SuggestionProvider class is complete. The only thing left to do is to write the
suggestions.php file that uses the data that is sent.

The Server-Side Component

In many ways, the server-side component for the autosuggest control is the most straightforward: it’s
just a single thread being executed from top to bottom, with no functions or methods to be concerned
about. Note that because this is a PHP page, all the code discussed in this section must be contained
within a PHP code block (<?php . . . ?>).

268
www.it-ebooks.info

http://www.it-ebooks.info/

JSON

The first part of the page is to set the content type to text/plain, indicating that this is a plain text file
and shouldn’t be handled as anything else. You can optionally specify a character set, but make sure that
it is Unicode-compatible, such as UTF-8, since all Unicode characters are valid in JavaScript. Here’s the
line that assigns the content type:

header ("Content-Type: text/plain; charset=UTF-8");
Next, include the JSON-PHP library and create a new instance of the JSON object:

require_once ("JSON.php") ;
SoJSON = new Services_JSON() ;

Normally when data is sent to a PHP page, you can use $_GET, $_POST, or $_REQUEST to retrieve it. In
this case, however, the data isn’t being sent in traditional name-value pairs; instead, it’s being sent as a
JSON string, and there is no built-in support for this specific type of data. Instead, you need to get the
body of the request and decode it manually. The body of any request is available in PHP through
$HTTP_RAW_POST_DATA, which contains the original, encoded content that was sent. Because the JSON
string wasn’t URL-encoded, however, you can just pass this directly into the decode () method to recon-
stitute the oData object:

SoData = $0JSON->decode (SHTTP_RAW_POST DATA) ;
You'll also need an array to store the suggestions in:
SaSuggestions = array();

If there are no suggestions, no values will be added to the array and an empty array (1) will be
returned to the client.

Before tapping the database for suggestions, make sure that there is actually text in the textbox.
Suggestions are requested when the user hits Delete or Backspace, so there’s a possibility that the
textbox could be empty. You should check for this first by seeing if the length of the text is greater than 0;
if so, you can continue on to query the database.

The query string itself is built up from the data submitting from the client. The name of the table, the
LIKE statement, and the number of results to return are all incorporated into the SQL query. The follow-
ing code creates a connection to the database, executes the query, and then adds the results of the query
to the sasuggestions array:

if (strlen($oData->text) > 0) {
//create the SQL query string
SsQuery = "Select Name from ".SoData->requesting." where Name like '".
SoData->text."$' order by Name ASC limit 0,".SoData->limit;
//make the database connection

SoLink = mysgl_connect ($sDBServer, SsDBUsername, $SsDBPassword) ;
@mysqgl_select_db($sDBName) or die("Unable to open database");

269
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

if (SoResult = mysqgl_query ($sQuery)) {
while ($aValues = mysqgl_fetch_array($oResult,MYSQL_ASSOC)) {
array_push (SaSuggestions, S$aValues|['Name']) ;

}

mysqgl_free_result (SoResult) ;
mysqgl_close($oLink) ;

This code should be fairly familiar to you as it is the same basic algorithm used throughout the book
to access a MySQL database using PHP. (You must fill in the appropriate values for $sDBServer,
$sDBUsername, and $sDBPassword to reflect your database settings.) The only unique part is that the
results are being stored in an array, which facilitates the conversion into a JSON string to be sent back
to the client.

The actual encoding is the very last step of the page. In one step, you can encode the array and output it
to the page:

echo ($0JSON->encode ($aSuggestions)) ;

Now, it’s up to the client to parse the JSON code correctly.

The Client-Side Component

So far, you've built the HTML, CSS, JavaScript, and PHP to be used by the autosuggest control. The only
thing left to do is to assemble it all into a page that you can use. The most important thing to remember
is to include of all necessary JavaScript files. In this case, you need to include json.js, zxml . js, and
autosuggest. js. Also important is the inclusion of the stylesheet file, autosuggest.css.

It’s also necessary to instantiate the AutoSuggestControl after the page has completely loaded, using
the onload event handler. The complete code for the example page is:

<html>
<head>
<title>Autosuggest Example</title>
<script type="text/javascript" src="json.Jjs"></script>
<script type="text/javascript" src="zxml.Jjs"></script>
<script type="text/javascript" src="autosuggest.js"></script>
<link rel="stylesheet" type="text/css" href="autosuggest.css" />
<script type="text/javascript">
window.onload = function () {
var oTextbox = new
AutoSuggestControl (document.getElementById ("txtState"), new SuggestionProvider()) ;
}
</script>
</head>
<body>

<form method="post" action="your_action.php">
<table border="0">
<tr>

270

www.it-ebooks.info

http://www.it-ebooks.info/

JSON

<td>Name:</td>
<td><input type="text" name="txtName" id="txtName" /></td>
</tr>
<tr>
<td>Address 1l:</td>
<td><input type="text" name="txtAddressl"
id="txtAddressl" /></td>
</tr>
<tr>
<td>Address 2:</td>
<td><input type="text" name="txtAddress2"
id="txtAddress2" /></td>
</tr>
<tr>
<td>City:</td>
<td><input type="text" name="txtCity" id="txtCity" /></td>
</tr>
<tr>
<td>State/Province:</td>
<td><input type="text" name="txtState" id="txtState"
autocomplete="off" /></td>
</tr>
<tr>
<td>Zip Code:</td>
<td><input type="text" name="txtZip" id="txtzZip" /></td>
</tr>
<tr>
<td>Country:</td>
<td><input type="text" name="txtCountry"
id="txtCountry" /></td>
</tr>
</table>
<input type="submit" value="Save Information" />
</form>
</body>
</html>

Note that once the necessary files are included, you need to place only one line of JavaScript in the
window.onload event handler to set up the functionality:

var oTextbox = new AutoSuggestControl (document.getElementById("txtState"),
new SuggestionProvider());

This line creates a new AutoSuggestControl object, passing a reference to the textbox with the ID of
txtState and a new SuggestionProvider () class. It's important that this line be executed in the
onload event handler because document . getElementById () isn’t 100 percent accurate until the entire
page has been loaded.

The example itself is done in a way in which this control may be used: filling in personal information.
This could be a page where customers can update their information or it could be a shipping form.
Whichever way you choose to use this functionality, it is sure to improve the usability of your form. An
autosuggest control, although not as flashy as some Ajax solutions, is a good example of how Ajax can
be used in a noninterfering way.

271
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Summary

In this chapter, you learned all about JavaScript Object Notation (JSON) as an alternative data transmis-
sion format to XML. You learned that JSON has several advantages over XML for data transmission
needs, including a smaller amount of code to represent the same data and a logical object-and-array
structure that most programming languages can understand and use.

You also learned that while JavaScript can understand and interpret JSON natively, there are several
server-side libraries that provide the same functionality. You learned about a JavaScript utility for pars-
ing and encoding JSON data, as well as the JSON-PHP library that can be used to do the same for PHP.

The chapter went on to describe how to make an Ajax-assisted autosuggest control that enables you to
display suggestions based on what the user has typed. This control works similarly to the way that
Google Suggest does and takes into account user interaction with the mouse and keyboard as well as
providing for fast typists. This control helped to illustrate the power of simple Ajax solutions.

The next chapter will expand on what you've learned here to create reusable Ajax widgets for your web
site. These widgets can use a variety of data transmission formats, including JSON.

272
www.it-ebooks.info

http://www.it-ebooks.info/

Comet

Earlier in the book we discussed how Ajax changed the nature of the Web by freeing users from
the traditional click-and-wait paradigm. Although it improves the user experience, Ajax still uses
the standard HTTP model: the client sends a request for resources to the server, which is answered
by a response from the server with the requested resources (or an error message if they are not
available). This is called a pull method of communication.

In the pull architecture, the client is in control. Communication begins when the client makes a
request and ends when the client receives the response. The pull architecture is how the Web has
always worked, but as it continues to evolve and user expectations rise, this communication
method is increasingly becoming a burdensome hurdle.

Consider a typical chat client such as Yahoo! Messenger. This type of client uses a push architec-
ture, allowing the server to push information out to the client whenever necessary. The result is
fast communication because data is being sent as soon as it is available. If chat clients used a pull
architecture, their performance would suffer, and there would be significantly more network traf-
fic as the client repeatedly polled to see if new data was available. Since the nature of chat is such
that new data may be available several times a second, the push architecture is much more suit-
able for this purpose.

Given the speed and usability advantages of push architectures, web developers have begun
investigating means by which the same functionality can be realized on the Web. Ajax was just the
beginning; the next step is going beyond traditional HTTP to implement push-based web systems
using one or more of several new techniques. Alex Russell coined the term Comet to describe the
evolving push architecture of the web (Comet is a tongue-in-cheek jab at Ajax, since both are also
household cleaners).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

HTTP Streaming

In the time before broadband Internet access was available to the masses, browser developers looked for
ways to speed up the perceived rendering time of web pages. One such method is called progressive ren-
dering; in this method rendering of the page begins as soon as the <body> tag is received, ensuring that
the site display begins as soon as possible. This is the effect seen on long web pages when the vertical
scrollbar continues to grow as the page is being loaded. In this circumstance, the browser is completing
the displaying of the page as new information is received, creating a longer and longer page with each
passing second. This same effect can be observed when connecting to servers that are experiencing very
heavy traffic as the server struggles to keep up with the requests.

Consider what’s happening when a page is being rendered progressively. The opening <body> tag is
read, and then some more data is received. Some time passes. Some more data is received. This pattern
is repeated until the entire page has been downloaded and is being displayed to the user. But how does
the browser know how long to wait for new data? Further, how does it know how much more data is
coming? The answer to both questions is that the browser has no idea. This is the essence of HTTP
streaming.

HTTP streaming is frequently mislabeled as Persistent HTTP, which has nothing to
do with this technique. Persistent HTTP is simply a way of keeping a connection
open so that numerous HTTP requests can be sent without opening and closing con-
nections for each request.

