Serverless

Programming
Cookbook

Heartin Kanikathottu

http://www.allitebooks.org

Serverless Programming
Cookbook

Practical solutions to building serverless applications using
Java and AWS

Heartin Kanikathottu

BIRMINGHAM - MUMBAI

[vww allitebooks.cond

http://www.allitebooks.org

Serverless Programming Cookbook

Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Merint Mathews
Acquisition Editor: Karan Sadawana

Content Development Editor: Anugraha Arunagiri
Technical Editor: Divya Vadhyar

Copy Editor: Safis Editing

Project Coordinator: Ulhas Kambali

Proofreader: Safis Editing

Indexer: Rekha Nair

Graphics: Tom Scaria

Production Coordinator: Deepika Naik

First published: January 2019
Production reference: 1310119

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78862-379-7

www.packtpub.com

[vww allitebooks.cond

http://www.packtpub.com
http://www.allitebooks.org

To my wife, Sneha; baby girl, June Grace; mother, Dr. Gresamma Mathew; and above
all, God almighty.

— Heartin Kanikathottu

vww allitebooks.conl

http://www.allitebooks.org

A Mapt

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?

e Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

e Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

Packt.com

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt .com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt .com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

vww allitebooks.conl

https://mapt.io/
http://www.packt.com
http://www.packt.com
http://www.allitebooks.org

Contributors

About the author

Heartin Kanikathottu is a senior software engineer and blogger with around 11 years of IT
experience. He is currently working as a Senior Member of Technical Staff at VMware. He
has previously worked with companies including Software AG, SAP Ariba and TCS. He
has a masters degree in cloud computing and bachelors degree in computer science. He has
completed 10 professional certifications on the areas of cloud computing, coding and
design from companies including AWS, Pivotal, Oracle, Microsoft, IBM and Sun. He likes
to share his technical knowledge through his blogs such as Heartin.tech,
CloudMaterials.com and JavaJee.com. He also likes to mentor juniors and take technical
sessions at work, meetups and conferences.

[want to thank God almighty for giving me this wonderful opportunity. My wife Sneha
helped me to great lengths during every phase of writing this book both as a supportive
wife as well as an excellent reviewer. My baby girl June sacrificed dada time a lot while I
was writing. I also want to thank my current employer VMuware, colleagues, family
members especially my mother Dr. Gresamma Mathew and friends who supported me
with advice and prayers.

About the reviewer

Sneha Thomas is a full stack developer with 8 years of IT experience. She considers herself
to be an excellent UI developer with good backend skills. She has worked on technologies
such as Angular, Java, Spring, Hibernate, databases and various web technologies such as
HTML, JavaScript and CSS. She also has good knowledge of the cloud platforms such as
AWS and Google Cloud Platform. She has got a masters degree with specialization in cloud
computing and a bachelors degree in electronics and communications. During her free
times she like to experiment with new technologies and write blogs on JavaJee.com.

Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents

Preface

Chapter 1: Getting Started with Serverless Computing on AWS
Introduction
Getting started with the AWS platform
Getting ready
How to do it...
How it works...
AWS Identity and Access Management (IAM)
Amazon CloudWatch
Multi-Factor Authentication (MFA)
There's more...
See also
Your first AWS Lambda
Getting ready
Code repository usage guidelines
How to do it...
How it works...
About the parent POM
Lambda roles
Lambda runtimes
Extra dependencies
There's more...
Other ways to create Lambda functions from the management console
Other ways to deploy code in a Lambda function
Passing JSON to and from Lambda handler
See also
Your first Lambda with AWS CLI
Getting ready
Configuring AWS CLI
Creating S3 bucket
Note for Windows users
How to do it...
How it works...
Creating a role and attaching a policy
Lambda memory-size and timeout
S3 Bucket and Key
Cleaning up
There's more...
See also
Your first Lambda with Amazon CloudFormation
Getting ready

Table of Contents

Set up the project and S3 bucket
Understanding YAML and JSON
How to do it...
Cleaning up roles, policy, and Lambda
How it works...
There's more...
CloudFormation Template Components
Resource component
Intrinsic functions
CloudFormation Designer
Additional benefits of CloudFormation
Cloud Formation alternatives
See also
Using AWS SDK, Amazon CloudFormation, and AWS CLI with
Lambda
Getting ready
How to do it...
Creating the POJOs for requests and response.
How it works...
There's more...
Pseudo-parameters
See also
Dev Practices — dependency injection and unit testing
Getting ready
Code refactoring
How to do it...
How it works...
There's more...
See also
Your first Lambda with serverless framework
Getting ready
How to do it...
How it works...
There's more...
See also

Chapter 2: Building Serverless REST APIs with APl Gateway
Introduction
Building your first APl using the AWS CLI
Getting ready
How to do it...
How it works...
HTTP essentials
REST essentials
Parts of a URL
There's more...
See also

[ii]

Table of Contents

Building your first APl using Amazon CloudFormation
Getting ready
How to do it...
How it works...
There's more...
See also
Building your first APl with Lambda integration
Getting ready
How to do it...
Creating the Lambda
Creating a REST API with AWS CLI commands
Creating a REST API with a CloudFormation template
How it works...
CLI commands
CloudFormation template components
There's more...
See also
Building and testing your first POST APl method
Getting ready
How to do it...
Creating the API with CLI commands
Creating the API with a CloudFormation template
Testing with Postman
How it works...
Passthrough behavior
There's more...
See also
Mapping requests and responses with mapping templates
Getting ready
How to do it...
Mapping requests
Mapping responses
Creating the API using CLI commands
Creating the API with a CloudFormation template
Testing the API
How it works...
Mapping templates and variables
Using #set
There's more...
The Apache Velocity Language
JSONPath expressions
See also
Validating request payloads with models
Getting ready
How to do it...
The request data format
Creating the API with CLI commands

66
66
67
71
71
71
72
72
73
73
74
77
78
79
80
80
80
81
81
81
82
84
85
86
87
87
87
88
88
88
89
89

91
92
93

94
94
95
95
95
95
96
96

97

[iii]

Table of Contents

The CloudFormation template
Testing the API

How it works...

There's more...

See also

Lambda and API with proxy integration

Getting ready

How to do it...

Creating a Lambda function for proxy integration
Deploying the Lambda
Creating the Proxy APl with CLI commands
Creating the API using CloudFormation templates

How it works...

The greedy path, the ANY HTTP method, and proxy integration

RequestStreamHandler versus RequestHandler

The input and output format of a Lambda function for proxy integration

There's more...
See also

Chapter 3: Data Storage with Amazon DynamoDB
Introduction
Your first DynamoDB table
Getting ready
How to do it...
Creating a table using CLI commands
Creating a table using a CloudFormation template
How it works...
DynamoDB data model
Data model limits
DynamoDB keys and partitions
Read and write capacity units
Waiting for asynchronous operations
Other ways to create tables
There's more...
DynamoDB features
DynamoDB general limitations
Local and global secondary indexes
See also
Throughput provisioning examples
Getting ready
How to do it...
Scenario 1
Scenario 2
Scenario 3
How it works...
Strongly consistent reads versus eventually consistent reads
Limits on throughput updates within a day
There's more...

99
100

101
101
101
102
102
102
103
104
104
107
109
109
109
110
110
111

112
112
113
113
113
114
116
118
118
118
119
119
119
120
120
120
121
121
121
122
122
122
122
123
123
124
124
124
125

[iv]

Table of Contents

See also
Working with data from the CLI
Getting ready
How to do it...
Adding items
Reading items
Updating items
Deleting items
How it works...
Add, update, and delete operations
Reading data from DynamoDB
return-consumed-capacity
There's more...
See also
Using the DynamoDB SDK from Lambda
Getting ready
How to do it...
How it works...
AmazonDynamoDB client versus DynamoDB wrapper client
IAM policy and actions
Single Lambda versus multiple Lambdas
There's more...
See also
Creating tables from Lambda
Getting ready
How to do it...
How it works...
There's more...
See also
Adding data items from Lambda
Getting ready
How to do it...
How it works...
There's more...
See also
Reading data from Lambda
Getting ready
How to do it...
How it works...
There's more...
See also

Chapter 4: Application Security with Amazon Cognito
Introduction
Creating a Cognito user pool
Getting ready

125
125
125
126
126
126
130
130
131
131
131
132
132
132
133
133
133
138
138
138
139
140
140
140
140
141
144
144
144
144
144
145
147
147
148
148
148
149
153
153
154

155
155
156
156

[v]

Table of Contents

How to do it...
Creating Cognito user pool with AWS CLI
Creating Cognito user pool with CloudFormation template
How it works...
Generating and using JSON templates with CLI commands
AliasAttributes versus UsernameAttributes
There's more...
See also
Server-side authentication flow
Getting ready
How to do it...
Creating Cognito user pool client
Creating a Cognito user pool client with AWS CLI
Creating a Cognito user pool client with CloudFormation template
Server-side authentication flow
How it works...
Server-side, client-side, and custom authentication flows
Secure Remote Password protocol
The access token, refresh token, and ID token
ADMIN_NO_SRP_AUTH versus USER_PASSWORD_AUTH
There's more...
See also
Client-side authentication flow
Getting ready
How to do it...
Creating a Cognito user pool client
Creating a Cognito user pool client with AWS CLI
Creating a Cognito user pool client with CloudFormation template
Client-side authentication flow
How it works...
There's more...
See also
User sign-up flow with Cognito
Getting ready
How to do it...
User sign-up with self-confirmation
User sign-up with admin confirmation
How it works...
There's more...
See also
Working with groups
Getting ready
How to do it...
How it works...
There's more...
See also
Integrating Cognito with the APl gateway

156
156
159
163
163
164
164
164
165
165
165
165
166
166
167
170
170
170
171
171
172
172
172
172
172
173
173
173
174
175
176
176
176
177
177
177
180
181
181
181
181
182
182
184
184
184
185

[vil

Table of Contents

Getting ready
How to do it...
The AWS CLI
The CloudFormation template
How it works...
Claim-based identity
There's more...
See also
User sign-up with SMS verification and MFA
Getting ready
How to do it...

Creating the user pool
Creating a Cognito user pool client with AWS CLI

Creating a Cognito user pool client with CloudFormation template

User sign-up with SMS and MFA verification
How it works...
There's more...
See also

Chapter 5: Web Hosting with S3, Route53, and CloudFront

Introduction
Setting up an S3 static website
Getting ready
How to do it...
AWS CLI commands
The CloudFormation template
How it works...
There's more...
See also
Setting up CloudFront for an S3 website
Getting ready
How to do it...
AWS CLI commands
Understanding the DistributionConfig defaults in the response
The CloudFormation template
How it works...
There's more...
See also
Registering a domain name with Route 53
Getting ready
How to do it...
Registering a domain with AWS CLI commands
How it works...
Hosted zones
There's more...
Registering a domain from AWS Management Console
See also

185
185
185
190
192
192
193
193
193
193
194
194
194
198
200
203
203
203

204
204
205
205
205
205
208
210
211
211
211
211
211
212
213
215
217
217
217
217
218
218
218
221
222
222
222
224

[vii]

Table of Contents

Using domains registered with other registrars
Getting ready
How to do it...
AWS CLI commands
The CloudFormation template
How it works...
DNS propagation
There's more...
Steps for configuring DNS from the AWS Management Console
See also
Using custom domains with S3 static websites
Getting ready
How to do it...
AWS CLI commands
The CloudFormation template
How it works...
There's more...
See also
Using custom domain names with CloudFront
Getting ready
How to do it...
AWS CLI commands
The CloudFormation template

The CloudFront distribution stack
The RecordSet stack

How it works...
There's more...
Using HTTPS to secure your domain URL
Disabling and deleting a CloudFront distribution
See also
Using HTTPS with a CloudFront domain
Getting ready
How to do it...
Associating a certificate with a domain using AWS CLI commands
Associating a certificate with a domain using CloudFormation template
How it works...
Server Name Ildentification (SNI)
There's more...
See also

Chapter 6: Messaging and Notifications with SQS and SNS
Introduction
Your first SQS queue (AWS CLI + CloudFormation)
Getting ready
How to do it...

Creating an SQS queue
AWS CLI commands

224
224
224
225
226
227
227
227
227
229
229
229
229
229
232
235
235
236
236
236
236
236
240

241
243

245
245
245
246
247
247
248
248
248
250
252
253
253
253

254
254
255
255
255

255
255

[viii]

Table of Contents

The CloudFormation template
Sending and receiving data (AWS CLI)
How it works...
There's more...
See also

Creating an SQS queue and sending messages with SDK (Java)

Getting ready
How to do it...
Lambda project code (Java)
Provisioning and testing the Lambda (AWS CLI)
How it works...
There's more...
See also

Receiving and sending SQS messages in batches with SDK (Java)

Getting ready
How to do it...
Lambda project code (Java)
Setting up queues and data
Provisioning and testing the Lambda (AWS CLI)
How it works...
There's more...
See also
Invoking the Lambda with an SQS event (Java)
Getting ready
How to do it...
Lambda project code (Java)
Setting up queues and data
Provisioning the Lambda (AWS CLI)
Testing the Lambda (AWS CLI)
How it works...
There's more...
See also
Your first SNS topic for email and SMS (AWS CLI +
CloudFormation)
Getting ready
How to do it...
Creating an SNS topic
AWS CLI
The CloudFormation template
Creating email and SMS subscriptions (AWS CLI)
SMS subscription

Email subscription
Publishing a message

How it works...
There's more...
See also
Publishing to an SNS topic with SDK (Java)

256
257
258
258
259
259
259
259
260
262
266
266
266
266
267
267
267
270
270
273
274
274
274
274
275
275
277
277
280
280
280
281

281
282
282
282
282
282
283
283
284
285

286
286
286
286

[ix]

Table of Contents

Getting ready
How to do it...
Lambda project code (Java)
Provisioning and testing the Lambda (AWS CLI)
How it works...
There's more...
See also
Invoking a Lambda with SNS events (Java)
Getting ready
How to do it...
Lambda project code (Java)
Provisioning the Lambda (AWS CLI)
Testing the Lambda (AWS CLI)
How it works...
There's more...
See also

Chapter 7: Redshift, Amazon ML, and Alexa Skills
Introduction
Your first Kinesis data stream (AWS CLI)
Getting ready
How to do it...
Step 1 - Creating a Kinesis data stream
Using AWS CLI
Using the CloudFormation template
Step 2 - Adding and retrieving data
How it works...
Kinesis shard iterator types
There's more...
See also

Writing data into Kinesis Stream with SDK (Java)

Getting ready
How to do it...
Step 1 - Creating the Lambda project (Java)
Step 2 - Provisioning and testing Lambda (AWS CLI)
How it works...
There's more...
See also
Invoking Lambda with Kinesis events (Java)
Getting ready
How to do it...
Step 1 - Creating a Lambda project (Java)
Step 2 - Provisioning and testing Lambda (AWS CLI)
How it works...
There's more...
See also

Using Amazon ML for binary classification (AWS CLI)

287
287
287
289
291
291
291
291
291
292
292
294
295
296
296
296

297
297
298
298
298
2908
208
300
301
303
304
306
306
306
307
307
307
311
314
315
315
315
316
316
316
318
320
321
321
322

[x]

Table of Contents

Getting ready
How to do it...
How it works...
Types of models
DataSource object
Receiver Operating Characteristic and Area Under the ROC
There's more...
See also

Building and testing an Alexa skill (Java for Lambda, CLI for Alexa

skill)

Getting ready

Installing and configuring the ASK CLI
Configuring ask-cli for the first time

How to do it...
Step 1 - Creating the Lambda project (Java)
Step 2 - Provisioning Lambda (AWS CLI)
Step 3 - Building an Alexa skill with ASK CLI

How it works...
Alexa skill invocation basics
Explaining the Lambda project (Java)
Explaining the ASK CLI steps

There's more...
Voice app platforms

See also

Chapter 8: Monitoring and Alerting with Amazon CloudWatch
Introduction
Checking logs, insights, and metrics (Console)
Getting ready
How to do it...
Step 1: Logging in to the CloudWatch dashboard
Logs
Log insights
Metrics
How it works...
Log groups
Log streams
Log insights
Metrics
There's more...
See also
Your first custom metric (AWS CLI)
Getting ready
How to do it...
Step 1-Create a simple metric without dimensions
Step 2—Add dimensions to metric data
How it works...
There's more...

322
323
331
332
332
332
333
333

333
334

334
335
336
337
342
343
349
350
351
352
352
353
353

354
354
355
355
356
356
357
359
360
362
362
363
363
363
363
364
364
364
364
364
366
368
369

[xil

Table of Contents

See also
Setting up CloudWatch alarms (AWS CLI)
Getting ready
How to do it...
How it works...
There's more...
See also
CloudWatch alarms with dimensions (AWS CLI)
Getting ready
How to do it...
How it works...
There's more...
See also
Using CloudWatch metric log filters
Getting ready
How to do it...
Creating metric filters from AWS CLI
Creating metric filters from the console
How it works...
There's more...
See also

Chapter 9: Serverless Programming Practices and Patterns
Introduction
Enabling CORS for the API and testing with CodePen
Getting ready
Getting familiar with CodePen
How to do it...
How it works...
There's more...
See also
Implementing and testing Cognito operations with the JavaScript
SDK
Getting ready
Download the amazon-cognito-identity.min.js file
Create an S3 bucket and upload the amazon-cognito-identity.min.js file
Creating a Cognito user pool and client
How to do it...
How it works...
There's more...
See also
Federated identity with Amazon Cognito
Getting ready
How to do it...
Step 1 - Configuring Google Plus
Step 2 - Creating and Configuring an Identity Pool

369
369
369
370
375
376
376
377
377
377
379
379
379
379
379
380
380
382
385
385
385

386
386
387
387
388
389
393
395
395

396
396
396
397
398
399
404
404
404
404
405
405
405
409

[xii]

Table of Contents

Step 3 - Preparing and uploading code files
Preparing the index.html file
Deploying and testing the index.html file
How it works...
There's more...
See also
Creating SSL/TLS certificate with ACM
Getting ready
How to do it...
AWS CLI Commands
CloudFormation Template
How it works...
There's more...
See also
Fan-in and fan-out architectural patterns with AWS
Getting ready
How to do it...
Scenario 1 - Pub-Sub with multiple producers and consumers
Scenario 2 - Parallel processing without duplicates
Scenario 3 - Streaming real-time data for processing
Scenario 4 - Streaming real-time data for storing
How it works...
Real-world example scenarios
Scenario 1 - Pub-Sub scenario with multiple producers and consumers
Scenario 2 - Parallel processing

Scenario 3 - Streaming real-time data for processing
Scenario 4 - Streaming real-time data for storage
There's more...
Building a full stack web application on AWS
See also

Chapter 10: Other Cloud Providers
Introduction
Your first Serverless application in Azure
Getting ready
How to do it...
Deploying the function to Azure
Getting function info from Ul and verifying the deployment
How It works...
There's more...
See also
Your first serverless application on Google Cloud Platform
Getting ready
How to do it...
How it works...
There's more...
See also
Your first Serverless application on IBM cloud

411
411
413
414
414
415
415
415
415
416
420
422
423
423
423
424
424
424
425
425
425
426
426
426
426

426
427

427
427
428

429
429
430
430
430
432
433
434
435
437
438
438
438
440
441
442
443

[xiii]

Table of Contents

Getting ready 443
How to do it... 444
How It works... 448
There's more... 448
See also 450
Other Books You May Enjoy 452
Index 455

[xiv]

Preface

Managing physical servers will be a thing of the past once you're able to harness the power
of Serverless computing. This recipe-based guide provides solutions to problems you might
face while building Serverless applications.

You'll begin by setting up Amazon Web Services (AWS), the primary cloud provider used
for most recipes. The next set of recipes will teach you about the components you need to
build a Serverless web application, such as REST APIs, database, user management,
authentication, domain registration, DNS management, website hosting, and CDN. The
book also provides you with a fresh perspective by introducing you to the latest technology
trends with recipes based on messaging, notifications, data analytics, machine learning, and
NLP. Further, the book contains recipes on DevOps practices such as logging and
monitoring. AWS discussion ends with some real-world practices and patterns. Finally, to
broaden your understanding of Serverless computing, you'll also cover getting

started guides for other cloud providers, such as Azure, Google Cloud Platform, and IBM
cloud.

The Serverless architecture allows you to build and run applications and services without
having to manage the necessary infrastructure, which reduces expenditure and improves
scalability. In this book, you will learn how to harness Serverless technology to reduce
production time, minimize cost, and gain the freedom to customize your code, all without
hindering functionality.

By the end of this book, you'll have acquired the skills you need to build Serverless
applications efficiently using various public cloud offerings.

Who this book is for

This book is aimed at developers looking for practical solutions to common problems
encountered while building a Serverless application, providing helpful recipes to solve
these problems. To get started with this intermediate-level book, knowledge of basic
programming is a must.

Preface

What this book covers

Chapter 1, Getting Started with Serverless Computing on AWS, covers building Serverless
applications with AWS Lambda. We will also get familiar with AWS IAM and AWS
CloudFormation, two services that we will be using a lot in the coming chapters.

Chapter 2, Building Serverless REST APIs with API Gateway, will show you how to create
reliable and scalable API Gateway REST APIs. Some of the API Gateway functionality, such
as Cross Origin Resource Sharing (CORS), will be covered later.

Chapter 3, Data Storage with Amazon DynamoDB, contains recipes for Amazon DynamoDB,
a fully managed NoSQL database, integrating DynamoDB with AWS Lambda, along with
some example scenarios and solutions for throughput provisioning.

Chapter 4, Application Security with Amazon Cognito, covers how to use Amazon Cognito for
user signup, user login, and user management. We will cover real-world applications of
Cognito, such as federated logins, in a later chapter.

Chapter 5, Web Hosting with 53, Route53, and CloudFront, outlines recipes related to hosting
a website, including registering domain names, hosting a static website with Amazon S3,
attaching a custom domain for our S3 bucket, and using CloudFront CDN.

Chapter 6, Messaging and Notifications with SQS and SNS, discusses how Amazon SQS and
Amazon SNS are generally used for interprocess communications within Serverless
applications. We will also see how these services can be triggered in AWS Lambda.

Chapter 7, Redshift, Amazon ML, and Alexa Skills, explores how the following services can
bring value to Serverless computing in the areas of analytics and natural language
processing, covering Amazon Kinesis, Amazon Machine Learning, and Amazon Alexa Skill
Sets.

Chapter 8, Monitoring and Alerting with Amazon CloudWatch, discusses monitoring and
alerting, both of which are essential DevOps practices. We will also see CloudWatch
alarms, CloudWatch metrics, and CloudWatch metric log filters.

Chapter 9, Serverless Programming Practices and Patterns, explores some patterns and
practices for Serverless applications within the AWS platform. We will see how some of the
services covered previously interact together, and how they are implemented in real-world
projects.

[2]

Preface

Chapter 10, Other Cloud Provider Services, provides a basic understanding and some getting
started guides for Serverless computing with a few other cloud providers. The main
intention of this section is to explore the popular alternatives and learn to do quick setups
for proof-of-concept demonstrations.

To get the most out of this book

Readers should be familiar with Java, Maven, Git, and Unix/Mac terminal or the Windows
Command Prompt. To work with the JavaScript recipes you also need to be familiar with
JavaScript. Additional links are provided within the See more section of the recipes to
explain the prerequisite technologies. To make best use of the book you should first read
the book from beginning until the end, at least once. After this, or along with reading the
book, you may execute the code provided within the code files following the directions
given within the book, and within the repository's readme files. Example codes should
specify names or IDs. You will have to replace them with the name and ID that you create.
Finally, you should build the projects on your own following the book's content.

Download the example code files

You can download the example code files for this book from your account at
www.packt . com. If you purchased this book elsewhere, you can visit
www . packt . com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt . com.
Select the SUPPORT tab.
Click on Code Downloads & Errata.

Enter the name of the book in the Search box and follow the onscreen
instructions.

L e

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

e WinRAR/7-Zip for Windows
e Zipeg/iZip/UnRarX for Mac
e 7-Zip/PeaZip for Linux

[3]

http://www.packt.com
http://www.packt.com/support
http://www.packt.com

Preface

The code bundle for the book is also hosted on GitHub
at https://github.com/PacktPublishing/Serverless—-Programming-Cookbook. In case
there's an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github.com/PacktPublishing/. Check them out!

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLSs, user input, and Twitter handles. Here is an
example: "Mount the downloaded WebStorm-10* . dmg disk image file as another disk in
your system."

A block of code is set as follows:

Resources:

MyFirstRestAPI:

Type: AWS::ApiGateway::RestApi
Properties:

Name: Greeting API

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

GreetingResource:
Type: AWS::ApiGateway::Resource
Properties:
RestApiId: !Ref MyFirstRestAPI
ParentId: !GetAtt MyFirstRestAPI.RootResourceld

Any command-line input or output is written as follows:

aws apigateway create-resource \
——rest—api-id c82tpsb7ka \

[4]

https://github.com/PacktPublishing/Serverless-Programming-Cookbook
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Select System info from the Administration panel.”

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt .com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt .com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit

authors.packtpub.com.

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt .com.

[5]

http://www.packt.com/submit-errata
http://authors.packtpub.com/
http://www.packt.com/

Getting Started with Serverless
Computing on AWS

This chapter will cover the following topics:

¢ Getting started with the AWS platform

Your first AWS Lambda

Your first Lambda with AWS CLI

Your first Lambda with Amazon CloudFormation

Using AWS SDK, Amazon CloudFormation, and AWS CLI with Lambda
Dev practices: dependency injection and unit testing

Your first Lambda with Serverless framework

Introduction

Cloud computing introduced a pay-per-use model and abstracted physical servers with
virtual machines and managed services. Cloud computing execution models include
Infrastructure as a Service (IaaS), Platform as a service (PaaS), Software as a Service
(SaaS), and Serverless computing (or Function as a Service (FaaS)).

Iaa$S provides services that form the basic building blocks of cloud computing, such as
virtual machines, storage, network, and so on. PaaS provides platforms on which we can
develop applications such as execution runtime, databases, web servers, and so on. Saas
provides completed software that we can use for various needs such as Gmail's email
service.

Getting Started with Serverless Computing on AWS Chapter 1

Serverless computing allows us to run functions (code) without worrying about servers and
pay only for the time we execute code. Despite the name, servers are still present, however,
the provider does all the server management including starting and stopping them to serve
requests, patching and more. Serverless computing comes roughly in between PaaS and
SaaS.

This book focuses on AWS cloud (except in the last chapter), but most
concepts apply to any cloud provider. Within AWS recipes, we will
specify the AWS CLI commands for most of the use cases. In addition, we
will use Java for all use cases where we generally use AWS Lambda such
as working with DynamoDB database, Kinesis streams, SQS and SNS, and
building backend for an Alexa skill. For services that are generally
integrated into the Ul such as Cognito we will discuss JavaScript SDK
code. For one-time activities such as account creation and domain
registration, and monitoring, we will also discuss AWS Management
console steps.

Getting started with the AWS platform

Amazon provides you with Free Tier to get started with AWS on production quality
servers. Free Tier provides you with free access to many services and features with decent
limits.

Free Tier policies may change anytime. So, to avoid accidental costs, do
check the Free Tier policies regularly at https://aws.amazon.com/free.

Getting ready

To work with AWS Free Tier, you need a decent computer, a reasonable internet
connection, a working credit card, and basic knowledge of computers and the internet.

[7]

https://aws.amazon.com/free
https://aws.amazon.com/free
https://aws.amazon.com/free
https://aws.amazon.com/free
https://aws.amazon.com/free
https://aws.amazon.com/free
https://aws.amazon.com/free
https://aws.amazon.com/free
https://aws.amazon.com/free
https://aws.amazon.com/free
https://aws.amazon.com/free

Getting Started with Serverless Computing on AWS Chapter 1

How to do it...

Let's get started on the AWS platform by creating a Free Tier account. We will then do some
basic IAM settings as suggested by AWS. Finally, we will also create a billing alarm to keep
track of any unexpected costs. If you already have a working account with basic setup
done, you may skip this part of the recipe:

1. Gotohttps://aws.amazon.com and create a new Free Tier account (if you do not
already have one) as follows:
1. Provide login credentials.
2. Provide personal information such as address, phone number, and
other required details, if you have selected Personal account, or
Corporate information if you have selected company account.
3. Provide credit card details.
Proceed with telephonic verification.
5. Select Basic plan for Free Tier account with community support (or
select a paid plan if you want to).

=

After logging in for the first time, it is recommended that you complete the basic
Identity and Access Management (IAM) security settings listed under the
Security Status heading. If you have previously logged in, the options might not
be displayed as shown next. If so, you need to manually go to IAM service from
the Services dropdown.

2. Click on Activate Multi-Factor Authentication (MFA) on your root account and
do as follows:

1. Click Manage.

2. Select A Virtual MFA Device.

3. Click Continue on the message for installing an MFA-compatible
application (assuming you have installed Google Authenticator along
with barcode scanner, or any similar applications).

4. Scan the barcode shown on screen using Google Authenticator, and
enter two consecutive codes for confirmation.

3. Click on Create individual IAM users and do as follows:
1. Enter Username.
2. Select Access Type (Programmatic access and AWS Management
Console access).
3. Download the credentials . csv file to a secure area in your local
machine. You will not be able to download it later, but you can
regenerate it.

[8]

https://aws.amazon.com
https://aws.amazon.com
https://aws.amazon.com
https://aws.amazon.com
https://aws.amazon.com
https://aws.amazon.com
https://aws.amazon.com
https://aws.amazon.com
https://aws.amazon.com

Getting Started with Serverless Computing on AWS Chapter 1

4. Click on Use groups to assign permissions and assign some random permissions.

5. Click on Apply an IAM password policy to set up a basic password policy.

It is a good practice to assign permissions through groups even if there is
only one user.

IAM dashboard should now show all security status items as green:

Search IAM

Dashboard
Groups

Users

Roles

Policies

Identity providers
Account settings

Credential report

Encryption keys

Welcome to Identity and Access Management

IAM users sign-in link:

https:// .signin.aws.amazon.com/console (2 | Customize

IAM Resources

Users: 2 Roles: 9
Groups: 1 Identity Providers: 0

Customer Managed Policies: 5

Security Status G 5 out of 5 complete.
Delete your root access keys v
Activate MFA on your root account v
Create individual IAM users v
Use groups to assign permissions v
Apply an IAM password policy v

6. Create a billing alarm to have a check on accidental costs:

1.

Go to My Billing Dashboard (by clicking the drop-down arrow near
to your name).

. Under Alerts and Notifications, click on Enable Now to Monitor your
estimated charges.

After going to Preferences, select Receive Billing Alerts and click on

[9]

Getting Started with Serverless Computing on AWS Chapter 1

Manage Billing Alerts link within the contents, which will take you to
CloudWatch.

4. Click on Billing and create an alarm.

more at https://docs.aws.amazon.com/awsaccountbilling/latest/
aboutv2/budgets—-managing-costs.html.

0 You may also use the budgets feature to keep track of your costs. Read

If you followed all previous steps successfully, you are ready to get started with further
recipes in this book.

How it works...

Most of the steps in this recipe are self-explanatory and similar to registering for any other
paid online service. The following are the important AWS services and concepts that were
introduced in this recipe.

AWS Identity and Access Management (IAM)

IAM enables secure access to AWS resources. IAM supports standard security concepts
such as users, groups, roles, and permissions. The user is an individual who wants to use
AWS services. Users can be added to groups. Users and groups are assigned with
permissions. Roles are used by a service (for example, Amazon Ec2) for accessing other
services.

Amazon CloudWatch

Amazon CloudWatch is a service that helps in monitoring your applications, responding to
changes (such as performance changes and billing alarms), optimizing resource utilization,
and providing you a unified view of the health of services in your account. We will see
more use cases of Amazon CloudWatch in later recipes.

Multi-Factor Authentication (MFA)

Multi-Factor Authentication provides additional levels of authentication. In addition to
passwords, it also requires you to authenticate using a token generated by a virtual or
physical authenticator. It is a good practice to set up MFA even for personal accounts, as
the password is the same as the e-commerce portal and Prime Video.

[10]

https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/budgets-managing-costs.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/budgets-managing-costs.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/budgets-managing-costs.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/budgets-managing-costs.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/budgets-managing-costs.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/budgets-managing-costs.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/budgets-managing-costs.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/budgets-managing-costs.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/budgets-managing-costs.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/budgets-managing-costs.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/budgets-managing-costs.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/budgets-managing-costs.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/budgets-managing-costs.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/budgets-managing-costs.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/budgets-managing-costs.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/budgets-managing-costs.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/budgets-managing-costs.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/budgets-managing-costs.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/budgets-managing-costs.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/budgets-managing-costs.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/budgets-managing-costs.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/budgets-managing-costs.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/budgets-managing-costs.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/budgets-managing-costs.html

Getting Started with Serverless Computing on AWS Chapter 1

There's more...

The following are some of the common AWS services that are used in building Serverless
applications on the AWS:

AWS Lambda lets you write code without configuring any server.

Amazon API Gateway lets you create REST APIs without coding.

Amazon Simple Storage Service (S3) is an object store that helps you store and
retrieve data. S3 can also be used for hosting single-page applications (SPA)
such as an angular or react application.

Amazon DynamoDB is a scalable NoSQL database.

Amazon CloudFront is a Content Delivery Network (CDN) service.

Amazon CloudWatch is a service to monitor your applications and respond to
changes.

AWS CloudFormation templates written in JSON or YAML can be used to
provision and model our infrastructure.

AWS Identity and Access Management (IAM) provides access control for AWS
resources.

Amazon Cognito helps you build access control for your application with
features such as user sign-up, sign-in, and more.

Other services can be used alongside these services for advanced use cases, such
as natural language processing (for example, Alexa Skills kit, and Lex), Analytics
(Amazon Kinesis Streams), Machine Learning (Amazon Machine Learning), and
SO on.

Apart from using the AWS management console from a browser, we can also interact with
AWS services from AWS CLI (command line) and AWS SDK (programmatic access).
Except for the first few recipes, we will mostly focus on using Amazon CloudWatch with
AWS CLI for modeling and provisioning our infrastructure.

See also

https://aws.amazon.com/getting-started

[11]

https://aws.amazon.com/getting-started
https://aws.amazon.com/getting-started
https://aws.amazon.com/getting-started
https://aws.amazon.com/getting-started
https://aws.amazon.com/getting-started
https://aws.amazon.com/getting-started
https://aws.amazon.com/getting-started
https://aws.amazon.com/getting-started
https://aws.amazon.com/getting-started
https://aws.amazon.com/getting-started
https://aws.amazon.com/getting-started
https://aws.amazon.com/getting-started
https://aws.amazon.com/getting-started

Getting Started with Serverless Computing on AWS Chapter 1

Your first AWS Lambda

AWS Lambda is the core service in AWS for building serverless applications. You can run
code without provisioning servers. You pay only for the time you run your code, unlike
EC2 where you pay for the time the server is up. Lambda also takes care of high
availability. You can invoke Lambdas from other AWS services, console, or AWS CLL

In this recipe, we will create a Lambda in Java and deploy it using the AWS management
console. In the next recipe, we will also explore AWS CLI to deploy Lambda. In later
recipes and chapters, we will see how we can automate most of the deployment tasks using
Amazon CloudWatch templates similar to how most enterprise projects do.

Getting ready

To follow the example in this recipe, you need a working AWS account. You should also set
up Java Development Kit (JDK) and Maven in your local machine. I am currently using
Java 8 and Maven 3.5.4.

Example projects in this book uses a maven parent project, serverless-cookbook—
parent-aws-java.The versions of libraries used within each Lambda project (for
example, aws . sdk.version) are defined in the parent project PoM file.

If you want to extend any recipe for your particular use case without
needing to have the parent project, you can easily get rid of the parent
project by moving the required properties and dependencies into the
individual projects.

It is a good idea to create a folder within your operating system to manage the code files for
this book. I will use a folder with the name serverless. You need to make sure that you
can execute the following commands from this folder:

javac —-version
mvn —-version

You can set up the parent project inside our parent folder (serverless in my case) by
executing the following commands from the command line:

1. Clone our book's Github repository:

git clone
https://github.com/PacktPublishing/Serverless-Programming—Cookbook.
git

[12]

Getting Started with Serverless Computing on AWS Chapter 1

2. Go inside the repository folder, go inside our project-specific parent project, and
runmvn clean install:

cd Serverless-Programming—-Cookbook
cd serverless—cookbook-parent-aws-java
mvn clean install

The code repository of this book already has working code for all the
recipes, where applicable. You may also create another folder within the
parent folder (serverless is the parent folder in my case) to practice the
examples within this book, and look into the code repository files only,
when in doubt.

Code repository usage guidelines

Each chapter has a directory of its own (for example, Chapter 01). Inside the chapter's
directory there will be sub-directories for each recipe. The recipe specific directory has
names corresponding to the recipe's title. For example, the directory for this chapter, recipe
titled Your first Lambda is your-first-lambda.

Inside the recipe's directory, there will be a directory for storing all resources including the
AWS CLI commands called resources. Long AWS CLI commands are split into multiple
lines for better readability using the \ symbol. If you are using a Windows machine you can
use the ~ symbol instead of the \ symbol in the code files or make a single line command
without the \ symbol.

The recipe's directory also contains a sub-directory for each Lambda project. You need to
runmvn clean package for generating the Lambda JAR from within this directory. The
Lambda JAR is generated within the target directory inside this directory. Every Lambda
project inherits from the common Lambda parent project's directory serverless-
cookbook-parent-aws—java and hence needs to be built before any Lambda project,
following the steps outlined in the previous section.

Code examples within the book follows the AWS documentation style and
is tested primarily on Mac operating system. It should also work on most
Unix based operating systems such as Linux. For alternative solutions you
may refer to the code files repository. Please refer to the heading
Alternative Solutions in the repository's readme file for more details.

[13]

Getting Started with Serverless Computing on AWS Chapter 1

Various user specific parameter values such as IDs, AWS account
numbers, generated JAR file names etc. given within the examples has to
be replaced with valid values based on previous steps executed and your
account specific details. Copy pasting and executing the commands
without verifying and replacing such parameter values can result in error.

How to do it...

We will create our first Lambda with Java as a Maven project. The javadoc comments and
package-info. java files required for checkstyle checks from the parent are not shown
here. We are also making use of the Maven shade plugin from the parent for generating the
JAR files. You may refer to the code files for each recipe for the complete code:

1. Create the Java project based on Maven.

Create a Java project based on Maven with our common parent, declared as
shown next in the PoM file:

You may use an IDE such as Intellij IDEA or Eclipse for working with the
examples in this book.

<groupId>tech.heartin.books.serverless—cookbook</groupId>
<artifactId>helloworld-lambda</artifactId>
<version>0.0.1-SNAPSHOT</version>

<parent>
<groupId>tech.heartin.books.serverlesscookbook</groupId>

<artifactId>serverless-cookbook-parent-aws—java</artifactId>
<version>0.0.1-SNAPSHOT</version>
</parent>

2. Also, declare the only dependency we need for our hello world lambda
project in the poM file:

<dependencies>
<dependency>
<groupId>com.amazonaws</groupld>
<artifactId>aws—-lambda-java-core</artifactId>
<version>${aws.lambda.java.core.version}</version

</dependency>
</dependencies>

[14]

Getting Started with Serverless Computing on AWS Chapter 1

The dependency versions (for example, aws . lambda.java.core.version) are
defined in the PoM file for the parent project serverless-cookbook-parent-

aws—java.
3. Create the Lambda handler class and package it as a JAR.

Create a class, HelloWorldLambdaHandler, that implements the interface,
RequestHandler

package tech.heartin.books.serverlesscookbook;

import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.RequestHandler;

public final class HelloWorldLambdaHandler implements
RequestHandler<String, String> {
public String handleRequest (final String s, final Context
context) {
context.getLogger () .log("input: " + s + "\n");
String greeting = "Hello " + s;
return greeting;

}

To package the Lambda as a JAR file, from the project root folder, run the
following;:

mvn clean package

Two JARS will be created: one with only class files (starting with original-) and
an Uber JAR with dependencies (starting with serverless-). You can easily
differentiate between one and the other looking at their sizes. We will use the JAR
file that starts with original- and that has only the class files for this recipe.

4. Deploy the Lambda handler to the AWS:
1. Log in to the AWS console, and go to Lambda dashboard by clicking
on Services and searching or selecting Lambda. Currently, it is under
the compute category.

2. Create a Lambda function as follows:
1. Click on Create Function.

2. Select Author From Scratch, which is the default.
3. Give aname, such as myHelloWorldLambda.
4. Select Java 8 as the runtime.

[15]

Getting Started with Serverless Computing on AWS Chapter 1

2. Under Role, select Create new role from one or more
templates.

3. Give a role name, such as myHelloWorldLambda.
4. Leave the field for specifying Policy templates blank.

5. Click on Create Function. You should see a success message
after a while.

5. Upload the Lambda JAR:

Go to the Function code section and do the following:

1.
2.
3.

5.

Select Code entry type as Upload a .zip or .jar file.
Select Java 8 as the runtime.

Specify the fully qualified class name with handler method name as

the following:
tech.heartin.books.serverlesscookbook.HelloWorldLambdaH

andler: :handleRequest.

. Click on Upload under Function package and select the JAR file. You

can select the JAR whose name starts with original-.
Click on Save to save with defaults for other fields.

6. We can test the uploaded JAR:

1.

Select Configure test events from the Select a test
event dropdown next to the Test button.

Select Create new test event.
Give a name for the event: MyHelloWorldTest.

Within the JSON request content area, just specify your name, such
as Heartin.

. Click on Create. If successful, it will take you to the

myHelloWorldLambda function page.

. From the myHelloWorldLambda function page, select the test event,

MyHelloWorldTest, next to the Test button, and click the Test button.

You should see the message Hello Heartin after expanding the
details of execution result.

[16]

Getting Started with Serverless Computing on AWS Chapter 1

7. We can also check the logs printed using context.getLogger () .1og():
1. Under the Log output section, you can see the log you printed.
2. You can also see the log in the CloudWatch service. There should be a
Click here link to view the CloudWatch log group. Click on the link,
wait or refresh for a stream that matches your invocation time, and
click on the stream link to see the log statement within CloudWatch.

How it works...

The following are the in detail information about the role and functionality of Lambda
plays and concepts that were introduced in this recipe.

About the parent POM

Example projects in this book use the Maven parent project serverless-cookbook-
parent-aws-java that defines the dependency versions for our examples. The

actual dependencies are defined within each example project to help you understand the
dependencies needed for each use case. All dependency definitions are shown within
comments in the parent POM for quick reference.

Our parent project serverless-cookbook-parent-aws-java is also dependent on two
open source projects: simple-starter-parent-java for the common Java dependencies,
and simple-starter-build-tools for the common build file, such as the code style
plugin definitions.

Lambda roles

In this recipe, we selected the Create new role from template(s) and did not select any
policy. The basic permissions required (logging to CloudWatch) are added by default. We
can also choose an existing role or create a custom role.

Lambda runtimes

AWS Lambda supports various runtimes, such as C# (.NET Core 1.0), C# (.NET Core 2.0),
C# (.NET Core 2.1), Go 1.x, Java 8, Node.js 4.3, Node.js 6.10, Node.js 8.10, Python 2.7, and
Python 3.6. Inline code editing is only allowed for Node.js and Python.

[17]

Getting Started with Serverless Computing on AWS Chapter 1

Extra dependencies

Our parent project, serverless-cookbook-parent-aws-java, defines a few more
dependencies than I have. You can download them automatically through Maven (these
projects are already available in Maven Central) or set these up manually in your local
machine (to examine or modify) by executing the following commands from the command

line.

1. Go inside the parent folder (serverless in my case) and clone the simple-
starter-build-tools project:

git clone https://github.com/heartin/simple-starter-build-tools.git
2. Go inside the project folder and runmvn clean install, as follows:

cd simple-starter-build-tools
mvn clean install

3. Go back to the parent folder (serverless in my case) and clone the simple-

starter-parent-java project:

git clone https://github.com/heartin/simple-starter-parent-java.git

4. Go inside the project folder and runmvn clean install:

cd simple-starter—-parent-java
mvn clean install

For more details on the preceding project dependencies, refer to the
respective Readme files.

There's more...
The following are the in detail information about the other ways to create Lambda and to
deploy its functions:

[18]

Getting Started with Serverless Computing on AWS Chapter 1

Other ways to create Lambda functions from the
management console

Apart from the Author from scratch option, we can create Lambdas using Blueprints and
Serverless Application Repository. Blueprints allow you to choose a preconfigured
template as a starting point. Currently, blueprints are available only for Node.js and
Python. Serverless Application Repository allows you to find and deploy Serverless apps
developed by developers, companies and partners on AWS.

Other ways to deploy code in a Lambda function

In this recipe, we developed our code outside AWS and uploaded it to our AWS Lambda
function as a JAR file. You can also upload the file to Amazon S3 by selecting Code entry
type asUpload a file from Amazon S3, and providing the S3 link. For some languages
such as Node.js and Python, you can also write the code inline within the Lambda function.

Passing JSON to and from Lambda handler

In this recipe, we passed simple Strings to and from our Lambda handler. We can instead
pass a JSON and get back a JSON. To do this, we need to create two POJOs that represent
our input and output, and specify them as generic types within our Handler declaration.
We will see this approach in the next recipe.

See also

¢ Read about the Programming Model for Authoring Lambda Functions in
Java at https://docs.aws.amazon.com/lambda/latest/dg/java-programming—
model.html

e Read about the Lambda permissions model at https://docs.aws.amazon.com/
lambda/latest/dg/intro-permission-model.html

e If you find any issues while setting up and using AWS, you can visit this page for
troubkshooﬁngluﬂp:http://cloudmaterials.com/en/book/troubleshootingf
aws—cloud-beginners

e If you are new to Java, Maven or Git you may read my notes on those from these
links:

® https://javajee.com/book/java-101l-core-java-essentials

[19]

https://docs.aws.amazon.com/lambda/latest/dg/java-programming-model.html
https://docs.aws.amazon.com/lambda/latest/dg/java-programming-model.html
https://docs.aws.amazon.com/lambda/latest/dg/java-programming-model.html
https://docs.aws.amazon.com/lambda/latest/dg/java-programming-model.html
https://docs.aws.amazon.com/lambda/latest/dg/java-programming-model.html
https://docs.aws.amazon.com/lambda/latest/dg/java-programming-model.html
https://docs.aws.amazon.com/lambda/latest/dg/java-programming-model.html
https://docs.aws.amazon.com/lambda/latest/dg/java-programming-model.html
https://docs.aws.amazon.com/lambda/latest/dg/java-programming-model.html
https://docs.aws.amazon.com/lambda/latest/dg/java-programming-model.html
https://docs.aws.amazon.com/lambda/latest/dg/java-programming-model.html
https://docs.aws.amazon.com/lambda/latest/dg/java-programming-model.html
https://docs.aws.amazon.com/lambda/latest/dg/java-programming-model.html
https://docs.aws.amazon.com/lambda/latest/dg/java-programming-model.html
https://docs.aws.amazon.com/lambda/latest/dg/java-programming-model.html
https://docs.aws.amazon.com/lambda/latest/dg/java-programming-model.html
https://docs.aws.amazon.com/lambda/latest/dg/java-programming-model.html
https://docs.aws.amazon.com/lambda/latest/dg/java-programming-model.html
https://docs.aws.amazon.com/lambda/latest/dg/java-programming-model.html
https://docs.aws.amazon.com/lambda/latest/dg/java-programming-model.html
https://docs.aws.amazon.com/lambda/latest/dg/java-programming-model.html
https://docs.aws.amazon.com/lambda/latest/dg/java-programming-model.html
https://docs.aws.amazon.com/lambda/latest/dg/java-programming-model.html
https://docs.aws.amazon.com/lambda/latest/dg/java-programming-model.html
https://docs.aws.amazon.com/lambda/latest/dg/intro-permission-model.html
https://docs.aws.amazon.com/lambda/latest/dg/intro-permission-model.html
https://docs.aws.amazon.com/lambda/latest/dg/intro-permission-model.html
https://docs.aws.amazon.com/lambda/latest/dg/intro-permission-model.html
https://docs.aws.amazon.com/lambda/latest/dg/intro-permission-model.html
https://docs.aws.amazon.com/lambda/latest/dg/intro-permission-model.html
https://docs.aws.amazon.com/lambda/latest/dg/intro-permission-model.html
https://docs.aws.amazon.com/lambda/latest/dg/intro-permission-model.html
https://docs.aws.amazon.com/lambda/latest/dg/intro-permission-model.html
https://docs.aws.amazon.com/lambda/latest/dg/intro-permission-model.html
https://docs.aws.amazon.com/lambda/latest/dg/intro-permission-model.html
https://docs.aws.amazon.com/lambda/latest/dg/intro-permission-model.html
https://docs.aws.amazon.com/lambda/latest/dg/intro-permission-model.html
https://docs.aws.amazon.com/lambda/latest/dg/intro-permission-model.html
https://docs.aws.amazon.com/lambda/latest/dg/intro-permission-model.html
https://docs.aws.amazon.com/lambda/latest/dg/intro-permission-model.html
https://docs.aws.amazon.com/lambda/latest/dg/intro-permission-model.html
https://docs.aws.amazon.com/lambda/latest/dg/intro-permission-model.html
https://docs.aws.amazon.com/lambda/latest/dg/intro-permission-model.html
https://docs.aws.amazon.com/lambda/latest/dg/intro-permission-model.html
https://docs.aws.amazon.com/lambda/latest/dg/intro-permission-model.html
https://docs.aws.amazon.com/lambda/latest/dg/intro-permission-model.html
https://docs.aws.amazon.com/lambda/latest/dg/intro-permission-model.html
https://docs.aws.amazon.com/lambda/latest/dg/intro-permission-model.html
http://cloudmaterials.com/en/book/troubleshooting-aws-cloud-beginners
http://cloudmaterials.com/en/book/troubleshooting-aws-cloud-beginners
http://cloudmaterials.com/en/book/troubleshooting-aws-cloud-beginners
http://cloudmaterials.com/en/book/troubleshooting-aws-cloud-beginners
http://cloudmaterials.com/en/book/troubleshooting-aws-cloud-beginners
http://cloudmaterials.com/en/book/troubleshooting-aws-cloud-beginners
http://cloudmaterials.com/en/book/troubleshooting-aws-cloud-beginners
http://cloudmaterials.com/en/book/troubleshooting-aws-cloud-beginners
http://cloudmaterials.com/en/book/troubleshooting-aws-cloud-beginners
http://cloudmaterials.com/en/book/troubleshooting-aws-cloud-beginners
http://cloudmaterials.com/en/book/troubleshooting-aws-cloud-beginners
http://cloudmaterials.com/en/book/troubleshooting-aws-cloud-beginners
http://cloudmaterials.com/en/book/troubleshooting-aws-cloud-beginners
http://cloudmaterials.com/en/book/troubleshooting-aws-cloud-beginners
http://cloudmaterials.com/en/book/troubleshooting-aws-cloud-beginners
http://cloudmaterials.com/en/book/troubleshooting-aws-cloud-beginners
http://cloudmaterials.com/en/book/troubleshooting-aws-cloud-beginners
http://cloudmaterials.com/en/book/troubleshooting-aws-cloud-beginners
https://javajee.com/book/java-101-core-java-essentials
https://javajee.com/book/java-101-core-java-essentials
https://javajee.com/book/java-101-core-java-essentials
https://javajee.com/book/java-101-core-java-essentials
https://javajee.com/book/java-101-core-java-essentials
https://javajee.com/book/java-101-core-java-essentials
https://javajee.com/book/java-101-core-java-essentials
https://javajee.com/book/java-101-core-java-essentials
https://javajee.com/book/java-101-core-java-essentials
https://javajee.com/book/java-101-core-java-essentials
https://javajee.com/book/java-101-core-java-essentials
https://javajee.com/book/java-101-core-java-essentials
https://javajee.com/book/java-101-core-java-essentials
https://javajee.com/book/java-101-core-java-essentials
https://javajee.com/book/java-101-core-java-essentials
https://javajee.com/book/java-101-core-java-essentials
https://javajee.com/book/java-101-core-java-essentials
https://javajee.com/book/java-101-core-java-essentials
https://javajee.com/book/java-101-core-java-essentials

Getting Started with Serverless Computing on AWS Chapter 1

® https://javajee.com/book/maven-101-maven-build-
automation-tool-essentials

® https://javajee.com/book/git-101-git-distributed-version-
control-system-essentials

Your first Lambda with AWS CLI

The AWS Command Line Interface (CLI) is a command line tool provided by AWS to
manage AWS services. You can save your credentials and config into profiles, and then
specify a profile while executing a command. The more you get familiar with the CLI
commands, the faster you can work with AWS services, making you more productive.

In this recipe, we will deploy an AWS Lambda using AWS CLI. We will use an updated
hello world. In the last recipe, we had sent and received back simple text. In this recipe, we
will demonstrate the use of POJOs for sending to and retrieving JSON data from the
Lambda handler.

In most of the later recipes within this book, I will be including AWS CLI commands along
with either Management Console or CloudFormation steps to provide an overview of
various API usages in a programming language-independent way. You can follow these
API usages along with any particular programming language SDK documentation to
implement it in that language. The CLI commands also help us better understand the
CloudFormation templates.

Getting ready

Following are the prerequisites for this recipe:

1. Install and configure JDK, Maven and the parent project, serverless-
cookbook-parent—aws—java, and read the section as outlined in

2. Follow the Getting ready section of the recipe Your first AWS Lambda to install and
configure JDK, Maven and the parent project, serverless—-cookbook-parent-
aws-java, and follow the notes given in that section for code usage guidelines

3. Configure AWS CLI as given later in this section

4. Create an S3 bucket

[20]

https://javajee.com/book/maven-101-maven-build-automation-tool-essentials
https://javajee.com/book/maven-101-maven-build-automation-tool-essentials
https://javajee.com/book/maven-101-maven-build-automation-tool-essentials
https://javajee.com/book/maven-101-maven-build-automation-tool-essentials
https://javajee.com/book/maven-101-maven-build-automation-tool-essentials
https://javajee.com/book/maven-101-maven-build-automation-tool-essentials
https://javajee.com/book/maven-101-maven-build-automation-tool-essentials
https://javajee.com/book/maven-101-maven-build-automation-tool-essentials
https://javajee.com/book/maven-101-maven-build-automation-tool-essentials
https://javajee.com/book/maven-101-maven-build-automation-tool-essentials
https://javajee.com/book/maven-101-maven-build-automation-tool-essentials
https://javajee.com/book/maven-101-maven-build-automation-tool-essentials
https://javajee.com/book/maven-101-maven-build-automation-tool-essentials
https://javajee.com/book/maven-101-maven-build-automation-tool-essentials
https://javajee.com/book/maven-101-maven-build-automation-tool-essentials
https://javajee.com/book/maven-101-maven-build-automation-tool-essentials
https://javajee.com/book/maven-101-maven-build-automation-tool-essentials
https://javajee.com/book/maven-101-maven-build-automation-tool-essentials
https://javajee.com/book/maven-101-maven-build-automation-tool-essentials
https://javajee.com/book/maven-101-maven-build-automation-tool-essentials
https://javajee.com/book/maven-101-maven-build-automation-tool-essentials
https://javajee.com/book/maven-101-maven-build-automation-tool-essentials
https://javajee.com/book/git-101-git-distributed-version-control-system-essentials
https://javajee.com/book/git-101-git-distributed-version-control-system-essentials
https://javajee.com/book/git-101-git-distributed-version-control-system-essentials
https://javajee.com/book/git-101-git-distributed-version-control-system-essentials
https://javajee.com/book/git-101-git-distributed-version-control-system-essentials
https://javajee.com/book/git-101-git-distributed-version-control-system-essentials
https://javajee.com/book/git-101-git-distributed-version-control-system-essentials
https://javajee.com/book/git-101-git-distributed-version-control-system-essentials
https://javajee.com/book/git-101-git-distributed-version-control-system-essentials
https://javajee.com/book/git-101-git-distributed-version-control-system-essentials
https://javajee.com/book/git-101-git-distributed-version-control-system-essentials
https://javajee.com/book/git-101-git-distributed-version-control-system-essentials
https://javajee.com/book/git-101-git-distributed-version-control-system-essentials
https://javajee.com/book/git-101-git-distributed-version-control-system-essentials
https://javajee.com/book/git-101-git-distributed-version-control-system-essentials
https://javajee.com/book/git-101-git-distributed-version-control-system-essentials
https://javajee.com/book/git-101-git-distributed-version-control-system-essentials
https://javajee.com/book/git-101-git-distributed-version-control-system-essentials
https://javajee.com/book/git-101-git-distributed-version-control-system-essentials
https://javajee.com/book/git-101-git-distributed-version-control-system-essentials
https://javajee.com/book/git-101-git-distributed-version-control-system-essentials
https://javajee.com/book/git-101-git-distributed-version-control-system-essentials
https://javajee.com/book/git-101-git-distributed-version-control-system-essentials
https://javajee.com/book/git-101-git-distributed-version-control-system-essentials

Getting Started with Serverless Computing on AWS Chapter 1

Configuring AWS CLI

We can use pip or pip3 to install AWS CLI.

In a Windows machine, you can also install AWS CLI using the MSI

installer following the steps at https://docs.aws.amazon.com/cli/
latest/userguide/awscli-install-windows.html#install-msi-on-

windows.

You use pip or pip3 to install AWS CLI as:

pip install awscli --upgrade —-user

Pip is a Python package management tool that can be installed along with Python. You may
replace pip with pip3 if you have installed pip3. The ~~upgrade option upgrades

any installed requirements. The ——user option installs the program to a sub-directory of
your user directory to avoid modifying libraries used by operating system.

The ids or keys shown within the examples in this book should be
replaced with your own ids wherever applicable. Simply copy pasting the
commands will not work in such cases.

We can configure our AWS credentials in our local machine by running aws configure.
This will setup a default AWS profile. You can have more named profiles if you want.

It is recommended that you create the default profile with credentials of a
user with basic permissions. You can then create additional profiles for
other use cases. We will be creating a user profile called admin later
within this section for a user with admin permissions.

Run the below command to configure AWS CLI for the default profile. If aws command is
not recognized, you will need to add it to the path.

aws configure

Provide your AWS Access Key ID, AWS Secret Access Key, Default region name, and
Default output format:

AWS Access Key ID [Nonel: AKIAJMLZ7HO5RLH3NB7A

AWS Secret Access Key [Nonel: J4fk9J1f+r3LBSX4HkR+QKRIgnPzvZbZ2/1lmddtS
Default region name [Nonel: us-east-1

Default output format [Nonel: json

[21]

https://docs.aws.amazon.com/cli/latest/userguide/awscli-install-windows.html#install-msi-on-windows
https://docs.aws.amazon.com/cli/latest/userguide/awscli-install-windows.html#install-msi-on-windows
https://docs.aws.amazon.com/cli/latest/userguide/awscli-install-windows.html#install-msi-on-windows
https://docs.aws.amazon.com/cli/latest/userguide/awscli-install-windows.html#install-msi-on-windows
https://docs.aws.amazon.com/cli/latest/userguide/awscli-install-windows.html#install-msi-on-windows
https://docs.aws.amazon.com/cli/latest/userguide/awscli-install-windows.html#install-msi-on-windows
https://docs.aws.amazon.com/cli/latest/userguide/awscli-install-windows.html#install-msi-on-windows
https://docs.aws.amazon.com/cli/latest/userguide/awscli-install-windows.html#install-msi-on-windows
https://docs.aws.amazon.com/cli/latest/userguide/awscli-install-windows.html#install-msi-on-windows
https://docs.aws.amazon.com/cli/latest/userguide/awscli-install-windows.html#install-msi-on-windows
https://docs.aws.amazon.com/cli/latest/userguide/awscli-install-windows.html#install-msi-on-windows
https://docs.aws.amazon.com/cli/latest/userguide/awscli-install-windows.html#install-msi-on-windows
https://docs.aws.amazon.com/cli/latest/userguide/awscli-install-windows.html#install-msi-on-windows
https://docs.aws.amazon.com/cli/latest/userguide/awscli-install-windows.html#install-msi-on-windows
https://docs.aws.amazon.com/cli/latest/userguide/awscli-install-windows.html#install-msi-on-windows
https://docs.aws.amazon.com/cli/latest/userguide/awscli-install-windows.html#install-msi-on-windows
https://docs.aws.amazon.com/cli/latest/userguide/awscli-install-windows.html#install-msi-on-windows
https://docs.aws.amazon.com/cli/latest/userguide/awscli-install-windows.html#install-msi-on-windows
https://docs.aws.amazon.com/cli/latest/userguide/awscli-install-windows.html#install-msi-on-windows
https://docs.aws.amazon.com/cli/latest/userguide/awscli-install-windows.html#install-msi-on-windows
https://docs.aws.amazon.com/cli/latest/userguide/awscli-install-windows.html#install-msi-on-windows
https://docs.aws.amazon.com/cli/latest/userguide/awscli-install-windows.html#install-msi-on-windows
https://docs.aws.amazon.com/cli/latest/userguide/awscli-install-windows.html#install-msi-on-windows
https://docs.aws.amazon.com/cli/latest/userguide/awscli-install-windows.html#install-msi-on-windows
https://docs.aws.amazon.com/cli/latest/userguide/awscli-install-windows.html#install-msi-on-windows
https://docs.aws.amazon.com/cli/latest/userguide/awscli-install-windows.html#install-msi-on-windows
https://docs.aws.amazon.com/cli/latest/userguide/awscli-install-windows.html#install-msi-on-windows
https://docs.aws.amazon.com/cli/latest/userguide/awscli-install-windows.html#install-msi-on-windows
https://docs.aws.amazon.com/cli/latest/userguide/awscli-install-windows.html#install-msi-on-windows

Getting Started with Serverless Computing on AWS Chapter 1

AWS Access Key ID and AWS Secret Access Key is generated by AWS when you create a
user with programmatic access. We had created an user and generated these credentials in
the recipe Getting started with the AWS platform. You can also regenerate them later if you
forget or miss them following the below steps:

Login to AWS.

Go to IAM service.

Click on Users from the sidebar. This will show you the user summary page.
From within the user summary page, click on Security Credentials tab.

S

Click on Create access key to create a new key. You may make the old key
inactive or delete it.

The AWS Access Key ID and AWS Secret Access Key entered is stored in a file,
~/.aws/credentials, and the region name and output format is stored in a file,
~/.aws/config.

If you are using a Windows machine please refer to the sub heading Note
for Windows users at the end of this section.

Verify the configuration as given as follows:

cat ~/.aws/credentials

[default]
aws_access_key_id = AKIAIMLZ7HO5RLH3NB7A
aws_secret_access_key = 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

And next, run cat ~/.aws/config:

[default]
region = us—east-1
output = json

[22]

Getting Started with Serverless Computing on AWS Chapter 1

AWS documentation recommends creating a named profile for your admin user (for
instance, a user with administrator access policy) and then using it with AWS CLI. You can
add an additional profile in ~/ . aws/credentials, as shown here:

[default]
aws_access_key_id = AKIAIJMLZ7HOS5RLH3NB7A
aws_secret_access_key = J4Tk9J1f+r3LBSX4HKR+QKRIgnPzvZbZ2/1mddtS

[admin]
aws_access_key_id = BKIAJMLZ7HO5RLH3NB7B
aws_secret_access_key = K4fk9J1f+r3LBSX4HKR+QKRIgnNPzvZbZ2/1mddtT

You can add an additional profile by editing the file ~/ . aws/config, as shown here:

[default]
region = us-east-1

output = json

[profile admin]
region = us-east-1
output json

Creating S3 bucket
We will be using Amazon Simple Storage Service (S3) to upload our JAR files. Therefore it
would be good to do some reading on basic S3 concepts, such as S3 buckets and S3 keys.
You can create a bucket using the below command:

aws s3 mb s3://<bucket name> --profile admin

Replace the <bucket name> with your bucket's name. Remember that the S3 bucket name
has to be unique across AWS.

Note for Windows users

If you are using a Windows machine the . aws folder should be present inside your user
profile folder and may be found as dir %UserProfile%\.aws. You may also use the
notepad command to edit files in a notepad instead of the cat command. Remember to
save the notepad file if you are editing:

[23]

Getting Started with Serverless Computing on AWS Chapter 1

File Edit Format View Help

[default]

aws_access_key_id = AKIATAT2YWL5GAHGERGA

aws_secret_access_key = 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

[admin]
aws_access_key id = AKIAIUWGCSOAAQDNP2YA
aws_secret_access_key = TGAYXGDkmugeT9rvHHzBAqIjioyer3@MXoTUrwZe[serverless-admin

CLI commands that feature in this book should work on the terminals of a
UNIX-style operating system, such as Linux or Mac, without any or many
changes. Minor modifications may be needed to execute them in other
platforms. For example, specifying multi-line commands using \ has to be
replaced with ~ for the Windows OS command prompt, and * for
PowerShell.

How to do it...

We will create our Lambda, similar to in the Your First AWS Lambda recipe, but using
PQOJOs for input and output. We will not go deep into concepts discussed previously. If in
doubt, please refer to the Your First AWS Lambda recipe.

1. Create the Maven project with only the core dependency, aws-lambda-java-

core:

<groupId>tech.heartin.books.serverless—cookbook</groupId>
<artifactId>lambda-handler-with-pojos</artifactId>
<version>0.0.1-SNAPSHOT</version>

<parent>
<groupld>tech.heartin.books.serverlesscookbook</groupId>
<artifactId>serverless—-cookbook-parent-aws-java</artifactId>
<version>0.0.1-SNAPSHOT</version>

</parent>

<dependencies>
<dependency>
<groupld>com.amazonaws</groupId>
<artifactId>aws-lambda-java-core</artifactId>
<version>${aws.lambda.java.core.version}</version>
</dependency>

</dependencies>

[24]

Getting Started with Serverless Computing on AWS Chapter 1

2. Create POJO for input:
import lombok.Data;

@Data
public class HandlerRequest {
private String name;

}
3. Create POJO for output:

import lombok.AllArgsConstructor;
import lombok.Data;

@Data

@AllArgsConstructor

public class HandlerResponse {
private String message;

}

I have used project 1ombok within the POJOs to autogenerate setters,
getters, and all-arguments constructor. The 1ombok dependencies are
defined in the parent project, simple-starter-parent-java.

4. Create a Lambda handler with input and output POJOs:

public final class MyLambdaHandler implements
RequestHandler<HandlerRequest, HandlerResponse> {

public HandlerResponse handleRequest (final HandlerRequest
request,

final Context context) {
context.getLogger () .log("Hello " + request.getName());
return new HandlerResponse ("Hello " + request.getName());

}

5. Package the JAR.

We can generate JARs by running mvn clean package. Two JARs are created:
one with only class files (starting with original-) and an Uber JAR with

dependencies (starting with serverless-). In this recipe, we will use the original
JAR.

[25]

Getting Started with Serverless Computing on AWS Chapter 1

6. Upload the JAR file to your S3 bucket using AWS CLI:

aws s3 cp target/original-serverless—-cookbook-lambda-handler-with-
pojos—0.0.1-SNAPSHOT. jar s3://serverless—-cookbook/lambda-handler-
with-pojos—-0.0.1-SNAPSHOT. jar ——profile admin

Replace the bucket name serverless-cookbook with your bucket's
name. We saw the steps to create a bucket in the Getting ready section.
Also, -—profile admin is the profile we created in the Getting

ready section.

7. Create a policy with the aws iam create-policy command:

aws iam create-policy \

——policy—-name lambda_iam_policy_test \
——policy-document file://basic-lambda-permissions.txt \
——profile admin

Replace <account_id> with your account id. You can get your account number
by going to the My Account page after clicking on your name on the top right of
your AWS management console. The policy file is also available in the resources
folder of the recipe. If successful, you should get a response with the ARN of the
policy created.

You may create a more restricting policy after checking the basic Lambda
permissions template at https://docs.aws.amazon.com/lambda/latest/
dg/policy-templates.html.

8. Create a role using the aws iam create-role command:

aws iam create-role \

—-role-name lambda_iam_role_test \
——assume-role-policy-document file://iam-role-trust-
relationship.txt \

——profile admin

The policy file is available in the resources folder of the recipe. If successful, you
should get a response with the arn of the role created.

Trust relationship policies allow the Lambda service to assume this role
whereas the standard policy document is attached to a role to allow or
deny access to resources.

[26]

https://docs.aws.amazon.com/lambda/latest/dg/policy-templates.html
https://docs.aws.amazon.com/lambda/latest/dg/policy-templates.html
https://docs.aws.amazon.com/lambda/latest/dg/policy-templates.html
https://docs.aws.amazon.com/lambda/latest/dg/policy-templates.html
https://docs.aws.amazon.com/lambda/latest/dg/policy-templates.html
https://docs.aws.amazon.com/lambda/latest/dg/policy-templates.html
https://docs.aws.amazon.com/lambda/latest/dg/policy-templates.html
https://docs.aws.amazon.com/lambda/latest/dg/policy-templates.html
https://docs.aws.amazon.com/lambda/latest/dg/policy-templates.html
https://docs.aws.amazon.com/lambda/latest/dg/policy-templates.html
https://docs.aws.amazon.com/lambda/latest/dg/policy-templates.html
https://docs.aws.amazon.com/lambda/latest/dg/policy-templates.html
https://docs.aws.amazon.com/lambda/latest/dg/policy-templates.html
https://docs.aws.amazon.com/lambda/latest/dg/policy-templates.html
https://docs.aws.amazon.com/lambda/latest/dg/policy-templates.html
https://docs.aws.amazon.com/lambda/latest/dg/policy-templates.html
https://docs.aws.amazon.com/lambda/latest/dg/policy-templates.html
https://docs.aws.amazon.com/lambda/latest/dg/policy-templates.html
https://docs.aws.amazon.com/lambda/latest/dg/policy-templates.html
https://docs.aws.amazon.com/lambda/latest/dg/policy-templates.html
https://docs.aws.amazon.com/lambda/latest/dg/policy-templates.html
https://docs.aws.amazon.com/lambda/latest/dg/policy-templates.html

Getting Started with Serverless Computing on AWS Chapter 1

9. Attach the policy to the role:

aws iam attach-role-policy \

—--role—-name lambda_iam_role_test \

——policy-arn

arn:aws:iam: :<account_id>:policy/lambda_iam_policy_test \
——profile admin

Replace <account_id> with your account number.

10. Create a Lambda function providing the role and the S3 location:

aws lambda create-function \

——function—name demo-lambda-with-cli \

——runtime java8 \

—-role arn:aws:iam::<account_id>:role/lambda_iam_role_test \
—-handler

tech.heartin.books. serverlesscookbook.MyLambdaHandler: :handleReques
t\

——code S3Bucket=serverless—cookbook, S3Key=lambda-handler-with-
pojos—0.0.1-SNAPSHOT. jar \

——timeout 15 \

—--memory-size 512 \

——profile admin

Replace <account_id> with your account number. The code option can accept
the shorthand form as used here, or a JSON.

11. Invoke our Lambda from CLI:

aws lambda invoke \

——invocation-type RequestResponse \
——function-name demo-lambda-with-cli \
--log-type Tail \

—--payload '{"name":"Heartin"}' \
——-profile admin \

outputfile.txt

In certain platforms, you might have to add escaping for the payload specified in
the command line. This is not required as the payload is specified as a file, as
here:

—-payload file://input.txt \

[27]

Getting Started with Serverless Computing on AWS Chapter 1

The output can be viewed in the outputfile.txt file:

$ cat outputfile.txt
{"message":"Hello Heartin"}$

12. Note the following regarding cleanup roles, policy, and Lambda.

To delete Lambda, perform the following:

aws lambda delete-function \
——function—-name demo-lambda-with-cli \
——profile admin

To detach policy from the role, perform the following:

aws iam detach-role-policy \

—-role-name lambda_iam_role_test \

—-policy-arn

arn:aws:iam: :<account_id>:policy/lambda_iam_policy_test \
——profile admin

Replace <account_id> with your account number.

To delete a role, note the following;:

aws iam delete-role \
—--role—-name lambda_iam_role_test \
——profile admin

To delete policy, perform the following:
aws iam delete-policy \
—-policy-arn
arn:aws:iam: :<account_id>:policy/lambda_iam_policy_test \

——profile admin

Replace <account_id> with your account number.

How it works...

The following are the important details and concepts that were introduced in this recipe:

[28]

Getting Started with Serverless Computing on AWS Chapter 1

Creating a role and attaching a policy

You need to create a role with a trust policy that allows our Lambda to assume the role.
You also need to attach a policy that has CloudWatch permissions for logging.

Lambda memory-size and timeout

When creating a function from CLIL the default value of timeout is 3 seconds, and default
value memory-size is 128 MB, which may not be sufficient for Lambdas with Uber JARs,
and you may get a timeout exception or Process exited before completing request. Hence,
I'have set a higher timeout and memory-size. Other parameters are mostly self-explanatory.

S3 Bucket and Key

Amazon S3 is an object store. Objects (files) are stored as simple key-value pairs within
containers called buckets. Bucket names have to be unique across AWS. There is no folder
hierarchy within the buckets like traditional file systems. However, we can simulate folder
structure with hierarchical key names. For example, consider the
folderl/folder2/file.txt key, that simulates a folder-like structure. Read more about
simulating folders in S3 at https://docs.aws.amazon.com/AmazonS3/latest /user—guide/
using-folders.html.

Cleaning up

You need to do a cleanup in the following order:

1. Delete Lambda that uses the role
2. Detach policy from role
3. Delete role and policy

delete a role without deleting the Lambda. If you try to invoke the
Lambda before attaching another role, it will give you an error such

0 We cannot delete a role without detaching all policies. We can however
as—The role defined for the function cannot be assumed by Lambda.

[29]

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/using-folders.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/using-folders.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/using-folders.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/using-folders.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/using-folders.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/using-folders.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/using-folders.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/using-folders.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/using-folders.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/using-folders.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/using-folders.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/using-folders.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/using-folders.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/using-folders.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/using-folders.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/using-folders.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/using-folders.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/using-folders.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/using-folders.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/using-folders.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/using-folders.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/using-folders.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/using-folders.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/using-folders.html

Getting Started with Serverless Computing on AWS Chapter 1

There's more...

Once you get familiar with the AWS CLI commands, it is much faster and easier to work
with AWS CLI, rather than navigate through the pages of AWS management console. This
chapter covers only a very basic use case. Please follow the links in the See also section and
try out more examples with AWS CLI and Lambda.

See also

* More details on installing AWS CLI using pip can be found at https://docs.
aws.amazon.com/cli/latest/userguide/installing.html

¢ AWS documentation on CLI configuration can be found at https://docs.aws.
amazon.com/cli/latest/userguide/cli-chap-getting-started.html

o AWS CLI command reference can be found at https://docs.aws.amazon.com/
cli/latest/reference
e If you find any issues while setting up and using AWS, you can visit this page for

troubk£h00ﬁngluﬂp:http://cloudmaterials.com/en/book/troubleshootingf
aws—-cloud-beginners

Your first Lambda with Amazon
CloudFormation

Amazon CloudFormation lets you provision and model your AWS service

infrastructure declaratively. Instead of using interactive tools such as management console
or CLI directly, you can declare the configuration with expected order, dependencies,
input, and output in a template, and CloudFormation will provision it for you.

The concept of writing code to manage infrastructure is referred to as Infrastructure as
Code (IaC) and is a practice that most enterprise companies follow. You can also maintain
the provisioning code in a code repository and follow practices such as code reviews like
any other code. Thus, it lets you reuse the provisioning code.

In this recipe, we will use CloudFormation to provision the infrastructure for the Lambda
we created in the Your Lambda with AWS CLI recipe.

[30]

https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://docs.aws.amazon.com/cli/latest/reference
https://docs.aws.amazon.com/cli/latest/reference
https://docs.aws.amazon.com/cli/latest/reference
https://docs.aws.amazon.com/cli/latest/reference
https://docs.aws.amazon.com/cli/latest/reference
https://docs.aws.amazon.com/cli/latest/reference
https://docs.aws.amazon.com/cli/latest/reference
https://docs.aws.amazon.com/cli/latest/reference
https://docs.aws.amazon.com/cli/latest/reference
https://docs.aws.amazon.com/cli/latest/reference
https://docs.aws.amazon.com/cli/latest/reference
https://docs.aws.amazon.com/cli/latest/reference
https://docs.aws.amazon.com/cli/latest/reference
https://docs.aws.amazon.com/cli/latest/reference
https://docs.aws.amazon.com/cli/latest/reference
https://docs.aws.amazon.com/cli/latest/reference
http://cloudmaterials.com/en/book/troubleshooting-aws-cloud-beginners
http://cloudmaterials.com/en/book/troubleshooting-aws-cloud-beginners
http://cloudmaterials.com/en/book/troubleshooting-aws-cloud-beginners
http://cloudmaterials.com/en/book/troubleshooting-aws-cloud-beginners
http://cloudmaterials.com/en/book/troubleshooting-aws-cloud-beginners
http://cloudmaterials.com/en/book/troubleshooting-aws-cloud-beginners
http://cloudmaterials.com/en/book/troubleshooting-aws-cloud-beginners
http://cloudmaterials.com/en/book/troubleshooting-aws-cloud-beginners
http://cloudmaterials.com/en/book/troubleshooting-aws-cloud-beginners
http://cloudmaterials.com/en/book/troubleshooting-aws-cloud-beginners
http://cloudmaterials.com/en/book/troubleshooting-aws-cloud-beginners
http://cloudmaterials.com/en/book/troubleshooting-aws-cloud-beginners
http://cloudmaterials.com/en/book/troubleshooting-aws-cloud-beginners
http://cloudmaterials.com/en/book/troubleshooting-aws-cloud-beginners
http://cloudmaterials.com/en/book/troubleshooting-aws-cloud-beginners
http://cloudmaterials.com/en/book/troubleshooting-aws-cloud-beginners
http://cloudmaterials.com/en/book/troubleshooting-aws-cloud-beginners
http://cloudmaterials.com/en/book/troubleshooting-aws-cloud-beginners
http://cloudmaterials.com/en/book/troubleshooting-aws-cloud-beginners

Getting Started with Serverless Computing on AWS Chapter 1

Getting ready

You need to read and follow to the Getting ready section of the recipes Your first AWS
Lambda and Your first Lambda with AWS CLI before proceeding.

Set up the project and S3 bucket

In this recipe, we are reusing the Lambda we created in the Your Lambda with AWS
CLI recipe. Generate a JAR by running mvn clean package inside that project,
and upload the JAR to S3:

aws s3 cp target/original-serverless-cookbook-lambda-handler-with-
pojos-0.0.1-SNAPSHOT. jar s3://serverless-cookbook/lambda-handler-with-
pojos—0.0.1-SNAPSHOT.jar —-profile admin

Replace the bucket name serverless-cookbook with your bucket's name. Refer to the
Getting ready section of the recipe Your First AWS CLI to create the S3 bucket.

Understanding YAML and JSON

CloudFormation templates are written in JSON or YAML. Both support data in key-value
pairs, objects, arrays, and so on .YAML also supports additional features such as multi-line
strings, comments, and so on. I will also be using YAML for the examples. Since YAML
support was introduced later for CloudFormation, you will also see a lot of JSON templates
in the web. So, it is also good to have a decent understanding of YAML and JSON. If you
are familiar with one, you may also use one of the JSON to YAML or YAML to

JSON converters available online.

How to do it...

1. Create the CloudFormation template.

Resources components specify the AWS resources used. We need two resources
for our use case: a role and a Lambda function with that role. The following is the
basic structure of our CloudFormation template:

AWSTemplateFormatVersion: '2010-09-09'
Description: Building Lambda with AWS CloudFormation
Resources:

IamRoleLambdaExecution:

[31]

Getting Started with Serverless Computing on AWS Chapter 1

Type: AWS::IAM::Role
Properties:
Properties for the role are shown later.
LambdaFunctionWithCF:
Type: AWS::Lambda::Function
Properties:
Properties for the Lambda are shown later.
DependsOn:
— IamRolelLambdaExecution

I have also defined AWSTemplateFormatVersion and Description as a general
practice, but they are optional. Note that properties for the
IamRoleLambdaExecution and LambdaFunctionWithCF are not shown here.
You may refer to further steps or use the template from the code files.

The role needs a trust relationship policy that allows the lambda to assume that
role, and we need to attach a policy to the role that provides CloudWatch logging
permissions. The AssumeRolePolicyDocument property specifies the trust
relationship policy for the role:

AssumeRolePolicyDocument:
Version: '2012-10-17"
Statement:

- Effect: Allow
Principal:
Service:
— lambda.amazonaws.com
Action:
- sts:AssumeRole

The policy is specified inline within the Policies property of the role:

Policies:
— PolicyName: 'lambda-with-cf-policy'
PolicyDocument:
Version: '2012-10-17"
Statement:
- Effect: Allow
Action:

— logs:CreateLogGroup

— logs:CreateLogStream

- logs:PutLogEvents
Resource: arn:aws:logs:*:*:*

[32]

Getting Started with Serverless Computing on AWS Chapter 1

We will also define two more properties for the role, namely path and name:

Path: "/"
RoleName: "lambda-with-cf-role"

Our Lambda function will have the following basic configuration:

LambdaFunctionWithCF:
Type: AWS::Lambda::Function
Properties:
Code:
S3Bucket: 'serverless-cookbook'
S3Key: lambda-handler-with-pojos-0.0.1-SNAPSHOT. jar
FunctionName: first-lambda-with-cloud-formation
Handler:
tech.heartin.books.serverlesscookbook.MyLambdaHandler: :handleReques
t

MemorySize: 512

Role:

Fn::GetAtt:

- IamRoleLambdaExecution

- Arn
Runtime: java8
Timeout: 15

DependsOn:
- IamRoleLambdaExecution

We specify the role as a dependency for the Lambda function, and
use Fn: :GetAtt to retrieve the role dynamically instead of hardcoding the
name. Most of the other properties are self-explanatory.

A CloudFormation stack is a collection of AWS resources that you need to
manage as a single unit. All the resources in a stack are defined by a
CloudFormation template. When you delete the stack, all of its related resources
are also deleted.

We can create a CloudFormation stack in different ways, including the following:

1. Going through the Create Stack option within the CloudFormation
service inside AWS Management Console

2. Uploading directly from the Template Designer within the
CloudFormation service inside AWS Management Console

3. AWS CLI

[33]

Getting Started with Serverless Computing on AWS Chapter 1

In this recipe, I will use Designer, but in all other recipes I will be using AWS
CLI. AWS CLI is the best way to deploy CloudFormation templates. Designer is
also a good tool to visualize and validate your scripts.

2. Create CloudFormation stack from Designer:

1.
2.

10.

Log in to AWS and go to CloudFormation service.

Click on the Design template button to go to Designer. Within
designer, you may do the following:

Choose template language as YAML in the editor. (If you are using a
JSON template, use JSON instead.)

Select the Template tab in the editor.
Copy and paste your template into the template editor window.

Click on refresh on the Designer to see the template in the Design
view.

If any changes are required, you can either make changes within the
Template tab or use the Components tab.

If everything looks good, click on the upload button on the top left of
the designer to launch the Stack creation wizard with the current
template.

Follow the wizard with defaults, and select the checkbox for I
acknowledge that AWS CloudFormation might create IAM resources
with custom names. Finally, click on Create Stack.

Invoke our Lambda with AWS CLI as follows and verify:

aws lambda invoke \

——invocation-type RequestResponse \

——function-name first-lambda-with-cloud-formation \
--log-type Tail \

—-payload '{"name":"Heartin"}' \

——-profile admin \

outputfile.txt

Output can be viewed in the outputfile. txt file:

$ cat outputfile.txt
{"message":"Hello Heartin"}$

[34]

Getting Started with Serverless Computing on AWS Chapter 1

Cleaning up roles, policy, and Lambda

To clean up resources created by CloudFormation, you just need to delete the stack. This is
the default setting. Since we have used AWS management console for stack creation, we
will use it for deletion as well.

You can delete a CloudFormation stack from the management console as follows: go to
CloudFormation service, select the stack, click on Actions, and click Delete Stack.

How it works...

In this recipe, we used the following CloudFormation template components: Resource,
AWSTemplateFormatVersion, and Description. Resources are the AWS resources used
in the template. AWSTemplateFormatVersion is the version of CloudFormation template
the template conforms to.

The only mandatory section in a CloudFormation template is Resource.
However, it is a good practice to always define a version and a description
for a template.

We used two resources: a role (IAMRoleLambdaExecution) and a Lambda function
(LambdaFunctionWithCF) that depends on that role. Resource names can be
anything. Type specifies the type of the resource. We used two types,

namely AWS: : IAM: :Role and AWS::Lambda::Function.

The properties of the AwWS: : IAM: : Role resource type that we used are as follows:

® AssumeRolePolicyDocument specifies the trust relationship policy for the role

e Policies specify the policies inline
The properties of the AWS: : Lambda : : Funct ion resource type that we used are as follows:

* Code property specifies the S3 bucket and the key. You can also specify a
reference to an S3 Bucket resource type so that a new bucket is created
dynamically and its name is used here.

e FunctionName specifies the name of the Lambda function.

¢ Handler specifies the fully qualified name of the handler class with the handler
method.

® MemorySize specifies the memory in MB. The number of CPU cores is decided
by AWS based on the memory.

[35]

Getting Started with Serverless Computing on AWS Chapter 1

® Role specifies the role.
¢ Runtime specifies the runtime (for instance, java8).
e TimeOut specifies the timeout.

To get the role Arn, we used the GetAtt function passing the logical name of the Role and
the property name Arn:

- IamRoleLambdaExecution
- Arn

Fn::GetAtt is an intrinsic function that returns the value of an attribute from a resource in
the template.

We used CloudFormation designer in the recipe to see our template in design view, and
then uploaded the template into a stack from the designer. You can also use the Designer to
design CloudFormation templates from scratch.

There's more...

You can check the documentation and study related components within Lambda code if
interested:

CloudFormation Template Components

CloudFormation templates are composed of the following primary components:

e AWSTemplateFormatVersion is the version of CloudFormation template the
template conforms to

e Description is a text that describes the template

e Resource components are the AWS resources used in the template
e Parameter components are the input (dynamic) to your template
e Mapping components are variables (static) for your template

e Output components describe the values that are returned

e Condition components control resource provisioning

¢ Metadata provides additional information about the template

[36]

Getting Started with Serverless Computing on AWS Chapter 1

e Transform specifies the version of the AWS Serverless Application Model
(AWS SAM) for Serverless applications

Resource is the only mandatory section of a CloudFormation template.

We will talk about the components in the recipe in which they are introduced. Read more
about template components at https://docs.aws.amazon.com/AWSCloudFormation/
latest/UserGuide/template—anatomy.html.

Resource component

The following are some of the important features of Resource component:

e Resource component of the template specifies the AWS resources used in the
template

e Resource can reference each other using the ref element
¢ Resource names can be anything
e Type specifies the type of the resource

e Each type has its own set of properties that you can refer to from the
documentation, given under the properties element

® DependsOn specifies the other resources that the current resource is dependent
on

Intrinsic functions

Intrinsic functions are built-in functions provided by AWS to use within a template for
dynamically adding values. Common intrinsic functions used within CloudFormation
templates are as follows: Fn: :Base64, Fn::Cidr, Fn::FindInMap, Fn::GetAtt,
Fn::GetAZs,Fn::ImportValue, Fn::Join, Fn::Select, Fn::Split, Fn: :Sub, and Ref.

CloudFormation also supports the following conditional
functions: Fn: :And, Fn: :Equals, Fn::If, Fn::Not,and Fn: : Or.

[371]

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-anatomy.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-anatomy.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-anatomy.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-anatomy.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-anatomy.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-anatomy.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-anatomy.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-anatomy.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-anatomy.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-anatomy.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-anatomy.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-anatomy.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-anatomy.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-anatomy.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-anatomy.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-anatomy.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-anatomy.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-anatomy.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-anatomy.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-anatomy.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-anatomy.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-anatomy.html

Getting Started with Serverless Computing on AWS Chapter 1

We can specify the functions in the standard forms as mentioned here or in the short-hand
form (for instance, !Base64, !Cidr, !Ref, and so on) if you are using YAML. We used the
standard syntax for this recipe for reference, but will use the short-hand syntax in later
recipes.

We will discuss the functions introduced in each chapter. You can read more about all
intrinsic functions at https://docs.aws.amazon.com/AWSCloudFormation/latest/
UserGuide/intrinsic-function-reference.html.

CloudFormation Designer

The following are some of the important features of the CloudFormation Designer:

¢ Create templates from scratch visually, validate, and upload

e Copy existing templates, see them visually, validate, and upload
¢ Drag and drop the resources you need

¢ Define relationships between resources

¢ Right-click on the service and click on the appropriate context menu option to go
directly to the CloudFormation documentation for that service

o Edit logical name and other properties in the auto-generated template
e Copy and paste an existing template and see it in design view
e Directly upload the script to S3 and launch Create stack wizard in a single click

Additional benefits of CloudFormation

Apart from automated provisioning of resources through code and enabling reuse,
CloudFormation also has other important usages, including the following:

e Lets you estimate costs based on the templates
¢ Enables tracking costs effectively
¢ Helps in saving costs by automated deletion of resources when not needed

¢ Diagrams generated based on templates can help in understanding the system
better, and can be used in design discussions

[38]

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference.html

Getting Started with Serverless Computing on AWS Chapter 1

Cloud Formation alternatives

Important alternatives to using CloudFormation include Ansible, Terraform, Chef, AWS
OpsWorks, and AWS Elastic Beanstalk.

See also

e All resources supported by CloudFormation are available at https://docs.aws.
amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-

type-ref.html

Using AWS SDK, Amazon CloudFormation,
and AWS CLI with Lambda

AWS SDK allows you to write code that interacts with AWS services. In this recipe, we will

use AWS Java SDK for IAM to do some basic IAM operations to form a Lambda
programmatically. We will use it along with Amazon CloudWatch and AWS CLI, which is

a general practice followed in most real-world projects.

The aim of this recipe is to understand the use of AWS Java SDK inside

Lambda. Therefore, we will not go deep into the details of the IAM
operations discussed in the recipe. The IAM operations details are

available at https://docs.aws.amazon.com/sdk-for-java/vl/

developer—-guide/examples—-iam-users.html.

Getting ready

You need an active AWS account, and read and follow the Getting started section of the
recipes, Your first AWS Lambda and Your first Lambda with AWS CLI to set up Java,
Maven, the parent project, serverless-cookbook-parent-aws-java, and AWS CLI,

and other code usage guidelines.

[39]

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-template-resource-type-ref.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/examples-iam-users.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/examples-iam-users.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/examples-iam-users.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/examples-iam-users.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/examples-iam-users.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/examples-iam-users.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/examples-iam-users.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/examples-iam-users.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/examples-iam-users.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/examples-iam-users.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/examples-iam-users.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/examples-iam-users.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/examples-iam-users.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/examples-iam-users.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/examples-iam-users.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/examples-iam-users.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/examples-iam-users.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/examples-iam-users.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/examples-iam-users.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/examples-iam-users.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/examples-iam-users.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/examples-iam-users.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/examples-iam-users.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/examples-iam-users.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/examples-iam-users.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/examples-iam-users.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/examples-iam-users.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/examples-iam-users.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/examples-iam-users.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/examples-iam-users.html

Getting Started with Serverless Computing on AWS Chapter 1

How to do it...

We will create a Java Maven project and set the parent as serverless-cookbook-
parent-aws-java.

1. Create a Java Maven project and set dependencies:

<parent>
<groupId>tech.heartin.books.serverlesscookbook</groupId>
<artifactId>serverless-cookbook-parent-aws—java</artifactId>
<version>0.0.1-SNAPSHOT</version>

</parent>

2. Specify dependencies in the POM file:

<dependencies>
<dependency>
<groupId>com.amazonaws</groupld>
<artifactId>aws-lambda-java-core</artifactId>
<version>${aws.lambda.java.core.version}</version>
</dependency>

<dependency>
<groupId>com.amazonaws</groupld>
<artifactId>aws-java-sdk-iam</artifactId>
<version>${aws.sdk.version}</version>
</dependency>

</dependencies>

Do not directly define the whole AWS Java SDK (aws-java-sdk)
dependency for a Lambda handler. Instead, only declare the dependencies
you need (such as aws-java-sdk-iam). I tried adding aws-java-sdk to
our Lambda and generated the Uber JAR. It was around 93 MB. AWS
console did not allow me to upload the file manually into the Lambda
function as the limit was 50MB. So, I uploaded it to S3. However, it failed
again while extracting the JAR as the size of the extracted contents
exceeded the allowed size of 262144000 bytes.

[40]

Getting Started with Serverless Computing on AWS Chapter 1

Creating the POJOs for requests and response.

1. Create a request POJO for accepting requests:

import lombok.Data;

@Data

public class IAMOperationRequest {
private String operation;

private String userName;

}

2. Create a POJO for sending back the response from the handler:

import lombok.AllArgsConstructor;
import lombok.Data;

@AllArgsConstructor

@Data

public class IAMOperationResponse {
private String message;

private String errorMessage;

}

For our POJOs, we use project lombok (@Data) to auto-generate getters,
setters, and so on. Project 1ombok dependency is added to the parent
project simple-starter-parent-java. If you are using an IDE for
development, you will have to install a plugin for your IDE to recognize
project lombok annotations.

Creating a service class to implement the IAM Operations using AWS SDK:

1. Import the required classes:

import
com.amazonaws.services.identitymanagement.AmazonIdentityManagement;
import
com.amazonaws.services.identitymanagement.AmazonIdentityManagementC
lientBuilder;

import

com.amazonaws.services.identitymanagement .model.CreateUserRequest;
import

com.amazonaws.services.identitymanagement .model.CreateUserResult;
import

com.amazonaws.services.identitymanagement .model.DeleteConflictExcep
tion;

import

[41]

Getting Started with Serverless Computing on AWS Chapter 1

com.amazonaws.services.identitymanagement .model.DeleteUserRequest;
import

com.amazonaws.services.identitymanagement .model.ListUsersRequest;
import
com.amazonaws.services.identitymanagement . .model.ListUsersResult;
import com.amazonaws.services.identitymanagement.model.User;

2. Create and initialize a client object of AmazonIdentityManagement type:
private final AmazonIdentityManagement iamClient;
public IAMService () {
iamClient =

AmazonIdentityManagementClientBuilder.defaultClient () ;
}

3. Write code for creating a user in a method:

CreateUserRequest request = new
CreateUserRequest () .withUserName (userName) ;
CreateUserResult response = iamClient.createUser (request);

// get user details from response.

4. Write code for checking if a user is present in another method:

boolean done = false;
ListUsersRequest request = new ListUsersRequest();
while (!done) {
ListUsersResult response = iamClient.listUsers (request);
for (User user : response.getUsers()) A
if (user.getUserName () .equals (userName)) {
//return success message
}
}
request.setMarker (response.getMarker());
if ('response.getIsTruncated()) {
done = true;
}

}

// return error message
5. Write code for deleting a user in another method:

DeleteUserRequest request = new DeleteUserRequest ()
.withUserName (userName) ;
try {
iamClient.deleteUser (request) ;

[42]

Getting Started with Serverless Computing on AWS Chapter 1

} catch (DeleteConflictException e) {
// Handle exception

}
Let us now see how to create a handler.

1. Create a handler class with input and output POJOs:

public final class HelloWorldLambdaHandler implements
RequestHandler<IAMOperationRequest, IAMOperationResponse> {

2. Implement the handleRequest method with a switch statement to invoke an
appropriate service method:

public IAMOperationResponse handleRequest (final IAMOperationRequest
request, final Context context) {

context.getLogger () .log ("Requested operation = " +
request.getOperation ()
+ ". User name = " + request.getUserName());
switch (request.getOperation()) {
case "CREATE"
return this.service.createUser (request.getUserName ());
case "CHECK"
return this.service.checkUser (request.getUserName());
case "DELETE"
return this.service.deleteUser (request.getUserName ());
default:
return new IAMOperationResponse (null,
"Invalid operation " +

request.getOperation ()
+ ". Allowed: CREATE, CHECK,
DELETE.");
}
}

3. Package the dependencies into an uber JAR using mvn clean package.

Two JARs will be created: one with only class files (starting with original-) and
an Uber JAR with all dependencies (starting with serverless-). We will use the
Uber JAR in this recipe.

4. Upload the JAR to S3:

aws s3 cp target/serverless—cookbook—-iam—-operations-0.0.1-
SNAPSHOT. jar s3://serverless—cookbook/iam-operations-0.0.1-
SNAPSHOT. jar ——profile admin

[43]

Getting Started with Serverless Computing on AWS Chapter 1

5. Create a CloudFormation template for our lambda function.

You need to create a role with a trust policy that allows our Lambda to assume
the role. You also need to create a policy with CloudFormation and IAM
permissions.

We need to add permissions for IAM operations in our policies:

— Effect: Allow
Action:
— iam:CreateUser
— iam:DeleteUser
- iam:ListUsers
Resource:
— Fn::Sub: arn:aws:iam::S${AWS::AccountId}:user/*

We have used a pseudo-parameter, AWS: : Account Id, within a sub-intrinsic
function to dynamically populate the account ID. I also improved the
CloudWatch logging permission policy from the previous recipe using the
pseudo-parameters:

- Effect: Allow

Action:

- logs:CreateLogStream

Resource:

- Fn::Sub:
arn:${AWS::Partition}:logs:${AWS: :Region}:${AWS: :AccountId}:log—
group:/aws/lambda/aws-sdk-iam-with-cf-cli:*

- Effect: Allow

Action:

- logs:PutLogEvents

Resource:

- Fn::Sub:
arn:${AWS::Partition}:logs:${AWS: :Region}:${AWS: :AccountId}:log—
group:/aws/lambda/aws—-sdk-iam-with-cf-cli:*:*

You should be able to complete this recipe by referring to the previous recipe,
Your First Lambda using CloudFormation.

The completed template file is available in the resources folder as cf-
template-iam-operations.yml.

[44]

Getting Started with Serverless Computing on AWS Chapter 1

6. Upload the CloudFormation template to S3:

aws s3 cp ../resources/cf-template-iam-operations.yml
s3://serverless—cookbook/cf-template—-iam—-operations.yml —--profile
admin

7. Create a CloudFormation stack using the CloudFormation template from AWS
CLI:

aws cloudformation create-stack —--stack-name myteststack —-
template-url
https://s3.amazonaws.com/serverless—cookbook/cf-template—-iam-operat
ions.yml —--capabilities CAPABILITY_ NAMED IAM —--profile admin

This immediately responds with StackId. Note that you used a parameter, ——
capabilities CAPABILITY_NAMED_IAM. Thisis a security-related precaution.
You are explicitly telling CloudFormation that you know what you are doing.

You can check the status of stack creation using the describe-stacks
command:

aws cloudformation describe-stacks —--stack—-name <StackId> —--profile
admin

StackStatus: CREATE_COMPLETE means stack creation was successful.

8. Verify the deployment with AWS CLI Lambda invoke:

aws lambda invoke —--invocation-type RequestResponse —--function-name
aws—-sdk-iam-with—-cf-cli —--log-type Tail —--payload
'{"operation":"CREATE", "userName":"abcd"}' —--profile admin

outputfile.txt

You can replace CREATE in the payload with CHECK for checking if the user was
created, and DELETE for deleting the user.

9. Delete the CloudFormation stack:

aws cloudformation delete-stack --stack—name <StackId> —--profile
admin

[45]

Getting Started with Serverless Computing on AWS Chapter 1

How it works...

AWS SDKs are used to interact with AWS services programmatically. There are SDKs
available for programming languages such as Java, .Net, Node.js. PHP, Python, Ruby,
Browser, Go, and C++.

We uploaded our CloudFormation template to S3 and provided the location using —-
template-url. You can also specify the template contents directly or from a file using
file:// with another option --template-body.

We created our roles for Lambda manually. If we are using Management console, we can
create custom Lambda roles from within our Lambda create function page, or directly from
IAM.

We used one new intrinsic function in our CloudFormation template, Fn: : Sub. Fn: : Sub,
which substitutes variables in an input string with values that you specify. We used it to
substitute the AWS Account ID and a few other values rather than hard-coding them.

We also used the following pseudo-parameters: AWS::AccountId, AWS::Partition,
and AWS: : Region, which represents the current account ID, partition, and region
respectively. For most regions, the partition is aws. For resources in other partitions, the
partition is named as aws-partitionn (for instance, aws-cn for China and aws-us-gov
for the AWS GovCloud (US) region). Using pseudo-parameters lets us avoid worrying
about the actual partition name.

There's more...

We used only basic IAM operations in this recipe. You can check the documentation and
implement more complex operations from within Lambda code if interested.

We will use CloudFormation and AWS CLI for most of our recipes.
However, you may follow these steps to try to do the same in the
management console. Doing things visually will help you remember the
concepts for a longer time.

[46]

Getting Started with Serverless Computing on AWS Chapter 1

Pseudo-parameters

Pseudo-parameters are predefined parameters provided by AWS CLoudFormation. You
can use them within a Ref or a Sub function to dynamically populate values. Pseudo-
parameters available to use within a CloudFormation template include AWS: : AccountId,
AWS: :NotificationARNs, AWS: :NoValue, AWS: :Partition, AWS: :Region,

AWS: :StackId, AWS: :StackName, and AWS: : URLSuffix

Read more about pseudo-parameters at https://docs.aws.amazon.com/
AWSCloudFormation/latest/UserGuide/pseudo-parameter-reference.html.

See also

® https://aws.amazon.com/sdk-for-java
® https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_
manage.html

® https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_

examples.html
® https://docs.aws.amazon.com/lambda/latest/dg/limits.html

® https://docs.aws.amazon.com/cli/latest/reference/cloudformation/index.
html#cli-aws—-cloudformation

Dev Practices - dependency injection and
unit testing

In this recipe, I will implement some of the common dev practices for creating Lambdas,
such as using lightweight frameworks for dependency injection and writing unit tests for
your code.

For dependency injection, we will use Guice, which is one of the dependency injection (IoC)
frameworks suggested by AWS at https://docs.aws.amazon.com/lambda/latest/dg/
best-practices.html. For unit testing, we will use JUnit and Mockito libraries.

[47]

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/pseudo-parameter-reference.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/pseudo-parameter-reference.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/pseudo-parameter-reference.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/pseudo-parameter-reference.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/pseudo-parameter-reference.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/pseudo-parameter-reference.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/pseudo-parameter-reference.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/pseudo-parameter-reference.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/pseudo-parameter-reference.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/pseudo-parameter-reference.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/pseudo-parameter-reference.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/pseudo-parameter-reference.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/pseudo-parameter-reference.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/pseudo-parameter-reference.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/pseudo-parameter-reference.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/pseudo-parameter-reference.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/pseudo-parameter-reference.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/pseudo-parameter-reference.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/pseudo-parameter-reference.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/pseudo-parameter-reference.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/pseudo-parameter-reference.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/pseudo-parameter-reference.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/pseudo-parameter-reference.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/pseudo-parameter-reference.html
https://aws.amazon.com/sdk-for-java
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_examples.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_examples.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_examples.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_examples.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_examples.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_examples.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_examples.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_examples.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_examples.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_examples.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_examples.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_examples.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_examples.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_examples.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_examples.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_examples.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_examples.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_examples.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_examples.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_examples.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_examples.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_examples.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_examples.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_examples.html
https://docs.aws.amazon.com/lambda/latest/dg/limits.html
https://docs.aws.amazon.com/cli/latest/reference/cloudformation/index.html#cli-aws-cloudformation
https://docs.aws.amazon.com/cli/latest/reference/cloudformation/index.html#cli-aws-cloudformation
https://docs.aws.amazon.com/cli/latest/reference/cloudformation/index.html#cli-aws-cloudformation
https://docs.aws.amazon.com/cli/latest/reference/cloudformation/index.html#cli-aws-cloudformation
https://docs.aws.amazon.com/cli/latest/reference/cloudformation/index.html#cli-aws-cloudformation
https://docs.aws.amazon.com/cli/latest/reference/cloudformation/index.html#cli-aws-cloudformation
https://docs.aws.amazon.com/cli/latest/reference/cloudformation/index.html#cli-aws-cloudformation
https://docs.aws.amazon.com/cli/latest/reference/cloudformation/index.html#cli-aws-cloudformation
https://docs.aws.amazon.com/cli/latest/reference/cloudformation/index.html#cli-aws-cloudformation
https://docs.aws.amazon.com/cli/latest/reference/cloudformation/index.html#cli-aws-cloudformation
https://docs.aws.amazon.com/cli/latest/reference/cloudformation/index.html#cli-aws-cloudformation
https://docs.aws.amazon.com/cli/latest/reference/cloudformation/index.html#cli-aws-cloudformation
https://docs.aws.amazon.com/cli/latest/reference/cloudformation/index.html#cli-aws-cloudformation
https://docs.aws.amazon.com/cli/latest/reference/cloudformation/index.html#cli-aws-cloudformation
https://docs.aws.amazon.com/cli/latest/reference/cloudformation/index.html#cli-aws-cloudformation
https://docs.aws.amazon.com/cli/latest/reference/cloudformation/index.html#cli-aws-cloudformation
https://docs.aws.amazon.com/cli/latest/reference/cloudformation/index.html#cli-aws-cloudformation
https://docs.aws.amazon.com/cli/latest/reference/cloudformation/index.html#cli-aws-cloudformation
https://docs.aws.amazon.com/cli/latest/reference/cloudformation/index.html#cli-aws-cloudformation
https://docs.aws.amazon.com/cli/latest/reference/cloudformation/index.html#cli-aws-cloudformation
https://docs.aws.amazon.com/cli/latest/reference/cloudformation/index.html#cli-aws-cloudformation
https://docs.aws.amazon.com/cli/latest/reference/cloudformation/index.html#cli-aws-cloudformation
https://docs.aws.amazon.com/cli/latest/reference/cloudformation/index.html#cli-aws-cloudformation
https://docs.aws.amazon.com/cli/latest/reference/cloudformation/index.html#cli-aws-cloudformation
https://docs.aws.amazon.com/cli/latest/reference/cloudformation/index.html#cli-aws-cloudformation
https://docs.aws.amazon.com/cli/latest/reference/cloudformation/index.html#cli-aws-cloudformation
https://docs.aws.amazon.com/lambda/latest/dg/best-practices.html
https://docs.aws.amazon.com/lambda/latest/dg/best-practices.html
https://docs.aws.amazon.com/lambda/latest/dg/best-practices.html
https://docs.aws.amazon.com/lambda/latest/dg/best-practices.html
https://docs.aws.amazon.com/lambda/latest/dg/best-practices.html
https://docs.aws.amazon.com/lambda/latest/dg/best-practices.html
https://docs.aws.amazon.com/lambda/latest/dg/best-practices.html
https://docs.aws.amazon.com/lambda/latest/dg/best-practices.html
https://docs.aws.amazon.com/lambda/latest/dg/best-practices.html
https://docs.aws.amazon.com/lambda/latest/dg/best-practices.html
https://docs.aws.amazon.com/lambda/latest/dg/best-practices.html
https://docs.aws.amazon.com/lambda/latest/dg/best-practices.html
https://docs.aws.amazon.com/lambda/latest/dg/best-practices.html
https://docs.aws.amazon.com/lambda/latest/dg/best-practices.html
https://docs.aws.amazon.com/lambda/latest/dg/best-practices.html
https://docs.aws.amazon.com/lambda/latest/dg/best-practices.html
https://docs.aws.amazon.com/lambda/latest/dg/best-practices.html
https://docs.aws.amazon.com/lambda/latest/dg/best-practices.html
https://docs.aws.amazon.com/lambda/latest/dg/best-practices.html
https://docs.aws.amazon.com/lambda/latest/dg/best-practices.html
https://docs.aws.amazon.com/lambda/latest/dg/best-practices.html
https://docs.aws.amazon.com/lambda/latest/dg/best-practices.html

Getting Started with Serverless Computing on AWS Chapter 1

Getting ready

You need an active AWS account, and read and follow the Getting started section of the
recipes, Your first AWS Lambda and Your first Lambda with AWS CLI to set up Java,
Maven, the parent project, serverless-cookbook-parent-aws-java, and AWS CLI,
and other code usage guidelines.

This recipe also assumes you are familiar with general software development concepts and
practices such as dependency injection, unit testing, and coding to interfaces. Familiarity
with libraries such as JUnit and Mockito will be good to have.

Code refactoring

We will be improving the code we created in the Using AWS SDK, Amazon CloudWatch and
AWS CLI with Lambda recipe. Before doing Dependency Injection, you need to refactor your
code to follow the principle of programming to interfaces.

