Th
Pragmatic

Programmers

Seven Web Frameworks

in Seven Weeks
Adventures in Better Web Apps

| —

Jack Moffitt
and Fred Daoud

Series editor: Bruce A. Tate
Development editor: Jacquelyn Carter

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Early Praise for Seven Web Frameworks in Seven Weeks

The title implies a breadth-first analysis of some fairly disparate technologies, but
there is a surprising amount of depth here, more than enough to emphasize the
essential qualities of each one. If you're a polyglot, or aspire to be, this book is a
very large ball of awesome.
» Jim Crossley

Immutant core team member; principal software engineer, Red Hat

Objective and clear. More than an introduction, it's a head start! Just as wide
and as deep as any modern developer would like. I definitely recommend it.
» Pablo Aguiar

Software engineering consultant

This book is great fun. The authors guide you quickly through each framework,
in each case giving you a fast but clear, coherent, and surprisingly detailed taste
that includes major features, design philosophy, implementation, and testing,
plus hints for further investigation. Two JavaScript frameworks, one Ruby, one
Haskell, two Clojure, and one Erlang. If you like web programming, you're going
to enjoy this book.
» Giles Bowkett

Experienced developer and well-known blogger

I thoroughly enjoyed reading the book. In fact, the Yesod chapter even gave me
fresh ideas on how to expose non-Haskellers to the strengths of a strong type
system.
» Michael Snoyman

Creator of Yesod; lead software engineer, FP Complete

www.it-ebooks.info

http://www.it-ebooks.info/

Seven Web Frameworks in Seven Weeks
Adventures in Better Web Apps

Jack Moffitt
Fred Daoud

The Pragmatic Bookshelf

Dallas, Texas « Raleigh, North Carolina

www.it-ebooks.info

http://www.it-ebooks.info/

Pr matic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

The team that produced this book includes:

Bruce A. Tate (series editor)
Jacquelyn Carter (editor)
Potomac Indexing, LLC (indexer)
Molly McBeath (copyeditor)
David J Kelly (typesetter)

Janet Furlow (producer)

Juliet Benda (rights)

Ellie Callahan (support)

Copyright © 2014 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-13: 978-1-93778-563-5

Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—January 2014

www.it-ebooks.info

http://pragprog.com
http://www.it-ebooks.info/

Foreword

Acknowledgments

Preface

Sinatra

A Simple Domain-Specific Language

Day 1: Building a Bookmarking Application
Day 2: Creating Views

Day 3: Adding Features

Wrapping Up

CandS

What Makes CandJS Unique?

Day 1: Building Objects and Synchronizing Changes
Day 2: Creating Controllers

Day 3: Working with Models

Wrapping Up

AngulardS

The Big Picture

Day 1: Using Dependency Injection
Day 2: Creating Controllers and Views
Day 3: Building Filters and Routes
Wrapping Up

Ring

Introducing Ring

Day 1: Basic Towers
Day 2: Patterns of Bricks

www.it-ebooks.info

Contents

ix

Xi

DN =

22
32

35
35
37
48
57
71

73
73
75
90
101
112

115
115
116
133

http://www.it-ebooks.info/

Al.

Day 3: Other Ways to Build
Wrapping Up

Webmachine .

Introducing Webmachine

Day 1: HTTP Request as State Machine
Day 2: Building Apps

Day 3: Illuminating HTTP’s Dark Corners
Wrapping Up

Yesod

Introducing Yesod

Day 1: Data You Can’'t Get Wrong
Day 2: Views, Forms, and Auth
Day 3: Rumbling Along
Wrapping Up

Immutant

Introducing Immutant

Day 1: Beyond the Web Basics
Day 2: Building Data Pipelines
Day 3: Polyglot Apps
Wrapping Up

Wrap-Up
Key Ideas
Happy Exploring

Bibliography

Index

www.it-ebooks.info

Contents ® vi

142
151

155
155
157
168
182
194

197
197
198
208
219
231

233
233
235
245
256
267

269
269
273

275

277

http://www.it-ebooks.info/

Foreword

In 2003, I took my family to Durango, Colorado, where we rode on the
Durango & Silverton train. The narrow gauges of the railroad once served
well against the narrow red sandstone cliffs, where every inch of space was
at a premium. These days, the train is a relic of the past, rendered obsolete
by cars and planes that are safer and more efficient. Time marches on.

Today, too, we witness revolution. Single-core computers are dead or dying,.
True, their multicore descendants are technical marvels. They also represent
a tremendous technical challenge. The languages we used to depend on do
not work as well as they once did. As a result, we are seeing a new generation
of languages emerge. So far, no one has been kind enough to declare a winner.

Against this backdrop in 2010, I wrote Seven Languages in Seven Weeks. In
truth, I didn’t expect it to sell many copies. After all, it was a book about
languages in a Java world; a book about programming paradigms in a time
where everything was object oriented. Still, programmers sensed the danger
of our stagnating skills and embraced the concept that learning programming
languages for the sake of learning them can make you smarter and better able
to cope with change. The book was a resounding success.

Three years later, there’s still no clear leader, though functional programming
is starting to gain traction. We're finding that the multicore wafer tossed into
our virtual pond years ago has created waves that are increasing in size and
velocity. We need more than inheritance to organize our code. We need robust
frameworks on the client to handle the robust development that is happening
there. And we need true concurrent frameworks to take full advantage of their
concurrent languages.

It's just not enough to lay wider tracks over the narrow tracks we used
last year.

In this book, Fred and Jack will show you the leading edge of people who are
reinventing the way web development should be done. You'll see a traditional
object-oriented framework called Sinatra. You'll move on to the client side,

www.it-ebooks.info

http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Foreword * viii

where exciting things are happening with JavaScript. You'll take a tour of
CandJS and AngulardS to see how to do full, rich client-side development.
Next, you'll swing back to the server side to see what’s happening in functional
languages. You'll encounter two Clojure frameworks in the minimalist Ring
and the robust Immutant. You’ll see a state machine-based design in Erlang
called WebMachine. If those aren’t enough to blow your mind, you’ll find the
incredibly powerful Haskell framework called Yesod.

The “Seven in Seven” books are designed to expand your mind. I am
extremely proud to bring you this next installment, Seven Web Frameworlks
in Seven Weelks. It's my sincerest hope that this book will take you beyond
whatever tracks are holding you back.

Best regards,

Bruce Tate
CTO, icanmakeitbetter.com

www.it-ebooks.info

http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Acknowledgments

We would like to thank the team at the Pragmatic Bookshelf for making this
book possible. Thanks especially to Jackie Carter, our editor, for all of her
expertise and tireless efforts to make this book better and for bringing it to
the finish line. Thanks also to Bruce Tate—we are both fans of his book, and
we are honored to follow in his footsteps. Thank you, Andy Hunt and Dave
Thomas, for creating such a great environment in which to write about the
technical subjects that we all find fascinating.

Thanks to the technical reviewers who contributed their expert advice on
each framework: Konstantin Haase (Sinatra), David Luecke (CanJS), Misko
Hevery (AngulardS), James Reeves (Ring), Justin Sheehy (Webmachine),
Michael Snoyman (Yesod), Jim Crossley and Toby Crawley (Immutant) and
to the reviewers who offered their comments and suggestions for various
chapters of the book: Kimberly Hagen, Kevin Wiley, Pablo Aguiar, Mick
Thompson, Christopher Zorn, Nathaniel Schutta, and Aaron Bedra.

We would not have such innovative frameworks to write about were it not for
their creators: Blake Mizerany, Justin Meyer, Misko Hevery, Adam Abrons,
Justin Sheehy, Andy Gross, Mark McGranaghan, James Reeves, Jim Crossley,
Toby Crawley, Michael Snoyman, and their respective teams and contributors.

Thanks also to the readers who contributed to the beta-book process on the
errata page; you have helped make this book better.

From Jack: I'd like to thank my wife, Kim, for encouraging me to write
another book, being a sounding board for my ideas, and spending time
reviewing the book. Thanks also to my two children—Beatrix and Jasper—
who provided many happy distractions. I'd also like to thank Sean Johnson,
who introduced me to Bruce, which got the whole project started.

From Fred: Thanks to my wife, Nadia, for being such a beautiful person in
every way. Life is everything with you. Thanks to Lily and Ruby for adding so
much fun and excitement to our family!

www.it-ebooks.info

http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

I shall be telling this with a sigh
Somewhere ages and ages hence:
Two roads diverged in a wood, and I—
I took the one less traveled by,

And that has made all the difference.

Robert Frost

Preface

It is usually not long after we start writing web apps that we wonder if it can
be done differently or if there is a better way to get the job done. While no
framework is perfect, exploring the landscape of ideas that are collected in
other frameworks is both satisfying in its own right and extremely helpful in
finding new ways to solve problems with our current tools.

This book documents some of our own explorations in a quest to find new
ideas and better ways of building apps. We hope that you will enjoy this tour
of the modern, and still mostly unexplored, world of web programming.

Why Seven Web Frameworks?

You likely already have a framework that you use for your job or that you
work with as a hobby. You might love or hate it, but chances are that you've
wondered if there isn’t something better out there. Even if you aren’t looking
to switch frameworks or learn a new language, we think that exposure to the
great ideas of other developers can only positively affect your own work and
thinking.

We are lifelong learners with a passion for new ideas and adventurous pro-
gramming. With so many web frameworks and languages available these
days, it's easy to have a lot of fun and learn interesting, new things, and it’s
difficult to get bored. We've experimented with many frameworks during our
careers. Some of these became our new favorites, others just inspired us, and
a few gave us good ideas that we put into practice in more familiar territory.

This book aims to give you a taste of seven very different web frameworks,
both to expose you to their key ideas but also to tickle your own curiosity and
sense of adventure. Each framework we explore has something unique to
teach us. Compared to mainstream frameworks, they are roads less traveled,
full of wonder and surprise, adventure and reward.

www.it-ebooks.info

http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Preface * xii

About This Book

This book follows in the footsteps of the Pragmatic Bookshelf's “Seven in
Seven” series, including Seven Languages in Seven Weeks [Tat10] and Seven
Databases in Seven Weelks [RW12]. Each chapter in this book covers a different
web framework, often in a different language, with the goal of providing you
with a broad overview of the ideas, styles, and techniques used to develop
modern web apps.

Each chapter is self-contained and organized around three days in which
we’ll introduce the framework and show off its unique features in a practical
setting. While there is a loose ordering of the frameworks covered, you do not
need to consume the chapters in order and should feel free to jump into any
framework you find interesting.

Each framework was chosen for its unique features, and not necessarily for
its mainstream popularity. There are bound to be both languages and
frameworks that you've never heard of, but sometimes that is where the best
ideas are hiding.

We start off in Chapter 1, Sinatra, on page 1, with one of the simplest
frameworks the Ruby world has produced. While we explore this small, elegant
framework, we’ll build and test a bookmarking application.

In Chapter 2, CanJS, on page 35, we look at one of the newest trends in web
apps: client-side frameworks. Using JavaScript and the Sinatra back end,

we’ll reimplement the bookmarking application and show off the power of
dynamic models that can observe and react.

Chapter 3, AngularJS, on page 73, tours another client-side JavaScript
framework with a completely different style. AngularJS is declarative and
integrates directly into your HTML. You tell it what you want, but not how to
do it.

Lispers have a saying that “code is data,” and in Chapter 4, Ring, on page 115,

you'll see that web applications are data too. Ring apps build on top of a
sophisticated but simple abstraction, and they leverage functional program-
ming techniques.

Your view of how web apps work is sure to be challenged in Chapter 5, Web-
machine, on page 155. This Erlang-based framework models HTTP as a state

machine and allows you to harness the full power of the protocol—power that
most frameworks hide from you.

www.it-ebooks.info

http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

What This Book Is Not ® xiii

Chapter 6, Yesod, on page 197, puts Haskell's strong, static type system to
work, preventing many common web app errors. Your application won’'t pass
through the compiler if you have broken links or fail to properly sanitize user-
generated content.

Finally, Chapter 7, Immutant, on page 233, reinvents the enterprise Java web
framework by wrapping the JBoss system in Clojure and removing all the
ceremony and cruft. The result is a combination of enterprise class features

that you’ll enjoy using.
What This Book Is Not

It’s difficult to do justice to so many ideas in a single book, and so we've had
to trim features that you might expect to find in books dedicated to a single
language or framework.

Not a Web Programming Tutorial

We assume you have some familiarity with web applications already. We
provide no explanations of HTML, CSS, or the basics around how web appli-
cations work. Hopefully you've built one or two web applications already, but
if not, the level of knowledge assumed is fairly basic.

Not a Language Tutorial

We cover seven web frameworks across five different programming languages.
Some of these languages are probably familiar to you, like Ruby and Java-
Script, and some are quite strange. We don’t have enough room in the book
to include language introductions, but we have tried to accommodate readers
who are seeing these languages for the first time. Even if you don’t know one
of the languages, you should still be able to grasp the key ideas presented in
each framework. Many of these ideas are applicable in any language.

Not an Installation or Deployment Guide

Installing languages and web frameworks is getting easier every day, but in
order to keep chapters focused on essentials, we do not go into much detail
about installation or deployment. In most cases, package managers and build
tools take care of the hard work, but if you run into problems, you can turn
to online tutorials for help with each language that you can find via your
favorite search engine.

www.it-ebooks.info

http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Preface ® xiv

Code Examples and Conventions

We aspire to cover as much as possible about each framework within a single
chapter, but in some cases we have omitted code from the text that is not
relevant to our explanation but is still required for the apps to run. In some
cases this code is generated by scaffolding applications that we demonstrate
how to use, but in other cases you’ll have to get the code from the download-
able code package. You'll find the complete source code for every application
in the book there. Feel free to work directly from the downloadable code
instead of typing everything in by hand.

For each language in the book, we have tried to stick to the popular conven-
tions and tooling used by the language’s community at the time of writing.

Online Resources

The apps and examples shown in this book can be found at the Pragmatic
Programmer’s website for this book.' You’'ll also find the community forum
and the errata submission form, which is where you can report problems
with the text or make suggestions for future versions.

We hope you enjoy your adventure through these seven unique frameworks,
and let the many good ideas they contain inspire you.

Jack Moffitt and Fred Daoud
December 2013

1. http://pragprog.com/book/7web/seven-web-frameworks-in-seven-weeks

www.it-ebooks.info

http://pragprog.com/book/7web/seven-web-frameworks-in-seven-weeks
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

CHAPTER 1

Sinatra

The Tower of Hanoi is a puzzle game where you have three rods and a number
of disks of different sizes. The game starts with the disks on the first rod, and
the goal is to move all the disks to the third rod without ever putting a larger
disk on top of a smaller disk. It’s not particularly difficult to solve the puzzle,
but the real challenge is to find the simplest solution—completing the task
in the least possible number of moves.

Web frameworks solve the problem of writing web applications. Sinatra takes
on the additional challenge of being a particularly simple and lightweight
framework, allowing you to write a web application with the least possible
amount of code.' Case in point, “Hello, world” in Sinatra is strikingly minimal:
sinatra/hello/app.rb

require "sinatra"

get "/hello" do

"Hello, Sinatra"
end

We have the request method (get), the URI (/hello), and the result. That's it.
When a GET request to /hello comes in, the response will be “Hello, Sinatra.”

A Simple Domain-Specific Language

Sinatra takes advantage of Ruby’s elegant syntax to define a simple domain-
specific language (DSL) for implementing web applications. Method calls like
get, put, and post correspond to the HTTP method of the request. When the
method and the URI match, the code block handles the request and returns
the result as an HTTP response. This DSL provides an expressive and natural
way of developing a web application. Sinatra is particularly well suited to
build a server that provides a RESTful API to its clients.

1. http://sinatrarb.com

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/sinatra/hello/app.rb
http://sinatrarb.com
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 1. Sinatra ® 2

Sinatra is a very lightweight framework with few dependencies. Getting
started and developing an application are effortless. Our example will be a
bookmarking application: users can save and view their bookmarks, tag them,
and search by tags.

Sinatra really shines when it comes to creating RESTful applications, helping
you create a server that provides an HTTP APIL. You can then write a front
end with a JavaScript framework. In fact, we’ll be doing that in the CanJdS
and AngularJS chapters. However, using a JavaScript framework is not a
requirement. Sinatra can also provide the front end.

We'll starting building our example application on Day 1 by creating a model
for bookmarks, providing database persistence, and defining a RESTful API.
During Day 2 we’ll create HTML views with different templating engines. On
Day 3, we’ll add validation and tag support to the application using Sinatra’s
block parameters, filters, and regular expression route matching.

Day 1: Building a Bookmarking Application

In our first day of learning Sinatra, we’ll begin by setting up a “Hello, world”
example to make sure our environment is working properly. We'll also see
how we can write automated tests that exercise the code we wrote. Without
any further ado, we’ll jump into creating a sample application that we’ll grow
throughout the chapter as we discover more of Sinatra’s features.

Let’s start by saying hello to Sinatra.

Hello, Sinatra
From your command line, make sure you have Ruby and RubyGems installed:

$ ruby -v
ruby 2.0.0

$ gem -v
2.0.2

We're using Ruby 2.0, but Sinatra works just as well with Ruby 1.9. If these
commands do not work, visit the Ruby download page to install Ruby for your
operating system.” If your system comes with Ruby 1.8.7, please note that while
Sinatra works well with it, the book’s sample code requires Ruby 1.9 or above.

Now, install the Sinatra gem:

$ gem install sinatra

2. http://www.ruby-lang.org/en/downloads

www.it-ebooks.info

http://www.ruby-lang.org/en/downloads
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 1: Building a Bookmarking Application ® 3

That’s all you need to get started with Sinatra. We’ll install more gems
throughout the chapter as we need them. You’'ll also find more detailed con-
figuration settings in the Sinatra documentation.’

We'll start with a file named app.rb:

sinatra/hello/app.rb
require "sinatra"
get "/hello" do

"Hello, Sinatra"
end

Then, we’ll run it:

$ ruby app.rb
== Sinatra/1.4.3 has taken the stage on 4567

The output tells us that the application is running on port 4567. So go ahead
and open http://localhost:4567/hello in your browser. You should see the greeting
“Hello, Sinatra.”

It’s certainly satisfying to see the result of our work in the browser. Manually
testing a web application, however, can quickly get tiresome and error-prone.
Let’s see how we can address this situation.

Testing with RSpec

Writing code that tests the features of our application is very appealing,
because it automates the process of making sure our application works. We
can run all the tests again and again to make sure that the changes we make
have not caused any breakage somewhere else in the application.

A web application that serves up a RESTful API, such as the bookmarking
application that we will create in this chapter, is particularly well suited for
automated tests. This type of application returns data rather than visual
pages, making it straightforward to write robust tests.

RSpec is a testing tool that we can use to write automated tests for our web
application.* After installing the rspec and rack-test gems, we're ready to go.

$ gem install rspec rack-test

Let’s write a simple test for confirming that a GET request to /hello returns a
success response code and the greeting we want, “Hello, Sinatra.”

3. http://www.sinatrarb.com/configuration.html
4. http://rspec.info

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/sinatra/hello/app.rb
http://www.sinatrarb.com/configuration.html
http://rspec.info
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 1. Sinatra * 4

sinatra/hello/app_test.rb
require relative "app"
require "rspec"
require "rack/test"

describe "Hello application" do
include Rack::Test::Methods

def app
Sinatra::Application
end

it "says hello" do
get "/hello"
last response.should be ok
last response.body.should == "Hello, Sinatra"
end
end

After setting up our application for testing, we have a describe block. These
blocks organize RSpec test cases into groups with a description that we
specify as a string. Within the describe block, we define test cases with it blocks,
again with a string description. The idea is to write code that reads like plain
English: Describe the Hello application. It says hello. The code within the it
block performs actions and verifies expectations with calls to should.

The rspec command runs the test:

$ rspec app_test.rb

Finished in 0.02436 seconds
1 example, 0 failures

A dot in the output indicates a test that was successful. The message at the
bottom of the output shows that there were no failures. Now, if we had a
failing test, such as expecting “Hello, Sinatra!” with an exclamation mark,
we'll get an output like so:

$ rspec app_test.rb
F

Failures:

1) Hello application says hello
Failure/Error: last response.body.should == "Hello, Sinatra!"
expected: "Hello, Sinatra!"
got: "Hello, Sinatra" (using ==)
./app_test.rb:15:in “block (2 levels) in <top (required)>'

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/sinatra/hello/app_test.rb
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 1: Building a Bookmarking Application ® 5

Finished in 0.01612 seconds
1 example, 1 failure

Failed examples:

rspec ./app_test.rb:12 # Hello application says hello

Notice the F in place of the dot, indicating a failure. The output provides many
useful details about the failed test: the description from the strings that we
provided when calling the describe and it blocks, the line of code where the
failure occurred, and the expected and actual values so that we can readily
compare them.

Writing automated tests is a great way to confirm that the code we have
written works as expected. Sinatra and RSpec make writing test code quite
convenient. Throughout the rest of this chapter, we’ll occasionally use tests
to exercise our bookmarking application.

A RESTful API

We'll now get started on implementing a simple bookmarking application.
Users can save their bookmarks, give them tags, and retrieve them as a list.
Unlike saving bookmarks directly in a browser, the motivation for having
them in an online application is to provide users with access to their book-
marks from anywhere. It also gives users a central place to store all their
bookmarks.

The server that we will build provides the following RESTful API:

GET /bookmarks - get a list of all bookmarks
GET /bookmarks/ID - get the details of bookmark ID
POST /bookmarks - create a new bookmark

PUT /bookmarks/ID - update an existing bookmark
DELETE /bookmarks/ID - delete a bookmark

Our first iteration of the bookmarking application will be to implement CRUD
for bookmarks: create, read, update, and delete. To achieve this task, we’ll
start with some data persistence.

Data Persistence

We need a place to store the bookmarks. Let’s use the SQLite database,’ and
for object relational mapping (ORM), let’s use DataMapper.® Both are as
lightweight and easy to use as Sinatra, and they work well together.

5. http://www.sglite.org
6. http://www.datamapper.org

www.it-ebooks.info

http://www.sqlite.org
http://www.datamapper.org
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 1. Sinatra * 6

We'll install the necessary gems:

$ gem install sqlite3 data_mapper dm-sqlite-adapter

SQLite and DataMapper are ready to use. DataMapper takes Ruby classes
and turns them into DataMapper resources, which makes them map to a
database table. We set up DataMapper to point to an SQLite database, and
we define our model classes. DataMapper then takes care of creating tables,
saving data from models to the database, and retrieving data back into the
models.

We'll start with a simple Bookmark model class:

sinatra/crud/bookmark.rb
require "data mapper"

class Bookmark
include DataMapper: :Resource

property :id, Serial

property :url, String

property :title, String
end

DataMapper makes creating a resource straightforward. We've declared the
Bookmark class as a DataMapper resource, and we've defined three properties.
DataMapper maps these properties to columns in the corresponding database
table.

In our Sinatra application, setting up DataMapper involves importing the
DataMapper gem and our Bookmark class. Then we use DataMapper::setup to point
to our SQLite database and DataMapper.finalize.auto_upgrade! to set up the database
tables:

sinatra/crud/app.rb

require "sinatra"

require "data mapper"
require relative "bookmark"

DataMapper::setup(:default, "sqlite3://#{Dir.pwd}/bookmarks.db")
DataMapper.finalize.auto upgrade!

We've set up DataMapper to create an SQLite database in the current direc-
tory using the bookmarks.db file.

The call to auto_upgrade! creates the database table for the Bookmark class but
keeps the table if it already exists. It also updates the table by creating new
columns if we've added new fields to the model class. That makes auto_upgrade!

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/sinatra/crud/bookmark.rb
http://media.pragprog.com/titles/7web/code/sinatra/crud/app.rb
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 1: Building a Bookmarking Application ¢ 7

keep our previous data between restarts of the application. The other option
for finalize is auto_migrate!, which wipes out and re-creates the database structure
every time. We’d use auto_migrate! if we wanted to start with empty data at every
application restart, such as for testing purposes.

Creating and Reading Bookmarks

We're ready to write Sinatra methods for serving up bookmarks. Let’s start
with a simple GET request to /bookmarks that returns all bookmarks in JSON
format. To convert DataMapper classes to JSON, we can use the dm-serializer
gem:

$ gem install dm-serializer

sinatra/crud/app.rb
require "dm-serializer"

def get all bookmarks
Bookmark.all(:order => :title)
end
get "/bookmarks" do
content _type :json
get all bookmarks.to json
end

After setting the HTTP response content type to JSON, we return all bookmarks
by using DataMapper’s all method and then converting the result to JSON.

Our bookmark list method is ready, but it won’t return much unless we create
some bookmarks and save them to the database. To create a bookmark, we’ll
accept a POST request to /bookmarks and use DataMapper’s create method:

sinatra/crud/app.rb
post "/bookmarks" do
input = params.slice "url", "title"
bookmark = Bookmark.create input
Created
[201, "/bookmarks/#{bookmark['id']}"]
end

After creating the bookmark, we return the 201 status code, Created, along
with the URI to the newly created bookmark with its ID. This tells the client
how to access the bookmark.

If you return an array with two elements, Sinatra automatically uses the first
element as the HTTP status code and the second element as the response
body. You can also return an array with three elements: the HTTP status
code, a hash of the response headers, and the response body.

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/sinatra/crud/app.rb
http://media.pragprog.com/titles/7web/code/sinatra/crud/app.rb
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 1. Sinatra * 8

You can also return just the status code or just the response body, for which
Sinatra will use a 200 status code. However, returning a 201 status code is
more specific, indicating that a resource has been created. The World Wide
Web Consortium (W3C) discusses the preferred response status codes for
each HTTP method in its documentation.” The W3C also defines status codes
in more detail.®

When creating the bookmark from the request input, notice that we used the
slice method to filter out everything from the request parameters except for
the values that we need, the URL, and the title. This prevents polluting the
model with unwanted data and also acts as a security feature that prevents
malicious users from binding values directly into the model without our
knowing about it.

The slice method is not built in, but we can add it to the Hash class:

sinatra/crud/app.rb
class Hash
def slice(*whitelist)
whitelist.inject({}) {|result, key| result.merge(key => self[key])}
end
end

We're producing a hash that only includes the keys provided in the whitelist.

To retrieve a single bookmark, we handle a GET request with the bookmark
ID:

sinatra/crud/app.rb

get "/bookmarks/:id" do
id = params|[:id]
bookmark = Bookmark.get(id)
content _type :json
bookmark.to json

end

We're off to a fine start for our bookmarking application.

Writing Automated Tests

Let’s write an RSpec test to confirm that creating a bookmark works. Our
strategy is to get the list of bookmarks and keep track of the list’s size. Then,
after creating a bookmark, we get the list again and expect the new size to be
one more than the previous size. We also check the response of the POST
request:

7. http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
8. http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/sinatra/crud/app.rb
http://media.pragprog.com/titles/7web/code/sinatra/crud/app.rb
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 1: Building a Bookmarking Application ¢ 9

sinatra/crud/app_test.rb

it "creates a new bookmark" do
get "/bookmarks"
bookmarks = JSON.parse(last response.body)
last size = bookmarks.size

post "/bookmarks",
{:url => "http://www. test.com", :title => "Test"}

last _response.status.should == 201
last response.body.should match(/\/bookmarks\/\d+/)

get "/bookmarks"
bookmarks = JSON.parse(last response.body)
expect(bookmarks.size).to eq(last size + 1)

end
©® We've kept track of the last bookmark list size.

@ After creating a bookmark, the response body should contain a link to
the newly created bookmark.

© To confirm that a new bookmark was created, we're expecting the current
bookmark list size to be the previous size plus one.

Running the test with rspec app_test.rb confirms that our handler for creating a
bookmark works properly.

Updating and Deleting Bookmarks

Updating an existing bookmark is equally straightforward. When a PUT request
arrives with the bookmark ID, we retrieve the bookmark from the database,
update it with the request input, and return a status code:

sinatra/crud/app.rb
put "/bookmarks/:id" do
id = params[:id]
bookmark = Bookmark.get(id)
input = params.slice "url", "title"
bookmark.update input
204 # No Content
end

We're returning the 204 status code, No Content, because this is the appropri-
ate response to a PUT request when the server has no additional information
to give back to the client.

Let’s write an RSpec test for that too.

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/sinatra/crud/app_test.rb
http://media.pragprog.com/titles/7web/code/sinatra/crud/app.rb
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 1. Sinatra ® 10

sinatra/crud/app_test.rb
it "updates a bookmark" do
post "/bookmarks",
{:url => "http://www. test.com", :title => "Test"}
bookmark uri = last response.body

id = bookmark uri.split("/").last

put "/bookmarks/#{id}", {:title => "Success"}

last_response.status.should == 204

get "/bookmarks/#{id}"

retrieved bookmark = JSON.parse(last response.body)

expect(retrieved bookmark["title"]).to eq("Success")
end

©® We start by creating a new bookmark and using the response to get its
ID.

©® We can now use the ID to issue a PUT request to update the bookmark
with a different title.

© Getting the bookmark by its ID, we confirm that the title has indeed been
updated.

Our final task for CRUD support is to delete a bookmark. DataMapper provides
a destroy method for deleting an object from the database:

sinatra/crud/app.rb

delete "/bookmarks/:id" do
id = params[:id]
bookmark = Bookmark.get(id)
bookmark.destroy
200 # OK

end

We now have a basic implementation of a RESTful server API to create, read,
update, and delete bookmarks, and it was all very straightforward. You can
see why Sinatra has a sweet spot for this type of application.

What We Learned on Day 1

Today, we got started with Sinatra with an example of a “Hello, World” greeting.
From there we went into building a RESTful API for managing bookmarks.
We hooked up Sinatra to DataMapper and SQLite to back our bookmarks
with a database. We also looked at how we can write automated tests with
RSpec. This was a very productive first day, as we put several pieces in place
that give us a clean and powerful way of developing web applications.

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/sinatra/crud/app_test.rb
http://media.pragprog.com/titles/7web/code/sinatra/crud/app.rb
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 2: Creating Views ® 11

Day 1 Self-Study
Find:

e The Sinatra reference documentation
* The documentation and examples for DataMapper

Do:

e Write an automated test for confirming that deleting a bookmark works
correctly.

e Add a property to the bookmark resource for the creation date.

e Create a handler for getting the bookmark list in order of creation date.

Day 2: Creating Views

We've completed a Sinatra web application that provides a basic RESTful API
for managing bookmarks. This is a terrific achievement, but it would be even
better with a user interface.

Although Sinatra works great for creating a RESTful API, it is not limited in
that respect. You can also produce HTML pages quite easily, and that is what
we’ll do today. You can choose among many libraries for templating HTML
and use them from within Sinatra. We'll look at three of them: ERB, Mustache,
and Slim.

ERB comes with Sinatra and is easy to use. Mustache is an interesting choice
if you prefer to have less syntax and no logic in your view templates. Slim is
even more concise because it generates HTML tags for you. With these three
engines, we'll explore different approaches to templating and see how easy it
is to switch libraries when working with Sinatra.

Let’s start with ERB.

ERB

ERB (embedded Ruby) is a templating system that uses Ruby for the
dynamic parts of the output. ERB is included in the Ruby standard library,
and Sinatra supports it out-of-the box, so you don’t need to install anything
to use it.

When creating an ERB template, you combine Ruby code with regular HTML,
enclosing the Ruby code within either <% %> or <%= %>. The former is for
executing a statement, while the latter is for outputting the result of an
expression.

www.it-ebooks.info

http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

1]
(2]
©

Chapter 1. Sinatra ® 12

To render an ERB template, call the erb method with a keyword indicating
the name of the template file:

sinatra/erb/app.rb

get "/" do
@bookmarks = get all bookmarks
erb :bookmark_list

end

Sinatra finds the template in the views directory, using the keyword as the file
name and adding the .erb extension:

views/bookmark list.erb

To communicate data from the handler to the template, we use instance
variables. Having loaded the bookmark list into @bookmarks, we can render it
in the view:

sinatra/erb/views/bookmark_list.erb
Add New Bookmark
<h2>List of Bookmarks (ERB)</h2>

<% @bookmarks.each do |bookmark| %>

<a href="/bookmarks/<%= bookmark.id %>">Edit
<form action="/bookmarks/<%= bookmark.id %>" method="post">
<input type="hidden" name="_method" value="delete">
<input type="submit" value="Delete">
</form>
|
<a href="<%= bookmark.url %>"><%=h bookmark.title %>
(<a href="<%= bookmark.url %>"><%= bookmark.url %>)

<% end %>

©® We're executing a statement by enclosing Ruby code within <% %>. The
code loops through @bookmarks, executing a block for each bookmark.
HTML within the block will be rendered as many times as there are
bookmarks in the list.

@ By enclosing Ruby code within <%= %>, we are rendering the result of the
expression: the bookmark ID. This allows us to dynamically create a link
to edit the corresponding bookmark.

© To delete a bookmark, we need to issue a DELETE request. Since we cannot
do that directly with a link, we’re using a form that sends a POST request
with a hidden method parameter that has the value delete. Sinatra automat-
ically converts such a request into a DELETE request.

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/sinatra/erb/app.rb
http://media.pragprog.com/titles/7web/code/sinatra/erb/views/bookmark_list.erb
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 2: Creating Views ® 13

O When rendering the bookmark title, we want to escape the HTML in case
the user has included any code when entering the title. To escape the
HTML, we're calling the h method. This is a method that we provide. To
keep templates simple, such methods are not defined in templates but
rather as helpers.

Sinatra has a helpers method to add code that view templates can call. Within
a code block, we add the h method to escape HTML:

sinatra/erb/app.rb
helpers do
def h(text)
Rack::Utils.escape_html(text)
end
end

We can now use <%=h expr %> from a view template whenever we want to
escape the HTML resulting from expr.

Handling JSON and HTML Requests

We added a handler with the "/* URI that returns the bookmark list. That is
handy for an HTML client, such as users navigating with their browsers,
because they can access our application with the default path.

We also have another handler for GET requests to "/bookmarks" that returns the
bookmark list in JSON format. It would be nice to be able to reuse the handler
for serving the bookmark list in HTML as well. To determine which format to
return, we can read the value of the HTTP request’s Accept header.

Even better, instead of sprinkling our code with if statements to return JSON
or HTML depending on the Accept header, we can use a Sinatra plugin called
RespondWith, which comes with the sinatra-contrib package. First, we’ll install
the gem:

$ gem install sinatra-contrib
Next, we’ll use the respond_with method:

sinatra/erb/app.rb
require "sinatra/respond with"

get "/bookmarks" do

@bookmarks = get all bookmarks

respond with :bookmark list, @bookmarks
end

This returns a JSON result if the header contains Accept: application/json and an
HTML view for the Accept: text/html header. Using the first parameter as the

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/sinatra/erb/app.rb
http://media.pragprog.com/titles/7web/code/sinatra/erb/app.rb
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 1. Sinatra * 14

template name, the RespondWith plugin automatically renders the view using
the templating engine for which it finds a template in the views directory. Since
we passed :bookmark_list and have a views/bookmark_list.erb file in our project, the
plugin uses ERB.

Using Partials

Partials are templates that are meant to be pulled into other templates to
form a complete page. Partials are handy for reusing chunks of view code in
multiple pages, or even just to break up a page into separate templates. We’ll
use a partial for the form inputs of the bookmark form.

At the top of our bookmark list template, we added a link to /bookmark/new to
add a new bookmark. Let’s add a handler that renders the view template for
the bookmark form:

sinatra/erb/app.rb

get "/bookmark/new" do
erb :bookmark form new

end

Next, we'll create the template itself. The bookmark form for adding a new
bookmark is very similar to the one for editing an existing bookmark. First
let’s look at the template for creating a new bookmark:

sinatra/erb/views/bookmark_form_new.erb

<h2>New Bookmark</h2>

<form action="/bookmarks" method="post">
<%= erb :bookmark form inputs %>

</form>

Pretty simple—the form issues a POST request to /bookmarks and includes the
form inputs from another template: bookmark_form_inputs.erb. Notice how we can
call erb from a template, just as we did from a handler method. Having the
form inputs in a separate template makes it easy to reuse them for the tem-
plate that edits an existing bookmark:

sinatra/erb/views/bookmark_form_edit.erb

<h2>Edit Bookmark</h2>

<form action="/bookmarks/<%= @bookmark.id %>" method="post">
<input type="hidden" name="_method" value="put">
<%= erb :bookmark form inputs %>

</form>

Besides the heading, the difference here is that the form is configured to send
a PUT request to /bookmarks/<id>. Having method="put" on a <form> tag does not
work, so the workaround is to add a hidden input with name="_method" and the

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/sinatra/erb/app.rb
http://media.pragprog.com/titles/7web/code/sinatra/erb/views/bookmark_form_new.erb
http://media.pragprog.com/titles/7web/code/sinatra/erb/views/bookmark_form_edit.erb
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 2: Creating Views ® 15

value set to the HTTP method that we want. Sinatra makes the conversion
automatically.

The form inputs are the same for creating and updating a bookmark. The
difference between the two are the form actions: POST to /bookmarks versus PUT
to /bookmarks/<id>. We can render the form inputs in a partial template:

sinatra/erb/views/bookmark_form_inputs.erb
<label>
URL:
<input type="text" name="url" value="<%= @bookmark && @bookmark.url %>">
</label>
<label>
Title:
<input type="text" name="title" value="<%= @bookmark && @bookmark.title %>">
</label>
<input type="submit" name="save" value="Save">
Cancel

We're reusing the partial in the bookmark form_new.erb and bookmark_form_edit.erb
templates.

Speaking of reuse, we’ll round out our ERB implementation by adding a layout
that will be reused for every page of our application:

sinatra/erb/views/layout.erb
<html lang="en">
<head>
<meta charset="utf-8">
<title>Bookmarking App</title>
<link href="/css/bootstrap.min.css" rel="stylesheet">
<link href="/css/app.css" rel="stylesheet">
</head>
<body>
<div class="container">
<h1>Bookmarking App</hl>
<hr>
<div>
<%= yield %>
</div>
</div>
</body>
</html>

When we call the erb method, Sinatra automatically uses the layout because
it is located in the views/layout.erb file. Notice the call to yield: that is where each
page’s content will be placed.

We also have references to two CSS files. For Sinatra to find these and other
static files (.js files, images, and so on), we need to either place them under

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/sinatra/erb/views/bookmark_form_inputs.erb
http://media.pragprog.com/titles/7web/code/sinatra/erb/views/layout.erb
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 1. Sinatra ® 16

the public/ directory of our application or specify a different location by config-
uring the :public_folder option:

set :public folder, settings.root + '/my static file folder'

Let’s continue our discussion of views with another templating engine:
Mustache.

Mustache

Mustache is a specification for templates with just a few simple syntax rules.’
Mustache is worth looking into as an alternative to ERB because you usually
end up with less code in the templates. No if statements, else clauses, or for
loops are allowed.

We'll need two gems to use Mustache, mustache and sinatra-mustache:

$ gem install mustache sinatra-mustache

Then, in our Ruby code, we add a require statement, and we're ready to use
Mustache:

sinatra/mustache/app.rb
require "sinatra/mustache"

Much like ERB, a simple call to mustache with the template name as a keyword
renders the corresponding .mustache file from the views directory.

sinatra/mustache/app.rb
get "/" do

@bookmarks = get all bookmarks

mustache :bookmark list # renders views/bookmark list.mustache
end

Again, similar to ERB, Mustache templates are regular HTML with a special
syntax for the dynamic parts. Unlike ERB, however, there is no arbitrary code
to be executed. Mustache templates are script-free and devoid of logic on
purpose, to keep things simple.

The syntax is also very simple:

¢ {{x}} outputs the value of a property x, escaping any HTML code.

e {{{x}}} does the same as {{x}}, but it does not escape HTML.

e {{#x}} and {{/x}} loop through the items in x.

e {{>x}} renders x as a partial template, which is equivalent to <%= erb :x
%> in ERB. The template is found in views/x.mustache.

9. http://mustache.github.io

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/sinatra/mustache/app.rb
http://media.pragprog.com/titles/7web/code/sinatra/mustache/app.rb
http://mustache.github.io
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 2: Creating Views ® 17

That’s it for our needs. You can find more details on the syntax rules in the
Mustache documentation. '

To use Mustache with Sinatra, we just need to assign data to instance variables
to make them available to the template. In ERB, we referred to those variables
with the same syntax as in Ruby, such as @bookmarks. In Mustache, we refer to
the variable without the @. To loop through bookmarks, we use {{#bookmarks}}
and {{/bookmarks}}. Within the loop, we can refer to each bookmark’s property with
{{x}}. Here, then, is the template for rendering the list of bookmarks:

sinatra/mustache/views/bookmark_list.mustache
Add New Bookmark
<h2>List of Bookmarks (Mustache)</h2>

{{#bookmarks}}

Edit
<form action="/bookmarks/{{id}}" method="post">
<input type="hidden" name="_method" value="delete">
<input type="submit" value="Delete">
</form>
|
{{title}}
({{url}})

{{/bookmarks}}

As you can see, Mustache templates are very straightforward. With Mustache,
we can create partial templates that we can reuse, just as we did with ERB.
Here is the partial template for the bookmark form inputs:

sinatra/mustache/views/bookmark_form_inputs.mustache
<label>
URL:
<input type="text" name="url" value="{{bookmark.url}}">
</label>
<label>
Title:
<input type="text" name="title" value="{{bookmark.title}}">
</label>
<input type="submit" name="save" value="Save">
Cancel

The Mustache syntax for loading a partial template is {{> template_name}},
where the template name does not include the .mustache extension. For example,
here is how we load our partial in the view for creating a new bookmark:

10. http://mustache.github.io/mustache.5.html

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/sinatra/mustache/views/bookmark_list.mustache
http://media.pragprog.com/titles/7web/code/sinatra/mustache/views/bookmark_form_inputs.mustache
http://mustache.github.io/mustache.5.html
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 1. Sinatra * 18

sinatra/mustache/views/bookmark_form_new.mustache

<h2>New Bookmark</h2>

<form action="/bookmarks" method="post">
{{> bookmark form inputs}}

</form>

For a common layout, all we need to do is create a template located in the
views/layout.mustache file. To indicate where to render the output of each specific
page, we call yield. Since we don’t want to escape the HTML of the output, we
use a set of three braces, {{{yield}}}:

sinatra/mustache/views/layout.mustache
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Bookmarking App</title>
<link href="/css/bootstrap.min.css" rel="stylesheet">
<link href="/css/app.css" rel="stylesheet">
</head>
<body>
<div class="container">
<h1>Bookmarking App</hl>
<hr>
<div>
{{{yield}}}
</div>
</div>
</body>
</html>

That’s it for Mustache. We'll use it again with CanJS and Webmachine. We'll
also use a similar {{ }} syntax in AngularJS. Now let’s finish the day with one
last templating framework with another different syntax, Slim. (We're looking
at different templating styles to give you a taste of what’s available. There are
as many options as there are personal tastes for syntax, so you're sure to
find something that is to your liking.)

Slim
Slim aims to make markup more concise (see http://slim-lang.com/). Slim takes a
different approach to templating by taking over the whole rendering process

instead of using regular HTML with a special syntax just for the dynamic
parts.

To use Slim, we need to install this gem:

$ gem install slim

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/sinatra/mustache/views/bookmark_form_new.mustache
http://media.pragprog.com/titles/7web/code/sinatra/mustache/views/layout.mustache
http://slim-lang.com/
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 2: Creating Views ® 19

To render a template, we need to require the gem and call the slim method with
a keyword for the template. Sinatra finds the corresponding template file in
the views/ directory with the .slim file extension.

sinatra/slim/app.rb
require "slim"
get "/" do
@bookmarks = get all bookmarks
slim :bookmark_list # renders views/bookmark list.slim
end

The syntax for Slim templates is quite different from what we've seen so far
with ERB and Mustache. With Slim, you use the syntax for the whole template,
including all HTML tags. The syntax is designed to be more concise than
regular HTML tags. For example, consider this HTML page:

sinatra/slim/views/example.html
<html>
<head>
<link href="/css/bootstrap.min.css" rel="stylesheet" />
</head>
<body>
<div class="container">
<h1>Bookmarking App</hl>
</div>
<div id="footer">
<small>Footer goes here</small>
</div>
</body>
</html>

To generate that HTML output, you would write this Slim template:

sinatra/slim/views/example.slim
html
head
link href="/css/bootstrap.min.css" rel="stylesheet"
body
.container
hl Bookmarking App
#footer
small Footer goes here

You can see how the Slim template is more concise than regular HTML. Let’s
discuss the syntax in more detail.

Instead of angle brackets, HTML tags are created from the first token on each
line and without a closing tag. This is part of Slim’s conciseness: the indenta-
tion determines the tag structure, and Slim takes care of closing tags for you.
A tag’s attributes and content follow the tag, as in a href="http://pragprog.com" The

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/sinatra/slim/app.rb
http://media.pragprog.com/titles/7web/code/sinatra/slim/views/example.html
http://media.pragprog.com/titles/7web/code/sinatra/slim/views/example.slim
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 1. Sinatra ® 20

Pragmatic Programmers. The tags that are one level of indentation deeper automat-
ically become the children of the current tag.

To keep templates even more brief, Slim generates a <div> tag by default if
you do not specify a tag. Furthermore, because id= and class= attributes are
so commonly used, you can imitate the CSS syntax for those. You can see
that in the example, where .container generates <div class="container"> and #footer
produces <div id="footer">.

Let’s look at the template for our bookmark list to see how you add dynamic
content to Slim templates:

sinatra/slim/views/bookmark_list.slim
a href="/bookmark/new" Add New Bookmark
h2 List of Bookmarks (Slim)
ul
- for bookmark in @bookmarks do
1i
a> href="/bookmarks/#{bookmark.id}" Edit
form> action="/bookmarks/#{bookmark.id}" method="post"
input type="hidden" name="_method" value="delete"
input type="submit" value="Delete"

a<> href="bookmark.url" = bookmark.title
[(

a<> href="bookmark.url" == bookmark.url

[)

We have some new Slim syntax. First, the hyphen, -, evaluates Ruby code.
We're using that to iterate over @bookmarks and render each bookmark. Again,
we don’t have to worry about closing the block, because indentation determines
where the block ends. Slim takes care of wrapping things up for us.

Next, we have the bookmark ID in the link to edit a bookmark. The syntax
there is the same as in Ruby strings, with the dynamic content within #{ }.
We're also using that for the form that posts a DELETE request.

Also note that the <, >, or <> following a tag indicates to add a leading or a
trailing whitespace or both. When we want text without a tag, we use a pipe
() character.

Finally, we use = to output dynamic content within a tag, and == to output
without HTML escaping. That’s how we're rendering the bookmark title and
URL.

Again, we’ll create a partial template for the form inputs that we can reuse
for creating and updating bookmarks:

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/sinatra/slim/views/bookmark_list.slim
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 2: Creating Views ® 21

sinatra/slim/views/bookmark_form_inputs.slim
label

| URL:

input< type="text" name="url" value="#{@bookmark && @bookmark.url}"
label

| Title:

input< type="text" name="title" value="#{@bookmark && @bookmark.title}"
input> type="submit" name="save" value="Save"
a href="/" Cancel

To render the partial, we call = slim :bookmark_form_inputs, which is the same Ruby
method that we would call to render the template from Sinatra:

sinatra/slim/views/bookmark_form_new.slim

h2 New Bookmark

form action="/bookmarks" method="post"
== slim :bookmark form inputs

We can reuse the partial in the template for editing a bookmark:

sinatra/slim/views/bookmark_form_edit.slim

h2 Edit Bookmark

form action="/bookmarks/#{@bookmark.id}" method="post"
input type="hidden" name=" method" value="put"
input type="hidden" name="format" value="html"
== slim :bookmark form_inputs

Finally, Slim supports specifying the doctype with doctype. For HTML 5, we
can just use doctype html. For more details on other doctypes, and on the Slim
syntax for that matter, see the Slim reference documentation.'

sinatra/slim/views/layout.slim
doctype html
html lang="en"
head
meta charset="utf-8"
title Bookmarking App
link href="/css/bootstrap.min.css" rel="stylesheet"
link href="/css/app.css" rel="stylesheet"
body
.container
hl Bookmarking App
hr
div
== yield

That is our page layout. Notice the call to yield to indicate where to put the
content of the current page.

11. http://rdoc.info/gems/slim/frames

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/sinatra/slim/views/bookmark_form_inputs.slim
http://media.pragprog.com/titles/7web/code/sinatra/slim/views/bookmark_form_new.slim
http://media.pragprog.com/titles/7web/code/sinatra/slim/views/bookmark_form_edit.slim
http://media.pragprog.com/titles/7web/code/sinatra/slim/views/layout.slim
http://rdoc.info/gems/slim/frames
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 1. Sinatra ® 22

Slim is an altogether different creature than ERB or Mustache. One thing is
for sure, you have no shortage of options when it comes to HTML templating
engines to use with Sinatra.

What We Learned on Day 2

Our second day of Sinatra was all about rendering HTML views with different
templating engines. This gave us the capability of developing a web application
complete with user interface.

Day 2 Self-Study
Find:

¢ Additional ERB, Mustache, and Slim tutorials and examples
e More templating alternatives and their support in Sinatra

Do:

e Use one of the templating engines that you found to re-create the views
of the bookmarking application.

Write tests to confirm the behavior of the views that you created.

Determine if respond_with works with Slim and Mustache as it does with
ERB to respond with HTML or JSON, depending on the request headers.

Day 3: Adding Features

Today, we dig a little deeper into Sinatra and use what we learn to add some
features to our bookmarking application. We’ll make the application more
robust with some validation, use block parameters and filters to refactor and
improve our code, and end the day by implementing a new feature: adding
tags to bookmarks.

Let’s begin by making the application more resistant to invalid input by pro-
viding validation.

Validation

We can create and update bookmarks, but we’re not validating anything. Let’s
address that now. We want all bookmarks to have a title and a URL, and we
want the URL’s format to be valid. DataMapper makes it easy to add these
constraints to the Bookmark model:

sinatra/validation/bookmark.rb
class Bookmark
include DataMapper: :Resource

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/sinatra/validation/bookmark.rb
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

>
>

Day 3: Adding Features ® 23

property :id, Serial
property :url, String, :required => true, :format => :url
property :title, String, :required => true

end

With that in place, calls to bookmark.save and bookmark.update will return false if
the input is not valid. What we want to do in that case is return an HTTP
error code: 400, Bad Request. Let’s write the RSpec test first:

sinatra/validation/app_test.rb

it "sends an error code for an invalid create request" do
post "/bookmarks", {:url => "test", :title => "Test"}
last_response.status.should == 400

end

At this point, we run the test and make sure that it fails. This is what we
expect, since we haven’t written the application code yet. In this approach,
called test-driven development (TDD), you write the test code for a feature
before you write the code that implements the feature. This can be very
effective at making sure that you have tests for all of your features. You also
have to think about how you're going to implement a feature and about what
situations you need to consider before you write the code.

We're sending a POST request to create a bookmark, but the URL is not valid.
We're expecting the response status code to be 400. Now, to implement this
in the application, we need to check whether bookmark.save returns true. If not,
we return the 400 code:

sinatra/validation/app.rb
post "/bookmarks" do
input = params.slice "url", "title"
bookmark = Bookmark.new input
if bookmark.save
Created
[201, "/bookmarks/#{bookmark['id']}"]
else
400 # Bad Request
end
end

Now that we've written the application code to implement the feature that
we're adding, we can run the test again and make sure that it passes.

We are now preventing bookmarks from being created with missing URLSs or
titles or with invalid URLs. This takes care of bookmark creation, but we must
do the same for updating a bookmark. Even if a bookmark was previously
valid, it could possibly become invalid if an update request is made with a
missing title or a missing or invalid URL. Just like bookmark.save, the call to

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/sinatra/validation/app_test.rb
http://media.pragprog.com/titles/7web/code/sinatra/validation/app.rb
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 1. Sinatra * 24

bookmark.update returns a boolean value indicating whether the update was
valid. Again, we’ll return the 400 code for an invalid request:

sinatra/validation/app.rb
put "/bookmarks/:id" do
id = params[:id]
bookmark = Bookmark.get(id)

if bookmark
input = params.slice "url", "title"
if bookmark.update input
204 # No Content

else
400 # Bad Request
end
else
[404, "bookmark #{id} not found"]
end

end

When editing an existing bookmark, we need to make sure that the bookmark
ID that was received in the URI does indeed exist in our database. We're val-
idating that with if bookmark. If that returns false, our else block returns a 404
status code, Not Found.