Request Delays

Instead of relying on network latency and server response time to determine the waiting time between
data bursts, it’s possible to artificially create this delay. The following example comes from the PHP
manual for the sleep () method (www.php.net/sleep) and illustrates this technique:

<?php

// current time
echo date('h:i:s') . "\n";

// sleep for 10 seconds
sleep(10);

// wake up !
echo date('h:i:s') . "\n";

2>

When loaded into the browser, this page outputs the current time, waits 10 seconds, and then outputs
the time again. Granted, this isn’t a very useful page, but it does illustrate how to force the server to wait
before sending the next piece of data. In practice, you should add calls to ob_flush() and flush ()
immediately after the calls to echo () to force data to be sent to the client:

274
www.it-ebooks.info

http://www.it-ebooks.info/

Comet

<?php

// current time

echo date('h:i:s') . "\n";
ob_flush();

flush() ;

// sleep for 10 seconds
sleep(10);

// wake up !
echo date('h:i:s') . "\n";
ob_flush();
flush() ;
?>

Adding these two function calls ensures that the output buffer is completely flushed, forcing the data to

be sent to the client.

This feature of PHP, sending chunks of data periodically to the browser, may not be
enabled on all servers. For more information, see www.php.net/flush.

Suppose that the same technique were used to output HTML and JavaScript instead of plain text:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>

<title>HTTP Streaming Example 2</title>

</head>
<body>
<script type="text/javascript">
/ /<! [CDATA[
document.title = "First message";
/711>
</script>
<?php
ob_flush();
flush();

// sleep for 10 seconds
sleep(10);
?>
<script type="text/javascript">
/ /<! [CDATA[
document.title = "Second message";
/711>
</script>
</body>
</html>

www.it-ebooks.info

275

http://www.it-ebooks.info/

Chapter 9

The JavaScript in this example simply sets the title of the window two different times. Without the call to
sleep (), it would happen so fast that you would only see the title change to “Second message.”
However, with the delay, it is easy to see that both commands are executed as soon as the client receives
the data. This proof-of-concept works but doesn’t do anything very interesting. What if some sort of
command were coupled with the call to sleep()?

File Modification Example

Suppose that there’s a file whose modification time is of interest. Perhaps data is being written into it
that should be picked up as soon as it is available. In any event, it’s important to know as soon as the file
has been modified. The following PHP code implements this solution:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml">

<head>

<title>HTTP streaming Example 3</title>

</head>

<body>
<?php

//get the file modification time

Smodified = filemtime('details.txt');

$lastModified = Smodified;

//clear file statistics
clearstatcache() ;

//check every so often to see if it has changed
while (true) {

// sleep for 1 second
sleep(l);

//check the modification time
$lastModified = filemtime('details.txt');

//clear file statistics
clearstatcache() ;

//check it against the previous time
if (Smodified != S$lastModified) {

Soutput = date('h:i:s', $lastModified);
2>
<script type="text/javascript">
//<! [CDATA [
document.title = "File was modified at <?php echo $output ?>";
/711>
</script>
<?php
ob_flush();
flush() ;

276
www.it-ebooks.info

http://www.it-ebooks.info/

Comet

smodified = $lastModified;

// sleep for 1 second
sleep(l);

?>

</body>
</html>

The PHP code in this example first checks to see when the file in question, details. txt, has been mod-
ified. This value is stored in two variables: $modified and $lastModified. Two variables are used so
that there will be a point of comparison later on: $modified holds the modification time from the last
change (or when the page was first loaded), while $1astModified holds the most recent modification
time. It's then possible to compare $1lastModified with $modified to see if they're the same; if they’re
not, that means the file has changed.

After calling filemtime () to retrieve the modification time of the file, clearstatcache () is called.
This is a PHP-only necessity, since PHP caches the results of many file operations for faster execution.
Then, a while loop begins. This loop will never exit because the control condition is hard-coded to
true. In this way, the page will continue to check and report on the modification time of the file indefi-
nitely.

Inside of the loop, sleep () is called to create an artificial delay and free up CPU cycles for other opera-
tions. Then, filemtime () is called again, and the value is compared to the previously stored value in
$modified. If the modification time is different, a JavaScript call is made to change the document’s title.
After the JavaScript code is output, calls to ob_flush() and £lush () ensure that the data in the buffer
is sent across the HTTP stream (instead of being buffered for later transmission). Then, $modifiedis
updated with the new modification time and the thread pauses for another second to prevent sending
too much data at one time.

To test this functionality, try uploading details. txt periodically and watch the title bar of the browser.
No changes to details. txt are necessary because the process of uploading the file changes the modifi-
cation time.

Keep in mind that this is a simplified example. The point to take away is that any JavaScript code can be
executed in place of the code in this example. Most likely, the code to execute would be a call to some
function that specifically keeps track of this data.

Using Iframes

It may seem strange that the previous example continues to execute indefinitely because this is not the
way developers learn to create web applications. However, HTTP streaming is a completely different
paradigm, just as Ajax is a completely different paradigm from traditional web applications. To make the
most of this technique, a change in thought process is necessary. Part of that thought process questions
how long an indefinite loop can run on a server, since computers deal only with finites.

277
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

Eventually, the infinite loop in the previous example will stop running because servers have a built-in
timeout mechanism that prevents long-running scripts from continuing to run and eat up CPU cycles.
This is a stopgap system designed to ensure that a single page on a site cannot bring the entire site
down. The exact timeout setting is specific to the server being used and can be changed by the server
administrators, so there isn’t a hard number that can be depended upon. Basically, there’s no way to tell
when the script will stop running and at what point during its execution that stop will occur. For this
reason, it’s important not to execute too much code using HTTP streaming. It’s also for this reason that a
heartbeat is absolutely necessary.

A heartbeat is essentially a small piece of code executed periodically to inform some other code that the
process is still running. In terms of HTTP streaming, the heartbeat indicates that the request is still being
processed, and code execution on the server continues. When a heartbeat fails to be registered, the client
must recognize this and restart the server process.

Setting up this sort of system requires two pages. The first page is the main client, the one in which

most of the JavaScript code exists. Inside of that page is an iframe that contains the second page, which
is the HTTP streaming connection to the server. The inner page is responsible for calling functions on the
outer page to display information as well as register heartbeats. The outer page, in turn, must keep track
of the heartbeats being sent and know when to reset the server connection. Here’s what the outer page

looks like:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>

<title>HTTP streaming Example 4</title>
<script type="text/javascript">
/ /<! [CDATA [

var iTimeoutId = null;

function heartbeat () {

clearTimeout (iTimeoutId) ;

iTimeoutId = setTimeout (resetConnection, 10000);
}

function resetConnection() {
frames|["connection"].location.replace (
"ProgressiveHTTPExampled4Connection.php?t=" + (new Date()) .getTime());
heartbeat () ;
}

function modifiedAt (sDateTime) {
document .getElementById("divStatus") .innerHTML =
"Modified at " + sDateTime;

}

window.onload = resetConnection;

/711>
</script>

</head>

278

www.it-ebooks.info

http://www.it-ebooks.info/

Comet

<body>
<div id="divStatus">Waiting for first message...</div>
<iframe src="about:blank" name="connection"></iframe>
</body>

</html>

Most of this page is JavaScript code; the only HTML necessary in the <body/> is a <div/> to display
status information and the <iframe/> to contain the connection page.

This example’s JavaScript code consists of one variable and three functions.

a

Qa

The iTimeoutId variable holds a reference to the timeout instance in charge of checking for
dead connections.

The heartbeat () function is the one to be called by the connection page periodically, letting it
know that the connection is still alive. You find only two lines inside of this function: one to can-
cel the current timeout and one to start a new one. While the connection is alive, the timeout
should never fire (it’s set to 10 seconds, and since the heartbeat () function should be called
roughly once every second, there shouldn’t be an overlap). The timeout is set to call the
resetConnection () function if and when the timeout executes.

The resetConnection () function is also quite simple. It resets the iframe’s URL to the connec-
tion page and appends a timestamp to the end (the timestamp is necessary to avoid getting a
cached version of the page). Then, there’s a single call to heartbeat (), which resets the time-
out. The connection page should then begin sending heartbeat signals, and the process will con-
tinue.

The last JavaScript function is modi fiedat (), which is a function that is called when the file
has been modified. The data is passed in and displayed in divStatus, so the connection page
isn’t responsible for displaying this data itself.

As a final step, the window’s onload event handler is set to call resetConnection (), ensuring that a
connection will begin as soon as the page loads.

The other part of this example, the connection page, looks very similar to the previous example (the dif-
ferences are highlighted):

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml">

<head>

<title>HTTP streaming Example 4 Connection</title>
</head>
<body>

<?php

//get the file modification time
Smodified = filemtime('details.txt');
SlastModified = Smodified;

//clear file statistics
clearstatcache() ;

//check every so often to see if it has changed
while (true) {

279
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

?>
<script type="text/javascript">
/ /<! [CDATA [
parent.heartbeat () ;
/711>
</script>
<?php
ob_flush();
flush() ;
// sleep for 1 second
sleep(l);
//check the modification time
SlastModified = filemtime('details.txt');
//clear file statistics
clearstatcache() ;
//check it against the previous time
if ($modified !'= S$lastModified) {
Soutput = date('h:i:s', $lastModified);
2>
<script type="text/javascript">
/ /<! [CDATA[
parent.modifiedAt ("<?php echo Soutput ?>");
//11>
</script>
<?php
ob_flush();
flush();
Smodified = S$lastModified;
// sleep for 1 second
sleep(l);
}
}
?>
</body>
</html>

In this page, a call is made to the heartbeat () function every time the while loop executes. This call
uses the parent object to access heartbeat () because it is contained in an iframe and the function exists
in its parent page. When the file is modified, another call is made to the parent frame, this time to
modifiedat (), which is passed the timestamp.

It's very important that each code block be contained within its own <script/> tag.
Code execution will not begin in most browsers until the closing </script> tag is
read. Even though it seems redundant, you must provide a complete <script/> tag
for every function call or logical group of function calls.