Refactor the service class into an interface and its implementation. I will also add 1ombok's
@AllArgsConstructor annotation to generate an all args constructor, which will be used
during unit testing to inject the mock object.

1. We will first create an interface IaAMService:

/**
* Interface for IAM operations.
*/

public interface IAMService {
We will define the corresponding implementation as IAMServiceImpl:

/**
* Implementation of {@link IAMService}.
*/
@AllArgsConstructor
public class IAMServiceImpl implements IAMService {

2. Extract the methods as well, and then replace the usage of the implementation
with an interface:

private IAMService service;

public MyLambdaHandler () {
service = new IAMServiceImpl ();

}

[48]

Getting Started with Serverless Computing on AWS Chapter 1

Most IDEs will provide refactoring support to extract an interface from an
implementation. IDEs will also help you in replacing the usages of your

implementation with interface wherever possible.

How to do it...

Let us do dependency injection with Guice, which is a lightweight framework suggested

by AWS.
1. Add Maven dependency for Guice:

<dependency>
<groupId>com.google.inject</groupId>

<artifactId>guice</artifactId>
<version>4.2.0</version>

</dependency>

2. Create the Guice configuration class to bind interfaces to implementation:

public class ApplicationModule extends AbstractModule {

protected final void configure() {
bind (IAMService.class) .to(IAMServiceImpl.class);

t
3. Configure the handler class for using Guice:

public final class MyLambdaHandler implements
RequestHandler<IAMOperationRequest, IAMOperationResponse> {

private static final Injector INJECTOR
Guice.createlInjector (new ApplicationModule());

private IAMService service;

public MyLambdaHandler () {
INJECTOR.injectMembers (this);
Objects.requireNonNull (service);

@Inject
public void setService(final IAMService service) {

this.service = service;

[49]

Getting Started with Serverless Computing on AWS Chapter 1

I created a static Injector class and initialized it with our Guice configuration
class. I added a default constructor to add this class to be injected by Guice.
Objects.requireNonNull verifies if the implementation was injected
successfully. I annotated it with Java's @ Inject annotation for Guice to inject
dependency.

Let us write unit tests for our code.
1. Add Maven dependency for Junit and Mockito:

<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.12</version>
<scope>test</scope>
</dependency>

<dependency>
<groupId>org.mockito</groupId>
<artifactId>mockito-core</artifactId>
<version>2.21.0</version>
<scope>test</scope>

</dependency>

2. Create a simple test class for the handler that checks if the service
implementation is injected:

package tech.heartin.books.serverlesscookbook;
import org.junit.Test;
public class MyLambdaHandlerTest {
@Test
public void testDependencies () throws Exception {
MyLambdaHandler testHandler = new MyLambdaHandler () ;
}

3. Create a test class for the service class that uses Mockito to mock AWS calls:

@RunWith (MockitoJUnitRunner.class)
public class IAMServiceImplTest |

@Mock
private AmazonlIdentityManagement iamClient;

private IAMService service;

[50]

Getting Started with Serverless Computing on AWS Chapter 1

@Before
public void setUp() {
service = new IAMServiceImpl (iamClient);

Objects.requireNonNull (service);

}

// Actual tests not shown here

}

4. Add the test method for create user:

@Test
public void testCreateUser () {
IAMOperationResponse expectedResponse = new

IAMOperationResponse (
"Created user test_user", null);
when (iamClient.createUser (any()))
.thenReturn (new CreateUserResult ()
.withUser (new
User () .withUserName ("test_user")));
IAMOperationResponse actualResponse
= service.createUser ("test_user");
Assert.assertEquals (expectedResponse, actualResponse);

}

5. Add the test method to check user:

@Test

public void testCheckUser () {
IAMOperationResponse expectedResponse = new

IAMOperationResponse (

"User test_user exist", null);
when (iamClient.listUsers (any()))

.thenReturn (getListUsersResult ());
IAMOperationResponse actualResponse

= service.checkUser ("test_user");
Assert.assertEquals (expectedResponse, actualResponse);

private ListUsersResult getListUsersResult () {
ListUsersResult result = new ListUsersResult ();
result.getUsers () .add(new User () .withUserName ("test_user"));

6. Add the test method to delete user:

@Test
public void testDeleteUser () {
IAMOperationResponse expectedResponse = new

IAMOperationResponse (

[51]

Getting Started with Serverless Computing on AWS Chapter 1

"Deleted user test_user", null);
when (iamClient.deleteUser (any()))

.thenReturn (new DeleteUserResult ());
IAMOperationResponse actualResponse

= service.deleteUser ("test_user");
Assert.assertEquals (expectedResponse, actualResponse);

}

7. To Package, deploy, and verify, follow the Using AWS SDK, Amazon
CloudFormation and AWS CLI with Lambda recipe, and package, deploy, and verify
by invoking the Lambda.

In real-world projects, you may follow the Test Driven Development
(TDD) principle and write tests before actual code.

How it works...

We added a lightweight dependency injection framework, Guice, and modified code to
incorporate it. We also used Junit and Mockito to do unit testing of the code. Going deep
into the working of Guice, JUnit, or Mockito is outside the scope of this book. But, you
may ask any questions on the open source repository for the project (given in the
introduction in chapter 1, Getting Started with Serverless Computing on AWS).

There's more...

You may also use Dagger instead of Guice for dependency injection. Dagger is also a
recommended framework from AWS for lightweight dependency injection. You can
technically use Spring for dependency injection, but it is not recommended because of its
bigger size.

You may use TestNG instead of JUnit for unit testing. TestNG provides additional features
such as DataProviders. DataProviders allow you to supply an array with all possible inputs
and their expected values for a single test method. With JUnit, you will have to write a test
method per input combination. You may also use Hamcrest to create more flexible
expressions in tests.

[52]

Getting Started with Serverless Computing on AWS Chapter 1

See also

* You may refer to other books at PacktPub to become familiar with the
dependency injection and testing frameworks.

Your first Lambda with serverless
framework

Serverless is an open source command line utility framework for building and deploying
serverless applications. Serverless supports multiple cloud providers such as Amazon Web
Services, Microsoft Azure, IBM OpenWhisk, Google Cloud Platform, Kubeless, Spotinst,
Webtasks, and Fn.

In this recipe, we will use the Serverless framework to develop, deploy, invoke, check logs,
and finally remove a simple hello world Lambda function on the AWS cloud platform.

Getting ready

Two dependencies are needed for the Serverless framework: node.js and AWS CLI. For
installing AWS CLI, you may refer to the 'Deploying and Invoking Lambda with AWS CLI'
recipe. You can install node using node packet as given at https://nodejs.org/en/
download/package-manager

You need to create a user for Serverless in AWS. It is a general practice to use the name
serverless—admin and give administrator permission. It is not a very good practice to
create users with administrator access, but currently that is the easiest way to work with
Serverless. You should be careful about storing and using these credentials.

How to do it...

Let us create a simple Lambda using the Serverless framework:

1. Install Serverless in your machine using npm:

npm install -g serverless

[53]

https://nodejs.org/en/download/package-manager
https://nodejs.org/en/download/package-manager
https://nodejs.org/en/download/package-manager
https://nodejs.org/en/download/package-manager
https://nodejs.org/en/download/package-manager
https://nodejs.org/en/download/package-manager
https://nodejs.org/en/download/package-manager
https://nodejs.org/en/download/package-manager
https://nodejs.org/en/download/package-manager
https://nodejs.org/en/download/package-manager
https://nodejs.org/en/download/package-manager
https://nodejs.org/en/download/package-manager
https://nodejs.org/en/download/package-manager
https://nodejs.org/en/download/package-manager

Getting Started with Serverless Computing on AWS Chapter 1

2. Configure Serverless with user credentials:

serverless config credentials —-provider aws ——key <access key> —-—
secret <secret access key> —--profile serverless—admin

You should get a success message stating that keys were stored under the
serverless-admin profile.

The s1s command is the shorthand of the Serverless command.

3. Create a Lambda function based on Java and Maven:

sls create —--template aws—-java-maven —--path hello-world-java-maven

It creates a hello-world—-java-maven folder, with pom.xml and
serverless.ynl files, and the src folder. You may open this Maven project in
your IDE of choice. The auto-generated files looks as shown here in my IDE:

Project ~
4 hello-world-java-maven [hello]
> .idea
4 src
4 main
4 java
v com.serverless
ApiGatewayResponse
Handler
Response
resources
log4j2.xml
.gitignore
! hello.iml
pom.xml
serverless.yml
» |llll External Libraries
© Scratches and Consoles

v

[54]

Getting Started with Serverless Computing on AWS Chapter 1

As you can see, Serverless has created a bit more than a simple hello world.
Serverless takes care of most of the things we did manually, including creating a
role, setting memory, setting timeout, and so on.

Add a user profile and region to serverless.yml. The region is optional if you
are using the default region:

I aws
: java8

: serverless—admin
: us—east-1]

Build the jar file with:
mvn clean package
4. Deploy the jar file to AWS:
sls deploy -v

You can log in to the AWS console and verify the new Lambda service. From
the log statements, you can see that Serverless framework internally makes use of
CloudFormation. You can verify the same from AWS Management console.

5. Invoke the function from s1s:
sls invoke -f hello -1

Option - £ specifies the function name, and -1 specifies that logs need to be
printed to terminal. The function name to invoke is hello and is available in the
serverless.ynl file. You can see the output and logs on the terminal.

6. Checking logs from the CLI:
sls logs —-f hello -t

Option -£ specifies the function name and -t denotes to tail the logs. You can
now run the invoke command from the other terminal and see the logs being
printed.

7. Now, clean up everything:

sls remove

[551]

Getting Started with Serverless Computing on AWS Chapter 1

8. Log in to AWS Management console and verify that everything is cleaned up.

How it works...

Serverless framework internally makes use of AWS CloudFormation for provisioning AWS
resources. You can log in to Management console, go to CloudFormation service, select
the stack named hello-world-java-maven-dev, and click on the Template tab for

viewing the complete CloudFormation template.

You can further click on the View/Edit template in Designer option to see the template
visually. The designer view of the CloudFormation template created for our example by the
Serverless framework is shown here:

[1]]
L1 1]
Hello1Log... 7 e
lamRolela... Hello1Lam...
Role Version
e
-
A Serverles...

Bucket

[

HelloiLam...
Function

[561]

Getting Started with Serverless Computing on AWS Chapter 1

There's more...

Serverless framework is part of the serverless.com Serverless Platform. The other two
components of the serverless platform are Serverless dashboard and event

gateway. Serverless framework also integrates well with other processes and tools, such as
CIand CD.

See also

® https://serverless.com/framework/docs.

¢ The last chapter, chapter 10, Serverless Computing with Other Cloud Providers,
Tools and Frameworks contains examples of other cloud providers.

[571

https://serverless.com/
https://serverless.com/framework/docs
https://serverless.com/framework/docs
https://serverless.com/framework/docs
https://serverless.com/framework/docs
https://serverless.com/framework/docs
https://serverless.com/framework/docs
https://serverless.com/framework/docs
https://serverless.com/framework/docs
https://serverless.com/framework/docs
https://serverless.com/framework/docs
https://serverless.com/framework/docs

Building Serverless REST APls
with APl Gateway

This chapter will cover the following topics:

e Building your first API using the AWS CLI
Building your first API using Amazon CloudFormation

Building your first API with Lambda integration
Building and testing your first POST API method
e Mapping requests and responses using mapping templates

Validating request payloads with models

Using Lambda and APIs with proxy integration

Introduction

An application programming interface (API) is a set of methods that allow us to
programmatically access a component. APIs can be built for different layers, such as the
web (http/rest), database, and operating system layers, and so on. A representational
state transfer (REST) APl is an API that uses REST principles and HTTP protocol to build
web APIs that can be programmatically consumed by clients over a network, such as the
internet.

Amazon API Gateway is the primary service within AWS for building serverless, scalable,
and secure REST APIs. It acts as a gateway between your application and the outside
world. You only pay for the API calls and data that are transferred out, and you do not
have to maintain a server. It also provides support for testing, authorization, API version
management, deployment, and maintaining and monitoring your REST APIs.

Building Serverless REST APIs with API Gateway Chapter 2

Amazon API Gateway is usually used with AWS Lambda, in order to build Serverless
applications. In this chapter, we will discuss some core use cases of the API gateway, such
as building, deploying, and testing APIs that interact with AWS Lambda. Additional use
cases, such as security and integration with a user interface, will be discussed in later
chapters. We will also discuss the REST principles and HTTP essentials.

Building your first APl using the AWS CLI

In this recipe, we will create a simple REST API with mock integration, using CLI
commands. We will specify a name as a path parameter, and the API will greet that
person. In the next recipe, we will use CloudFormation templates to create the API. From
that point, we will use both the CLI commands and the CloudFormation templates.

In chapter 1, Getting Started with Serverless Computing on AWS, we created
Lambdas using the management console, the CLI, CloudFormation, and
the serverless framework. From this chapter onward, we will mostly focus
on using CloudFormation templates, but we will first discuss the
corresponding CLI commands, as they can help us to better understand
the templates.

Getting ready

A good understanding of REST, HTTP, and the HTTP mechanisms for the web (such as
HTTP verbs, HTTP response codes, content negotiation, and so on) will help you to
understand the various API gateway concepts that will be discussed in this chapter. You
may refer to the There’s more... section for notes on REST principles and HTTP essentials.

How to do it...

We will create our first REST API with API gateway by using CLI commands. Remember to
replace the various IDs (rest-api-id, parent-id, and so on) in each command with your
own, based on the previous step's result. As you will see in the next recipe, with
CloudFormation templates, we do not have to manually specify IDs, unlike with the CLI
commands:

1. Create a REST APl in the us-east-1 region, as follows:

aws apigateway create-rest-api \
—-name 'API Gateway Hello World' \

[591]

Building Serverless REST APIs with API Gateway Chapter 2

—--region us-east-1 \
——profile admin

The ID of the REST API from the response is used as the value for rest-
api-idin later commands. Replace c82tpsb7ka in rest of the commands
with the ID of the REST API you receive in this step.

2. Retrieve the ID of the root resource (/) of the REST API:

aws apigateway get-resources \
—-rest-api-id c82tpsb7ka \
—--region us-east-1 \
——profile admin

The ID of the root resource (/) from the response is used as the value
for the parent-id of the sub-resource.

3. Create a child resource under the root resource (/):

aws apigateway create-resource \
—-—rest—-api-id c82tpsb7ka \
--region us-east-1 \
——parent-id rosgmsjlb5 \
—-—-path-part greeting \
——profile admin

The ID of the new resource (greeting) from the response is used as
the parent-id for the path param resource that we will create

next. replace rosgmsj1b5 in next command with the ID of the resource
you receive in this step.

4. Create a path param called ' {name} ' under the parent resource greeting, as
follows:

aws apigateway create-resource \
—-rest-api-id c82tpsb7ka \
—--region us-east-1 \
—-parent-id oaslzo \
—-path-part '{name}' \
——profile admin

[60]

Building Serverless REST APIs with API Gateway

Chapter 2

The ID of the new resource from the response is used as the resource-
id for later commands. Replace oaslzo in next command with the ID of

the resource you receive in this step.

5. Add an HTTP method, GET, on the resource ' {name}':

aws apigateway put-method \
——rest-api-id c82tpsb7ka \
——resource-id 1lybl7y \
—-http-method GET \
——authorization-type "NONE" \
—--region us-east-1 \
——profile admin

We set the authorization-type as "NONE", so that everyone can access

the API. We will look at authorization in a different chapter.

6. Set up a response status code of 200, as follows:

aws apigateway put-method-response \
—-rest-api-id c82tpsb7ka \
—-resource-id 1lybl7y \
—-http-method GET \
——status-code 200 \
—--region us-east-1 \
——profile admin

7. Set up a MOCK integration, as follows:

aws apigateway put-integration \
—-rest-api-id c82tpsb7ka \
—--resource-id 1lybl7y \
—-http-method GET \
—-—type MOCK \
——integration-http-method GET \
—--request-templates '{ "application/json":
200}" }' N\
—--region us-east-1 \
——profile admin

"{\"statusCode\":

[61]

Building Serverless REST APIs with API Gateway Chapter 2

The request-templates parameter hold a map where key is the
content-type sent by the caller and value is a velocity template. When
specifying a velocity template on the command line, it may have to be
escaped as per operating system and the terminal used. This applies to
other commands within this chapter that accept a velocity template such
astheresponse—templatesPnopeﬂy.

Code examples within the book follows the AWS documentation style and
is tested primarily on Mac operating system. It should also work on most
Unix based operating systems such as Linux. For alternative solutions you
may refer to the code files repository. Please refer to the heading
Alternative Solutions in the repository's readme file for more details.

8. Create a custom integration response by using the path param value, as follows:

aws apigateway put-integration-response \
—-rest—-api-id c82tpsb7ka \
—--resource-id lybl7y \
—-http-method GET \
——status—-code 200 \

--selection-pattern "" \
—--response-templates '{"application/json": "{\"message\":
\"Hello $input.params (T 'name' nmrn l)\"}"}l \

--region us-east-1 \
——profile admin

If you are using a Windows Machine, please refer to the code files
repository for alternative solutions where velocity template is escaped
properly so that it can be executed on a Windows machine as well.

9. Deploy our APl into a stage called dev, as follows:

aws apigateway create-deployment \
——rest—-api-id c82tpsb7ka \
—--region us-east-1 \
—-—-stage—-name dev \
—-—-stage-description 'Dev stage' \
——description 'First deployment' \
——profile admin

[62]

Building Serverless REST APIs with API Gateway Chapter 2

10. Test the API by invoking the API URL (as follows) after replacing the rest-api-
id (c82tpsb7ka) with your REST API ID:

https://c82tpsb7ka.execute—api.us—east—-1.amazonaws.com/dev/gree
ting/Heartin

You should get a response that looks as follows:

< C' | @& Secure |3.com/dev/greeting/Heartin Yt

{"message": "Hello Heartin"}

How it works...

First, we will explain the AWS CLI API gateway sub-commands used in this recipe, as
follows:

e The create-rest-api command creates a REST API. We also need to specify a
name and a region. An API setup with API gateway is region-specific.

e The get-resources command retrieves the root resource identifier of the REST
API, which is the path /. You need the ID of this resource to create sub-resources.

¢ The create-resource command appends a child resource under a parent
resource. We created a child, greet ing, under the path /, and then created a
child for the path param ' {name} ' under the path greeting, using the
corresponding parent IDs. The path-part parameter specifies the path of the
resource to add (for example, greeting, {name}).

¢ The put-method command specifies the HTTP verb. We added a GET verb on
our resource 'greeting/{name}'. The authorization-type specified was
"NONE', so everyone can access the resource. You could use IAM roles and
policies, a custom Lambda authorizer, or an Amazon Cognito user pool instead.
There is a chapter dedicated to security.

¢ The put-method-response command is used to set up the method response.
We set up a response status code of 200 for successful GET requests. If you do not
set up a method response and test, you will get an error, as the output mapping
refers to an invalid method response.

[63]

Building Serverless REST APIs with API Gateway Chapter 2

e The put-integration command sets up an integration for the API. The
following integration types are currently supported: AWS, AWS_PROXY, HTTP,
HTTP_PROXY, and MOCK. We need to specify the request-templates property
map, where the key is a content-type header (for example,
application/json)and the value is a velocity template that will be applied to
a request payload with that particular content-type header.

e The put-integration-response command represents a put integration.
The status-code property is used to map the integration response to an
existing method response (specified by the put-method-response). The
response-templates specifies the put integration response's templates. We
used $input.params to use the value of the path param.

e The create-deployment command deploys our API to a stage. Stages allow
you to manage different versions of the API (for example, dev, test, prod, and
so on). The endpoint URL of the generated API will be of the format https://

<rest-api-id>.execute-api.<region>.amazonaws.com/<stage>/<path>.

Having a decent understanding of the HTTP and REST basics can help you to design good
REST APIs. If you are familiar with the HTTP and REST basics, you can skip the remainder
of this section.

HTTP essentials

HTTP stands for Hypertext Transfer Protocol, and it is used for exchanging documents
(referred to as hypertext) over the internet. A hypertext is a text with links (hyperlinks) to
other documents. HTTP provides a set of verbs for specifying the operations that we need
to perform on a resource, and a set of response codes that the server can return to the client.

The following HTTP verbs (methods) are generally used with REST APIs: GET, for
retrieving data; HEAD, for getting the header (similar to GET, but without the body); POST,
for non-idempotent requests (for example, creating an ID); PUT, for idempotent requests
(for example, override updates); PATCH, for partial updates; and DELETE, for deleting
resources. OPTIONS is generally used for CORs pre-flight requests.

HTTP response codes are generally categorized as follows: 1xx for information, 2xx for
success, 3xx for redirection, 4xx for client errors, and 5xx for server errors. The most
commonly used codes are 200 (Success), 404 (Resource Not Found), 500 (Unhandled
Internal Server Error), and so on. There is no hard rule on what a server can do when it
receives an HTTP method or what response codes it can return, but the preceding are some
general guidelines.

[64]

https://%3Crest-api-id%3E.execute-api.%3Cregion%3E.amazonaws.com/%3Cstage%3E/%3Cpath%3E
https://%3Crest-api-id%3E.execute-api.%3Cregion%3E.amazonaws.com/%3Cstage%3E/%3Cpath%3E
https://%3Crest-api-id%3E.execute-api.%3Cregion%3E.amazonaws.com/%3Cstage%3E/%3Cpath%3E
https://%3Crest-api-id%3E.execute-api.%3Cregion%3E.amazonaws.com/%3Cstage%3E/%3Cpath%3E
https://%3Crest-api-id%3E.execute-api.%3Cregion%3E.amazonaws.com/%3Cstage%3E/%3Cpath%3E
https://%3Crest-api-id%3E.execute-api.%3Cregion%3E.amazonaws.com/%3Cstage%3E/%3Cpath%3E
https://%3Crest-api-id%3E.execute-api.%3Cregion%3E.amazonaws.com/%3Cstage%3E/%3Cpath%3E
https://%3Crest-api-id%3E.execute-api.%3Cregion%3E.amazonaws.com/%3Cstage%3E/%3Cpath%3E
https://%3Crest-api-id%3E.execute-api.%3Cregion%3E.amazonaws.com/%3Cstage%3E/%3Cpath%3E
https://%3Crest-api-id%3E.execute-api.%3Cregion%3E.amazonaws.com/%3Cstage%3E/%3Cpath%3E
https://%3Crest-api-id%3E.execute-api.%3Cregion%3E.amazonaws.com/%3Cstage%3E/%3Cpath%3E
https://%3Crest-api-id%3E.execute-api.%3Cregion%3E.amazonaws.com/%3Cstage%3E/%3Cpath%3E
https://%3Crest-api-id%3E.execute-api.%3Cregion%3E.amazonaws.com/%3Cstage%3E/%3Cpath%3E
https://%3Crest-api-id%3E.execute-api.%3Cregion%3E.amazonaws.com/%3Cstage%3E/%3Cpath%3E
https://%3Crest-api-id%3E.execute-api.%3Cregion%3E.amazonaws.com/%3Cstage%3E/%3Cpath%3E
https://%3Crest-api-id%3E.execute-api.%3Cregion%3E.amazonaws.com/%3Cstage%3E/%3Cpath%3E
https://%3Crest-api-id%3E.execute-api.%3Cregion%3E.amazonaws.com/%3Cstage%3E/%3Cpath%3E
https://%3Crest-api-id%3E.execute-api.%3Cregion%3E.amazonaws.com/%3Cstage%3E/%3Cpath%3E
https://%3Crest-api-id%3E.execute-api.%3Cregion%3E.amazonaws.com/%3Cstage%3E/%3Cpath%3E
https://%3Crest-api-id%3E.execute-api.%3Cregion%3E.amazonaws.com/%3Cstage%3E/%3Cpath%3E
https://%3Crest-api-id%3E.execute-api.%3Cregion%3E.amazonaws.com/%3Cstage%3E/%3Cpath%3E
https://%3Crest-api-id%3E.execute-api.%3Cregion%3E.amazonaws.com/%3Cstage%3E/%3Cpath%3E

Building Serverless REST APIs with API Gateway Chapter 2

REST essentials

Representational State Transfer (REST) APIs exchange the representations of a resource in
different formats (for example, JSON, XML, and others) between a server and client, using
the existing mechanisms of the web, such as HTTP protocols, verbs, and response

codes. The same APIs can be used as the backend for different apps (for example, web,
mobile, and so on), based on different UI technologies (for example, Angular and

React). Traditional MVC applications use a server-side view technology (such as JSP,
ASP.net, PHP, and so on) that is tied to the backend code, and changing Ul requires
changing backend.

REST defines six architectural constraints, namely uniform interface, client-server, stateless,
cacheable, layered system, and code on demand (optional). The uniform interface and
client-server constraints are achieved by using the HTTP protocol, verbs, response codes,
and so on. The client should take care of maintaining the state, and not the server (this is
known as statelessness), which leads to cacheable URIs. APIs can be implemented in
various layers, without letting the client know. Optionally, the server can respond with
client-executable code on demand (code).

Richardson's Maturity Model can be used to check the level of RESTfulness. If we only use
HTTP for transport, then the level is 0 (as in traditional SOAP services that use RPC over
HTTP). Level 1 requires using URIs based on resources (for example, student/1). Level 2
requires using HTTP verbs to denote the operations (for example, DELETE to delete a
resource). Level 3 requires using hypermedia as the engine of application

state (HATEOAS), by providing links in responses (for example, URISs, for supported
operations) to drive the application's state transitions.

Parts of a URL

Consider a

URL: http://www.heartin.tech/books/serverless—cookbook?format=pdf#index.
Here, http is the scheme, www.heartin.tech is the host, books and serverless—
cookbook are resources, format=pdf is a query string, and #index is a fragment. You can
specify a variable path param as books/{book}, and substitute a value for {book} when
making requests. Path parameters should be preferred over query strings for specifying
resources. Query strings are generally used for filtering results with GET requests (for
example, pagination and sorting). The #index part is called a fragment, and it points to a
location within an HTML file, but is less frequently used with REST.

[65]

Building Serverless REST APIs with API Gateway Chapter 2

A more detailed discussion of REST and HTTP is beyond the scope of this
book. Please read other books and articles to learn more.

There's more...

We have only discussed the limited AWS CLI commands and parameters that are required
for our use case. For advanced use cases, refer to the AWS CLI documentation at https://

docs.aws.amazon.com/cli/latest/reference/apigateway/index.html.

See also

® https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
® https://martinfowler.com/articles/richardsonMaturityModel.html

® https://docs.aws.amazon.com/apigateway/latest/developerguide/api—-gatew
ay-mapping-template-reference.html

® https://docs.aws.amazon.com/apigateway/latest/developerguide/api-
gateway-known-issues.html

Building your first APl using Amazon
CloudFormation

In the previous recipe, we built a simple REST API using the AWS CLI. In this recipe, we
will use the CloudFormation template to create an API and understand the benefits of
using CloudFormation over the AWS CLI. Most enterprise projects use CloudFormation
templates for their infrastructure provisioning in AWS.

Getting ready

In this recipe, we will use the CloudFormation templates written in YAML. To deploy those
templates, we will still use the AWS CLI. So, a basic understanding of CloudFormation, the
AWS CLI, and YAML are good to have. If you are new to these, please refer to the
respective Your first AWS Lambda recipe from chapter 1, Getting Started with Serverless
Computing on AWS.

[66]

https://docs.aws.amazon.com/cli/latest/reference/apigateway/index.html
https://docs.aws.amazon.com/cli/latest/reference/apigateway/index.html
https://docs.aws.amazon.com/cli/latest/reference/apigateway/index.html
https://docs.aws.amazon.com/cli/latest/reference/apigateway/index.html
https://docs.aws.amazon.com/cli/latest/reference/apigateway/index.html
https://docs.aws.amazon.com/cli/latest/reference/apigateway/index.html
https://docs.aws.amazon.com/cli/latest/reference/apigateway/index.html
https://docs.aws.amazon.com/cli/latest/reference/apigateway/index.html
https://docs.aws.amazon.com/cli/latest/reference/apigateway/index.html
https://docs.aws.amazon.com/cli/latest/reference/apigateway/index.html
https://docs.aws.amazon.com/cli/latest/reference/apigateway/index.html
https://docs.aws.amazon.com/cli/latest/reference/apigateway/index.html
https://docs.aws.amazon.com/cli/latest/reference/apigateway/index.html
https://docs.aws.amazon.com/cli/latest/reference/apigateway/index.html
https://docs.aws.amazon.com/cli/latest/reference/apigateway/index.html
https://docs.aws.amazon.com/cli/latest/reference/apigateway/index.html
https://docs.aws.amazon.com/cli/latest/reference/apigateway/index.html
https://docs.aws.amazon.com/cli/latest/reference/apigateway/index.html
https://docs.aws.amazon.com/cli/latest/reference/apigateway/index.html
https://docs.aws.amazon.com/cli/latest/reference/apigateway/index.html
https://docs.aws.amazon.com/cli/latest/reference/apigateway/index.html
https://docs.aws.amazon.com/cli/latest/reference/apigateway/index.html
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://martinfowler.com/articles/richardsonMaturityModel.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-mapping-template-reference.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-mapping-template-reference.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-known-issues.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-known-issues.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-known-issues.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-known-issues.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-known-issues.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-known-issues.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-known-issues.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-known-issues.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-known-issues.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-known-issues.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-known-issues.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-known-issues.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-known-issues.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-known-issues.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-known-issues.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-known-issues.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-known-issues.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-known-issues.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-known-issues.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-known-issues.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-known-issues.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-known-issues.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-known-issues.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-known-issues.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-known-issues.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-known-issues.html

Building Serverless REST APIs with API Gateway Chapter 2

How to do it...

Let's create the same API that we created in the previous recipe, but do it by using a
CloudFormation template, and then deploy it using the AWS CLI. Finally, we will invoke
the API from a browser. The CLI commands corresponding to the CloudFormation
template components were already discussed in the previous recipe:

1. Start by defining the template with AWSTemplateFormatVersion and a
description, as follows:

AWSTemplateFormatVersion: '2010-09-09'
Description: Building API with AWS CloudFormation

2. Define our REST API with the resource type AWS: : ApiGateway: :RestApi, as

follows:

Resources:
MyFirstRestAPI:
Type: AWS::ApiGateway::RestApi
Properties:

Name: Greeting API
Description: API for greeting an user

FailOnWarnings: true

The FailonWarnings property tells CloudFormation to roll back the
resource if a warning occurs during API creation.

3. Define the parent resource, greeting, under the root path, using the type
AWS: :ApiGateway: :Resource:

GreetingResource:
Type: AWS::ApiGateway::Resource
Properties:

RestApiId: !Ref MyFirstRestAPI

ParentId: !GetAtt MyFirstRestAPI.RootResourceld

PathPart: 'greeting'

[671]

Building Serverless REST APIs with API Gateway Chapter 2

We do not have to copy and paste our REST API IDs. Instead, we refer to
our REST API by using the Re £ intrinsic function. Also, we are now using
the shorthand form for the intrinsic functions.

4. Define a path parameter resource under greet ing by using the type
AWS: :ApiGateway: :Resource:

NamePathParamResource:
Type: AWS::ApiGateway::Resource
Properties:
RestApiId: !Ref MyFirstRestAPI
ParentId: !Ref GreetingResource
PathPart: '{name}'

We are using the same properties from the AWS CLI commands, but in
the CloudFormation way.

5. Create the method configuration with the resource type
AWS: :ApiGateway: :Method, as follows:

MyMockMethod:
Type: AWS::ApiGateway::Method
Properties:
AuthorizationType: NONE
HttpMethod: GET
Integration:
Type: MOCK
IntegrationHttpMethod: GET
IntegrationResponses:
— StatusCode: 200
ResponseTemplates:
application/json: "{\"message\": \"Hello
Sinput.params ('name')\" }"
RequestTemplates:
application/json: "{\"statusCode\": 200}"
ResourceId: !Ref NamePathParamResource
RestApiId: !Ref MyFirstRestAPI
MethodResponses:
— StatusCode: 200

[68]

Building Serverless REST APIs with API Gateway Chapter 2

The CloudFormation template combines multiple CLI commands (put-method,
put-method-response, put—integration, and put-integration-—
response) into a single and simple configuration.

6. Deploy our application using the resource type
AWS: :ApiGateway: :Deployment, as follows:

MyFirstDeployment:

DependsOn: MyMockMethod

Type: AWS::ApiGateway::Deployment

Properties:
Description: 'First Deployment'
RestApiId: !Ref MyFirstRestAPI
StageDescription:

Description: 'Dev Stage'

StageName: 'dev'

We have to specify that our Deployment resource depends on our Method
resource, by using DependsOn. Otherwise, the Deployment resource may be
executed before the Method resource.

7. Add an outputs section to return the final URL for our REST API:

Outputs:
SampleEndpoint:
Description: 'Sample Endpoint'
Value: !Sub

https://${API_ID}.execute-api.${AWS: :Region}.amazonaws.com/dev/gree
ting/Heartin

— API_ID: !Ref MyFirstRestAPI

Here, we use the intrinsic function Sub to create the final endpoint, using the
pseudo-variable AWS : :Region and the intrinsic function Re£.

8. Create a cloudformation stack with our template, as follows:

aws cloudformation create-stack \

—-—-stack-name myteststack \

——template-body file://your-first-rest-api-with-api-gateway-
cf.yml \

—--region us-east-1 \

——profile admin

[69]

Building Serverless REST APIs with API Gateway Chapter 2

Here, I have used the template-body option to read the template file from the
local machine. You can use the template-url option to read the template file
from an S3 bucket.

The create-stack command will immediately return a stack-id, which we
can use to check the stack creation status and delete the stack. We can also use the
stack names for these operations:

"StackId": "arn:aws:cloudformation:us—east-1: | NEEEBBN: stack/myteststack/e8201060-ac40-11e8-8038-503acac5cOfd"

9. Check the status of the stack creation by using the describe-stacks sub-
command, until it shows CREATE_COMPLETE:

aws cloudformation describe-stacks \
—-—-stack-name myteststack \
—--region us-east-1 \
——profile admin

The describe-stacks command returns the current status of the stack (for
example, CREATE_IN_PROGRESS, CREATE_COMPLETE, Or DELETE_COMPLETE). If
the stack creation completes successfully, it will return a status

of <sphttps://packt-type-cloud.s3.amazonaws.com/uploads/sites/2819/2019/01/86d
4cc9e-1ab66-4aa3-bad2-f0d5dc363b52.pngan>CREATE_COMPLETE, along with the
Outputs section with our sample URL:

"Stacks": [
{
"StackId" “arn:aws:cloudformation:us—east—l:_:stack/myteststack/e8201060—3c40—11e8—8038—503acac5c0fd“,
'myteststack",
"Building API with AWS CloudFormation",
"CreationTime": "2018-08-30T10:41:34.755Z",
"RollbackConfiguration": {},
"StackStatus": "CREATE_COMPLETE",
"DisableRollback": false,
"NotificationARNs": [1,
"Outputs": [
{
"QutputKey": "SampleEndpoint",
"OutputValue!
"Description": "Sample Endpoint"

}

]l
"Tags": [1,
"EnableTerminationProtection": false

[70]

Building Serverless REST APIs with API Gateway Chapter 2

You can verify the API by going to the URL in a browser. It should print the
message Hello Heartin, as follows:

& C' | @& Secure |s.com/dev/greeting/Heartin ¥

{"message": "Hello Heartin"}

10. You can delete the stack, and all of the resources that it created will automatically
be cleaned up:

aws cloudformation delete-stack \
—--stack-name myteststack \
--region us-east-1 \
——profile admin

How it works...

In this recipe, we created our first REST API using Amazon CloudFormation. In the
previous recipe, Building your first API using the AWS CLI, we created a similar API, but
with the AWS CLI. Since the properties related to API Gateway API creation were already
discussed in that recipe, I will not repeat them here.

We introduced a new CloudFormation template component: Outputs. We also used a sub-
function in its value field, in order to derive a sample API endpoint. The maximum output
that you can define in a template is 60. Its export parameter (not used here) can be used to
specify an export name for the Outputs and reference it from another stack (a cross-stack
reference).

There's more...

We deployed our CloudFormation template from the AWS CLI. You can also use the
CloudFormation designer for template validation, or to see the template components
visually, in a design view. We used the CloudFormation designer to validate and deploy
our template in Chapter 1, Getting Started with Serverless Computing on AWS.

[71]

Building Serverless REST APIs with API Gateway Chapter 2

See also

e Refer to Building your first API using the AWS CLI recipe to learn about the API
creation properties and REST and HTTP basics.

e To understand CloudFormation basics, you may refer to the There’s more section
of the recipe Building your first Lambda with Amazon CloudFormation from Chapter
1, Getting Started with Serverless Computing on AWS.

e For additional CloudFormation concepts, such as pseudo parameters, you can
refer to the recipe Using AWS SDK, Amazon CloudFormation and AWS CLI with
Lambda of chapter 1, Getting Started with Serverless Computing on AWS.

e For additional theory on the Outputs section, you may refer to https://docs.

aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs—-section-
structure.html.

Building your first APl with Lambda
integration

In the previous two recipes in this chapter, we created an API with mock integration. We
also discussed REST principles, HTTP essentials, and the AWS CLI commands and
CloudFormation template components used. In this recipe, we will integrate an API
gateway API with Lambda. The API is similar to the previous one (with a path parameter),
but we will use an AWS integration instead of mock integration.

Getting ready

You need an active AWS account. You need to follow the section Getting started in the
recipes Your first AWS Lambda and Your first Lambda with AWS CLI from chapter 1, Getting
Started with Serverless Computing on AWS, to set up Java, Maven, the parent

project, serverless-cookbook-parent-aws-java, and AWS CLI, and may also read
other notes there including code usage guidelines, S3 bucket creation, and notes for
Windows users.

We will discuss any newly introduced CLI command options or CloudFormation template
components in detail. The complete commands and the CloudFormation template are
available with the code files. You can also refer to the previous recipes for explanations of
the concepts that were already discussed.

[72]

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/outputs-section-structure.html

Building Serverless REST APIs with API Gateway Chapter 2

Since the focus of this chapter is API Gateway, we won't show you the complete Lambda
code (Java and template) within the chapter content, unless we are introducing something
new. The complete code (Java and template) is available in the project's code repository, for
reference.

How to do it...

First, we will create a Lambda, and then we will invoke it from an API Gateway API by
using AWS integration. We will look at how to use CLI commands, as well as a
CloudFormation template, to create the API.

Creating the Lambda

We will create a Lambda similar to the simple greeting Lambda with plain old Java objects
(POJOs) that we used in chapter 1, Getting Started with Serverless Computing on AWS. We
will first use the CLI, and then a CloudFormation template, but with a few changes, which
as follows:

1. Add afield (t ime) to the HandlerRequest POJO, to represent the query
parameter t ime (for example, Morning). The POJO already has a
parameter, name, which represents the path parameter {name}.

2. Modify the handleRequest method to use both of the parameters passed within
JSON to generate the greeting message. If a value is not provided for a param, we
will add a default value.

3. We will also make a change to the previous CloudFormation template (1ambda-
with-pojos-cf-template.yml) by adding the Outputs component to the
template, to export our Lambda's name, which will then be referred to from
the API Gateway CloudFormation template through cross-stack reference:

Outputs:
LambdaOutput:
Description: 'Lambda For API Gateway Reference'
Value: !'Ref MyLambdaFunction
Export:
Name: LambdaForApiGateway

4. Create the stack by using the create-stack sub-command, and verify the stack
by using the describe-stacks sub-command. The complete template and
commands are available in the code files.

[73]

Building Serverless REST APIs with API Gateway Chapter 2

We will use the exported stack name LambdaForApiGateway later in this
recipe from another template. We won't be able to delete a
CloudFormation stack until all of the referenced stacks are deleted.

Creating a REST API with AWS CLI commands

Let's first create the REST API by using AWS CLI commands. We will not show how to use
the commands that we already discussed in previous recipes. However, the complete
commands will be available with the code files:

1.

Create a REST API with the name API Gateway With Lambda, using

the apigateway sub-command create-rest—api.

Get the parent resource ID passing the REST API by using the apigateway sub-
command get-resources.

Create a resource, lambdagreeting, under the root resource (/) by using the
sub-command create-resource.

Create a path parameter, {name}, under the parent resource lambdagreeting,
using the apigateway sub-command create-resource.

Create an http-method GET with the authorization type 'NONE', using

the apigateway sub-command put method. Although it is not required for this
recipe, we will add the property request-parameters, in order to specify that
the path parameter is required:

aws apigateway put-method \
—-rest-api-id 19sh9qghri2 \
——resource—-id n9ievl \
—-http-method GET \
——authorization-type "NONE" \
—--request-parameters method.request.path.name=true \
—--region us-east-1 \
——profile admin

6. Set up a response status code of 200 for the http-method GET, using

the apigateway sub-command put-method-response.

7. Set up an AWS integration, as follows:

aws apigateway put-integration \
—-rest—api-id 19sh9ghri2 \
—-resource-id n9%ievl \
—-http-method GET \

[74]

Building Serverless REST APIs with API Gateway Chapter 2

-—type AWS \

——integration-http-method POST \

——uri 'arn:aws:apigateway:us-
east-1:lambda:path/2015-03-31/functions/arn:aws:lambda:us-
east-1:<account_id>: function:lambda-for-api—-gateway/invocations' \

—-—-request-templates '{"application/json": "{\"name\":
\"$input.params("'""name"""')\" , \"time\":
\"$input.params("""'time"""')\"}"}' \

—--region us-east-1 \
——profile admin

The URI format for AWS Lambda integration
isarn:aws:apigateway:<region>:lambda:path/2015-03-31/funct
ions/<lambda arn>/invocations

The integration-http-method (for the API request to Lambda) is POST, but
http-method (for the client/browser request to the API) is GET. We have also

defined the request-templates option, to specify a mapping template for the
JSON sent to Lambda.

8. Define the integration response with a selection-pattern, "", but without the
response—templatesopﬁon:

aws apigateway put-integration-response \
—-rest—-api-id 19sh9ghri2 \
——resource—-id n9ievl \
—-http-method GET \
——status—-code 200 \
—--region us-east-1 \
--selection-pattern "" \
——profile admin

We are no longer using the response-templates option to specify a
dummy response, as the response is generated at the backend Lambda.

9. Deploy our Lambda to a stage, dev1, by using the apigateway sub-command
create—-deployment.

[75]

Building Serverless REST APIs with API Gateway Chapter 2

10. Give a permission for the API to invoke the 1ambda, as follows:

aws lambda add-permission \

——function-name lambda-for-api-gateway \

—-statement-id apigateway-st-1 \

——action lambda:InvokeFunction \

—-principal apigateway.amazonaws.com \

——source—-arn "arn:aws:execute—api:us-
east-1:<account_id>:tyuddw36th/dev/GET/lambdagreeting/{name}" \
——profile admin

11. Invoke the API from a browser with a path param value (Heartin):

https://tyud4ddw36th.execute—-api.us—east-1.amazonaws.com/dev/lambdagr
eeting/Heartin

Remember to replace the REST APIID (tyu4dw36th) with your REST API
ID.

The preceding URL should show the following output:

< C' | & Secure |vl/lambdagreeting/Heartin Y¢ | :

{"message":"Good Day, Heartin"}

12. Invoke the API from a browser with path and query params, as follows:

https://tyuddw36th.execute-api.us-
east—-1.amazonaws.com/devl/lambdagreeting/Heartin?time=Morning

The preceding code will provide the following output:

& C' | @& Secure |:v1/lambdagreeting/Heartin?time=Morning

{"message":"Good Morning, Heartin"}

[761]

Building Serverless REST APIs with API Gateway Chapter 2

Creating a REST API with a CloudFormation template

Now, let's create the API by using a CloudFormation template. We will not discuss the
steps or components that were already discussed in previous recipes, nor will we discuss
the theory behind commands that were already discussed within the section Creating a
REST API with AWS CLI commands. The complete code is available in the code files:

1.

Start to create the template by defining AWSTemplateFormatVersion and a
suitable description (for example, API with Lambda Integration).

Define our REST API with a FailOnWarnings setting of true,
uﬁngAWS::ApiGateway::RestApL

Define a resource with the PathPart as lambdagreeting,

using AWS: : ApiGateway: :Resource.

Define a path parameter (PathPart) of ' {name} ', under the resource for the
PathPart of lambdagreeting, by using AWS: : ApiGateway: :Resource.

Define an http-method GET with an AWS integration type and corresponding
AWS (Lambda) integration URI, by using AWS : : ApiGateway: :Method (similar
to what we did in the section Creating a REST API with AWS CLI commands):

MyMethod:
Type: AWS::ApiGateway::Method
Properties:
AuthorizationType: NONE
HttpMethod: GET
Integration:
Type: AWS
IntegrationHttpMethod: POST
IntegrationResponses:
- StatusCode: 200

RequestTemplates:
application/json: "{\"name\": \"S$Sinput.params('name')\"
\"time\": \"S$input.params ('time')\"}"
Uri:
! Sub

'arn:aws:apigateway:${AWS: :Region}:lambda:path/2015-03-31/functions
/arn:aws:lambda:us-—
east-1:${AWS: :AccountId}:function:${LAMBDA_NAME}/invocations'

- LAMBDA_NAME: !ImportValue LambdaForApiGateway

ResourcelId: !Ref NamePathParamResource
RestApiId: !Ref MyRestAPI
MethodResponses:

- StatusCode: 200

[77]

Building Serverless REST APIs with API Gateway Chapter 2

We use the intrinsic function Importvalue to refer to an exported
Lambda name. We had exported the name of our Lambda from a previous
Lambda in the section Creating the Lambda.

6. Deploy our API to a stage, dev, by using AWS: : ApiGateway: :Deployment.
7. Add a permission for the API to invoke our Lambda, as follows:

LambdaInvokePermission:
Type: AWS::Lambda::Permission
Properties:
FunctionName: !ImportValue LambdaForApiGateway
Action: 'lambda:InvokeFunction'
Principal: apigateway.amazonaws.com
SourceArn: !Sub
— arn:aws:execute-
api:${AWS::Region}:${AWS: :AccountId}:${API_ID}/*/GET/lambdagreeting
/{name}
— API_ID: !Ref MyRestAPI

8. Add an outputs section that will return our final API endpoint of the
form https://<rest-api-id>.execute-api.<aws-region>.amazonaws.com/dev/
lambdagreeting/Heartin.

9. Create the stack by using the create-stack sub-command, and verify the stack
by using the describe-stacks sub-command. The complete template and
commands are available in the code files.

10. Test the API by running the URL from a browser, with and without the query
parameters (see Creating a REST API with AWS CLI commands section for the
expected output).

How it works...

In this recipe, we discussed how to integrate an API Gateway API with an AWS Lambda.
Now, let's look at the important CLI commands and CloudFormation templates that were
used.

[78]

https://%3Crest-api-id%3E.execute-api.%3Caws-region%3E.amazonaws.com/dev/lambdagreeting/Heartin
https://%3Crest-api-id%3E.execute-api.%3Caws-region%3E.amazonaws.com/dev/lambdagreeting/Heartin
https://%3Crest-api-id%3E.execute-api.%3Caws-region%3E.amazonaws.com/dev/lambdagreeting/Heartin
https://%3Crest-api-id%3E.execute-api.%3Caws-region%3E.amazonaws.com/dev/lambdagreeting/Heartin
https://%3Crest-api-id%3E.execute-api.%3Caws-region%3E.amazonaws.com/dev/lambdagreeting/Heartin
https://%3Crest-api-id%3E.execute-api.%3Caws-region%3E.amazonaws.com/dev/lambdagreeting/Heartin
https://%3Crest-api-id%3E.execute-api.%3Caws-region%3E.amazonaws.com/dev/lambdagreeting/Heartin
https://%3Crest-api-id%3E.execute-api.%3Caws-region%3E.amazonaws.com/dev/lambdagreeting/Heartin
https://%3Crest-api-id%3E.execute-api.%3Caws-region%3E.amazonaws.com/dev/lambdagreeting/Heartin
https://%3Crest-api-id%3E.execute-api.%3Caws-region%3E.amazonaws.com/dev/lambdagreeting/Heartin
https://%3Crest-api-id%3E.execute-api.%3Caws-region%3E.amazonaws.com/dev/lambdagreeting/Heartin
https://%3Crest-api-id%3E.execute-api.%3Caws-region%3E.amazonaws.com/dev/lambdagreeting/Heartin
https://%3Crest-api-id%3E.execute-api.%3Caws-region%3E.amazonaws.com/dev/lambdagreeting/Heartin
https://%3Crest-api-id%3E.execute-api.%3Caws-region%3E.amazonaws.com/dev/lambdagreeting/Heartin
https://%3Crest-api-id%3E.execute-api.%3Caws-region%3E.amazonaws.com/dev/lambdagreeting/Heartin
https://%3Crest-api-id%3E.execute-api.%3Caws-region%3E.amazonaws.com/dev/lambdagreeting/Heartin
https://%3Crest-api-id%3E.execute-api.%3Caws-region%3E.amazonaws.com/dev/lambdagreeting/Heartin
https://%3Crest-api-id%3E.execute-api.%3Caws-region%3E.amazonaws.com/dev/lambdagreeting/Heartin
https://%3Crest-api-id%3E.execute-api.%3Caws-region%3E.amazonaws.com/dev/lambdagreeting/Heartin
https://%3Crest-api-id%3E.execute-api.%3Caws-region%3E.amazonaws.com/dev/lambdagreeting/Heartin
https://%3Crest-api-id%3E.execute-api.%3Caws-region%3E.amazonaws.com/dev/lambdagreeting/Heartin
https://%3Crest-api-id%3E.execute-api.%3Caws-region%3E.amazonaws.com/dev/lambdagreeting/Heartin
https://%3Crest-api-id%3E.execute-api.%3Caws-region%3E.amazonaws.com/dev/lambdagreeting/Heartin
https://%3Crest-api-id%3E.execute-api.%3Caws-region%3E.amazonaws.com/dev/lambdagreeting/Heartin
https://%3Crest-api-id%3E.execute-api.%3Caws-region%3E.amazonaws.com/dev/lambdagreeting/Heartin
https://%3Crest-api-id%3E.execute-api.%3Caws-region%3E.amazonaws.com/dev/lambdagreeting/Heartin

Building Serverless REST APIs with API Gateway Chapter 2

CLI commands

The options for the following commands have not changed much, aside from their names
and descriptions: create-rest—-api, get-resources, create-resource, put-method-
response, put—integration-response, and create—deployment. We also added
request-parameters to put-method, to create the path param, as required.

We used the AWS integration type. We also specified the URI in the format required for
AWS

integrations: arn:aws:apigateway:<region>:lambda:path/2015-03-31/functions
/<lambda arn>/invocations.The 2015-03-31 refers to the latest API version of the
AWS Lambda service.

We defined the request-templates option of the put-integration sub-command to
specify the mapping template for the JSON passed to Lambda from the API. Within the
mapping template key is the content type, and the value is the mapping template for that
content type. We also used the path and query parameter values within the mapping
template. We will look at mapping templates in detail in a later recipe.

The integration-http-method of the put-integration command specifies the HTTP
method used by API Gateway to connect with the Lambda. The integration-http-
method should be POST, for Lambda integration. This is not the HTTP method that we use
to access our API endpoint from a browser (which is GET, as specified by http-method).

We did not specify iam roles or policies for API Gateway to talk to Lambda; instead, we
used Lambda's add-permission command to allow our API to invoke it. We specifically
gave lambda: InvokeFunction permission, but you can also give all of the permissions by
using lambda: *. For logging to CloudWatch, you will still need to add a role with the
required permissions.

The lambda add-permission properties are as follows:

e function-name is the name of the Lambda function.

® statement-id is a unique number to identify this permission.
e action refers to the permitted actions.

e principal denotes the AWS service that is granted permission.

e source-arn is the arn of the resource invoking the function. You can specify *
to denote that any of the part is matched (for example,
tyuddw3eth/*/*/lambdagreeting/{name} matches any stage and any HTTP
method).

[79]

Building Serverless REST APIs with API Gateway Chapter 2

CloudFormation template components

As always, we will start with the template version and description. The options for the
following resource types have not changed much: RestApi, Resource, and Deployment.
The outputs section is also the same as before. Within the method declaration, we used the
AWS integration type, along with a URI in the required format.

Within the management console, you have a separate Lambda Integration option and
AWS integration option. However, with CLI commands and CloudFormation templates,
the AWS integration option is used for both cases.

We have introduced a new intrinsic function: Fn: : ImportValue. Fn: : ImportValue gets
the value of an output exported by another stack (in our case, the Lambda stack). Exports
and imports are only allowed within regions, and export names must be unique within a
region.

We also used a new type, AWS: : Lambda: :Permission, to add a permission to a Lambda.
The options are similar to the CLI commands we used, but we have used CloudFormation
intrinsic functions and variables to avoid any hardcoding. When working with API
gateway, you only need to use SourceArn to specify the SourceAccount. However, if you
are specifying a resource, such as an S3 bucket, you need to specify the SourceAccount
option as well.

There's more...

We have now created our first API with a Lambda backend. We used API gateway's
request and response modeling capabilities to structure the input and output from the
Lambda. We can also configure API gateway to act as a proxy, in order to forward the
request as it is to Lambda. We will see that in a later recipe.

See also

¢ For more information on the intrinsic function Fn: : Importvalue, you can refer
to https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/
intrinsic-function-reference-importvalue.html

e For more information on AWS: : Lambda: : Permission, you can refer to https:/

/docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws—-resource—
lambda-permission.html.

[80]

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference-importvalue.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference-importvalue.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference-importvalue.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference-importvalue.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference-importvalue.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference-importvalue.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference-importvalue.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference-importvalue.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference-importvalue.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference-importvalue.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference-importvalue.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference-importvalue.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference-importvalue.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference-importvalue.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference-importvalue.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference-importvalue.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference-importvalue.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference-importvalue.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference-importvalue.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference-importvalue.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference-importvalue.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference-importvalue.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference-importvalue.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference-importvalue.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference-importvalue.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference-importvalue.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-lambda-permission.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-lambda-permission.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-lambda-permission.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-lambda-permission.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-lambda-permission.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-lambda-permission.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-lambda-permission.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-lambda-permission.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-lambda-permission.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-lambda-permission.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-lambda-permission.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-lambda-permission.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-lambda-permission.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-lambda-permission.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-lambda-permission.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-lambda-permission.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-lambda-permission.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-lambda-permission.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-lambda-permission.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-lambda-permission.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-lambda-permission.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-lambda-permission.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-lambda-permission.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-lambda-permission.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-lambda-permission.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-lambda-permission.html

Building Serverless REST APIs with API Gateway Chapter 2

Building and testing your first POST API
method

In this recipe, we will create a simple POST API method that has an AWS integration with
Lambda. A REST client will send a JSON request body to the API method in the format
required by our Lambda, which will be passed through to the Lambda. We will use the
same Lambda from the previous recipe.

GET is the default HTTP method for web browser requests; hence, we could invoke GET
API methods from the browser in the previous recipes. To invoke other HTTP methods or
override various HTTP options, we need to use a REST client. We will use the Postman
REST client, which is available as a standalone app, as well as an extension to the Chrome
browser.

Getting ready

You need an active AWS account. You need to follow the section Getting started in the
recipes Your first AWS Lambda and Your first Lambda with AWS CLI from chapter 1, Getting
Started with Serverless Computing on AWS, to set up Java, Maven, the parent

project, serverless—cookbook-parent-aws-java, and AWS CLIL and may also read
other notes there including code usage guidelines, S3 bucket creation and notes for the
Windows users.

As we are reusing the Lambda that was used in the recipe Building your first API with
Lambda integration, you will need to build and deploy that Lambda using its
CloudFormation template (if it was not already deployed). You can follow the steps in that
recipe to build and upload JAR to S3, and use the provided CloudFormation template to
deploy the Lambda.

How to do it...

As with the previous recipes, we will first look at how to create the API using CLI
commands, and we will then look at how to use CloudFormation templates. We will also
cover testing it with a REST client.

[81]

Building Serverless REST APIs with API Gateway Chapter 2

Creating the APl with CLI commands

First, let's create the REST API by using AWS CLI commands. We will not show how to use
the commands that we already discussed in previous recipes. However, the complete
commands will be available with the code files:

1. Use the aws apigateway command to create a REST APIin API Gateway, using
the apigateway sub-command create-rest-api.

2. Get the root resource (/) of our API by using the apigateway sub-
command get-resources.

3. Create our path-part, lambdagreeting, by using the apigateway sub-
command create-resource.

4. Execute the aws apigateway put-method command with the http-method as
POST, as follows:

aws apigateway put-method \
—--rest—-api-id 7uwav24qlf \
—-resource-id s6rij6 \
—-http-method POST \
——authorization-type "NONE" \
--region us-east-1 \
——profile admin

5. Execute aws apigateway put-method-response with the status—code as
200 for the http-method POST, as follows:

aws apigateway put-method-response \
——rest—-api-id 7uwav24qlf \
——resource-id s6rij6 \
—-http-method POST \
—-status—-code 200 \
—--region us-east-1 \
——profile admin

6. Execute the aws apigateway put-integration command with the http-
method as POST, the type as AWS, and a Lambda URI, as per the required format:

aws apigateway put-integration \

—-rest-api-id 7uwav24qlf \

—-resource-id s6rij6 \

—-http-method POST \

—-—type AWS \

——integration-http-method POST \

——uri 'arn:aws:apigateway:us-
east-1:lambda:path/2015-03-31/functions/arn:aws:lambda:us-

[82]

Building Serverless REST APIs with API Gateway Chapter 2

east-1:<account_id>: function:lambda-for-api—-gateway/invocations' \
—--region us-east-1 \
——profile admin

We have omitted the request-templates property, and we are now
passing parameters within the body of our POST request.

The default pass through behavior is to pass the request body to the Lambda as is
(if no matching templates are defined), as you can see in the response of put—
integration, as follows:

“typet: MAWS",
"httpMethod": "POST",
"uri": "arn:aws:apigateway:us—east-1:lambda:path/2015-03-31/functions/arn:aws: lambda:us-east-1 _: function: lambda-for-api-gateway/invocations",

"passthroughBehavior": "WHEN_NO_MATCH",
"timeoutInMillis": 29000,
"'cacheNamespace": "s6rij6",
"cacheKeyParameters": []

7. Execute the aws apigateway put-integration-response command for the
http-method POST, witha selection-patternof "":

aws apigateway put-integration-response \
——rest—-api-id 7uwav24qlf \
——resource-id s6rij6 \
—-http-method POST \
—-status—-code 200 \
—--region us-east-1 \
-—-selection-pattern "" \
——profile admin

8. Deploy our API to a stage, dev, using the apigateway sub-command create-
deployment.

9. Give permission for the API to invoke the Lambda, as follows:

aws lambda add-permission \
——function-name lambda-for-api-gateway \
—--statement-id apigateway-st-2 \
——action lambda:InvokeFunction \
—-—-principal apigateway.amazonaws.com \
——-source-arn "arn:aws:execute-api:us-
east-1:<account_id>:7uwav24qlf/*/POST/lambdagreeting” \
——profile admin

[83]

Building Serverless REST APIs with API Gateway Chapter 2

Creating the API with a CloudFormation template

Now, let's create the API by using a CloudFormation template. We will not discuss the
components that were already discussed in previous recipes, nor will we discuss the theory
behind commands that were already discussed within the CLI commands section. The

complete code is available in the code files:

1. Start to create the template by defining AWSTemplateFormatVersion and a
suitable Description.
2. Create the REST API by using AWS: :ApiGateway: :RestApi.

3. Create the path-part, lambdagreeting, by
using AWS: : ApiGateway: :Resource.
4. Define the method, with the ht tp-method as POST, as follows:

MyMethod:
Type: AWS::ApiGateway::Method
Properties:
AuthorizationType: NONE
HttpMethod: POST
Integration:
Type: AWS
IntegrationHttpMethod: POST
IntegrationResponses:
— StatusCode: 200
Uri:
!'Sub

'arn:aws:apigateway:${AWS: :Region}:lambda:path/2015-03-31/functions

/arn:aws:lambda:us-—
east-1:${AWS: :AccountId}:function:${LAMBDA_NAME}/invocations"'
- LAMBDA_NAME: !ImportValue LambdaForApiGateway

ResourcelId: !Ref GreetingResource
RestApiId: !Ref MyRestAPI
MethodResponses:

— StatusCode: 200

We have omitted the request-templates property, and we are now
passing parameters within the body of our POST message.

5. Deploy our API to a stage, dev, by using AWS: : ApiGateway: :Deployment.

[84]

Building Serverless REST APIs with API Gateway Chapter 2

6. Add permission for the API to invoke the Lambda, as follows:

LambdaInvokePermission:
Type: AWS::Lambda::Permission

Properties:
FunctionName: !ImportValue LambdaForApiGateway
Action: 'lambda:InvokeFunction'

Principal: apigateway.amazonaws.com
SourceArn: !Sub
— arn:aws:execute-
api:${AWS::Region}:S${AWS: :AccountId}:${API_ID}/*/POST/lambdagreetin
g
— API_ID: !Ref MyRestAPI

7. Add an Outputs section with the updated UR]I, as follows:

Outputs:
SampleEndpoint:
Description: 'POST Endpoint'
Value: !Sub

https://${API_ID}.execute—api.${AWS::Region}.amazonaws.com/dev/lamb
dagreeting
— API_ID: !Ref MyRestAPI

Testing with Postman

We will now look at how to test our API by using the Postman client. You can also use any
other REST client that you are comfortable with:

1. Search for Postman Chrome extension, and follow the search results to install
the Postman extension in Chrome.

Postman is also available as a native app, to download, install, and use. It
will also be the preferred way to use the Postman client, from this point
forward.

2. Once Postman has been added as an extension in Chrome, you can launch it
from chrome://apps/. You can log in to your Google account, or skip logging
in.

3. Select the Request option. You can specify a folder to save the request in, or close
the Save dialog box.

[85]

Building Serverless REST APIs with API Gateway Chapter 2

4. Configure Postman to send requests to our API method, and click on Send:
1. Select the POST method.

2. Add our endpoint URL for the POST method.

3. Go to the Body tab, click on raw, and select JSON
(application/json) for the content type.

4. Add our JSON payload, as follows:

No Environment
https://7uwav24qif.e: @

POST https://7uwav24q1f.execute-api.us-east-1.amazonaws.com/dev/lambdagreeting Params

) Body ®
form-data x-www-form-urlencoded @ raw binary JSON (application/json)
1-|{
2 "name" : "Heartin",
3 "time" : "Morning"
S

5. Once you have configured the options and have clicked on send, you should get
a successful response, as follows:

Body (10) Status: 200 OK
Pretty JSON =)
1-{
2 "message": "Good Morning, Heartin"
3 }

How it works...

In this recipe, we created a POST API method whose request body is passed to the Lambda
as is. To use the POST method, we used the POST HTTP method. To allow pass-through
behavior, we did not use any request-templates property, and made use of the default
passthrough behavior.

[86]

Building Serverless REST APIs with API Gateway Chapter 2

Passthrough behavior

In the put-integration response, you saw that the passthroughBehavior had the
value WHEN_NO_MATCH, which means that, if we do not define a template for the request
content type, API Gateway will passthrough the request body to the Lambda.

We can override the passthrough behavior with the passthrough-behavior parameter in
the CLI, or with the PassthroughBehavior property within the CloudFormation
template. The valid values for this parameter are as follows:

e WHEN_NO_MATCH: This option allows the pass through of the request body for
unmapped content types to the backend.

e WHEN_NO_TEMPLATES: This option allows pass through only if the templates are
not defined for any content type. If a template is defined for at least one content
type, the others will be rejected with a 415 HTTP response status code. The
HTTP 415 response status code stands for Unsupported Media Type. Thisis
the recommended option.

e NEVER: This option rejects all unmapped content types with an HTTP 415
response code.

There's more...

Having a decent understanding of all of the common HTTP headers used with HTTP
requests and HTTP responses can help you to design good REST APIs. To see the actual
HTTP requests and responses for our POST method invocation, you can use a such as like
Fiddler (www.telerik.com/fiddler) or Wireshark (www.wireshark.org).

See also

You can read more about using Fiddler and Wireshark for monitoring HTTP requests on
their respective websites:

® https://www.telerik.com/fiddler

® https://www.wireshark.org

[871]

https://www.telerik.com/fiddler
https://www.wireshark.org/
https://www.telerik.com/fiddler
https://www.telerik.com/fiddler
https://www.telerik.com/fiddler
https://www.telerik.com/fiddler
https://www.telerik.com/fiddler
https://www.telerik.com/fiddler
https://www.telerik.com/fiddler
https://www.telerik.com/fiddler
https://www.telerik.com/fiddler
https://www.telerik.com/fiddler
https://www.telerik.com/fiddler
https://www.wireshark.org
https://www.wireshark.org
https://www.wireshark.org
https://www.wireshark.org
https://www.wireshark.org
https://www.wireshark.org
https://www.wireshark.org
https://www.wireshark.org
https://www.wireshark.org

Building Serverless REST APIs with API Gateway Chapter 2

Mapping requests and responses with
mapping templates

Amazon API Gateway allows us to map our incoming requests to a format that's required
by our Lambda, and map the response from the Lambda into a format that's required by
the client, all by using the mapping templates. The API Gateway body mapping templates
are based on the Apache Velocity Template Language (VTL) and JSONPath expressions.

In this recipe, we will see how to map a JSON body coming from a request into another
JSON structure, as required by the backend (Lambda). We will also map the JSON response
from the backend (Lambda) into a different JSON response structure which is sent back as
the response. We will use the same Lambda from the recipe Building your first API with
Lambda integration, but the client will send the request in a different format.

Getting ready

You need an active AWS account. You need to follow the section Getting started in the
recipes Your first AWS Lambda and Your first Lambda with AWS CLI from chapter 1, Getting
Started with Serverless Computing on AWS to set up Java, Maven, the parent

project, serverless-cookbook-parent-aws-java, and AWS CLI, and may also read
other notes there including code usage guidelines, S3 bucket creation, and notes for
Windows users.

As we are reusing the Lambda that we used in the recipe Building your first API with Lambda
integration, you will need to build and deploy that Lambda (if you have not done so
already). You can follow the steps in that recipe to build the project and upload JAR to S3,
and you can use the provided CloudFormation template to deploy the Lambda.

The body mapping templates are written based on VIL and JSONPath expressions. So,
having a decent understanding of the Apache VTL language and JSONPath expressions
will help you to better understand the sample templates and to develop templates that suit
your project's needs.

How to do it...

We will map the client request with the expected request format for the Lambda, and we
will also map the Lambda response to the expected response format for the client.

[881]

Building Serverless REST APIs with API Gateway Chapter 2

Mapping requests

The expected request structure for our Lambda, based on the request POJO, is as follows:

{

"name" : "Heartin",
"time" : "Morning"

}

The request payload sent from the client via the POST request is as follows:

{

"user" : {

"name" : "Heartin"
}I

"greeting" : {
"time" : "Morning"

}
}
We can map the request payload to the expected JSON format by using the following
mapping template:
{

"name" : S$input.json('$.user.name'),
"time" : S$input.json('$.greeting.time')

}

Mapping responses

The response from the Lambda is as follows:

{

"message" : "Good Morning, Heartin"

}

The expected response from the client is as follows:

{

"greeting" : "Good Morning, Heartin"

}

[891]

Building Serverless REST APIs with API Gateway Chapter 2

We can map the response returned from the Lambda into the expected response format by
using the following mapping template:

{
"greeting" : $input.json('$.message'),

}

Creating the APl using CLI commands

First, let's create the REST API by using AWS CLI commands. We will not show how to use
the commands that we already discussed in previous recipes. However, the complete
commands will be available in the code files:

1. Create a REST API in API Gateway by using the apigateway sub-
command create-rest-api.

2. Get the root resource (/) of our API by using the apigateway sub-
command get-resources.

3. Create our path-part, lambdagreeting, by using the apigateway sub-
command create-resource.

4. Create a POST method by using the apigateway sub-command put-method.

5. Set a response status code for our POST method by using the apigateway sub-
command put-method-response

6. Execute the aws apigateway put-integration command with the request
mapping template, as follows:

aws apigateway put-integration \

——rest-api-id y3yftanqgp7 \

——resource—-id edw7ka \

——http-method POST \

-—type AWS \

——integration-http-method POST \

——uri 'arn:aws:apigateway:us-
east-1:lambda:path/2015-03-31/functions/arn:aws:lambda:us—
east-1:<account_id>: function:lambda-for-api—gateway/invocations' \

—-—-request-templates '{ "application/json" : "{ \"name\"
$input.json('"'"'$.user.name'"'"'), \"time\"
$input.json('"'"'$.greeting.time'"'"")}" }' \

—-passthrough-behavior WHEN_NO_TEMPLATES \
—--region us-east-1 \
——profile admin

[90]

Building Serverless REST APIs with API Gateway Chapter 2

Aside from the request-template property, we also set the value of
passthrough-behavior with WHEN_NO_TEMPLATES.

7. Execute the aws apigateway put-integration-response command with
the response mapping template, as follows:

aws apigateway put-integration-response \
—-rest-api-id y3yftangp7 \
——resource-id edw7ka \
—-http-method POST \
——status-code 200 \
—--region us-east-1 \

—--selection-pattern "" \
—-response-templates '{ "application/json" : "{ \"greeting\"
$input.json('"""$.message"""')}" }l \

——profile admin

8. Deploy our APl into a stage by using the apigateway sub-command create-
deployment.

9. Give permission for the API method to invoke the Lambda function by using the
command aws lambda add-permission.

Creating the API with a CloudFormation template

Now, let's create the API by using a CloudFormation template. We will not discuss the
components that were already discussed in previous recipes, nor will we discuss the theory
for commands that were already discussed within the CLI commands section. The complete
code is available in the code files.

With the CloudFormation template, the major change is within the Integration property
of the resource type AWS: : ApiGateway: :Method, as follows:

Integration:
Type: AWS
IntegrationHttpMethod: POST
PassthroughBehavior: WHEN_NO_TEMPLATES

RequestTemplates:
application/json: "{ \"name\" : S$input.json('$.user.name'), \"time\":
Sinput.json('S$S.greeting.time') }"

IntegrationResponses:
— StatusCode: 200
ResponseTemplates:

[91]

Building Serverless REST APIs with API Gateway Chapter 2

application/json: "{ \"greeting\" : $input.json('S$.message')}"
Uri:
!'Sub

'arn:aws:apigateway:${AWS: :Region}:lambda:path/2015-03-31/functions/arn:aws
:lambda:us—-east-1:${AWS: :AccountId}:function:${LAMBDA_NAME}/invocations'
- LAMBDA_NAME: !ImportValue LambdaForApiGateway

All of the other components (for example, template version, description,
API, resource, deployment, adding permission, and output) remain the
same, except for the descriptions and names (in a few places), which are
changed to match the current recipe.

Testing the API

You can test the API by using Postman (or any other REST/HTTP client), as follows:

https://te38cfyyc7.exe @
POST https://te38cfyyc7.execute-api.us-east-1.amazonaws.com/dev/lambdagreeting
1) Body @
form-data x-www-form-urlencoded @ raw binary JSON (application/json)
1~ ({
2~ "user" : {
3 "name" : "Heartin"
4 1,
5+ "greeting" : {
6 "time" : "Morning"
7 }
8 1}

[92]

Building Serverless REST APIs with API Gateway Chapter 2

The response should be the same as in the previous recipe, as shown in the following
screenshot:

Body (10) Status: 200 OK
Pretty JSON
1-
2 "message": "Good Morning, Heartin"
3 1

How it works...

In this recipe, we used mapping templates with the variable sinput that is provided by
API gateway to transform the request JSON and response JSON. We also specified the
recommended passthrough behavior of WHEN_NO_TEMPLATES, instead of the default
WHEN_NO_MATCH. We discussed passthrough behavior in the previous recipe.

Mapping templates and variables

You can map the requests and responses in API Gateway by using API Gateway's body
mapping templates, based on the Apache VTL and JSONPath expressions.

The $input variable provided by the API Gateway represents the input payload (a request
payload or response payload, based on the case) and the parameters available to the
template. The function $input. json () retrieves part of the JSON, as specified by

a JSONPath expression. In JSONPath, s represents the outer-level JSON

object. $input.json('S$.user.name') returns the value of the field name within the user
object, and $input.json('$.greeting.time") returns the value of the field time
within the greeting object. Similarly, $input.json ('$.message') returns the value of
the message field.

[93]

Building Serverless REST APIs with API Gateway Chapter 2

Aside from sinput, API Gateway also provides $context, $stageVariables, and $util
variables. The $context variable holds the contextual information, such as the apiId,
authorizer properties, principalld, httpMethod, error details, accountld,
apiKey, cognitoAuthenticationProvider details, sourcelp, path, protocol,
status, stage, and so on. The variable $stagevariables can be used to refer to stage
variables. The $util variable has utility functions that can be used in mapping templates,
such as escapeJavaScript (), parseJson (), urlEncode (), urlDecode (),
base64Encode (), and base64Decode ().

Using #set

You can use #set to define a variable that can be used within the template.

Our (original) template is as follows:

{
"name" : $input.json('$.user.name'),
"time": $input.json('S$.greeting.time')

}
The template, when rewritten by using #set, is as follows:

fset ($inputRoot = $input.path('s$'"))
{
"name" : "S$inputRoot.user.name",
"time": "S$inputRoot.greeting.time"

}

The sinputRoot is also the variable name that is autogenerated by API
Gateway in the AWS Management Console. However, you are free to use
any name.

There's more...

We have used Apache Velocity Language and JSONPath expressions within our recipe.
You can read the following sections to learn more about them, for advanced use cases.

[94]

Building Serverless REST APIs with API Gateway Chapter 2

The Apache Velocity Language

Apache Velocity is a Java-based templating engine. It was developed for web designers, to
get access to Java objects without knowing the Java programming language. Velocity is
currently used as a templating engine for a variety of use cases, such as generating web
pages, SQL, PostScript, and so on. API Gateway uses it for its mapping templates. You can
learn more about the velocity language at http://velocity.apache.org.

JSONPath expressions

JSONPath expressions are used with a JSON object, similar to how XPath expressions are
used with an XML document. $ represents the root-level object, and @ represents the
current object. [SONPath expressions can use the dot notation or the square bracket
notation. You can read more about JSONPath at http://goessner.net/articles/
JsonPath.

See also

Read more about creating models and mapping templates at https://docs.aws.amazon.
com/apigateway/latest/developerguide/models—-mappings.html.

Variables available to use within API Gateway mapping template is available at https://
docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-mapping-
template-reference.html.

Validating request payloads with models

In this recipe, we will add validation to request payloads by using models. We will define a
model by using the JSON schema draft language, and we will then use it to validate our
payloads. We will use the same Lambda that we used in the recipe Building your first API
with Lambda integration.

[95]

http://velocity.apache.org
http://velocity.apache.org
http://velocity.apache.org
http://velocity.apache.org
http://velocity.apache.org
http://velocity.apache.org
http://velocity.apache.org
http://velocity.apache.org
http://velocity.apache.org
http://goessner.net/articles/JsonPath
http://goessner.net/articles/JsonPath
http://goessner.net/articles/JsonPath
http://goessner.net/articles/JsonPath
http://goessner.net/articles/JsonPath
http://goessner.net/articles/JsonPath
http://goessner.net/articles/JsonPath
http://goessner.net/articles/JsonPath
http://goessner.net/articles/JsonPath
http://goessner.net/articles/JsonPath
https://docs.aws.amazon.com/apigateway/latest/developerguide/models-mappings.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/models-mappings.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/models-mappings.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/models-mappings.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/models-mappings.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/models-mappings.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/models-mappings.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/models-mappings.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/models-mappings.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/models-mappings.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/models-mappings.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/models-mappings.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/models-mappings.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/models-mappings.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/models-mappings.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/models-mappings.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/models-mappings.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/models-mappings.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/models-mappings.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/models-mappings.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/models-mappings.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/models-mappings.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/models-mappings.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-mapping-template-reference.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-mapping-template-reference.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-mapping-template-reference.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-mapping-template-reference.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-mapping-template-reference.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-mapping-template-reference.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-mapping-template-reference.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-mapping-template-reference.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-mapping-template-reference.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-mapping-template-reference.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-mapping-template-reference.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-mapping-template-reference.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-mapping-template-reference.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-mapping-template-reference.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-mapping-template-reference.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-mapping-template-reference.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-mapping-template-reference.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-mapping-template-reference.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-mapping-template-reference.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-mapping-template-reference.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-mapping-template-reference.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-mapping-template-reference.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-mapping-template-reference.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-mapping-template-reference.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-mapping-template-reference.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-mapping-template-reference.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-mapping-template-reference.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-mapping-template-reference.html

Building Serverless REST APIs with API Gateway Chapter 2

Getting ready

You need an active AWS account. You need to follow the section Getting started in the
recipes Your first AWS Lambda and Your first Lambda with AWS CLI from Chapter 1, Getting
Started with Serverless Computing on AWS to set up Java, Maven, the parent

project, serverless-cookbook-parent-aws-java, and AWS CLI, and may also read
other notes there including code usage guidelines, S3 bucket creation, and notes for the
Windows users.

As we are reusing the Lambda from the recipe Your first API with Lambda integration, you
will need to build and deploy that Lambda (if you have not done so already). You can
follow the steps in that recipe to build the project and upload JAR to S3, and you can use
the provided CloudFormation template to deploy the Lambda.

How to do it...

We will define a request in the JSON format, and then define a model schema for JSON,
using both the CLI commands and the CloudFormation templates.

The request data format

We will use the same request format that we used in the previous recipe:

{

"user" : {

"name" : "Heartin"
}I

"greeting" : {
"time" : "Morning"

}

[961]

Building Serverless REST APIs with API Gateway Chapter 2

Creating the APl with CLI commands

First, let's create the REST API by using AWS CLI commands. We will not show how to use
the commands that we already discussed in previous recipes. However, the complete
commands will be available in the code files:

1. Create a REST API in API Gateway, using the apigateway sub-
command create-rest-api.

2. Get the root resource (/) of our API, using the apigateway sub-command get-
resources.

3. Create our path-part, lambdagreeting, using the apigateway sub-
Command create—-resource.

4. Create a model schema for our JSON, using the apigateway sub-
command create-model:

aws apigateway create-model \
—--rest-api-id dqngdyb3z2 \
—--name 'greetingRequestModel' \
——description 'Greeting Request Model' \
—-—content-type 'application/json' \
——schema '{

"Sschema":
"http://json-schema.org/draft-04/schema#",
"title": "greetingModel",
"type": "object",
"properties": {
"user" : {"type": "object",
"properties": {
"name" : {"type" : "string"}
}
}I
"greeting" : {"type": "object",
"properties" : {
"time" : {"type" : "string"}
}
}
}I
"required" : ["user", "greeting"]

A

——profile admin

[97]

Building Serverless REST APIs with API Gateway Chapter 2

5. Create a request validator for our JSON, using the apigateway sub-
command create-request-validator:

aws

apigateway create-request-validator \
—-rest-api-id dqngdyb3z2 \

—--name greetingRequestValidator \
—--validate-request-body \

——profile admin

6. Execute the aws apigateway put-method command with our request model
and request validator IDs, as follows:

10.

11.

aws

apigateway put-method \

—--rest-api-id dgngdyb3z2 \

—-resource-id ffknxp \

—-http-method POST \

——authorization-type "NONE" \

—--request-models application/json=greetingRequestModel \
—--request-validator-id 549e4h \

—--region us-east-1 \

——profile admin

Set a response status code for our POST method by using the apigateway sub-
command put-method-response.

Set up the integration type, request-template, and the passthrough behavior
with the apigateway sub-command put-integration.

Set up the response mapping, using the apigateway sub-command put -

integration—-response

Deploy our APl into a stage, dev, using the apigateway sub-command create-
deployment.

Give permission for the API method to invoke the Lambda function, using the
command aws lambda add-permission.

[981]

Building Serverless REST APIs with API Gateway Chapter 2

The CloudFormation template

Now, let's create the API by using the CloudFormation template. We will not discuss the
components that were already discussed in previous recipes, nor will we discuss the theory
for commands that were already discussed within the CLI commands section. The complete
code is available in the code files:

1. Start by defining the template version, Description, RestApi, and a path-
part lambdagreeting.
2. Create a model for request validation, as follows:

MyRequestValidationModel:
Type: AWS::ApiGateway::Model
Properties:
ContentType: application/json
Description: Greeting Request Model
Name: GreetingRequestModel
RestApiId: !Ref MyRestAPI

Schema: '{"$schema": "http://Jjson-schema.org/draft-04/schema#",
"title": "greetingModel",
"type": "object",
"properties": {
"user" : {"type": "object",
"properties": {
"name" : {"type" : "string"}
}
}I
"greeting" : {"type": "object",
"properties" : {
"time" : {"type" : "string"}
}
}
}I
"required" : ["user", "greeting"]

} Al
3. Create a request validator, as follows:

MyRequestValidator:
Type: AWS::ApiGateway::RequestValidator
Properties:
Name: GreetingRequestValidator
RestApiId: !Ref MyRestAPI
ValidateRequestBody: true
ValidateRequestParameters: false

[991]

Building Serverless REST APIs with API Gateway Chapter 2

4. Use the model and validator within the AWS: : ApiGateway: :Method
resource, as follows:

MyMethod:
Type: AWS::ApiGateway::Method
Properties:
AuthorizationType: NONE
HttpMethod: POST
Integration:
Type: AWS
IntegrationHttpMethod: POST
PassthroughBehavior: WHEN_NO_TEMPLATES
RequestTemplates:
application/json: "{ \"name\" : $input.json('$.user.name'),
\"time\": $input.json('S$.greeting.time') }"
IntegrationResponses:
— StatusCode: 200
ResponseTemplates:
application/json: "{ \"greeting\"
$input.json('S$.message') }"
Uri:
!'Sub

'arn:aws:apigateway:${AWS: :Region}:lambda:path/2015-03-31/functions
/arn:aws:lambda:us—
east—-1:${AWS: :AccountId}:function:${LAMBDA_NAME}/invocations'
— LAMBDA_NAME: !ImportValue LambdaForApiGateway
RequestModels:
application/json: !Ref MyRequestValidationModel
RequestValidatorId: !Ref MyRequestValidator

ResourcelId: !Ref GreetingResource
RestApiId: !Ref MyRestAPI
MethodResponses:

— StatusCode: 200

5. Add deployment, add Lambda permissions, and add an Outputs section, similar
to the previous recipes.

Testing the API

You can test the API from Postman (or any other REST client of your choice) by passing the
request in the expected format; you should get the expected response message. If you use
the sample JSON method provided at the start of this section, you should get a response of
Good Morning, Heartin.

[100]

Building Serverless REST APIs with API Gateway Chapter 2

If you send an invalid request (say, { }), you should get an error message with a response
code of 400, as shown in the following screenshot:

Body 9) Status: 400 Bad Request
Pretty JSON
1-[{
2 "message": "Invalid request body"

3

How it works...

In this recipe, we added a model based on the JSON schema for our input message
format. To use the model to reject payloads that do not conform to our format, we did the
following;:

1. We specified all of the fields that are required (this is optional)
2. We created a validator and assigned it to this method

There's more...

In our recipes, we created the template manually from AWS CLI. API Gateway
Management Console also supports auto generating mappings, based on models. Once we
define a model, we can create starter mappings from the integration request and integration
response sections of the API gateway dashboard in the Management Console.

See also

e To learn more about JSON schema, you can refer to https://json-schema.org/
understanding-json-schema/index.html.

[101]

https://json-schema.org/understanding-json-schema/index.html
https://json-schema.org/understanding-json-schema/index.html
https://json-schema.org/understanding-json-schema/index.html
https://json-schema.org/understanding-json-schema/index.html
https://json-schema.org/understanding-json-schema/index.html
https://json-schema.org/understanding-json-schema/index.html
https://json-schema.org/understanding-json-schema/index.html
https://json-schema.org/understanding-json-schema/index.html
https://json-schema.org/understanding-json-schema/index.html
https://json-schema.org/understanding-json-schema/index.html
https://json-schema.org/understanding-json-schema/index.html
https://json-schema.org/understanding-json-schema/index.html
https://json-schema.org/understanding-json-schema/index.html
https://json-schema.org/understanding-json-schema/index.html
https://json-schema.org/understanding-json-schema/index.html
https://json-schema.org/understanding-json-schema/index.html
https://json-schema.org/understanding-json-schema/index.html
https://json-schema.org/understanding-json-schema/index.html
https://json-schema.org/understanding-json-schema/index.html

Building Serverless REST APIs with API Gateway Chapter 2

Lambda and API with proxy integration

In this recipe, we will configure our API to act as a proxy for a Lambda. We will create a
new Lambda function that extracts the required data from the incoming request. While
using proxy integration, Lambda needs to implement the low-

level RequestStreamHandler that gives us access to the Input St ream and

OutputStream.

Getting ready

You need an active AWS account. You need to follow the section Getting started in the
recipes Your first AWS Lambda and Your first Lambda with AWS CLI from Chapter 1, Getting
Started with Serverless Computing on AWS to set up Java, Maven, the parent

project, serverless-cookbook-parent-aws-java, and AWS CLI, and may also read

other notes there including code usage guidelines, S3 bucket creation, and notes for
Windows users.

A basic understanding of HTTP, REST, Java, and Maven is required to understand and
follow the steps within this recipe. Knowledge of a REST client, such as Postman, is also
good to have. You can refer to the previous recipes if you do not have the required basic
understanding of these technologies and/or tools.

How to do it...

We will use proxy integration for our API, in order to pass the request to the Lambda
without any changes. We will use the greedy path param {proxy+} under the root
resource \, in order to catch all of the requests to its sub-resources. We will also add the
ANY HTTP method over the greedy path to match for any type.

match for \, as well, we should define and configure an ANY method over

The requests to the root resource, \ are still not matched. If we need to
0 it'

[102]

Building Serverless REST APIs with API Gateway Chapter 2

Creating a Lambda function for proxy integration

We will use a simple Lambda function, following the Lambda proxy integration example
provided by AWS. We will only discuss the important code snippets that are used inside of
the Lambda function within this chapter. However, you can refer to the code files for the
complete code.

The Lambda Handler class implements the Request St reamHandler interface, as follows:

public class ProxyStreamHandlerLambda implements RequestStreamHandler {

Along with the Context object, the handler method accepts the InputStreamand
OutputStream:

public final void handleRequest (final InputStream inputStream,
final OutputStream outputStream,
final Context context) throws IOException {

We can parse the Input Stream to extract the event details sent by API Gateway as a
JSONObject:

JSONParser parser = new JSONParser();

BufferedReader reader = new BufferedReader (new
InputStreamReader (inputStream)) ;

JSONObject event = (JSONObject) parser.parse (reader);

We are using the JSONParser from json-simple (com.googlecode. json-simple).
The path, query, headers, and body can be extracted from the event, as follows:

JSONObject pathParams = (JSONObject) event.get ("pathParameters");

String application = (String) pathParams.get ("proxy");

JSONObject queryParams = (JSONObject) event.get ("queryStringParameters");
String name = (String) queryParams.get ("name");

JSONObject body = (JSONObject) parser.parse((String) event.get ("body"));
String time = (String) body.get ("time");

JSONObject headers = (JSONObject) event.get ("headers");

String acceptHeader = (String) headers.get ("Accept");

The complete working code, with the necessary checks (such as the null
pointer check), is available in the code files.

[103]

Building Serverless REST APIs with API Gateway Chapter 2

For the response, we defined the response body and headers, and we added them (along
with other parameters) to a JSONObject (responseJson):

JSONObject responseBody = new JSONObject ();
responseBody.put ("message", greeting);

JSONObject headers = new JSONObject ();
headers.put ("Content-Type", "application/json");

JSONObject responsedson = new JSONObject ();
responseJdson.put ("isBase64Encoded", false);
responseJdson.put ("statusCode", "200");
responsedson.put ("headers", headers);
responsedson.put ("body", responseBody.toString());

Finally, let's add the response object to the Output St ream by using an
OutputStreamWriter:

OutputStreamWriter writer = new OutputStreamWriter (outputStream, "UTF-8");
writer.write (responsedson.toJSONString());
writer.close();

Deploying the Lambda

Upload the Lambda to our S3 bucket with the aws s3 cp command. Then, use the
CloudFormation template that is provided to deploy the Lambda stack. There are not many
changes in the template, except for the name and description. The export parameter name
for the Lambda is defined as LambdaForProxyIntegration.

Creating the Proxy API with CLI commands

First, let's create the REST API by using AWS CLI commands. We will not show how to use
the commands that we already discussed in previous recipes. However, the complete
commands will be available in the code files:

1. Create a REST APl in API Gateway, using the apigateway sub-
command create-rest-api.
2. Get the root resource (/) of our API, using the apigateway sub-command get -

resources.

3. Add a greedy path param, ' {proxy+}', for the proxy resource:

aws apigateway create-resource \
—-rest-api-id gacobéwdv7 \

[104]

Building Serverless REST APIs with API Gateway

Chapter 2

—--region us-east-1 \
——parent-id xitaiyjnuf \
——path-part '{proxy+}' \
——profile admin

This resource will match any sub-resources for the parent /.

4. Use the ANY method over the proxy resource, in order to match any HTTP

method, as follows:

aws apigateway put-method \
——rest-api-id qacob6wdv7 \
——resource—id k7zima \
——http-method ANY \
——authorization-type "NONE" \
—--region us-east-1 \
——profile admin

5. Add a response code for the ANY method, as follows:

aws apigateway put-method-response \
—-—rest—-api-id gacob6wdv7 \
—--resource-id k7zima \
—-http-method ANY \
—-—status—code 200 \
--region us-east-1 \
——profile admin

6. Execute put-integration with the AWS_PROXY integration type, as follows:

aws apigateway put-integration \
——rest—-api-id gacob6éwdv7 \
—--resource-id k7zima \
—-http-method ANY \
-—type AWS_PROXY \
——integration-http-method POST \
——uri 'arn:aws:apigateway:us-—

east-1:lambda:path/2015-03-31/functions/arn:aws:lambda:us-

east-1:<account_id>:function:lambda-for—-proxy-
integration/invocations' \

—--region us-east-1 \

—-profile admin

[105]

Building Serverless REST APIs with API Gateway Chapter 2

7. Execute put-integration-response for the ANY method, as follows:

aws apigateway put-integration-response \
—-rest-api-id qacobéwdv7 \
——-resource—-id k7zima \
—-http-method ANY \
—--status—code 200 \
—--region us-east-1 \
—--selection-pattern "" \
——profile admin

8. Create a deployment with the dev stage, using the apigateway sub-
command create-deployment.

9. Give permission for the API to invoke the Lambda, as follows:

aws lambda add-permission \
——function-name lambda-for-proxy-integration \
—-—-statement-id apigateway-st-3 \
——action lambda:InvokeFunction \
—--principal apigateway.amazonaws.com \
——source-arn "arn:aws:execute—api:us-
east-1:<account_id>:qacobéwdv7/*/*/{proxy+}" \
——profile admin

10. Execute the API from a REST client (for example, Postman), as shown in the
following screenshot:

https://gacobéw4v7.e

POST https://qacobb6wdv7.execute-api.us-east-1.amazonaws.com/dev/MyApp?
name=Heartin
(1 Body @
form-data x-www-form-urlencoded raw binary
s {
2 "time" : "Morning"
3 1

[106]

Building Serverless REST APIs with API Gateway Chapter 2

You should get a response similar to the following:

"message": "Good Morning, Heartin. Welcome to MyApp. Client User-Agent is Mozilla/5.@ (Macintosh; Intel Mac
0S X 10_13_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/68.0.3440.106 Safari/537.36."

I sent a POST request from the Postman client, but a GET request from a browser
will also work in this case, as the API's proxy resource has an ANY method, which
can accept any HTTP method. Also, remember to replace the IDs with your own.

Creating the API using CloudFormation templates

Now, let's create the API using a CloudFormation template. We will not discuss the
components that were already discussed in previous recipes, nor will we discuss the theory
for commands that were already discussed within the CLI commands section. The complete

code is available in the code files:

1. Start to create the template with the version, description, and RestApi resource.
2. Add the proxy resource, ' {proxy+}', as follows:

MyProxyResource:
Type: AWS::ApiGateway::Resource
Properties:
RestApiId: !Ref MyRestAPI
ParentId: !GetAtt MyRestAPI.RootResourceld
PathPart: '{proxy+}'

3. Add the Method definition, with the AwS_PROXY integration type and ANy HTTP
method, as follows:

MyMethod
Type : AWS::ApiGateway::Method
Properties:
AuthorizationType: NONE
HttpMethod: ANY
Integration:
Type: AWS_PROXY
IntegrationHttpMethod: POST
IntegrationResponses:
— StatusCode: 200
Uri:
! Sub

[107]

Building Serverless REST APIs with API Gateway Chapter 2

'arn:aws:apigateway:${AWS: :Region}:lambda:path/2015-03-31/functions
/arn:aws:lambda:us-—
east-1:${AWS: :AccountId}:function:${LAMBDA_NAME}/invocations'

— LAMBDA_NAME: !ImportValue LambdaForProxyIntegration

ResourcelId: !Ref MyProxyResource
RestApiId: !Ref MyRestAPI
MethodResponses:

— StatusCode: 200

We are importing the Lambda LambdaForProxyIntegration. Therefore,
the Lambda's CloudFormation template has to be executed first.

4. Add the deployment resource in a stage: dev.

5. Provide permission to the API to invoke the Lambda, as follows:

LambdaInvokePermission:
Type: AWS::Lambda::Permission
Properties:
FunctionName: !ImportValue LambdaForProxyIntegration
Action: 'lambda:InvokeFunction'
Principal: apigateway.amazonaws.com
SourceArn: !Sub
— arn:aws:execute-—
api:${AWS::Region}:S${AWS: :AccountId}:${API_ID}/*/*/{proxy+}
— API_ID: !Ref MyRestAPI

6. Provide an Outputs section with a sample endpoint, as follows:

Outputs:
SampleEndpoint:
Description: 'Sample Endpoint'
Value: !Sub
https://${API_ID}.execute—-api.S$S{AWS: :Region}.amazonaws.com/dev/MyAp
p
— API_ID: !Ref MyRestAPI

7. Execute the create-stack command to deploy the API.

Since we are importing the Lambda LambdaForProxyIntegration, the
Lambda's CloudFormation template has to be executed first.

[108]

Building Serverless REST APIs with API Gateway Chapter 2

8. Finally, test the API from a REST client, such as Postman (similar to what we did
for the API that we created using the CLI commands). You can also use a
browser for testing, which uses the GET method, as the API can accept any HTTP
method.

How it works...

Let's try to understand the theory behind Lambda proxy integration. You will also see how
to define Lambdas for proxy integration, and how they are different from the other
Lambdas that you have seen.

The greedy path, the ANY HTTP method, and proxy
integration

We can use the greedy path param, {proxy+}, under a resource, in order to catch all of the
requests to the resource's sub-resources. For example, /hello/{proxy+} catches all of the
resources under hello/. The ANY HTTP method matches for any HTTP method. Enabling
proxy integration will make the API pass the raw request to the Lambda, as is.

We used all three of these together, but that is not a requirement. You can use any one of
these, or a combination of them. For example, we can define a regular path parameter and a
regular HTTP method, but enable proxy integration. This will forward raw requests to the
Lambda only when the path and HTTP method matches.

RequestStreamHandler versus RequestHandler

Implementations of the interface RequestHandler<I, 0> acceptand return POJOs. JSON
payloads are mapped to the request POJO, and the response POJO is mapped to a JSON
response. It can also accept and return a string payload.

The interface RequestStreamHandler is used for low-level request handling. The handler
method provides access to InputStream for input, and outputStream for

output. RequestStreamHandler is generally used along with proxy integration. However,
a good practice is to use RequestHandler and do all of the mappings within the AP,
whenever possible.

[109]

Building Serverless REST APIs with API Gateway Chapter 2

The input and output format of a Lambda function for
proxy integration
While using proxy integration with API Gateway, API Gateway passes the HTTP request to

the Lambda in a particular format. Similarly, API Gateway expects the output in a
particular format. Refer to the recipe to see how most of these are used in Java code.

The input format is as follows:

{

"resource": "The resource path",

"path": "The path parameter",

"httpMethod": "Incoming request's method name"

"headers": {request headers}

"queryStringParameters": {query string parameters }

"pathParameters": {path parameters}

"stageVariables": {Available stage variables}

"requestContext": {Request context with authorizer-returned key-value
pairs}

"body": "A JSON string of the request payload."

"isBaseb4Encoded": "A boolean flag that indicate if the applicable request
payload is Base64-encoded"

}
The output format is as follows:

{
"isBase64Encoded": true|false,
"statusCode": httpStatusCode,
"headers": { headerName: headerValue key value pairs },
"body": "body content"
}

There's more...

In this chapter, you learned about building API Gateway APIs with mock integration,
Lambda integration (AWS integration), and Lambda proxy integration (AWS_PROXY
integration). You can also do HTTP and HTTP proxy integrations, and you can integrate
API Gateway with other AWS services. Try to experiment with other integrations.

There is more to learn about Lambda and API Gateway in the context of Serverless
programming, in areas such as security, hosting, deployment, scalability, performance, and
so on. We will focus on some of these in the upcoming chapters.

[110]

Building Serverless REST APIs with API Gateway Chapter 2

See also

You can learn more about API Gateway from the following links to the developer guide:

® https://docs.aws.amazon.com/apigateway/latest/developerguide/api-
gateway-set-up-simple-proxy.html

® https://docs.aws.amazon.com/apigateway/latest/developerguide/set—up—
lambda-proxy-integrations.html

® https://docs.aws.amazon.com/apigateway/latest/developerguide/api-
gateway-create-api-as-simple-proxy-for-lambda.html

You may read more about REST principles and also understand the value provided by API
Gateway by looking into how you would create them without API Gateway at https://

javajee.com/book/introduction-to-restful-web-services—-and-jax-rs.

[111]

https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-set-up-simple-proxy.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-set-up-simple-proxy.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-set-up-simple-proxy.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-set-up-simple-proxy.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-set-up-simple-proxy.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-set-up-simple-proxy.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-set-up-simple-proxy.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-set-up-simple-proxy.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-set-up-simple-proxy.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-set-up-simple-proxy.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-set-up-simple-proxy.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-set-up-simple-proxy.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-set-up-simple-proxy.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-set-up-simple-proxy.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-set-up-simple-proxy.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-set-up-simple-proxy.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-set-up-simple-proxy.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-set-up-simple-proxy.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-set-up-simple-proxy.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-set-up-simple-proxy.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-set-up-simple-proxy.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-set-up-simple-proxy.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-set-up-simple-proxy.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-set-up-simple-proxy.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-set-up-simple-proxy.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-set-up-simple-proxy.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-set-up-simple-proxy.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-set-up-simple-proxy.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-set-up-simple-proxy.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-set-up-simple-proxy.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/set-up-lambda-proxy-integrations.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/set-up-lambda-proxy-integrations.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/set-up-lambda-proxy-integrations.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/set-up-lambda-proxy-integrations.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/set-up-lambda-proxy-integrations.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/set-up-lambda-proxy-integrations.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/set-up-lambda-proxy-integrations.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/set-up-lambda-proxy-integrations.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/set-up-lambda-proxy-integrations.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/set-up-lambda-proxy-integrations.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/set-up-lambda-proxy-integrations.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/set-up-lambda-proxy-integrations.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/set-up-lambda-proxy-integrations.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/set-up-lambda-proxy-integrations.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/set-up-lambda-proxy-integrations.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/set-up-lambda-proxy-integrations.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/set-up-lambda-proxy-integrations.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/set-up-lambda-proxy-integrations.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/set-up-lambda-proxy-integrations.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/set-up-lambda-proxy-integrations.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/set-up-lambda-proxy-integrations.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/set-up-lambda-proxy-integrations.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/set-up-lambda-proxy-integrations.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/set-up-lambda-proxy-integrations.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/set-up-lambda-proxy-integrations.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/set-up-lambda-proxy-integrations.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/set-up-lambda-proxy-integrations.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/set-up-lambda-proxy-integrations.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-create-api-as-simple-proxy-for-lambda.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-create-api-as-simple-proxy-for-lambda.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-create-api-as-simple-proxy-for-lambda.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-create-api-as-simple-proxy-for-lambda.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-create-api-as-simple-proxy-for-lambda.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-create-api-as-simple-proxy-for-lambda.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-create-api-as-simple-proxy-for-lambda.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-create-api-as-simple-proxy-for-lambda.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-create-api-as-simple-proxy-for-lambda.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-create-api-as-simple-proxy-for-lambda.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-create-api-as-simple-proxy-for-lambda.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-create-api-as-simple-proxy-for-lambda.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-create-api-as-simple-proxy-for-lambda.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-create-api-as-simple-proxy-for-lambda.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-create-api-as-simple-proxy-for-lambda.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-create-api-as-simple-proxy-for-lambda.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-create-api-as-simple-proxy-for-lambda.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-create-api-as-simple-proxy-for-lambda.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-create-api-as-simple-proxy-for-lambda.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-create-api-as-simple-proxy-for-lambda.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-create-api-as-simple-proxy-for-lambda.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-create-api-as-simple-proxy-for-lambda.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-create-api-as-simple-proxy-for-lambda.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-create-api-as-simple-proxy-for-lambda.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-create-api-as-simple-proxy-for-lambda.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-create-api-as-simple-proxy-for-lambda.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-create-api-as-simple-proxy-for-lambda.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-create-api-as-simple-proxy-for-lambda.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-create-api-as-simple-proxy-for-lambda.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-create-api-as-simple-proxy-for-lambda.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-create-api-as-simple-proxy-for-lambda.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-create-api-as-simple-proxy-for-lambda.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-create-api-as-simple-proxy-for-lambda.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-create-api-as-simple-proxy-for-lambda.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-create-api-as-simple-proxy-for-lambda.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-create-api-as-simple-proxy-for-lambda.html
https://javajee.com/book/introduction-to-restful-web-services-and-jax-rs
https://javajee.com/book/introduction-to-restful-web-services-and-jax-rs
https://javajee.com/book/introduction-to-restful-web-services-and-jax-rs
https://javajee.com/book/introduction-to-restful-web-services-and-jax-rs
https://javajee.com/book/introduction-to-restful-web-services-and-jax-rs
https://javajee.com/book/introduction-to-restful-web-services-and-jax-rs
https://javajee.com/book/introduction-to-restful-web-services-and-jax-rs
https://javajee.com/book/introduction-to-restful-web-services-and-jax-rs
https://javajee.com/book/introduction-to-restful-web-services-and-jax-rs
https://javajee.com/book/introduction-to-restful-web-services-and-jax-rs
https://javajee.com/book/introduction-to-restful-web-services-and-jax-rs
https://javajee.com/book/introduction-to-restful-web-services-and-jax-rs
https://javajee.com/book/introduction-to-restful-web-services-and-jax-rs
https://javajee.com/book/introduction-to-restful-web-services-and-jax-rs
https://javajee.com/book/introduction-to-restful-web-services-and-jax-rs
https://javajee.com/book/introduction-to-restful-web-services-and-jax-rs
https://javajee.com/book/introduction-to-restful-web-services-and-jax-rs
https://javajee.com/book/introduction-to-restful-web-services-and-jax-rs
https://javajee.com/book/introduction-to-restful-web-services-and-jax-rs
https://javajee.com/book/introduction-to-restful-web-services-and-jax-rs
https://javajee.com/book/introduction-to-restful-web-services-and-jax-rs
https://javajee.com/book/introduction-to-restful-web-services-and-jax-rs
https://javajee.com/book/introduction-to-restful-web-services-and-jax-rs
https://javajee.com/book/introduction-to-restful-web-services-and-jax-rs

Data Storage with Amazon
DynamoDB

This chapter will cover the following topics:

e Your first DynamoDB table

Throughput provisioning examples
Working with data from the CLI

Using the DynamoDB SDK from Lambda
Creating tables from Lambda

Adding data from Lambda

Reading data from Lambda

Introduction

In this chapter, we will learn to build a data store for our serverless applications

using Amazon DynamoDB. DynamoDB is a fully managed NoSQL database service and is
the primary data store in AWS for building serverless applications. If you have strict
relational use cases, you may also consider Amazon Aurora, which is a fully managed
relational database service. If you need more analytical features, such as aggregations,
along with NoSQL flexibility, you may explore the Amazon Elasticsearch service.

A relational data model table consists of rows (records) with a fixed number of columns,
and is queried using Structured Query Language (SQL). Different NoSQL databases are
classified into different families, such as key-value store, document store, columnar, graph,
and so on, and have different query mechanisms. DynamoDB has characteristics of both
key-value and document-databased NoSQL families. Relational databases follow the
ACID model for consistency and NoSQL databases generally follow the BASE model.

Data Storage with Amazon DynamoDB Chapter 3

In previous chapters, we saw different ways to work with Lambda and API gateway, such
as the management console, the SDK, the CLI, and CloudFormation templates. From now
on, our focus will be on using CloudFormation templates and the AWS SDK, along with
essential CLI commands.

Your first DynamoDB table

In this recipe, we will create our first DynamoDB table. Amazon DynamoDB is the primary
database in AWS for building serverless applications. DynamoDB is a fully managed
NoSQL database and you do not have to manage any servers. Unlike most NoSQL
databases, DynamoDB, also supports consistent reads, but with an additional cost.

Attributes in DynamoDB are synonymous with columns, and items are synonymous with
rows in a relational database. However, there is no table-level schema in DynamoDB. You
can have different set of attributes in different items (rows). You can also have an attribute
with the same name but different types in different items.

Getting ready

You need a working AWS account and should have installed and configured the AWS CLI
with a profile with the necessary permissions, as given in the Your first Lambda with the AWS
CLI recipe of chapter 1, Building Serverless REST APIs with API gateway. You are also
expected to have a decent understanding of AWS CLI commands, Amazon
CloudFormation, and basic database concepts.

How to do it...

We will create a simple table, check its properties, update it, and finally delete the table. We
will first use CLI commands to create the table and then use a CloudFormation template to
do the same. We will also use CLI commands to check the created table. We will use

the AWS SDK to do this in a later recipe.

[113]

Data Storage with Amazon DynamoDB Chapter 3

Creating a table using CLI commands

1. We can create a simple DynamoDB table using the aws dynamodb create-
table CLI command as follows:

aws dynamodb create-table \

—-—table-name my_table \

——attribute-definitions 'AttributeName=id, AttributeType=S'
'AttributeName=datetime, AttributeType=N' \

—-key-schema 'AttributeName=id, KeyType=HASH'
'AttributeName=datetime, KeyType=RANGE' \
——provisioned-throughput 'ReadCapacityUnits=5,
WriteCapacityUnits=5"' \

—--region us-east-1 \

——profile admin

Here, we define a table named my_table and use the attribute-
definitions property to add two fields: id of type string (denoted by s)
and datetime of type number (denoted by N). We then define a partition
key (or hash key) and a sort key (or range key) using the key-schema
property. We also define the maximum expected read and write capacity
units per second using the provisioned-throughput property. I have
specified the region even though us-east-1 is the default.

2. List tables using the aws dynamodb list-tables CLI command to verify our
table was created:

aws dynamodb list-tables \
—--region us-east-1 \
——profile admin

3. Use the aws dynamodb describe-table CLI command to see the table
properties:

aws dynamodb describe-table \
——table-name my_table \
——profile admin

[114]

Data Storage with Amazon DynamoDB Chapter 3

The initial part of the response contains the table name, attribute definitions,
and key schema definition we specified while creating the table:

"Table": {
"AttributeDefinitions":
{
"AttributeName": "datetime",
"AttributeType":

"AttributeName":
"AttributeType":

"TableName": "my_table",
"KeySchema": [
{
"AttributeName": "id",
"KeyType": "HASH"
}J
{
"AttributeName": "datetime",
"KeyType": "RANGE"

The later part of the response contains TableStatus, CreationDateTime,
ProvisionedThroughput, TableSizeBytes, ItemCount, TableArn and
TableId:

"TableStatus": "ACTIVE",

"CreationDateTime": 1536848737.732,

"ProvisionedThroughput": {
"NumberOfDecreasesToday": @,
"ReadCapacityUnits": 5,
"WriteCapacityUnits": 5

}l

"TableSizeBytes": 0,

"ItemCount": @,

"TableArn": "arn:aws:dynamodb:us—east—l:_:table/my_table",
"TableId": "eeld4c5a-3cch-4b43-bd05-2262903380a3"

[115]

Data Storage with Amazon DynamoDB Chapter 3

4. You may use the aws dynamodb update-table CLI command to update the
table:

aws dynamodb update-table \

—-—table-name my_table \
——-provisioned-throughput 'ReadCapacityUnits=10,
WriteCapacityUnits=10' \

—-profile admin

5. Finally, you may delete the table using aws dynamodb delete-table:

aws dynamodb delete-table \
—-—table-name my_table \
——profile admin

We will be reusing this table in a later recipe when we work with data. If
you are continuing with other recipes in this chapter now, you may delete
the table after completing those recipes.