We'll add an RSpec test to make sure that an invalid PUT request returns the
400 code:

sinatra/validation/app_test.rb

it "sends an error code for an invalid update request" do
get "/bookmarks"
bookmarks = JSON.parse(last response.body)
id = bookmarks.first['id']

put "/bookmarks/#{id}", {:url => "Invalid"}
last_response.status.should == 400
end

By running rspec app_test.rb, we can verify that the tests pass.
We'll now look at two Sinatra features that we can use to refactor and improve

our code: block parameters and filters.

Block Parameters

When we call a Sinatra method for handling a request, such as get, put, and
so on, we pass a URI that may contain parameters, denoted by the : prefix,
as in /bookmarks/:id. To retrieve the id parameter, we've been using params|[:id].

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/sinatra/validation/app.rb
http://media.pragprog.com/titles/7web/code/sinatra/validation/app_test.rb
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 3: Adding Features ® 25

That’s simple enough, but there’s another way that is even more concise: a
block parameter (whereas before we used params):

sinatra/validation/app.rb
get "/bookmarks/:id" do
id = params[:id]
bookmark = Bookmark.get(id)

We can use a block parameter instead, like this:

sinatra/blockparameters/app.rb
get "/bookmarks/:id" do |id|
bookmark = Bookmark.get(id)

Using a block parameter has saved us a line of code. We’d save even more
with multiple parameters.

It's worth noting that when pulling out parameters from the params hash, the
key names correspond to the names that we gave to the parameters in the
URI. For block parameters, however, the variable names do not pull out values
from the corresponding names in the URI. Instead, parameters are bound to
variables in order. For example, we could write this:

sinatra/blockparameters/app.rb

get "/test/:one/:two" do |creature, sound|
"a #{creature} says #{sound}"

end

The following RSpec test confirms that a request to /test/duck/quack returns a
duck says quack:

sinatra/blockparameters/app_test.rb
it "binds block parameters by order, not by name" do
get "/test/duck/quack"
last response.body.should == "a duck says quack"
end

Of course, using variable names that correspond to the names in the URI is
a good idea, for clarity’s sake.

Filters

Each call to methods that correspond to HTTP verbs, such as get, post, and
so on, sets up a handler for a request. We can also set up handlers for every
request that get called before or after the request handler. These handlers
are known as filters. Filters are a great way to refactor out and reuse common
code.

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/sinatra/validation/app.rb
http://media.pragprog.com/titles/7web/code/sinatra/blockparameters/app.rb
http://media.pragprog.com/titles/7web/code/sinatra/blockparameters/app.rb
http://media.pragprog.com/titles/7web/code/sinatra/blockparameters/app_test.rb
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 1. Sinatra ® 26

To create a filter with Sinatra, we call the before or after method with the URI
to intercept (or with no URI to intercept all requests) and the code block to
execute. The code looks a lot like what we’'ve been writing with get, post, and
so on. In fact, we can even use block parameters with before and after.

For example, all handlers called on /bookmarks/:id should ensure that the id
corresponds to an existing bookmark, and if not, should return a 404, Not
Found. Moreover, we'll hold on to the existing bookmark in an instance vari-
able to use it later without repeating the database lookup. We can do all of
that in a before filter:

sinatra/filter/app.rb
before "/bookmarks/:id" do |id|
@bookmark = Bookmark.get(id)
if !'@bookmark
halt 404, "bookmark #{id} not found"
end
end

With that in place, we can simplify our code. For example, this was our put
handler previously:

sinatra/blockparameters/app.rb
put "/bookmarks/:id" do |id|
bookmark = Bookmark.get(id)
if bookmark
input = params.slice "url", "title"
if bookmark.update input
204 # No Content

else
400 # Bad Request
end
else
[404, "bookmark #{id} not found"]
end

end

With our before filter creating the @bookmark instance variable and validating
the id, our put handler can focus on updating the bookmark:

sinatra/filter/app.rb
put "/bookmarks/:id" do
input = params.slice "url", "title"

if @bookmark.update input
204 # No Content
else
400 # Bad Request
end
end

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/sinatra/filter/app.rb
http://media.pragprog.com/titles/7web/code/sinatra/blockparameters/app.rb
http://media.pragprog.com/titles/7web/code/sinatra/filter/app.rb
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 3: Adding Features ® 27

Similarly, other methods that handle requests to /bookmarks/:id can be simplified
to use @bookmark, knowing that the filter loads the bookmark from the ID and
returns a 404 status code if the bookmark was not found.

Tagging Bookmarks

Our bookmarks are looking good, but we need a way to organize them. Let’s
add tagging to our app: a way for the user to add any number of tags to
bookmarks. Then you can browse or search by these tags. Such a system is
easy to use—you can make tags up as you go and give multiple tags to a
bookmark. This is less restrictive than, say, folders, where a bookmark belongs
to only one folder at a time.

Because a bookmark can have many tags and the same tag can be associated
with multiple bookmarks, the bookmark-tag model relationship is a many-
to-many association. For this to work, we need something between a bookmark
and a tag, something that says, “This bookmark and this tag are linked.” In
database terms, this is a join table. For the bookmarking application, we’ll
call this a tagging.

In our model, then, we’'ll want a bookmark to have many taggings, a tag to
have many taggings, and a tagging to belong to a bookmark and a tag. Even
better, we’ll want to say that a bookmark has many tags and a tag has many
bookmarks. Because the tagging serves as a bridge, we say that bookmarks
have many tags through taggings, and tags also have many bookmarks through

taggings.

Each tagging links one bookmark to one tag. But because each bookmark
can have many taggings, and each tag can have many taggings, you can see
the end result: a bookmark can have many tags, and more than one bookmark
can have the same tag. In Figure 1, Model for bookmark tags, on page 28,
Bookmark 1 and Bookmark 2 each have two tags, and they both have Tag 2.

Enough talk—let’s code this. First, we’ll create the Tagging class:

sinatra/tagging/tagging.rb
require "data mapper"

class Tagging
include DataMapper: :Resource

belongs to :tag, :key => true

belongs to :bookmark, :key => true
end

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/sinatra/tagging/tagging.rb
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 1. Sinatra * 28

Bookmark 1 Bookmark 2

NN

Tagging 1| |Tagging 2| |Tagging 3| |Tagging 4

N/

Tag 1 Tag 2 Tag 3

Figure 1—Model for bookmark tags

This is a DataMapper resource. As we've discussed, we're defining the Tagging
class as belonging to a bookmark and a tag. Because the relationships make
up the keys of the Tagging model, we're telling DataMapper to include them as
primary keys with the :key => true option.

Next, we’ll add the Tag class:

sinatra/tagging/tag.rb
require "data mapper"

class Tag
include DataMapper: :Resource

property :id, Serial
property :label, String, :required => true

has n, :taggings
has n, :bookmarks, :through => :taggings, :order => [:title.asc]
end

DataMapper makes it easy to add a relationship with has n. We've indicated
that a tag has ntaggings and has n bookmarks through taggings. We can now
use tag.bookmarks to get a tag's bookmarks without having to manually go
through the tagging part of the model.

We’'ll now enhance our Bookmark class to establish the relationships with tag-
gings and tags. While we're at it, we’ll also add a convenience method, taglist,
for getting a list of tags as strings, instead of a list of tag objects from which
we’d have to pull out the labels:

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/sinatra/tagging/tag.rb
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 3: Adding Features ® 29

sinatra/tagging/bookmark.rb
require "data mapper"
class Bookmark
include DataMapper: :Resource
property :id, Serial
property :url, String, :required => true, :format => :url
property :title, String, :required => true
Add tag support
has n, :taggings, :constraint => :destroy
has n, :tags, :through => :taggings, :order => [:label.asc]
def taglList
tags.collect do |tag|
tag.label
end
end
end

Our model is ready to support tagging.

Adding Tag Support to the API

In our Sinatra application, we want to support specifying tags as a single
string, with the tags separated by commas. This makes it easy for the user
to indicate an arbitrary number of tags for a bookmark. We'll call this
parameter tagsAsString.

To handle the tagsAsString value, we’ll create an add_tags helper method. Let’s
start by splitting the string on commas and stripping out blanks:

sinatra/tagging/app.rb
helpers do
def add tags(bookmark)
labels = (params["tagsAsString"] || "").split(",").map(&:strip)
more code to come
end
end

Next, by iterating over the bookmark’s previously existing tags, we compare
with the new list of tags. We’'ll keep track of matching tags and delete those
that previously existed but were not sent in the current request.

sinatra/tagging/app.rb
existing labels = []
bookmark.taggings.each do |tagging]
if labels.include? tagging.tag.label
existing labels.push tagging.tag.label
else
tagging.destroy
end
end

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/sinatra/tagging/bookmark.rb
http://media.pragprog.com/titles/7web/code/sinatra/tagging/app.rb
http://media.pragprog.com/titles/7web/code/sinatra/tagging/app.rb
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 1. Sinatra ® 30

Finally, we’ll go though the list of tags that we sent and create any tags that
are not in the list of already existing tags. We need to create a tagging to link
the bookmark to the tag and create or reuse the tag depending on whether
it had already been created for another bookmark.

sinatra/tagging/app.rb
(labels - existing labels).each do |label]

tag = {:label => label}

existing = Tag.first tag

if l!existing

existing = Tag.create tag

end

Tagging.create :tag => existing, :bookmark => bookmark
end

Now when creating a bookmark, we can just call add_tags to take care of tagging:

sinatra/tagging/app.rb
post "/bookmarks" do
input = params.slice "url", "title"
bookmark = Bookmark.new input
if bookmark.save
add_tags(bookmark)

Created
[201, "/bookmarks/#{bookmark['id']}"]
else
400 # Bad Request
end
end

We've successfully added functionality for putting tags on bookmarks. To use
this feature, let’s allow for searching bookmarks by tag. Even better, we'll
support multiple tags and return just the bookmarks that have all the specified
tags. We'll do this by accepting GET requests to URIs such as /bookmarks/tagl,
[bookmarks/tagl/tag2, and so on, with the desired tags separated by a forward
slash in the URI.

Sinatra handles an arbitrary number of parameters in the URI with the
asterisk, *, also known as the splat. In fact, the parameter name for retrieving
the values from the URI is called :splat. Since you can have multiple splats in
the URI, such as /onef*/two/*, params[:splat] returns an array of values. We only
have one, so we can retrieve its value with params[:splat].first. That contains the
string with the tags separated by slashes, such as tagl/tag2. We can retrieve
the array of tags by splitting the string using the slash as the separator.
Putting it all together, here’s what we have:

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/sinatra/tagging/app.rb
http://media.pragprog.com/titles/7web/code/sinatra/tagging/app.rb
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 3: Adding Features ® 31

sinatra/tagging/app.rb
get "/bookmarks/*" do
tags = params[:splat].first.split "/"
bookmarks = Bookmark.all
tags.each do |tag|
bookmarks = bookmarks.all({:taggings => {:tag => {:label => tag}}})
end
bookmarks.to_json with_tagList
end

After retrieving the list of tags by which to filter the bookmarks, we start with
the complete bookmark list. Then we successively filter the list by each tag,
using the all method on the bookmark list to keep reducing the list as each
filter by tag is applied. Finally, we return the final list as JSON.

You noticed the with_tagList parameter in the call to bookmarks.to_json. Let’s look
at the code for with_tagList first:

sinatra/tagging/app.rb
with taglList = {:methods => [:taglList]}

By default, to_json does not include associations when serializing objects. A
hash with :methods and a list of keywords indicates the associations that we
want to include—:tagList in this case. That way, we have each bookmark’s tags
in the results that we return.

Matching Routes with Regular Expressions

We now have a route for filtering bookmarks by tags. But we have a prob-
lem—it conflicts with another one of our routes: GET /bookmarks/<id> for
retrieving a bookmark by its ID.

We can resolve this dilemma by taking advantage of two of Sinatra’s features:
(1) routes can be matched using regular expressions, and (2) routes are
matched in the order that they are defined.

When getting a bookmark, the ID that we specify in the URI must be a
numerical value. We can restrict the URI with a regular expression that
matches only digits after bookmarks/:

sinatra/tagging/app.rb

get %r{/bookmarks/\d+} do
content_type :json

@bookmark.to_json with_taglList
end

By placing the handler for filtering bookmarks by tags after the one for
retrieving a bookmark by its ID, we've resolved the conflict.

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/sinatra/tagging/app.rb
http://media.pragprog.com/titles/7web/code/sinatra/tagging/app.rb
http://media.pragprog.com/titles/7web/code/sinatra/tagging/app.rb
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 1. Sinatra ® 32

We'll use the same regular expression for the routes that match our before
filter, as well as the handlers for updating and deleting a bookmark:

sinatra/tagging/app.rb

before %r{/bookmarks/(\d+)} do |id]|
...

end

put %r{/bookmarks/\d+} do
...

end

delete %r{/bookmarks/\d+} do
...

end

We now have an enhanced version of our bookmarking API. Clients can issue
requests to create bookmarks with tags and obtain bookmark lists that are
filtered by one or more tags.

What We Learned on Day 3

Today was action-packed with more Sinatra and DataMapper features. We
added validation to bookmarks. We used block parameters and regular
expressions to vary how we implement handlers for URIs. We spent the rest
of the day implementing a new feature, bookmark tagging, and covered all
the layers: the database, model, and web application.

Day 3 Self-Study
Find:

e The documentation for creating a custom route matcher
¢ Examples of real-world web applications that use Sinatra

Do:

¢ Use curl to issue requests that create bookmarks with tags and to retrieve
bookmarks filtered by tags.

e Write automated tests to verify the results of updating bookmarks with
tags.

e Add tag support to the view templates of your choice.

Wrapping Up

Sinatra is a Ruby framework that provides a simple and natural DSL for
developing web applications. Why should things be complicated when they
can be simple? With Sinatra, you can get started quickly and without the
complexity of a large framework.

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/sinatra/tagging/app.rb
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Wrapping Up ® 33

Because Sinatra is so nimble, it offers a compelling solution to turn your
existing Ruby applications into web applications. As we saw in this chapter,
Sinatra is also very easy to unit test, whether with RSpec or with another
testing framework of your choice.

Sinatra’s Strengths

Developing a RESTful API is particularly sweet in Sinatra. Handling routes,
clean URIs with parameters, using regular expressions, and so on, is effortless,
as is returning HTTP status codes, messages, and JSON responses.

Sinatra tightly focuses on doing a few things and doing them well. Learning
the framework is not an overwhelming task, and you can become productive
very quickly.

We also saw how easy it is to use the templating solution of your choice with
Sinatra. We looked at three examples, but Sinatra supports many other templating
engines as well. You are free to pick your preferred templating style.

The same goes for a persistence library. We used DataMapper, and combining
it with Sinatra was effortless. You could just as easily use other ORMs such
as MongoMapper, Sequel, or ActiveRecord, to name a few.

Sinatra’s Weaknesses

Sinatra’s simplicity and narrow scope are virtues, but they can also be con-
sidered weaknesses. When building a large application for which you need
various web development features, you’ll have to turn elsewhere to fill your
needs, adding libraries as you go.

Another shortcoming comes not from Sinatra specifically, but from its host
language. Ruby is designed to be easy to use. One of the design decisions is
to punt on the complexity of running code in parallel and instead stick to
single-threaded code. While servers like Thin, Unicorn, and Puma relieve this
concern somewhat, there is no doubt that with Ruby and other object-oriented
languages, you’'ll likely struggle with true multithreaded applications.

Final Thoughts

Sinatra makes good use of Ruby’s simple and expressive syntax to provide
an elegant and easy-to-use web framework. Sinatra is particularly well suited
for RESTful applications and also integrates seamlessly with templating
engines to produce HTML pages. By focusing only on being a web framework,
Sinatra is lightweight and gives you the freedom of completing your application
stack with the libraries of your choice.

www.it-ebooks.info

http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

CHAPTER 2

CanJS

Bejeweled is a game of colored gems where the player swaps adjacent gems
to form sequences of identical gems that are then removed from the board.
The game becomes even more exciting when chain reactions happen as falling
gems appear to replace the previous sequence and in turn form more
sequences. The skilled player can plan ahead for these chain reactions but
only has to swap a single pair of gems to set things off. The game engine
manages the chain reactions.

Likewise, CanJS is a JavaScript framework that lets you write code that makes
one change and then takes care of the chain reaction of updates that need
to happen.' You no longer have to manually write code to refresh views, change
the state of UI widgets, and send an update to the server. You just make a
change to the model, and CandJS, with the judicious use of the observer pattern
combined with live binding, makes it all happen automatically.

What Makes CanJS Unique?

CandS helps you organize your web application following model-view-controller
architecture. This is hardly an original approach; most JavaScript frameworks
follow the MVC pattern (or some close variant). What makes CandJS shine is
its unique balance of features and straightforward, easy-to-understand
methodology. With CandJS, your code stays modular, with a clean separation
of concerns.

When using CandS, you use objects that notify listeners when attributes
change. This helps keep components separate, because they communicate
with events rather than with direct references to each other. CanJS also
renders dynamic views from templates and automatically updates them when

1. http://canjs.com

www.it-ebooks.info

http://canjs.com
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 2. CanJS ¢ 36

models change. You also have models that take care of issuing Ajax requests
and handling responses to keep things synchronized between client and
server. You can easily organize your application with controllers that handle
user interface events while remaining modular and neatly decoupled from
each other. As we’ll discover, CandS also provides routing, partial views, fil-
tered data, and more!

CandS provides all of this while remaining relatively small in size. It does
require one of the following libraries: jQuery,> Zepto,® Dojo,* Mootools,® or
YUL® We'll be using jQuery in the code examples.

Several core components make up the core of CanJS. The following figure
shows how they all fit together. can.Construct creates objects with static and
prototype properties that can be inherited and overridden. Most of the other
parts of CanJS extend can.Construct, so we’ll spend a bit of time learning and
understanding how it works.

can.Construct

/N

can.Observe can.Control

AN

can.Model can.route

Figure 2—The core CanJS stack

can.Observe creates objects that others can observe and be notified about when
attributes change. As mentioned earlier, using events to communicate between
components avoids having to tie them together. In fact, observable objects
are very much the essence of CanJS.

http://jguery.com
http://zeptojs.com
http://dojotoolkit.org
http://www.mootools.net
http://yuilibrary.com/

ook wN

www.it-ebooks.info

http://jquery.com
http://zeptojs.com
http://dojotoolkit.org
http://www.mootools.net
http://yuilibrary.com/
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 1: Building Objects and Synchronizing Changes ® 37

can.Model augments can.Observe to synchronize changes between client and
server. This saves you from manually having to issue Ajax requests and
handle server responses.

can.view loads and renders templates with Mustache or EJS.” This not only
keeps your templates simple and easy to follow, but it also provides live
binding. You can focus on updating models and let CanJS refresh the views
for you.

can.Control builds widgets that combine model and view. As we’ll discover,
controls provide a convenient way of listening for view events while remaining
neatly encapsulated in its own part of the page without risking interference
with other components.

can.route provides routing by managing the browser’s hash. This makes single-
page CandS applications bookmarkable and navigable with the browser’s
Back and Forward buttons.

On Day 1, we’ll work with can.Construct, can.Observe, can.Model, and can.view. Day
2 will be dedicated to can.Control, combining models with views and handling
Ul events. We'll spend Day 3 digging deeper into models and wrap up the
chapter by learning how to use can.route.

We have many exciting features to learn, so let’s get started!

Day 1: Building Objects and Synchronizing Changes

In the first day of our CandS journey, we’ll learn how can.Construct helps with
creating hierarchies with inheritance. This is useful in itself but is also
important to know because the other parts of CanJS build on can.Construct.

Next, we’ll discover can.Observe, an extremely useful part of CanJS that triggers
events when changes occur. This helps with keeping components independent.
We'll also see how can.Model makes it easy to keep data synchronized between
client and server. Finally, we’ll discuss view rendering and how using can.Observe
objects in views is particularly useful because of live binding.

Let’s begin by setting up the CandS library and its supporting cast.

Hello, CanJS!

The first thing we’ll do is look at a minimal setup for loading and using CanJS
with jQuery. By running the following “Hello, World”-type of program on your

7. http://mustache.github.com/ and http://fembeddedjs.com, respectively.

www.it-ebooks.info

http://mustache.github.com/
http://embeddedjs.com
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

vy

Chapter 2. CanJS ¢ 38

own computer, you'll confirm that you've got things working properly and
you’ll be able to modify the files to experiment with your own code.

If you look at the book’s sample code, under the canjs/public folder, you’ll find
that jQuery and CandS are set up in the lib directory as follows:

+lib
|+canjs.com-1.1.8
| “-can.jquery.js
| *-(other can.*.js files)
“+jquery
“-jquery-1.10.2.js

Now, look at the canjs/public/index-basic.html file. This is a regular HTML page that
loads jQuery and CandS using the standard <script> tags:

canjs/public/index-basic.html
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>CanJS Basic</title>
</head>
<body>
<div id="result"></div>
</body>
<script src="lib/jquery/jquery-1.10.2.js"></script>
<script src="lib/canjs.com-1.1.8/can.jquery.js"></script>
<script src="index-basic.js"></script>
</html>

The last file, index-basic.js, is the place for you to write your code to experiment
with CandS. If you open the file in your favorite code editor, you’'ll see that it
currently contains some simple code just to confirm that jQuery and CanJdS
are properly loaded:
canjs/public/index-basic.js
$(document) . ready(function() {

// Use can for CanJS

var $result = $("#result");

can.each(["One", "Two", "Three"], function(it) {

$result.append(it).append(", ");

1)
$result.append("Go CanJS!");

b

Open the index-basic.html file in your browser. If you see the result One, Two, Three,
Go Can)S!, you know that both jQuery (from the use of $ in the preceding code)
and CandJS (from the call to can.each) are working. That’s all there is to it.

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/canjs/public/index-basic.html
http://media.pragprog.com/titles/7web/code/canjs/public/index-basic.js
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 1: Building Objects and Synchronizing Changes ® 39

Congratulations, you're ready to start exploring CanJS! You can edit index-
basic.html and index-basic.js to experiment with your own code.

Now let’s start exploring the different moving parts of CanJS, beginning with

the foundational building block, can.Construct.

Constructing and Extending Objects

As you can see in Figure 2, The core CanJsS stack, on page 36, many parts of
CandsS inherit from can.Construct. Let’s have a closer look.

JavaScript is a class-free language. It uses prototypal inheritance instead of
classical inheritance. The nuances involved can be a challenge, especially if
you are used to more conventional object-oriented languages. can.Construct
removes the complexity by providing a factory that makes it painless to
quickly build objects with common properties. can.Construct is essentially a
function that you call to create hierarchies with single-parent inheritance.
You can call parent functions and even override them in the children.

To use can.Construct, call its extend function with an object containing properties,
and you get back a constructor function. Use new to create objects with those
properties. Here’s an example:

canjs/public/concepts/concepts-test.js
var Example = can.Construct.extend({
count: 1,
increment: function() {
this.count++;
}
b

var example = new Example();
example.increment(); // example.count is now 2

To pass parameters when creating new objects, define an init function:

canjs/public/concepts/concepts-test.js
var Example = can.Construct.extend({
init: function(count) {
this.count = count;
}
1}

var example = new Example(42); // example.count is 42

Here’s the kicker: for inheritance, define a child by calling the parent’s con-
structor function (without new), passing the child’s properties. The child
inherits from the parent; it can add new properties and override the parent’s
properties. A child can even call its parent’s functions with _super:

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/canjs/public/concepts/concepts-test.js
http://media.pragprog.com/titles/7web/code/canjs/public/concepts/concepts-test.js
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 2. CanJS ¢ 40

canjs/public/concepts/concepts-test.js
var Parent = can.Construct.extend({
init: function(count) {
this.count = count;
}
increase: function() {
this.count++;

}I
read: function(prefix) {

return prefix + " " + String(this.count);
}

b

var Child = Parent({
// Child inherits the init function

// Override increase
increase: function() {
this.count += 10;
}
// Add new function: decrease
decrease: function() {
this.count--;
}
// Override read, but call parent's version
read: function() {
return this. super("Count is") + "I";
}
1)

var child = new Child(2); // calls Parent's init
child.increase(); // calls Child's increase
child.decrease(); // calls Child's decrease
child.count; // returns 11

child.read(); // returns "Count is 11!"

Finally, when you call can.Construct with two parameters, the first parameter
defines the static properties. The second parameter is the prototype (or
instance) properties we've been using so far. Here’s an example of that:

canjs/public/concepts/concepts-test.js

var Example = can.Construct.extend({
staticCount: 0O,

oA

protoCount: 0

1)

var examplel new Example();
var example2 = new Example();

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/canjs/public/concepts/concepts-test.js
http://media.pragprog.com/titles/7web/code/canjs/public/concepts/concepts-test.js
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 1: Building Objects and Synchronizing Changes * 41

examplel.constructor.staticCount = 2;
examplel.protoCount = 2;

Example.staticCount; // returns 2
example2.constructor.staticCount; // returns 2
example2.protoCount; // returns 0

Notice how static properties are accessed from an instance via its constructor
property or are accessed directly from the constructor function itself, as in
Example.staticCount.

Remember that if you pass only one parameter to can.Construct, you define
prototype properties. If you need a constructor function with only static
properties, be sure to pass two parameters, with an empty object as the sec-
ond, like so:

canjs/public/concepts/concepts-test.js
var ExampleStatic = can.Construct.extend({
staticCount: 4

oA

Ik

Knowing how to define a construct with just static properties is useful because
that’s often all you need when creating models, as we’ll soon see when we
talk about can.Model.

Other core parts of CanJS, such as can.Observe, can.Model, and can.Control, build
on can.Construct. Let’s continue our CandJS tour with can.Observe.

Observing Attribute Changes

The core, the heart, the soul of a CanJS application is the observable object,
or simply the “observe.”

can.Observe provides the ability to observe attribute changes on an object. This
is extremely important because it provides a great way to keep an application’s
components cleanly decoupled. As you build your application, blocks of code
remain independent of each other and communicate via observable objects.
You never end up with a tangled mess of unmaintainable code!

Imagine an online bookstore. You could have several user interface compo-
nents on a page: a list of books, quantities remaining in the inventory, and
the books in your cart with the total cost. When you add a book to your cart,
each component needs to be refreshed to reflect recalculated values. As you
can see in the following figure, if the “Add to cart” component refreshes the
other components, you end up with direct references between components.

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/canjs/public/concepts/concepts-test.js
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 2. CanJS * 42

This is bad because components are tied to other components instead of being
independent.

List of
refresh Books
Add to refresh Quantities
Cart refresh Remaining
\ Books in Cart
Total Cost

Figure 3—Direct references from one component to others

When using observes, the “Add to cart” component just needs to update an
observe. The other components on the page bind to the observe, meaning that
they listen for changes and update themselves to reflect the latest data. As
shown in the next diagram, the “Add to cart” component is no longer tied to
any other component. It just updates the observe, and components that listen
for changes will be notified. “Add to cart” remains independent and doesn’t
need to know about the other components on the page.

List of

bind Books
Add to update Observe bind Quantlltlles
Cart bind Remaining

T

Books in Cart
Total Cost

Figure 4—An observe keeps components decoupled

Here’s how we create an observe and listen for changes on its attributes:

canjs/public/concepts/concepts-test.js
// Create an observe
var observe = new can.Observe({});

// Listen for changes on the "title" attribute
observe.bind("title", function(evt, newTitle, oldTitle) {
console.log("title: newTitle=", newTitle, "oldTitle=", oldTitle);
i

// Set a value for the "title" attribute
observe.attr("title", "First");

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/canjs/public/concepts/concepts-test.js
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 1: Building Objects and Synchronizing Changes ® 43

// the console logs:
// title: newTitle= First oldTitle= undefined

// Set another value for the "title" attribute
observe.attr("title", "Second");

// the console logs:

// title: newTitle= Second oldTitle= First

As you can see, attributes are set with the attr method, with the attribute
name and value as parameters. Supply only the attribute name to read the
value, as in observe.attr("title").

You can also listen for changes on any attribute by binding to change:

canjs/public/concepts/concepts-test.js
observe.bind("change", function(evt, attr, how, newValue, oldValue) {
console.log("change: attr=", attr, "how=", how,
"newValue=", newValue, "oldValue=", oldValue);
1)
observe.attr("title", "Third");
// change: attr= title how= set newValue= Third oldValue= Second
observe.removeAttr("title");
// change: attr= title how= remove newValue= undefined oldValue= Third

Note that if you actually have an attribute called change, you can also listen
for changes with bind("change", ...). However, your function gets called for all
changes, so you would check attr to see if change is the attribute that was
changed.

Finally, observe lists are similar to observes but are for lists of values. In this
case, we can listen for values being added to or removed from the list:
canjs/public/concepts/concepts-test.js

var observe = new can.Observe.List([42, 44, 46]);
observe.bind("add", function(evt, newValues, index) {

console.log("add: newValues=", newValues, "index=", index);
i
observe.bind("remove", function(evt, oldValues, index) {
console.log("remove: oldValues=", oldValues, "index=", index);
1)

observe.push(48);

// add: newValues= [48] index= 3
observe.splice(l, 2);

// remove: oldValues= [44, 46] index= 1

We'll see more of how we can make observes work for us throughout the rest
of the chapter.

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/canjs/public/concepts/concepts-test.js
http://media.pragprog.com/titles/7web/code/canjs/public/concepts/concepts-test.js
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 2. CanJS ¢ 44

Building a CanJS Bookmarking Application Front End

For the rest of the chapter, we're going to build a single-page JavaScript front
end for the bookmark server application that we created in Chapter 1, Sinatra,
on page 1. We had created a rudimentary user interface with Mustache
templates, but now we’ll build something snazzier that dynamically refreshes
without doing full-page reloads. CandS is a client-side-only framework that
works best with a REST and JSON interface (although a REST/JSON server
is not required). As such, it’s a perfect match for our Sinatra server. The fol-
lowing screenshot shows what our application will look like when we finish.

Bookmarking App

Bookmark: Tags:
URL: * Books (1)
* Computer (1)
) * Frameworks (3)
Title: +* JavaScript (2)
* Ruby (1)

Tags: (separated by commas)

o

Filtered by tag: Frameworks | Clear filter

* | Edit | | Delete | CanJS (http://canjs.us) | Frameworks | JavaScript |
* | Edit | | Delete | Sinatra (http://sinatrarb.com) | Frameworks | Ruby |
* | Edit | | Delete | AngularJS (http://angularjs.org) | Frameworks | JavaScript |

Figure 5—The complete CanJS bookmarking application

We'll begin building the application by creating a model for bookmarks that
talks to our server.

Connecting Models to the Server

The first thing we’d like to do is retrieve the list of bookmarks from the server.
We also want to think about keeping that data synchronized with the server.
We could hook up listeners that send Ajax requests when attributes change
and handle server responses to update attributes.

Or we could just use can.Model.

can.Model builds on can.Observe and adds a way to specify how you want your
data to be retrieved from and sent to your server. Here is a Bookmark model
that talks to our Sinatra bookmark server:

www.it-ebooks.info

http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 1: Building Objects and Synchronizing Changes ® 45

canjs/public/app/base/app.js
var Bookmark = can.Model.extend({

findAll: "GET /bookmarks",

create: "POST /bookmarks",

update: "PUT /bookmarks/{id}",

destroy: "DELETE /bookmarks/{id}",
oA
1)
We've defined the API that our server provides for creating, reading, updating,
and deleting bookmarks. CanJS automatically converts the findAll, create, update,
and destroy properties into functions that issue Ajax requests and handle
responses using the strings that we've associated with those properties. The
first part of the string is the request method (GET, POST, PUT, DELETE). The second
part is the request URI. Any part between {} in the URI is replaced by the
object’s corresponding attribute. For example, to update an existing Bookmark
object, CandJS first calls bookmark.attr("id"), places the value at the {id} part of
the URI, and finally issues a PUT request.

Models also handle server responses. For GET requests, CanJS parses the
response as JSON and creates model objects with the same attributes. For
PUT and POST requests, the model object’s attributes are sent to the server in
the request body. Any attributes that the server returns are updated on the
model object. In particular, in response to a POST request, the server should
return the id of the newly created object and any other new or changed
attributes. It does not need to return attributes that have not changed. For
a DELETE request, the model just checks that the server returned a success
response code.

There is one more REST method that CanJS automatically handles in a
can.Model object. We haven’t defined it here because we won't need it for our
bookmarking application. Can you guess what it is?

If you answered findOne, reward yourself with a trip to the refrigerator! Indeed,
that method is for getting a single model object from the server according to
its ID. For our bookmark model, that would be findOne: "GET /bookmarks/{id}".

To use these methods, we can call findAll and findOne as functions on the Bookmark
object and receive the bookmarks or single bookmark via a callback function:

canjs/public/app/base/app.js
Bookmark.findA11({}, function(bookmarks) {
b

Bookmark.findOne({id:42}, function(bookmark) {
1)

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/canjs/public/app/base/app.js
http://media.pragprog.com/titles/7web/code/canjs/public/app/base/app.js
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 2. CanJS ¢ 46

Notice the first argument to findAll and findOne is an object with any parameters
to be sent along with the request. For findOne, we specified the id parameter.

For create and update, a call to save() on a model instance automatically issues
a POST or PUT request. The absence of an id attribute on the model instance
makes it a new object, the presence of an id makes it an existing object, and
CandJS calls create or update, respectively. Finally, calling destroy() on a model
instance issues the DELETE request with the object’s id.

For lists of models, can.Model.List is the same as can.Observe.List with one additional
feature: can.Model List automatically removes an object from the list after you
call the destroy() function.

We're able to retrieve bookmarks from the server. How do we display them?

Rendering Views

CandJS renders views with Mustache or EJS. We'll be using Mustache.
Remember that we looked at the Mustache syntax in Mustache, on page 16.

Here is a Mustache template that renders the list of bookmarks, each with
an Edit and a Delete button:

canjs/public/app/base/bookmark_list.mustache

{{#bookmarks}}

<button class="edit">Edit</button>
<button class="delete">Delete</button>
{{title}}
({{url}})

{{/bookmarks}}

To render the template, call the can.view function with the URI of the template
file without the .mustache extension. Notice that the file is located at
public/app/base/bookmark_list. mustache. Remember that Sinatra serves files from the
public directory. The URI to use for the template is /app/base/bookmark_list.

The other parameter to pass to can.view is the model to use in the template.
Putting it all together, we have this:

canjs/public/app/base/app-test.js
// a list of bookmarks, as we would receive from the server
var bookmarks = [
{url:"http://one.com", title:"One"},
{url:"http://two.com", title:"Two"}
1;

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/canjs/public/app/base/bookmark_list.mustache
http://media.pragprog.com/titles/7web/code/canjs/public/app/base/app-test.js
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 1: Building Objects and Synchronizing Changes ® 47

{bookmarks:bookmarks};

var viewModel =
= $("#target");

var element

// Render view by calling can.view
element.html(can.view("/app/base/bookmark list", viewModel));

// can.view is implicitly called
element.html("/app/base/bookmark list", viewModel);

Notice that we called can.view and added the result to the page element with
jQuery’s html function. You can also just call the html function directly with
the path to the template and the view model. CandJS implicitly calls can.view
for you. This also works for other jQuery methods, such as append, prepend,
after, and so on.

Live Binding

When the objects that are passed to the view are observes, CanJS automati-
cally does live binding so that an attribute change on the observe updates the
view. This also works for lists of observes; add or remove an object, and the
list view is automatically refreshed. Let’s see an example:

canjs/public/app/base/app-test.js

// ‘'bookmarks' is now a list of observes

var bookmarks = new can.Observe.List([
{url:"http://one.com", title:"One"},
{url:"http://two.com", title:"Two"}

1);

var viewModel = {bookmarks:bookmarks};
$("#target").html("/app/base/bookmark list", viewModel);

// The view automatically refreshes to display these changes
bookmarks[0].attr("title", "Uno");
bookmarks.push({url:"http://three.com", title:"Three"});

With live binding, you can focus on working with models and let CanJS take
care of keeping views up-to-date. Because can.Model extends can.Observe, the
objects you get back from Ajax calls such as findAll are observes. You can use
them directly as view models for your templates and benefit from live binding.

What We Learned on Day 1

Today we looked at some of the key parts of CanJS: can.Construct, can.Observe,
can.Model, and can.view. We learned how to create object hierarchies and use
inheritance. We discovered that using observes keeps different parts of an
application independent from one another. We saw how to create models that

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/canjs/public/app/base/app-test.js
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 2. CanJS ¢ 48

synchronize with the server and how to display them with views. One more
essential component of CandsS is can.Control, which we’ll tackle tomorrow.

We discussed the core tenets of CanJS: keep components separate, and use
observes to propagate changes between components and models to synchronize
data with the server. Finally, we learned how to take advantage of live binding
by using observes in views so that we don’t have to do manual refreshes.

Day 1 Self-Study
Find:

¢ The main CandS forum (Hint: CandJS is a child of JavaScriptMVC.)
e The CanJS API documentation
¢ The CandJS implementation of TodoMVC

Do:

¢ Set up a simple CanJS page with an observe. Change the observe in your
browser’s JavaScript console and see the view update itself automatically.
 Experiment with CanJS on jsFiddle with the CanJS jQuery Template.®

Day 2: Creating Controllers

We now have models and views. When models change, views automatically
update. Now how about combining them into components? Also, when the
user presses the Edit or Delete button in the list of bookmarks, we want to
edit or delete the corresponding bookmark. We need a place for that event-
handling code. This is where controllers, or just controls as they are called in
CandS, come into the picture. Today we discuss four vital aspects of can.Control:

Attaching a control to an element on the page

Listening to Ul events

Using the data() function to retrieve a model from the page
Using an observe to communicate between controllers

W

In doing so, we’ll create two controls: one for the bookmark list and one for
the form that creates and edits bookmarks. By the end of the day, we’ll have
a base version of our bookmarking application.

Attaching a Control to an Element on the Page

When creating a control, you pass two parameters to the init function: an element
to which the control will attach and an options object containing any additional
parameters that you need. Here’s an example:

8. http://jsfiddle.net/donejs/qYdwR/

www.it-ebooks.info

http://jsfiddle.net/donejs/qYdwR/
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 2: Creating Controllers ® 49

canjs/public/concepts/concepts-test.js
var MyControl = can.Control.extend({
init: function(element, options) {
var view = "/concepts/bookmarks";

element.html(view, {bookmarks:options.bookmarks});
}
1)

var bookmarks = []; // this would normally be the real list of bookmarks
var options = {bookmarks:bookmarks};
new MyControl("#bookmark container", options);

Notice that the element is a jQuery selector. In the preceding example, the
control attaches to the element on the page that has id="bookmark_container".
Even though the parameter is a string, CanJS automatically converts it to
the matching jQuery element so that you can call functions on the element
in the control’s init function, as we are doing here in calling element.html(...).

You can also pass an actual jQuery element instead of a string:

var element = $("#bookmark container");
new MyControl(element, ...);

As illustrated in the following figure, the control attaches to the element on
the page:

HTML Page

renders view
new MyControl("#container",...) <div id="container">

</div>

The control renders the view into the element and is scoped to that element,
which means it only listens to Ul events within that element.

In the init function, you typically use the model passed via the options object
to render the view into the control’s element. In other parts of the control,
you can access the element and options using this.element and this.options; CanJS
automatically sets these for you.

Listening to Ul Events

After creating a control that uses a model to render a view into an element
on the page, the next step is to handle Ul events: the user pressing a button,
clicking on a link, and so on. To do so, define a string property in the control
with a function:

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/canjs/public/concepts/concepts-test.js
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 2. CanJS ¢ 50

"selector eventType": function(el, evt) {
// el is the element on which the event occurred
// evt is the event object

}

This sets up a listener on the elements matched by the jQuery selector for
the given event type, like this:

canjs/public/concepts/concepts-test.js
var MyControl = can.Control.extend({
// Listen for click events on buttons
"putton click": function(el, evt) {
/!l ...

}I
// Listen for change events on checkboxes under elements with class="item"

".item :checkbox change": function(el, evt) {
/] ..
}
1)

Selectors only match within the control’s element, so you don’'t have to worry
about inadvertently picking up events from elements on other parts of the

page.

Using the data() Function to Retrieve a Model from the Page

When listening for a Ul event, the handler function receives the element and
the event object. For example, the user presses the Edit or Delete button next
to a bookmark. What we really need is the bookmark model object. Let’s see
how we retrieve it.

First, associate the model object with an element on the view using the data
Mustache helper, {{data "name"}}. Pick the name that you want, something
meaningful concerning the model object. In the bookmark list view, the
bookmark model object is associated with the element:

canjs/public/app/base/bookmark_list. mustache

{{#bookmarks}}
> <li {{data "bookmark"}}>
<button class="edit">Edit</button>
<button class="delete">Delete</button>
{{title}}
({{url}})

{{/bookmarks}}

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/canjs/public/concepts/concepts-test.js
http://media.pragprog.com/titles/7web/code/canjs/public/app/base/bookmark_list.mustache
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 2: Creating Controllers ¢ 51

To retrieve the model object, call element.data("name") in the control. The element
must be the one that has {{data "name"}}. In the bookmark list, the user clicks
on a button, so the element in the event-handling function is actually the
<button> element. We can get the parent element using jQuery’s closest
function, element.closest("li"). Finally, we get the bookmark object with
data("bookmark"):

canjs/public/app/base/app.js
// retrieve the bookmark object from the parent element
getBookmark: function(el) {
return el.closest("li").data("bookmark");
},

// handle the click on the delete button, destroy the bookmark

".delete click": function(el, evt) {
this.getBookmark(el).destroy();

}I

Using data is a simple and straightforward way of retrieving model objects
from the view layer.

Using an Observe to Communicate Between Controllers

To exchange events between controls while keeping them neatly decoupled,
use an observe. This is often called a state or an event hub. As we saw in
Figure 4, An observe keeps components decoupled, on page 42, the observe
acts as the communication bridge between controls so that they need no
direct reference to each other.

To trigger an event on the observe, call can.trigger(eventHub, "eventType", data). Let’s
put this and everything else we've learned into the control for the bookmark
list:

canjs/public/app/base/app.js
var BookmarkListControl = can.Control.extend({
view: "/app/base/bookmark list",

init: function(element, options) {
// save a reference to the eventHub observe
this.eventHub = options.eventHub;
// render the view on the element with the bookmarks as the model
var view = options.view || this.view;
element.html(view, this.getViewModel(options));
}

getViewModel: function(options) {

return {bookmarks:options.bookmarks};
1

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/canjs/public/app/base/app.js
http://media.pragprog.com/titles/7web/code/canjs/public/app/base/app.js
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 2. CanJS ¢ 52

// retrieve the bookmark object from the parent element
getBookmark: function(el) {
return el.closest("1i").data("bookmark");

}I

// handle the click on the delete button, destroy the bookmark

".delete click": function(el, evt) {
this.getBookmark(el).destroy();

}

// handle the click on the edit button, trigger an editBookmark event
".edit click": function(el, evt) {
can.trigger(this.eventHub, "editBookmark", this.getBookmark(el));

}
1)

As you can see, we handle the Edit button by triggering an editBookmark event
on the event hub object. The bookmark list does not need to know which
components are involved in editing a bookmark. Moreover, the components
listening to the editBookmark event do not need to know which parts of the
application trigger the event.

To use the BookmarkListControl that we've created, we need to pass it the page
element on which we want to attach and an options object with the event hub
observe and the list of bookmarks:

canjs/public/app/base/app.js
var App base = can.Construct.extend({
init: function() {
// Retrieve the bookmarks from the server
Bookmark.findAll1({}, function(bookmarks) {
// Create the event hub observe
var eventHub = new can.Observe({});
// Create the options object with the event hub and the bookmarks
var options = {eventHub:eventHub, bookmarks:bookmarks};

// Create the control, attaching it to the element on the page
// that has id="bookmark list container"
new BookmarkListControl("#bookmark list container", options);

// Create the bookmark form control (which we build in the

// next section.)
new BookmarkFormControl("#bookmark form container", options);

We've constructed the app with the bookmark list control. Notice that the
code also includes the bookmark form control. We’ll discuss how to create

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/canjs/public/app/base/app.js
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

\A/

Day 2: Creating Controllers ® 53

the form control in the next section, but for now, use the book’s sample code
bundle to run the app and try it out. To start the app, we can just call new
App_base(). Let’s do that within the main HTML page, where we have elements
to which the controls attach:

canjs/views/index.mustache
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Bookmarking App</title>
</head>

<body>
<h1>Bookmarking App</hl>
<hr>
<div id="bookmark form container"></div>
<div id="bookmark list container"></div>
</body>

<script src="/lib/jquery/jquery-1.10.2.js"></script>
<script src="/lib/canjs.com-1.1.8/can.jquery.js"></script>
<script src="/lib/canjs.com-1.1.8/can.construct.super.js"></script>
<script src="/lib/canjs.com-1.1.8/can.observe.validations.js"></script>
<script src="/lib/canjs.com-1.1.8/can.observe. list.js"></script>
<script src="/lib/canjs.com-1.1.8/can.view.modifiers.js"></script>
<script src="/lib/canjs.com-1.1.8/can.mustache.js"></script>
<script src="/app/base/app.js"></script>
<script>new App base();</script>

</html>

You can run the app by starting the Sinatra server from the canjs directory of
the sample code bundle:

$ ruby app.rb

Open http://localhost:4567 in your browser. The app should look like Figure 6, A
base version of the bookmarking application, on page 54. Try creating,
updating, and deleting bookmarks, and see how the bookmark list automati-
cally refreshes.

Let’s continue by having a closer look at how to build the bookmark form
control.

Creating a Form Control

To create and update bookmarks, we're using a form with text inputs for the
URL and the title. The view template for creating the form is straightforward:

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/canjs/views/index.mustache
http://localhost:4567
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

o

e

Chapter 2. CanJS ¢ 54

Bookmark:

URL:

Title:

Save

* | Edit
* | Edit
* | Edit
* | Edit

Bookmarking App

Clear

Delete
Delete
Delete
Delete

Pragmatic Bookshelf (http://pragprog.com)
CandJs (http://canjs.us)

Sinatra (hitp://sinatrarb.com)

AngulardS (http://angularjs.org)

Figure 6—A base version of the bookmarking application

canjs/public/app/base/bookmark_form.mustache

Bookmark:

<form action="/bookmarks" method="post">

<label>
URL:

<input type="text" name="url" value="{{url}}">

</label>
<label>
Title:

<input type="text" name="title" value="{{title}}">

</label>

<button class="save btn btn-primary" {{data "bookmark"}}>Save</button>
<button class="clear btn">Clear</button>

</form>

©® The form uses a bookmark as its model. The url and title inputs use the
bookmark’s fields as values, effectively prepopulating the form when
editing a bookmark.

©® The bookmark is associated with the Save button using the data helper.
We can readily retrieve the bookmark when we handle the Save button

click event.

Let’s build the bookmark form control, starting with a blank control that we’ll

fill out with properties:

canjs/public/app/base/app.js

var BookmarkFormControl = can.Control.extend({

1)

// Add properties here.

WWWIt'ebOOkS|nf0 report erratum

- discuss

http://media.pragprog.com/titles/7web/code/canjs/public/app/base/bookmark_form.mustache
http://media.pragprog.com/titles/7web/code/canjs/public/app/base/app.js
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 2: Creating Controllers ® 55

First, we’ll use a property to define Bookmark as the bookmark model to use so
that we can change it in the children of BookmarkFormControl. Similarly, we’ll
have a view property for the view template:

canjs/public/app/base/app.js
BookmarkModel: Bookmark,
view: "/app/base/bookmark form",

Next, let’s add functions to initialize the control and edit a bookmark:

canjs/public/app/base/app.js
init: function(element, options) {
this.BookmarkModel.bind("created", function(evt, bookmark) {
options.bookmarks.push(bookmark);

1)
this.clearForm();

1

editBookmark: function(bookmark) {
var view = this.options.view || this.view;
this.element.html(view, bookmark);

bookmark.bind("destroyed", this.clearForm.bind(this));
1
clearForm: function() {

this.editBookmark(new this.BookmarkModel());
}

eventHub} editBookmark": function(eventHub, evt, bookmark) {
this.editBookmark(bookmark);
1

O By binding to the Bookmark model’s "created" event, we get notified when a
bookmark is created by the form, at which point we add the bookmark
to the bookmark list.

©® We associate a bookmark object to the form by rendering the view with
the bookmark as a model. Then we listen for the bookmark being
destroyed, in which case we clear the form. This handles the case where
a user edits a bookmark but then decides to delete it instead.

© To clear the form, we associate a new, blank bookmark object to the form.

O Remember how we triggered an "editBookmark" event from the bookmark
list control? This is how we listen for that event in the form control. The
{eventHub} syntax listens for events on the options.eventHub object. The
function receives the object on which the event occurred, the event object,
and any data that was sent along with the event. In our case, that data
is the bookmark to be edited. We simply use our editBookmark function to
associate the bookmark with the form.

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/canjs/public/app/base/app.js
http://media.pragprog.com/titles/7web/code/canjs/public/app/base/app.js
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 2. CanJS * 56

We’ll also add handlers to save the bookmark:

canjs/public/app/base/app.js

".save click": function(el, evt) {
evt.preventDefault();
var bookmark = el.data("bookmark");
bookmark.attr(can.deparam(el.closest("form").serialize()));
this.saveBookmark(bookmark) ;

1

saveBookmark: function(bookmark) {
bookmark.save(this.clearForm.bind(this), this.signalError);

1

signalError: function() {
alert("The input is not valid.");

}I

©® When saving the bookmark, we retrieve the bookmark model with the data
function. We need to set the attributes from the values that the user
entered in the form. We can do that without manually going over every
input field on the form by calling serialize on the form object and using
can.deparam. This creates an object that we can pass to attr to set the
attributes of the model from the form’s input values. This works because
the name on each input matches the bookmark’s attribute.

® To save the bookmark, we call the save function with two parameters: a
callback for success and another in case of failure. On success, we clear
the form, readying it for the next bookmark. On failure, we alert the user.

Finally, handling the clear button simply clears the form:

canjs/public/app/base/app.js

".clear click": function(el, evt) {
evt.preventDefault();
this.clearForm();

}

Adding the bookmark form control to the app works the same way as the
bookmark list control—create an element on the page and instantiate the
control, passing the element and the same options object:

canjs/views/index.mustache
<div id="bookmark form container"></div>

canjs/public/app/base/app.js
new BookmarkFormControl("#bookmark form container", options);

Congratulations. This completes our first iteration of the bookmark application.
Go ahead and experiment with it!

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/canjs/public/app/base/app.js
http://media.pragprog.com/titles/7web/code/canjs/public/app/base/app.js
http://media.pragprog.com/titles/7web/code/canjs/views/index.mustache
http://media.pragprog.com/titles/7web/code/canjs/public/app/base/app.js
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 3: Working with Models * 57

What We Learned on Day 2

Today was all about CandS controls. We learned how to combine model and
view into a control that attaches to a page element. Controls handle Ul events
in listener functions, which easily retrieve model objects. We can build com-
ponents that change model attributes and trigger events on observes, keeping
with the core principle of building modules that are cleanly independent of
each other.

We also built a first iteration of a front end for our bookmarking application.
We have a form for creating and editing bookmarks, a model that synchronizes
with the server, and a list that updates automatically. Tomorrow we’ll learn
more ways of working with models by adding features such as validation,
tags, and filtering.

Day 2 Self-Study
Find:

e Documentation for templated event handlers, which is another way to
listen for events in CandJS controls

e An example of using the on() function on can.Control.prototype to rebind event
handlers to another model object

Experiment with the base application from the book’s source code.
Explain why we need bind(this) in bookmark.bind("destroyed", this.clearForm.bind(this));
in the editBookmark

function. What happens if we just write bookmark.bind("destroyed", this.clearForm);
instead?