280
www.it-ebooks.info

http://www.it-ebooks.info/

Comet

Dynamically Created Iframes

In the previous examples, an iframe was already present in the page. It is possible to accomplish the
same functionality using dynamically created iframes that aren’t visible on the page. To do so, you need
to create an iframe using the DOM createElement () method, set the display property to none, and
then set the src property:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>HTTP streaming Example 5</title>
<script type="text/javascript">
/ /<! [CDATA[

var iTimeoutId = null;
var oFrame = null;

function heartbeat () {
clearTimeout (iTimeoutId) ;
iTimeoutId = setTimeout (resetConnection, 10000);

}

function resetConnection() {
oFrame.src =
"ProgressiveHTTPExample4Connection.php?t=" + (new Date()).getTime();
heartbeat () ;
}

function modifiedAt (sDateTime) {
document .getElementById("divStatus") .innerHTML =
"Modified at " + sDateTime;

window.onload = function () {
oFrame = document.createElement ("iframe");
oFrame.style.display = "none";
document .body .appendChild (oFrame) ;
resetConnection() ;
b7
//11>
</script>
</head>
<body>
<div id="divStatus">Waiting for first message...</div>
</body>

</html>

The first step is to define a global variable called oFrame that holds a reference to the dynamically cre-
ated iframe. In the window’s onload event handler, the iframe is created and stored in oFrame. Then, it
is hidden from view by setting display to "none". The iframe is then added to the body of the docu-
ment (which is required for the iframe to work). Finally, the resetConnection () function is called,
which in turn sets the src attribute of the iframe.

281

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

Usability Issues

Although using iframes to implement a web-based push architecture can yield some interesting results,
it has a major usability flaw. While the connection is open, the browser indicates that it is busy:

Q InInternet Explorer, the throbber (the animated icon in the upper-right corner) continues to
move and the progress bar shows up at the bottom of the screen.

Q In Firefox, the cursor changes to display an arrow and an hourglass and a message is displayed
in the status bar indicating that the browser is waiting for more information.

Q In Safari, the progress bar continues to expand and the message “Loading” appears in the
title bar.

O InOpera, the cursor changes to display an arrow and an hourglass.

Although these may seem like minor annoyances, such obvious indications of browser activity can eas-
ily confuse inexperienced users. There are, however, other ways of achieving push functionality.

Browser-Specific Approaches

HTTP streaming is still a fairly new concept, and as such, there is no consistency in browser implemen-
tation. For some browsers, HTTP streaming is nothing more than a hack using existing technology (such
as using iframes in the previous examples); in others, it’s a planned feature being implemented in one of
many ways. Depending on your individual requirements for browser support, you may need to use
combinations of these techniques.

Internet Explorer HTTP Streaming

HTTP streaming support in Internet Explorer was not an intentional design decision but rather was
achieved by some enterprising engineers at Google using existing and less documented browser
features.

When Google added chat capabilities to its Gmail web client, developers immediately began to dissect
what was happening behind the scenes. It was Alex Russell who first posted a message
(http://alex.dojotoolkit.org/?p=538) on his blog about the inner workings of the Gmail chat
client. He discovered the use of a little-known, safe-for-the-web ActiveX control called HTMLFile.

The HTMLFile ActiveX object is exactly what it sounds like: an implementation of an HTML document
that mimics the functionality of the document object in an external form. Because this object exists out-
side of the normal page flow, it has no ties to the browser window and, thus, can be used to perform all
kinds of operations without disturbing the browser’s user interface. The Google engineers used this to
their advantage, inserting an iframe into this object that could be used to achieve HTTP streaming with-
out involving the browser window. The basic technique involves creating an HTMLFile object with an
iframe in it and using that iframe to create a streaming HTTP connection, such as:

var oPage = new ActiveXObject ("htmlfile");
oPage.open() ;
oPage.write ("<html><body></body></html>") ;

oPage.close() ;

oPage.body.innerHTML = "<iframe src=\"connection.php\"></iframe>";

282

www.it-ebooks.info

http://www.it-ebooks.info/

Comet

This sample code illustrates creating an HTMLFile object and initializing it for Comet communication.
After creating the object, it behaves just like document, so you're able to use open (), write (), and
close () to set the HTML of the page. Then, the body’s innerHTML is set to an iframe containing the
connection. This connection will remain open and receive information without influencing the browser
window or indicating to the user that something is going on. The only thing left is to use the connection
to call JavaScript. This is where a problem occurs.

Because the page containing the iframe is technically not part of the browser hierarchy, there is no way
to access the JavaScript in the main page from the iframe. Using parent or top simply returns the
HTMLFile object. To access the main page, you need to assign a new property to the HTMLFile object:

oPage.parentWindow._parent = self;

This one line assigns a reference to the current window into the _parent property of the HTMLFile
object’s parentwWindow. The connection page can now access anything in the main page by using code
like this:

parent._parent.heartbeat () ;
Thus, the connection file must be modified slightly:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>IE HTTP Streaming Example Connection</title>
</head>
<body>
<?php
//get the file modification time
Smodified = filemtime('details.txt');
SlastModified = $modified;

//clear file statistics
clearstatcache() ;

//check every so often to see if it has changed
while (true) {
?>
<script type="text/javascript">
/ /<! [CDATA[
parent._parent.heartbeat () ;
/711>
</script>
<?php
ob_flush();
flush();

// sleep for 1 second
sleep(l);

//check the modification time

283
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

?>

<?php

?>

SlastModified = filemtime('details.txt');

//clear file statistics
clearstatcache() ;

//check it against the previous time
if ($modified !'= S$lastModified) {
Soutput = date('h:i:s', $lastModified);

<script type="text/javascript">
/ /<! [CDATA [

parent._parent.modifiedAt ("<?php echo Soutput ?>");
/711>

</script>

ob_flush();
flush();

// sleep for 1 second
sleep(l);

$Smodified = $lastModified;

</body>

</html>

The client-side code also must be modified to use the HTMLFile object:

284

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>

<title>IE HTTP Streaming Example l</title>
<script type="text/javascript">
/ /<! [CDATA [

var iTimeoutId = null;
var oPage = null;

function heartbeat () {
clearTimeout (1TimeoutId) ;
iTimeoutId = setTimeout (resetConnection, 10000);

}

function resetConnection() {
oPage.body.innerHTML = "<iframe src=\"IEExampleConnection.php?t="
+ (new Date()).getTime() + "\"></iframe>";
heartbeat () ;
}

function modifiedAt (sDateTime) {

www.it-ebooks.info

http://www.it-ebooks.info/

Comet

document .getElementById("divStatus") .innerHTML =
"Modified at " + sDateTime;

}

window.onload = function () {
oPage = new ActiveXObject ("htmlfile");
oPage.open() ;
oPage.write ("<html><body></body></html>") ;
oPage.close() ;
oPage.parentWindow._parent = self;
resetConnection () ;

Y

/711>
</script>
</head>
<body>
<div id="divStatus">Waiting for first message...</div>
</body>
</html>

This example now works the same way as the previous one but without involving the browser window.

PHP uses chunk encoding by default, which means that it may buffer the output
and send it in chunks. This can cause Comet that uses the HTMLFile object not to
behave as expected (script execution can be delayed). If using PHP, try disabling
chunk encoding for the connection file.

Firefox HTTP Streaming

Firefox supports HTTP streaming in a clean, though not terribly obvious, way. It is possible to open an
HTTP stream using XHR and monitor the readyState property to determine when new data has
arrived. Unlike other browsers, the readystatechange event fires every time the browser receives data
from the server. While the actual readyState property remains set at 3, the event fires repeatedly, indi-
cating that there is new data ready to be accessed. Consider the following:

var oXHR = new XMLHttpRequest () ;

OoXHR.open("get", "connection.php", true);
OXHR.onreadystatechange = function () {
switch (oXHR.readyState) {
case 3:
alert (oXHR.responseText) ;
break;
case 4:

alert ("Done") ;
}
¥
OoXHR.send (null) ;

285
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

Whenever the readystatechange event fires and the readyState is 3, an alert displays the returned
text. If the page is streaming content, the alert would show an ever-growing amount of text each time
through. This can be problematic since, chances are, you are only interested in the most recently received
text. For this reason, the output must be delimited to allow easy access to the most recent data. In the
case of JavaScript code, it makes sense to delimit each call with a semicolon (;), so that the returned data
looks something like this:

;heartbeat () ;heartbeat () ;heartbeat () ;modifiedAt ("10:34:56") ;heartbeat ()
With this data, it’s possible to use an array to quickly get the most recent command:

var aCommands = oXHR.responseText.split(";");
var sCommand = aCommands.pop () ;

After this code has run, sCommand contains the most recent command from the server (pop () always
returns the last item in an array). Assuming that semicolon delimitation is used in the commands, the
file modification example can be rewritten to use Firefox’s HTTP streaming support. First, the client:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Firefox HTTP Streaming Example</title>
<script type="text/javascript">
/ /<! [CDATA[

var iTimeoutId = null;
var oXHR = null;

function heartbeat () {
clearTimeout (1TimeoutId) ;
iTimeoutId = setTimeout (resetConnection, 10000);

}

function resetConnection() {
OXHR.abort () ;
OXHR.open ("get",
"FirefoxExampleConnection.php?t=" + (new Date()).getTime(), true);
OXHR.onreadystatechange = function () {
switch (oXHR.readyState) {
case 3:
var aCommands = oXHR.responseText.split(";");
var sCommand = aCommands.pop () ;
eval (sCommand) ;
break;
case 4:
resetConnection() ;
break;

I g

OXHR.send (null) ;
heartbeat () ;

286
www.it-ebooks.info

http://www.it-ebooks.info/

Comet

function modifiedAt (sDateTime) {
document .getElementById("divStatus") .innerHTML =
"Modified at " + sDateTime;

}

window.onload = function () {
OXHR = new XMLHttpRequest () ;
resetConnection() ;
b
//11>
</script>
</head>
<body>
<div id="divStatus">Waiting for first message...</div>
</body>

</html>

The major changes in this version of the example are the creation of an XHR object in the onload event
handler and the parsing of the returned data/evaluation of the command using eval (). Whenever the
readyState of the XHR object is 3, an array is created containing all commands received to that point.
The most recent command must be passed into eval () to be interpreted as a JavaScript call.