Creating a table using a CloudFormation template

We will see the components of the CloudFormation template needed for this recipe. The
completed template file is available with the code files.

1. Start creating the CloudFormation template by defining the template format, the
version, and a description:

AWSTemplateFormatVersion: '2010-09-09'
Description: Your First DynamoDB Table

2. Define the Resources section with the DynamoDB Table type:

Resources:
MyFirstTable:
Type: AWS::DynamoDB: :Table

3. Define the properties section with the essential properties: TableName,
ProvisionedThroughput, KeySchema, and AttributeDefinitions:

Properties:
TableName: my_table
ProvisionedThroughput:
ReadCapacityUnits: 1
WriteCapacityUnits: 1

[116]

Data Storage with Amazon DynamoDB Chapter 3

KeySchema:

AttributeName: id
KeyType: HASH

AttributeName: dateandtime
KeyType: RANGE
AttributeDefinitions:

AttributeName: id
AttributeType: S

AttributeName: dateandtime
AttributeType: N

Properties and their values are the same as we saw with the AWS CLI
commands earlier. You can use the AWS CLI dynamodb command
actions list-tables and describe-table to check the created table.

4. Update the table properties with the CloudFormation template:

Change ReadCapacityUnits and WriteCapacityUnits in the template to
5 for each. You can then update the stack using the aws cloudformation
update-stack CLI command:

aws cloudformation update-stack \

—-—-stack-name myteststack \

—-—template-body file://resources/your-first-dynamodb-table-
cf-template—updated.yml \

—--region us-east-1 \

——profile admin

Whenever an update is made, CloudFormation compares the template
with the existing stack and updates only those resources that are
changed. This is the first time we are using the update-stack action in
this book.

5. Verify the table update using the aws dynamodb describe-table CLI
command.

6. Delete the stack using the aws cloudformation delete-stack CLI

command. As mentioned earlier, the other recipes in the chapter use this table, so

if you are planning to continue with other recipes now, you may delete the table
after completing them.

[117]

Data Storage with Amazon DynamoDB Chapter 3

How it works...

We used the following DynamoDB CLI command actions in this recipe: create-table,
list-tables, describe-table, update-table, and delete-table. We use the
corresponding components and properties within our CloudFormation template as well.
Some of these options will become clear after you read the following notes.

DynamoDB data model

Data in DynamoDB is stored in tables. A table contains items (similar to rows), and each
item contains attributes, (similar to columns). Each item can have a different set of
attributes and the same attribute names may be used with different types in different
items.

DynamoDB supports the datatypes string, number, binary, Boolean, string set, number set,
binary set, and list.

DynamoDB does not have a JSON data type; however, you can pass JSON data to
DynamoDB using the SDK and it will be mapped to native DynamoDB data types.

You can also define indexes (global secondary indexes and local secondary indexes) to
improve read performance.

Data model limits

The following are some of the important limits in the DynamoDB data model:

¢ There is an initial limit of 256 tables per region for an AWS account, but this can
be changed by contacting AWS support.

e Names for tables and secondary indexes must be at least three characters long,
but no more than 255 characters. Allowed characters are A-Z, a-z, 0-9, _
(underscore), - (hyphen), and . (dot).

e An attribute name must be at least one character long, but no greater than 64 KB
long. Attribute names must be encoded using UTF-8, and the total size of each
encoded name cannot exceed 255 bytes.

¢ The size of an item, including all the attribute names and attribute values, cannot
exceed 400 KB.

* You can only create a maximum of five local secondary indexes and five global
secondary indexes per table.

[118]

Data Storage with Amazon DynamoDB Chapter 3

For a complete list of DynamoDB limits, refer to https://docs.aws.amazon.com/
amazondynamodb/latest/developerguide/Limits.html.

DynamoDB keys and partitions

Each item is identified with a primary key, which can be either only the partition key if it
can uniquely identify the item, or a combination of partition key and sort key. The partition
key is also called a hash key and the sort key is also called a range key. Primary key
attributes (partition and sort keys) can only be string, binary, or number.

Initially, a single partition holds all table data. When a partition's limits are exceeded, new
partitions are created and data is spread across them. Current limits are 10 GB storage,
3,000 RCU, and 1,000 WCU. Data belonging to one partition key is stored in the same
partition; however, a single partition can have data for multiple partition keys. The
partition key is used to locate the partition and the sort key is used to order items within
that partition.

Read and write capacity units

We specified the maximum read and write capacity units for our application per second,
referred to as read capacity unit (RCU) and write capacity unit (WCU). We also updated
our RCU and WCU. Updating the table properties is an asynchronous operation and may
take some time to take effect. We will see throughput provisioning in detail in another
recipe.

Waiting for asynchronous operations

The CLI commands create-table, update-table, and delete-table are asynchronous
operations. The control returns immediately to the command line, but the operation
runs asynchronously.

To wait for table creation, you can use the aws dynamodb wait table-exists --table
<table-name command, which polls the table until it is active. The wait table-exists
command may be used in scripts to wait until the table is created before inserting

data. Similarly, you can wait for table deletion using the aws dynamodb wait table-
not-exists --table <table-name command, which polls with describe-table until
ResourceNotFoundException is thrown. Both the wait options poll every 20 seconds and
exit with a 255 return code after 25 failed checks.

[119]

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Limits.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Limits.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Limits.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Limits.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Limits.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Limits.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Limits.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Limits.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Limits.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Limits.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Limits.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Limits.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Limits.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Limits.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Limits.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Limits.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Limits.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Limits.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Limits.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Limits.html

Data Storage with Amazon DynamoDB Chapter 3

Other ways to create tables

In this recipe, we created our table by specifying the properties, such as attribute-
definitions, key-schema, provisioned-throughput, and so on. Instead, you can
specify a JSON snippet or JSON file using the c1i-input-json option. The generate-
cli-skeleton option returns a sample template as required by the cli-input-json
option.

In this recipe, we created a table using the AWS CLI and CloudFormation. You can also
create DynamoDB tables from Java code using the AWS SDK, as we will see in a later
recipe. However, in most real-world cases, CloudFormation templates are used to create
and provision tables, and the AWS SDK is used to work with data items.

There's more...

Let's first see some features and limitations of DynamoDB. We will also see some theory on
the LSI and GSI.

DynamoDB features

The following are some of the important features of DynamoDB:

¢ DynamoDB is a fully managed NoSQL database service. There are no servers to
manage.

¢ DynamoDB has the characteristics of both the key-value and the document-based
NoSQL families.

e Virtually no limit on throughput or storage. It scales very well, but according to
the provisioned throughout configuration.

¢ DynamoDB replicates data into three different facilities within the same region
for availability and fault tolerance. You can also set up cross-region replication
manually.

e It supports eventual consistency reads as well as strongly consistent reads.

¢ DynamoDB is schemaless at the table level. Each item (rows) can have a different
set of elements. Even the same attribute name can be associated with different
types in different items.

¢ DynamoDB automatically partitions and re-partitions data as the table grows in
size.

® You can store JSON and then do nested queries on that data using the AWS SDK.

[120]

Data Storage with Amazon DynamoDB Chapter 3

¢ Data is stored on SSD storage.
¢ DynamoDB supports atomic updates and atomic counters.
e DynamoDB supports conditional operations for put, update, and delete.

DynamoDB general limitations

Here are some of the general limitations of DynamoDB:

e DynamoDB does not support complex relational queries such as joins or complex
transactions.

e DynamoDB is not suited for storing a large amount of data that is rarely
accessed. S3 may be better suited for such use cases.

* You cannot select the Availability Zone for your DynamoDB table.

e Default replication of data for availability and fault tolerance is only within a
region.

Local and global secondary indexes

You can define LSI and GSI for your tables to improve the read performance. An LSI can be
considered as an alternate sort key for a given partition-key value. A GSI contains attributes
from the base table and organizes them by a primary key that is different from that of the
base table. Secondary indexes are useful when you want to query based on non-key
parameters. You can create them with the CLI as well as CloudFormation templates. There
is a limit of five LSIs and five GSIs per table.

You can read and learn more about LSIs and GSIs from the following links:

® https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/LSI.
html

® https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GSI.
html

See also

® https://aws.amazon.com/rds/aurora

[121]

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/LSI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/LSI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/LSI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/LSI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/LSI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/LSI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/LSI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/LSI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/LSI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/LSI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/LSI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/LSI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/LSI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/LSI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/LSI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/LSI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/LSI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/LSI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/LSI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/LSI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GSI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GSI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GSI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GSI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GSI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GSI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GSI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GSI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GSI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GSI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GSI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GSI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GSI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GSI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GSI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GSI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GSI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GSI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GSI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GSI.html
https://aws.amazon.com/rds/aurora
https://aws.amazon.com/rds/aurora
https://aws.amazon.com/rds/aurora
https://aws.amazon.com/rds/aurora
https://aws.amazon.com/rds/aurora
https://aws.amazon.com/rds/aurora
https://aws.amazon.com/rds/aurora
https://aws.amazon.com/rds/aurora
https://aws.amazon.com/rds/aurora
https://aws.amazon.com/rds/aurora
https://aws.amazon.com/rds/aurora
https://aws.amazon.com/rds/aurora
https://aws.amazon.com/rds/aurora

Data Storage with Amazon DynamoDB Chapter 3

Throughput provisioning examples

Provisioned throughput is the maximum read and write capacity that an application can
use within a table or index.

If we use more than the specified RCU or WCU, DynamoDB can throttle the requests, the
requests will fail with a 400 (bad request) error, and DynamoDB

throws ProvisionedThroughputExceededException. AWS SDKs can do automatic
retries in the case of a throughput exception.

Apart from manual throughput provisioning, DynamoDB also supports features such as
auto-scaling and reserved capacity. Having a decent understanding of throughput
provisioning can help you configure these alternate options efficiently. We will discuss
different throughput provisioning scenarios in this recipe.

Getting ready

In this recipe, we do not directly discuss writing any commands or code. We will instead
discuss examples of how to derive on a RCU or WCU based on a requirement. However,
you may try them out when following the commands and code discussed in other recipes.

How to do it...

Let's look at some scenarios to understand RCU and WCU better.

Scenario 1

Your application needs to perform 5 million writes and 5 million eventually consistent
reads per day with item sizes of 1 KB:

Number of writes per day = 5,000,000

Number of writes per second = ceil (5,000,000 / (24 * 60 * 60)) = 58

1 WCU is required for each 1 KB of write. So writes required for each item
= ceil(l) =1

Total WCU required = 58 x 1 = 1.

Similarly 5,000,000 eventually consistent reads per day = 58 eventually
consistent reads per second.

1 RCU is required for 2 eventually consistency reads. So RCU required for
58 eventually consistent reads = 29

1 RCU is required for 4KB of read. So reads required for each data item =

[122]

Data Storage with Amazon DynamoDB Chapter 3

ceil(1/4) =1
Total RCU required = 29 x 1 = 29.

This example is based on the pricing example given by Amazon. We will see some more
scenarios to make the concept clearer.

Please note the following:

e The ceil function returns the smallest integer greater than the passed value, for
example, ceil (1.5) is 2.

e The AWS Free Tier provides 25 RCU and 25 WCU per second for a whole month.

Therefore, if you set and use 58 WCU and 29 RCU for a month, you will be billed
for only 33 WCU and 4 RCU.

e The AWS Free Tier provides 25 RCU and 25 WCU per second for a whole month.
If you are using DynamoDB only for half a month, you can use approximately 50
WCU and 50 RCU per second. Therefore, if you set and use 58 WCU and 29 RCU
for only half of a month, you will be billed for only 8 WCU and 0 RCU.

Scenario 2

Your application needs to perform 5 million writes and 5 million strongly consistent reads
per day with item sizes of 5.5 KB:

Number of writes per day = 5,000,000

Number of writes per second = ceil (5,000,000 / (24 * 60 * 60)) = 58

1 WCU is required for each 1 KB of write. So, writes required for each item
= ceil(5.5) = 6

Total WCU required = 58 x 6 = 348

Similarly 5,000,000 strongly consistent reads per day = 58 strongly
consistent reads per second.

1 RCU is required for 1 strongly consistency read. So RCU required for 58

strongly consistent reads = 58
1 RCU is required for 4KB of read. So reads required for each data item =
ceil (5.5/4) = 2

Total RCU required = 58 x 2 = 116

Scenario 3

Your application needs to perform one write and one eventually consistent read per second
with item sizes of 1 KB on a DynamoDB table:

Number of writes per second = 1
1 WCU 1is required for each 1 KB of write. So writes required for each item

[123]

Data Storage with Amazon DynamoDB Chapter 3

= ceil(l) =1

Total WCU required =1 x 1 = 1;

Similarly, the number of eventually consistent reads per second = 1

1 RCU is required for 1 strongly consistency read. So, the RCU required for
1 eventually consistent read = .5

1 RCU 1is required for 4 KB of read. So reads required for each data item =
ceil(1/4) =1

Total RCU required = .5 x 1 = .5.

Even though the required RCU is . 5, we still have to set an RCU of 1. This is because you
can only set integers greater than 0 for WCU and RCU.

How it works...

Let us go through some of the throughput-provisioning related concepts in more detail.

Strongly consistent reads versus eventually consistent
reads

DynamoDB replicates data in three different facilities within a region. When you read data
from DynamoDB, by default they are eventually consistent reads and hence you may not
always see the latest data. You can opt for strongly consistent reads at twice the cost of
eventually consistent reads.

One RCU can be used for one strongly consistent read per second or two eventually
consistent reads per second, for an item up to 4 KB in size. One WCU can be used for one
write per second for an item up to 1 KB in size.

Limits on throughput updates within a day

There is a limit on the number of times you can decrease your throughput in a day.
However, there is no limit on the number of throughput increases. Exact limits may be
updated by Amazon. The latest limits are available at https://docs.aws.amazon.com/
amazondynamodb/latest/developerguide/Limits.html.

[124]

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Limits.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Limits.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Limits.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Limits.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Limits.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Limits.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Limits.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Limits.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Limits.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Limits.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Limits.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Limits.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Limits.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Limits.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Limits.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Limits.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Limits.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Limits.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Limits.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Limits.html

Data Storage with Amazon DynamoDB Chapter 3

There's more...

Apart from manually provisioning throughput, DynamoDB supports the following ways to
manage capacity: auto-scaling and reserved capacity. With auto-scaling, you define the
upper and lower limits for RCU and WCU along with a target utilization percentage within
those limits. DynamoDB auto-scaling will maintain your target utilization as your
application workload increases or decreases. Reserve capacity allows you to reserve
minimum capacity for longer periods with a one-time upfront payment. Reserving capacity
can save cost considerably.

See also

® https://aws.amazon.com/dynamodb/pricing/

® https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/
HowItWorks.ProvisionedThroughput.html

Working with data from the CLI

In this recipe, we will create, read, update, and delete items. We will learn to query and
scan data with eventual consistency, as well as strong consistency. We will discuss the AWS
CLI commands to work with data in this recipe, followed by recipes that use Java code
from Lambda function using AWS Java SDK for DynamoDB.

We discuss only the essential DynamoDB concepts and commands, to get you started
working with DynamoDB to build serverless applications with DynamoDB as the data
store. You may explore further in the AWS documentation, a dedicated book, or a course
on DynamoDB to master DynamoDB concepts.

Getting ready

Table-creation commands are not repeated in this recipe. So, you may follow the previous
recipe and create a table as required by this recipe. You also need to install the AWS CLI
and configure a profile with the necessary permissions, as given in the Your first Lambda
with the AWS CLI recipe from cChapter 1, Getting Started with Serverless Computing on AWS.

[125]

https://aws.amazon.com/dynamodb/pricing/
https://aws.amazon.com/dynamodb/pricing/
https://aws.amazon.com/dynamodb/pricing/
https://aws.amazon.com/dynamodb/pricing/
https://aws.amazon.com/dynamodb/pricing/
https://aws.amazon.com/dynamodb/pricing/
https://aws.amazon.com/dynamodb/pricing/
https://aws.amazon.com/dynamodb/pricing/
https://aws.amazon.com/dynamodb/pricing/
https://aws.amazon.com/dynamodb/pricing/
https://aws.amazon.com/dynamodb/pricing/
https://aws.amazon.com/dynamodb/pricing/
https://aws.amazon.com/dynamodb/pricing/
https://aws.amazon.com/dynamodb/pricing/
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.ProvisionedThroughput.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.ProvisionedThroughput.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.ProvisionedThroughput.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.ProvisionedThroughput.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.ProvisionedThroughput.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.ProvisionedThroughput.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.ProvisionedThroughput.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.ProvisionedThroughput.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.ProvisionedThroughput.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.ProvisionedThroughput.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.ProvisionedThroughput.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.ProvisionedThroughput.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.ProvisionedThroughput.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.ProvisionedThroughput.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.ProvisionedThroughput.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.ProvisionedThroughput.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.ProvisionedThroughput.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.ProvisionedThroughput.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.ProvisionedThroughput.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.ProvisionedThroughput.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.ProvisionedThroughput.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.ProvisionedThroughput.html

Data Storage with Amazon DynamoDB Chapter 3

How to do it...

We will add, read, update, and delete data items in DynamoDB.

Adding items

1. Use the aws dynamodb put-item CLI command to add an item to the

DynamoDB table:

aws dynamodb put-item \
—-—table-name my_table \
—-—item '{"id":{"S":"001"}, "datetime":{"N":"1536898265"},
"fieldl":{"N":"20"}}' \
—--region us—east-1
—-profile admin

2. Add a data item with different sets of attributes:

aws dynamodb put-item \
—--table-name my_table \
——item '{"id":{"S":"001"}, "datetime":{"N":"1536898285"},
"fieldl":{"N":"30"}, "field2":{"S":"ABC"}}' \

—--region us—east-1
——-profile admin
We added an additional attribute, field?2.
3. Add an item with an existing field, but different data type:

aws dynamodb put-item \

—--table-name my_table \
——item '{"id":{"S":"002"}, "datetime":{"N":"1536898295"},

"fieldl":{"S":"DEF"}}' \
—-region us-east-1
——profile admin

Reading items
We can read items using get-item, query, or scan:
1. Use the aws dynamodb get-item CLI command, passing all key fields:

aws dynamodb get-item \
——table-name my_table \

——key

"{"id":{"S":"002"}, "datetime":{"N":"1536898295"}}"

\

[126]

Data Storage with Amazon DynamoDB Chapter 3

—--return-consumed-capacity TOTAL \
—--region us—east-1
——-profile admin

This command will return a single item, along with metadata describing the
result. The result part returned is shown in the following screenshot:

"Ttem": {
"id": {
IISII : "002"

b,

"datetime": {

"N": "1536898295"
9
"field1l": {

ugn. HpEE"

The metadata part is shown in the following screenshot:

"ConsumedCapacity": {
"TableName": "my_table",

"CapacityUnits": 0.5

I had added the return-consumed-capacity option to return the
aggregate ConsumedCapacity.

2. Use the query action, passing the partition key field and a filter expression:

aws dynamodb query \
—-—table-name my_table \
—--key-condition-expression "id=:id" \
——filter—-expression "fieldl=:fieldl" \
——expression—attribute-values '{":id":{"S":"001"},
":fieldl":{"N":"20"}}"' \
—--return—-consumed-capacity TOTAL \
——-region us—-east-1
——profile admin

[127]

Data Storage with Amazon DynamoDB Chapter 3

The sort key is optional here. The previous command's execution will return

a single matching item, along with the following metadata that describes the
result:

"Count": 1,
"ScannedCount": 2,
"ConsumedCapacity": {

"TableName": "my_table",
"CapacityUnits": 0.5

It scans for the document within the whole current partition, as we specified
only the partition key, and hence ScannedCount is 2.

3. Use this query, passing all key fields and a filter expression:

aws dynamodb query \

—-table-name my_table \

—-key-condition—-expression "id=:id and
dateandtime=:dateandtime" \

—-filter—-expression "fieldl=:fieldl" \

——expression—-attribute-values '{":id":{"S":"001"},
":fieldl":{"N":"20"}, ":dateandtime":{"N":"1536898265"},
":fieldl":{"N":"20"}}"' \

—-return-consumed-capacity TOTAL \

—--region us—east-1

——-profile admin

This command will return a single matching item along with the following
metadata:

"Count": 1,
"ScannedCount": 1,

"ConsumedCapacity": {
"TableName": "my_table",
"CapacityUnits": 0.5

It scans for one document as we specified both partition key and sort key,
and hence scannedCount is 1. You may also query with only the partition
key without the sort key or filter expression (usage available with code files),
in which case the count will be the number of matching items (here 2) and
the scanned count will be the partition size (here 2).

[128]

Data Storage with Amazon DynamoDB Chapter 3

4. Execute the same command as a strongly consistent read using the consistent-
read option:

aws dynamodb query \

——table—-name my_table \
—-key-condition-expression "id=:id and
dateandtime=:dateandtime" \

——filter—-expression "fieldl=:fieldl" \
——expression—attribute-values '{":id":{"S":"001"},
":fieldl":{"N":"20"}, ":dateandtime":{"N":"1536898265"},
":fieldl":{"N":"20"}}"' \

——consistent-read \

——return—-consumed-capacity TOTAL \

—--region us-east-1

——profile admin

This command will return a single matching item along with the following
metadata:

"Count": 1,
"ScannedCount": 1,

"ConsumedCapacity": {
"TableName'": "my_table",
"CapacityUnits": 1.0

Note that the command now utilizes one capacity unit for read with strong
consistency, instead of 0.5 with eventual consistency.

5. Use scan, passing key fields and a filter expression:

aws dynamodb scan \

—-—table-name my_table \

——filter—-expression "id=:id and dateandtime=:dateandtime
and fieldl=:fieldl" \

——expression—-attribute-values '{":id":{"S":"002"},
":dateandtime": {"N":"1536898295"}, ":fieldl":{"S":"DEF"}}' \

—--return-consumed-capacity TOTAL \

—-—region us—-east-1

——profile admin

This command will return a single matching item along with the following
metadata:

[129]

Data Storage with Amazon DynamoDB Chapter 3

"Count": 1,
"ScannedCount": 3,

"ConsumedCapacity": {
"TableName": "my_table",
"CapacityUnits": 0.5

Here, the ScannedCount is 3, which is the table size. The scan command
scans the entire table even if we specify both partition key and sort key. You
may scan with the filter expression without the partition key or sort key
(usage available with the code files), in which case the count will be the
number of matching rows (here 1) and the scanned count will still be the
table size, which is 3. You may scan without the filter expression (usage
available with the code files), in which case the count and scanned count
both will be the number of items in the table. You may also scan with strong
consistency using the consistent-read option, similar to the query
example we saw before.

Updating items
1. Update items using the update-item command:

aws dynamodb update-item \
—--table-name my_table \
——key '{"id":{"S":"001"}, "dateandtime":{"N":"1536898265"}}"

—-update-expression "SET fieldl=:fieldl" \
——expression-attribute-values '{":fieldl1":{"N":"30"}}"' \
—--region us—east-1

——profile admin

For update-item, you need to specify all the keys available using the key
option.

Deleting items

1. Delete items using the delete-item command and a key:

aws dynamodb delete-item \
——table-name my_table \
——key '{"id":{"S":"002"}, "dateandtime":{"N":"1536898295"}}"

[130]

Data Storage with Amazon DynamoDB Chapter 3

—--region us—east-1
—-profile admin

Similar to update-item, for delete-item, you also you need to specify all
the keys available using the key option.

How it works...
We added, read, updated, and deleted data in this recipe.

Add, update, and delete operations

We add data using the put-item operation, update using update-item, and delete using
delete-item. The put-item, update-item, and delete-item operations are
idempotent operations. This means that you can execute the command any number of
times without any side effects. However, capacity will be charged for all attempts.

Reading data from DynamoDB

DynamoDB supports three ways of querying data:

¢ Read the exact item using get-item, providing all the keys.

* Read the items using a query, providing at least the partition key. You may also
provide a sort key and/or a filter expression.
e Read the items using a scan, providing a filter expression.

Each of these ways support strongly consistent reads, using an additional option of
consistent-read. The default is eventual consistency. By default, all attributes are
returned in a read operation. You can use a ProjectionExpression parameter to specify
which attributes need to be returned.

The following are some of the important characteristics of get-item:

e We cannot use get-item against a local or global secondary index.
o All key attributes need to be provided, or a ValidationException is thrown.
e If no items match, it returns nothing (no exception is thrown).

[131]

Data Storage with Amazon DynamoDB Chapter 3

The following are some of the important characteristics of a query:

¢ The partition key is mandatory.
* You can provide a sort key or a range for sort keys.

You can filter non-key values, but discarded values are still charged for.

If no items match, it returns an empty block.

The query results are always sorted by the sort key. The default order is
ascending, but we can reverse the order by setting the ScanIndexForward
parameter to false.

The following are some of the important characteristics of a scan:

¢ Key fields are not mandatory, but may be provided along with filter expressions.

e It scans the entire table, unlike a query, which scans only the records matching
the provided keys. Hence, we should try to use queries instead of scans when
possible.

e DynamoDB supports parallel scans for improved performance.

return-consumed-capacity

The return-consumed-capacity option returns the capacity used by an operation. It can
have three values: TOTAL returns the aggregate capacity units consumed, ALL_OLD returns
the values of all items before updating (changed or not), and ALL_NEW returns the values of
all items after updating (changed or not). These values apply to all operations, except
ALL_NEW, which is not applicable for delete-item.

There's more...

DynamoDB also supports batch operations using batch-get-item and batch-write-
item. Batch get and write operations are generally done from within applications, using a
loop. We will not do batch operations in this chapter, but I will provide more theory and
useful links for batch reads and writes in upcoming recipes.

See also

® https://docs.aws.amazon.com/cli/latest/reference/dynamodb/index.html

[132]

https://docs.aws.amazon.com/cli/latest/reference/dynamodb/index.html
https://docs.aws.amazon.com/cli/latest/reference/dynamodb/index.html
https://docs.aws.amazon.com/cli/latest/reference/dynamodb/index.html
https://docs.aws.amazon.com/cli/latest/reference/dynamodb/index.html
https://docs.aws.amazon.com/cli/latest/reference/dynamodb/index.html
https://docs.aws.amazon.com/cli/latest/reference/dynamodb/index.html
https://docs.aws.amazon.com/cli/latest/reference/dynamodb/index.html
https://docs.aws.amazon.com/cli/latest/reference/dynamodb/index.html
https://docs.aws.amazon.com/cli/latest/reference/dynamodb/index.html
https://docs.aws.amazon.com/cli/latest/reference/dynamodb/index.html
https://docs.aws.amazon.com/cli/latest/reference/dynamodb/index.html
https://docs.aws.amazon.com/cli/latest/reference/dynamodb/index.html
https://docs.aws.amazon.com/cli/latest/reference/dynamodb/index.html
https://docs.aws.amazon.com/cli/latest/reference/dynamodb/index.html
https://docs.aws.amazon.com/cli/latest/reference/dynamodb/index.html
https://docs.aws.amazon.com/cli/latest/reference/dynamodb/index.html
https://docs.aws.amazon.com/cli/latest/reference/dynamodb/index.html
https://docs.aws.amazon.com/cli/latest/reference/dynamodb/index.html
https://docs.aws.amazon.com/cli/latest/reference/dynamodb/index.html
https://docs.aws.amazon.com/cli/latest/reference/dynamodb/index.html
https://docs.aws.amazon.com/cli/latest/reference/dynamodb/index.html
https://docs.aws.amazon.com/cli/latest/reference/dynamodb/index.html
https://docs.aws.amazon.com/cli/latest/reference/dynamodb/index.html

Data Storage with Amazon DynamoDB Chapter 3

Using the DynamoDB SDK from Lambda

In previous recipes, we saw how to work with tables and data in DynamoDB using
CloudFormation and the AWS CLI. In this recipe, I will outline the general steps to use
the AWS Java SDK for DynamoDB from Lambda, and there will be no code files. In later
recipes, we will implement different DynamoDB operations in Lambda, following this
outline.

We will create different Lambda for different DynamoDB operations such as create table,
add item, and read item. When used with API gateway, each Lambda will be mapped to a
particular HTTP method on a resource. You may also use the same Lambda for all
operations using Lambda proxy integration.

Getting ready

You need an active AWS account. You need to follow the section Getting started in the
recipes Your first AWS Lambda and Your first Lambda with AWS CLI from chapter 1, Getting
Started with Serverless Computing on AWS, to set up Java, Maven, the parent

project, serverless-cookbook-parent-aws-java, and AWS CLI, and may also read
other notes there including code usage guidelines, S3 bucket creation, and notes for
Windows users.

If you are not familiar with developing and deploying Lambda with the Java runtime using
a CloudFormation template and the AWS CLI, you may first refer to the respective recipes
in Chapter 1, Getting Started with Serverless Computing on AWS. Complete CloudFormation
templates and the required CLI commands are provided with the code files for reference.

How to do it...

I will list and explain the general steps for developing DynamoDB operations from Lambda
using the SDK in this section:

1. Create a Maven project for the Lambda with the common parent and
the DynamoDB Java SDK dependency

We follow the same project structure for all our Lambda projects:

[133]

Data Storage with Amazon DynamoDB Chapter 3

src
main
java

tech.heartin.books.serverlesscookbook
domain
31 package-info.java
€ Request
€ Response
services
I DynamoDBService
€ DynamoDBServicelmpl1
€ DynamoDBServicelmpl2
o backage-info.java

“c MyLambdaHandler

3= package-info.java

In the poM file, define the parent project as serverless—-cookbook-
parent-aws-java. This parent project defines the common properties and
inherits from another parent with basic Java project dependencies and
configurations such as lombok, checkstyle configurations, and so on:

<parent>
<groupId>tech.heartin.books.serverlesscookbook</groupId>
<artifactId>serverless-cookbook-parent-aws-—

java</artifactId>
<version>0.0.1-SNAPSHOT</version>

</parent>

We also need to add the dependency for the AWS Java SDK for DynamoDB
in our pPOM file:

<dependency>
<groupId>com.amazonaws</groupId>
<artifactId>aws-java-sdk-dynamodb</artifactId>
<version>${aws.sdk.version}</version>
</dependency>

The aws . sdk.version property is defined in the parent project.

2. Define the Request and Response domain objects

[134]

Data Storage with Amazon DynamoDB Chapter 3

The Request POJO and Response POJO are used for input and

output mapping for our Lambda handler (MyLambdaHandler). While the
Request object will be specific to each operation-specific Lambda, the
Response object will be reused for all cases and is defined as follows:

@Data

@AllArgsConstructor

public class Response {
private String message;
private String errorMessage;

t
3. Create the service implementation

Define a service class for implementing the logic behind DynamoDB
operations such as create table, add data, and so on. You may split the
service class into an interface and an implementation class, which is a
general practice with Java projects. You may also directly put your
application logic into the Lambda handler without a service class.

I have defined an interface (DynamoDBService) and two implementations;
one uses the DynamoDB wrapper client (DynamoDBServiceImpll) and the
other uses the AmazonDynamoDB client (DynamoDBServiceImpl2). [have
used Lambda environment variable in the handler to decide the
implementation to use.

The AmazonDynamoDB client can be created as follows:

AmazonDynamoDB dynamoDBClient =
AmazonDynamoDBClientBuilder.defaultClient () ;

The DynamoDB wrapper client can be created using the AmazonDynamoDB
client as follows:

DynamoDB dynamoDB = new DynamoDB (dynamoDBClient) ;

The code for the operation in the service class is specific to each operation
and is shown in the respective recipes.

4. Define the Lambda handler

The Lambda handler implementation will also be similar for all operations,
except for the service method name and log message:

public final class MyLambdaHandler implements
RequestHandler<Request, Response> {

[135]

Data Storage with Amazon DynamoDB Chapter 3

private DynamoDBService service;

public Response handleRequest (final Request request, final

Context

request.

}

context) {

context.getLogger () .log("Creating table " +
getTableName ());

final String version = System.getenv ("API_VERSION");

if (version != null && version.equals("V2")) {
service = new DynamoDBServiceImpl2();

} elseq
service = new DynamoDBServiceImpll ();

}

return service.createTable (request);

We will use the Lambda environment variable to determine the version of
DynamoDBServiceImpl to use. The default is v1, which is the wrapper
client-based code. The JavaDoc comments required to pass the checkstyle
checks are not shown here. Refer to the code files repository for the complete

code.

5. Package and deploy Lambda

The steps to package and deploy Lambda are common for all projects. You
can package a Maven project as follows:

mvn clean package

Once the . jar file is created, you can upload the JAR file to s3 as follows:

aws s3 cp \
target/lambda-dynamodb-create-table-0.0.1-SNAPSHOT. jar \
s3://serverless—-cookbook/lambda-dynamodb-create-table-0.0.1-

SNAPSHOT

.jar \

——profile admin

6. Define the CloudFormation template

The CloudFormation template to provision our Lambda is similar for all
Lambdas in this chapter, except the names and IAM policy permissions
required for the DynamoDB operations we do. The IAM policy permissions
required by each Lambda are also discussed separately for each case.

[136]

Data Storage with Amazon DynamoDB Chapter 3

We start the template with the template version and description, define a log
group for our Lambda, define a role that can be assumed by Lambda, and
create a policy to write logs. The Lambda function's configuration is also
similar to other recipes, except the names. You may also add all Lambdas
into a single template file if you are planning to deploy them together.

7. Deploy the CloudFormation template

The deploy stack command for the CloudFormation template is the same
for all Lambdas, except the name changes:

aws cloudformation create-stack \

—-stack-name myteststack \

——template-body file://resources/lambda—-dynamodb-create-table-
cf-template.yml \

——capabilities CAPABILITY NAMED_IAM \

—--region us—-east-1 \

——profile admin

How to use describe-stack and delete-stack is shown in the code
files.

8. Invoke the Lambda

The payload that is passed to the aws lambda invoke command is specific
to each Lambda's Request object.

Our Lambda selects whether to execute version 1 (one that uses a
DynamoDB wrapper client) or version 2 (one that uses an
AmazonDynamoDB client) based on the value of Lambda environment
variable, APT_VERSION. The version 2 service implementation can be
executed after updating the API_VERSION Lambda environment variable to
v2:

aws lambda update-function-configuration \
——function—-name <lambda name> \
—-—environment Variables={API_VERSION=V2} \
—--region us-east-1 \
——profile admin

9. Cleanup
The cleanup steps (if required) are provided with each operation-specific
Lambda's recipe.

[137]

Data Storage with Amazon DynamoDB Chapter 3

How it works...

AmazonDynamoDB client versus DynamoDB wrapper

client

With the DynamoDB Java SDK, we can either use the AmazonDynamoDB client directly or
the wrapper client for DynamoDB. The wrapper client abstracts away some of the
complexity of using the AmazonDynamoDB client directly. I will show the use of the
wrapper client in this book; however, I will add the corresponding use of

the AmazonDynamoDB client in the code files for the book.

IAM policy and actions

If you are new to IAM policies, you may create them using the Policy Generator. Go to the
IAM Dashboard, click Policies on the left, and click Create Policy at the top to go to the
Create Policy page. You can search for the service you want (such as DynamoDB) and
select the actions you need. You also need to select a resource, which is a table in our case.

Actions are classified into List, Read, and Write actions.

The list actions available to select in the policy generator are shown here:

Access level
ListBackups
ListGlobalTables
ListTables

[138]

Data Storage with Amazon DynamoDB Chapter 3

The Read actions available to select in the policy generator are shown here:

v Read
BatchGetltem DescribeReservedCapacity GetRecords
DescribeBackup DescribeReservedCapacityOfferings GetShardlterator
DescribeContinuousBackups DescribeStream ListStreams
DescribeGlobalTable DescribeTable ListTagsOfResource
DescribeGlobalTableSettings DescribeTimeToLive Query
DescribeLimits Getltem Scan @

The Write actions available to select in the policy generator are shown here:

A Write

BatchWriteltem PurchaseReservedCapacityOfferin... UpdateGlobalTable
CreateBackup Putltem UpdateGlobalTableSettings
CreateGlobalTable RestoreTableFromBackup Updateltem

CreateTable RestoreTableToPointIinTime UpdateTable

DeleteBackup TagResource UpdateTimeToLive
Deleteltem UntagResource

DeleteTable UpdateContinuousBackups

Single Lambda versus multiple Lambdas

We can use proxy integration to use the same Lambda for all HTTP methods and/or
resources. However, it is a general practice to use smaller Lambdas for each HTTP method
per resource and let API gateway invoke the right Lambda based on the HTTP method in
the request.

[139]

Data Storage with Amazon DynamoDB Chapter 3

There's more...

DynamoDB also provides a local downloadable version you can use for your local testing.
You can find more details at https://docs.aws.amazon.com/amazondynamodb/latest/
developerguide/DynamoDBLocal.html.

See also

® https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_
Operations.html

® https://docs.aws.amazon.com/lambda/latest/dg/tutorial-env_cli.html

® https://docs.aws.amazon.com/cli/latest/reference/lambda/update-
function-configuration.html

Creating tables from Lambda

In this recipe, we will create tables from Lambda following the general steps outlined in the
Using the DynamoDB SDK from Lambda recipe. We had already seen creating tables from the
CLI and using a CloudFormation template in an earlier recipe. Tables are generally created
in the real world using CloudFormation templates.

Getting ready

You need an active AWS account. You need to follow the section Getting started in the
recipes Your first AWS Lambda and Your first Lambda with AWS CLI from Chapter 1, Getting
Started with Serverless Computing on AWS to set up Java, Maven, the parent

project, serverless-cookbook-parent-aws-java,and AWS CLI, and may also read
other notes there including code usage guidelines, S3 bucket creation, and notes for
Windows users.

It would be good to first go through the Using the DynamoDB SDK with Lambda recipe to
understand the theory behind using the AWS SDK for DynamoDB from Lambda.
Otherwise, refer back to that recipe whenever you have any doubts. It is also required to
have decent knowledge of Java and Maven.

[140]

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DynamoDBLocal.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DynamoDBLocal.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DynamoDBLocal.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DynamoDBLocal.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DynamoDBLocal.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DynamoDBLocal.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DynamoDBLocal.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DynamoDBLocal.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DynamoDBLocal.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DynamoDBLocal.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DynamoDBLocal.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DynamoDBLocal.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DynamoDBLocal.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DynamoDBLocal.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DynamoDBLocal.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DynamoDBLocal.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DynamoDBLocal.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DynamoDBLocal.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DynamoDBLocal.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DynamoDBLocal.html
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_Operations.html
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_Operations.html
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_Operations.html
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_Operations.html
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_Operations.html
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_Operations.html
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_Operations.html
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_Operations.html
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_Operations.html
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_Operations.html
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_Operations.html
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_Operations.html
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_Operations.html
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_Operations.html
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_Operations.html
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_Operations.html
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_Operations.html
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_Operations.html
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_Operations.html
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_Operations.html
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_Operations.html
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_Operations.html
https://docs.aws.amazon.com/lambda/latest/dg/tutorial-env_cli.html
https://docs.aws.amazon.com/lambda/latest/dg/tutorial-env_cli.html
https://docs.aws.amazon.com/lambda/latest/dg/tutorial-env_cli.html
https://docs.aws.amazon.com/lambda/latest/dg/tutorial-env_cli.html
https://docs.aws.amazon.com/lambda/latest/dg/tutorial-env_cli.html
https://docs.aws.amazon.com/lambda/latest/dg/tutorial-env_cli.html
https://docs.aws.amazon.com/lambda/latest/dg/tutorial-env_cli.html
https://docs.aws.amazon.com/lambda/latest/dg/tutorial-env_cli.html
https://docs.aws.amazon.com/lambda/latest/dg/tutorial-env_cli.html
https://docs.aws.amazon.com/lambda/latest/dg/tutorial-env_cli.html
https://docs.aws.amazon.com/lambda/latest/dg/tutorial-env_cli.html
https://docs.aws.amazon.com/lambda/latest/dg/tutorial-env_cli.html
https://docs.aws.amazon.com/lambda/latest/dg/tutorial-env_cli.html
https://docs.aws.amazon.com/lambda/latest/dg/tutorial-env_cli.html
https://docs.aws.amazon.com/lambda/latest/dg/tutorial-env_cli.html
https://docs.aws.amazon.com/lambda/latest/dg/tutorial-env_cli.html
https://docs.aws.amazon.com/lambda/latest/dg/tutorial-env_cli.html
https://docs.aws.amazon.com/lambda/latest/dg/tutorial-env_cli.html
https://docs.aws.amazon.com/lambda/latest/dg/tutorial-env_cli.html
https://docs.aws.amazon.com/lambda/latest/dg/tutorial-env_cli.html
https://docs.aws.amazon.com/lambda/latest/dg/tutorial-env_cli.html
https://docs.aws.amazon.com/lambda/latest/dg/tutorial-env_cli.html
https://docs.aws.amazon.com/lambda/latest/dg/tutorial-env_cli.html
https://docs.aws.amazon.com/lambda/latest/dg/tutorial-env_cli.html
https://docs.aws.amazon.com/lambda/latest/dg/tutorial-env_cli.html
https://docs.aws.amazon.com/cli/latest/reference/lambda/update-function-configuration.html
https://docs.aws.amazon.com/cli/latest/reference/lambda/update-function-configuration.html
https://docs.aws.amazon.com/cli/latest/reference/lambda/update-function-configuration.html
https://docs.aws.amazon.com/cli/latest/reference/lambda/update-function-configuration.html
https://docs.aws.amazon.com/cli/latest/reference/lambda/update-function-configuration.html
https://docs.aws.amazon.com/cli/latest/reference/lambda/update-function-configuration.html
https://docs.aws.amazon.com/cli/latest/reference/lambda/update-function-configuration.html
https://docs.aws.amazon.com/cli/latest/reference/lambda/update-function-configuration.html
https://docs.aws.amazon.com/cli/latest/reference/lambda/update-function-configuration.html
https://docs.aws.amazon.com/cli/latest/reference/lambda/update-function-configuration.html
https://docs.aws.amazon.com/cli/latest/reference/lambda/update-function-configuration.html
https://docs.aws.amazon.com/cli/latest/reference/lambda/update-function-configuration.html
https://docs.aws.amazon.com/cli/latest/reference/lambda/update-function-configuration.html
https://docs.aws.amazon.com/cli/latest/reference/lambda/update-function-configuration.html
https://docs.aws.amazon.com/cli/latest/reference/lambda/update-function-configuration.html
https://docs.aws.amazon.com/cli/latest/reference/lambda/update-function-configuration.html
https://docs.aws.amazon.com/cli/latest/reference/lambda/update-function-configuration.html
https://docs.aws.amazon.com/cli/latest/reference/lambda/update-function-configuration.html
https://docs.aws.amazon.com/cli/latest/reference/lambda/update-function-configuration.html
https://docs.aws.amazon.com/cli/latest/reference/lambda/update-function-configuration.html
https://docs.aws.amazon.com/cli/latest/reference/lambda/update-function-configuration.html
https://docs.aws.amazon.com/cli/latest/reference/lambda/update-function-configuration.html
https://docs.aws.amazon.com/cli/latest/reference/lambda/update-function-configuration.html
https://docs.aws.amazon.com/cli/latest/reference/lambda/update-function-configuration.html
https://docs.aws.amazon.com/cli/latest/reference/lambda/update-function-configuration.html
https://docs.aws.amazon.com/cli/latest/reference/lambda/update-function-configuration.html

Data Storage with Amazon DynamoDB Chapter 3

How to do it...

Let's discuss the steps to create a table from Lambda without repeating the common steps
we already discussed:

1. Create a Maven project for the Lambda with the common parent and
the DynamoDB Java SDK dependency

2. Define the Request and Response domain objects

The Request object for the lambda-dynamodb-create-table Lambda is
defined as follows:

@Data

public class Request {
private String tableName;
private String partitionKey;
private String sortKey;
private long readCapacityUnits;
private long writeCapacityUnits;
private boolean waitForActive;

}

The Response object is common to all Lambdas, as discussed in the Using the
DynamoDB SDK from Lambda recipe.

3. Create the service implementation

A table can be created using the DynamoDB wrapper client as follows:

Table table = dynamoDB.createTable (request.getTableName (),
Arrays.asList (
new KeySchemaElement (request.getPartitionKey (),
KeyType.HASH),
new KeySchemaElement (request.getSortKey (),
KeyType.RANGE)),
Arrays.asList (
new
AttributeDefinition (request.getPartitionKey (),
ScalarAttributeType.S),
new AttributeDefinition (request.getSortKey(),
ScalarAttributeType.N)),
new
ProvisionedThroughput (request.getReadCapacityUnits(),
request.getWriteCapacityUnits()));

[141]

Data Storage with Amazon DynamoDB Chapter 3

We can optionally wait until a table is created based on the value of
waitForActive in the request object:

if (request.isWaitForActive()) {
try {
table.waitForActive () ;
} catch (InterruptedException e) {
e.printStackTrace();
}
}

We can check the existence of a table and return an exception if the table
already exists:

if (this.dynamoDB.getTable (tableName) .getDescription() != null)
{

return true;

}
The complete code is available with the code files.

4. Define Lambda handler to call the service method and return a response
5. Package and deploy Lambda
6. Define the CloudFormation template

In the CloudFormation template, add permissions for Lambda to execute the
CreateTable and DescribeTable actions:

- Effect: Allow
Action:
— dynamodb:CreateTable
— dynamodb:DescribeTable
Resource:
— Fn::Sub:
arn:aws:dynamodb:${AWS: :Region}:${AWS: :AccountId}:table/*

CreateTable permission is required to create the table and DescribeTable
permission is required to wait for table creation.

7. Deploy the CloudFormation template
8. Invoke Lambda and test it

Invoke our Lambda from the CLI as follows:

aws lambda invoke \
—-—-invocation-type RequestResponse \

[142]

Data Storage with Amazon DynamoDB Chapter 3

——function—-name lambda-dynamodb-create-table \
-—-log-type Tail \

—--payload '({
"tableName": "my_ table",
"partitionKey": "id",
"sortKey": "dateandtime",

"readCapacityUnits": 1,
"writeCapacityUnits": 1,
"waitForActive": false
| A
—--region us-east-1 \
——profile admin \
outputfile.txt

The waitForActive input parameter is set as false here, and hence the
request will return immediately. If you are waiting for table creation by
setting waitForActive as true, you might want to raise the timeout for the
lambda. Otherwise, your request might time-out with an error message as
follows:

{"errorMessage":"2018-09-26T02:55:46.038Z 9fd63df2-
cl137-11e8-9c78-e9dde91c7800 Task timed out after 15.01
seconds"}

We can now use the aws dynamodb describe-table CLI command to
verify the new table's properties.

To execute the version 2 service implementation, update
the API_VERSION Lambda environment variable to v2:

aws lambda update-function-configuration \
——function-name lambda-dynamodb-create-table \
——environment Variables={API_VERSION=V2} \
—--region us-east-1 \
——profile admin

Now, execute the previous commands and verify the resultant output file.

9. Cleanup

To delete the table, you can use aws dynamodb delete-table.

[143]

Data Storage with Amazon DynamoDB Chapter 3

How it works...

We discussed the steps to create tables from Lambda without repeating the theory behind
using the AWS Java SDK for DynamoDB, which we already discussed in the Using the
DynamoDB SDK from Lambda recipe. If you have any doubts about the common steps, refer
to that recipe again.

There's more...

In real-world projects, tables are generally provisioned using CloudFormation templates,
unless there is a use case to create tables dynamically. When a CloudFormation stack is
deleted, all the provisioned resources, including tables, are also deleted. However, with
the SDK or CLI, we need to take care of deleting the tables manually from within the code
or through CLI commands.

See also

® https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/
AppendixSampleDataCodeJava.html

Adding data items from Lambda

In this recipe, we will add data items to our DynamoDB table from Lambda following the
general steps outlined in the earlier recipe Using the DynamoDB SDK from Lambda. We have
already seen how to work with data in DynamoDB from the AWS CLI in an earlier recipe.

Getting ready

You need an active AWS account. You need to follow the section Getting started in the
recipes Your first AWS Lambda and Your first Lambda with AWS CLI from chapter 1, Getting

Started with Serverless Computing on AWS to set up Java, Maven, the parent
project, serverless-cookbook-parent-aws-java, and AWS CLI, and may also read

other notes there including code usage guidelines, S3 bucket creation, and notes for
Windows users.

[144]

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/AppendixSampleDataCodeJava.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/AppendixSampleDataCodeJava.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/AppendixSampleDataCodeJava.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/AppendixSampleDataCodeJava.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/AppendixSampleDataCodeJava.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/AppendixSampleDataCodeJava.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/AppendixSampleDataCodeJava.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/AppendixSampleDataCodeJava.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/AppendixSampleDataCodeJava.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/AppendixSampleDataCodeJava.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/AppendixSampleDataCodeJava.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/AppendixSampleDataCodeJava.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/AppendixSampleDataCodeJava.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/AppendixSampleDataCodeJava.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/AppendixSampleDataCodeJava.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/AppendixSampleDataCodeJava.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/AppendixSampleDataCodeJava.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/AppendixSampleDataCodeJava.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/AppendixSampleDataCodeJava.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/AppendixSampleDataCodeJava.html

Data Storage with Amazon DynamoDB Chapter 3

It would be good to first go through the Using the DynamoDB SDK from Lambda recipe to
understand the theory behind using the AWS SDK for DynamoDB from Lambda.
Otherwise, refer back to that recipe whenever you have doubts. It is also assumed that you
have decent knowledge of Java and Maven.

How to do it...

Let's discuss the steps to add data items from Lambda without repeating the common steps
we already discussed:

1. Create a Maven project for the Lambda with the common parent and
the DynamoDB Java SDK dependency.

2. Define the Request and Response domain objects.

The Request object for the 1ambda-dynamodb-put-item lambda is defined
as follows:

@Data
public class Request {
private String tableName;
private String partitionKey;
private String sortKey;
private String partitionKeyValue;
private Integer sortKeyValue;
private boolean waitForActive;
private Map<String, String> stringData;
private Map<String, Integer> integerData;

}

I have added two maps, one for string types and one for integer types. The
Response object is common to all Lambdas, as discussed in the Using the
DynamoDB SDK from Lambda recipe.

3. Create the service implementation.

We can add an item into a DynamoDB table as follows:

Table table = dynamoDB.getTable (request.getTableName ());

Item item = new Item()
.withPrimaryKey (request.getPartitionKey (),
request.getPartitionKeyValue (),
request.getSortKey (),
request.getSortKeyValue());

[145]

Data Storage with Amazon DynamoDB Chapter 3

if (request.getStringData () != null) {
request.getStringData () .forEach((k, v) ->

item.withString(k, v));

}

if (request.getIntegerData() != null) {
request.getIntegerData() .forEach((k, v) -> item.withInt (k,
v)) i

}
table.putItem(item) ;
The complete code is available with the code files.

4. Define Lambda handler to call the service method and return a response.
5. Package and deploy Lambda.
6. Define the CloudFormation template.

In the CloudFormation template, add permissions for Lambda to put items.
If you are waiting for table creation, you also need the DescribeTable
permission:

- Effect: Allow
Action:
— dynamodb:PutItem
— dynamodb:DescribeTable
Resource:
- Fn::Sub:
arn:aws:dynamodb:${AWS: :Region}:${AWS: :AccountId}:table/*

7. Deploy the CloudFormation template.
8. Invoke Lambda and test it.

We can invoke our Lambda from the CLI as follows:

aws lambda invoke \

—-—-invocation-type RequestResponse \

——function-name lambda-dynamodb-put-item \

--log-type Tail \

——payload '({
"tableName": "my_table",
"partitionKey": "id",
"sortKey": "dateandtime",
"partitionKeyValue": "pl",
"sortKeyValue": 1537963034,
"waitForActive": false,
"stringData" : {

[146]

Data Storage with Amazon DynamoDB Chapter 3

llslll: "Vl",
"52": IIV2ll

b

"integerData" : {
"ilv @ 1,
"iz2" o 2

}

A

—--region us-east-1 \
——profile admin \
outputfile.txt

To execute a version 2 service implementation, update
the APT_VERSION Lambda environment variable to V2:

aws lambda update-function-configuration \
——function—name lambda-dynamodb-put-item \
—-—environment Variables={API_VERSION=V2} \
—-—-region us-east-1 \
—-profile admin

9. Cleanup

You can delete items using aws dynamodb delete-item.

How it works...

We discussed the steps to add items to a DynamoDB table from Lambda, without repeating
the theory behind using the AWS Java SDK for DynamoDB, which we already discussed in
the Using the DynamoDB SDK from Lambda recipe. If you have any doubts about the
common steps, refer to that recipe again.

There's more...

DynamoDB also supports writing items in a batch using the batch-write-item command
action.

batch-write-itemhas the following characteristics:

¢ Can write to one or more tables.
e Can write up to 25 items. If we try to write more than 25 items, the whole set will
fail.

[147]

Data Storage with Amazon DynamoDB Chapter 3

¢ Maximum request size is 16 MB.

¢ Any unprocessed items are returned.

e From a capacity unit calculation perspective, each item is treated separately. For
example, if I have two items of 6 KB each, both items will take two units, making
a total of four capacity units. See the throughput provisioning recipe for more
clarity on throughput calculations.

o The batch-write-item can be used for put or delete. You cannot do put and
delete for the same item.

See also

® https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/
batch-operation-document-api-java.html#JavaDocumentAPIBatchWrite

Reading data from Lambda

In this recipe, we will read data from Lambda, following the general steps outlined in the
Using the DynamoDB SDK from Lambda recipe. We will read data using the get-item,
query, and scan APIs. We have already seen reading data from the CLI in an earlier
recipe, Working with data from the CLI.

Getting ready

You need an active AWS account. You need to follow the section Getting started in the
recipes Your first AWS Lambda and Your first Lambda with AWS CLI from Chapter 1, Getting
Started with Serverless Computing on AWS to set up Java, Maven, the parent

project, serverless-cookbook-parent-aws-java, and AWS CLI, and may also read
other notes there including code usage guidelines, S3 bucket creation, and notes for
Windows users.

You need to follow the Adding data items from Lambda or Working with data from

the CLI recipe and set up data before we can read them in this recipe. It would also be good
to first go through the Using the DynamoDB SDK from Lambda recipe to understand the
theory behind using the AWS SDK for DynamoDB from Lambda.

[148]

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/batch-operation-document-api-java.html#JavaDocumentAPIBatchWrite
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/batch-operation-document-api-java.html#JavaDocumentAPIBatchWrite
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/batch-operation-document-api-java.html#JavaDocumentAPIBatchWrite
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/batch-operation-document-api-java.html#JavaDocumentAPIBatchWrite
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/batch-operation-document-api-java.html#JavaDocumentAPIBatchWrite
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/batch-operation-document-api-java.html#JavaDocumentAPIBatchWrite
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/batch-operation-document-api-java.html#JavaDocumentAPIBatchWrite
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/batch-operation-document-api-java.html#JavaDocumentAPIBatchWrite
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/batch-operation-document-api-java.html#JavaDocumentAPIBatchWrite
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/batch-operation-document-api-java.html#JavaDocumentAPIBatchWrite
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/batch-operation-document-api-java.html#JavaDocumentAPIBatchWrite
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/batch-operation-document-api-java.html#JavaDocumentAPIBatchWrite
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/batch-operation-document-api-java.html#JavaDocumentAPIBatchWrite
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/batch-operation-document-api-java.html#JavaDocumentAPIBatchWrite
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/batch-operation-document-api-java.html#JavaDocumentAPIBatchWrite
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/batch-operation-document-api-java.html#JavaDocumentAPIBatchWrite
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/batch-operation-document-api-java.html#JavaDocumentAPIBatchWrite
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/batch-operation-document-api-java.html#JavaDocumentAPIBatchWrite
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/batch-operation-document-api-java.html#JavaDocumentAPIBatchWrite
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/batch-operation-document-api-java.html#JavaDocumentAPIBatchWrite
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/batch-operation-document-api-java.html#JavaDocumentAPIBatchWrite
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/batch-operation-document-api-java.html#JavaDocumentAPIBatchWrite
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/batch-operation-document-api-java.html#JavaDocumentAPIBatchWrite
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/batch-operation-document-api-java.html#JavaDocumentAPIBatchWrite
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/batch-operation-document-api-java.html#JavaDocumentAPIBatchWrite
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/batch-operation-document-api-java.html#JavaDocumentAPIBatchWrite
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/batch-operation-document-api-java.html#JavaDocumentAPIBatchWrite
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/batch-operation-document-api-java.html#JavaDocumentAPIBatchWrite

Data Storage with Amazon DynamoDB

How to do it...

Let's discuss the steps to read data from Lambda without repeating the common steps we

already discussed:

1. Create a Maven project for the Lambda with the common parent and

the DynamoDB Java SDK dependency.
2. Define the Request and Response domain objects.

The Request object for the lambda-dynamodb-read-itemlambda is

defined as follows:

@Data
public class Request {
private String tableName;
private String partitionKey;
private String sortKey;
private String partitionKeyValue;

private String sortKeyValue; // Will be stored integer.

private boolean waitForActive;
private Map<String, String> filterData;

}

The filterData map will contain the attributes to create filter expressions
and their corresponding values. The Response object is common for all
Lambdas, as discussed in the Using the DynamoDB SDK from Lambda recipe.

3. Create the service implementation.

The service class will have implementations for get-item, query, and scan
operations. Reading items using get-item can be done as follows:

Table table = dynamoDB.getTable (request.getTableName());

Item item = table.getItem(new PrimaryKey ()
.addComponent (request.getPartitionKey (),
request .getPartitionKeyValue ())
.addComponent (request.getSortKey (),
Integer.parselnt (request.getSortKeyValue())));

Reading using a query can be done as follows:

Table table = dynamoDB.getTable (request.getTableName());
final String keyConditionExpression = request.getPartitionKey ()

+ "=:" + request.getPartitionKey();
QuerySpec querySpec = new QuerySpec ()

.withKeyConditionExpression (keyConditionExpression) ;

[149]

Data Storage with Amazon DynamoDB Chapter 3

final Map<String, Object> valueMap = new HashMap<>();

StringBuilder filterExpressionBuilder;

if (request.getFilterData() != null) {
filterExpressionBuilder = new StringBuilder();
processFilterData (request, filterExpressionBuilder,

valueMap) ;

querySpec.withFilterExpression (filterExpressionBuilder.toString

)7

}

valueMap.put (":" + request.getPartitionKey (),

request.getPartitionKeyValue());

querySpec.withValueMap (valueMap) ;

ItemCollection<QueryOutcome> items = table.query (querySpec);

You can also supply both the keys, instead of just the partition key.
More examples are provided with the code files.

Reading using a scan can be done as follows:

final Table table =
dynamoDB.getTable (request.getTableName ()) ;
final String projectionExpression =
request.getPartitionKey () + " , " + request.getSortKey();
final ScanSpec scanSpec = new ScanSpec ()
.withProjectionExpression (projectionExpression);
StringBuilder filterExpressionBuilder;
Map<String, Object> valueMap;
if (request.getFilterData() != null) {
filterExpressionBuilder = new StringBuilder();
valueMap = new HashMap<>();
processFilterData (request, filterExpressionBuilder,
valueMap) ;
scanSpec.withFilterExpression (filterExpressionBuilder.toStr
ing());
scanSpec.withValueMap (valueMap) ;
}
ItemCollection<ScanOutcome> scanlItems =
table.scan (scanSpec) ;

The processFilter data method creates the filter expression and
value map iterating through the filterData map:

private void processFilterData (final Request request,
final StringBuilder filterExpressionBuilder,
final Map<String, Object> valueMap) {

request.getFilterData() .forEach((k, v) -> {
final String var = ":" + k;

[150]

Data Storage with Amazon DynamoDB Chapter 3

if (!filterExpressionBuilder.toString() .isEmpty()) {
filterExpressionBuilder.append(" and ");
}
filterExpressionBuilder.append(k + "=" + wvar);
valueMap.put (var, v);
i
}

Instead of using the DynamoDB wrapper client, you can also use the
AmazonDynamoDB client to do get-item, query, and scan. The complete
code with both the options is available with the code files.

4. Define Lambda handler to call the service method and return a response.

I have modified the Lambda handler implementation to call get-item,
query, or scan as follows: if both key parameters have values, I call get -
item; if only the partition key has a value, I call query; and if both keys'
values are missing, I call scan. This is not a requirement, but only a
convenient way to demonstrate.

5. Package and deploy Lambda.
6. Define the CloudFormation template.

In the CloudFormation template, add permissions for Lambda to execute
get-item, query, and scan:

— Effect: Allow

Action:

— dynamodb:GetItem

— dynamodb:Query

— dynamodb:Scan

Resource:

— Fn::Sub:
arn:aws:dynamodb:${AWS: :Region} :${AWS: :AccountId}:table/*

7. Deploy the CloudFormation template.
8. Invoke Lambda and test it.

Invoke the Lambda, providing both keys to execute the get —item method:

aws lambda invoke \
——invocation-type RequestResponse \
——function-name lambda-dynamodb-read-item \
—--log-type Tail \
—-—-payload '({
"tableName": "my_table",

[151]

Data Storage with Amazon DynamoDB Chapter 3

"partitionKey": "id",
"sortKey": "dateandtime",
"partitionKeyValue": "pl",

"sortKeyValue": 1537963031,
"waitForActive": false
AN
—--region us-east-1 \
——profile admin \
outputfile.txt

Invoke Lambda, passing the partition key and a filter to execute the query
method:

aws lambda invoke \
——invocation-type RequestResponse \
——function—-name lambda-dynamodb-read-item \
—-—log-type Tail \

—--payload '{

"tableName": "my_ table",
"partitionKey": "id",
"sortKey": "dateandtime",
"partitionKeyValue": "pl",
"waitForActive": false,
"filterData" : {

"sl": "wv1",

"s2": "wv2"
}

A

—--region us-east-1 \
——profile admin \
outputfile.txt

The filter expression is optional. Though not shown in this recipe, a query
can accept both the keys, along with a filter.

Finally, we can invoke a scan as follows:

aws lambda invoke \
—-invocation-type RequestResponse \
—-function-name lambda-dynamodb-read-item \
—--log-type Tail \

—-—payload '({
"tableName": "my_table",
"partitionKey": "id",
"sortKey": "dateandtime",
"waitForActive": false,
"filterData" : {
"slll . "vlll’

[152]

Data Storage with Amazon DynamoDB Chapter 3

Ng2": Ny2M

}
| A
—--region us-east-1 \
——profile admin \
outputfile.txt

The filter expression is optional. DynamoDB will always do a full table scan.
I have added more examples in the code files than shown in the book.

The version 2 service implementation can be executed after updating
the API_VERSION Lambda environment variable to v2:

aws lambda update-function-configuration \
—-function-name lambda-dynamodb-read-item \
——environment Variables={API_VERSION=V2} \
—--region us-east-1 \
—-profile admin

9. Clean up the resources.

There is no cleanup required after reading data. However, you should have
set up the data following the previous recipe or an earlier one. You may
either delete that data or the whole table itself.

How it works...

We discussed the steps to read date from Lambda without repeating the theory behind
using the AWS Java SDK for DynamoDB, which we have already discussed in the Using the
DynamoDB SDK from Lambda recipe. If you have any doubts about the common steps, refer
to that recipe again.

There's more...

DynamoDB also supports batch reads using batch-get-item.
batch-get-item has the following characteristics:

e Can provide one or more keys. Each key should contain all key fields (partition
or partition and sort), similar to get-item.

¢ You may retrieve items from multiple tables.

[153]

Data Storage with Amazon DynamoDB Chapter 3

Maximum number of returned documents is 100. If more than 100 items are
requeﬂfd,avalidationExceptionOCGMB.

Maximum size of returned record is 16 MB. The remaining items' keys are
returned as unprocessed items, and we can retry them.
ProvisionedThroughputExceededException occurs if all items fail. If only
some fail, the failed items' keys are returned, along with the results, and we can
retry them.

Items can be retrieved in parallel, but the order may not be guaranteed.

We can filter the attributes that are returned. It will not affect the cost, but it will
allow more items to be returned within the 16 MB limit.

See also

We have learned enough about DynamoDB to create a backend for a serverless application.
You can learn further from AWS documentation. You may also follow my notes on
DynamoDB at http://cloudmaterials.com/en/book/amazon-dynamo-db-essentials

Following are some useful links to AWS documentation:

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/
JavaDocumentAPIItemCRUD.html

https://docs.aws.amazon.com/sdk—-for—-java/vl/developer—-guide/examples—
dynamodb-items.html

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/
ScanJavaDocumentAPI.html

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/
QueryingJavaDocumentAPI.html

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/
Expressions.ExpressionAttributeNames.html

[154]

https://cloudmaterials.com/en/book/amazon-dynamo-db-essentials
https://cloudmaterials.com/en/book/amazon-dynamo-db-essentials
https://cloudmaterials.com/en/book/amazon-dynamo-db-essentials
https://cloudmaterials.com/en/book/amazon-dynamo-db-essentials
https://cloudmaterials.com/en/book/amazon-dynamo-db-essentials
https://cloudmaterials.com/en/book/amazon-dynamo-db-essentials
https://cloudmaterials.com/en/book/amazon-dynamo-db-essentials
https://cloudmaterials.com/en/book/amazon-dynamo-db-essentials
https://cloudmaterials.com/en/book/amazon-dynamo-db-essentials
https://cloudmaterials.com/en/book/amazon-dynamo-db-essentials
https://cloudmaterials.com/en/book/amazon-dynamo-db-essentials
https://cloudmaterials.com/en/book/amazon-dynamo-db-essentials
https://cloudmaterials.com/en/book/amazon-dynamo-db-essentials
https://cloudmaterials.com/en/book/amazon-dynamo-db-essentials
https://cloudmaterials.com/en/book/amazon-dynamo-db-essentials
https://cloudmaterials.com/en/book/amazon-dynamo-db-essentials
https://cloudmaterials.com/en/book/amazon-dynamo-db-essentials
https://cloudmaterials.com/en/book/amazon-dynamo-db-essentials
https://cloudmaterials.com/en/book/amazon-dynamo-db-essentials
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/JavaDocumentAPIItemCRUD.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/JavaDocumentAPIItemCRUD.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/JavaDocumentAPIItemCRUD.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/JavaDocumentAPIItemCRUD.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/JavaDocumentAPIItemCRUD.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/JavaDocumentAPIItemCRUD.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/JavaDocumentAPIItemCRUD.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/JavaDocumentAPIItemCRUD.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/JavaDocumentAPIItemCRUD.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/JavaDocumentAPIItemCRUD.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/JavaDocumentAPIItemCRUD.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/JavaDocumentAPIItemCRUD.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/JavaDocumentAPIItemCRUD.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/JavaDocumentAPIItemCRUD.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/JavaDocumentAPIItemCRUD.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/JavaDocumentAPIItemCRUD.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/JavaDocumentAPIItemCRUD.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/JavaDocumentAPIItemCRUD.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/JavaDocumentAPIItemCRUD.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/JavaDocumentAPIItemCRUD.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/examples-dynamodb-items.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/examples-dynamodb-items.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/examples-dynamodb-items.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/examples-dynamodb-items.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/examples-dynamodb-items.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/examples-dynamodb-items.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/examples-dynamodb-items.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/examples-dynamodb-items.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/examples-dynamodb-items.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/examples-dynamodb-items.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/examples-dynamodb-items.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/examples-dynamodb-items.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/examples-dynamodb-items.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/examples-dynamodb-items.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/examples-dynamodb-items.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/examples-dynamodb-items.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/examples-dynamodb-items.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/examples-dynamodb-items.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/examples-dynamodb-items.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/examples-dynamodb-items.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/examples-dynamodb-items.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/examples-dynamodb-items.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/examples-dynamodb-items.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/examples-dynamodb-items.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/examples-dynamodb-items.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/examples-dynamodb-items.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/examples-dynamodb-items.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/examples-dynamodb-items.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/examples-dynamodb-items.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/examples-dynamodb-items.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ScanJavaDocumentAPI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ScanJavaDocumentAPI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ScanJavaDocumentAPI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ScanJavaDocumentAPI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ScanJavaDocumentAPI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ScanJavaDocumentAPI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ScanJavaDocumentAPI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ScanJavaDocumentAPI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ScanJavaDocumentAPI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ScanJavaDocumentAPI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ScanJavaDocumentAPI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ScanJavaDocumentAPI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ScanJavaDocumentAPI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ScanJavaDocumentAPI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ScanJavaDocumentAPI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ScanJavaDocumentAPI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ScanJavaDocumentAPI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ScanJavaDocumentAPI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ScanJavaDocumentAPI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ScanJavaDocumentAPI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/QueryingJavaDocumentAPI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/QueryingJavaDocumentAPI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/QueryingJavaDocumentAPI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/QueryingJavaDocumentAPI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/QueryingJavaDocumentAPI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/QueryingJavaDocumentAPI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/QueryingJavaDocumentAPI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/QueryingJavaDocumentAPI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/QueryingJavaDocumentAPI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/QueryingJavaDocumentAPI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/QueryingJavaDocumentAPI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/QueryingJavaDocumentAPI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/QueryingJavaDocumentAPI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/QueryingJavaDocumentAPI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/QueryingJavaDocumentAPI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/QueryingJavaDocumentAPI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/QueryingJavaDocumentAPI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/QueryingJavaDocumentAPI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/QueryingJavaDocumentAPI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/QueryingJavaDocumentAPI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.ExpressionAttributeNames.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.ExpressionAttributeNames.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.ExpressionAttributeNames.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.ExpressionAttributeNames.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.ExpressionAttributeNames.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.ExpressionAttributeNames.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.ExpressionAttributeNames.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.ExpressionAttributeNames.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.ExpressionAttributeNames.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.ExpressionAttributeNames.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.ExpressionAttributeNames.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.ExpressionAttributeNames.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.ExpressionAttributeNames.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.ExpressionAttributeNames.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.ExpressionAttributeNames.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.ExpressionAttributeNames.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.ExpressionAttributeNames.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.ExpressionAttributeNames.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.ExpressionAttributeNames.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.ExpressionAttributeNames.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.ExpressionAttributeNames.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.ExpressionAttributeNames.html

Application Security with
Amazon Cognito

This chapter will cover the following topics:

¢ Creating a Cognito user pool (AWS CLI, CloudFormation)

¢ Server-side authentication flow (AWS CLI, CloudFormation)

Client-side authentication flow (AWS CLI, CloudFormation)

e User sign-up flow with Cognito (AWS CLI)

Working with groups (AWS CLI)

Integrating Cognito in an API gateway (AWS CLI, CloudFormation)

User sign-up with SMS verification and MFA (AWS CLI, CloudFormation)

Introduction

In the previous chapters, we learned how to create serverless functions, REST APIs, and
data stores. In this chapter, we will use Amazon Cognito to provide application-level
security and user management, including user sign-in, sign-up, and access control. We will
also discuss Cognito's integration with API gateway APlIs.

Like we did in the other chapters, we will discuss provisioning resources using both AWS
CLI commands and CloudFormation templates. For application flows, we will mostly use
the AWS CLI, without Java Lambda code. In general, Cognito is used with the frontend,
mostly using the JavaScript SDK, as we will see in Chapter 9, Serverless Programming
Practices and Patterns.

Application Security with Amazon Cognito Chapter 4

The following are the prerequisites required for completing the recipes in this chapter:

1. A working AWS account

2. Configuring the AWS CLI, as discussed in the recipe Your first Lambda with AWS
CLI in chapter 1, Getting Started with Serverless Computing on AWS

3. A basic understanding of security concepts

Creating a Cognito user pool

Amazon Cognito can be used as an identity provider, as well as an identity broker. In this
chapter, we will create a simple Cognito user pool, and we'll explore the use of Cognito as
an identity provider. In later recipes, we will look at some more customization for the
Cognito user pool.

Getting ready

¢ There are no additional prerequisites for completing this recipe, other than the
common requirements specified in the chapter's introduction.

How to do it...

The initial setup, such as the user pool creation, is generally done using CloudFormation
templates; authentication and authorization are generally done with the SDK.

Creating Cognito user pool with AWS CLI

In this section, we will create a user pool by using CLI commands:
1. Generate the input JSON template, using the generate-cli-skeleton option:
aws cognito-idp create-user-pool \
—-pool-name my-pool-from-cli \

——generate—-cli-skeleton

This command will return a template with all of the supported properties for
the create-user-pool sub-command, in the correct JSON format.

[156]

Application Security with Amazon Cognito Chapter 4

2. Fill in the properties that are required within the JSON file, and remove the
properties that are not required:
1. Start the JSON file, specifying a name by using the Poo1Name

property:
"PoolName": "MyFirstUserPool",

2. Under the Policies section, we will define the password policy,
using the PasswordPolicy sub-property:

"Policies": {
"PasswordPolicy": {
"MinimumLength": 8,
"RequireUppercase": true,
"RequirelLowercase": true,
"RequireNumbers": true,
"RequireSymbols": true

}
by

3. Define AutovVerifiedAttributes and AliasAttributes, as
follows:

"AutoVerifiedAttributes": [
"email"

]I

"AliasAttributes": [
"email"

1,
Refer to the How it works... section for more details.

4. Define an email verification message and an email verification subject:

"EmailVerificationMessage": "Your verification
code from MyApp is {####}.",
"EmailVerificationSubject": "Your verification

code from MyApp",

In this recipe, we will only demonstrate email verification. In a later
recipe, we will look at how to do SMS verification.

[157]

Application Security with Amazon Cognito Chapter 4

5. Define a tag by using the UserPoolTags property, as follows:

"UserPoolTags": {
"Team": "Dev"

by

6. Define the AdminCreateUserConfig property, as follows:

"AdminCreateUserConfig": {
"AllowAdminCreateUserOnly": false,
"UnusedAccountValidityDays": 7,
"InviteMessageTemplate": {

"EmailMessage": "Your username for MyApp is

{username} and password is {####}.",

"EmailSubject": "Your temporary password for

MyApp"

}
}

The AllowAdminCreateOnly property, if set to t rue, restricts
creating accounts to administrators. We will set it to false, as
we will be doing user sign-up with this user pool in a later
recipe. The complete JSON file is available in the code files.

3. Execute the aws congnito-idp create-user-pool command, specifying this

JSON file:

aws cognito-idp create-user-pool \

——cli-input-json file://resources/create-user-pool-cli-
input.json \

—-profile admin

Note the user-pool-id, for use in future commands.

We can verify user-pool-created by using the describe-user-pool
sub-command:

aws cognito-idp describe-user-pool \
—-user-pool-id us-east-1_u0YJPtdpv \
——profile admin

Remember to replace the user-pool-id value with our user-pool-id
from the previous command. The describe-user-pool sub-command
returns the current properties of the user-pool.

[158]

Application Security with Amazon Cognito Chapter 4

Creating Cognito user pool with CloudFormation
template

Various sections of the CloudFormation template correspond to the CLI commands that we
saw in the previous section. The complete template YAML file is available in the code files:

1. Start the template with the template format version and a description (optional):

AWSTemplateFormatVersion: '2010-09-09'
Description: 'My First Cognito User Pool'

2. Start to define the user pool resource with the type, AWS: : Cognito: :UserPool:

Resources:
MyFirstUserPool:
Type: AWS::Cognito::UserPool

3. Under Properties, first, define a Policies property with a PasswordPolicy,
as follows:

Properties:
Policies:

PasswordPolicy:
MinimumLength: 8
Requirelowercase: true
RequireNumbers: true
RequireSymbols: true
RequireUppercase: true

4. Define AutoVerifiedAttributes and AliasAttributes, as follows:
AutoVerifiedAttributes:
- email
AliasAttributes:

- email

5. Define an email verification message and an email verification subject, as follows:

EmailVerificationMessage: 'Your verification code from MyApp is
{###4})."
EmailVerificationSubject: 'Your verification code from MyApp'

[159]

Application Security with Amazon Cognito Chapter 4

6. Define the AdminCreateUserConfig property, as follows:

AdminCreateUserConfig:
AllowAdminCreateUserOnly: false
InviteMessageTemplate:
EmailMessage: 'Your username for MyApp is {username} and
password is {####}."
EmailSubject: 'Your temporary password for MyApp'
UnusedAccountValidityDays: 7

AllowAdminCreateOnly restricts creating accounts to administrators.

7. Provide a name and add a tag for this user pool (this is optional):

UserPoolName: 'MyApp User Pool'
UserPoolTags:
Team: Dev

8. In the Outputs section, return the user-pool-id. Also, export the user pool, so
that we can reuse it in later recipes:

Outputs:
UserPoolId:
Description: 'Cognito user pool'
Value: !'Ref MyFirstUserPool
Export:
Name: MyFirstUserPoolId

Save the file as cognito-user-pool-cf-template.yml.

9. Execute the CloudFormation template by using aws cloudformation create-
stack, in order to create a CloudFormation stack.

We can run the aws cloudformation describe-stacks command to
find the status and get the user-pool-id.

We can also use the describe-user-pool sub-command, with the ID
returned by the describe-stacks sub-command, to verify the new Cognito
user pool:

aws cognito-idp describe-user-pool \
——-user-pool-id us-east-1_fY¥sblGyec \
——profile admin

[160]

Application Security with Amazon Cognito Chapter 4

If it is successful, this command will return the current state of the newly
created user pool. The initial part of the response contains the id, name,
policies, an empty LambdaConfig, the last modified date, and the creation
date:

"UserPool": {
"Id": "us—-east-1_LccU5yCbI",
"Name": "MyApp User Pool",
"Policies": {
"PasswordPolicy": {
"MinimumLength": 8,
"RequireUppercase": true,

"RequirelLowercase": true,
"RequireNumbers": true,
"RequireSymbols": true

+

"LambdaConfig": {},
"LastModifiedDate": 1542740032.158,
"CreationDate": 1542740032.158,

The schemaAttributes section will contain the definitions for all of the
attributes (including the default attributes), in the following format:

"SchemaAttributes": [
{
"Name": "sub",
"AttributeDataType": "String",
"DeveloperOnlyAttribute": false,
"Mutable": false,

"Required": true,

"StringAttributeConstraints": {
“MinLength": "1",
"MaxLength": "2048"

[161]

Application Security with Amazon Cognito Chapter 4

Other attributes contained within the SchemaAttributes section include
the name, given_name, family_name, middle_name, nick_name,
preferred_username, profile, picture, website, email,
email_verified, gender, birthdate, zoneinfo, locale, phone_number,
phone_number_verified, address, and updated_at.

The remainder of the response is as follows:

"AutoVerifiedAttributes": [
"email"
o
"AliasAttributes": [
"email"
]l
"EmailVerificationMessage": "Your verification code from MyApp is {####}.",
"EmailVerificationSubject": "Your verification code from MyApp",
"VerificationMessageTemplate": {
"EmailMessage": "Your verification code from MyApp is {####}.",
"EmailSubject": "Your verification code from MyApp",
"DefaultEmailOption": "CONFIRM_WITH_CODE"
Vo
"MfaConfiguration": "“OFF",
"EstimatedNumberOfUsers": @,
"EmailConfiguration": {},
"UserPoolTags": {
"Team": "Dev"
}l
"AdminCreateUserConfig": {
"AllowAdminCreateUserOnly"
"UnusedAccountValidityDays":
"InviteMessageTemplate": {
"EmailMessage": "Your username for MyApp is {username} and password is {####}.",
"EmailSubject": "Your temporary password for MyApp"

b
“"Arn": "arn:aws:cognito-idp:us-east-1: { R : userpool/us-east-1_LccU5yCbI"

10. To clean up, we can delete the user pool by deleting the stack, or keep the
stack and reuse it in the next recipe.

[162]

Application Security with Amazon Cognito Chapter 4

How it works...

Cognito is the primary service in AWS that can be used as an identity provider, for securing
applications with authentication, authorization, and access control. The important features
of Cognito are as follows:

e User sign-up

e User sign-in

e User creation by an administrator

¢ A set of predefined attributes, as well as support for creating custom attributes

e Multi-factor authentication (MFA)

e User profile management

¢ Email and SMS verification

¢ Forgot password

¢ Forcing a change of password after first login (in the case of admin user creation)
¢ Support for guest users

¢ Prevention of man-in-the-middle attacks through Secure Remote
Password (SRP) protocols

¢ Enabling or disabling of user accounts by an administrator
¢ Deleting user accounts
¢ Support for customization, using Lambdas invoked through predefined triggers

e Support for authentication from other identity providers, such as Google,
Facebook, Twitter, and so on

Generating and using JSON templates with CLI
commands

Most AWS CLI commands come with options either to specify the input parameters
directly on the command line, or input them through a JSON file specified by the c1i-
input-json property. A template for this JSON file can be generated by using the
generate-cli-skeleton property option.

For the create-user-pool sub-command, we used the c1i-input-json property,
specifying a JSON file created using the generate-cli-skeleton property option. The
create-user-pool sub-command has many properties, and some of them have sub-
properties. It would be easy (and less error-prone) to get the template generated in the right
format.

[163]

Application Security with Amazon Cognito Chapter 4

AliasAttributes versus UsernameAttributes

The Cognito create user pool sub-command supports two properties that allow for
additional properties, such as the username and email to be used for logging

in. AliasAttributes defines the supported attributes to be used as an alias for this user
pool. The possible values for AliasAttributes are the phone_number, email, or
Preferred_username. UsernameAttributes defines the supported attributes that can be
specified as usernames when a user signs up. The possible values

for UsernameAttributes are the phone_number or email.

While the AliasAttributes property allows us to use additional attributes as aliases for
our original username for 1ogin, the UsernameAttributes property allows us to use the
specified attributes as usernames, instead of another username. We cannot specify

both AliasAttributes and UsernameAttributes in a single configuration, or we will
get an error (InvalidParameterException) stating that only one of the
aliasAttributes or usernameAttributes can be set in a user pool.

The AliasAttributes or UsernameAttributes that we use has to be unique across our
user pool.

There's more...

We created a Cognito user pool in this recipe. To start using the Cognito user pool, we also
need to create an app client. An app client is an entity that has permission to call APIs as
unauthenticated users; such API functions include register, sign—-in, and forgot
password. We will look at how to create a Cognito user pool, and then how to use it to
perform unauthenticated calls, in the next recipe.

We explored the use of Cognito as an identity provider. Identity providers provide user
pool management on their own. Cognito can also be used as an identity broker, where an
external provider will maintain the user pool, and Cognito will just provide temporary
credentials, after that provider verifies the user credentials. However, most of these
external providers will need an actual domain name that we own, for security reasons.

See also

® https://aws.amazon.com/compliance/shared-responsibility-model/

® https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-
user-pools—-cost—-allocation-tagging.html

[164]

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-pools-cost-allocation-tagging.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-pools-cost-allocation-tagging.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-pools-cost-allocation-tagging.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-pools-cost-allocation-tagging.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-pools-cost-allocation-tagging.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-pools-cost-allocation-tagging.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-pools-cost-allocation-tagging.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-pools-cost-allocation-tagging.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-pools-cost-allocation-tagging.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-pools-cost-allocation-tagging.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-pools-cost-allocation-tagging.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-pools-cost-allocation-tagging.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-pools-cost-allocation-tagging.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-pools-cost-allocation-tagging.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-pools-cost-allocation-tagging.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-pools-cost-allocation-tagging.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-pools-cost-allocation-tagging.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-pools-cost-allocation-tagging.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-pools-cost-allocation-tagging.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-pools-cost-allocation-tagging.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-pools-cost-allocation-tagging.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-pools-cost-allocation-tagging.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-pools-cost-allocation-tagging.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-pools-cost-allocation-tagging.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-pools-cost-allocation-tagging.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-pools-cost-allocation-tagging.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-pools-cost-allocation-tagging.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-pools-cost-allocation-tagging.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-pools-cost-allocation-tagging.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-pools-cost-allocation-tagging.html

Application Security with Amazon Cognito Chapter 4

® https://docs.aws.amazon.com/cognito/latest/developerguide/user—-pool—
settings-client-apps.html

® https://docs.aws.amazon.com/cli/latest/userguide/generate-cli-
skeleton.html

Server-side authentication flow

Cognito supports different authentication flow use cases, such as server-side authentication
flow, client-side authentication flow, and custom authentication flow. We will look at
server-side authentication flow in this recipe. Server-side authentication is mostly used
with SDKs, for server-side languages like Java, Node.js, and so on.

To work with a Cognito user pool, we also need an app client for the user pool. In this
recipe, we will first define an app client that supports username and password
authentication for admins. After that, we will execute admin-specific API commands from
the CLI, in order to demonstrate the server-side authentication flow.

Getting ready

The following are the prerequisites for completing this recipe:

¢ A Cognito user pool that was created via the recipe, Creating a Cognito user pool

How to do it...

We will first create the app client, and then, we'll execute the admin-specific API
commands, to demonstrate the server-side authentication flow.

Creating Cognito user pool client

We will now look at how to create a Cognito user pool client, using both AWS CLI
commands and CloudFormation templates.

[165]

https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-client-apps.html
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-client-apps.html
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-client-apps.html
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-client-apps.html
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-client-apps.html
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-client-apps.html
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-client-apps.html
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-client-apps.html
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-client-apps.html
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-client-apps.html
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-client-apps.html
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-client-apps.html
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-client-apps.html
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-client-apps.html
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-client-apps.html
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-client-apps.html
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-client-apps.html
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-client-apps.html
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-client-apps.html
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-client-apps.html
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-client-apps.html
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-client-apps.html
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-client-apps.html
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-client-apps.html
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-client-apps.html
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-client-apps.html
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-client-apps.html
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-client-apps.html
https://docs.aws.amazon.com/cli/latest/userguide/generate-cli-skeleton.html
https://docs.aws.amazon.com/cli/latest/userguide/generate-cli-skeleton.html
https://docs.aws.amazon.com/cli/latest/userguide/generate-cli-skeleton.html
https://docs.aws.amazon.com/cli/latest/userguide/generate-cli-skeleton.html
https://docs.aws.amazon.com/cli/latest/userguide/generate-cli-skeleton.html
https://docs.aws.amazon.com/cli/latest/userguide/generate-cli-skeleton.html
https://docs.aws.amazon.com/cli/latest/userguide/generate-cli-skeleton.html
https://docs.aws.amazon.com/cli/latest/userguide/generate-cli-skeleton.html
https://docs.aws.amazon.com/cli/latest/userguide/generate-cli-skeleton.html
https://docs.aws.amazon.com/cli/latest/userguide/generate-cli-skeleton.html
https://docs.aws.amazon.com/cli/latest/userguide/generate-cli-skeleton.html
https://docs.aws.amazon.com/cli/latest/userguide/generate-cli-skeleton.html
https://docs.aws.amazon.com/cli/latest/userguide/generate-cli-skeleton.html
https://docs.aws.amazon.com/cli/latest/userguide/generate-cli-skeleton.html
https://docs.aws.amazon.com/cli/latest/userguide/generate-cli-skeleton.html
https://docs.aws.amazon.com/cli/latest/userguide/generate-cli-skeleton.html
https://docs.aws.amazon.com/cli/latest/userguide/generate-cli-skeleton.html
https://docs.aws.amazon.com/cli/latest/userguide/generate-cli-skeleton.html
https://docs.aws.amazon.com/cli/latest/userguide/generate-cli-skeleton.html
https://docs.aws.amazon.com/cli/latest/userguide/generate-cli-skeleton.html
https://docs.aws.amazon.com/cli/latest/userguide/generate-cli-skeleton.html
https://docs.aws.amazon.com/cli/latest/userguide/generate-cli-skeleton.html
https://docs.aws.amazon.com/cli/latest/userguide/generate-cli-skeleton.html
https://docs.aws.amazon.com/cli/latest/userguide/generate-cli-skeleton.html

Application Security with Amazon Cognito Chapter 4

Creating a Cognito user pool client with AWS CLI

Use the cognito-idp create-user-pool-client sub-command to create a user pool
client, as follows:

aws cognito-idp create-user-pool-client \
—-user-pool-id us-east-1_£fY¥sblGyec \
—-client-name my-user-pool-client \
—-explicit-auth-flows ADMIN_NO_SRP_AUTH \
——profile admin

Here, I have specified ADMIN_NO_SRP_AUTH as an explicit auth flow. This will allow us to
pass our username and password without SRP. Other options that are allowed

include CUSTOM_AUTH_FLOW_ONLY and USER_PASSWORD_AUTH. A few other authentication
flows, including USER_SRP_AUTH and REFRESH_TOKEN_AUTH, are supported by default.
We will see REFRESH_TOKEN_AUTH within this recipe, and USER_SRP_AUTH within a
different recipe.

Creating a Cognito user pool client with CloudFormation template

With AWS CLI commands we had to hardcode the user pool ID, however
with CloudFormation template we will reference it from the user pool CloudFormation
template from the previous recipe.

We may add a template format version and a description similar to what we did in
previous recipes.

The Resources and Outputs sections should look as follows:

Resources:
MyUserPoolClient:
Type: AWS::Cognito::UserPoolClient
Properties:
ClientName: 'My Cognito User Pool Client'
ExplicitAuthFlows:
- ADMIN_NO_SRP_AUTH
RefreshTokenValidity: 30
UserPoolId: !ImportValue MyFirstUserPoolId
Outputs:
ClientId:
Description: 'Cognito user pool Client'
Value: !Ref MyUserPoolClient

Create the CloudFormation stack by executing the aws cloudformation create-
stack command.

[166]

Application Security with Amazon Cognito Chapter 4

Server-side authentication flow

The server-side authentication flow is used with admin APIs, as follows:

1. Use admin APIs to create a user, as follows:

aws cognito-idp admin-create-user \
——user—-pool-id us-east-1_£f¥sblGyec \
——username testuser \
—-—temporary-password PasswOrd$ \
—-profile admin

Remember to replace the user-pool-id value with your user pool id. If it is
successful, this command will provide the following output:

"User": {
"Username": "testuser",
"Attributes": [
{
"Name": "sub",
"Value": "9613d37a-89b1-441f-b511-1f2e4e04fe74"

1,

"UserCreateDate": 1542740830.808,
"UserLastModifiedDate": 1542740830.808,
"Enabled": true,

"UserStatus": "FORCE_CHANGE_PASSWORD"

Note that the default user status is FORCE_CHANGE_PASSWORD. The user will
be provided with a NEW_PASSWORD_REQUIRED challenge after the first login.

2. Initiate the authentication flow as an admin, as follows:

aws cognito-idp admin-initiate-auth \
—--user-pool-id us-east-1_fY¥sblGyec \
——client-id 40l1kgtd4sj39nr36ouak5mhblt \
—-auth-flow ADMIN_NO_SRP_AUTH \
——auth-parameters USERNAME=testuser, PASSWORD=PasswOrd$ \
—-profile admin

[167]

Application Security with Amazon Cognito Chapter 4

Note that we have specified ADMIN_NO_SRP_AUTH. This call will fail if we
do not configure this option within explicit auth flows during the client
creation. Also, remember to replace the value for client-id with our
client ID from the previous step.

The initiate auth command will return a NEW_PASSWORD_REQUIRED
challenge and a session ID:

"ChallengeName": "NEW_PASSWORD_REQUIRED",

"Session": "7tcW1Qog6Uc4x4Np2vyRwuy46Edj1YsYJezGZsDsChLONe4EJo15UwPypdmecdnABU
B6TJ1YpKmrFzYOMFtA3056tDTB3Xx9HQ148CA4rR14cFrbfly7GMsXE1v0tp@ub@ScKkULWQPCPYKsqg2mc
X_cYzzkWU7g1P867 iwYsUIGPYmjWQHB7-HTxgKBOxWMA5nJBObdDKQRk] v—pn50K1mPg rcOxwMWUWA-LGy
cxiCbuAoibBzQcILPkpwxJHBqggMcQRroC98qDEw3LeA0T204m4TVaAfpelG4FQ3fcqMHgnynS34K4vsxx

SJRyJGasgOep5ekkMQOKpAEDGrGNb4Vj f rtOkveDFpnyUMAObT r-MkZ1S45]12IWLYGUHRHOiZZMDyK" ,
"ChallengeParameters": {

"USER_ID_FOR_SRP": "testuser",
"requiredAttributes": "[1",
"userAttributes": "{}"

3. We will then send a response to the auth challenge, as follows:

aws cognito-idp admin-respond-to—auth-challenge \
——user—-pool-id us—-east-1_£fY¥sblGyec \
——client-id 5hh4v7nveu22vea74h8stt9238 \
——challenge—-name NEW_PASSWORD_REQUIRED \
——-challenge—-responses

USERNAME=testuser, NEW_PASSWORD=NewPass0123$ \
—-—session <session-id> \
—-profile admin

If it is successful, this command will return a response with three tokens (an
access token, a refresh token, and an ID token):

[168]

Application Security with Amazon Cognito Chapter 4

"ChallengeParameters": {},
"AuthenticationResult": {

"AccessToken": "eyJraWQi0iI@VTY1ZHNgWlgyRHZoUDNwVFhnaTVkNU4zNkhmUkdOOFFVZHFvd1pmTXVnPSIsImFsZy
TjA2MGMyMGRKLWVj Zj ktMTF10C040Tg1LWNkMz IwOGIXODASNSIsInRva2VuX3VzZSI6ImFjY2VzcyIsInNjb3B1lIjoiYXdzLmNvZ2
aXRvLW1lkcC51cy1lYXNOLTEuYW1lhem9uYXdzLmNvbVwvdXMtZWFzdCOXxX2ZZc2IxR311YyIsImV4cCI6GMTUOMj cCONTASMiwiaWFOI j
0iI1aGgodjdudmViMjI2ZWE3NGg4c3RO0TIZOCISINVZzZXJuYW1lIjoidGVzdHVzZXI1ifQ. Eg3Z1kAJyJ-NEXmWmbavMV325_Uh-UT
ecuFeXtYLKHjc_rD7gj8vp50NfDQNSm_u8fP8Q8IRFTsLPaGR6C3gX6u0F_HR6BN_YWpHYtBudsShz2qGlryxcvqSzfpzbws8rMli5
XZNIxmwnaOc@CycbED8buKQ49Mj_g",

"ExpiresIn": 3600,

"TokenType": "Bearer",

"RefreshToken": "eyJjdHki0iJKV1QilLCJ1lbmMi0iJBMjU2RONNIiwiYWxnIjoiUIWNBLU9BRVAifQ.BnF1Q7rap5v7g4
aapMvMJPUej JIwTkqnPpAYjRNJSECNnI1KgVYa8gmfkVLmPaGT8p2NmuIicHDZoPhY6@VwAHrtVBWzq9xXX4g—k4PKIe rEaMK4vZGMc
L IMHcUNex7usnEOxvuOryXrSniwAi3Sq940xj fEFgpTM2g. 4WtMGmzXd8KEzU1P. g7z2cSVHERXguLWAe TaOALcIghunwYB7Z59SAET
bdCTXsWaAfddT INyGweh0e6S34q4t4egQtgTZWj cUdBuCRKkvcCUU_V3YC38SXENTNmxw9AzVTRg7PQKM4AM5Pt2vU-CZx8Hklat31fo
jErd-3YBOLzgYIq8_0gMNhVWoeJCA3AjsBOVQ2R7z_qyaTXqbQBBpROQjaQD0psT404xRI_Blgxs_PEm2Ego7mXsjo6SoILgVRX5q
gZ0KjgXci91M-65MIB7Hb1OUXYouOYPLazE_J3P@npEEAUUCcOhx2RCHbfh8EUYPFiHv890mNukhcuyfNLhSN8EPLyy5Gmxf8MGgfel
jqPtnA4J51380vD5mXF2Dx_1iF1-1MNdcZnQzUG-1Z@yGIrTchnrPIk6JLMCXhUQFu9791p1CSKRf10L1ZTSg0e@PB_h21GTJaU2ULE
klYj6gpxKaryd-ysY7C1YDPf-ee_w0-MN5maljwXuzpKrboiwEBs j f réSnwd4M58GHHQtqUZMUbVQn6hoVE Ly YNvhgXdXByuVTxGKm
HdmBu28hbuhYt7Y1h409AqghBWAhqUFez2BqBeGYT_tsv3FELK1-s7qP rNvkwLQYPaXDoolLgkNVMqjnVbpIsbLU4DW4nAHLWNx9d165
saUwcaMUuw.Wa_1lkFBRerllzeoKjE32XA",

"IdToken": "eyJraWQi0iJ1VWh6bWYzR28wNDcrVWo1lb3dybDdReHZuamdvY jF1lbk9ZV3NnV1FvZEcOPSIsImFsZyI6Il
dmV1IMjJ2ZWE3NGg4c3RO0TIZOCISImMV2ZW50X2 LKkIjoiMDYwYzIwZGQtZWNmOSOXMWU4LTg50DUtY2QzMj A4Y j EAMDK1IiwidGIrZw
YXNOLTEuYW1lhem9uYXdzLmNvbVwvdXMtZWFzdCOxX2ZZc2IxR311YyIsImNvZ25pdG86dXN1cm5hbWUi0iJ0ZXNAdXN1ciIsImV4cC
IWImPU2bVufgReMSnyPp84—c34r19X1G83Akea-fajxbfneD4Pf7Ny1YhfWtMe2Vr54z0GzV2cMAF_88BKwP3PmwlVZQzPYQabX5Y
8NsD_ql1vLRKQ213—-_4vIfEZnOWfeXqzgoRRnHL_zw-1KTTXs LdRRjzUDP53_cfSy2KIRRtkKI-NGy8SwWt_KTrNRvsH8vd09E1oQ"

H

We can try to run the initiate auth command with the new password;
we will see that it does not ask for the password challenge. Instead, it returns
the tokens.

4. From now on, we can use the refresh token to regenerate the access token and the
ID token:

aws cognito-idp admin-initiate-auth \
—-user-pool-id us-east-1_fY¥sblGyec \
——client-id 5hh4v7nveu22vea74h8stt9238 \
——auth-flow REFRESH_TOKEN_AUTH \
——auth-parameters REFRESH_TOKEN=<refresh-token> \
—-profile admin

5. To clean up, delete the user pool client, as follows:

aws cognito-idp delete-user-pool-client \
—-user-pool-id us-east-1_fY¥sblGyec \
——client-id 5hh4v7nveu22vea74h8stt9238 \
——profile admin

[169]

Application Security with Amazon Cognito Chapter 4

Delete the user that we created for this recipe, as follows:

aws cognito-idp admin-delete-user \
——user-pool-id us-east-1_£fY¥sblGyec \
—-username testuser \

——profile admin

How it works...

To summarize, we did the following in this recipe:

1. Created a user

2. Initiated an authentication flow as an admin

3. Responded to password challenges from Cognito

4. Used the refresh token to regenerate the access token and the ID token

Server-side, client-side, and custom authentication
flows

Server-side authentication is mostly used with SDKs, for server-side languages such as
Java, Node.js, Ruby, and so on. Server-side authentication uses admin APIs, and can also be
referred to as admin authentication flow.

Client-side SDKs, such as iOS, Android, and JavaScript, use client-side authentication flow.

Custom authentication flow uses custom Lambdas that get triggered during various life
cycle stages of the authentication.

Secure Remote Password protocol

The Secure Remote Password (SRP) protocol tries to protect the password from being sent
insecurely over the network, through alternate means like clients letting the server know
that they have the correct password, without actually sending it over the network.

SRP is currently only supported in client-side SDKs for iOS, Android, and JavaScript.
Backend SDKs, such as the ones for Java, Node.js, Ruby, and others, do not support
SRP. Server-side authentication flows usually happen on secure backend servers; hence,
SRP protocol calculations may not be required.

[170]

Application Security with Amazon Cognito Chapter 4

The access token, refresh token, and ID token

An identity token (ID token) is used to authenticate requests to the backend (for example,
the API gateway). For example, to send a request to an API gateway API with Cognito
Authorizer, we use the authorization type Bearer Token and pass the ID token. This will be
demonstrated later, in the recipe on Integrating Cognito with the API gateway. The ID token
will also contain additional information, such as the user ID and any other user attributes
that we provide while generating it. We will demonstrate this in a later recipe.

The access token is used within Cognito APIs, in order to authorize updates to the users'
parameters. The Cognito API commands that accept access tokens include associate-
software-token, change-password, confirm-device, delete-user, delete-user—
attributes, forget-device, get-device, get-user, get-user—-attribute-
verification-code, global-sign-out, list-devices, set-user-mfa-preference,
set-user-settings, update-device-status, update-user—-attributes, verify-
software-token, and verify-user—-attribute.

The refresh token is used to get new identity and access tokens. For example, the
initiate auth sub-command can specify the auth flow as REFRESH_TOKEN_AUTH, and
can pass a refresh token to get back the access token and the ID token. We can configure the
refresh token expiration (in days) when creating the user pool.

ADMIN_NO_SRP_AUTH versus
USER_PASSWORD_AUTH

Cognito authentication APIs support various authentication flow types, including
ADMIN_NO_SRP_AUTH and USER_PASSWORD_AUTH. Both ADMIN_NO_SRP_AUTH

and USER_PASSWORD_AUTH support sending the username and the password from the
client to the IDP, without SRP protocol.

USER_PASSWORD_AUTH also supports user migration from a legacy application, without
actually requiring them to reset their passwords. However, AWS documentation suggests
that we should update our auth flow type to a more secure once (for example, using SRP)
after the migration is complete.

ADMIN_NO_SRP_AUTH is only supported for server-side authentication using admin-
initiate-auth and admin-respond-to-auth-challenge, and is not supported for
client-side authentication using initiate-auth and respond-to-auth-challenge.

[171]

Application Security with Amazon Cognito Chapter 4

There's more...

In this recipe, we saw server-side authentication. There are other authentication flow use
cases, including server-side authentication flow, client-side authentication flow, and
custom authentication flow. We will look at some of these in later recipes.

In the real world, the admin APIs that we used for authentication in this recipe are mostly
used along with SDKs, for server-side languages like Java, Node.js, and so on. We can refer
to the respective SDK documentation and follow the API usages in this recipe to implement
them using the SDK.

See also

® https://docs.aws.amazon.com/cognito/latest/developerguide/amazon—
cognito-user-pools—authentication-flow.html

Client-side authentication flow

In the previous recipe, we demonstrated the use of server-side authentication flow, along
with the authentication flow type ADMIN_NO_SRP_AUTH. In this recipe, we will demonstrate
the use of client-side authentication flow, with the authentication flow type
USER_PASSWORD_AUTH.

Getting ready

The following are the prerequisites for completing this recipe:

¢ Make sure that we have created a Cognito user pool, following the recipe
Creating a Cognito user pool.

How to do it...

First, we will create the client, and then, we will execute various client-specific API
commands, to demonstrate the client-side authentication flow.

[172]

https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-authentication-flow.html

Application Security with Amazon Cognito Chapter 4

Creating a Cognito user pool client

We will create a user pool client for client-side authentication flow both using AWS CLI.
We will also see the template components to use within a CloudFormation template.

Creating a Cognito user pool client with AWS CLI

We use the cognito-idp create-user-pool-client sub-command to create a user
pool client, as follows:

aws cognito-idp create-user-pool-client \
——user—-pool-id us-east-1_£fY¥sblGyec \
——client—-name my-user-pool-client \
——explicit—auth-flows USER_PASSWORD_AUTH \
—-profile admin

Here, I have specified USER_PASSWORD_AUTH as an explicit auth flow.

ADMIN_NO_SRP_AUTH is only supported with the admin-initiated
authentication used in the server-side authentication flow.

Both ADMIN_NO_SRP_AUTH and USER_PASSWORD_AUTH allow us to pass
our username and password without SRP, but USER_PASSWORD_AUTH
also supports user migration from legacy applications.

Creating a Cognito user pool client with CloudFormation template

We will follow the AWS CLI command option to create the corresponding CloudFormation
template, in order to create the app client.

The Resources and Outputs sections should look as follows:

Resources:
MyUserPoolClient:
Type: AWS::Cognito::UserPoolClient
Properties:
ClientName: 'My Cognito User Pool Client'
ExplicitAuthFlows:
—-USER_PASSWORD_AUTH
RefreshTokenValidity: 30
UserPoolId: !ImportValue MyFirstUserPoolId
Outputs:
ClientId:
Description: 'Cognito user pool Client'
Value: !Ref MyUserPoolClient

[173]

Application Security with Amazon Cognito Chapter 4

We can also add a template format version and a description.

We can now create the CloudFormation stack with the user pool client, by executing the
aws cloudformation create-stack command.

Client-side authentication flow

As we discussed previously, the client-side authentication flow uses non-admin APIs.

The output for most of the commands will be similar to the ones that we
discussed in the recipe Server-side authentication flow, and need not be
repeated here. Please refer to that recipe for the screenshots.

Follow the steps to demonstrate the client-side authentication flow. Remember to replace
the user-pool-id value with your user pool id.

1. For creating the user, we will still use the admin APIs, as follows:

aws cognito-idp admin-create-user \
——user-pool-id us-east-1_£fY¥sblGyec \
——username testuser2 \
—-—temporary-password PasswOrd$ \
——profile admin

The default user status will be FORCE_CHANGE_PASSWORD, as we saw in the
previous recipe.

2. Initiate the authentication flow, as follows:

aws cognito-idp initiate-—auth \
——client-id 3jivlfilrspotsst9ml9hktu58 \
——auth-flow USER_PASSWORD_AUTH \
——auth-parameters USERNAME=testuser2, PASSWORD=PasswOrd$

As this is a non-admin API, we do not have to specify the admin profile
from the command line. The initiate auth command will return
a NEW_PASSWORD_REQUIRED challenge and a session ID.

[174]

Application Security with Amazon Cognito Chapter 4

3. Send a response to the auth challenge, as follows:

aws cognito-idp respond-to-auth-challenge \
—-client-id 3jivlfilrspotsst9ml9hktu58 \
—-challenge-name NEW_PASSWORD_REQUIRED \
—-challenge—-responses

USERNAME=testuser2, NEW_PASSWORD=NewPass0123$ \
——-session <session-id>

If it is successful, this command will return a response with three tokens: an
access token, a refresh token, and an ID token. We can try to run the
initiate auth command with the new password, and check that it does
not ask for the password challenge.

4. From now on, we can also use the refresh token to regenerate the access token
and the ID token:

aws cognito-idp initiate-—auth \
——client-id 3jivlfilrspotsst9mlO9hktu58 \
—-auth-flow REFRESH_TOKEN_AUTH \
——auth-parameters REFRESH_TOKEN=<refresh token>

5. To clean up, delete the user pool client, as follows:

aws cognito-idp delete-user-pool-client \
——-user-pool-id us-east-1_£f¥sblGyec \
—-—client-id 3jivlfilrspotsst9ml9hktu58 \
——profile admin

Delete the user that we created for this recipe, as follows:

aws cognito-idp admin-delete-user \
—-user-pool-id us-east-1_£fY¥sblGyec \
—-username testuser2 \
——profile admin

How it works...

To summarize, we did the following in this recipe:

1. Created a user

2. Initiated authentication flow as a user

3. Responded to password challenges from Cognito

4. Used the refresh token to regenerate the access token and the ID token

[175]

Application Security with Amazon Cognito Chapter 4

The major differences, as compared to the server-side authentication flow API usage, are as
follows:

1. Unlike with the server-side authentication APIs, we did not specify an admin
profile while executing the CLI commands.

2. You do not have to specify the user pool ID with client-side authentication flow
API calls; only the client ID needs to be specified.

In real-world applications, you generally choose client-side authentication
if you are working with SDKs for client-side platforms (for example, iOS,
Android, or JavaScript), and server-side authentication flows if you are
working with SDKs for server-side language platforms (for example, Java
and Node.js).

There's more...

In this recipe, we used a simple authentication flow type, based on a username and
password. However, you can also utilize the additional security of Secure Remote
Password protocol for additional security. Currently, SRP support is only available for the
iOS, Android, and JavaScript SDKs.

We explored the use of server-side authentication flow and client-side authentication flow
in the last two recipes. There are additional flows, such as the custom authentication flow
and the user migration authentication flow. You can refer to the link to Amazon Cognito User
Pool Authentication Flow provided in the See also section.