Change the rendering of the bookmark list view. For example, use icons for
Edit and Delete. How does that change the event handling in the bookmark
list control?

Day 3: Working with Models

In our third and final day of learning CanJS, we’ll discover more ways of
working with observes and models. Remember that they are two of the focal
points of a CandS application. Drive the model and let views update them-
selves. Trigger events on observes and handle them in controls.

Let’s unravel how we can mold models to different requirements by creating
filtered lists and by adding helper functions. We’'ll start with some validation
on the bookmark model.

www.it-ebooks.info

http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 2. CanJS ¢ 58

Adding Validation

In our Sinatra web application, each bookmark must have a title and a URL.
We also check the URL’s format. Server-side validation is nice—and essen-
tial—but client-side validation gives the user more immediate feedback and
saves unnecessary client-server traffic.

We can add validation to the Bookmark model by calling the validate methods
from the init function:

canjs/public/app/validation/app.js
// Extend the base Bookmark model
var ValidatingBookmark = Bookmark.extend({
init: function() {
var urlPattern = new RegExp(
“(http|https) :\\/\\/(\\w+:{0, I}V \w*@) 2(\\S+) (: [0-9]+)?" +

SOV (DNt e 24=85%@1\ -\ \/]))?");
// Add validations
this.validatePresenceOf(["url", "title"]);
this.validateFormatOf("url", urlPattern);
}
oA
1)

This requires the URL and the title using validatePresenceOf. The URL’s format
is verified with validateFormatOf and a regular expression. Other validate methods
include the following:

e validateInclusionOf: Constrains an attribute to an array of valid values
e validateLengthOf: Sets a minimum and/or maximum length of an attribute

e validateRangeOf: Sets a minimum and/or maximum numeric value of an
attribute

e validate: Sets a custom validation—you provide a function that accepts the
value and attribute name to validate. Then you make the function return
null if the value is valid, or an error message otherwise.

With that in place, we can run the validations on a model instance. Calling
errors() obtains a key-value object where the key is the attribute name and the
value is the error message. Using errors(attrName) instead gets a list of error
messages specifically for attrName. In both cases, we’ll get nothing if the object
is valid.

For the bookmark form control with validation, we’ll start by extending the
previous control:

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/canjs/public/app/validation/app.js
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 3: Working with Models * 59

canjs/public/app/validation/app.js

// Extend the base bookmark form control

var ValidatingBookmarkFormControl = BookmarkFormControl.extend({
// Add properties here.

b

The first thing we’ll do is override the bookmark model to use the one with
validation:

canjs/public/app/validation/app.js
BookmarkModel: ValidatingBookmark,

Next, we’ll override the editBookmark function:

canjs/public/app/validation/app.js
editBookmark: function(bookmark) {
this. super(bookmark);
var self = this;
bookmark.bind("change", function() {
var errorMessage = bookmark.errors() ?
can.map(bookmark.errors(), function(message, attrName) {

return attrName + " " + message + ". ";
}).join("")

nn,
’

self.element.find(".text-error").html(errorMessage);
b
},

After calling editBookmark on the parent, we listen for attribute changes with
the bind function. When a change occurs, we call errors() and build an error
message or have it be blank if no errors are found. Then we display the error
message on the page in the .text-error element. Finally, we override the saveBook-
mark function to first check for errors before saving the bookmark:

canjs/public/app/validation/app.js
saveBookmark: function(bookmark) {
if (!bookmark.errors()) {
this. super(bookmark);
}
}

In the bookmark form template, we add the .text-error element after the last
input in the form:

canjs/public/app/base/bookmark_form.mustache
<label>
Title:
<input type="text" name="title" value="{{title}}">
</label>
» <div class="text-error"></div>

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/canjs/public/app/validation/app.js
http://media.pragprog.com/titles/7web/code/canjs/public/app/validation/app.js
http://media.pragprog.com/titles/7web/code/canjs/public/app/validation/app.js
http://media.pragprog.com/titles/7web/code/canjs/public/app/validation/app.js
http://media.pragprog.com/titles/7web/code/canjs/public/app/base/bookmark_form.mustache
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 2. CanJS * 60

Now when the URL or title is not valid, an error message appears as shown
here:

Bookmark:

URL: | invalid

Title: Pragmatic Bookshelf

url is invalid.
Save Clear

Figure 7—Showing a validation error message

We now have a nicely validated form. Let’s continue improving the application.
Our Sinatra server handles the association of tags to bookmarks. We’ll add
an input field for entering tags in the bookmark form.

Implementing Tag Handling

The server returns a taglist attribute on each bookmark with the list of tags.
For entering tags, however, a user can just enter tags into a single text box
separated by commas. We can create a tagsAsString attribute on the bookmark
model and handle the conversion to and from taglist as follows:

canjs/public/app/tadfilter/app.js
// Extend the validation bookmark model
var TaggedBookmark = ValidatingBookmark.extend({
init: function() {
// Initialize tagsAsString from taglList
var taglList = this.attr("taglList");
this.attr("tagsAsString", taglList.join(", "));

// Listen for changes on tagsAsString and set taglList
this.bind("tagsAsString", this.onTagsAsStringChange);
},
onTagsAsStringChange: function(evt, tagsAsString) {
// Split the string by comma and trim whitespace
var trimmed = can.map(tagsAsString.split(","), can.trim);

// Ignore empty tags, for example if the user entered a,,,b
var byNotEmpty = function(tag) {
return tag.length > 0;
+
var notEmpty = can.filter(trimmed, byNotEmpty);
var taglList = this.attr("taglList");

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/canjs/public/app/tagfilter/app.js
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

YYVYY

\AAA/

Day 3: Working with Models ® 61

// Update the tag list to match the ones entered by the user
tagList.attr(notEmpty.sort(), true);
}
1)

We've added a new attribute to the bookmark model, tagsAsString. It is initialized
at instantiation time from the value of taglist. By binding an event handler,
we set the value of tagList when tagsAsString changes.

Now we can add a text input to our bookmark form template and bind the
input to the tagsAsString attribute:

canjs/public/app/tagfilter/bookmark_form.mustache
<label>
Title:
<input type="text" name="title" value="{{title}}">
</label>
<label>
Tags: (separated by commas)
<input type="text" name="tagsAsString" value="{{tagsAsString}}">
</label>

Because our bookmark form control binds all form inputs to corresponding
model attributes, we don’t have to do anything else to save the tags.
Remember that we used attr, can.deparam, and serialize to perform the binding of
values from the form to the bookmark:

bookmark.attr(can.deparam(el.closest("form").serialize()));

Displaying the tags in the bookmark list is easy too:

canjs/public/app/tadfilter/bookmark_list. mustache

{{#bookmarks}}
<li {{data "bookmark"}}>
<button class="edit">Edit</button>
<button class="delete">Delete</button>
{{title}}
({{url}}) |
{{#tagList}}
{{this}} |
{{/taglist}}

{{/bookmarks}}

Next to each bookmark, a simple iteration shows a list of tags. All these tags
are clickable, and the links have a reference to the associated tag with {{data
"tag"}}. A nice feature would be to filter the bookmark list when a user clicks
on a tag. Let’s do it!

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/canjs/public/app/tagfilter/bookmark_form.mustache
http://media.pragprog.com/titles/7web/code/canjs/public/app/tagfilter/bookmark_list.mustache
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 2. CanJS ® 62

Filtering Bookmarks

CanJdS makes filtering a breeze with the filter function that it adds to
can.Observe.List, available by loading can/observe/list.js. By calling filter and passing
a function that returns true or false to determine which bookmarks to keep,
we get back a filtered bookmark list that we can then pass to our bookmark
list control.

First, we create a filter object, which is an observe with a filter tag and a filter
function:

canjs/public/app/tadfilter/app.js

var filterObject = new can.Observe({
filterTag: "" // the filter tag is initially blank

1)

var filterFunction = function(bookmark) {
var taglList = bookmark.attr("taglList");
var filterTag = filterObject.attr("filterTag");
var noFilter = (!filterTag) || (filterTag.length == 0);
var taglListContainsFilterTag = taglList && tagList.indexOf(filterTag) > -1;
return noFilter || tagListContainsFilterTag;

+

The filter function returns true or false to indicate whether the bookmark should
be included in the list given the current filter tag. The function returns true if
there is no filter tag or if the bookmark’s tag list includes the filter tag.

Next, we can create a filtered bookmark list by calling filter and passing it our
filter function. We then pass the filtered list to the bookmark list control:

canjs/public/app/tadfilter/app.js
TaggedBookmark. findA11({}, function(bookmarks) {
var eventHub = new can.Observe({});
// Pass filterObject to the controls
var options = {eventHub:eventHub, bookmarks:bookmarks,
filterObject:filterObject};

// Create the filtered bookmark list
var filtered = bookmarks.filter(filterFunction);

// Create an options object with the filtered bookmark list
var filteredOptions = can.extend({}, options, {bookmarks:filtered});
// ...
// Create the bookmark list control with the filtered bookmark list
new TagFilterBookmarkListControl("#bookmark list container", filteredOptions);
// ...
1)

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/canjs/public/app/tagfilter/app.js
http://media.pragprog.com/titles/7web/code/canjs/public/app/tagfilter/app.js
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 3: Working with Models ® 63

Finally, we can filter the bookmark list when a user clicks on a tag. All we
have to do is extend the bookmark list control, overriding the view so that we
display the tag list with the links and adding a listener that responds to clicks
on the links. The listener retrieves the tag and sets the filter on the filter
object:
canjs/public/app/tadfilter/app.js
var TagFilterBookmarkListControl = BookmarkListControl.extend({
// Use the bookmark list view with the tag links
view: "/app/tagfilter/bookmark list",
// Listen for clicks on tag links, set filterTag on filterObject
"a.tag click": function(el, evt) {
var tag = String(el.data("tag"));
this.options.filterObject.attr("filterTag", tag);

}
1)

Notice how again, because we are using an observe as the filter object, the
code remains neatly decoupled. As depicted in the following diagram, the
control only needs to set the filter tag on the filter object. The control does
not need any reference to the bookmark list, nor do we need to do any manual
refreshing of the view. The bookmark list automatically updates to the new
filter.

Control filterFunction View

kh:nges/ses&es /displays

filterObject Filtered
Observe Bookmark List

Figure 8—Using an observe to filter the bookmark list

We can now add a tag filter control to display the current filter and a link to
clear it and show all bookmarks. The control displays the view with the filter
object as a view model and resets the filter tag when the user clicks on the
clear link:

canjs/public/app/tadfilter/app.js
var TagFilterControl = can.Control.extend({
defaults: {
view: "/app/tagfilter/tag filter"
}
oA

init: function(element, options) {

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/canjs/public/app/tagfilter/app.js
http://media.pragprog.com/titles/7web/code/canjs/public/app/tagfilter/app.js
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 2. CanJS ¢ 64

this.element.html(options.view, options.filterObject);
},
"a.clear click": function(el, evt) {
this.options.filterObject.attr("filterTag", "");
}
b

Again, the control only has a reference to the filter object and only needs to
reset the filterTag attribute to clear the filter. Depending on the current filter,
the view displays either “Filtered by tag,” with a link to clear the filter, or “All
bookmarks™:

canjs/public/app/tadfilter/tag_filter.mustache
<h3>
{{#if filterTag}}
Filtered by tag: {{filterTag}}
| Clear filter
{{else}}
All bookmarks
{{/if}}
</h3>

We add an element on the page where we want to display the filter control:

canjs/views/index.mustache

<div id="bookmark_form_container"></div>

<div id="filter container"></div>

<div id="bookmark list container"></div>
<l-- ... -->

Finally, we add the filter control to the app by instantiating the control and
associating it to the element that we added on the page:
canjs/public/app/tadfilter/app.js
TaggedBookmark. findAll({}, function(bookmarks) {

var eventHub = new can.Observe({});

// Pass filterObject to the controls

var options = {eventHub:eventHub, bookmarks:bookmarks,

filterObject:filterObject};

// ...
new TagFilterControl("#filter container", options);

3

Voila! That was easy. As you can see, controls give us a nice way of organizing
functionality into self-contained, narrowly focused modules. We have book-
marks where each has its own list of associated tags. We've seen how we can
create a filtered list by tag. From the original bookmark list, we can also create
another list: the list of unique tags, each with the number of bookmarks that
are associated with the tag.

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/canjs/public/app/tagfilter/tag_filter.mustache
http://media.pragprog.com/titles/7web/code/canjs/views/index.mustache
http://media.pragprog.com/titles/7web/code/canjs/public/app/tagfilter/app.js
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 3: Working with Models ® 65

Creating a Tag List

We've learned how to create a filtered list of bookmarks using the filter function.
We can also extend can.Model.List to synthesize the data in the list. What we’ll
do is go through the bookmark list and construct a list of unique tags with
the number of bookmarks for each tag. We’'ll use this data to display the tag
list shown on the right side of the page in Figure 5, The complete CanJS
bookmarking application, on page 44.

To build the list of tags, we iterate over the bookmarks and keep track of tags
with bookmark counts. Then we sort the tags before returning the tag list:

canjs/public/app/tadfilter/app.js
var TaggedBookmark = ValidatingBookmark.extend({
// ...
1)
TaggedBookmark.List = ValidatingBookmark.List.extend({
// Returns a list of tags, each with label and bookmarkCount
tags: function() {
// Keep track of how many bookmarks per tag
var bookmarkCounts = {};

// Loop through each bookmark in the list
this.each(function(bookmark) {
var tagList = bookmark.attr("taglList");

if (taglList) {
// Loop through each tag associated to the bookmark
tagList.each(function(tag) {
var existing = bookmarkCounts[tag];
// Either increase the existing count, or initialize to 1
bookmarkCounts[tag] = existing ? existing + 1 : 1;
1
}
1)

// The keys in bookmarkCounts are the tag labels
var labels = Object.keys(bookmarkCounts);

// Sort the tag labels
labels.sort();

// Return a list of tags with label and bookmark count
return can.map(labels, function(label) {

return {label:label, bookmarkCount:bookmarkCounts[label]};
1)

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/canjs/public/app/tagfilter/app.js
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 2. CanJS ¢ 66

What we've effectively done here is add a tags attribute to the bookmark list
instead of to each individual bookmark. This makes the tag list view very
simple: iterate over the tags attribute of the bookmark list object, displaying
each tag with its label and bookmark count:

canjs/public/app/tadfilter/tag_list.mustache
Tags:

<!-- Use the dot notation to get the tags attribute -->
{{#bookmarks.tags}}

<a class="tag" href="#" {{data "tag"}}
>{{label}} ({{bookmarkCount}})

{{/bookmarks. tags}}

The tag list control simply displays the view and responds to link clicks, setting
the tag filter on the filter object:

canjs/public/app/tadfilter/app.js
var TagListControl = can.Control.extend({
defaults: {
view: "/app/tagfilter/tag list"
b
oA
init: function(element, options) {
this.eventHub = options.eventHub;
var model = {bookmarks:options.bookmarks};
element.html(options.view, model);
},
"a.tag click": function(el, evt) {
var tag = el.data("tag");
this.options.filterObject.attr("filterTag", tag.label);
}
1)

Gathering the list of unique tags from all the bookmarks, each tag indicates
how many bookmarks have the tag. Thanks to live binding, the tag list and
the bookmark counts automatically update when a bookmark’s tags are
changed, when a bookmark is created, or when one is deleted. Try it out!

Managing the Browser’s Location with Routing

When a user clicks on a tag link, the bookmark list filters by that tag. Clicking
on another tag link filters it again. What happens if a user clicks the browser’s
Back button? It would be nice if we showed the previously filtered bookmark
list. Let’s make it happen.

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/canjs/public/app/tagfilter/tag_list.mustache
http://media.pragprog.com/titles/7web/code/canjs/public/app/tagfilter/app.js
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 3: Working with Models * 67

can.route

can.route is a special can.Observe that is associated with the browser’s hash—that
is, the part at the end of the URL starting with #. When you set an attribute
on can.route, the hash is modified. Conversely, when the hash is changed, the
attributes of can.route are updated:

canjs/public/concepts/concepts-test.js

location.hash = "#!action=filter"

can.route.attr("action"); // returns "filter"
can.route.attr("tag", "Frameworks");

location.hash; // returns "#!&action=filter&tag=Frameworks"

By being able to listen for changes on the browser’s hash, we can make single-
page JavaScript applications that handle the use of the browser’s Back and
Forward buttons without reloading the whole page. We can even make pages
of the application bookmarkable!

Since can.route is an observe, controls can listen to changes and react appro-
priately. To listen to can.route, use the special string "<pattern> route" syntax as
the event handling string, and use a function that receives a single parameter.
The <pattern> is a URI pattern much like those we used in Sinatra, like filter/:tag:
canjs/public/app/routing/app.js

var RoutingControl = can.Control.extend({

"filter/:tag route": function(data) {
this.options.filterObject.attr("filterTag", data.tag);

}
1)

This handles hash values such as #!filter/frameworks and filters the bookmark
list by the given tag, Frameworks. The event handling function receives a single
object that contains attributes matching the variable parts of the URI pat-
tern—those that start with :.

Notice that we also get nicer-looking URIs: #!filter/frameworks instead of
#laction=filter&tag=Frameworks.

Two more important details about routes:

e To handle an empty hash (#, #!, or no hash at all), just use route, with no
URI pattern, in the control.

e To force a hash change event when the app starts, trigger a hashchange
event in the control’s init function. This effectively handles browser book-
marks or entering a URL in the browser’s location bar.

With that in mind, here is the routing control:

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/canjs/public/concepts/concepts-test.js
http://media.pragprog.com/titles/7web/code/canjs/public/app/routing/app.js
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 2. CanJS * 68

canjs/public/app/routing/app.js
var RoutingControl = can.Control.extend({
init: function() {
$(window) .trigger("hashchange");
i
"route": function() {
this.options.filterObject.attr("filterTag", "");
+
"filter/:tag route": function(data) {
this.options.filterObject.attr("filterTag", data.tag);
}
b

We pass the same options object as we've been passing to other controls;
namely, it contains the filterObject. For the control’s element, we don’t need a
particular element on the page. We simply use document.body:

canjs/public/app/routing/app.js
new RoutingControl(document.body, options);

Now going to a URI such as #lfilter/frameworks filters the bookmark list by the
Frameworks tag. We can take advantage of this by having links that point to
hashes instead of handling clicks in the controls. For example, here are the
links in the tag list:

canjs/public/app/routing/tag_list.mustache
Tags:

{{#bookmarks.tags}}

{{label}} ({{bookmarkCount}})

{{/bookmarks. tags}}

The tag list control no longer needs the a.tag click function at all. The links
cause a hash change that is handled by RoutingControl.

A link pointing to #! clears the filter:

canjs/public/app/routing/tag_filter.mustache
<h3>
{{#if filterTag}}
Filtered by tag: {{filterTag}}
| Clear filter
{{else}}
All bookmarks
{{/if}}
</h3>

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/canjs/public/app/routing/app.js
http://media.pragprog.com/titles/7web/code/canjs/public/app/routing/app.js
http://media.pragprog.com/titles/7web/code/canjs/public/app/routing/tag_list.mustache
http://media.pragprog.com/titles/7web/code/canjs/public/app/routing/tag_filter.mustache
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 3: Working with Models * 69

We're using a different approach to trigger filtering when the user clicks on
a tag. Instead of having controllers listen for the click and trigger the filter,
we’re just changing the hash and letting the routing controller handle the
event.

Another nice routing feature is that a user can bookmark a page. For example,
a user might often look at the bookmark list filtered by a particular tag and
want to bookmark that to go directly to the filtered list.

What We Learned on Day 3

Today we explored more ways of using CanJS observes and models: we added
validation, tag lists, and filtering. Most importantly, we learned how we can
extend models and add functionality that controls and views can use. In
keeping with the “Update the observe and let everything else refresh” tenet,
we built a filter object that any component can change. The filtered bookmark
list automatically updates.

Finally, we learned a different way of triggering events using can.route. This
gives us the possibility of managing browser navigation, bookmarks, and
manually entered URLs within a single-page CanJS application.

Day 3 Self-Study
Find:

e The list of additional CandJS utilities and plugins that you can use in your
projects

e EJS, the other templating engine supported by CandS—contrast with
Mustache.

* can.compute and how it can bring live binding to computed values

e Explain why the true flag is needed in tagList.attr(notEmpty.sort(), true); when
updating the tag list to match the ones entered by the user. What happens
if you omit the flag?

® Add a sort function on the bookmark list so that you always display a
sorted list of bookmarks.

¢ Finish modifying the routing version of the bookmarking application by
changing the bookmark list view to use links with hashes.

¢ Redo one of the views to use EJS.

www.it-ebooks.info

http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

An

Chapter 2. CanJS ¢ 70

Implement two-way live binding between views and models. That is, when
you enter a value in a form input field, the corresponding attribute on
the model automatically gets set to the new value.

Interview with Justin B. Meyer, Creator of CanJS
Us: What made you decide to create CanJS?

Justin: In 2006, Brian Moschel and I set out to build a service-as-a-service plat-
Jorm. With a GUI, developers could create a rest service layer and build the UI with
JavaScript. To power it, we built the first version of JavaScriptMVC, which might
have been the first framework with dependency loading, event delegation, declarative
event binding, RESTful models, and templates. At that point, our company changed
direction and we became a full-time JavaScript consulting company—Bitouvi.

CanJs is derived from JavaScriptMVC. We released CanJS because JavaScriptMVC’s
size was a barrier for entry to CanJS’s greatness. So we focused on creating a
small, tight core with only the essential features.

Us: What do you feel are the best features of CanJS? What makes CanJS unique?

Justin: I'll answer these together because there’s so much overlap between what
sets CanJS apart and what are the best features of CanJs.

CandJS is the best of the Backbone and Ember worlds and largely is better at both.
Like Backbone, it’s small and relatively unassuming with regard to the structure
of your application. But CanJS contains the modern features of Ember, like live
binding and computed values. Yet CanJS’s live binding is faster, its Mustache
implementation more accurate, and its computed values implementation prettier.

For example, Ember malces you write which properties you are binding to:

var fullName = Ember.computed(function() {
return this.get('first') + " " + this.get('last');
}).property('first', 'last');

While you can just write them like this with CanJS:

var fullName = can.compute(function() {
return me.attr('first') + " " + me.attr('last');
});

But CandJS’s can-do-it-ness doesn't stop there. The framework puts a special
emphasis on preventing memory leaks by providing templated event handlers and
a reference counting model store. It works directly with jQuery, Zepto, MooTools,
YUI, and Dojo, allowing you to use a can.Control to bind to widgets made with these
libraries. And CanJS provides a large collection of first-party plugins.

Us: What do you have in mind for the future of CanJS?

Justin: One of CanJS’s great strengths is that Bitovi is fully committed to it as a
technology. Someone using JavaScriptMVC 1.0 five years ago has an upgrade path

www.it-ebooks.info

http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Wrapping Up ® 71

to all the great modern features in today’s CanJS. CanJS will always be adapting,
improving, and adding new features.

There are currently four initiatives underway for CanJs, three of which I can talk
about.

First, libraries lilke AngularJS and Knockout have made HTML-centric development
popular again. Although this approach has some disadvantages—for example it’s
harder to weave in multiple behaviors on one element—using controls produced
like Web Components is conceptually easier. For 1.2, we’re looking to add can.Com-
ponent. It will unify a custom element tag, a can.Control, a template, and a can.Observe.

Second, we’ve been working on a super-model plugin. For many CRUD situations,
it will provide drop-in client-side caching, live updating, and instantaneous writes.’

Third, we’re completely overhauling CanJS’s website and documentation. We're
aiming to have the best documentation of any major JS framework.

Wrapping Up

We have seen how CandS offers a really nice way of structuring a JavaScript
application into models, views, and controllers. Models are not just data
containers; they drive the application by signaling changes to other parts of
the application and by synchronizing with the server. Views, with the simplic-
ity of the Mustache syntax, are easy to read, and they automatically update
themselves to reflect model changes. Controllers combine models and views
into components that handle Ul events.

CanJS’s Strengths

CandsS gives an excellent balance of functionality and transparency. That is,
you get great features without sacrificing clarity: your code remains
straightforward JavaScript, with no black magic going on.

The library is lightweight without sacrificing features. You get support for
exchanging data with the server via Ajax, model-view live binding, controls
with scoped Ul event handling, and several plugins for many other useful
functionalities.

Finally, CanJS is modular: it’s not an all-or-nothing proposition. The core
contains functionality that most applications need, and the rest is separated
into add-ons that you can include as needed.

9. http://bitovi.com/blog/2013/03/weekly-widget-instantaneous-web-apps.html

www.it-ebooks.info

http://bitovi.com/blog/2013/03/weekly-widget-instantaneous-web-apps.html
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 2. CanJS ¢ 72

CanJS’s Weaknesses

The decision to keep CandJS straightforward and transparent means that you
may end up having to write more code than with other frameworks that rely
more heavily on conventions and task automation. Whether this is undesirable
is a matter of taste; some developers want to get things done with the least
amount of code possible, while others prefer not to use a framework that does
too much.

Final Thoughts

It's a fantastic time to be a JavaScript developer. There is no shortage of
exciting frameworks, and CandJS is a solid contender. Development is very
active, with new releases coming out frequently. The community is friendly
and helpful, and newcomers often say that after learning CandJS, it becomes
their framework of choice.

www.it-ebooks.info

http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

CHAPTER 3

AngularJS

Do you remember the game Simon Says? The person leading the game says,
“Simon says jump up and down,” and all the players have to jump up and
down. However, if the leader says to do something without prefixing with
“Simon says,” players have to refrain from doing the action. What makes the
game fun for everyone is that the focus is on either following the instructions
or not moving, rather than on the physical ability of doing the prescribed
action. How you perform an action does not matter; what you do (move or
stay still) is what keeps you in the game or gets you eliminated.

AngularJs is like a game of Simon Says.' As the instructor, you describe what
to do without needing to know the details about how the actions are performed.
As such, AngularJS applications are developed in a declarative manner.
Cands, the framework we discussed in the previous chapter, was an example
of a more imperative approach, which tends to be more explicit about how
the program works. Which approach is better? Just as in the Vim versus
Emacs debate,” that’s for you to decide. The best tools in the universe are
those that make you the most productive.

The Big Picture

AngularJS is a model-view-controller, client-side JavaScript framework that
works especially well with a server that offers a REST/JSON interface.
Dependency injection, HTML directives, and two-way binding are just some
of the features that make AngularJS compelling.

1. http://angularjs.org
2. http://en.wikipedia.org/wiki/Editor war

www.it-ebooks.info

http://angularjs.org
http://en.wikipedia.org/wiki/Editor_war
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 3. AngularJS * 74

AngularJs is a framework of many moving parts. Before diving into the details,
let’s look at the big picture. The following diagram illustrates the features
that we’ll discover on our AngulardS adventure:

Server

A

Ajax

Module

Services

Custom

$routeProvider| |$resource .
Service

A

Dependency
Injection

Directive Controller Filter

two- |way /binding
HTML
View

Figure 9—Overview of some AngularJS concepts

In AngularJS, a module is the starting point of your application. Encompassed
within a module are components, such as services, controllers, directives,
filters, and others.

AngularJsS features dependency injection, which automatically wires up blocks
of code, or services. You can define services and give them names and then
use these names to indicate dependencies. AngularJS takes care of connecting
services together. This gives you a nice way of keeping your code loosely
coupled.

www.it-ebooks.info

http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 1: Using Dependency Injection ¢ 75

AngularJS also provides several services out of the box. A resource is a built-
in service that synchronizes models with the server. A route provider lets you
define URIs for navigating within your application without refreshing the
whole page.

Controllers prepare the model for the view and make callback functions
available for the view to call. You write controllers to provide the connections
between the model and the view. Controllers are also the place where you
handle view events.

Directives are special attributes on HTML elements to manipulate the DOM
and render dynamic values. AngularJS has many built-in directives, and you
can also write your own. The same goes for filters, which are functions that
directives can use to filter data within a view.

Two-way live binding is another nifty AngularJS feature that automatically
refreshes views when models change. Conversely, changes in the view also
automatically update the model.

Day 1 will be dedicated to dependency injection, services, resources, and
automated tests. On Day 2, we’ll cover controllers, views, directives, and two-
way live binding. Day 3 wraps up the chapter with data manipulation using
filters and browser navigation support with AngularJS’s route provider.

We have many exciting features to explore, so let’s get started.
Day 1: Using Dependency Injection

Today we begin learning about AngulardS by looking at dependency injection
and services. After discussing those foundations, we’ll jump right into building
a sample application. We'll define resources that talk to the server and even
write automated tests that exercise our code. We've got a big day ahead of
us!

One of the most distinguishing features of AngularJS is its dependency
injection container. Without it, direct function calls between components tie
them together for life. Instead, you define services and indicate what other
services are needed by each service, keeping a clean separation of concerns.

Dependency injection goes a long way in keeping your code modular and
testable. Each service is a block of code—a module, if you will—that indicates
its dependencies but is blissfully unaware of how those dependencies are
created. They are just passed in to the service as function arguments. A service
fills a role for a client, and the client doesn’t care which service does the work
so long as the role is filled.

www.it-ebooks.info

http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 3. AngularJS ¢ 76

That is also tremendously helpful in making the code testable. When you are
testing a service, you want to test its capabilities, not those of its dependencies.
To take the dependencies out of the equation and focus only on the service
being tested, you can pass mock objects that just act as you need them to
for the purposes of the test. As far as the service is concerned, a test is just
another one of the service’s clients.

Let’s have a quick look at what all this means in terms of code. Say you have
a service, MyService, that needs another service, MyHelper, and calls the helper’s
doSomething function. In the following code, MyService takes care of creating an
instance of MyHelper:

angularjs/public/concepts/concepts-test.js
var MyService = function() {

var myHelper = new MyHelper();

var result = myHelper.doSomething("test");

// ...
}i
The problem with this code is that it’s not easily testable. The MyService function
uses an instance of the real MyHelper class, along with everything that MyHelper
might bring along. That makes it hard to write a test that focuses solely on
what MyService is supposed to accomplish.

Using dependency injection, MyService is no longer responsible for creating an
instance of MyHelper. Instead, the instance of MyHelper is passed in as an argu-
ment to the MyService function:

angularjs/public/concepts/concepts-test.js
var MyService = function(myHelper) {

var result = myHelper.doSomething("test");

/] ...
¥
That makes MyService simpler and much easier to test. We can create a separate
instance of MyHelper that responds to doSomething in whatever way we need for
the purposes of the test and then pass it to the MyService function. In the
application code, an instance of the real MyHelper class would be passed to
MyService. AngularJS takes care of that with dependency injection.

Now that we've seen how dependency injection makes code more modular
and testable, let’s turn it up a notch and create an AngularJS application.
We'll get a sneak preview of how the different pieces of an AngularJdS applica-
tion fit together.

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/angularjs/public/concepts/concepts-test.js
http://media.pragprog.com/titles/7web/code/angularjs/public/concepts/concepts-test.js
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 1: Using Dependency Injection ® 77

Hello, AngularJS

Dependency injection and two-way live binding are essential to any AngulardS
application. Let’s set up a basic example to see it all in action. By all means,
go ahead and use this application as a starting point to experiment with your
own code.

Open the angularjs/public folder from the sample code bundle. You will find a file
named index-basic.js that contains the following JavaScript code:

angularjs/public/index-basic.js

O var app = angular.module("BasicApp", [1);
® app.service("greeter", function() {
this.name = "";
this.greeting = function() {
return (this.name) ? ("Hello, " + this.name + "!") : "";
}i
1)

© app.controller("BasicController", function($scope, greeter) {
$scope.greeter = greeter;
1)

Let’s break it down piece by piece.

© The call to angularmodule creates your AngularJS application. You choose
a name, such as BasicApp in this example, and indicate the list of required
plugins or just an empty list, [].

@® Next, you call functions on the returned value (the variable called app
here) to define services, controllers, and so on. We've defined a service
named greeter that has a name property and a greeting function that returns
a greeting based on the name.

© Finally, we have a controller named BasicController that needs the $scope and
our greeter service. The $scope is provided by AngularJS to make objects
available to the view. In general, AngularJS-provided objects have the $
prefix to differentiate them from your own code. Now we've defined a greeter
property on the scope to be our greeter service. This gives the view access
to greeter.

Next, let’s look at the view. Open the file named index-basic.html. It contains the
following HTML code:

angularjs/public/index-basic.html

<!doctype html>

© <html lang="en" ng-app="BasicApp">
<head>

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/angularjs/public/index-basic.js
http://media.pragprog.com/titles/7web/code/angularjs/public/index-basic.html
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 3. AngularJS * 78

<meta charset="utf-8">
<title>Angular]S Basic</title>

</head>
<body ng-controller="BasicController">
<div>
What is your name?
<input type="text" ng-model="greeter.name">
</div>
<div>
{{greeter.greeting()}}
</div>
</body>
<script src="lib/angularjs/1.0.8/angular.js"></script>
<script src="index-basic.js"></script>
</html>

It looks a lot like plain HTML. What makes this an AngularJS view are the
attributes that start with ng- and the code between the double braces, {{ }}.
Let’s look at each piece in more detail:

© The ng-app attribute on the <html> element page starts up the application.
Notice that the value of the attribute matches the name that we gave our
application, BasicApp, when we called the angularmodule function in the
JavaScript code.

@® Next, we use the ng-controller attribute on the element of the page where we
want to use a controller, BasicController in this case. A page can have multiple
controllers; we don’t have to worry about conflicts between two controllers
because each one is confined to the corresponding element with the
ng-controller attribute and the element’s children.

© Within the controller’s element and the element’s children, we can use
the properties that the controller associated with the $scope. In our case,
that is greeter. First, we have a text input that is bound to greeter.name using
the ng-model attribute.

O Second, we have an output displaying the result of calling greeter.greeting()
using the {{ }} syntax. Although this looks like the Mustache or Handle-
bars syntax, it is actually parsed by AngularJS’s own template engine.

O Finally, the page loads the angularjs script as well as the script for our
code, index-basic.js.

Open the index-basic.html file in your browser. You should see the “What is your
name?” message with a text box. After typing a name, you should see the
greeting appear, as shown here:

www.it-ebooks.info

http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 1: Using Dependency Injection ® 79

What is your name? Fred|
Hello, Fred!

Notice how the greeting changes as you type in the text box. That is Angular-
JS’s live binding at work.

Although the example is simple, we accomplished several interesting Angular-
JS tasks. We defined a service, used dependency injection, created a controller,
used directives in a view, and took advantage of two-way live binding. That
is pretty good for a first application. Now that we've seen a quick overview of
how these pieces work together, let’s discuss each concept in more detail.
We'll start with services.

Creating Services

In an AngularJS application, services are blocks of code that provide function-
ality to various parts of the application: controllers, filters, other services,
and so on. With dependency injection, AngularJS takes care of wiring services
together. Services and dependency injection are an awesome combination,
because writing your code in services keeps your application modular and
dependency injection saves you from having to write boilerplate code that
instantiates and connects services.

Once you've defined a module, use the service function to create a service.
Indicate the service name and function that contains the service. If the service
needs other services, specify parameters to the function with names that
match the names of the required services. Here’s an example:

angularjs/public/concepts/concepts-test.js

var app = angular.module("TestApp", [1);

app.service("serviceA", function() {
this.name = "A";

b

app.service("serviceB", function() {
this.name = "B";

b

app.service("serviceC", function(serviceA, serviceB) {
serviceA.name; // returns "A"
serviceB.name; // returns "B"

1)

When creating serviceC, serviceA and serviceB get injected because the parameter
names of the function match the names of the services.

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/angularjs/public/concepts/concepts-test.js
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 3. AngularJS ¢ 80

Using String Names Instead of Parameter Names

Matching parameter names to service names is concise. That strategy also
lets you add, remove, or reorder parameters without worrying about keeping
another part of the code in sync. It is the easiest way to specify dependencies;
in fact, we’ll use this method in our sample code.

However, relying on argument names can break when you minify your code.
Indeed, code minification may involve changing argument names to shorten
them and reduce code size. To address this issue, AngularJS offers another
strategy: specifying service names with strings. This solves the code minifica-
tion problem because strings remain intact.

The first way of indicating services by string names is to define an $inject
property on the service function, with an array of strings indicating the service
names to inject:

angularjs/public/concepts/concepts-test.js

app.service("serviceA", function() {
this.name = "A";

1)

app.service("serviceB", function() {
this.name = "B";

1)

var svcC = function(svcA, svcB) {
svcA.name; // returns "A"
svcB.name; // returns "B"
}
svcC.$inject = ["serviceA", "serviceB"];
app.service("serviceC", svcC);

When defining svcC, the parameter names svcA and svcB do not match the service
names, serviceA and serviceB. The mismatch could be the result of minification
or simply your own choice of variable names. When creating the $inject prop-
erty, we've indicated the dependencies to inject by their names. The order of
the service names must match the order of the function’s parameters because
that is how they will be matched up.

You can now change the function’s parameter names without breaking
dependency injection. On the other hand, you need to take care of keeping
the $inject string array synchronized with the service names to inject and make
sure they match the order and number of parameters defined in the function.

From the previous code example, you can see how using $inject forces you to
create a service in three steps instead of one: associate the function to a
variable, define $inject on that variable, and call the service function to create
the service.

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/angularjs/public/concepts/concepts-test.js
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 1: Using Dependency Injection ¢ 81

Using String Names More Concisely

The second way of indicating injected dependencies by string names eliminates
the need to use a temporary variable and adding the $inject property. Instead, you
can once again define a service in a single step. When calling the service function,
specify the service name followed by an array instead of a function. In this array,
indicate dependencies using strings followed by the service function:

angularjs/public/concepts/concepts-test.js

app.service("serviceA", function() {
this.name = "A";

b

app.service("serviceB", function() {
this.name = "B";

b

app.service("serviceC", ["serviceA", "serviceB", function(svcA, svcB) {
svcA.name; // returns "A"
svcB.name; // returns "B"

s

That was more concise than the $inject strategy while still being resistant to code
minification changes. You still need to match the service name order to the
function parameter order; however, maintenance is easier with this method
because the service names and function parameters are close to each other in
the code.

Using the service function is actually just one way of creating a service. The factory
function is another way. Let’'s see the difference between the two and how you
choose one or the other.

Using Service and Factory

When we use service, we assign properties to this within our service function.
AngularJS then creates the service by using new on the function that we wrote.
This works well when our service is an object. The factory function also creates a
service, but it directly uses the result that we return instead of calling new. Use
factory when you want your service to be a function or be the result of calling
another function instead of an object that will be created with new and on which
you add properties with this.

Let’s look at a simple example. If we wanted a service to be a function, we’d define
it with factory:

angularjs/public/concepts/concepts-test.js
app.factory("deleteBookmark", function() {
return function(bookmark) {
// delete the bookmark. ..
}i
b

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/angularjs/public/concepts/concepts-test.js
http://media.pragprog.com/titles/7web/code/angularjs/public/concepts/concepts-test.js
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 3. AngularJS * 82

To use the deleteBookmark service, we’d simply inject it into another service and
call it directly as a function:

angularjs/public/concepts/concepts-test.js

app.service("someService", function(deleteBookmark) {

var bookmark = ...;
deleteBookmark(bookmark) ;

1)

The service and factory functions offer two convenient ways of creating services.
We’ll be using both in our code examples.

Now let’s shift gears again and start building the application that we’ll grow
over the rest of the chapter.

Our Bookmarking Application Front End from Another Angle

Using services, dependency injection, and other AngularJS features, we’ll
create the bookmark application front end shown in the following screenshot.
The application connects to the bookmark server from Chapter 1, Sinatra, on
page 1, and is very similar to the application we created in Chapter 2, CanJs,
on page 35. Again, we’ll exchange data from the server, taking care of rendering
the view and handling user interaction. We're building the same application
with AngularJS as we did with CanJS so that you can easily compare these
two JavaScript frameworks.

Bookmarking App

Bookmark: Tags:
URL: reqjuired * Books(1)
* Computer (1)
_ _ * Frameworks (3)
Title: required * JavaScript (2)
* Ruby (1)

Tags: (separated by commas)

Save Clear

Filtered by tag: Frameworks | Clear filter

s | Edit | | Delete | AngularJs (http://angularjs.org) | Framewerks | JavaScript |
* | Edit | | Delete | CanJS (hitp://canjs.us) | Frameworks | JavaScript |
s | Edit | | Delete | Sinatra (http://sinatrarb.com) | Frameworks | Ruby |

Figure 10—The complete AngularJS bookmarking application

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/angularjs/public/concepts/concepts-test.js
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 1: Using Dependency Injection ¢ 83

We'll begin by retrieving the bookmark list from the server. Using the Angu-
lardS resource service, we'll automate the handling of Ajax requests and
responses to exchange data with the server. This is very handy, as it greatly
reduces the amount of code that we have to write to connect our client to the
server. We'll also create services to save and delete a bookmark. We’'ll end the
day by writing automated tests that verify the behavior of our code.

Using the Resource Service

When we need a way to exchange data between client and server, Ajax is the
norm. With AngulardS’s resource service, we don’'t have to bother with low-
level Ajax requests and responses. We can just define a resource with a URI.
When paired with a REST API such as the one provided by our Sinatra
bookmark server, we can let AngularJS handle the data exchanges.

To use the resource service, the first thing we need to do is load the corre-
sponding JavaScript file. This is because the service is not part of the
AngularJS core:

angularjs/views/index.mustache
<script src="/lib/angularjs/1.0.8/angular.js"></script>
<script src="/lib/angularjs/1.0.8/angular-resource.js"></script>

Next, we need to specify ngResource as a dependency when we create our
application module:

angularjs/public/app/base/app.js
angular.module("App base", ["ngResource"])

Armed with the factory function and dependency injection, we can define a
service named Bookmark that creates, reads, updates, and deletes bookmarks
between the client and the server:

angularjs/public/app/base/app.js

app.factory("Bookmark", function($resource) {
return $resource("/bookmarks/:id", {id:"@id"});

1)

We're using $resource, which is the resource service provided by AngularJS.
Remember that the AngularJS API generally uses the $ prefix to easily distin-
guish framework code from application code.

The first parameter to $resource is the URI. Notice that we can use parameters
in the URI, prefixed with :, just as we did with Sinatra and CanJS. In our
case, the URI has an :id parameter.

To specify a value, we include an object with an id attribute when we call a
resource function. Here’s our example:

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/angularjs/views/index.mustache
http://media.pragprog.com/titles/7web/code/angularjs/public/app/base/app.js
http://media.pragprog.com/titles/7web/code/angularjs/public/app/base/app.js
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 3. AngularJS ¢ 84

var bookmark = Bookmark.get({id:42}); // GET /bookmarks/42
bookmark.title = "changed";

bookmark. $save({id:bookmark.id}); // POST /bookmarks/42
bookmark.$delete({id:bookmark.id}); // DELETE /bookmarks/42

After we obtain the bookmark object from the server, the value of bookmark.id
is 42. When we called the $save and $delete functions, we specified the id
parameter using {id:bookmark.id}. That repetition can be eliminated. When
calling the $resource function, we specify a second argument, indicating the
default values to use for the URI parameters. For example, $resource("/book-
marks/:id", {id:1}) would use an id of 1 if it was not otherwise specified. Of course,
hardcoding a value is not particularly useful. Instead, we can use a string
prefixed with @, as we are doing above with $resource("/bookmarks/:id", {id:"@id"}),
to tell AngularJS to use the value of the id attribute from the object on which
$save or $delete is called. Our example then becomes this:

var bookmark = Bookmark.get({id:42}); // GET /bookmarks/42
bookmark.title = "changed";

bookmark. $save(); // POST /bookmarks/42
bookmark.$delete(); // DELETE /bookmarks/42

The results are the same, but we no longer have to specify {id:bookmark.id} when
calling $save() and $delete(). That is now done automatically because we have
{id:"@id"} as the default value for the :id parameter of the URI.

We now have a Bookmark service that defines a resource for exchanging book-
mark data with the server. We can retrieve the bookmark list by calling the
query() function on Bookmark. We’ll use dependency injection to get the Bookmark
service and produce the bookmark list as another service named bookmarks:
angularjs/public/app/base/app.js

app.factory("bookmarks", function(Bookmark) {

return Bookmark.query();
1)

We now have the bookmark list provided by the bookmarks service. Although
the list contains bookmark resource objects that we can use to send requests
to the server, the bookmark list is not automatically updated when adding or
deleting bookmarks. When we save a new bookmark, we need to manually
add it to the list. After deleting a bookmark, we also have to remove it from
the list. We do not need to do anything after making changes to a previously
existing bookmark, since it is already in the list.

Using the $save function on a bookmark object, we can save the bookmark
back to the server. Since the bookmark is a resource, calling $save automati-
cally issues a POST request. To determine whether the bookmark is new, so

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/angularjs/public/app/base/app.js
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 1: Using Dependency Injection ¢ 85

that we know if we need to add it to the bookmark list, we check the existence
of the id value:

angularjs/public/app/base/app.js
app.factory("saveBookmark", function(bookmarks) {
return function(bookmark) {
if (!bookmark.id) {
bookmarks.push(bookmark) ;

}

bookmark.$save();
}i
1)
To delete a bookmark, we can call the $delete function on the bookmark. This
sends a DELETE request to the server. We'll also delete the bookmark from the
bookmark list:

angularjs/public/app/base/app.js
app.factory("deleteBookmark", function(bookmarks) {
return function(bookmark) {
var index = bookmarks.indexOf(bookmark);
bookmark. $delete();
bookmarks.splice(index, 1);
3
1
We've created services to create, read, update, and delete bookmarks between
the client and the server. Although we don’t have a user interface yet, it would
be nice to verify that our code works at this point. A great way to do that is

to write automated tests. When you're ready, let’s do that next.

Writing Automated Tests for Services

The AngularJS community is big on writing automated tests to verify that
application code is working properly. The framework offers tremendous testing
support, and the documentation examples often have accompanying tests.
Test-driven development is emphasized in AngularJS for good reason. With
TDD, you develop a suite of tests alongside your code. Running your tests
ensures that your code works. This safety net gives you the freedom to
refactor your code with confidence, because your automated tests tell you
right away if your changes caused a regression.

Several tools exist for running JavaScript tests. In the following examples,
we’ll use Jasmine because it is easy to set up, has no dependencies, and
offers a capable, intuitive API.> Moreover, tomorrow we’ll be using AngularJS’s

3. http://pivotal.github.io/jasmine

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/angularjs/public/app/base/app.js
http://media.pragprog.com/titles/7web/code/angularjs/public/app/base/app.js
http://pivotal.github.io/jasmine
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 3. AngularJS * 86

end-to-end testing tools, which follow Jasmine’s syntax. Today we're writing
unit tests. Let’s begin with an HTML page for running Jasmine:

angularjs/public/index-test.html
<html lang="en">
<head>
<meta charset="utf-8">
<title>Jasmine Spec Runner</title>
<link rel="stylesheet" type="text/css" href="1ib/jasmine-1.3.1/jasmine.css">
</head>

<body>
</body>

<script src="/1ib/jasmine-1.3.1/jasmine.js"></script>
<script src="/lib/jasmine-1.3.1/jasmine-html.js"></script>

<script src="/lib/angularjs/1.0.8/angular.js"></script>
<script src="/lib/angularjs/1.0.8/angular-resource.js"></script>
<script src="/lib/angularjs/1.0.8/angular-mocks.js"></script>

<script src="/app/base/app.js"></script>
<script src="/app/base/app-test.js"></script>

<script src="/test/test-runner.js"></script>
</html>

The page loads the CSS and JavaScript files for Jasmine, as well as the
JavaScript files for AngularJS and for our application. In particular, notice
the angular-mocks.js and app-test.js files. The former is a library of mocks to simu-
late AngularJS services. The latter is where we’ll write our unit tests.

To write Jasmine tests, we start with the following structure:

angularjs/public/app/base/app-test.js

describe("base/app-test.js", function() {
beforeEach(function() {

module("App base");

1)

// Add tests here
1)

The describe and beforeEach functions are provided by Jasmine. With describe, we
create a container for a set of tests. The beforeEach function, as its name sug-
gests, runs code before each test. Here, we're loading our application with
the module function provided by the angular-mocks library.

We're ready to add some tests. Within the describe block, we can add another,
nested describe block for testing the bookmark resource. We'll verify that the

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/angularjs/public/index-test.html
http://media.pragprog.com/titles/7web/code/angularjs/public/app/base/app-test.js
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 1: Using Dependency Injection ® 87

bookmarks service retrieves the list of bookmarks from the server by issuing a
GET request. To test for Ajax requests and provide a mock response for the
benefit of our test case, the AngulardS mock library provides the $httpBackend
service:

angularjs/public/app/base/app-test.js
describe("Bookmark resource", function() {

var mockBookmarks = null;

beforeEach(inject(function($httpBackend, Bookmark) {
mockBookmarks = [

new Bookmark({id:1}), new Bookmark({id:2}), new Bookmark({id:3})

1;
$httpBackend.expectGET("/bookmarks") .respond(mockBookmarks) ;

1)

it("should retrieve bookmarks", inject(function($httpBackend, bookmarks) {
$httpBackend. flush();
expect(bookmarks.length).toBe(mockBookmarks.length);

)

// add more tests here

1)

© In the call to the beforeEach function, we can use the inject function to ben-

efit from dependency injection in our test code. Here, we're injecting the
$httpBackend service and our own Bookmark model. We're using the latter to
create a mock list of bookmarks for the purposes of our test.

©® The $httpBackend service provides methods for indicating which requests

to expect and how to respond to them. Because we’ll be using our bookmarks
service, which retrieves the list of bookmarks from the server, we expect
a GET request to the /bookmarks URI. In response, we return the mock list
of bookmarks.

© The it function comes from the Jasmine library and represents a test case.

The first parameter is a string for describing the test case. The it function
was given its name so that, combined with the description that follows,
the line of code reads like an English sentence.

Just as with beforeEach, we can use the inject function to retrieve dependen-
cies. Within the body of the it function, we're calling flush() on $httpBackend
to explicitly flush pending requests. Remember that Ajax requests are
asynchronous. Writing test code that deals with asynchronous function
calls is difficult and error-prone. To make things easier, the mock $http-
Backend object holds on to pending requests and lets us control when to
execute them with the flush() function. This keeps our test code linear and
easy to follow.

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/angularjs/public/app/base/app-test.js
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 3. AngularJS * 88

O Within the it block, calls to Jasmine’s expect are where we indicate what
is required for the test to pass. After passing the actual value, we call
another function, called a matcher, and pass it the expected value. The
toBe matcher asserts that the two values are the same. Jasmine provides
several matchers, and you can also write your own.

From the source code bundle, go to the angularjs directory and start the web
server by running the ruby app.rb command. Then, using your browser, navigate
to http://localhost:4567/index-test.html. The Jasmine test runner executes the tests
and generates a report of the results, similar to this screenshot.

Jasmine 1.3.1 revision 1354556913 finished in 0.@86s

Passing 1 spec No try/catch @

base/opp-test.js
Bookmark resource
should retrieve bookmarks

Figure 11—The Jasmine test runner

Let’s add a test for saving a bookmark:

angularjs/public/app/base/app-test.js
it("should save a bookmark", inject(
function($httpBackend, Bookmark, bookmarks, saveBookmark) {
$httpBackend. flush();

$httpBackend.expectPOST("/bookmarks") .respond({id:4});
saveBookmark(new Bookmark({url:"http://angularjs.org", title:"AngularJS"}));

$httpBackend. flush();
expect (bookmarks.length) .toBe(mockBookmarks.length + 1);
}
));

We've created another it block for the test case. After flushing the $httpBackend
to get the bookmarks list, we indicate that we expect a POST request and that
we’ll respond with an ID for the created bookmark. The call to saveBookmark is
what should send the POST request. Finally, after flushing the $httpBackend
again, this time for saving the bookmark, we verify that the bookmarks list has
one more bookmark.