If readyState ever reaches 4, it means that the connection timed out and the connection must be reset.
Note that the first line of code inside of resetConnection () is a call to the abort () method, which
effectively resets the XHR object to make it ready for another connection.

Next, take a look at the new server portion of the example:

<?php
header ("Content-type: text/javascript");
//get the file modification time
Smodified = filemtime('details.txt');
SlastModified = Smodified;

//clear file statistics
clearstatcache() ;

//check every so often to see if it has changed
while (true) {

echo (" ;heartbeat ()") ;
ob_flush();
flush();

// sleep for 1 second
sleep(l);

//check the modification time
SlastModified = filemtime('details.txt');

//clear file statistics

287
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

clearstatcache() ;

//check it against the previous time
if ($modified !'= S$lastModified) {
Soutput = date('h:i:s', $lastModified);

echo (";modifiedAt (\"Soutput\")");
ob_flush();
flush() ;

Smodified = $lastModified;

// sleep for 1 second
sleep(l);

?>

The changes in this example are subtle: all HTML has been removed. Since each command must be man-
ually interpreted using eval (), there is no need for the HTML tags anymore. The content type of the
page has been set to "text/javascript" to indicate the type of data being returned. Further, a semi-
colon precedes each text output so that it will always be the last item in the commands array on the
client.

When you run this example, you will notice that no user interface changes as the page continues to load
and send information to the client.

Some servers put limits on the amount of time that a server process can run, which
can cause errors to occur during the execution of this example as well as other Comet
processes. Often times when this happens, the server returns an HTML string
describing the problem, which can cause an error when passed into eval (). Always
check your server’s settings to determine the best way to implement Comet solutions.

LiveConnect HTTP Streaming

LiveConnect is a little-known and underutilized technology supported by Firefox, Safari, and Opera,
allowing Java objects to be used from within JavaScript. To use LiveConnect, the client machine must
have a Java Runtime Environment (JRE) installed, and Java must be enabled in the browser. Most of the
objects in the java package and its subpackages are available for use from within JavaScript using
LiveConnect, enabling functionality that may not be possible using native JavaScript objects. For a cross-
browser, cross-platform method of HTTP streaming, LiveConnect can be used very effectively, thanks to
the availability of the java.net package.

The key to using LiveConnect for HTTP streaming is to open a stream over HTTP. This is done by creat-
ing a new java.net.URL object and then calling openstream (). Doing so returns an instance of
java.io.InputStream, which can then be passed into a java.io.InputStreamReader object. Then,
this reader must be passed into a java.io.BufferedReader object for easy access. After that, the
reader must be checked periodically to determine when new data is available. Here’s the rewritten file
modification page:

288
www.it-ebooks.info

http://www.it-ebooks.info/

Comet

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Live Connect Example</title>
<script type="text/javascript">
/ /<! [CDATA[

var iTimeoutId = null;
var oReader = null;

function resetConnection() {
var oURL = new java.net.URL(
"http://localhost/LiveConnectExampleConnection.php") ;
var oStream = OURL.openStream() ;
if (oReader != null) {
oReader.close() ;
}
oReader = new java.io.BufferedReader (
new java.io.InputStreamReader (oStream)) ;

checkInput () ;

function checkInput() {

try {
var sLine = oReader.readLine();
if (sLine != null) {

eval (sLine + "");

}
setTimeout (checkInput, 500);

} catch (oEx) {
resetConnection() ;

function heartbeat () {
clearTimeout (iTimeoutId) ;
iTimeoutId = setTimeout (resetConnection, 10000);

function modifiedAt (sDateTime) {
document .getElementById("divStatus") .innerHTML =
"Modified at " + sDateTime;

window.onload = resetConnection;

//11>
</script>
</head>
<body>
<div id="divStatus">Waiting for first message...</div>
</body>
</html>

289
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

The key to this example is the global orReader object, which contains a reference to a
java.io.BufferedReader. When resetConnection () is called, a new java.net.URL object is cre-
ated with the URL to send the request to. Note that this must be an absolute path to the page, since these
Java objects don’t know the context of the page in which the JavaScript code is running.

When the openStream () method is called, it returns a reference to an input stream for the URL. Before
continuing on, any existing instance of oReader must be closed (by calling close ()) to free any remain-
ing memory. Once it’s a sure thing that there are no other readers still in memory, a new
java.io.BufferedReader is created and stored in oReader. Then, checkInput () is called to see if
there’s any data.

The checkInput () function does the important part of the process: checking for data and executing
JavaScript commands based on that data. Each time this function is called, readLine () returns

any available data. If any data is available, it is stored in sLine, which is then passed into eval () to
call the JavaScript command returned from the server. Since sLine is returned from a Java method,
it's actually not a JavaScript string but rather an instance of java.lang.String. To convert it into a
JavaScript, an empty string is appended. After that, a timeout is created to call checkInput () in
another 500 milliseconds.

All of the logic inside of checkInput () is wrapped in a try block. At some point, the connection will
time out, and the call to readLine () will throw an error. The try block will catch this error and call
resetConnection () to ensure that the stream is reopened.

The server-side component to this LiveConnect example is very similar to the Firefox equivalent:

<?php
header ("Content-type: text/javascript");

//get the file modification time
Smodified = filemtime('details.txt');

SlastModified = $Smodified;

//clear file statistics
clearstatcache() ;

//check every so often to see if it has changed
while (true) {

echo ("heartbeat () \n") ;
ob_flush();
flush() ;

// sleep for 1 second
sleep(l);

//check the modification time
SlastModified = filemtime('details.txt');

//clear file statistics
clearstatcache() ;

//check it against the previous time

290
www.it-ebooks.info

http://www.it-ebooks.info/

Comet

i1f (Smodified != S$lastModified) {
Soutput = date('h:i:s', $lastModified);

echo ("modifiedAt (\"Soutput\")\n");
ob_flush();
flush();

Smodified = S$lastModified;

// sleep for 1 second
sleep(1l);

?>

The important difference in this page is that each JavaScript call is followed by a new line character (\n).
Since the reader on the client side reads in data one line at a time, it’s very important that this character
be appended to each line of output so that it is read in a timely manner.

Server-Sent DOM Events

The Web Hypertext Application Technology Working Group (known as WHATWG,) is a group of devel-
opers, companies, and others, interested in pushing browser development toward a platform more suit-
able for applications. WHATWG publishes a specification called Web Applications 1.0, which is a
working draft as of October 2006. While Web Applications 1.0 introduces some very interesting concepts,
one of the most interesting is called server-sent DOM events.

Server-sent DOM events allow a server to stream data to the client, which fires events in response to that
data, allowing developers easy access to server information. Essentially, the browser opens a persistent
connection to a particular page on the server and listens for new data coming in. The data for server-side
DOM events comes in the form of event information, such as:

Event: MyEvent
Namel: valuel
name2: value2

Event: MyEvent
data: See you later!

Each time the server sends data it must have an event name (specified by Event :) and some data in
name-value pairs. Each part of this data is then made available to the client through JavaScript. There
must be one blank line in between events so that the client recognizes an event as being fully received.
Also, the content type of the data stream must be "application/x-dom-event-stream".

To receive events from the server, an <event-source/> element is necessary. This is a new element
introduced in Web Applications 1.0 and can be accessed using all of the usual DOM methods. The src
attribute should be set to the URL providing the streamed data, such as:

<event-source src="connection.php" id="source" />

291
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

Once the element is included in a page, you can use the addEventListener () method to assign event
handlers for specific events. For example, to respond to an event called "MyEvent", the code would be:

var oSource = document.getElementById("source");

oSource.addEventListener ("MyEvent", function (oEvent) {
alert (oEvent. type) ;

}, false);

When the event is fired and the event handler called, an event object is passed in as the only argument.
This event object is exactly the same as any other DOM event object in terms of the properties and
methods, so type is the name of the event that was fired and target points to the <event-source/>
element. However, there is some extra information provided on the event object in the form of the name-
value pairs received in the data stream. If there is a named value called data in the stream, a property
named data is accessible on the event object to retrieve that information.

Note that in the case of custom events, the third argument in addEventListener ()
has no meaning but is typically set to false.

Firing Ul Events

The true power of server-sent DOM events isn’t simply in firing custom events; it’s in firing UI events on
the client from the server. So at any time, the server can decide that a c1ick event should be fired, or
mouseover or keydown . . . any event named in the DOM Level 3 Events specification can be fired
through server-side DOM events. The complete list of events is:

U

abort (Event)

blur (UIEvent)

click (MouseEvent)

change (Event)

DOMActivate (UlEvent)

DOMAttrModified (MutationEvent)
DOMAttributeNameChanged (MutationNameEvent)
DOMCharacterDataModified (MutationEvent)
DOMElementNameChanged (MutationNameEvent)
DOMFocusIn (UIEvent)

DOMFocusOut (UIEvent)

DOMNodeInserted (MutationEvent)

DOMNodeInsertedIntoDocument (MutationEvent)

o000 00U o

DOMNodeRemoved (MutationEvent)

292
www.it-ebooks.info

http://www.it-ebooks.info/

Comet

DOMNodeRemovedFromDocument (MutationEvent)
DOMSubtreeModified (MutationEvent)
error (Event)

focus (UIEvent)

keydown (KeyboardEvent)

keyup (KeyboardEvent)

load (Event)

mousedown (MouseEvent)

mousemove (MouseEvent)

mouseover (MouseEvent)

mouseout (MouseEvent)

mouseup (MouseEvent)

reset (Event)

resize (UlEvent)

scroll (UIEvent)

select (Event)

submit (Event)

I 0 T T T 0 T T I T I S

textInput (TextEvent)

O

unload (Event)
To fire one of these events, specify its exact name (including case) as the Event value:
Event: click

Of course, firing a click event isn’t very useful without firing it on a particular element. So, in addition to
specifying the event, you must also specify a target using the Target attribute:

Event: click
Target: #target

Since the server doesn’t have any DOM references, it needs to send the ID of the element upon which to
fire the event. The format is the same as using an ID in CSS: precede the ID with the pound sign (#). It’s

also possible to fire an event on the document itself by specifying Document as the target:

Event: click
Target: Document

293
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

Depending on the event, you can also specify additional information to be sent:

Event: click
Target: #target
button : 2
screenX : 0
screenY : 0

In this example, the button, screenX, and screenY properties are filled with specified values. As long
as the names of these name-value pairs match properties on the event object, they will be assigned
appropriately. Any names that don’t match will be ignored.