See also

® https://docs.aws.amazon.com/cognito/latest/developerguide/amazon—
cognito-user-pools—authentication-flow.html

User sign-up flow with Cognito

In the previous recipes, we created our users as admins. However, many real-world
applications, including most web applications, allow users to sign-up by themselves.
During the sign-up, a user might have to verify their email or phone number. An admin
might also confirm a user sign-up.

[176]

https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-authentication-flow.html

Application Security with Amazon Cognito Chapter 4

In this recipe, we will demonstrate the user sign-up flow with self-confirmation, as well as
with admin confirmation, using CLI commands. You can follow the same steps while
working with any SDK of your choice. You can refer to the documentation of the particular
SDK for the exact usage.

Getting ready

The following are the prerequisites for completing this recipe:

¢ Ensure that you have created a Cognito user pool, following the recipe Creating a
Cognito user pool.

¢ Ensure that you have created a Cognito app client with a USER_PASSWORD_AUTH
explicit flow declaration, following the recipe Client-side authentication.

How to do it...

I will discuss two sign-up flows: one that requires the user to provide an email address and
confirm sign-up based on a code received in their email, and one in which the admin will
confirm the user. In real-world applications, these two are often combined.

User sign-up with self-confirmation

The following steps describe how to set up user sign-up with self-confirmation:

1. Use the sign-up sub-command to initiate the sign-up flow, providing your
username and password:

aws cognito-idp sign-up \
——client-id 4s690op0Ov8es2cojlbncjql2vig \
——username testuser4d \
—-password PasswOrd$ \
——user—attributes Name=email, Value=testemail@heartin.tech

Replace testemail@heartin.tech with your email address.

[177]

Application Security with Amazon Cognito Chapter 4

If this is successful, you should get the following response:

"UserConfirmed": false,

"CodeDeliveryDetails": {
"Destination": "+ickkkkickkd114",
"DeliveryMedium": "SMS",

"AttributeName": "phone_number"
h
"UserSub™: "f8f7f918-23dc-43da—a88b-4a7364c78072"

You will also receive an email with the confirmation code, as shown in the
following screenshot:

Your verification code from MyApp =~ Inbox x

no-reply@verificationemail.com via amazonses.com
tome ~

Your verification code from MyApp is 156202.

The preceding message format was configured while creating the user
pool. You can also use the email configuration section in the input CLI
JSON, or within the CloudFormation template, to make additional
customizations, such as a reply email address.

2. Confirm the user sign-up with the code received, as follows:

aws cognito-idp confirm-sign-up \
——client-id 4s690p0Ov8es2cojlbncjql2vig \
——username testuser4 \
——confirmation-code 156202

If it is successful, you should see no errors in the response.
3. Now, try to sign-in with your username and password, as follows:
aws cognito-idp initiate-—auth \
—-client-id 4s690op0Ov8es2cojlbnecjql2vidg \

—-auth-flow USER_PASSWORD_AUTH \
——auth-parameters USERNAME=testuser4, PASSWORD=PasswOrd$

[178]

Application Security with Amazon Cognito Chapter 4

If it is successful, you will get a response with the AccessToken,
RefreshToken, and IdToken:

"ChallengeParameters": {},
"AuthenticationResult": {

"AccessToken": "eyJraWQiOiI@VTY1ZHNgWlgyRHZoUDNwVFhnaTVkNU4zNkhmUkdOOFFVZHFvdlpm
ImFjYzIyNGYXLWVKYjgtMTFL0CO4ZTFhLWQ30WVjYzQ1ZDhmYSIsInRva2VuX3VzZSI6ImFjY2VzcyIsInNjb3B1l
aXRvLWlkcC51cyl1lYXNOLTEuYW1lhem9uYXdzLmNvbVwvdXMtZWFzdCOxX2ZZc2IxR311YyIsImV4cCIGMTUOM]jgy
0iI0czY5b3Awdjhlczljb2psNwW5janFsMnY@ZyIsInVzZXJuYW1lIjoidGVzdHVzZXI@In@. PoCpT2vnP3cSz4rU
3erXF3JoDZo5Cvb4bwSp6HdTRVkyqIP@74hzq_JCvaegobV7xry6tWT5NcoKwn9QOEd49aDf j87ZPoho__oMwcuP
Rnvn108vghC97n-kVznv1TgP5KaT1Q",

"ExpiresIn": 3600,

"TokenType": "Bearer",

"RefreshToken": "eyJljdHki0iJKV1QilLCJ1bmMi0iJBMjU2RONNIiwiYWxnIjoiUWNBLU9BRVALfQ.
MLP@029vmuAgik4QXXXJY31G20gZcPwmOF1IJMFM7-11S44UhsvYW6_qY1ZDeqftrdFWcA7Vw3I8@nVATYQtyGfK1
puufkma¥YNxeufhotJLPI3z6HXEgpuGhpBX527V0CjSTPjg.W4a8UITfHjGE_u_4Z.HkeWrZmM8hT175dMgt4nFRT1
60y12IQtgi6CpLkHb@8d6NAGYIBZvUilzr_uPdgWgIQ8D8mxMz6XmsLyc894TgrSBBA1qLuYH4LVPXgs@yE4Mi5i
tqpXiMmUZIxJ3sHwWMFFtvm5NysYEbRwpvXeASG3eKqBkImYFKsiybYka9xPgG7D14x5CRkVzC9jPAH-g62LKXiG1
ZgwCp7wz1-nNh_99epvsu2NGgGU_GWtS80itTwQvz—-caevybZyM120rfk_7 rwP61H1lcaPa5aeNziA3cM-usC8iBt
pQ1IY9tU1DrNSV81BHNDQf5e5Vj29cxk4FXWGS0I2cgI1KUFQVzv LvKR7 c@3P@3dGKF-Neew8ShiWyKbQ3Uq5Y3YZ
k-ri9ipSu9réBpVLglafWze0IzugJOYkVSwlbICR38wWdKL j9dDpSx—-mLv660EDh6GZz81XBZ] fwmBASsx4KHY0OF2
alRtmN-q-2nG95SiS5EQX5FX1AskxqW59dpbY@Dx_fWgoM4d9nwvVIZThne2J16rMoPFI4_tLUZj50TmLa@@8bzE
nXEJ9F77zBc.vIRKkG7wF1rwUWIXD_sATYg",

"IdToken": "eyJraWQi0iJ1lVWhe6bWYzR28wNDcrVW@lb3dybDdReHZuamdvYjF1lbk9ZV3NnV1FvZEc@
djhlczljb2psNW5janFsMnY@ZyIsImVtYWLlsX3Z1lcmlmaWVKIjp@cnV1LCIldmVudF9pZCI6ImFjYzIyNGYxLWVK
czpcLlwvY29nbm10by1lpZHAudXMtZWFzdCOXLmFtYXpvbmF3cy5jb21cL3VzLWVhc3QtMVImWXNIMUAS ZWMiLCJ j
bkBnbWFpbC5jb2@1ifQ.K92hVIMHEhDtVIn7u6VLhPOh_LHSMvwWQaIbDck3PgrkMIkRq2aJpqsQwQvx7PARgNe0S
yYusSQHk2Epo9IXSSw66kCtwemXmc FPScG—yXFNmEL rhWHMt rtV967mH4nDAUMA40MAlwbmRY@6x@1naNQeIowYt

}

4. Use the access token to delete the user, as follows:

aws cognito-idp delete-user \
——access-token <access token>

Replace the AccessToken with the access token received in the previous
command response. If it is successful, you should see no response.

5. Verify that the user was actually deleted by trying to initiate the authentication
flow again. This time, you should get an error that the user does not exist.

[179]

Application Security with Amazon Cognito Chapter 4

User

sign-up with admin confirmation

User sign-up with admin confirmation is similar to self-confirmation, as indicated by the
following steps:

1. Use the sign-up sub-command to initiate the sign-up flow, as follows:

aws cognito-idp sign-up \
——client-id 4s690op0Ov8es2cojlSncjql2vig \
—-username testuser4 \
—-password PasswOrd$

The email is optional here, since the user will be confirmed by an admin.
However, you may specify an email and it will send the verification code, as
we had specified the email as an AutoverifiedAttributes while creating

the user pool.

If this is successful, you should get the following response:

"UserConfirmed": false,

"UserSub": "e9ff2a2a-f7d9-44d3-b5a3-24ef7ee5288a"

2. Confirm the user as an admin, as follows:

aws

aws cognito-idp admin-confirm-sign-up \
——user—-pool-id us—-east-1_£fY¥sblGyec \
——username testuser4d \
—-profile admin

If this is successful, you should not see a response.

3. Now, try to sign-in with your username and password, as follows:

cognito-idp initiate-—auth \

——client-id 4s690op0Ov8es2cojlSncjql2vig \

——auth-flow USER_PASSWORD_AUTH \

——auth-parameters USERNAME=testuser4, PASSWORD=Passw0rd$

If it is successful, you will get a response with the AccessToken,
RefreshToken, and IdToken, similar to the one in the self-confirmation

flow.

4. You can delete the user by using the delete-user sub-command (refer to
the self-confirmation flow).

[180]

Application Security with Amazon Cognito Chapter 4

How it works...

We have discussed two flows for user sign-up. In the first flow, the user provided an email
while signing up, and an email was sent with a passcode. The user then used this passcode
to confirm the sign-up process. In the second flow, the user created an account without
providing an email, and then an admin confirmed the user. In the second flow, the user can
still provide email; in such cases, the user will get the passcode, and an admin can still
confirm that user. Most real-world projects support both of these options in a single flow.

There's more...

We have discussed passing an email as a user attribute. You can also pass any of the other
built-in user attributes, such as name, given_name, family_name, middle_name,
nick_name, preferred_username, profile, picture, website, email,
email_verified, gender, birthdate, zoneinfo, locale, phone_number,
phone_number_verified, address, and updated_at. You can also define a custom
attribute.

We only discussed email verification in this recipe. You can add phone verification by
adding it to the AutoverifiedAttributes list. We also did user sign-up with a text
username. We could have also used an email or phone_number as usernames. In a later
recipe, we will create a user pool to support SMS and MFA verification, and to support user
sign-up with a phone_number as a username.

See also

® https://docs.aws.amazon.com/cognito/latest/developerguide/user—-pool—
settings—-email-phone-verification.html

Working with groups

Cognito users can be added to different groups, and we can treat users differently based on
those groups. For example, as admin user can be shown an admin menu, whereas a regular
user can be shown a regular menu. In this recipe, we will look at how to create and use
groups with Cognito user pools.

[181]

https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-email-phone-verification.html
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-email-phone-verification.html
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-email-phone-verification.html
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-email-phone-verification.html
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-email-phone-verification.html
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-email-phone-verification.html
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-email-phone-verification.html
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-email-phone-verification.html
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-email-phone-verification.html
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-email-phone-verification.html
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-email-phone-verification.html
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-email-phone-verification.html
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-email-phone-verification.html
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-email-phone-verification.html
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-email-phone-verification.html
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-email-phone-verification.html
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-email-phone-verification.html
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-email-phone-verification.html
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-email-phone-verification.html
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-email-phone-verification.html
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-email-phone-verification.html
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-email-phone-verification.html
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-email-phone-verification.html
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-email-phone-verification.html
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-email-phone-verification.html
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-email-phone-verification.html
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-email-phone-verification.html
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-email-phone-verification.html
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-email-phone-verification.html
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-email-phone-verification.html

Application Security with Amazon Cognito Chapter 4

Getting ready

The following are the prerequisites for completing this recipe:

¢ Ensure that you have created a Cognito user pool, following the recipe Creating a
Cognito user pool.

How to do it...

We will look at how to create a group, how to add users to it, and finally, how to check a
user for their groups:

1. Create the following users: admin_user and regular_user.
2. Create a group called administrators, as follows:

aws cognito-idp create-group \
——group-name 'administrators' \
—-user-pool-id us-east-1_£fY¥sblGyec \
—-description 'Administrator Group' \
——profile admin

If this is successful, it should return the following response:

"id": "dxr47i",

"name": "First_Cognito_Custom_Authorizer",
"type": "COGNITO_USER_POOLS",
“providerARNs": [

"arn:aws:cognito-idp:us-east-1 _: userpool/us—-east-1_fYsb1lGyec"

1,
"authType": "cognito_user_pools",
"identitySource": "method.request.header.Authorization"

3. Create a group called authenticated_users, following the command in the
previous step.

[182]

Application Security with Amazon Cognito Chapter 4

4. Add the user regular_user to the authenticated_users, as follows:

aws cognito-idp admin-add-user-to-group \
—-user-pool-id us-east-1_fY¥sblGyec \
—--username regular_user \
——group-name authenticated_users \
——profile admin

5. Add the user admin_user to the groups administrators and
authenticated_users, following the command in the previous step.

6. Check for the groups that admin_user belongs to, as follows:

aws cognito-idp admin-list-groups—-for-user \
——username admin_user \
——user-pool-id us-east-1_£fY¥sblGyec \
——-profile admin

If this is successful, it should return the details of the two groups to which
the user admin_user belongs, as follows:

"Groups":

{

‘administrators",
us-east-1_fYsblGyec",
"Description dministrator Group",
"LastModifiedDate": 1544632026.41,
"CreationDate": 1544632026.41

"GroupName": "authenticated_users",
"UserPoolI us—east-1_fYsb1lGyec",
"Description": uthenticated User Group",
"LastModifiedDate": 1544632036.115,
"CreationDate": 1544632036.115

[183]

Application Security with Amazon Cognito Chapter 4

7. Check for the groups that reqular_user belongs to, following the command in
the previous step.

If this is successful, it should return the details of the one group to which the
user regular_user belongs, as follows:

"Groups": [
{
"GroupName": "authenticated_users",
"UserPoolId": "us-—east-1_fYsblGyec",

"Description": "Authenticated User Group",
"LastModifiedDate": 1544632036.115,
"CreationDate": 1544632036.115

How it works...

This was a small and simple recipe to add a user to a group, and to check the groups to
which a user belongs. Once you know the group a user belongs to, you can treat that user
in a certain way. I have not included the commands with syntax as they are the same as
those of the previous ones; a complete set of commands is available in the code files.

There's more...

We can also associate an IAM role to a group, and allow the users to access different AWS
services based on the role and its associated policies. To attach a role, you can use the
role-arn property of the aws cognito-idp admin-list-groups-for-—

user command.

See also

® https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-
user-pools—-user—-groups.html

® https://aws.amazon.com/blogs/aws/new—amazon—-cognito—-groups—and-fine-—
grained-role-based-access-control-2/

[184]

https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-pools-user-groups.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-pools-user-groups.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-pools-user-groups.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-pools-user-groups.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-pools-user-groups.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-pools-user-groups.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-pools-user-groups.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-pools-user-groups.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-pools-user-groups.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-pools-user-groups.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-pools-user-groups.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-pools-user-groups.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-pools-user-groups.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-pools-user-groups.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-pools-user-groups.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-pools-user-groups.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-pools-user-groups.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-pools-user-groups.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-pools-user-groups.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-pools-user-groups.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-pools-user-groups.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-pools-user-groups.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-pools-user-groups.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-pools-user-groups.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-pools-user-groups.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-pools-user-groups.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-pools-user-groups.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-pools-user-groups.html
https://aws.amazon.com/blogs/aws/new-amazon-cognito-groups-and-fine-grained-role-based-access-control-2/
https://aws.amazon.com/blogs/aws/new-amazon-cognito-groups-and-fine-grained-role-based-access-control-2/
https://aws.amazon.com/blogs/aws/new-amazon-cognito-groups-and-fine-grained-role-based-access-control-2/
https://aws.amazon.com/blogs/aws/new-amazon-cognito-groups-and-fine-grained-role-based-access-control-2/
https://aws.amazon.com/blogs/aws/new-amazon-cognito-groups-and-fine-grained-role-based-access-control-2/
https://aws.amazon.com/blogs/aws/new-amazon-cognito-groups-and-fine-grained-role-based-access-control-2/
https://aws.amazon.com/blogs/aws/new-amazon-cognito-groups-and-fine-grained-role-based-access-control-2/
https://aws.amazon.com/blogs/aws/new-amazon-cognito-groups-and-fine-grained-role-based-access-control-2/
https://aws.amazon.com/blogs/aws/new-amazon-cognito-groups-and-fine-grained-role-based-access-control-2/
https://aws.amazon.com/blogs/aws/new-amazon-cognito-groups-and-fine-grained-role-based-access-control-2/
https://aws.amazon.com/blogs/aws/new-amazon-cognito-groups-and-fine-grained-role-based-access-control-2/
https://aws.amazon.com/blogs/aws/new-amazon-cognito-groups-and-fine-grained-role-based-access-control-2/
https://aws.amazon.com/blogs/aws/new-amazon-cognito-groups-and-fine-grained-role-based-access-control-2/
https://aws.amazon.com/blogs/aws/new-amazon-cognito-groups-and-fine-grained-role-based-access-control-2/
https://aws.amazon.com/blogs/aws/new-amazon-cognito-groups-and-fine-grained-role-based-access-control-2/
https://aws.amazon.com/blogs/aws/new-amazon-cognito-groups-and-fine-grained-role-based-access-control-2/
https://aws.amazon.com/blogs/aws/new-amazon-cognito-groups-and-fine-grained-role-based-access-control-2/
https://aws.amazon.com/blogs/aws/new-amazon-cognito-groups-and-fine-grained-role-based-access-control-2/
https://aws.amazon.com/blogs/aws/new-amazon-cognito-groups-and-fine-grained-role-based-access-control-2/
https://aws.amazon.com/blogs/aws/new-amazon-cognito-groups-and-fine-grained-role-based-access-control-2/
https://aws.amazon.com/blogs/aws/new-amazon-cognito-groups-and-fine-grained-role-based-access-control-2/
https://aws.amazon.com/blogs/aws/new-amazon-cognito-groups-and-fine-grained-role-based-access-control-2/
https://aws.amazon.com/blogs/aws/new-amazon-cognito-groups-and-fine-grained-role-based-access-control-2/
https://aws.amazon.com/blogs/aws/new-amazon-cognito-groups-and-fine-grained-role-based-access-control-2/
https://aws.amazon.com/blogs/aws/new-amazon-cognito-groups-and-fine-grained-role-based-access-control-2/
https://aws.amazon.com/blogs/aws/new-amazon-cognito-groups-and-fine-grained-role-based-access-control-2/
https://aws.amazon.com/blogs/aws/new-amazon-cognito-groups-and-fine-grained-role-based-access-control-2/
https://aws.amazon.com/blogs/aws/new-amazon-cognito-groups-and-fine-grained-role-based-access-control-2/
https://aws.amazon.com/blogs/aws/new-amazon-cognito-groups-and-fine-grained-role-based-access-control-2/
https://aws.amazon.com/blogs/aws/new-amazon-cognito-groups-and-fine-grained-role-based-access-control-2/
https://aws.amazon.com/blogs/aws/new-amazon-cognito-groups-and-fine-grained-role-based-access-control-2/
https://aws.amazon.com/blogs/aws/new-amazon-cognito-groups-and-fine-grained-role-based-access-control-2/
https://aws.amazon.com/blogs/aws/new-amazon-cognito-groups-and-fine-grained-role-based-access-control-2/
https://aws.amazon.com/blogs/aws/new-amazon-cognito-groups-and-fine-grained-role-based-access-control-2/
https://aws.amazon.com/blogs/aws/new-amazon-cognito-groups-and-fine-grained-role-based-access-control-2/
https://aws.amazon.com/blogs/aws/new-amazon-cognito-groups-and-fine-grained-role-based-access-control-2/
https://aws.amazon.com/blogs/aws/new-amazon-cognito-groups-and-fine-grained-role-based-access-control-2/

Application Security with Amazon Cognito Chapter 4

Integrating Cognito with the APl gateway

In this recipe, we will integrate Cognito Authorizer with the API gateway, and we will get
one step closer to our goal of building an end-to-end Serverless web application. After
integrating Cognito Authorizer with the API gateway, we will test it by using the Postman
REST client.

Getting ready

The following are the prerequisites for completing this recipe:

¢ Ensure that you have created a Cognito user pool, following the recipe Creating a
Cognito user pool.

¢ Ensure that you have created a Cognito app client with a USER_PASSWORD_AUTH
explicit flow declaration, following the recipe Client-side authentication.

How to do it...

I will list the API gateway CLI commands and provide the CloudFormation templates.
However, I will not discuss much theory around the API gateway, as we already discussed
that in chapter 2, Building Serverless REST APIs with API Gateway. If you are not familiar
with API gateway, please refer to the recipes in chapter 2, Building Serverless REST APIs
with API Gateway.

The AWS CLI

We will cover the steps to create an API gateway API and integrate Cognito Authorizer
with it, as follows:

1. Create an API gateway REST AP, as follows:

aws apigateway create-rest-api \
——name "API Gateway With Cognito" \
—--region us-east-1 \
—-profile admin

[185]

Application Security with Amazon Cognito Chapter 4

2. Call get-resources to get the root resource ID, as follows:

aws apigateway get-resources \
—-rest-api-id 3t0t98ifdh \
—--region us-east-1 \
——profile admin

3. Create a resource with the path greeting and the parent ID as the ID of the root
resource:

aws apigateway create-resource \
——rest—api-id 3t0t98ifdh \
—--region us-east-1 \
——-parent-id ufgvoiu8yh \
—-—-path-part greeting \
——profile admin

4. Create an authorizer for API gateway, of the type COGNITO_USER_POOLS, as
follows:

aws apigateway create-authorizer \

—-rest-api-id 3t0t98ifdh \

—-name First_Cognito_Custom_Authorizer \

—-—type COGNITO_USER_POOLS \

——-provider—arns arn:aws:cognito-idp:us—-east-1:<account
id>:userpool/us-east-1_£fY¥sblGyec \

—-identity-source method.request.header.Authorization \

——-profile admin

Replace the user pool ID (us-east-1_£fYsblGyec) with your user pool ID,
and account id with your account ID.

If this is successful, you should get the following response:

"id": "dxr47i",

"'name "First_Cognito_Custom_Authorizer",
"type": "COGNITO_USER_POOLS",
"providerARNs": [

“arn:aws: cognito-idp: us-east—1:|j I : userrool/us—east-1_fYsbiGyec"

] [
"authType": "cognito_user_pools",
"identitySource": "method.request.header.Authorization"

[186]

Application Security with Amazon Cognito Chapter 4

5. Execute the put -method sub-command, with the authorization-type as
COGNITO_USER_POOLS and the authorizer—-id received as the response to
the create-authorizer command, as follows:

aws apigateway put-method \
——rest—-api-id 3t0t98ifdh \
——-resource-id rebvv7 \
—-http-method GET \
——authorization-type COGNITO_USER_POOLS \
——authorizer-id dxr47i \
—--region us-east-1 \
——profile admin

6. Execute the put-method-response sub-command:

aws apigateway put-method-response \
——rest—api-id 3t0t98ifdh \
—--resource-id rebvv7 \
—-http-method GET \
—-status-code 200 \
--region us-east-1 \
——-profile admin

7. Execute the put-integration sub-command:

aws apigateway put-integration \

——-rest—-api-id 3t0t98ifdh \

—-resource-id rebvv7 \

—-http-method GET \

—-—type MOCK \

——integration-http-method GET \

—--request-templates '{"application/json": "{\"statusCode\":
200}" }' N\

--region us-east-1 \

—-profile admin

8. Execute the put-integration-response sub-command:

aws apigateway put-integration-response \

—-—rest—api-id 3t0t98ifdh \

——resource—id b0549c \

—-http-method GET \

—-status—-code 200 \

—-—-selection-pattern "" \

—--response-templates '{"application/json": "{\"message\":
\"Welcome $context.authorizer.claims.given_name\"}"}' \

—--region us-east-1 \

—-profile admin

[187]

Application Security with Amazon Cognito

Chapter 4

We use $context.authorizer.claims.given_name to retrieve the user
attribute given_name that was used when creating the user. The sub-
commands put-method, put-method-response, put—-integration,
and put-integration-response are simplified into a single block within
the CloudFormation template for creating the API In any case,
CloudFormation templates are the preferred way to provision resources in
AWS programmatically. I have included the CLI commands for a better
understanding of the CloudFormation templates.

9. Create the deployment, as follows:

aws

A sample URL for this deployment will look as follows: https://

apigateway create-deployment \
—-rest-api-id 3t0t98ifdh \
—--region us-east-1 \

—--stage-name dev \
—--stage-description "Dev stage" \
—-description "First deployment" \
——profile admin

3t0t98ifdh.execute—api.us—east—-1.amazonaws.com/dev/greeting

10. Create the user pool client, as follows:

aws

cognito-idp create-user-pool-client \
—-user-pool-id us-east-1_f¥sblGyec \
—--client-name my-user-—-pool-client \
—-—explicit—-auth-flows USER_PASSWORD_AUTH \
——profile admin

11. Create a user sign-up, as follows:

aws

cognito-idp sign-up \

——client-id 4519ureterrdqtOdrbphk4g3pd \
——username testuser5 \

——-password Passw0rd$

——user—attributes Name=given_name,Value=Heartin

12. Confirm the user as an administrator, as follows:

aws

cognito-idp admin-confirm-sign-up \
——-user-pool-id us-east-1_fY¥sblGyec \
——username testuser5 \

——profile admin

[188]

https://3t0t98ifdh.execute-api.us-east-1.amazonaws.com/dev/greeting
https://3t0t98ifdh.execute-api.us-east-1.amazonaws.com/dev/greeting
https://3t0t98ifdh.execute-api.us-east-1.amazonaws.com/dev/greeting
https://3t0t98ifdh.execute-api.us-east-1.amazonaws.com/dev/greeting
https://3t0t98ifdh.execute-api.us-east-1.amazonaws.com/dev/greeting
https://3t0t98ifdh.execute-api.us-east-1.amazonaws.com/dev/greeting
https://3t0t98ifdh.execute-api.us-east-1.amazonaws.com/dev/greeting
https://3t0t98ifdh.execute-api.us-east-1.amazonaws.com/dev/greeting
https://3t0t98ifdh.execute-api.us-east-1.amazonaws.com/dev/greeting
https://3t0t98ifdh.execute-api.us-east-1.amazonaws.com/dev/greeting
https://3t0t98ifdh.execute-api.us-east-1.amazonaws.com/dev/greeting
https://3t0t98ifdh.execute-api.us-east-1.amazonaws.com/dev/greeting
https://3t0t98ifdh.execute-api.us-east-1.amazonaws.com/dev/greeting
https://3t0t98ifdh.execute-api.us-east-1.amazonaws.com/dev/greeting
https://3t0t98ifdh.execute-api.us-east-1.amazonaws.com/dev/greeting
https://3t0t98ifdh.execute-api.us-east-1.amazonaws.com/dev/greeting
https://3t0t98ifdh.execute-api.us-east-1.amazonaws.com/dev/greeting
https://3t0t98ifdh.execute-api.us-east-1.amazonaws.com/dev/greeting
https://3t0t98ifdh.execute-api.us-east-1.amazonaws.com/dev/greeting
https://3t0t98ifdh.execute-api.us-east-1.amazonaws.com/dev/greeting
https://3t0t98ifdh.execute-api.us-east-1.amazonaws.com/dev/greeting
https://3t0t98ifdh.execute-api.us-east-1.amazonaws.com/dev/greeting

Application Security with Amazon Cognito Chapter 4

13. Do an initiate-auth API call with the auth flow as USER_PASSWORD_AUTH, to
allow for simple authentication based on username and password:

aws cognito-idp initiate—auth \
——client-id 4519ureterrdqtOdrbphk4q3pd \
——auth-flow USER_PASSWORD_AUTH \
——auth-parameters USERNAME=testuser5, PASSWORD=Passw0Ord$

If it is successful, this command will return the access token, ID token, and
refresh token.

14. Finally, you can execute the URL by using a REST client, such as Postman. You
need to select the authorization type as Bearer Token and copy the ID token
value that you received in the initiate-auth request into the token field, as

follows:
» cognito-test Examples (0)
GET v https://3t0t98ifdh.execute-api.us-east- m Save
1.amazonaws.com/dev/greeting
Authorization @ (1) Cookies Code
TYPE o Heads up! These parameters hold sensitive data. To keep this data secure X
while working in a collaborative environment, we recommend using
Bearer Token v

variables. Learn more about variables

The authorization header will
be automatically generated
when you send the request. Token eyJraWQiOijvb01PVThUYTIWbFRWRWpvRDRkOUwW...

Learn more about
authorization

Preview Request

If it is successful, you should get the following results:

Body 9) Status: 200 OK
Pretty JSON v =5
1~ {
2 "message": "Welcome Heartin"
3 3

[189]

Application Security with Amazon Cognito Chapter 4

The CloudFormation template
The template starts as usual, with a template version and a description:

AWSTemplateFormatVersion: '2010-09-09'
Description: Building Cognito API with AWS CloudFormation

We will then create the RestApi resource, as follows:

Resources:
MyFirstRestAPI:
Type: AWS::ApiGateway::RestApi
Properties:
Name: Greeting API
Description: API for greeting an user
FailOnWarnings: true

Next, we will create an authorizer of the type COGNITO_USER_POOLS:

CustomCognitoAuthorizer:
Type: AWS::ApiGateway::Authorizer
Properties:
Name: FirstCognitoAuthorizer
RestApiId: !Ref MyFirstRestAPI
Type: COGNITO_USER_POOLS
ProviderARNs:
- Fn::Sub:
- arn:aws:cognito-
idp:${AWS: :Region}:S$S{AWS: :AccountId}:userpool/${UserPoolId}
— UserPoolId: !ImportValue MyFirstUserPoolId
IdentitySource: method.request.header.Authorization

The value for the Name property cannot contain spaces, unlike many other name properties.
Also, note that we have imported the user pool stack from the first recipe of the chapter, to
create the provider ARN.

The resource definition is similar to what you have seen before:

GreetingResource:
Type: AWS::ApiGateway::Resource
Properties:
RestApiId: !'Ref MyFirstRestAPI
ParentId: !GetAtt MyFirstRestAPI.RootResourceld
PathPart: 'greeting'

[190]

Application Security with Amazon Cognito Chapter 4

The method definition is also similar to what you have seen before, except that now, we
specify the AuthorizationType as COGNITO_USER_POOLS, and reference
the AuthorizerId from the authorizer resource that we defined previously:

MyMockMethod:
Type: AWS::ApiGateway::Method
Properties:
AuthorizationType: COGNITO_USER_POOLS
AuthorizerId: !Ref CustomCognitoAuthorizer
HttpMethod: GET
Integration:
Type: MOCK
IntegrationHttpMethod: GET
IntegrationResponses:
— StatusCode: 200
ResponseTemplates:

application/json: "{\"message\": \"Welcome
Scontext.authorizer.claims.given_name\" }"
RequestTemplates:

application/json: "{\"statusCode\": 200}"
ResourceId: !Ref GreetingResource
RestApiId: !Ref MyFirstRestAPI
MethodResponses:
— StatusCode: 200

We use context .authorizer.claims.given_name to retrieve the user
attribute given_name that we passed to the initiate auth API for retrieving the tokens.
The ID token also contains this information, embedded inside of it.

The Deployment type definition and Output section are similar to what you have seen
before:

MyFirstDeployment:
DependsOn: MyMockMethod
Type: AWS::ApiGateway::Deployment
Properties:
Description: 'First Deployment'
RestApiId: !Ref MyFirstRestAPI

StageDescription:
Description: 'Dev Stage'
StageName: 'dev'
Output:
SampleEndpoint:
Description: 'Sample Endpoint'

Value: !Sub

[191]

Application Security with Amazon Cognito Chapter 4

https://${API_ID}.execute—api.${AWS: :Region}.amazonaws.com/dev/greeting
— API_ID: !Ref MyFirstRestAPI

Now, you need to run the following API CLI commands (from the previous section):

aws cognito-idp sign-up
aws cognito-idp admin-confirm-sign-up
aws cognito-idp initiate-—auth

Finally, you can execute the URL by using a REST client, such as Postman. You need to
select the authorization type as Bearer Token, and copy the ID token value that you
received in the initiate-auth request into the Token field. Refer to the screenshots in the
previous section for the CLI commands.

How it works...

In this recipe, we created an API gateway API and an authorizer of the

type COGNITO_USER_POOLS, and integrated them together. The API gateway API CLI
commands and the CloudFormation templates are similar to the ones that we discussed in
Chapter 2, Building Serverless REST APIs with API Gateway; hence, we won't get into the
related theory and concepts.

In addition to Integrating Cognito with API Gateway, we demonstrated the use

of context.authorizer.claims, in order to retrieve additional user information from
the ID token. The attributes that are used with claims need to be passed to the initiate
auth API call that generates the ID token.

Claim-based identity

Claim-based identity is an approach to authentication in which the access tokens contain
the access key information required for authentication, as well as additional information
attributes (claims) about the users. Such tokens are referred to as identity tokens.

Claim-based authentication allows a user to use a single token to sign-in to multiple
websites, which is referred to as single sign-on. Since some information attributes
(claims) are already a part of the token, the user does not have to enter them again after
signing in to the application.

[192]

Application Security with Amazon Cognito Chapter 4

There's more...

In this recipe, we returned the response by using mock integration. You can follow the
recipes in Chapter 2, Building Serverless REST APIs with API Gateway, to do a Lambda
integration instead of a mock integration. We will be building and hosting an application
with end-to-end integration in the next chapter.

See also

® https://docs.aws.amazon.com/apigateway/latest/developerguide/
apigateway-enable-cognito-user—-pool.html

® https://openid.net/specs/openid-connect-core-1_0.html#StandardClaims

User sign-up with SMS verification and MFA

In the previous recipes, we did user sign-up with a text username and email verification. In
this recipe, we will create a user pool to support SMS and MFA verification, and then do
sign-up using a login with SMS and MFA verification.

We will also support user sign-up with a phone number as the username. However, you do
not need to specify a phone number as the username to support SMS and MFA verification.
Instead, you can specify phone_number as an auto-verified attribute, similar to how we
specified email in the previous recipes.

Getting ready

The following are the prerequisites for completing this recipe:

¢ You will need a working phone number that can receive SMS to complete the
steps within this recipe.

[193]

https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-enable-cognito-user-pool.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-enable-cognito-user-pool.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-enable-cognito-user-pool.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-enable-cognito-user-pool.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-enable-cognito-user-pool.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-enable-cognito-user-pool.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-enable-cognito-user-pool.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-enable-cognito-user-pool.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-enable-cognito-user-pool.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-enable-cognito-user-pool.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-enable-cognito-user-pool.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-enable-cognito-user-pool.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-enable-cognito-user-pool.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-enable-cognito-user-pool.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-enable-cognito-user-pool.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-enable-cognito-user-pool.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-enable-cognito-user-pool.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-enable-cognito-user-pool.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-enable-cognito-user-pool.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-enable-cognito-user-pool.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-enable-cognito-user-pool.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-enable-cognito-user-pool.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-enable-cognito-user-pool.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-enable-cognito-user-pool.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-enable-cognito-user-pool.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-enable-cognito-user-pool.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-enable-cognito-user-pool.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-enable-cognito-user-pool.html
https://openid.net/specs/openid-connect-core-1_0.html#StandardClaims
https://openid.net/specs/openid-connect-core-1_0.html#StandardClaims
https://openid.net/specs/openid-connect-core-1_0.html#StandardClaims
https://openid.net/specs/openid-connect-core-1_0.html#StandardClaims
https://openid.net/specs/openid-connect-core-1_0.html#StandardClaims
https://openid.net/specs/openid-connect-core-1_0.html#StandardClaims
https://openid.net/specs/openid-connect-core-1_0.html#StandardClaims
https://openid.net/specs/openid-connect-core-1_0.html#StandardClaims
https://openid.net/specs/openid-connect-core-1_0.html#StandardClaims
https://openid.net/specs/openid-connect-core-1_0.html#StandardClaims
https://openid.net/specs/openid-connect-core-1_0.html#StandardClaims
https://openid.net/specs/openid-connect-core-1_0.html#StandardClaims
https://openid.net/specs/openid-connect-core-1_0.html#StandardClaims
https://openid.net/specs/openid-connect-core-1_0.html#StandardClaims
https://openid.net/specs/openid-connect-core-1_0.html#StandardClaims
https://openid.net/specs/openid-connect-core-1_0.html#StandardClaims
https://openid.net/specs/openid-connect-core-1_0.html#StandardClaims
https://openid.net/specs/openid-connect-core-1_0.html#StandardClaims
https://openid.net/specs/openid-connect-core-1_0.html#StandardClaims
https://openid.net/specs/openid-connect-core-1_0.html#StandardClaims
https://openid.net/specs/openid-connect-core-1_0.html#StandardClaims

Application Security with Amazon Cognito Chapter 4

How to do it...

We will first create a user pool that supports SMS verification, and then, we will do user
sign-up with SMS verification.

I will not explain the theory behind the CLI commands or
CloudFormation template parameters that we have already discussed in
the previous recipes within this chapter. If you are not following the
recipes in order, please refer to the previous recipes whenever you need
extra details for those CLI commands or CloudFormation template
parameters.

Creating the user pool

First, we will look at how to create a user pool that supports using a phone number as a
username, with SMS and MFA verification.

Creating a Cognito user pool client with AWS CLI

We will now create a user pool using CLI commands. In the next section, we will create the
user pool using a CloudFormation template:

1. Create a role that allows Cognito to send SMS messages:
1. Create a policy JSON file with an action, sns:publish, as follows:

{

"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [

"sns:publish"
I

"Resource": [
"N

]

}

Save this as sns—-publish-policy.txt.

[194]

Application Security with Amazon Cognito Chapter 4

2. Create the policy, as follows:

aws iam create-policy \
—-policy—-name cognito_sns_iam policy \
——policy—-document file://resources/sns-—
publish-policy.txt \
——profile admin

3. Create a trust relationship document for the role, as follows:

{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Principal": {
"Service": "cognito-idp.amazonaws.com"
}I

"Action": "sts:AssumeRole"

}

Save this as assume-role-trust-relationship-policy-
document .txt.

4. Create the role, as follows:

aws iam create-role \

—--role—-name cognito_sns_iam_role \

——assume-role-policy-document
file://resources/assume-role-trust-relationship-
policy-document.txt \

——profile admin

Note the role ARN.
5. Attach the policy to the role, as follows:

aws iam attach-role-policy \

—-role—-name cognito_sns_iam_role \

—-policy-arn
arn:aws:iam: :<account_id>:policy/cognito_sns_iam_p
olicy \

——profile admin

[195]

Application Security with Amazon Cognito Chapter 4

2. Generate the input JSON template by using the generate-cli-
skeleton option, and fill in the properties that are required within the JSON
file (remove the properties that are not required).

1. We will start the JSON file by specifying a name, using the Poo1Name
property:

"PoolName": "QnaTime.com User Pool",

QnaTime.comis a domain that is bought in chapter 5, Web
Hosting with S3, Route 53, and CloudFront.

2. Under the Policies section, we will define the password policy,
using the PasswordPolicy sub-property:

"Policies": {
"PasswordPolicy": {
"MinimumLength": 8,
"RequireUppercase": true,

"RequireLowercase": true,
"RequireNumbers": true,
"RequireSymbols": true

}
by

3. Next, define AutovVerifiedAttributes and UsernameAttributes:

"AutoVerifiedAttributes": [
"phone_number"

1y
"UsernameAttributes": [
"phone_number"

I

4. Define an SMS verification message and email verification subject, as
follows:

"EmailVerificationMessage": "Your verification
code from gnatime.com is {####}.",

[196]

Application Security with Amazon Cognito Chapter 4

5. Enable MFA, as follows:
"MfaConfiguration”": "ON",

You can set MfaConfiguration to "OFF" to disable MFA, or to
"OPTIONAL" to make MFA optional for users.

6. Define the SMS configuration, as follows:

"SmsConfiguration": {

"SnsCallerArn":
"arn:aws:iam::855923912133:role/cognito_sns_iam_ro
le",

"ExternalId": "some-unique-external-id-
preferably-a-uuid"

He

Here, snsCallerArn is the ARN of the role that you created
in the previous step. The external ID is a unique external ID. If

you are creating the user pool from the Management Console,
AWS will generate a UUID value for this field.

7. Define any tags, if they are needed (optional).
8. Define the AdminCreateUserConfig property:

"AdminCreateUserConfig": {
"AllowAdminCreateUserOnly": false,
"UnusedAccountValidityDays": 7,
"InviteMessageTemplate": {

"SMSMessage": "Your username for gnatime.com
is {username} and password is {####}."
}
}

We are not using InviteMessageTemplate in this recipe, as
we are doing user sign-up, but it is shown for reference. Save
this file as create-user—-pool-cli-input. json. The
complete JSON file is available in the code files.

[197]

Application Security with Amazon Cognito Chapter 4

3. Execute the create-user-pool sub-command, specifying this JSON file, as
follows:

aws cognito-idp create-user-pool \

——cli-input-json file://resources/create-user—-pool-cli-
input.json \

——profile admin

Note the user—-pool-id, for use in further commands.

4. You can verify user-pool-created by using the describe-user-pool sub-
command.

Creating a Cognito user pool client with CloudFormation template

Creating Cognito user pools is more commonly done using CloudFormation templates.
Various sections of the CloudFormation template correspond to the CLI commands that
you saw in the previous section:

1. You can start the template with a description and a name. We will call our
template file cognito-user-pool-cf-template.yml. You can find the file
under the resources folder for this recipe:

AWSTemplateFormatVersion: '2010-09-09'
Description: Cognito User Pool with SMS and MFA Verification

2. Start to define the role for our resource with an inline policy definition, as

follows:
Resources:
SNSRole:
Type: "AWS::IAM::Role"
Properties:

AssumeRolePolicyDocument:
Version: "2012-10-17"

Statement:
— Effect: "Allow"
Principal:
Service:
- "cognito-idp.amazonaws.com"
Action:
- "sts:AssumeRole"
Policies:
— PolicyName: "CognitoSNSPolicy"
PolicyDocument:

[198]

Application Security with Amazon Cognito Chapter 4

Version: "2012-10-17"

Statement:

- Effect: "Allow"
Action: "sns:publish"
Resource: "*"

3. Define the user pool resource with the type AWS: : Cognito: :UserPool:

UserPool:
Type: "AWS::Cognito::UserPool"

4. Under Properties, define AutovVerifiedAttributes and AliasAttributes:

Properties:
AutoVerifiedAttributes:
— phone_number
UsernameAttributes:
— phone_number

5. Define an SMS verification message and an email verification subject:

SmsVerificationMessage: 'Your verification code from
gnatime.com is {####}."'

6. Define MFA and SMS configuration, as follows:

MfaConfiguration: "ON"

SmsConfiguration:
ExternalId: 'some-unique-external-id-preferably-a-uuid'
SnsCallerArn: !GetAtt SNSRole.Arn

7. We will define the AdminCreateUserConfig property, as follows:

AdminCreateUserConfig:
AllowAdminCreateUserOnly: false
InviteMessageTemplate:
SMSMessage: 'Your username for gnatime.com is {username}
and password is {####}."
UnusedAccountValidityDays: 7

We are not using InviteMessageTemplate in this recipe, as we are
performing user creation by admin, but it is given for reference.

[199]

Application Security with Amazon Cognito Chapter 4

8. Although it is not required, we will provide a name and add a tag for this user
pool:

UserPoolName: 'Qnatime.com User Pool'

UserPoolTags:
Team: Dev

9. In the Outputs section, we will return the user pool ID and the client ID, as

follows:
Outputs:

UserPoolId:
Value: !Ref UserPool
Export:

Name: "UserPool::Id"

UserPoolClientId:
Value: !Ref UserPoolClient
Export:

Name: "UserPoolClient::Id"
The complete CloudFormation template is available in the code files.

10. Execute the CloudFormation template to create a CloudFormation stack.

11. You can run the describe-stacks sub-command to get the status and the
user-pool-id. You can also use the describe-user-pool sub-command with
the ID returned by the describe-stacks sub-command, in order to verify the
new Cognito user pool.

12. To clean up, you can delete the user pool by deleting the stack, or you can keep
the stack.

User sign-up with SMS and MFA verification

First, we will set up a user pool client for SMS verification; then, we will do user sign-up
with SMS verification:

1. Create a user pool client, as follows:

aws cognito-idp create-user-pool-client \
—-user-pool-id us-east-1_n5USdCHNf \
——explicit-auth-flows USER_PASSWORD_AUTH \
—-client-name user-pool-client-signup \
——-profile admin

[200]

Application Security with Amazon Cognito Chapter 4

You can use describe-user-pool-client to get the details of the user
pool client.

2. Do user sign-up with a phone number as the username, as follows:

aws cognito-idp sign-up \
——client-id 6amm4inslmd8fo5tvhtmell83h \
——username +917411174114 \
—-password PasswOrd$

You will need to start the phone number with a +, followed by the country
code (for example, +44 for the United Kingdom and +91 for India).

If this is successful, you should get the following response:

"UserConfirmed": false,

"CodeDeliveryDetails": {
"Destination": "+ickickrickk4l14",
"DeliveryMedium": "SMS",

"AttributeName": "phone_number"

b
"UserSub": "f8f7f918-23dc-43da-a88b-4a7364c78072"

You will now get a confirmation code SMS at the phone number you
specified.

If you do not receive a confirmation authentication code after waiting for
some time, or if the one that you received expires, you can use the resend-
confirmation-code command, as follows:

aws cognito-idp resend-confirmation-code \
——client-id 6amm4insimd8fo5tvhtmell83h \
——username +917411174114

3. Confirm the user sign-up with the confirmation authentication code that was
received in the previous step:

aws cognito-idp confirm-sign-up \
——client-id 6amm4inslmd8fo5tvhtmell83h \
——username +917411174114 \
——confirmation-code 432348

[201]

Application Security with Amazon Cognito Chapter 4

4. Initiate the authentication flow, as follows:

aws cognito-idp initiate-—auth \
——client-id 6amm4inslmd8fo5tvhtmell83h \
—-auth-flow USER_PASSWORD_AUTH \
——auth-parameters USERNAME=+917411174114, PASSWORD=Passw0rd$

As we have enabled MFA, you should get back an authentication challenge
in the response, as shown in the following screenshot:

"ChallengeName': '"SMS_MFA",

"Session": "Ud3vrfFWOXfx04tPDzE8rtGass4A1XnQIGrac—VcmSKVUDoCIFjiAbsAr3fyxwb577t4vCHBwMCad
Sbcmén_4-ypAOhxMfYTETn4TjEdfs9jVkg40egdvmXZ100 LmOWFMVSb6f_CeYxxth1FsNiZiwxEOK2ilLUIK74nzB@RAoh
t4QKisydnFHwka82RvnewSwJF5vf6VnEuZ00b—qatdUN-BIkUWtYK8 ImwDZuXZobxQwDcGtBGeyTzQynIGCxqB3xbRAVE
Q1lwp2RbRZNaiee2koHj9DybybVe®djL_kCmyjVNtPy06 LHcSpV3AM4D007 cOM-KhuRLHFNKDIgkFTi90Dfu9KpQP LUKKXH
1cfG5RKktU_616ulHIVDW2T3tROFXyxZRhGWzJ7Q5w69G45toUUBFb_CYmMGNOEKKD6HI5SB8NneW]j—sGN7dM7usALi080
VAQCFOLc8KOxYaWx9g2VNPHeosMFUW1-ROyE4HkJ0Q2YBsBg3BtVADadcVT8zsv1StPHhUKVyw4L Gy tq70K32WQwh8GSu

€32vWIXdTFzdN4Mnqw8Ye0idNW-4AxkBP6KC30v1LIKGL60Q5ki7m—_5phFjexNzWVYUpqEET1sIZP6h6Hbm2d30mC29M
wmqPSng@ot33UKyjE6_YE-FYYZpD4igZmt83cvjR1hCX_L_1i7ZJ1tBe2xH1j7pq63Mn9IMOdOGAbkWw—ug-IKcku3hU",
"ChallengeParameters": {
"CODE_DELIVERY_DELIVERY_MEDIUM": 'SMS",
"CODE_DELIVERY_DESTINATION": "-+ickokiciockk4114",
"USER_ID_FOR_SRP": "f8f7f918-23dc-43da—-a88b—4a7364c78072"

You will now receive an SMS with an authentication code.

5. Respond to the authentication challenge with the authentication code that you
received in an SMS and the session value that you received in the previous step:

aws cognito-idp respond-to-auth-challenge \
——client-id 6amm4inslmd8fo5tvhtmell83h \
——-challenge—-name SMS_MFA \
—-challenge-responses

USERNAME=+917411174114, SMS_MFA_CODE=650598 \
——session <session>

If this is successful, you should get a response with the AccessToken,
RefreshToken, and IdToken. You can use these for further operations,
including deleting the user.

[202]

Application Security with Amazon Cognito Chapter 4

How it works...

To summarize, we did the following in this recipe:

1. Created a role with an inline policy that allowed Cognito to use SMS to send
(publish) messages

2. Created a Cognito user pool to support using a phone_number as the username,
SMS verification, and MFA

3. Performed user sign-up with a phone_number as the username

4. SMS verification

5. Multi-factor authentication (MFA)

Multi-factor authentication (MFA) is an authentication done in addition to the standard
authentication. In our case MFA is done by sending a code through SMS and we send back
that code in the response. In this recipe, I used both SMS verification and MFA; however,
within the code files, I have also provided the CLI commands for scenarios where we
perform sign-up and sign-in without MFA. You can disable MFA support while creating
the user pool, by setting the MfaConfiguration parameter to false.

There's more...

Even though we only discussed using a phone number as a username with SMS verification
for signing up, you could also use email, or a combination of email and SMS verification.

See also

You can read more about email and phone verification at: https://docs.aws.amazon.com/

cognito/latest/developerguide/user—-pool-settings—email-phone-verification.html.

[203]

https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-email-phone-verification.html
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-email-phone-verification.html
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-email-phone-verification.html
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-email-phone-verification.html
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-email-phone-verification.html
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-email-phone-verification.html
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-email-phone-verification.html
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-email-phone-verification.html
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-email-phone-verification.html
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-email-phone-verification.html
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-email-phone-verification.html
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-email-phone-verification.html
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-email-phone-verification.html
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-email-phone-verification.html
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-email-phone-verification.html
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-email-phone-verification.html
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-email-phone-verification.html
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-email-phone-verification.html
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-email-phone-verification.html
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-email-phone-verification.html
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-email-phone-verification.html
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-email-phone-verification.html
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-email-phone-verification.html
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-email-phone-verification.html
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-email-phone-verification.html
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-email-phone-verification.html
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-email-phone-verification.html
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-email-phone-verification.html
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-email-phone-verification.html
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-email-phone-verification.html

Web Hosting with S3, Route53,
and CloudFront

This chapter will cover the following topics:

e Setting up an S3 static website

Setting up CloudFront for an S3 website

Registering a domain with Route 53

Using domains registered with other registrars

Creating a custom domain with an S3 static website

Creating a custom domain with CloudFront
Using HTTPS with a CloudFront domain

Introduction

In the previous chapters, you saw how to create Serverless functions, add REST APIs, create
data stores, and secure an application. In this chapter, we will look at recipes related to
hosting a website, such as how to register domain names, host a static website, attach the
custom domain for our S3 bucket, and use the CloudFront Content Delivery

Network (CDN). You already saw S3 in previous recipes. Amazon Route 53 is a new
service that we will introduce in this chapter. The Route 53 service is Amazon's DNS
management service for registering domains and implementing routing strategies.

Some Route 53 functionalities may be one-time activities (for example, domain
registration), some may require user interaction at various stages (for example, domain
ownership validation), and some may take a longer time to complete. For example, DNS
propagation can take up to 24-48 hours. Therefore, these tasks are generally done from the
AWS Management Console or by directly accessing the APIs, and less using
CloudFormation. CloudFormation does not currently support domain registration, and it
only has limited support for other DNS management activities.

Web Hosting with S3, Route53, and CloudFront Chapter 5

Setting up an S3 static website

Simple Storage Service (S3) is an object store in AWS that allows us to store objects against
keys. We already used S3 to deploy our Lambda code and within CloudFormation scripts,
in earlier recipes. S3 can also be configured to host a static website. In this recipe, we will
create an S3 bucket and configure it as a static website by using AWS CLI commands and
CloudFormation scripts.

Getting ready

A basic understanding of Amazon S3 is required for this section. We used S3 to upload our
Lambda code in chapter 1, Getting Started with Serverless Computing on AWS, and we
discussed a few of its properties. A decent understanding of web technologies, such as
HTML, would be beneficial, but is not mandatory.

Up to this point, we have only been using the default region, us-east-1. An S3 bucket can
be created in a region closer to you. To demonstrate this, I will be using a different

region, Mumbai (ap-south-1), for this recipe. However, this is not a requirement for the
recipe. We will use the CloudFront CDN later in this chapter, in order to cache the results
across locations.

How to do it...

We will create one S3 static website bucket, and we will configure it as a website.

AWS CLI commands

I will use a bucket name (gnat ime, or a variation thereof) for the AWS CLI commands
within this chapter.

domain name than the one I use in the recipes.

0 S3 bucket names are unique across all regions. Please use a different

[205]

Web Hosting with S3, Route53, and CloudFront Chapter 5

1. Create an S3 bucket, as follows:

aws s3api create-bucket \
—--bucket gnatime \
—-—-create-bucket-configuration LocationConstraint=ap-south-1 \
--region ap-south-1 \
——profile admin

We need to specify the LocationConstraint explicitly, in addition to the —-
region option for non-US regions. This command will provide you with the
location of the S3 bucket:

"Location": "http://gnatime.s3.amazonaws.com/"

From this location and the knowledge of the region, you can derive the URL for
our static

website: http://gnatime.s3-website.ap-south-1.amazonaws.com.
However, the website link will not work now, as we have not configured the
bucket as a website.

We are also using the aws cli s3api command, instead of the aws cli

s3 command that we were using hitherto. Some of the actions that we will
perform will require more control, as provided by the s3api sub-command over
the high-level s3 sub-command.

2. Create an index document and an error document.

An S3 static website requires you to provide two HTML files: an index document
and an error document. The index document is the website landing page, and the
error document is displayed in the case of an error.

Create a simple index.html file, with only an <h1> tag inside the body:

<body>
<hl> Welcome to Q & A Time! </hl>
</body>

[206]

Web Hosting with S3, Route53, and CloudFront Chapter 5

Similarly, you can also create a simple error.html file, with a different text
within the <h1> tag:

<body>
<hl> Error page for Q & A Time! </hl>
<body>

Refer to the code files for the complete index.html and error.html files.

3. Upload the index and error documents, as follows:

aws s3 cp resources/index.html s3://gnatime/index.html \
——profile admin
aws s3 cp resources/error.html s3://gnatime/error.html \
——profile admin

4. Create a website configuration JSON file specifying the index and error
filenames, as follows:

{
"IndexDocument": {
"Suffix": "index.html"
}I
"ErrorDocument": {
"Key": "error.html"
}
}

5. Create a static website specifying the website configuration JSON file, as follows:

aws s3api put-bucket-website \

—--bucket gnatime.com \

——website—-configuration file://resources/s3-website-
configuration.json \

—-profile admin

6. Create a bucket policy with read permission for everyone.

By default, an S3 bucket and its objects do not provide read access to the public.
However, for an S3 bucket to act as a website, all of the files need to be made
accessible to the public. This can be done by using the following bucket policy:

{
"Version":"2012-10-17",
"Statement": [
{
"Sid":"PublicReadGetObjectAccess",
"Effect":"Allow",

[207]

Web Hosting with S3, Route53, and CloudFront Chapter 5

"Principal": "*",
"Action":["s3:GetObject"],
"Resource": ["arn:aws:s3:::gqnatime/*"]

}
}

Execute the bucket policy, as follows:

aws s3api put-bucket-policy \
—-bucket gnatime \
—-policy file://resources/s3-website-policy.json \
——profile admin

7. Execute the bucket website URL; the result will look like the following
screenshot:

& C' (® Not Secure | gnatime.s3-website.ap-south-1.amazonaws.com

Welcome to Q & A Time!

The CloudFormation template

I will use a bucket named quizzercloud (or one of its variations) for all of the
CloudFormation templates within this chapter:

1. Start the template with the template version and a description (optional).
2. Define a parameter for the bucket name:

Parameters:
BucketName:
Description: Bucket name for your website
Type: String

3. Define a resource for the bucket:

Resources:
MyBucket:
Type: AWS::S3::Bucket
Properties:
BucketName: !'Ref BucketName
AccessControl: PublicRead

[208]

Web Hosting with S3, Route53, and CloudFront Chapter 5

WebsiteConfiguration:
IndexDocument: index.html
ErrorDocument: error.html

4. Define a bucket access policy that allows for everyone to access the bucket's
contents:

WebsitePublicAccessPolicy:
Type: AWS::S3::BucketPolicy
Properties:

Bucket: !Ref MyBucket
PolicyDocument:
Statement:
Action:
- "s3:GetObject"
Effect: "Allow"
Resource:
Fn::Join:
—nmn

- "arn:aws:s3:::"
- !'Ref MyBucket

— "/*u

Principal: "*"
5. Add an outputs section to return the URL of the S3 website (optional):

Outputs:
S3WebsiteURL:
Value: !Sub
- http://${Bucket}.s3-website.${AWS: :Region}.amazonaws.com
— Bucket: !Ref MyBucket
Description: URL for S3 static website

6. Execute the CloudFormation template by passing the values for the parameters:

aws cloudformation create-stack \
——stack-name s3websitestack \
—-—template-body file://resources/s3-static-website-cf-
template.yml \
——parameters
ParameterKey=BucketName, ParameterValue=quizzercloud \
--region ap-south-1 \
——profile admin

[209]

Web Hosting with S3, Route53, and CloudFront Chapter 5

7. Check the creation status by using the aws cloudformation describe-
stacks command. If it is successful, you should get a response with an Outputs
section, as follows:

"Qutputs": [
{
"QutputKey": "S3WebsiteURL",

"QutputValue": "http://quizzercloud.s3-website.ap-south-1.amazonaws.com",
"Description": "URL for S3 static website"

8. Once the stack creation has completed, you will need to upload the index.html
and error.html files into the root bucket. Refer to the AWS CLI commands
section or the code files for the command.

9. Finally, execute the S3 static website URL in a browser, as shown in the following
screenshot:

< C (@ Not Secure | quizzercloud.s3-website.ap-south-1.amazonaws.com

Welcome to Q & A Time!

How it works...

To summarize, we did the following in this recipe:

1. We created an S3 bucket as a static website (for example, gnat ime)

2. We added the index.html and error.html files

3. We added a bucket policy that allows for everyone to read the bucket
4. We verified the S3 static website from the browser

[210]

Web Hosting with S3, Route53, and CloudFront Chapter 5

There's more...

In the real world, an S3 website is usually pointed to by a custom domain (for example,
gnatime.com). One restriction with this approach is that the bucket name and the custom
domain have to be the same. We can work around this by using the CloudFront CDN. You
will see that in a later recipe in this chapter.

S3 website endpoints do not currently support HTTPS. We can, however, work around this,
by configuring the CloudFront CDN over our website configuration, and then adding SSL
support, utilizing Amazon Certificate Manager (ACM). We will cover that in a later recipe
within this book.

See also

® https://docs.aws.amazon.com/cli/latest/reference/s3/index.html

® https://docs.aws.amazon.com/cli/latest/reference/s3api/index.html

Setting up CloudFront for an S3 website

CloudFront is a CDN web service from Amazon that caches data across the globe, through
data centers known as edge locations. These edge locations speed up the distribution of
static and dynamic web content originating in one location in one region, such as an S3
bucket, to users in other regions.

Getting ready

You will need an S3 bucket configured as a website in order to follow this recipe. You can
follow the recipe Setting up an S3 static website to set up an S3 bucket as a static website.

How to do it...

You can set up CloudFront through AWS CLI commands, CloudFormation, or the AWS
Management Console. In this recipe, we will look at how to set up CloudFront for an S3
bucket configured as a static website, through CLI commands and CloudFormation
template.

[211]

https://docs.aws.amazon.com/cli/latest/reference/s3/index.html
https://docs.aws.amazon.com/cli/latest/reference/s3/index.html
https://docs.aws.amazon.com/cli/latest/reference/s3/index.html
https://docs.aws.amazon.com/cli/latest/reference/s3/index.html
https://docs.aws.amazon.com/cli/latest/reference/s3/index.html
https://docs.aws.amazon.com/cli/latest/reference/s3/index.html
https://docs.aws.amazon.com/cli/latest/reference/s3/index.html
https://docs.aws.amazon.com/cli/latest/reference/s3/index.html
https://docs.aws.amazon.com/cli/latest/reference/s3/index.html
https://docs.aws.amazon.com/cli/latest/reference/s3/index.html
https://docs.aws.amazon.com/cli/latest/reference/s3/index.html
https://docs.aws.amazon.com/cli/latest/reference/s3/index.html
https://docs.aws.amazon.com/cli/latest/reference/s3/index.html
https://docs.aws.amazon.com/cli/latest/reference/s3/index.html
https://docs.aws.amazon.com/cli/latest/reference/s3/index.html
https://docs.aws.amazon.com/cli/latest/reference/s3/index.html
https://docs.aws.amazon.com/cli/latest/reference/s3/index.html
https://docs.aws.amazon.com/cli/latest/reference/s3/index.html
https://docs.aws.amazon.com/cli/latest/reference/s3/index.html
https://docs.aws.amazon.com/cli/latest/reference/s3/index.html
https://docs.aws.amazon.com/cli/latest/reference/s3/index.html
https://docs.aws.amazon.com/cli/latest/reference/s3/index.html
https://docs.aws.amazon.com/cli/latest/reference/s3/index.html
https://docs.aws.amazon.com/cli/latest/reference/s3api/index.html
https://docs.aws.amazon.com/cli/latest/reference/s3api/index.html
https://docs.aws.amazon.com/cli/latest/reference/s3api/index.html
https://docs.aws.amazon.com/cli/latest/reference/s3api/index.html
https://docs.aws.amazon.com/cli/latest/reference/s3api/index.html
https://docs.aws.amazon.com/cli/latest/reference/s3api/index.html
https://docs.aws.amazon.com/cli/latest/reference/s3api/index.html
https://docs.aws.amazon.com/cli/latest/reference/s3api/index.html
https://docs.aws.amazon.com/cli/latest/reference/s3api/index.html
https://docs.aws.amazon.com/cli/latest/reference/s3api/index.html
https://docs.aws.amazon.com/cli/latest/reference/s3api/index.html
https://docs.aws.amazon.com/cli/latest/reference/s3api/index.html
https://docs.aws.amazon.com/cli/latest/reference/s3api/index.html
https://docs.aws.amazon.com/cli/latest/reference/s3api/index.html
https://docs.aws.amazon.com/cli/latest/reference/s3api/index.html
https://docs.aws.amazon.com/cli/latest/reference/s3api/index.html
https://docs.aws.amazon.com/cli/latest/reference/s3api/index.html
https://docs.aws.amazon.com/cli/latest/reference/s3api/index.html
https://docs.aws.amazon.com/cli/latest/reference/s3api/index.html
https://docs.aws.amazon.com/cli/latest/reference/s3api/index.html
https://docs.aws.amazon.com/cli/latest/reference/s3api/index.html
https://docs.aws.amazon.com/cli/latest/reference/s3api/index.html
https://docs.aws.amazon.com/cli/latest/reference/s3api/index.html

Web Hosting with S3, Route53, and CloudFront Chapter 5

AWS CLI commands

You can create a CloudFront distribution with the AWS CLI by either passing a distribution
config, or by specifying the original domain name (for example, an S3 bucket name). In this
recipe, we will use the shorter option:

1. Create the CloudFront distribution by using the create-
distribution command with aws cloudfront:

aws cloudfront create-distribution \
—-—origin-domain-name gnatime.s3.amazonaws.com \
——default-root-object index.html \
——profile admin

This command will immediately return the ID of the distribution and the defaults
that are considered:

"Location": "https://cloudfront.amazonaws.com/2018-06-18/distribution/E1ZX6JAV6EDQVOQ",
"ETag": "E2D80BE9S8ICCBH",
"Distribution": {

"Id": "E1ZX6JAVGEDQVO",

"ARN": "arn:aws:cloudfront::218317422462:distribution/E1ZX6JAV6EDQVO",

"Status": "InProgress",

"LastModifiedTime": "2018-12-04T16:19:18.742Z7",
"InProgressInvalidationBatches": @,
"DomainName": "d39sfuvkc6hh8d.cloudfront.net",
"ActiveTrustedSigners": {

"Enabled": false,

"Quantity": @
},

The Etag in the response from the CloudFront command is needed to make
further commands, such as update or delete requests, from the CLI. The response
also contains the DistributionConfig property, which contains all of the
properties related to the distribution. This should take some time to complete.

2. Check the status by using the aws cloudfront get-distribution command:
aws cloudfront get-distribution \

——id E1ZX6JAV6EDQVO \
——profile admin

[212]

Web Hosting with S3, Route53, and CloudFront Chapter 5

If it is successful, the status will change to Deployed in the response:

""Status'": "Deployed",

The remainder of the response is similar to the previous one.
The DistributionConfig property within the response will be discussed in
detail later on.

3. Execute the CloudFront domain URL in a browser, as shown in the following
screenshot:

< C' ® Not Secure | d39sfuvkc6hh8d.cloudfront.net

Welcome to Q & A Time!

Understanding the DistributionConfig defaults in the response

Let's go through the DistributionConfig property that we received as part of the
response, and try to understand the structure and defaults for the important properties
of DistributionConfig. I have only displayed screenshots from the response for the
important sections, and will mention other properties by name.

DistributionConfig starts with the properties CallerReference, Aliases, and the
DefaultRootObject (set as index.html). Next, it contains the Origins property, with
our bucket details:

"Origins": {
“"Quantity": 1,
“"Items": [
{

"Id": "gnatime.s3.amazonaws.com—1543940355-477594",
"DomainName'": "gnatime.s3.amazonaws.com",
"OriginPath": ""
""CustomHeader

"Quantity":

}l
"S30riginConfig": {
"OriginAccessIdentity': "

[213]

Web Hosting with S3, Route53, and CloudFront Chapter 5

Next, it contains the DefaultCacheBehavior section that starts with TargetOriginig,
ForwardedValues, TrustedSigners, and ViewerProtocolPolicy (setas allow-all).

The DefaultCacheBehavior section continues with MinTTL, AllowedMethods,
SmoothStreaming, DefaultTTL, MaxTTL, Compress, LambdaFunctionAssociations,
and FieldLevelEncryptionId:

""MinTTL": ©,
""AllowedMethods" = {
""Quantity"': 2,
"ITtems": L
“"HEAD",
""GET"
] »
""CachedMethods" : {
"Quantity": 2,
“"Items": [
“HEAD" ,
""GET"

¥
j
""SmoothStreaming"': TfTalse,
"DefaultTTL"": 86400,
"MaxTTL": 31536000,
""Compress": false,
""LambdaFunctionAssociations'": {
""Quantity"'': ©

}l
""FieldLevelEncryptionId"': """

Furthermore, we can see
the CacheBehaviors, CustomErrorResponses, Comment, Logging,
and PriceClass sections (set as PriceClass_All).

[214]

Web Hosting with S3, Route53, and CloudFront Chapter 5

Finally, there are the Enabled, ViewerCertificate, Restrictions, WebACLId,
HttpVersion, and IsIPV6Enabled sections:

"Enabled": true,

"ViewerCertificate": {
"CloudFrontDefaultCertificate": true,
“"MinimumProtocolVersion'": "TLSv1l",
"CertificateSource": "cloudfront"

}l
"Restrictions": {
"GeoRestriction": {
"RestrictionType'": "none",

"Quantity": @
¥
}l
"“"wWebACLId": "',
"HttpVersion'": "http2",
"IsIPV6Enabled": true

The CloudFormation template

Unlike with the CLI commands, there is no shorthand way to create a CloudFront
distribution with a CloudFormation template without specifying the distribution config
parameters. I will, however, only add the essential parameters in this recipe:

1. Start the template with the template version and a description (optional).
2. Create a resource of the type AWS: : CloudFront: :Distribution:

Resources:
MyCloudFrontDistribution:
Type: AWS::CloudFront::Distribution
Properties:
DistributionConfig:
Origins:
— DomainName: quizzer.cloud.s3.amazonaws.com
Id: myS30rigin
S30riginConfig:
OriginAccessIdentity: ''
Enabled: 'true'
Comment: 'CloudFront Distribution for S3 Bucket'
DefaultRootObject: index.html
DefaultCacheBehavior:
TargetOriginId: myS30rigin
ForwardedValues:

[215]

Web Hosting with S3, Route53, and CloudFront Chapter 5

QueryString: 'false'
Cookies:
Forward: none
ViewerProtocolPolicy: allow-all

3. Add an outputs section to return the CloudFront distribution ID and the
CloudFront domain name:

Outputs:
CloudFrontDistributionId:
Value: !Ref MyCloudFrontDistribution
Description: 'CloudFront distribution id'
CloudFrontDomain:
Value: !GetAtt MyCloudFrontDistribution.DomainName
Description: 'CloudFront distribution domain name'

4. Execute the stack, using the create-stack command.

It will take some time for the distribution to be created. You can check the status
by using the describe-stacks command. Once it has completed, you will get a
response with the Outputs section, as follows:

"Outputs": [

"OutputKey" loudFrontDistributionId",
"Qutputval E3CNIY@ON2WR354",
"Description": "CloudFront distribution id"

"QutputKey": "CloudFrontDomain",

"QutputValue" 130e91j3phwkc.cloudfront.net",
"Description" loudFront distribution domain name",
"ExportName": "CloudFrontDomainName"

5. Execute the CloudFront domain name in a browser, and verify whether the S3
static website has loaded:

& C' @ Not Secure | dinp6qgfh9yzjps.cloudfront.net

Welcome to Q & A Time!

[216]

Web Hosting with S3, Route53, and CloudFront Chapter 5

How it works...

We created a CloudFront distribution for an existing bucket that was configured as a static
website. We created the bucket in a previous recipe. With AWS CLI commands, you can
either pass in just the original server and accept the defaults for the other options, or you
can pass in a distribution config JSON file with all of the required configurations. These
options are mutually exclusive. In this recipe, we only specified the original server S3
bucket for the AWS CLI command version. However, with the CloudFormation template,
we still had to use the distributed config, with the essential parameters.

There's more...

We only specified the original server when creating the CloudFront distribution with AWS
CLI commands. However, to update or delete a CloudFront distribution, you also need

to specify the Etag received in the previous step, from the command line. For updates,
including enabling or disabling the CloudFront distribution, we will need to provide the
distribution configurations with the essential parameters. We will see them in the next
recipe.

See also

® https://docs.aws.amazon.com/cli/latest/reference/cloudfront/index.
html#cli-aws—-cloudfront

® https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/
private-content-restricting-access-to-s3.html

Registering a domain name with Route 53

In this recipe, we will register a domain name for our Serverless application with the
Amazon Route 53 service. Domain registration is usually a one-time activity, and hence, it
is usually done from the AWS Management Console. You can also perform domain
registration with AWS APIs. Currently, CloudFormation does not support domain
registration; however, it does support a limited set of operations for domains that are
already registered.

Now, we will look at how to register domains through the AWS Management Console and
AWS CLI API commands.

[217]

https://docs.aws.amazon.com/cli/latest/reference/cloudfront/index.html#cli-aws-cloudfront
https://docs.aws.amazon.com/cli/latest/reference/cloudfront/index.html#cli-aws-cloudfront
https://docs.aws.amazon.com/cli/latest/reference/cloudfront/index.html#cli-aws-cloudfront
https://docs.aws.amazon.com/cli/latest/reference/cloudfront/index.html#cli-aws-cloudfront
https://docs.aws.amazon.com/cli/latest/reference/cloudfront/index.html#cli-aws-cloudfront
https://docs.aws.amazon.com/cli/latest/reference/cloudfront/index.html#cli-aws-cloudfront
https://docs.aws.amazon.com/cli/latest/reference/cloudfront/index.html#cli-aws-cloudfront
https://docs.aws.amazon.com/cli/latest/reference/cloudfront/index.html#cli-aws-cloudfront
https://docs.aws.amazon.com/cli/latest/reference/cloudfront/index.html#cli-aws-cloudfront
https://docs.aws.amazon.com/cli/latest/reference/cloudfront/index.html#cli-aws-cloudfront
https://docs.aws.amazon.com/cli/latest/reference/cloudfront/index.html#cli-aws-cloudfront
https://docs.aws.amazon.com/cli/latest/reference/cloudfront/index.html#cli-aws-cloudfront
https://docs.aws.amazon.com/cli/latest/reference/cloudfront/index.html#cli-aws-cloudfront
https://docs.aws.amazon.com/cli/latest/reference/cloudfront/index.html#cli-aws-cloudfront
https://docs.aws.amazon.com/cli/latest/reference/cloudfront/index.html#cli-aws-cloudfront
https://docs.aws.amazon.com/cli/latest/reference/cloudfront/index.html#cli-aws-cloudfront
https://docs.aws.amazon.com/cli/latest/reference/cloudfront/index.html#cli-aws-cloudfront
https://docs.aws.amazon.com/cli/latest/reference/cloudfront/index.html#cli-aws-cloudfront
https://docs.aws.amazon.com/cli/latest/reference/cloudfront/index.html#cli-aws-cloudfront
https://docs.aws.amazon.com/cli/latest/reference/cloudfront/index.html#cli-aws-cloudfront
https://docs.aws.amazon.com/cli/latest/reference/cloudfront/index.html#cli-aws-cloudfront
https://docs.aws.amazon.com/cli/latest/reference/cloudfront/index.html#cli-aws-cloudfront
https://docs.aws.amazon.com/cli/latest/reference/cloudfront/index.html#cli-aws-cloudfront
https://docs.aws.amazon.com/cli/latest/reference/cloudfront/index.html#cli-aws-cloudfront
https://docs.aws.amazon.com/cli/latest/reference/cloudfront/index.html#cli-aws-cloudfront
https://docs.aws.amazon.com/cli/latest/reference/cloudfront/index.html#cli-aws-cloudfront
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/private-content-restricting-access-to-s3.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/private-content-restricting-access-to-s3.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/private-content-restricting-access-to-s3.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/private-content-restricting-access-to-s3.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/private-content-restricting-access-to-s3.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/private-content-restricting-access-to-s3.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/private-content-restricting-access-to-s3.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/private-content-restricting-access-to-s3.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/private-content-restricting-access-to-s3.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/private-content-restricting-access-to-s3.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/private-content-restricting-access-to-s3.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/private-content-restricting-access-to-s3.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/private-content-restricting-access-to-s3.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/private-content-restricting-access-to-s3.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/private-content-restricting-access-to-s3.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/private-content-restricting-access-to-s3.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/private-content-restricting-access-to-s3.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/private-content-restricting-access-to-s3.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/private-content-restricting-access-to-s3.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/private-content-restricting-access-to-s3.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/private-content-restricting-access-to-s3.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/private-content-restricting-access-to-s3.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/private-content-restricting-access-to-s3.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/private-content-restricting-access-to-s3.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/private-content-restricting-access-to-s3.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/private-content-restricting-access-to-s3.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/private-content-restricting-access-to-s3.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/private-content-restricting-access-to-s3.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/private-content-restricting-access-to-s3.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/private-content-restricting-access-to-s3.html

Web Hosting with S3, Route53, and CloudFront Chapter 5

Getting ready

You will need a working AWS account with a valid credit card in order to buy a domain
name through Route 53. Buying a domain is outside of the free tier. You may want to do
some research on selecting a good domain name should if you want to use it for a genuine
use case later on.

How to do it...

We will register domain names using AWS CLI commands in this section. In the real world,
people commonly register domains from the Management Console, as it is a one-time
activity. Therefore, I have also included the steps to register from the Management Console,
in the There’s more... section.

Registering a domain with AWS CLI commands

If you need to register domains regularly, or if you are building a website (such as a
domain registration website), you will need to use the APIs instead. You can register
domain names with AWS CLI commands through the register-domain sub-command of

the route53domains command:
1. We will first check the availability of the domain that we already registered:
aws route53domains check-domain-availability \
—-—domain-name gnatime.com \

——profile admin

This command will provide us with the following response:

"Availability": "UNAVAILABLE"

Now, check for another domain, which is not registered:

aws route53domains check-domain-availability \
——domain-name gnatime.net \
——profile admin

[218]

Web Hosting with S3, Route53, and CloudFront

Chapter 5

This command will provide us with the following response:

"Availability": "AVAILABLE"

In the real world, you may have to do some trials until you find a domain that is
available. There are also websites that can help you find all available domains

with a partial input, such as a prefix.
2. Create a contact information JSON file, as follows:

{

"FirstName": "Heartin",

"LastName": "Kanikathottu",
"ContactType": "PERSON",
"OrganizationName": "NA",
"AddressLinel": "<Your AddressLinel>",
"AddressLine2": "<Your AddressLinel>",
"City": "Bengaluru",

"State": "KA",

"CountryCode": "IN",

"ZipCode": "<Your PIN>",
"PhoneNumber": "+91.XXXXXXXXXX",
"Email": "Your email"

}

+91 is the country code for India. It has to be followed by a dot, and then

the actual number. I will reuse the same contact JSON for all of the

contacts. You can create different files, if necessary.

3. Finally, execute the register-domain sub-command:

aws route53domains register-domain \
—-domain-name 'gnatime.net' \
——duration-in-years 1 \
——no-auto-renew \
——admin-contact file://resources/contact.json \

—-registrant-contact file://resources/contact.json \

—-tech-contact file://resources/contact.json \
—-privacy-protect-admin-contact \
—-privacy-protect-registrant-contact \
—-privacy-protect-tech-contact \

——profile admin

[219]

Web Hosting with S3, Route53, and CloudFront Chapter 5

This command will immediately return an operation ID:

"OperationId": "ba6b494d-9e86-4acc-8904-3ba861228916"

You can check the status of your pending operation by using the get -
operation-detail sub-command, as follows:

aws route53domains get-operation-detail \
——operation-id ba6b494d-9e86-4acc-8904-3ba861228916 \
——profile admin

This will return a response similar to the following:

"OperationId": "ba6b494d-9e86-4acc-8904-3baB861228916",
"Status": "IN_PROGRESS",
"Message": "To finish registering your domain, you must verify your payment",

"DomainName": "gnatime.net",
"Type": "REGISTER_DOMAIN",
"SubmittedDate": 1543554216.883

You can verify the payment from your AWS Management Console, as follows:

1. Log in to AWS Management Console, and go to My Billing
Dashboard

2. Click on Payment Methods
Click on Make Payment

4. Click on the Pay Now action for the domain registration expense, and
make the payment.

®

[220]

Web Hosting with S3, Route53, and CloudFront Chapter 5

After the payment, you can wait, and then run the get-operation-
detail sub-command again. This time, you should get a different
message, as follows:

"OperationId": "ba6b494d-9e86-4acc-8904-3ba861228916",
"Status": "IN_PROGRESS",

"DomainName": "gnatime.net",
"Type": "REGISTER_DOMAIN",
"SubmittedDate": 1543554216.883

You will get an email for verification. Verify your email address by
clicking on the link.

As we mentioned at the beginning, the processes related to Route 53
may take some time to complete. So, you can wait for a while, and then
try to run the get-operation-detail sub-command again. If
everything goes fine, you will see something like the following;:

"OperationId": "ba6b494d-9e86-4acc-8904-3ba861228916",
"Status": "SUCCESSFUL",

"DomainName": "qgnatime.net",
"Type": "REGISTER_DOMAIN",
"SubmittedDate": 1543554216.883

How it works...

In this recipe, we registered a domain from both the AWS Management Console and the
AWS CLIL

Route 53 can be used for registering domain names, configuring DNS routing strategies,
and even checking the health of resources. Route 53 is a global service, and it is Amazon's
DNS management service. DNS stands for Domain Name System. DNS takes care of
converting the domain name that you use over the internet to the corresponding host
system IP address. Route 53 was named on the basis of DNS port 53.

[221]

Web Hosting with S3, Route53, and CloudFront Chapter 5

You also saw that AWS supports privacy protection for supported domain names. WHOIS
queries can be used by anyone to obtain basic information regarding a domain and its
registrant. Privacy protection hides some of your information during WHOIS queries, such
as your name, phone number, and email. Without privacy protection, this information
could be used by spammers. However, privacy protection is restricted for some extensions,
such as . in.

Hosted zones

A hosted zone is a collection of record sets for a particular domain. These record sets
include nameserver (NS) records, Start Of Authority (SOA) records, MX records for
configuring mail servers. Hosted zones can be public (for routing over the internet), or
private (for routing within Amazon VPCs).

As you saw in the How to do it... section, AWS will automatically create a hosted zone for
domains registered with the AWS Route 53 domain registrar, along with NS and SOA
records.

There's more...

There are registrars other than Amazon Route 53 that can be used to register domain
names. You can transfer domain names registered with other providers into AWS by using
Route 53. You can also contact AWS to transfer domain names between AWS accounts.

Registering a domain from AWS Management Console

We can register a domain from AWS Management console by observing the following
steps. In most cases, domains are registered from AWS Management Console:

1. First, you need to log in to your AWS Management Console and go to the Route
53 service.

2. From within the Route 53 dashboard, go to the Domain Registration page.

®

Click on Register Domain to go to the Choose a domain name page.

4. Enter the domain name, select the extension that you would like to buy, and click
on Check. Route 53 will let you know if the domain name is available. It will also
provide a number of suggestions.

5. Add the preferred domain name (or names) to the cart by clicking on Add to cart,

and click on Continue.

[222]

Web Hosting with S3, Route53, and CloudFront Chapter 5

6. You will need to enter the registrant contact details and select the tenure to
register the domain. You can also scroll down and opt in to enable privacy
protection. With privacy protection, some of your contact information will not be
displayed publicly in a Whois search.

7. AWS will send an email confirmation link to the email that you specified. Click
on it to verify your email. You will need to verify it within 15 days, or your
domain will not be available publicly.

8. Read the terms, select the terms and conditions checkbox, and click on Complete
Purchase.

9. You will then be redirected to the success page. AWS will now generate a bill for
the domain registration, and will usually send you the update in an email. You
can then make a payment with your credit card, just like paying a bill.

AWS automatically creates a hosted zone for domains registered with AWS. You can verify
this by going to the Hosted Zones page in the left-hand sidebar, in the Route 53 dashboard:

Create Hosted Zone c 9
Q Search all fields X | All Types v Displaying 1 to 1 out of 1 Hosted Zones
Domain Name Type Record Set Count Comment Hosted Zone ID -
gnatime.com. Public 2 HostedZone created by Route53 Registrar Z18ZT9JIBCNWSEX

You can click on your domain name. AWS has also created two records for your domain,
by default: a Nameserver (NS) record, and a Start Of Authority (SOA) record. This is
shown in the following screenshot:

Q Record Set Name X Any Type % Aliases Only Weighted Only Displaying 1 to 2 out of 2 Record Sets

Name Type Value Evaluate Target Health Health Check ID =~ TTL Region

ns-549.awsdns-04.net.
. ns-1923.awsdns-48.co.uk.
gnatime.com. NS - - 172800
ns-390.awsdns-48.com.

ns-1029.awsdns-00.org.

gnatime.com. SOA ns-549.awsdns-04.net. awsdns-hostmaster.amazon. - - 900

[223]

Web Hosting with S3, Route53, and CloudFront Chapter 5

See also

* You may read more about working with DNS records at https://docs.aws.
amazon.com/Route53/latest/DeveloperGuide/rrsets—working-with.html

¢ You may read more about Route 53 routing policies from my notes at http://
cloudmaterials.com/en/book/web-hosting—aws-route-53-s3-and-cloudfront

Using domains registered with other
registrars

We registered a domain name through Route 53 in the previous recipe. In this recipe, we
will look at how Route 53 can be used with domains registered with other registrars, by
creating hosted zones manually. It may be that you already have a domain registered with
other registrars, or you may want to register one based on the cost of the extension that you
want to register.

Getting ready

You will need a domain registered with any other registrar to follow the steps within this
recipe. A decent knowledge of networking basics and DNS management concepts would
also be a bonus.

How to do it...

We will create and configure hosted zone AWS CLI commands and CloudFormation
templates. I have also included the steps for the AWS Management Console in the There’s
more... section.

[224]

https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/rrsets-working-with.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/rrsets-working-with.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/rrsets-working-with.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/rrsets-working-with.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/rrsets-working-with.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/rrsets-working-with.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/rrsets-working-with.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/rrsets-working-with.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/rrsets-working-with.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/rrsets-working-with.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/rrsets-working-with.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/rrsets-working-with.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/rrsets-working-with.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/rrsets-working-with.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/rrsets-working-with.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/rrsets-working-with.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/rrsets-working-with.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/rrsets-working-with.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/rrsets-working-with.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/rrsets-working-with.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/rrsets-working-with.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/rrsets-working-with.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/rrsets-working-with.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/rrsets-working-with.html
http://cloudmaterials.com/en/book/web-hosting-aws-route-53-s3-and-cloudfront
http://cloudmaterials.com/en/book/web-hosting-aws-route-53-s3-and-cloudfront
http://cloudmaterials.com/en/book/web-hosting-aws-route-53-s3-and-cloudfront
http://cloudmaterials.com/en/book/web-hosting-aws-route-53-s3-and-cloudfront
http://cloudmaterials.com/en/book/web-hosting-aws-route-53-s3-and-cloudfront
http://cloudmaterials.com/en/book/web-hosting-aws-route-53-s3-and-cloudfront
http://cloudmaterials.com/en/book/web-hosting-aws-route-53-s3-and-cloudfront
http://cloudmaterials.com/en/book/web-hosting-aws-route-53-s3-and-cloudfront
http://cloudmaterials.com/en/book/web-hosting-aws-route-53-s3-and-cloudfront
http://cloudmaterials.com/en/book/web-hosting-aws-route-53-s3-and-cloudfront
http://cloudmaterials.com/en/book/web-hosting-aws-route-53-s3-and-cloudfront
http://cloudmaterials.com/en/book/web-hosting-aws-route-53-s3-and-cloudfront
http://cloudmaterials.com/en/book/web-hosting-aws-route-53-s3-and-cloudfront
http://cloudmaterials.com/en/book/web-hosting-aws-route-53-s3-and-cloudfront
http://cloudmaterials.com/en/book/web-hosting-aws-route-53-s3-and-cloudfront
http://cloudmaterials.com/en/book/web-hosting-aws-route-53-s3-and-cloudfront
http://cloudmaterials.com/en/book/web-hosting-aws-route-53-s3-and-cloudfront
http://cloudmaterials.com/en/book/web-hosting-aws-route-53-s3-and-cloudfront
http://cloudmaterials.com/en/book/web-hosting-aws-route-53-s3-and-cloudfront
http://cloudmaterials.com/en/book/web-hosting-aws-route-53-s3-and-cloudfront
http://cloudmaterials.com/en/book/web-hosting-aws-route-53-s3-and-cloudfront
http://cloudmaterials.com/en/book/web-hosting-aws-route-53-s3-and-cloudfront
http://cloudmaterials.com/en/book/web-hosting-aws-route-53-s3-and-cloudfront
http://cloudmaterials.com/en/book/web-hosting-aws-route-53-s3-and-cloudfront
http://cloudmaterials.com/en/book/web-hosting-aws-route-53-s3-and-cloudfront
http://cloudmaterials.com/en/book/web-hosting-aws-route-53-s3-and-cloudfront

Web Hosting with S3, Route53, and CloudFront Chapter 5

AWS CLI commands

You can create a hosted zone from the AWS CLI by using the create-hosted-zone sub-
command of the route53 AWS CLI command. I will use a different domain this time:

aws route53 create-hosted-zone \
—-name quizzercloud.com \
——caller-reference 2018-28-11-11:55 \
—-hosted-zone-config Comment="HostedZone for quizzercloud.com" \
——profile admin

This command should immediately return a response, as follows; it might take some time
for the changes to take effect:

"Location": "https://route53.amazonaws.com/2013-04-01/hostedzone/Z1IMSS6K1EB49B4",
"HostedZone": {
"Id": "/hostedzone/Z1MSS6K1EB49B4",
“Name": "quizzercloud.com.",
"CallerReference": "2018-28-11-11:55",
"Config": {
"Comment": "HostedZone for quizzercloud.com",
"PrivateZone": false
}l
"ResourceRecordSetCount": 2

}l
"ChangeInfo": {

"Id": hange/CUOKDB5WJIX02T",
"Status": "PENDING",
"SubmittedAt": "2018-11-30T06:26:03.9892"
}l
"DelegationSet":
"NameServers":
"ns-747.awsdns-29.net",
"ns-1405.awsdns-47.0rg",
"ns-268.awsdns-33.com",
"ns-1867.awsdns—41. co. uk"

This should be completed in a few minutes. You can get the hosted zone status or details by
using the route53 get-hosted-zone command. You can also update the name servers in
your domain registrar's control panel. It might take 24-72 hours for the DNS changes to be
propagated.

[225]

Web Hosting with S3, Route53, and CloudFront Chapter 5

The CloudFormation template

You can create hosted zones with CloudFormation templates by using the resource
type AWS: :Route53: :HostedZone:

Resources:
CloudMaterialsHostedZone:
Type: "AWS::Routeb3::HostedZone"
Properties:
HostedZoneConfig:
Comment : HostedZone for CloudMaterials.com
Name: cloudmaterials.com

We will also add an Outputs section, for returning the HostedZoneID and nameservers:

Outputs:
HostedZonelId:
Value: !Ref CloudMaterialsHostedZone
Description: HostedZone for cloudmaterials.com
HostedZoneNameservers:
Value: !Join
— ',l
- !GetAtt CloudMaterialsHostedZone.NameServers
Description: HostedZone Nameservers for cloudmaterials.com

The value of an Outputs field can only be of the string type. The property Nameservers,
however, returns a list of nameservers. Therefore, we need to use a join function to add
them to a string, separated by , .

Deploy the stack by using deploy-stack, and verify it by using describe-stacks. You
can also verify this from the Route 53 dashboard in the AWS Management Console. The
Outputs section of the response should appear as follows:

"Qutputs": [

"QutputKey": "HostedZoneId",
"OutputValue": "Z2CNT8T7RPHYHT",
"Description": "HostedZone for cloudmaterials.com"

"QutputKey": "HostedZoneNameservers",
"OutputValue s—820.awsdns—38.net, ns-355.awsdns—44. com,ns-1431. awsdns-50.0rg, ns—1543. awsdns—00. co. uk",
"Description 'HostedZone Nameservers for cloudmaterials.com"

You can now configure these nameservers with your domain registrar.

[226]

Web Hosting with S3, Route53, and CloudFront Chapter 5

How it works...

In this recipe, we created a HostedZone for a domain registered with another registrar. We
can now use this domain like the other domain that was registered with Route 53.

When using domains registered with other domain registrars in Route 53, you need to
manually create hosted zones. As you saw in the recipe, AWS will automatically create the
NS and SOA records for your domain name. These NS records will then need to be updated
with the other domain registrar, usually through a configuration page.

As you can see from the recipe, most of the tasks do not happen in real time, and some of
them even need user input or user actions. Therefore, in many real-world project use cases,
these are done manually, either from the console or through an application, using APIs.

DNS propagation

DNS is a hierarchical system involving many servers, starting with a root server. There are
also caches at different locations. When you update nameservers on your domain control
panel, it can take 24-72 hours, in general, for the changes to take effect. This time period is
called the DNS propagation time.

There's more...

AWS Route 53 also supports various routing strategies, such as a simple routing policy, a
failover routing policy, a geolocation routing policy, a geoproximity routing policy, a
latency routing policy, a multivalue answer routing policy, and a weighted routing policy.
With S3, we use the simple routing strategy, and the others are mostly useful when we are
working with EC2 instances.

Steps for configuring DNS from the AWS Management
Console

We can configure DNS from AWS Management Console as follows:

1. Log in to AWS Management Console, go to the Route 53 dashboard, and then
go to the Hosted Zones page.

2. Click on the Create Hosted Zone button.

[227]

Web Hosting with S3, Route53, and CloudFront

Chapter 5

3. Fill in the domain name, a comment, and the type, and then click on Create:

Create Hosted Zone

A hosted zone is a container that holds information about how you
want to route traffic for a domain, such as example.com, and its
subdomains.

Domain Name: quizzer.cloud

Comment: . iedZone for Quizze

Type: | Public Hosted Zone v

A public hosted zone determines how traffic is
routed on the Internet.

The type denotes whether the hosted zone is public or private. This cannot be

changed later.

AWS will autogenerate the NS and SOA records, along with the hosted zone:

Q Record Set Name X Any Type % Aliases Only Weighted Only Displaying 1 to 2 out of 2 Record Sets

Name Type Value Evaluate Target Health « Health Check ID

ns-1296.awsdns-34.org.
. ns-1914.awsdns-47.co.uk.
quizzer.cloud. NS
ns-499.awsdns-62.com.

ns-672.awsdns-20.net.

quizzer.cloud. SOA ns-1296.awsdns-34.org. awsdns-hostmaster.amazol

Region

172800

4. Go to your other domain registrar (where you registered this domain) and
update the preceding nameservers. Note that it can take some time for the DNS

changes to propagate.

[228]

Web Hosting with S3, Route53, and CloudFront Chapter 5

See also

* You may read more about the create-hosted-zone CLI command at https://
docs.aws.amazon.com/cli/latest/reference/route53/create-hosted-zone.
html

Using custom domains with S3 static
websites

In this recipe, we will look at how to use custom domain names with S3. Using custom
domains with S3 requires that the domain name (including the WWW sub-domain) is the
same as that of the bucket name. We can have a bucket for a naked domain (for example,
gnatime.com), and another bucket for its WWW sub-domain (for

example, www . gnatime.com); the WWW sub-domain forwards the request to the naked
domain.

Getting ready

You should have a public domain with a HostedZone configured in Route 53. Please refer
to the recipes Registering a domain name with Route 53 and Using domains registered with other
registrars.

Also, we will not discuss the details related to the creation of an S3 static website, which
was already discussed in the recipe Setting up an S3 static website. You can refer to that
recipe, or refer to the code files for this recipe.

How to do it...

We will create one S3 static website bucket for the primary domain (qnatime.com) and
another S3 static website bucket for the WWW sub-domain (www . gnat ime . com). The
WWW sub-domain bucket will simply redirect to the primary domain.

AWS CLI commands

I will be creating the bucket in the ap-south-1 region; you may choose any region of
your choice:

[229]

https://docs.aws.amazon.com/cli/latest/reference/route53/create-hosted-zone.html
https://docs.aws.amazon.com/cli/latest/reference/route53/create-hosted-zone.html
https://docs.aws.amazon.com/cli/latest/reference/route53/create-hosted-zone.html
https://docs.aws.amazon.com/cli/latest/reference/route53/create-hosted-zone.html
https://docs.aws.amazon.com/cli/latest/reference/route53/create-hosted-zone.html
https://docs.aws.amazon.com/cli/latest/reference/route53/create-hosted-zone.html
https://docs.aws.amazon.com/cli/latest/reference/route53/create-hosted-zone.html
https://docs.aws.amazon.com/cli/latest/reference/route53/create-hosted-zone.html
https://docs.aws.amazon.com/cli/latest/reference/route53/create-hosted-zone.html
https://docs.aws.amazon.com/cli/latest/reference/route53/create-hosted-zone.html
https://docs.aws.amazon.com/cli/latest/reference/route53/create-hosted-zone.html
https://docs.aws.amazon.com/cli/latest/reference/route53/create-hosted-zone.html
https://docs.aws.amazon.com/cli/latest/reference/route53/create-hosted-zone.html
https://docs.aws.amazon.com/cli/latest/reference/route53/create-hosted-zone.html
https://docs.aws.amazon.com/cli/latest/reference/route53/create-hosted-zone.html
https://docs.aws.amazon.com/cli/latest/reference/route53/create-hosted-zone.html
https://docs.aws.amazon.com/cli/latest/reference/route53/create-hosted-zone.html
https://docs.aws.amazon.com/cli/latest/reference/route53/create-hosted-zone.html
https://docs.aws.amazon.com/cli/latest/reference/route53/create-hosted-zone.html
https://docs.aws.amazon.com/cli/latest/reference/route53/create-hosted-zone.html
https://docs.aws.amazon.com/cli/latest/reference/route53/create-hosted-zone.html
https://docs.aws.amazon.com/cli/latest/reference/route53/create-hosted-zone.html
https://docs.aws.amazon.com/cli/latest/reference/route53/create-hosted-zone.html
https://docs.aws.amazon.com/cli/latest/reference/route53/create-hosted-zone.html
https://docs.aws.amazon.com/cli/latest/reference/route53/create-hosted-zone.html

Web Hosting with S3, Route53, and CloudFront Chapter 5

1. Create a bucket, gnatime. com, for the primary domain.

2. Create an index document, index.html, and an error document, error.html,
for the S3 website.

3. Upload the index and error documents.

4. Create a website configuration JSON file, specifying the index and error
filenames.

5. Create a static website, specifying the website configuration JSON file.

6. Create a bucket policy, with read permission for everyone, for the bucket
gnatime.com.

7. Create an S3 bucket with the name www.gnatime.com.

8. Configure the bucket as a website by using the aws s3aoi put-bucket-
website command, with a configuration JSON file for redirection, as follows:

{
"RedirectAllRequestsTo": {
"HostName": "gnatime.com",
"Protocol": "http"

}

9. Create the change-resource-record-sets JSON file for creating alias records
for the naked domain (gnat ime.com) and the WWW sub-domain
(www.gnatime.com).

The changes for the naked domain are as follows:

{

"Comment": "change batch request for gnatime",
"Changes": [
{
"Action": "CREATE",
"ResourceRecordSet": {
"Name": "gnatime.com",
"Type": "A",
"AliasTarget": {
"HostedZoneId": "Z11RGJOFQNVJUP",
"DNSName": "s3-website.ap-south-1.amazonaws.com",

"EvaluateTargetHealth": false
}

H

[230]

Web Hosting with S3, Route53, and CloudFront Chapter 5

The DNS name and the hosted zone ID are available at https://docs.aws.

amazon.com/general/latest/gr/rande.html.

The second part (to be added instead of the . . . in the preceding snippet) is
similar to the first, but with the name as www.gnatime.com.

This should return the following response:

"ChangeInfo": {
"Id": "/change/C1KSXLKZ4DWPPW",
"Status": "PENDING",

"SubmittedAt": "2018-11-29T22:18:29.160Z",
"Comment": "change batch request for gnatime"

10. You can check the status by using the aws route53 get-change command:

aws route53 get-change \
—--id /change/C1lKSXLKZ4DWPPW \
——profile admin

If it is successful, this should provide the following response:

"ChangeInfo": {
"Id": "/change/C1KSXLKZ4DWPPW",
"Status": "INSYNC",

"SubmittedAt": "2018-11-29T722:18:29.160Z",
"Comment": "change batch request for gnatime"

You can also use the AWS Management Console to verify that two new alias
records were created in the HostedZone for this domain.

11. Go to the domain names from the browser.

[231]

https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/general/latest/gr/rande.html

Web Hosting with S3, Route53, and CloudFront Chapter 5

You should get a response from our bucket, as follows:

& C ® Not Secure | gnatime.com

Welcome to Q & A Time!

Executing the sub-domain www. gnatime . com should redirect you to the naked
domain (gnatime.com), and the final response should look the same as in the
previous step.

The CloudFormation template

I will use a domain name, quizzer.cloud, to demonstrate how to use custom domains for
S3 static websites with CloudFormation template:

1. Start the template with the template version and a description (optional).

2. Define two parameters for accepting the root domain name and the sub-domain
name, as follows:

Parameters:
RootDomainName :
Description: Domain name for your website (quizzer.cloud)
Type: String
SubDomainName :
Description: Sub Domain name for your website
(www.quizzer.cloud)
Type: String

3. Define the root bucket resource, as follows:

Resources:
RootBucket:
Type: AWS::S3::Bucket
Properties:
BucketName: !Ref RootDomainName
AccessControl: PublicRead
WebsiteConfiguration:
IndexDocument: index.html
ErrorDocument: error.html

[232]

Web Hosting with S3, Route53, and CloudFront Chapter 5

4. Define a bucket access policy that allows everyone to access the bucket's
contents, as follows:

WebsitePublicAccessPolicy:
Type: AWS::S3::BucketPolicy
Properties:
Bucket: !Ref RootBucket
PolicyDocument :
Statement:
Action:
- "s3:GetObject"
Effect: "Allow"
Resource:
Fn::Join:
—_nn
- "arn:aws:s3:::"
- !Ref RootBucket

— M/

Principal: "*"
5. Create the redirect bucket, as follows:

WWWBucket:

Type: AWS::S3::Bucket

Properties:
BucketName: !Ref SubDomainName
AccessControl: BucketOwnerFullControl
WebsiteConfiguration:

RedirectAllRequestsTo:
HostName: !Ref RootDomainName

6. Create two A records within the HostedZone, for the root domain and the sub-
domain, as follows:

myDNS:
Type: AWS::Routeb3::RecordSetGroup

Properties:

HostedZoneName: !Sub

— ${DomainName}.

— DomainName: !Ref RootDomainName
Comment: Zone apex alias.
RecordSets:

Name: !Ref RootDomainName

Type: A

AliasTarget:

[233]

Web Hosting with S3, Route53, and CloudFront Chapter 5

HostedZoneId: 'Z11RGJOFQNVJUP'
DNSName: 's3-website.ap-south-1.amazonaws.com'

Name: !Ref SubDomainName

Type: A
AliasTarget:
HostedZoneId: 'Z11RGJOFQNVJUP'
DNSName: 's3-website.ap-south-1.amazonaws.com'

You can also use a CNAME record for sub-domains.

7. Add an outputs section to return the URLs of the root domain and the sub-
domain (this is optional):

Outputs:
RootDomainURL:
Value: !Sub
- http://${DomainName}
— DomainName: !Ref RootDomainName
Description: URL for root domain
SubDomainURL:
Value: !Sub
- http://${DomainName}
— DomainName: !Ref SubDomainName
Description: URL for redirect (sub) domain

8. Execute the preceding template by passing the parameters, as follows:

aws cloudformation create-stack \
—-stack-name mys3websitestack \

—-template-body file://resources/s3-static-website-cf-
template.yml \

——parameters
ParameterKey=RootDomainName, ParameterValue=quizzer.cloud
ParameterKey=SubDomainName, ParameterValue=www.quizzer.cloud \
—--region ap-south-1 \
——profile admin

You can check the status of the CloudFormation stack creation by using
the describe-stacks command.

9. Once the stack creation has completed, you will need to upload the index.html
and error.html files into the root bucket.

Finally, execute the root domain and the WWW sub-domain in a browser.

[234]

Web Hosting with S3, Route53, and CloudFront Chapter 5

You should see the same response from the root bucket in both cases, as follows:

< C' | ® Not Secure | quizzer.cloud

Welcome to Q & A Time!

How it works...

To summarize, we did the following in this recipe:

1. We created an S3 bucket as a static website (for example, gnatime.com)

2. We created another S3 bucket, with a WWW prefix, as a static website (for
example, www . gnatime.com)

3. We added the files index.html and error.html
4. We added a bucket policy that allows for everyone to read the bucket

5. We created alias records for the primary domain and the WWW sub-domain,
pointing to the S3 buckets (with and without a WWW prefix, respectively)

The S3 bucket names for static websites have to match the domain names exactly. For
example, gnatime . com should point to a bucket named gnatime.com, and

www . gnatime . com should point to a bucket named www.gnatime.com. Therefore, if
someone has taken that bucket name, then you will not be able to use a custom domain to
point to an S3 bucket. You can, however, overcome this limitation with the help of
CloudFront, as you will see in a later recipe.

There's more...

S3 website endpoints do not currently support HTTPS. We can, however, work around this
by using the CloudFront Content Delivery Network (CDN) over our website
configuration, and then adding SSL support by utilizing Amazon Certificate Manager
(ACM). We will look at this in a later recipe.

[235]

Web Hosting with S3, Route53, and CloudFront Chapter 5

See also

You may read about change-resource-record-sets CLI command and its supported

actions at https://docs.aws.amazon.com/cli/latest/reference/route53/change-
resource-record-sets.html.

Using custom domain names with
CloudFront

In this recipe, we will add a custom domain name to a CloudFront distribution. Without
CloudFront, S3 bucket names have to be the same as the domain names. To demonstrate
this, we will use a domain name, gname . net, to point to the CloudFront domain that is
represented by the bucket gname . com.

Getting ready

You will need an S3 bucket configured as a website. You can follow the recipe Setting up an
S3 static website to set up an S3 bucket as a static website.

How to do it...

I will create a CloudFront distribution for the S3 bucket gnat ime . com, specifying the
domain names that will be pointed against it as Aliases. After that, I will add the A
records for these domain names to the domain's Hostedzone.

AWS CLI commands

1. Create a CloudFront distribution config JSON file. Specify a caller reference to
uniquely reference our request, as follows:

{
"CallerReference": "gnatime-distribution-2019-01-12-07-45",

[236]

https://docs.aws.amazon.com/cli/latest/reference/route53/change-resource-record-sets.html
https://docs.aws.amazon.com/cli/latest/reference/route53/change-resource-record-sets.html
https://docs.aws.amazon.com/cli/latest/reference/route53/change-resource-record-sets.html
https://docs.aws.amazon.com/cli/latest/reference/route53/change-resource-record-sets.html
https://docs.aws.amazon.com/cli/latest/reference/route53/change-resource-record-sets.html
https://docs.aws.amazon.com/cli/latest/reference/route53/change-resource-record-sets.html
https://docs.aws.amazon.com/cli/latest/reference/route53/change-resource-record-sets.html
https://docs.aws.amazon.com/cli/latest/reference/route53/change-resource-record-sets.html
https://docs.aws.amazon.com/cli/latest/reference/route53/change-resource-record-sets.html
https://docs.aws.amazon.com/cli/latest/reference/route53/change-resource-record-sets.html
https://docs.aws.amazon.com/cli/latest/reference/route53/change-resource-record-sets.html
https://docs.aws.amazon.com/cli/latest/reference/route53/change-resource-record-sets.html
https://docs.aws.amazon.com/cli/latest/reference/route53/change-resource-record-sets.html
https://docs.aws.amazon.com/cli/latest/reference/route53/change-resource-record-sets.html
https://docs.aws.amazon.com/cli/latest/reference/route53/change-resource-record-sets.html
https://docs.aws.amazon.com/cli/latest/reference/route53/change-resource-record-sets.html
https://docs.aws.amazon.com/cli/latest/reference/route53/change-resource-record-sets.html
https://docs.aws.amazon.com/cli/latest/reference/route53/change-resource-record-sets.html
https://docs.aws.amazon.com/cli/latest/reference/route53/change-resource-record-sets.html
https://docs.aws.amazon.com/cli/latest/reference/route53/change-resource-record-sets.html
https://docs.aws.amazon.com/cli/latest/reference/route53/change-resource-record-sets.html
https://docs.aws.amazon.com/cli/latest/reference/route53/change-resource-record-sets.html
https://docs.aws.amazon.com/cli/latest/reference/route53/change-resource-record-sets.html
https://docs.aws.amazon.com/cli/latest/reference/route53/change-resource-record-sets.html
https://docs.aws.amazon.com/cli/latest/reference/route53/change-resource-record-sets.html
https://docs.aws.amazon.com/cli/latest/reference/route53/change-resource-record-sets.html
https://docs.aws.amazon.com/cli/latest/reference/route53/change-resource-record-sets.html
https://docs.aws.amazon.com/cli/latest/reference/route53/change-resource-record-sets.html
https://docs.aws.amazon.com/cli/latest/reference/route53/change-resource-record-sets.html

Web Hosting with S3, Route53, and CloudFront Chapter 5

Specify the domains that will point to this CloudFront domain, as follows:

"Aliases": {
"Quantity": 2,
"Items": ["gnatime.net", "www.gnatime.net"]

}I

You can only add a CNAME or alias to your domain record for CloudFront domain
if it is added as Aliases for that CloudFront domain.

Specify the default root object and the origin details, as follows:

"DefaultRootObject": "index.html",
"Origins": {
"Quantity": 1,
"ITtems": [
{
"Id": "my-origin",
"DomainName": "gnatime.com.s3.amazonaws.com",

"S30riginConfig": {
"OriginAccessIdentity": ""

]
by
You can have multiple CloudFront distributions pointing to the same bucket.