We can add a test for deleting a bookmark in a similar fashion:

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/angularjs/public/app/base/app-test.js
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 1: Using Dependency Injection * 89

angularjs/public/app/base/app-test.js
it("should delete a bookmark", inject(
function($httpBackend, bookmarks, deleteBookmark) {
$httpBackend. flush();
var bookmark = bookmarks[O];

$httpBackend.expectDELETE("/bookmarks/" + bookmark.id).respond(200);
deleteBookmark(bookmark) ;

$httpBackend. flush();
expect (bookmarks.length) .toBe(mockBookmarks.length - 1);
}
));

This time, we grab the first bookmark from the list and set up the $httpBackend
to expect a DELETE request with the ID of the bookmark. To that, we’ll simply
respond with a 200 OK HTTP status code. After deleting the bookmark, we
expect one less bookmark in the bookmarks list.

After making changes to the test code, simply refresh the browser to reload
http://localhost:4567/index-test.html and see the results.

Unit tests are an excellent way to verify code behavior. With Jasmine’s
expressive APl and AngulardS’s mock library, we can easily write and run
unit tests for our AngularJsS services.

What We Learned on Day 1

Our first day of discovering AngularJS revealed some of the aspects that make
AngulardS unique. We learned about modules, services, dependency injection,
resources, and automated tests. We certainly covered a lot of ground!

Day 1 Self-Study
Find:
e The AngularJS API documentation
e Two other ways to define services besides service and factory

e The angular-seed project, which you can use as a template for your AngulardS
applications

Do:

e Take advantage of the REST API from our Sinatra server and write a service
that retrieves bookmarks with tags using the /bookmarks/:tag URI.

e Write Jasmine tests that verify the behavior of your service and run them
in your browser.

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/angularjs/public/app/base/app-test.js
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 3. AngularJS * 90

Day 2: Creating Controllers and Views

Just as in the MVC architecture, AngularJS controllers orchestrate data flow
between models and views. We'll spend our second day learning all about
controllers and how to make views dynamic with directives. We’ll have a
closer look at the $scope, which is the glue between controllers and views. To
put what we learn into practice, we’ll create a view for the bookmark list and
a form for creating and editing bookmarks. When we're done, we’ll have a
front end as shown in the figure.

Bookmarking App

Bookmark:

URL:

Title:

Clear

* | Edit | | Delete | AngularJS (http://angularjs.org)
» | Edit | | Delete | CanJS (http://canjs.com)
* | Edit | | Delete | Sinatra (http://sinatrarb.com)

So far we've retrieved data from the server with a resource to produce data
objects. Today we’ll complete the flow of data down to the view, injecting the
data into controllers and making it available to view directives with the scope,
as depicted in Figure 12, Data flow from server to view, on page 91. Let’s ramp
up our day by learning how we create controllers.

Creating Controllers and Using View Directives

Now we’ll build a controller and a view for the bookmark list. This will start
giving a user interface to our application. The view will display the bookmarks,
each with an Edit and a Delete button next to it, and the controller will provide
callback functions to handle the events triggered by the buttons. Just like
the service and factory functions create services, the controller function creates a
controller with a name as well as a function that indicates dependencies by
the names of the parameters:

angularjs/public/app/base/app.js
app.controller("BookmarkListController",
function($scope, bookmarks) {
$scope.bookmarks = bookmarks;
}
)

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/angularjs/public/app/base/app.js
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 2: Creating Controllers and Views ® 91

Ajax

4

Server

$resource

produces

y

dependency injection

Controller

binding with $scope

HTML View
Directives

Figure 12—Data flow from server to view

The controller receives the $scope and our list of bookmarks by dependency
injection. Provided by AngularJS, the $scope is the bridge of communication
between controllers and views. Assigning the bookmarks property to the $scope
makes it available to the view.

To use the controller in the view, we use the ng-controller directive with the
controller’s name, BookmarkListController:

angularjs/views/base.html
<div
ng-controller="BookmarkListController"
ng-include src="'/app/base/bookmark list.html'">
</div>

The ng-controller directive associates the controller with the <div> element.
Everything within this <div> can reference the attributes that the controller
assigned to the $scope object.

The ng-include directive loads a template from a URI. Since directive attribute
values are code expressions, we need to surround the URI with single quotes
to get a literal string value. Here we're loading the bookmark_list.html template.
Using ng-include is optional; we could just as well have included the HTML
template directly within the <div> element. We're using ng-include because it
allows us to break up templates into separate files, making our code easier
to manage.

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/angularjs/views/base.html
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 3. AngularJS ¢ 92

The bookmark_list.html template renders the bookmark list, with Edit and Delete
buttons next to each bookmark:

angularjs/public/app/base/bookmark_list.html

<li class="bookmark" ng-repeat="bookmark in bookmarks">
<button ng-click="editBookmark(bookmark)">Edit</button>
<button ng-click="deleteBookmark(bookmark)">Delete</button>
{{bookmark.title}}
({{bookmark.url}})

We're using some interesting directives: the ng-repeat directive iterates over the
bookmarks list, which comes from the $scope. The directive renders an ele-
ment for each iteration and assigns the current bookmark to the bookmark
variable. Within the element, we have the Edit and Delete buttons, each
with an ng-click directive that calls a function, passing the bookmark as an
argument. (We'll set up the editBookmark and deleteBookmark callback functions
in a moment.) Finally, we have links to the bookmark’s URL, one with the
bookmark’s title and the other with the bookmark’s URL. Notice how we refer
to the bookmark object by using the {{ }} syntax.

The following figure summarizes how we link the controller and the scope in
the JavaScript code to the directives in the HTML view:

JavaScript

app.controller("BookmarkListController",
function($scop€, bookmarks) {
$scope.bgbkmarks = bookmarks;
i

HTML Page

<div ng-controller= "BookmarkListCprtroller">
<li ng-repeat="bookmark in bookmarks">

Figure 13—Connections between a controller and a view

When the user presses the Edit or Delete button next to a bookmark, the
ng-click directives call the editBookmark and deleteBookmark functions. To make

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/angularjs/public/app/base/bookmark_list.html
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

vy

Day 2: Creating Controllers and Views ® 93

them available to the view, we just need to specify them as dependencies in
the controller and assign them to the scope:

angularjs/public/app/base/app.js
app.controller("BookmarkListController",
function($scope, bookmarks, deleteBookmark, editBookmark) {
$scope.bookmarks = bookmarks;
$scope.deleteBookmark = deleteBookmark;
$scope.editBookmark = editBookmark;
}
)

The deleteBookmark service is the one that we created earlier. The editBookmark
service does not exist yet; let’s build it now.

Taking Advantage of Two-Way Data Binding

When the user clicks on the Edit button next to a bookmark, we want to edit
the corresponding bookmark in the bookmark form. When the user saves the
bookmark, we want to save the changes back to the server and update the
bookmark list. Finally, when the form is blank or when the user clears the
form, we want to create a new bookmark. Let’s see how we can achieve all of
this very cleanly by taking advantage of AngularJS’s two-way data binding.

We'll start with a service named state that defines an object where we’ll store
properties to which other services can bind. Think of this object as being to
services what the scope is to controllers and views—the tie that binds:

angularjs/public/app/base/app.js
app.service("state", function(Bookmark) {
this.formBookmark = {bookmark:new Bookmark()};
this.clearForm = function() {
this.formBookmark.bookmark = new Bookmark();
+
1)

We've added a formBookmark property, initialized to an object with a blank

bookmark, and a clearForm function that resets formBookmark.bookmark to a blank
bookmark. These will be convenient for the bookmark form.

Now that we have the state object, we're ready to write the editBookmark service:

angularjs/public/app/base/app.js

app.factory("editBookmark", function(state) {
return function(bookmark) {
state.formBookmark.bookmark = bookmark;

}i

1)

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/angularjs/public/app/base/app.js
http://media.pragprog.com/titles/7web/code/angularjs/public/app/base/app.js
http://media.pragprog.com/titles/7web/code/angularjs/public/app/base/app.js
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 3. AngularJS * 94

Editing a bookmark merely consists of setting the formBookmark.bookmark prop-
erty on the state object to the bookmark being edited. When we create the
bookmark form, we’ll just need to bind the form’s input fields to the properties
of the formBookmark on the state object, and two-way live binding will take care
of communicating changes back and forth. Let’s do that now, shall we?

Creating the Bookmark Form

Creating forms in AngulardS is easy, thanks to two-way binding. As with
other view templates, the form is plain HTML with AngularJS directives. The
ng-model directive binds an input field to a model property, and ng-submit on the
<form> element calls a function when the user submits the form.

Let’s create the form for creating and editing bookmarks in the bookmark_form.html
file. The template for the form is as follows:

angularjs/public/app/base/bookmark_form.html
Bookmark:
<form ng-submit="saveBookmark(formBookmark.bookmark)">

<label>

URL:

<input type="text" ng-model="formBookmark.bookmark.url" name="url">
</label>

<label>

Title:

<input type="text" ng-model="formBookmark.bookmark.title" name="title">
</label>

<input type="submit" class="btn btn-primary" value="Save">
<input type="button" class="btn" ng-click="clearForm()" value="Clear">

</form>

Thanks to the ng-model directive, when the value changes in the input, Angu-
larJS automatically updates the value in the model and vice versa. We don’t
need any code to transfer values to and from the form.

To save the bookmark, all we need is the ng-submit directive on the <form> ele-
ment. This calls the saveBookmark function that we’ll make available in the
controller for the bookmark form. We also have the ng-click directive on the
Clear button that calls the clearForm function from the controller.

Let’s go ahead then and write the bookmark form controller. We'll need to set
the formBookmark, saveBookmark, and clearForm properties on the $scope:

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/angularjs/public/app/base/bookmark_form.html
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 2: Creating Controllers and Views ® 95

angularjs/public/app/base/app.js
app.controller("BookmarkFormController",
function($scope, state, bookmarks, saveBookmark) {
$scope.formBookmark = state.formBookmark;
$scope.saveBookmark = saveBookmark;
$scope.clearForm = state.clearForm;
}
)

We've hooked up the scope’s formBookmark and clearForm properties to the same
properties on the state object. The interesting part of that story is that when
we change the binding of formBookmark.bookmark on the state object, the scope
automatically picks up the change—and so does the form in the view, along
with the input fields. With that in place, editing a bookmark just works,
because the editBookmark function sets the bookmark to edit on the formBook-
mark.bookmark property of the same state object.

Remember that we already have a saveBookmark service that adds the bookmark
to the bookmarks list if it is new. Now, after saving the bookmark on the server
with $save, we’ll also clear the form:

angularjs/public/app/base/app.js
app.factory("saveBookmark", function(bookmarks, state) {
return function(bookmark) {
if (!bookmark.id) {
bookmarks.push(bookmark) ;
}
bookmark. $save();
state.clearForm();
b
1)
Now that we have everything in place for the BookmarkFormController, we can use
it in the view:
angularjs/views/base.html
<div
ng-controller="BookmarkFormController"

ng-include src=""'/app/base/bookmark form.html'">
</div>

Fantastic! With the scope and the state object, live binding keeps everything
synchronized. Our code remains cleanly decoupled: for example, pressing the
Edit button on the bookmark list sets the bookmark on the form, but the
bookmark list is not directly tied to the form. As shown in Figure 14, The
Boolcmark Form Controller, on page 96, our state object acts as an intermediate
to keep components separate.

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/angularjs/public/app/base/app.js
http://media.pragprog.com/titles/7web/code/angularjs/public/app/base/app.js
http://media.pragprog.com/titles/7web/code/angularjs/views/base.html
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 3. AngularJS ¢ 96

editBookmark(bookmark) clearForm()

bookmark new Bookmark()

state.formBookmark.bookmark

/

$scope.for@

A

<input ng-model="formBookmark.bookmark.url">

Figure 14—The Bookmark Form Controller

In a framework without live binding, the bookmark list would contain code
to populate the bookmark form in order to edit the selected bookmark and
would contain more code to pull data out of the form and back into the
bookmark object in order to save the bookmark. With our state object and
two-way live binding, however, we don’t need any plumbing code.

An Important Note About the Scope

It’s worth having a closer look at how we defined the formBookmark property on
the scope and on the state object, because there lurks a trap into which many
an AngularJS developer has fallen.

You may have wondered why we assigned an object with a bookmark property
to the formBookmark variable, forcing us to use formBookmark.bookmark to refer to
the bookmark. Why not assign the bookmark directly to formBookmark?

Refer to the following diagram. In this scenario, we've assigned a blank
bookmark to formBookmark. Both the state object and the $scope point to the same
object. When editing an existing bookmark, we assign the bookmark to the
formBookmark property on the state object, hoping that the $scope picks up the
change. We're in for a disappointment, though. The problem is that by
reassigning formBookmark, we've changed the reference to a different object. As
you can see at the bottom of the diagram, after the change, we've broken the
link between the state and the $scope. Their formBookmark properties now point
to two different objects.

www.it-ebooks.info

http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 2: Creating Controllers and Views ® 97

state.formBookmark $scope.formBookmark

state.formBookmark $scope.formBookmark

url:"http://angularjs.org"
title:"Angularls"

Figure 15—The $scope should not refer to a top-level object.

Because of the disconnect, changes to state.formBookmark in one part of the code
will not be seen by the controller’s $scope.formBookmark. In our application, that
would result in breaking the Edit button: editing a bookmark would not
populate the bookmark form.

Now look at Figure 16, The Sscope should refer to a nested object, on page 98.
By having formBookmark point to an object with a bookmark property and having
that property point to the bookmark, we can change the formBookmark.bookmark
reference and still preserve the link between the state and the $scope:

The key is not changing the top-level reference, formBookmark. Instead, we
change a nested property, formBookmark.bookmark. After doing that, both the state
and the scope still point to the same object with their formBookmark property.
It is that object’s bookmark property that is now referring to a different object.

The takeaway is that there should be at least one dot in the expression when
sharing references to model objects between the scope and the other parts of
the application.

www.it-ebooks.info

http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 3. AngularJS ¢ 98

state.formBookmark| |[$scope.formBookmark

| |
| state.formBookmark.bookmark = bookmark!
I

state.formBookmark | |$scope.formBookmark

url:"http://angularjs.org"
title:"Angularls"

Figure 16—The $scope should refer to a nested object.

Writing End-To-End Automated Tests

Yesterday we wrote some unit tests with Jasmine. Today we’ll write some
higher-level tests that exercise our application on an end-to-end basis. We'll
test what should happen in the browser rather than in individual units of
code. This type of testing is closer to what you would do were you to test the
application manually: going to a URI, filling out and submitting a form, and
looking at the results in the browser.

AngulardS provides a library and an API for writing end-to-end tests. To set
up a test runner, all we need is to load the angular-scenario.js file and add the
ng-autotest directive on the <script> tag. We'll also load a file where we’ll write
our tests. This could be any file; we've named it e2e-tests.js:

www.it-ebooks.info

http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 2: Creating Controllers and Views ® 99

angularjs/public/e2e-test-runner.html
<html lang="en">
<head>
<meta charset="utf-8">
<title>AngularjS End-to-End Test Runner</title>
</head>
<body>
</body>
> <script src="/lib/angularjs/1.0.8/angular-scenario.js" ng-autotest></script>
> <script src="/eZe-tests.js"></script>
</html>

We're ready to write our tests in the e2e-tests.js file. We don’t need to learn a
new syntax, because AngularJS follows the Jasmine style for its end-to-end
testing API. As you can see here, the setup for an end-to-end test looks very
much like a Jasmine test:

angularjs/public/e2e-tests.js

describe("Bookmark list", function() {
beforeEach(function() {

> browser().navigateTo("/");
1)
it("should display a bookmark list", function() {
> expect(repeater("li.bookmark").count()).toBeGreaterThan(0);
b
1)

We have the same describe, beforeEach, and it functions as we had in our Jasmine
unit tests. The difference with end-to-end tests is that we're using the Angu-
larJdS scenario library to call functions such as browser, which makes a request,
and repeater, which inspects the content of the web page. This is a higher level
of testing than what we wrote in our unit tests. Here, we're expecting the page
to display a list of bookmarks, which means the page has at least one
element with the bookmark class.

Let’s write a test for creating a bookmark by filling out and submitting the
form. The test checks how many bookmarks were in the list and then verifies
that the list contains one more bookmark after submitting the form:

angularjs/public/e2e-tests.js
it("should add a new bookmark", function() {
(1) var bookmarkCount = repeater("li.bookmark").count();
bookmarkCount.execute(function() {});
var previousCount = bookmarkCount.value;

(2] input (" formBookmark.bookmark.url") .
enter("http://docs.angularjs.org/guide/dev _guide.e2e-testing");
input("formBookmark.bookmark.title").
enter("AngularJS end-to-end testing guide");

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/angularjs/public/e2e-test-runner.html
http://media.pragprog.com/titles/7web/code/angularjs/public/e2e-tests.js
http://media.pragprog.com/titles/7web/code/angularjs/public/e2e-tests.js
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 3. AngularJS * 100

(3] element ("input:submit").click();
(4] expect(repeater("li.bookmark").count()).toBe(previousCount + 1);
1}

©® We want to count the bookmarks at the beginning of the test. We'll be
able to use that value to compare with the number of bookmarks after
submitting the form to create a new bookmark. Now, the repeater.count does
not return a value directly; it returns what's known as a future. We need
to call execute to get the value. What's more, we are required to provide a
callback function; otherwise the test runner will skip the test. That’s why
we are passing a blank function to execute.

©® With the input and enter functions, we can simulate entering a value in an
input field. The code we wrote fills in values for the bookmark’s URL and
title.

© The element function uses a jQuery-style selector to find an element. After
finding the form’s submit button, we call click() to simulate a button click.

O The expect(...).toBe(...) syntax is the same as with Jasmine. In this case, we
do not have to call execute on repeater.count; the expect function takes care
of that for us. We're counting the number of bookmarks in the list and
verifying that we have one additional bookmark. If the test passes, we've
confirmed a basic scenario involving the creation of a new bookmark.

To run the tests, start the server with the ruby app.rb command and open your
browser to http://localhost:4567/e2e-test-runner.html. You’ll see the test results as
illustrated in the following figure.

AngularJs: Scenario Test Runner | zrasses oraivres [N

describe: eZe-tests.js

describe: Bookmark list

282ms ¥ should display a bookmark list

355ms » should add a new bookmark

Figure 17—The AngularJS end-to-end test runner

We've written a test that fills out a form, submits it, and verifies the result
on the web page. With the duo of unit tests and end-to-end tests, we're well
equipped to write automated test suites that ensure the health of our Angu-
lardS applications.

www.it-ebooks.info

http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 3: Building Filters and Routes ® 101

What We Learned on Day 2

On our second day, we moved from services on to controllers and views. We
discussed how controllers, scopes, and view directives work together to
develop user interfaces. We created a view of the bookmark list and a form
for creating and editing bookmarks. We took advantage of two-way live binding
to keep everything synchronized between the form, the bookmark list, and
the server. Finally, we continued discovering AngularJS’s strong testing
support by writing end-to-end automated tests. It has been a productive day
indeed.

Day 2 Self-Study
Find:

e The list of AngularJS directives
e The API for the AngularJS end-to-end testing library

Do:

¢ Try using different view directives and verify the results in your browser.
For example, use ng-mouseenter and ng-mouseleave to show and hide a book-
mark’s tags when moving the mouse.

e Write end-to-end tests to verify the behavior of the view directives.

¢ Run your tests with Karma, a test runner created by the AngularJS team.

Day 3: Building Filters and Routes

Today we conclude our exploration of AngularJS by discovering more ways
to benefit from AngularJS’s exceptional data binding. In doing so, we’ll wrap
up our bookmarking application by adding tags, filtering, and routing. With
data binding, it's not only possible, it's smooth sailing to implement these
features while keeping our components cleanly decoupled. The majority of
the code we write focuses on the model; AngularJS takes care of updating
the view.

The first thing we’ll do today is improve our application by adding tag list
support to the bookmarks. That involves adding an input field for the user
to enter the bookmark’s tags (separated by commas) and splitting the string
on commas to obtain a list. We also want to show the tags next to each
bookmark in the bookmark list. Finally, we’d like to build a list of unique tags
along with the number of bookmarks. The following screen capture gives you
an idea of the result that we are shooting for.

www.it-ebooks.info

http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 3. AngularJS * 102

Bookmarking App

Tags:

Bookmark:
\ * Frameworks (3)

URL: http://angularjs.org

e JavaScript (2)
* Ruby (1)
Title: AngularJs / v

Tags: (separated by commas) Framewaorks, JavaScript

Save Clear

All bookmarks l

» | Edit | | Delete | AngularJS (http://angularjs.org) | Frameworks | JavaScript |
» | Edit | | Delete | CanJS (http://canjs.com) | Frameworks | JavaScript |
s | Edit | | Delete | Sinatra (http://sinatrarb.com) | Frameworks | Ruby |

Figure 18—Adding tags to bookmarks

Adding Tags to Bookmarks

We'll start by adding an input to the bookmark form for the user to enter
tags:
angularjs/public/app/tagfilter/bookmark_form.html
<label>
Tags: (separated by commas)
<input type="text" ng-model="formBookmark.bookmark.tagList" ng-list
name="taglList">
</label>

We've bound the input to the bookmark’s tagList property. Notice the ng-list
directive in the <input> tag: this converts the comma-separated string that the
user enters in the input box to a list of strings in the taglist property. For
example, if the user enters Frameworks, JavaScript, the tagList property will contain

["Frameworks", "JavaScript"].

Saving a bookmark now includes the taglist property when sending data to
the server, so the bookmark’s tags are saved. The server also sends the tagList
when we retrieve bookmarks; when editing an existing bookmark, we need
to convert the taglist property back to the comma-separated string to populate
the input box. It turns out that the ng-list directive already does that for us,
so we're done.

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/angularjs/public/app/tagfilter/bookmark_form.html
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 3: Building Filters and Routes ® 103

We've added support for tags on bookmarks. Now we’d like to display the list
of unique tags, each with the number of bookmarks that have the tag, as
shown on the right side of the screen in Figure 18, Adding tags to bookmarks,
on page 102.

Building a Tag List

Building the tag list involves going through all the bookmarks and keeping
track of tags and bookmark counts. We’'ll start with a service that returns a
function for building the tag list from the list of bookmarks:

angularjs/public/app/tadfilter/app.js

app.factory("buildTagList", function() {
return function(bookmarks) {

i

1)

We'll be able to call this as a function, buildTagList(bookmarks), to get a list of tags

with labels and bookmark counts.

Within the function, we’ll create a bookmarkCounts object that contains the
number of bookmarks per tag:

angularjs/public/app/tadfilter/app.js
var bookmarkCounts = {};

bookmarks.each(function(bookmark) {
var tagList = bookmark.taglList;

taglList.each(function(tag) {

var existing = bookmarkCounts[tag];
bookmarkCounts[tag] = existing ? existing + 1 : 1;
i
1)

Once we're done iterating over the tag list, the keys in the bookmarkCounts object
are the tag labels. We'll sort the labels and return a list of objects with labels
and corresponding bookmark counts:

angularjs/public/app/tadfilter/app.js

var labels = Object.keys(bookmarkCounts);

labels.sort();

return labels.map(function(label) {

return {label:label, bookmarkCount:bookmarkCounts[label]};

1)

Our tag list is ready. To display it in a view, we need a controller that sets
the tag list on the scope. We also want the tag list to be updated when the
bookmark list changes. Remember that we have to manually manage the

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/angularjs/public/app/tagfilter/app.js
http://media.pragprog.com/titles/7web/code/angularjs/public/app/tagfilter/app.js
http://media.pragprog.com/titles/7web/code/angularjs/public/app/tagfilter/app.js
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 3. AngularJS * 104

bookmark list; it is not automatically hooked up for live binding. To listen for
changes on a property, the $scope has a $watch function that takes the property
name as a string and a callback function that receives the updated value. In
our tag list controller, we’ll watch the bookmarks property and update the tags
on the scope by calling our buildTagList service:
angularjs/public/app/tadfilter/app.js
app.controller("TagListController",
function($scope, state, bookmarks, buildTaglList) {
$scope.bookmarks = bookmarks;
$scope.$watch("bookmarks", function(updatedBookmarks) {
$scope.tags = buildTagList(updatedBookmarks);
}, true); // true compares objects for equality rather than by reference.
}
)
We now have the tags property on the $scope, ready to be displayed in the view.
We can render the tag list with the ng-repeat directive:
angularjs/public/app/tadfilter/tag_list.html
Tags:

<li ng-repeat="tag in tags">

<a href="#"
ng-click="filterBy(tag)">{{tag.label}} ({{tag.bookmarkCount}})

We're now showing each tag’s label and bookmark count. Congratulations,
we’'ve achieved our first goal of the day!

Notice that we’'ve made each tag clickable. When the user clicks on a tag, we
want to filter the bookmark list and show only the bookmarks that have the
selected tag. That’s our next mission.

Manipulating Data with Filters

The links on the tags call a filterBy(tag) function on the $scope. We want that
function to filter the bookmark list by tag. But we also want the tags next to
each bookmark to do the same thing. By now, we've learned that the best
way to achieve such functionality while keeping the code simple and the
components loosely coupled is to reap the benefits of data binding. We already
have a state object that acts as the communication hub between the different
parts of our application, so let’s add a property for the bookmark filter:

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/angularjs/public/app/tagfilter/app.js
http://media.pragprog.com/titles/7web/code/angularjs/public/app/tagfilter/tag_list.html
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

YVvYy

Day 3: Building Filters and Routes ® 105

angularjs/public/app/tadfilter/app.js

app.service("state", function(Bookmark) {
this.formBookmark = {bookmark:new Bookmark()};
this.clearForm = function() {

this.formBookmark.bookmark = new Bookmark();

b

this.bookmarkFilter = {filterTag:""};

1)

We can now define the filterBy function on the $scope and add it to our tag list
controller. All the function does is set the value of bookmarkFilter.filterTag on the
state object:

angularjs/public/app/tadfilter/app.js
app.controller("TagListController",
function($scope, state, bookmarks, buildTagList) {
$scope.bookmarks = bookmarks;
$scope.$watch("bookmarks", function(updatedBookmarks) {
$scope.tags = buildTaglList(updatedBookmarks);
}, true); // true compares objects for equality rather than by reference.

$scope.filterBy = function(tag) {
state.bookmarkFilter.filterTag = tag.label;
+i
}
);

As you can probably anticipate, filtering the tag list involves binding to that
property on the state object and filtering the bookmarks list. To accomplish the
task, we’ll use another weapon from AngulardS’s arsenal: filters. Much like
with services and controllers, we just need to specify a name and a function
with any dependencies to the filter function:

angularjs/public/app/tadfilter/app.js
app.filter("filterByTag", function() { // no dependencies
1)

Within this function, we need to return another function that takes a list of
bookmarks and returns another list with just the bookmarks to keep after
the filter has been applied. The function can also accept any other parameters
it needs to do its work. In our case, the filter needs the tag by which to filter
the bookmarks:

angularjs/public/app/tadfilter/app.js

return function(bookmarks, filterTag) {
return bookmarks.filter(byTag(filterTag));

+

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/angularjs/public/app/tagfilter/app.js
http://media.pragprog.com/titles/7web/code/angularjs/public/app/tagfilter/app.js
http://media.pragprog.com/titles/7web/code/angularjs/public/app/tagfilter/app.js
http://media.pragprog.com/titles/7web/code/angularjs/public/app/tagfilter/app.js
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 3. AngularJS * 106

The function filters the bookmarks by tag. What the bookmarks.filter function
needs is a function of a single bookmark that returns true or false to indicate
whether to include the bookmark in the filtered list. That is what the byTag
function provides:
angularjs/public/app/tadfilter/app.js
var byTag = function(filterTag) {
return function(bookmark) {
var taglList = bookmark.taglList;
var noFilter = (!filterTag) || (filterTag.length == 0);
var tagListContainsFilterTag = taglList &&
tagList.indexOf(filterTag) > -1;
return noFilter || tagListContainsFilterTag;
b
+
To determine whether to keep the bookmark, the function looks at the filter
tag and the bookmark’s tags. If the filter tag is not present or blank, there is
no filter and the bookmark is kept. Otherwise, the bookmark’s tag list must
contain the filter tag for the bookmark to be kept.

Using the Filter in the View

Our filterByTag filter is ready. To use the filter in the view template, we need to
pipe the bookmark list to the filter with the | character, like so:

angularjs/public/app/tagfilter/bookmark_list.html
<li class="bookmark"
ng-repeat="bookmark in bookmarks | filterByTag:bookmarkFilter.filterTag">

We're filtering the bookmark list with our filterByTag function and specifying
an additional argument by adding : followed by the tag by which to filter, the
value of bookmarkFilter.filterTag. AngulardS takes care of applying our filter and
rendering just the filtered list of bookmarks in the view. Even better, because
the scope’s bookmarkFilterfilterTag is bound to our state object, whenever other
parts of the application change the state object’s bookmarkFilter.filterTag, AngularJS
reflects the change by refreshing the filtered list.

To connect the selected filter tag from the tag list to the bookmark list, we
grab the bookmarkFilter from our state object and make it available to the view
by binding it to the $scope in the bookmark list controller:

angularjs/public/app/tadfilter/app.js
app.controller("BookmarkListController",
function($scope, state, bookmarks, editBookmark, deleteBookmark) {
$scope.bookmarks = bookmarks;
$scope.bookmarkFilter = state.bookmarkFilter;

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/angularjs/public/app/tagfilter/app.js
http://media.pragprog.com/titles/7web/code/angularjs/public/app/tagfilter/bookmark_list.html
http://media.pragprog.com/titles/7web/code/angularjs/public/app/tagfilter/app.js
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 3: Building Filters and Routes ® 107

$scope.filterBy = function(tag) {
state.bookmarkFilter.filterTag = tag;

/] ...
}
)i
We've also made the filterBy callback function available. Not surprisingly, that
modifies the bookmarkFilter object on the state object. Now when rendering the
list of tags next to each bookmark, we can link them so that clicking them
also filters the bookmark list:

angularjs/public/app/tadfilter/bookmark_list.html

{{tag}} |

Our filter is now fully available from the view.

Clearing the Filter

We have one more detail to address. Sure, users can now filter the bookmark
list by clicking on tags, but they also need to be able to clear the filter so that
the complete list is shown once again. That’s just a matter of setting bookmark-
FilterfilterTag to a blank string on the state object. Let’s do that in a controller
for the tag filter:

angularjs/public/app/tadfilter/app.js
app.controller("TagFilterController", function($scope, state) {
$scope.bookmarkFilter = state.bookmarkFilter;

$scope.clearFilter = function() {
state.bookmarkFilter.filterTag = "";
¥
3
In the view, we’ll either show the current tag by which the list is filtered, along
with a link to clear the filter, or we’ll just display All bookmarks when no filter
is being applied. We can use the ng-show directive to show or hide part of the
view template based on a condition:

angularjs/public/app/tadfilter/tag_filter.html
<h3 ng-show="bookmarkFilter.filterTag">
Filtered by tag: {{bookmarkFilter.filterTag}}
| Clear filter
</h3>
<h3 ng-show="!bookmarkFilter.filterTag">All bookmarks</h3>

We've completed our mission. Go ahead and try it. Run the server from the
angularjs directory with ruby app.rb and open the http://localhost:4567/example/tagfilter

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/angularjs/public/app/tagfilter/bookmark_list.html
http://media.pragprog.com/titles/7web/code/angularjs/public/app/tagfilter/app.js
http://media.pragprog.com/titles/7web/code/angularjs/public/app/tagfilter/tag_filter.html
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 3. AngularJS * 108

URL in your browser. Add some bookmarks with tags, edit the tags, filter the
list, delete a bookmark, and notice how everything refreshes consistently, all
thanks to AngularJS’s two-way data binding.

Defining Routes

As we did with CanJdS, we’d like to make the AngularJS application support
browser navigation with the Back and Forward buttons, and with bookmark-
able pages as well. Client-side frameworks don’t usually include a solution
to this problem, but AngularJS offers a route provider to make this possible.

With the route provider, we can associate controllers and templates with
URIs. The route URIs can have parameters, and controllers can easily access
the values of those parameters. Let’'s use these features to navigate between
different tag filters and to go back to displaying all bookmarks.

To use the route provider, we add a third parameter to the angularmodule
function call. Remember that the first parameter is the module name, the
second, the list of dependencies. The third parameter is a function that gets
called when creating the module. The function can use dependency injection,
so we'll get the $routeProvider, which is the service provided by AngularJS that
we can use to define routes:

angularjs/public/app/routing/app.js
angular.module("App routing", ["ngResource", "App tagfilter"],
function($routeProvider) {
var params = {
controller: "BookmarkListController",
templateUrl:"/app/routing/bookmark list.html"
+i
$routeProvider.
when("/", params).
when("/filter/:tag", params);
}
)

We've associated both the default URI and the ffilter/:tag URI to the BookmarkList-
Controller. The template is also specified in the route provider. We no longer
need ng-include src=""/app/tadfilter/bookmark_list.htmI"" in the view. Instead, we use
ng-view=:
angularjs/views/routing.html
<div

ng-controller="BookmarkListController"

ng-view>
</div>

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/angularjs/public/app/routing/app.js
http://media.pragprog.com/titles/7web/code/angularjs/views/routing.html
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 3: Building Filters and Routes ® 109

When a route matches one that we've declared in the route provider, AngulardS
renders the corresponding template within the element that has the ng-view
directive.

To use routes, controllers use dependency injection to obtain the $routeParams
object, which contains attributes that match the parameters in the URI. For
example, when the user goes to a URI that matches ffilter/:tag, $routeParams.tag
is the value present in the place of :tag in the URI. We can set this value to
the bookmark filter tag on the state object, like so:

angularjs/public/app/routing/app.js
app.controller("BookmarkListController",
function($scope, $routeParams, state,
bookmarks, editBookmark, deleteBookmark) {
$scope.bookmarks = bookmarks;
$scope.bookmarkFilter = state.bookmarkFilter;
state.bookmarkFilter.filterTag = $routeParams.tag;
$scope.editBookmark = editBookmark;
$scope.deleteBookmark = deleteBookmark;
}
)

We can do the same in the TagListController:

angularjs/public/app/routing/app.js
app.controller("TagListController",
function($scope, $routeParams, state, bookmarks, buildTagList) {
$scope.bookmarks = bookmarks;
state.bookmarkFilter.filterTag = $routeParams.tag;
$scope.$watch("bookmarks", function(updatedBookmarks) {
$scope.tags = buildTagList(updatedBookmarks);
}, true);
}
);

This works in the TagFilterController as well:

angularjs/public/app/routing/app.js
app.controller("TagFilterController",
function($scope, $routeParams, state) {
$scope.bookmarkFilter = state.bookmarkFilter;
state.bookmarkFilter.filterTag = $routeParams.tag;
}
);

Again, everything goes through our state object. This time, we're binding
bookmarkFilter.filterTag to the value of the route’s tag. When the URI changes, be
it by clicking on a link, entering a URL in the browser’s location bar, or using

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/angularjs/public/app/routing/app.js
http://media.pragprog.com/titles/7web/code/angularjs/public/app/routing/app.js
http://media.pragprog.com/titles/7web/code/angularjs/public/app/routing/app.js
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 3. AngularJS * 110

a bookmark, the value of the tag gets set on the state object and everything
else on the page automatically reflects the change.

Now instead of having ng-click="filterBy(tag)" on the tag links in the bookmark
list, we can just link to #/filter/{{tag}}:

angularjs/public/app/routing/bookmark_list.html

{{tag}} |

We make a similar change in the tag list:

angularjs/public/app/routing/tag_list.html
Tags:

<li ng-repeat="tag in tags">
{{tag.label}} ({{tag.bookmarkCount}})

To clear the filter, the link just needs to point to #:

angularjs/public/app/routing/tag_filter.html
<h3 ng-show="bookmarkFilter.filterTag">
Filtered by tag: {{bookmarkFilter.filterTag}}
| Clear filter
</h3>
<h3 ng-show="!bookmarkFilter.filterTag">All bookmarks</h3>

These changes not only make the links simpler, they also result in less code
in the controllers. We can remove the filterBy function from the BookmarkListCon-
troller and the TagListController, as well as the clearfilter function from the TagFilter-
Controller. Once more, dependency injection and data binding have made our
task a breeze.

What We Learned on Day 3

Our final day of learning AngularJS was spent taking advantage of data
binding to build powerful features. We were able to concentrate on the model
and on making connections in controllers, letting AngularJS take care of
refreshing views.

Day 3 Self-Study
Find:

e The list of built-in filters provided by AngulardS
e The angular-ui and angular-utils projects.

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/angularjs/public/app/routing/bookmark_list.html
http://media.pragprog.com/titles/7web/code/angularjs/public/app/routing/tag_list.html
http://media.pragprog.com/titles/7web/code/angularjs/public/app/routing/tag_filter.html
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Do:

Day 3: Building Filters and Routes ® 111

e Experiment with AngularJsS filters, such as limitTo, lowercase, and orderBy.
e Write a custom filter for getting the list of bookmarks that have no tags.
e Try out the ng-grid component from the angular-ui project.

An Interview with Misko Hevery, creator of AngularJS

Us:

What made you decide to create AngulardJS? What was missing from existing

frameworks at the time?

Misko: There were several reasons that conspired together to make Angular a
reality.

1.

I realized that making web apps was just one big marshaling problem of how
do you get data from the DB to the browser and then back again. After building
many web apps, I was not looking forward to building another one the old way.

I wanted to bring static web pages to life by adding just a bit more markup.
This explains the directives, which are very core to Angular and which are also
very unique in the JS framework space. I wanted to have a basic <form> come
to life just by adding few extra attributes, without having to write any more
imperative code.

I wanted to learn JavaScript, and building a _framework sounded like a good
idea as a first JS project. I did not know about any other JS frameworks other
than JQuery.

The original Angular was a service in the cloud that would allow you to build very
simple CRUD applications with nothing but markup, and the data would be persisted
in the cloud DB as a service. Over time Angular lost the DB as a service and become
a general web framework, rather than a purely declarative extension of HTML.

Us:

What do you feel are the best features of AngularJS? What makes AngularJS

unique?

Misko: Three things make Angular unique:

1.

Having the ability to extend the vocabulary of HTML through directives. The idea
of extending the HTML is very powerful, and it allows the developer to express the
goal of the code in a declarative fashion rather than with imperative steps.

While embedding declarative information in HTML is done by other frameworks,
the vocabulary of those frameworks is fixed. Angular allows the declarative
vocabulary to be extended, which allows the developer to turn the HTML into
domain-specific language, or DSL.

Dependency injection is comunon on the server side, but Angular pioneered it
on the client side. Angular was the first framework to fully take advantage of
DI. The result is that Angular applications do not need main methods or other
code responsible for assembling the application.

www.it-ebooks.info

http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 3. AngularJS * 112

3. Angular was designed with testability in mind. We (the Angular team) are big
believers in TDD; we built Angular with TDD, and we want to enable developers
to build their applications with TDD. Many design decisions in Angular were
driven with testing in mind. Angular comes with end-to-end test runners and
with mocks for unit tests.

Us: What do you have in mind for the future of AngularJS? What are you most
excited about, looking forward?

Misko: Angular has become a test bed for design ideas, many of which are making
it to standards—for example, Object.Observe and MDV. Our hope is that we can
use Angular as a proving ground for these ideas, and if they turn out to be useful,
we can turn these ideas into web standards and push them into the browser.

Wrapping Up

AngulardS has a unique approach to web application development. Using
dependency injection in JavaScript code and directives in HTML templates,
AngularJdS applications are declarative. Two-way live binding means everything
automatically stays synchronized, and we focus on what the application does
rather than worrying about communicating events between components.

AngularJS’s Strengths

AngulardJs offers a lot out of the box. You get a dependency injection container,
a template compiler that parses and organizes directives, an end-to-end
testing library, and much more. This enables you to organize your code in
services, controllers, filters, and other well-organized components. You can
add attributes to plain HTML to make a page dynamic, rather than writing a
lot of plumbing code. Finally, you can write tests to verify that it all works
perfectly.

The features provided by AngulardS greatly simplify the creation of bread-
and-butter CRUD applications. A considerable amount of real-world web
development is geared toward that type of application, making AngularJS a
good choice for many projects.

AngularJS also has a lot of momentum. Perhaps because it is backed by
Google, and certainly because of its powerful features, the number of people
using AngulardJsS is very large and keeps growing. This in turn results in more
online resources: tutorials, articles, presentations, blog posts, and answers
to questions on forums.

www.it-ebooks.info

http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

WrappingUp ® 113

AngularJS’s Weaknesses

The declarative approach is a nice one, but it can easily get out of hand in
large applications if you are not careful. If you abuse dependency injection,
your code can become hard to follow. You gain a loose coupling mechanism
at the expense of having less of a direct line between a function call and the
source of the function. Similarly, getting carried away with directives and
expressions can make templates difficult to read and maintain.

Because of the amount of magic involved for AngularJsS to provide dependency
injection, two-way binding, view directives, and so on, you might find it
harder to debug your application should you hit a roadblock. It might not be
as easy to figure out why something does not work in your AngularJS appli-
cation than with other frameworks that are simpler and more straightforward
under the hood.

Beyond the basics, the learning curve for AngularJS tends to be somewhat
steeper than that of other frameworks that use a more traditional approach.
If you get stuck, it may be challenging to find a solution.

Final Thoughts

There is a lot of excitement surrounding AngularJS. If its philosophy appeals
to you and you decide to go further with AngularJS, you will find a large and
enthusiastic community that shares your interest.

www.it-ebooks.info

http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

CHAPTER 4

Ring

A bucket of LEGOs can be anything you want it to be. You can build a house,
a car, or a spaceship, or just keep stacking them one on top of the other until
you run out. Many different kinds of blocks exist, but every block works
together, thanks to a simple, underlying design for connecting two blocks.

Functional languages like Clojure are a bucket of LEGOs. Each brick is simple;
every brick can be used effortlessly with other bricks; bricks can be combined
in many different and useful ways; and there are no hidden mechanisms or
components to complicate your constructions.

Ring is how web libraries in Clojure are connected together. Like all LEGOs,
Ring and its related libraries can be stacked and combined in endless ways
to build the perfect web application. There’s no master plan, few rules, and
each construction is personal and unique.

Introducing Ring

Ring is not a web framework; it is a simple abstraction of HTTP interactions.
While there are quite a few web libraries and even some web frameworks in
Clojure, they all seem to build on Ring’s foundations. In this chapter, we’ll
explore Ring and some of the most commonly used libraries that leverage it.

Ring models HTTP requests and responses as data. This data is easily
manipulated and transformed by all of the standard Clojure tools. In a lan-
guage designed for the manipulation of data, elevating HTTP to the level of
data gives web developers using Ring enormous amounts of power. As Alan
Perlis, a American computer scientist well known for his work on programming
languages, once said, “It is better to have 100 functions operate on one data

structure than 10 functions on 10 data structures.”

1. http://www.cs.yale.edu/quotes.html

www.it-ebooks.info

http://www.cs.yale.edu/quotes.html
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 4.Ring ® 116

Throughout this chapter, you'll see how Ring’s data is manipulated and
transformed to provide URL routing, handle response generation, build mid-
dleware, and ease testing. Unlike many other frameworks and libraries, there’s
little magic to how it works. Inspecting the value of items in a dictionary,
adding and removing items from lists, and similar mundane operations are
all that lies behind the scenes.

On top of Ring, we’ll look at libraries for handling common tasks. We’'ll explore
these by using them to write a bug tracking application, complete with a REST
API and the usual trimmings.

On the first day, we’ll explore HTML generation with Hiccup, which turns
HTML into data ready for slicing and dicing with Clojure. We'll see how Korma,
a library for working with SQL databases, makes SQL more programmatic
and reusable. Compojure will tie these pieces together by orchestrating which
requests go where.

On Day 2, we’ll turn to working on the REST API. We'll use data.json to deal
with incoming and outgoing JSON data. To ensure the data is always what
we expect, we'll employ Valip to do validation. We'll also come back to Com-
pojure for a deeper look at URL routing.

Finally, on Day 3, we’ll go behind the scenes of Ring itself to learn about
middleware and how to write our own. We'll get a different perspective on
HTML as data by investigating Enlive, one of the coolest templating libraries
in any language. Last, but not least, we’ll see one of the many ways to test
Ring applications with clojure.test and Kerodon.

There’s a lot to cover, but a picture may help put everything into perspective.
Figure 19, Ring application overview, on page 117 shows a typical Ring appli-
cation’s architecture and how the pieces relate to one another.

Like Ring itself, many of these components elevate their domains to the level
of data. This is a unique perspective on programming that is common in
Clojure but reusable in almost any language. For web applications built on
Ring, it’s data all the way down.

Day 1: Basic Towers

Today we’ll explore Ring and its friends in the context of Zap, a bug tracking
application we’re going to build. As with other bug trackers you may have
used, Zap will record bugs for multiple projects, allow users to comment on
bugs, and track the status of bugs as they are found and fixed. The architec-
ture of Zap should be quite familiar; there is a database to store the bugs and
other data, a way to map URLs to views, and helpers to generate HTML.

www.it-ebooks.info

http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 1: Basic Towers ® 117

Ring

10

Ring Middleware

Ut
/ \ e N
% Hiccup
-
Y

Compojure Valip
>I S

% Korma = SDQBL
\ / NG J

Figure 19—Ring application overview

Another thing to keep in mind today is that almost every component you will
see is replaceable with something else. Later this week you’ll see one of these
alternatives.

Getting Started

Clojure is an interesting language because it is really just a library. There is
no need for you to install Clojure as you would with most other languages.
Instead, you only need a JVM and the Leiningen build tool.

You can find a JVM for your platform in your system’s package manager or
at http://www.oracle.com/technetwork/java/javase/downloads/index.html. Leiningen can be
found at http://leiningen.org/. Please make sure you install Leiningen version 2,

and not the older 1.x release.

All the dependencies your project needs will be declared in Leiningen’s project.clj
configuration file, including the version of Clojure your application will use.

www.it-ebooks.info

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://leiningen.org/
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

e
©

Chapter 4.Ring ® 118

Leiningen takes care of all the hard work of finding, downloading, and man-
aging these dependencies. And if you've ever used Java or another JVM
language before, you’'ll be relieved to know that Leiningen also handles the
classpath for you.

Leiningen is named after “Leiningen Versus the Ants,” a short story by Carl
Stephenson. This is a playful challenge to Java’s classic build tool, Ant. The tool's
primary author, Phil Hagelberg, contributes a number of interesting tools and libraries
to the Clojure community, all with similarly imaginative names. For example, his
Slamhound and Robert Hooke libraries are also quite nice.

Leiningen looks for dependencies in Clojars and the Maven Central Repository.?
Clojars is a Ring application, and if you're looking for real world examples of Ring
apps in production, its code is a good place to start.”

a. https://clojars.org/ and http://search.maven.org/, respectively.
b. https://github.com/ato/clojars-web

Hello, World!

Your first task is to create a new Leiningen project. In whatever directory you
use to hold your projects, run the following command to create the initial
project skeleton.

$ lein new hello
Generating a project called hello based on the 'default' template.
To see other templates (app, lein plugin, etc), try “lein help new".

Now you’ll need to edit project.clj to add in the dependencies for your first Ring
app. Make it similar to the following:

clojure/hello/project.clj
(defproject hello "0.1.0-SNAPSHOT"
:description "Hello World"
:dependencies [[org.clojure/clojure "1.5.1"]
[ring/ring-core "1.1.8"]
[compojure "1.1.5"]1]

:plugins [[lein-ring "0.8.3"1]
:ring {:handler hello.core/app})

© These are the project’s dependencies. They are written [GROUP-ID/ARTIFACT-
ID "VERSION"]. These identifiers are often specified in a library’s README. If
both the GROUP-ID and ARTIFACT-ID are the same, the GROUP-ID can be omitted.

www.it-ebooks.info

report erratum -« discuss

https://clojars.org/
http://search.maven.org/
https://github.com/ato/clojars-web
http://media.pragprog.com/titles/7web/code/clojure/hello/project.clj
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

1)
24
©

Day 1: Basic Towers ® 119

©® The :plugins keyword defines Leiningen plugins to activate in this project.
The format is the same as for the :dependencies section. In this case, lein-ring
provides some handy helpers for packaging and running Ring applications.

© The ring section is the configuration for the lein-ring plugin. :handler points
to the top-level Ring handler that defines the application. The value is a
namespace-qualified symbol. The part before the slash is a namespace,
and the part after is the symbol bound to the application.

The last thing to do for this simple app is to write the code.

Source code in Leiningen projects is stored under src. The filesystem heirarchy
under src exactly mirrors the namespace heirarchy. For example, the code for
the namespace hello.core would be in src/hello/core.cli. The code for com.prag-
prog.7web.zap.views would be found in src/com/pragprog/7web/zap/views.clj. If you're
familiar with Java namespaces and packages, you should feel right at home.

In Clojure, it is idiomatic to use dashes to separate parts of names instead of under-
scores or camel case. For example, you'd use :project-name instead of :project name or
:projectName. This is true whether the name is a keyword, symbol, or namespace.

Unfortunately, since Clojure namespaces are Java packages and dashes are not legal
in Java identifiers, this can cause some problems if you aren’t careful. The solution
is to use underscores in filenames but use the dashes in the namespace names. For
example, the namespace hello.people-of-earth would be defined in the file:

src/hello/people_of earth.clj

The Clojure compiler automatically transforms the dashes into underscores behind
the scenes, but it expects the files to use the underscores.

Leiningen’s default project template already created the file src/hello/core.clj
defining the hello.core namespace. Replace the example code with this minimal
application:

clojure/hello/src/hello/core.clj
(ns hello.core
(:use compojure.core))
(defroutes app
(GET "/" [1
"Hello, World!"))

©® The (wuse ..) form in the namespace declaration pulls in all the symbols
from compojure.core, so they are easily available in the current namespace.
This is needed for the defroutes and GET symbols used later.

www.it-ebooks.info

report erratum -« discuss

http://media.pragprog.com/titles/7web/code/clojure/hello/src/hello/core.clj
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 4.Ring * 120

© defroutes defines routes for the application. It is similar to other def-like
forms in Clojure; you provide a symbol for it to bind the routes to. You'll
notice the symbol is app and the current namespace is hello.core, which
means this matches the Ring plugin configuration in projects.clj that
pointed to hello.core/app. The routes are listed in order, and the routing
logic will check each route in turn, moving on to the next if a given route
does not match.

© The only route listed defines a handler for the HTTP GET method to the
root path. The empty vector, [], will be discussed later and is used to bind
path parameters given in the route. The value returned here is a simple
string; Compojure will handle the transformation of strings into suitable
HTTP 200 responses.

The only thing left to do is to start the application and test it out. This is
where Clojure’s leverage of the Java ecosystem and Leiningen’s plugin capa-
bilities really shine. Run the following command in your hello project directory.
$ lein ring server

2013-03-02 21:34:21.040:INFO:0ejs.Server:jetty-7.6.1.v20120215
Started server on port 3000

This command starts up a local server on port 3000 and opens your default
web browser to the root URL of your application. If you are running this on
a server without a windowing system, you can use lein ring server-headless instead
to skip opening the browser.

Your output might differ from the output shown before, as Leiningen may
need to download the various dependencies needed to run the server and
your application.

If everything went to plan, you should see the words “Hello, World!” greeting
you in your browser. Congratulations! You've now written your first Ring
application. Next, we’ll start creating the bug tracker, Zap, and learning about
other useful libraries for web applications.

Tasty Data with Korma

There are as many ways to build web applications as there are programmers.
Some start by designing URL structures, some by mocking up HTML for the
user interface, and some by organizing data. We're going to start from the
data and build up from there to views and routing. One advantage of this
method is that when we get to views, we won’t have to create or worry about
dummy data; we’ll have models already created to play with.

www.it-ebooks.info

http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 1: Basic Towers ® 121

What's in a Bug Tracker?

Our fictional users have a set of features they’d like to see in Zap. They have
multiple projects they’d like to track. Every issue will have a title and a
description as well as the ability for others to add comments. An issue can
have several statuses, like “open” or “fixed.” This is a pretty simple design,
but it should be plenty for the first iteration. Your users will have many feature
and change requests once we've put a working project in their hands.