When sending UI events to the browser, it is unnecessary to assign event handlers
to the <event-source/> element. Each of the events is transported automatically to
the targeted element and is handled by the event handlers on that element.

Browser Support
As of October 2006, the only browser supporting server-sent DOM events is Opera 9.01. It was actually
an Opera engineer, Ian Hickson, who wrote the original specification back in 2004 (that specification was
later incorporated into Web Applications 1.0). While the Opera implementation takes most things into
account, there are some limitations to be aware of:

1. The <event-source/> element must be in the main markup of the page; creating it using
document .createElement () doesn’t work
2. You can only use values named data: for custom events. All other names are ignored.
It should be noted that these limitations are minor and do not interfere significantly with the ability to

make use of this extremely powerful feature. The following example runs on Opera 9.01 and later, and
presumably will work with other browsers that implement server-sent DOM events in the future.

Server-sent DOM events are also on the Mozilla roadmap, though it is unclear what
version of Firefox will be the first to implement it.

Example

The file modification example becomes extremely simple when using server-sent DOM events. Consider
the simplification of the client:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Server-Sent DOM Events Example 1l</title>
<script type="text/javascript">
/ /<! [CDATA [

294
www.it-ebooks.info

http://www.it-ebooks.info/

Comet

function modifiedAt (sDateTime) {
document .getElementById("divStatus") .innerHTML =
"Modified at " + sDateTime;

window.onload = function () {
var oSource = document.getElementById("source");

oSource.addEventListener ("modified", function (oEvent) {
modifiedAt (oEvent.data) ;

}, false);
}i
//11>
</script>
</head>
<body>

<div id="divStatus">Waiting for first message...</div>
<event-source id="source" src="ServerSentDOMEventsConnection.php" />
</body>
</html>

Here, an <event-source/> element is added in the page with an id of "source" and its src attribute
set to ServerSentDOMEventsConnection.php. This is enough to start the information stream from the
server to the client; however, an event handler must be added to access the data as it comes in. So, in the
onload event handler, a reference to the <event-source/> element is retrieved by using
getElementById (). Then, an event handler is added using addEventListener () and passing in the
name of the custom event "modified". This handler simply retrieves information from the data value
and then passes it to modifiedat () (which is the same as in previous examples).

On the server, the basic functionality is the same as in previous examples, just with a different format:

<?php
header ("Content-type: application/x-dom-event-stream") ;

//get the file modification time
Smodified = filemtime('details.txt');
SlastModified = $modified;

//clear file statistics
clearstatcache() ;

//check every so often to see if it has changed
while (true) {

// sleep for 1 second
sleep(l);

//check the modification time
$lastModified = filemtime('details.txt');

//clear file statistics

295
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

clearstatcache() ;

//check it against the previous time
if ($modified !'= S$lastModified) {
Soutput = date('h:i:s', $lastModified);
echo ("Event: modified\n") ;
echo("data: S$Soutput\n\n");
ob_flush();
flush() ;
$Smodified = $lastModified;

// sleep for 1 second
sleep(l);

?>

The major changes here are the different content type for the page ("application/x-dom-event-
stream", which is required by the specification) and the output. As opposed to previous examples, this
page outputs plain text in the proper format for interpretation:

Event: modified
data: 5:23:06

That'’s all it takes to make this example work the same way as the previous ones. The differences are that
the browser handles resetting the connection if it dies and access to incoming server data is much easier
than using iframes or XHR.

Connection Management

A server implementing HTTP 1.1 allows a maximum of two simultaneous connections to a given client
at the same time. Part of the reason for this is to ensure that no one client can overwhelm a server with
so many requests that other clients don’t get responses. Web browsers following this standard will also
only allow two connections to a given domain, which is why pages with lots of external resources
(JavaScript files, stylesheets, images, etc.) take longer to finish loading.

If you're going to be implementing a Comet connection, keep in mind that this will be using up one of
the two available connections to the server. This can significantly slow down interactivity when an Ajax
application requires the use of both traditional Ajax techniques and a Comet connection. With only one
free connection available, all Ajax traffic must wait for it to become free before sending a request and
receiving a response. Particularly problematic is when one Ajax response takes a long time to be sent,
backing up all of the Ajax traffic for the application.

The best solution to this problem is to use a specific subdomain for the Comet connection. For instance,
if your web application runs off of www.mywebapplication.com, use comet .mywebapplication.com

296
www.it-ebooks.info

http://www.it-ebooks.info/

Comet

for your Comet connection. This ensures that both connections are still available to the web application
from the main domain (subdomain connections don’t count against the two-connection limit) while the
Comet connection remains open.

Remember, JavaScript can’t access external domains, so a subdomain is your only
choice to work within the HTTP 1.1 limit.

Server-Side Support

Although the concept of HTTP streaming brings a lot of exciting possibilities to web applications, there
are some concerns. Normal web browser traffic opens a connection, gets the data it needs, and then
closes the connection. If every user is connected to a streaming HTTP web application at the same time,
that means one connection must be kept alive for every user. On web applications with a large amount
of traffic, this means significant server overhead. Plus, leaving infinite loops running on the server
necessitates better memory management than typical web application servers provide. Fortunately, there
are several server-side solutions designed to enable web servers to handle Comet-style communication.

Q

Twisted (http://twistedmatrix.com/trac/): An open source server-side event-publishing
framework designed for optimal network usage. Twisted is written in Python and works over
a large number of network protocols (not just HTTP). It's worth noting that Twisted wasn’t
designed specifically for Comet, but its server event paradigm works exceptionally well for
the management of HTTP streaming.

Pushlets (http: //www.pushlets.com): An open source approach to HTTP streaming for JSP
application servers. Pushlets use an event-publishing/subscribing model similar to server-sent
DOM events to enable client-server communication. The framework comes with both server-
and client-side libraries.

DivMod: Nevow (http://divmod.org/trac/wiki/DivmodNevow): An open source web
application framework built in Python with Comet support through a feature called Athena.
Athena includes both server-side classes and a client-side library to implement Comet
communication.

As with the emergence of Ajax solutions, server-side Comet solutions are being released more and more
frequently. Be sure to investigate appropriate solutions for your server architecture before implementing
Comet for your web application.

You should not implement Comet-style interactions on any web application without
first talking to the people in charge of your server system. Make sure that they
understand what you are trying to accomplish so that an accurate assessment can be
made for server needs.

297
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

Summary

In this chapter, you learned about Comet, a push architecture for web applications. Instead of using Ajax
techniques such as polling to get updated data, the information is pushed out to the client via HTTP
streaming —a continuous connection with the server that pushes out data periodically. You learned how
to implement HTTP streaming solutions using Internet Explorer, Firefox, and LiveConnect.

Next, you learned about server-sent DOM events, part of the Web Applications 1.0 specification pub-
lished by the Web Hypertext Application Technology Working Group (WHATWG). This technology
allows the server to fire DOM events, such as click, mouseover, and keydown, as well as custom
events that developers can subscribe to using the <event-source/> element. You learned how to use
this technology in Opera.

You then were introduced to some basic concepts of connection management. The two-connection limit
of HTTP 1.1 was discussed in relation to Ajax and Comet, and you learned that using a subdomain for a
Comet connection is preferable because it still leaves two connections available to the main domain for
other Ajax requests.

Last, you learned about several server-side solutions for implementing Comet. Since Comet puts more

stress on traditional web application servers, it’s preferable to use a system designed specifically for
HTTP streaming.

298
www.it-ebooks.info

http://www.it-ebooks.info/

10

Maps and Mashups

In the beginning, there was MapQuest (www.mapquest . com), a site that allowed users to find
maps and get driving directions in the United States. Debuting during the dot-com era, MapQuest
grew incredibly popular and even went public, being listed on the NASDAQ exchange. All of the
hype caught the eye of America Online, which acquired the company in 2000. Competitive map-
ping sites were developed by others, most notably Yahoo! and Microsoft, but MapQuest remained
the most popular site for mapping and driving directions. Mapping web sites went through itera-
tive changes over the next few years, but for the most part, things stayed still.

When Google Maps (maps . google. com, later local.google.com) came online in 2004, it offered
a revolutionary interface for the traditional web-based mapping systems. Instead of the traditional
click-and-wait interaction that MapQuest and others used to pan and zoom maps, Google Maps
used Ajax communication to download additional mapping info or maps at different zoom levels
without reloading the page. Additionally, the ability to drag the map around instead of relying on
the ubiquitous compass interface provided a truly unique user experience in the world of online

mapping.

The development of Google Maps reignited interest in online mapping and the possibilities that
Ajax opened for this particular usage. Yahoo!, Microsoft, and even MapQuest rushed to update
their map offerings to be more competitive with Google Maps, using Ajax and other, more respon-
sive user interface paradigms.