Specify the other mandatory parameters, DefaultCacheBehaviour, Comment,
and Enabled, as follows:

"DefaultCacheBehavior": {
"TargetOriginId": "my-origin",
"ForwardedValues": {

"QueryString": true,
"Cookies": {
"Forward": "none"
;
}I
"TrustedSigners": {

"Enabled": false,
"Quantity": 0
by
"ViewerProtocolPolicy": "allow-all",
"MinTTL": 3600
by
"Comment": "",
"Enabled": true

[237]

Web Hosting with S3, Route53, and CloudFront Chapter 5

}
2. Create the distribution with the preceding config JSON file, as follows:

aws cloudfront create-distribution \
——distribution-config file://resources/distribution-config.json
\

——profile admin

This will return immediately with a response, including the Etag, Id, and other
defaults, as follows:

"Location": "https://cloudfront.amazonaws.com/2018-06-18/distribution/E180UP1REXZHGA",
“ETag": "EV3RMCDP8DYAA",
"Distribution": {
"Id": "E180UP1REXZHGA",
"ARN": "arn:aws:cloudfront: :_:distribution/ElBOUPlREXZHGA",
"Status": "InProgress",
"LastModifiedTime": "2018-12-01T02:39:52.072Z",
"InProgressInvalidationBatches": @,
"DomainName": "dlobzjrl8aclno.cloudfront.net",
"ActiveTrustedSigners": {
"Enabled": false,
"Quantity": 0

h

The complete response has not been shown.

It might take some time for the status to get changed to Deployed. You can check
the status by using the aws cloud-formation get-distribution command.
Once the status turns to Deployed, you can run the CloudFront domain from a
browser, and check whether you can see the results from the gnatime.com
bucket.

3. To create DNS A records for a domain, record we need to first create a change
resource record sets JSON file as below and then execute it. First, create a change
record set for the naked domain (gnatime.net):

{

"Comment": "change batch request for gnatime.net",
"Changes": [
{
"Action": "CREATE",
"ResourceRecordSet": {

[238]

Web Hosting with S3, Route53, and CloudFront Chapter 5

"Name": "gnatime.net",

"Type": "A",

"AliasTarget": {
"HostedZoneId": "Z2FDTNDATAQYW2",
"DNSName": "dlobzjrl8aclno.cloudfront.net",
"EvaluateTargetHealth": false

}

}
by

DNSName is the domain name of your CloudFront distribution. You have to
specify the hosted zone name for the domain. This is the domain name, followed
by a dot. For CloudFront distribution domains, we use a constant hosted zone
ID: Z2FDTNDATAQYW2.

Similarly, add a change record for the WWW sub-domain. You can also create a
CNAME record for the sub-domain.

4. Execute the change-resource-record-sets sub-command with the preceding
JSON file, in order to create the DNS A records:

aws route53 change-resource-record-sets \

——hosted-zone-id Z3G50MON7IDA18 \

—-—-change-batch file://resources/change-resource-record-
sets.json \

——profile admin

Here, hosted-zone-id is the ID of the HostedZone for qnatime.net. This
command will immediately return a response, with the status as PENDING:

"ChangeInfo": {
"Id": "/change/C1P@E2LUACKQ6W",
"Status": "PENDING",

"SubmittedAt": "2018-12-01T03:07:56.716Z",
"Comment": "change batch request for gnatime"

You can check the status by using the aws route53 get-change command,
until it changes to INSYNC:

[239]

Web Hosting with S3, Route53, and CloudFront Chapter 5

"ChangeInfo": {
"Id": "/change/C1POE2LUACKQEW",
"Status": "INSYNC",

"SubmittedAt": "2018-12-01T03:07:56.716Z",
"Comment": "change batch request for gnatime"

5. Execute gnatime.net to obtain the following:

& C' @ Not Secure | gnatime.net

Welcome to Q & A Time!

Executing www.gnatime.net will produce the following result:

& C @ Not Secure | www.gnatime.net

Welcome to Q & A Time!

As we can see, we no longer have the restriction of using the same S3 bucket
name and domain name. Note that we are not using the WWW redirect bucket
(www.gnatime.com). Here, www.gname . net is also pointing to the same
CloudFront domain, and there is no redirection from the bucket to the naked
domain bucket behind the scenes.

If there is a Not Secure message in the browser, this is because we are
using an HTTP request, and there are no valid certificates for our domain.

The CloudFormation template

We will create two CloudFormation stacks in this recipe. The first stack that we will create
is the CloudFront distribution, with the aliases defined. The second stack will add the &
records to our DNS configuration.

[240]

Web Hosting with S3, Route53, and CloudFront Chapter 5

The CloudFront distribution stack

Prepare a CloudFormation template using the following components:

1. Start the template with the template version and a description (optional).
2. We will define a Parameters section, to accept a comma-separated list of
domain name aliases:

Parameters:
DomainNameAliases:
Description: Domain name aliases for your website
(quizzercloud.com,www.quizzercloud.com)
Type: CommaDelimitedList

3. In the Resources section, we will define our CloudFront distribution:

Resources:
MyCloudFrontDistribution:
Type: AWS::CloudFront::Distribution
Properties:
DistributionConfig:
Origins:
— DomainName: quizzer.cloud.s3.amazonaws.com
Id: myS30rigin
S30riginConfig:
OriginAccessIdentity: "'
Enabled: 'true'

Comment: 'CloudFront Distribution with Domain'
DefaultRootObject: index.html
Aliases: !Ref DomainNameAliases

DefaultCacheBehavior:
TargetOriginId: myS30rigin
ForwardedValues:

QueryString: 'false'
Cookies:
Forward: none
ViewerProtocolPolicy: allow-all

Note that we can reference the parameter DomainNameAliases as a list.

4. We will also create an Outputs section, to return the CloudFront distribution ID
and the domain name. We will also export the domain name and then import it
later, into our RecordSet stack:

Outputs:
CloudFrontDistributionId:
Value: !Ref MyCloudFrontDistribution

[241]

Web Hosting with S3, Route53, and CloudFront Chapter 5

Description: 'CloudFront distribution id'
CloudFrontDomain:

Value: !GetAtt MyCloudFrontDistribution.DomainName

Description: 'CloudFront distribution domain name'

Export:
Name: CloudFrontDomainName

5. Create the stack. We will first create a JSON file to pass the parameter string,
since passing a list through the CLI may require additional workarounds in a

number of command prompts:

[

"ParameterKey": "DomainNameAliases",
"ParameterValue": "quizzercloud.com,www.quizzercloud.com"

1
Execute the stack, specifying the preceding parameters in JSON:

aws cloudformation create-stack \

—-—-stack-name mycloudfrontstackwithdomain \

--template-body file://resources/create-cloud-front-
distribution-with-domain.yml \

——-parameters file://resources/create-cloud-front-
parameters.json \

--region ap-south-1 \

——profile admin

After executing the create-stack command, check the status by using
the describe-stacks sub-command. Once it has completed successfully, it
should return a response with the following Outputs section:

"Qutputs": [

"OutputKey": "CloudFrontDistributionId",
"OutputValue 'E36QJKFANAO3WG",
"Description": "CloudFront distribution id"

"QutputKey": "CloudFrontDomain",
'd14b6h6ajgyzgz.cloudfront.net”,
"CloudFront distribution domain name",
"ExportName": "CloudFrontDomainName"

[242]

Web Hosting with S3, Route53, and CloudFront Chapter 5

Note that the complete describe-stacks output is not shown here, but only the
Outputs section.

The RecordSet stack

We can create a template for RecordsSet, given as follows:

1. Start the template with the template version and a description (optional).

2. Define the parameters (of the string type) for the root domain name, the sub-
domain name, and the S3 hosted zone ID.

Note that the S3 hosted zone is static, based on the region (for
example, Z2FDTNDATAQYW2 for ap-south-1).

3. Define a resource of the type RecordSetGroup type to add A records for the

domains:
Resources:
QuizzerCloudDNS:
Type: AWS::Routeb3::RecordSetGroup
Properties:
HostedZoneName: !Sub

— ${DomainName} .

— DomainName: !Ref RootDomainName
Comment: Zone apex alias.
RecordSets:

Name: !Ref RootDomainName

Type: A

AliasTarget:
HostedZoneId: !Ref RecordHostedZoneld
DNSName: !ImportValue CloudFrontDomainName

Name: !Ref SubDomainName

Type: A

AliasTarget:
HostedZoneId: !Ref RecordHostedZoneIld
DNSName: !ImportValue CloudFrontDomainName

The HostedZoneName is the domain name, followed by a dot (.), and
the RecordHostedZone ID is a constant value for all of the CloudFront
distributions

[243]

Web Hosting with S3, Route53, and CloudFront Chapter 5

4. Define an Outputs section to return the URLs (optional).

5. Execute the aws cloudformation create-stack by passing the parameters,
and then verify the following:

After executing the create-stack sub-command, check the status by using
the describe-stacks sub-command. Once it is successful, it should return a
response with the following Outputs section:

"Qutputs": [

"QutputKey": "SubDomainURL",
"QutputValue": "http://www.quizzercloud.com",
"Description": "URL for redirect (sub) domain"

"QutputKey": "RootDomainURL",
"OutputValu "http://quizzercloud.com",
"Description": "URL for root domain"

We can verify that everything worked by going to quizzercloud.com
and www.quizzercloud.comin a browser, as shown in the following screenshot:

& C (@ Not Secure | quizzercloud.com

Welcome to Q & A Time!

Note that the URL is not secure. Even if we use HTTPS, we will still get a Not
Secure message, as we do not have a valid certificate for this domain. We will
look at how to fix this in the next recipe.

[244]

Web Hosting with S3, Route53, and CloudFront Chapter 5

How it works...

To summarize, we did the following in this recipe:

1. We created a CloudFront distribution, specifying the root domain and the WWW
sub-domain

2. We created A records for the root domain and the WWW sub-domain

3. We then hit the root domain and the WWW sub-domain from a browser, and
received a response from the file uploaded into the S3 bucket

To customize the input for creating a CloudFront distribution with the CLI, we have to first
create a CloudFront distribution config JSON file, and then execute it. If there is no
customization, we do not have to specify this JSON file, but we can only provide the
original domain, as we saw in the previous recipe. With a CloudFormation template, we
always have to specify the essential distribution config parameters in the template.

There's more...

We have only seen a limited customization of the properties for the distributed config.
Explore more on your own to familiarize yourselves with all the options.

Using HTTPS to secure your domain URL

When building real-world web applications, we should always try to use HTTPS, instead of
HTTP. If we try to execute https://gnatime.net, we will get the following response:

< C A Not Secure | https://gnatime.net

Welcome to Q & A Time!

Whereas, executing https://www.qgnatime.net will give us the following:

< C' A NotSecure | https://www.qgnatime.net

Welcome to Q & A Time!

[245]

Web Hosting with S3, Route53, and CloudFront Chapter 5

This is because we do not have a valid certificate, which can be verified by clicking on the
Not Secure message:

A Not Secure https://gnatime.net

Your connection to this site is not
I secure

You should not enter any sensitive information on
this site (for example, passwords or credit cards),
because it could be stolen by attackers. Learn
more

You have chosen to disable security warnings for
this site. Re-enable warnings

B Certificate (Invalid)
@ Cookies (0 in use)

L& Site settings

We will look at how to create and import a valid certificate to fix this error in the next
recipe.

Disabling and deleting a CloudFront distribution

To delete a CloudFront distribution, we need to disable it first. To disable it, we need to
use update-distribution, specifying a distribution-config JSON file with all of the
existing properties, with the following change:

"Enabled": false,
For the initial JSON file for the update, we can copy and paste the value

of DistributionConfig from the get-distribution sub-command response. Note that
some properties, such as calling the reference or origin, cannot be updated.

[246]

Web Hosting with S3, Route53, and CloudFront Chapter 5

Execute the update—-distribution sub-command to disable the distribution.

aws cloudfront update-distribution \
——id E18O0OUP1REXZHGA \
——if-match EV3RMCDPSDYAA \
——distribution-config file://resources/distr-config-disable.json \
—-profile admin

Here, the value for id is the ID of the distribution, and the value for i f-match is the value
of the Etag from the previous request. It will take some time to process the update request.
We can check the status by using the get-description sub-command, until it changes
from InProgress to Deployed. After that, we can delete the distribution:

aws cloudfront delete-distribution \
—-id E180UP1REXZHGA \
——if-match E2CDLHTOPGMT5J \
——profile admin

Here, the value for i f-match is the value of the Etag from the previous update
request. For updates and deletes, we will also need to pass the Etag that we received in the
previous step.

See also

¢ You may read more about Amazon Route 53 AliasTarget CloudFormation

property at https://docs.aws.amazon.com/AWSCloudFormation/latest/
UserGuide/aws-properties—-routeb3-aliastarget.html

Using HTTPS with a CloudFront domain

In the Using custom domain names with CloudFront recipe, when we ran the URL in a browser
using HTTPS, it showed a Not Secure message. In this recipe, we will associate an SSL
certificate with our CloudFormation distribution so that we can access the URL through
HTTPS. We will also configure automatically the redirection of any calls with

an http prefix to a corresponding URL with an https prefix.

[247]

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-route53-aliastarget.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-route53-aliastarget.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-route53-aliastarget.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-route53-aliastarget.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-route53-aliastarget.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-route53-aliastarget.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-route53-aliastarget.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-route53-aliastarget.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-route53-aliastarget.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-route53-aliastarget.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-route53-aliastarget.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-route53-aliastarget.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-route53-aliastarget.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-route53-aliastarget.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-route53-aliastarget.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-route53-aliastarget.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-route53-aliastarget.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-route53-aliastarget.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-route53-aliastarget.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-route53-aliastarget.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-route53-aliastarget.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-route53-aliastarget.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-route53-aliastarget.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-route53-aliastarget.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-route53-aliastarget.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-route53-aliastarget.html

Web Hosting with S3, Route53, and CloudFront Chapter 5

Getting ready

We can refer to Creating SSL certificates with ACM recipe in Chapter 9, Serverless Architecture
Patterns and Practices, to obtain an ACM SSL certificate. We can also refer to the previous
recipes in this chapter for details on the steps related to S3, CloudFront, and Route 53 that
were already discussed.

How to do it...

We will create a CloudFront distribution with the ARN to the SSL certificate issued by
AWS.

Associating a certificate with a domain using AWS CLI

commands

We will use an ACM SSL certificate to enable HTTPS. For creating a certificate, you can
refer Creating SSL/TLS certificate with ACM recipe in Chapter 9, Serverless Programming
Practices and Patterns.

1. Obtain the ACM SSL certificate ARN to use with the domain
(www.gnatime.net).

2. Create or update the CloudFront distribution with a config JSON file, similar to
the one that was created in the Using custom domain names with CloudFront,
recipe with the ViewerCertificate property, defined as follows:

"ViewerCertificate": {

"ACMCertificateArn": "arn:aws:acm:us-—
east—-1:<account_id>:certificate/42b3ba99-66e9-4e71-8clc—-4239cle81c8
4"1

"SSLSupportMethod": "sni-only",

"MinimumProtocolVersion": "TLSv1.1_2016",

"Certificate": "arn:aws:acm:us-—
east—-1:<account_id>:certificate/42b3ba99-66e9-4e71-8c1lc-4239cle81c8
4"1

"CertificateSource": "acm"

by

The complete JSON file is also present in the book's code repository folder for this
recipe.

[248]

Web Hosting with S3, Route53, and CloudFront

Chapter 5

The SSL support method of sni-only indicates that CloudFront only serves our
content over HTTPS to clients that support Server Name Identification (SNI).

3. If you are creating a new distribution, create-change-resource-record-
sets and add alias records in the domain's HostedZone (gqnatime.net.),
pointing to the new CloudFront distribution domain.

4. Once the certificate is successfully applied to the CloudFront distribution, try to
visit the domain name for our website with https, as follows:

&

Cc

@ https://www.gnatime.net

Welcome to Q & A Time!

We can no longer see the Not Secure error message. If we click on the 1ock
button and then click on certificate in the popup, we will see the certificate

details:

& https://www.gnatime.net

Connection is secure

card numbers) is private when it is sent to this
site. Learn more

B Certificate (Valid)
& Cookies (0 in use)

€& Site settings

X

Your information (for example, passwords or credit

E Amazon Root CA 1
o [E Amazon

Y [E] www.gnatime.net

Certificate

LI

> Details

www.qgnatime.net
Issued by: Amazon

Expires: Wednesday, 1 January 2020 at 5:30:00 PM India
Standard Time

@ This certificate is valid

OK

Note that we used a certificate generated with the WWW sub-domain; hence,
even the naked domain request gets redirected to the one with a prefix.

[249]

Web Hosting with S3, Route53, and CloudFront Chapter 5

Associating a certificate with a domain using
CloudFormation template

We can either update our existing stack from the recipe Using custom domain names with
CloudFront, if it is still available, or create a new stack. I will not be going over the template
components that were already discussed in previous recipes, but the completed template
will be available with the code files, for reference.

1. We can start the template with the template version and a description (optional).

2. Define a Parameters section to accept a comma-separated list of domain name
aliases and the certificate ARN.

3. Under the resources property, define the DistributionConfig property with
the requisite information.

Define sub-properties under the DistributionConfig property for Origins,
Enabled, Comment, DefaultRootObject, Aliases, DefaultCacheBehaviour,
and ViewerCertificate

DistributionConfig:
Origins:
— DomainName: quizzer.cloud.s3.amazonaws.com
Id: myS30rigin
S30riginConfig:
OriginAccessIdentity: ''
Enabled: 'true'

Comment: 'CloudFront Distribution with Domain'
DefaultRootObject: index.html
Aliases: !Ref DomainNameAliases

DefaultCacheBehavior:
TargetOriginId: myS30rigin
ForwardedValues:
QueryString: 'false'
Cookies:
Forward: none
ViewerProtocolPolicy: redirect-to-https
ViewerCertificate:
AcmCertificateArn: !Ref DomainNameCert
SslSupportMethod: sni-only

The ViewerCertificate property should have the sub-properties
AcmCertificateArn and SslSupportMethod. I have also changed the
ViewerProtocolPolicy to redirect—-to-https. CloudFormation will now
redirect any requests made with an HTTP URL to an HTTPS URL, with an HTTP
status code of 301 (Moved Permanently).

[250]

Web Hosting with S3, Route53, and CloudFront Chapter 5

We may also import an AcmCertificateArn from a CloudFormation
template using its Outputs section, as shown in the Creating SSL/TLS
certificate with ACM recipe in Chapter 9, Serverless Programming Practices
and Patterns. However, note that we can only import output parameters
from a template in the same region, and the certificates for the CloudFront
distribution should be available in us-east-1.

4. Add an outputs section that will return the distribution ID and the CloudFront
distribution domain name. Export the CloudFront distribution domain name.

5. Create the CloudFront distribution by executing the create-stack CLI
command, specifying the domains to be aliased as parameters.

It might take some time for the changes to take effect. If the steps are followed as
they were listed, the responded status would be CREATE_COMPLETE, and we
would have an Outputs section similar to the following:

"Qutputs": [

"OutputKey": "CloudFrontDistributionId",
"OutputValue": "E3CNIY@N2WR354",
"Description": "CloudFront distribution id"

"QutputKey": "CloudFrontDomain",

"QutputValue": "d130e91j3phwkc.cloudfront.net",
"Description": "CloudFront distribution domain name",
"ExportName": "CloudFrontDomainName"

Note that the complete response is not shown, just the relevant parts.

6. Create another CloudFormation stack for adding alias records to the
HostedZone (quizzercloud.com).

Refer to the Using custom domains with CloudFront recipe, but the Outputs section
can now specify HTTPS URLs. The complete template is also available in the code
files.

If it is successful, the aws cloudformation describe-stacks command
should return a response with a status of CREATE_COMPLETE, and an Outputs
section with https URLs.

[251]

Web Hosting with S3, Route53, and CloudFront Chapter 5

7. Finally, go to the domain name URL with the HTTPS prefix:

< C' @ https://quizzercloud.com

X

Connection is secure azon Root CA 1

Welcon

Your information (for example, passwords or credit Amazon
card numbers) is private when it is sent to this [quizzercloud.com
site. Learn more

quizzercloud.com

Issued by: Amazon

Expires: Friday, 3 January 2020 at 5:30:00 PM India
Standard Time

@ This certificate is valid

B Certificate (Valid)

@& Cookies (0 in use)

¢ Site settings
OK

We generated the certificate without specifying the WWW prefix (the naked
domain name); hence, even when we run the URL with a prefix, we will be
redirected to the naked domain.

How it works...

To summarize, we did the following in this recipe:

1. We created a CloudFront distribution, specifying the root domain, the WWW
sub-domain, and the ACM certificate ARN

2. We created A records for the root domain and the WWW sub-domain

3. We hit the root domain and the WWW sub-domain with an HTTPS prefix from a
web browser, and received a response from the S3 bucket with a secure message

in the browser

A CloudFront distribution supports SSL or TLS certificates in three ways: a default

CloudFront certificate, an ACM certificate, and an IAM certificate. Previously, we used the
default CloudFront certificate. In this recipe, we used an ACM SSL certificate, and that is
the preferred way. An IAM certificate can only be used if a region does not support ACM.

The steps to generate an IAM certificate are available in the Creating SSL certificates with
ACM recipe, in Chapter 9, Serverless Architecture Patterns and Practices.

[252]

Web Hosting with S3, Route53, and CloudFront Chapter 5

Server Name Ildentification (SNI)

SNI allows we to run multiple certificates on a single IP. An alternative approach is to use a
dedicated IP address; CloudFront allocates dedicated IP addresses at each edge location in
order to serve content over HTTPS. Any client can access our content with a dedicated IP;
however, this option is costlier.

There's more...

So far, in all of the chapters of this book, we have discussed the essential services that are
required for building a Serverless web application. A Serverless architecture can be used for
non-web applications as well. A web application can also export data to another platform
for analytics, perform activities such as machine learning on the data, and even add a
Natural Language Processing (NLP) layer to it. In the next chapter, we will look at some
additional services that extend the standard Serverless web application ecosystem.

For provisioning resources, we used CLI commands and CloudFormation templates.
CloudFormation templates are always preferred, but CLI commands can help us to better
understand the templates, and are helpful in quick prototyping. We looked at how to use
Java Lambdas for writing Serverless functions in the backend. With service interactions, we
used CLI commands that we could follow and implement in any supported language.

In chapter 9, Serverless Architecture Patterns and Practices, we will use most of the services
that we have discussed to build a standard web application with a JavaScript frontend.

See also

¢ To learn more about working with server certificates, you may refer to https://
docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_server—-certs.
html

[253]

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_server-certs.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_server-certs.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_server-certs.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_server-certs.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_server-certs.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_server-certs.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_server-certs.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_server-certs.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_server-certs.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_server-certs.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_server-certs.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_server-certs.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_server-certs.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_server-certs.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_server-certs.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_server-certs.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_server-certs.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_server-certs.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_server-certs.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_server-certs.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_server-certs.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_server-certs.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_server-certs.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_server-certs.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_server-certs.html

Messaging and Notifications
with SQS and SNS

This chapter will cover the following topics:

¢ Your first SQS queue (AWS CLI + CloudFormation)
Creating an SQS queue and sending messages with SDK (Java)

¢ Receiving and sending SQS messages in batches with SDK (Java)
Invoking Lambda with SQS events (Java)

Your first SNS topic for email and SMS (AWS CLI + CloudFormation)
Publishing to SNS topic with SDK (Java)

Invoking Lambda with SNS events (Java)

Introduction

In the previous chapters, we learned about various essential components for building a
standard serverless web application such as functions, Rest API, datastore, user
management, hosting, and domain registration. As discussed at the end of the previous
chapter, a real-world application may not always be a web application, or may be extended
with additional capabilities.

Until now, we were invoking Lambda from the API gateway. However, Lambdas may also
be invoked reactively as a result of some triggers based on states of other services. In this
chapter, we will first discuss adding messaging and notification support to serverless
applications. Later, we will see how to trigger Lambdas based on state changes in various
other services.

Messaging and Notifications with SQS and SNS Chapter 6

The following are the prerequisites for this chapter:

e A working AWS account

e Configuring AWS CLI as discussed in the Your first Lambda with AWS CLI recipe
of chapter 1, Getting Started with Serverless Computing on AWS

Your first SQS queue (AWS CLI +
CloudFormation)

Amazon Simple Queue Service (SQS) is a fully managed messaging queue service in AWS
that can be used with serverless as well as non-serverless microservices and distributed
systems. In this recipe, we will create an SQS queue and use the queue to transfer data.

Getting ready

There are no additional prerequisites for completing this recipe, other than the common
requirements specified in the chapter introduction.

How to do it...
We will first create the SQS queue and later test it using AWS CLI commands.

Creating an SQS queue

We will create an SQS queue first using CLI commands, and then using a CloudFormation
template.

AWS CLI commands
You can create a simple SQS queue with defaults from AWS CLI as follows:

aws sgs create-queue \
——queue-name 'my-first-queue' \
——-profile admin

[255]

Messaging and Notifications with SQS and SNS Chapter 6

If successful, this will give the output shown here:

"QueueUrl": "https://queue.amazonaws.com/ 3/my-first-queue"

The CloudFormation template

You can create a CloudFormation template file with the following Resources and Output
sections to create a simple SQS queue with defaults:

Resources:
SQSQueue:
Type: AWS::SQS::Queue
Properties:
QueueName: my-first-sgs—queue-cf

Output:
SQSQueueURL:
Value: !Ref SQSQueue
Export:
Name: "SQSQueueURL"
SQSQueueArn:
Value: !GetAtt SQSQueue.Arn
Export:
Name: "SQSQueueArn"

You may also add a template version and description.

If stack creation (run using aws cloudformation create-stack) is successful, the
describe command (run using aws cloudformation describe-stacks) will returna
response with the output section, as follows:

"Outputs": [

"QutputKey": "SQSQueueArn",
"OutputValue": "arn:aws:sqs:us—east-1: NN :ny-first-sqs-queue-cf",
"ExportName": "SQSQueueArn"

"QutputKey": "SQSQueueURL",
"QutputVval ! . us—east-1.amazonaws . com/ SN /ny-first-sqs—-queue-cf",
"ExportName": "SQSQueueURL"

[256]

Messaging and Notifications with SQS and SNS Chapter 6

Sending and receiving data (AWS CLI)

1. We can send data to an AWS queue from the command line, as follows:

aws sqs send-message \

—-—queue-url https://queue.amazonaws.com/<account id>/my-
first—-queue \

--message-body 'This is a test message' \

——profile admin

This command will return a response, as follows:

"MD50fMessageBody": "fafb@@f5732ab283681e124bf8747ed1",

"MessageId": "dfc614e8-d5fb-4c00-98af-7c151483952d"

2. We can get data from an AWS queue from the command line, as follows:

aws sgs receive-message \

——queue-url https://queue.amazonaws.com/<account id>/my-
first-queue \

——profile admin

This command will return a response, as follows:

"Messages": [
{
""MessageId": "dfc614e8-d5fb-4c00-98af-7c151483952d",
"ReceiptHandle": "AQEBqyEURarwr6VEp8POBa0fQZszTeR55S
f/c4C5NXuxF8i5HhebajL7HfIIL/09QLD8jeqgwk]j0/UyySPRoPtJJcA6153fpxD

kBnnzwVmuc+WV/Ytm9ilvCSEMzTcIgl9gk24wPLFePdGHQ4IgkLoH+TQ==",
""MD50fBody": "fafb@0f5732ab283681e124bf8747ed1",
"Body": "This is a test message"

[257]

Messaging and Notifications with SQS and SNS Chapter 6

How it works...

In summary, we did the following in this recipe:

1. We created a queue using an AWS CLI command

2. We created a queue using a CloudFormation template

3. We sent a message to the queue from the AWS CLI

4. We retrieved a message from the queue from the AWS CLI

Both send and receive message commands returned the following properties:

e Message id: Message ID of the message

e MD50fBody: This is the MD5 digest that can be used to verify when SQS received
the message correctly

The receive message command also returned the following properties:

e Body: Body of the message.
e MD50fBody: MD5 digest of the body.

e ReceiptHandle: There is a ReceiptHandle value associated with each instance
of receiving a message. Every time you receive a message, the ReceiptHandle
value will be different. To delete a message from the queue, you need to provide
the latest ReceiptHandle value received.

There's more...

In this recipe, we created a simple queue with defaults. It has the following properties:

e ContentBasedDeduplication: Boolean

e DelaySeconds: Integer

e FifoQueue: Boolean

® KmsMasterKeyId: String

L KmsDataKeyReusePeriodSeconds:hﬁeger
e MaximumMessageSize: Integer

e MessageRetentionPeriod: Integer

® QueueName: String

e ReceiveMessageWaitTimeSeconds: Integer

[258]

Messaging and Notifications with SQS and SNS Chapter 6

e RedrivePolicy: RedrivePolicy object
® Tags: Resource tag
e VisibilityTimeout: Integer

See also

® https://docs.aws.amazon.com/cli/latest/reference/sqs/index.html#cli-
aws-sgs
® https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws—

properties-sgs—queues.html

® http://www.fags.org/rfcs/rfcl321.html

Creating an SQS queue and sending
messages with SDK (Java)

In this recipe, we will create Lambda function in Java to create an SQS queue, get the URL
of the queue using the queue name, and then send a message to that queue. We will not
repeat the commands or steps required to create and invoke the Lambda that was already
discussed earlier. Please refer to code files or earlier Lambda recipes for the complete code.

Getting ready

You need to follow the section Getting started in the recipes Your first AWS Lambda and Your
first Lambda with AWS CLI from Chapter 1, Getting Started with Serverless Computing on

AWS to set up Java, Maven, the parent project, serverless-cookbook-parent-aws—
java and AWS CLI, and may also read other notes there including code usage guidelines,
S3 bucket creation and notes for the Windows users.

How to do it...

We will first create our Java Lambda and then deploy and test it from the CLI.

[259]

https://docs.aws.amazon.com/cli/latest/reference/sqs/index.html#cli-aws-sqs
https://docs.aws.amazon.com/cli/latest/reference/sqs/index.html#cli-aws-sqs
https://docs.aws.amazon.com/cli/latest/reference/sqs/index.html#cli-aws-sqs
https://docs.aws.amazon.com/cli/latest/reference/sqs/index.html#cli-aws-sqs
https://docs.aws.amazon.com/cli/latest/reference/sqs/index.html#cli-aws-sqs
https://docs.aws.amazon.com/cli/latest/reference/sqs/index.html#cli-aws-sqs
https://docs.aws.amazon.com/cli/latest/reference/sqs/index.html#cli-aws-sqs
https://docs.aws.amazon.com/cli/latest/reference/sqs/index.html#cli-aws-sqs
https://docs.aws.amazon.com/cli/latest/reference/sqs/index.html#cli-aws-sqs
https://docs.aws.amazon.com/cli/latest/reference/sqs/index.html#cli-aws-sqs
https://docs.aws.amazon.com/cli/latest/reference/sqs/index.html#cli-aws-sqs
https://docs.aws.amazon.com/cli/latest/reference/sqs/index.html#cli-aws-sqs
https://docs.aws.amazon.com/cli/latest/reference/sqs/index.html#cli-aws-sqs
https://docs.aws.amazon.com/cli/latest/reference/sqs/index.html#cli-aws-sqs
https://docs.aws.amazon.com/cli/latest/reference/sqs/index.html#cli-aws-sqs
https://docs.aws.amazon.com/cli/latest/reference/sqs/index.html#cli-aws-sqs
https://docs.aws.amazon.com/cli/latest/reference/sqs/index.html#cli-aws-sqs
https://docs.aws.amazon.com/cli/latest/reference/sqs/index.html#cli-aws-sqs
https://docs.aws.amazon.com/cli/latest/reference/sqs/index.html#cli-aws-sqs
https://docs.aws.amazon.com/cli/latest/reference/sqs/index.html#cli-aws-sqs
https://docs.aws.amazon.com/cli/latest/reference/sqs/index.html#cli-aws-sqs
https://docs.aws.amazon.com/cli/latest/reference/sqs/index.html#cli-aws-sqs
https://docs.aws.amazon.com/cli/latest/reference/sqs/index.html#cli-aws-sqs
https://docs.aws.amazon.com/cli/latest/reference/sqs/index.html#cli-aws-sqs
https://docs.aws.amazon.com/cli/latest/reference/sqs/index.html#cli-aws-sqs
https://docs.aws.amazon.com/cli/latest/reference/sqs/index.html#cli-aws-sqs
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sqs-queues.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sqs-queues.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sqs-queues.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sqs-queues.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sqs-queues.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sqs-queues.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sqs-queues.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sqs-queues.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sqs-queues.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sqs-queues.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sqs-queues.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sqs-queues.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sqs-queues.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sqs-queues.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sqs-queues.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sqs-queues.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sqs-queues.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sqs-queues.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sqs-queues.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sqs-queues.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sqs-queues.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sqs-queues.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sqs-queues.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sqs-queues.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sqs-queues.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sqs-queues.html
http://www.faqs.org/rfcs/rfc1321.html
http://www.faqs.org/rfcs/rfc1321.html
http://www.faqs.org/rfcs/rfc1321.html
http://www.faqs.org/rfcs/rfc1321.html
http://www.faqs.org/rfcs/rfc1321.html
http://www.faqs.org/rfcs/rfc1321.html
http://www.faqs.org/rfcs/rfc1321.html
http://www.faqs.org/rfcs/rfc1321.html
http://www.faqs.org/rfcs/rfc1321.html
http://www.faqs.org/rfcs/rfc1321.html
http://www.faqs.org/rfcs/rfc1321.html
http://www.faqs.org/rfcs/rfc1321.html
http://www.faqs.org/rfcs/rfc1321.html
http://www.faqs.org/rfcs/rfc1321.html
http://www.faqs.org/rfcs/rfc1321.html

Messaging and Notifications with SQS and SNS Chapter 6

Lambda project code (Java)

We will create a Lambda that gets triggered when messages are put into an SQS queue, and
it will then send the message to another as a batch.

Since we have already discussed Lambdas in detail earlier, I will show
only important parts of the code and step details here. I will also not show
error handling and other supportive code. Please refer to the code files for

the complete code.
The Maven pom. xml file of the project should define the following dependency:

<dependency>
<groupld>com.amazonaws</groupId>
<artifactId>aws—-java-sdk-sgs</artifactId>
<version>${aws.sdk.version}</version>
</dependency>

The poM file also has dependencies for aws—-lambda-java-core, and inherits from the
parent project, serverless-cookbook-parent-aws-java.

We can create the Java Lambda project with the following structure:

v src
v main
v java
v tech
v heartin
v books
v serverlesscookbook
v domain

v services

[260]

Messaging and Notifications with SQS and SNS Chapter 6

The Request . java class will correspond to our input JSON:

@Data

public class Request {
private String queueName;
private String message;

}
Response. java will contain a field to send the response back to the invoker:

@Data

@AllArgsConstructor

public class Response {
private String message;

}

SgsService. java is the interface for our service class. This is not a requirement. You
can directly use the implementation class or even embed all logic within the Lambda
handler class itself:

public interface SgsService {

Response createQueueAndSendMessage (Request request, Lambdalogger
logger) ;
}

SgsServiceImpl. java is the actual service implementation.

We can create an SQS queue and retrieve its URL, as follows:

CreateQueueResult createResult =
this.sgsClient.createQueue (request.getQueueNamnme ()) ;
logger.log("Created queue: " + createResult.getQueueUrl());

We can also get the URL, as follows:

String queueUrl =
this.sgsClient.getQueueUrl (request.getQueueName ()) .getQueueUrl () ;

We can create a SendMessageRequest and send a message, as follows:

SendMessageRequest sendMessageRequest = new SendMessageRequest ()
.withQueueUrl (queueUrl)
.withMessageBody (request.getMessage ())
.withDelaySeconds (5);

this.sgsClient.sendMessage (sendMessageRequest) ;

[261]

Messaging and Notifications with SQS and SNS Chapter 6

LambdaSgsSdkCreateSendHandler. java is our Lambda handler class where we
initialize the SQS client and pass it to the service class.

We can initialize the SQS client as follows:

private final AmazonSQS sgsClient;
public LambdaSgsSdkCreateSendHandler () {
this.sgsClient = AmazonSQSClientBuilder.standard()
.withRegion (System.getenv ("AWS_REGION"))

Lbuild();
}

We then invoke the service method, passing the client along with the Request object:

public Response handleRequest (final Request request, final Context context)

{
final SgsService sgsService = new SgsServiceImpl (this.sgsClient);
return sgsService.createQueueAndSendMessage (request,

context.getLogger());
}

Provisioning and testing the Lambda (AWS CLI)

Follow these steps to deploy and invoke the Lambda. You may follow chapter 1, Getting
Started with Serverless Computing on AWS and use CloudFormation for Lambda
provisioning:

1. Runmvn clean package from inside the Lambda project root folder to create

the Uber JAR.
2. Upload the Uber JAR to s3:

aws s3 cp \
target/lambda-sgs—-sdk-create-send-0.0.1-SNAPSHOT. jar \

s3://serverless—cookbook/lambda-sqs-sdk—-create-send-0.0.1-

SNAPSHOT. jar \
——profile admin

3. Create a role for the Lambda with an appropriate trust relationship definition:

aws iam create-role \
—-role—-name lambda-sgs-create-send-role \
——assume-role-policy-document file://iam-role-trust-

relationship.txt \
——profile admin

[262]

Messaging and Notifications with SQS and SNS Chapter 6

The trust document, iam-role-trust-relationship.txt, is defined as
follows:

{
"Version": "2012-10-17",

"Statement": [
{
"Effect": "Allow",
"Principal": {
"Service": "lambda.amazonaws.com"

¥
"Action": "sts:AssumeRole"

}

4. Create a policy for basic logging permissions and attach it to the role.

Create the policy document as follows:

{
"Version":"2012-10-17",
"Statement": [
{
"Effect":"Allow",
"Action": [
"logs:CreatelLogGroup",
"logs:CreatelogStream",
"logs:PutLogEvents"
J 4
"Resource": [
"arn:aws:logs:*:*:x"

}

Save this file as basic-lambda-permissions.txt.

Create the policy as follows:

aws iam create-policy \
——policy—-name lambda-basic-iam-policy \
——policy-document file://basic-lambda-permissions.txt \
——profile admin

[263]

Messaging and Notifications with SQS and SNS Chapter 6

Attach the policy to the role as follows:

aws iam attach-role-policy \

—-role—name lambda-sgs—-create-send-role \

——policy-arn arn:aws:iam::855923912133:policy/lambda-basic—iam—
policy \

——profile admin

5. Create a policy for required SQS permissions, and attach it to the role.
Create the policy document with the required SQS permissions as follows:

{
"Version":"2012-10-17",
"Statement": [
{
"Effect":"Allow",
"Action": [
sgs:CreateQueue,
sgs:GetQueuelrl,
"sgs:SendMessage"
J 14
"Resource": [
"arn:aws:sqgs:*:xox"

}

Save the file as lambda-sgs-create-send-permissions.txt.
Create the policy and attach it to the role, as we did in the previous step.

6. Create the Lambda function as follows:

aws lambda create-function \

——function-name lambda-sgs-create-send \

——runtime java8 \

—-role arn:aws:iam::<account id>:role/lambda-sgs—-create-
send-role \

—-handler
tech.heartin.books.serverlesscookbook.LambdaSgsSdkCreateSendHan
dler: :handleRequest \

——-code S3Bucket=serverless—cookbook, S3Key=lambda-sqs—-sdk—
create-send-0.0.1-SNAPSHOT. jar \

——timeout 15 \

[264]

Messaging and Notifications with SQS and SNS Chapter 6

—--memory-size 512 \
—--region us-east-1 \
——-profile admin

7. Invoke the Lambda function as follows:

aws lambda invoke \
——invocation-type RequestResponse \
—-—function-name lambda-sgs-create-send \
—--log-type Tail \
—-payload file://payload.json \
--region us-east-1 \
——profile admin \
outputfile.txt

The payload file should correspond to our input domain object (Request . java)
as follows:

{
"queueName" : "create-send-demo—queue",
"message": "test payload 1"

}

If the aws lambda invoke command is successful, you should see a success
message in the output file, outputfile.txt (assuming you return a success
message from the Lambda similar to the code files).

8. Verify the invocation by retrieving the message from the queue:

aws sgs receive-message \

—-—queue-url
https://queue.amazonaws.com/855923912133/create—send-demo—queue
\

——profile admin

If successful, you should get the following message back:

"Messages": [
{
"MessageId": "alclbac6-7bfc-4088-8202-flee3693882e",
"ReceiptHandle": "AQEBeLA5/hVvWr0Gb9+uEZ1aRBpxhv/0@oY
Su/CbA1gEKKowCcXj cIWcuDncvYoyArEorOHfSSt lotN6DTgF6 1XLAupHC63VLON

KcDmA73 1tN@all/6H18CcyRULUchdnwWmpr3riblrqwSCh8zhWwf7Uzg==",
"MD50fBody'': "0709068de6e40356e7ed36037817bacd",
"Body": "test payload 1"

[265]

Messaging and Notifications with SQS and SNS Chapter 6

How it works...

In summary, we did the following in this recipe:

1. Created a Lambda function to perform the following:
e Create an SQS queue

e Get the queue URL from the queue
¢ Send the message to the queue

2. Created the required policies and attached them to the role

3. Invoked Lambda with a payload as required by the input handler object
(Request. java)

4. Verified data was posted to the queue using the aws sgs receive-message
command

There's more...

We created a simple SQS queue and sent the message from within a Lambda. You can work
on adding more features to the create queue code. Properties available for an SQS queue
were listed in the previous recipe. We sent only a single message in this recipe, but you can
also send multiple SQS messages together, as we will see in the next recipe.

See also

® https://docs.aws.amazon.com/AWSSimpleQueueService/latest/
SQSDeveloperGuide/sgs—api-permissions—-reference.html

Receiving and sending SQS messages in
batches with SDK (Java)

In this recipe, we will create a Lambda function in Java to receive messages from an
existing input SQS queue and send all the messages as a batch to another SQS output
queue. We will also delete the messages from the input SQS queue.

[266]

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-api-permissions-reference.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-api-permissions-reference.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-api-permissions-reference.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-api-permissions-reference.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-api-permissions-reference.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-api-permissions-reference.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-api-permissions-reference.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-api-permissions-reference.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-api-permissions-reference.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-api-permissions-reference.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-api-permissions-reference.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-api-permissions-reference.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-api-permissions-reference.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-api-permissions-reference.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-api-permissions-reference.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-api-permissions-reference.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-api-permissions-reference.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-api-permissions-reference.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-api-permissions-reference.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-api-permissions-reference.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-api-permissions-reference.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-api-permissions-reference.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-api-permissions-reference.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-api-permissions-reference.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-api-permissions-reference.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-api-permissions-reference.html

Messaging and Notifications with SQS and SNS Chapter 6

Getting ready

You need to follow the section Getting started in the recipes Your first AWS Lambda and Your
first Lambda with AWS CLI from Chapter 1, Getting Started with Serverless Computing on

AWS to set up Java, Maven, the parent project, serverless-cookbook-parent-aws—
java and AWS CLI, and may also read other notes there including code usage guidelines,
S3 bucket creation and notes for the Windows users.

How to do it...

We will first create our Java Lambda. Next, we will create two queues as required for this
recipe and place some data into one of them. After that, we will deploy the Lambda and
test it from CLL

Lambda project code (Java)

Since we have already discussed Lambdas in detail earlier, I will show
only important parts of the code and step details here. I will also not show
error handling and other supportive code. Please refer to the code files for
the complete code.

We will create a Lambda that will receive messages from one queue, send it to another as a
batch, and then delete the retrieved messages.

The Maven pom. xml file of the project should also define the following dependency:

<dependency>
<groupId>com.amazonaws</groupld>
<artifactId>aws—-java-sdk-sgs</artifactId>
<version>S${aws.sdk.version}</version>
</dependency>

[267]

Messaging and Notifications with SQS and SNS Chapter 6

We can create the Java Lambda project with the following structure:

v src

v main
v java

v tech.heartin.books.serverlesscookbook
v domain

v services

The Request . java class will correspond to our input JSON:

@Data

public class Request {

private
private
private
private

}

String inputQueueURL;
String outputQueueURL;
int maxMessagesToReceive;
int delay;

Here, inputQueueURL is the URL for the input queue from which the Lambda will receive
messages, outputQueueURL is the URL for the output queue to which the Lambda will
send messages, maxMessagesToReceive is the maximum number of messages retrieved
from the queue in every receive call, and delay is the time for which delivery of messages
to the queue is postponed.

Response. java will contain a field to send the response back to the invoker:

@Data

@AllArgsConstructor
public class Response {
private String message;

}

[268]

Messaging and Notifications with SQS and SNS Chapter 6

SgsService. java is the interface for our service class. This is not a requirement; you can
directly use the implementation class or even embed all logic within the Lambda handler
class itself:

public interface SgsService {
Response sendMessage (Request request, Lambdalogger logger);

}

SgsServiceImpl.java is the actual service implementation.

We can retrieve messages from the input queue as follows:
final ReceiveMessageRequest receiveMessageRequest = new
ReceiveMessageRequest ()

.withQueueUrl (request.getInputQueueURL ())
.withMaxNumberOfMessages (request.getMaxMessagesToReceive ());

final List<Message> messages =
this.sgsClient.receiveMessage (receiveMessageRequest) .getMessages () ;

We can create and send a batch request to the output queue, as follows:

Collection<SendMessageBatchRequestEntry> entries = new ArrayList<>();

int idval = 1;
for (Message m : messages) {

logger.log ("Adding message: " + m.getBody());
entries.add(new SendMessageBatchRequestEntry ("id_" + idval,

m.getBody ()) .withDelaySeconds (request.getDelay()));
idval++;

final SendMessageBatchRequest sendBatchRequest = new
SendMessageBatchRequest ()
.withQueueUrl (request.getOutputQueueURL ())
.withEntries (entries);
this.sgsClient.sendMessageBatch (sendBatchRequest) ;

Finally, we delete all messages received, as follows:

for (Message m : messages) {

this.sgsClient.deleteMessage (request.getInputQueueURL(),
m.getReceiptHandle());
}

LambdaSgsSdkReceiveSendBatchHandler . java is our Lambda handler class, where we
initialize the SQS client and pass it to the service class.

[269]

Messaging and Notifications with SQS and SNS Chapter 6

We can initialize the SQS client as follows:

private final AmazonSQS sgsClient;
public LambdaSgsSdkReceiveSendBatchHandler () {
this.sgsClient = AmazonSQSClientBuilder.standard()
.withRegion (System.getenv ("AWS_REGION"))
ouild();
}

We then invoke the service method, passing the client along with the Request object:

public Response handleRequest (final Request request, final Context context)

{

final SgsService sgsService = new SgsServicelImpl (this.sgsClient);
return sgsService.sendMessage (request, context.getLogger());

Setting up queues and data

Before we can invoke our Lambda, we need to create an input and an output queue. We
will also send messages to the input queue. When we invoke the Lambda, it will retrieve
these messages.

Perform the following steps:
1. Create two SQS queues: an input queue, my-input-queue, and an output queue,

my-output-queue, following the Your first Simple Queue Service (SQS) recipe.
2. Send six to seven messages to the queue from CLI.

Provisioning and testing the Lambda (AWS CLI)

Follow this steps to deploy and invoke the Lambda. You may follow chapter 1, Getting
Started with Serverless Computing on AWS and use CloudFormation for Lambda
provisioning:

1. Runmvn clean package from inside the Lambda project root folder to create
the Uber JAR.
2. Upload the Uber JAR to s3:

aws s3 cp \
target/lambda-sqs—-sdk-receive-send-batch-0.0.1-SNAPSHOT. jar \

[270]

Messaging and Notifications with SQS and SNS Chapter 6

s3://serverless—cookbook/lambda-sqs—-sdk-receive-send-
batch-0.0.1-SNAPSHOT. jar \
——profile admin

3. Create a role for the Lambda with an appropriate trust relationship definition:

aws iam create-role \
—-role—-name lambda-sqgs-sdk-receive-send-batch-role \
——assume-role-policy-document file://iam-role-trust-
relationship.txt \

——profile admin

The trust document, iam-role-trust-relationship.txt, is defined as
follows:

"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Principal": {
"Service": "lambda.amazonaws.com"
}I

"Action": "sts:AssumeRole"

}

4. Create a policy for basic logging permissions and attach it to the role.
5. Create a policy for required SQS permissions and attach it to the role.

The policy document with required SQS permissions is shown as
follows:

{
"Version":"2012-10-17",
"Statement": [
{
"Effect":"Allow",
"Action": [
"sgs:ReceiveMessage",
"sgs:SendMessage",
"sgs:SendMessageBatch",
"sgs:DeleteQueue”
I
"Resource": [
"arn:aws:sgs:*¥:*Fx"

[271]

Messaging and Notifications with SQS and SNS Chapter 6

}

6. Create the Lambda function, as follows:

aws lambda create-function \

——function—-name lambda-sgs-sdk-receive-send-batch \

——-runtime java8 \

—-role arn:aws:iam::<account id>:role/lambda-sqs-sdk-
receive-send-batch-role \

—-handler
tech.heartin.books.serverlesscookbook.LambdaSgsSdkRece
iveSendBatchHandler: :handleRequest \

——code S3Bucket=serverless—cookbook, S3Key=lambda-sqgs—
sdk-receive-send-batch-0.0.1-SNAPSHOT. jar \

——timeout 15 \

—--memory-size 512 \

--region us-east-1 \

——-profile admin

7. Invoke the Lambda function, as follows:

aws lambda invoke \
—-invocation-type RequestResponse \
——function—-name lambda-sgs-sdk-receive-send-batch

—-log-type Tail \

—-payload file://payload.json \
—--region us-east-1 \

——profile admin \
outputfile.txt

The payload file should correspond to our input domain object (Request . java)
as follows:

"inputQueueURL"
"https://queue.amazonaws.com/855923912133/my-input—que
ue",

"outputQueueURL"
"https://queue.amazonaws.com/855923912133/my—-output—-qu
eue",

"maxMessagesToReceive" : 5,

"delay": 10

[272]

Messaging and Notifications with SQS and SNS Chapter 6

If the aws lambda invoke command is successful, you should see a success
message in the output file, outputfile.txt (assuming you return a success
message from the Lambda similar to the code files).

8. Verify the invocation by retrieving the message from the queue:

aws sgs receive-message \

—-—queue-url
https://queue.amazonaws.com/855923912133/my-output-que
ue \

—-max-number-of-messages 7 \

——profile admin

If successful, you should get between zero and seven (maximum) messages in a
single receive-message call. Even if you have more messages than this value in
the queue, the exact number of messages returned is not guaranteed, but the
maximum returned will be as per the value of the max-number-of-

messages property.

How it works...

In summary, we did the following in this recipe:

1. Created a Lambda function to perform the following:
1. Retrieve multiple messages from an input queue

2. Batch the messages and send it to an output queue

Created the input and output queues

Added data into the input queue

Created required policies and attached them to the role
Created the Lambda function specifying the role

oG W

Invoked the Lambda with a payload as required by the input handler object
(Request. java)

7. Verified data was posted to the queue using the aws sgs receive-
message command on the output queue

[273]

Messaging and Notifications with SQS and SNS Chapter 6

There's more...

We created a simple SQS queue, and messages were retrieved randomly. You can however
configure the queue to act as a strict first in, first out (FIFO) queue using the Fifo queue
property while creating the queue.

See also

® https://docs.aws.amazon.com/AWSSimpleQueueService/latest/
SQSDeveloperGuide/sgs—api-permissions—reference.html

® https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/
services/sgs/model/ReceiveMessageRequest.html#getMaxNumberOfMessages——

Invoking the Lambda with an SQS event
(Java)

Until now (in this recipe and recipes from previous chapters), we were invoking a Lambda
either directly from the command line or from the API gateway. A Lambda can also be
invoked (or triggered) as a response to an event (or trigger) from one of the supported
event sources, such as SQS, Kinesis, DynamoDB, and so on.

In this recipe, we will invoke a Lambda with a trigger from an SQS event source. Similar to
the previous recipe, we will then send all the messages as a batch to another SQS output
queue. This way, we can easily verify the Lambda was triggered successfully from the other
queue. You can also simply check the CloudWatch logs to verify this instead.

Getting ready

You need to follow the section Getting started in the recipes Your first AWS Lambda and Your
first Lambda with AWS CLI from Chapter 1, Getting Started with Serverless Computing on

AWS to set up Java, Maven, the parent project, serverless-cookbook-parent-aws—
java and AWS CLI, and may also read other notes there including code usage guidelines,
S3 bucket creation and notes for the Windows users.

[274]

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-api-permissions-reference.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-api-permissions-reference.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-api-permissions-reference.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-api-permissions-reference.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-api-permissions-reference.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-api-permissions-reference.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-api-permissions-reference.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-api-permissions-reference.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-api-permissions-reference.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-api-permissions-reference.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-api-permissions-reference.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-api-permissions-reference.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-api-permissions-reference.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-api-permissions-reference.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-api-permissions-reference.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-api-permissions-reference.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-api-permissions-reference.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-api-permissions-reference.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-api-permissions-reference.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-api-permissions-reference.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-api-permissions-reference.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-api-permissions-reference.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-api-permissions-reference.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-api-permissions-reference.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-api-permissions-reference.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-api-permissions-reference.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/sqs/model/ReceiveMessageRequest.html#getMaxNumberOfMessages--
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/sqs/model/ReceiveMessageRequest.html#getMaxNumberOfMessages--
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/sqs/model/ReceiveMessageRequest.html#getMaxNumberOfMessages--
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/sqs/model/ReceiveMessageRequest.html#getMaxNumberOfMessages--
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/sqs/model/ReceiveMessageRequest.html#getMaxNumberOfMessages--
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/sqs/model/ReceiveMessageRequest.html#getMaxNumberOfMessages--
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/sqs/model/ReceiveMessageRequest.html#getMaxNumberOfMessages--
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/sqs/model/ReceiveMessageRequest.html#getMaxNumberOfMessages--
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/sqs/model/ReceiveMessageRequest.html#getMaxNumberOfMessages--
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/sqs/model/ReceiveMessageRequest.html#getMaxNumberOfMessages--
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/sqs/model/ReceiveMessageRequest.html#getMaxNumberOfMessages--
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/sqs/model/ReceiveMessageRequest.html#getMaxNumberOfMessages--
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/sqs/model/ReceiveMessageRequest.html#getMaxNumberOfMessages--
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/sqs/model/ReceiveMessageRequest.html#getMaxNumberOfMessages--
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/sqs/model/ReceiveMessageRequest.html#getMaxNumberOfMessages--
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/sqs/model/ReceiveMessageRequest.html#getMaxNumberOfMessages--
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/sqs/model/ReceiveMessageRequest.html#getMaxNumberOfMessages--
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/sqs/model/ReceiveMessageRequest.html#getMaxNumberOfMessages--
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/sqs/model/ReceiveMessageRequest.html#getMaxNumberOfMessages--
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/sqs/model/ReceiveMessageRequest.html#getMaxNumberOfMessages--
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/sqs/model/ReceiveMessageRequest.html#getMaxNumberOfMessages--
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/sqs/model/ReceiveMessageRequest.html#getMaxNumberOfMessages--
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/sqs/model/ReceiveMessageRequest.html#getMaxNumberOfMessages--
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/sqs/model/ReceiveMessageRequest.html#getMaxNumberOfMessages--
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/sqs/model/ReceiveMessageRequest.html#getMaxNumberOfMessages--
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/sqs/model/ReceiveMessageRequest.html#getMaxNumberOfMessages--
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/sqs/model/ReceiveMessageRequest.html#getMaxNumberOfMessages--
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/sqs/model/ReceiveMessageRequest.html#getMaxNumberOfMessages--
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/sqs/model/ReceiveMessageRequest.html#getMaxNumberOfMessages--
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/sqs/model/ReceiveMessageRequest.html#getMaxNumberOfMessages--
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/sqs/model/ReceiveMessageRequest.html#getMaxNumberOfMessages--
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/sqs/model/ReceiveMessageRequest.html#getMaxNumberOfMessages--
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/sqs/model/ReceiveMessageRequest.html#getMaxNumberOfMessages--

Messaging and Notifications with SQS and SNS Chapter 6

How to do it...

We will first create our Java Lambda. Next, we will create two queues as required for this
recipe and set up some data to one of them. After that, we will deploy the Lambda and test

it from CLI.

Lambda project code (Java)

Since we have already discussed Lambdas in detail earlier, I will show
only important parts of the code and step details here. I will also not show
error handling and other supportive code. Please refer to the code files for

the complete code.

We will create a Lambda that gets triggered when messages are put into an SQS queue, and
it will then send the message to another as a batch.

The Maven pom. xm1 file of the project should also define the following dependency:

<dependency>
<groupId>com.amazonaws</groupld>
<artifactId>aws-java-sdk-sgs</artifactId>
<version>${aws.sdk.version}</version>
</dependency>

We can create a Java Lambda project with the following structure:

v src
\ 4 main
A 4 IEVE]
v tech.heartin.books.serverlesscookbook
v services

Note that unlike previous recipes, we do not have request and response domain objects.
While we were invoking the Lambda manually in previous recipes, in this recipe AWS will
be invoking the Lambda and passing a predefined event object based on a trigger we
configure.

[275]

Messaging and Notifications with SQS and SNS Chapter 6

SgsService. java is the interface for our service class. This is not a requirement; you can
directly use the implementation class or even embed all logic within the Lambda handler
class itself:

public interface SgsService {

Boolean processEvent (SQSEvent event, String outputQueueURL,
LambdalLogger logger) ;
}

SgsServiceImpl.java is the actual service implementation.

We can retrieve messages from the input SQSEvent and create a collection of
SendMessageBatchRequestEntryObﬁc$:

Collection<SendMessageBatchRequestEntry> entries = new ArrayList<>();

int idval = 1;
for (SQSMessage m : event.getRecords()) A
logger.log ("Adding message: " + m.getBody());
entries.add(new SendMessageBatchRequestEntry ("id_" + idval,
m.getBody ()));
idval++;
}

We can create and send a batch request to the output queue, as follows:

final SendMessageBatchRequest sendBatchRequest = new
SendMessageBatchRequest ()
.withQueueUrl (request.getOutputQueueURL ())
.withEntries (entries);
this.sgsClient.sendMessageBatch (sendBatchRequest) ;

LambdaSgsEventHandler. java is our Lambda handler class, where we initialize the SQS
client and pass it to the service class along with the SQSEvent we received.

We can initialize the SQS client as follows:

private final AmazonSQS sgsClient;
public LambdaSgsSdkReceiveSendBatchHandler () {
this.sgsClient = AmazonSQSClientBuilder.standard()
.withRegion (System.getenv ("AWS_REGION"))
.build();
}

We then invoke the service method, passing the client along with the SQSEvent object:

public Boolean handleRequest (final SQSEvent sgsEvent, final Context
context) {

[276]

Messaging and Notifications with SQS and SNS Chapter 6

context.getLogger () .log ("Received SQS event: " + sgsEvent);

final SgsService sgsService = new SgsServicelImpl (this.sgsClient);
return sgsService.processEvent (sgsEvent,
System.getenv ("SPC_OUTPUT_QUEUE_URL"), context.getLogger());

}

We will use an environment variable to specify the name of the output queue. In the
previous recipes, we were sending it through the request object. Also, it is a good practice
to prefix environment variables with a project-specific constant. For example, SPC is a
prefix that denote Serverless Programming Cookbook.

Setting up queues and data

Before we can invoke our Lambda, we need to create an input and an output queue. We
will also send messages into the input queue. When we invoke the Lambda, it will retrieve
these messages.

Perform the following:

1. Create two SQS queues: an input queue, my-input-queue, and an output queue,
my-output-queue, following the Your first SQS queue recipe

2. Send six to seven messages into the queue from CLI

Provisioning the Lambda (AWS CLI)

Follow these steps to deploy and invoke the Lambda. You may follow chapter 1, Getting
Started with Serverless Computing on AWS and use CloudFormation for Lambda
provisioning:

1. Runmvn clean package from inside the Lambda project root folder to create
the Uber JAR
2. Upload the Uber JAR to s3:

aws s3 cp \
target/lambda-invoke-sgs—event-0.0.1-SNAPSHOT. jar \
s3://serverless—cookbook/lambda-invoke-sqs—event-0.0.1-
SNAPSHOT. jar \
——profile admin

[277]

Messaging and Notifications with SQS and SNS Chapter 6

3. Create a role for the Lambda with an appropriate trust relationship definition:

aws iam create-role \
—--role—-name lambda-invoke-sgs—-event-role \
—-—assume-role-policy-document file://iam-role-trust-
relationship.txt \
——profile admin

The trust document, iam-role-trust-relationship.txt, is defined as
follows:

{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Principal": {
"Service": "lambda.amazonaws.com"
}I
"Action": "sts:AssumeRole"

}

4. Create a policy for basic logging permissions and attach it to the role
5. Create a policy for required SQS permissions and attach it to the role

The policy document with required SQS permissions is shown here:

{
"Version":"2012-10-17",
"Statement": [
{
"Effect":"Allow",
"Action": [
"sgs:GetQueueAttributes",
"sqgs:ReceiveMessage",
"sgs:DeleteMessage",
"sgs:SendMessage",
"sgs:SendMessageBatch"
Ir
"Resource": [
"arn:aws:sqgs:*:kox"

[278]

Messaging and Notifications with SQS and SNS Chapter 6

A Lambda configured to be invoked by an SQS even source should have the
following permissions:

® sgs:GetQueueAttributes
® sgs:ReceiveMessage

® sgs:DeleteMessage

I have also added the send message permissions, as we will be forwarding the
messages to another queue

6. Create the Lambda function, as shown here:

aws lambda create—-function \

—-—function-name lambda-invoke-sgs—event \

—-—runtime java8 \

—--role arn:aws:iam::855923912133:role/lambda-invoke-sgs—event-
role \

——handler
tech.heartin.books. serverlesscookbook.LambdaSgsEventHandler: :handle
Request \

——code S3Bucket=serverless—cookbook, S3Key=lambda-invoke—-sgs—
event-0.0.1-SNAPSHOT. jar \

——environment
Variables={SPC_OUTPUT_QUEUE_URL='https://queue.amazonaws.com/855923
912133/my-output—queue'} \

——timeout 15 \

—--memory-size 512 \

--region us-east-1 \

——profile admin

7. Configure an SQS event source for the Lambda:

aws lambda create—event-source-mapping \

——event-source-arn arn:aws:sgs:us—east-1:855923912133 :my—-input-
queue \

——function-name lambda-invoke-sgs—event \

—-batch-size 4 \

—-profile admin

The batch-size parameter specifies the maximum number of messages to be
retrieved from the queue together

[279]

Messaging and Notifications with SQS and SNS Chapter 6

Testing the Lambda (AWS CLI)

1. Send five messages to the input queue.
2. Verify the invocation by retrieving the message from the queue:
aws sgs receive-message \
——queue-url
https://queue.amazonaws.com/855923912133/my—output—queue \

—-max-number-of-messages 5 \
——profile admin

If successful, you should get zero to five (maximum) messages in a single
receive-message call. You may also check CloudWatch logs and verify the logs
we printed.

How it works...

In summary, we did the following in this recipe:

1. Created a Lambda function to perform the following:
1. Retrieve multiple messages from an input SQS event

2. Batch the messages and send them to an output queue

Created the input and output queues

Created the required policies and attached them to the role
Created the Lambda function specifying the role

Added data into the input queue

o Gk W

Verified data was posted to the queue using the aws sgs receive-
message command on the output queue

There's more...

We created an SQS queue event in this recipe using the aws lambda create-event-
source-mapping command. We can also use this command to define the following event
sources: Kinesis Data Streams and DynamoDB streams.

[280]

Messaging and Notifications with SQS and SNS Chapter 6

AWS supports the following triggers for Lambda:

e S3

¢ DynamoDB

¢ Kinesis Data Streams
¢ SNS

e SES

* SQS

¢ Cognito

¢ CloudFormation

¢ CloudWatch Logs

¢ CloudWatch Events
o CodeCommit

¢ Scheduled Events powered by CloudWatch Events
e AWS Config

o Alexa

o Lex

o API gateway

o AWS IoT Button

e CloudFront

¢ Kinesis Data Firehose

See also

® https://docs.aws.amazon.com/lambda/latest/dg/invoking-lambda-function.
html

Your first SNS topic for email and SMS
(AWS CLI + CloudFormation)

In this recipe, we will create a Simple Notification Service (SNS) topic for both email and
SMS subscriptions. In the real world, you may use this for features such as one time
passwords (OTP). We had already indirectly used SNS when we used SMS verification in
Chapter 4, Application Security with Amazon Cognito.

[281]

https://docs.aws.amazon.com/lambda/latest/dg/invoking-lambda-function.html
https://docs.aws.amazon.com/lambda/latest/dg/invoking-lambda-function.html
https://docs.aws.amazon.com/lambda/latest/dg/invoking-lambda-function.html
https://docs.aws.amazon.com/lambda/latest/dg/invoking-lambda-function.html
https://docs.aws.amazon.com/lambda/latest/dg/invoking-lambda-function.html
https://docs.aws.amazon.com/lambda/latest/dg/invoking-lambda-function.html
https://docs.aws.amazon.com/lambda/latest/dg/invoking-lambda-function.html
https://docs.aws.amazon.com/lambda/latest/dg/invoking-lambda-function.html
https://docs.aws.amazon.com/lambda/latest/dg/invoking-lambda-function.html
https://docs.aws.amazon.com/lambda/latest/dg/invoking-lambda-function.html
https://docs.aws.amazon.com/lambda/latest/dg/invoking-lambda-function.html
https://docs.aws.amazon.com/lambda/latest/dg/invoking-lambda-function.html
https://docs.aws.amazon.com/lambda/latest/dg/invoking-lambda-function.html
https://docs.aws.amazon.com/lambda/latest/dg/invoking-lambda-function.html
https://docs.aws.amazon.com/lambda/latest/dg/invoking-lambda-function.html
https://docs.aws.amazon.com/lambda/latest/dg/invoking-lambda-function.html
https://docs.aws.amazon.com/lambda/latest/dg/invoking-lambda-function.html
https://docs.aws.amazon.com/lambda/latest/dg/invoking-lambda-function.html
https://docs.aws.amazon.com/lambda/latest/dg/invoking-lambda-function.html
https://docs.aws.amazon.com/lambda/latest/dg/invoking-lambda-function.html
https://docs.aws.amazon.com/lambda/latest/dg/invoking-lambda-function.html
https://docs.aws.amazon.com/lambda/latest/dg/invoking-lambda-function.html
https://docs.aws.amazon.com/lambda/latest/dg/invoking-lambda-function.html
https://docs.aws.amazon.com/lambda/latest/dg/invoking-lambda-function.html

Messaging and Notifications with SQS and SNS Chapter 6

Getting ready

The following are the prerequisites for this recipe:

¢ A working phone number and email address.

How to do it...

We will first create an SNS topic and then test email and SMS subscriptions.

Creating an SNS topic

We will create an SNS topic using both CLI commands and a CloudFormation template.

AWS CLI

You can create an SNS topic using the aws sns create-topic command:
aws sns create-topic \

—-name my-first-sns-topic \
——profile admin

If successful, this will return the SNS topic ARN:

"TopicArn": "arn:aws:sns:us—east-1:! }:my—first-sns—topic"

The CloudFormation template

The Resources and Output sections of the template can include following:

Resources:
SNSTopic:
Type: AWS::SNS::Topic
Properties:
DisplayName: 'My first SNS topic'
TopicName: my-first-sns-topic-cf

Output:
SNSTopicARN:

[282]

Messaging and Notifications with SQS and SNS Chapter 6

Value: !Ref SNSTopic

Export:
Name: "SNSTopicARN"
SNSTopicName:
Value: !GetAtt SNSTopic.TopicName
Export:

Name: "SNSTopicName"

You can also specify a list of subscriptions. However, in general practice subscriptions are
added dynamically and hence we will demonstrate them using AWS CLI commands. You
may also include a template format version and a description in the template file.

If the create stack command completes successfully, the stack description command's
output will contain an Output section, as follows:

"OQutputs": [

"OutputKey": "SNSTopicARN",
"QutputValue": "arn:aws:sns:us—east-1: :my-first-sns-topic-cf",
"ExportName": "SNSTopicARN"

"OutputKey": "SNSTopicName",
"OQutputValue": "my-first-sns—topic-cf",
"ExportName": "SNSTopicName"

Creating email and SMS subscriptions (AWS CLI)

We will create both SMS and email subscriptions.

SMS subscription

We can create an SMS subscription, as follows:

aws sns subscribe \
——topic-arn arn:aws:sns:us-east-1:<account id>:my-first-sns-topic \
——protocol sms \
—-notification-endpoint +917411174114 \
——profile admin

[283]

Messaging and Notifications with SQS and SNS Chapter 6

If successful, this will return the Subscription ARN:

"SubscriptionArn": "arn:aws:sns:us—east-1:|NEEEE: ny-first-sns—-topic:2f2934a3-c1f9-4192-9883-5057ed006d52"

Email subscription

You can create an email subscription as follows:

aws sns subscribe \

——topic-arn arn:aws:sns:us-east-1:<account id>:my-first-sns-topic \

—-protocol email \
—-notification-endpoint serverlesscookbook@gmail.com \
—-profile admin

With email, the subscription ARN will not be confirmed until the user validates the
subscription:

"SubscriptionArn": "pending confirmation"

You will now get an email for confirmation of the specified email address:

AWS Notification - Subscription Confirmation inbox

AWS Notifications <no-reply@sns.amazonaws.com>
tome v

You have chosen to subscribe to the topic:
arn:aws:sns:us-east-1: I : y-first-sns-topic

To confirm this subscription, click or visit the link below (If this was in error no action is necessary):
Confirm subscription

4:04 PM

Please do not reply directly to this email. If you wish to remove yourself from receiving all future SNS subscription confirmation requests please send an email to sns-opt-out

[284]

Messaging and Notifications with SQS and SNS Chapter 6

Once you click on Confirm subscription, you will be taken to a confirmation page:

amazon . o)
webservices" Simple Notification Service

Subscription confirmed!

You have subscribed serverlesscookbook@gmail.com to the topic:
t-sns-topic.

Your subscription's id is:
arn:aws:sns:us-east-1: :my-first-sns-topic:8825f7b2-4653-
406f-9b41-£78ead3b39c8

If it was not your intention to subscribe, click here to unsubscribe.

Publishing a message

You can publish a message to the topic as follows:

aws sns publish \

—-—topic—-arn arn:aws:sns:us—east-1l:<account id>:my-first-sns-topic \
—--message "sending message to both mobile and email" \

——profile admin

This will return the message ID in the console immediately. Actual delivery of the message
to subscribers may take some time.

The email message received will look as shown here. Similarly, you will also get an SMS:

AWS Notifications <no-reply@sns.amazonaws.com> 4:13 PM (6 minutes ago)

tome v

sending message to both mobile and email

If you wish to stop receiving notifications from this topic, please click or visit the link below to unsubscribe:
https://sns.us-east-1.amazonaws.com/unsubscribe.html?SubscriptionArn=arn:aws:sns:us-east-1
f78ead3b39c8&Endpoint=serverlesscookbook@gmail.com

Emy-first-sns-topic:8825f7b2-4653-406f-9b41-

Please do not reply directly to this email. If you have any questions or comments regarding this email, please contact us at https://aws.amazon.com/support

[285]

Messaging and Notifications with SQS and SNS Chapter 6

How it works...

In summary, we did the following in this recipe:

Created an SNS topic using AWS CLI command
Created an SNS topic with a CloudFormation template
Created an SMS subscription

Created an email subscription

S e

Published a message to the topic

There's more...

We saw how to send an SMS and email to subscribers using SNS. SNS may be also used to
fanout messages to a large number of subscribers by using SQS queues, AWS Lambda
functions, and HTTP/S webhooks. We will see the fanout pattern with SNS and SQS in
Chapter 9, Serverless Architecture Patterns and Practices.

See also

® https://docs.aws.amazon.com/cli/latest/reference/sns/index.html

® https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws—
properties-sns—-topic.html

Publishing to an SNS topic with SDK (Java)

In the previous recipe, we saw how to create an SNS topic, subscribe to that topic, and
publish messages from AWS CLI. In this recipe, we will see how to publish a message to an
SNS topic from Java Lambda code using the AWS Java SDK.

[286]

https://docs.aws.amazon.com/cli/latest/reference/sns/index.html
https://docs.aws.amazon.com/cli/latest/reference/sns/index.html
https://docs.aws.amazon.com/cli/latest/reference/sns/index.html
https://docs.aws.amazon.com/cli/latest/reference/sns/index.html
https://docs.aws.amazon.com/cli/latest/reference/sns/index.html
https://docs.aws.amazon.com/cli/latest/reference/sns/index.html
https://docs.aws.amazon.com/cli/latest/reference/sns/index.html
https://docs.aws.amazon.com/cli/latest/reference/sns/index.html
https://docs.aws.amazon.com/cli/latest/reference/sns/index.html
https://docs.aws.amazon.com/cli/latest/reference/sns/index.html
https://docs.aws.amazon.com/cli/latest/reference/sns/index.html
https://docs.aws.amazon.com/cli/latest/reference/sns/index.html
https://docs.aws.amazon.com/cli/latest/reference/sns/index.html
https://docs.aws.amazon.com/cli/latest/reference/sns/index.html
https://docs.aws.amazon.com/cli/latest/reference/sns/index.html
https://docs.aws.amazon.com/cli/latest/reference/sns/index.html
https://docs.aws.amazon.com/cli/latest/reference/sns/index.html
https://docs.aws.amazon.com/cli/latest/reference/sns/index.html
https://docs.aws.amazon.com/cli/latest/reference/sns/index.html
https://docs.aws.amazon.com/cli/latest/reference/sns/index.html
https://docs.aws.amazon.com/cli/latest/reference/sns/index.html
https://docs.aws.amazon.com/cli/latest/reference/sns/index.html
https://docs.aws.amazon.com/cli/latest/reference/sns/index.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sns-topic.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sns-topic.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sns-topic.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sns-topic.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sns-topic.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sns-topic.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sns-topic.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sns-topic.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sns-topic.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sns-topic.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sns-topic.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sns-topic.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sns-topic.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sns-topic.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sns-topic.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sns-topic.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sns-topic.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sns-topic.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sns-topic.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sns-topic.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sns-topic.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sns-topic.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sns-topic.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sns-topic.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sns-topic.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sns-topic.html

Messaging and Notifications with SQS and SNS Chapter 6

Getting ready

The following are the prerequisites for this recipe:

* You need to follow the section Getting started in the recipes Your first AWS
Lambda and Your first Lambda with AWS CLI from Chapter 1, Getting Started with
Serverless Computing on AWS to set up Java, Maven, the parent
project, serverless-cookbook-parent-aws-java and AWS CLI, and may
also read other notes there including code usage guidelines, S3 bucket creation
and notes for the Windows users.

¢ You should have already created the SNS topic and subscriptions as discussed in
the Your first SNS topic for email and SMS recipe.

How to do it...

We will first create our Java Lambda. We will then provision it and test it from AWS CLI.

Lambda project code (Java)

In this recipe, we will write our logic within the Lambda handler itself
without any service classes. I generally tend to create service classes as I
primarily come from an enterprise Java development background. This is,
however, not a requirement for Lambdas, and in many cases it might be
better to simply code the logic within the Lambda handler itself. You can
follow whatever approach you feel comfortable with. There might be also
a preferred approach for most teams.

The Maven pom. xm1 file of the project should also define the following dependency:

<dependency>
<groupId>com.amazonaws</groupld>
<artifactId>aws-java-sdk-sns</artifactId>
<version>${aws.sdk.version}</version>
</dependency>

[287]

Messaging and Notifications with SQS and SNS Chapter 6

We can create the Java Lambda project with the following structure:

v src
v main
v java
\4 tech.heartin.books.serverlesscookbook

A 4 domain

The Request . java class will correspond to our input JSON:

@Data

public class Request {
private String topicArn;
private String message;

}
There is no Response object as we are simply returning a String value as response.

LambdaSnsPublishHandler. java is our Lambda handler class, where we initialize the
SNS client and publish the message.

We can initialize the SNS client as follows:

private final AmazonSNS snsClient;
public LambdaSnsPublishHandler () {
this.snsClient = AmazonSNSClientBuilder.standard()
.withRegion (System.getenv ("AWS_REGION"))
Jbuild();
}

We can then publish the message directly from the handler:

public String handleRequest (final Request request, final Context context) {
final PublishResult result;
try {
PublishRequest publishRequest = new
PublishRequest (request.getTopicArn (), request.getMessage());
result = snsClient.publish (publishRequest);
} catch (Exception e) {
return "Exception occurred: " + e.getMessage();

[288]

Messaging and Notifications with SQS and SNS Chapter 6

return "Message Id: " + result.getMessageld();

Provisioning and testing the Lambda (AWS CLI)

Follow these steps to deploy and invoke the Lambda. You may follow chapter 1, Getting
Started with Serverless Computing on AWS and use CloudFormation for Lambda

provisioning:

1. Runmvn clean package from inside the Lambda project root folder to create
the Uber JAR.
2. Upload the Uber JAR to s3:

aws s3 cp \
target/lambda-sns-publish-with-sdk-0.0.1-SNAPSHOT. jar \
s3://serverless—cookbook/lambda-sns—-publish-with-sdk-0.0.1-
SNAPSHOT. jar \
——profile admin

3. Create a role for the Lambda with an appropriate trust relationship definition:

aws iam create-role \
—--role-name lambda-sns-publish-with-sdk-role \
——-assume-role-policy-document file://iam-role-trust-
relationship.txt \
——profile admin

Refer to the previous recipes or the code files for the trust relationship document
file, iam-role-trust-relationship.txt.

4. Create a policy for basic logging permissions and attach it to the role.
5. Create a policy for required SNS permissions and attach it to the role.

The policy document with required SNS permissions is shown as follows:

{
"Version":"2012-10-17",
"Statement": [
{
"Effect":"Allow",
"Action": [
"sns:Publish"
] 14
"Resource": [
"arn:aws:sns:*¥:xx"

[289]

Messaging and Notifications with SQS and SNS Chapter 6

3
6. Create the Lambda function, as shown here:

aws lambda create-function \

——function-name lambda-sns-publish-with-sdk \

——runtime java8 \

——role arn:aws:iam::855923912133:role/lambda-sns—publish-with-
sdk-role \

——handler
tech.heartin.books.serverlesscookbook.LambdaSnsPublishHandler: :hand
leRequest \

——code S3Bucket=serverless—-cookbook, S3Key=lambda-sns—publish-
with-sdk-0.0.1-SNAPSHOT. jar \

——timeout 15 \

—--memory-size 512 \

—--region us-east-1 \

——profile admin

7. You can invoke the Lambda as follows:

aws lambda invoke \
——invocation-type RequestResponse \
——function-name lambda-sns-publish-with-sdk \
--log-type Tail \
—--payload file://payload.json \
--region us-east-1 \
—-profile admin \
outputfile.txt

The payload. json file has the following contents:

{

"topicArn" : "arn:aws:sns:us—-east-l:<account id>:my-first-sns-
topic",
"message": "test payload 1"

}

If successful, you will get notifications to the configured email and SMS.

[290]

Messaging and Notifications with SQS and SNS Chapter 6

How it works...

In summary, we did the following in this recipe:

1. Created a Java Lambda to publish messages to a topic
2. Provisioned it and tested it from AWS CLI

There's more...

This was a small recipe to demonstrate the use of SNS Java SDK within a Lambda. You can
extend it with additional functionality as per your requirements.

See also

® https://docs.aws.amazon.com/sns/latest/dg/using-awssdkjava.html

Invoking a Lambda with SNS events (Java)

In a previous recipe, we invoked a Lambda with a trigger from an SQS event source, and
we configured SQS as an event source for the Lambda. With SNS, instead of defining an
event source, Lambda has to subscribe to an SNS topic. Lambda will write the message
received from the SNS topic into another queue, and we will verify the output queue after
publishing messages to the topic.

Getting ready

You need to follow the section Getting started in the recipes Your first AWS Lambda and Your
first Lambda with AWS CLI from Chapter 1, Getting Started with Serverless Computing on

AWS to set up Java, Maven, the parent project, serverless-cookbook-parent-aws-
java and AWS CLI, and may also read other notes there including code usage guidelines,
S3 bucket creation and notes for the Windows users.

[291]

https://docs.aws.amazon.com/sns/latest/dg/using-awssdkjava.html
https://docs.aws.amazon.com/sns/latest/dg/using-awssdkjava.html
https://docs.aws.amazon.com/sns/latest/dg/using-awssdkjava.html
https://docs.aws.amazon.com/sns/latest/dg/using-awssdkjava.html
https://docs.aws.amazon.com/sns/latest/dg/using-awssdkjava.html
https://docs.aws.amazon.com/sns/latest/dg/using-awssdkjava.html
https://docs.aws.amazon.com/sns/latest/dg/using-awssdkjava.html
https://docs.aws.amazon.com/sns/latest/dg/using-awssdkjava.html
https://docs.aws.amazon.com/sns/latest/dg/using-awssdkjava.html
https://docs.aws.amazon.com/sns/latest/dg/using-awssdkjava.html
https://docs.aws.amazon.com/sns/latest/dg/using-awssdkjava.html
https://docs.aws.amazon.com/sns/latest/dg/using-awssdkjava.html
https://docs.aws.amazon.com/sns/latest/dg/using-awssdkjava.html
https://docs.aws.amazon.com/sns/latest/dg/using-awssdkjava.html
https://docs.aws.amazon.com/sns/latest/dg/using-awssdkjava.html
https://docs.aws.amazon.com/sns/latest/dg/using-awssdkjava.html
https://docs.aws.amazon.com/sns/latest/dg/using-awssdkjava.html
https://docs.aws.amazon.com/sns/latest/dg/using-awssdkjava.html
https://docs.aws.amazon.com/sns/latest/dg/using-awssdkjava.html
https://docs.aws.amazon.com/sns/latest/dg/using-awssdkjava.html
https://docs.aws.amazon.com/sns/latest/dg/using-awssdkjava.html
https://docs.aws.amazon.com/sns/latest/dg/using-awssdkjava.html
https://docs.aws.amazon.com/sns/latest/dg/using-awssdkjava.html

Messaging and Notifications with SQS and SNS Chapter 6

How to do it...

We will first create our Java Lambda. We will deploy the Lambda, subscribe the Lambda to
the SNS topic, and test it from CLL

Lambda project code (Java)
The Maven pom. xm1 file of the project should also define the following dependency:

<dependency>
<groupId>com.amazonaws</groupld>
<artifactId>aws-java-sdk-sqgs</artifactId>
<version>${aws.sdk.version}</version>
</dependency>

We can create a Java Lambda project with the following structure:

v src
v main
v java
v tech.heartin.books.serverlesscookbook

v services

Note that we do not have request and response domain objects, as AWS will be invoking
the Lambda and passing a predefined event object based on a trigger we configure.

SnsService. java is the interface for our service class. This is not a requirement—you can
directly use the implementation class or even embed all logic within Lambda handler class
itself:
public interface SnsService {
Boolean processEvent (SNSEvent event, String outputQueueURL,

LambdalLogger logger);
}

SgsServiceImpl.java is the actual service implementation.

[292]

Messaging and Notifications with SQS and SNS Chapter 6

We can retrieve messages from the input SNSEvent and create a collection of
SendMessageBatchRequestEntry Objectsz

Collection<SendMessageBatchRequestEntry> entries = new ArrayList<>();

int idval = 1;
for (SNSRecord r : event.getRecords()) A
logger.log ("Adding message: " + r.getSNS().getMessage());
entries.add(new SendMessageBatchRequestEntry ("id_" + idval,
r.getSNS () .getMessage ()));
idval++;
}

We can create and send a batch request to the output queue, as follows:

final SendMessageBatchRequest sendBatchRequest = new
SendMessageBatchRequest ()

.withQueueUrl (outputQueueURL)

.withEntries (entries);
this.sgsClient.sendMessageBatch (sendBatchRequest) ;

LambdaSnsEventHandler. java is our Lambda handler class where we initialize the SQS
client and pass it to the service class along with the SNSEvent we received.

We can initialize the SQS Client as follows:

private final AmazonSQS sgsClient;

public LambdaSnsEventHandler () A
this.sgsClient = AmazonSQSClientBuilder.standard()
.withRegion (System.getenv ("AWS_REGION"))
Lbuild();
}

We then invoke the service method, passing the client along with the SNSEvent object:

public Boolean handleRequest (final SNSEvent snsEvent, final Context
context) {

context.getLogger () .log("Received SQS event: " + snsEvent);
final SnsService snsService = new SnsServicelImpl (this.sgsClient);
return snsService.processEvent (snsEvent,

System.getenv ("SPC_OUTPUT_QUEUE_URL"), context.getLogger());

}

We will use an environment variable to specify the name of the output queue.

[293]

Messaging and Notifications with SQS and SNS Chapter 6

Provisioning the Lambda (AWS CLI)

Follow these steps to deploy and invoke the Lambda:

1. Runmvn clean package from inside the Lambda project root folder to create
the Uber JAR.
2. Upload the Uber JAR to s3:

aws s3 cp \
target/lambda-invoke-sns—event—-0.0.1-SNAPSHOT. jar \
s3://serverless—cookbook/lambda-invoke-sns-event-0.0.1-
SNAPSHOT. jar \
——profile admin

3. Create a role for the Lambda with an appropriate trust relationship definition:

aws iam create-role \
—-role—-name lambda-invoke-sns—-event-role \
——-assume-role-policy-document file://iam-role-trust-
relationship.txt \
——profile admin

The trust document, iam-role-trust-relationship.txt, is defined in
previous recipes. You can also refer to the code files.

4. Create a policy for basic logging permissions and attach it to the role.
5. Create a policy for required SQS permissions and attach it to the role.

The policy document with required SQS permissions is shown here:

{
"Version":"2012-10-17",
"Statement": [
{
"Effect":"Allow",
"Action": [
"sgs:SendMessage",
"sgs:SendMessageBatch"
J 14
"Resource": [
"arn:aws:sqgs:*:* "

]

[294]

Messaging and Notifications with SQS and SNS Chapter 6

These permissions are required since we are writing the messages received to the
queue again, however if you are not using a queue, you will not need it.

6. Create the Lambda function as shown here:

aws lambda create-function \

——function-name lambda-invoke-sns—event \

——runtime java8 \

—-role arn:aws:iam::<account id>:role/lambda-invoke-sns—-event-
role \

——handler
tech.heartin.books.serverlesscookbook.LambdaSnsEventHandler: :handle
Request \

——code S3Bucket=serverless—cookbook, S3Key=lambda-invoke-sns-
event—-0.0.1-SNAPSHOT. jar \

——environment
Variables={SPC_OUTPUT_QUEUE_URL='https://queue.amazonaws.com/855923
912133 /my-output—queue'} \

——timeout 15 \

—-memory-size 512 \

—--region us-east-1 \

——profile admin

7. Subscribe the Lambda to the queue:

aws sns subscribe —--topic—-arn arn:aws:sns:us—east-1:<account
id>:lambda-invoke-sns-topic \

—-protocol lambda \

—-notification—-endpoint arn:aws:lambda:us-east-1:<account
id>: function:lambda-invoke-sns—event \

——profile admin

Testing the Lambda (AWS CLI)

We will now test the Lambda created in the previous section:

1. Send a messages to the topic.
2. Verify the invocation by retrieving the message from the output queue:

aws sgs receive-message \

—-—queue-url https://queue.amazonaws.com/<account id>/my-output-
queue \

—--max-number-of-messages 5 \

—-profile admin

[295]

Messaging and Notifications with SQS and SNS Chapter 6

If successful, you should get the message that you posted to the topic. You can
also verify the invocation details from CloudWatch logs.

How it works...

In summary, we did the following in this recipe:

1. Created a Lambda function to perform the following:
1. Retrieve messages from an input SNS event

2. Batch the messages and send them to an output queue

Created the required policies and attached them to the role
Created the Lambda function, specifying the role
Added data into the topic

Verified that data was posted to the queue using the aws sgs receive-
message command on the output queue

SN

There's more...

We read a message from the topic and wrote it to an SQS queue. We can also configure an
SQS queue with an SNS topic. One pattern that uses this combination is usually referred to
as the fanout pattern. SNS can fanout messages to various SQS queues for various reasons,
including parallel processing.

See also

® https://aws.amazon.com/blogs/compute/messaging-fanout-pattern-for-
serverless—architectures-using—-amazon-sns/

[296]

https://aws.amazon.com/blogs/compute/messaging-fanout-pattern-for-serverless-architectures-using-amazon-sns/
https://aws.amazon.com/blogs/compute/messaging-fanout-pattern-for-serverless-architectures-using-amazon-sns/
https://aws.amazon.com/blogs/compute/messaging-fanout-pattern-for-serverless-architectures-using-amazon-sns/
https://aws.amazon.com/blogs/compute/messaging-fanout-pattern-for-serverless-architectures-using-amazon-sns/
https://aws.amazon.com/blogs/compute/messaging-fanout-pattern-for-serverless-architectures-using-amazon-sns/
https://aws.amazon.com/blogs/compute/messaging-fanout-pattern-for-serverless-architectures-using-amazon-sns/
https://aws.amazon.com/blogs/compute/messaging-fanout-pattern-for-serverless-architectures-using-amazon-sns/
https://aws.amazon.com/blogs/compute/messaging-fanout-pattern-for-serverless-architectures-using-amazon-sns/
https://aws.amazon.com/blogs/compute/messaging-fanout-pattern-for-serverless-architectures-using-amazon-sns/
https://aws.amazon.com/blogs/compute/messaging-fanout-pattern-for-serverless-architectures-using-amazon-sns/
https://aws.amazon.com/blogs/compute/messaging-fanout-pattern-for-serverless-architectures-using-amazon-sns/
https://aws.amazon.com/blogs/compute/messaging-fanout-pattern-for-serverless-architectures-using-amazon-sns/
https://aws.amazon.com/blogs/compute/messaging-fanout-pattern-for-serverless-architectures-using-amazon-sns/
https://aws.amazon.com/blogs/compute/messaging-fanout-pattern-for-serverless-architectures-using-amazon-sns/
https://aws.amazon.com/blogs/compute/messaging-fanout-pattern-for-serverless-architectures-using-amazon-sns/
https://aws.amazon.com/blogs/compute/messaging-fanout-pattern-for-serverless-architectures-using-amazon-sns/
https://aws.amazon.com/blogs/compute/messaging-fanout-pattern-for-serverless-architectures-using-amazon-sns/
https://aws.amazon.com/blogs/compute/messaging-fanout-pattern-for-serverless-architectures-using-amazon-sns/
https://aws.amazon.com/blogs/compute/messaging-fanout-pattern-for-serverless-architectures-using-amazon-sns/
https://aws.amazon.com/blogs/compute/messaging-fanout-pattern-for-serverless-architectures-using-amazon-sns/
https://aws.amazon.com/blogs/compute/messaging-fanout-pattern-for-serverless-architectures-using-amazon-sns/
https://aws.amazon.com/blogs/compute/messaging-fanout-pattern-for-serverless-architectures-using-amazon-sns/
https://aws.amazon.com/blogs/compute/messaging-fanout-pattern-for-serverless-architectures-using-amazon-sns/
https://aws.amazon.com/blogs/compute/messaging-fanout-pattern-for-serverless-architectures-using-amazon-sns/
https://aws.amazon.com/blogs/compute/messaging-fanout-pattern-for-serverless-architectures-using-amazon-sns/
https://aws.amazon.com/blogs/compute/messaging-fanout-pattern-for-serverless-architectures-using-amazon-sns/
https://aws.amazon.com/blogs/compute/messaging-fanout-pattern-for-serverless-architectures-using-amazon-sns/
https://aws.amazon.com/blogs/compute/messaging-fanout-pattern-for-serverless-architectures-using-amazon-sns/
https://aws.amazon.com/blogs/compute/messaging-fanout-pattern-for-serverless-architectures-using-amazon-sns/
https://aws.amazon.com/blogs/compute/messaging-fanout-pattern-for-serverless-architectures-using-amazon-sns/
https://aws.amazon.com/blogs/compute/messaging-fanout-pattern-for-serverless-architectures-using-amazon-sns/

Redshift, Amazon ML, and
Alexa SKills

This chapter will cover the following topics:

¢ Your first Kinesis data stream (KDS): AWS Command Line Interface (CLI)
Writing data into KDS with SDK (Java)

Invoking Lambda with a Kinesis event (Java)

Using Amazon ML for binary classification (AWS CLI)

Building and testing an Alexa skill (Java for Lambda, CLI for Alexa skills)

Introduction

In this chapter, I will introduce you to some services that can help you to perform analytics
and Natural Language Processing (NLP) on the AWS cloud, such as Amazon KDS, the
Amazon Machine Learning (ML) service, and the Alexa Skills Kit. KDS is primarily used
for building data pipelines for big data applications. We will also look at a basic recipe each
for the ML service and the Alexa Skills Kit. To learn more about these services, you can
refer to any Packt book on data analytics, ML, and NLP.

You will require the following skill sets to complete the recipes in this chapter:

¢ Knowledge of how to work on AWS account

e Knowledge of how to configure AWS CLI, as discussed in the Your first Lambda
with AWS CLI recipe in Chapter 1, Getting Started with Serverless Computing on
AWS

¢ A basic understanding of data analytics, ML, and NLP concepts

Redshift, Amazon ML, and Alexa Skills Chapter 7

may be eligible for free use. Please refer to AWS Free Tier

Keep in mind that not all services and features discussed in this chapter
0 documentation for details.

Your first Kinesis data stream (AWS CLlI)

In the previous chapter, we learned how we can use SQS for messaging. SQS is good for
standard data transfer (messaging) within serverless microservice applications; however,
applications that work on big data and data analytics demand more. KDS is a highly
scalable data streaming service that is used for such use cases.

KDS consists of an ordered sequence of data records. A stream is composed of multiple
shards with different unique sequences of data records. A partition key is used to group
data into shards. In the following recipe, we will create a simple KDS, put data into the
stream, and retrieve data from the stream, all using AWS CLIL

Getting ready

There are no additional prerequisites for completing this recipe other than the common
requirements specified in this chapter's introduction.

How to do it...
We will first create the KDS and later test it using AWS CLI commands.

Step 1 - Creating a Kinesis data stream
We will create the KDS using both AWS CLI commands and the CloudFormation template.

Using AWS CLI
We can create a KDS from the AWS CLI as follows:

aws kinesis create-stream \
——stream—-name my-first-kinesis-stream \
——shard-count 1 \
——profile admin

[298]

Redshift, Amazon ML, and Alexa Skills Chapter 7

This command will not return anything. You may use the aws kinesis describe-
stream command to get the details of the stream:

aws kinesis describe-stream \
——-stream-name my-first-kinesis-stream \
——profile admin

If stream creation happened successfully, you should see the St reamStatus as ACTIVE, as
shown in the following screenshot:

"StreamDescription": {
“Shards": [
{

"ShardId": "shardId-000000000000",

"HashKeyRange": {
"StartingHashKey": "@",
"EndingHashKey": "340282366920938463463374607431768211455"

e

"SequenceNumberRange": {
"StartingSequenceNumber": "49591020492899070200777637844347017508350464223327813634"

]'

"StreamARN": "arn:aws:kinesis:us—east—1: R : strecam/my-first—kinesis-stream",
"StreamName": "my-first-kinesis-stream",
"StreamStatus": "ACTIVE",
"RetentionPeriodHou 24,
"EnhancedMonitoring": [
{

"ShardLeveWMetrics": []

1,

"EncryptionType": "NONE",

"KeyId": null,
"StreamCreationTimestamp": 1544688253.0

You can also list the streams available using aws kinesis list-streams, as shownin
the following code:

aws kinesis list-streams \
——profile admin

[299]

Redshift, Amazon ML, and Alexa Skills Chapter 7

This should return the following response in our case (assuming you have only one
stream):

"StreamNames": [

"my-first-kinesis-stream"

Using the CloudFormation template

You can create a CloudFormation template file with the following Resource and Outputs
sections to create a simple KDS:

Resources:
KinesisStream:
Type: AWS::Kinesis::Stream
Properties:
Name: my-first-kinesis-stream
RetentionPeriodHours: 24
ShardCount: 1

Outputs:
KinesisStreamId:
Value: !'Ref KinesisStream
Export:

Name: "KinesisStreamId"
KinesisStreamArn:

Value: !GetAtt KinesisStream.Arn
Export:
Name: "KinesisStreamArn"

You may also add a template version and description to the top of the template file and
then execute the stack using the aws cloudformation create-stack command. The
complete commands and the template are available with the code files.

If successful, the describe-stacks subcommand should return with an Outputs section,
as shown in the following screenshot:

[300]

Redshift, Amazon ML, and Alexa Skills Chapter 7

"Outputs": [

"OutputKey": "KinesisStreamId",
"OQutputValue": "my-first-kinesis-stream",
"ExportName": "KinesisStreamId"

"OQutputKey": "KinesisStreamArn",
"OutputValue": "arn:aws:kinesis:us-east-1:|J B : stream/my-first—kinesis-stream",
"ExportName": "KinesisStreamArn"

Step 2 - Adding and retrieving data

You can add data to a KDS from the CLI using the aws kinesis put-record command,
as follows:

aws kinesis put-record \
——stream-name my-first-kinesis-stream \
——partition-key 12345 \
—-—data sampledataOl \
——profile admin

This will return the shard ID and the sequence number of the record, as shown in the
following screenshot:

"ShardId": "shardId-000000000000",

"SequenceNumber": "49591020492899070200777638182537970916445021654921248770"

Similarly, you can add one more data item with a payload of sampledata02.
Retrieving data from a KDS is a two-step process:

1. Get the shard iterator:

aws kinesis get-shard-iterator \
—-shard-id shardId-000000000000 \
—--shard-iterator-type TRIM_HORIZON \
—-—-stream-name my-first-kinesis-stream \
——profile admin

[301]

Redshift, Amazon ML, and Alexa Skills Chapter 7

This will return the following response:

"ShardIterator": "AAAAAAAAAAEKqdNGz2fHKqvpf+q3Pjq/SAwh8sjh4o+ix88hW33Rdqv2SBbN3QTWzSZwjZNOnJkH1IWAhb7BbI

Kfqc7ic0ZaxfklnPdhanUDV/BpCoHqRktV3uso67gTB+A8k20cYVBIwm65hgnu99nR5Xy j PYSUKQ=="
}

2. Invoke the aws kinesis get-records command to pass the shard iterator, as
shown in the following code:

aws kinesis get-records \
—-shard-iterator <shard-iterator-value> \
——profile admin

Use the shard iterator value from the previous step. This should give the
following response:

"Records": [
{
"'SequenceNumber": "49591022060730660638274567187983948851027405480717713410",
"ApproximateArrivalTimestamp": 1544692680.484,
"Data": "c2FtcGx1ZGFAYTAX",
"PartitionKey": '"12345"

"'SequenceNumber": '"49591022060730660638274567188104841432988868741785714690",
"ApproximateArrivalTimestamp": 1544692685.119,

"Data": "c2FtcGx1ZGFOYTAy",

"PartitionKey": "12345"

1,

"NextShardIterator": "AAAAAAAAAAGIUFMLygkIgvtDwjxqIjrvPRtHamPrkVePUh8QYx+wfeynNjkOR3VxnW6/TlcLgQjEHa0
I4ZXe3N1lhHaiwj@oCUv7 12wpNdfqh9zBX8/FVT50XBRF8QIDCOcbIrIsJ6yCFTELhywPGSiVPvzAV2bQ==",

"MillisBehindLatest": 1032000

The TRIM_HORIZON option return records from the oldest record. If you try to use
the get -records command with the next shard iterator returned by this
command, you will not get any records as it has retrieved all of the records
already.

[302]

Redshift, Amazon ML, and Alexa Skills Chapter 7

The data in the response is Base64 encoded, and so needs to be decoded. You can
do a quick Google search to find an online decoder, or if you are using a Mac or a
similar OS, you can also use the following command to decode the Base64-
encoded string;:

$ echo c2FtcGx1ZGFOYTAx | base64 ——decode
sampledata@l$

$ echo c2FtcGx1ZGFOYTAy | base64 ——decode
sampledatad2$

How it works...

In summary, we did the following in this recipe:

1. Created a KDS using AWS CLI commands and the CloudFormation template
2. Added two data records into the stream

3. Retrieved the stream iterator with the shard iterator type as TRIM_HORIZON
4. Retrieved the data records, passing the shard iterator value

You can add data to a KDS from the CLI using the aws kinesis put-record command,
specifying the stream name and a partition key. The partition key determines which shard a
given data record belongs to. A stream is composed of many shards and each shard has a
fixed capacity. Based on the data rate capacity requirements, you can increase or decrease
the number of shards.

The following are some of the limitations of a Kinesis shard:

e Five transactions per second for reads
e Total data read rate of 2 MBps

¢ 1,000 records per second for writes

e Data write rate of 1 MBps

Unlike adding records, retrieving records from a Kinesis stream is a two-step process:

1. You first need to retrieve the shard iterator, passing the stream name, the shard
ID, and the shard iterator type.

2. Then you need to retrieve data records using the shard iterator. The shard
iterator type determines how the shard iterator is used to start reading data
records from the shard.

[303]

Redshift, Amazon ML, and Alexa Skills Chapter 7

Let's look at the different shard types in detail.

Kinesis shard iterator types

You can specify one of the following shard iterator type values while retrieving the shard

iterator value:

e AT_SEQUENCE_NUMBER: Use this to read from the position specified by the
sequence number, as follows:

aws

kinesis get-shard-iterator \

—-shard-id shardId-000000000000 \
—-shard-iterator-type AT_SEQUENCE_NUMBER \
—-starting-sequence—number

49591022060730660638274567187983948851027405480717713410 \

—-stream-name my-first-kinesis-stream \
——profile admin

I have specified the sequence number of record 1. Here, the get-records
command will return both records 1 and 2.

e AFTER_

SEQUENCE_NUMBER: Use this to read after the position specified by the

sequence number, as follows:

aws

kinesis get-shard-iterator \

—-shard-id shardId-000000000000 \
—-shard-iterator-type AFTER_SEQUENCE_NUMBER \
——-starting-sequence—number

49591022060730660638274567187983948851027405480717713410 \

——-stream-name my-first-kinesis-stream \
——profile admin

I have again specified the sequence number of record 1, however, here the get -
records command will return only record 2.

e AT_TIMESTAMP: Use this to read from the specified timestamp, as follows:

aws

kinesis get-shard-iterator \
—-shard-id shardId-000000000000 \
—-shard-iterator-type AT_TIMESTAMP \
——timestamp 1544692680.484 \
——-stream-name my-first-kinesis-stream \
——profile admin

[304]

Redshift, Amazon ML, and Alexa Skills Chapter 7

Provided the timestamp matches the first record, the get-records
command will return both the records.

e TRIM_HORIZON: Use this to return records from the oldest record after the last
commit. We already looked at how to use this in this recipe.

e LATEST: Use this to return the latest records that were added after the shard
iterator was generated.

Let's look at how to use these types:

1. We will first get the shard iterator that specifies the shard iterator type as
LATEST:

aws kinesis get-shard-iterator \
—-shard-id shardId-000000000000 \
—-shard-iterator-type LATEST \
——-stream-name my-first-kinesis-stream \
——profile admin

2. Note down the iterator value and add a new record, as shown in the following
code:

aws kinesis put-record \
—-—-stream-name my-first-kinesis-stream \
——partition-key 12345 \
—--data sampledata03 \
——profile admin

3. Invoke the aws kinesis get-records command, passing the shard iterator
received in step 1:

aws kinesis get-records \
—-shard-iterator <shard-iterator-value> \
——profile admin

This will return only the latest record that was added after the shard iterator was
created, which is sampledata03 (but encoded as before).

For more details, refer to the get-shard-iterator documentation reference link provided in the
See also section.

[305]

Redshift, Amazon ML, and Alexa Skills Chapter 7

There's more...

You can also add encryption to the stream by using the AWS Key Management Service
(KMS).

If you exceed the limits when calling the Get ShardIterator requests, it will throw
aProvisionedThroughputExceededException. For KDS limits, refer to the service-sizes-
and-limits documentation reference link limits in the See also section.

See also

® https://docs.aws.amazon.com/streams/latest/dev/key-concepts.html

® https://docs.aws.amazon.com/cli/latest/reference/kinesis/get—-shard-
iterator.html

® https://docs.aws.amazon.com/streams/latest/dev/service-sizes—and-
limits.html

® https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws—
properties-kinesis-stream-streamencryption.html

Writing data into Kinesis Stream with SDK
(Java)

In this recipe, we will develop an AWS Lambda function that write to KDS using AWS Java
SDK for Kinesis. Kinesis producers may also be developed using the Kinesis Producer
Library (KPL); this is the more common option for non-serverless applications. However,
with AWS Lambda, SDK-based code is generally preferred as we will be

using less libraries.