The data can be easily realized in a relational model, and so we’ll use a rela-
tional database to store it. Any of the well-known databases will work for our
purposes, but in order to reduce the number of moving parts you’ll have to
deal with, we’ll choose SQLite.

Many frameworks in other languages allow you to create your data model
with code, avoiding SQL entirely. Clojure does not have a similar tool yet, so
we’ll have to make do with writing the schema directly in SQL.

Spend a few moments thinking about the different pieces and how they’d fit
together, and then take a look at the following to see the schema we’ll be
working with throughout this chapter:

clojure/zap/day1/resources/data/schema.sql
-- zap schema

CREATE TABLE project (

id INTEGER PRIMARY KEY,
name TEXT NOT NULL

);

CREATE TABLE issue (
id INTEGER PRIMARY KEY,
project id INTEGER REFERENCES project(id) NOT NULL,
title TEXT NOT NULL,
description TEXT NOT NULL,
status INTEGER REFERENCES status(id) NOT NULL
)

CREATE TABLE status (
id INTEGER PRIMARY KEY,
name TEXT NOT NULL

)

CREATE TABLE comment (

id INTEGER PRIMARY KEY,

issue id INTEGER REFERENCES issue(id) NOT NULL,
content TEXT NOT NULL

);

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/clojure/zap/day1/resources/data/schema.sql
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 4.Ring ® 122

-- Status enums

INSERT INTO status (id, name) VALUES (1, 'open');
INSERT INTO status (id, name) VALUES (2, 'fixed');
INSERT INTO status (id, name) VALUES (3, 'wontfix');
INSERT INTO status (id, name) VALUES (4, 'invalid');

Aside from the four needed tables, we've also inserted the statuses needed
for the app. Now, in your project directory, create the database and load the
schema. Most systems these days ship with a copy of SQLite, but if yours
doesn’t—Windows for example—then you can grab a copy from the SQLite
website.”

$ sglite3 -init resources/data/schema.sql zap.db .quit
-- Loading resources from resources/data/schema.sql

With our new database created, we can dive into how to access it from Clojure.

Building Models

We'll be using the Korma library to work with our database.’ Unlike object
relational mapping (ORM) systems in other frameworks, Korma sticks close
to the concepts in SQL. However, it exposes SQL in a way that is composable,
and you’ll see why this is useful shortly.

First, we’ll have to tell Korma about our database and the things in it. Korma
calls the tables in the database entities. Just as Clojure has def and defn for
defining symbols and functions and Compojure used defroute to define routes,
Korma has defdb and defentity, which do exactly what they sound like:

clojure/zap/day1/src/zap/models.clj

(ns zap.models
(:refer-clojure :exclude [comment])
(:use korma.db korma.core)
(:require [clojure.string :as string]))

(defdb zap
(sqlite3 {:db "zap.db"}))

(defentity project
(entity-fields :id :name))

(declare comment)

(defentity issue
(entity-fields :id :project id :title :description :status)
(has-many comment))

2. https://www.sglite.org/
3. http://sqlkorma.com/

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/clojure/zap/day1/src/zap/models.clj
https://www.sqlite.org/
http://sqlkorma.com/
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 1: Basic Towers ® 123

(defentity status
(entity-fields :id :name))

(defentity tag
(entity-fields :id :issue id :tag))

(defentity comment
(entity-fields :id :issue_id :content)
(belongs-to issue))

© This line might look a little odd if you haven'’t seen :refer-clojure before. Since
the ns macro automatically refers all the symbols in clojure.core, we have to
tell it to exclude comment since it clashes with one of our entities.

©® Here we define the database. For SQLite the configuration is quite simple;
but for a real database, this is where you’d find the username, password,
and host parameters.

© entity-fields tells Korma what fields to return by default in queries. It’s not
required, but it’s useful to have in case your schema changes later.

O Korma has support for defining relationships between entities. The has-
many relationship means there are zero or more comments associated with
each issue. This information can be used in queries to do some types of
automatic joins.

© belongs-to is the inverse of has-many.

This may look familiar to model definitions in other frameworks you've seen.
Note that there’s no behavior here, only description of the data.

Exploring with the REPL

Before we dive into implementing the models, let’s play with Korma at the
REPL. You can launch the REPL with lein repl from your project directory and
then use the in-ns function to switch to the zap.models namespace after loading
it:

nREPL server started on port 54315
REPL-y 0.1.9

Clojure 1.4.0

«Khelp text»

user=> (require 'zap.models)
Komitted output>

nil

user=> (in-ns 'zap.models)
#<Namespace zap.models>
zap.models=>

www.it-ebooks.info

http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 4.Ring * 124

Let’s start by adding some projects into the database. Like SQL, Korma uses
insert to create new rows:

zap.models=> (insert project (values {:name "Zap"}))
Komitted output>

{:last _insert rowid() 1}

zap.models=> (insert project (values {:name "Website"}))
{:last_insert_rowid() 2}

Queries are done using select. You can choose what fields to include (overriding
the default specified by entity-fields) using fields. where works as you expect but
with Clojure expressions:

zap.models=> (select project)

[{:name "Zap", :id 1} {:name "Website", :id 2}]

zap.models=> (select project (fields :name))

[{:name "Zap"} {:name "Website"}]

zap.models=> (select project (where {:id 1}))

[{:name "Zap", :id 1}]

zap.models=> (select project (where (or (> :id 1) (= :name "Zap"))))
[{:name "Zap", :id 1} {:name "Website", :id 2}]

Passing a map to where is a shortcut syntax. Each key is a field name, and
the value is the expression that must hold. All the keys and values in the
map must match for the where to match. The Korma documentation goes into
more detail on this.

In addition to where clauses, you can also have order, group, and join, which
correspond directly to their SQL counterparts. Deleting rows and updating
columns works very similarly to select, and you’ll see those as we write the
model code for Zap.

Model Functions

We still need to define our model functions that the rest of the web app needs.
We'll need to create projects, issues, and comments; list projects and issues;
get details about an issue; and change issue status. Let’s start with the project-
related functions. If you like, you can also experiment with these functions
at the REPL.

clojure/zap/day1/src/zap/models.clj
(defn all-projects [1]
(select project))

(defn create-project [projl
(insert project (values proj)))

(defn project-by-id [id]
(first (select project (where {:id id}))))

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/clojure/zap/day1/src/zap/models.clj
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 1: Basic Towers ® 125

O sclect always returns a list, even if the query returns a unique row. We
use first here to return the result. If the result list is empty, first returns
nil.

The issue-related functions are slightly more complex:

clojure/zap/day1/src/zap/models.clj
O (defn- issue-query []
(2] (-> (select* issue)

(3] (fields [:issue.id :id]
:project id
(title

:description
[:status.id :status id]
[:status.name :status namel)

(4] (join status (= :issue.status :status.id))))

(defn issues-by-project [id]
©® (-> (issue-query)
(where {:issue.project id id})
(6) exec))

(defn issue-by-id [id]
(-> (issue-query)
(where {:issue.id id})
exec
first))

O This is a helper function that returns a partial query. Since multiple
model functions will need the right fields joined with the corresponding
status row, those bits are factored out here.

© Unlike SQL, Korma's functions allow you to build queries incrementally
without resorting to hacks like string concatenation. Here Clojure’s
threading operator builds a basic select query using select* and then aug-
ments it with the desired fields and a join. Other Korma functions also
have *-versions that build queries incrementally. Some other frameworks
have similar support, but Korma’s is particularly elegant.

© Passing a vector instead of a keyword as a field creates an alias. In this
case the id column of the issue table will appear as :id in the result list.

O Joining a second table is easy too. Here we match up the issue’s status
with the status table.

© Our query starts off with the partial query we built in our helper.

0 Partial queries, like those created with select*, don’t execute until passed
to exec.

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/clojure/zap/day1/src/zap/models.clj
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 4.Ring * 126

Comment and status functions are very similar.

Our users have requested the ability to search for specific bugs, and imple-
menting find-issues gives us a chance to show off a few more interesting bits of
Korma:

clojure/zap/day1/src/zap/models.clj
(defn find-issues [q]
(Let [q (str "%" (string/lower-case q) "%")]
(-> (issue-query)
(where (or (like (sqlfn lower :issue.title) q)
(like (sqlfn lower :issue.description) q)))
exec)))

First, the query string is built. SQL requires % to be used for matching any
surrounding text. Then, our issue-query helper is used once again. This compos-
ability thing is really starting to pay off. Finally, notice the use of like, which
maps to its SQL counterpart of the same name, and sqlfn, which sets up a call
to a built-in function in SQL so that the search is case insensitive.

With the models working, we can move on to the views.

HTML Is Data with Hiccup

Our views will be responsible for generating the HTML output for our applica-
tion. We'll be using Hiccup to turn Clojure data into HTML output.* Leveraging
Clojure’s amazing data manipulation functions makes quick work of an oth-
erwise tedious task.

The basic idea of Hiccup is simple. HTML elements are represented as vectors
with a keyword for the element name, an optional map of attributes, and zero
or more child elements or lists of child elements in the same format. Here are
some examples:

clojure/examples/src/examples/hiccup1.clj
[:hl "Zap Issue Tracker"]

[:div {:class :content}
[:p "Do you have issues? Zap can help!"]
[:p "Zap is a simple issue tracking solution ..."]]

This is just a less verbose syntax for the same content you'd write in
HTML—hardly amazing. The trick is that any function that returns similar
data structures can be used as well. This allows you to harness the full
power of Clojure to automate the writing of HTML.

4. https://github.com/weavejester/hiccup

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/clojure/zap/day1/src/zap/models.clj
http://media.pragprog.com/titles/7web/code/clojure/examples/src/examples/hiccup1.clj
https://github.com/weavejester/hiccup
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 1: Basic Towers ® 127

clojure/examples/src/examples/hiccup2.clj
[:ul
(for [item items]
[:1i (:name item)])]

[:body
[:div {:class :header}
(include-header)]

[:div {:class :content}
[:h1l "Welcome!"]
[:p "..."111]

Hiccup provides a macro html to turn this data into actual HTML output. Let’s
run the first set of examples through Hiccup’s html function.

clojure/examples/src/examples/hiccup1.clj
(require '[hiccup.core :refer [html]])

(html [:hl "Zap Issue Tracker"])
;,=> "<hl>Zap Issue Tracker</hl>"

(html
[:div {:class :content}
[:p "Do you have issues? Zap can help!"]

[:p "Zap is a simple issue tracking solution ..."11)
;;=> "<div class=\"content\|"><p>Do you have issues? Zap can help!</p><p>Zap is a
HA simple issue tracking solution ...</p></div>"

Hiccup is so simple that it is a bit deceiving. Turning HTML into data allows
you to do all sorts of creative things. You might write a function that inserts
headers or footers in pages, rewrites URLs, or filters sets of elements to be
placed in a different page. And you’d do this the same way you’'d insert ele-
ments into a vector, map over collections, or filter and concatenate any
sequence.

Let’s use Hiccup to generate our main page:

clojure/zap/day1/src/zap/views.clj
@ (defn base-page [title & body]
(html5
[:head
(2] (include-css "/css/bootstrap.min.css")
(include-css "/css/zap.css")
[:title title]]
[:body
[:div {:class "navbar navbar-inverse"}
[:div {:class :navbar-inner}
[:a {:class :brand :href "/"} "Zap!"]
[:form {:class "navbar-form pull-right"}

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/clojure/examples/src/examples/hiccup2.clj
http://media.pragprog.com/titles/7web/code/clojure/examples/src/examples/hiccup1.clj
http://media.pragprog.com/titles/7web/code/clojure/zap/day1/src/zap/views.clj
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 4.Ring * 128

[:input {:type :text :class :search-query :placeholder :Search}1]]]
(3] [:div.container (seq body)11))

(defn projects [1]

(base-page

"Projects - Zap"

[:div.row.admin-bar
[:a {:href "/projects/new"}

"Add Project"]]
[:hl "Project List"]
[:0l
(2] (for [p (models/all-projects)]
[:1i [:a {:href (str "/project/" (:id p) "/issues")} (:name p)I11)1))

© base-page is a helper function that generates the main site template,
inserting the title and the page content where appropriate.

© Hiccup includes several helpers like include-css to make your life easier. It
simply generates the appropriate <link> tag.

© Since body might be a list or a vector, seq is used to turn it into a sequence.
Hiccup will treat a vector as a literal element, but it treats a sequence as
a list of children.

O You can read this as “for every project, p, generate a list item with p’s
information.”

Here’s the view for creating a new issue. Notice the form-generating functions
that Hiccup provides:

clojure/zap/day1/src/zap/views.clj
(defn new-issue [id]
(Let [proj (models/project-by-id id)]
(base-page
(str "New Issue for

(:name proj) - Zap")
[:hl "New Issue for " (:name proj)]
(form-to
[:post (str "/project/" (:id proj) "/issues")]
(text-field {:class "span8"
:type :text
:placeholder "Title"} :title)
[:br]
(text-area {:class "span8"
:placeholder "Description"
:rows 5} :description)
[:br]
(submit-button {:class "btn btn-primary"} "Create Issue")))))

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/clojure/zap/day1/src/zap/views.clj
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 1: Basic Towers ® 129

We won’t show the other views here since they are all very similar. Check out
src/zap/views.clj to see the rest of them.

We have almost all the pieces for a complete application. The last component
is mapping URLSs to views.

Routing with Compojure

Most web frameworks try to abstract routing logic to make it easy to create
and manage the many URLSs every web application needs. Quite a few choices
for this component exist in Clojure, each with its own flavor and focus. We'll
be using Compojure in Zap, which is one of the oldest and most popular of
these routing libraries.

In addition to routing, we’ll also need to take care of some plumbing relating
to how incoming HTTP requests are processed. For example, it would be
convenient if form parameters and query parameters were dealt with in a
uniform way so that our code did not have to care about the difference. For
this task, we’ll be taking a brief look at some of the middleware that ships
with Ring.

URLs and Views

In Hello, World!, you saw one example of a URL mapping to a view. Compo-
jure’s defroutes macro takes a series of such mappings and turns them into
code that finds and executes the correct view for a given input URL. The
easiest way to learn is to dive right into the routing for Zap:

clojure/zap/day1/src/zap/core.clj
(defroutes app-routes
(GET "/" [1
(views/index))
(GET "/projects" []
(views/projects))
(GET "/projects/new" [1]
(views/new-project))
(POST "/projects" [& params]
(views/make-project params))

(GET "/project/:id/issues" [id]
(views/issues-by-project id))

(GET "/project/:id/issue/new" [id]
(views/new-issue id))

(POST "/project/:id/issues" [id & params]
(views/make-issue id params))

(GET "/issue/:id" [id]
(views/issue id))

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/clojure/zap/day1/src/zap/core.clj
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 4.Ring * 130

(POST "/issue/:id/comments" [id & params]
(views/make-comment id params))

(POST "/issue/:id/close" [id & params]
(views/close-issue id params)))

© This is similar to the route you saw before, except that instead of returning
a string, it returns the result of a function. In addition to GET routes, there
are routes for all the common HTTP methods: POST, PUT, DELETE, and so on.

® As in function declarations, routes take a parameter list. The parameters,
represented as keywords, are matched to their placeholders in the URL
string. In this case, the keyword :id stands in for the second path element.
It is mapped to a symbol of the same name, id, and made available to the
code in the route’s body.

© Sometimes your routing logic or your view will need access to other parts
of the HTTP request data. The query parameters are passed into the
function as keyword arguments, which you can collect into a map with
the & params syntax. You could also use :as req to bind the entire request
map to the req variable and access what you need from the request map.

The preceding routes are a complete set of routes for Zap. They aren’t very
complicated, mostly delegating the response to our view functions and passing
in parameters where necessary. Compojure supports some input sanitization
in the routes, such as limiting parameters to strings that conform to regular
expressions or to integers in certain ranges. See the API documentation for
more details.

We'll see some more advanced Compojure tricks tomorrow. For now, let’s deal
with the incoming data from clients, such as the information about an issue
when the issue is being created.

Dealing with Input and Middleware

Compojure allows us to access the request map in our routing functions, but
what data is in the request map and how can we get at it? The answer is that
all the HTTP request data is there, but it is not always easily accessible.

The following snippet shows an example request map:

clojure/examples/src/examples/request.clj
{:remote-addr "127.0.0.1"
:scheme :http
:request-method :get
rquery-string "a=1&b=2"
:route-params {}
:content-type nil
:uri "/foo"

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/clojure/examples/src/examples/request.clj
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 1: Basic Towers ® 131

:server-name "0.0.0.0"

rparams {}

:headers {"accept-charset" "IS0-8859-1,utf-8;q=0.7,%*;q=0.3"
"accept-language" "en-US,en;q=0.8"
"accept-encoding" "gzip,deflate, sdch"
"user-agent" "Mozilla/5.0 ..."

"accept" "text/html,..."
"connection" "keep-alive"
"host" "0.0.0.0:3000"}

:content-length nil

:server-port 3000

:character-encoding nil

:body #<Input org.mortbay.jetty.HttpParser$Input@4251b296>}

©® The query string contains all the query parameters, but they aren’t
decoded at all.

©® The input data stream may contain form parameters, but they aren’t
decoded either.

It wouldn’t be very much fun to decode all this data yourself, and fortunately,
Ring can do this kind of work for you. You might imagine yourself writing a
function that transforms this request map into a slightly different one. Perhaps
it decodes :query-string into its own map, :query-params. It could also do the same
for the request input data. You could go even further and add new keys to
the map to make web browser user agents easy to deal with.

Ring calls functions that transform the request map middleware. Middleware
is also used to transform the response map in the same way. This simple idea
is very powerful, since all of these small, simple functions can be composed
together to achieve many different goals.

The hypothetical middleware to deal with query parameters and form parameters
actually exists as part of Ring itself. ring.middleware.params/wrap-params and ring.middle-
ware.keyword-params/wrap-keyword-params convert the raw data into the parameter maps
:keyword-params and :form-params, combine those into a single and easy-to-use :params
map, and finally convert all the keys from strings to Clojure keywords.

Since Ring middleware consists of simple data transformation functions, we
can string them together along with our Compojure routes to put together an
entire application. Here’s the main application definition for Zap:

clojure/zap/day1/src/zap/core.clj
(def app
(-> app-routes
(wrap-resource "public")
wrap-keyword-params
wrap-params))

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/clojure/zap/day1/src/zap/core.clj
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 4.Ring ® 132

© app-routes is bound to Zap’s routes, which were defined in defroutes.

@ wrap-resource serves static files from the resources directory of your application.
Zap uses this for CSS and images.

Due to some details that we’ll explore on Day 3, middleware composition
reads from bottom to top. First wrap-params will decode parameters, and then
wrap-keyword-params will turn strings into keywords, any URLs matching static
files will be served, and if none are found, our application routes will be tried.
By the time Zap’s routes are invoked, the request map is in beautiful shape.

With easy access to user input in the form of query and form parameters,
let’s write the view that creates new issues:

clojure/zap/day1/src/zap/views.clj
(defn make-issue [id params]
(Let [iss (merge params {:project id id :status 1})]
(models/create-issue 1iss)
(response/redirect-after-post (str "/project/" id "/issues"))))

The code adds some default parameters to the user input and passes it off to
the model function to create the issue. Since this is an HTTP POST method,
we generate a redirect back to the list of issues instead of returning a normal
response. Ring includes several helpful response generators like this one in
the ring.util.response namespace.

What We Learned on Day 1

The first day is always the toughest, but here you are at the end—great job!
If you've not used Clojure much before, it might have been challenging to
follow along with everything, but a cure for that is to spend some time at the
REPL playing with individual pieces. Clojure programmers often build simple
functions that obviously work and build more sophisticated constructions
from there. Since most components shown today are, at their core, simple
data transformations, it’s that much easier to explore them interactively.

We went on a whirlwind tour of a basic, but quite functional, Ring application.
Starting from data design, we built models with Korma, a library that turns
SQ@QL into composable functions. Hiccup made creating views to present the
data as easy as writing down data structures. Compojure helped by matching
URLSs to views tying everything together. Finally, we explored Ring middleware,
which helped transform user input into easy-to-use structures.

Each of these pieces primarily operates on simple data. Clojure’s tool chest
is sparse compared to many other languages, but it packs a wallop few can
match.

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/clojure/zap/day1/src/zap/views.clj
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 2: Patterns of Bricks * 133

Day 1 Self-Study
Find:

e James Reeves’s blog and his talks on Clojure web development
e Other Ring applications on GitHub
¢ Alternative routing libraries

Do:

¢ Add bug counts to the project page.

e Add the ability to edit projects, bugs, and comments.
¢ Play with Korma’s composable query capability.

e Move the database to MySQL or PostgreSQL.

Day 2: Patterns of Bricks

Master LEGO builders have internalized an enormous amount of architectural
patterns that turn simple-looking bricks into specialized constructions. Certain
bricks allow you to build sideways; well-placed hinges create off-axis surfaces;
and novel uses of normal bricks add visual interest to a model. Clojure is a
language of simple bricks that can be arranged into powerful patterns, and
these patterns help you construct powerful web applications.

Let’s put some of Clojure’s common patterns to use to build the public API
for Zap.

Defining the API

Before we build the API, we should have some idea of what it will do. We'll
assume you've got some experience using or creating RESTful web APIs so
that we can get straight to the fun bits—the implementation.

We'll need some way to list projects and issues, as well as a way to get detailed
information on both. We’ll also want to create, modify, and delete these
resources as well.

Let’s start with project operations (Table 1, Project Operations, on page 134).

Next, we can define the issue operations (Table 2, Issue Operations, on page
134).

Comments will be returned together with the issue details instead of on their
own. There’s no need for a separate GET method for those.

In all cases the API will return data in JSON format and will accept input
with standard form parameters.

www.it-ebooks.info

http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 4.Ring * 134

Request Description
POST /projects Add a new project
GET /projects Enumerate all projects
GET /project/ID Get details for project ID
DELETE /project/ID Delete project ID
PUT /project/ID Update project details for ID

Table 1—Project Operations

Request Description
POST /project/PID/issues Create an issue for a project
GET /project/PID/issues Enumerate all issues for a project
GET /project/PID/issue/IID Get details about issue IID
DELETE /project/PID/issue/IID Delete issue IID
PUT /project/PID/issue/llD Update details for issue IID
POST /project/PID/issue/lID/comments Add a comment for issue IID

DELETE /project/PID/issue/lID/comment/CID Delete comment CID

Table 2—Issue Operations

With that out of the way, we can start implementing the API specification.
We'll need to start by learning how to manipulate JSON data in a Ring app.

Dealing with JSON

Like every other programming language these days, the Clojure ecosystem
contains multiple libraries for dealing with JSON-formatted data, and thanks
to its first-class Java interop support, it has direct access to any of the Java
JSON libraries available.

Since we're building a JSON-based API, we’ll need some way to transform
Clojure’s data structures into JSON. The most straightforward way to do this
is to use the data.json library, which is a part of Clojure’s contrib libraries.

data.json is fairly flexible, but its workhorse functions are read-str and write-str.
read-str takes a JSON string and returns the corresponding Clojure data
structure, and write-str takes Clojure data and emits JSON strings.

Let’s see an example:

www.it-ebooks.info

http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 2: Patterns of Bricks ® 135

clojure/examples/json.clj

(require '[clojure.data.json :as json])
(json/write-str {:foo 1 :bar 2})

;;=> "{\"foo\":1,\"bar\":2}"

(json/read-str "{\"fool":1,\"bar\":2}")
;;=> {:foo 1 :bar 2}

The model functions we created yesterday closely parallel the API we want,
and they already return Clojure data structures. This means that creating
the read-only parts of the Zap API is just a matter of calling the model func-
tions we already have and translating them to JSON.

Let’s define the API's routes beginning with the project list by adding the fol-
lowing to the defroutes call in zap/core.clj:

clojure/zap/day2/src/zap/core.clj
(GET "/api/projects" [1]
(json/write-str (models/all-projects)))

You can just add to the defroutes you made yesterday. This time, the handler
function calls the appropriate model function and then emits a JSON string
of the results instead of generating an HTML response.

The other read-only API calls are very similar:

clojure/zap/day2/src/zap/core.clj
(GET "/api/project/:id" [id]
(if-let [proj (models/project-by-id id)]
(json/write-str proj)
{:status 404 :body ""}))
(GET "/api/project/:pid/issues" [pid]
(json/write-str (models/issues-by-project pid)))
(GET "/api/project/:pid/issue/:iid" [pid iid]
(json/write-str (models/issue-by-id iid)))

Notice the repeating parts in the route bodies. You can refactor this tomorrow
when we learn more about writing our own Ring middleware.

Now that the read-only parts are out of the way, let’s work on the parts that
add, modify, or delete data.

Validating Inputs

In order to accept input from the API's consumers, we need to validate that
it is correct before storing it in the database. One way to do this is to write a
series of guard clauses in the API views that test for various error conditions
on the data. Is the name of the project nonempty? Is the status of the issue
one of the four legal values? Are all the required fields of the issue provided?

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/clojure/examples/json.clj
http://media.pragprog.com/titles/7web/code/clojure/zap/day2/src/zap/core.clj
http://media.pragprog.com/titles/7web/code/clojure/zap/day2/src/zap/core.clj
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 4.Ring * 136

This approach has several problems. The first is that the validation code might
be repeated in different places; for example, the create project and edit project
actions will both need to validate project data. The second problem is that a
large tree of nested if expressions is hard to read and to maintain.

The normal solution to this problem is to factor out the validation routines
into their own functions, such as valid-project? and valid-issue?. However, this only
solves the first of the two problems.

The Clojure solution is to use the power of the language to abstract away the
nested if expressions. Imagine a declarative language like the following one,
where you specify a list of rules, each containing a field name, a simple vali-
dation, and an error message. Then when checking input data against this
rule set, the result is a list of errors broken out by key:

(defvalidator valid-project?

[:name present? "name must be specified"]
[:name (min-length 1) "name must not be blank"])

(valid-project? {:foo "bar"})
;,=> {:name ["name must be specified" "name must not be blank"]}

This is even better than just factoring out the validation logic, as now it also
returns an easy-to-use list of problems that you can use to build a good error
message for the API's consumer or for a user.

Decomposing problems this way is common in functional languages like
Clojure, and it allows the sum of the parts to become greater than the whole
as they are combined in new and interesting ways.

Designing this hypothetical DSL is pretty easy in practice. A simple Clojure
macro enables the extra bit of syntax, and the validation logic is simply iter-
ating over the rules and checking them while building up the validation result.
Fortunately for us, several such DSLs exist for Clojure already, and for Zap
we’ll be using Valip, yet another great library written by James Reeves.’

Using Valip
Valip consists of two simple parts. The first is the validate function, which takes

a map structure to validate and the validation rules. The second part is the
predicates that are used within the rules.

Here’s the previous example translated into Valip:

5. https://github.com/weavejester/valip

www.it-ebooks.info

https://github.com/weavejester/valip
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 2: Patterns of Bricks ® 137

clojure/examples/src/examples/valip.clj
(require '[valip.core :refer [validate]]
'[valip.predicates :refer [present? min-length])

(defn valid-project [projl
(validate proj
[:name present? "name must be specified"]
[:name (min-length 1) "name must not be blank"]))

Besides present? and min-length, Valip includes other useful predicates such as
max-length, matches (which tests the field against a regular expression), url?,
numeric?, between, and even dns-lookup (which verifies a given hostname is
resolvable). Writing your own predicates is also very easy. Here’s the min-length
predicate from Valip’s src/valip/predicates.clj:

clojure/examples/src/examples/valip.clj
(defn min-length
"Creates a predicate that returns true if a string's length is greater than
or equal to the supplied minimum."
[min]
(fn [s] (>= (count s) min)))

Let’s create a few validations for Zap:

clojure/zap/day2/src/zap/validations.clj
(ns zap.validations
(require [valip.core :refer [validatel]]
[valip.validations :refer [present?]]))

(defn valid-project? [projl
(validate proj
[:name present? "name must be specified"]
[:name (min-length 1) "name must not be blank"]))

(defn valid-issue? [iss]
(validate iss
[:title present? "title must be specified"]
[:title (min-length 1) "title must not be blank"]
[:description present? "description must be specified"]
[:description (min-length 1) "description must not be blank"]
[:status (between 1 4) "status id must be between 1 and 4"]))

Validating comments is left for you to finish during today’s self-study.

Now that validations are handled, all that’s left is to use them in our API
views.

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/clojure/examples/src/examples/valip.clj
http://media.pragprog.com/titles/7web/code/clojure/examples/src/examples/valip.clj
http://media.pragprog.com/titles/7web/code/clojure/zap/day2/src/zap/validations.clj
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 4.Ring * 138

Finishing Off the API

Once again our task is relatively easy thanks to the model code that we cre-
ated yesterday. Let’s start with the create-project view, which is called when POST
[api/projects is called to create a new project entry:

clojure/zap/day2/src/zap/views.clj
(defn create-project [params]
(let [errors (valids/valid-project? params)]
(if errors
{:status 400
:body (json/write-str {:errors errors})}
(do
(models/create-project params)
{:status 200 :body ""}))))

First the validator runs and collect the errors. If there are any, a 400 status
response is returned for the bad request along with the list of errors in JSON
format. If there were no errors, the project is created.

Let’s look at something slightly more complex, the edit-project view. Unlike create-
project, this view might be invoked for an invalid project ID. In that case, we’ll
need to return a 404 Not Found error message. Other than that, the logic is
largely the same:

clojure/zap/day2/src/zap/views.clj
(defn edit-project [id params]
(Let [errors (valids/valid-project? params)]
(if errors
{:status 400
:body (json/write-str {:errors errors})}
(if-let [proj (models/project-by-id id)]
(do
(models/update-project id params)
{:status 200 :body ""})
{:status 404 :body ""}))))

Notice that valid-project? might be doing a lot of complicated validations on the
data if our bug tracker was itself more complicated. The code here would not
need to change much to support that—perhaps only to provide better error
messages—and our validation logic would remain the same clear list of rules,
albeit somewhat longer.

The rest of the API's views will be similar to the ones shown before for project-
related actions. Think about how you might abstract some of this away; Clojure
makes it easy!

With API views under control, we should revisit routing to see if we can make
some improvements.

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/clojure/zap/day2/src/zap/views.clj
http://media.pragprog.com/titles/7web/code/clojure/zap/day2/src/zap/views.clj
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 2: Patterns of Bricks ® 139

Composable Routes

Yesterday we used the defroutes macro to create a set of URL routing rules for
Zap. One way to add the new routes needed for Zap’s API would be to add
more routing rules to the list; this is what the API has used so far. For non-
trivial applications, this list of routes is likely to be very long, and it would
be better if the routing logic could be built up in smaller pieces that are then
composed together into a master list of routes. The defroutes macro has a
syntax for this: the context route.

The arguments to context are the same as those to GET and POST. Instead of
writing the routing actions directly, you can just pass the name of the set of
routes you created elsewhere. The defroutes macro creates a Ring handler that
can be used directly in route bodies.

The way context works behind the scenes is very simple. It just tests for the
path prefix you specified as the second argument, trims that prefix off the
path, and passes the modified request into the handler given as the last
argument.

Let’s see a simple example:

(defroutes sub-routes
(GET "“/bar" [] "Bar")
(GET "/baz" [] "Baz")

(defroutes app-routes
(GET II/II [] IIROOtII)
(context "/foo" [] sub-routes))

First, a set of routes is defined, sub-routes, handling a related group of routing
rules. Then the context syntax is used to include that group of rules under the
path /foo. Now retrieving path / will return Root, /foo/bar will return Bar, and
[foo/baz will return Baz.

Note that the routes in sub-routes don’t need any knowledge of where in the
path they’ll ultimately end up. If you later decide to move this group of routes
under /legacy/foo, it is as simple as changing the prefix given to context.

A complex application might have many different groups of routing rules
defined, each group being relatively simple. The main application routes are
then just a list of context definitions tying it all together.

Since Zap is relatively simple, we’ll split the routing logic into two groups.
The first group will be the routes we created yesterday, and the second will
be the API routes. Finally, the app-routes will just compose the two groups along
with the static resources and error handlers:

www.it-ebooks.info

http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 4.Ring * 140

clojure/zap/day2/src/zap/core.clj
(defroutes api-routes
(GET "/projects" [1]
(json/write-str (models/all-projects)))
(GET "/project/:id" [id]
(if-let [proj (models/project-by-id id)]
(json/write-str proj)
{:status 404 :body ""}))
(GET "/project/:pid/issues" [pid]
(json/write-str (models/issues-by-project pid)))
(GET "/project/:pid/issue/:iid" [pid iid]
(json/write-str (models/issue-by-id iid)))

(POST "/projects" [& params]
(views/create-project params))

(DELETE "/project/:id" [id]
(views/delete-project id))

(PUT "/project/:id" [id & params]
(views/edit-project id params)))

(defroutes app-routes

(GET "/" [1]
(views/index))

(GET "/projects" [1]
(views/projects))

(GET "/projects/new" []
(views/new-project))

(POST "/projects" [& params]
(views/make-project params))

(GET "/project/:id/issues" [id]
(views/issues-by-project id))

(GET "/project/:id/issue/new" [id]
(views/new-issue id))

(POST "/project/:id/issues" [id & params]
(views/make-issue id params)))

(defroutes all-routes
(context "" [] app-routes)
(context "/api" [] api-routes))

(def app
(-> app-routes
(wrap-resource "public")
wrap-keyword-params
wrap-params))

Now the two sections are completely separated, and each section contains
only pertinent entries. Extraneous things like static resources and request
processing are handled entirely in the piece that glues everything together.

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/clojure/zap/day2/src/zap/core.clj
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 2: Patterns of Bricks * 141

Notice also that it’s not just one function calling a bunch of helpers. Routes
are composable in that they can call each other, delegate to other functions,
be combined with other routes, or be wrapped by Ring middleware. Since
each route is itself a Ring handler, you may invoke it directly, passing in a
request map and getting a response map in return. This property makes them
extremely easy to test.

This composition is not by any means limited to routes either. Korma, the
library we used yesterday for talking to our SQL data store, puts SQL into a
composable form, allowing reuse of WHERE clauses and field specifications.
There’s no need to do fancy string concatenation; you can just combine the
simple parts into a bigger whole, reusing or delegating as is convenient.

Composition and its complement, separation of concerns, is one of the core
building blocks of Clojure applications. Rich Hickey, in his talk “Simple Made
Easy,”® used the word complected, meaning interleaved or braided, to describe
code that is not simple. By separating complected components, you simplify
your code and enable the individual pieces to be reused and combined in new
and interesting ways. Think of how useful the simple LEGO bricks are com-
pared to a brick shaped like a car. You can build a car from the simple bricks
fairly easily, but building anything else from a car brick is going to be frus-
trating at best.

What We Learned on Day 2

The Ring stack is a collection of simple, useful, reusable pieces that can be
put together in many configurations to solve problems. Today we looked at
more compositional patterns in the context of designing the public API for
Zap.

We defined what methods and paths the Zap API would contain, sticking to
common best practices.

We looked at how easy it is to work with JSON data in Clojure. JSON comes
particularly easily for Clojure since it has a rich set of data structures and
data structure literals that are even more powerful and convenient than JSON
itself.

We also looked at one way of handling data validation using the Valip library.
Valip made validations clear and simple with its handy DSL, decomposing
the validation logic.

6. http://www.infog.com/presentations/Simple-Made-Easy

www.it-ebooks.info

http://www.infoq.com/presentations/Simple-Made-Easy
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 4.Ring ® 142

Finally, we showed how composition of routing is used to define small, separate
bits of the application’s routing logic and then combine them easily into a
greater whole.

Tomorrow we’ll look at another way to generate HTML and delve deeper into
Ring handlers and middleware. And, of course, there will be more examples
of composition.

Day 2 Self-Study
Find:

e The Compojure APl documentation
e The data.json API documentation
¢ Alternative validation libraries

Do:

e Implement comment validation.

e Finish the rest of the API views.

e Refactor the API to support both XML and JSON output formats.

e Add support for paging to the API using offset and limit parameters. (Hint:
Take a look at Clojure’s take and drop functions.)

Day 3: Other Ways to Build

Our tour thus far has been of a typical stack a Ring app would use. We’'ll now
explore a few side alleys and an alternative templating library to give you a
flavor of the myriad of options available. Clojure programmers have been
refining ideas from other languages and frameworks, as well as striking out
on paths less travelled in their search for web programming enlightenment.

You saw Ring middleware briefly on previous days, and today we’ll dive a little
deeper so that you can write your own middleware. The pattern used by Ring
middleware appears in other Clojure libraries as well—notably in nREPL, the
network REPL library—and it is a useful one to know.

Hiccup templating is convenient and fast for Clojure programmers, but it
probably isn’t the best interface for designers. We'll look at Enlive, the other
big name in Clojure templating libraries, and see what solutions it can offer
to this problem.

Testing is important, and we’ll wrap up with a basic example test. Let’s jump
right in!

www.it-ebooks.info

http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 3: Other Ways to Build * 143

Ring Middleware

On the first day of your Ring journey, we suggested thinking about Ring
middleware as simple data transformation functions that modified either the
request or response maps provided by Ring. The reality is slightly more com-
plicated, due to the fact that instead of transforming maps directly, we're
building a pipeline of transformations to be executed whenever requests are
handled. Because Clojure is a functional language, it probably won’t surprise
you that middleware actually manipulates functions.

Functional programming has function right there in its name, so you know
it must be important. In functional languages, functions themselves are first-
class values just like integers or objects. This means that functions can return
functions, variables can be bound to functions, and functions can be passed
as arguments to other functions. This is a very powerful concept, and you
may have gotten a taste of it from other languages that have borrowed ideas
from Lisp.

Let’s look at some examples of functions returning functions. To motivate the
example, we'll start with a simple goal: write a function that modifies an input
list by changing strings to keywords.

clojure/examples/src/examples/function_return.clj
(defn keywordize [1]
(for [elem 1]
(if (string? elem)
(keyword elem)
elem)))

(keywordize [1 2 "foo" 3 "bar"])
;;=> (1 2 :foo 3 :bar)

Pretty straightforward, right? Imagine that you’'ve been handed some function
that transforms a list, and you’d like to add the keywordize transformation as
well. Easy! Just call the original function on the list and then pass that result
to keywordize.

clojure/examples/src/examples/function_return.clj
(keywordize (other-transform [1 2 "foo" 3 "bar"l))
;. or
(-> [1 2 "foo" 3 "bar"]
other-transform
keywordize)

A problem occurs if you don’t have the input on hand and ready. Given a
transforming function, we’d like to modify it by adding more transformations
and then return a new transforming function that can be used by other parts

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/clojure/examples/src/examples/function_return.clj
http://media.pragprog.com/titles/7web/code/clojure/examples/src/examples/function_return.clj
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 4.Ring * 144

of the code—sometime later, when input is available. To do this, we need to
return a function instead of simply applying a function:

clojure/examples/src/examples/function_return.clj
(defn wrap-keywordize [f]
(fn [1]
(keywordize (f 1))))

If wrap-keywordize is called on a transforming function, it returns a new function
that runs the original transformation and then runs keywordize on the result.
You’'ll notice that keywordize is operating on f's output, but what if we wanted
it to operate on its input? Perhaps f’s transformations already expect strings
to be replaced by keys.

clojure/examples/src/examples/function_return.clj

(defn wrap-keywordize-output [f]

(fn [1]
(keywordize (f 1))))

(defn wrap-keywordize-input [f]
(fn [1]
(f (keywordize 1))))

With the -output and -input versions of the wrappers, we can now wrap either
way. And nothing stops you from wrapping both input and output.

This function manipulation is mind-bending stuff, so go through the steps a
few times if it hasn’t quite sunk in fully. The change from applying functions
to returning functions is simple, but it is disproportionately powerful. Instead
of adding a wing to an airplane, it can add the power to fly to anything you
give it.

If you've made it this far, then congratulations—you understand how Ring
middleware works! Of course, instead of lists as input, Ring passes the request
map, and instead of lists as output, the function at the center of the transfor-
mation generates a response map. Ring middleware can choose to transform
one or both of these maps, just as our wrapping functions transformed the
input and output.

We can put middleware to use to solve a problem in Zap. All of the API routes
need to serialize their response to JSON. It would be nice if we could wrap
API functions with middleware that did that transformation for us.

Think for a bit about how you might do this, and then take a peek at the fol-
lowing solution:

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/clojure/examples/src/examples/function_return.clj
http://media.pragprog.com/titles/7web/code/clojure/examples/src/examples/function_return.clj
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 3: Other Ways to Build * 145

clojure/examples/src/examples/function_return.clj
(defn wrap-json-response [f]
(fn [reql
(let [resp (f req)
body (:body resp)]
(assoc req :body (json/write-str body)))))

Adding wrap-json-response to the list of Ring middleware for your application will
change responses that are normal Clojure data structures into their JSON
representations. We no longer need to call json/write-str in every route.

Enlive

Let’s climb up from the bottom of the stack in the caves of Ring, right up to
the mountain summit that is HTML templating. In HTML Is Data with Hiccup,
we played with Hiccup by writing HTML in Clojure data structures. Let’s look
now at Enlive, which manipulates existing HTML content to produce output.

Enlive is HTML origami, and it is just as clever and beautiful. You first create
a mockup of the HTML output you’d like, and then you use that mockup
directly as the HTML template, transforming it via simple changes to the
output you want. For example, the mockup HTML might contain a list of
dummy projects. In the transformation, the first element would be used
as a template to populate with a single project’s data, and then one list item
would be created for each project, replacing the dummy items.

Even better, the transformations are written using CSS selectors and Hiccup-
like data structures. Instead of dealing with partials, which are just templates
of pieces of HTML instead of whole HTML documents, templates can be
extracted from the mockup output and reused anywhere. HTML designers
never have to use anything but HTML, and their mockups never need to be
translated into templates at all. Instead, you write the transformations
needed to change the mockup into real output in situ.

Before we can transform anything, we need some HTML to work on. Let's
pretend that an amazing designer friend of ours has handed us a mockup of
the Projects page for Zap:

clojure/zap/day3/resources/templates/projects.html
<!DOCTYPE html>
<html>
<head>
<link href="/css/bootstrap.min.css" rel="stylesheet" type="text/css">
<link href="/css/zap.css" rel="stylesheet" type="text/css">
<title>Projects - Zap</title>
</head>

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/clojure/examples/src/examples/function_return.clj
http://media.pragprog.com/titles/7web/code/clojure/zap/day3/resources/templates/projects.html
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 4.Ring * 146

<body>
<div class="navbar navbar-inverse">
<div class="navbar-inner">
Zap!
<form class="navbar-form pull-right">
<input class="search-query" placeholder="Search" type="text">
</form>
</div>
</div>

<div class="container">
<div class="row admin-bar">
Add Project
</div>

<hl>Project List</hl>

Zap

Website

</div>
</body>
</html>

Enlive provides a macro deftemplate that creates a template function from an
HTML file and a list of transformation rules. Let’s look at a simple template
that just changes the page title:

clojure/examples/src/examples/enlive.clj
(use 'net.cgrand.enlive-html)

(deftemplate page-with-title "templates/projects.html"
[title]

[:title] (content (str title " - Zap")))

deftemplate is similiar to defn. It takes a name for the new function, the path to
the template relative to the project’s resources directory, the parameters for the
function, and finally the body. The body of a template consists of transforma-
tions, each of which is a CSS selector and transformation function pair. CSS
selectors are written as keywords in a vector. This example selects all elements
whose tag is title. The content transformation function replaces the content of
the matched elements.

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/clojure/examples/src/examples/enlive.clj
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

(1]

1]

Day 3: Other Ways to Build ¢ 147

Enlive supports most CSS selectors. A selector of #content .big a would be written
[:#content :.big :a]. Enlive’s selector syntax reference contains more details.” With
these, you can easily express targets for transformations.

In addition to the function content, Enlive also provides set-attr for setting
attributes on elements, add-class for adding new CSS classes to elements, remove-
attr, and do->, which strings together several transformations at once. You can
also wrap any of these functions in normal Clojure expressions like if or cond
to get dynamic behavior.

You can also make snippets in Enlive, which are like templates but created
from an extracted piece of a document. Let’s make a snippet we can reuse
for the project list’s elements:

clojure/examples/src/examples/enlive.clj

(defsnippet project-item
"templates/projects.html" [:.container :ol [:li first-child]]
[proj]

[:a] (do->
(set-attr :href (str "/project/" (:id proj) "/issues"))
(content (:name proj))))

©® The only difference between deftemplate and defsnippet is the extra selector
to choose what elements to extract from the base HTML. Notice the new
selector notation [:li first-child] in the snippet definition; this is equivalent
to CSS’s liffirst-child. In order to express this compound selector in Enlive,
it gets wrapped in its own vector. Enlive’s first-child selector predicate is
just one of many choices. Some other interesting predicates are nth-child,
attr?, and text-pred.

©® Here’s do-> in action combining several transformations into a single one.

That covers the basics of Enlive. Let’s put it to use and rewrite the whole
project list view for Zap:

clojure/zap/day3/src/zap/views.clj

(deftemplate base-page "templates/projects.html"
[title & body]
[:title] (content title)
[:.container] (content body))

(defsnippet admin-bar

"templates/projects.html" [:.container :.admin-bar]
[links]

7. http://enlive.cgrand.net/syntax.html

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/clojure/examples/src/examples/enlive.clj
http://media.pragprog.com/titles/7web/code/clojure/zap/day3/src/zap/views.clj
http://enlive.cgrand.net/syntax.html
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 4.Ring * 148

[:a (but first-child)] nil

[:a] (clone-for [[url title] links]
(do->
(set-attr :href url)
(content title))))

(defsnippet project-item
"templates/projects.html" [:.container :ol [:1i first-child]]
[proj]
[:a] (do->
(set-attr :href (str "/project/" (:id proj) "/issues"))
(content (:name proj))))

(defn projects []
(base-page
"Projects - Zap"

(admin-bar {"/projects/new" "Add Project"})
(html [:h1 "Project List"])
(map project-item (models/all-projects))))

©® The base page is created from the mockup, replacing just a few key
sections.

©® The predicate but negates a predicate. Here all children but the first are
deleted so that only one element is actually cloned by the next rule.

© clone-for clones an element once for each item in a collection. It mirrors
Clojure’s for syntax, except the body in this case is a transformation.

O html creates new DOM nodes in Enlive using Hiccup syntax.

The end result is slightly more verbose than straight Hiccup code, but your
designer can now work completely independently in a familiar medium.
Integration work only requires agreement on page structure, and it’s easy to
change CSS selectors in the code if the page structure changes.

A Little About Testing

As the final leg of our tour, let’s look very quickly at one way you can test
your Ring app. Clojure has great testing facilities, including clojure.test for unit
testing, as well as test.generative, which generates random test cases from
simple rules. For testing Ring applications, there is Kerodon.®

Kerodon adds the ability to interact with Ring apps inside of tests in a conve-
nient way. You can simulate browsing to pages, filling in forms, pressing
buttons, and even following redirects. Here’s a small example:

8. https://github.com/xegi/kerodon

www.it-ebooks.info

https://github.com/xeqi/kerodon
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 3: Other Ways to Build ¢ 149

clojure/zap/day3/test/zap/basic.clj
(deftest projects-page-exists
(-> (session zap/app)
(visit "/projects")
(has (status? 200) "page exists")
(within [:h1]
(has (text? "Project List") "header is there"))))

You can run your tests with lein test:

$ lein test
lein test zap.basic

Testing zap.basic

Ran 1 tests containing 2 assertions.
0 failures, 0 errors.

This test visits /projects, checks the HTTP status code of the response, and
ensures some known text is present in the page. Behind the scenes Kerodon
is building Ring request maps on your behalf and checking that the response
maps meet your expectations. Other libraries for testing Ring exist as well,
and several other styles of testing frameworks are also available, so try a few
and find your favorite.

What We Learned on Day 3

Today was a quick overview of some interesting pieces of the Ring ecosystem.
The Clojure community innovates rapidly, and many libraries are competing
for their place in your toolbox. There are too many such tools to cover in an
entire book, let alone a single chapter, but you should now have a taste for
what’s out there.

We looked at Ring middleware, which is an important layer in the application
stack, stringing together transformations of HTTP requests and responses.
Ring middleware is yet another place where Clojure’s power of composition
shines brightly. The compositional patterns in Clojure can be tricky to wrap
your mind around if you aren’t used to that level of abstraction.

Enlive is a radical departure from traditional templates in other frameworks,
but it is one that works well, especially in teams where HTML is written by
nondevelopers. It expresses CSS selectors as data, giving you easy access to
manipulate HTML.

Last, but certainly not least, we looked at one approach to testing. Since Ring
applications are, at heart, simple functions that take and return maps, testing
them is surprisingly easy, even without the help of great libraries like Kerodon.

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/clojure/zap/day3/test/zap/basic.clj
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 4.Ring * 150

Day 3 Self-Study
Find:

e More Enlive tutorials
e Other templating frameworks to compare with Hiccup and Enlive

Do:

¢ Check out the list of Ring’s included middleware.
e Convert more views to Enlive.
e Write tests for adding new issues and closing them.

Interview with James Reeves

James Reeves is a one-man software company and a driving force in the
Clojure web ecosystem. It’s hard to do anything in Clojure relating to the web
without using code that he wrote. He created or maintains several of the
libraries we'll see in this chapter, including Ring, Compojure, and Hiccup.

Us: What do you feel are Ring’s strengths for programming web applications?

James: Ring is based upon a single, simple abstraction that allows developers to
write web applications using nothing but functions and standard Clojure data
structures. This means Ring can play to Clojure’s strengths and malke it easier to
develop larger applications from small, independent functions.

Ring produces relatively performant applications, running a little slower than stati-
cally typed languages like Java or Go, but typically much quicker than interpreted
languages like Ruby or Python. Ring seems to be most often used for RESTful web
services, perhaps because Ring males it easy to _factor out common functionality.

Us: What'’s your favorite thing about using Ring for the Web?

James: Ring lets me work with HTTP using pure functions and maps, without
requiring any custom types or classes. There are fewer barriers to working with
Ring, and because of that it’s easier to leverage the tools the language provides. I
find myself using more higher-level functions in Ring (like middleware) because
they're so easy to put together.

Us: What are your thoughts on a la carte collections of libraries versus full-stack
frameworks like Rails or Django?

James: Full-stack frameworks span a comfortable middle ground between appli-
cations that are too small for a framework to be necessary and applications that
are too large for full-stack frameworks to make much of a dent in overall complexity
and development time.

There are, I think, two pressures coming to bear on full-stack frameworks. The first
is that developers are beginning to favor distributed systems made of smaller ser-
vices, which lend themselves to more lightweight libraries. The second is that as

www.it-ebooks.info

http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Wrapping Up *® 151

libraries become better, we can build more without needing as much of an application
skeleton as a _framework provides.

I suspect there will always be a place for frameworlks like Rails and Django, at
least in the foreseeable future, but my guess is that they’ll be used less, or perhaps
used in a more piecemeal fashion.

Wrapping Up

Ring is a simple data abstraction for HTTP requests and responses, but this
simplicity gives it much of its power. Turning HTTP, SQL, HTML, and routing
into data structures means they can be manipulated and combined to your
heart’s content with the powerful tools in Clojure. Each library is like a kind
of LEGO brick, and each Ring app is a unique construction from these simple
pieces. Ring data ties everything together.

We concentrated on traditional web application architecture in order to show
off Ring and friends without leaving you lost in a sea of new knowledge.
Libraries exist for a variety of alternative architectures, including integration
with queuing systems, WebSockets, and all the other amenities one finds in
large web applications.

Ring’s Strengths

Ring and Clojure go together, and many of Ring’s strengths come directly
from strengths in the underlying language. Lisps are often regarded as among
the most powerful of programming languages, and Clojure is as capable as
any of its parenthetical ancestors. Clojure is not just a powerful language;
it’s a practical response to the lack of advanced and high-level tooling around
modern programming problems.

The Java ecosystem is vast, and Java code has been created to solve nearly
every problem you can imagine. It’s been a popular choice for web applications,
especially in the enterprise. The JVM in particular is a piece of remarkable
engineering and is nearly unbeatable for performance without resorting to a
native language like C or C++.