As with many new developments in technology, developers were immediately drawn to the new
interfaces used by Google Maps and other Ajax-enabled applications. Savvy web developers
reverse-engineered Google Maps, embedding its interface in their own pages as a proof of concept.
Though not harmful, this occurrence opened the eyes of Google, and soon they released the
Google Maps API to the public. As before, Yahoo!, Microsoft, and MapQuest each followed suit
with their own Ajax-enabled mapping APIs, flooding the technology world with numerous
options for embedding maps into web pages.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

The Rise of Mashups

Closely related to the various mapping APIs is the concept of a mashup. Mashups are web applications
that combine information from a number of sources to provide a new user experience. This information
isn’t located at a single source; rather, it comes from numerous sources that publish information publicly
through web services, RSS feeds, or other means. Traditionally, mashups involve combining such infor-
mation with a map.

Chicago Crime (www. chicagocrime. org) is widely considered to be the first mashup, combining crime
information for Chicago with a map generated by the Google Maps API. This site is credited with the
rise of mashups as its developers integrated Google Maps long before the API was available. Over time,
and through the use of the evolving Google Maps API, Chicago Crime has grown into a mashup cover-
ing nearly all aspects of crime in the Chicago area, with breakdowns by crime type, street, district, ward,
and more.

Another popular first-mover in the realm of mashups was Housing Maps (www . housingmaps . com),
which combines housing listings from Craig’s List (www.craigslist.org) with a map generated by
Google Maps. The map is used to show locations where there are listings as well as the addresses and
photos of available properties.

To create a map-enabled mashup such as these, you must have access to location-based information.
Most such information is represented by physical street addresses, such as those used to get directions.
However, these addresses must be mapped to specific locations on the map using a technique called
geocoding.

Geocoding

Geocoding is the process by which information is associated with particular geographic points in the world.
These points are identified by degrees in latitude and longitude, which you may remember from grade
school as the north-south and east-west measurements, respectively. It may surprise you to know that most
mapping APIs don’t actually know the location of addresses; they know the location of points given in lati-
tude and longitude. All addresses must be converted to a set of points before being located on a map.

All of the mapping APIs require the use of degree decimals for both latitude and longitude. This is dif-
ferent from what you probably learned about in school, where latitude and longitude are identified by
degrees, minutes, and seconds. If you have a location in this format, you'll need to use a converter to get
the degree decimal values. And of course, if you have an address, you'll need to convert that to latitude
and longitude into degree decimals as well.

Geocoding Web Sites

Most countries provided geocoded information about the terrain through census records. In the United
States, for instance, the U.S. Census Bureau geocodes nearly every highway and surface street in the
country. Further, this data is in the public domain and can be accessed via the Topologically Integrated
Geographic Encoding and Referencing system (Tiger, www . census . gov/geo/www/tiger). Plowing
through all of this information is an arduous process since there’s more than 20 GB of data for the United
States alone. With the new interest in mapping and mashups, a number of services have arisen to allow
easier access to geocoded information.

300
www.it-ebooks.info

http://www.it-ebooks.info/

Maps and Mashups

geocoder.us (www.geocoder . us): This web site can return the latitude and longitude of any
address in the United States. Simply go to the web site and enter in an address. The information
returned includes both the degrees/minutes/seconds and degree decimal formats of the loca-
tion, as well as an up-close map.

Travel GIS (www.travelgis.com/geocode): This site offers geocoded information for 24 coun-
tries in a very simple interface. Addresses are returned in decimal format only.

worldKit GeoCoder (http://brainoff.com/geocoder): This is a simple web site where you
can enter in an address and it returns the latitude/longitude coordinates in decimal format
along with some additional information. It gives you a map of the world and pinpoints each
location you enter on that map with a red dot. You can zoom in and out on the map as well as
click on it to get the latitude and longitude of any point in the world.

Geocoding Services

Even though web sites providing geocode information are useful, they are only minimally so when cre-
ating a mashup. Most mashups require a dynamic lookup of geocoded information as the user interacts
with the application. To aid in this case, there are several geocoding web services offering address
lookup in real time:

Q

Yahoo! Maps Geocoding Service
(http://developer.yahoo.com/maps/rest/V1/geocode.html): This RESTful service
returns XML containing the latitude, longitude, street address, city, state, and zip code of the
entered address. As this is purely for noncommercial purposes, you are limited to 5,000 lookups
per day, and you must sign up for a Yahoo! Application ID at http://api.search.yahoo.com/
webservices/register_application.

Google Maps Geocoding Service
(www.google.com/apis/maps/documentation/#Geocoding_Examples): This lightweight
API can be formatted to return data in XML, KML (Google’s Keyhole Markup Language), CSV,
or JSON and returns all of the information about a given address, including its coordinates and
full address information (country, zip code, etc.). As with the Yahoo! version, this is for noncom-
mercial use only; there is also a limit of 50,000 lookups per day. Before using the Google Maps
Geocoding Service, you must sign up for an API key at www.google.com/apis/maps/
signup.html. The Google Maps API also has JavaScript access to geocoding information.

Google Maps API

When Google Maps first debuted, it was the victim of numerous hackers. People were enthralled with
this next-generation Ajax application that did things no one had ever seen done before. Developers from
around the world wanted to know how it worked and how they could use it to their advantage. Though
not damaging in any way, these early Google Maps hackers opened the eyes of the folks in Mountain
View, California, and soon the Google Maps API was released to the public.

How Does It Work?

The Google Maps APl is one of the most interesting uses of Ajax in that it doesn’t necessarily need to use
XHR or iframes to accomplish its functionality. Instead, the API uses the dynamic nature of images to

301
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

fetch new information from the server on demand. Although it doesn’t use the Ajax image technique dis-
cussed in Chapter 2, the same basic idea is at work: images can have their sources changed at any time.
The Google Maps API uses this functionality to create the illusion of panning over one large image when,
in reality, it loads only small pieces of the overall image to give the perception of a much larger one.

The initial view of the map is split into several images that are placed next to each other, giving the
appearance of one large image. When a map is first loaded, the API determines how many of these
images are necessary to completely fill the map container. The images are arranged in a grid that over-
laps the ends of the map container. If the map is zoomed, each of the tiled images is set to a different
URL, loading a new image into the element. This gives the illusion of an asynchronous zoom
when, in reality, it’s just a new take on the old image-swapping technique that has been around since the
late 1990s.

When the map is panned or dragged by the user, it appears as if the map is neverending image thanks to
some interesting JavaScript. The images are, indeed, moved as the user drags the mouse, but once the
images disappear out of the map’s viewable area, they are removed and placed at the other end of the
map. For instance, images that disappear off the right side of the map are placed just out of view on the
left, and images that disappear off the bottom of the map are placed just out of view on the top. It’s this
constant repositioning of image tiles that gives the illusion that the user is panning over a single large
image. Joel Webber, one of the first developers to dissect how Google Maps works, likened the technique
to building a railroad track by taking a piece from the end and placing it at the front: images are neither
created nor destroyed, just moved around.

Behind the scenes, there’s also some XML and XSLT performing extra functions on the map, but the
majority of the work is handled by images.

Getting Started

To begin, you need to have a Google account (such as to access Gmail). If you don’t have a Google
account yet, go to www.google. com/accounts for information on how to sign up. The next step is to go
to www.google.com/apis/maps/signup.html to sign up for an API key. To do so, you must provide a
URL indicating the location at which the API will be used. This location is a specific directory on your
server; so www . mydomain. com/mapsl and www.mydomain.com/maps2 would each require separate keys.

The Google Maps API does have some important limitations you should be aware of:

Q The API s for noncommercial use only. To obtain a commercial license, you'll need to contact
Google directly.

Q The page using the Google Maps API has no page view limits; however, if you anticipate more
than 500,000 page views per day, you'll need to contact Google about getting a commercial
license.

Q You are prohibited from obscuring attributions or ads that appear within the map viewport.

O You must keep your site up to date with the most current version of the API. Google generally
gives users a month to upgrade to a newly released version.

302
www.it-ebooks.info

http://www.it-ebooks.info/

Maps and Mashups

There is only one JavaScript file necessary for you to begin using the Google Maps API. Unlike other
APIs, you can’t download the files locally. Instead, you'll need to access the file located on the Google
Maps server. This file must include the version and your key in this format:

http://maps.google.com/maps?file=api&v={version}&key={your key}
For instance, if the most recent version is version 2, the following code should be included:

<script type="text/javascript"
src="http://maps.google.com/maps?file=api&v=2&key={your key}"></script>

Once the file is included, you can begin writing your application.

Google Maps Basics

The main object in the Google Maps API is called GMap2. The constructor accepts a single argument,
which is the element that should contain the map. It is recommended that this container element be a
<div/> for best compatibility and extensibility. This <div/> element can be styled as normal, minimally
specifying the width and height. The GMap2 object is smart enough to work within the styles provided
for the container <div/>, so the page’s overall layout will never be compromised due to the inclusion of
a map. To create a map using a <div/> element with an ID of "divMap", use the following:

var oMap = new GMap2 (document.getElementById("divMap")) ;

Once the map object is created, you must initialize the view to a specific area. This is done by calling the
setCenter () method of the map, which accepts two arguments: a point given in latitude/longitude
and a zoom level. The first argument must be a GLatLng object (creating by passing in a latitude and a
longitude in decimal format); the second argument is a zoom level where 0 is completely zoomed out
and any number greater than 0 reveals more detail in the map. For example, the following code centers a
map on the United States so that the entire country is in view:

var oMap = new GMap?2 (document.getElementById("divMap")) ;
oMap.setCenter (new GLatLng (32, -92), 3);

There are some browsers that may not support the Google Maps AP], so it’s best to check ahead of time
before creating a new GMap2 object, by using the GBrowserIsCompatible () function:

if (GBrowserIsCompatible()) {

var oMap = new GMap2 (document.getElementById("divMap")) ;
oMap.setCenter (new GLatLng (32, -92), 3);

These four lines of code are all that it takes to get a simple map instantiated on a page (see Figure 10-1).
The map display with this code is very basic and fairly limited. While the map of the United States is
plainly visible, there is little user interaction. It’s possible to move the viewport of the map by dragging

the image, but other than that, there’s no zooming or view switching. The easiest way to enable this
functionality is to include one or more controls.