[306]

https://docs.aws.amazon.com/streams/latest/dev/key-concepts.html
https://docs.aws.amazon.com/streams/latest/dev/key-concepts.html
https://docs.aws.amazon.com/streams/latest/dev/key-concepts.html
https://docs.aws.amazon.com/streams/latest/dev/key-concepts.html
https://docs.aws.amazon.com/streams/latest/dev/key-concepts.html
https://docs.aws.amazon.com/streams/latest/dev/key-concepts.html
https://docs.aws.amazon.com/streams/latest/dev/key-concepts.html
https://docs.aws.amazon.com/streams/latest/dev/key-concepts.html
https://docs.aws.amazon.com/streams/latest/dev/key-concepts.html
https://docs.aws.amazon.com/streams/latest/dev/key-concepts.html
https://docs.aws.amazon.com/streams/latest/dev/key-concepts.html
https://docs.aws.amazon.com/streams/latest/dev/key-concepts.html
https://docs.aws.amazon.com/streams/latest/dev/key-concepts.html
https://docs.aws.amazon.com/streams/latest/dev/key-concepts.html
https://docs.aws.amazon.com/streams/latest/dev/key-concepts.html
https://docs.aws.amazon.com/streams/latest/dev/key-concepts.html
https://docs.aws.amazon.com/streams/latest/dev/key-concepts.html
https://docs.aws.amazon.com/streams/latest/dev/key-concepts.html
https://docs.aws.amazon.com/streams/latest/dev/key-concepts.html
https://docs.aws.amazon.com/streams/latest/dev/key-concepts.html
https://docs.aws.amazon.com/streams/latest/dev/key-concepts.html
https://docs.aws.amazon.com/streams/latest/dev/key-concepts.html
https://docs.aws.amazon.com/streams/latest/dev/key-concepts.html
https://docs.aws.amazon.com/cli/latest/reference/kinesis/get-shard-iterator.html
https://docs.aws.amazon.com/cli/latest/reference/kinesis/get-shard-iterator.html
https://docs.aws.amazon.com/cli/latest/reference/kinesis/get-shard-iterator.html
https://docs.aws.amazon.com/cli/latest/reference/kinesis/get-shard-iterator.html
https://docs.aws.amazon.com/cli/latest/reference/kinesis/get-shard-iterator.html
https://docs.aws.amazon.com/cli/latest/reference/kinesis/get-shard-iterator.html
https://docs.aws.amazon.com/cli/latest/reference/kinesis/get-shard-iterator.html
https://docs.aws.amazon.com/cli/latest/reference/kinesis/get-shard-iterator.html
https://docs.aws.amazon.com/cli/latest/reference/kinesis/get-shard-iterator.html
https://docs.aws.amazon.com/cli/latest/reference/kinesis/get-shard-iterator.html
https://docs.aws.amazon.com/cli/latest/reference/kinesis/get-shard-iterator.html
https://docs.aws.amazon.com/cli/latest/reference/kinesis/get-shard-iterator.html
https://docs.aws.amazon.com/cli/latest/reference/kinesis/get-shard-iterator.html
https://docs.aws.amazon.com/cli/latest/reference/kinesis/get-shard-iterator.html
https://docs.aws.amazon.com/cli/latest/reference/kinesis/get-shard-iterator.html
https://docs.aws.amazon.com/cli/latest/reference/kinesis/get-shard-iterator.html
https://docs.aws.amazon.com/cli/latest/reference/kinesis/get-shard-iterator.html
https://docs.aws.amazon.com/cli/latest/reference/kinesis/get-shard-iterator.html
https://docs.aws.amazon.com/cli/latest/reference/kinesis/get-shard-iterator.html
https://docs.aws.amazon.com/cli/latest/reference/kinesis/get-shard-iterator.html
https://docs.aws.amazon.com/cli/latest/reference/kinesis/get-shard-iterator.html
https://docs.aws.amazon.com/cli/latest/reference/kinesis/get-shard-iterator.html
https://docs.aws.amazon.com/cli/latest/reference/kinesis/get-shard-iterator.html
https://docs.aws.amazon.com/cli/latest/reference/kinesis/get-shard-iterator.html
https://docs.aws.amazon.com/cli/latest/reference/kinesis/get-shard-iterator.html
https://docs.aws.amazon.com/cli/latest/reference/kinesis/get-shard-iterator.html
https://docs.aws.amazon.com/streams/latest/dev/service-sizes-and-limits.html
https://docs.aws.amazon.com/streams/latest/dev/service-sizes-and-limits.html
https://docs.aws.amazon.com/streams/latest/dev/service-sizes-and-limits.html
https://docs.aws.amazon.com/streams/latest/dev/service-sizes-and-limits.html
https://docs.aws.amazon.com/streams/latest/dev/service-sizes-and-limits.html
https://docs.aws.amazon.com/streams/latest/dev/service-sizes-and-limits.html
https://docs.aws.amazon.com/streams/latest/dev/service-sizes-and-limits.html
https://docs.aws.amazon.com/streams/latest/dev/service-sizes-and-limits.html
https://docs.aws.amazon.com/streams/latest/dev/service-sizes-and-limits.html
https://docs.aws.amazon.com/streams/latest/dev/service-sizes-and-limits.html
https://docs.aws.amazon.com/streams/latest/dev/service-sizes-and-limits.html
https://docs.aws.amazon.com/streams/latest/dev/service-sizes-and-limits.html
https://docs.aws.amazon.com/streams/latest/dev/service-sizes-and-limits.html
https://docs.aws.amazon.com/streams/latest/dev/service-sizes-and-limits.html
https://docs.aws.amazon.com/streams/latest/dev/service-sizes-and-limits.html
https://docs.aws.amazon.com/streams/latest/dev/service-sizes-and-limits.html
https://docs.aws.amazon.com/streams/latest/dev/service-sizes-and-limits.html
https://docs.aws.amazon.com/streams/latest/dev/service-sizes-and-limits.html
https://docs.aws.amazon.com/streams/latest/dev/service-sizes-and-limits.html
https://docs.aws.amazon.com/streams/latest/dev/service-sizes-and-limits.html
https://docs.aws.amazon.com/streams/latest/dev/service-sizes-and-limits.html
https://docs.aws.amazon.com/streams/latest/dev/service-sizes-and-limits.html
https://docs.aws.amazon.com/streams/latest/dev/service-sizes-and-limits.html
https://docs.aws.amazon.com/streams/latest/dev/service-sizes-and-limits.html
https://docs.aws.amazon.com/streams/latest/dev/service-sizes-and-limits.html
https://docs.aws.amazon.com/streams/latest/dev/service-sizes-and-limits.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-kinesis-stream-streamencryption.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-kinesis-stream-streamencryption.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-kinesis-stream-streamencryption.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-kinesis-stream-streamencryption.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-kinesis-stream-streamencryption.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-kinesis-stream-streamencryption.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-kinesis-stream-streamencryption.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-kinesis-stream-streamencryption.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-kinesis-stream-streamencryption.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-kinesis-stream-streamencryption.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-kinesis-stream-streamencryption.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-kinesis-stream-streamencryption.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-kinesis-stream-streamencryption.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-kinesis-stream-streamencryption.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-kinesis-stream-streamencryption.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-kinesis-stream-streamencryption.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-kinesis-stream-streamencryption.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-kinesis-stream-streamencryption.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-kinesis-stream-streamencryption.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-kinesis-stream-streamencryption.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-kinesis-stream-streamencryption.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-kinesis-stream-streamencryption.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-kinesis-stream-streamencryption.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-kinesis-stream-streamencryption.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-kinesis-stream-streamencryption.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-kinesis-stream-streamencryption.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-kinesis-stream-streamencryption.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-kinesis-stream-streamencryption.html

Redshift, Amazon ML, and Alexa Skills Chapter 7

Getting ready

You will need to have the following prerequisites for this recipe:

* You need an active AWS account. You need to follow the Getting
started section in the recipes Your first AWS Lambda and Your first Lambda with
AWS CLI from chapter 1, Getting Started with Serverless Computing on AWS to set
up Java, Maven, the parent project, serverless-cookbook-parent-aws-java,
and AWS CLI, and may also read other notes there, including code usage
guidelines, S3 bucket creation, and notes for Windows users.

e Follow the recipe Your first Kinesis data stream and create a Kinesis stream
named my-first-kinesis-stream.

How to do it...

We will learn how we can implement a Java Lambda function to write data into a Kinesis
stream using AWS Java SDK for Kinesis. I will not show all the details of provisioning the
Lambda; for these, you can refer to earlier recipes (as given in the Getting ready section).

Step 1 - Creating the Lambda project (Java)

We will create a Lambda that gets triggered from AWS CLI using aws lambda
invoke command and send messages to an SQS queue as a batch.

In this section, I will be discussing only the core application logic, and will
not be discussing supporting code, such as imports, error handling, and
Javadoc comments; however, the complete working code is provided in
this book along with the code files.

Let's start by defining the dependency for AWS Kinesis SDK for Java in the pPoM file, as
shown in the following code:

<dependency>
<groupIld>com.amazonaws</groupId>
<artifactId>aws-java-sdk-kinesis</artifactId>
<version>${aws.sdk.version}</version>
</dependency>

The poM file also has dependencies for aws-1lambda-java-core. The
aws.sdk.version property is defined, along with other properties in the parent
project, POM serverless—cookbook—-parent—-aws—java.

[307]

Redshift, Amazon ML, and Alexa Skills Chapter 7

We can create the Java Lambda project with the following package structure:

v src
4 main
4 java

v tech.heartin.books.serverlesscookbook
v domain
package-info.java
Request
Response
v services
KinesisService
KinesisServicelmpl
package-info.java
LambdaKinesisSdkWriteHandler
package-info.java

"

The Request . java class will correspond to our input JSON, as shown in the following
code:

@Data

public class Request {
private String streamName;
private String partitionKey;
private String payload;
private int count;
private int batchSize;

}

Response. java class correspond to the output JSON from Lambda and will contain a field
to send the response back to the invoker, as shown in the following code:

@Data

@AllArgsConstructor

public class Response {
private String message;
private int count;

[308]

Redshift, Amazon ML, and Alexa Skills Chapter 7

The KinesisService. java is the interface for our Service class. This is not a
requirement; you can directly use the implementation class or even embed all logic within
the Lambda handler class itself, as shown in the following code:

public interface KinesisService {
Response addRecords (Request request, Lambdalogger logger) ;
}
The KinesisServiceImpl. java class is the actual service implementation.

The following steps show how we can use it:

1. We first define and initialize the Kinesis client and a list of
PutRecordsRequestEntry, as shown in the following code:

private final AmazonKinesis kinesisClient;
private final List<PutRecordsRequestEntry> kinesisBatch;

public KinesisServiceImpl (final AmazonKinesis kinesisClient) {
this.kinesisClient = kinesisClient;
this.kinesisBatch = new ArrayList<>();
}
2. Check the stream status at the start (optional) using the following code:

public final Response addRecords (final Request request, final
LambdaLogger logger) A

this.documentAddedCount = request.getCount () ;

DescribeStreamResult result =

this.kinesisClient.describeStream(request.getStreamName ());
logger.log("Stream Status: " +
result.getStreamDescription () .getStreamStatus() + ". ");

3. Put the records into the stream in batches using the following code:
for (int i = 1; i <= request.getCount (); i++) {
payload = request.getPayload() + i;
this.kinesisBatch.add (new PutRecordsRequestEntry ()
.withPartitionKey (request.getPartitionKey ())
.withData (ByteBuffer.wrap (payload.getBytes())));

if (this.kinesisBatch.size () >= request.getBatchSize()) |

try |

[309]

Redshift, Amazon ML, and Alexa Skills Chapter 7

logger.log ("Flushing records to Stream...");
flushBatch (request.getStreamName (), logger);
} catch (Exception e) {
logger.log ("Exception occurred: " + e);
this.isError = false;
} finally {
this.kinesisBatch.clear();

}

4. The flushBatch () method actually writes to the stream, as shown in the
following code:

private void flushBatch(final String streamName, final LambdalLogger
logger) {
final PutRecordsResult result =
this.kinesisClient.putRecords (new PutRecordsRequest ()
.withStreamName (streamName)
.withRecords (this.kinesisBatch));

result.getRecords () .forEach(r —> {
if (! (StringUtils.hasValue(r.getErrorCode()))) {
String successMessage = "Successfully processed record
with sequence number: " + r.getSequenceNumber ()
+ ", shard id: " + r.getShardId();
logger.log(successMessage) ;
} else {
this.documentAddedCount—-;
String errorMessage = "Did not process record with
sequence number: " + r.getSequenceNumber ()
+ ", error code: " + r.getErrorCode ()
+ ", error message: " + r.getErrorMessage();

logger.log(errorMessage) ;
this.isError = true;

)i
}

You can also implement retry logic for failed records. Check the code files for
additional suggestions.

5. Finally, return the Response object from the addRecords method using the
following code:

if (this.isError) {
return new Response (ERROR_MESSAGE, documentAddedCount);
} else {

[310]

Redshift, Amazon ML, and Alexa Skills Chapter 7

return new Response (SUCCESS_MESSAGE, documentAddedCount);
}

The LambdaKinesisSdkWriteHandler. java is our Lambda handler class and has the
following code:

public final class LambdaKinesisSdkWriteHandler implements
RequestHandler<Request, Response> {
private final AmazonKinesis kinesisClient;

public LambdaKinesisSdkWriteHandler () {

this.kinesisClient = AmazonKinesisClientBuilder.standard()
.withRegion (System.getenv ("AWS_REGION"))
.build();

}

public Response handleRequest (final Request request, final Context
context) {

context.getLogger () .log("Received Request: " + request);
final KinesisService kinesisService = new
KinesisServiceImpl (this.kinesisClient);
return kinesisService.addRecords (request, context.getLogger());

}

Step 2 - Provisioning and testing Lambda (AWS CLI)

You can also go through the Your first AWS Lambda recipe in chapter 1, Getting Started with
Serverless Computing on AWS, and use CloudFormation for Lambda provisioning. Go
through the following steps to deploy and invoke the Lambda function:

1. Runmvn clean package from inside the Lambda project root folder to create
the Uber JAR.

Upload the Uber JAR to S3.
Create a role for the Lambda with an appropriate trust relationship definition.
Create a policy for basic logging permissions and attach it to the role.

AN

Create a policy for the required Kinesis permissions and attach it to the role by
going through the following steps:
1. Create the policy document with the required Kinesis permissions
using the following code:

{
"Version":"2012-10-17",

[311]

Redshift, Amazon ML, and Alexa Skills Chapter 7

"Statement": [

{

"Effect":"Allow",
"Action": [
"kinesis:DescribeStrean",
"kinesis:PutRecord",
"kinesis:PutRecords"

1,

"Resource": [
"arn:aws:kinesis:*:*:*"
]

}

]

}

2. Save the file as l1ambda-kinesis-producer-permissions.txt.
3. Create the policy and attach it to the role.

6. Create the Lambda function as follows:

aws lambda create-function \

——function-name lambda-kinesis-sdk-write \

——runtime java8 \

—--role arn:aws:iam::<account id>:role/lambda_kinesis_write_role
\

—-handler
tech.heartin.books.serverlesscookbook.LambdaKinesisSdkWriteHandler:
:handleRequest \

——code S3Bucket=serverless—-cookbook, S3Key=lambda-kinesis—-sdk-
write-0.0.1-SNAPSHOT. jar \

——timeout 15 \

—-memory-size 512 \

—--region us-east-1 \

——profile admin

7. Invoke the Lambda function as follows:

aws lambda invoke \
——invocation-type RequestResponse \
——function-name lambda-kinesis-sdk-write \
--log-type Tail \
—--payload file://resources/payload.json \
—--region us-east-1 \
—-profile admin \
outputfile.txt

[312]

Redshift, Amazon ML, and Alexa Skills Chapter 7

The payload file should correspond to our input domain object (Request . java),
as shown in the following code:

{
"streamName" : "my-first-kinesis-stream",
"partitionKey": "12345",
"payload": "testpayloadfromcli",
"count": 10,
"batchSize" : 5
}

If the aws lambda invoke command is successful, you should see a success
message in the output file, outputfile.txt (assuming you return a success
message from the Lambda similar to the code files).

Verify the invocation by retrieving the messages from the stream using the
following steps:

1. First, retrieve the iterator, as shown in the following code:

aws kinesis get-shard-iterator \
—-shard-id shardId-000000000000 \
—--shard-iterator-type TRIM_HORIZON \
—-—-stream-name my-first-kinesis-stream \
--region us-east-1 \
——profile admin

If successful, you should get the following message back:

"ShardIterator": "AAAAAAAAAAFJIUR6Bb1xkgWE+tvcfurlM+go8babQIZ020ZK67ENhFqur7mxkzzQ!

RIwsyzCDWRJsP6/xzC+d3MKQ2gEGHvUMI8xfPnqeNu8cXo9ydoPriP0GxxN7/+jnPmz6AUytVStA=="
}

2. Get the records using the shard iterator, as shown in the following
code:

aws kinesis get-records \
—-shard-iterator <shard iterator> \
--region us-east-1 \
—-profile admin

[313]

Redshift, Amazon ML, and Alexa Skills Chapter 7

Replace <shard iterator> with the shard iterator received in the
previous step. This should return the following records:

"Records": [
{

"SequenceNumber": "49591085571825738360783315497134932516437632568807915522",

"ApproximateArrivalTimestamp": 1545473216.297,
“Data": "dGVzdHBheWxvYWRmcm9tY2xpMQ=="",
"PartitionKey": "12345"

I have not shown all the records here, only the first one. At the end, you
will also get the next shard iterator, as shown in the following
screenshot:

1,

"NextShardIterator": "AAAAAAAAAAHZADSQw8SoeBsN32ilufI4EBTWbv3AqARSYMRI2X000om/E7CmE1Tmn3
Bs1B+rvHkheUbmivF9eigguj zFb0G5nfc+YboLOtKFWiYKFPvow2BNP+tZiSqPEg70alXko2IF4n4uiQ==",

"MillisBehindLatest": @

You may have to call get -records again with the shard iterator
received in this step to retrieve further records.

8. Finally, you need to decode the Base64-encoded data using the following code:

$ echo dGVzdHBheWxvYWRmcm9tY2xpMQ== | base64 --decode

testpayloadfromclil$

How it works...

In summary, we did the following in this recipe:

1. Created a Lambda function with basic Lambda permissions and Kinesis-specific
permissions

2. Invoked Lambda with a payload as required by the input handler object
(Request. java)

3. Verified that data was posted to the stream

[314]

Redshift, Amazon ML, and Alexa Skills Chapter 7

From the Kinesis client, we retrieved DescribeStreamResult and from the
DescribeStreamResult, we retrieved StreamDescription. The StreamDescription
contains current status of the stream, the stream ARN, an array of shard objects of the
stream, and information on whether there are more shards available. This was an optional
step just to see the stream status.

The Kinesis client's put Records method accepts a PutRecordsRequest object and the
PutRecordsRequest object accepts a list of PutRecordsRequestEntry objects. We
generated PutRecordsRequestEntry objects in a for loop and added them into a list.
Once the list size crossed our defined batch size, we invoked the putRecords method of
the Kinesis client and passed a PutRecordsRequest object with our list

of PutRecordsRequestEntry objects.

There's more...

In this recipe, we used AWS Java SDK for Kinesis. We can also create producers using the
Kinesis Producer Library (KPL). The KPL simplifies Kinesis producer application
development and helps us to achieve high write throughput to a Kinesis data stream by
aggregating smaller records into larger records, up to 1 MB in size. While the Kinesis
Client Library (KCL) for Java can deaggregate records aggregated by KPL for regular
applications, we need to use a special module to deaggregate records when using AWS
Lambda as the consumer.

See also

® https://docs.aws.amazon.com/streams/latest/dev/developing-producers—
with-kpl.html

Invoking Lambda with Kinesis events (Java)

There are different ways to manually read data from a KDS, such as using the SDK and
KCL. We can also configure AWS to invoke a Lambda when records are put into a Kinesis
stream. In this recipe, we will learn how to configure a lambda to be invoked when records
are added to a Kinesis stream.

[315]

https://docs.aws.amazon.com/streams/latest/dev/developing-producers-with-kpl.html
https://docs.aws.amazon.com/streams/latest/dev/developing-producers-with-kpl.html
https://docs.aws.amazon.com/streams/latest/dev/developing-producers-with-kpl.html
https://docs.aws.amazon.com/streams/latest/dev/developing-producers-with-kpl.html
https://docs.aws.amazon.com/streams/latest/dev/developing-producers-with-kpl.html
https://docs.aws.amazon.com/streams/latest/dev/developing-producers-with-kpl.html
https://docs.aws.amazon.com/streams/latest/dev/developing-producers-with-kpl.html
https://docs.aws.amazon.com/streams/latest/dev/developing-producers-with-kpl.html
https://docs.aws.amazon.com/streams/latest/dev/developing-producers-with-kpl.html
https://docs.aws.amazon.com/streams/latest/dev/developing-producers-with-kpl.html
https://docs.aws.amazon.com/streams/latest/dev/developing-producers-with-kpl.html
https://docs.aws.amazon.com/streams/latest/dev/developing-producers-with-kpl.html
https://docs.aws.amazon.com/streams/latest/dev/developing-producers-with-kpl.html
https://docs.aws.amazon.com/streams/latest/dev/developing-producers-with-kpl.html
https://docs.aws.amazon.com/streams/latest/dev/developing-producers-with-kpl.html
https://docs.aws.amazon.com/streams/latest/dev/developing-producers-with-kpl.html
https://docs.aws.amazon.com/streams/latest/dev/developing-producers-with-kpl.html
https://docs.aws.amazon.com/streams/latest/dev/developing-producers-with-kpl.html
https://docs.aws.amazon.com/streams/latest/dev/developing-producers-with-kpl.html
https://docs.aws.amazon.com/streams/latest/dev/developing-producers-with-kpl.html
https://docs.aws.amazon.com/streams/latest/dev/developing-producers-with-kpl.html
https://docs.aws.amazon.com/streams/latest/dev/developing-producers-with-kpl.html
https://docs.aws.amazon.com/streams/latest/dev/developing-producers-with-kpl.html
https://docs.aws.amazon.com/streams/latest/dev/developing-producers-with-kpl.html
https://docs.aws.amazon.com/streams/latest/dev/developing-producers-with-kpl.html
https://docs.aws.amazon.com/streams/latest/dev/developing-producers-with-kpl.html

Redshift, Amazon ML, and Alexa Skills Chapter 7

Getting ready

You will need the following prerequisites to complete this recipe:

* You need an active AWS account. You need to follow the section Getting
started in the recipes Your first AWS Lambda and Your first Lambda with AWS
CLI from chapter 1, Getting Started with Serverless Computing on AWS to set up
Java, Maven, the parent project, serverless-cookbook-parent-aws-—
java and AWS CLL and may also read other notes there including code usage
guidelines, S3 bucket creation and notes for the Windows users.

e Follow the recipe Your first Kinesis data stream and create a Kinesis stream
named kinesis-stream-for-event.

How to do it...

We will now learn how we can implement a Java lambda function that will be invoked
when records are added to a Kinesis stream. I will not show all the details of provisioning
the lambda. You can refer to earlier recipes (mentioned in the Getting ready section).

Step 1 - Creating a Lambda project (Java)

In the previous recipes, we used a service interface and its implementation. In this recipe,
we will create a Lambda function without a service class. As discussed in the previous
chapter, you can follow any of the approaches that you prefer (or that your project prefers),
but the underlying code will be the same.

In this section, I will be discussing only the core application logic, and will
not be discussing supporting code, such as imports, error handling, and
Java doc comments; however, the complete working code will be
provided along with the code files.

Let's start by defining the dependency for the AWS Kinesis SDK for Java in the poM file, as
shown in the following code:

<dependency>
<groupld>com.amazonaws</groupId>
<artifactId>aws-java-sdk-kinesis</artifactId>
<version>${aws.sdk.version}</version>
</dependency>

[316]

Redshift, Amazon ML, and Alexa Skills

Chapter 7

The poM file also has dependencies for aws-lambda-java-core. The

aws.sdk.version property is defined, along with other properties in the parent

project POM, serverless—cookbook-parent—-aws—java.

We can create the Java Lambda project with the following structure:

4 src
4 main
v java

v tech.heartin.books.serverlesscookbook

P

LambdaKinesisEventHandler. java can be implemented as follows:

public final class LambdaKinesisEventHandler implements
RequestHandler<KinesisEvent, Boolean> {
public Boolean handleRequest (final KinesisEvent kinesisEvent,
Context context) {
LambdaLogger logger = context.getLogger();

logger.log ("Received Kinesis event: " + kinesisEvent);
logger.log ("Number of records: " +
kinesisEvent.getRecords () .size());
try {
kinesisEvent.getRecords () .forEach(r —> {
final KinesisEvent.Record kr = r.getKinesis();
logger.log("Record: " + kr.toString());
logger.log("Data: " +
StandardCharsets.UTF_8.decode (kr.getData()) .toString());

}) i
} catch (final Exception e) {

final

logger.log ("There was an exception: " + e.getMessage());

return false;

}

return true;

[317]

Redshift, Amazon ML, and Alexa Skills Chapter 7

Step 2 - Provisioning and testing Lambda (AWS CLI)

Go through the following steps to deploy and invoke the lambda. You may also follow Your
first Lambda with AWS CLI recipe of chapter 1, Getting Started with Serverless Computing on
AWS and use CloudFormation for Lambda provisioning:

1. Runmvn clean package from inside the Lambda project root folder to create
the Uber JAR.

. Upload the Uber JAR to S3.

3. Create a role named lambda-invoke-kinesis-event-role for the lambda
with an appropriate trust relationship definition.

. Create and attach a policy for basic logging permissions and attach it to the role.

. Create a policy for the required Kinesis permissions using the following policy
document and attach it to the role:

N

Q1 W

{
"Version":"2012-10-17",
"Statement": [
{

"Effect":"Allow",

"Action": [
"kinesis:GetRecords",
"kinesis:GetShardIterator",
"kinesis:DescribeStream",
"kinesis:ListStreams"

1,

"Resource": [
"arn:aws:kinesis:*:*:*"

]

}

Save the file as 1ambda-kinesis-producer-permissions.txt, create a policy
using this file, and attach it to the role.

[318]

Redshift, Amazon ML, and Alexa Skills Chapter 7

6. Create the lambda function as follows:

aws

lambda create—-function \

——function—-name lambda-invoke-kinesis—event \

—-—runtime java8 \

——role arn:aws:iam: :<account id>:role/lambda-invoke-kinesis-—

event-role \

——handler

tech.heartin.books.serverlesscookbook.LambdaKinesisEventHandler: :ha
ndleRequest \

——code S3Bucket=serverless—cookbook, S3Key=lambda-invoke-

kinesis—-event-0.0.1-SNAPSHOT. jar \

——timeout 15 \
—--memory-size 512 \
--region us-east-1 \
——profile admin

7. Create an event source mapping for invoking the lambda function, as follows:

aws

id>

lambda create-—-event-source-mapping \
——event—-source—-arn arn:aws:kinesis:us—-east-1:<account

:stream/kinesis—-stream—-for-event \

——function—-name lambda-invoke-kinesis—event \
--starting-position LATEST \

——Dbatch-size 3 \

--region us-east-1 \

——profile admin

8. Verify the invocation by sending messages to the stream. You can do this by
going through the following steps:

1. Send messages with different payload text, following this:

aws kinesis put-record \
——stream—-name kinesis-stream-for-event \
——partition-key 12345 \
—-—data sampledataOl \
—--region us-east-1 \
——profile admin

2. Check the CloudWatch logs.

[319]

Redshift, Amazon ML, and Alexa Skills Chapter 7

We can check CloudWatch logs from Management console as follows:

1. Log in to the Management console and go to the
Lambda service.

2. Click on your Lambda to see its configuration.

w

Click on the Monitoring tab.

4. Click on View logs in CloudWatch.Click on a Log
Stream and check the logs.

5. You should see logs similar to those shown in the
following screenshot:

Filter events

Time (UTC +00:00)

2018-12-24
04:35:10
04:35:10
04:35:10
04:35:10
04:35:10
04:35:10

v v v v v w

CloudWatch > Log Groups > /aws/lambda/lambda-invoke-kinesis-event > 2018/12/24/[$LATEST]5479094867¢

Message

START Requestld: 3413b40a-063e-42c4-aa06-0205f104bd67 Version: $LATEST
Received Kinesis event: {[{eventSource: aws:kinesis,kinesis: {SequenceNumber: 49
Number of records: 1

Record: {SequenceNumber: 49591309472734779300945616534014129624248721
Data: sampledata01

END Requestld: 3413b40a-063e-42c4-aa06-0205f104bd67

How it works...

In summary, we did the following in this recipe:

1. Created a lambda that can be invoked when records are added to a Kinesis

stream.

2. Added an event source mapping for invoking the lambda when records are
added to a Kinesis stream.

3. Checked the cloudwatch logs. We will learn more about CloudWatch in the

next chapter.

[320]

Redshift, Amazon ML, and Alexa Skills Chapter 7

Event source mapping creates a mapping between an event source and an AWS lambda
function. The lambda's handler function is then triggered by events on the event source. In
our case, we created an event source mapping for our Lambda with a Kinesis event type.

The following are the three event source types that are currently supported:

¢ Amazon Kinesis
e Amazon SQS
e Amazon DynamoDB

We create all lambda triggers in a similar way to how we did it from UI. However, from
CLIL we do this differently for different services. For example, Kinesis, SQS, and
DynamoDB triggers are added using event source mapping, but for services such as API
Gateway and Alexa Skills, triggers are defined when we use the add-permission
subcommand of the lambda CLI command to add a permission policy, and for SNS, the
lambda function is subscribed to the SNS topic using the aws sns subscribe command.

There's more...

We invoked the lambda function using triggers in this recipe. You can also use the AWS
Kinesis SDK or the KCL to read from a Kinesis stream. However, a lambda trigger is the
most common way to read from a stream in serverless applications. Refer to the See also

section to read more about SDK and KCL approaches.

See also

You may read more about developing consumers using SDK at https://docs.aws.amazon.
com/streams/latest/dev/developing—consumers-with-sdk.html.

You may read more about developing consumers with KCL at https://docs.aws.amazon.

com/streams/latest/dev/developing-consumers-with-kcl.html.

[321]

https://docs.aws.amazon.com/streams/latest/dev/developing-consumers-with-sdk.html
https://docs.aws.amazon.com/streams/latest/dev/developing-consumers-with-sdk.html
https://docs.aws.amazon.com/streams/latest/dev/developing-consumers-with-sdk.html
https://docs.aws.amazon.com/streams/latest/dev/developing-consumers-with-sdk.html
https://docs.aws.amazon.com/streams/latest/dev/developing-consumers-with-sdk.html
https://docs.aws.amazon.com/streams/latest/dev/developing-consumers-with-sdk.html
https://docs.aws.amazon.com/streams/latest/dev/developing-consumers-with-sdk.html
https://docs.aws.amazon.com/streams/latest/dev/developing-consumers-with-sdk.html
https://docs.aws.amazon.com/streams/latest/dev/developing-consumers-with-sdk.html
https://docs.aws.amazon.com/streams/latest/dev/developing-consumers-with-sdk.html
https://docs.aws.amazon.com/streams/latest/dev/developing-consumers-with-sdk.html
https://docs.aws.amazon.com/streams/latest/dev/developing-consumers-with-sdk.html
https://docs.aws.amazon.com/streams/latest/dev/developing-consumers-with-sdk.html
https://docs.aws.amazon.com/streams/latest/dev/developing-consumers-with-sdk.html
https://docs.aws.amazon.com/streams/latest/dev/developing-consumers-with-sdk.html
https://docs.aws.amazon.com/streams/latest/dev/developing-consumers-with-sdk.html
https://docs.aws.amazon.com/streams/latest/dev/developing-consumers-with-sdk.html
https://docs.aws.amazon.com/streams/latest/dev/developing-consumers-with-sdk.html
https://docs.aws.amazon.com/streams/latest/dev/developing-consumers-with-sdk.html
https://docs.aws.amazon.com/streams/latest/dev/developing-consumers-with-sdk.html
https://docs.aws.amazon.com/streams/latest/dev/developing-consumers-with-sdk.html
https://docs.aws.amazon.com/streams/latest/dev/developing-consumers-with-sdk.html
https://docs.aws.amazon.com/streams/latest/dev/developing-consumers-with-sdk.html
https://docs.aws.amazon.com/streams/latest/dev/developing-consumers-with-sdk.html
https://docs.aws.amazon.com/streams/latest/dev/developing-consumers-with-sdk.html
https://docs.aws.amazon.com/streams/latest/dev/developing-consumers-with-sdk.html
https://docs.aws.amazon.com/streams/latest/dev/developing-consumers-with-sdk.html
https://docs.aws.amazon.com/streams/latest/dev/developing-consumers-with-kcl.html
https://docs.aws.amazon.com/streams/latest/dev/developing-consumers-with-kcl.html
https://docs.aws.amazon.com/streams/latest/dev/developing-consumers-with-kcl.html
https://docs.aws.amazon.com/streams/latest/dev/developing-consumers-with-kcl.html
https://docs.aws.amazon.com/streams/latest/dev/developing-consumers-with-kcl.html
https://docs.aws.amazon.com/streams/latest/dev/developing-consumers-with-kcl.html
https://docs.aws.amazon.com/streams/latest/dev/developing-consumers-with-kcl.html
https://docs.aws.amazon.com/streams/latest/dev/developing-consumers-with-kcl.html
https://docs.aws.amazon.com/streams/latest/dev/developing-consumers-with-kcl.html
https://docs.aws.amazon.com/streams/latest/dev/developing-consumers-with-kcl.html
https://docs.aws.amazon.com/streams/latest/dev/developing-consumers-with-kcl.html
https://docs.aws.amazon.com/streams/latest/dev/developing-consumers-with-kcl.html
https://docs.aws.amazon.com/streams/latest/dev/developing-consumers-with-kcl.html
https://docs.aws.amazon.com/streams/latest/dev/developing-consumers-with-kcl.html
https://docs.aws.amazon.com/streams/latest/dev/developing-consumers-with-kcl.html
https://docs.aws.amazon.com/streams/latest/dev/developing-consumers-with-kcl.html
https://docs.aws.amazon.com/streams/latest/dev/developing-consumers-with-kcl.html
https://docs.aws.amazon.com/streams/latest/dev/developing-consumers-with-kcl.html
https://docs.aws.amazon.com/streams/latest/dev/developing-consumers-with-kcl.html
https://docs.aws.amazon.com/streams/latest/dev/developing-consumers-with-kcl.html
https://docs.aws.amazon.com/streams/latest/dev/developing-consumers-with-kcl.html
https://docs.aws.amazon.com/streams/latest/dev/developing-consumers-with-kcl.html
https://docs.aws.amazon.com/streams/latest/dev/developing-consumers-with-kcl.html
https://docs.aws.amazon.com/streams/latest/dev/developing-consumers-with-kcl.html
https://docs.aws.amazon.com/streams/latest/dev/developing-consumers-with-kcl.html
https://docs.aws.amazon.com/streams/latest/dev/developing-consumers-with-kcl.html

Redshift, Amazon ML, and Alexa Skills Chapter 7

Using Amazon ML for binary classification
(AWS CLI)

This recipe will outline the steps to perform a simple machine learning service task
following the AWS ML tutorial for the Management console, but also using AWS CLI
APIs. The objective of this recipe is to get you started with using Amazon ML from an AWS

CLI API perspective.

Getting ready

For the purpose of this demonstration, we will use the sample data CSV provided by AWS
at s3://aml-sample-data/banking.csv. This CSV is provided by AWS for their
Management console's step-by-step tutorial, as shown in the following screenshot:

1. Input Data
Input data (7]

The first step to create an ML model is to show Amazon ML your historical
data. This data must include the correct answers to the questions that you
want the ML model to answer. Amazon ML will create a training datasource
object containing statistics about your training data.

Just trying out Amazon ML and don't have your data ready? Use
s3://aml-sample-data/banking.csv This dataset contains information
about customers as well as descriptions of their behavior in response
to previous marketing contacts. You use this data to identify which
customers are most likely to subscribe to your new product.

You can preview the file here & banking.csv

Want a more guided experience?
Start with the Amazon Machine Learning Tutorial. (£

[322]

Redshift, Amazon ML, and Alexa Skills Chapter 7

You may download and familiarize yourself with the data, or simply
directly use it in this recipe by going through the steps in the How to do it
section.

How to do it...

In this recipe, we will learn how to make predictions with an AWS ML service for binary
classification using AWS CLI by going through the following steps:

1. Prepare the data as a CSV and upload it to S3. Amazon ML requires a CSV with
each row corresponding to an observation that may be used for training or
testing. Each column also needs a name, which you can specify as the first row or
specify separately using a schema file. You may also split data into multiple CSV
files within the same bucket. If you have multiple files, you should provide a
path ending with a forward slash (/).

As mentioned in the Getting ready section, we will reuse the sample data available
in AWS, which is already uploaded to S3 at s3://aml-sample-
data/banking.csv.

2. Create the data source.

You should always split your data into two sets and create two data
sources, one for training and one for evaluation. For example, you may
use 70 percent of the data for training the system and creating the ML
model, and the remaining 30 percent can be used for evaluating the ML
model that was created. For this recipe, I will be using the same data
source for both training and testing to keep things simple, but you should
create two data sources in real world—one for training and one for
evaluation—and use them accordingly.

We can create an S3 data source object using the aws machinelearning
create-data-source-from-s3 command by going through the following
steps:

1. Create a sample JSON input using the generate-cli-skeleton
subcommand, as follows:

aws machinelearning create-data-source-from-s3 \
——generate—cli-skeleton input

[323]

Redshift, Amazon ML, and Alexa Skills Chapter 7

Since the command input has nested JSON, it is a good practice to
generate the sample input using the generate-cli-skeleton
subcommand.

2. Prepare the input JSON with actual values, as follows:

{
"DataSourceId": "my-first-s3-ds-id",
"DataSourceName": "My First S3 DataSource",
"DataSpec": {
"DatalLocationS3": "s3://aml-sample-

data/banking.csv",

"DataRearrangement":
"{\"splitting\":{\"percentBegin\":10, \"percentEnd\":60}}",
"DataSchemaLocationS3": "s3://aml-sample-—

data/banking.csv.schema"
}7
"ComputeStatistics": true

}
Save this file as create-data-source-from-s3-cli-input.json.

3. Execute the aws machinelearning create-data-source-from-—
s3 command, providing the input JSON file, as follows:

aws machinelearning create-data-source-from-s3 \
——cli-input-json file://create-data-source-from-s3-cli-
input.json \

--region us-east-1 \

——profile admin

This command works asynchronously, and immediately returns the
data source ID, as shown in the following screenshot:

"DataSourceld": "my-first-s3—-ds-id"

[324]

Redshift, Amazon ML, and Alexa Skills Chapter 7

You can check the status of your data sources with the describe-
data-sources subcommand, as follows:

aws machinelearning describe-data-sources \
—--region us-east-1 \
——profile admin

You can also filter the data sources returned in the response with
additional options provided by the describe-data-sources
subcommand. We did not use additional filtering here, as we

only had one data source. You can check the See more section for a link to
the AWS documentation for this sub command.

Once completed successfully, you should see the following response:

"Results": [
{
"DataSourceId": "my-first-s3-ds-id",
"DatalLocationS3": "s3://aml-sample-data/banking.csv",
"DataRearrangement™: "{\"splitting\":{\"percentBegin\":10,\"percentEnd\":60}}",
"CreatedByIamUser": "arn:aws:iam:: :user/heartin_admin",
"CreatedAt": 1546059702.39,
"LastUpdatedAt": 1546059946.154,
"DataSizeInBytes": 2441459,

"NumberQfFiles": 1,

"Name": "My First S3 DataSource",
"Status": "COMPLETED",
"ComputeStatistics": true,
"ComputeTime": 890000,
"FinishedAt": 1546059946.154,
"StartedAt": 1546059703.477

Initially, when you run the commands, you will see the status as
INPROGRESS until it is completed.

Alternatively, you can use the get -data-source subcommand to get
the details for a particular data source.

[325]

Redshift, Amazon ML, and Alexa Skills Chapter 7

3. Create a ML binary model based on the data source by using the following
command:

aws machinelearning create-ml-model \
—-ml-model-id 'my-first-ml-model-id' \
—-ml-model-name 'My First ML Model' \
—-ml-model-type 'BINARY' \
——training-data-source-id 'my-first-s3-ds-id' \
—--region us-east-1 \

——profile admin

This command works asynchronously and immediately returns the ML model
source ID, as shown in the following screenshot:

"MLModelId": "my-first-ml-model-id"

You can check the status of your data sources with the describe-ml-models
subcommand, as shown in the following code:

aws machinelearning describe-ml-models \
—--region us-east-1 \
——profile admin

You can also filter the ML models returned in the response with
additional options provided by the describe-ml-models subcommand.
We did not use additional filtering here, as we only had one ML model.
You can check the See more section for a link to the AWS documentation
for this subcommand.

Once completed successfully, you should see the following response. The
tirst part of the response contains the status and basic timestamp information:

[326]

Redshift, Amazon ML, and Alexa Skills Chapter 7

"Results":

{

"MLModelId": "my-first-ml-model-id",
"TrainingDataSourceId": "my-first-s3-ds-id",

"CreatedByIamUser": "arn:aws:iam: : | NEEEE: user/heartin_admin®,
"CreatedAt": 1546062817.415,

"LastUpdatedAt": 1546063005.486,

"Name" y First ML Model",

"Status": "COMPLETED",

Initially, when you run the commands, you will see the status as INPROGRESS
until it is completed.

The response also contains additional information of the model, including the
defaults, as shown in the following screenshot:

"SizeInBytes": 454760,

"EndpointInfo": {
"PeakRequestsPerSecond": 0,
"EndpointStatus": "NONE"

}l

"TrainingParameters": {

"algorithm": "sgd",

"sgd. l11RegularizationAmount": "0.0",
"sgd.12RegularizationAmount": "1E-6",
"sgd.maxMLModelSizeInBytes": '100000000",
"sgd.maxPasses": "10",

"sgd.shuffleType'": "none"

Vo

"InputDatalocationS3": "s3://aml-sample-data/banking.csv",
"Algorithm": "sgd",

"MLModelType": "BINARY",

"ComputeTime": 76000,

"FinishedAt": 1546063005.486,

"StartedAt": 1546062818.784

Alternatively, you can use the get -m1-model subcommand to get the details for
a particular ML model.

[327]

Redshift, Amazon ML, and Alexa Skills Chapter 7

4. Create an evaluation to verify your dataset. As mentioned before, I will be using
the same dataset to keep things simple, as the aim of this recipe is to understand
the process and syntax. However, you should always split your data into two
sets and create two data sources, one for training and one for evaluation.

We can create an evaluation set using the aws machinelearning create-
evaluation command, as follows:

aws

machinelearning create-evaluation \
—-—evaluation-id 'my-first-ml-evaluation-id' \
—-—-evaluation-name 'My First ML Evaluation' \
—-ml-model-id 'my-first-ml-model-id' \
—-—-evaluation-data-source-id 'my-first-s3-ds-id' \
—--region us-east-1 \

——profile admin

You can also filter the ML evaluations returned in the response with
additional options provided by the describe-evaluations
subcommand. We did not use additional filtering here as we only had one
ML model. You can check the See more section for a link to the AWS
documentation for this subcommand.

Once completed successfully, you should see the following response:

"Results": [
{

"EvaluationId": "my-first-ml-evaluation-id",
"MLModelId": "my-first-ml-model-id",
"EvaluationDataSourceId": "my-first-s3-ds-id",
"InputDatalLocationS3": "s3://aml-sample-data/banking.csv",
"CreatedByIamUser": "arn:aws:iam: : | B : user/heartin_admin",
"CreatedAt": 1546065380.356,
"LastUpdatedAt": 1546065563.439,
"Name": "My First ML Evaluation",
"Status": "COMPLETED",
"PerformanceMetrics": {

"Properties": {

"BinaryAUC": "@.939753228565232"
}

Y

"ComputeTime": 122000,
"FinishedAt" 546065563.439,
"StartedAt" 46065381.673

[328]

Redshift, Amazon ML, and Alexa Skills Chapter 7

The closer the value of BinaryAUC is to 1, the better the model is. We got a very
good result since we used the same dataset for training and evaluation.

Alternatively, you can use the get ~evaluation subcommand to get the details
of a particular evaluation.

5. Predictions can be real-time or batch. In this recipe, we will make a real-time
prediction. First, we need to generate an endpoint.

Execute the get-ml-model subcommand as follows:

aws machinelearning get-ml-model \
—-ml-model-id 'my-first-ml-model-id' \
--region us-east-1 \
——profile admin

The response will contain an endpoint section, shown in the following screenshot,
denoting that no endpoint is generated:

"EndpointInfo": {
"PeakRequestsPerSecond": @,

"EndpointStatus": "NONE"

h

1. Create the real-time endpoint using the following code:

aws machinelearning create-realtime-endpoint \
—-ml-model-id 'my-first-ml-model-id' \
—--region us-east-1 \
——profile admin

This will immediately return an endpoint with a status of UPDATING, as
shown in the following screenshot:

"MLModelId": "my-first-ml-model-id",
"RealtimeEndpointInfo": {
"PeakRequestsPerSecond": @,

"CreatedAt": 1546139685.587,
"EndpointUril": "
"“EndpointStatus": "UPDATING"

[329]

Redshift, Amazon ML, and Alexa Skills Chapter 7

You can use the get-ml-model subcommand as we did earlier in this
section to get the details of the ML model, including the endpoint status.
Once completed, the status and endpoint details should look as follows:

"MLModelId": "my-first-ml-model-id"

"TrainingDataSourceId": "my-first-s3-ds-id",

"CreatedByIamUser": "arn:aws:iam:: ruser/heartin_admin",
"CreatedAt": 1546062817.415,

"LastUpdatedAt": 1546063005.486,

"Name": "My First ML Model",

"Status": "COMPLETED",

"SizeInBytes": 454760,

"EndpointInfo": {
"PeakRequestsPerSecond": 200,
"CreatedAt": 1546139745.192,
"EndpointUrl™": "
"EndpointStatus": "READY"

The response will also contain additional information, such

as TrainingParameters, InputDatalocationS3,

MLModelType (which in our case is Binary), LogUri, ComputeTime,
FinishedAt, and StartedAt.

2. You can predict the target field (0 or 1 for Binary) using the endpoint
of the predict subcommand to provide the other record fields, as
shown in the following code:

aws machinelearning predict \

—-ml-model-id 'my-first-ml-model-id' \

——record 'age=44, job=blue-
collar,marital=married, education=basic.4y,default=unknown, h
ousing=yes, loan=no, contact=cellular, month=aug,day_of_week=t
hu,duration=210, campaign=1, pdays=999, previous=0, poutcome=no
nexistent,emp_var_rate=1.4,cons_price_idx=93.444,cons_conf_
idx=-36.1, euribor3m=4.963, nr_employed=5228.1" \

——predict—-endpoint
'https://realtime.machinelearning.us-east-1.amazonaws.com'
\

--region us-east-1 \

——profile admin

[330]

Redshift, Amazon ML, and Alexa Skills Chapter 7

This will return the following response:

"Prediction": {
"predictedLabel": "@",
"predictedScores": {

"0": 0.015805380418896675

H

"details": {
“Algorithm": "SGD",
"PredictiveModelType": "BINARY"

I'just picked up a record from the data that we have. However, you can
create a random record or pick one based on your use case and apply
the preceding syntax.

Binary classification ML models use a ScoreThreshold to mark the
boundary between a positive prediction and a negative prediction. Output
values greater than or equal to the ScoreThreshold will receive a positive
result from the ML model (such as 1 or true). Output values less than the
ScoreThreshold receive a negative response from the ML model (e.g. 0 or
false). We have not altered the default threshold score for this recipe,
which was 0.5. However, you may change it using the update-ml-model
subcommand.

How it works...

In summary, we did the following in this recipe:

Learned how to prepare the data as a CSV and upload it to S3
Created an S3 data source

Created an ML model

Created an evaluation and verified the model

Created an endpoint for real-time prediction

ST W

Predicted the target value for a sample record

[331]

Redshift, Amazon ML, and Alexa Skills Chapter 7

Let's discuss some of the concepts we learned in the recipe in a bit more detail.

Types of models

Amazon ML is used primarily for the following prediction use cases:

e Binary classification: Classifies values as one of two categories, such as true or
false (or 1 or 0)

e Multivalue classification: Classifies values into multiple groups

¢ Regression: Predicts a numeric value

DataSource object

A DataSource object can reference data from different sources, such as S3, Redshift, and
RDS. We used an S3 data source in this recipe. A DataSource object needs to be specified
for operations such as CreateMLModel, CreateEvaluation, or
CreateBatchPrediction.

Receiver Operating Characteristic and Area Under the
ROC

A Receiver Operating Characteristic (ROC) curve is a graph that shows the performance of
a classification model at different classification thresholds. The Area Under the ROC

Curve measures the entire two-dimensional area underneath the entire ROC curve,
aggregating the measure of the performance across all classification thresholds.

The AUC value denotes the ability of the model to predict a higher score for positive
examples compared to negative examples. The AUC value is a decimal value from 0 to 1.
The higher the value of the AUC, the better the ML model is. We use the AUC to measure
the quality of the binary classification model. For our recipe, since I used the same dataset
for training and testing, the AUC value was very close to 1.

[332]

Redshift, Amazon ML, and Alexa Skills Chapter 7

There's more...

We used the AUC value to measure the accuracy of our binary classification model. For
multivalue classification models, AWS uses the macroaverage F1 score to evaluate the
predictive accuracy of a multiclass metric. A larger F1 score indicates better predictive
accuracy for a regression model; AWS uses the root mean square error (RMSE) metric. The
smaller the value of the RMSE, the better the accuracy of the model.

A detailed discussion of ML concepts is beyond the scope of this book. The aim of this
recipe was to get you started with Amazon ML using AWS CLI APIs, and to familiarize
you with a few ML terms that you can explore further. You can follow the reference links or
other books on ML to learn more and experiment with the concepts further. I have also
added links to some datasets in the See also section that you can use for your experiments.

See also

® http://archive.ics.uci.edu/ml/index.php
® https://www.kaggle.com/datasets

® https://docs.aws.amazon.com/machine-learning/latest/dg/understanding-
the-data-format-for—-amazon-ml.html

® https://docs.aws.amazon.com/cli/latest/reference/machinelearning/
describe—-data-sources.html

® https://docs.aws.amazon.com/cli/latest/reference/machinelearning/
describe-ml-models.html

® https://docs.aws.amazon.com/cli/latest/reference/machinelearning/
describe-evaluations.html

® https://docs.aws.amazon.com/machine-learning/latest/dg/evaluating_
models.html

Building and testing an Alexa skill (Java for
Lambda, CLI for Alexa skill)

Conversational user interfaces (CUI) are platforms that support conversations similar

to real human conversations. They help humans to talk to a system using their natural
language rather than using a new programming language or a domain-specific language
(DSL). Smart appliances, such as TVs, smart speakers, and smart chatbots, that can
understand and interpret natural language are examples of conversational interfaces.

[333]

http://archive.ics.uci.edu/ml/index.php
http://archive.ics.uci.edu/ml/index.php
http://archive.ics.uci.edu/ml/index.php
http://archive.ics.uci.edu/ml/index.php
http://archive.ics.uci.edu/ml/index.php
http://archive.ics.uci.edu/ml/index.php
http://archive.ics.uci.edu/ml/index.php
http://archive.ics.uci.edu/ml/index.php
http://archive.ics.uci.edu/ml/index.php
http://archive.ics.uci.edu/ml/index.php
http://archive.ics.uci.edu/ml/index.php
http://archive.ics.uci.edu/ml/index.php
http://archive.ics.uci.edu/ml/index.php
http://archive.ics.uci.edu/ml/index.php
http://archive.ics.uci.edu/ml/index.php
http://archive.ics.uci.edu/ml/index.php
http://archive.ics.uci.edu/ml/index.php
https://www.kaggle.com/datasets
https://www.kaggle.com/datasets
https://www.kaggle.com/datasets
https://www.kaggle.com/datasets
https://www.kaggle.com/datasets
https://www.kaggle.com/datasets
https://www.kaggle.com/datasets
https://www.kaggle.com/datasets
https://www.kaggle.com/datasets
https://www.kaggle.com/datasets
https://www.kaggle.com/datasets
https://docs.aws.amazon.com/machine-learning/latest/dg/understanding-the-data-format-for-amazon-ml.html
https://docs.aws.amazon.com/machine-learning/latest/dg/understanding-the-data-format-for-amazon-ml.html
https://docs.aws.amazon.com/machine-learning/latest/dg/understanding-the-data-format-for-amazon-ml.html
https://docs.aws.amazon.com/machine-learning/latest/dg/understanding-the-data-format-for-amazon-ml.html
https://docs.aws.amazon.com/machine-learning/latest/dg/understanding-the-data-format-for-amazon-ml.html
https://docs.aws.amazon.com/machine-learning/latest/dg/understanding-the-data-format-for-amazon-ml.html
https://docs.aws.amazon.com/machine-learning/latest/dg/understanding-the-data-format-for-amazon-ml.html
https://docs.aws.amazon.com/machine-learning/latest/dg/understanding-the-data-format-for-amazon-ml.html
https://docs.aws.amazon.com/machine-learning/latest/dg/understanding-the-data-format-for-amazon-ml.html
https://docs.aws.amazon.com/machine-learning/latest/dg/understanding-the-data-format-for-amazon-ml.html
https://docs.aws.amazon.com/machine-learning/latest/dg/understanding-the-data-format-for-amazon-ml.html
https://docs.aws.amazon.com/machine-learning/latest/dg/understanding-the-data-format-for-amazon-ml.html
https://docs.aws.amazon.com/machine-learning/latest/dg/understanding-the-data-format-for-amazon-ml.html
https://docs.aws.amazon.com/machine-learning/latest/dg/understanding-the-data-format-for-amazon-ml.html
https://docs.aws.amazon.com/machine-learning/latest/dg/understanding-the-data-format-for-amazon-ml.html
https://docs.aws.amazon.com/machine-learning/latest/dg/understanding-the-data-format-for-amazon-ml.html
https://docs.aws.amazon.com/machine-learning/latest/dg/understanding-the-data-format-for-amazon-ml.html
https://docs.aws.amazon.com/machine-learning/latest/dg/understanding-the-data-format-for-amazon-ml.html
https://docs.aws.amazon.com/machine-learning/latest/dg/understanding-the-data-format-for-amazon-ml.html
https://docs.aws.amazon.com/machine-learning/latest/dg/understanding-the-data-format-for-amazon-ml.html
https://docs.aws.amazon.com/machine-learning/latest/dg/understanding-the-data-format-for-amazon-ml.html
https://docs.aws.amazon.com/machine-learning/latest/dg/understanding-the-data-format-for-amazon-ml.html
https://docs.aws.amazon.com/machine-learning/latest/dg/understanding-the-data-format-for-amazon-ml.html
https://docs.aws.amazon.com/machine-learning/latest/dg/understanding-the-data-format-for-amazon-ml.html
https://docs.aws.amazon.com/machine-learning/latest/dg/understanding-the-data-format-for-amazon-ml.html
https://docs.aws.amazon.com/machine-learning/latest/dg/understanding-the-data-format-for-amazon-ml.html
https://docs.aws.amazon.com/machine-learning/latest/dg/understanding-the-data-format-for-amazon-ml.html
https://docs.aws.amazon.com/machine-learning/latest/dg/understanding-the-data-format-for-amazon-ml.html
https://docs.aws.amazon.com/machine-learning/latest/dg/understanding-the-data-format-for-amazon-ml.html
https://docs.aws.amazon.com/machine-learning/latest/dg/understanding-the-data-format-for-amazon-ml.html
https://docs.aws.amazon.com/machine-learning/latest/dg/understanding-the-data-format-for-amazon-ml.html
https://docs.aws.amazon.com/machine-learning/latest/dg/understanding-the-data-format-for-amazon-ml.html
https://docs.aws.amazon.com/machine-learning/latest/dg/understanding-the-data-format-for-amazon-ml.html
https://docs.aws.amazon.com/machine-learning/latest/dg/understanding-the-data-format-for-amazon-ml.html
https://docs.aws.amazon.com/cli/latest/reference/machinelearning/describe-data-sources.html
https://docs.aws.amazon.com/cli/latest/reference/machinelearning/describe-data-sources.html
https://docs.aws.amazon.com/cli/latest/reference/machinelearning/describe-data-sources.html
https://docs.aws.amazon.com/cli/latest/reference/machinelearning/describe-data-sources.html
https://docs.aws.amazon.com/cli/latest/reference/machinelearning/describe-data-sources.html
https://docs.aws.amazon.com/cli/latest/reference/machinelearning/describe-data-sources.html
https://docs.aws.amazon.com/cli/latest/reference/machinelearning/describe-data-sources.html
https://docs.aws.amazon.com/cli/latest/reference/machinelearning/describe-data-sources.html
https://docs.aws.amazon.com/cli/latest/reference/machinelearning/describe-data-sources.html
https://docs.aws.amazon.com/cli/latest/reference/machinelearning/describe-data-sources.html
https://docs.aws.amazon.com/cli/latest/reference/machinelearning/describe-data-sources.html
https://docs.aws.amazon.com/cli/latest/reference/machinelearning/describe-data-sources.html
https://docs.aws.amazon.com/cli/latest/reference/machinelearning/describe-data-sources.html
https://docs.aws.amazon.com/cli/latest/reference/machinelearning/describe-data-sources.html
https://docs.aws.amazon.com/cli/latest/reference/machinelearning/describe-data-sources.html
https://docs.aws.amazon.com/cli/latest/reference/machinelearning/describe-data-sources.html
https://docs.aws.amazon.com/cli/latest/reference/machinelearning/describe-data-sources.html
https://docs.aws.amazon.com/cli/latest/reference/machinelearning/describe-data-sources.html
https://docs.aws.amazon.com/cli/latest/reference/machinelearning/describe-data-sources.html
https://docs.aws.amazon.com/cli/latest/reference/machinelearning/describe-data-sources.html
https://docs.aws.amazon.com/cli/latest/reference/machinelearning/describe-data-sources.html
https://docs.aws.amazon.com/cli/latest/reference/machinelearning/describe-data-sources.html
https://docs.aws.amazon.com/cli/latest/reference/machinelearning/describe-data-sources.html
https://docs.aws.amazon.com/cli/latest/reference/machinelearning/describe-data-sources.html
https://docs.aws.amazon.com/cli/latest/reference/machinelearning/describe-data-sources.html
https://docs.aws.amazon.com/cli/latest/reference/machinelearning/describe-data-sources.html
https://docs.aws.amazon.com/cli/latest/reference/machinelearning/describe-ml-models.html
https://docs.aws.amazon.com/cli/latest/reference/machinelearning/describe-ml-models.html
https://docs.aws.amazon.com/cli/latest/reference/machinelearning/describe-ml-models.html
https://docs.aws.amazon.com/cli/latest/reference/machinelearning/describe-ml-models.html
https://docs.aws.amazon.com/cli/latest/reference/machinelearning/describe-ml-models.html
https://docs.aws.amazon.com/cli/latest/reference/machinelearning/describe-ml-models.html
https://docs.aws.amazon.com/cli/latest/reference/machinelearning/describe-ml-models.html
https://docs.aws.amazon.com/cli/latest/reference/machinelearning/describe-ml-models.html
https://docs.aws.amazon.com/cli/latest/reference/machinelearning/describe-ml-models.html
https://docs.aws.amazon.com/cli/latest/reference/machinelearning/describe-ml-models.html
https://docs.aws.amazon.com/cli/latest/reference/machinelearning/describe-ml-models.html
https://docs.aws.amazon.com/cli/latest/reference/machinelearning/describe-ml-models.html
https://docs.aws.amazon.com/cli/latest/reference/machinelearning/describe-ml-models.html
https://docs.aws.amazon.com/cli/latest/reference/machinelearning/describe-ml-models.html
https://docs.aws.amazon.com/cli/latest/reference/machinelearning/describe-ml-models.html
https://docs.aws.amazon.com/cli/latest/reference/machinelearning/describe-ml-models.html
https://docs.aws.amazon.com/cli/latest/reference/machinelearning/describe-ml-models.html
https://docs.aws.amazon.com/cli/latest/reference/machinelearning/describe-ml-models.html
https://docs.aws.amazon.com/cli/latest/reference/machinelearning/describe-ml-models.html
https://docs.aws.amazon.com/cli/latest/reference/machinelearning/describe-ml-models.html
https://docs.aws.amazon.com/cli/latest/reference/machinelearning/describe-ml-models.html
https://docs.aws.amazon.com/cli/latest/reference/machinelearning/describe-ml-models.html
https://docs.aws.amazon.com/cli/latest/reference/machinelearning/describe-ml-models.html
https://docs.aws.amazon.com/cli/latest/reference/machinelearning/describe-ml-models.html
https://docs.aws.amazon.com/cli/latest/reference/machinelearning/describe-ml-models.html
https://docs.aws.amazon.com/cli/latest/reference/machinelearning/describe-ml-models.html
https://docs.aws.amazon.com/cli/latest/reference/machinelearning/describe-evaluations.html
https://docs.aws.amazon.com/cli/latest/reference/machinelearning/describe-evaluations.html
https://docs.aws.amazon.com/cli/latest/reference/machinelearning/describe-evaluations.html
https://docs.aws.amazon.com/cli/latest/reference/machinelearning/describe-evaluations.html
https://docs.aws.amazon.com/cli/latest/reference/machinelearning/describe-evaluations.html
https://docs.aws.amazon.com/cli/latest/reference/machinelearning/describe-evaluations.html
https://docs.aws.amazon.com/cli/latest/reference/machinelearning/describe-evaluations.html
https://docs.aws.amazon.com/cli/latest/reference/machinelearning/describe-evaluations.html
https://docs.aws.amazon.com/cli/latest/reference/machinelearning/describe-evaluations.html
https://docs.aws.amazon.com/cli/latest/reference/machinelearning/describe-evaluations.html
https://docs.aws.amazon.com/cli/latest/reference/machinelearning/describe-evaluations.html
https://docs.aws.amazon.com/cli/latest/reference/machinelearning/describe-evaluations.html
https://docs.aws.amazon.com/cli/latest/reference/machinelearning/describe-evaluations.html
https://docs.aws.amazon.com/cli/latest/reference/machinelearning/describe-evaluations.html
https://docs.aws.amazon.com/cli/latest/reference/machinelearning/describe-evaluations.html
https://docs.aws.amazon.com/cli/latest/reference/machinelearning/describe-evaluations.html
https://docs.aws.amazon.com/cli/latest/reference/machinelearning/describe-evaluations.html
https://docs.aws.amazon.com/cli/latest/reference/machinelearning/describe-evaluations.html
https://docs.aws.amazon.com/cli/latest/reference/machinelearning/describe-evaluations.html
https://docs.aws.amazon.com/cli/latest/reference/machinelearning/describe-evaluations.html
https://docs.aws.amazon.com/cli/latest/reference/machinelearning/describe-evaluations.html
https://docs.aws.amazon.com/cli/latest/reference/machinelearning/describe-evaluations.html
https://docs.aws.amazon.com/cli/latest/reference/machinelearning/describe-evaluations.html
https://docs.aws.amazon.com/cli/latest/reference/machinelearning/describe-evaluations.html
https://docs.aws.amazon.com/machine-learning/latest/dg/evaluating_models.html
https://docs.aws.amazon.com/machine-learning/latest/dg/evaluating_models.html
https://docs.aws.amazon.com/machine-learning/latest/dg/evaluating_models.html
https://docs.aws.amazon.com/machine-learning/latest/dg/evaluating_models.html
https://docs.aws.amazon.com/machine-learning/latest/dg/evaluating_models.html
https://docs.aws.amazon.com/machine-learning/latest/dg/evaluating_models.html
https://docs.aws.amazon.com/machine-learning/latest/dg/evaluating_models.html
https://docs.aws.amazon.com/machine-learning/latest/dg/evaluating_models.html
https://docs.aws.amazon.com/machine-learning/latest/dg/evaluating_models.html
https://docs.aws.amazon.com/machine-learning/latest/dg/evaluating_models.html
https://docs.aws.amazon.com/machine-learning/latest/dg/evaluating_models.html
https://docs.aws.amazon.com/machine-learning/latest/dg/evaluating_models.html
https://docs.aws.amazon.com/machine-learning/latest/dg/evaluating_models.html
https://docs.aws.amazon.com/machine-learning/latest/dg/evaluating_models.html
https://docs.aws.amazon.com/machine-learning/latest/dg/evaluating_models.html
https://docs.aws.amazon.com/machine-learning/latest/dg/evaluating_models.html
https://docs.aws.amazon.com/machine-learning/latest/dg/evaluating_models.html
https://docs.aws.amazon.com/machine-learning/latest/dg/evaluating_models.html
https://docs.aws.amazon.com/machine-learning/latest/dg/evaluating_models.html
https://docs.aws.amazon.com/machine-learning/latest/dg/evaluating_models.html
https://docs.aws.amazon.com/machine-learning/latest/dg/evaluating_models.html
https://docs.aws.amazon.com/machine-learning/latest/dg/evaluating_models.html
https://docs.aws.amazon.com/machine-learning/latest/dg/evaluating_models.html
https://docs.aws.amazon.com/machine-learning/latest/dg/evaluating_models.html

Redshift, Amazon ML, and Alexa Skills Chapter 7

Amazon Alexa is a virtual assistant that lives on the cloud. Alexa can listen to our requests
and provide voice responses or take actions, such as switching on a smart bulb. Amazon
ships Alexa along with its Echo devices, but Alexa can be used with other devices as well,
making use of its APIs. You can extend the default Alexa functionality by creating your
own Alexa skills.

In this recipe, we will create a simple Alexa skill that will introduce a person. This is a very
basic skill, but it can still be useful for any events you might be hosting at work or even
outside. We can use an Echo device to interact with Alexa through our Alexa skill. To
demonstrate the Alexa skill, you can use any Alexa-enabled device, and for learning and
testing purposes you can also use a simulator, such as echosim. io.

Getting ready

You should have the following prerequisites to go through this recipe:

* You need an active AWS account. You need to follow Getting started in the
recipes Your first AWS Lambda and Your first Lambda with AWS CLI sections from
Chapter 1, Getting Started with Serverless Computing on AWS to set up Java,
Maven, the parent project, serverless-cookbook-parent-aws-java, and
AWS CLI, and may also read other notes there, including code usage guidelines,
S3 bucket creation, and notes for Windows users.

¢ Knowledge of how to install and configure the Alexa skills Kit CLL

¢ An Echo device to talk to Alexa using the skill that we create. However, if you do
not have an Echo device, you can use a simulator, such as echosim. io.

¢ A basic understanding of Java and Maven, and the steps for creating and
invoking Lambda, as given in chapter 1, Getting Started with Serverless
Computing on AWS.

Installing and configuring the ASK CLI

If you are working on a Windows platform, you need to first install the
Node. js Windows build tools before installing ask-c1i.

[334]

Redshift, Amazon ML, and Alexa Skills Chapter 7

You can install ask-c1i using the following code:

npm install -g ask-cli

Configuring ask-cli for the first time

Once ask-cli is installed, you can initialize it as follows:
ask init

ask-cli will ask you to choose the AWS profile that you want. You can choose the profile
that you created as part of Your first Lambda with AWS CLI recipe in Chapter 1, Getting
Started with Serverless Computing on AWS.

Once you select the profile, it will open a browser window where you have to sign in with
your AWS credentials, and you will be shown a confirmation screen, as shown in the
following screenshot:

amazon Heartin
N

amagon
alexa

Alexa Skills Kit Command Line Interface would like
access to:

® Alexa

Permission to update your Alexa skill interaction models

Permission to read your Alexa skill interaction models

Permission to read build status for Alexa skill interaction models

Create, read, update, and delete your Alexa skills, Alexa skill details and account linking
settings and list your Amazon developer accounts.

Ability to invoke skill(s)

Ability to simulate skill(s)

Ability to retrieve simulation results for skill(s)

Cancel ’ I Allow

‘You can remove this access at any time by visiting Your Account at Amazon. Learn more ~

[335]

Redshift, Amazon ML, and Alexa Skills Chapter 7

Once you click Allow, you will be redirected to a success page, as shown in the following
screeenshot:

& C @ 127.0.0.1:9090/cb?code=ANFIIWItREPKtqQkfFndI&scope=alexa%3A%3Aask%3Askills

Sign in was successful. Close this browser and return to the command line interface.

You can close the window and return to the Terminal, as shown in the following
screenshot:

$ ask init

Initialize CLI
Setting up ask profile: [default]
? Please choose one from the following AWS profiles for skill's Lambda function

deployment.

Switch to 'Login with Amazon' page...
Tokens fetched and recorded in ask-cli config.
Vendor ID set as M334P5DTKSVOGP

Profile [default] initialized successfully.

If you want to complete the initialization without opening a browser, you
can use the ask init --no-browser command.

How to do it...

In this recipe, we will create a simple Alexa skill. When you ask Alexa to say introduction
for a person, it will read out an introduction. You can use this simple skill in your company
to introduce a guest or to introduce yourself in a talk or presentation. You can make
changes to the recipe's code files and deploy it into your AWS account.

[336]

Redshift, Amazon ML, and Alexa Skills Chapter 7

Alexa skill building has two parts: a Lambda backend that does the actual processing
(returning the introduction text in our case) and the Alexa skill in the developer portal that
interpret user requests, talks to the backend and returns the response.

Step 1 - Creating the Lambda project (Java)

The ASK SDK requires intent handlers for each of the expected intents. We will create
intent handlers for our application-specific intent (for example, a self-intro intent), the
launch intent—as well as help, stop, and cancel intents for the inbuilt intents—a fallback
intent, and a session end request intent. We will then create a parent lambda handler
class that registers all these intent handlers.

I will be discussing only the core application logic and will not be
discussing supporting code, such as imports, error handling, and Java doc
comments in the book. However, the complete working code is provided
along with the code files.

Let's start by defining the dependency of ASK SDK for Java in the poM file, as follows:

<dependency>
<groupId>com.amazon.alexa</groupld>
<artifactId>ask-sdk</artifactId>
<version>${ask.sdk.version}</version>
</dependency>

The poM file also has dependencies for aws-lambda-java-core. The
ask.sdk.version property is defined along with other properties in the parent project,
POM serverless—-cookbook-parent-aws—-java:

<ask.sdk.version>2.11.2</ask.sdk.version>

[337]

Redshift, Amazon ML, and Alexa Skills Chapter 7

We can create the Java Lambda project with the following package structure:

v lambda-alexa-simple-intro
> .idea
v src
v main
v java
v tech.heartin.books.serverlesscookbook

> target

I lambda-alexa-simple-intro.iml

> External Libraries

The selfIntroIntentHandler class defines the speech text that does the introduction, as
follows:

public class SelfIntroIntentHandler implements RequestHandler {

@Override

public final boolean canHandle (final HandlerInput input) {
return input.matches (Predicates.intentName ("SelfIntroIntent"));

}

@Override

public final Optional<Response> handle (final HandlerInput input) {
String speechText = "Hello, this is Alexa saying intro for Heartin

Kanikathottu. "

+ "Heartin is a senior software engineer and blogger with
around 11 years of IT experience.

+ "He likes to share his technical knowledge through his
blogs such as CloudMaterials.com "

+ "and Java J EE dot com. "

+ "He also likes to mentor juniors and take sessions at

n

meetups and conferences.";

return input.getResponseBuilder ()

[338]

Redshift, Amazon ML, and Alexa Skills Chapter 7

.withSpeech (speechText)
.withSimpleCard("SelfIntro", speechText)
build();

}
The LaunchRequestHandler class defines the speech text for the app launch, as follows:

public class LaunchRequestHandler implements RequestHandler {

@Override
public final boolean canHandle (final HandlerInput input) {
return input.matches (Predicates.requestType (LaunchRequest.class));

@Override
public final Optional<Response> handle(final HandlerInput input) {
String speechText = "Welcome to the Self Intro Alexa Skill for
Heartin, you may say 'please say intro'";
return input.getResponseBuilder ()
.withSpeech (speechText)
.withSimpleCard("SelfIntro", speechText)
.withReprompt (speechText)
Lbuild();

}

The HelpIntentHandler class defines the speech text for the inbuilt intent
AMAZON.HelpIntent, as follows:

public class HelpIntentHandler implements RequestHandler {

@Override
public final boolean canHandle (final HandlerInput input) {
return input.matches (intentName ("AMAZON.HelpIntent"));

@Override
public final Optional<Response> handle(final HandlerInput input) {
String speechText = "You you may say 'please say intro'!";

return input.getResponseBuilder ()
.withSpeech (speechText)
.withSimpleCard("SelfIntro", speechText)
.withReprompt (speechText)
ouild();

[339]

Redshift, Amazon ML, and Alexa Skills Chapter 7

The CancelandStopIntentHandler class defines the speech text for the for the inbuilt
intents AMAZON. StopIntent and AMAZON.CancelIntent:

public class CancelandStopIntentHandler implements RequestHandler {

@Override
public final boolean canHandle (final HandlerInput input) {
return
input.matches (intentName ("AMAZON.StopIntent") .or (intentName ("AMAZON.Cancell
ntent")));
}
@Override

public final Optional<Response> handle (final HandlerInput input) {
return input.getResponseBuilder ()
.withSpeech ("Goodbye buddy")
.withSimpleCard("SelfIntro", "Goodbye")
Jbuild();

}

The FallbackIntentHandler class defines the speech text for the fallbacks when no
intents match, as follows:

public class FallbackIntentHandler implements RequestHandler {

@Override
public final boolean canHandle (final HandlerInput input) {
return input.matches (intentName ("AMAZON.FallbackIntent"));

@Override
public final Optional<Response> handle(final HandlerInput input) {
String speechText = "Sorry buddy, I don't know that. You can say

try saying help!";
return input.getResponseBuilder ()
.withSpeech (speechText)
.withSimpleCard("SelfIntro", speechText)
.withReprompt (speechText)
ouild();

[340]

Redshift, Amazon ML, and Alexa Skills Chapter 7

We will also define a sessionEndedRequestHandler class for handling session
termination requests, as shown in the following code:

public class SessionEndedRequestHandler implements RequestHandler {

@Override
public final boolean canHandle (final HandlerInput input) {
return input.matches (requestType (SessionEndedRequest.class));

@Override

public final Optional<Response> handle(final HandlerInput input) {
//any cleanup logic goes here
return input.getResponseBuilder () .build();

}

Finally, we will create the Lambda handler class that extends SkillStreamHandler, as
follows:

public class SelfIntroStreamHandler extends SkillStreamHandler {

private static Skill skill = Skills.standard()
.addRequestHandlers (
new CancelandStopIntentHandler (),
new SelfIntroIntentHandler (),
new HelpIntentHandler(),
new LaunchRequestHandler (),
new SessionEndedRequestHandler ())
Jbuild();

public SelfIntroStreamHandler () {
super (skill);

[341]

Redshift, Amazon ML, and Alexa Skills Chapter 7

Step 2 - Provisioning Lambda (AWS CLlI)

Go through the following steps to deploy and invoke the lambda. Refer to previous recipes
or code files if you need more details on any of the steps. You can also follow Your first
Lambda with AWS CLI recipe in Chapter 1, Getting Started with Serverless Computing on
AWS and use CloudFormation for Lambda provisioning:

1.

Runmvn clean package from inside the Lambda project root folder to create
the Uber JAR.

Upload the Uber JARto S3.

Create a role called l1ambda-alexa-simple-intro-role for the lambda, with
an appropriate trust relationship definition.

Create a policy for basic logging permissions and attach it to the role.

Create the lambda function as follows:

aws lambda create-function \

——function—-name lambda-alexa-simple-intro \

——runtime java8 \

—-role arn:aws:iam::<account id>:role/lambda-alexa-simple-
intro-role \

—-handler
tech.heartin.books.serverlesscookbook.SelfIntroStreamHandler: :handl
eRequest \

——code S3Bucket=serverless—cookbook, S3Key=lambda-alexa—-simple—
intro-0.0.1-SNAPSHOT. jar \

——timeout 15 \

—-memory-size 512 \

—--region us-east-1 \

——profile admin

6. Give permission for the Alexa skill to invoke this Lambda as follows:

aws lambda add-permission \
——function-name lambda-alexa-simple-intro \
——statement-id "12345" \
——action "lambda:InvokeFunction" \
—-principal "alexa-appkit.amazon.com" \
—--region us-east-1 \
——profile admin

[342]

Redshift, Amazon ML, and Alexa Skills Chapter 7

We have given permission to any Alexa skill to invoke this lambda. Once you
create a skill, you can remove this lambda and add a permission that allows only
a particular skill to invoke this lambda, as shown in the following code:

aws

lambda remove-permission \

——function—name lambda-alexa-simple-intro \
—-—-statement-id "12345" \

—--region us-east-1 \

——profile admin

lambda add-permission \

——function—name lambda-alexa-simple-intro \
—-—statement-id "12345" \

——action "lambda:InvokeFunction" \
—-—principal "alexa-appkit.amazon.com" \
—-—event-source-token <skill id from lambda> \
—--region us-east-1 \

——profile admin

Step 3 - Building an Alexa skill with ASK CLI

We can build an Alexa skill by going through the following steps:

1. Prepare the skill manifest JSON file, as shown in the following code:

{

for

"manifest": {
"publishingInformation": {
"locales": {
"en-US": {
"summary": "A simple skill to say introduction
someone",
"examplePhrases": [

"Alexa please say intro",

"say intro",

llhelpll
I
"name": "self-intro",
"description": "Simple Intro Skill"

b
"isAvailableWorldwide": true,
"testingInstructions": "1) Say 'Alexa, say intro'.",
"category": "ORGANIZERS_AND_ASSISTANTS",
"distributionCountries": []

b

"apis": {

[343]

Redshift, Amazon ML, and Alexa Skills Chapter 7

"custom": {
"endpoint": {
"uri": "arn:aws:lambda:us-east-1:<account

id>:function:lambda-alexa-simple—-intro"
}
}
by

"manifestVersion": "1.0"
3
Save this file as skill. json.

I have shown only one locale section for US: en-Us. You can add additional
locales. For example, you can add en-1IN if you are planning to test this with an
echo with English (IN) set. have added two locales in the code files to
demonstrate this.

2. Create a skill using this JSON file, as shown in the following code:
ask api create-skill --file skill.json

If the skill manifest JSON file was created successfully, you should get the
following response:

Create skill request submitted.
Skill ID: amznl.ask.skill.ablfdfac-42eb-42ae-aeae-b761f3c903cl

Please use the following command to track the skill status:
ask api get-skill-status -s amznl.ask.skill.ablfdfac-42eb-42ae-aeae-b761f3c903cl

You can execute the command that is provided to track the skill as follows:

$ ask api get-skill-status -s amznl.ask.skill.ablfdfac-42eb-42ae-aeae-b761f3c903cl

If the skill creation was successful, you should get the following message:

[344]

Redshift, Amazon ML, and Alexa Skills

Chapter 7

"manifest": {
"eTag": "4d7be69ac8b33ececflc5df9b9c619a4",
"lastUpdateRequest": {

"status": "SUCCEEDED"

3. Prepare the model file as follows:

{
"interactionModel": {
"languageModel": {
"invocationName": "self-intro",
"intents": [
{
"name": "AMAZON.CancelIntent",
"samples": []
}I
{
"name": "AMAZON.HelpIntent",
"samples": []
}I
{
"name": "AMAZON.StopIntent",
"samples": []
}I
{
"name": "SelfIntrolIntent",
"samples": [
"please say intro",
"say intro",
"please say intro for",
"say intro for",
"intro",
"intro for"
]
}
]
}
}
}

[345]

Redshift, Amazon ML, and Alexa Skills Chapter 7

Save this file as en-US. json. If you need to support more locales, you can create
model files for them as well.

For more details on invocation names, intents, and utterances, refer to the How it
works section.

4. Update the skill with the preceding model file, as follows:

ask api update-model \
——skill-id amznl.ask.skill.ablfdfac-42eb-42ae—aeae-b761£3c903cl

\
--file en-US.json \
——locale en-US

Replace the skill ID with the skill ID you receive in Step 2: Provisioning Lambda
(AWS CLI).

If the model JSON file was created successfully, you should get the following
response:

Model for en-US submitted.

Please use the following command to track the model build status:
_ ask api get-skill-status —-s amznl.ask.skill.ablfdfac-42eb-42ae-aeae-b761f3c903cl

You can execute the command that is provided to track the skill as follows:

$ ask api get-skill-status -s amznl.ask.skill.ablfdfac-42eb-42ae-aeae-b761f3c903cl

If the model creation was successful, you should get the following message:

[346]

Redshift, Amazon ML, and Alexa Skills Chapter 7

"interactionModel": {
"en-US": {
"eTag": "16c613elflaadd74398120b8f1886ca3",
"lastUpdateRequest": {
"status": "SUCCEEDED"

"manifest": {
"eTag": "4d7be69ac8b33ececflc5df9b9c6f9ad",
"lastUpdateRequest": {
"status": "SUCCEEDED"

If you created more locale files in the previous step, you can use the update-
model subcommand to update the skills with those models as well.

5. Enable the skill using the following code:

ask api enable-skill \
—-skill-id amznl.ask.skill.a585bf93-15bb-4361-ab56-ffbdc66027£fd

If successful, you should see the following message:

The skill has been enabled.

You can now ask Alexa to open our app ('self intro') and then say one of the
sample utterances we defined ('please say intro').

[347]

Redshift, Amazon ML, and Alexa Skills

Chapter 7

You can use the Alexa simulator available at https://echosim. io if you do not
have an Echo device. The homepage for this simulator is shown in the following

screenshot:

< C' @& https:/fechosim.io

Echosim.io

COMMUNITY EDITION

project.

Alexa Skill Testing Tool

Click and hold the microphone button
or hold down the space bar on your keyboard to activate the

Ready...

Echosim.io provided by iQuarius Media. Special thanks to Sam Machin for his Alexa in the Browser

./'.J

microphone.

[348]

https://echosim.io
https://echosim.io
https://echosim.io
https://echosim.io
https://echosim.io
https://echosim.io
https://echosim.io

Redshift, Amazon ML, and Alexa Skills Chapter 7

You can also log in to the AWS developer console and test your skill from the
Test tab of your skill, as shown in the following screenshot:

& c @ https://developer.amazon.com/alexa/console/|

alexa developer console

< Your Skills self-intro Build Test Distribution
Skill testing is enabled in: Development v
Alexa Simulator Manual JSON Voice & Tone
English (US) v

open self intro

l RC)

Welcome to the Self Intro Alexa Skill for
Heartin, you may say 'please say intro'

Hello, this is Alexa saying intro for Heartin
Kanikathottu. Heartin is a senior software
engineer and blogger with around 11 years of
IT experience. He likes to share his technical

knowledge through his blogs such as
CloudMaterials.com and Java J EE dot com. He
also likes to mentor juniors and take sessions
at meetups and conferences.

How it works...

Alexa uses automated speech recognition (ASR) followed by natural language
understanding (NLU) to process user requests. Internally, Alexa makes use of Amazon
Lex. Amazon Lex is the primary AWS service for building conversational interfaces with
voice and text, using ASR and NLU.

[349]

Redshift, Amazon ML, and Alexa Skills Chapter 7

In summary, we did the following in this recipe:

1. Created a Java lambda as the backend for the Alexa skill

2. Created an Alexa skill using the Alexa Skills Kit Command-Line Interface
3. Linked the Alexa skill and Lambda

4. Tested the skill

Now, let's learn some theory to understand these steps better.

Alexa skill invocation basics

You start a conversation with Alexa using an invocation name, or wake word. The default
wake word is Alexa. These days, you can also use the wake words Echo, Computer, and
Amazon. You can set the wake word from the Amazon Alexa app, which you can
download from the Apple App Store or Google Play Store.

Once you activate Alexa, you can invoke a skill published by Amazon, or launch a custom
skill published by other developers, using an invocation name. You can launch your own
skills from your Echo devices without needing to publish them, as long as the device is
linked to the same Amazon account as your developer portal.

Your Alexa skill can define different intents. Intents can be considered as different
functionalities provided by your skill, such as welcoming someone to the app, responding
to a question, taking an action, and so on. After you launch a skill, you need to say a phrase,
and each phrase will be mapped to an intent.

For example, consider the sentence Alexa, open Cloudericks and please say the intro. Alexa is the
wake work here, Cloudericks is our invocation name, and please say the intro is the utterance.
The utterance will invoke an intent that performs the actual introduction. The intent can be
defined within an AWS lambda or an external API.

You usually define more utterances for an intent, such as please say intro, please say the intro,
say intro, and so on. You can define more utterances to make your application more flexible
and then improve it further from the analytics data for failed utterances.

Instead of saying open Cloudericks to launch the skill, you can also use the invocation name
in your sentence. For example, instead of saying Alexa, open Cloudericks and please say the
intro, you can say Alexa, please say intro for Cloudericks, as we did in this recipe.

[350]

Redshift, Amazon ML, and Alexa Skills Chapter 7

Explaining the Lambda project (Java)

We used ASK SDK v2 (Java) in this recipe. With this SDK version, you need to define
handlers for each of your intents. Each handler has a canHandle function and a handle
function. The canHandle function checks and confirms what intents the handler responds
to and the handle function contains the actual logic for the intent.

Apart from the intent handler classes, you also need to define a parent handler class that
extends the SkillStreamHandler class. From this handler class, you need to pass an
AlexaSkill object that contains all the other intent handlers into

the SkillStreamHandler parent constructor through a super call.

If you are using the older version of the SDK, you can go to https://
alexa-skills-kit-sdk-for-java.readthedocs.io/en/latest/

Migrating-To-ASK-SDK-v2-For-Java.html to migrate to the version (v2)
that we use in this recipe.

In the introduction, I wrote cloudMaterials.comand javajee.com differently so that Alexa
says them in the way that I want. You can use speech synthesis markup language (SSML)
for better control over how Alexa generates speech.

We first gave permission for any Alexa skill to invoke our lambda. This is because you can
create a skill with a lambda endpoint only if the lambda has an Alexa trigger. Once you
create a skill, you can remove this permission and add a permission that only allows this
skill to invoke this lambda. The alternative is to create the skill without an endpoint, as
shown in the following code, located in the skill. json file:

"apis": {
"custom": {
}

b

You can then create the lambda and add a trigger with this skill's ID. After that, you can
update the skill. json with the endpoint and use the update-skill subcommand to
update the skill, as shown in the following code:

ask api update-skill \
—-skill-id amznl.ask.skill.6fed53f3-66le-4f26-8de8-4ee4844£899b \
——file skill-update.json

[351]

https://alexa-skills-kit-sdk-for-java.readthedocs.io/en/latest/Migrating-To-ASK-SDK-v2-For-Java.html
https://alexa-skills-kit-sdk-for-java.readthedocs.io/en/latest/Migrating-To-ASK-SDK-v2-For-Java.html
https://alexa-skills-kit-sdk-for-java.readthedocs.io/en/latest/Migrating-To-ASK-SDK-v2-For-Java.html
https://alexa-skills-kit-sdk-for-java.readthedocs.io/en/latest/Migrating-To-ASK-SDK-v2-For-Java.html
https://alexa-skills-kit-sdk-for-java.readthedocs.io/en/latest/Migrating-To-ASK-SDK-v2-For-Java.html
https://alexa-skills-kit-sdk-for-java.readthedocs.io/en/latest/Migrating-To-ASK-SDK-v2-For-Java.html
https://alexa-skills-kit-sdk-for-java.readthedocs.io/en/latest/Migrating-To-ASK-SDK-v2-For-Java.html
https://alexa-skills-kit-sdk-for-java.readthedocs.io/en/latest/Migrating-To-ASK-SDK-v2-For-Java.html
https://alexa-skills-kit-sdk-for-java.readthedocs.io/en/latest/Migrating-To-ASK-SDK-v2-For-Java.html
https://alexa-skills-kit-sdk-for-java.readthedocs.io/en/latest/Migrating-To-ASK-SDK-v2-For-Java.html
https://alexa-skills-kit-sdk-for-java.readthedocs.io/en/latest/Migrating-To-ASK-SDK-v2-For-Java.html
https://alexa-skills-kit-sdk-for-java.readthedocs.io/en/latest/Migrating-To-ASK-SDK-v2-For-Java.html
https://alexa-skills-kit-sdk-for-java.readthedocs.io/en/latest/Migrating-To-ASK-SDK-v2-For-Java.html
https://alexa-skills-kit-sdk-for-java.readthedocs.io/en/latest/Migrating-To-ASK-SDK-v2-For-Java.html
https://alexa-skills-kit-sdk-for-java.readthedocs.io/en/latest/Migrating-To-ASK-SDK-v2-For-Java.html
https://alexa-skills-kit-sdk-for-java.readthedocs.io/en/latest/Migrating-To-ASK-SDK-v2-For-Java.html
https://alexa-skills-kit-sdk-for-java.readthedocs.io/en/latest/Migrating-To-ASK-SDK-v2-For-Java.html
https://alexa-skills-kit-sdk-for-java.readthedocs.io/en/latest/Migrating-To-ASK-SDK-v2-For-Java.html
https://alexa-skills-kit-sdk-for-java.readthedocs.io/en/latest/Migrating-To-ASK-SDK-v2-For-Java.html
https://alexa-skills-kit-sdk-for-java.readthedocs.io/en/latest/Migrating-To-ASK-SDK-v2-For-Java.html
https://alexa-skills-kit-sdk-for-java.readthedocs.io/en/latest/Migrating-To-ASK-SDK-v2-For-Java.html
https://alexa-skills-kit-sdk-for-java.readthedocs.io/en/latest/Migrating-To-ASK-SDK-v2-For-Java.html
https://alexa-skills-kit-sdk-for-java.readthedocs.io/en/latest/Migrating-To-ASK-SDK-v2-For-Java.html
https://alexa-skills-kit-sdk-for-java.readthedocs.io/en/latest/Migrating-To-ASK-SDK-v2-For-Java.html
https://alexa-skills-kit-sdk-for-java.readthedocs.io/en/latest/Migrating-To-ASK-SDK-v2-For-Java.html
https://alexa-skills-kit-sdk-for-java.readthedocs.io/en/latest/Migrating-To-ASK-SDK-v2-For-Java.html
https://alexa-skills-kit-sdk-for-java.readthedocs.io/en/latest/Migrating-To-ASK-SDK-v2-For-Java.html
https://alexa-skills-kit-sdk-for-java.readthedocs.io/en/latest/Migrating-To-ASK-SDK-v2-For-Java.html
https://alexa-skills-kit-sdk-for-java.readthedocs.io/en/latest/Migrating-To-ASK-SDK-v2-For-Java.html
https://alexa-skills-kit-sdk-for-java.readthedocs.io/en/latest/Migrating-To-ASK-SDK-v2-For-Java.html
https://alexa-skills-kit-sdk-for-java.readthedocs.io/en/latest/Migrating-To-ASK-SDK-v2-For-Java.html
https://alexa-skills-kit-sdk-for-java.readthedocs.io/en/latest/Migrating-To-ASK-SDK-v2-For-Java.html
https://alexa-skills-kit-sdk-for-java.readthedocs.io/en/latest/Migrating-To-ASK-SDK-v2-For-Java.html
https://alexa-skills-kit-sdk-for-java.readthedocs.io/en/latest/Migrating-To-ASK-SDK-v2-For-Java.html
https://alexa-skills-kit-sdk-for-java.readthedocs.io/en/latest/Migrating-To-ASK-SDK-v2-For-Java.html
https://alexa-skills-kit-sdk-for-java.readthedocs.io/en/latest/Migrating-To-ASK-SDK-v2-For-Java.html
https://alexa-skills-kit-sdk-for-java.readthedocs.io/en/latest/Migrating-To-ASK-SDK-v2-For-Java.html
http://cloudmaterials.com/en
https://javajee.com/

Redshift, Amazon ML, and Alexa Skills Chapter 7

Explaining the ASK CLI steps

We used ASK CLI to create our Alexa skill. We can also use the developer portal Ul or a
voice app platform (more information on this can be found in the There’s more section).

ASK CLI provides a set of high-level commands, as well as a set of low-level commands.
High-level commands include commands such as ask new, ask deploy, and so on that
make the creation and deployment of skills very easy. The ask new command creates a
sample skill, sample Lambda, and all the required files from a template that you can
modify. The ask deploy command allows you to deploy the skill to the developer portal
easily.

Low-level commands, on the other hand, provide more flexibility as to what you want to
do with your skill. They allow you to work on only the skill or lambda. The low-level
command steps also correspond to the steps we perform from the developer portal Ul In
this recipe, we use the low-level set of commands to create and deploy the Alexa skill. We
create and deploy the lambda in the same way that we have been doing in the previous
recipes in this book.

To create a skill with ASK CLI, we created and used the following two files:

e skill.json: This is the skill manifest JSON file. It is the JSON representation of
the skill and contains the required metadata for your skill.

e en-Us. json: This is the locale-specific model file for the US locale. This file
defines the invocation name, intents, and the sample utterances. We created the
model file only for the US locale. You could, however, create model files for other
supported locales as well. I have included more than one locale with code files to
refer to.

There's more...

We created a simple Alexa skill, created a Lambda backend, linked both together, and
tested it using the Echo device (or a simulator). You can now publish Alexa skills and get
rewarded by Amazon through its Alexa promotional programs.

Amazon Lex is not just restricted to conversational interfaces that use voice inputs; it can
also be used to build custom non-voice conversational interfaces, such as chatbots. Since the
backends for both an Alexa skill and Lex-based chatbots can both be lambdas, you can
reuse the same backend logic for both Alexa and a chatbot.

[352]

Redshift, Amazon ML, and Alexa Skills Chapter 7

We created Alexa skills using ASK CLI. However, you can also use the developer portal to
create and test Alexa skills easily. You can also explore the voice app platforms that make
Alexa skill development even more easy.

Voice app platforms

There are various voice app platforms that let you create Alexa skills with much less code,
or even no code at all. Most of these support drag-and-drop functionalities. These tools also
let you build your skills once and then deploy them in multiple places. Examples of such
tools include VoiceFlow, Bluetag, Conversation.one, Jovo, Witlingo, although there are
many other.

See also
Detailed steps for installing and configuring ASK CLI are available at the following links:

® https://developer.amazon.com/docs/smapi/quick-start-alexa-skills—kit-
command-line-interface.html

® https://developer.amazon.com/docs/smapi/skill-manifest.html

[353]

https://developer.amazon.com/docs/smapi/quick-start-alexa-skills-kit-command-line-interface.html
https://developer.amazon.com/docs/smapi/quick-start-alexa-skills-kit-command-line-interface.html
https://developer.amazon.com/docs/smapi/quick-start-alexa-skills-kit-command-line-interface.html
https://developer.amazon.com/docs/smapi/quick-start-alexa-skills-kit-command-line-interface.html
https://developer.amazon.com/docs/smapi/quick-start-alexa-skills-kit-command-line-interface.html
https://developer.amazon.com/docs/smapi/quick-start-alexa-skills-kit-command-line-interface.html
https://developer.amazon.com/docs/smapi/quick-start-alexa-skills-kit-command-line-interface.html
https://developer.amazon.com/docs/smapi/quick-start-alexa-skills-kit-command-line-interface.html
https://developer.amazon.com/docs/smapi/quick-start-alexa-skills-kit-command-line-interface.html
https://developer.amazon.com/docs/smapi/quick-start-alexa-skills-kit-command-line-interface.html
https://developer.amazon.com/docs/smapi/quick-start-alexa-skills-kit-command-line-interface.html
https://developer.amazon.com/docs/smapi/quick-start-alexa-skills-kit-command-line-interface.html
https://developer.amazon.com/docs/smapi/quick-start-alexa-skills-kit-command-line-interface.html
https://developer.amazon.com/docs/smapi/quick-start-alexa-skills-kit-command-line-interface.html
https://developer.amazon.com/docs/smapi/quick-start-alexa-skills-kit-command-line-interface.html
https://developer.amazon.com/docs/smapi/quick-start-alexa-skills-kit-command-line-interface.html
https://developer.amazon.com/docs/smapi/quick-start-alexa-skills-kit-command-line-interface.html
https://developer.amazon.com/docs/smapi/quick-start-alexa-skills-kit-command-line-interface.html
https://developer.amazon.com/docs/smapi/quick-start-alexa-skills-kit-command-line-interface.html
https://developer.amazon.com/docs/smapi/quick-start-alexa-skills-kit-command-line-interface.html
https://developer.amazon.com/docs/smapi/quick-start-alexa-skills-kit-command-line-interface.html
https://developer.amazon.com/docs/smapi/quick-start-alexa-skills-kit-command-line-interface.html
https://developer.amazon.com/docs/smapi/quick-start-alexa-skills-kit-command-line-interface.html
https://developer.amazon.com/docs/smapi/quick-start-alexa-skills-kit-command-line-interface.html
https://developer.amazon.com/docs/smapi/quick-start-alexa-skills-kit-command-line-interface.html
https://developer.amazon.com/docs/smapi/quick-start-alexa-skills-kit-command-line-interface.html
https://developer.amazon.com/docs/smapi/quick-start-alexa-skills-kit-command-line-interface.html
https://developer.amazon.com/docs/smapi/quick-start-alexa-skills-kit-command-line-interface.html
https://developer.amazon.com/docs/smapi/quick-start-alexa-skills-kit-command-line-interface.html
https://developer.amazon.com/docs/smapi/quick-start-alexa-skills-kit-command-line-interface.html
https://developer.amazon.com/docs/smapi/skill-manifest.html
https://developer.amazon.com/docs/smapi/skill-manifest.html
https://developer.amazon.com/docs/smapi/skill-manifest.html
https://developer.amazon.com/docs/smapi/skill-manifest.html
https://developer.amazon.com/docs/smapi/skill-manifest.html
https://developer.amazon.com/docs/smapi/skill-manifest.html
https://developer.amazon.com/docs/smapi/skill-manifest.html
https://developer.amazon.com/docs/smapi/skill-manifest.html
https://developer.amazon.com/docs/smapi/skill-manifest.html
https://developer.amazon.com/docs/smapi/skill-manifest.html
https://developer.amazon.com/docs/smapi/skill-manifest.html
https://developer.amazon.com/docs/smapi/skill-manifest.html
https://developer.amazon.com/docs/smapi/skill-manifest.html
https://developer.amazon.com/docs/smapi/skill-manifest.html
https://developer.amazon.com/docs/smapi/skill-manifest.html
https://developer.amazon.com/docs/smapi/skill-manifest.html
https://developer.amazon.com/docs/smapi/skill-manifest.html
https://developer.amazon.com/docs/smapi/skill-manifest.html
https://developer.amazon.com/docs/smapi/skill-manifest.html

Monitoring and Alerting with
Amazon CloudWatch

This chapter will cover the following topics:

e Checking logs, insights, and metrics (Console)

Your first custom metric (AWS CLI)

Setting up CloudWatch alarms (AWS CLI)

CloudWatch alarms with dimensions (AWS CLI)

Using CloudWatch metric log filters (AWS CLI and Console)

Introduction

DevOps is a mindset where the development team and the operations team responsible for
a product or service collaborate together as a single, larger team to achieve their common
goal of making a project successful. The actual implementation of DevOps practices differs
from DevOps team to DevOps team. In practice, while core development activities

may still be done by programmers and core operations activities may be still done by
operations experts, many activities such as monitoring, debugging, and so on may be
shared between both sides based on the work capacity available.

AWS provides many services that can help in monitoring and debugging projects deployed
on the AWS cloud. Amazon CloudWatch is the most popular of these services, and without
it we cannot be successful with AWS projects. CloudWatch can perform many functions,
such as monitoring and alerting, gathering data and preparing metrics, visualizing the data
sent to it using graphs, and so on. We have used CloudWatch for checking logs, and in
Chapter 1, Getting Started with Serverless Computing on AWS, we used it for setting a billing
alarm.

Monitoring and Alerting with Amazon CloudWatch Chapter 8

In previous chapters, we looked at services that can help us build serverless web
applications, as well as services that extend the basic functionality with capabilities such as
messaging, analytics, machine learning, and natural language processing. In this chapter,
we will briefly discuss recipes for the CloudWatch service to start monitoring and
debugging the services we looked at in the previous chapters. By doing this, we will

better understand the role of CloudWatch in following DevOps practices with AWS.

Even programmers still spend a large amount of time monitoring and debugging the logs
from the Management Console, and so most of the recipes in this chapter will use the
Management Console with or without the corresponding AWS CLI commands.

Checking logs, insights, and metrics
(Console)

In this recipe, we will learn how to log in and check the CloudWatch logs and metrics from
the AWS Management Console. This is a simple recipe that is included in this chapter
mainly to aid us in our other recipes where we can use CloudWatch to check logs or a
metric. If you are familiar with checking logs and metrics from the console, you can skip
this recipe.

In this recipe, we will only be discussing metrics that were automatically created by
CloudWatch based on the resources we create—for example, Lambdas. In later recipes, we
will learn how to create custom metrics from AWS CLI and how to use custom metrics in
alarms.

Getting ready

The following are the prerequisites for this recipe:

¢ A working AWS account
o Access to AWS Management Console

¢ You should have created and tested at least one Lambda function to see the
Lambda-related logs and metrics

[355]

Monitoring and Alerting with Amazon CloudWatch Chapter 8

How to do it...

We will first log in to the CloudWatch dashboard in AWS Management Console, check the
logs, and then check the metrics.

Step 1: Logging in to the CloudWatch dashboard

We can log in to the CloudWatch dashboard by going through the following steps:

1. Log in to AWS Management Console.

2. From the Service dropdown select the CloudWatch service. We can also go
directly to the CloudWatch dashboard by using https://console.aws.amazon.
com/cloudwatch. The CloudWatch dashboard should look similar to the
following screenshot; however, the actual alarms and their states may differ:

< C @& https://console.aws.amazon.com/cloudwatch/home?region=us-east-1
.aW§ Services v Resource Groups v *
| Cloudwatch CloudWatch: Overview v
Dashboards
Alarms 4 All resources -
ALARM (1]
OK (2] @ Launch Announcements

Analyze, search, and explore your logs with CloudWatch Logs Insights. Set alarm

Billing
Events Automatic Dashboards to explore account and resource-based views of metrics
feedback.
Rules
Event Buses
Logs Alarms by AWS service ©
Insights
Metrics Services
Status Alarm Insufficient | OK
© Add a dashboard © Biling 1

The dashboard will also contain information on recent alarms and their
statuses.

[356]

https://console.aws.amazon.com/cloudwatch
https://console.aws.amazon.com/cloudwatch
https://console.aws.amazon.com/cloudwatch
https://console.aws.amazon.com/cloudwatch
https://console.aws.amazon.com/cloudwatch
https://console.aws.amazon.com/cloudwatch
https://console.aws.amazon.com/cloudwatch
https://console.aws.amazon.com/cloudwatch
https://console.aws.amazon.com/cloudwatch
https://console.aws.amazon.com/cloudwatch
https://console.aws.amazon.com/cloudwatch
https://console.aws.amazon.com/cloudwatch

Monitoring and Alerting with Amazon CloudWatch Chapter 8

Logs
From the Management Console we can check Lambda logs as follows:
1. From the CloudWatch dashboard, we can go the the logs page using the

Logs link on the sidebar. It will show us all the log groups. We can also filter
them by providing a prefix, as shown in the following screenshot:

Create Metric Filter Actions v TS - J

Filter: /aws/lambda/demo X ¢ Log Groups 1-5 >
Log Groups Insights Expire Events After Metric Filters = Subscriptions
/aws/lambda/demo-lambda-with-cli Explore Never Expire 0 filters None
/aws/lambda/demo-lambda-with-cli-new Explore Never Expire 0 filters None
/aws/lambda/demolAMOperationsWithSDK Explore Never Expire 0 filters None
/aws/lambda/demolAMOperationsWithSDKANdPOJO Explore Never Expire 0 filters None
/aws/lambda/demolAMOpsCLI Explore Never Expire 0 filters None

2. Click on any of the log groups to get a list of all the log streams belonging to that
log group, as shown in the following screenshot:

Search Log Group Create Log Stream

Filter:

Delete Log Stream
o %

Log Stream Name Prefix X Log Streams 1-3

2018/08/20/[$LATEST]6f000a88b67146239e74afe6f85a2e83
2018/08/20/[$LATEST]34f219¢c15b7e4c8d85a3dd36¢30e7b1c
2018/08/20/[$LATEST]3a314e5c93b24529951042ab3f2f2099

Log Streams v

Last Event Time

2018-08-20 18:47 UTC+5:30
2018-08-20 17:28 UTC+5:30
2018-08-20 10:06 UTC+5:30

[357]

Monitoring and Alerting with Amazon CloudWatch Chapter 8

3. Click on any log stream to see the log events, as shown in the following
screenshot:

CloudWatch > Log Groups > /aws/lambda/first-lambda-with-cloud-formation >
2018/08/20/[$LATEST]6f000a88b67146239e74afe6f85a2e83

Expandall @ Row Text 57 £
Filter events all 30s 5m 1h 6h 1d 1w cus{
Time (UTC +00:00) Message
2018-08-20
No older events found at the moment. Retry.
» 13:17:40 START Requestld: 69a7d7b7-a47b-11e8-a5e5-2598a80ed07e Version: $LATEST
» 13:17:40 Hello Heartin
» 13:17:40 END Requestld: 69a7d7b7-a47b-11e8-a5e5-2598a80ed07e
» 13:17:40 REPORT Requestld: 69a7d7b7-a47b-11e8-a5e5-2598a80ed07e Duration: 80.19 ms

No newer events found at the moment. Retry.

[358]

Monitoring and Alerting with Amazon CloudWatch Chapter 8

Log insights

1. From the CloudWatch dashboard, we can go to the log insights page using the
Insights sublink under the Logs link on the sidebar, as shown in the following
screenshot:

Add to dashboard Actions v

/aws/lambda/demo-lambda-with-cli

fields @timestamp, @message
| sort @timestamp desc

[1imit 20
m Sample queries v Have feedback? Email us.
Logs Visualization

Distribution of log events over time

100
80
60
40
20

0

07:50 07:55 08 PM 08:05 08:10 08:15

No data found for this time range

[3591]

Monitoring and Alerting with Amazon CloudWatch Chapter 8

Creating log insight queries is beyond the scope of this book, but I still
wanted to bring this relatively new and powerful feature to your
attention. You can refer

to https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/Anal
yzingLogData.html for more details.

Metrics

1. From the CloudWatch dashboard, we can go to the Metrics page by clicking on
the Metrics link on the sidebar. This will list all the services with their metric
counts, as shown in the following screenshot:

All metrics Graphed metrics Graph options Source
Q, Search for any metric, dimension or resource id
83 Metrics
Billing DynamoDB
12 Metrics 16 Metrics
Firehose Kinesis
2 Metrics 7 Metrics
Lambda Logs
22 Metrics 6 Metrics
ML S3
1 Metric 4 Metrics
SNS SQS
5 Metrics 8 Metrics

[360]

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/AnalyzingLogData.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/AnalyzingLogData.html

Monitoring and Alerting with Amazon CloudWatch Chapter 8

2. Click on Lambda. This will give us the options to search for metrics By
Resource or By Function Name and provides an option to view metrics Across
All Functions, as shown in the following screenshot:

All metrics Graphed metrics (0/1) Graph options Source

All > Lambda Q Search for any metric, dimension or resource id

22 Metrics
By Resource By Function Name
8 Metrics 8 Metrics

Across All Functions

6 Metrics

3. Click on By Function Name. This will list all of the function names available, as
shown in the following screenshot. We can also filter the results:

All metrics Graphed metrics (0/1) Graph options Source

All > Lambda > By Function Name lambda-alexa @ Q Bearch for any metric, dimension or resource id

FunctionName (4) Metric Name

v lambda-alexa-simple-intro Invocations
lambda-alexa-simple-intro Duration
lambda-alexa-simple-intro Errors

Throttles

lambda-alexa-simple-intro

[361]

Monitoring and Alerting with Amazon CloudWatch Chapter 8

4. Click on the metric name Invocations and from the options, click on Add to
graph for our metric to appear in the graph shown. By default, it gives us time
durations starting with 1 hour. But we can set it with time intervals starting with
1 minute using the dropdown next to Custom, as shown in the following
screenshot:

Untitled graph 1h 3h 12h 1d 3d 1w custom (15m) ~ Line v Actions v o . [>)

Count

2.00

1.00

0
01:10 01:11 01:12 01:13 01:14 01:15 01:16 01:17 01:18 01:19 01:20 01:21 01:22 01:23 01:24 01:25 01:26 01:27 01:28 01:29

@ Invocations

I made a few invocations of the skill we created in the previous chapter and
also set a 15-minute interval here.

You can go back to the All metrics page and go inside each of the other
services and explore the various metrics available, along with the recipes for
the corresponding service.

How it works...

Let's briefly look at some of the theory behind the more important terms we learned about
in the previous section.

Log groups

A log group is a group of log streams that share the same settings, such as retention,
monitoring, and access control. We can define log groups and specify which streams to put
into each group. For Lambda functions, the log group is generated based on the Lambda
names that we saw in the How to do it... section.

[362]

Monitoring and Alerting with Amazon CloudWatch Chapter 8

Log streams

Each log stream is a sequence of log events that shares the same source (for example, a
Lambda). A new log stream is created every time we terminate our Lambda and deploy it
again. AWS may delete empty log streams that are 2 months old.

Log insights
Log insights allow us to search and analyze CloudWatch logs. Log insights include a built-

in query language with a simple set of commands. We can use log insights to identify the
root cause of issues and even validate deployed fixes.

Log insights can automatically discover fields in logs from AWS services such as Route 53,
Lambda, CloudTrail, VPC, and so on, even for a custom log that emits log events in

JSON. Log insights can only be used to search log data that was sent to CloudWatch Logs
on or after November 5, 2018.

Metrics

A metric is a time-ordered set of data points that is published to CloudWatch. A metric can
be considered as a variable to monitor and the data points represent the values of that
variable over a given time. The default metrics available for AWS Lambda functions
include Invocations, Errors, DeadLetterErrors, Duration, Throttles,
IteratorAge, ConcurrentExecutions, and UnreservedConcurrentExecutions.

Metrics are defined by a name, a namespace, and zero or more dimensions. For example,
for the metric Invocations that we saw in this recipe, the namespace is AWS/Lambda. The
dimensions are name-value pairs that can be associated with a CloudWatch metric. We can
specify up to 10 dimensions for a given metric. The dimensions available for AWS Lambda
CloudWatch include FunctionName, Resource, and ExecutedVersion.

There's more...

We have not explored metric and log insights much in this recipe. We will explore
CloudWatch metrics more in later recipes. Log insights is a newer and powerful feature.
For more information, you can refer to the link provided in the See also section and
experiment with the log insights feature. We also didn't have a long-running Lambda with
many invocations. Once we have such a Lambda, we can get more interesting metric
graphs and insights.

[363 1]

Monitoring and Alerting with Amazon CloudWatch Chapter 8

See also

® https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/
AnalyzingLogData.html

Your first custom metric (AWS CLI)

In the previous recipe, we learned how to check the automatically created CloudWatch
metrics. We also learned some theory behind CloudWatch metrics. In this recipe, we will
see how we can create a custom metric. We will create a simple functional scenario where
we post a number of failed logins to the system. The sender may aggregate more requests
within a set time, but we will not look at this in this recipe.

Getting ready

The following are the prerequisites for this recipe:

e A working AWS account.

e Access to AWS Management Console.

¢ You should have configured AWS CLI as discussed in the recipe Your First
Lambda with AWS CLI in chapter 1, Getting Started with Serverless Computing on
AWS.

How to do it...

We can use the aws cloudwatch put-metric-data command to send metric data to
CloudWatch. If the metric does not already exist, then this command will also create that
metric.