Clojure embraces the Java platform and the JVM. Integration with Java code
is seamless and easy. It's so easy that it’s often easier to write Java code in
Clojure than directly in Java due to Clojure’s dynamic nature. Clojure code
can call Java code; Java code can call Clojure; and many practical additions
to the language make working with Java easy. For example, Clojure collections
all implement the standard Java collection interfaces.

Ring and the libraries we looked at take full advantage of this integration.
Ring builds on top of Java servlets and Jetty. Enlive uses the Tag Soup library,

www.it-ebooks.info

http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 4.Ring ® 152

which is written in Java. Korma builds on top of Java’s database connectivity
infrastructure. Your application will not want for libraries; practically anything
you can imagine already exists in Java land.

Working with data is easier in Clojure than in nearly any other language you
can find. It has syntactic support not just for lists and maps but also for sets
and vectors. The threading operators make chaining transformations as easy
as Unix command pipelines.

By turning HTTP, CSS selectors, HTML elements, and even code into data,
Clojure’s wonderful toolbox can be put to use on these problems directly. This
is a powerful concept that becomes second nature after awhile. Ring and
related projects make extensive use of this idea to great effect.

Functional languages are studies in composition. Functions are first-class
values and can be passed around, returned, and bound to variables. This
allows you to combine functions together and build higher-level abstractions
to solve problems. You might have a taste for this already from languages like
JavaScript or Ruby, but the tools available for this in Clojure are finely honed.

Ring middleware is a great example of composition. Each middleware function
does something simple—converting string keys to keywords or parsing query
and form parameters—but all can be combined in many ways to build custom
web request processing. Compojure uses composition to layer and combine
routing rules.

Composition is quite a different tool than OOP’s inheritance. Instead of
extending, you combine. You'll find it much easier to use and reason about
composition, and it’s a natural companion to web applications, which are
often compositions of resources themselves. Ring’s apps are compositions
themselves, each piece of which also makes use of composition.

Ring’s Weaknesses

All frameworks, libraries, and languages have their warts, and no tool is
perfect at all things. While Ring apps excel at many things, keep a few things
in mind before you begin your journey as a Ring app developer.

While access and integration with the Java platform is a huge win for Ring
and Clojure, you need some familiarity with Java to take advantage of this.
Many web developers who’ve worked in Ruby and Python have shunned Java
for years, and whether or not this was reasonable, learning some Java is an
important part of using Clojure to its full potential. If you're new to Java and
Clojure, it makes the learning curve a little bit steeper.

www.it-ebooks.info

http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Wrapping Up * 153

Most of the Ring platform is a la carte. While there are a few upstart full-stack
frameworks in Clojure, most of the platform revolves around libraries that do
a small set of things and work well with the rest of the platform. Ring’s data
abstractions are responsible for much of this interoperability.

While this means you can build custom solutions and pay only for what you
use in terms of overhead and performance, it also means you must be cog-
nizant of the choices and how pieces fit together. You may have to try a few
options before you find one that suits your needs. Also, there may be little if
any documentation on some combinations of tools, since there are so many
possible combinations.

Final Thoughts

Clojure brings the power of Lisp to bear on web problems, and Ring takes
this power and runs with it. You can view a web application as a set of data
transformations, and in that perspective, Clojure certainly has a lot of
advanced tooling to make your life easier. The dynamic nature of Clojure will
make Ruby, JavaScript, and Python programmers feel right at home, and the
access to the Java platform will satisfy any pointy-haired bosses in your life.
Like a pile of LEGOs, you can create whatever you want in infinite combina-
tions, but it also demands some imagination and creative thinking.

www.it-ebooks.info

http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

CHAPTER 5

Webmachine

Webmachine is quite different than other frameworks and libraries you may
have seen before. It works a bit like the Socratic method or a Choose Your
Own Adventure book. Webmachine asks your application questions, and the
answers determine a path through the HTTP decision tree.

Does this URL exist? If no, return a 404; if yes, keep going. What kind of
content does this URL support? What encodings does it support? When was
it last modified? In each case, you provide simple answers, but Webmachine
turns these into sophisticated handling of HTTP requests that few other sys-
tems can match.

All of this comes on top of the battle-hardened reliability and concurrency
support that Erlang itself provides. The combination is potent, and other
languages and frameworks are starting to draw from Webmachine’s
inspiration.

Introducing Webmachine

HTTP is often discussed as a simple protocol, but the truth is that it’s quite
complicated. Most frameworks expose it only on a very basic level, using the
ability to route requests based on methods and URLs and to return a few
types of responses. They hide the full machinery, which has support for
content negotiation, encodings, and caching.

Figure 20, Simple HTTP processing, on page 156 shows how most web frame-
works expose the HTTP protocol.

It is simple to understand but hides most of HTTP’s power. If you want caching
or content negotiation, you must implement the decision logic yourself in the
controller. Sometimes frameworks come with extension points—for example,
see Ring Middleware, on page 143—for handling other HTTP logic. This

www.it-ebooks.info

http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 5. Webmachine ® 156

HTTP
Request

Generate

ists?
Resource exists? HTML

200 OK

404 Not
Found

Figure 20—Simple HTTP processing

middleware is limited in functionality and can only modify the HTTP request
and response data; your resource must still inspect the middleware’s data
and make its own decisions.

Webmachine exposes a more complete HTTP protocol. The following figure
should give you an idea of how complicated HTTP really is. Each diamond is
a decision point, where Webmachine will ask your code a question. The double
arrows and shaded diamonds in the figure show what happens to an HTTP
request as it is processed in a normal flow ending with 200 OK. Notice how
many decisions must be made.

200 <<> <>
[l <> << < a9
] <> << ot [597] 0]
01 <> <> 2] :
laos]- <> [4o6]}- <> P
ot <> < aoa]
[a00]- <> <> <<g
[a14]} <§> A ¥
[5031- ? g
{a09]

faz]F <> {304

<> <>
202 [204]

Figure 21—HTTP processing flowchart

www.it-ebooks.info

http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 1: HTTP Request as State Machine ¢ 157

Most web applications don’t need to make this many decisions, but instead
of hiding these decisions from the programmer or predetermining their
answers, Webmachine exposes them and affords complete control. It simplifies
everything through well-chosen default answers, but the hooks are there if
your application requires different behavior.

One advantage of this approach is that the decision logic is separated from
the code that generates individual answers. Another advantage is that you
no longer need to remember HTTP status codes. What's the difference between
301 and 302? Should you return a 401 or a 403? Webmachine will provide
the correct response given your answers to more tractable questions.

On the first day we’ll look at our first Webmachine app and start exploring
Webmachine’s resource functions. Next, we’ll look at how Webmachine dis-
patches HTTP requests.

During Day 2 we’ll implement the first version of Petite, a link-shortening
application that will make use of the extra control over HTTP that Webmachine
provides. We'll also play with templating and content negotiation.

Day 3 is all about controlling caching and authorization, two important pieces
of many modern apps that are often neglected by other frameworks.

Let’s dive right in.

Day 1: HTTP Request as State Machine

Webmachine excels at making complex HTTP processing simple, and its sweet
spot is very much on the back end of web systems. It is used to power APIs
such as Opscode’s Chef Server API as well as HTTP interfaces to distributed
systems like Basho’s Riak database. We'll look at Webmachine through the
lens of a link-shortening service, and by the end of today, you’ll be ready to
make your very own link shortener.

Link shorteners have proliferated since they first appeared around 2002,
turning lengthy URLs into compressed sequences of alphanumerics that fit
in limited space or require less typing. They work by redirecting from the
shortened link to the destination by using a big lookup table. They don’t quite
fit the normal flow of web applications that most frameworks cater to—the
focus is on altering HTTP flow, not on manipulating application state—but
they are right at home in Webmachine.

1. http://en.wikipedia.org/wiki/URL shortening

www.it-ebooks.info

http://en.wikipedia.org/wiki/URL_shortening
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 5. Webmachine ¢ 158

Getting Started

Webmachine is built in Erlang, a robust, concurrent, and functional language
originally designed for use in telecommunications applications. You’'ll need
to install a copy of the Erlang runtime and development libraries. Packaged
versions of these can be found in most system’s package managers on Linux
or in Homebrew on Mac OS X; Windows binaries are available from the Erlang
site (http://www.erlang.org/). Any recent version of Erlang should work fine.

Once you have Erlang installed, you can check that all is working by starting
up the Erlang console. It should print out the version number and leave you
at an Erlang prompt.

$ erl
Erlang R15B03 (erts-5.9.3.1) [source] [64-bit] [smp:8:8] [async-threads:0]
[hipe] [kernel-poll:false] [dtrace]

Eshell Vv5.9.3.1 (abort with ~G)
1>

You can quit the Erlang console by pressing Ctrl-C twice.

Next, you need to download Webmachine from GitHub. The easiest way to do
this is to clone the Webmachine repository with Git. It doesn’t need to be
installed anywhere special, as it will create a self-contained Webmachine
project for us in the location of our choosing. In the directory you'd like to
work in, run the following commands:

$ git clone https://github.com/basho/webmachine.git

Cloning into 'webmachine'...

remote: Counting objects: 2542, done.

remote: Compressing objects: 100% (1291/1291), done.

remote: Total 2542 (delta 1468), reused 2247 (delta 1210)
Receiving objects: 100% (2542/2542), 1.80 MiB | 39 KiB/s, done.
Resolving deltas: 100% (1468/1468), done.

All the pieces are in place, and we can start making Webmachine apps. There’s
no need to install or configure Webmachine like we do with other frameworks.
Erlang’s virtual machine and the Rebar package manager make getting
started easy.

Hello, World

Webmachine comes with a script, new_webmachine.sh, that creates a new project
for you, complete with a simple resource, basic routes, and build scripts. You
pass it the name of your project and, optionally, the path the project should
be created at:

www.it-ebooks.info

http://www.erlang.org/
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 1: HTTP Request as State Machine ¢ 159

$ webmachine/scripts/new_webmachine.sh hello

==> priv (create)

Writing /Users/jack/src/hello/README

Writing /Users/jack/src/hello/Makefile

Writing /Users/jack/src/hello/rebar.config
Writing /Users/jack/src/hello/rebar

Writing /Users/jack/src/hello/start.sh

Writing /Users/jack/src/hello/src/hello.app.src
Writing /Users/jack/src/hello/src/hello.erl
Writing /Users/jack/src/hello/src/hello _app.erl
Writing /Users/jack/src/hello/src/hello sup.erl
Writing /Users/jack/src/hello/src/hello resource.erl
Writing /Users/jack/src/hello/priv/dispatch.conf

Most of these files are part of any Erlang application or are simple placehold-
ers. It's only important to know that running start.sh will launch the application,
and src/hello_resource.erl and priv/dispatch.conf define the main resource and URL
routes, respectively.

We can build and run the app by running make and start.sh. By default, the
application will listen on port 8000 so you can point your browser to
http://localhost:8000/ to be greeted by Webmachine.

$ make

==> hello (get-deps)

Pulling webmachine from {git,"git://github.com/basho/webmachine", "HEAD"}
Cloning into 'webmachine'...

Komitted output”

==> hello (compile)

Compiled src/hello _app.erl

Compiled src/hello resource.erl

Compiled src/hello.erl

Compiled src/hello sup.erl

$./start.sh
Erlang R15B03 (erts-5.9.3.1) [source] [64-bit] [smp:8:8] [async-threads:0]
[hipe] [kernel-poll:false] [dtracel]
Komitted output”
=PROGRESS REPORT==== 2-May-2013::22:52:15 ===
application: hello
started at: nonode@nohost

You can quit the Erlang virtual machine by pressing Ctrl-C twice.
Let’s look at the two most important files, dispatch.conf and hello_resource.erl.

The dispatch.conf file is a sequence of Erlang terms, each ending with a period.
These are the dispatch rules that map URLs to resources.

www.it-ebooks.info

http://localhost:8000/
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

o 0 00

Chapter 5. Webmachine ® 160

webmachine/hello/priv/dispatch.conf
{[]1, hello resource, []}.

Our file contains a single simple rule that has three parts: a path specification,
the resource module, and the arguments for the resource. An empty list, [],
for the path specification represents the root path. hello_resource is the mod-
ule—defined in a corresponding erl file—implementing the Webmachine
resource, and it takes no arguments, so [] is an empty argument list. This file
is pretty bare, but we’ll see more complicated sets of dispatch rules later.

hello_resource.erl defines an Erlang module called hello_resource, which implements
a resource. Each of the exported functions of a resource will be called by
Webmachine’s state machine to answer the questions that will determine how
the HTTP request is processed.

webmachine/hello/src/hello_resource.erl

-module(hello resource).

-export([init/1, to html/2]).
-include_lib("webmachine/include/webmachine.hril").

init([]) -> {ok, undefined}.

to html(RegData, State) ->
{"<html><body>Hello, new world</body></html>", ReqData, State}.

O These are the exported resource functions. Notice that they end in /1 or
2, which is the function’s signature in Erlang; functions with the same
name and different numbers of arguments are distinct functions in Erlang.
init gets called when the resource is initialized, and it’'s passed the argu-
ments given in the dispatch rules. to_html is the default content function,
which Webmachine calls to answer the question of what content, or
representation, to return to the user. We'll see lots more resource functions
as we go along.

O All Webmachine resources must include webmachine.hrl, which defines the
request data structures.

© The init function sets up the resource’s state for the request. This state
will be threaded through each of the resource functions. For example, it's
passed as the second argument to to_html. Since this resource has no
internal state, it returns undefined.

Data in Erlang is immutable, so functions typically take the old state and
return a new version of the state, which then gets passed to the next
function. This threading of immutable state makes functional programs
very easy to reason about.

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/webmachine/hello/priv/dispatch.conf
http://media.pragprog.com/titles/7web/code/webmachine/hello/src/hello_resource.erl
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 1: HTTP Request as State Machine ® 161

O Resource functions return a three-tuple of result, request data, and the
new internal state. The result of a content function is usually an iolist,
which is a string, a binary, or a list of iolists.

As you can see, it takes a little bit of infrastructure to get a Webmachine app
running, but the actual resource module and dispatch rules are pretty mini-
mal. Of course, this is just the beginning. The real fun starts when we start
to add more resource functions to our resource’s module.

Working with Resource Functions

Webmachine resources can have over thirty resource functions that customize
various parts of the HTTP request-handling behavior. Webmachine calls a
resource function to ask a question, and your resource provides a simple
answer—often just true or false. Your resource modules don’t need to imple-
ment every one of these functions because Webmachine provides default
behavior for each of them. The list of all resource functions, their default
behaviors, and the legal answers are all spelled out in the documentation.”

The most basic of these resource functions is content types provided, which
answers Webmachine’s question about what representations (or content types)
your resource will be providing. By default Webmachine assumes a single
HTML representation defined in a function called to_html, but by implementing
content_types_provided yourself, you can add alternate representations or change
which function Webmachine will call for a given representation.

The next example shows how you can return both a plain text and an HTML
representation for the same resource by implementing content_types_provided and
two representation functions, to_html and to_text:

webmachine/hello2/src/hello2_resource.erl
-module(hello2 resource).
-export([init/1,

content types provided/2,

to_html/2,

to_text/2]).

-include_lib("webmachine/include/webmachine.hrl").
init([]) -> {ok, undefined}.
@ content types provided(RegData, State) ->

{[{"text/html", to html},
{"text/plain", to text}], RegData, State}.

2. https://github.com/basho/webmachine/wiki/Resource-Functions

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/webmachine/hello2/src/hello2_resource.erl
https://github.com/basho/webmachine/wiki/Resource-Functions
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 5. Webmachine * 162

to_html(RegData, State) ->
{"<html><body>Hello, HTML world</body></html>\n", ReqData, State}.

to_text(RegData, State) ->
{"Hello, text world\n", RegData, State}.

©® Here we add a handler, to_text, for the text/plain content type in addition to
to_html.

©® This handler is almost identical to to_html, except that it returns text.

With this simple change, our little app will change its behavior based on the
Accept header given by the HTTP client. Clients pass the list of media types
they understand in the Accept header, and Webmachine uses this information
to choose an appropriate content handler. Notice that you don’t have to
implement content negotiation yourself; you only need to answer Webma-
chine’s simple question about what representations are available. We can
imitate this behavior with curl at the command line:

$ curl --header 'accept: text/html' http://localhost:8000/
<html><body>Hello, HTML world</body></html>

$ curl --header 'accept: text/plain' http://localhost:8000/
Hello, text world

Most frameworks don’t expose this information, which is why you see many
APIs encoding format selection into the URL itself. For example, Twitter’s
public API chooses the format based on the extension given in the API
URL—statuses/public_timeline.json returns JSON data, and statuses/public_timeline.atom
returns an Atom feed. This amounts to minor abuse of the HTTP protocol.
The two Twitter endpoints are just different representations of the same
resource, and in Webmachine, this structure is preserved.

Existential Resource Functions

Let’s take a look at some resource functions that will be very useful for our
link shortener. Our link-shortening app doesn’t actually contain the content
the user ultimately wants. Webmachine asks a resource whether or not it is
available by calling resource_exists. Normally, Webmachine assumes this is true,
but in the case of a shortened link, it definitely isn’t.

In the hello2 project, create src/uncertain_resource.erl, which is a slightly modified
version of our original “Hello, World!” example:

webmachine/hello2/src/uncertain_resource.erl
-module(uncertain resource).
-export([init/1,

to_html/2]).

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/webmachine/hello2/src/uncertain_resource.erl
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 1: HTTP Request as State Machine ¢ 163

-include_lib("webmachine/include/webmachine.hrl").
init([]) -> {ok, undefined}.
to html(RegData, State) ->

{"nothing to see here", RegData, State}.

You'll also need to modify the dispatch rules to add a path for the new
resource, priv/dispatch.conf:
webmachine/hello2/priv/dispatch.conf

{[1, hello2 resource, []}.
{["uncertain"], uncertain_resource, []}.

Compiling and running hello2 and visiting http://localhost:8000/uncertain should
work as you expect. Now let’s implement resource_exists; it’s quite easy since it
only has two possible answers:

webmachine/hello2/src/uncertain_resource.erl
%% remember to add resource exists/2 to the export list

resource_exists(RegData, State) ->
{false, RegData, State}.

Recompile and try the URL again. You should see that it now returns a 404
Not Found error. This is exactly what should happen when resources don'’t exist,
but notice that we didn’t modify the content functions of the resource, nor
did we specify anywhere that the request should return a 404. We just
answered a simple question, and Webmachine took care of the details.

Webmachine, inquisitive as it is, asks our resource even more questions. Try
adding an implementation for previously_existed:

webmachine/hello2/src/uncertain_resource.erl
%% remember to add previously existed/2 to the export list

previously existed(RegData, State) ->
{true, ReqgData, State}.

Let’s see what Webmachine does now:

$ curl -i http://localhost:8000/uncertain
HTTP/1.1 410 Gone

Server: MochiWeb/1.1 WebMachine/1.10.0
Date: Sun, 12 May 2013 04:12:09 GMT
Content-Type: text/html

Content-Length: 0

Did you know that there was an HTTP status code for this case? You have
probably never used status code 410 in your own applications, but Webma-
chine always knows exactly the right status to pick because it models the
whole HTTP state machine.

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/webmachine/hello2/priv/dispatch.conf
http://localhost:8000/uncertain
http://media.pragprog.com/titles/7web/code/webmachine/hello2/src/uncertain_resource.erl
http://media.pragprog.com/titles/7web/code/webmachine/hello2/src/uncertain_resource.erl
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 5. Webmachine * 164

If the resource doesn’t currently exist but it used to exist, where has it gone?
Webmachine inquires by calling moved_permanently and moved_temporarily. Since
the former is more appropriate for a link shortener, let’s implement
moved_permanently and see what Webmachine will do:

webmachine/hello2/src/uncertain_resource.erl
%% remember to add moved permanently/2 to the export list

moved permanently(RegData, State) ->
{{true, "http://pragprog.com/"}, RegData, State}.

$ curl -i http://localhost:8000/uncertain
HTTP/1.1 301 Moved Permanently

Server: MochiWeb/1.1 WebMachine/1.10.0
Location: http://pragprog.com/

Date: Sun, 12 May 2013 04:25:36 GMT
Content-Type: text/html

Content-Length: 0

Webmachine has again figured out exactly what to do. This part of the
Webmachine state machine for making decisions is shown in Figure 22,
Webmachine's existential state machine logic, on page 165.

The other resource functions work very similarly, although some have more
complex answers than just true and false. We’ll see more of these later, but
for now, let’s talk about dispatching.

Dispatching Requests

Dispatching is the process of deciding which Webmachine resource to use
for a given incoming request. You may want to send all /user URLs to one
resource or switch between two resources based on whether you're dealing
with individual items or collections. Almost any logic is possible, but Webma-
chine makes common patterns quite easy, and we’ll concentrate on those.

Create a new Webmachine project called dispatcher and examine priv/dispatch.conf.

webmachine/dispatcher/priv/dispatch.conf
{[1, dispatcher resource, [1}.

You've seen this dispatch rule before, but let’s break it down and examine it
more closely.

Each rule is either a three-tuple or a four-tuple. In this three-tuple version,
the first element is the path specification, the second is the Erlang module
implementing the resource that should match this rule, and the last element
contains the arguments that get passed to the resource’s init function.

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/webmachine/hello2/src/uncertain_resource.erl
http://media.pragprog.com/titles/7web/code/webmachine/dispatcher/priv/dispatch.conf
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 1: HTTP Request as State Machine * 165

HTTP
Request

yes

Resource exists? 200 OK

Resqurce Moved 301 Moved

previously

existed? permanently? Permanently
404 Not Moved 307 Moved
Found temporarily? Temporarily

410 Gone

Figure 22— Webmachine’s existential state machine logic

The path specifier is [], which represents the root path, /. Each item in this
list is a path term, and Webmachine breaks up the requested path into pieces
by splitting on slashes and then tries to match each piece against the corre-
sponding path term. For example, ["hello", "world"] would match /hello/world.

A resource can inspect the path by using the wrqg:path(RegData) function. Modify
src/dispatcher_resource.erl to print the path, add the ["hello", "world"] dispatch rule,
and then build and run the dispatcher app.

webmachine/dispatcher/src/dispatcher_resource.erl
-module(dispatcher resource).

-export([init/1, to html/2]).
-include_lib("webmachine/include/webmachine.hrl").

init([]) -> {ok, undefined}.

to html(RegData, State) ->
{["you asked for ", wrq:path(RegData), "\n"],
RegData, State}.

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/webmachine/dispatcher/src/dispatcher_resource.erl
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 5. Webmachine * 166

webmachine/dispatcher/priv/dispatch.conf
{["hello", "world"], dispatcher resource, []}.

$ curl http://localhost:8000/hello/world
you asked for /hello/world

Webmachine is not limited to specific path tokens; it can also dispatch on
arbitrary paths while binding the interesting path tokens to identifiers for
use in your resource’s functions.

Parameterized Dispatch

Webmachine has a special path term that matches any number of arbitrary
path terms: *'. Note that this is the Erlang atom *', not a string; atoms that
don’t start with lowercase letters must be surrounded in single quotes. This
path term can only appear as the last term in a path specification. The parts
of the path that match the star term can be retrieved by calling
wrq:disp_path(RegqData). Create a new module, star resource, that prints out the
dispatch path, and play with it by adding a dispatch rule for ["hello", '] and
by rebuilding and running dispatcher:

webmachine/dispatcher/src/star_resource.erl
-module(star resource).
-export([init/1, to_html/2]).

-include_lib("webmachine/include/webmachine.hrl").
init([]) -> {ok, undefined}.

to html(RegData, State) ->
{["you asked for ", wrq:path(ReqgData), "\n",
"star path was ", wrq:disp path(ReqgData), "\n"],
RegData, State}.

webmachine/dispatcher/priv/dispatch.conf
{["hello", '*'], star_resource, []}.

$ curl http://localhost:8000/hello/webmachine
you asked for /hello/webmachine
star path was webmachine

$ curl http://localhost:8000/hello
you asked for /hello
star path was

$ curl http://localhost:8000/hello/how/are/you

you asked for /hello/how/are/you
star path was how/are/you

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/webmachine/dispatcher/priv/dispatch.conf
http://media.pragprog.com/titles/7web/code/webmachine/dispatcher/src/star_resource.erl
http://media.pragprog.com/titles/7web/code/webmachine/dispatcher/priv/dispatch.conf
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 1: HTTP Request as State Machine ¢ 167

Webmachine also lets you bind path terms to named atoms. A path specifica-
tion of ["goodbye", who] matches any path with two parts where the first part is
goodbye. In addition, wrqg:path_info(who, RegData) will return the second path term
by its bound name. Let’s add named_resource and an appropriate dispatch rule.

webmachine/dispatcher/src/named_resource.erl
-module(named resource).
-export([init/1, to html/2]).

-include_lib("webmachine/include/webmachine.hril").
init([]) -> {ok, undefined}.

to html(RegData, State) ->
{["goodbye, ", wrq:path info(who, RegData), "\n"1,
RegData, State}.

webmachine/dispatcher/priv/dispatch.conf
{["goodbye", who], named resource, []}.

$ curl http://localhost:8000/goodbye/world
goodbye, world

wrg:path_info(RegData), without a specific name, will return the entire property
list of named path terms.

What We Learned on Day 1

Not only is Webmachine unique in its approach to handling HTTP requests
by modeling HTTP as a state machine, but it’s also written in Erlang, a func-
tional language that is quite different from most other things you've probably
used before. Even though it might look unfamiliar, there is wisdom to be
gained from the way of Webmachine.

Writing apps with Webmachine is like creating a Choose Your Own Adventure
book for incoming HTTP requests. Webmachine asks simple questions, you
provide simple answers, and Webmachine navigates the complex state machine
of HTTP processing on your behalf. Its simple nature is deceiving and affords
access to many parts of the HTTP protocol that other frameworks hide or
make difficult to interact with.

Day 1 Self-Study
Find:

e Examples of Webmachine-based apps on the Internet
¢ The Webmachine wiki

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/webmachine/dispatcher/src/named_resource.erl
http://media.pragprog.com/titles/7web/code/webmachine/dispatcher/priv/dispatch.conf
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 5. Webmachine * 168

Do:

e Find out how to deal with query string parameters in your resource
functions. (Hint: Explore the functions available in the wrqg module, known
as the Request Data API in the wiki.)

¢ Read the Mechanics section of the Webmachine wiki to learn more about
how it all works.

Day 2: Building Apps

Yesterday we saw most of the pieces we’ll need to build a link shortener, and
today we’ll put those pieces together to build the first version of it, called
Petite.

Today we’ll also look at basic front-end tasks with Webmachine and related
libraries as we build a web UI for Petite. You'll see how to integrate HTML
templating into a Webmachine resource with mustache.erl,”> a Mustache
template implementation for Erlang.

Webmachine makes it easy to handle different types of incoming data to
support both human and API use of the same resource. You’'ll discover that
representations of incoming data and the resource itself are important parts
of Webmachine.

Shortening Links

We'll apply what we learned yesterday to build the first iteration of Petite, our
link shortener. This first version will be able to shorten links and redirect
incoming visitors to the corresponding real URLs.

First, create a new Webmachine project called petite. Starting from this shell,
we’ll keep expanding Petite as we go along.

Compression and Storage

Before we can write our Webmachine resource for Petite’s shortening API, we
must have (1) a way to shorten the link and (2) a lookup table that associates
shortened codes with their corresponding URLs. Erlang contains built-in tools
to help with both of these problems.

If you want to make a string of digits shorter, one easy trick is to write it in
a larger numeric base. For example, 10000000 in binary becomes 128 in decimal
and 3K in base 36. Using this, we can attach a number to each real URL,

3. https://github.com/mojombo/mustache.erl

www.it-ebooks.info

https://github.com/mojombo/mustache.erl
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 2: Building Apps ® 169

incrementing the number each time. The short code returned can just be the
number represented in a high numeric base so that it’s as compact as possible.
Erlang can convert to different numeric bases up to base 36 with
integer_to_list(Number, Base).

Storing the lookup table can be done a number of ways, but the easiest is to
use an ETS (short for Erlang Term Storage) table. An ETS table is an in-
memory key value store that is built into the Erlang standard library. You
can store arbitrary Erlang tuples in it, and the first element becomes the key
and the whole tuple is the value.

Putting these two pieces together, we can write a gen_server module, which is
a self-contained Erlang service that produces codes given URLs and returns
URLSs given codes. There’s not enough room to fully explain gen_servers here,
which are part of Erlang’s standard library; if you're interested, see Erlang
Programming [CTO9] by Francesco Cesarini and Simon Thompson or Joe
Armstrong’s book, Programming Erlang [Arm13]. Let’s just look at the important
bits:

webmachine/petite/day1/petite/src/petite_url_srv.erl
-module(petite url srv).

%% public API

-export([start link/0,
get url/1,
put url/1]).

-behaviour(gen_server).

-export([init/1,
terminate/2,
code change/3,
handle call/3,
handle cast/2,
handle info/2]).

-define(SERVER, ?MODULE).
-define(TAB, petite urls).

-record(st, {next}).
%% public API implementation

start link() ->
gen server:start link({local, ?SERVER}, ?MODULE, [], [1]).

® get url(Id) ->
gen_server:call(?SERVER, {get url, Id}).

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/webmachine/petite/day1/petite/src/petite_url_srv.erl
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 5. Webmachine ® 170

put url(Url) ->
gen_server:call(?SERVER, {put url, Url}).

%% gen_server implementation

©® init() ->
ets:new(?TAB, [set, named table, protected]),
{ok, #st{next=0}}.

terminate(Reason, State) ->
ok.

code change(0ldVsn, State, Extra) ->
{ok, State}.

©® nhandle call({get url, Id}, From, State) ->
Reply = case ets:lookup(?TAB, Id) of
[1r-»
{error, not found};
[{Id, Url}] ->
{ok, Url}
end,
{reply, Reply, State};

Q’ handle call({put url, Url}, From, State = #st{next=N}) ->
Id = b36 _encode(N),
ets:insert(?TAB, {Id, Url}),
{reply, {ok, Id}, State#st{next=N+1}};

handle call(Request, From, State) ->
{stop, unknown call, State}.

handle cast(Request, State) ->
{stop, unknown_cast, State}.

handle info(Info, State) ->
{stop, unknown info, State}.

%% internal functions

© 136 _encode(N) ->
integer_to_list(N, 36).

© The public API of this module simply delegates to the server process. This
is common for gen_server implementations, since the server itself may later
change the internal message formats.

© We initialize the server by creating a new ETS table to store the codes and
their corresponding URLs, and we start the counter at O.

www.it-ebooks.info

http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

YYVYY

Day 2: Building Apps ® 171

Webmachine threads the State variable returned from a resource’s init
function through all the resource functions, and gen_server does the same.
You can see where Webmachine got the idea.

© Retrieving a URL is a simple matter of looking it up in the ETS table.

O Putting a URL into the server creates a code and then inserts a correspond-
ing entry. Notice that it increments the counter in the returned state.

O Creating a code is as easy as integer_to_list, at least if you don’'t need anything
higher than base 36.

gen_servers are usually attached to a supervisor process that ensures they keep
running and restarts them when they crash. In order to use petite_url_srv, we
must add it to Petite’s main supervisor, petite_sup. The following highlighted
lines inside the init function show the modifications that are needed:

webmachine/petite/day1/petite/src/petite_sup.erl
Web = {webmachine mochiweb,
{webmachine mochiweb, start, [WebConfig]},
permanent, 5000, worker, [mochiweb socket serverl},
UrlServer = {petite url srv,
{petite url srv, start link, []},
permanent, 5000, worker, []},
Processes = [Web, UrlServer],
{ok, { {one for one, 10, 10}, Processes} }.

Compile and start Petite, and let’s play with our new service at the Erlang
shell. Note that if you don’t see the 1> prompt after you start the app, hit Enter
to make one appear.

$./start.sh
Komitted output”
=PROGRESS REPORT==== 15-May-2013::21:10:14 ===
application: petite
started at: nonode@nohost
1> whereis(petite_url_srv).
<0.92.0>
2> petite_url_srv:put_url("https://pragprog.com/").
{ok,"0"}
3> petite_url_srv:put_url("https://github.com/basho/webmachine").
{ok,"1"}
4> petite_url_srv:get_url("1").
{ok, "https://github.com/basho/webmachine"}
5> petite_url_srv:get_url("3K").
{error,not_found}

Our service works, and it is ready for use by any Webmachine resources we
create.

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/webmachine/petite/day1/petite/src/petite_sup.erl
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 5. Webmachine ¢ 172

Redirection

You've already learned how to create Webmachine resources and how to use
resource functions like resource exists and moved permanently to redirect HTTP
requests. You also saw how to bind path tokens to atoms during dispatch
and retrieve them with wrg:path_info. All that remains is to combine these with
petite_url_srv, and Petite can shorten links.

First, create a rule in priv/dispatch.conf for your new resource:

webmachine/petite/day1/petite/priv/dispatch.conf
{[code], petite fetch resource, []}.

Then create the petite_fetch_resource module. Try modifying the redirection
example in Working with Resource Functions, on page 161, to use petite_url_srv
before peeking at the following implementation:

webmachine/petite/day1/petite/src/petite_fetch_resource.erl
-module(petite fetch resource).
-export([init/1,

to_html/2,

resource exists/2,

previously existed/2,

moved permanently/2]).

-include_lib("webmachine/include/webmachine.hril").

init([]) ->
{ok, ""}.

to html(RegData, State) ->
{"", RegData, State}.

resource_exists(RegData, State) ->
{false, RegData, State}.

previously existed(RegData, State) ->
Code = wrq:path _info(code, RegData),
case petite url srv:get url(Code) of
{ok, Url} ->
{true, RegData, Url};
{error, not found} ->
{false, RegData, State}
end.

moved permanently(RegData, State) ->
{{true, State}, ReqData, State}.

Recompile Petite and add some links at the Erlang shell as before. Once it
has shortened a few links, you can test the resource:

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/webmachine/petite/day1/petite/priv/dispatch.conf
http://media.pragprog.com/titles/7web/code/webmachine/petite/day1/petite/src/petite_fetch_resource.erl
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 2: Building Apps ® 173

$ curl -i http://localhost:8000/1

HTTP/1.1 301 Moved Permanently

Server: MochiWeb/1.1 WebMachine/1.9.2
Location: https://github.com/basho/webmachine
Date: Thu, 16 May 2013 03:29:09 GMT
Content-Type: text/html

Content-Length: 0

Our link shortener is working but is still short a few features. We need an
HTTP API to shorten new links. For that, we’ll create a new resource,
petite_shorten_resource.

Shortening API

The API to shorten a link is simple. HTTP POST requests will include form data
with a url field set to the link to shorten. Petite will return the shortened link
as text in the response.

Let’s think about the first questions Webmachine asks our resource and how
our resource should answer them. First, we’ll need to answer allowed methods
by indicating support for HTTP POST. Next, since our response will be text,
the resource must respond appropriately to content types provided and provide
to_text. Webmachine requires we provide a body-generating function even in
the case of POSTs where it's not strictly needed.

So far, these are resource functions that you've seen before when processing
HTTP GET requests. For HTTP POST requests, Webmachine first calls
post_is_create to determine if this request creates a new resource. If the answer
is false, the Webmachine state machine delegates processing to process_post.
If the answer is true, Webmachine follows a path of inquiry in the state
machine that we don’t have room to cover in this chapter. Since Petite is not
creating new resources in this API call, it will follow the former path.

process_post must parse the form data in the request, shorten the link, and
then generate a suitable response. Let’s look at how this is done:

webmachine/petite/day1/petite/src/petite_shorten_resource.erl
-module(petite shorten resource).
-export([init/1,

allowed methods/2,

process post/2,

content types provided/2,

to text/2]).

-include_lib("webmachine/include/webmachine.hrl").

init([]) ->
{ok, undefined}.

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/webmachine/petite/day1/petite/src/petite_shorten_resource.erl
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 5. Webmachine * 174

allowed methods(RegData, State) ->
{['POST'], ReqgData, State}.

content types provided(RegData, State) ->
{[{"text/plain", to_text}], ReqgData, State}.

process post(RegData, State) ->
Host = wrq:get req header("host", RegData),
Params = mochiweb util:parse gs(wrq:req_body(RegData)),
Url = proplists:get value("url", Params),
{ok, Code} = petite url srv:put url(Url),
Shortened = "http://" ++ Host ++ "/" ++ Code ++ "\n",
{true, wrq:set resp body(Shortened, RegData), State}.

to text(RegData, State) ->
{"", RegData, State}.

wrg:get_req_header returns the value of a request header. Here it’s used to retrieve
the host and port the client is connected to so that we can use that information
to build the final shortened link.

mochiweb_util:parse_gs is a function that parses query strings or form data. This
is provided by MochiWeb, which is the HTTP processing library that Webma-
chine—and most other Erlang web libraries—are built on top of. We have
provided it wrg:req_body(ReqData) as input, which is the extracted body of the
incoming request.

mochiweb_util:parse_gs returns an Erlang property list, and process_post grabs the
url property, sends it to the internal shortening service, and then builds a
new, shortened link.

Finally, wrq:set_resp_body is used to set the body of the response to the shortened
link. Since data in Erlang is immutable, wrq:set_resp_body returns an altered
version of the RegData structure that is passed along. Returning true from
process_post indicates successful processing.

Petite will also need a new dispatch rule for this resource. Put this rule before
the petite_fetch_resource rule:

webmachine/petite/day1/petite/priv/dispatch.conf
{["shorten"], petite shorten resource, []}.

You can now rebuild Petite and test it out:

$ curl -i -X POST http://localhost:8000/shorten \
> --data 'url=https%3A%2F%2Fpragprog.com%2F"
HTTP/1.1 200 OK

Server: MochiWeb/1.1 WebMachine/1.9.2

Date: Fri, 17 May 2013 04:56:25 GMT

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/webmachine/petite/day1/petite/priv/dispatch.conf
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 2: Building Apps ® 175

Content-Type: text/plain
Content-Length: 24

http://localhost:8000/0

$ curl -i http://localhost:8000/0
HTTP/1.1 301 Moved Permanently
Server: MochiWeb/1.1 WebMachine/1.9.2
Location: https://pragprog.com/

Date: Fri, 17 May 2013 04:57:03 GMT
Content-Type: text/html
Content-Length: 0

Petite can now shorten long links and redirect shortened links to their original
URLs. Developers have written link shorteners in many languages and
frameworks, but it's hard to imagine a simpler implementation than this
Webmachine version. By modeling HTTP as a state machine and separating
decision logic from simple answers, Webmachine has made dealing with
redirection almost as simple as “Hello, World.”

Even with just this basic functionality, it could serve as an internal shortening
service for your own web applications. Of course, you'd probably want to
persist the lookup table in a production version.

While Petite is working, it doesn’t yet have any front end for human users of
the service. Let’s look at how Webmachine handles front-end tasks so we can
remedy this situation.

Templating with Mustache

Our goal is to create a resource that can output the latest links shortened by
users of the service. Like most frameworks, we’ll do this with a templating
language, since generating HTML by hand can be quite tedious. Every language
has dozens of templating libraries, but the declarative nature of Mustache
makes it feel right at home in a functional language like Erlang.

You may have already seen Mustache in action in Chapter 2, CanJS, on page
35. Perhaps due to its simplicity, Mustache templating systems have appeared
in nearly every language. Erlang is no exception, and mustache.erl is the

implementation we’ll be using with Webmachine.

Like most templating languages, we need to provide both the template itself,
via a string or a file, and the template’s context. The context is a dictionary
of key-value pairs providing the variables that the template will have access
to during rendering. The template will always be the same, but the context
is always changing.

www.it-ebooks.info

http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

YYYvY

Chapter 5. Webmachine ® 176

Let's see the simplest example. Create a new Webmachine project called
template, and edit the rebar.config file to add the mustache.erl dependency to our
app:

webmachine/template/rebar.config
{deps, [{webmachine, "1.10.1",
{git, "git://github.com/basho/webmachine",
{tag, "1.10.1"}}},
{mustache, "0.1.0",
{git, "git://github.com/mojombo/mustache.erl.git",
{branch, "master"}}}]1}.

Now make a new resource, template_basic_resource.erl, and an appropriate dispatch
rule.

webmachine/template/priv/dispatch.conf
{["basic"], template basic resource, []}.

webmachine/template/src/template_basic_resource.erl
-module(template basic resource).
-export([init/1, to html/2]).

-include_lib("webmachine/include/webmachine.hrl").
init([]) -> {ok, undefined}.

to _html(RegData, State) ->
Template = "<html><body>Visit {{ url }}</body></html>",
Context = dict:from list([{url, "https://pragprog.com/"}1),
Response = mustache:render(Template, Context),
{Response, ReqgData, State}.

The context here is just the name url associated with the Pragmatic home
page. The template contains a tag with the same name. Visiting http://local-
host:8000/basic in your browser should show “Visit https://pragprog.com/.”

Presenting a collection is very similar since Mustache templates are declara-
tive. The value of a collection context variable should be a list, each item of
which is a dictionary of new context variables that will be in scope during
each iteration. This will be easy to see in an example:

webmachine/template/priv/dispatch.conf
{["list"], template list resource, []}.

webmachine/template/src/template_list_resource.erl
-module(template list resource).
-export([init/1, to html/2]).

-include_lib("webmachine/include/webmachine.hrl").

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/webmachine/template/rebar.config
http://media.pragprog.com/titles/7web/code/webmachine/template/priv/dispatch.conf
http://media.pragprog.com/titles/7web/code/webmachine/template/src/template_basic_resource.erl
http://localhost:8000/basic
http://localhost:8000/basic
http://media.pragprog.com/titles/7web/code/webmachine/template/priv/dispatch.conf
http://media.pragprog.com/titles/7web/code/webmachine/template/src/template_list_resource.erl
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

]~

Day 2: Building Apps ® 177

init([]) -> {ok, undefined}.
to html(RegData, State) ->
Template = "<html><body>" ++
"" ++
"{{#urls}}" ++
"{{ url }}" ++
"I{/urls}}" ++
"" ++
"</body></html>",
Urls = [{url, "https://pragprog.com/"},
{url, "https://github.com/basho/webmachine"},
{url, "https://github.com/mojombo/mustache.erl"}],
Dicts = [dict:from list([U]) || U <- Urls],
Context = dict:from list([{urls, Dicts}]),
Response = mustache:render(Template, Context),
{Response, ReqData, State}.

©® We create an intermediate representation of the data as a list of tuples.
In Erlang parlance, these are property lists.

® We transform the list with a list comprehension into a list of dictionaries.

© We create the top-level context by associating the variable urls with the
list of dictionaries.

Using string templates is a bit tedious. We can improve things by loading
templates from files:

webmachine/template/priv/dispatch.conf
{["file"], template file resource, []}.

webmachine/template/src/template_file_resource.erl
-module(template file resource).

-export([init/1, to html/2]).
-include_lib("webmachine/include/webmachine.hrl").

init([]) -> {ok, undefined}.
to html(RegData, State) ->
{ok, TemplateBin} = file:read file(
code:priv dir(template) ++ "/simple.mustache"),
TemplateStr = binary_to_list(TemplateBin),
Context = dict:from list([{message, "Hello from a file"}]),
Response = mustache:render(TemplateStr, Context),
{Response, ReqData, State}.

webmachine/template/priv/simple.mustache
<html>
<body>
{{ message }}
</body>
</html>

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/webmachine/template/priv/dispatch.conf
http://media.pragprog.com/titles/7web/code/webmachine/template/src/template_file_resource.erl
http://media.pragprog.com/titles/7web/code/webmachine/template/priv/simple.mustache
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

YYYYYYYYYVYYY

Chapter 5. Webmachine ® 178

code:priv_dir returns the location of the Erlang application’s priv directory, which
is where we've chosen to store the template. Erlang applications often store
application-specific data under priv. The template name is added to this path,
and then fileiread_file returns a binary of the file’s content. After turning this
into a string, which in Erlang is just a list, we can call render just as before.

Templating in Petite

With templating basics under our belt, we can now add a cool new feature to
Petite, a list of the most recently shortened links. When users visit http://local-
host:8000/latest, they’ll see the most recent twenty links that have been shortened.
To do this we’ll need to create a template, build up the context with the latest
links, and then render it to the page.

First, we’ll need a template:

webmachine/petite/day2/petite/priv/latest.hntml.mustache
<!DOCTYPE html>
<html>
<head>
<link href="/css/bootstrap.min.css" rel="stylesheet" type="text/css">
<link href="/css/petite.css" rel="stylesheet" type="text/css">

<title>Latest Links</title>
</head>
<body>
<div class="navbar navbar-inverse">
<div class="navbar-inner">
Petite
</div>
</div>

<div class="container">
<p>
The latest shortened links are:

{{#1links}}

{{ short link }}
=>
{{ long link }}

{{/links}}

</p>
</div>
</body>
</html>

www.it-ebooks.info

http://localhost:8000/latest
http://localhost:8000/latest
http://media.pragprog.com/titles/7web/code/webmachine/petite/day2/petite/priv/latest.html.mustache
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 2: Building Apps ® 179

The interesting bit of the template is highlighted and shows a simple list tag
enumerating the latest links.

Next, petite_url_srv will need a new function to return a list of the latest shortened
links:

webmachine/petite/day2/petite/src/petite_url_srv.erl
get latest(Count) ->
gen_server:call(?SERVER, {get latest, Count}).

Just like the other public functions, this one delegates to a remote procedure
call:

webmachine/petite/day2/petite/src/petite_url_srv.erl

handle call({get latest, Count}, From, State = #st{next=N}) ->
Start = N - 1,
End = max(N - Count, 0),
Ids = [b36 encode(I) || I <- lists:seq(Start, End, -1)],
Result = lists:map(

fun(Id) ->
[Record] = ets:lookup(?TAB, Id),
Record

end, Ids),

{reply, {ok, Result}, State};

O Starting from the last N value, we generate codes for the values we're
interested in until we have the number asked for.

® For each of the codes, we find the corresponding link in the lookup table.

With a new dispatch rule and a new resource, everything will be in place:

webmachine/petite/day2/petite/priv/dispatch.conf
{["latest"], petite latest resource, []}.

webmachine/petite/day2/petite/src/petite_latest_resource.erl
-module(petite latest resource).

-export([init/1, to html/2]).
-include_lib("webmachine/include/webmachine.hrl").

init([]) ->
{ok, undefined}.

to_html(ReqgData, State) ->
{ok, TemplateBin} = file:read file(
code:priv dir(petite) ++ "/latest.html.mustache"),
TemplateStr = binary_to_list(TemplateBin),

Host = wrq:get req_header("host", RegData),
BaseUrl = "http://" ++ Host ++ "/",

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/webmachine/petite/day2/petite/src/petite_url_srv.erl
http://media.pragprog.com/titles/7web/code/webmachine/petite/day2/petite/src/petite_url_srv.erl
http://media.pragprog.com/titles/7web/code/webmachine/petite/day2/petite/priv/dispatch.conf
http://media.pragprog.com/titles/7web/code/webmachine/petite/day2/petite/src/petite_latest_resource.erl
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

e

2]

Chapter 5. Webmachine * 180

{ok, LatestLinks} = petite url srv:get latest(20),
LatestDicts = [dict:from list([{short link, BaseUrl ++ ShortLink},
{long link, LongLink}])
|| {ShortLink, LongLink} <- LatestLinks],
Context = dict:from list([{links, LatestDicts}]),

Response = mustache:render(TemplateStr, Context),
{Response, ReqData, State}.

The resource is very similar to the list example. The highlighted line shows
where the resource gets its data—from the new petite_url_srv:get_latest function
instead of from a hard-coded list.

Handling Multiple Content Types

Having a pretty page is great for humans, but these days services need to
support humans and machines accessing the same data. Each consumer of
your resource prefers a different representation, and in the case of machines
using your API, multiple representations are often desired. For example, some
clients might prefer JSON and some XML.

Yesterday we saw how to provide multiple representations from the same
resource, responding with “Hello, World!” in both plain text and HTML. Today
we’ll elaborate on that example to provide plain text and JSON versions of
the latest links.

First, let’s add a content _types provided function to add to _text and to json:

webmachine/petite/day2/petite/src/petite_latest_resource.erl
-export([content types provided/2, to text/2, to json/2]).

content types provided(ReqData, State) ->
{[{"text/html", to_html},
{"text/plain", to text},
{"application/json", to json}], RegData, State}.

We'll look at to text first:

webmachine/petite/day2/petite/src/petite_latest_resource.erl
to text(RegData, State) ->
{ok, LatestLinks} = petite url srv:get latest(20),
Result = lists:map(
fun({Code, Link}) ->
[base url(RegbData), Code, " ", Link, "\n"]
end,
LatestLinks),
{Result, RegData, State}.
base url(RegData) ->
Host = wrq:get req header("host", ReqgData),
"http://" ++ Host ++ "/".

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/webmachine/petite/day2/petite/src/petite_latest_resource.erl
http://media.pragprog.com/titles/7web/code/webmachine/petite/day2/petite/src/petite_latest_resource.erl
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 2: Building Apps * 181

©® Each shortened link and its original URL are listed on a line together.

® The base_url helper function uses the Host value in the HTTP headers to
determine the server’s hostname and port so they don’t have to be hard-
coded in the source.

Here’s the JSON version:

webmachine/petite/day2/petite/src/petite_latest_resource.erl
to json(RegData, State) ->
{ok, LatestLinks} = petite url srv:get latest(20),
LinkList = lists:map(
fun({Code, Link}) ->
ShortLink = base url(RegData) ++ Code,
(1] {struct, [{<<"short link">>, 1list_to_binary(ShortLink)},
{<<"long link">>, list_to_binary(Link)}]}
end,
LatestLinks),
(2] Result = mochijson2:encode({struct, [{latest, LinkList}1}),
{[Result, "\n"], ReqData, State}.

@ A JSON list is represented as a regular Erlang list, but a JSON object is
a special tuple starting with struct and containing a property list of keys
and values.

© mochijson2 is a JSON library provided as part of MochiWeb, which is the
HTTP server Webmachine is built upon.

Each representation is self-contained and knows nothing about the other
ones. Let’s test out these new representations:

$ curl --header 'accept: text/plain' http://localhost:8000/latest
http://localhost:8000/2 http://erlang.org/
http://localhost:8000/1 https://github.com/basho/webmachine
http://localhost:8000/0 https://pragprog.com/

$ curl --header 'accept: application/json' http://localhost:8000/latest
{"latest":[{"short link":"http://localhost:8000/2","long link":"http://erlang.
org/"},{"short link":"http://localhost:8000/1","long link":"https://github.com
/basho/webmachine"}, {"short link":"http://localhost:8000/0","long link":"https
://pragprog.com/"}1}

If a new representation is needed in the future, it can be added easily without
touching any of the other representation’s code. Just add a new content type
to content_types_provided and a new representation function to go with it.

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/webmachine/petite/day2/petite/src/petite_latest_resource.erl
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 5. Webmachine ¢ 182

What We Learned on Day 2

Today you learned how to integrate HTML templates into Webmachine and
how to easily provide multiple representations for a resource. Perhaps you
are starting to see why Webmachine is so useful for powering APIs.

Tomorrow we’ll finish by looking at two pieces that are normally quite difficult
in other frameworks—caching and authorization. Webmachine’s simple,
inquisitive nature will make these tasks easy too.

Day 2 Self-Study

Find:

e Investigate some of the other templating options for Erlang. erlydtl is
another popular choice with a quite different flavor.

e Study src/petite_static_resource.erl, which was not covered in the text. Look up
any Webmachine functions you haven’t seen before in the documentation.

Do:

e Add persistence to Petite. (Hint: DETS is a disk-backed version of ETS,
with a very similar APIL.)

e Add support for custom short codes. For example, a user might want the
shortened version of https://pragprog.com/ to be http://localhost:8000/prag.

¢ Create another front-end resource to let users shorten links without going
through the API.

Day 3: llluminating HTTP’s Dark Corners

Webmachine has a unique way of modeling HTTP requests as a state machine,
but so far you've seen it handling things you've likely seen in most web
libraries and frameworks. Let’s look at some things that Webmachine enables
that aren’t usually found in its peers.