303
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

Figure 10-1

Controls

The official Google Maps interface at http: //maps.google.com has a number of different ways the
user can manipulate the map. Each of these manipulations is handled by a different control. The Google
Maps API provides a number of default controls that can be used to implement the full Google Maps
interface or just the parts necessary for your purposes:

a
a

U

Q

GLargeMapControl: The typical pan/zoom control displayed on http: //maps.google.com.

GSmallMapControl: A smaller version of the previous control, with only plus/minus and
directional controls (but no zoom slider).

GSmallzZoomControl: The zoom slider control without any directional controls.
GScaleControl: A scale indicating units in miles and kilometers.

GOverviewMapControl: A zoomed-out view of the map with the current viewport area high-
lighted.

GMapTypeControl: The Map/Satellite/Hybrid control.

One or more of these controls can be added to the map via the addControl () method. Each of the con-
trols can be created without any parameters and passed into the method:

oMap.addControl (new GSmallMapControl());

304

www.it-ebooks.info

http://www.it-ebooks.info/

Maps and Mashups

Though this is most often done just after creating a GMap2 object, controls can be added at any time.

Additionally, controls can be removed using the removeControl () method if you have a reference to
the control:

var oControl = new GSmallMapControl();
oMap.addControl (oControl) ;

//do some other stuff

oMap . removeControl (oControl) ;

The first three controls, GLargeMapControl, GSmallMapControl, and GSmallZoomControl should not
be used together, since they all occupy the same location on the map (upper-left corner). The
GMapTypeControl can safely be used with any of the others, since it occupies the upper-right corner.

If you want your map to have controls right from the onset, you should add them immediately after cre-
ating the GMap2 object but before you call setCenter (), such as:

if (GBrowserIsCompatible()) {
var oMap = new GMap2 (document.getElementById("divMap")) ;
oMap.addControl (new GSmallMapControl());
oMap.addControl (new GMapTypeControl());

oMap.setCenter (new GLatLng (32, -92), 3);

Adding these controls yields the map in Figure 10-2.

Figure 10-2

305
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

Moving the Map

It’s possible to dynamically control the view of the map once it’s been loaded by using several methods of
the GMap2 object. Although the user can access various controls on the map to zoom and move the map
view, it may be necessary to control the map separately. All of the navigation that can be performed using
the controls can also be accomplished by directly calling the JavaScript methods for the specific behavior.

The setcenter () method was used earlier to initialize the map display, but it can also be used at any
time to recenter the map on a specific point. This recentering is immediate and has no animation associ-
ated with it. For a smoother transition to a new point on the map, there are several methods available:

0 panBy (distance): Specifies the distance (as a GSize) that the map should be moved by.

0 panDirection(x, y): Specifies the direction that the map should be panned to. The x argu-
ment should be -1 to move left, 0 to not move, or 1 to move right; the y argument should be -1 to
move up, 0 to not move, or 1 to move down.

O panTo (center): Specifies a GLatLng object that should be the new center of the map. The map
that animates moving to that position (same as setCenter (), except with animation).

These methods can be used as any time to move the map to a new position, for example:

oMap.panBy (new GSize(20,20)); //Pans the maps by 20 pixels in each direction
oMap.panDirection(1l, 0); //Pans the maps to the right
oMap.panTo (new GLatLng (50, -80)); //Pans map to the specified location

Info Windows

Info windows provide additional information about a point on the map. On the Google Maps web site, info
windows are used to provide address information about a point on the map, although they can be used
for many more purposes. Visually, info windows look like dialogue bubbles from a comic strip: a round,
white bubble anchored by a white triangle pointing to a specific location on the map (see Figure 10-3).

[Map || Sateiie][ryord |

™

| i -]

Center of the map e

._" OK | ! J: \ NC
- . Vo } ..‘
!'_\J\ LA Narth
Gulflof FL Atlantic Gcean

Mexico Mexico
Cuba
. PR
Gq;lén_u,l.-.
Eaan : 'I';J.»caralguu -
o Venezuela

T Gy
FOMWERED B Colombia - T -y
5 A 7 L
" Iiap data @006 TeleAtlas, MapLinkTeledtlas cTeffs of Lise

Figure 10-3
306

www.it-ebooks.info

http://www.it-ebooks.info/

Maps and Mashups

Basic Info Windows

An info window can be opened at any time by using the openInfoWindow () method of the GMap2
object. This method accepts three arguments: a GLatLng object specifying where the info window
should be anchored, a DOM node providing the contents of the info window, and an optional configura-
tion object.

To open a very simple info window at the center of the map, the following code can be used:

oMap .openInfoWindow (oMap.getCenter (),
document .createTextNode ("Center of the map!"));

The getCenter () method of the GMap2 object returns a GLatLng object for the center of the map, ensur-
ing that the info window points to the exact center. Even though this info window displays only text, it’s
still necessary to pass in a DOM node for the second argument, so a text node is created with the mes-
sage to display.

There is a second method, openInfowindowHtml (), that allows an HTML string to be passed in as the
body of the info window instead of a DOM node. This method accepts the same three arguments (a point
to anchor to, the contents of the window, and an optional configuration object) and is called like this:

oMap .openInfoWindowHtml (oMap.getCenter (), "Center of the map!");

This example opens an info window with stylized text (italics, assuming that there are no styles overrid-
ing the default display of). In this way, it’s possible to create rich text on the fly and display it in
an info window without the need to create DOM objects.

Configuration Options

The third argument to both of the previously mentioned methods is a configuration object for the info
window. This object can contain one more of the following properties:

O maxWidth: The maximum allowable width of the info window in pixels

O onCloseFn: A function to call once the info window has been closed

O onOpenFn: A function to call once the info window has been opened
This configuration object can be included as an object literal, such as:

oMap.openInfoWindowHtml (oMap.getCenter (), "Center of the map!",
{ onCloseFn: function() { alert("Closed") } });

When you run this code, an alert is displayed after the user clicks the close button on the info window.
Generally speaking, the onCloseFn option is the most useful of the available options, since it
provides a hook to an otherwise untraceable event. maxWidth can otherwise be set using CSS and
onOpenFn can easily be mimicked by calling a function right after the call to openInfowindow ()

or openInfoWindowHtml (), since both are synchronous operations.

Tabbed Info Windows

A new addition to version 2 of the Google Maps API is the tabbed info window. Tabbed info windows
can be used to present more information about a particular point on the map without taking up extra
horizontal and vertical space (see Figure 10-4).

307
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

oA [Wap_][Sateliie][Fiybrid
! = == et

SK " First tab Second tab

First tab text /

OR 10T yyy

3 _T_i__'_l NE
I 1 -
(W utl co T KW,

CAY, | z

DE N

§ OK NG ®RIC
2 AZ M | S ARS RS e SDeD
' L Ay Y
ALAT North
Gulflof FL Allantic Qcean
Mexico Mexico
Cuba
o PR
I’)
Gualemals
cean ! I'Q’»caralguu -
] o~
Venezuela &

FOMERED EY Guyar

ugle Miap dlats 2006 Teletlas, hMapLinkTHRKMODIRrer it 67 11|
Figure 10-4

As with nontabbed info windows, the tabbed version can be created with two methods:
openInfoWindowTabs () and openInfoWindowTabsHtml (). Both methods accept three arguments: a
GLatLng object indicating where on the map to point to, an array of GInfowindowTab objects represent-
ing the tabs, and an optional configuration object. The difference between the two methods has to do
with the data available within each GInfoWindowTab object. When you use openInfoWindowTabs (),
each GInfoWindowTab object must be created using a string for the tab title and a DOM node for the tab
contents; openInfoWindowTabsHtml () expects each GInfoWindowTab to have been created using a
string for the tab title and a string for the contents (which can contain HTML). The following code cre-
ates an info window with two tabs:

var aTabs = [
new GInfoWindowTab ("First tab", document.createTextNode ("First tab text")),
new GInfoWindowTab ("Second tab", document.createTextNode ("Second tab text"))
15
oMap .openInfoWindowTabs (oMap.getCenter (), aTabs);

The first part of this code creates an array containing two GInfoWindowTab objects whose contents are
text nodes. This array is then passed in as the second argument of openInfowindowTabs () to display
the info window. To display formatted HTML text instead of plain text, use openInfoWindowTabs ()
and assign the tab contents as a string:

var aTabs = [

new GInfoWindowTab ("First tab", "First tab text"),
new GInfoWindowTab ("Second tab", "Second tab text")
1;
oMap.openInfoWindowTabsHtml (oMap.getCenter (), aTabs);

This code produces the result seen previously in Figure 10-4. Note that only three lines have changed:
the two lines defining the GInfowindowTab objects and the method call.

308

www.it-ebooks.info

http://www.it-ebooks.info/

Maps and Mashups

The configuration object can contain the same options as those used with non-tabbed info windows, as
well as an additional property called selectedTab. This value is an integer indicating the number of the
tab that should be selected when the info window is initially displayed; the default value is 0, which
selects the first tab. To select the second tab by default, the following code passes in a configuration
object with selectedTab set to 1:

var aTabs = [

new GInfoWindowTab ("First tab", "First tab text"),
new GInfoWindowTab ("Second tab", "Second tab text")
1:
oMap.openInfoWindowTabsHtml (oMap.getCenter (), aTabs, { selectedTab: 1 });

Map Blowups

A map blowup is a special type of info window that shows a zoomed-in view of a particular point on the
map. The contents of this info window are a smaller version of the main map, complete with buttons for
changing the map type and a zoom control (see Figure 10-5).

[map_ |[sawlite |[Hybrid |
N . T
[ENT
[map |[sat |[o |
=
'E. -Canada
i
| AB
B ‘ 5 NL
L"‘.