Step 1-Create a simple metric without dimensions

Using the following code, we will first create a metric without specifying dimensions and
then we will post data with dimensions. We can combine both Step 1 and Step 2 for real-
world use cases:

aws cloudwatch put-metric-data \
—--namespace 'ServerlessProgrammingCookbook' \
—-metric-name 'FailedLogins' \

[364]

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/AnalyzingLogData.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/AnalyzingLogData.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/AnalyzingLogData.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/AnalyzingLogData.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/AnalyzingLogData.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/AnalyzingLogData.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/AnalyzingLogData.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/AnalyzingLogData.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/AnalyzingLogData.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/AnalyzingLogData.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/AnalyzingLogData.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/AnalyzingLogData.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/AnalyzingLogData.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/AnalyzingLogData.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/AnalyzingLogData.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/AnalyzingLogData.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/AnalyzingLogData.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/AnalyzingLogData.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/AnalyzingLogData.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/AnalyzingLogData.html

Monitoring and Alerting with Amazon CloudWatch Chapter 8

—--value 1 \
—--region us-east-1 \
——profile admin

We can verify our metric from AWS Management Console as follows:

1. Log in to Management Console and go to the CloudWatch dashboard.
2. Click on the Metrics link from the sidebar. We should now see a new custom

namespace called ServerlessProgrammingCookbook, along with the AWS
namespaces, as shown in the following screenshot:

All metrics Graphed metrics Graph options Source

Q Search for any metric, dimension or resource id

83 Metrics

v — Custom Namespaces

ServerlessProgrammingCookbook

1 Metric

+ — AWS Namespaces

Billing DynamoDB
12 Metrics 16 Metrics

3. Click on the custom namespace ServerlessProgrammingCookbook. This will

display a link called Metric with no dimensions, as shown in the following
screenshot:

All metrics Graphed metrics Graph options Source

All > ServerlessProgrammingCookbook | Q_ Search for any metric, dime
1 Metric

Metrics with no dimensions

1 Metric

[365]

Monitoring and Alerting with Amazon CloudWatch Chapter 8

This is because we have not defined any dimensions for our metric.

4. Click on the Metric with no dimensions link. This will show us our new metric.
We can now click on the dropdown next to the metric, as shown in the following
screenshot, to perform all of the operations that we can perform on an
automatically generated metric:

All metrics Graphed metrics Graph options Source

All > ServerlessProgrammingCookbook > Metrics with no dimensions

Metric Name (1)

FailedLogins

Add to search

Search for this only

Add to graph

Graph this metric only

Graph all search results

Step 2—Add dimensions to metric data

We can specify dimensions with the put-metric-data sub-command using its dimensions
property. Add a dimension with two different values using the following code:

aws cloudwatch put-metric-data \
—-namespace 'ServerlessProgrammingCookbook' \
—-metric-name 'FailedLogins' \
——value 1 \
——dimensions 'Device=Mobile' \
—--region us-east-1 \
——profile admin

aws cloudwatch put-metric-data \
—-namespace 'ServerlessProgrammingCookbook' \
—-metric-name 'FailedLogins' \
——value 1 \
—-dimensions 'Device=Laptop' \
—--region us-east-1 \

[366]

Monitoring and Alerting with Amazon CloudWatch Chapter 8

——profile admin

aws cloudwatch put-metric-data \
——-namespace 'ServerlessProgrammingCookbook' \
—-metric-name 'FailedLogins' \
--value 1 \
——dimensions 'Device=Laptop' \
—--region us-east-1 \
—-profile admin

We can verify our metric from AWS Management Console as follows:

1. When we click on our custom namespace, ServerlessProgrammingCookbook,
we should see a link for our new dimension along with a link for the ones
without a dimension, as shown in the following screenshot:

All metrics Graphed metrics Graph options Source

All > ServerlessProgrammingCookbook ' Q Search for any metric, dimension or resource id

3 Metrics
Device Metrics with no dimensions
2 Metrics 1 Metric

2. Click on the Device link. This will show our metrics for each value of the
Device dimension, as shown in the following screenshot:

All metrics Graphed metrics Graph options Source

All > ServerlessProgrammingCookbook > Device Q_ Search for any

Device (2) Metric Name
Laptop FailedLogins
Mobile FailedLogins

[367]

Monitoring and Alerting with Amazon CloudWatch Chapter 8

3. We can now click on the dropdown next to any of these dimension values (as
shown in the following screenshot) to perform all operations that we can perform
on an automatically generated metric:

All metrics Graphed metrics Graph options Source

All > ServerlessProgrammingCookbook > Device Q Search for any

Device (2) Metric Name
Laptop FailedLogins
Mobile FailedLogins

Add to search

Search for this only

Add to graph

Graph this metric only

Graph all search results

How it works...

In this recipe, we posted data to a custom metric that we wanted to create using the aws
cloudwatch put-metric-data command and the metric was created for us. We first
created the metric without specifying any dimension and then posted data to the metric
specifying the dimensions. We also verified both cases. You can also refer to the previous
recipe for the basic theory behind CloudWatch metrics, if you have not already done this.

The minimum granularity to which CloudWatch can aggregate metric data is 1 minute. So
even if we post data to a CloudWatch metric in shorter intervals than 1 minute,
CloudWatch will only aggregate with a minimum granularity of 1 minute.

[368]

Monitoring and Alerting with Amazon CloudWatch Chapter 8

There's more...

In this recipe, we created a custom metric using the aws cloudwatch put-metric-—

data command and specified the value and dimension using their respective properties.
We can also use the met ric-data property, which accepts a list of up to 20 metrics per call.
Refer to the link on put-metric-data in the See also section for more details.

See also

® https://docs.aws.amazon.com/cli/latest/reference/cloudwatch/put-
metric-data.html

Setting up CloudWatch alarms (AWS CLI)

CloudWatch alarms enable us to initiate actions based on the state of data within our
metrics. These actions may be sent to the Simple Notification Service (SNS). For server-
based applications that use autoscaling, CloudWatch alarms can also initiate actions to
autoscaling groups.

Getting ready

The following are the prerequisites for this recipe:

e A working AWS account

e Access to AWS Management Console

¢ You should have configured AWS CLI as discussed in the recipe Your First
Lambda with AWS CLI in chapter 1, Getting Started with Serverless Computing on
AWS

¢ You should have created a metric with the name FailedLogins and namespace
ServerlessProgrammingCookbook following the previous recipe Your first
custom metric created from AWS CLI

¢ You should have created an SNS topic with an email subscription following the
recipe Your first SNS topic for email and SMS in chapter 6, Messaging and
Notifications with SQS and SNS

[369 1]

https://docs.aws.amazon.com/cli/latest/reference/cloudwatch/put-metric-data.html
https://docs.aws.amazon.com/cli/latest/reference/cloudwatch/put-metric-data.html
https://docs.aws.amazon.com/cli/latest/reference/cloudwatch/put-metric-data.html
https://docs.aws.amazon.com/cli/latest/reference/cloudwatch/put-metric-data.html
https://docs.aws.amazon.com/cli/latest/reference/cloudwatch/put-metric-data.html
https://docs.aws.amazon.com/cli/latest/reference/cloudwatch/put-metric-data.html
https://docs.aws.amazon.com/cli/latest/reference/cloudwatch/put-metric-data.html
https://docs.aws.amazon.com/cli/latest/reference/cloudwatch/put-metric-data.html
https://docs.aws.amazon.com/cli/latest/reference/cloudwatch/put-metric-data.html
https://docs.aws.amazon.com/cli/latest/reference/cloudwatch/put-metric-data.html
https://docs.aws.amazon.com/cli/latest/reference/cloudwatch/put-metric-data.html
https://docs.aws.amazon.com/cli/latest/reference/cloudwatch/put-metric-data.html
https://docs.aws.amazon.com/cli/latest/reference/cloudwatch/put-metric-data.html
https://docs.aws.amazon.com/cli/latest/reference/cloudwatch/put-metric-data.html
https://docs.aws.amazon.com/cli/latest/reference/cloudwatch/put-metric-data.html
https://docs.aws.amazon.com/cli/latest/reference/cloudwatch/put-metric-data.html
https://docs.aws.amazon.com/cli/latest/reference/cloudwatch/put-metric-data.html
https://docs.aws.amazon.com/cli/latest/reference/cloudwatch/put-metric-data.html
https://docs.aws.amazon.com/cli/latest/reference/cloudwatch/put-metric-data.html
https://docs.aws.amazon.com/cli/latest/reference/cloudwatch/put-metric-data.html
https://docs.aws.amazon.com/cli/latest/reference/cloudwatch/put-metric-data.html
https://docs.aws.amazon.com/cli/latest/reference/cloudwatch/put-metric-data.html
https://docs.aws.amazon.com/cli/latest/reference/cloudwatch/put-metric-data.html
https://docs.aws.amazon.com/cli/latest/reference/cloudwatch/put-metric-data.html
https://docs.aws.amazon.com/cli/latest/reference/cloudwatch/put-metric-data.html
https://docs.aws.amazon.com/cli/latest/reference/cloudwatch/put-metric-data.html

Monitoring and Alerting with Amazon CloudWatch Chapter 8

How to do it...

Let's create an alarm and simulate the conditions that will trigger it by going through the
following steps:

1. We can create an alarm for a metric with the name FailedLogins and
namespace ServerlessProgrammingCookbook as follows:

aws cloudwatch put-metric-alarm \
——alarm-name FailedRequestsAlarm \
——-alarm-description 'Alarm for failed login requests' \
—-metric-name 'FailedLogins' \
—--namespace 'ServerlessProgrammingCookbook' \
—--statistic 'Average' \
—-period 60 \
——threshold 5 \
——comparison-operator GreaterThanOrEqualToThreshold \
—-—-evaluation-periods 1 \
——alarm—actions arn:aws:sns:us—east-1l:<account id>:my-
first-sns-topic \
--region us-east-1 \
——profile admin

2. Check the current status of the alarm using the describe-alarms command, as
follows:

aws cloudwatch describe-alarms \
—-—alarm-names FailedRequestsAlarm \
--region us-east-1 \
——profile admin

[370]

Monitoring and Alerting with Amazon CloudWatch Chapter 8

If we try the describe-alarms command immediately after creation or if
we have not sent any data for the metric within the specified period (60
seconds, in this case), we get the state INSUFFICIENT_DATA, as shown in the
following screenshot:

"MetricAlarms": [
{
"AlarmName": "FailedRequestsAlarm",
"AlarmArn": "arn:aws:cloudwatch:us-east-1 :_: alarm:FailedRequestsAlarm",
"AlarmDescription": "Alarm for failed login requests",
"AlarmConfigurationUpdatedTimestamp": "2019-01-15T08:57:50.072Z",
"ActionsEnabled": true,
"OKActions": [1,
"AlarmActions": [
"arn:aws:sns:us-east-1: _ smy-first-sns-topic"

1,

"InsufficientDataActions": [1,

"StateValue": "INSUFFICIENT_DATA",

"StateReason": "Unchecked: Initial alarm creation",
"StateUpdatedTimestamp": "2019-01-15T08:57:50.072Z",
"MetricName": "FailedLogins",

"Namespace": "ServerlessProgrammingCookbook",
"Statistic": "Average",

"Dimensions": [],

"Period": 60,

"EvaluationPeriods": 1,

“"Threshold": 5.0,

"ComparisonOperator": "GreaterThanOrEqualToThreshold"

3. Send some data to the metric with matching dimensions (none in this case), using
the following code:

aws cloudwatch put-metric-data \
—--namespace 'ServerlessProgrammingCookbook' \
—--metric-name 'FailedLogins' \
——value 1 \
--region us-east-1 \
——profile admin

[371]

Monitoring and Alerting with Amazon CloudWatch Chapter 8

We need to wait for at least the period you mentioned (or some more time).
The describe-alarms command output should contain the status 0K, as
shown in the following screenshot:

"'StateValue"

’
"StateReason": "Threshold Crossed: 1 datapoint [1.0 (15/01/19 ©9:59:00)] was not greater than or equal
to the threshold (5.0).",

"StateReasonData": "{\"version\":\"1.0\",\"queryDate\":\"2019-01-15T10:00:31.461+0000\",\"startDate\":\
"'2019-01-15T09:59: 00.000+0000\",\"statistic\":\"Average\",\"period\":60,\" recentDatapoints\": [1.0],\"threshold\":5.
0}“'

4. Send data so that the average crosses the threshold (5, in our case) using the
put-metric—-data command. We will send a value of 10, as shown in the
following code:

aws cloudwatch put-metric-data \
——-namespace 'ServerlessProgrammingCookbook' \
—-metric-name 'FailedLogins' \
—-value 10 \
—--region us-east-1 \
—--profile admin

Based on the time taken to send after the previous command, you might
get an average of 5.5 (an average of 10 and 1) or just 10 (if sent after 1
minute). In either case, the alarm should be triggered and the describe-
alarms command output should contain the status ALARM.

"StateValue": "ALARM",

"StateReason": "Threshold Crossed: 1 datapoint [10.0 (15/01/19 10:17:00)] was greater than or equal to
the threshold (5.0).",

"StateReasonData": "{\"version\":\"1.0\",\"queryDate\":\"2019-01-15T10:18:31.415+0000\" ,\"startDate\":\
2019-01-15T10:17:00.000+0000\",\" isti \"Average\",\"period\":60,\" recentDatapoints\": [10.0],\"threshold\":5
.0},

[372]

Monitoring and Alerting with Amazon CloudWatch Chapter 8

If the SNS topic was configured correctly and we have subscribed to an email
address successfully, we should get a message similar to the following:

ALARM: "FailedRequestsAlarm” in US East (N. = 2
Virginia)

AWS Notifications <no-reply@sns.amazonaws.. 3:48 PM (7 minutes ago) Yy 4 :
tome v

You are receiving this email because your Amazon CloudWatch Alarm "FailedRequestsAlarm”
in the US East (N. Virginia) region has entered the ALARM state, because "Threshold Crossed:
1 datapoint [10.0 (15/01/19 10:17:00)] was greater than or equal to the threshold (5.0)." at
"Tuesday 15 January, 2019 10:18:31 UTC".

View this alarm in the AWS Management Console:
https://console.aws.amazon.com/cloudwatch/home?region=us-east-
1#s=Alarms&alarm=FailedRequestsAlarm

[373]

Monitoring and Alerting with Amazon CloudWatch Chapter 8

The email will also contain the alarm details and state change action details,
as shown in the following screenshot:

Alarm Details:

- Name: FailedRequestsAlarm
- Description: Alarm for failed login requests
- State Change: OK -> ALARM

- Reason for State Change: Threshold Crossed: 1 datapoint [10.0 (15/01/19 10:17:00)] was
greater than or equal to the threshold (5.0).

- Timestamp: Tuesday 15 January, 2019 10:18:31 UTC

- AWS Account:

Threshold:

- The alarm is in the ALARM state when the metric is GreaterThanOrEqualToThreshold 5.0 for
60 seconds.

Monitored Metric:

- MetricNamespace: ServerlessProgrammingCookbook
- MetricName: FailedLogins

- Dimensions:

- Period: 60 seconds

- Statistic: Average

- Unit: not specified

[374]

Monitoring and Alerting with Amazon CloudWatch Chapter 8

The change actions details are as follows:

State Change Actions:

- OK:

- ALARM: [arn:aws:sns:us-east-1: :my-first-sns-topic]
- INSUFFICIENT_DATA:

When the average goes below the threshold, the alarm automatically goes
back to the OK state.

How it works...

In this recipe, we created an alarm for a metric using the aws cloudwatch put-metric-
alarm command. The metric may not be available at the time of the alarm's creation, in
which case the alarm will remain in the state INSUFFICIENT_ DATA.

We used the following properties of the put-metric-alarm sub-command:

metric-name is the name of the metric with which we want to associate this
alarm.

namespace is the namespace of the metric.

statistic is the statistic operation for the metric and can have one of the
following values: SampleCount, Average, Sum, Minimum, or Maximum. To find
the percentile, we need to use the extended-statistic property instead.
period is the length, in seconds, of each time that the specified metric is
evaluated. Valid values are 10, 30, and any multiple of 60. We specified 60.
threshold is the value that the comparison operator option value uses for
calculating whether an ALARM state has been reached. We specified a value of 5.

comparison-operator specifies the comparison operator to use. We used
GreaterThanOrEqualToThreshold.

evaluation-periods is the number of periods over which the data is
compared to the threshold. For example, we can set an alarm that triggers when
five consecutive data points are breached. We specified a value of 1 for the alarm
to be triggered when only one data point is breached.

alarm-actions is the ARN of actions to execute when this alarm transitions to
the ALARM state from any other state.

[375]

Monitoring and Alerting with Amazon CloudWatch Chapter 8

The alarm may belong to one of the following states:

¢ OK - Denotes that the alarm has not been triggered.

e ALARM - Denotes that the alarm was triggered.

e NOT_SUFFICIENT - Denotes that there is not enough data to determine the alarm
state—for example, there is no data within the time period specified by the
alarm. An alarm just created will also be in this state for a little bit of time.

When an alarm goes to the INSUFFICIENT_DATA state immediately after the alarm
creation, it will give a StateReason of Unchecked: Initial alarm creation.Once
the alarm is in an OK or ALARM state and then goes to the INSUFFICIENT_DATA state
because there is not enough data within the evaluation period, it gives a StateReason as
Insufficient Data: 1 datapoint was unknown, as follows:

"StateValue": "INSUFFICIENT_DATA",
"'StateReason": "Insufficient Data: 1 datapoint was unknown.",

"StateReasonData": "{\"version\":\"1.0\",\"queryDate\":\"2019-01-15T10:24:31.408+0000\",\"statistic\":\
"Average\",\"period\":6@,\" recentDatapoints\": [1,\"threshold\":5.0}",

There's more...

We created a simple alarm and learned how to trigger it. Some of the important things to
remember regarding CloudWatch alarms include the following;:

The alarm period should be equal to or greater than the metric frequency.

The state of the alarm should change (for example, OK to ALARM) for the alarm to
trigger an action.

The alarm and its actions must be in the same region.

e We can create an alarm before we create the metric. The alarm stays in the
INSUFFICIENT_DATA state until the metric is available with data.

In this recipe, we created an alarm from only AWS CLI. However, if you have fully
understood this recipe, then you can do the same easily with Management Console.

See also

® https://docs.aws.amazon.com/cli/latest/reference/cloudwatch/index.html

[376]

https://docs.aws.amazon.com/cli/latest/reference/cloudwatch/index.html
https://docs.aws.amazon.com/cli/latest/reference/cloudwatch/index.html
https://docs.aws.amazon.com/cli/latest/reference/cloudwatch/index.html
https://docs.aws.amazon.com/cli/latest/reference/cloudwatch/index.html
https://docs.aws.amazon.com/cli/latest/reference/cloudwatch/index.html
https://docs.aws.amazon.com/cli/latest/reference/cloudwatch/index.html
https://docs.aws.amazon.com/cli/latest/reference/cloudwatch/index.html
https://docs.aws.amazon.com/cli/latest/reference/cloudwatch/index.html
https://docs.aws.amazon.com/cli/latest/reference/cloudwatch/index.html
https://docs.aws.amazon.com/cli/latest/reference/cloudwatch/index.html
https://docs.aws.amazon.com/cli/latest/reference/cloudwatch/index.html
https://docs.aws.amazon.com/cli/latest/reference/cloudwatch/index.html
https://docs.aws.amazon.com/cli/latest/reference/cloudwatch/index.html
https://docs.aws.amazon.com/cli/latest/reference/cloudwatch/index.html
https://docs.aws.amazon.com/cli/latest/reference/cloudwatch/index.html
https://docs.aws.amazon.com/cli/latest/reference/cloudwatch/index.html
https://docs.aws.amazon.com/cli/latest/reference/cloudwatch/index.html
https://docs.aws.amazon.com/cli/latest/reference/cloudwatch/index.html
https://docs.aws.amazon.com/cli/latest/reference/cloudwatch/index.html
https://docs.aws.amazon.com/cli/latest/reference/cloudwatch/index.html
https://docs.aws.amazon.com/cli/latest/reference/cloudwatch/index.html
https://docs.aws.amazon.com/cli/latest/reference/cloudwatch/index.html
https://docs.aws.amazon.com/cli/latest/reference/cloudwatch/index.html

Monitoring and Alerting with Amazon CloudWatch Chapter 8

CloudWatch alarms with dimensions (AWS
CLI)

In the previous recipe, we created a CloudWatch alarm for a metric without any
dimensions. In this small recipe, we will learn how to create a CloudWatch alarm for

a metric with dimensions, and we will then verify the alarm by sending some data with
dimensions.

Getting ready

The following are the prerequisites for this recipe:

¢ A working AWS account.

e Access to AWS Management Console.

¢ You should have configured AWS CLI as discussed in the recipe Your First
Lambda with AWS CLIin chapter 1, Getting Started with Serverless Computing on
AWS.

* You should have created a metric with the name FailedLogins and namespace
ServerlessProgrammingCookbook following the previous recipe Your first
custom metric created from AWS CLI.

¢ You should have created an SNS topic with an email subscription following the
recipe Your first SNS topic for email and SMS in Chapter 6, Messaging and
Notifications with SQS and SNS.

How to do it...

Let's create an alarm and simulate conditions that will trigger it:

1. We can create an alarm for a metric with the name FailedLogins and
namespace ServerlessProgrammingCookbook as follows:

aws cloudwatch put-metric-alarm \
——alarm-name FailedRequestsAlarmWithDimensions \
——alarm-description 'Alarm for failed login requests' \
—--metric-name 'FailedLogins' \
——namespace 'ServerlessProgrammingCookbook' \
—--statistic 'Average' \
—-—period 60 \
——threshold 5 \

[377]

Monitoring and Alerting with Amazon CloudWatch Chapter 8

——comparison-operator GreaterThanOrEqualToThreshold \

—-—evaluation-periods 1 \

——dimensions Name=Device,Value=Laptop \

——alarm-actions arn:aws:sns:us—east-1l:<account id>:my-
first-sns-topic \

—--region us-east-1 \

—-profile admin

2. Check the current status of the alarm using the describe-alarms command as
follows:

aws cloudwatch describe-—-alarms \
——alarm-names FailedRequestsAlarm \
—--region us-east-1 \
——profile admin

If we try the describe-alarms command immediately after the alarm's
creation or if we have not sent any data for the metric within the specified
period (60 seconds, in this case), we get the state INSUFFICIENT_DATA
within the response.

Send the data with the dimension using the following code:

aws cloudwatch put-metric-data \
——-namespace 'ServerlessProgrammingCookbook' \
—-metric-name 'FailedLogins' \
--value 1 \
——-dimensions Device=Laptop \
—--region us-east-1 \
—-profile admin

If we check with describe—alarms after some time, we can see that the
state has changed to OK. We can now post data with a higher value (for
example, 10) so that the average is more than the threshold, as shown in the
following screenshot. Based on the interval we take to send data, and based
on when the average is calculated, we may geta 10 or 0.5 average:

"StateValue": "ALARM",
"StateReason": "Threshold Crossed: 1 datapoint [5.5 (15/01/19 19:10:00)] was greater than or equal to t
he threshold (5.0).",

"StateReasonData": "{\"version\":\"1.0\",\"queryDate\":\"2019-01-15T19:10:36.535+0000\" ,\"startDate\":\
2019-01-15T19:10:00.000+0000\",\"statistic Average\",\"period\":10,\"recentDatapoints\": [5.5],\"threshold\":5.
0}",

We will also receive a mail notification similar to the one we received in the
previous recipe, Setting up CloudWatch alarms (AWS CLI).

[378]

Monitoring and Alerting with Amazon CloudWatch Chapter 8

How it works...

In this recipe, we created an alarm for a metric with dimensions using the dimensions
property of the put-metric-alarm command. We then used the dimensions property of
the put-metric-data command to send the data. We also used a period of 10 seconds,
smaller than we used in the previous recipe. The period has to be 10, 30, or a multiple of 60.

There's more...

If we mistype the dimension details either while creating the alarm or while sending data, it
will not throw any error. Instead, the data will go to a separate dimension and the alarm
will stay in the state INSUFFICIENT_DATA. The metric name and the dimension names and

values are case sensitive.

See also

For more theory and explanation, please refer to the previous recipe, Setting up CloudWatch
alarms (AWS CLI).

Using CloudWatch metric log filters

We can use log filters to define search patterns within the logs. We can use log filters to turn
logs into metrics and then use those metrics to trigger alarms.

Getting ready

The following are the prerequisites for this recipe:

¢ A working AWS account

e Access to AWS Management Console

¢ You should have configured AWS CLI and created the lambda demo-lambda-
with-cli as discussed in the recipe Your First Lambda with AWS CLI in Chapter
1, Getting Started with Serverless Computing on AWS

[379]

Monitoring and Alerting with Amazon CloudWatch Chapter 8

How to do it.

Let's see how we can create metric log filters.

Creating metric filters from AWS CLI

Let's go through the following steps to create metric filters using AWS CLI:

1. We first need to prepare our metric transformations, as follows:

"metricName": "HelloCountMetric",
"metricNamespace": "ServerlessProgrammingCookbook",
"metricValue": "1"

Save this into the metric-transformations. json file.

2. Use the put-metric-filter command to create a metric filter using the
metric-transformations.json file, as follows:

aws

logs put-metric-filter \

--log-group—name /aws/lambda/demo-lambda-with-cli \
——filter—-name 'HelloCountFilter' \

—-—filter-pattern 'Hello' \

—--metric-transformations file://metric-transformations.json

--region us-east-1 \
——profile admin

3. Execute the Lambda a few times, either from the console or from AWS CLI, as

follows:

aws

lambda invoke \

——invocation-type RequestResponse \
—--function-name demo-lambda-with-cli \
—--log-type Tail \

—-payload '{"name": "Heartin"}' \
—--region us-east-1 \

—-profile admin \

outputfile.txt

The actual output of the invocation does not matter, as long as it is a success
message.

[380]

Monitoring and Alerting with Amazon CloudWatch Chapter 8

4. Verify the metric from the console by going through the following steps:

1. Log in to AWS Console and go to CloudWatch.

2. Click on Metrics in the sidebar.

3. Click on Metrics with no dimensions. We should now see a new
metric with the name HelloCountMetric. We can also add
HelloCountMetric to the graph or create an alarm for it, as shown in
the following screenshot:

All metrics Graphed metrics Graph options Source

All > ServerlessProgrammingCookbook > Metrics with no dimensions

Metric Name (3)

FailedLogins
HelloCountMetric

Add to search

Search for this only

Graph this metric only

Graph all search results

[381]

Monitoring and Alerting with Amazon CloudWatch Chapter 8

Creating metric filters from the console

When we create metric filters from the Management Console, we can first test filter patterns
against existing log data and then create the filter by going through the following steps:

1. Log in to AWS Console and go to CloudWatch.
2. Click on Logs from the sidebar. This will display the log groups, as shown in the
following screenshot:

Actions +

Log Groups

/aws/lambda/demo-lambda-with-cli
/aws/lambda/demo-lambda-with-cli-new
/aws/lambda/demolAMOperationsWithSDK
/aws/lambda/demolAMOperationsWithSDKAndPOJO
/aws/lambda/demolAMOpsCLI

[382]

Monitoring and Alerting with Amazon CloudWatch Chapter 8

3. Select alog group and click on Create Metric Filter. This will take us to the
Define Logs Metric Filter page. Enter the filter pattern (for example, Hello),

select a log stream, and click on Test Pattern, as shown in the following
screenshot:

Define Logs Metric Filter

Filter for Log Group: /aws/lambda/demo-lambda-with-cli

You can use metric filters to monitor events in a log group as they are sent to CloudWatch Logs. You can monitor and
count specific terms or extract values from log events and associate the results with a metric. Learn more about
pattern syntax.

Filter Pattern
Hello (i}

Show examples

Select Log Data to Test

2019/01/15/[$LATEST]fa670c12d9c44b389dddecf12a984f53

v Test Pattern
Clear

START Requestld: c9e5eec3-45ac-4aal-Obde-ea2d508f257¢ Version: $LATEST e
Hello Heartin

END Requestld: c9e5eec3-45ac-4aal-9bde-ea2d508f257¢c

REPORT Requestld: c9e5eec3-45ac-4aal-9bde-ea2d508f257¢ Duration: 134.12 ms Billed Duration: 200 ms |
START Requestld: 4b5701ab-8110-4699-8bdc-eb1f65200e0b Version: $LATEST

Hello Heartin

END Requestld: 4b5701ab-8110-4699-8bdc-eb1f65200e0b
Results

Found 5 matches out of 20 event(s) in the sample log.

Show test results

(S=ULCTIN | Assign Metric

[383]

Monitoring and Alerting with Amazon CloudWatch Chapter 8

4. Click on Assign Metric. This will take us to the Create Metric Filter and Assign
a Metric page. Enter filter name, metric namespace, and provide ametric
name, as shown in the following screenshot:

Create Metric Filter and Assign a Metric

Filter for Log Group: /aws/lambda/demo-lambda-with-cli

Log events that match the pattern you define are recorded to the metric that you specify. You can graph the metric
and set alarms to notify you.

Filter Name: HelloCountFilter (i]

Filter Pattern: Hello

Metric Details
Metric Namespace: = ServerlessProgrammingCookbook 4 @ Create new namespace

Metric Name: | HelloCountMetric (i]

Show advanced metric settings

Cancel Previous Create Filter

5. Click on Create Filter. If successful, we should see the following message:

Add Metric Filter

V Your filter HelloCountFilter has been created.

Filter Name: HelloCountFilter Create Alarm ¢* €)
Filter Pattern: Hello
Metric: ServerlessProgrammingCookbook / HelloCountMetric
Metric Value: 1
Default Value: none

[384]

Monitoring and Alerting with Amazon CloudWatch Chapter 8

How it works...

We used metric log filters in this recipe. We can use metric log filters to match terms,
phrases, and values in the log events. When a match is made, we can increment the value of
a CloudWatch metric. For example, we can create a metric log filter to count the occurrence
of the word ERROR.

Metric filters can also extract numerical values from space-delimited log events, and in such
cases, we can increment our metric value by the actual numerical value from the log. We
can also use conditional operators and wildcards for matches.

We also looked at metric log creation from the CloudWatch console, and learned how it
gives us the additional capability to test our search patterns against existing data.

Log filters do not work on data that was already sent to CloudWatch, but only on data sent
after the filter was created. At the time of writing, log filters will only return the first 50
results.

There's more...

This was a very basic recipe to demonstrate the use of metric filters. You can now create
alarms for the metric created in this recipe by following the recipe Setting up CloudWatch
alarms (AWS CLI).

See also

® https://docs.aws.amazon.com/cli/latest/reference/logs/put-metric-
filter.html

[385]

https://docs.aws.amazon.com/cli/latest/reference/logs/put-metric-filter.html
https://docs.aws.amazon.com/cli/latest/reference/logs/put-metric-filter.html
https://docs.aws.amazon.com/cli/latest/reference/logs/put-metric-filter.html
https://docs.aws.amazon.com/cli/latest/reference/logs/put-metric-filter.html
https://docs.aws.amazon.com/cli/latest/reference/logs/put-metric-filter.html
https://docs.aws.amazon.com/cli/latest/reference/logs/put-metric-filter.html
https://docs.aws.amazon.com/cli/latest/reference/logs/put-metric-filter.html
https://docs.aws.amazon.com/cli/latest/reference/logs/put-metric-filter.html
https://docs.aws.amazon.com/cli/latest/reference/logs/put-metric-filter.html
https://docs.aws.amazon.com/cli/latest/reference/logs/put-metric-filter.html
https://docs.aws.amazon.com/cli/latest/reference/logs/put-metric-filter.html
https://docs.aws.amazon.com/cli/latest/reference/logs/put-metric-filter.html
https://docs.aws.amazon.com/cli/latest/reference/logs/put-metric-filter.html
https://docs.aws.amazon.com/cli/latest/reference/logs/put-metric-filter.html
https://docs.aws.amazon.com/cli/latest/reference/logs/put-metric-filter.html
https://docs.aws.amazon.com/cli/latest/reference/logs/put-metric-filter.html
https://docs.aws.amazon.com/cli/latest/reference/logs/put-metric-filter.html
https://docs.aws.amazon.com/cli/latest/reference/logs/put-metric-filter.html
https://docs.aws.amazon.com/cli/latest/reference/logs/put-metric-filter.html
https://docs.aws.amazon.com/cli/latest/reference/logs/put-metric-filter.html
https://docs.aws.amazon.com/cli/latest/reference/logs/put-metric-filter.html
https://docs.aws.amazon.com/cli/latest/reference/logs/put-metric-filter.html
https://docs.aws.amazon.com/cli/latest/reference/logs/put-metric-filter.html
https://docs.aws.amazon.com/cli/latest/reference/logs/put-metric-filter.html
https://docs.aws.amazon.com/cli/latest/reference/logs/put-metric-filter.html
https://docs.aws.amazon.com/cli/latest/reference/logs/put-metric-filter.html

Serverless Programming
Practices and Patterns

This chapter will cover the following:

¢ Enabling Cross-Origin Resource Sharing (CORS) for the API and testing with
CodePen

Implementing and testing Cognito operations with the JavaScript SDK

Federated identity with Amazon Cognito

Creating a Secure Sockets Layer (SSL) certificate with AWS Certificate
Manager (ACM)

e Fan-in and fan-out architectural patterns with AWS

Introduction

In the previous chapters, we saw many AWS services that can be used for building
serverless applications. In this chapter, we will explore some general practices and patterns
that involve one or more of those AWS services. We have been using AWS CLI APIs and
Java Lambdas until now. Services such as API Gateway and Cognito generally interact
mostly with UI components and hence we will discuss their use with the JavaScript SDKs.
We will also enable and use CORS, and then test our JavaScript SDK code from a browser
using CodePen.

Furthermore, we will see how to create a federated identity with Cognito. We did not try
this recipe in Chapter 4, Application Security with Amazon Cognito, as federated identity
requires a valid domain name. We registered a domain name in chapter 5, Web Hosting
with S3, Route53, and CloudFront. We will then discuss a pattern called the fan-out pattern,
which involves the Simple Notification Service (SNS) and the Simple Queue Service
(5QS). We covered SQS and SNS recipes in Chapter 6, Messaging and Notifications with SQS
and SNS. Finally, we will conclude with a recipe on certificate generation using ACM.

Serverless Programming Practices and Patterns Chapter 9

This chapter tries to bridge the gap between the AWS serverless services
we learned and how they are actually used in real-world projects. This
chapter assumes that you are comfortable with all the services discussed
in the previous chapters. We may not discuss in detail all the code and
theory behind the practices and patterns we discuss, especially those that
were already discussed.

Enabling CORS for the API and testing with
CodePen

CORS is a mechanism that allows a web application running at one domain (origin) to
access selected resources from a different server. Without CORS, the server will respond
with a status code of 403 in such cases. We will create an API gateway service similar to
what we did in chapter 2, Building Serverless REST APIs with API Gateway, but will also
enable CORS on the APL

We will first get familiar with the CodePen website and will test our API by invoking it
using JavaScript SDK code from within the CodePen website. This will also be a revision of
the API Gateway concepts that we learned in chapter 2, Building Serverless REST APIs with
API Gateway, but with the additional support for CORS. We will only discuss new concepts
here; for theory on already discussed topics, you may refer to the recipes of chapter

2, Building Serverless REST APIs with API Gateway.

Getting ready

The following are the prerequisites for this recipe:

¢ A working AWS account

¢ A configured AWS CLI, as discussed in the Your first Lambda with the AWS
CLI recipe of chapter 1, Getting Started with Serverless Computing on AWS

¢ You have followed the steps in the recipe Your first API using the AWS CLI from
Chapter 2, Building Serverless REST APIs with API Gateway, and created and
deployed an API with a GET URL of the
form https://<rest—-api-id>.execute—api.us-east-1.amazonaws.com/
dev/greeting/Heartin

* You are familiar with CodePen or any browser-based tool from which we can
send JavaScript requests to our API

[387]

Serverless Programming Practices and Patterns Chapter 9

Getting familiar with CodePen

Follow these steps to use CodePen to connect to our API through GET:

1. Goto nttps://codepen.io. This will take us to the CodePen website.
2. Click tab Create and then select the Pen option.

3. Click the Settings menu, select the Behavior tab, and uncheck the Enabled
option under Auto-Updating Preview. This will enable us to Run our code.

Enter the following code in the JS section of the CodePen UI and click Run:

var xhr = new XMLHttpRequest () ;
xhr.open ('GET',
'https://8vgyyjelad.execute—api.us—-east—-1.amazonaws.com/dev/greeting/Hearti

n');

xhr.onreadystatechange = function (event) {
console.log(event.target.response);

}

xhr.setRequestHeader ('Content-Type', 'application/json');
xhr.send () ;

We should receive a blank response in the CodePen UL But if we open the developer tools
for our browser (for example, Chrome Developer tools), we should see the actual error
message as follows:

= 4] Elements Console Sources » Q6 : X

[© | top v | ® | Filter Defaultleve | 2hidden %

@ Failed to load 8vgyyjelad.execute-a../greeting/Heartin:1
resource: the server responded with a status of 403 ()

@ Access to s.codepen. io/boomera.html?editors=0010:1

XMLHttpRequest at 'https://8vqyyjelad.execute—-api.us—-east-1.am
azonaws.com/dev/greeting/Heartin' from origin 'https://s.codep
en.io' has been blocked by CORS policy: Response to preflight
request doesn't pass access control check: No 'Access-Control-
Allow-0Origin' header is present on the requested resource.

<message collected> console runner-1df7d..8le5fbad82f6af.js:1

() Failed to load 8vqyyjelad.execute-a../greeting/Heartin:1
resource: the server responded with a status of 403 ()

©® Access to XMLHttpRequest at 'https://Bvqyyjelad.e index.html:1
xecute—api.us—east-1.amazonaws.com/dev/greeting/Heartin"' from
origin 'https://s.codepen.io' has been blocked by CORS policy:
Response to preflight request doesn't pass access control
check: No 'Access-Control-Allow-0Origin' header is present on
the requested resource.

console runner-1df7d..81e5fba982f6af.js:1

[388]

https://codepen.io/

Serverless Programming Practices and Patterns

Chapter 9

This is because CORS is not enabled. We will create an API with CORS enabled and test it
again in the How to do it... section. We will also see how we can enable CORS on the current

APIL.

How to do it...

Let's create an API with CORS enabled from scratch. Steps 1 to 4 are the same as we have

seen in Chapter 2, Building Serverless REST APIs with API Gateway:

1. Create an API:

aws apigateway create-rest-—-api \
——name 'API WITH CORS' \
--region us-east-1 \
——profile admin

I will not display the region and profile parameters for further commands.
You may either add them manually to every command or configure them

as the defaults with the AWS CLI configuration.

2. Get the ID of the root resource path \:

aws apigateway get-resources \
—--rest-api-id xenqgybowjg

3. Create a resource greeting under the root path:

aws apigateway create-resource \
—--rest—-api-id xenqgybowjg \
—-parent-id p8yd8xde55 \
—-path-part greeting

4. Create a subresource with a path parameter that can accept a string;:

aws apigateway create-resource \
—--rest—-api-id xenqgybowjg \
—-parent-id xkjhh7 \
——path-part "{name}"

[389]

Serverless Programming Practices and Patterns Chapter 9

5. Next, we will create the GET method:
1. Execute put-method for the GET method:

aws apigateway put-method \
—-rest—api-id xengybowjg \
——-resource-id sfgfké6 \
—--http-method GET \
——authorization-type "NONE"

2. Execute put-method-response for the GET method:

aws apigateway put-method-response \

——rest—api-id xengybowjg \

——resource—-id sfgfké6 \

—-http-method GET \

—-—status—code 200 \

—--response-parameters file://put-method-response-
get.json

put-method-response—get . json should look as follows:

{
"method.response.header.Access-Control-Allow-Origin":
false

}

3. Execute put-integration for the GET method:

aws apigateway put-integration \

—-rest-api-id xengybowijg \

—-resource-id sfgfké6 \

—-http-method GET \

-—type MOCK \

——integration-http-method GET \

—--request-templates "{\"application/json\":
\"{"statusCode": "200"}\"}"

4. Execute put-integration-response for the GET method:

aws apigateway put-integration-response \
—-rest-api-id xengybowijg \
—-resource-id sfgfké \
—-http-method GET \
—-status—-code 200 \
—--response-templates file://response-template—get.json

[390]

Serverless Programming Practices and Patterns Chapter 9

—--response-parameters file://put-method-integration-
get.json \

—-—-selection-pattern "" \

—--region us—east-1 —--profile admin

The response-template-get. json file should have the following
contents:

{"application/json": "Hello $input.params('name')"}

The put-method-integration—get . json file should have
the following contents:

{
"method.response.header.Access-Control-Allow-Origin":

mrxorn

}

6. Now, we will create the OPTIONS method:
1. Execute put-method for the OPTIONS method:

aws apigateway put-method \
—-rest-api-id xengybowijg \
—-resource-id sfgfk6 \
——http-method OPTIONS \
——authorization-type "NONE"

2. Execute put-method-response or the OPTIONS method:

aws apigateway put-method-response \
—-rest-api-id xengybowijg \
—-resource-id sfgfké \
——http-method OPTIONS \
—-status—-code 200 \
—-response-parameters file://put-method-options.json

put-method-options. json should look like this:

{
"method.response.header.Access-Control-Allow-Origin":
false,
"method.response.header.Access—-Control-Allow—-Headers":
false,
"method.response.header.Access—-Control-Allow-Methods":
false

}

[391]

Serverless Programming Practices and Patterns Chapter 9

3. Execute put-integration for the OPTIONS method:

aws

apigateway put-integration \

—-rest-api-id xengybowjg \

—-resource-id sfgfké \

—-http-method OPTIONS \

--type MOCK \

—-integration-http-method OPTIONS \
—-request-templates "{\"application/json\":

\n { "statusCode": "200" }\vv } "

4. Execute put-integration-response for the OPTIONS method:

aws

apigateway put-integration-response \

—--rest-api-id xengybowijg \

—-resource-id sfgfké \

—-http-method OPTIONS \

—--status—code 200 \

—-response-parameters file://put-method-integration-

response-options.json \

—-—selection—-pattern ""

The put-method-integration-response-options. json file should
contain the following content:

{

"method.response.header.Access-Control-Allow-Origin":

nmrxrn

’

"method.response.header.Access—-Control-Allow-Headers":
"'Content-Type, Authorization, X—-Amz-Date, X-Api-Key, X-Amz—
Security-Token'"

}

7. Deploy the API:

aws

apigateway create-deployment \
—--rest—-api-id xenqgybowjg \
—--stage-name dev \
—--stage-description "Dev stage" \
——description "Dev deployment"

Execute the following URL from the browser: https://xengybowjg.execute—
api.us—-east-1.amazonaws.com/dev/greeting/Heartin.

[392]

Serverless Programming Practices and Patterns Chapter 9

8. Execute the URL from CodePen as follows:

var xhr = new XMLHttpRequest ();

xhr.open ('GET', 'https://gngs4lsxob.execute—api.us—
east—-1.amazonaws.com/dev/greeting/Heartin');
xhr.onreadystatechange = function (event) {
console.log(event.target.response);

}

xhr.setRequestHeader ('Content-Type', 'application/Jjson');
xhr.send () ;

In the Chrome developer console, we should now see a success message as
follows, instead of the errors we saw in the Getting ready section.

console runner-1df7d..81e5fba982f6af.js:1
Hello Heartin console runner-1df7d..8le5fba982f6af.js:1

Components within the CloudFormation template correspond to what we
have seen with AWS CLI commands and are mostly self-explanatory. The
corresponding CloudFormation template is provided with the code files
for reference.

How it works...

We created an API from scratch with CORS enabled. We did it using both AWS CLI
commands and the CloudFormation template. Let's first understand the CLI steps in detail.

The first four steps with the CLI are similar to what we have seen in recipes in Chapter
2, Building Serverless REST APIs with API Gateway:

1. Create an API
2. Get the ID of the root resource
3. Create a resource greeting

4. Create a subresource with a path parameter

The next four steps create the GET method:

5.

put-method for the GET method
6. put-method-response for the GET method

7.

8. put-integration-response for the GET method

put-integration for the GET method

[393]

Serverless Programming Practices and Patterns Chapter 9

The put -method subcommand and put-integration subcommand are similar to what
we have seen in the recipes of chapter 2, Building Serverless REST APIs with API Gateway.
The put -method-response and put-integration-response subcommands now also
should specify the response-parameters property.

The response-parameters property of the put -method-response subcommand
contains a key-value map specifying required or optional response parameters that the API
can send back in the response. The key of this map is a method response header name and
the value is a Boolean flag indicating whether the method response parameter is required
or not (true for required and false for optional).

The response-parameters property of the put -method-integration subcommand
contains a key-value map that specifies the response parameters that are passed to the
method response from the backend (mock integration in our case). The key is a method
response header parameter name and the value is an integration response header value, a
static string value enclosed within single quotes, or a JSON expression from the integration
response body.

As we can see from the previous section, we need to use four subcommands to configure an
HTTP method with API Gateway when using the AWS CLI. However, with a
CloudFormation template, we needed only one resource of type

AWS: :ApiGateway: :Method:

The next four steps create an oPTIONS HTTP method for the resource:

9. put-method for the 0PTIONS method

10. put-method-response for the OPTIONS method

11. put-integration for the OPTIONS method

12. put-integration-response for the OPTIONS method

OPTIONS is required for the preflight requests.

For Ajax and HTTP request methods, especially for ones that can modify data, such as non-
GET methods, or for POST method with certain MIME types, the specification mandates
browsers to preflight a request to server, asking for supported methods with an HTTP
OPTIONS request. The server responds back with a header Access-Control-Allow—
Methods that lists all support methods other than GET (for example, DELETE). The browser
will then send the actual request only for the supported HTTP request methods.

[394]

Serverless Programming Practices and Patterns Chapter 9

The OPTIONS response should also contain the headers Access-Control-Allow-
Origin and Access—-Control-Allow-Headers. The Access-Control-Allow-—

Origin header specifies the servers (origins) that can access a particular resource. A value
of * in our case indicates that any other domain name can access it with CORS. In practice,
you may make it more specific to particular domains. The Access-Control-Allow-
Headers header specifies the headers that are allowed in the actual request. We just
specified the basis headers Content-Type, Authorization, X-Amz-Date, X-Api-Key,
and X-Amz-Security-Token.

Even if we only use a GET URI, we still need the OPTIONS method configured as we are
making an AJAX call with the XMLHt t pRequest object. With the XMLHt t pRequest object,
we can exchange data with a web server without reloading the whole page. All modern
web browsers have a built-in support for the XMLHt t pRequest object. In our case, the
Access-Control-Allow-Methods header may be empty or not specified with the put -
method-integration subcommand, since we are not supporting any other methods than
GET (it still has to be defined with the put-method-response subcommand, but we can
specify it as optional).

Finally, we deploy the API and then test it using CodePen:

13. Deploy the API
14. Execute the URL from CodePen

There's more...

In this recipe, we did a GET request from another domain through CORS. We can also try
out other HTTP methods. One of the important changes we need to make is to specify the
HTTP methods that are allowed using the Access-Control-Allow-Methods header in
the CORS response.

See also

® https://developer.mozilla.org/en-US/docs/Glossary/Preflight_request

[395]

https://developer.mozilla.org/en-US/docs/Glossary/Preflight_request
https://developer.mozilla.org/en-US/docs/Glossary/Preflight_request
https://developer.mozilla.org/en-US/docs/Glossary/Preflight_request
https://developer.mozilla.org/en-US/docs/Glossary/Preflight_request
https://developer.mozilla.org/en-US/docs/Glossary/Preflight_request
https://developer.mozilla.org/en-US/docs/Glossary/Preflight_request
https://developer.mozilla.org/en-US/docs/Glossary/Preflight_request
https://developer.mozilla.org/en-US/docs/Glossary/Preflight_request
https://developer.mozilla.org/en-US/docs/Glossary/Preflight_request
https://developer.mozilla.org/en-US/docs/Glossary/Preflight_request
https://developer.mozilla.org/en-US/docs/Glossary/Preflight_request
https://developer.mozilla.org/en-US/docs/Glossary/Preflight_request
https://developer.mozilla.org/en-US/docs/Glossary/Preflight_request
https://developer.mozilla.org/en-US/docs/Glossary/Preflight_request
https://developer.mozilla.org/en-US/docs/Glossary/Preflight_request
https://developer.mozilla.org/en-US/docs/Glossary/Preflight_request
https://developer.mozilla.org/en-US/docs/Glossary/Preflight_request
https://developer.mozilla.org/en-US/docs/Glossary/Preflight_request
https://developer.mozilla.org/en-US/docs/Glossary/Preflight_request
https://developer.mozilla.org/en-US/docs/Glossary/Preflight_request
https://developer.mozilla.org/en-US/docs/Glossary/Preflight_request

Serverless Programming Practices and Patterns Chapter 9

Implementing and testing Cognito
operations with the JavaScript SDK

We saw Cognito operations with AWS CLI commands in chapter 4, Application Security
with Amazon Cognito. With web applications, Cognito is generally used with the JavaScript
SDK from the frontend. Hence, we will see various uses of Cognito using the JavaScript
SDK and then test it using CodePen. We may use CodePen or any other tool, or use it
within our application (for example, an Angular app) and then test it.

Getting ready

The prerequisites for this recipe are as follows:

A working AWS account

The Node.js and npm installed on your machine

Download the amazon-cognito-identity.min.js file

Create an s3 bucket and upload the amazon-cognito-identity.min. js file

Ok W=

Create a Cognito user pool and a client

We also need to complete the following setup before we follow the steps outlined in the
How to do it... section:

Download the amazon-cognito-identity.min.js file

Create a temp folder and go inside the folder.
Run this:
npm i amazon-cognito-identity-js

We should see a response similar to this:

+ amazon-cognito-identity-js@3.0.7
added 7 packages from 20 contributors and audited 7 packages in 4.791s
found @ vulnerabilities

[396]

Serverless Programming Practices and Patterns Chapter 9

If we do an 1s, we should see the following two folders created:

$ 1s
node_modules package-lock.json

If we go inside node_modules/amazon-cognito-identity-js/dist, we should see
these files:

$ cd node_modules/amazon—cognito—-identity—-js/dist/

$ 1s

amazon—-cognito-identity.js amazon—-cognito-identity.min.js.gz
amazon—cognito-identity.min.js

Create an S3 bucket and upload the amazon-cognito-
identity.min.js file
Create an s3 bucket as follows:

aws s3api create-bucket \
—-bucket serverlesscookbook-cognito-files \
——profile admin

Upload the amazon-cognito-identity.min. js file:

aws s3 cp amazon-cognito-identity.min.js s3://serverlesscookbook-cognito-
files \
——profile admin

Execute the bucket policy that allows public read access to the bucket:
aws s3api put-bucket-policy \
—-bucket serverlesscookbook-cognito-files \

—-policy file://s3-website-policy.json \
——profile admin

The s3-website-policy. json file should have these contents:

{ "Version":"2012-10-17",

"Statement": [
{ "Sid":"PublicReadGetObjectAccess",
"Effect":"Allow",
"Principal": "*",
"Action":["s3:GetObject"],
"Resource": ["arn:aws:s3:::serverlesscookbook-cognito-files/*"]

[397]

Serverless Programming Practices and Patterns Chapter 9

Creating a Cognito user pool and client

We can create a Cognito user pool as follows:

aws cognito-idp create-user-pool \
——cli-input-json file://create-user-pool-cli-input.json \
—--region us-east-1 \
——profile admin

The create-user-pool-cli-input. json file has the following contents:

{
"PoolName": "javscript_pool",
"Policies": {

"PasswordPolicy": {
"MinimumLength": 8,
"RequireUppercase": true,
"RequireLowercase": true,
"RequireNumbers": true,
"RequireSymbols": true

}

}I
"AutoVerifiedAttributes": [
"email"
]I
"AliasAttributes": [
"email"
]I
"EmailVerificationMessage": "Your verification code from MyApp is
{####",
"EmailVerificationSubject": "Your verification code from MyAp",
"UserPoolTags": {
"Team": "Dev"
}
}

This is the same as what we have seen in Chapter 4, Application Security with Amazon
Cognito, which we can refer to for more details and explanations.

Create a user pool client:

aws cognito-idp create-user-pool-client \
—-user-pool-id us-east-1_P8srRzYqn \
—-client-name javscript-pool-client \

[398]

Serverless Programming Practices and Patterns Chapter 9

——explicit-auth-flows USER_PASSWORD_AUTH \
—--region us-east-1 \
——profile admin

Replace the user pool ID value with the ID of the user pool you created in the previous
step.

How to do it...

We will use CodePen to execute the JavaScript SDK code for Cognito operations, following
these steps:

Open CodePen and add locations to the required files.
Go to https://codepen.io/.
Click the Create tab and then select the Pen option.

In the new window, click the Settings menu, select the Behaviour tab, and
uncheck the Enabled option under Auto-Updating Preview.

L e

5. In the Settings menu, select the JavaScript tab and do the following:
1. Search for aws sdk and select the appropriate SDK:

Pen Settings

HTML CSS JavaScript Behavior

JavaScript Preprocessor (2]
None C

Add External Scripts/Pens (2]

Any URL's added here will be added as <script>s in order, and run before the
JavaScript in the editor. You can use the URL of any other Pen and it will include the
JavaScript from that Pen.

Q aws-sdk

aws-sdk 2.389.0
AWS SDK for JavaScript

= https://codepen.io/username/pen/aBcDef

+ add another resource

[399]

https://codepen.io/
https://codepen.io/
https://codepen.io/
https://codepen.io/
https://codepen.io/
https://codepen.io/
https://codepen.io/
https://codepen.io/

Serverless Programming Practices and Patterns Chapter 9

CodePen will populate the SDK URL (as we will see in the next
screenshot).

6. Add the URL of our amazon-cognito-identity.min. js file (for

example, https://s3.amazonaws.com/cognito-min-bucket/amazon-cognito-
identity.min.js):

Pen Settings

HTML CSS JavaScript Behavior

JavaScript Preprocessor a
None C
Add External Scripts/Pens a

Any URL's added here will be added as <script>sin order, and run before the
JavaScript in the editor. You can use the URL of any other Pen and it will include the
JavaScript from that Pen.

Q Search CDNjs (jQuery, Lodash, React, Angular, Vue.js, Ember...)

Powered by [algolia

https://cdnjs.cloudflare.com/ajax/libs/aws-sdk/2.389.0/aws-sdk.min.js

|
x

ws.com/serverlesscookbook-cognito-files/amazon-cognito-identity.min.j

0

x

https://yourwebsite.com/script.js

+add another resource

[400]

https://s3.amazonaws.com/cognito-min-bucket/amazon-cognito-identity.min.js
https://s3.amazonaws.com/cognito-min-bucket/amazon-cognito-identity.min.js
https://s3.amazonaws.com/cognito-min-bucket/amazon-cognito-identity.min.js
https://s3.amazonaws.com/cognito-min-bucket/amazon-cognito-identity.min.js
https://s3.amazonaws.com/cognito-min-bucket/amazon-cognito-identity.min.js
https://s3.amazonaws.com/cognito-min-bucket/amazon-cognito-identity.min.js
https://s3.amazonaws.com/cognito-min-bucket/amazon-cognito-identity.min.js
https://s3.amazonaws.com/cognito-min-bucket/amazon-cognito-identity.min.js
https://s3.amazonaws.com/cognito-min-bucket/amazon-cognito-identity.min.js
https://s3.amazonaws.com/cognito-min-bucket/amazon-cognito-identity.min.js
https://s3.amazonaws.com/cognito-min-bucket/amazon-cognito-identity.min.js
https://s3.amazonaws.com/cognito-min-bucket/amazon-cognito-identity.min.js
https://s3.amazonaws.com/cognito-min-bucket/amazon-cognito-identity.min.js
https://s3.amazonaws.com/cognito-min-bucket/amazon-cognito-identity.min.js
https://s3.amazonaws.com/cognito-min-bucket/amazon-cognito-identity.min.js
https://s3.amazonaws.com/cognito-min-bucket/amazon-cognito-identity.min.js
https://s3.amazonaws.com/cognito-min-bucket/amazon-cognito-identity.min.js
https://s3.amazonaws.com/cognito-min-bucket/amazon-cognito-identity.min.js
https://s3.amazonaws.com/cognito-min-bucket/amazon-cognito-identity.min.js
https://s3.amazonaws.com/cognito-min-bucket/amazon-cognito-identity.min.js
https://s3.amazonaws.com/cognito-min-bucket/amazon-cognito-identity.min.js
https://s3.amazonaws.com/cognito-min-bucket/amazon-cognito-identity.min.js
https://s3.amazonaws.com/cognito-min-bucket/amazon-cognito-identity.min.js
https://s3.amazonaws.com/cognito-min-bucket/amazon-cognito-identity.min.js

Serverless Programming Practices and Patterns Chapter 9

7. Click Close. We can now run JavaScript code from within the Cognito JS tab, as
we did in the previous recipe:

& C & https://codepen.io/pen/?editors=0010

Untitled #

A PEN BY CAPTAIN ANONYMOUS

Q Run & Save 3 Settings

& JS

poolData = {
: 'us-east-1_P8srRzYgn',
: "3sk2emj3thcpbmdg43he50k4gn’

userPool = new AmazonCognitoIdentity. (poolData);
attributelist: CognitoUserAttribute[] = [1;
emailAttribute = ﬂ

8. We can sign up/register the user with the following code:

var poolData = {
UserPoolId: '<user pool id>"',
ClientId: '<client id>'

Hi

var userPool = new AmazonCognitoIdentity.CognitoUserPool (poolData);
var attributelist: CognitoUserAttributel[] = [];

var emailAttribute = {

Name : 'email',

Value : '<user email>"'

bi

attributelist.push (new
AmazonCognitoIdentity.CognitoUserAttribute (emailAttribute));

userPool.signUp ('heartin', 'PasswOrd$1l', attributelList, null,
function (err, result){
if (err) {
console.log (JSON.stringify (err));

alert (err.message || JSON.stringify (err));
return;
3
var cognitoUser = result.user;
console.log('user name is ' + cognitoUser.getUsername());

)i

[401]

Serverless Programming Practices and Patterns Chapter 9

9. Update the code with correct userpool ID, client ID, username, and password,
and click Run.
We can view the log messages in the developer console as follows:

<message collected> console runner-1df7d..8le5fba982f6af.js:1

user name is heartin console runner-1df7d..81e5fbad982f6af.js:1

10. Confirm the registered user by using the code received in the email provided
during registration:

var poolData = {
UserPoolId: '<user pool id>"',
ClientId: '<client id>"

i

var userPool = new AmazonCognitoIdentity.CognitoUserPool (poolData);
var userData = {

Username : 'heartin',

Pool : userPool

}i

var cognitoUser = new AmazonCognitoIdentity.CognitoUser (userData);
cognitoUser.confirmRegistration('698099"', true, function(err,
result) |
if (err) |

alert (err.message || JSON.stringify (err));
return;

}

console.log('call result: ' + result);

)i

Replace 698099 with the code you received. Run the script from CodePen and we
should receive a response similar to this in the developer logs:

call result: SUCCESS console runner-1df7d..81e5fba982f6af.js:1

11. Sign in to the application using the registered email ID and password:

var authenticationData = {
Username : 'heartin',
Password : 'PasswOrd$i',
bi
var authenticationDetails = new
AmazonCognitoIdentity.AuthenticationDetails (authenticationData);
var poolData = {
UserPoolId: '<user pool id>"',

[402]

Serverless Programming Practices and Patterns Chapter 9

ClientId: '<client id>"
bi
var userPool = new
AmazonCognitoIdentity.CognitoUserPool (poolData);
var userData = {
Username : 'heartin',
Pool : userPool
bi
var cognitoUser = new
AmazonCognitoIdentity.CognitoUser (userData);
cognitoUser.authenticateUser (authenticationDetails, {
onSuccess: function (result) {
var accessToken =
result.getAccessToken () .getJwtToken () ;
console.log('access token is:' + accessToken);
}I
onFailure: function(err) {
console.log (JSON.stringify (err));
alert (err.message || JSON.stringify(err));

H

)i

If successful, we should receive the access token in the response and we can verify
it from the browser developer console:

access token console runner-1df7d..81le5fba982f6af.js:1
is:eylraWQi0iI3VeOFruvQ4z082eXg3RjN4SHBTbnZkNNnRjZjBBCcHIEZX01WXN
jS1VDNzZFPSIsImFsZyI6I1ITMjU2In@.eylzdWIi0iImM2M3ZmMx0S@3MTI2L
TRINWYtOTImZSImMTIxMzYxNjBmYmIilLCI1ldmVudF9pZCI6IjI3MGQOM]jdjLTF
hMTAtMTFLOS1hMTViLTNkMzV1Y2FKYWQ1ZiIsInRva2VuX3VzZSI6ImFjY2Vzc
yIsInNjb3BlIjoiYXdzLmNvZ25pdGBuc21lnbmluLnVzZXIuYWRtaW4ilLCIhdXR
0X3RpbWUi0jEINDc20TkyMjgsImlzcyI6Imh@dHBz0lwvXC9jb2duaXRvLWlke
C51cy11YXNOLTEUYWlhem9uYXdzLmNvbVwvdXMtZWFzdCOxX1A4c31Sellxbil
sImVAcCIBMTUBNzcwMjgyOCwiaWF@IjoxNTQ3Njk5MjI4LCIqdGki0iJhMTQ3N
Dg2NS@ANjI@LTQwWNj ktYWE4YS1jNj1jOGIINTUX0GUiLCIjbGl1lbnRfaWQi0il
zc2syZW1gM3RoY3A2bWRNNDNoZTUwazRxbiIsInVzZXJuYW1l1lIjoiaGVhenRpb
1J9.ChGKYGMIKIisgMOuOaU2EhEic2411FcgoYZNhfSknSG1lghGc0iC7nX9s3S
4XJ1eSpJl0gZkXR_9ZqfEp—
eT3LpXwGGMvCfekV7RACPcUPcux407KtD2ABHVKMGgSNz1ygNip3zmN9u2alcP
hyiQFIPj9QGesUII7bSwa8B_Z-16fLR8GaK2 ixwwkk-
VOp70LBP7nZVGpP040yTELvWQMIKMx-8dhGvujvPXY-CYB-
VASIrbjubWj71Z50TJ62s50-

JTOVCtxdxGuVm207 LUOOZMUTHjWUIyyz_C7RqtkN84sWx@dxtAIPhNoMHn—
ETTD6FdQEmzPwEAm_ifF_z_z6Ug

[403]

Serverless Programming Practices and Patterns Chapter 9

We can now use this access token for further operations.

How it works...

We used CodePen to execute a basic user signup and login flow using the JavaScript SDK
for Cognito. The APIs used correspond to the AWS CLI APIs used in Chapter 4, Application
Security with Amazon Cognito, which we can refer to for more details and explanations.

There's more...

We have implemented the JavaScript SDK-based code for Cognito and executed it from
CodePen. We can use the code with any JavaScript application, or a framework such as
Angular. We implemented only one login flow. You may follow this recipe and the recipes
in Chapter 4, Application Security with Amazon Cognito, and do the same for all the other
flows discussed.

See also

® https://docs.aws.amazon.com/cognito/latest/developerguide/using—
amazon-cognito-user-identity-pools—javascript-examples.html

Federated identity with Amazon Cognito

Federated identity isa process where a user's identity and attributes are stored across
different identity management systems. For example, we can use federated identity to
allow users to log in to our system with another identity provider's credentials. In this
recipe, we will see how to use federated identity with Cognito user pools. For the purpose
of demonstration, we will be using Google Plus as the identity provider and Cognito will
act as the identity broker. The general process will be the same for any other providers,
such as Facebook or Amazon.

[404]

https://docs.aws.amazon.com/cognito/latest/developerguide/using-amazon-cognito-user-identity-pools-javascript-examples.html
https://docs.aws.amazon.com/cognito/latest/developerguide/using-amazon-cognito-user-identity-pools-javascript-examples.html
https://docs.aws.amazon.com/cognito/latest/developerguide/using-amazon-cognito-user-identity-pools-javascript-examples.html
https://docs.aws.amazon.com/cognito/latest/developerguide/using-amazon-cognito-user-identity-pools-javascript-examples.html
https://docs.aws.amazon.com/cognito/latest/developerguide/using-amazon-cognito-user-identity-pools-javascript-examples.html
https://docs.aws.amazon.com/cognito/latest/developerguide/using-amazon-cognito-user-identity-pools-javascript-examples.html
https://docs.aws.amazon.com/cognito/latest/developerguide/using-amazon-cognito-user-identity-pools-javascript-examples.html
https://docs.aws.amazon.com/cognito/latest/developerguide/using-amazon-cognito-user-identity-pools-javascript-examples.html
https://docs.aws.amazon.com/cognito/latest/developerguide/using-amazon-cognito-user-identity-pools-javascript-examples.html
https://docs.aws.amazon.com/cognito/latest/developerguide/using-amazon-cognito-user-identity-pools-javascript-examples.html
https://docs.aws.amazon.com/cognito/latest/developerguide/using-amazon-cognito-user-identity-pools-javascript-examples.html
https://docs.aws.amazon.com/cognito/latest/developerguide/using-amazon-cognito-user-identity-pools-javascript-examples.html
https://docs.aws.amazon.com/cognito/latest/developerguide/using-amazon-cognito-user-identity-pools-javascript-examples.html
https://docs.aws.amazon.com/cognito/latest/developerguide/using-amazon-cognito-user-identity-pools-javascript-examples.html
https://docs.aws.amazon.com/cognito/latest/developerguide/using-amazon-cognito-user-identity-pools-javascript-examples.html
https://docs.aws.amazon.com/cognito/latest/developerguide/using-amazon-cognito-user-identity-pools-javascript-examples.html
https://docs.aws.amazon.com/cognito/latest/developerguide/using-amazon-cognito-user-identity-pools-javascript-examples.html
https://docs.aws.amazon.com/cognito/latest/developerguide/using-amazon-cognito-user-identity-pools-javascript-examples.html
https://docs.aws.amazon.com/cognito/latest/developerguide/using-amazon-cognito-user-identity-pools-javascript-examples.html
https://docs.aws.amazon.com/cognito/latest/developerguide/using-amazon-cognito-user-identity-pools-javascript-examples.html
https://docs.aws.amazon.com/cognito/latest/developerguide/using-amazon-cognito-user-identity-pools-javascript-examples.html
https://docs.aws.amazon.com/cognito/latest/developerguide/using-amazon-cognito-user-identity-pools-javascript-examples.html
https://docs.aws.amazon.com/cognito/latest/developerguide/using-amazon-cognito-user-identity-pools-javascript-examples.html
https://docs.aws.amazon.com/cognito/latest/developerguide/using-amazon-cognito-user-identity-pools-javascript-examples.html
https://docs.aws.amazon.com/cognito/latest/developerguide/using-amazon-cognito-user-identity-pools-javascript-examples.html
https://docs.aws.amazon.com/cognito/latest/developerguide/using-amazon-cognito-user-identity-pools-javascript-examples.html
https://docs.aws.amazon.com/cognito/latest/developerguide/using-amazon-cognito-user-identity-pools-javascript-examples.html
https://docs.aws.amazon.com/cognito/latest/developerguide/using-amazon-cognito-user-identity-pools-javascript-examples.html
https://docs.aws.amazon.com/cognito/latest/developerguide/using-amazon-cognito-user-identity-pools-javascript-examples.html
https://docs.aws.amazon.com/cognito/latest/developerguide/using-amazon-cognito-user-identity-pools-javascript-examples.html
https://docs.aws.amazon.com/cognito/latest/developerguide/using-amazon-cognito-user-identity-pools-javascript-examples.html
https://docs.aws.amazon.com/cognito/latest/developerguide/using-amazon-cognito-user-identity-pools-javascript-examples.html
https://docs.aws.amazon.com/cognito/latest/developerguide/using-amazon-cognito-user-identity-pools-javascript-examples.html
https://docs.aws.amazon.com/cognito/latest/developerguide/using-amazon-cognito-user-identity-pools-javascript-examples.html

Serverless Programming Practices and Patterns Chapter 9

Getting ready

The following are the prerequisites for this recipe:

e A working AWS account.

¢ An S3 static website with a real domain name pointing to it. You may follow the
recipes in Chapter 5, Web Hosting with S3, Route53, and CloudFront to create a
static website, register a domain, and link the domain name to the static website.

¢ A basic understanding of HTML and JavaScript is good to have.

How to do it...

We first need to configure the identity provider (Google Plus in our case) to be used for
federated identity login.

Step 1 - Configuring Google Plus

Before we can use Google Plus for federated identity logins with Cognito, we need to
follows these steps:

1. Navigate to https://console.developers.google.com.

2. Click Library on the left sidebar and accept the terms and conditions (of course
after reading them) if displayed.

3. Scroll down, Select Google+ API, and click Enable on the new page:

Social

G

Google+ API
Google

The Google+ API enables
developers to build on top of the
Google+ platform.

[405]

https://console.developers.google.com
https://console.developers.google.com
https://console.developers.google.com
https://console.developers.google.com
https://console.developers.google.com
https://console.developers.google.com
https://console.developers.google.com
https://console.developers.google.com
https://console.developers.google.com
https://console.developers.google.com
https://console.developers.google.com

Serverless Programming Practices and Patterns Chapter 9

2. Click on Credentials on the left sidebar menu, then click Create to create a new
credential. If we have not created a project yet, this should show us a new project
window:

New Project

You have 12 projects remaining in your quota. Request an increase or
delete projects.
Learn more

MANAGE QUOTAS

Project Name *
QNA Time Login (%)

Project ID: gna-time-login. It cannot be changed later. EDIT

Location *
M No organization BROWSE

Parent organization or folder

CREATE CANCEL

3. In the New Project window, do the following;:
1. Provide a Project Name

2. Leave the default value for Location as it is
3. Click the CREATE button

Now, click Create credentials in the Credentials popup:

APIs
Credentials

You need credentials to access APIs. Enable the APIs you plan to
use and then create the credentials they require. Depending on the
API, you need an API key, a service account, or an OAuth 2.0 client
ID. For more information, see the authentication documentation.

Create credentials ~

[406]

Serverless Programming Practices and Patterns Chapter 9

6. From the drop-down menu, select OAuth Client ID:

Create credentials ~

API key
Identifies your project using a simple API key to check quota and access

OAuth client ID
Requests user consent so your app can access the user's data

Service account key
Enables server-to-server, app-level authentication using robot accounts

Help me choose
Asks a few questions to help you decide which type of credential to use

7. There may be a warning message: To create an OAuth client ID, you must first
set a product name on the consent screen:
1. Click Configure consent screen to the right of it
2. In the OAuth consent screen tab, do the following;:
1. Give an application name
2. In the Authorized domains section, add a valid domain
name:

Authorized domains

To protect you and your users, Google only allows applications that authenticate using
OAuth to use Authorized Domains. Your applications' links must be hosted on Authorized
Domains. Learn more

. -
gnatime.com []

example.com

3. Click Save at the bottom of the form to save

[407]

Serverless Programming Practices and Patterns Chapter 9

8. We will be redirected to the page for creating an OAuth client ID. Set
Application Type as Web application and enter our domain under Authorized
JavaScript origins:

< Create OAuth client ID

For applications that use the OAuth 2.0 protocol to call Google APIs, you can use an OAuth 2.0 client ID to
generate an access token. The token contains a unique identifier. See Setting up OAuth 2.0 for more information.

Application type

® Web application
Android Learn more
Chrome App Learn more
i0S Learn more
Other

Name

QNA Time Demo Client

Restrictions
Enter JavaScript origins, redirect URIs, or both Learn More

Origins and redirect domains must be added to the list of Authorized Domains in the OAuth consent settings.

Authorized JavaScript origins

For use with requests from a browser. This is the origin URI of the client application. It can't contain a wildcard
(https://*.example.com) or a path (https://example.com/subdir). If you're using a nonstandard port, you must include it
in the origin URI.

https://www.qgnatime.com]
https://www.example.com

Authorized redirect URIs

For use with requests from a web server. This is the path in your application that users are redirected to after they have
authenticated with Google. The path will be appended with the authorization code for access. Must have a protocol.
Cannot contain URL fragments or relative paths. Cannot be a public IP address.

https://www.example.com

[408]

Serverless Programming Practices and Patterns Chapter 9

9. Click Create and we will be provided with a client ID:

OAuth client

The client ID and secret can always be accessed from Credentials in APls &
Services

OAuth is limited to 100 sensitive scope logins until the OAuth consent
screen is published. This may require a verification process that can take
several days.

Here is your client ID

55367180174-6brhjc2vekdllcejabnr1e46957f72te. apps.googleusercontent. com T]

Here is your client secret

I D

oK

Step 2 - Creating and Configuring an Identity Pool

Let's now create and configure an identity pool from the AWS CLI:

1. Create a provider. json file, with Google as the provider name and the client
ID received from the previous step:

{ "accounts.google.com"
"55367180174-6brhjc2veokdllcejabnrled6957£f72te.apps.googleuserconten
t.com" }

2. Create an identity pool:

aws cognito-identity create-identity-pool \
——identity-pool-name gnatimepool \
——no-allow—unauthenticated-identities \
—-—-supported-login-providers file://provider.json
——profile admin

[409]

Serverless Programming Practices and Patterns Chapter 9

You should get a response similar to this:

"IdentityPoolId": "us-east-1:0f692fe2-c799-4334-b29b-54fd6544f2fb",
"IdentityPoolName": "gnatimepool",
"AllowUnauthenticatedIdentities": false,

"SupportedLoginProviders": {
"accounts.google.com": "55367180174-6brhjc2v6kdllcejabnrle46957f72te.apps.googleusercontent.com"

3. Create a policy that allows the necessary permissions to the user:
aws iam create-policy \
——policy—-name identity-pool-policy \

——policy-document file://role_policy.txt \
—-profile admin

4. The role_policy.txt file has the following contents:

{

"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [

"mobileanalytics:PutEvents",
"cognito-sync:*",
"cognito-identity:*"

1,

"Resource": [
mwimw

}

There should be a role associated with a user who uses public APIs to log in, so
that AWS can issue a token to access AWS services.

5. Create a role named identity-pool-role and attach a policy to the role.
6. Create a roles. json file with the ARN role as follows:

{"authenticated":"arn:aws:iam: :<account id>:role/identity-pool-
role"}

[410]

Serverless Programming Practices and Patterns Chapter 9

7. Attach the role to the pool:

aws cognito-identity set-identity-pool-roles \
——identity-pool-id <your identity pool id> \
—--roles file://roles.json \

—--region us-east-1 \

——profile admin

Step 3 - Preparing and uploading code files

We need two HTML files, index.html for primary landing page and error.html for
errors. We will see the important components within the index.html here. We will use
JavaScript SDK code from within the index.html file. A completed index.html file with
required JavaScript code and error.html file are available with code files.

Preparing the index.html file

The index.html file should have the following contents:

Start defining the HTML file with a DOCTYPE declaration and the <htm1> tag:

<!DOCTYPE html>
<html>

The <head> section of the HTML file should have contents as follows:

<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>QNA Time</title>
<script src="https://apis.google.com/js/platform.js" async
defer></script>
<script
src="https://cdnjs.cloudflare.com/ajax/libs/aws-sdk/2.390.0/aws-sdk.min.js"
></script>
<meta
name="google-signin-client_id"
content="1056864857699—
i6amiOuboevpn9bro2k3r095jtgohdi7.apps.googleusercontent.com"
/>
</head>

[411]

Serverless Programming Practices and Patterns Chapter 9

Start defining a <script> section with the following variables:

<script type="text/javascript">
var 1d_token;
var identity;
var cognitoidentity = new AWS.CognitoIdentity({ region: "us-east-1" });

Define the getCredentials method to get the access token from Cognito:

function getCredentials() {
var paramsl = {
IdentityId: identity,
Logins: {
"accounts.google.com": id_token

}
bi
cognitoidentity.getCredentialsForIdentity (paramsl, function(err, data)
{
if (err) console.log(err, err.stack);
else {
console.log(data);
console.log(data.Credentials.AccessKeyId);
}
1)
}

Add an onsignIn method that will be invoked on the success of Google authentication.
This method is specified within the HTML body:

function onSignIn (googleUser) {
id_token = googleUser.getAuthResponse () .1d_token;
console.log("google_id_token:" + id_token);

var params = {
IdentityPoolId:
"us-east-1:£36a0555-fd35-43d6-bafa-187ecdef0f04" /* required */,
Logins: {
"accounts.google.com": id_token
}
i

cognitoidentity.getId(params, function(err, data) {
if (err) console.log(err, err.stack);
// an error occurred
else {
console.log(data);
identity = data.IdentityId;
getCredentials();

[412]

Serverless Programming Practices and Patterns Chapter 9

1)
}

</script>
Add the HTML body:
<body>
<hl>Welcome to QNA TIME</hl>
<form>
<div
style="width:200px;"
class="g-signin2"
data-onsuccess="onSignIn"
></div>
</form>
</body>

Deploying and testing the index.html file
Follow these steps to deploy the HTML file:

1. Copy index.html and error.html to the S3 bucket. Create an error.html
with dummy contents or follow earlier chapter recipes. It is also available with
the code files.

2. Hit the website URL.:

o ® < gnatime.com & i » |4

Welcome to QNA TIME

G Sign in

3. Click on the Google Sign in button. If not already signed in to our Google
account, we will be provided with an option to log in to your Google account.
Once logged in, we should see the Signed in message.

[413]

Serverless Programming Practices and Patterns Chapter 9

How it works...

A Cognito Federated Identity authentication flow to access AWS services has two forms:
classic flow and enhanced flow.

Classic flow can be summarized as follows:

Ll e

7.

The user logs in with an external IDP such as Amazon, Google, or Facebook
The IDP returns an OAuth token
The client will then make a request to Cognito with the OAuth token

Cognito will validate the OAuth token with the IDP and if successful, return a
token back

The client will then make an AssumeRoleWithWebIdentity call to STS, passing
this token

STS will validate the token and return with temporary credentials (access key ID
and secret access key)

The client can now use the temporary credentials to access AWS services

Enhanced flow can be summarized as follows:

= LN

7.

User logs in with an external IDP such as Amazon, Google, or Facebook
The IDP returns an OAuth token
The client will then make a request to Cognito with the OAuth token

Cognito will validate the OAuth token with the IDP and if successful, return a
token back

The client will then make a GetCredentialsForIdentity call with Cognito
itself

Cognito will validate the token, negotiate with STS, and return temporary
credentials (access key ID and secret access key)

The client can now use the temporary credentials to access AWS services

We followed the enhanced flow in this recipe.

There's more...

We created a simple application to demonstrate the Cognito authentication flow. You may
follow this recipe and implement the same thing, as per your application needs.

[414]

Serverless Programming Practices and Patterns Chapter 9

See also

® https://docs.aws.amazon.com/cognito/latest/developerguide/cognito—-
identity.html

® https://docs.aws.amazon.com/cognito/latest/developerguide/
authentication-flow.html

Creating SSL/TLS certificate with ACM

In the Using HTTPS with CloudFront domain recipe of chapter 5, Web Hosting with S3,
Route53, and CloudFront, we used an SSL certificate. In this recipe, we will see how we can
create such an SSL certificate using ACM. ACM is a free service for domains with a
HostedZone in Route 53. ACM can also be used to import certificates created outside of
AWS.

Getting ready

We should have a domain registered with AWS or with an outside registrar, and the
domain should have a HostedZone available in Route 53. You may register a domain by
following the Registering a domain with Route 53 recipe of chapter 5, Web Hosting with S3,
Route53, and CloudFront.

How to do it...

We will create certificates using both AWS CLI API commands and a CloudFormation
template in this section. I have also included the steps for the AWS Management Console in
the There's more section.

For certificates to work with CloudFront, AWS requires the certificates to be available
inus-east-1 region and will get replicated to other required regions.

[415]

https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-identity.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-identity.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-identity.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-identity.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-identity.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-identity.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-identity.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-identity.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-identity.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-identity.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-identity.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-identity.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-identity.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-identity.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-identity.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-identity.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-identity.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-identity.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-identity.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-identity.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-identity.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-identity.html
https://docs.aws.amazon.com/cognito/latest/developerguide/authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/authentication-flow.html

Serverless Programming Practices and Patterns Chapter 9

AWS CLI Commands

1. We can request a certificate from AWS Certificate Manager, passing the domain
name and a validation method:

aws acm request-certificate \
—-—domain-name www.gnatime.net \
—-validation-method DNS \
——profile admin

Validation methods available at DNS and email. With DNS, we need to create a
CNAME record in our domain's DNS records to verify the ownership of the
domain. With email, we can verify using an email address. DNS is the preferred
way, as per the AWS documentation.

This command will return the ARN certificate:

"CertificateArn": "arn:aws:acm:us-east-1: :certificate/42b3ba99-66e9-4e71-8c1lc-4239cle81c84"

2. We can now use the describe-certificate subcommand to see the status,
along with validation information:

aws acm describe-certificate \

——certificate—arn arn:aws:acm:us-
east-1:218317422462:certificate/42b3ba99-66e9-4e71-8clc-4239cle81c8
4\

——profile admin

[416]

Serverless Programming Practices and Patterns Chapter 9

This command will return the validation status along with validation
information:

"Certificate": {
"CertificateArn": "arn:aws:acm:us—east-1: :certificate/42b3ba99-66e9-4e71-8clc—4239cle81c84",
"DomainName": "www.gnatime.net",
"SubjectAlternativeNames": [
"www.gnatime.net"

]l
"DomainValidationOptions": [
{
"DomainName": "www.qnatime.net",
"ValidationStatus": "PENDING_VALIDATION",
"ResourceRecord": {
"Name": "_f086ad8e4cl0e38385c3c36394a06182.www.qgnatime.net.",
"Type": "CNAME",
"Value": "_ee9788f2dcf3eaefaa85bb096163ffd4.t1jzshvwok.acm-validations.aws."
}r
"ValidationMethod": "DNS"

The response also contains some additional information about the certificate, but
will be incomplete at this point:

"Subject": "CN=www.gnatime.net",
"CreatedAt": 1543673401.0,

"Status": "PENDING_VALIDATION",
"KeyAlgorithm": "RSA-2048",
"SignatureAlgorithm": "SHA256WITHRSA",
"InUseBy": [1,

"Type": "AMAZON_ISSUED",

"KeyUsages": [I,
"ExtendedKeyUsages": [1,
"RenewalEligibility": "INELIGIBLE",
"Options": {
"CertificateTransparencylLoggingPreference": "ENABLED"

[417]

Serverless Programming Practices and Patterns Chapter 9

3. Create a change resource record set JSON for updating the CNAME record as
required for DNS validation:

{

"Comment": "change batch request for dns validation
www.gnatime.net",
"Changes": [
{
"Action": "CREATE",
"ResourceRecordSet": {
"Name" :
" _f086ad8e4cl0e38385¢c3¢c36394a06182.www.qgnatime.net.",
"Type": "CNAME",
"TTL": 300,
"ResourceRecords": [
{
"Value":
" _ee9788f2dcf3eaefaal8bbb096163ffd4d.tljzshvwok.acm-validations.aws."

4. Execute the change-resource-record-sets subcommand of route53 CLI
command:

aws route53 change-resource-record-sets \

——hosted-zone-id Z3G50MON7IDA18 \

—-change-batch file://resources/change-resource-record-sets-—
dns-validation.json \

——profile admin

This command will return a change ID with the status as PENDING.

We can then use the get —-change subcommand of route53 CLI command to
check the status. The status should change to INSYNC when successful.

[418]

Serverless Programming Practices and Patterns Chapter 9

5. Check the status of certificate creation using the describe-certificate
subcommand. It might take some time before the validation is completed and
the certificate is ready to use. If successful, we should get a response as follows:

“"Certificate": {
"CertificateArn": "arn:aws:acm:us—east-1: 1certificate/42b3ba99-66e9-4e71-8c1lc-4239c1le81c84",
"DomainName": "www.gnatime.net",
"SubjectAlternativeNames": [
"www.qnatime.net"

1,
"DomainValidationOptions": [
{
"DomainName": "www.qnatime.net",
"ValidationStatus": "SUCCESS",
"ResourceRecord": {
"Name": "_f086ad8e4cl0e38385c3c36394a06182.www.qnatime.net.",
"Type' CNAME",
"Value": "_ee9788f2dcf3eaefaa85bb096163ffd4.t1jzshvwok.acm-validations.aws."
}l
"ValidationMethod": "DNS"

The initial part of the response contains a message about DNS validation success.

Next, the response contains additional info about the certificate and issuer:

"Serial": "od:” "~ ~—~ °° T 7 7
"Subject": "CN=www.qgnatime.net",
"Issuer": "Amazon",

"CreatedAt": 1543673401.0,
"IssuedAt": 1543675489.0,
"Status": "ISSUED",

"NotBefore": 1543622400.0,

"NotAfter": 1577880000.0,
"KeyAlgorithm": "RSA-2048",
"SignatureAlgorithm": "SHA256WITHRSA",
"InUseBy": [1,

"Type": "AMAZON_ISSUED",

[419]

Serverless Programming Practices and Patterns Chapter 9

The final part of the response contains KeyUsages, ExtendedKeyUsages,
RenewalEligibility, and Options:

"KeyUsages": [
{
"Name": "DIGITAL_SIGNATURE"
h
{
"Name": "KEY_ENCIPHERMENT"
}
1,
"ExtendedKeyUsages": [
{
"Name": "TLS_WEB_SERVER_AUTHENTICATION",
"0ID": "1. Il

"Name'': "TLS_WEB_CLIENT_AUTHENTICATION",
"0ID": “1. "

1,
"RenewalEligibility": "INELIGIBLE",
"Options": {
"CertificateTransparencylLoggingPreference": "ENABLED"
+

CloudFormation Template

The certificate request process requires user interaction to verify the domain and hence it
cannot be fully automated with CloudFormation scripts. However, I will still provide two
templates to request for a certificate and verify the DNS. In the real world, you may just
verify from the AWS Management Console or AWS CLI:

1. Use the following CloudFormation template for requesting a certificate from
CloudFormation:

AWSTemplateFormatVersion: '2010-09-09'
Description: 'Certificate Manager'
Parameters:
RootDomainName :
Description: Domain name for generating certificate
Type: String
Resources:
RootDomainCert:
Type: AWS::CertificateManager::Certificate

[420]

Serverless Programming Practices and Patterns Chapter 9

Properties:
DomainName: !'Ref RootDomainName
ValidationMethod: DNS
Outputs:
CertificateArn:
Value: !Ref RootDomainCert

2. Execute the template using the create-stack subcommand in us-east-1
region (the default).

The stack will be created in the CREATE_IN_PROGRESS state, as we can verify
with the describe-stacks subcommand.

3. Use the describe-stack-events subcommand to get the CNAME values for
DNS validation:

aws cloudformation describe-stack-events \
—-stack-name cnamerecordsetstack \
——profile admin

The CloudFormation stack with a resource of type
AWS::CertificateManager::CertificateShﬂ@inthereqxnmesﬁﬁe

of CREATE_IN_PROGRESS until we verify the DNS with CNAME. CNAME is provided
as an event during stack creation. If successful, the preceding command will
return the list of events along with the details for the CNAME record in one of the
event as shown here:

"StackEvents": [
{
"StackId": "arn:aws:cloudformation:ap-south-1:218317422462:stack/mycertstack/a@2e4ced-f6e6-11e8-90f7-0
a791b5fd632",
"EventId": "RootDomainCert-0df88ead-da2f-4c0d-alb6-823dbad8bae7",
"'StackName": "myc tack",
"LogicalResourcel RootDomainCert",
"PhysicalResourceld 0D
"ResourceType": "AWS::CertificateManager::Certificate",
"Timestamp" 12-03T10:32:18.100Z",
"ResourceStatus": "CREATE_IN_PROGRESS",
"ResourceStatusReason": "Content of DNS Record is: {Name: _7d2add77f3493141152bc8765e40401c.quizzerclo
ud.com.,Type: CNAME,Value: _9376279cf263f4ec3ced17d9b08122ce. t1jzshvwok.acm-validations.aws.}"
},

4. Add a cNAME record for DNS validation in the domain's HostedZone.

[421]

Serverless Programming Practices and Patterns Chapter 9

You can use the RecordSetGroup resource to add a CNAME record in a new
template file:

CNAMERecordSetGroup:
Type: AWS::Routeb3::RecordSetGroup
Properties:
HostedZoneName: !Ref HostedZone
Comment: Zone apex alias.
RecordSets:

Name: !Ref CNAMEname
Type: CNAME
TTL: 900
ResourceRecords:

- !Ref CNAMEValue

Note that this is not a complete template. We also need to define three
parameters, HostedZone, CNAMEname, and CNAMEValue, of type string. We can
also define the template version and a description. The completed template is
available in the code files.

5. After adding the CNAME record with the second stack, we can execute
the describe-stacks subcommand against the first stack (certificate stack) and
check the status until it is completed.

How it works...

In summary, we did the following in this recipe:

1. Created a request for an SSL certificate

2. Verified that we own the domain through DNS updates and got the
certificate issued

Most of the steps in the recipe are self-explanatory. To see the generated certificate in
action, you may refer to the Using HTTPS with CloudFront domain within recipe of
Chapter 5, Web Hosting with S3, Route53, and CloudFront.

[422]

Serverless Programming Practices and Patterns Chapter 9

There's more...

We saw how to create SSL/TLS certificates using ACM. We can also import certificates
created outside of AWS. We can use these certificates with services such as AWS Load
Balancer, API Gateway API, and a CloudFront distribution.

Apart from using SSL certificates and HTTPS, we can also add additional security to our
web applications using services such as AWS WAF, AWS Shield, AWS Shield Advanced,
and AWS Firewall Manager.

You may also explore Let's Encrypt for creating free SSL/TLS certificates for your AWS
deployments. Let's Encrypt is a certificate authority that provides free SSL certificates.

See also

e To understand more about the use of a dedicated IP and SNI for serving HTTPS
requests, you may refer to the following link: https://docs.aws.amazon.com/
AmazonCloudFront/latest/DeveloperGuide/cnames—https—-dedicated-ip-or-
sni.html

e Current ACM availability in different regions can be found at the following

link: https://docs.aws.amazon.com/general/latest/gr/rande.htmlfacm_
region

Fan-in and fan-out architectural patterns
with AWS

Fan-in generally refers to the process where multiple producers produce data and pass it
into a single service or message router. The term is most commonly used in digital
electronics to denote the number of inputs that a logic gate can handle. For example, an AND
gate with four inputs has a fan-in of 4.

Fan-out generally refers to the process where a service or message router delivers messages
to multiple consumers, mostly in parallel. In digital electronics, the fan-out of a logic gate
output is equal to the number of gate inputs it can drive. For example, one output may be
connected to several inputs.

[423]

https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/cnames-https-dedicated-ip-or-sni.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/cnames-https-dedicated-ip-or-sni.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/cnames-https-dedicated-ip-or-sni.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/cnames-https-dedicated-ip-or-sni.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/cnames-https-dedicated-ip-or-sni.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/cnames-https-dedicated-ip-or-sni.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/cnames-https-dedicated-ip-or-sni.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/cnames-https-dedicated-ip-or-sni.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/cnames-https-dedicated-ip-or-sni.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/cnames-https-dedicated-ip-or-sni.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/cnames-https-dedicated-ip-or-sni.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/cnames-https-dedicated-ip-or-sni.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/cnames-https-dedicated-ip-or-sni.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/cnames-https-dedicated-ip-or-sni.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/cnames-https-dedicated-ip-or-sni.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/cnames-https-dedicated-ip-or-sni.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/cnames-https-dedicated-ip-or-sni.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/cnames-https-dedicated-ip-or-sni.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/cnames-https-dedicated-ip-or-sni.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/cnames-https-dedicated-ip-or-sni.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/cnames-https-dedicated-ip-or-sni.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/cnames-https-dedicated-ip-or-sni.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/cnames-https-dedicated-ip-or-sni.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/cnames-https-dedicated-ip-or-sni.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/cnames-https-dedicated-ip-or-sni.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/cnames-https-dedicated-ip-or-sni.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/cnames-https-dedicated-ip-or-sni.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/cnames-https-dedicated-ip-or-sni.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/cnames-https-dedicated-ip-or-sni.html
https://docs.aws.amazon.com/general/latest/gr/rande.html#acm_region
https://docs.aws.amazon.com/general/latest/gr/rande.html#acm_region
https://docs.aws.amazon.com/general/latest/gr/rande.html#acm_region
https://docs.aws.amazon.com/general/latest/gr/rande.html#acm_region
https://docs.aws.amazon.com/general/latest/gr/rande.html#acm_region
https://docs.aws.amazon.com/general/latest/gr/rande.html#acm_region
https://docs.aws.amazon.com/general/latest/gr/rande.html#acm_region
https://docs.aws.amazon.com/general/latest/gr/rande.html#acm_region
https://docs.aws.amazon.com/general/latest/gr/rande.html#acm_region
https://docs.aws.amazon.com/general/latest/gr/rande.html#acm_region
https://docs.aws.amazon.com/general/latest/gr/rande.html#acm_region
https://docs.aws.amazon.com/general/latest/gr/rande.html#acm_region
https://docs.aws.amazon.com/general/latest/gr/rande.html#acm_region
https://docs.aws.amazon.com/general/latest/gr/rande.html#acm_region
https://docs.aws.amazon.com/general/latest/gr/rande.html#acm_region
https://docs.aws.amazon.com/general/latest/gr/rande.html#acm_region
https://docs.aws.amazon.com/general/latest/gr/rande.html#acm_region
https://docs.aws.amazon.com/general/latest/gr/rande.html#acm_region
https://docs.aws.amazon.com/general/latest/gr/rande.html#acm_region
https://docs.aws.amazon.com/general/latest/gr/rande.html#acm_region
https://docs.aws.amazon.com/general/latest/gr/rande.html#acm_region
https://docs.aws.amazon.com/general/latest/gr/rande.html#acm_region

Serverless Programming Practices and Patterns Chapter 9

Fan-in and fan-out patterns can be used together with distributed messaging applications
to decouple producers and consumers. A fan-in process decouples producers from the
service, and a fan-out process decouples the service from the consumer. The fan-in and fan-
out patterns may be used with producers and consumers of the same type (if their
throughput requirements differ) or with producers and consumers of different types.

Getting ready

We need a working AWS account with the necessary permissions if we want to implement
the following suggestions.

We also need to be familiar with the following services and the steps we followed to use
them in this book:

e AWS Lambda from chapter 1, Getting Started with Serverless Computing on AWS

e Amazon SQS and Amazon SNS from Chapter 6, Messaging and Notifications with
SQS and SNS
¢ Amazon Kinesis from chapter 7, Redshift, Amazon ML, and Alexa Skills

How to do it...

Let's see approaches to implement fan-in and fan-out architectural patterns in AWS.

Please note that there is no single correct solution to most of these architectural problems.
Architectural problems and their solutions also evolve over time, based on experience and
research. Therefore, do a search on popular search engines or have discussions with your
peers before implementing a scenario outlined here in the real world.

Scenario 1 - Pub-Sub with multiple producers and
consumers

We have producer services that produce data and more than one consumer will need that
data.

Approach: We can use SNS as the service router between the producer services and
consumer services as follows:

1. Producers publish messages to SNS (fan-in)
2. Consumers subscribe to SNS and consume messages from SNS (fan-out)

[424]

Serverless Programming Practices and Patterns Chapter 9

Scenario 2 - Parallel processing without duplicates

We have a producer service that produces service requests and more than one consumer
can process those requests in parallel, but the same service request should not be delivered
to more than one consumer.

Approach: We can use SQS as the service router between the producer service and
consumer services as follows:

1. The producer publishes messages to SQS
2. SQS delivers each message only to one of the consumers (fan-out)

3. Multiple consumers publish their results to another service, such as S3 or
DynamoDB, and results are aggregated (fan-in)

Scenario 3 - Streaming real-time data for processing

For processing streaming data in real time, we may have to use a service designed
specifically for such use cases.

Approach: We can use Kinesis streams for the stream, with Kinesis Analytics for routing, as
follows:

1. Producers produce data in Kinesis Stream, configured for high throughput (fan-
in)

2. Kinesis Analytics routes it into an appropriate stream with a lower throughput
(fan-out)

Scenario 4 - Streaming real-time data for storing

For processing streaming data in real time, we may have to use a service designed
specifically for such use cases.

Approach: We can use Kinesis firehose as follows:

1. Producers produce data in Kinesis firehose (fan-in)

2. Kinesis firehose stores the data in a supported data store such as S3, Redshift, ES,
or Splunk

[425]

Serverless Programming Practices and Patterns Chapter 9

How it works...

This recipe suggests various approaches to implement the fan-in/fan-out architectural
patterns in AWS. The fan-in and fan-out patterns may be used together, or even separately.
They may also be used in a different order, fan-in followed by fan-out or fan-out followed
by fan-in. The first scenario occurs when multiple producers send data to a single scalable
service (fan-in) and consumers consume data in parallel (fan-out) and process it. The latter
scenario, of fan-out followed by a fan-in, can be used in situations where we want to
process a task in parallel (fan-out) through different services, and then combine the
individual outputs into a single output (fan-in) for generating the final result. We may even
combine these scenarios into a fan-in, fan-out, fan-in combo.

Real-world example scenarios

Let's see some examples of the scenarios we discussed in the How to do it... section.

Scenario 1 - Pub-Sub scenario with multiple producers and consumers

Consider a social media website. Producers are users who post data and consumers are
users who follow other users. Users' posted details can be published to the service router
and the router service may then break down the task further and deliver it to all followers.

Scenario 2 - Parallel processing

Consider that we need to find people belonging to some category from within a country.
We can do this calculation for each state or even districts in parallel, and then combine all
the results together. The map-reduce algorithm used by Hadoop is an example.

Scenario 3 - Streaming real-time data for processing

Streaming real-time data has many use cases such as log analytics and IOT analytics. In
most of these cases, however, the throughput requirement for the producer may be high
and actual consumption rate might require only a lower throughput. We could use a single
stream with a high throughput, but then we will also be wasting throughput. Therefore, we
can have different streams with different throughputs, as required, and then, using Kinesis
Analytics' capabilities (for example, analyzing data streams with SQL), we can route the
request into an appropriate stream.

[426]

Serverless Programming Practices and Patterns Chapter 9

Scenario 4 - Streaming real-time data for storage

Consider a case where multiple producers produce streaming data that just needs to be
stored in one of the Kinesis Firehose supported data stores, such as S3, Redshift, ES, or
Splunk. We may not want to do any processing or analytics immediately, but this can be
done in parallel or at a later point of time from these data stores.

There's more...

In this recipe, we discussed some scenarios and a possible approach to handle the fan-in
and/or fan-out patterns in those scenarios. The idea of the recipe was to get you familiar
with the fan-in and fan-out patterns and scenarios. The exact services shown in the
approaches are not the only solutions available. You may explore more and for services
already covered in previous recipes, you may implement these scenarios.

Serverless programming in AWS is a huge topic. But I believe we have touched upon most
of the essential services in Chapters 1 to 8. We also saw some general practices and patterns
in Chapter 9 that involve those services. If you have completed all the recipes up to now,
you should have enough knowledge to contribute significantly to your work or personal
projects in the area of serverless computing with AWS.

In the next chapter, we will quickly see some of the other cloud provider services that
correspond to the AWS services that we have seen up to now.

Building a full stack web application on AWS

You can build a full stack serverless web application using the services that we learned in
this book. Ul may be built using Angular or any JavaScript-based frameworks you are
comfortable with and then deployed into an S3 bucket configured as a static website. A
domain can be bought and its DNS can be configured to point to the S3 bucket with Route
53.

Backend APIs can be built using API gateway. Ul code can interact with the API and the
API then invoke Lambda. Lambda can write and read data from DynamoDB. Lambda can
be created using Java programming language following the recipes in this book or you may
use any other Lambda-supported languages you are comfortable with.

[427]

Serverless Programming Practices and Patterns Chapter 9

User management and application-level authentication can be done with Cognito. Cognito
can be integrated with your UI code following the Cognito JavaScript SDK code that we
saw. You can support federated identity logins through identity providers such as Google,

Facebook, or Amazon. You can improve the performance of your website using CloudFront
CDN.

You may also follow or participate in developing a real-world, full stack, serverless web
application called QNA Time using most of the services we saw within this book
at https://github.com/heartin/gnatime

See also

You can read about Cognito and Cognito authentication flows in chapter 4, Application
Security with Amazon Cognito. You may read more about them from the following links.

® https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-
identity.html

® https://docs.aws.amazon.com/cognito/latest/developerguide/
authentication-flow.html

[428]

https://github.com/heartin/qnatime
https://github.com/heartin/qnatime
https://github.com/heartin/qnatime
https://github.com/heartin/qnatime
https://github.com/heartin/qnatime
https://github.com/heartin/qnatime
https://github.com/heartin/qnatime
https://github.com/heartin/qnatime
https://github.com/heartin/qnatime
https://github.com/heartin/qnatime
https://github.com/heartin/qnatime
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-identity.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-identity.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-identity.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-identity.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-identity.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-identity.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-identity.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-identity.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-identity.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-identity.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-identity.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-identity.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-identity.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-identity.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-identity.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-identity.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-identity.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-identity.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-identity.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-identity.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-identity.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-identity.html
https://docs.aws.amazon.com/cognito/latest/developerguide/authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/authentication-flow.html
https://docs.aws.amazon.com/cognito/latest/developerguide/authentication-flow.html

10

Other Cloud Providers

This chapter will cover the following topics:

e Your first Serverless application on Azure
e Your first Serverless application on Google Cloud Platform
¢ Your first Serverless application on IBM Cloud

Introduction

I believe that most people who are following a technological career path would like to be
good architects one day. A good architect should not only have deep knowledge on their
expert areas, but should also have good breadth of knowledge about a lot of other things,
including competing technologies.

From Chapters 1 to 9, we learned about many services that can help us build Serverless
applications on the AWS cloud. In this chapter, we will briefly discuss Serverless services
from some of the other popular cloud providers corresponding to the various AWS services
that we saw.

Knowing the Serverless services from various cloud providers can help us make better
architectural decisions. Having this knowledge can also gives us an edge over others in
discussions related to Serverless computing, both meetings at work as well as less formal
meetings, such as conferences and meetups.

Other Cloud Providers Chapter 10

Your first Serverless application in Azure

Microsoft Azure is a cloud computing service from Microsoft and provides services similar
to AWS in the areas of software as a service (SaaS), platform as a service (PaaS),
infrastructure as a service (IaaS), and Serverless computing. It supports many different
programming languages, tools and frameworks. In this recipe, we will create a simple
Serverless application on Azure. We will also learn about the most appropriate managed
Serverless services in Azure for the various use cases discussed in this book.

Getting ready

Following are the prerequisites for this recipe:

e JDK 8 or above.

¢ Apache Maven 3 or above.

¢ A working account on Azure.

e Azure CLIL
You can install Azure CLI by using the installer available at: https://docs.
microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest.
Verify installation and login by running: az login. This command will open a
browser window where you can login to your Microsoft account.

¢ Azure Functions CORE Tools.
You can install Azure Functions CORE Tools using npm as:
npm install -g azure-functions-core-tools

How to do it...

We will create a simple Azure Java project as follows:.

1. Create a new directory for the project and run the mvn
archetype:generate command, given as follows:

mvn archetype:generate \
-DarchetypeGroupId=com.microsoft.azure \
-DarchetypeArtifactId=azure-functions—-archetype

[430]

https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest

Other Cloud Providers Chapter 10

Note: If you are using Windows, you may replace \ with ~.

Provide values for the variables, as follows:

e Define the value for the 'groupId':
tech.heartin.books.serverless—cookbook property

e Define the value for the 'artifactId' : helloworld-azure-
fn property
¢ Define the value for the 'version' 1.0-SNAPSHOT
property
e Define the value for the 'package':
tech.heartin.books.serverlesscookbook property

¢ Define the value for the 'appName''
HelloWorldAzureFn property

¢ Define the value for the 'appRegion' 'westus': property

¢ Define the value for the 'resourceGroup' java—-functions-—
group: : property

¢ Confirm the properties configuration using:v: :

This will create a project in the helloworld-azure-£fn directory that is the
same as our artifact ID.

2. Go inside the project directory and run mvn clean package

3. Next, runmvn azure-functions:run

We should see the following within the output:

Now listening on:
Application started. Press Ctrl+C to shut down.

Http Functions:

HttpTrigger-Java: [GET,POST]

[431]

Other Cloud Providers Chapter 10

4. Invoke the following URL: http://localhost:7071/api/HttpTrigger-Java?
name=Heartin

We should see the response in the browser as follows:

& C @ localhost:7071/api/HttpTrigger-Java?name=Heartin

Hello, Heartin

Deploying the function to Azure

To deploy the Azure function follow these steps:
1. Open Azure CLI and run
az login
2. Go to the project folder and run the following command:
mvn azure-functions:deploy

You will get an output similar to the following:

Scanning for projects...

——— azure-functions-maven-plugin:1.2.1:deploy (default-cli) @
Authenticate with Azure CLI 2.0

The specified function app does not exist. Creating a new function app...
Successfully created the function app: helloworld-azure-fn

Trying to deploy the function app...

Trying to deploy artifact to helloworld-azure-fn
Successfully deployed the artifact to https:,
Successfully deployed the function app at

Total time: 03:11 min
Finished at: 2019-01-24T07:44:07+05:30

[432]

Other Cloud Providers

Chapter 10

Getting function info from Ul and verifying the

deployment

We can get the url to invoke from Ul as follows:

1. Login to https://portal.azure.com/

2. Click on App Services from left sidebar or the main page

3. Click on our app name

4. In the App's page click on the function name HttpTrigger-Java

helloworld-azure-fn - HttpTrigger-Java
Function Apps

L "helloworld-azure-fn" x

== Function Apps
v <> helloworld-azure-fn function.json
w = Functions (Read Only)
v f HttpTrigger-Java
% Integrate
£ Manage
Q Monitor

b := Proxies (Read Only)

b := Slots (preview)

All subscriptions Your app is currently in read-only mode because you are running from a package file. When running fron
be made to the files. To make any changes update the content in your zip file and WEBSITE_RUN_FROM

</> Get function URL

[433]

https://portal.azure.com/
https://portal.azure.com/
https://portal.azure.com/
https://portal.azure.com/
https://portal.azure.com/
https://portal.azure.com/
https://portal.azure.com/
https://portal.azure.com/
https://portal.azure.com/
https://portal.azure.com/

Other Cloud Providers Chapter 10

5. Click on Get function URL. This will return the public URL for your function.

Get function URL

Key URL

[deﬁuk(Funcﬁonkey)# https://helloworld-azure-fn.azurewebsites.net/ap €& Copy
i/HttpTrigger-Java?code=IbaUt5LbPqfnyvRZKmlNy87jsE

zIWNQ7wuAQObkH6RgSZzLHDYysSXxmg==

We can run the public URL from a browser specifying the required path parameter (similar
to what we did with localhost).

é C 8 SZZLHDnyXmg::&name:Heartin 13? ’,'f.

Hello, Heartin

How It works...

The goal of this recipe was become familiar with Azure cloud and write our first

Serverless application on Azure. In the next two sections, we will list the Azure Serverless
services corresponding to the AWS Serverless services we saw in this book. You can refer to
the links provided for each service to learn more and get started with them.

[434]

Other Cloud Providers Chapter 10

There's more...

Let's look at some of the Azure services that we can use to implement Serverless
applications:

¢ Serverless computing on AWS:
Azure functions are event-driven, Serverless compute functions that can scale on
demand. We need to pay only for the resources we consume. The corresponding
AWS service is AWS Lambda.

¢ Access management:
Azure Active Directory is Microsoft's identity and access management service.
The corresponding AWS service is IAM.

¢ Resource provisioning and management:
The Azure Resource Manager service enables us to define the infrastructure and
dependencies for our app in a single declarative template and then repeatedly
deploy the app using the template. The corresponding AWS service is
CloudFormation.

e Simple object store:
Blob Storage is a scalable object storage for unstructured data. The corresponding
service in AWS is Amazon S3.

¢ API management:
The API Management service in Azure helps in publishing, managing, securi

¢ ng, and analyzing APIs. The corresponding service in AWS is API Gateway.
o Storage tier:

Azure Cosmos DB is a distributed multi-model database service. The
corresponding service that we used in this book is Amazon DynamoDB.

¢ User management:
Azure Active Directory B2C in Azure is a customer identity and access
management service. It enables us to use social accounts, emails, and custom
IdPs. The corresponding service in AWS that helps with user management is
Amazon Cognito.