First, we’ll take a look at caching. The HTTP protocol has a lot of support for
caching, including expiry and versioning. Webmachine exposes these features
in resource functions, just like the other parts of HTTP you've already seen.

After caching, we’ll look at HTTP authorization. While some frameworks
support authorization, most don’'t support HTTP-based authorization and
many don’t support any kind at all out of the box. For Webmachine, it’s just
another piece of the HTTP protocol—one that is particularly well suited to the
state machine treatment—exposed for your application to control.

www.it-ebooks.info

https://pragprog.com/
http://localhost:8000/prag
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 3: llluminating HTTP’s Dark Corners ® 183

Making Things Cacheable

Modern web applications are expected to be lightning fast and accessible from
a wide range of devices and networks. They often support many more simul-
taneous users than other types of software. One way to make applications
faster and scale better is caching of resources.

In most frameworks, caching is an afterthought or, at best, an advanced
feature. Webmachine has built-in support for caching, and it’s so easy to use
that your app is much more likely to leverage it and give your users an opti-
mized and fast experience.

HTTP provides several types of caching information to web browsers. We're
going to look at last modified headers, ETags, expire headers, and cache
control directives. With this small set of tools, you can add the right kind of
caching behavior to each resource for almost any kind of use case.

Last Modified Headers

The last modified header does what it describes—it tells the client when the last
modification to the resource occurred. For example, if a user’s profile hasn’t
changed since last Thursday, the last modified header will have last Thursday as
the date in the header. Web browsers and other HTTP clients, after they've seen
a resource with a last modified header, can conditionally request the resource in
the future by using the If-Modified-Since header. Clients will only get a new copy of
the resource if it has been changed since the time indicated.

All of this logic is already implemented in clients, so the only thing you must do
is generate a date and time for the last modified header and return it when
resources are requested. In Webmachine, this can be done by implementing the
last modified resource function. Webmachine and the HTTP clients take care of all
the rest.

Create a new Webmachine application called cache to start experimenting with
caching. Next, modify the cache_resource to add last modified headers:

webmachine/cache/src/cache_resource.erl
-module(cache resource).
-export([init/1,

to_html/2,

last modified/2]1).
-include_lib("webmachine/include/webmachine.hrl").
init([]) -> {ok, undefined}.

last modified(RegData, State) ->
{{{2013, 6, 12}, {22, 42, 00}}, RegData, State}.
to html(RegData, State) ->
{"<html><body>Hello, new world</body></html>\n", ReqData, State}.

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/webmachine/cache/src/cache_resource.erl
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 5. Webmachine * 184

The last_modified function returns a date of June 12, 2013, at 10:42 p.m. GMT.
Dates and times in last modified must always be GMT. Webmachine uses a
two-tuple of three-tuples to represent the date (the first tuple) and the time
(the second tuple).

Compile and start the server, and then we can see how everything works from
the command line:

$ curl -i http://localhost:8000/

HTTP/1.1 200 OK

Server: MochiWeb/1.1 WebMachine/1.10.0
Last-Modified: Wed, 12 Jun 2013 22:42:00 GMT
Date: Thu, 13 Jun 2013 04:47:25 GMT
Content-Type: text/html

Content-Length: 43

<html><body>Hello, new world</body></html>

$ curl -i --header 'if-modified-since: Wed, 12 Jun 2013 22:42:00 GMT' \
> http://localhost:8000/

HTTP/1.1 304 Not Modified

Server: MochiWeb/1.1 WebMachine/1.10.0

Date: Thu, 13 Jun 2013 04:47:30 GMT

First, we ask for the resource normally, and Webmachine returns it along
with a Last-Modified header. The next time we request the resource, we provide
the If-Modified-Since header to do a conditional GET, and since the resource has
not been modified, an empty 304 Not Modified response is returned.

This example seems a bit silly since it's such a small resource, but imagine
if this were returning a long chat history or a detailed configuration informa-
tion about a service. Also, often the information about whether a resource
has changed is much cheaper to get than the resource itself. If the resource
hasn’t been modified, Webmachine won’t run your to_html function or anything
after last_modified, meaning that any expensive representation generation logic
is skipped.

ETags

Last-Modified headers are great if you have modification times or can compute
them, but there are plenty of situations where they can be a chore. Also, Last-
Modified headers require servers be time synchronized or else things can get
out of whack. Instead of using modification times to influence caching, ETags
use arbitrary strings that represent the version of a resource.

As a concrete example, we're going to add ETags support to petite_latest_resource,
which lists the latest shortened links on the service. To use Last-Modified headers,

www.it-ebooks.info

http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 3: llluminating HTTP’s Dark Corners ® 185

we’d need to store the timestamp of when the last link was shortened. This
is certainly possible, but Petite already has enough data to generate a suitable
version string—the last value of the counter that was used to shorten a link.

Let’s modify Petite to return an appropriate ETag to the HTTP client. Once
this is done, just as in the Last-Modified case, HTTP clients can use conditional
GET requests with the If-None-Match header to check for updated resources.

First, we’ll need to add a new API call for petite_url srv to return the last value
of the counter and its corresponding handler. Don’t forget to add the new API
call to the list of exported functions at the top!

webmachine/petite/day3/petite/src/petite_url_srv.erl
get last id() ->
gen server:call(?SERVER, get last id).

webmachine/petite/day3/petite/src/petite_url_srv.erl
handle call(get last id, From, State=#st{next=N}) ->
{reply, {ok, N - 1}, State};

Note that this piece of information is essentially free to compute, as it is stored
directly in the service’s internal state.

Now that we have a way to get the counter value, which we’ll be using as the
ETag value to represent the resource’s version, we just need to implement
the generate_etag resource function in Webmachine and it will handle the rest:

webmachine/petite/day3/petite/src/petite_latest_resource.erl
-export([generate etag/2]).

webmachine/petite/day3/petite/src/petite_latest_resource.erl
generate etag(RegData, State) ->
{ok, N} = petite url srv:get last id(),
{integer_to_list(N), RegData, State}.

As you can see from the code, it’s not really any more complicated than the
last modified case we saw earlier. The two approaches are basically identical
except for how the resource’s cachability is represented.

After adding ETag support to Petite, recompile and let’s see how its responses
change:

$ curl -I http://localhost:8000/1latest
HTTP/1.1 200 OK

Vary: Accept

Server: MochiWeb/1.1 WebMachine/1.9.2
ETag: "1"

Date: Thu, 13 Jun 2013 05:39:26 GMT
Content-Type: text/html
Content-Length: 925

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/webmachine/petite/day3/petite/src/petite_url_srv.erl
http://media.pragprog.com/titles/7web/code/webmachine/petite/day3/petite/src/petite_url_srv.erl
http://media.pragprog.com/titles/7web/code/webmachine/petite/day3/petite/src/petite_latest_resource.erl
http://media.pragprog.com/titles/7web/code/webmachine/petite/day3/petite/src/petite_latest_resource.erl
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 5. Webmachine * 186

$ curl -i --header 'if-none-match: "1"' http://localhost:8000/latest
HTTP/1.1 304 Not Modified

Vary: Accept

Server: MochiWeb/1.1 WebMachine/1.9.2

ETag: "1"

Date: Thu, 13 Jun 2013 05:44:40 GMT

First, the resource is requested normally. Webmachine inserts a new ETag
header with the version string that was returned in generate_etag. Next, a new
request for the same resource is made along with a If-None-Match header con-
taining the same ETag value. Nothing has changed, so the now familiar 304
Not Modified response is generated.

Let’s add a new link and ask for the latest links using the same ETag again:

$ curl -X POST http://localhost:8000/shorten \
> --data 'url=https%3A%2F%2Fgithub.com%2Ferlang%2Fotp’
http://localhost:8000/2

$ curl -I --header 'if-none-match: "1"' http://localhost:8000/latest
HTTP/1.1 200 OK

Vary: Accept

Server: MochiWeb/1.1 WebMachine/1.9.2

ETag: "2"

Date: Thu, 13 Jun 2013 05:46:46 GMT

Content-Type: text/html

Content-Length: 1132

Because the supplied ETag value did not match the current ETag on the server,
Webmachine generates a new response. This new response contains a new
ETag. That’s really all there is to it.

Both Last-Modified headers and ETags allow browsers to conditionally request
resources they have already seen before. Another caching pattern is to
unconditionally cache a resource for a given period of time, and this can be
accomplished with the next two caching methods we’ll see: expires and cache
control headers.

Expires

Imagine a resource that both changes often and is requested quite often but
isn’t so important that it always needs to be fully up-to-date. In those cases,
you might want to tell clients that they can use the data for a given amount
of time, after which they should request it again. Expires headers accomplish
this by using dates and times to indicate when the returned resource data
expires.

Let’s add a new expire_resource to the cache example application created earlier:

www.it-ebooks.info

http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 3: llluminating HTTP’s Dark Corners ® 187

webmachine/cache/priv/dispatch.conf
{["expire"], expire resource, []}.

webmachine/cache/src/expire_resource.erl
-module(expire resource).
-export([init/1,
to_html/2,
expires/2]).

-include_lib("webmachine/include/webmachine.hrl").
init([]) -> {ok, undefined}.

expires(RegData, State) ->
{{{2013, 6, 15}, {05, 11, 00}}, RegData, State}.

to html(RegData, State) ->
{"<html><body>Hello, new world</body></html>\n", ReqData, State}.

In the new resource we've implemented expires, which is another of Webma-
chine’s resource functions. Like last modified, it needs to return a tuple of tuples
representing the expiry date and time. The particular date and time in the
example should be updated to something in your own near future, but
remember that it must be in GMT.

Expires logic is a little harder to test because there is no conditional GET
operation one can use; its value is purely informational. Browsers keep track
of the expiry times on resources they download; and when requested, they
grab the cached data if the expiry time is still in the future. If you want to
test expire_resource, open your browser’s network panel in a new tab and request
http://localhost:8000/expire. You should see the browser make a normal HTTP
request. If you then request the same URL again, you should see nothing
happen because it reuses the cached data. Note that hitting refresh in the
browser will request a new copy regardless of the expiry time, so retype the
URL in the same tab instead to simulate what would happen if you clicked a
link back to the same resource.

Cache Control

The last caching mechanism we’ll look at is the Cache-Control header. Like the
Last-Modified header, the Expires header operates on date and time values, but
these may not always be convenient to provide. Cache-Control operates more
like ETag in that it can more directly provide the relevant information. For
example, instead of saying the resource expires on Saturday at 2:43 p.m.,
Webmachine can just say that it expires after five minutes.

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/webmachine/cache/priv/dispatch.conf
http://media.pragprog.com/titles/7web/code/webmachine/cache/src/expire_resource.erl
http://localhost:8000/expire
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 5. Webmachine ¢ 188

Webmachine does not currently have a cache_control resource function, but we
can piggyback on the expires function to add cache control support. Instead
of returning the normal date and time tuple response, undefined—Webmachine’s
default answer for expires—is returned and the wrg module is used to modify
the response headers appropriately.

Add a new control_resource to the cache example application:

webmachine/cache/priv/dispatch.conf
{["control"], control resource, []}.

webmachine/cache/src/control_resource.erl
-module(control resource).
-export([init/1,

to html/2,

expires/2]).

-include_lib("webmachine/include/webmachine.hrl").
init([]) -> {ok, undefined}.

expires(RegData, State) ->
ReqData2 = wrq:set resp header("Cache-Control", "max-age=30", ReqData),
{undefined, RegData2, State}.

to_html(RegData, State) ->
{"<html><body>Hello, new world</body></html>\n", RegData, State}.

Now the expires function sets the Cache-Control header and specifies a max-age
property of thirty seconds. This lets the browser know it is free to cache the
resource for up to thirty seconds before checking if a newer version is available.

You can test control_resource the same way as expire_resource using your browser’s
network inspector. It should not request the resource again for thirty seconds,
even though you continue to browse to it repeatedly.

Cache-Control headers are much easier to use, because you often know how long
the representation is valid. It saves the steps of computing the current time,
adding in the age offset, and then returning a date and time to the client. It
has a lot of other attributes that you can manipulate for even more complex
caching behavior.

You can certainly add caching headers in other frameworks, but usually only
by manually manipulating the HTTP headers yourself. Some frameworks have
middleware that can add caching support, but this is usually configured per
application and not per resource. Webmachine exposes HTTP’s caching fea-
tures as another part of its state machine model and makes it extremely easy
to add custom caching behavior to any resource.

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/webmachine/cache/priv/dispatch.conf
http://media.pragprog.com/titles/7web/code/webmachine/cache/src/control_resource.erl
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 3: llluminating HTTP’s Dark Corners * 189

Authorization

Authorization is another HTTP feature that is often hard to use, if it is exposed
at all. It is common these days for frameworks to leave authorization and
similar details up to a real web server that sits in front of the application.
While this makes the framework developers’ jobs easier, it can make it
complicated to integrate any authorization beyond the most basic into an
application. Since it’s just another HTTP feature, Webmachine makes it easy.

Here’s a simplified diagram of the authorization part of Webmachine’s state
machine model.

HTTP
Request

Generate

ized?
Authorized? HTML

Resource exists? 200 OK

404 Not 401 Not
Found Authorized

Figure 23— Authorization state machine

Webmachine resources can provide the is authorized function to check if the
current request is authorized and return either true, which allows the request
to continue to the rest of the resource functions, or an authorization header,
which will be returned to the client as the value of the WWW-Authenticate header
in a 401 Not Authorized response.

The default is_authorized implementation always returns true. To observe more
interesting behavior, we can create an is_authorized function that always returns
an authentication header. First, create a new Webmachine project called auth,
and add an auth_never resource:

webmachine/auth/priv/dispatch.conf
{["never"], auth never resource, []}.

webmachine/auth/src/auth_never_resource.erl
-module(auth_never resource).
-export([init/1,
is authorized/2,
to_html/2]).

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/webmachine/auth/priv/dispatch.conf
http://media.pragprog.com/titles/7web/code/webmachine/auth/src/auth_never_resource.erl
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 5. Webmachine ® 190

-include_lib("webmachine/include/webmachine.hrl").
init([]) -> {ok, undefined}.

is authorized(ReqData, State) ->
{"Basic realm=testing", ReqData, State}.

to html(RegData, State) ->
{"<html><body>Hello, new world</body></html>\n", ReqData, State}.

There’s not much to this resource, but poking at it with curl reveals a new
behavior:

$ curl -i http://localhost:8000/never
HTTP/1.1 401 Unauthorized
WWW-Authenticate: Basic realm=testing
Server: MochiWeb/1.1 WebMachine/1.10.0
Date: Tue, 18 Jun 2013 03:13:17 GMT
Content-Type: text/html
Content-Length: 159

<html><head><title>401 Unauthorized</title></head><body><hl>Unauthorized
</h1>Unauthorized<p><hr><address>mochiweb+webmachineweb server</address>
</body></html>

Instead of a friendly “hello,” we've gotten 401 Unauthorized. If you open
http://localhost:8000/never in a web browser, you'll see a password dialog box. It
doesn’t matter what you input here, it will always return 401 Unauthorized.

Adding support for usernames and passwords is pretty easy. When an web
browser gets an initial 401 Unauthorized error along with a WWW-Authenticate
header including an authorization method and realm, it will prompt the user
for a username and password and then attempt to request the resource again
with an Authorization header.

The Authorization value the client sends is the authorization method—in this
case Basi—and a base 64-encoded authorization string. For HTTP basic
authentication, this string is just the base 64-encoded version of a string
containing the username, a colon, and then the password.

Let’s implement basic authentication by creating an auth_basic_resource:

webmachine/auth/priv/dispatch.conf
{["basic"], auth basic resource, []}.

webmachine/auth/src/auth_basic_resource.erl
-module(auth _basic resource).
-export([init/1,

is authorized/2,

to _html/2]).

www.it-ebooks.info

http://localhost:8000/never
http://media.pragprog.com/titles/7web/code/webmachine/auth/priv/dispatch.conf
http://media.pragprog.com/titles/7web/code/webmachine/auth/src/auth_basic_resource.erl
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 3: llluminating HTTP’s Dark Corners ® 191

include_lib("webmachine/include/webmachine.hrl").

init([]) -> {ok, undefined}.
is authorized(RegData, State) ->

0O -

t

AuthHead = "Basic realm=Identify yourself!",
Result = case wrq:get req header("authorization", RegData) of
"Basic " ++ EncodedAuthStr ->
AuthStr = base64:decode to string(EncodedAuthStr),

[User, Pass] = string:tokens(AuthStr, ":"),
case authorized(User, Pass) of
true ->
true;
false ->
AuthHead
end;
_—>
AuthHead

end,
{Result, RegData, State}.

uthorized(User, Pass) ->
User =:= "test" andalso Pass =:= "12345".

o_html(RegData, State) ->
{"<html><body>Hello, new world</body></html>\n", RegData, State}.

©® We inspect the HTTP headers to see if an Authorization header is provided
by the client.

@® If an Authorization header is provided, it should have the form Basic
AUTH_STRING, and we must decode the base 64-encoded authorization string.

© We call authorized with the username and password to see if the user is
indeed authorized.

O Our authorization function tests against hardcoded values, but you can
imagine that it could look up the username in a database.

Let’s see how this resource responds to requests from the command line:

$

curl -v -u test:12345 http://localhost:8000/basic

Komitted output”
> GET /basic HTTP/1.1

)
>

\
AANANV VYV

Authorization: Basic dGVzdDoxMjMONQ==

User-Agent: curl/7.24.0 (x86 64-apple-darwinl2.0) libcurl/7.24
0 OpenSSL/0.9.8x zlib/1.2.5

Host: localhost:8000

Accept: */*

HTTP/1.1 200 OK

Server: MochiWeb/1.1 WebMachine/1.10.0
Date: Tue, 18 Jun 2013 03:25:10 GMT

www.it-ebooks.info

http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 5. Webmachine ¢ 192

< Content-Type: text/html
< Content-Length: 43
<

<html><body>Hello, new world</body></html>
* Connection #0 to host localhost left intact
* Closing connection #0

You can see the base 64-encoded authorization string in the client’s request.
The server happily responds with a 200 OK when given the magic words.

What We Learned on Day 3

Webmachine exposes much more of the HTTP protocol than other libraries
and frameworks, and this can easily be seen in its support for caching and
authorization. Where these are advanced or missing features in other frame-
works, Webmachine includes them in its state machine model and makes
them just as easy to implement as returning “Hello, World.”

To show off the ease with which Webmachine handles caching logic, we looked
at four caching strategies and how to implement them—Last-Modified headers,
ETags, Expires headers, and cache control directives. With these four tools,
almost any caching logic you might want is at your fingertips and a single
resource function away.

Last-Modified headers and ETags allow browsers to conditionally request
resources based on whether it has changed since the last request. While they
differ in how the change is represented, they are both useful, and Webmachine
makes them equally easy to use.

Expires headers and cache control directives inform browsers how long data is
valid for and are often used to control how often data is requested regardless
of how often it actually changes.

Finally we looked at HTTP authorization, which is often delegated to a real
web server. Webmachine can handle it directly, making it much easier to
integrate with your application.

Day 3 Self-Study
Find:

* More Cache-Control attributes you can use in your application
Do:

¢ If you've implemented caching in an application before, compare it with
how easy it is to do in Webmachine.

www.it-ebooks.info

http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 3: llluminating HTTP’s Dark Corners ® 193

* Modify petite_latest_resource to use Expires or Cache-Control headers in addition
to ETags.

e Add authorization support to Petite so that only authorized users can
shorten links.

Interview with Justin Sheehy

Justin Sheehy is the CTO of Basho, where he works on distributed systems
such as the Riak distributed database system. He honed his distributed
computing skills as an architect at Akamai and by working on research
projects for the intelligence community at MITRE. Webmachine is just one of
the many open source projects he’s worked on.

Us: Where did the inspiration for Webmachine’s unique view on web applications
come from?

Justin: A few of us at Basho (including but not limited to myself and Andy Gross)
did the very first version of Webmachine together after being frustrated by the
backward approach to HTTP that we thought most frameworks imposed. We
wanted something that would allow us to think about exposing resource transfer
to and from underlying systems, not something that would help create yet another
cookie-cutter CRUD application. A flowchart written by Alan Dean was definitely
also a primary inspiration; that flowchart is a direct predecessor of the one that
now makes up the visual description of Webmachine’s execution flow. A bit later,
the decision flow chart inspired the amazing visual debugger that Bryan Fink added.
That was probably the inflection point for the system, when it became something
that really “clicked” for developers. I'd say that Webmachine wouldn’t have become
what it is without any of those people.

Us: What are the most interesting things you've seen built with the help of
Webmachine?

Justin: Since one of our goals with Webmachine was to enable infrastructure to
be part of the Web in a well-behaved way, it shouldn’t be surprising that one of my
favorites is even more deep infrastructure than we imagined. Caleb Tennis used
Webmachine to build a web interface to the physical management of a datacenter!
That is, he exposed resources that let administrators do things lilkke examining and
changing the motor speed on a cooled water pump. That’s interesting worl, I thinlk,
and Webmachine’s clear resource model lends itself well to developing such things.

Most of the things I find interesting that people build with Webmachine, though, are
not very visible. This is because it lends itself so well to “middleware,” or infrastruc-
ture systems, and is used less often for directly browser-facing Web apps.

Us: What benefits do developers receive from building web applications on top of
Webmachine and, more generally, Erlang?

www.it-ebooks.info

http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 5. Webmachine * 194

Justin: I think that one of the benefits is that Webmachine makes it somewhat
harder to accidentally do HTTP wrong. We certainly can’t make anyone do everything
right, even in the cases where there are objective criteria (when clear and explicit
in standards, for instance) for correctness. But many Web frameworks place
abstractions around HTTP that are shaped so very differently from HTTP itself that
a user can’t tell what will or won’t be interoperable with other systems built from
the same specifications. With Webmachine, you are more likely to build well-behaved
and thus highly interoperable systems. As developers want to take advantage of
more of HTTP's interesting features over time, Webmachine generally lets them do
so very easily, without having to “break out” of a frameworl.

The advantages of Erlang would make for a whole other interview and would also
depend a great deal on the problem domain. It should suffice for here to say that
we saw advantages in Erlang for web development or else we wouldn’t have written
Webmachine in it in the first place.

Us: Webmachine has been widely imitated in many different languages. What
have other communities learned from Webmachine, and what has Webmachine
learned from them?

Justin: That is absolutely the highest form of flattery! We knew that Webmachine
was really starting to have an impact when we started seeing clones pop up for
Ruby, Clojure, Agda(!), Node.js, and other languages. Hopefully, the core simple
ideas behind Webmachine have helped many more programmers as a result of
those reimplementations. One of the nice benefits of these for Webmachine itself is
that different communities have different expectations and so raise different ques-
tions. We’ve absolutely had some of the better ideas_for Webmachine improvements
come out of some of those satellite Webmachine communities.

Wrapping Up

Webmachine does things a bit differently, but its unique design modeling
HTTP as a state machine makes advanced HTTP processing a mundane
matter. There’s no need to guess what HTTP status codes to return or a need
to create complicated views; Webmachine requires only a series of simple
answers to specific questions, and it takes care of all the complex decisions.
Instead of Choose Your Own Adventure, using Webmachine is like Choose
Your Own Application.

Throughout this chapter, we explored many features of Webmachine in small
examples and in the context of Petite, a small link-shortening app. We implemented
resource functions for returning multiple representations of resources, managing
existence and redirects, caching, and authorization. In Webmachine, these features
are enabled by writing functions just a few lines long, but in most other frame-
works, these features are considered advanced if they're available at all, and often
it’s up to you to write the messy decision logic.

www.it-ebooks.info

http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Wrapping Up *® 195

Webmachine’s Strengths

Back-end systems are where Webmachine is really in its element. It often
gets used for exposing existing systems as HTTP endpoints, whether they are
search engines, databases, or data analysis systems. Webmachine makes it
easy to create robust HTTP APIs since it handles all the messy details of HTTP
and lets you concentrate on your application.

Webmachine is also built on Erlang, which has a reputation for high availabil-
ity and for handling large-scale problems. These are exactly the sorts of
features that heavily used back-end systems must possess.

Erlang’s lightweight process model gives Webmachine a much more concurrent
architecture than other frameworks, which makes it ideal for implementing
proxies between services or aggregations of services even when the services
are in a variety of protocols.

We didn’t cover it in this chapter, but Webmachine has built-in support for
handling streaming responses, which comes in quite handy when dealing
with data that is large and unwieldy.

Webmachine’s Weaknesses

While templating systems and other front-end-focused features exist and can
be integrated with Webmachine, it is does not come out of the box with the
kinds of features wanted for typical CRUD applications. It doesn’t take much
to add form processing and database management, but people generally only
use Webmachine for these tasks when they are part of a larger application,
where Webmachine provides lots of back-end value.

For most people, Erlang is a strange language, both by its functional semantics
as well as its nonmainstream syntax. Some people have difficulty thinking
functionally, such as forgoing the familiar looping constructs and dealing
with immutable data.

Final Thoughts

Webmachine is one of the most unique tools around for programming web
apps. Its state machine model allows you to harness the full power and
beauty of the HTTP protocol in a surprisingly simple way. To this, Webmachine
adds all the concurrency, robustness, and scalability of Erlang. And just like
a Choose Your Own Adventure book, it’s a lot of fun.

www.it-ebooks.info

http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

CHAPTER 6

Yesod

Yesod may be one of the fastest web frameworks in existence,' but that’s not
the only reason it’s worth learning. Yesod is written in Haskell, a language
that is as expressive as many dynamic languages but which has a static type
system that makes Java’s or C++’s look like a toy. This rich type system is
used over and over again in Yesod to create safe code that is resilient to pro-
grammer error and hostile attack.

If you've heard of Haskell before, you might think that a web framework in
Haskell would be like the game Magic the Gathering,” full of complexity and
arcane rules that take many hours to master. Don’t let the mystique intimidate
you. Yesod is Set,’ a fast-paced card game that is inspired by weighty concepts
but easy and fun to learn and understand.

Yesod brings its own unique ideas to web development, remixing and building
on ideas from strongly typed languages. With Sinatra or Clojure you discover
many of your application’s bugs when you test it, but with Yesod, the compiler
will find many kinds of bugs for you before the application is ever run. Yesod
leverages the type system of Haskell to encode domain concepts into the types
themselves, forcing the compiler—instead of the programmer—to do the hard
work of reasoning about correctness.

Introducing Yesod

Yesod is the Hebrew word for foundation, and the framework strives to provide
a robust and strong foundation for your apps. Some of the frameworks in
this book attempt to explore new ways of building apps, but Yesod instead

1. http://www.yesodweb.com/blog/2011/03/preliminary-warp-cross-language-benchmarks
2. http://en.wikipedia.org/wiki/Magic_the gathering
3. http://en.wikipedia.org/wiki/Set %28game%29

www.it-ebooks.info

http://www.yesodweb.com/blog/2011/03/preliminary-warp-cross-language-benchmarks
http://en.wikipedia.org/wiki/Magic_the_gathering
http://en.wikipedia.org/wiki/Set_%28game%29
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 6. Yesod ® 198

takes the traditional architecture and tries to leverage the strengths of Haskell
to make it incredibly solid.

The Pieces

Yesod has models, views, and controllers like most modern frameworks, but
its strong, static type system gives them a unique flavor. The keys for querying
models have distinct types, ensuring that you can never confuse user ID 123
with invoice 123. View templates are compiled and enforce easily neglected
security invariants. Controllers deal with URLs that cannot become outdated.

Yesod has all the same pieces as many other frameworks, but programming
with Yesod feels like nothing else. Haskell is a pure functional, lazy language
that is likely to be quite foreign to you, and programming web apps with a
rich type system at hand is also unusual. In some ways, Yesod is a framework
that could be from a strangely familiar, parallel universe.

The Plan

Over the next three days, you'll see how Haskell’'s type system prevents
common errors, ensures your app is robust to attack, and is still expressive
enough to feel like most dynamic languages.

First, on Day 1, we’ll see the basics of routing and models, and we’ll start to
build the database portions of the chapter’s app, Rumble.

On Day 2 we'll explore Yesod’s templating languages—Hamlet and Lucius—and
its widget abstraction, which enables you to build reusable components for
your app. We'll also play with Yesod’s declarative forms and finish the day
with authentication and authorization.

Day 3 is all about integrating what we’ve learned into a real application. We’'ll
combine everything from the first two days to build a social news aggregation
site where users can share and comment on posts.

This week is going to be both fun and challenging, so let’s dive right in.

Day 1: Data You Can’t Get Wrong

This week we’ll be building a social news aggregation site called Rumble. Sites
focused on user-generated content, like Rumble, have a history of being vul-
nerable to attack, because they combine dynamic page generation with
untrusted, user-submitted content. Developers have combatted these attacks
by sanitizing and restricting user input, but dynamic languages offer little
help or assurance that every possible case is covered.

www.it-ebooks.info

http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 1: Data You Can't Get Wrong * 199

Today we’ll get a sample app up and running and we’ll start to see how Yesod
uses Haskell's type system to alleviate these problems. At the end of the day we’ll
build the models of Rumble, and hopefully you’ll start to get a sense of how much
work the compiler is doing to keep your code correct and your app safe.

Getting Started

The easiest way to start experimenting with Yesod is to install the Haskell
Platform.* The Haskell Platform is available for Windows, Mac, and Linux and
is probably included in your package manager of choice as well.

Cabal is the build tool that most Haskell developers use, and it comes with
the Haskell Platform. Once the Haskell Platform is installed, you can use
Cabal to update its package database and install Yesod:

$ cabal update
$ cabal install yesod-platform yesod-bin persistent-sqlite

This will install the Yesod framework, the yesod command-line tool, and the
SQLite back end of Yesod’s database library, respectively. These packages
have quite a few dependencies that Cabal will download, compile, and install
for you. Compiling all this took about fifteen minutes on our relatively fast
machines; your mileage may vary.

You can check that everything is working properly by running yesod version. It
should print the version of Yesod that is installed. This chapter requires at
least version 1.2.

$ yesod version
yesod-bin version: 1.2.1

With Yesod installed, we're ready to create our first application.

Hello, World

The yesod command-line tool is used both to create a new application and to
compile and run applications during development. While Yesod apps can be
created by hand, it’'s much easier to let the tool do the work for us. You can
create a new application using yesod init; when prompted, type hello for the
application name and type s to choose the SQLite database when prompted:
$ yesod init

Welcome to the Yesod scaffolder.
I'm going to be creating a skeleton Yesod project for you.

What do you want to call your project? We'll use this for the cabal name.

4. http://www.haskell.org/platform/

www.it-ebooks.info

http://www.haskell.org/platform/
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 6. Yesod * 200

Project name: hello

Yesod uses Persistent for its (you guessed it) persistence layer.

This tool will build in either SQLite or PostgreSQL or MongoDB support for you.
We recommend starting with SQLite: it has no dependencies.

s = sqlite

p = postgresql

pf = postgresql + Fay (experimental)
mongo = mongodb

mysgql = MySQL
simple = no database, no auth
url = Let me specify URL containing a site (advanced)

So, what'll it be? s
That's it! I'm creating your files now...
Komitted output»

This will create a new directory called hello and fill it with your new project.
We can compile and run the application with yesod devel from within the
application directory.

$ cd hello

$ yesod devel

Yesod devel server. Press ENTER to quit
Komitted output»

The yesod devel command will watch for changes to your application and
recompile the app as necessary. You can leave it running as you work, but if
you need to quit, just hit Enter.

When it first starts up, you’ll notice that it creates the application’s database
tables. It will also print out logging information as you access the application
from your browser. Go ahead and visit http://localhost:3000/ to see the default
Yesod scaffolding.

Let’s modify the default app to add a “Hello, World” route and handler. The
yesod command-line tool has a subcommand called add-handler that can add a
new route and handler module to your application. Let’s use that to add a
route for /hello:

$ yesod add-handler

Name of route (without trailing R): Hello

Enter route pattern (ex: /entry/#EntryId): /hello
Enter space-separated list of methods (ex: GET POST): GET

This will create a new entry in hello/config/routes:

yesod/hello/config/routes
/static StaticR Static getStatic
/auth AuthR Auth getAuth

www.it-ebooks.info

http://localhost:3000/
http://media.pragprog.com/titles/7web/code/yesod/hello/config/routes
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 1: Data You Can't Get Wrong * 201

/favicon.ico FaviconR GET
/robots.txt RobotsR GET

/ HomeR GET POST
/hello HelloR GET

The last line is the one that was just added by yesod add-handler. As you can
probably guess from looking at the file, each route is listed on its own line
and consists of a path, a handler name, and a list of accepted methods. Our
new route points to a new handler called HelloR, which can be found in hello/
Handler/Hello.hs:

yesod/hello/Handler/Hello.hs

module Handler.Hello where

import Import

getHelloR :: Handler Html
getHelloR = return "Hello, world!"

©® Handler functions are named like methodHandlerR, where method is the HTTP
method like GET or POST and Handler is the name of the handler’s module.
The functions contain the R suffix by convention to make it clear they
handle routes.

The type signature of Handler Html tells what kind of representation the
function will generate. Here, HTML is generated, but other representations
are possible, as is switching representations based on the request
information.

® This is almost the simplest possible implementation, returning unpro-
cessed HTML as a string.

If yesod devel is still running, it will see your new handler and recompile and
load your application automatically. If you visit http://localhost:3000/hello in your
browser, you should see your friendly greeting.

Describing Data with DSLs

The config/routes file was a list of routes written in plain text. It is written in a
very simple DSL that Yesod turns into Haskell and compiles into your appli-
cation. Yesod is full of DSLs, and we’ll be exploring several more of them
throughout this chapter. The next one we’ll investigate is the data modeling
DSL.

Yesod’s database library is called Persistent. It supports both SQL and noSQL
databases and includes its own DSL for defining models. While not as
sophisticated as an object-relational mapper (ORM), it’s quite flexible and it’s
completely type-safe, as we’ll see.

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/yesod/hello/Handler/Hello.hs
http://localhost:3000/hello
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 6. Yesod ® 202

Our social news aggregator, Rumble, needs only a simple data model. Users
submit posts, and all users can comment on these posts. Models are stored
in config/models in a simple format. Let’s look at Rumble’s models file:

yesod/rumble/v1/rumble/config/models
User
ident Text
password Text Maybe
UniqueUser ident
deriving Typeable Show

Post
title String
url String
author UserlId
score Int default=0
created UTCTime default=now
deriving Typeable Show

Comment
post PostId
author UserlId
created UTCTime default=now
body Text
deriving Typeable Show

©® A model is defined by writing its name, followed by an indented list of its
fields. Here the User model is created.

Each model defines a Haskell type. Types in Haskell are distinguished
from variables and functions by starting with a capital letter. Types and
other identifiers are typically written in camel case.

® A field is specified with its name in lowercase, followed by its type. The
type Text is a single string. Other common types are Int, Bool, and UTCTime.

© After the type come the options. Here we add Maybe, which wraps the value
in Haskell's Maybe type, which will be either Just Text or Nothing. This is how
database columns that can be NULL are represented.

O This is a uniqueness constraint since it starts with an uppercase letter.
Alist of fields is given, and the combination of these fields must be unique
for this model. Here we require that idents be unique.

© We use Haskell’s deriving syntax to tell the compiler to automatically generate
implementations for the Typeable and Show type classes. Typeable allows this
model to be stored in Yesod’s caches, and Show allows us to print a represen-
tation of the model that is useful for debugging. All our models will use this.

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/yesod/rumble/v1/rumble/config/models
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 1: Data You Can't Get Wrong * 203

0O The default option allows an initial value to be set. This is used primarily
in migrations.

© post and author are foreign key relationships. The Postld and Userld types are
generated by the Post and User models and represent the primary keys of
those models. Notice that the ID and the model are tied together. You
won't be able to use a Postld to query for a user accidentally. The type
system will prevent you from doing the wrong thing.

We need to tell Haskell's package manager, Cabal, that we’ll need the time
package, because the UTCTime type is not included in the scaffolding by default.
First, add the package to the list of packages in rumble.cabal. The next listing
shows a small part of the scaffolded rumble.cabal to show you where the new
dependency line goes:

yesod/rumble/v1/rumble/rumble.cabal

, warp >= 1.3 & < 1.4
, data-default

, aeson

, conduit >= 1.0

, monad-logger >= 0.3

, Tast-logger >= 0.3

, time >= 1.4

Next, we’ll need to import Data.Time in Model.hs to make the UTCTime available to
our models:

yesod/rumble/v1/rumble/Model.hs
module Model where

import Prelude

import Yesod

import Data.Text (Text)

import Database.Persist.Quasi
import Data.Typeable (Typeable)
import Data.Time

share [mkPersist sqlOnlySettings, mkMigrate "migrateAll"]
$(persistFileWith lowerCaseSettings "config/models")

After adding the highlighted line, our models are ready to go.

Working with Models

Inside our project’s directory, we can run ghci and start playing with our
models. Constructing model objects is easy; each model has a constructor
function of the same name.

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/yesod/rumble/v1/rumble/rumble.cabal
http://media.pragprog.com/titles/7web/code/yesod/rumble/v1/rumble/Model.hs
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 6. Yesod * 204

$ ghci Model
GHCi, version 7.6.3: http://www.haskell.org/ghc/ :? for help

*Model> User "foo" Nothing
User {userIdent = "foo", userPassword = Nothing}

*Model> let bar = User "bar" (Just "12345")
*Model> userPassword bar
Just "12345"

©® Constructing a User requires values for the two fields. Since the password
field is a Maybe field, it can have values Nothing for NULL and Just "some string"
when it has a value.

©® Every model has accessor functions defined automatically for each field.
Here userPassword is used to retrieve the password field. These functions
are all named modelField. For example, to get the ident field value, you'd use
userldent.

Now that we can construct model objects, we need to insert them into the
database. We'll need to use the runSqglite function to run database actions on
our database and the insert function to insert new data:

*Model> import Database.Persist.Sqlite
Komitted output>

*Model> id <- runSqlite "rumble.sqlite3" $ insert (User "foo" Nothing)
*Model> id
Key {unKey = PersistInt64 1}

*Model> :type id
id :: Key User

© runSglite is provided by Database.Persist.Sqlite, which we need to import.

@ The final argument to runSqlite is the set of actions to run. The only action
here is the call to insert, which creates a new row in the database for the
given model object and returns its key.

© At first glance, it looks like the Key that is returned is generic, but
inspecting the type shows that it is tied to the User model.

Retrieving data from the database is easy. First, let’s look at two functions
that return a single object, get and getBy. get takes Key m, where m is the model
and returns a Maybe m. getBy takes a uniqueness constraint and associated
values and tries to look up an object. It also returns a Maybe value, but of type
Entity m, which we’ll see shortly.

www.it-ebooks.info

http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 1: Data You Can't Get Wrong * 205

*Model> let withDB a = runSqlite "rumble.sqlite3" a

*Model> withDB $ get id
Just (User {userIdent = "foo", userPassword = Nothing})

*Model> e <- withDB $ getBy (UniqueUser "foo")
*Model> :type e
e :: Maybe (Entity User)

*Model> e
Just (Entity {entityKey
entityVal

Key {unKey = PersistInt64 1},
User {userIdent = "foo",
userPassword = Nothing}})

*Model> import Data.Maybe
*Model> userIdent (entityVal (fromJust e))
llfooll

*Model> withDB $ getBy (UniqueUser "missing")
Nothing

O First, we define a helper function to save some typing.

©® The variable id is the user we created in the previous example. The result
is wrapped in Just when returned, since it’s possible that the lookup will
fail if the key is not in the database.

©® You might expect getBy to return Maybe User just like get, but instead it
returns an Entity User wrapped in a Maybe. The reason for this is that since
we queried by a uniqueness constraint, we probably don’t know the key
for the object; and since the key is not part of the model, an entity is
returned that combines a model object with its key.

O Entity User has two pieces: the key, which is a Key User, and the value, which
is just a User. The accessor functions for the two pieces are entitykey and
entityVal.

© The user ident field can be pulled out of the entity. fromjust is the accessor
for Maybe types.

Constructing models and inserting them into the database is only part of the
story. To build our social news site, we’ll need to be able to query them too.
For that task, Persistent provides selectList.

selectlist takes two list parameters, a set of filters and a set of options, and
returns a list of matching entities. In order to play with these, let’s add more
users and a few posts for each:

www.it-ebooks.info

http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 6. Yesod ® 206

*Model> fred <- withDB $ insert $ User "fred" Nothing

*Model> jack <- withDB $ insert $ User "jack" Nothing

*Model> now <- getCurrentTime

*Model> withDB $ insert $ Post "Yesod" "http://www.yesodweb.com/"
fred 17 now

*Model> withDB $ insert $ Post "Haskell" "http://www.haskell.org/"
jack 103 now

*Model> withDB $ insert $ Post "Yesod @ Hackage"
"http://hackage.haskell.org/package/yesod" fred 11 now

*Model> withDB $ insert $ Post "Persistent @ Hackage"
"http://hackage.haskell.org/package/persistent"” jack 5 now

Let’s ask for all posts that were posted by jack:

*Model> posts <- withDB $ selectList [PostAuthor ==. jack] []
*Model> length posts
2

*Model> map (postTitle . entityVal) posts
["Haskell", "Persistent @ Hackage"]

The filters use the familiar operators except with a . suffix. If there are multiple
filters in the list, all must match for a record to match:

*Model> posts <- withDB $ selectList [PostScore >=. 15, PostAuthor ==. fred] []
*Model> map (postTitle . entityVal) posts
["Yesod"]

If you would like records where any of a set of filters match, use ||. between
filter sets:

*Model> posts <- withDB $ selectlList ([PostAuthor ==. fred] ||.
[PostScore >. 100]) []

*Model> map (postTitle . entityVal) posts

["Yesod", "Haskell","Yesod @ Hackage"]

We can use the options list to sort the results by using Asc for ascending or
Desc for descending and by providing the field to sort by:

*Model> posts <- withDB $ selectList [] [Desc PostScore]
*Model> map (postTitle . entityVal) posts

["Haskell", "Yesod","Yesod @ Hackage", "Persistent @ Hackage"]
*Model> map (postScore . entityVal) posts

[103,17,11,5]

That takes care of half of the CRUD operations. Next we’ll see how to update
and delete data.

Modifying and Deleting Models

Updating and deleting your data with Persistent can be done in a few different
ways. These are easiest to see with some examples:

WWWIt'ebOOkS”Tfo report erratum

- discuss

http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 1: Data You Can't Get Wrong * 207

*Model> withDB $ update jack [UserPassword =. Just "asdf"]
*Model> withDB $ get jack

Just (User {userIdent = "jack", userPassword = Just "asdf"})

*Model> withDB $ updateWhere [PostAuthor ==. fred] [PostScore +=. 10]
*Model> posts <- withDB $ selectList [PostAuthor ==. fred] []

*Model> map (postScore . entityVal) posts

[27,21]

*Model> let post = (entityKey . head) posts
*Model> withDB $ delete post

*Model> posts <- withDB $ selectList [PostAuthor ==. fred] []
*Model> map (postScore . entityVal) posts

[21]

*Model> withDB $ deleteWhere [PostAuthor ==. jack]

*Model> posts <- withDB $ selectList [] [Desc PostScore]
*Model> map (postTitle . entityVal) posts
["Yesod @ Hackage"]

*Model> withDB $ deleteBy (UniqueUser "jack")
*Model> withDB $ selectList [] [Asc UserIdent]
[Entity {entityKey = Key {unKey = PersistInt64 1},
entityVal = User {userlIdent = "fred",
userPassword = Nothing}}]

© update takes a key and a list of changes and makes the changes to that
key. Notice that these use the same operator plus dot syntax as the filters,
but the operators are assignments. Here we set a password for Jack.

® If you need to update multiple records at a time, updateWhere takes a list
of filters and a list of changes. In this example we increment the score of
all Fred’s posts by ten.

© To delete a specific model object, delete just needs the key. After deleting
the top post by Fred, only one is left.

O deleteWhere takes a list of filters and removes all the matching model objects.
All Jack’s posts are deleted.

O If you don’t have a key for the model object you wish to delete, deleteBy
takes a uniqueness constraint. Jack’s user is deleted.

These are all the tools we’ll need to create and manipulate our data for
Rumble. Most of these things are common to other frameworks, but Yesod
puts a little bit of a twist on things.

In Yesod, we never used plain numbers for keys or strings for matching unique
records. Keys are strongly typed, and you can’t accidentally use the key for

www.it-ebooks.info

http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 6. Yesod * 208

a post when you query for a user. Even though the database uses primitive
types and can’t tell one number from another, Yesod makes sure you always
do the right thing.

What We Learned on Day 1

Today we started, as always, with “Hello, World!” and learned how to use the
yesod tool to create projects and add new handlers. We also got a preview of
how to generate output to the browser.

Our next stop was learning about the models and Yesod’s database library,
Persistent. We defined a simple structure for our social news aggregator,
Rumble, and explored creating, querying, modifying, and deleting model
objects.

Along the way, you saw a few of the ways that Yesod uses Haskell’'s strong,
static type system to ensure that your code is correct before it is ever run.
This is one of Yesod’s biggest strengths, and you can bet we’ll be seeing more
of this during the week.

Tomorrow we’ll look at Yesod’s Shakespearian templating systems and its
widget models, which help organize your views.

Day 1 Self-Study
Find:

e The Yesod book, and specifically the chapter on Persistent
e The “powered by Yesod” page in the Yesod wiki

Do:
e Use ghci to add some Comment model data to the database.
* Add a description field to the Post model.

e Try giving a sequence of actions to runSqglite or withDB. What happens to the
other actions when one fails?

¢ See if you can figure out a way to subvert the type system and forge keys
or convert keys from one model to another. Could you? How much work
did it take?

Day 2: Views, Forms, and Auth

Web frameworks rely heavily on HTML templating systems to make adding
dynamic output convenient. Unfortunately, most templating systems are thin
veneers on string substitution, and as a result, it is very easy to introduce

www.it-ebooks.info

http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 2: Views, Forms, and Auth * 209

bugs and security vulnerabilities into your web app. For example, you might
include incorrect links in a view or allow untrusted user-generated content
to control a user’s browser.

Yesod includes several templating systems, but while they appear similar to
ones you've no doubt seen before, they work very hard to prevent the kinds
of bugs that are common in those other systems. In Yesod, URLs and inserted
document content are type-safe, which means you don’t have to worry about
updating views when routes change or whether you have accidentally enabled
a cross-site scripting attack. This requires using a special syntax for referenc-
ing URLs, but the template syntax is very similar to other systems, so it is a
small price to pay.

Today we’ll explore Hamlet and Lucius, which are the templating languages
for HTML and CSS in Yesod. There is a third language, called Julius, for
templating JavaScript, but it’'s very similar to the other two, so we won’t be
covering it here. We’'ll also see Yesod’s form-handling abilities while we build
the front end for Rumble.

Ye Olde Templating Languages

The first of Yesod’s templating languages is Hamlet, which generates HTML.
Hamlet is inspired to some extent by Ruby’s Haml,® in that it is whitespace
sensitive and attempts to be as minimal as possible.

To see Hamlet in action, let’s create a new Yesod app. Run yesod init and follow
the prompts just as we did before, choosing wellmet for the project name and
SQLite as the database. Then we’ll create a new handler, GreetR.

$ yesod init

Komitted output>

$ cd wellmet

$ yesod add-handler

Name of route (without trailing R): Greet

Enter route pattern (ex: /entry/#EntryId): /greet/#Text
Enter space-separated list of methods (ex: GET POST): GET

Notice the #Text in the route pattern. This parameterizes the pattern and will
call our getGreetR, which handles the route with an argument of type Text. We'll
need to import the Text data type so that our handlers can use it.

We do this in Foundation.hs, which is where the main app’s data type is defined:

5. http://haml.info/

www.it-ebooks.info

http://haml.info/
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 6. Yesod ® 210

yesod/wellmet/Foundation.hs

import Model

import Text.Jasmine (minifym)

import Text.Hamlet (hamletFile)
import System.Log.FastLogger (Logger)
import Data.Text (Text)

Yesod means “foundation” in Hebrew, so you can bet a file called Foundation.hs in a
Yesod project must be important. The foundation module defines the application’s
main data types and basic configuration.

It defines the App data type that binds together the settings, the database configuration,
static resources, and other app-specific things. It then creates instances of the Yesod
type class—and several others—that control the application’s high-level behavior.

Now we can use Hamlet to implement getGreetR:

yesod/wellmet/Handler/Greet.hs
module Handler.Greet where

import Import

getGreetR :: Text -> Handler Html
getGreetR name = defaultLayout [whamlet|<p>Well met, #{name}! #{after}|]
where after = "Good day!" :: Text

Yesod’s templating languages are implemented in Template Haskell, just like
the routes and models we saw earlier. To generate Template Haskell in regular
code, we use the quasi-quote syntax [name|template|], where name is the quasi-
quoting function and template is the template code. In this example, whamlet is
used to turn a Hamlet template into HTML.

Hamlet tags don’t need to be explicitly closed because the templating language
is whitespace sensitive. Variables and functions in the handler’s scope can
be referenced in the template by using #{expression}. Because Yesod is statically
typed, it ensures that the expression you provide returns something that can
be turned into HTML.

If you run yesod devel and visit http://localhost:3000/greet/developer, you should see
the expected greeting.

Try visiting http://localhost:3000/greet/%3Cscript%3Ealert%28%27uh%200h%27%29%3C/
script%3E, which attempts to inject the JavaScript alert('uh oh') into the page.
Yesod automatically escapes Text that you convert to HTML. Many other

www.it-ebooks.info

report erratum -« discuss

http://media.pragprog.com/titles/7web/code/yesod/wellmet/Foundation.hs
http://media.pragprog.com/titles/7web/code/yesod/wellmet/Handler/Greet.hs
http://localhost:3000/greet/developer
http://localhost:3000/greet/%3Cscript%3Ealert%28%27uh%20oh%27%29%3C/script%3E
http://localhost:3000/greet/%3Cscript%3Ealert%28%27uh%20oh%27%29%3C/script%3E
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

-]

Day 2: Views, Forms, and Auth ¢ 211

frameworks contain similar features, but in Yesod correct escaping is enforced
at compile time by the type system. One enormous benefit of doing it this way
is that you can’t forget.

The defaultLayout function takes a widget as input and embeds it in the site’s
default template, which is found in templates/default-layout-wrapper.hamlet. A widget
is a collection of data that represents some arbitrary content on a web page.
For example, a single widget might contain the HTML for a self-contained
component in your app along with the component’s CSS and JavaScript.

This is a powerful unit of abstraction, and it means that you don’t have to
remember which resources are needed for a given page; everything is kept
conveniently together. Let’s see a widget in action. First use yesod add-handler
to create a handler called Greet2 with the route /greet2/#Text. Then modify
getGreet2R to match the following code:

yesod/wellmet/Handler/Greet2.hs
getGreet2R :: Text -> Handler Html
getGreet2R name = defaultLayout $ do
color <- return ("blue" :: Text)
setTitle "Greetings"
toWidget [lucius|
.greet { font-weight: bold; color: #{color}; }|]
toWidget [whamlet|<p .greet>Well met, #{name}!|]

© setTitle sets the page title.

© toWidget adds content to a widget. First, we add a Lucius template, which
produces CSS output. Note that variable interpolation works the same
way as with Hamlet.

© Hamlet is used to produce the HTML. The syntax .greet expands into
class="greet". If we had used #greet instead, it would expand to id="greet".

You can visit http://localhost:3000/greet2/developer to view your handiwork.