3 ~] OK e
! r— ,__AR.') SCy D
FOMERED EY Gulf.of FL Atlantic Gcean
G O usle Mexico Hgﬁ"&aa @006 Telestlas - Terms of Lse
Figure 10-5

The showMapBlowup () method is used to open a map blowup info window. This method accepts two
arguments: a GLatLng object indicating the point to both anchor on and blow up and an optional config-
uration object. For example, to show a blowup of the center of the map, use the following code:

oMap . showMapBlowup (oMap.getCenter()) ;
When the second argument is specified, the configuration object has two additional properties to interact

with map blowups. The first is zoomLevel, which indicates the zoom factor of the map shown in the
info window. The second is mapType, which indicates what type of map should be displayed (one of

309
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

G_NORMAL_MAP, G_SATELLITE_MAP, G_HYBRID_MAP or any custom map type). To display a blowup of
the center of the map at a zoom level of 5 showing a satellite map, the following code can be used:

oMap . showMapBlowup (oMap.getCenter (), {zoomLevel: 5, mapType: G_SATELLITE_MAP}) ;

Aside from these two properties, the same three basic configuration options are available (maxwidth,
onOpenFn, and onCloseFn).

Manipulating Info Windows

Once an info window is opened, a reference to the GInfoWindow object can be retrieved by calling the
getInfowWindow () method. The GInfoWindow object can be helpful when it’s necessary to interact with
the info window outside of user action. For instance, an info window may need to be hidden after a certain
amount of time. This can be accomplished by using a timeout and calling the hide () method, like this:

setTimeout (function () {
var oInfoWindow = oMap.getInfoWindow () ;
oInfoWindow.hide () ;

}, 5000);

It’s also possible to redisplay an info window after it’s been hidden using the show () method:

setTimeout (function () {
var oInfoWindow = oMap.getInfoWindow () ;
oInfoWindow.hide() ;

setTimeout (function () {
oInfoWindow.show () ;
}, 5000);

}, 5000);

Since the contents of the info window aren’t overwritten until either openInfoWindow () or
openInfoWindowHtml () is called, the original contents are redisplayed when show () is called. Each
time hide () or show () is called, an internal flag is set indicating the info window’s state. This flag is
accessed using the isHidden () method:

setTimeout (function () {
var oInfoWindow = oMap.getInfoWindow () ;
oInfoWindow.hide () ;
alert ("Hidden? " + oInfoWindow.isHidden()) ;

setTimeout (function () {
oInfoWindow.show () ;
alert ("Hidden? " + oInfoWindow.isHidden()) ;

}, 5000);

}, 5000);

This code outputs the returned value of isHidden () after the call to hide () and after the call to
show (), indicating the status of the internal flag.

310
www.it-ebooks.info

http://www.it-ebooks.info/

Maps and Mashups

The info window also remembers which point it was set up to be anchored to; this value can be retrieved
using the getPoint () method, which returns the GLatLng object that was originally used to create the
info window. Similarly, it’s possible to determine how far away the tip of the info window arrow is to
that point by using the getPixelOffset () method, which returns a Gsize object indicating how far
away the info window is:

var oInfoWindow = oMap.getInfoWindow() ;
var oPoint = oInfoWindow.getPoint () ;
var oOffset = oInfoWindow.getPixelOffset () ;

alert ("Info window points to (" + oPoint.lat() + "," + oPoint.lng()
+ ") and the arrow tip is " + oOffset.height + " y pixels and "
+ oOffset.width + " x pixels from that point.");

Tabbed info windows have several other methods designed to interact with the tabs. The selectTab ()
method can be called at any time to change the selected tab in the info window. As with the
selectedTab property of the configuration object, pass in the index of the tab that should be selected
(where 0 is for the first tab, 1 is for the second, etc.):

setTimeout (function () {
var oInfoWindow = oMap.getInfoWindow() ;
oInfoWindow.selectTab (1) ;

}, 5000);

The index of the currently selected tab can be determined by using getSelectedTab():

setTimeout (function () {
var oInfoWindow = oMap.getInfoWindow() ;
alert ("Selected tab: " + oInfoWindow.getSelectedTab()) ;

oInfoWindow.selectTab (1) ;
alert("Selected tab: " + oInfoWindow.getSelectedTab()) ;
}, 5000);

In this example, the index of the selected tab is output before and after the call to selectTab () in order
to show that the tab has changed.

There are also a couple of other methods that can be used to retrieve other information about the tabbed
info window:

0 getContentContainers (): Returns an array of DOM nodes corresponding to the contents of
each tab.

QO getTabs(): Returns the array of GInfoWindowTab objects that was originally passed in to cre-
ate the tabbed info window.

Events

Most objects in the Google Maps API support custom events. To access these events, there is a GEvent
object with a couple of methods. The first, addListener (), is used to assign a function as an event

311
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

handler for a particular event. This method accepts three arguments: the object to observe, the name of
the event, and a function to call when the event occurs. For example, to listen to the 1oad event of a
GMap2 object, the following code can be used:

GEvent .addListener (oMap, "load", function () {
alert ("Map is loaded.");
1)

This code displays an alert when the map has finished loading and is ready to be interacted with.

The other method of GEvent is called bind (), and its purpose is to add an event handler that is a
method of an object. It takes four arguments: the object to observe, the name of the event, the object on
which the method exists, and the method to call. Consider the following example:

var oCustom = new Object();

oCustom.message = "Complete";

oCustom.handleMapLoad = function () {
alert (this.message) ;

b3

GEvent .bind (oMap, "load", oCustom, oCustom.handleMapLoad) ;
This example creates a custom object called oCustom that contains a method to call when the map has
finished loaded (called handleMapLoad). The GEvent .bind () method specifies oCustom and

oCustom.handleMapLoad as the third and fourth arguments. This ensures that the handleMapLoad ()
method is called when the map is fully loaded.

The GMap2 object supports the following events:

QO addmaptype: Fires when a map type is added to the map; supplies a maptype argument to the
event handler.

0 addoverlay: Fires when an overlay is added; the overlay is passed in as an argument to the
event handler.

0 click: Fires when the map is clicked; supplies a point (GPoint object) as an argument to the
event handler. If the click occurred on an overlay (discussed later), then the overlay is also
passed in as an argument.

clearoverlays: Fires when the clearoverlays () method is called.
drag: Fires repeatedly while the user is dragging the map.

dragend: Fires when the user stops dragging the map.

dragstart: Fires when the user starts to drag the map.
infowindowclose: Fires when an info window closes.
infowindowopen: Fires when an info window opens.

load: Fires when the map is completely loaded.

U 00 UJUuU 00U

maptypechanged: Fires when the map type changes (for example, from Map to Satellite).

312

www.it-ebooks.info

http://www.it-ebooks.info/

Maps and Mashups

O mousemove: Fires when the cursor moves across the map; a GLatLng object indicating the last
position of the mouse inside the map is passed in as an argument to the event handler.

0 mouseout: Fires when the cursor moves from the map to the outside of the map; a GLatLng
object indicating the last position inside of the map is passed in as an argument to the event
handler.

O

mouseover: Fires when the cursor moves onto the map from outside of the map; a GLatLng
object indicating the mouse position on the map is passed in as an argument to the event handler.

move: Fires repeatedly as the map is moving.
moveend: Fires when the map stops moving.

movestart: Fires when the map begins to move.

0O 0 0 O

removemaptype: Fires when a map type is removed from the map; supplies a maptype argu-
ment to the event handler.

O

removeoverlay: Fires when an overlay is removed; the overlay is passed in as an argument to
the event handler.

O zoomend: Fires when the map has stopped zooming; old zoom level and new zoom level are

provided as arguments to the event handler.

These events can be used to monitor the user’s interaction with the map at any particular time. Keep in
mind that most objects on the map also support their own events.

Map Overlays

A map overlay is any graphical marker placed onto a map to indicate some geographic location. When
using the Google Maps site, areas of interest are often indicated by an icon or some other marker placed
directly on the map; these are examples of overlays.

There are three methods on the GMap2 object relating directly to overlays. The first is addoverlay (),
which adds the specified overlay object to the map control. To add an overlay stored in a variable called
oOverlay, the following code can be used:

oMap.addOverlay (oOverlay) ;
Of course, anything that can be added can also be removed, so the second method is removeOverlay (),
which removes a specified overlay from the map. In order to remove a specific overlay, you need a refer-
ence to it (not unlike the way event handlers are removed). Once you have a reference, the method can
be called like this:

oMap.removeOverlay (oOverlay) ;
It may not be practical to keep track of all the overlays used on a map, so it’s also possible to remove all
of the overlays using the third method, clearoverlays (). This method is called without any argu-

ments:

oMap.clearOverlays () ;

313
www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

This method removes all overlays added since the map was created. The Google Maps API provides sev-
eral types of overlays that can be used with just a little configuration.

Markers

The simplest of the provided overlays are markers. Markers are the most commonly used indicator on
the Google Maps web site: a red pushpin-like image that is based at a point of interest. A marker can be
created by instantiating a GMarker object. The constructor of the GMarker accepts two arguments: a
GLatLng object indicating where the marker should be set, and a configuration object containing addi-
tional information for the marker (this second argument is optional). Creating a simple marker can be
done like this:

var oMarker = new GMarker (new GLatLng (32, -92));

This code creates a marker that can be added to the map at any time. The optional second argument
specifies additional information for the marker and can be specified as an object literal with one or more
of the following properties:

title: Text that should be displayed when the cursor is moved over the marker.

icon: Anicon that should be used for the overlay instead of the default icon.

clickable: If false, disables click events for the marker; the default value is true.

U 0 0 U

draggable: When set to true, allows the marker to be dragged and repositioned by the user; the
default value is false.

(]

dragCrossMove: Set to true to force dragged markers to appear under the cursor instead of
floating above; the default value is false. This setting only applies if draggable is true.

Q bouncy: Determines if a dragged marker should bounce when it’s dropped; the default value is
false.

0 bounceGravity: A number indicating the acceleration of the bounce when a marker is
dropped. Only used when bouncy is set to true.

To create a marker whose tooltip text is "My marker", the code is as follows:
var oMarker = new GMarker (new GLatLng (32, -92), { title: "My marker" });
This essentially sets the title attribute of the element used to represent the marker; it uses the default

behavior to enable this functionality. It’s also possible to change the icon displayed fo