¢ Domain hosting and DNS management:
Azure DNS can be used to host domains in Azure. The Traffic Manager service in
Azure can route incoming traffic for high performance and availability. Amazon
Route 53 can be used for both domain hosting and DNS management.

[435]

Other Cloud Providers Chapter 10

¢ Content Delivery Network:
The Content Delivery Network service in Azure is used for global content
delivery and acceleration. The corresponding service in AWS is Amazon
CloudFront.

¢ Queue service:
The Queue Storage service in Azure can be used to create simple message queues
for large workloads. The corresponding service in AWS is Amazon SQS.

 Notification service:
The Notification Hubs service in Azure can be used to send push notifications to
different platforms in response to API calls. The corresponding service in AWS is
Amazon SNS.

e Managing events and streams:
The Event Hubs service in Azure can be used for real-time data ingestion. The
corresponding service from Amazon that we have discussed in this book is
Amazon Kinesis Data Streams.

¢ Machine learning service:
Azure Machine Learning Studio is a fully managed service that we can use to
build, deploy, and share predictive analytics solutions. The corresponding
service in AWS that we have discussed in this book is the Amazon Machine
Learning service.

e Monitoring:
With the Azure Monitor service, we can monitor applications in Azure with
analytics and machine learning support. The corresponding service in AWS that
we have discussed in this book is Amazon CloudWatch.

e Data warehouse management:
SQL Data Warehouse is Azure's data warehouse solution. The corresponding
service in AWS is Amazon Redshift.

¢ Data integration/data pipeline:
The Data Factory service in Azure can be used to create, schedule, and monitor
data pipelines. In AWS, we can use the Data Pipeline service for building data
pipelines.

e Mobile:
The Mobile Apps service helps in building engaging iOS, Android, and Windows
apps. It also enables single sign-on functionality with Azure Active
Directory. AWS AppSync is a Serverless backend for mobile, web, and enterprise
applications.

[436]

Other Cloud Providers Chapter 10

See also

You can read more about the services discussed in the previous section by using the
following links:

Azure Functions: https://azure.microsoft.com/en-in/services/functions/

Azure Active Directory: https://azure.microsoft.com/en-in/services/
active—-directory/

Azure Resource Manager: https://azure.microsoft.com/en-in/features/

resource-manager/, https://docs.microsoft.com/en-us/azure/azure-
resource-manager/resource-group-overview

Blob Storage: https://azure.microsoft.com/en-in/services/storage/blobs/

, https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blobs-
introduction

API Management: https://azure.microsoft.com/en-us/services/api-
management /

Azure Cosmos DB: nttps://azure.microsoft.com/en-us/services/cosmos—
db/

Azure Active Directory B2C: https://azure.microsoft.com/en-us/services/
active-directory-b2c/

Azure DNS: https://azure.microsoft.com/en-us/services/dns/

Traffic Manager: https://azure.microsoft.com/en-us/services/traffic-
manager/

Content Delivery Network: nttps://azure.microsoft.com/en-us/services/
cdn/

Queue Storage: https://azure.microsoft.com/en-us/services/storage/
queues/

Notification Hubs: https://azure.microsoft.com/en-in/services/
notification-hubs/

Event Hubs: https://azure.microsoft.com/en-us/services/event-hubs/

Azure Machine Learning Studio: https://azure.microsoft.com/en-us/
services/machine-learning—-studio/

Azure Monitor: https://azure.microsoft.com/en-us/services/monitor/

SQL Data Warehouse: https://azure.microsoft.com/en-us/services/sql—
data-warehouse/

Redshift: https://aws.amazon.com/redshift/
Data Factory: https://azure.microsoft.com/en-us/services/data-factory/
Data Pipeline: https://aws.amazon.com/datapipeline/

[437]

https://azure.microsoft.com/en-in/services/functions/
https://azure.microsoft.com/en-in/services/functions/
https://azure.microsoft.com/en-in/services/functions/
https://azure.microsoft.com/en-in/services/functions/
https://azure.microsoft.com/en-in/services/functions/
https://azure.microsoft.com/en-in/services/functions/
https://azure.microsoft.com/en-in/services/functions/
https://azure.microsoft.com/en-in/services/functions/
https://azure.microsoft.com/en-in/services/functions/
https://azure.microsoft.com/en-in/services/functions/
https://azure.microsoft.com/en-in/services/functions/
https://azure.microsoft.com/en-in/services/functions/
https://azure.microsoft.com/en-in/services/functions/
https://azure.microsoft.com/en-in/services/functions/
https://azure.microsoft.com/en-in/services/functions/
https://azure.microsoft.com/en-in/services/functions/
https://azure.microsoft.com/en-in/services/functions/
https://azure.microsoft.com/en-in/services/functions/
https://azure.microsoft.com/en-in/services/active-directory/
https://azure.microsoft.com/en-in/services/active-directory/
https://azure.microsoft.com/en-in/services/active-directory/
https://azure.microsoft.com/en-in/services/active-directory/
https://azure.microsoft.com/en-in/services/active-directory/
https://azure.microsoft.com/en-in/services/active-directory/
https://azure.microsoft.com/en-in/services/active-directory/
https://azure.microsoft.com/en-in/services/active-directory/
https://azure.microsoft.com/en-in/services/active-directory/
https://azure.microsoft.com/en-in/services/active-directory/
https://azure.microsoft.com/en-in/services/active-directory/
https://azure.microsoft.com/en-in/services/active-directory/
https://azure.microsoft.com/en-in/services/active-directory/
https://azure.microsoft.com/en-in/services/active-directory/
https://azure.microsoft.com/en-in/services/active-directory/
https://azure.microsoft.com/en-in/services/active-directory/
https://azure.microsoft.com/en-in/services/active-directory/
https://azure.microsoft.com/en-in/services/active-directory/
https://azure.microsoft.com/en-in/services/active-directory/
https://azure.microsoft.com/en-in/features/resource-manager/
https://azure.microsoft.com/en-in/features/resource-manager/
https://azure.microsoft.com/en-in/features/resource-manager/
https://azure.microsoft.com/en-in/features/resource-manager/
https://azure.microsoft.com/en-in/features/resource-manager/
https://azure.microsoft.com/en-in/features/resource-manager/
https://azure.microsoft.com/en-in/features/resource-manager/
https://azure.microsoft.com/en-in/features/resource-manager/
https://azure.microsoft.com/en-in/features/resource-manager/
https://azure.microsoft.com/en-in/features/resource-manager/
https://azure.microsoft.com/en-in/features/resource-manager/
https://azure.microsoft.com/en-in/features/resource-manager/
https://azure.microsoft.com/en-in/features/resource-manager/
https://azure.microsoft.com/en-in/features/resource-manager/
https://azure.microsoft.com/en-in/features/resource-manager/
https://azure.microsoft.com/en-in/features/resource-manager/
https://azure.microsoft.com/en-in/features/resource-manager/
https://azure.microsoft.com/en-in/features/resource-manager/
https://azure.microsoft.com/en-in/features/resource-manager/
https://azure.microsoft.com/en-in/features/resource-manager/
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-overview
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-overview
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-overview
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-overview
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-overview
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-overview
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-overview
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-overview
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-overview
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-overview
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-overview
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-overview
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-overview
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-overview
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-overview
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-overview
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-overview
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-overview
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-overview
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-overview
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-overview
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-overview
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-overview
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-overview
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-overview
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-overview
https://azure.microsoft.com/en-in/services/storage/blobs/
https://azure.microsoft.com/en-in/services/storage/blobs/
https://azure.microsoft.com/en-in/services/storage/blobs/
https://azure.microsoft.com/en-in/services/storage/blobs/
https://azure.microsoft.com/en-in/services/storage/blobs/
https://azure.microsoft.com/en-in/services/storage/blobs/
https://azure.microsoft.com/en-in/services/storage/blobs/
https://azure.microsoft.com/en-in/services/storage/blobs/
https://azure.microsoft.com/en-in/services/storage/blobs/
https://azure.microsoft.com/en-in/services/storage/blobs/
https://azure.microsoft.com/en-in/services/storage/blobs/
https://azure.microsoft.com/en-in/services/storage/blobs/
https://azure.microsoft.com/en-in/services/storage/blobs/
https://azure.microsoft.com/en-in/services/storage/blobs/
https://azure.microsoft.com/en-in/services/storage/blobs/
https://azure.microsoft.com/en-in/services/storage/blobs/
https://azure.microsoft.com/en-in/services/storage/blobs/
https://azure.microsoft.com/en-in/services/storage/blobs/
https://azure.microsoft.com/en-in/services/storage/blobs/
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blobs-introduction
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blobs-introduction
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blobs-introduction
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blobs-introduction
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blobs-introduction
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blobs-introduction
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blobs-introduction
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blobs-introduction
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blobs-introduction
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blobs-introduction
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blobs-introduction
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blobs-introduction
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blobs-introduction
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blobs-introduction
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blobs-introduction
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blobs-introduction
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blobs-introduction
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blobs-introduction
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blobs-introduction
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blobs-introduction
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blobs-introduction
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blobs-introduction
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blobs-introduction
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blobs-introduction
https://azure.microsoft.com/en-us/services/api-management/
https://azure.microsoft.com/en-us/services/api-management/
https://azure.microsoft.com/en-us/services/api-management/
https://azure.microsoft.com/en-us/services/api-management/
https://azure.microsoft.com/en-us/services/api-management/
https://azure.microsoft.com/en-us/services/api-management/
https://azure.microsoft.com/en-us/services/api-management/
https://azure.microsoft.com/en-us/services/api-management/
https://azure.microsoft.com/en-us/services/api-management/
https://azure.microsoft.com/en-us/services/api-management/
https://azure.microsoft.com/en-us/services/api-management/
https://azure.microsoft.com/en-us/services/api-management/
https://azure.microsoft.com/en-us/services/api-management/
https://azure.microsoft.com/en-us/services/api-management/
https://azure.microsoft.com/en-us/services/api-management/
https://azure.microsoft.com/en-us/services/api-management/
https://azure.microsoft.com/en-us/services/api-management/
https://azure.microsoft.com/en-us/services/api-management/
https://azure.microsoft.com/en-us/services/api-management/
https://azure.microsoft.com/en-us/services/cosmos-db/
https://azure.microsoft.com/en-us/services/cosmos-db/
https://azure.microsoft.com/en-us/services/cosmos-db/
https://azure.microsoft.com/en-us/services/cosmos-db/
https://azure.microsoft.com/en-us/services/cosmos-db/
https://azure.microsoft.com/en-us/services/cosmos-db/
https://azure.microsoft.com/en-us/services/cosmos-db/
https://azure.microsoft.com/en-us/services/cosmos-db/
https://azure.microsoft.com/en-us/services/cosmos-db/
https://azure.microsoft.com/en-us/services/cosmos-db/
https://azure.microsoft.com/en-us/services/cosmos-db/
https://azure.microsoft.com/en-us/services/cosmos-db/
https://azure.microsoft.com/en-us/services/cosmos-db/
https://azure.microsoft.com/en-us/services/cosmos-db/
https://azure.microsoft.com/en-us/services/cosmos-db/
https://azure.microsoft.com/en-us/services/cosmos-db/
https://azure.microsoft.com/en-us/services/cosmos-db/
https://azure.microsoft.com/en-us/services/cosmos-db/
https://azure.microsoft.com/en-us/services/cosmos-db/
https://azure.microsoft.com/en-us/services/active-directory-b2c/
https://azure.microsoft.com/en-us/services/active-directory-b2c/
https://azure.microsoft.com/en-us/services/active-directory-b2c/
https://azure.microsoft.com/en-us/services/active-directory-b2c/
https://azure.microsoft.com/en-us/services/active-directory-b2c/
https://azure.microsoft.com/en-us/services/active-directory-b2c/
https://azure.microsoft.com/en-us/services/active-directory-b2c/
https://azure.microsoft.com/en-us/services/active-directory-b2c/
https://azure.microsoft.com/en-us/services/active-directory-b2c/
https://azure.microsoft.com/en-us/services/active-directory-b2c/
https://azure.microsoft.com/en-us/services/active-directory-b2c/
https://azure.microsoft.com/en-us/services/active-directory-b2c/
https://azure.microsoft.com/en-us/services/active-directory-b2c/
https://azure.microsoft.com/en-us/services/active-directory-b2c/
https://azure.microsoft.com/en-us/services/active-directory-b2c/
https://azure.microsoft.com/en-us/services/active-directory-b2c/
https://azure.microsoft.com/en-us/services/active-directory-b2c/
https://azure.microsoft.com/en-us/services/active-directory-b2c/
https://azure.microsoft.com/en-us/services/active-directory-b2c/
https://azure.microsoft.com/en-us/services/active-directory-b2c/
https://azure.microsoft.com/en-us/services/active-directory-b2c/
https://azure.microsoft.com/en-us/services/dns/
https://azure.microsoft.com/en-us/services/dns/
https://azure.microsoft.com/en-us/services/dns/
https://azure.microsoft.com/en-us/services/dns/
https://azure.microsoft.com/en-us/services/dns/
https://azure.microsoft.com/en-us/services/dns/
https://azure.microsoft.com/en-us/services/dns/
https://azure.microsoft.com/en-us/services/dns/
https://azure.microsoft.com/en-us/services/dns/
https://azure.microsoft.com/en-us/services/dns/
https://azure.microsoft.com/en-us/services/dns/
https://azure.microsoft.com/en-us/services/dns/
https://azure.microsoft.com/en-us/services/dns/
https://azure.microsoft.com/en-us/services/dns/
https://azure.microsoft.com/en-us/services/dns/
https://azure.microsoft.com/en-us/services/dns/
https://azure.microsoft.com/en-us/services/dns/
https://azure.microsoft.com/en-us/services/dns/
https://azure.microsoft.com/en-us/services/traffic-manager/
https://azure.microsoft.com/en-us/services/traffic-manager/
https://azure.microsoft.com/en-us/services/traffic-manager/
https://azure.microsoft.com/en-us/services/traffic-manager/
https://azure.microsoft.com/en-us/services/traffic-manager/
https://azure.microsoft.com/en-us/services/traffic-manager/
https://azure.microsoft.com/en-us/services/traffic-manager/
https://azure.microsoft.com/en-us/services/traffic-manager/
https://azure.microsoft.com/en-us/services/traffic-manager/
https://azure.microsoft.com/en-us/services/traffic-manager/
https://azure.microsoft.com/en-us/services/traffic-manager/
https://azure.microsoft.com/en-us/services/traffic-manager/
https://azure.microsoft.com/en-us/services/traffic-manager/
https://azure.microsoft.com/en-us/services/traffic-manager/
https://azure.microsoft.com/en-us/services/traffic-manager/
https://azure.microsoft.com/en-us/services/traffic-manager/
https://azure.microsoft.com/en-us/services/traffic-manager/
https://azure.microsoft.com/en-us/services/traffic-manager/
https://azure.microsoft.com/en-us/services/traffic-manager/
https://azure.microsoft.com/en-us/services/cdn/
https://azure.microsoft.com/en-us/services/cdn/
https://azure.microsoft.com/en-us/services/cdn/
https://azure.microsoft.com/en-us/services/cdn/
https://azure.microsoft.com/en-us/services/cdn/
https://azure.microsoft.com/en-us/services/cdn/
https://azure.microsoft.com/en-us/services/cdn/
https://azure.microsoft.com/en-us/services/cdn/
https://azure.microsoft.com/en-us/services/cdn/
https://azure.microsoft.com/en-us/services/cdn/
https://azure.microsoft.com/en-us/services/cdn/
https://azure.microsoft.com/en-us/services/cdn/
https://azure.microsoft.com/en-us/services/cdn/
https://azure.microsoft.com/en-us/services/cdn/
https://azure.microsoft.com/en-us/services/cdn/
https://azure.microsoft.com/en-us/services/cdn/
https://azure.microsoft.com/en-us/services/cdn/
https://azure.microsoft.com/en-us/services/storage/queues/
https://azure.microsoft.com/en-us/services/storage/queues/
https://azure.microsoft.com/en-us/services/storage/queues/
https://azure.microsoft.com/en-us/services/storage/queues/
https://azure.microsoft.com/en-us/services/storage/queues/
https://azure.microsoft.com/en-us/services/storage/queues/
https://azure.microsoft.com/en-us/services/storage/queues/
https://azure.microsoft.com/en-us/services/storage/queues/
https://azure.microsoft.com/en-us/services/storage/queues/
https://azure.microsoft.com/en-us/services/storage/queues/
https://azure.microsoft.com/en-us/services/storage/queues/
https://azure.microsoft.com/en-us/services/storage/queues/
https://azure.microsoft.com/en-us/services/storage/queues/
https://azure.microsoft.com/en-us/services/storage/queues/
https://azure.microsoft.com/en-us/services/storage/queues/
https://azure.microsoft.com/en-us/services/storage/queues/
https://azure.microsoft.com/en-us/services/storage/queues/
https://azure.microsoft.com/en-us/services/storage/queues/
https://azure.microsoft.com/en-us/services/storage/queues/
https://azure.microsoft.com/en-in/services/notification-hubs/
https://azure.microsoft.com/en-in/services/notification-hubs/
https://azure.microsoft.com/en-in/services/notification-hubs/
https://azure.microsoft.com/en-in/services/notification-hubs/
https://azure.microsoft.com/en-in/services/notification-hubs/
https://azure.microsoft.com/en-in/services/notification-hubs/
https://azure.microsoft.com/en-in/services/notification-hubs/
https://azure.microsoft.com/en-in/services/notification-hubs/
https://azure.microsoft.com/en-in/services/notification-hubs/
https://azure.microsoft.com/en-in/services/notification-hubs/
https://azure.microsoft.com/en-in/services/notification-hubs/
https://azure.microsoft.com/en-in/services/notification-hubs/
https://azure.microsoft.com/en-in/services/notification-hubs/
https://azure.microsoft.com/en-in/services/notification-hubs/
https://azure.microsoft.com/en-in/services/notification-hubs/
https://azure.microsoft.com/en-in/services/notification-hubs/
https://azure.microsoft.com/en-in/services/notification-hubs/
https://azure.microsoft.com/en-in/services/notification-hubs/
https://azure.microsoft.com/en-in/services/notification-hubs/
https://azure.microsoft.com/en-us/services/event-hubs/
https://azure.microsoft.com/en-us/services/event-hubs/
https://azure.microsoft.com/en-us/services/event-hubs/
https://azure.microsoft.com/en-us/services/event-hubs/
https://azure.microsoft.com/en-us/services/event-hubs/
https://azure.microsoft.com/en-us/services/event-hubs/
https://azure.microsoft.com/en-us/services/event-hubs/
https://azure.microsoft.com/en-us/services/event-hubs/
https://azure.microsoft.com/en-us/services/event-hubs/
https://azure.microsoft.com/en-us/services/event-hubs/
https://azure.microsoft.com/en-us/services/event-hubs/
https://azure.microsoft.com/en-us/services/event-hubs/
https://azure.microsoft.com/en-us/services/event-hubs/
https://azure.microsoft.com/en-us/services/event-hubs/
https://azure.microsoft.com/en-us/services/event-hubs/
https://azure.microsoft.com/en-us/services/event-hubs/
https://azure.microsoft.com/en-us/services/event-hubs/
https://azure.microsoft.com/en-us/services/event-hubs/
https://azure.microsoft.com/en-us/services/event-hubs/
https://azure.microsoft.com/en-us/services/event-hubs/
https://azure.microsoft.com/en-us/services/machine-learning-studio/
https://azure.microsoft.com/en-us/services/machine-learning-studio/
https://azure.microsoft.com/en-us/services/machine-learning-studio/
https://azure.microsoft.com/en-us/services/machine-learning-studio/
https://azure.microsoft.com/en-us/services/machine-learning-studio/
https://azure.microsoft.com/en-us/services/machine-learning-studio/
https://azure.microsoft.com/en-us/services/machine-learning-studio/
https://azure.microsoft.com/en-us/services/machine-learning-studio/
https://azure.microsoft.com/en-us/services/machine-learning-studio/
https://azure.microsoft.com/en-us/services/machine-learning-studio/
https://azure.microsoft.com/en-us/services/machine-learning-studio/
https://azure.microsoft.com/en-us/services/machine-learning-studio/
https://azure.microsoft.com/en-us/services/machine-learning-studio/
https://azure.microsoft.com/en-us/services/machine-learning-studio/
https://azure.microsoft.com/en-us/services/machine-learning-studio/
https://azure.microsoft.com/en-us/services/machine-learning-studio/
https://azure.microsoft.com/en-us/services/machine-learning-studio/
https://azure.microsoft.com/en-us/services/machine-learning-studio/
https://azure.microsoft.com/en-us/services/machine-learning-studio/
https://azure.microsoft.com/en-us/services/machine-learning-studio/
https://azure.microsoft.com/en-us/services/machine-learning-studio/
https://azure.microsoft.com/en-us/services/monitor/
https://azure.microsoft.com/en-us/services/monitor/
https://azure.microsoft.com/en-us/services/monitor/
https://azure.microsoft.com/en-us/services/monitor/
https://azure.microsoft.com/en-us/services/monitor/
https://azure.microsoft.com/en-us/services/monitor/
https://azure.microsoft.com/en-us/services/monitor/
https://azure.microsoft.com/en-us/services/monitor/
https://azure.microsoft.com/en-us/services/monitor/
https://azure.microsoft.com/en-us/services/monitor/
https://azure.microsoft.com/en-us/services/monitor/
https://azure.microsoft.com/en-us/services/monitor/
https://azure.microsoft.com/en-us/services/monitor/
https://azure.microsoft.com/en-us/services/monitor/
https://azure.microsoft.com/en-us/services/monitor/
https://azure.microsoft.com/en-us/services/monitor/
https://azure.microsoft.com/en-us/services/monitor/
https://azure.microsoft.com/en-us/services/monitor/
https://azure.microsoft.com/en-us/services/sql-data-warehouse/
https://azure.microsoft.com/en-us/services/sql-data-warehouse/
https://azure.microsoft.com/en-us/services/sql-data-warehouse/
https://azure.microsoft.com/en-us/services/sql-data-warehouse/
https://azure.microsoft.com/en-us/services/sql-data-warehouse/
https://azure.microsoft.com/en-us/services/sql-data-warehouse/
https://azure.microsoft.com/en-us/services/sql-data-warehouse/
https://azure.microsoft.com/en-us/services/sql-data-warehouse/
https://azure.microsoft.com/en-us/services/sql-data-warehouse/
https://azure.microsoft.com/en-us/services/sql-data-warehouse/
https://azure.microsoft.com/en-us/services/sql-data-warehouse/
https://azure.microsoft.com/en-us/services/sql-data-warehouse/
https://azure.microsoft.com/en-us/services/sql-data-warehouse/
https://azure.microsoft.com/en-us/services/sql-data-warehouse/
https://azure.microsoft.com/en-us/services/sql-data-warehouse/
https://azure.microsoft.com/en-us/services/sql-data-warehouse/
https://azure.microsoft.com/en-us/services/sql-data-warehouse/
https://azure.microsoft.com/en-us/services/sql-data-warehouse/
https://azure.microsoft.com/en-us/services/sql-data-warehouse/
https://azure.microsoft.com/en-us/services/sql-data-warehouse/
https://azure.microsoft.com/en-us/services/sql-data-warehouse/
https://aws.amazon.com/redshift/
https://aws.amazon.com/redshift/
https://aws.amazon.com/redshift/
https://aws.amazon.com/redshift/
https://aws.amazon.com/redshift/
https://aws.amazon.com/redshift/
https://aws.amazon.com/redshift/
https://aws.amazon.com/redshift/
https://aws.amazon.com/redshift/
https://aws.amazon.com/redshift/
https://aws.amazon.com/redshift/
https://aws.amazon.com/redshift/
https://azure.microsoft.com/en-us/services/data-factory/
https://azure.microsoft.com/en-us/services/data-factory/
https://azure.microsoft.com/en-us/services/data-factory/
https://azure.microsoft.com/en-us/services/data-factory/
https://azure.microsoft.com/en-us/services/data-factory/
https://azure.microsoft.com/en-us/services/data-factory/
https://azure.microsoft.com/en-us/services/data-factory/
https://azure.microsoft.com/en-us/services/data-factory/
https://azure.microsoft.com/en-us/services/data-factory/
https://azure.microsoft.com/en-us/services/data-factory/
https://azure.microsoft.com/en-us/services/data-factory/
https://azure.microsoft.com/en-us/services/data-factory/
https://azure.microsoft.com/en-us/services/data-factory/
https://azure.microsoft.com/en-us/services/data-factory/
https://azure.microsoft.com/en-us/services/data-factory/
https://azure.microsoft.com/en-us/services/data-factory/
https://azure.microsoft.com/en-us/services/data-factory/
https://azure.microsoft.com/en-us/services/data-factory/
https://azure.microsoft.com/en-us/services/data-factory/
https://azure.microsoft.com/en-us/services/data-factory/
https://aws.amazon.com/datapipeline/
https://aws.amazon.com/datapipeline/
https://aws.amazon.com/datapipeline/
https://aws.amazon.com/datapipeline/
https://aws.amazon.com/datapipeline/
https://aws.amazon.com/datapipeline/
https://aws.amazon.com/datapipeline/
https://aws.amazon.com/datapipeline/
https://aws.amazon.com/datapipeline/
https://aws.amazon.com/datapipeline/
https://aws.amazon.com/datapipeline/
https://aws.amazon.com/datapipeline/

Other Cloud Providers Chapter 10

e Mobile Apps: https://azure.microsoft.com/en-us/services/app-service/
mobile/

o AWS AppSync: https://aws.amazon.com/appsync/

Your first serverless application on Google
Cloud Platform

Google Cloud is a set of software solutions from Google and its primary components are
Google Cloud Platform (GCP) and G Suite. GCP is a suite of cloud computing services that
deal with SaaS, Paa$S, IaaS and Serverless computing. GSuite is a set of business
applications including Gmail, Google Docs and Google Drive. In this recipe, we will build a
simple serverless application on GCP. We will also look at the appropriate

managed services in GCP for various serverless use cases.

Getting ready

Following are the prerequisites for this recipe:
1. Node.js and npm installation can be verified with following commands:

node -v
npm -v

2. You need to have a working account in the Google Cloud Platform.
You need a credit card to create an account. However, Google will give you a
credit of 300$ for a 1-year duration at the time of writing this book and won’t
charge you until the credit is over.

3. Install Google Cloud SDK. To install Google Cloud SDK, you may follow this
link: https://cloud.google.com/sdk/docs.

How to do it...

We can create a simple Google Cloud function from command line following these steps:
1. Create a project with project ID as my-first-gcp-project-id

gcloud projects create 'heartin-gcp-project-id' —-—name='My
First GCP Project'

[438]

https://azure.microsoft.com/en-us/services/app-service/mobile/
https://azure.microsoft.com/en-us/services/app-service/mobile/
https://azure.microsoft.com/en-us/services/app-service/mobile/
https://azure.microsoft.com/en-us/services/app-service/mobile/
https://azure.microsoft.com/en-us/services/app-service/mobile/
https://azure.microsoft.com/en-us/services/app-service/mobile/
https://azure.microsoft.com/en-us/services/app-service/mobile/
https://azure.microsoft.com/en-us/services/app-service/mobile/
https://azure.microsoft.com/en-us/services/app-service/mobile/
https://azure.microsoft.com/en-us/services/app-service/mobile/
https://azure.microsoft.com/en-us/services/app-service/mobile/
https://azure.microsoft.com/en-us/services/app-service/mobile/
https://azure.microsoft.com/en-us/services/app-service/mobile/
https://azure.microsoft.com/en-us/services/app-service/mobile/
https://azure.microsoft.com/en-us/services/app-service/mobile/
https://azure.microsoft.com/en-us/services/app-service/mobile/
https://azure.microsoft.com/en-us/services/app-service/mobile/
https://azure.microsoft.com/en-us/services/app-service/mobile/
https://azure.microsoft.com/en-us/services/app-service/mobile/
https://azure.microsoft.com/en-us/services/app-service/mobile/
https://azure.microsoft.com/en-us/services/app-service/mobile/
https://aws.amazon.com/appsync/
https://cloud.google.com/sdk/docs
https://cloud.google.com/sdk/docs
https://cloud.google.com/sdk/docs
https://cloud.google.com/sdk/docs
https://cloud.google.com/sdk/docs
https://cloud.google.com/sdk/docs
https://cloud.google.com/sdk/docs
https://cloud.google.com/sdk/docs
https://cloud.google.com/sdk/docs
https://cloud.google.com/sdk/docs
https://cloud.google.com/sdk/docs
https://cloud.google.com/sdk/docs
https://cloud.google.com/sdk/docs

Other Cloud Providers Chapter 10

You should see a response similar to as follows:

$ gcloud projects create 'heartin—gcp—-project-id' ——name='My First GCP Project'
Create in progress for [https://cloudresourcemanager.googleapis.com/vl/projects/

heartin-gcp—project—id]l.
Waiting for [operations/cp.6887929382572106326] to finish...done.

2. Set the property project. You may set it for the current workspace by running;:

gcloud config set project 'heartin-gcp-project-id’

You should see a response similar to the following:

$ gcloud config set project 'heartin-gcp—project—id'
Updated property [core/project].

3. Enable Cloud Functions.

gcloud services enable cloudfunctions.googleapis.com

You should see a response similar to the following:

$ gcloud services enable cloudfunctions.googleapis.com
Operation "operations/acf.3da249de—430e—45ac—bcac—-81585011e18b" finished

successfully.

4. Clone or download the Sample Code from the Git URL:

git clone
https://github.com/GoogleCloudPlat form/nodejs—-docs—samples.git

5. Go to functions directory.

cd nodejs-docs-samples/functions/helloworld/

6. Deploy the function.

gcloud functions deploy helloGET —--runtime nodejs6é —--trigger-
http

[439]

Other Cloud Providers

You should see a response, as follows:

$ gcloud functions deploy helloGET —runtime nodejsé ——trigger—http
Deploying function (may take a while — up to 2 minutes)...done.
availableMemoryMb: 256
entryPoint: helloGET
httpsTrigger:

url: https://us—centrall-heartin-gcp—-project-id.cloudfunctions.net/helloGET
labels:

deployment—tool: cli-gcloud
name: projects/heartin-gcp-project-id/locations/us—centrall/functions/helloGET
runtime: nodejsé
serviceAccountEmail: heartin-gcp-project-idRappspot.gserviceaccount.com
sourceUploadUrl: https://storage.googleapis.com/gcf-upload-us—centrall-b3ee4388
—-40db-4843-a2eb-T39T19T65043/ faleac61-38TF1-4T82-b4ast—4ackld76alfe. zip?GoogleAcc
essId=service-948172233016Qgcf-admin-robot.iam.gserviceaccount.com&Expires=1548
886369&Signature=M2JvOtcVITF23yKgBnA7JyooC1X0S2K81b83E%2B1leh8BFa0zUyChXs7%2FR7¢
eAGugSamSaBWXZoWM1wr 2RK%2BGvvhh09%2BNZuF@vDuB3@acwrOuiBU7 faF%2BFbbwhwcsgXgOhrjo
TsEgIIhxzg9WE3e%2B5SmWGNVWICcK1t3UBH4Xg7pp9gBLlDVE]jOnLIWZWe%2FEGtM46]2qUnF3RCIgRec
M5F2%2Fd70mmETREJyn7sZF fdUvawnk9x6plqjlMjAjZgcpVBDy1DiplAg%2FuUOEe] cM%2FxVLfwpW
%2BVChVGBUUPi2j4cNINunFletKcImHPPyhcjFXPeHj fCVstHOY%2BnV19RXxX0ObELYA%3D%3D
status: ACTIVE
timeout: 6@s
updateTime: '2019-01-30T21:43:18Z7"'
versionld: '2'

7. Run the httpsTrigger URL from the previous section in a browser. You should

see Hello World printed on the browser screen as follows:.

é

C @ https://us-central1-heartin-gcp-project-id.cloudfunctions.net/helloGET

Hello World!

How it works...

The goal of this recipe was to become familiar with GCP. The code repository from
Google that we used in this recipe has more code examples to get you going further with

GCP. In the next two sections, we will list the GCP serverless services for various use cases.
You can refer to the links provided for each service to learn more and get started with them.

Chapter 10

[440]

Other Cloud Providers Chapter 10

Unlike AWS free tier where you get some services free upto some limits, GCP gives you
a credit amount and you are free to use it until it expires and is not limited to any specific
set of services.

There's more...

Let's look at some of the GCP services that we can use to implement Serverless applications:

Serverless computing on AWS:
Google Cloud Functions is an event-driven, Serverless compute platform and
corresponds to Lambdas in AWS.

Access management:
Cloud Identity & Access Management provides fine-grained access control for
cloud resources.

Resource provisioning and management:

Cloud Deployment Manager allows us to create and manage cloud resources
with templates.

Simple object store:

Google Cloud Storage is a unified object storage.

API management:

Apigee API Platform helps in developing, securing, deploying, and monitoring
your APIs. Cloud Endpoints is another service that help in developing and
maintaining APIs. While Cloud Endpoints is service-specific to GCP and has
better native support for integrations with GCP backend services, Apigee API
Platform is generic and can be used across GCP, on-premises, and with other
clouds.

Storage tier:

Cloud Datastore is a highly scalable NoSQL database and can be used for
standard data storage use cases. Cloud Bigtable is a petabyte-scalable NoSQL
database used mostly for analytical workloads.

User management:

Cloud Identity helps you manage users, devices, and apps from a single console.
Domain hosting and DNS management:

Cloud DNS is Google's DNS service.

[441]

Other Cloud Providers Chapter 10

e Content Delivery Network:
Cloud CDN accelerates the content delivery for websites and applications hosted
with Google Compute Engine and Google Cloud Storage using Google's edge
points across the globe. Google Compute Engine is Google's virtual machine
service and corresponds to the EC2 service in AWS. We did not look at the EC2
service much as the focus of this book is Serverless services.

¢ Queue service:
Cloud PUB/SUB allows you to ingest event streams at any scale, and can be used
for simple, reliable, real-time stream analytics. Cloud PUB/SUB is the closest
service there is that corresponds to SQS in AWS.

¢ Notification service:
Cloud PUB/SUB is also the closest service there is that corresponds to SNS in
AWS.

e Managing events and streams:
Cloud PUB/SUB from Google is again the closest service there is that corresponds
to Kinesis Data Streams in AWS. Cloud Dataflow is another service from Google
that allows stream and batch data processing.

¢ Machine learning service:
Cloud Machine Learning Engine helps in building superior models and
deploying them.

e Monitoring:
Stackdriver Monitoring helps in monitoring the performance, uptime, and
overall health of cloud applications hosted in GCP and AWS.

e Data warehouse management:
Google BigQuery is a highly scalable data warehouse solution, and is used for
analytics similar to Redsihft in AWS.

e Mobile:
Firebase helps in building mobile apps more quickly and is also the primary
mobile development platform in GCP.

See also

You can read more about the services discussed in the previous section by using the
following links:

¢ Google Cloud Functions: https://cloud.google.com/functions/
¢ Cloud Identity & Access Management: https://cloud.google.com/iam/

¢ Cloud Deployment Manager: https://cloud.google.com/deployment—
manager/

[442]

https://cloud.google.com/functions/
https://cloud.google.com/functions/
https://cloud.google.com/functions/
https://cloud.google.com/functions/
https://cloud.google.com/functions/
https://cloud.google.com/functions/
https://cloud.google.com/functions/
https://cloud.google.com/functions/
https://cloud.google.com/functions/
https://cloud.google.com/functions/
https://cloud.google.com/functions/
https://cloud.google.com/functions/
https://cloud.google.com/iam/
https://cloud.google.com/iam/
https://cloud.google.com/iam/
https://cloud.google.com/iam/
https://cloud.google.com/iam/
https://cloud.google.com/iam/
https://cloud.google.com/iam/
https://cloud.google.com/iam/
https://cloud.google.com/iam/
https://cloud.google.com/iam/
https://cloud.google.com/iam/
https://cloud.google.com/iam/
https://cloud.google.com/deployment-manager/
https://cloud.google.com/deployment-manager/
https://cloud.google.com/deployment-manager/
https://cloud.google.com/deployment-manager/
https://cloud.google.com/deployment-manager/
https://cloud.google.com/deployment-manager/
https://cloud.google.com/deployment-manager/
https://cloud.google.com/deployment-manager/
https://cloud.google.com/deployment-manager/
https://cloud.google.com/deployment-manager/
https://cloud.google.com/deployment-manager/
https://cloud.google.com/deployment-manager/
https://cloud.google.com/deployment-manager/

Other Cloud Providers Chapter 10

° Google Cloud Storage: https://cloud.google.com/storage/

e Apigee API Platform: https://cloud.google.com/apigee-api-management/
e Cloud Endpoints: https://cloud.google.com/endpoints/

e Cloud Datastore: https://cloud.google.com/datastore/

e Cloud Bigtable: https://cloud.google.com/bigtable/

¢ Cloud Identity: https://cloud.google.com/identity/

¢ Cloud DNS: nttps://cloud.google.com/dns/

e Cloud CDN: https://cloud.google.com/cdn/

e Cloud PUB/SUB: https://cloud.google.com/pubsub/

e Cloud Dataflow: https://cloud.google.com/dataflow/

¢ Cloud Machine Learning Engine: https://cloud.google.com/ml-engine/
o Stackdriver Monitoring: https://cloud.google.com/monitoring/

. Google Bigquery: https://cloud.google.com/bigquery/

e Firebase: nttps://firebase.google.com/, https://firebase.google.com/
firebase-and-gcp/

Your first Serverless application on IBM
cloud

IBM Cloud provides a set of cloud computing services that deal with SaaS, PaaS, IaaS and
Serverless computing. For virtualization, IBM uses the IBM Websphere application
infrastructure. The management layer of the IBM cloud uses IBM Tivoli middleware. In this
recipe, we will build a simple serverless application on IBM Cloud. We will also look at the
IBM cloud services for the various serverless use cases.

Getting ready

Following are the prerequisites for this recipe:

e Create an account at IBM cloud: https://www.ibm.com/cloud/.
¢ Using the IBM id, create account at https://console.bluemix.net/
registration/. This will create a Lite account.

e We need to upgrade our account by adding credit card details, which will help
us in creating orgs and spaces in IBM cloud.

[443]

https://cloud.google.com/storage/
https://cloud.google.com/storage/
https://cloud.google.com/storage/
https://cloud.google.com/storage/
https://cloud.google.com/storage/
https://cloud.google.com/storage/
https://cloud.google.com/storage/
https://cloud.google.com/storage/
https://cloud.google.com/storage/
https://cloud.google.com/storage/
https://cloud.google.com/storage/
https://cloud.google.com/storage/
https://cloud.google.com/apigee-api-management/
https://cloud.google.com/apigee-api-management/
https://cloud.google.com/apigee-api-management/
https://cloud.google.com/apigee-api-management/
https://cloud.google.com/apigee-api-management/
https://cloud.google.com/apigee-api-management/
https://cloud.google.com/apigee-api-management/
https://cloud.google.com/apigee-api-management/
https://cloud.google.com/apigee-api-management/
https://cloud.google.com/apigee-api-management/
https://cloud.google.com/apigee-api-management/
https://cloud.google.com/apigee-api-management/
https://cloud.google.com/apigee-api-management/
https://cloud.google.com/apigee-api-management/
https://cloud.google.com/apigee-api-management/
https://cloud.google.com/apigee-api-management/
https://cloud.google.com/endpoints/
https://cloud.google.com/endpoints/
https://cloud.google.com/endpoints/
https://cloud.google.com/endpoints/
https://cloud.google.com/endpoints/
https://cloud.google.com/endpoints/
https://cloud.google.com/endpoints/
https://cloud.google.com/endpoints/
https://cloud.google.com/endpoints/
https://cloud.google.com/endpoints/
https://cloud.google.com/endpoints/
https://cloud.google.com/endpoints/
https://cloud.google.com/datastore/
https://cloud.google.com/datastore/
https://cloud.google.com/datastore/
https://cloud.google.com/datastore/
https://cloud.google.com/datastore/
https://cloud.google.com/datastore/
https://cloud.google.com/datastore/
https://cloud.google.com/datastore/
https://cloud.google.com/datastore/
https://cloud.google.com/datastore/
https://cloud.google.com/datastore/
https://cloud.google.com/datastore/
https://cloud.google.com/bigtable/
https://cloud.google.com/bigtable/
https://cloud.google.com/bigtable/
https://cloud.google.com/bigtable/
https://cloud.google.com/bigtable/
https://cloud.google.com/bigtable/
https://cloud.google.com/bigtable/
https://cloud.google.com/bigtable/
https://cloud.google.com/bigtable/
https://cloud.google.com/bigtable/
https://cloud.google.com/bigtable/
https://cloud.google.com/bigtable/
https://cloud.google.com/identity/
https://cloud.google.com/identity/
https://cloud.google.com/identity/
https://cloud.google.com/identity/
https://cloud.google.com/identity/
https://cloud.google.com/identity/
https://cloud.google.com/identity/
https://cloud.google.com/identity/
https://cloud.google.com/identity/
https://cloud.google.com/identity/
https://cloud.google.com/identity/
https://cloud.google.com/identity/
https://cloud.google.com/dns/
https://cloud.google.com/dns/
https://cloud.google.com/dns/
https://cloud.google.com/dns/
https://cloud.google.com/dns/
https://cloud.google.com/dns/
https://cloud.google.com/dns/
https://cloud.google.com/dns/
https://cloud.google.com/dns/
https://cloud.google.com/dns/
https://cloud.google.com/dns/
https://cloud.google.com/dns/
https://cloud.google.com/cdn/
https://cloud.google.com/cdn/
https://cloud.google.com/cdn/
https://cloud.google.com/cdn/
https://cloud.google.com/cdn/
https://cloud.google.com/cdn/
https://cloud.google.com/cdn/
https://cloud.google.com/cdn/
https://cloud.google.com/cdn/
https://cloud.google.com/cdn/
https://cloud.google.com/cdn/
https://cloud.google.com/cdn/
https://cloud.google.com/pubsub/
https://cloud.google.com/pubsub/
https://cloud.google.com/pubsub/
https://cloud.google.com/pubsub/
https://cloud.google.com/pubsub/
https://cloud.google.com/pubsub/
https://cloud.google.com/pubsub/
https://cloud.google.com/pubsub/
https://cloud.google.com/pubsub/
https://cloud.google.com/pubsub/
https://cloud.google.com/pubsub/
https://cloud.google.com/pubsub/
https://cloud.google.com/dataflow/
https://cloud.google.com/dataflow/
https://cloud.google.com/dataflow/
https://cloud.google.com/dataflow/
https://cloud.google.com/dataflow/
https://cloud.google.com/dataflow/
https://cloud.google.com/dataflow/
https://cloud.google.com/dataflow/
https://cloud.google.com/dataflow/
https://cloud.google.com/dataflow/
https://cloud.google.com/dataflow/
https://cloud.google.com/dataflow/
https://cloud.google.com/ml-engine/
https://cloud.google.com/ml-engine/
https://cloud.google.com/ml-engine/
https://cloud.google.com/ml-engine/
https://cloud.google.com/ml-engine/
https://cloud.google.com/ml-engine/
https://cloud.google.com/ml-engine/
https://cloud.google.com/ml-engine/
https://cloud.google.com/ml-engine/
https://cloud.google.com/ml-engine/
https://cloud.google.com/ml-engine/
https://cloud.google.com/ml-engine/
https://cloud.google.com/ml-engine/
https://cloud.google.com/ml-engine/
https://cloud.google.com/monitoring/
https://cloud.google.com/monitoring/
https://cloud.google.com/monitoring/
https://cloud.google.com/monitoring/
https://cloud.google.com/monitoring/
https://cloud.google.com/monitoring/
https://cloud.google.com/monitoring/
https://cloud.google.com/monitoring/
https://cloud.google.com/monitoring/
https://cloud.google.com/monitoring/
https://cloud.google.com/monitoring/
https://cloud.google.com/monitoring/
https://cloud.google.com/bigquery/
https://cloud.google.com/bigquery/
https://cloud.google.com/bigquery/
https://cloud.google.com/bigquery/
https://cloud.google.com/bigquery/
https://cloud.google.com/bigquery/
https://cloud.google.com/bigquery/
https://cloud.google.com/bigquery/
https://cloud.google.com/bigquery/
https://cloud.google.com/bigquery/
https://cloud.google.com/bigquery/
https://cloud.google.com/bigquery/
https://firebase.google.com/
https://firebase.google.com/
https://firebase.google.com/
https://firebase.google.com/
https://firebase.google.com/
https://firebase.google.com/
https://firebase.google.com/
https://firebase.google.com/
https://firebase.google.com/
https://firebase.google.com/
https://firebase.google.com/firebase-and-gcp/
https://firebase.google.com/firebase-and-gcp/
https://firebase.google.com/firebase-and-gcp/
https://firebase.google.com/firebase-and-gcp/
https://firebase.google.com/firebase-and-gcp/
https://firebase.google.com/firebase-and-gcp/
https://firebase.google.com/firebase-and-gcp/
https://firebase.google.com/firebase-and-gcp/
https://firebase.google.com/firebase-and-gcp/
https://firebase.google.com/firebase-and-gcp/
https://firebase.google.com/firebase-and-gcp/
https://firebase.google.com/firebase-and-gcp/
https://firebase.google.com/firebase-and-gcp/
https://firebase.google.com/firebase-and-gcp/
https://firebase.google.com/firebase-and-gcp/
https://www.ibm.com/cloud/
https://www.ibm.com/cloud/
https://www.ibm.com/cloud/
https://www.ibm.com/cloud/
https://www.ibm.com/cloud/
https://www.ibm.com/cloud/
https://www.ibm.com/cloud/
https://www.ibm.com/cloud/
https://www.ibm.com/cloud/
https://www.ibm.com/cloud/
https://www.ibm.com/cloud/
https://www.ibm.com/cloud/
https://console.bluemix.net/registration/
https://console.bluemix.net/registration/
https://console.bluemix.net/registration/
https://console.bluemix.net/registration/
https://console.bluemix.net/registration/
https://console.bluemix.net/registration/
https://console.bluemix.net/registration/
https://console.bluemix.net/registration/
https://console.bluemix.net/registration/
https://console.bluemix.net/registration/
https://console.bluemix.net/registration/

Other Cloud Providers Chapter 10

e If you are not able to add a credit card, then you may send an e-mail
to verify@us.ibm.com with your credit card's last 4 digits so that they can verify
the account and enable the upgrade functionality.

e Download and install IBM Cloud CLI. Installer is currently downloadable
from https://console.bluemix.net/docs/cli/reference/ibmcloud/download_
cli.html#install_use.

¢ Log in to the IBM Cloud CLI and create a space for the default org (if not already
created).
1. Login to https://console.bluemix.net.
2. Click Manage > Account > Cloud Foundry Organizations.
3. Click on default as org name and click Add a space button.
4.

Select a region where you want to create a space and provide a name,
and click Save.

My first experience with IBM Cloud was not very smooth. Most cloud
providers usually try to improve themselves based on feedback and hence
your experience might be smoother. If you have entered credit card details
and upgraded your account, you can raise a ticket with IBM cloud team
for any issues you may face.

How to do it...

We will login through IBM Cloud CLI and deploy a function following the as follows:
steps. Exact outputs for these steps may differ slightly when you run these commands for
the first time and further executions.

1. Execute ibmcloud login and enter the username and password as follows:

ibmcloud login

[444]

mailto:verify@us.ibm.com
https://console.bluemix.net/docs/cli/reference/ibmcloud/download_cli.html#install_use
https://console.bluemix.net/docs/cli/reference/ibmcloud/download_cli.html#install_use
https://console.bluemix.net/docs/cli/reference/ibmcloud/download_cli.html#install_use
https://console.bluemix.net/docs/cli/reference/ibmcloud/download_cli.html#install_use
https://console.bluemix.net/docs/cli/reference/ibmcloud/download_cli.html#install_use
https://console.bluemix.net/docs/cli/reference/ibmcloud/download_cli.html#install_use
https://console.bluemix.net/docs/cli/reference/ibmcloud/download_cli.html#install_use
https://console.bluemix.net/docs/cli/reference/ibmcloud/download_cli.html#install_use
https://console.bluemix.net/docs/cli/reference/ibmcloud/download_cli.html#install_use
https://console.bluemix.net/docs/cli/reference/ibmcloud/download_cli.html#install_use
https://console.bluemix.net/docs/cli/reference/ibmcloud/download_cli.html#install_use
https://console.bluemix.net/docs/cli/reference/ibmcloud/download_cli.html#install_use
https://console.bluemix.net/docs/cli/reference/ibmcloud/download_cli.html#install_use
https://console.bluemix.net/docs/cli/reference/ibmcloud/download_cli.html#install_use
https://console.bluemix.net/docs/cli/reference/ibmcloud/download_cli.html#install_use
https://console.bluemix.net/docs/cli/reference/ibmcloud/download_cli.html#install_use
https://console.bluemix.net/docs/cli/reference/ibmcloud/download_cli.html#install_use
https://console.bluemix.net/docs/cli/reference/ibmcloud/download_cli.html#install_use
https://console.bluemix.net/docs/cli/reference/ibmcloud/download_cli.html#install_use
https://console.bluemix.net/docs/cli/reference/ibmcloud/download_cli.html#install_use
https://console.bluemix.net/docs/cli/reference/ibmcloud/download_cli.html#install_use
https://console.bluemix.net/docs/cli/reference/ibmcloud/download_cli.html#install_use
https://console.bluemix.net/docs/cli/reference/ibmcloud/download_cli.html#install_use
https://console.bluemix.net/docs/cli/reference/ibmcloud/download_cli.html#install_use
https://console.bluemix.net
https://console.bluemix.net
https://console.bluemix.net
https://console.bluemix.net
https://console.bluemix.net
https://console.bluemix.net
https://console.bluemix.net
https://console.bluemix.net
https://console.bluemix.net

Other Cloud Providers Chapter 10

You should see an output as follows with further prompts:

$ ibmcloud login
API endpoint:

Email> | cnai1. com

Password
Authenticating...

Targeted account

Targeted resource group

Select a region (or press enter to skip):
1. au-syd

2. jp-tok

3. eu-de

4. eu-gb

5. us-south

6. us—east

Enter a number

[445]

Other Cloud Providers Chapter 10

2. Enter the option number for us-south

You should see further response as:

Enter a number> 5
Targeted region

Tip: If you are managing Cloud Foundry applications and services

- Use ' ' to target Cloud Foundry org/space interactively, or
use ' ' to target the org/space
- Use ' ' if you want to run the Cloud Foundry CLI with current IBM Cl

oud CLI context.

If you have not updated credit card and using a lite account, you may see
a different screen with lesser options.

3. Run:

ibmcloud target -cf

[446]

Other Cloud Providers Chapter 10

There should be an organization with your email address. Select it.

$ ibmcloud target —cf
Targeted Cloud Foundry ()

Select an organization (or press enter to skip):
1.

2.

Enter a number> 2

Targeted org

Targeted space

(API version:)

4. Install the cloud functions plug-in:
ibmcloud plugin install cloud-functions
5. Create a file name hello. js with following contents:
function main (params) {
var name = params.name || 'World';

return {payload: 'Hello, ' + name + '!'};

}

I have used Node.js code as provided in IBM samples.

[447]

Other Cloud Providers Chapter 10

6. Create hello action:
ibmcloud fn action create hello hello.js
7. Invoke the function without passing parameters:
ibmcloud fn action invoke helloworld —--blocking —--result

You should see an output, as follows:

"payload": "Hello, World!"

8. Invoke action with parameters:

ibmcloud fn action invoke hello —--blocking —-result —--param
name Heartin

"payload": "Hello, Heartin!"

How It works...

The goal of this recipe was become familiar with IBM Cloud and write our first

serverless application on IBM cloud. In the next two sections, we will list the IBM Cloud
serverless services for various use cases. You can refer to the links provided for each service
to learn more and get started with them.

There's more...

Let's look at some of the IBM Cloud services that we can make use of when implementing
Serverless applications:

¢ Serverless computing on AWS:
IBM Cloud Functions allow you to execute code on demand similar to AWS
Lambda.

[448]

Other Cloud Providers Chapter 10

e Access management:
IBM Cloud Identity and Access Management (IAM) supports authenticating
users for both platform services and controlling access to resources across IBM
Cloud.

¢ Resource provisioning and management:
The IBM Continuous Delivery service helps you provision an integrated
toolchain using customizable, shareable templates with tools from IBM and third
parties.

¢ Simple object store:
IBM Cloud Object Storage is IBM's object storage solution in the cloud for
unstructured data.

e API management:
IBM API Connect helps in creating and managing APIs.

o Storage tier:
IBM Cloudant is a distributed NoSQL database that is optimized for handling
heavy workloads. IBM Db2 on Cloud is a relational database in IBM Cloud.

e User management:
The closest corresponding service to Amazon Cognito that we can currently
obtain from IBM is IBM Cloud Identity from the IBM Cloud marketplace.

¢ Domain hosting and DNS management:
IBM Domain Name Services provides simple domain registration and DNS
management.

e Content Delivery Network:
IBM Content Delivery Network caches content in various locations for faster
retrieval using the Akamai network.

e Queue service:
IBM MQ on Cloud is one of the queue service that IBM Cloud supports. IBM
cloud also supports RabbitMQ as a managed service.

¢ Notification service:
The IBM Push Notifications service allows you to send real-time notifications to
mobile and web applications.

e Managing events and streams:
The IBM Streaming Analytics service can be used to analyze streaming data from
different sources and types.

e Machine learning/Al service:
There is no service that directly corresponds with Amazon ML within IBM.
However, we can use IBM Watson within IBM Cloud for artificial intelligence
(AI). IBM Watson is IBM's popular deep learning Al platform.

[449]

Other Cloud Providers Chapter 10

Monitoring;:

IBM Cloud Event Management helps in identifying, notifying, and resolving
critical incidents more quickly. IBM Cloud Availability Monitoring is integrated
to the DevOps toolchain, and runs tests from locations around the world to
proactively detect and fix performance issues. IBM Cloud also supports
monitoring with Sysdig as a managed service. Sysdig allow you to monitor
containers across their entire life cycle.

Data warehouse management:

IBM Db2 Warehouse on Cloud is an elastic data warehouse in the cloud that is
built for analytics use cases.

Data integration/data pipeline:

The IBM Message Hub Object Storage bridge can be used to build end-to-end IoT
data pipelines in IBM Cloud.

See also

You can read more about the services that are discussed in the previous section by using
the following links:

IBM Cloud Functions: https://www.ibm.com/cloud/functions

IBM Cloud Identity and Access Management: https://console.bluemix.net/
docs/iam/index.html#iamoverview, https://www.ibm.com/security/identity-
access-management

Continuous Delivery: https://www.ibm.com/cloud/continuous-delivery
IBM Cloud Ob]'ect Storage: https://www.ibm.com/cloud/object-storage
IBM API Connect: https://www.ibm.com/cloud/api-connect

IBM Cloudant: https://www.ibm.com/cloud/cloudant

IBM Db2 on Cloud: https://www.ibm.com/cloud/db2-on-cloud

IBM Cloud Identity: https://www.ibm.com/in-en/marketplace/cloud-
identity

Domain Name Services: https://www.ibm.com/cloud/dns

IBM Content Delivery Network: https://www.ibm.com/cloud/cdn

IBM MQ: https://www.ibm.com/cloud/mg

Messages for RabbitMQ: https://www.ibm.com/cloud/messages-for-rabbitmg
Push Notifications: https://www.ibm.com/cloud/push-notifications
Streaming Analytics: https://www.ibm.com/cloud/streaming—analytics

[450]

https://www.ibm.com/cloud/functions
https://www.ibm.com/cloud/functions
https://www.ibm.com/cloud/functions
https://www.ibm.com/cloud/functions
https://www.ibm.com/cloud/functions
https://www.ibm.com/cloud/functions
https://www.ibm.com/cloud/functions
https://www.ibm.com/cloud/functions
https://www.ibm.com/cloud/functions
https://www.ibm.com/cloud/functions
https://www.ibm.com/cloud/functions
https://www.ibm.com/cloud/functions
https://www.ibm.com/cloud/functions
https://console.bluemix.net/docs/iam/index.html#iamoverview
https://console.bluemix.net/docs/iam/index.html#iamoverview
https://console.bluemix.net/docs/iam/index.html#iamoverview
https://console.bluemix.net/docs/iam/index.html#iamoverview
https://console.bluemix.net/docs/iam/index.html#iamoverview
https://console.bluemix.net/docs/iam/index.html#iamoverview
https://console.bluemix.net/docs/iam/index.html#iamoverview
https://console.bluemix.net/docs/iam/index.html#iamoverview
https://console.bluemix.net/docs/iam/index.html#iamoverview
https://console.bluemix.net/docs/iam/index.html#iamoverview
https://console.bluemix.net/docs/iam/index.html#iamoverview
https://console.bluemix.net/docs/iam/index.html#iamoverview
https://console.bluemix.net/docs/iam/index.html#iamoverview
https://console.bluemix.net/docs/iam/index.html#iamoverview
https://console.bluemix.net/docs/iam/index.html#iamoverview
https://console.bluemix.net/docs/iam/index.html#iamoverview
https://www.ibm.com/security/identity-access-management
https://www.ibm.com/security/identity-access-management
https://www.ibm.com/security/identity-access-management
https://www.ibm.com/security/identity-access-management
https://www.ibm.com/security/identity-access-management
https://www.ibm.com/security/identity-access-management
https://www.ibm.com/security/identity-access-management
https://www.ibm.com/security/identity-access-management
https://www.ibm.com/security/identity-access-management
https://www.ibm.com/security/identity-access-management
https://www.ibm.com/security/identity-access-management
https://www.ibm.com/security/identity-access-management
https://www.ibm.com/security/identity-access-management
https://www.ibm.com/security/identity-access-management
https://www.ibm.com/security/identity-access-management
https://www.ibm.com/security/identity-access-management
https://www.ibm.com/cloud/continuous-delivery
https://www.ibm.com/cloud/continuous-delivery
https://www.ibm.com/cloud/continuous-delivery
https://www.ibm.com/cloud/continuous-delivery
https://www.ibm.com/cloud/continuous-delivery
https://www.ibm.com/cloud/continuous-delivery
https://www.ibm.com/cloud/continuous-delivery
https://www.ibm.com/cloud/continuous-delivery
https://www.ibm.com/cloud/continuous-delivery
https://www.ibm.com/cloud/continuous-delivery
https://www.ibm.com/cloud/continuous-delivery
https://www.ibm.com/cloud/continuous-delivery
https://www.ibm.com/cloud/continuous-delivery
https://www.ibm.com/cloud/continuous-delivery
https://www.ibm.com/cloud/continuous-delivery
https://www.ibm.com/cloud/object-storage
https://www.ibm.com/cloud/object-storage
https://www.ibm.com/cloud/object-storage
https://www.ibm.com/cloud/object-storage
https://www.ibm.com/cloud/object-storage
https://www.ibm.com/cloud/object-storage
https://www.ibm.com/cloud/object-storage
https://www.ibm.com/cloud/object-storage
https://www.ibm.com/cloud/object-storage
https://www.ibm.com/cloud/object-storage
https://www.ibm.com/cloud/object-storage
https://www.ibm.com/cloud/object-storage
https://www.ibm.com/cloud/object-storage
https://www.ibm.com/cloud/object-storage
https://www.ibm.com/cloud/object-storage
https://www.ibm.com/cloud/api-connect
https://www.ibm.com/cloud/api-connect
https://www.ibm.com/cloud/api-connect
https://www.ibm.com/cloud/api-connect
https://www.ibm.com/cloud/api-connect
https://www.ibm.com/cloud/api-connect
https://www.ibm.com/cloud/api-connect
https://www.ibm.com/cloud/api-connect
https://www.ibm.com/cloud/api-connect
https://www.ibm.com/cloud/api-connect
https://www.ibm.com/cloud/api-connect
https://www.ibm.com/cloud/api-connect
https://www.ibm.com/cloud/api-connect
https://www.ibm.com/cloud/api-connect
https://www.ibm.com/cloud/api-connect
https://www.ibm.com/cloud/cloudant
https://www.ibm.com/cloud/cloudant
https://www.ibm.com/cloud/cloudant
https://www.ibm.com/cloud/cloudant
https://www.ibm.com/cloud/cloudant
https://www.ibm.com/cloud/cloudant
https://www.ibm.com/cloud/cloudant
https://www.ibm.com/cloud/cloudant
https://www.ibm.com/cloud/cloudant
https://www.ibm.com/cloud/cloudant
https://www.ibm.com/cloud/cloudant
https://www.ibm.com/cloud/cloudant
https://www.ibm.com/cloud/cloudant
https://www.ibm.com/cloud/db2-on-cloud
https://www.ibm.com/cloud/db2-on-cloud
https://www.ibm.com/cloud/db2-on-cloud
https://www.ibm.com/cloud/db2-on-cloud
https://www.ibm.com/cloud/db2-on-cloud
https://www.ibm.com/cloud/db2-on-cloud
https://www.ibm.com/cloud/db2-on-cloud
https://www.ibm.com/cloud/db2-on-cloud
https://www.ibm.com/cloud/db2-on-cloud
https://www.ibm.com/cloud/db2-on-cloud
https://www.ibm.com/cloud/db2-on-cloud
https://www.ibm.com/cloud/db2-on-cloud
https://www.ibm.com/cloud/db2-on-cloud
https://www.ibm.com/cloud/db2-on-cloud
https://www.ibm.com/cloud/db2-on-cloud
https://www.ibm.com/cloud/db2-on-cloud
https://www.ibm.com/cloud/db2-on-cloud
https://www.ibm.com/in-en/marketplace/cloud-identity
https://www.ibm.com/in-en/marketplace/cloud-identity
https://www.ibm.com/in-en/marketplace/cloud-identity
https://www.ibm.com/in-en/marketplace/cloud-identity
https://www.ibm.com/in-en/marketplace/cloud-identity
https://www.ibm.com/in-en/marketplace/cloud-identity
https://www.ibm.com/in-en/marketplace/cloud-identity
https://www.ibm.com/in-en/marketplace/cloud-identity
https://www.ibm.com/in-en/marketplace/cloud-identity
https://www.ibm.com/in-en/marketplace/cloud-identity
https://www.ibm.com/in-en/marketplace/cloud-identity
https://www.ibm.com/in-en/marketplace/cloud-identity
https://www.ibm.com/in-en/marketplace/cloud-identity
https://www.ibm.com/in-en/marketplace/cloud-identity
https://www.ibm.com/in-en/marketplace/cloud-identity
https://www.ibm.com/in-en/marketplace/cloud-identity
https://www.ibm.com/in-en/marketplace/cloud-identity
https://www.ibm.com/in-en/marketplace/cloud-identity
https://www.ibm.com/cloud/dns
https://www.ibm.com/cloud/dns
https://www.ibm.com/cloud/dns
https://www.ibm.com/cloud/dns
https://www.ibm.com/cloud/dns
https://www.ibm.com/cloud/dns
https://www.ibm.com/cloud/dns
https://www.ibm.com/cloud/dns
https://www.ibm.com/cloud/dns
https://www.ibm.com/cloud/dns
https://www.ibm.com/cloud/dns
https://www.ibm.com/cloud/dns
https://www.ibm.com/cloud/dns
https://www.ibm.com/cloud/cdn
https://www.ibm.com/cloud/cdn
https://www.ibm.com/cloud/cdn
https://www.ibm.com/cloud/cdn
https://www.ibm.com/cloud/cdn
https://www.ibm.com/cloud/cdn
https://www.ibm.com/cloud/cdn
https://www.ibm.com/cloud/cdn
https://www.ibm.com/cloud/cdn
https://www.ibm.com/cloud/cdn
https://www.ibm.com/cloud/cdn
https://www.ibm.com/cloud/cdn
https://www.ibm.com/cloud/cdn
https://www.ibm.com/cloud/mq
https://www.ibm.com/cloud/mq
https://www.ibm.com/cloud/mq
https://www.ibm.com/cloud/mq
https://www.ibm.com/cloud/mq
https://www.ibm.com/cloud/mq
https://www.ibm.com/cloud/mq
https://www.ibm.com/cloud/mq
https://www.ibm.com/cloud/mq
https://www.ibm.com/cloud/mq
https://www.ibm.com/cloud/mq
https://www.ibm.com/cloud/mq
https://www.ibm.com/cloud/mq
https://www.ibm.com/cloud/messages-for-rabbitmq
https://www.ibm.com/cloud/messages-for-rabbitmq
https://www.ibm.com/cloud/messages-for-rabbitmq
https://www.ibm.com/cloud/messages-for-rabbitmq
https://www.ibm.com/cloud/messages-for-rabbitmq
https://www.ibm.com/cloud/messages-for-rabbitmq
https://www.ibm.com/cloud/messages-for-rabbitmq
https://www.ibm.com/cloud/messages-for-rabbitmq
https://www.ibm.com/cloud/messages-for-rabbitmq
https://www.ibm.com/cloud/messages-for-rabbitmq
https://www.ibm.com/cloud/messages-for-rabbitmq
https://www.ibm.com/cloud/messages-for-rabbitmq
https://www.ibm.com/cloud/messages-for-rabbitmq
https://www.ibm.com/cloud/messages-for-rabbitmq
https://www.ibm.com/cloud/messages-for-rabbitmq
https://www.ibm.com/cloud/messages-for-rabbitmq
https://www.ibm.com/cloud/messages-for-rabbitmq
https://www.ibm.com/cloud/push-notifications
https://www.ibm.com/cloud/push-notifications
https://www.ibm.com/cloud/push-notifications
https://www.ibm.com/cloud/push-notifications
https://www.ibm.com/cloud/push-notifications
https://www.ibm.com/cloud/push-notifications
https://www.ibm.com/cloud/push-notifications
https://www.ibm.com/cloud/push-notifications
https://www.ibm.com/cloud/push-notifications
https://www.ibm.com/cloud/push-notifications
https://www.ibm.com/cloud/push-notifications
https://www.ibm.com/cloud/push-notifications
https://www.ibm.com/cloud/push-notifications
https://www.ibm.com/cloud/push-notifications
https://www.ibm.com/cloud/push-notifications
https://www.ibm.com/cloud/streaming-analytics
https://www.ibm.com/cloud/streaming-analytics
https://www.ibm.com/cloud/streaming-analytics
https://www.ibm.com/cloud/streaming-analytics
https://www.ibm.com/cloud/streaming-analytics
https://www.ibm.com/cloud/streaming-analytics
https://www.ibm.com/cloud/streaming-analytics
https://www.ibm.com/cloud/streaming-analytics
https://www.ibm.com/cloud/streaming-analytics
https://www.ibm.com/cloud/streaming-analytics
https://www.ibm.com/cloud/streaming-analytics
https://www.ibm.com/cloud/streaming-analytics
https://www.ibm.com/cloud/streaming-analytics
https://www.ibm.com/cloud/streaming-analytics
https://www.ibm.com/cloud/streaming-analytics

Other Cloud Providers Chapter 10

e IBM Watson with IBM Cloud: https://www.ibm.com/cloud/ai
¢ Event Management: https://www.ibm.com/cloud/event-management

° Availability Monitoring: https://console.bluemix.net/catalog/services/
availability-monitoring

¢ Monitoring with Sysdig: https://cloud.ibm.com/docs/services/Monitoring—
with-Sysdig/index.html

o IBM Db2 Warehouse on Cloud: https://www.ibm.com/cloud/db2-warehouse-
on—-cloud

e Message Hub Object Storage: https://www.ibm.com/blogs/bluemix/2017/03/
end-to-end-iot-data-pipelines-introducing-the-message-hub-object-
storage-bridge/

In this chapter, we went through some simple recipes on other cloud platforms, namely
Azure, Google Cloud, and IBM Cloud. We also briefly looked at the names and
descriptions of some of the serverless services available with these cloud platforms. In the
rest of this book, we had covered most of the essential serverless services from AWS in
detail.

Serverless cloud computing is a huge and fast-growing field. Some of the services or
commands we saw in this book might be upgraded in the near future. You can check for the
details of these updates from their respective documentation. We will try to update the
code files in the repository for any important updates that come to our notice.

To continue learning about serverless cloud computing and to keep an eye on the latest
trends, you can pick up an advanced book on serverless cloud computing from Packt or
follow my notes on cloud computing (particularly serverless computing) at http://
cloudmaterials.com/en/books.

[451]

https://www.ibm.com/cloud/ai
https://www.ibm.com/cloud/ai
https://www.ibm.com/cloud/ai
https://www.ibm.com/cloud/ai
https://www.ibm.com/cloud/ai
https://www.ibm.com/cloud/ai
https://www.ibm.com/cloud/ai
https://www.ibm.com/cloud/ai
https://www.ibm.com/cloud/ai
https://www.ibm.com/cloud/ai
https://www.ibm.com/cloud/ai
https://www.ibm.com/cloud/ai
https://www.ibm.com/cloud/ai
https://www.ibm.com/cloud/event-management
https://www.ibm.com/cloud/event-management
https://www.ibm.com/cloud/event-management
https://www.ibm.com/cloud/event-management
https://www.ibm.com/cloud/event-management
https://www.ibm.com/cloud/event-management
https://www.ibm.com/cloud/event-management
https://www.ibm.com/cloud/event-management
https://www.ibm.com/cloud/event-management
https://www.ibm.com/cloud/event-management
https://www.ibm.com/cloud/event-management
https://www.ibm.com/cloud/event-management
https://www.ibm.com/cloud/event-management
https://www.ibm.com/cloud/event-management
https://www.ibm.com/cloud/event-management
https://console.bluemix.net/catalog/services/availability-monitoring
https://console.bluemix.net/catalog/services/availability-monitoring
https://console.bluemix.net/catalog/services/availability-monitoring
https://console.bluemix.net/catalog/services/availability-monitoring
https://console.bluemix.net/catalog/services/availability-monitoring
https://console.bluemix.net/catalog/services/availability-monitoring
https://console.bluemix.net/catalog/services/availability-monitoring
https://console.bluemix.net/catalog/services/availability-monitoring
https://console.bluemix.net/catalog/services/availability-monitoring
https://console.bluemix.net/catalog/services/availability-monitoring
https://console.bluemix.net/catalog/services/availability-monitoring
https://console.bluemix.net/catalog/services/availability-monitoring
https://console.bluemix.net/catalog/services/availability-monitoring
https://console.bluemix.net/catalog/services/availability-monitoring
https://console.bluemix.net/catalog/services/availability-monitoring
https://console.bluemix.net/catalog/services/availability-monitoring
https://cloud.ibm.com/docs/services/Monitoring-with-Sysdig/index.html
https://cloud.ibm.com/docs/services/Monitoring-with-Sysdig/index.html
https://cloud.ibm.com/docs/services/Monitoring-with-Sysdig/index.html
https://cloud.ibm.com/docs/services/Monitoring-with-Sysdig/index.html
https://cloud.ibm.com/docs/services/Monitoring-with-Sysdig/index.html
https://cloud.ibm.com/docs/services/Monitoring-with-Sysdig/index.html
https://cloud.ibm.com/docs/services/Monitoring-with-Sysdig/index.html
https://cloud.ibm.com/docs/services/Monitoring-with-Sysdig/index.html
https://cloud.ibm.com/docs/services/Monitoring-with-Sysdig/index.html
https://cloud.ibm.com/docs/services/Monitoring-with-Sysdig/index.html
https://cloud.ibm.com/docs/services/Monitoring-with-Sysdig/index.html
https://cloud.ibm.com/docs/services/Monitoring-with-Sysdig/index.html
https://cloud.ibm.com/docs/services/Monitoring-with-Sysdig/index.html
https://cloud.ibm.com/docs/services/Monitoring-with-Sysdig/index.html
https://cloud.ibm.com/docs/services/Monitoring-with-Sysdig/index.html
https://cloud.ibm.com/docs/services/Monitoring-with-Sysdig/index.html
https://cloud.ibm.com/docs/services/Monitoring-with-Sysdig/index.html
https://cloud.ibm.com/docs/services/Monitoring-with-Sysdig/index.html
https://cloud.ibm.com/docs/services/Monitoring-with-Sysdig/index.html
https://cloud.ibm.com/docs/services/Monitoring-with-Sysdig/index.html
https://cloud.ibm.com/docs/services/Monitoring-with-Sysdig/index.html
https://cloud.ibm.com/docs/services/Monitoring-with-Sysdig/index.html
https://www.ibm.com/cloud/db2-warehouse-on-cloud
https://www.ibm.com/cloud/db2-warehouse-on-cloud
https://www.ibm.com/cloud/db2-warehouse-on-cloud
https://www.ibm.com/cloud/db2-warehouse-on-cloud
https://www.ibm.com/cloud/db2-warehouse-on-cloud
https://www.ibm.com/cloud/db2-warehouse-on-cloud
https://www.ibm.com/cloud/db2-warehouse-on-cloud
https://www.ibm.com/cloud/db2-warehouse-on-cloud
https://www.ibm.com/cloud/db2-warehouse-on-cloud
https://www.ibm.com/cloud/db2-warehouse-on-cloud
https://www.ibm.com/cloud/db2-warehouse-on-cloud
https://www.ibm.com/cloud/db2-warehouse-on-cloud
https://www.ibm.com/cloud/db2-warehouse-on-cloud
https://www.ibm.com/cloud/db2-warehouse-on-cloud
https://www.ibm.com/cloud/db2-warehouse-on-cloud
https://www.ibm.com/cloud/db2-warehouse-on-cloud
https://www.ibm.com/cloud/db2-warehouse-on-cloud
https://www.ibm.com/cloud/db2-warehouse-on-cloud
https://www.ibm.com/blogs/bluemix/2017/03/end-to-end-iot-data-pipelines-introducing-the-message-hub-object-storage-bridge/
https://www.ibm.com/blogs/bluemix/2017/03/end-to-end-iot-data-pipelines-introducing-the-message-hub-object-storage-bridge/
https://www.ibm.com/blogs/bluemix/2017/03/end-to-end-iot-data-pipelines-introducing-the-message-hub-object-storage-bridge/
https://www.ibm.com/blogs/bluemix/2017/03/end-to-end-iot-data-pipelines-introducing-the-message-hub-object-storage-bridge/
https://www.ibm.com/blogs/bluemix/2017/03/end-to-end-iot-data-pipelines-introducing-the-message-hub-object-storage-bridge/
https://www.ibm.com/blogs/bluemix/2017/03/end-to-end-iot-data-pipelines-introducing-the-message-hub-object-storage-bridge/
https://www.ibm.com/blogs/bluemix/2017/03/end-to-end-iot-data-pipelines-introducing-the-message-hub-object-storage-bridge/
https://www.ibm.com/blogs/bluemix/2017/03/end-to-end-iot-data-pipelines-introducing-the-message-hub-object-storage-bridge/
https://www.ibm.com/blogs/bluemix/2017/03/end-to-end-iot-data-pipelines-introducing-the-message-hub-object-storage-bridge/
https://www.ibm.com/blogs/bluemix/2017/03/end-to-end-iot-data-pipelines-introducing-the-message-hub-object-storage-bridge/
https://www.ibm.com/blogs/bluemix/2017/03/end-to-end-iot-data-pipelines-introducing-the-message-hub-object-storage-bridge/
https://www.ibm.com/blogs/bluemix/2017/03/end-to-end-iot-data-pipelines-introducing-the-message-hub-object-storage-bridge/
https://www.ibm.com/blogs/bluemix/2017/03/end-to-end-iot-data-pipelines-introducing-the-message-hub-object-storage-bridge/
https://www.ibm.com/blogs/bluemix/2017/03/end-to-end-iot-data-pipelines-introducing-the-message-hub-object-storage-bridge/
https://www.ibm.com/blogs/bluemix/2017/03/end-to-end-iot-data-pipelines-introducing-the-message-hub-object-storage-bridge/
https://www.ibm.com/blogs/bluemix/2017/03/end-to-end-iot-data-pipelines-introducing-the-message-hub-object-storage-bridge/
https://www.ibm.com/blogs/bluemix/2017/03/end-to-end-iot-data-pipelines-introducing-the-message-hub-object-storage-bridge/
https://www.ibm.com/blogs/bluemix/2017/03/end-to-end-iot-data-pipelines-introducing-the-message-hub-object-storage-bridge/
https://www.ibm.com/blogs/bluemix/2017/03/end-to-end-iot-data-pipelines-introducing-the-message-hub-object-storage-bridge/
https://www.ibm.com/blogs/bluemix/2017/03/end-to-end-iot-data-pipelines-introducing-the-message-hub-object-storage-bridge/
https://www.ibm.com/blogs/bluemix/2017/03/end-to-end-iot-data-pipelines-introducing-the-message-hub-object-storage-bridge/
https://www.ibm.com/blogs/bluemix/2017/03/end-to-end-iot-data-pipelines-introducing-the-message-hub-object-storage-bridge/
https://www.ibm.com/blogs/bluemix/2017/03/end-to-end-iot-data-pipelines-introducing-the-message-hub-object-storage-bridge/
https://www.ibm.com/blogs/bluemix/2017/03/end-to-end-iot-data-pipelines-introducing-the-message-hub-object-storage-bridge/
https://www.ibm.com/blogs/bluemix/2017/03/end-to-end-iot-data-pipelines-introducing-the-message-hub-object-storage-bridge/
https://www.ibm.com/blogs/bluemix/2017/03/end-to-end-iot-data-pipelines-introducing-the-message-hub-object-storage-bridge/
https://www.ibm.com/blogs/bluemix/2017/03/end-to-end-iot-data-pipelines-introducing-the-message-hub-object-storage-bridge/
https://www.ibm.com/blogs/bluemix/2017/03/end-to-end-iot-data-pipelines-introducing-the-message-hub-object-storage-bridge/
https://www.ibm.com/blogs/bluemix/2017/03/end-to-end-iot-data-pipelines-introducing-the-message-hub-object-storage-bridge/
https://www.ibm.com/blogs/bluemix/2017/03/end-to-end-iot-data-pipelines-introducing-the-message-hub-object-storage-bridge/
https://www.ibm.com/blogs/bluemix/2017/03/end-to-end-iot-data-pipelines-introducing-the-message-hub-object-storage-bridge/
https://www.ibm.com/blogs/bluemix/2017/03/end-to-end-iot-data-pipelines-introducing-the-message-hub-object-storage-bridge/
https://www.ibm.com/blogs/bluemix/2017/03/end-to-end-iot-data-pipelines-introducing-the-message-hub-object-storage-bridge/
https://www.ibm.com/blogs/bluemix/2017/03/end-to-end-iot-data-pipelines-introducing-the-message-hub-object-storage-bridge/
https://www.ibm.com/blogs/bluemix/2017/03/end-to-end-iot-data-pipelines-introducing-the-message-hub-object-storage-bridge/
https://www.ibm.com/blogs/bluemix/2017/03/end-to-end-iot-data-pipelines-introducing-the-message-hub-object-storage-bridge/
https://www.ibm.com/blogs/bluemix/2017/03/end-to-end-iot-data-pipelines-introducing-the-message-hub-object-storage-bridge/
https://www.ibm.com/blogs/bluemix/2017/03/end-to-end-iot-data-pipelines-introducing-the-message-hub-object-storage-bridge/
https://www.ibm.com/blogs/bluemix/2017/03/end-to-end-iot-data-pipelines-introducing-the-message-hub-object-storage-bridge/
https://www.ibm.com/blogs/bluemix/2017/03/end-to-end-iot-data-pipelines-introducing-the-message-hub-object-storage-bridge/
https://www.ibm.com/blogs/bluemix/2017/03/end-to-end-iot-data-pipelines-introducing-the-message-hub-object-storage-bridge/
https://www.ibm.com/blogs/bluemix/2017/03/end-to-end-iot-data-pipelines-introducing-the-message-hub-object-storage-bridge/
http://cloudmaterials.com/en/books
http://cloudmaterials.com/en/books
http://cloudmaterials.com/en/books
http://cloudmaterials.com/en/books
http://cloudmaterials.com/en/books
http://cloudmaterials.com/en/books
http://cloudmaterials.com/en/books
http://cloudmaterials.com/en/books
http://cloudmaterials.com/en/books
http://cloudmaterials.com/en/books

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Serverless
Applications
with Go

Hands-On Serverless Applications with Go
Mohamed Labouardy

ISBN: 9781789134612

¢ Understand how AWS Lambda works and use it to create an application

Understand how to scaleup serverless applications

¢ Design a cost-effective serverless application in AWS

Build a highly scalable and fault-tolerant CI/CD pipeline

Understand how to troubleshoot and monitor serverless apps in AWS

Discover the working of APIs and single page applications

Build a production-ready serverless application in Go

https://www.packtpub.com/application-development/hands-serverless-applications-go

Other Books You May Enjoy

Serverless
Applications

Hands-On Serverless Applications with Kotlin
Hardik Trivedi

ISBN: 9781788993708

Design a serverless architecture
Use AWS Lambda to contain your serverless API
Explore the various ways to keep serverless apps safe and secure

Understand how a serverless API allows you to use huge infrastructure and cut
costs

Discover how to handle distributed systems in Kotlin

Design the data flow between cloud services and custom business logic
Secure your Kotlin AWS serverless application

Master Kotlin design patterns for serverless applications

[453]

https://www.packtpub.com/application-development/hands-serverless-applications-kotlin

Other Books You May Enjoy

Leave a review - let other readers know what
you think

Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

[454]

Index

policy 35
project, settingup 31
#set pseudo-parameters 47
using 94 resource component 37
A roles, cleaning up 35
S3 bucket 31
access token 171 Template Components 36
admin authentication flow 170 used, for building API 66, 69, 71
ADMIN_NO_SRP_AUTH used, for creating Lambda 30
versus USER_PASSWORD_AUTH 171 used, for provisioning Lambda infrastructure 30,
Alexa simulator 31
reference 348 using, with Lambda 39
Alexa skill YAML 31
ask-cli, configuring 335 Amazon CloudFront 11
ASK CLI steps 352 Amazon CloudWatch 10
ASK CLI, configuring 334 Amazon Cognito
ASK CLlI, installing 334 federated identity, using with 404
building 334, 336 Amazon DynamoDB 11
building, with ASK CLI 343, 346 Amazon ML
invocation basics 350 Area Under the ROC (AUC) 332
Lambda (AWS CLI), provisioning 342 DataSource object 332
Lambda project (Java) 351 prediction use cases 332
Lambda project (Java), creating 337, 341 Receiver Operating Characteristic (ROC) 332
testing 334, 349 using, for binary classification 322, 323, 326,
voice app platforms 353 329, 331
working 349 Amazon Route 53 204
Amazon API Gateway 11 Amazon Simple Storage Service (S3) 11
Amazon Certificate Manager (ACM) 235 Apache Velocity Language
Amazon CloudFormation about 95
alternatives 39 reference 95
benefits 38 API| gateway
Cloud Formation Designer 38 Cognito, integrating with 185
CloudFormation Template Components, reference 111
reference 37 API
intrinsic functions 37 configuring, for acting as proxy for Lambda 102
JSON 31 creating, with CLI commands 82, 90

Lambda 35 creating, with CloudFormation template 84, 91

testing 92
application programming interface (API) 58
automated speech recognition (ASR) 349
AWS CLI commands
used, for creating REST API 74
AWS CLI
about 20
API gateway sub-commands 63
configuring 21, 23
data, reading from DynamoDB 131
data, working with 125
documentation, reference 66
in Windows machine 23
items, adding 126
items, deleting 130
items, reading 126, 129
items, updating 130
memory-size 29
operations, adding 131
operations, deleting 131
operations, updating 131
policy, attaching 29
return-consumed-capacity 132
role, creating 29
S3 bucket, creating 23
timeout 29
used, for building APl 59, 63
used, for deploying AWS Lambda 20, 24
using, with Lambda 39
AWS Command Line Interface (CLI)
cleaning up 29
key 29
S3 Bucket 29
AWS Identity and Access Management (IAM) 10,
11
AWS Lambda
about 11
code repository usage guidelines 13
code, deploying ways 19
creating 12, 15
creating, from management console 19
dependencies 18
JSON, parsing from Lambda handler 19
parent POM 17
roles 17

[456]

runtimes 17
AWS platform
services 11
services, reference 11
starting with 7, 8, 10
AWS SDK
using, with Lambda 39
AWS Serverless Application Model (AWS SAM) 37
Azure services
for implementing Serverless applications 435
references 437
Azure
serverless application, creating 430

B

Bearer Token 171

C

certificate, with domain
associating, AWS CLI commands used 248
associating, CloudFormation template used 250,
252
client-side authentication flow
about 172
Cognito user pool client, creating 173
using 174, 176
CloudFront domain
using, with HTTPS 247
CloudFront, setting up for S3 website
about 211
AWS CLI commands, using 212
CloudFormation template, using 215, 217
DistributionConfig defaults 213
CloudFront, using with custom domain name
about 236
AWS CLI commands, using 236, 239
CloudFormation template, using 240
CloudFront distribution stack 241
distribution, deleting 246
distribution, disabling 246
HTTPS, used for securing domain URL 245
template, creating for RecordSet stack 243
CloudFront
setting up, for S3 website 211
using, with custom domain names 236

CloudWatch alarms (AWS CLI)
settingup 369, 372, 375, 376
CloudWatch alarms
creating, for metric with dimension 377, 379
CloudWatch dashboard
logging in 356
CloudWatch metric log filters
creating, from AWS CLI 380
creating, from console 382, 385
using 379
CodePen
reference 399
used, for testing APl 387, 389, 394, 395
using 388
Cognito operations
amazon-cognito-identity.min.js file, downloading
396
amazon-cognito-identity.min.js file, up, loading
397
implementing, with JavaScript SDK 396, 404
S3 bucket, creating 397
testing, with JavaScript SDK 396
user pool and client, creating 398
Cognito user pool client
creating 165,173
creating, with AWS CLI 166, 173
creating, with CloudFormation template 166,
173
Cognito user pool
AliasAttributes, versus UsernameAttributes 164
creating 156
creating, with AWS CLI 156, 194
creating, with CloudFormation template 159,
161,163,198
JSON templates, generating with CLI commands
163
JSON templates, using with CLI commands 163
Cognito, integration with API gateway
AWS CLI, using 185, 189
claim-based identity approach 192
CloudFormation template, using 190
Cognito
integrating, with AP| gateway 185
used, for setting up user sign-up flow 176
Content Delivery Network (CDN) 204, 235
conversational user interfaces (CUI) 333

[457]

Cross-Origin Resource Sharing (CORS)
about 386
enabling, for APl 387, 391, 394, 395
custom domains, using with S3 static websites
about 229
AWS CLI commands, using 229
CloudFormation template, using 232, 234
custom metric
creating 364
dimensions, adding to data 366
simple metric, creating without dimensions 364

D

Dagger 52
dependency injection
about 47
code refactoring 48
dev practices, Lambdas
dependency injection 47, 49, 52
unit testing 47, 49, 52
DevOps 354
DNS propagation time 227
domain-specific language (DSL) 333
domain
name, registering with Route 53 217

registering, from AWS Management Console
222

registering, with AWS CLI commands 218, 221
DynamoDB SDK

AmazonDynamoDB client, versus DynamoDB

wrapper client 138

IAM actions 138

IAM policy 138

Single Lambda, versus Multiple Lambdas 139

using, from Lambda 133, 135, 137
DynamoDB table

asynchronous operations, waiting for 119

creating 113

creating, ways 120

creating, with CLI commands 114

creating, with CloudFormation template 116

data model 118

datamodel limits 118

features 120

keys and partitions 119

limitations 121
local and global secondary indexes 121
read and write capacity units 119
reference 119

DynamoDB
reference 154

E

edge locations 211

F

federated identity
Google Plus, configuring 405, 408
using, with Amazon Cognito 404
Function as a Service (FaaS) 6

G

GCP services
for implementing Serverless applications 441
references 442
global secondary index (GSlI)
about 120
reference 121
Google Cloud Platform
serverless application, creating 438
groups
working with 181, 184

H

hash key 119
hosted zone 222
HTTPS
using, with CloudFront domain 247
hypermedia as the engine of application state
(HATEOAS) 65
Hypertext Transfer Protocol (HTTP) 64

IBM Cloud services
for implementing Serverless applications 448
references 450

IBM Cloud
serverless application, creating 443

Identity and Access Management (IAM) 8

[458]

identity token (ID token) 171
identity tokens 192

Infrastructure as a Service (laaS) 6
insights

checking 355

intrinsic function

reference 38

J

Java Development Kit (JDK) 12
JavaScript SDK

used, for implementing Cognito operations 396,
404
used, for testing Cognito operations 396, 404

JSON schema

reference 101

JSONPath expressions

about 95
reference 95

K

Key Management Service (KMS) 306
Kinesis Client Library (KCL) 315
Kinesis data stream

about 298

creating 298, 303

creating, with AWS CLI 298

creating, with CloudFormation template 300
data, adding 301

data, retrieving 301

shard iterator types 304, 306

Kinesis Producer Library (KPL) 306

Lambda project, creating 315

Kinesis Stream, with SDK

data, writing into 306

Lambda project, creating 307, 314
Lambda, provisioning 311
Lambda, testing 311

L

Lambda function

creating, fro proxy integration 103

Lambda integration

CLI commands 79
CloudFormation template components 80

used, for building API 72, 78
Lambda logs
checking 357
Lambda proxy integration
ANY HTTP method 109
API, creating with CloudFormation templates
107
greedy path 109
input and output format 110
Lambda function, creating 103
Lambda, deploying 104
Proxy API, creating with 104
RequestStreamHandler, versus RequestHandler
109
Lambda, invoking with Kinesis events
about 315, 320

lambda function, creating without service class
316

lambda, provisioning 318
lambda, testing 318
Lambda
creating 73
data items, adding 144, 147
data, reading 148, 153, 154
invoking, with SNS events (Java) 291
invoking, with SQS event (Java) 274
tables, creating 140, 144
local secondary index (LSI)
about 120
reference 121
log groups 362
log insights 359, 363
log streams 363
logs
checking 355

Machine Learning (ML) 297
mapping templates
reference 95
metrics
about 363
checking 355, 360, 362
models
used, for validating request payloads 95

[459]

Multi-Factor Authentication (MFA) 10

N

nameserver (NS) 222

Natural Language Processing (NLP) 253
natural language understanding (NLU) 349
Not Secure message 247

O

one time passwords (OTP) 281

P

plain old Java objects (POJOs) 73
creating, for requests and response 41, 45
Platform as a service (PaaS) 6
POST API method
building 81
testing 81
Postman
used, for testing 85
put-integration response
options 87

R

range key 119
read capacity unit (RCU) 119
refresh token 171
Representational State Transfer (REST) 65
request payloads
API, creating with CLI commands 97
API, testing 100
CloudFormation template 99
request data format 96
validating, with models 95, 101
requests
mapping, with mapping templates 88, 89
responses
mapping, with mapping templates 88, 89
REST API
creating, with AWS CLI commands 74
creating, with CloudFormation template 77

Route 53, using with domains registered with other

registrars
about 224

DNS propagation 227

DNS, configuring from AWS Management
Console 227

hosted zone, creating from AWS CLI commands
225

hosted zones, creating from CloudFormation
template 226

Route 53

reference 247

used, for registering domain name 217

using, with domains registered with other
registrars 224, 227

S

S3 static website
AWS CLI commands, using 205, 208
CloudFormation template, using 208, 210
custom domains, using with 229
settingup 205
S3 website
CloudFront, settingup 211
SDK (Java)
used, for receiving SQS messages in batch 266
used, for sending messages 259
used, for sending SQS messages in batch 266
Secure Remote Password (SRP) 170
Server Name Identification (SNI) 253
server-side authentication flow
about 170
Cognito user pool client, creating 165
using 165,167, 168
serverles framework
used, for deploying Lambda 53, 56, 57
serverless application
creating, in GCP 438
creating, on IBM Cloud 443
Simple Notification Service (SNS) 281, 369, 386
Simple Queue Service (SQS) 386
Simple Storage Service (S3) 23, 205
single sign-on 192
SNS events (Java)
Lambda (AWS CLI), provisioning 294
Lambda (AWS CLI), testing 295
Lambda project code (Java) 292
used, for invoking Lambda 291

[460]

SNS topic
creating, for email and SMS 281
creating, with AWS CLI 282
creating, with CloudFormation template 282
email subscription, creating 284
Lambda (AWS CLI), provisioning 289
Lambda (AWS CLI), testing 289
Lambda project code (Java) 287
message, publishing 285
publishing to, with SDK (Java) 286
SMS subscriptions, creating 283
Software as a Service (SaaS) 6
speech synthesis markup language (SSML) 351
SQS event (Java)
data, settingup 277
Lambda (AWS CLI), provisioning 277
Lambda (AWS CLI), testing 280
Lambda project code (Java) 275
Lambda, invoking 274
queues, setting up 277
SQS messages
data, settingup 270
Lambda (AWS CLI), provisioning 270
Lambda (AWS CLI), testing 270
Lambda project code (Java) 267
queues and data, settingup 270
sending, in batch with SDK (Java) 266
working 273
SQS queue (AWS CLI + CloudFormation)
(AWS CLI) data, receiving 257
(AWS CLI) data, sending 257
AWS CLI commands 255
CloudFormation template 256
creating 255, 258
SQS queue
creating 259
Lambda (AWS CLI), provisioning 262, 266
Lambda (AWS CLI), testing 262, 266
Lambda project code (Java), creating 260, 262
Start Of Authority (SOA) 222
Structured Query Language (SQL) 112

T

templates
mapping 93

Test Driven Development (TDD) 52
TestNG 52
throughput provisioning example
about 122
limits, reference 124
scenarios 122, 123
strongly consistent, versus eventually consistent
reads 124

U

unit testing 47

URL
parts 65

user pool, with SMS verification
creating 194

user sign-up flow
setting up, with admin confirmation 180
setting up, with MFA 193
setting up, with MFA verification 200, 203
setting up, with self confirmation 177, 179, 181
setting up, with SMS verification 193, 200, 203

\"

variables
mapping 93
Velocity Template Language (VTL) 88

W

write capacity unit (WCU) 119

	Cover
	Title Page
	Copyright and Credits
	Dedication
	About Packt
	Contributors
	Table of Contents
	Preface
	Chapter 1: Getting Started with Serverless Computing on AWS
	Introduction
	Getting started with the AWS platform
	Getting ready
	How to do it...
	How it works...
	AWS Identity and Access Management (IAM)
	Amazon CloudWatch
	Multi-Factor Authentication (MFA)

	There's more...
	See also

	Your first AWS Lambda
	Getting ready
	Code repository usage guidelines

	How to do it...
	How it works...
	About the parent POM
	Lambda roles
	Lambda runtimes
	Extra dependencies

	There's more...
	Other ways to create Lambda functions from the management console
	Other ways to deploy code in a Lambda function
	Passing JSON to and from Lambda handler

	See also

	Your first Lambda with AWS CLI
	Getting ready
	Configuring AWS CLI
	Creating S3 bucket
	Note for Windows users

	How to do it...
	How it works...
	Creating a role and attaching a policy
	Lambda memory-size and timeout
	S3 Bucket and Key
	Cleaning up

	There's more...
	See also

	Your first Lambda with Amazon CloudFormation
	Getting ready
	Set up the project and S3 bucket
	Understanding YAML and JSON

	How to do it...
	Cleaning up roles, policy, and Lambda

	How it works...
	There's more...
	CloudFormation Template Components
	Resource component
	Intrinsic functions
	CloudFormation Designer
	Additional benefits of CloudFormation
	Cloud Formation alternatives

	See also

	Using AWS SDK, Amazon CloudFormation, and AWS CLI with Lambda
	Getting ready
	How to do it...
	Creating the POJOs for requests and response.

	How it works...
	There's more...
	Pseudo-parameters

	See also

	Dev Practices – dependency injection and unit testing
	Getting ready
	Code refactoring

	How to do it...
	How it works...
	There's more...
	See also

	Your first Lambda with serverless framework
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Chapter 2: Building Serverless REST APIs with API Gateway
	Introduction
	Building your first API using the AWS CLI
	Getting ready
	How to do it...
	How it works...
	HTTP essentials
	REST essentials
	Parts of a URL

	There's more...
	See also

	Building your first API using Amazon CloudFormation
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Building your first API with Lambda integration
	Getting ready
	How to do it...
	Creating the Lambda
	Creating a REST API with AWS CLI commands
	Creating a REST API with a CloudFormation template

	How it works...
	CLI commands
	CloudFormation template components

	There's more...
	See also

	Building and testing your first POST API method
	Getting ready
	How to do it...
	Creating the API with CLI commands
	Creating the API with a CloudFormation template
	Testing with Postman

	How it works...
	Passthrough behavior

	There's more...
	See also

	Mapping requests and responses with mapping templates
	Getting ready
	How to do it...
	Mapping requests
	Mapping responses
	Creating the API using CLI commands
	Creating the API with a CloudFormation template
	Testing the API

	How it works...
	Mapping templates and variables
	Using #set

	There's more...
	The Apache Velocity Language
	JSONPath expressions

	See also

	Validating request payloads with models
	Getting ready
	How to do it...
	The request data format
	Creating the API with CLI commands
	The CloudFormation template
	Testing the API

	How it works...
	There's more...
	See also

	Lambda and API with proxy integration
	Getting ready
	How to do it...
	Creating a Lambda function for proxy integration
	Deploying the Lambda
	Creating the Proxy API with CLI commands
	Creating the API using CloudFormation templates

	How it works...
	The greedy path, the ANY HTTP method, and proxy integration
	RequestStreamHandler versus RequestHandler
	The input and output format of a Lambda function for proxy integration

	There's more...
	See also

	Chapter 3: Data Storage with Amazon DynamoDB
	Introduction
	Your first DynamoDB table
	Getting ready
	How to do it...
	Creating a table using CLI commands
	Creating a table using a CloudFormation template

	How it works...
	DynamoDB data model
	Data model limits
	DynamoDB keys and partitions
	Read and write capacity units
	Waiting for asynchronous operations
	Other ways to create tables

	There's more...
	DynamoDB features
	DynamoDB general limitations
	Local and global secondary indexes

	See also

	Throughput provisioning examples
	Getting ready
	How to do it...
	Scenario 1
	Scenario 2
	Scenario 3

	How it works...
	Strongly consistent reads versus eventually consistent reads
	Limits on throughput updates within a day

	There's more...
	See also

	Working with data from the CLI
	Getting ready
	How to do it...
	Adding items
	Reading items
	Updating items
	Deleting items

	How it works...
	Add, update, and delete operations
	Reading data from DynamoDB
	return-consumed-capacity

	There's more...
	See also

	Using the DynamoDB SDK from Lambda
	Getting ready
	How to do it...
	How it works...
	AmazonDynamoDB client versus DynamoDB wrapper client
	IAM policy and actions
	Single Lambda versus multiple Lambdas

	There's more...
	See also

	Creating tables from Lambda
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Adding data items from Lambda
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Reading data from Lambda
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Chapter 4: Application Security with Amazon Cognito
	Introduction
	Creating a Cognito user pool
	Getting ready
	How to do it...
	Creating Cognito user pool with AWS CLI
	Creating Cognito user pool with CloudFormation template

	How it works...
	Generating and using JSON templates with CLI commands
	AliasAttributes versus UsernameAttributes

	There's more...
	See also

	Server-side authentication flow
	Getting ready
	How to do it...
	Creating Cognito user pool client
	Creating a Cognito user pool client with AWS CLI
	Creating a Cognito user pool client with CloudFormation template

	Server-side authentication flow

	How it works...
	Server-side, client-side, and custom authentication flows
	Secure Remote Password protocol
	The access token, refresh token, and ID token
	ADMIN_NO_SRP_AUTH versus USER_PASSWORD_AUTH

	There's more...
	See also

	Client-side authentication flow
	Getting ready
	How to do it...
	Creating a Cognito user pool client
	Creating a Cognito user pool client with AWS CLI
	Creating a Cognito user pool client with CloudFormation template

	Client-side authentication flow

	How it works...
	There's more...
	See also

	User sign-up flow with Cognito
	Getting ready
	How to do it...
	User sign-up with self-confirmation
	User sign-up with admin confirmation

	How it works...
	There's more...
	See also

	Working with groups
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Integrating Cognito with the API gateway
	Getting ready
	How to do it...
	The AWS CLI
	The CloudFormation template

	How it works...
	Claim-based identity

	There's more...
	See also

	User sign-up with SMS verification and MFA
	Getting ready
	How to do it...
	Creating the user pool
	Creating a Cognito user pool client with AWS CLI
	Creating a Cognito user pool client with CloudFormation template

	User sign-up with SMS and MFA verification

	How it works...
	There's more...
	See also

	Chapter 5: Web Hosting with S3, Route53, and CloudFront
	Introduction
	Setting up an S3 static website
	Getting ready
	How to do it...
	AWS CLI commands
	The CloudFormation template

	How it works...
	There's more...
	See also

	Setting up CloudFront for an S3 website
	Getting ready
	How to do it...
	AWS CLI commands
	Understanding the DistributionConfig defaults in the response

	The CloudFormation template

	How it works...
	There's more...
	See also

	Registering a domain name with Route 53
	Getting ready
	How to do it...
	Registering a domain with AWS CLI commands

	How it works...
	Hosted zones

	There's more...
	Registering a domain from AWS Management Console

	See also

	Using domains registered with other registrars
	Getting ready
	How to do it...
	AWS CLI commands
	The CloudFormation template

	How it works...
	DNS propagation

	There's more...
	Steps for configuring DNS from the AWS Management Console

	See also

	Using custom domains with S3 static websites
	Getting ready
	How to do it...
	AWS CLI commands
	The CloudFormation template

	How it works...
	There's more...
	See also

	Using custom domain names with CloudFront
	Getting ready
	How to do it...
	AWS CLI commands
	The CloudFormation template
	The CloudFront distribution stack
	The RecordSet stack

	How it works...
	There's more...
	Using HTTPS to secure your domain URL
	Disabling and deleting a CloudFront distribution

	See also

	Using HTTPS with a CloudFront domain
	Getting ready
	How to do it...
	Associating a certificate with a domain using AWS CLI commands
	Associating a certificate with a domain using CloudFormation template

	How it works...
	Server Name Identification (SNI)

	There's more...
	See also

	Chapter 6: Messaging and Notifications with SQS and SNS
	Introduction
	Your first SQS queue (AWS CLI + CloudFormation)
	Getting ready
	How to do it...
	Creating an SQS queue
	AWS CLI commands
	The CloudFormation template

	Sending and receiving data (AWS CLI)

	How it works...
	There's more...
	See also

	Creating an SQS queue and sending messages with SDK (Java)
	Getting ready
	How to do it...
	Lambda project code (Java)
	Provisioning and testing the Lambda (AWS CLI)

	How it works...
	There's more...
	See also

	Receiving and sending SQS messages in batches with SDK (Java)
	Getting ready
	How to do it...
	Lambda project code (Java)
	Setting up queues and data
	Provisioning and testing the Lambda (AWS CLI)

	How it works...
	There's more...
	See also

	Invoking the Lambda with an SQS event (Java)
	Getting ready
	How to do it...
	Lambda project code (Java)
	Setting up queues and data
	Provisioning the Lambda (AWS CLI)
	Testing the Lambda (AWS CLI)

	How it works...
	There's more...
	See also

	Your first SNS topic for email and SMS (AWS CLI + CloudFormation)
	Getting ready
	How to do it...
	Creating an SNS topic
	AWS CLI
	The CloudFormation template

	Creating email and SMS subscriptions (AWS CLI)
	SMS subscription
	Email subscription
	Publishing a message

	How it works...
	There's more...
	See also

	Publishing to an SNS topic with SDK (Java)
	Getting ready
	How to do it...
	Lambda project code (Java)
	Provisioning and testing the Lambda (AWS CLI)

	How it works...
	There's more...
	See also

	Invoking a Lambda with SNS events (Java)
	Getting ready
	How to do it...
	Lambda project code (Java)
	Provisioning the Lambda (AWS CLI)
	Testing the Lambda (AWS CLI)

	How it works...
	There's more...
	See also

	Chapter 7: Redshift, Amazon ML, and Alexa Skills
	Introduction
	Your first Kinesis data stream (AWS CLI)
	Getting ready
	How to do it...
	Step 1 - Creating a Kinesis data stream
	Using AWS CLI
	Using the CloudFormation template

	Step 2 - Adding and retrieving data

	How it works...
	Kinesis shard iterator types

	There's more...
	See also

	Writing data into Kinesis Stream with SDK (Java)
	Getting ready
	How to do it...
	Step 1 - Creating the Lambda project (Java)
	Step 2 - Provisioning and testing Lambda (AWS CLI)

	How it works...
	There's more...
	See also

	Invoking Lambda with Kinesis events (Java)
	Getting ready
	How to do it...
	Step 1 - Creating a Lambda project (Java)
	Step 2 - Provisioning and testing Lambda (AWS CLI)

	How it works...
	There's more...
	See also

	Using Amazon ML for binary classification (AWS CLI)
	Getting ready
	How to do it...
	How it works...
	Types of models
	DataSource object
	Receiver Operating Characteristic and Area Under the ROC

	There's more...
	See also

	Building and testing an Alexa skill (Java for Lambda, CLI for Alexa skill)
	Getting ready
	Installing and configuring the ASK CLI
	Configuring ask-cli for the first time

	How to do it...
	Step 1 - Creating the Lambda project (Java)
	Step 2 - Provisioning Lambda (AWS CLI)
	Step 3 - Building an Alexa skill with ASK CLI

	How it works...
	Alexa skill invocation basics
	Explaining the Lambda project (Java)
	Explaining the ASK CLI steps

	There's more...
	Voice app platforms

	See also

	Chapter 8: Monitoring and Alerting with Amazon CloudWatch
	Introduction
	Checking logs, insights, and metrics (Console)
	Getting ready
	How to do it...
	Step 1: Logging in to the CloudWatch dashboard
	Logs
	Log insights
	Metrics

	How it works...
	Log groups
	Log streams
	Log insights
	Metrics

	There's more...
	See also

	Your first custom metric (AWS CLI)
	Getting ready
	How to do it...
	Step 1–Create a simple metric without dimensions
	Step 2—Add dimensions to metric data

	How it works...
	There's more...
	See also

	Setting up CloudWatch alarms (AWS CLI)
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	CloudWatch alarms with dimensions (AWS CLI)
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Using CloudWatch metric log filters
	Getting ready
	How to do it...
	Creating metric filters from AWS CLI
	Creating metric filters from the console

	How it works...
	There's more...
	See also

	Chapter 9: Serverless Programming Practices and Patterns
	Introduction
	Enabling CORS for the API and testing with CodePen
	Getting ready
	Getting familiar with CodePen

	How to do it...
	How it works...
	There's more...
	See also

	Implementing and testing Cognito operations with the JavaScript SDK
	Getting ready
	Download the amazon-cognito-identity.min.js file
	Create an S3 bucket and upload the amazon-cognito-identity.min.js file
	Creating a Cognito user pool and client

	How to do it...
	How it works...
	There's more...
	See also

	Federated identity with Amazon Cognito
	Getting ready
	How to do it...
	Step 1 - Configuring Google Plus
	Step 2 - Creating and Configuring an Identity Pool
	Step 3 - Preparing and uploading code files
	Preparing the index.html file
	Deploying and testing the index.html file

	How it works...
	There's more...
	See also

	Creating SSL/TLS certificate with ACM
	Getting ready
	How to do it...
	AWS CLI Commands
	CloudFormation Template

	How it works...
	There's more...
	See also

	Fan-in and fan-out architectural patterns with AWS
	Getting ready
	How to do it...
	Scenario 1 - Pub-Sub with multiple producers and consumers
	Scenario 2 - Parallel processing without duplicates
	Scenario 3 - Streaming real-time data for processing
	Scenario 4 - Streaming real-time data for storing

	How it works...
	Real-world example scenarios
	Scenario 1 - Pub-Sub scenario with multiple producers and consumers
	Scenario 2 - Parallel processing
	Scenario 3 - Streaming real-time data for processing
	Scenario 4 - Streaming real-time data for storage

	There's more...
	Building a full stack web application on AWS

	See also

	Chapter 10: Other Cloud Providers
	Introduction
	Your first Serverless application in Azure
	Getting ready
	How to do it...
	Deploying the function to Azure
	Getting function info from UI and verifying the deployment

	How It works...
	There's more...
	See also

	Your first serverless application on Google Cloud Platform
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Your first Serverless application on IBM cloud
	Getting ready
	How to do it...
	How It works...
	There's more...
	See also

	Other Books You May Enjoy
	Index