Building widgets programmatically can be a little tedious, so Yesod provides
the $(widgetFile "foo") syntax, which looks for appropriate templates named
foo.hamlet, foo.lucius, and foo.julius. It combines all the templates it finds into the
widget, and in development mode it will recompile them automatically when
they change. Here’s a Greet3 handler using this new syntax, along with its
templates:

yesod/wellmet/Handler/Greet3.hs

getGreet3R :: Text -> Handler Html

getGreet3R name = defaultlLayout $(widgetFile "greet3")
where color = "blue" :: Text

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/yesod/wellmet/Handler/Greet2.hs
http://localhost:3000/greet2/developer
http://media.pragprog.com/titles/7web/code/yesod/wellmet/Handler/Greet3.hs
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

0000

Chapter 6. Yesod ® 212

yesod/wellmet/templates/greet3.hamlet
<p .greet>
Well met, #{name}!

yesod/wellmet/templates/greet3.lucius
.greet {

font-weight: bold;

color: #{color};

}

This code does the same thing as the Greet2 handler, but it’s organized nicely
in separate files. Perhaps you can already imagine how useful this is for
organizing the building blocks of views. You just combine the widgets you
want in a page, and Yesod figures out what style sheets and code is needed.

There’s a lot more to the templating languages themselves, and we’ll see that
later today. For now, let’s create some forms so that we can get some data
into our database.

Functional Forms

In order to collect data from the user, we need to include forms in our views
and process those forms when they are submitted. Thankfully, Yesod includes
a helpful set of tools for creating, validating, and processing forms.

We're going to explore the basics of Yesod forms by building a very simple
user management interface for Rumble. We’ll be able to see the list of users
and add and delete them.

First, change back into the project directory for Rumble, and add a new
handler called Users with a route of /users and responding to both GET and POST.
Start the server with yesod devel and keep it running while we write some code.

We'll define a form-generating function by adding the following code to our
new Users handler:

yesod/rumble/v2/rumble/Handler/Users.hs

userForm :: Form User

userForm = renderDivs $ User

<$> areq textField "ID" Nothing
<*> aopt textField "Password" Nothing

@ The type signature indicates a form wrapping a User model object.
© renderDivs will generate the HTML for the form.

© This form is an applicative form, which means that it uses Haskell’'s
Control.Applicative module to construct it. You can think of applicative as
meaning that you can sequence operations (appending form fields) but

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/yesod/wellmet/templates/greet3.hamlet
http://media.pragprog.com/titles/7web/code/yesod/wellmet/templates/greet3.lucius
http://media.pragprog.com/titles/7web/code/yesod/rumble/v2/rumble/Handler/Users.hs
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 2: Views, Forms, and Auth * 213

not do any variable bindings like we’'ve seen in database queries or widget
construction. The <$> and <*> are operators defined by Control.Applicative.
The end result is a nice internal DSL.

The areq function defines a required field; its arguments define the type
of the field, the label for the field, and its default value.

O You might have guessed that aopt defines an optional field, and you’'d be
right. By combining areq and aopt you can build most any kind of form.

Our form generator won’'t do much by itself, so it’s time to create a template
for the Users page, where the form will be displayed after the list of users.
Create a new Hamlet template in the templates directory called users.hamlet:

<h1l>Users

$if null users
<p>There are no users.

$else

$forall Entity user <- users
#{userIdent user}
<hr>

<form method="post" enctype="#{enctype}">
~{userFormWidget}
<input type="submit" value="Add User">

©® Hamlet uses $if .. $else ... to do conditional output. Here we test if the users
variable is empty.

© sforall is Hamlet'’s version of a for loop. It iterates over users, matching each
element to the pattern on the left side of the <-. This binds user to an Entity
value, which can then be used to print the user’s ID.

© Like #{...}, which renders Haskell expressions to HTML, "{...} renders the
expression to a widget. Here the userFormWidget will be embedded as the
content of the form.

Now that we have a template, we can use it in our handler’s getUsersR function.
We'll need to query the database for a list of users and then process the
template we just created:

yesod/rumble/v2/rumble/Handler/Users.hs

getUsersR :: Handler Html

getUsersR = do
users <- runDB $ selectlList [] [Asc UserIdent]
(userFormWidget, enctype) <- generateFormPost userForm
defaultLayout $(widgetFile "users")

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/yesod/rumble/v2/rumble/Handler/Users.hs
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

000 o

Chapter 6. Yesod ® 214

©® Yesod handlers can use runDB to execute database queries. runDB knows
what kind of database to use because that information is encoded in the
handler’s type. We saw this query yesterday; it returns all the users
sorted alphabetically by their IDs.

@ generateFormPost creates a blank form of the given kind, and it returns the
form’s generated widget and the encoding type that will be used in the
<form> tag. These variables are then available inside our template.

© All that’s left to do is render our widget with defaultLayout.

Visit http://localhost:3000/users in your browser to see the results. You should see
the users we added to the database yesterday. If you try to submit the form,
you will get an error, because we’ve not yet implemented postUsersR.

The last piece of this handler is to process form submissions by adding users
to the database and then redirect back to the Users handler:

yesod/rumble/v2/rumble/Handler/Users.hs
postUsersR :: Handler Html
postUsersR = do
((result,),) <- runFormPost userForm
case result of
FormSuccess user -> do
_ <- runDB $ insert user
redirect UsersR
_ -> defaultLayout [whamlet|whoops]|]

© runFormPost takes a form and processes it, filling in the fields with the
submitted data. It returns the result, a widget, and the encoding type
used, only the first of which we need here. Behind the scenes generateForm-
Post and runFormPost are inserting and validating security tokens to prevent
cross-site request forgery (CSRF) attacks.

@ If the form processing is successful, it includes a user model object that
we can use.

© The user gets inserted into the database, and runDB returns the new
database ID for it.

O We redirect the user back to the Users handler. Note that we don’t use the
URL directly but use the name of the handler, which provides a safe ref-
erence to the route. If the route used for the Users handler ever changes,
this redirect will still work. Even better, Yesod requires that we pass it a
route type here; it will fail to compile if we attempt to give it a raw string.
The type system prevents a possible bug potentially caused by a future
change to a different piece of your application’s code.

www.it-ebooks.info

http://localhost:3000/users
http://media.pragprog.com/titles/7web/code/yesod/rumble/v2/rumble/Handler/Users.hs
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 2: Views, Forms, and Auth * 215

Although we've just processed the most basic kind of form, it has shown off
a lot of Yesod’s unique features. There’s a lot of work going on even though
we only wrote a few lines of code. We constructed a form declaratively, used
Hamlet to embed widgets within widgets, and prevented routing changes from
breaking our app’s URLs. Best of all, we didn’t have to test the app to see if
we made a mistake; the compiler finds many errors before the code is ever
run.

We have almost all the pieces we’ll need for Rumble, but we still need to
handle authentication and authorization.

A Tale of Two Auths

Authentication is the determination of the identity of a user. Whether a user
provides a secret password or uses some third-party service to vouch for the
user, the goal is to be confident that the user is who he or she claims to be.
Authorization is concerned with what users can do. Are they allowed to create
resources or delete them? Can they view a particular item? Many frameworks
intertwine these two “auths,” but in Yesod, they are treated separately.

By keeping them separate you keep everything simple. Your controllers aren’t
concerned with the mechanics of authentication, only what kind of authoriza-
tion is needed. Most of the time, as you will see, authorization can be done
declaratively outside of the controllers, keeping them focused on their true

purpose.

Both of these features are controlled in an application’s Foundation.hs file, which
sets up the main data structures for the app.

Authentication

Let’s look at the settings available in Foundation.hs:

yesod/authme/Foundation.hs

instance YesodAuth App where
type AuthId App = Userld
loginDest _ = HomeR
logoutDest = HomeR

getAuthId creds = runDB $ do
X <- getBy $ UniqueUser $ credsIdent creds
case x of
Just (Entity uid) -> return $ Just uid
Nothing -> do
fmap Just $ insert $ User (credsIdent creds) Nothing
authPlugins _ = [authBrowserId def, authGoogleEmail]
authHttpManager = httpManager

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/yesod/authme/Foundation.hs
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 6. Yesod ® 216

© The Authld associated type tells Yesod which model ID will be used to rep-
resent an authenticated user.

© loginDest and logoutDest control the default redirect location after logging in
and out. Here we set both destinations to the home page.

© Yesod uses getAuthld to look up the Authld for a given set of credentials.
When using third-party authentication services, the only thing needed is
to create a User if one doesn’t already exist for those credentials.

O By default, Yesod turns on the Persona and Google authentication plugins.

These defaults are great for many cases and are a safer default than the built-
in password authentication of most frameworks. It's easy to get password
storage or transmission wrong, and doing so can have dire consequences.

Let’s create a simple example site to play with authentication. Use yesod init to
create a new project called authme and select SQLite as the database. Modify
the config/routes file to only have a GET route for HomeR, and replace the Home
handler with the following code:

yesod/authme/Handler/Home.hs

{-# LANGUAGE TupleSections, OverloadedStrings #-}
module Handler.Home where

import Import

import Yesod.Auth

getHomeR :: Handler Html
getHomeR = do
user <- maybeAuth
defaultLayout $ do
setTitle "AuthMe"
$(widgetFile "homepage")

©® maybeAuth returns the authenticated Entity wrapped in a Maybe. There is also
a maybeAuthld that returns only the Authld. If you want to force users to be
authenticated or be redirected to the login page, you can use requireAuth
and requireAuthld.

We'll also need to replace the homepage template. Be sure to delete or empty
templates/homepage.julius and homepage.lucius if you are following along.

$maybe (Entity u) <- user
<p>Logged in as #{userIdent u}
<p>
Logout
$nothing
Login

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/yesod/authme/Handler/Home.hs
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 2: Views, Forms, and Auth * 217

©® We try to match on the user. maybeAuth gives us an Entity Userld User if the
user is authenticated. If we get a match, we print out the user’s ident value.

® Yesod provides an AuthR route that takes a parameter LoginR or LogoutR,
depending on whether you wish the user to log in or log out.

After running yesod devel you can visit http://localhost:3000/ and try to log in with
Persona or Google. Once you're logged in, you should see your email address
printed and you can log out.

We can make this a bit nicer by skipping the login page and putting a direct
link to the Persona login system right on the page. Here’s another handler
and template that do just that:

yesod/authme/Handler/Direct.hs
module Handler.Direct where

import Import
import Yesod.Auth
import Yesod.Auth.BrowserId

authLinkWidget :: Widget
authLinkWidget = do
@ onclick <- createOnClick def AuthR
(2] loginIcon <- return $ PluginR "browserid" ["static", "sign-in.png"]
(3) [whamlet||]

getDirectR :: Handler Html
getDirectR = do
user <- maybeAuth
defaultLayout $ do
setTitle "AuthMe Direct"
$(widgetFile "direct")

© createOnClick is a helper function of Yesod.Auth.Browserld that creates the
JavaScript code to execute when you want to trigger a Persona login
(Browser ID is the old name for Persona).

© PluginR is the type-safe way to access plugin resource URLs.

© Our widget just becomes a link to trigger the JavaScript we created along
with a pretty image.

$maybe (Entity u) <- user
<p>Logged in as #{userIdent u}
<p>
Logout
$nothing
~{authLinkWidget}

www.it-ebooks.info

http://localhost:3000/
http://media.pragprog.com/titles/7web/code/yesod/authme/Handler/Direct.hs
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

YYYYVYYY

Chapter 6. Yesod ® 218

The only difference from our previous template is that we insert the authLinkWid-
get widget instead of a link to the login page.

Now that users are authenticated, we still need to control what they are
allowed to do.

Authorization

The main control point for authorization is the isAuthorized function in your
application’s foundation type in Foundation.hs.

isAuthorized takes a route and a boolean indicating whether the request is a
write request—a PUT or a POST for example. It can return Authorized, which
allows the request; Unauthorized, which prevents the request; and Authentication-
Required, which redirects the user to the login page.

This makes it very easy, and declarative, to design authentication for your
routes. The default isAuthorized implementation simply returns Authorized for
everything.

Let’s see a quick example. Create a Secret handler using yesod add-handler at
/secret. Then add the highlighted lines to Foundation.hs:

yesod/authme/Foundation.hs
authRoute = Just $ AuthR LoginR

isAuthorized SecretR _ = do
maybeUserId <- maybeAuthId
return $ case maybeUserId of
Just _ -> Authorized
Nothing -> AuthenticationRequired

isAuthorized = = return Authorized

With that change made, try visiting http://localhost:3000/secret when logged both
in and out. With these simple tools, authorization can be as simple or as
complex as your app requires without getting in the way of any of the rest of
your code.

What We Learned on Day 2

We covered a lot of stuff today. First, we saw Yesod’s Shakespearian templating
languages and learned about its widget abstraction. Unlike most templating
systems, Yesod templates are type-safe and compiled before your app ever
runs. Widgets combine one or more templates into a single, reusable unit,
which allows you to keep the styles and markup for a component separate
from other components.

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/yesod/authme/Foundation.hs
http://localhost:3000/secret
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 3: Rumbling Along * 219

This widget abstraction doesn’t cost anything to use, because Yesod will
compile your widgets into your pages just as if they had been combined in
the first place. The benefit is that each widget stays simple, and all the hard
work of figuring out what pieces are needed for which pages is taken care of
by the compiler, not you.

Next, we looked at Yesod’s declarative forms and used them to build a basic
user creation page.

Finally, we explored authentication and authorization and saw how Yesod
has built-in support for several well-known authentication systems and keeps
authorization separate from the handlers.

Tomorrow we’ll put everything together to build a working version of Rumble.

Day 2 Self-Study
Find:
e Some examples of Cassius, Yesod’s other CSS templating system
* The special syntax for optional attributes in Hamlet
e The difference between applicative, monadic, and input forms
Do:

¢ Change wellmet’s Greet3 handler to use a unique class name that is gener-
ated on the fly instead of a hardcoded class name. (Hint: You can create
a unique name with name <- lift newldent in your widget.)

e Experiment with some different isAuthorized functions. Try refactoring the
final example so that the user check doesn’t have to be repeated in every
clause.

Day 3: Rumbling Along

Today we’ll put everything together to build our social news aggregator. We'll
use the Shakespearian templates to generate views and Yesod’s declarative
forms to handle new content. We’ll also see how to modify the default layout.

We'll start top-down by building Rumble’s front page list of posts and then
move to displaying single posts. This will make a lot of use of Hamlet templates
and widgets. Then we’ll add forms for new posts and comments using Yesod’s
declarative forms. By the end of the day, Rumble will be ready for beta testers
and should look similar to this screenshot.

www.it-ebooks.info

http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 6. Yesod ® 220

Rumble suomit [Signin with Persona

21 Yesod @ Hackage

added by fred

2 comments

0 Haskell Platform

added by jack

2 comments

Figure 24— Rumble: A social news site

Creating the Front Page

Yesod’s defaultLayout function takes page content, usually a widget, and includes
it in the site’s default layout template for rendering. The generated scaffolding
code uses templates/default-layout-wrapper.hamlet as the default template. We’ll need
to replace that with something more appropriate and then modify the Home
handler to create Rumble’s list of posts.

Let’s start by creating all the routes we’ll need. By creating them now, we’ll
be able to use them to generate type-safe URLs in our templates, even if their
handlers aren’t fully implemented. Use yesod add-handler to make the following
routes and handlers:

¢ Create a Post handler with the route /post/#Postld responding to GET. This
will be used to show individual posts.

¢ Create a PostNew handler with the route /new responding to both GET and
POST. This will be used to show the new post form and to process new
posts.

¢ Create a Comments handler with the route /post/#Postld/comments responding
to POST. This will process new comments on a particular post.

If everything has gone according to plan, you should see the following new
routes:

yesod/rumble/v2/rumble/config/routes
/post/#PostId PostR GET

/new PostNewR GET POST
/post/#PostId/comments CommentsR POST

Let’s build a new default layout template. Replace the code in templates/default-
layout-wrapper.hamlet with the following template:

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/yesod/rumble/v2/rumble/config/routes
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 3: Rumbling Along * 221

(1) $doctype 5

o

<html>
<head>
<meta charset="UTF-8">

<title>#{pageTitle pc}
~{pageHead pc}

<body>
<div .navbar .navbar-inverse>
<div .navbar-inner>

<div .container>
<a .brand href=@{HomeR}>Rumble

<ul .nav>

submit
<ul .nav .pull-right>

~{pageBody authLinkContent}

<div .container>
~{pageBody pc}

© The $doctype 5 directive tells Hamlet to generate an HTML5 <!DOCTYPE>
tag.

©® Our nav bar contains a link to the main page and a link to the new post
form. Notice that we used the @{...} syntax with the names of our routes.
These are Yesod’s type-safe URLs. If the URLs for these routes ever change,
these links will still work, and Yesod will throw an error during compilation
if we try using something in a @{...} construct that isn’t a route type.

©® Here we include the Persona login button. The default template is run
slightly differently, so we cannot include a widget directly. Our authLinkWidget
from yesterday has been transformed into PageContent similar to the normal
embedded content.

O The pc variable is the page content that is passed to defaultLayout. Here the
body widget is included in the content area of the page.

We'll need to set up the authLinkContent by modifying defaultLayout. Add the
following line to defaultLayout, and add the definition of authLinkWidget from
Authentication, on page 215, to the definition of defaultLayout in Foundation.hs:

www.it-ebooks.info

http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 6. Yesod ® 222

yesod/rumble/v2/rumble/Foundation.hs
defaultLayout widget = do
master <- getYesod
mmsg <- getMessage
pc <- widgetToPageContent $ do
$(combineStylesheets 'StaticR
[css normalize css
, Css_bootstrap css
D
$(widgetFile "default-layout")
> authLinkContent <- widgetToPageContent authLinkWidget
giveUrlRenderer $(hamletFile "templates/default-layout-wrapper.hamlet")

If you wish to see the results so far, take a look at the user management page,
http://localhost:3000/users, that you built earlier. You should see it in prettier sur-
roundings now. The front page should contain a list of posts that users have
submitted and commented on. Since each post will look the same, we’ll use
a widget to handle their rendering. The following code should replace the
scaffolding in the Home handler:

yesod/rumble/v2/rumble/Handler/Home.hs
getHomeR :: Handler Html
@ getHomeR = do
posts <- runDB $ selectlList [] [Desc PostScore]
defaultLayout $ do
setTitle "Rumble"
$(widgetFile "home")
® generatePostWidget :: Entity Post -> Widget
generatePostWidget (Entity postId post) = do
(3] (author, comments) <- handlerToWidget $ runDB $ do

comments <- selectList [CommentPost ==. postId]
[Asc CommentCreated]
(4] author <- get404 $ postAuthor post

return (author, comments)
$(widgetFile "post")

©® Grab a list of posts sorted by score and hand them off to a widget for
display. It doesn’t get much easier than this.

© To render each post, we’ll need to transform an Entity Post model object into
a widget. In addition to the post data, we’ll also need the author and
comments information.

© runDB is a function that normally runs inside a handler. If you want to use
it in a widget, handlerToWidget is needed to make it work.

O get404 is a convenience function to return a model object or cause the
handler to return a 404 Not Found HTTP error.

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/yesod/rumble/v2/rumble/Foundation.hs
http://localhost:3000/users
http://media.pragprog.com/titles/7web/code/yesod/rumble/v2/rumble/Handler/Home.hs
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 3: Rumbling Along * 223

The handler itself doesn’t contain much; it is mostly responsible for setting
up the context for the template. Let’s look at the templates:

yesod/rumble/v2/rumble/templates/home.hamlet
$if null posts
<p>Nothing here yet.
$else
$forall post <- posts
~{generatePostWidget post}

<article>
<header>
<hl>
#{postScore post}
#{postTitle post} #
<small>#{postUrl post}
<p>added by #{userIdent author}
<p>#{length comments} comments

©® Notice another use of type-safe URLs with @{...}. Since the PostR route
takes a parameter, we must supply one to generate a safe URL.

There’s not much to the templates beyond variable interpolation. The handlers
set up the context and then delegate the rendering to the templates. In a few
dozen lines, we've accomplished a lot. You can visit http://localhost:3000/, but
there isn’t much there yet since there aren’t any posts. Let’s build the new
post form now.

Building a Post Form

Our forms for Rumble are going to be slightly more complicated than the user
form we saw yesterday. The renderDivs function that generates the form takes
a constructor function as one of its arguments, and when the form is run, it
uses this function along with the form data to construct an object. In the user
form, we use the User model constructor: Rumble’s forms need something a
little different.

One of the parts of a Post is the post’s creation time. This is not something
that the user will provide in a form; the server should generate the time stamp
at the instant it adds the post to the database. This means we can’t use the
Post constructor with renderDivs, but must make our own constructor function.
Our form then contains the pieces of data the user will input, and our
constructor function will combine those with the rest of the data needed to
generate an actual Post value.

An example will illustrate. Here is the GET portion of the new post handler:

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/yesod/rumble/v2/rumble/templates/home.hamlet
http://localhost:3000/
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 6. Yesod ® 224

yesod/rumble/v2/rumble/Handler/PostNew.hs
module Handler.PostNew where
import Import
import Data.Time
import Yesod.Auth
(1] postForm :: Form (UserId -> Int -> UTCTime -> Post)
(2] postForm = renderDivs $ Post
<$> areq textField "Title" Nothing
<*> areq textField "URL" Nothing
getPostNewR :: Handler Html
© getPostNewR = do
_ <- requireAuthId
(postFormWidget, enctype) <- generateFormPost postForm
defaultLayout $(widgetFile "post-new")

© postForm doesn’t directly return a form that creates a Post; it returns a form
that creates a function that takes a Userld, an integer, and a UTCTime and
then returns a Post.

©® We use the Post constructor here, but because it will only receive the first
two of its five arguments, it’s partially applied. This means that it will
return a function expecting the final three arguments.

© The GET handler is simple. It just generates the blank form and renders
the post-new widget. Note the call to requireAuthld, which will redirect users
if they are not logged in.

There’s not much to the post-new template. It just wraps the post form widget:

yesod/rumble/v2/rumble/templates/post-new.hamlet
<h1>New Post

<form method="post" enctype="#{enctype}">
~{postFormWidget}
<input type="submit" value="Post">

The final piece of the new post handler is to process the forms when they are
submitted. Here’s postPostNewR:

yesod/rumble/v2/rumble/Handler/PostNew.hs
postPostNewR :: Handler Html
postPostNewR = do
authorId <- requireAuthId
((result,),) <- runFormPost postForm
case result of
FormSuccess makePost -> do
time <- 1iftIO getCurrentTime
post <- runDB $ insert $ makePost authorId 0 time
redirect $ PostR post
_ -> defaultLayout [whamlet|whoops]|]

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/yesod/rumble/v2/rumble/Handler/PostNew.hs
http://media.pragprog.com/titles/7web/code/yesod/rumble/v2/rumble/templates/post-new.hamlet
http://media.pragprog.com/titles/7web/code/yesod/rumble/v2/rumble/Handler/PostNew.hs
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 3: Rumbling Along * 225

©® Remember that the result of form processing is a constructor function,
not a Post value.

©® We need the three extra pieces of Post to create it—the time, the score,
and the author. Since getCurrentTime is an IO action, we must use liftlO to
call it.

© With all the information obtained, we can use makePost to generate a Post
value and insert it into the database.

O Our task is done, and we redirect the user to the post’s page. We again
make use of Yesod’s safe URLs to generate a link that won’t get out of
date if the routes change later.

You can now visit http://localhost:3000/new to add new posts to Rumble, although
the redirect will take you to an unimplemented view. Once you add a post,
just manually go back to the home page to see the results in the list.

Our final tasks today are to create the post handler and add the ability to
comment on posts.

Viewing Posts and Making Comments

Implementation of the post and comment handlers follows the same patterns
you've seen with the home and new post handlers. Let’s look at the post
handler:

yesod/rumble/v2/rumble/Handler/Post.hs
module Handler.Post where
import Import
import Data.Maybe
import Yesod.Auth
import Handler.Comments (commentForm)
getPostR :: PostId -> Handler Html
getPostR postId = do
authId <- maybeAuthId

(post, author, comments, commentsWithAuthors) <- runDB $ do
post <- get404 postId
author <- get404 $ postAuthor post
comments <- selectList [CommentPost ==. postId] [Asc CommentCreated]
authors <- mapM (get . commentAuthor . entityVal) comments
return (post, author, comments,
zip (map entityVal comments) (map fromJust authors))
(commentFormWidget, enctype) <- generateFormPost $ commentForm postId
defaultLayout $ do
setTitle $ toHtml $ (postTitle post) <> " - Rumble"
$(widgetFile "post-full")
generateCommentWidget :: Comment -> User -> Widget
generateCommentWidget comment author = $(widgetFile "comment")

www.it-ebooks.info

http://localhost:3000/new
http://media.pragprog.com/titles/7web/code/yesod/rumble/v2/rumble/Handler/Post.hs
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 6. Yesod ® 226

©® The main job of the handler is to retrieve all the necessary info from the
database. It might seem strange that we must fetch the related data by
hand; this is because Persistent is not limited to relational databases and
doesn’t enforce relational representations. It does mean some common
tasks are a bit more work.

©® mapM works like map, except it maps a monadic function over a list. This
is needed, as get operates in the database monad.

©® The comments and authors are “zipped” together. zip takes two lists and
produces a list of tuples, where each tuple contains one element from
each list.

O Notice that we can’t directly pass raw strings to setTitle because this could
be unsafe. Yesod requires that they be properly transformed to HTML,
which will ensure they are safely escaped.

© Like generatePostWidget, which we saw previously, generateCommentWidget is
just a helper to turn Comment values into widgets. We must also pass the
author, as the Comment value only contains the Userld foreign key, not the
User value.

The post-full template is quite similar to the post template, except that it includes
all the comments. If the user is logged in, the new comment form is also dis-
played. There’s nothing in it that you haven’t seen before in some form:

yesod/rumble/v2/rumble/templates/post-full.hamlet
<article>
<header>
<hl>
#{postScore post}
#{postTitle post}
<small>#{postUrl post}
<p>added by #{userIdent author}
<p>#{length comments} comments

$maybe <- authId

<hr>
<form method="post" enctype="#{enctype}" action="@{CommentsR postId}">
~{commentFormWidget}
<input type="submit" value="Post Comment">
<hr>

$forall (comment, author) <- commentsWithAuthors
~{generateCommentWidget comment author}

The comment widget contains two templates, one for the HTML and one for the
CSS:

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/yesod/rumble/v2/rumble/templates/post-full.hamlet
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 3: Rumbling Along * 227

yesod/rumble/v2/rumble/templates/comment.hamlet
<article .comment>
<header>
comment by #{userIdent author}
on #{show (commentCreated comment)}
#{commentBody comment}

yesod/rumble/v2/rumble/templates/comment.lucius
.comment {

background-color: #eee;

padding: 10px;

margin-bottom: 10px;

}

.comment header {
color: #aaa;
text-align: right;

}

Finally, we need to create the comments handler with its comment form. The
comments handler must process the submitted forms from the post’s page
and add the new comments to the post in the database:

yesod/rumble/v2/rumble/Handler/Comments.hs
module Handler.Comments where
import Import

import Data.Time

import Yesod.Auth

makeComment :: PostId -> Textarea -> UserId -> UTCTime -> Comment
makeComment post body = \author time -> Comment post author time body

commentForm :: PostId -> Form (UserId -> UTCTime -> Comment)
commentForm post = renderDivs $ makeComment post
<$> areq textareaField "Comment" Nothing
postCommentsR :: PostId -> Handler Html
postCommentsR post = do
authorId <- requireAuthId
((result,),) <- runFormPost $ commentForm post
case result of
FormSuccess mkComment -> do
time <- 1iftI0 getCurrentTime
_ <- runDB $ insert $ mkComment authorId time
redirect $ PostR post
_ -> defaultlLayout [whamlet|whoops]|]

@ makeComment is a helper function to make a constructor function for a
Comment. Unlike Post, whose first two fields were user-filled and whose
remaining fields were filled in during processing, Comment’s fields are more
scattered. This means we can’t use a partially applied Comment as the

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/yesod/rumble/v2/rumble/templates/comment.hamlet
http://media.pragprog.com/titles/7web/code/yesod/rumble/v2/rumble/templates/comment.lucius
http://media.pragprog.com/titles/7web/code/yesod/rumble/v2/rumble/Handler/Comments.hs
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 6. Yesod ® 228

constructor function. This helper just takes the fields that will be filled
out by the user and returns a function that takes the remaining fields
and returns the constructed Comment.

® With the helper in place, the comment form becomes quite simple.

© Finally, the POST handler mirrors the one for new posts. We fetch the
remaining pieces of data needed to complete the Comment value and then
call the returned constructor. The final Comment value is inserted into the
database.

Rumble should now be ready for use at http://localhost:3000/. You can create new
posts and comment on ones that are there.

What We Learned on Day 3

Today we put all our knowledge to use building the rest of Rumble, our social
news app. Templates and widgets, forms and models all mixed cohesively to
bring Rumble to the world. Best of all, the end result is safe from many forms
of attack and is robust against future changes thanks to Yesod’s leverage of
Haskell’s type system.

You're happy because your app is fast and small, reaping the benefits of a
compiled language while not giving up many benefits of dynamic languages.
Your users are happy because their favorite app won’t throw strange errors;
most errors will be discovered and fixed before the app is ever run.

Day 3 Self-Study
Find:
¢ A few interesting projects on GitHub using Yesod

e The Yesod blog and the Yesod cookbook—they are both full of interesting
examples of how to use Yesod.

Do:

¢ The login link is always present, even when logged in. Have it switch to
the user’s email address when that person is logged in.

e Rumble is missing the ability to vote on posts. Add a new handler that
can process submitted votes and add them to a post’s score. Modify the
templates to include voting links on the home and post pages.

¢ Create a profile page that collects a user’s posts and comments. Link the
username in each post and the comment to the corresponding profile

page.

www.it-ebooks.info

http://localhost:3000/
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 3: Rumbling Along * 229

Interview with Michael Snoyman

Michael Snoyman is the creator of Yesod and the lead software engineer at
FP Complete, a company dedicated to bringing Haskell into the mainstream.
His desire to improve his own development led him to Haskell and to creating
Yesod.

Us: Haskell's excellent type system makes Yesod quite unique among web
frameworks. How has strong, static typing influenced the web apps you've
developed?

Michael: In order to fully leverage a strong type system, you have to spend a bit
more time up front designing your type system. The goal is to express as many
invariants in the types as you can so that the compiler can enforce them for you.
Based on experience with weaker type systems (like Java), people often come away
with the idea that a type system cannot express much information. My experience
with Haskell has been quite different. Some simple examples would be:

e protection against cross-site scripting attacks by labeling all user data as
untrusted,

¢ distinguishing numerical database identifiers based on table type, and

¢ encoding business logic invariants, such as “a user must enter an email address,
a phone number, or both, but may not omit both fields.”

Once this initial work has been done, the benefits are huge. Any invariant you’'ve
successfully encoded can be relied upon fully to be enforced by the compiler. This
is_far more powerful than unit tests. While testing can ensure specific properties in
certain circumstances, a type-level requirement is enforced through every piece of
your software.

Refactoring becomes a much easier exercise as well. Oftentimes, when I get a change
in specifications, my first task is to change the data types. Once that has been done
appropriately, I embark on compiler-guided coding: I let the compiler tell me what
needs to be updated, and I fix that. And in many cases, once the code compiles
again, the software works correctly.

Us: Yesod seems to be setting the bar high for performance. Why is performance
important for web apps?

Michael: It's a funny question. It’s certainly true that Yesod scores very well on
benchmarks, and some people have spent a lot of effort optimizing various pieces
of the Yesod infrastructure, from the Warp web server to our cryptographic client
session coolkie code. All of this contributes to a great user experience. But my real
opinion is that most of the time, there’s essentially some minimum bar for reasonable
performance. This depends on various factors, such as user expectations and the
nature of the program. Once you get beyond that minimum level, we’re really talking
about a savings in hardware costs, which, while nice, is not the most important
factor.

www.it-ebooks.info

http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 6. Yesod * 230

What I consider more important is scalability. The ability to write a program that
easily scales out to multiple cores, and ultimately multiple machines, means that
you’ll be able to meet the needs of large increases in users. The web architecture
lends itself very well to this with its stateless approach, but that’s not enough. Using
a language like Haskell, which encourages immutable data structures and referential
transparency, simplifies scalability drastically. And having powerful concurrency
and parallelism tools, like software transactional memory and data parallel Haskell,
are significant boons as well.

Us: Do you find that Yesod enables new kinds of web apps or makes existing
types of apps much easier to develop?

Michael: Forthe most part, Yesod is not about any radical new approaches. Yesod
follows a very standard model-view-controller web framework design and tries to
leverage Haslkell to provide reliability, correctness, and performance. My philosophy
has been to be revolutionary in one aspect only, and that aspect was using Haskell.
So to answer the question more directly, I wouldn’t say that we’ve enabled any
new kinds of web apps. As for making development easier, I've found that Yesod
greatly eases the debugging and maintenance of any large projects while taking
about the same amount of time for initial development as other popular frameworks
from other languages.

Some related projects are attempting to be more revolutionary than Yesod. Functional
reactive programming and continuation-based frameworks are two interesting areas
being developed in the Haskell community right now and that do have the potential
to enable new kinds of web apps.

Us: What are the most interesting things you’ve seen people do with Yesod?

Michael: For the most part, I've seen people writing very exciting web projects
using Yesod, without any outward visibility that Yesod is being used behind the
scenes (besides perhaps the “server” HTTP response header).

One interesting phenomenon has been using Yesod to create user interfaces that
would normally be desktop applications. Since Yesod can embed static resources
and a web server into a single executable, it’s quite possible to create a program
that launches a background server process and then opens up a web browser to
view the user interface. We even provide a library (wai-handler-launch) designed
around making this kind of usage trivial. This makes it much easier to create
cross-platform graphical applications. Some such applications include git-annex
assistant, some Wiki platforms, a complete personal finance management system,
and Git history viewers.

And then of course there’s the usual range of “standard” web sites written using
Yesod, everywhere from personal blogs to a full-blown Haskell integrated develop-
ment environment in the cloud (FP Haslkell Center).

Us: What plans do you have for the future of Yesod?

Michael: At this point, Yesod is a mature web framework that meets the initial
problem domain I had for it (and then some). My goal for that core is to continue to

www.it-ebooks.info

http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Wrapping Up * 231

improve quality and performance and update with any necessary bug and security

fixes. But I'm quite happy with where the API is right now, and the goal is to try to
maintain long release cycles between backwards-incompatible changes. I've heard
lots of feedback from the community and commercial users, and I strongly believe
stability is something we must provide to our users.

That said, there are many new domains that we are expanding into on the periphery.
Haslell to Javascript compilers, better client-side coding abstractions, more integra-
tion with newer web technologies (like WebSockets), and more powerful server-side
abstractions for features such as autoscaling and clustering are all on the radar
and to one extent or another being worked on right now. Yesod’s development
strategy encourages having rapid iterations on experimental features and, after a
design has been converged on, encourages including deeper integration with the
core Yesod technologies. I intend to continue that process.

And, of course, encouraging wider adoption is something we’re actively working
on. More comprehensive documentation, whether it be the Yesod book, various
online tutorials, cookbook recipes, or screencasts, is vital to helping new users get
started. At FP Complete, we’re working on many of these issues not just for Yesod
but for the Haskell language in general. I strongly believe that Haskell and Yesod
have the potential to help software developers write better, more robust software,
and hope others are able to reap these benefits.

Wrapping Up

Yesod is a traditional framework built out of a very nontraditional language.
Yesod has models, views, and controllers, but it is also compiled, lazily eval-
uated, and has static typing. Far from being a burden, Haskell adds much
to the traditional web stack—safety, speed, and robustness against program-
mer error.

Many errors you'd normally find while testing your app will be found by the
compiler. You can’t accidentally forget to escape content when including it in an
HTML template because in Yesod, strings and HTML are different types and you
can't substitute one for the other. You won'’t be surprised by null pointer exceptions
or undefined results; the compiler forces you to handle all cases of a Maybe value.

In this chapter, we've taken a short tour of what Yesod has to offer and built
an app that is often hard to get right. With Yesod, we can rest easier knowing
that the compiler is double-checking that our code does what we wanted and
preventing much of our human tendency to make errors.

Yesod'’s Strengths

Yesod makes heavy use of Haskell's type system to prevent programmer error.
This is important on the Web not just to avoid unhappy users, but also to
prevent malicious actors from harming your business or your users. It’s not

www.it-ebooks.info

http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 6. Yesod ® 232

a silver bullet that negates the need for testing, but you'll find that it catches
a large class of errors you previously had to find via testing.

Yesod is also extremely fast. In the crowded space of web frameworks, it is
leaps and bounds ahead of almost all its competition with regard to raw speed.
Better still, you don’t have to give up what you're used to in dynamic languages
in order to take advantage of this.

Many of Yesod’s libraries are very rich. The templating languages cover a wide
range of functionality without giving up type safety; the authentication plugins
come out of the box with support for Persona, Google login, and more; and
Yesod can easily make use of both SQL and noSQL databases.

Yesod’s Weaknesses

There’s no denying that Haskell is a strange language to most programmers,
and its combination of laziness, pure functions, and strong types requires a
bit of a learning curve.

Yesod’s persistence library is a bit underdeveloped compared to most other
frameworks. In particular, the lack of joins makes some things clumsy, even
while it makes handling noSQL databases easier.

Final Thoughts

Type systems are wonderful things, and if you've been scarred by less-capable
type systems, it’s easy to dismiss their utility. Yesod leverages Haskell’s types
everywhere it can and does so without seeming clever. This is a feature that
can’t be matched by frameworks in other languages and is a hard tool to give
up once you're used to it.

Programming with Yesod is both liberating and frustrating. It frees you from
many worries about security issues or worries about lingering bugs, but since
it finds most bugs before you run the app, you get most of your debugging
pain in a single lump. However, a few more frowns during development are
a small price to pay for happy users.

www.it-ebooks.info

http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

CHAPTER 7

Immutant

Dwarf Fortress is a computer game renowned for its depth and complexity
as well as its user-hostile interface and steep learning curve.' Hours of
training videos exist to help you get started, but most people give up before
they get very far. Those that persevere are rewarded with rich gameplay but
are frustrated by the poor interface.

Contrast this to Minecraft,” a game heavily inspired by Dwarf Fortress. It has
a simple user interface and interesting graphics but retains many of the cre-
ative gameplay elements that people love from Dwarf Fortress.

Enterprise Java web development has a lot to offer, but it’s been wrapped up
in a form that is complicated, painful to use, and difficult to learn. Immutant
takes those same elements and mixes them together with Clojure to make
things simple, pleasant to use, and much easier to get started with. Just as
Minecraft has brought elements of the creative gameplay of Dwarf Fortress
to the masses, Immutant aims to make the sophisticated tools of the enterprise
developer easy and accessible to all.

Introducing Immutant

Web frameworks typically build on top of a lower level of the stack that handles
dealing with HTTP. This lower level often contains little else, and this design
drives the simple architectures of most frameworks, where all code happens
in the context of some web request. Immutant expands on this lower level,
providing many more primitives like message queues, daemons, distributed
caching, and scheduled jobs.

1. http://www.bayl2games.com/dwarves/
2. http://minecraft.net/

www.it-ebooks.info

http://www.bay12games.com/dwarves/
http://minecraft.net/
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 7. Immutant ® 234

Immutant’s Features

Immutant is based on JBoss AS7, which is a Java Enterprise Edition applica-
tion server with a long history. With this richer underpinning, Immutant
enables much more sophisticated architectures and applications. While Rails
apps must resort to external services like memcached and RabbitMQ,
Immutant not only provides those same services, but integrates them fully.
This makes them significantly easier to use and deploy.

Immutant can also be clustered across many machines, and its components
will do the right thing. By default, scheduled jobs will only run once within
the cluster; cache data will be replicated and sharded. All of these features
are just as useful to startups as they are to the enterprise, but in Immutant,
you don’t have to deal with the ceremony of Java or spend your days in XML
configuration files.

Because Immutant apps are written in Clojure and Immutant’s web component
is based on Ring, which is covered in Chapter 4, Ring, on page 115, we’ll be
concentrating on the other pieces—message queues, jobs, and caching. We'll
be building an app that monitors a set of URLs and tests whether the links
on those pages are valid. This will require asynchronous processing and
scheduled work and will need caching to keep things efficient.

The Plan

On the first day, we’ll see how to install the Immutant app container and
deploy our own applications to it. Next, we’ll learn how to use the distributed
cache and how to schedule jobs. We'll use the cache to store the results of
fetching web pages.

Day 2 will involve message queues and pipelines. Message queues are
important for getting work done asynchronously outside the confines of a
web request. Pipelines are an abstraction over message queues that allow
work to be decomposed into separate steps, each of which can run in parallel
and which are connected by queues.

On our last day, we’ll look at overlays, which allow you to mix languages in
Immutant to enable polyglot programming. You'll see that Ruby and Clojure
apps can be deployed together and interact seamlessly. We'll also look at
clustering, which spreads your app across several nodes and allows it to
handle more data and fail more gracefully.

Immutant has a lot to offer, so let’s get started.

www.it-ebooks.info

http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 1: Beyond the Web Basics ® 235

Day 1: Beyond the Web Basics

Modern web apps continue to push the boundaries of what is possible with
software, especially when it comes to operating at scale. To cope with
increasing complexity and growing demand, developers rely not just on
databases but on memory-backed, distributed caches, message queues, and
asynchronous processing. Unfortunately, the full stack frameworks that were
designed for last year’s apps haven’'t quite caught up to today’s needs.
Immutant closes the gap.

Today we’ll cover Immutant’s basics—just enough to get us started building
Overwatch, a link-monitoring app that needs these more modern architectural
features. After we get Immutant up and running, we’ll build the piece that
fetches pages and caches the results.

Getting Started

To use Immutant, you will need a Java Virtual Machine (JVM) as well as the
Leiningen build tool. You can find more information about these in Getting
Started, on page 117.

Once you have Leiningen, you’ll need to add the lein-immutant plugin to your
Leiningen user profile. Add the plugin to the list in your ~/.lein/profiles.clj, or create
that file and directory if it doesn’t exist and fill it with the following configuration:

immutant/profiles.clj
{:user {:plugins [[lein-immutant "1.0.1"11}}

We've used version 1.0.1 here—the current version at the time of writing—but
you can probably use the latest version available (refer to the Immutant install
page for more information®).

You can test that everything is working by running lein immutant, which should
produce output similar to this:

$ lein immutant
Manage the deployment lifecycle of an Immutant application.

Subtasks available:
undeploy Undeploys a project from the current Immutant

archive Creates an Immutant archive from a project

deploy Deploys a project to the current Immutant

run Starts up the current Immutant, displaying its console output

env Displays paths to the Immutant that the plugin is currently using
overlay Overlays a feature set onto the current Immutant

test Runs a project's tests inside the current Immutant

3. http://immutant.org/install/

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/immutant/profiles.clj
http://immutant.org/install/
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 7. Immutant ® 236

version Prints version info for the current Immutant
install Downloads and installs an Immutant version
list Lists deployments or Immutant installs

Run “lein help immutant $SUBTASK® for subtask details.

Arguments: ([subtask] [project-or-nil subtask & args])

The final step is to install the Immutant app server and start it up:

$ lein immutant install
Kommitted output»

$ lein immutant run
Starting Immutant: /Users/jack/.immutant/current/jboss/bin/standalone.sh

Komitted output>

The first command downloads and installs the latest stable Immutant release.
The second starts up the app server. You should see a lot of logging output
as the server starts. If you wish to stop the server, just hit Ctrl-C. Now we’re
ready to create and deploy our first Immutant app.

Hello, World

We can create a simple scaffold app by using lein new as we did in the Ring
chapter (see Hello, World!, on page 118). We'll also create an extra file,
immutant/init.clj, that is needed for Immutant apps. Let’s create hello:

$ lein new hello
Generating a project called hello based on the 'default' template.

The two important files lein new creates are project.clj, the Leiningen project
description, and src/hello/core.clj, the core namespace for our app. First, let’s
update project.clj to add Compojure as a dependency:

immutant/hello/project.clj
(defproject hello "0.1.0-SNAPSHOT"
:dependencies [[org.clojure/clojure "1.5.1"]
[compojure "1.1.5"1])

Then, we’ll use the same code from the Ring chapter’s “Hello, World” app in
src/hello/core.clj:

immutant/hello/src/hello/core.clj
(ns hello.core
(:use compojure.core))
(defroutes app
(GET "/" [1
"Hello, World!"))

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/immutant/hello/project.clj
http://media.pragprog.com/titles/7web/code/immutant/hello/src/hello/core.clj
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 1: Beyond the Web Basics ® 237

Finally, we’ll need to tell Immutant to start a web service using the Ring
handler we created with Compojure’s defroutes. Create src/immutant/init.clj, the
initialization code for our Immutant app and add the following code to it:

immutant/hello/src/immutant/init.clj
(ns immutant.init
(:require [immutant.web :as web]
hello.core))

(web/start "/" hello.core/app)

The highlighted line shows how to start a web service in an Immutant app.
We provide the root path and the Ring handler, and Immutant will do the
rest. In the Ring chapter, we accomplished this same task by adding special
metadata to project.clj, which the lein-ring plugin used to find the main Ring
handler. Immutant just does the same thing a bit differently.

As we’ll see later today, the immutant.init can start more than just web services;
it’s these other services—caching, scheduled jobs, messaging, and more—that
give Immutant apps much of their power.

To deploy the app to the running Immutant server, you can use lein immutant
deploy. You should see a short message when the deploy is done, and a few
seconds later, the Immutant app server should start up the hello app. You can
see your handiwork at http://localhost:8080/hello;.

Distributed Caching

Retrieving data can be quite expensive, especially when the data is stored on
spinning metal. Even solid-state disks (SSDs) are not nearly as fast as RAM.
Web apps with large audiences can easily place unsatisfiable demands on
databases, and these apps must adapt by caching most data in memory.
Since datasets are large and growing and the amount of memory one machine
can address is relatively small, services like Memcached enable memory
caches distributed over many computers.*

Immutant contains a distributed memory caching system in the immutant.cache
namespace. It is automatically spread over the entire Immutant cluster, and
it can even support transactions. In this section we’ll look at how to store and
retrieve data in the cache. We'll also look at memoization, which is a technique
for caching the results of functions that is common in functional programming.

Immutant is built on Clojure and enjoys much of the same interactive devel-
opment capability available to other Clojure apps. Let’s create a new app to

4. http://memcached.org/

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/immutant/hello/src/immutant/init.clj
http://localhost:8080/hello/
http://memcached.org/
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 7. Immutant ® 238

explore caching that has a REPL we can connect to. First, create a new app
called overwatch:

$ lein new overwatch
Generating a project called overwatch based on the 'default' template.

Next, we’ll need to enable the REPL. This can be done by adding the :nrepl-port
property to the :immutant options in the project.cli. We'll also need a few extra
dependencies for later:

immutant/overwatch/project.clj
(defproject overwatch "0.1.0-SNAPSHOT"
:dependencies [[org.clojure/clojure "1.5.1"]
[org.clojure/tools.logging "0.2.6"]
[clj-http "0.7.6"]
[enlive "1.1.4"]]
:immutant {:nrepl-port 0})

A port value of 0 indicates that Immutant should choose a random free port.
Go ahead and run leinimmutant deploy to deploy the app to the Immutant server.
When the app is deployed, Immutant will write the port it chose to a file called
.nrepl-port alongside each deployed project’s project.clj file.

Everything else we need to do—add dependencies, start services, or reload
the project—we can do from inside the REPL. To start a REPL client, you can
use the lein repl command:

$ lein repl :connect ‘cat .nrepl-port’
Connecting to nREPL at 127.0.0.1:55432
REPL-y 0.2.1
Clojure 1.5.1

Docs: (doc function-name-here)

(find-doc "part-of-name-here")
Source: (source function-name-here)

Javadoc: (javadoc java-object-or-class-here)

Exit: Control+D or (exit) or (quit)

user=>
Our REPL is ready to go.

Caching Basics

Immutant doesn’t have just one cache but as many as you like. Each cache
has a name, and multiple caches work a bit like namespaces, segregating
your data. They can also have different configurations such as expiry time
and durability.

We can create a new cache with create:

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/immutant/overwatch/project.clj
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

)

Day 1: Beyond the Web Basics ® 239

user=> (require '[immutant.cache :as cache])
user=> (def c (cache/create "testing" :ttl [1 :minute]))

{}

The parameter here controls the default time to live (TTL), given as a vector
of a value and a keyword describing the units. Anything we add to the cache
will expire and disappear after its TTL has elapsed.

We can write data to the cache with put. Reading data from the cache is the
same as reading data from any Clojure map. With these operations we can
add a new entry to the cache and watch it expire:

user=> (cache/put c :url "http://pragprog.com/")
nil

user=> (:url c) "http://pragprog.com/"

;3 wait more than a minute

user=> (:url c)

nil

O Using put we add key and value pairs to the cache. Note that put returns
the previous value that was stored.

© Accessing the value immediately returns it.
© After the value expires, accessing it returns nil.

There are several other ways to add entries to a cache. put-all takes a map and
puts all the key and value pairs into the cache. put-if-absent only puts the key
and value into the cache if no value for that key is already present. put-if-present
only changes the cache if the key already exists in the cache. put-if-replace takes
a key and value as well as a previous value and only changes the value in the
cache if the previous value equals the one supplied; this is a compare and
swap operation. All of these conditional put functions are atomic.

It’s easier to see how these conditional put functions work at the REPL:

user=> (cache/put c :foo "foo" {:ttl -1})
nil

user=> (cache/put-if-absent c :foo "bar")
llfooll

user=> (:foo c)

Il.fooll

user=> (cache/put-if-absent c :bar "bar")
nil

user=> (:bar c)

"bar"

www.it-ebooks.info

http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 7. Immutant ® 240

user=> (cache/put-if-present c :foo "bar")
"foo"

user=> (:foo c)

"bar"

user=> (cache/put-if-present c :baz "baz")
nil

user=> (:baz c)

nil

user=> (cache/put-if-replace c :foo "foo" "quux")
false

user=> (:foo c)

"bar"

user=> (cache/put-if-replace c :foo "bar" "quux")
true

user=> (:foo c)

"quux"

©® We create a new entry in the cache, overriding the default TTL with a new
one. Negative values disable expiry.

© Since :foo already has a value in the cache, put-if-absent returns its value
and doesn’t make any changes.

© There is no :bar entry, so put-if-absent creates one.
O put-if-present checks if :foo is in the cache, finds it, and updates its value.
@ :baz is not in the cache, so put-if-present makes no changes.

0O put-if-replace checks if the current value of :foo in the cache is equal to "foo".
Since it’s actually "bar", it returns false and doesn’t change the value.

© When the value matches, put-ifreplace returns true and updates the value
in the cache.

You can use delete to remove things from the cache. It returns the value that
was stored in the cache.

user=> (cache/delete c :foo)
"quux”

You can also pass a value to delete, and the key will only be removed if the
value matches:

user=> (cache/put c :foo "foo" {:ttl -1})
user=> nil

user=> (cache/delete c :foo "bar")

false

user=> (:foo c)

"foo"

www.it-ebooks.info

http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 1: Beyond the Web Basics ® 241

These basic operations cover pretty much anything you'd ever want to do
with cached data. Also, you can put any Clojure data directly in the cache.
Immutant’s distributed cache is extremely versatile and convenient, but it
gets even better.

Memoization

One nice thing about working with functional languages and immutable data
structures is referential transparency. Referential transparency means that
given the same inputs, a function will produce the same outputs. This implies
there is no global state being used to produce the output or side effects caused
by the function.

Functions in mathematics are referentially transparent. The square root of 4
is always 2. An example of a function that isn’t referentially transparent is
(java.util.Date.), which takes no arguments but produces a different value almost
every time it is called.

If we know that a function is referentially transparent, we can cache its result
since we know it will never change given the same inputs. The cached value
is just as good as running the function again. Caching the results of functions
and using the cached values the next time the function is used is called
memoization. Memoization is such a common use case that Immutant provides
the memo function to make it easy to use.

You could probably write memo yourself: build a key from the inputs; look up
the key in the cache; if found, return the cache value; otherwise, run the real
function with the inputs and store the result in the cache and return it. Let’s
see an example:

user=> (defn slow-double [x]
#_=> (Thread/sleep 5000)
=> (+ x x))

user=> (slow-double 10)
;3 wait 5 seconds

20

user=> (slow-double 10)
;7 wait 5 seconds

20

user=> (def cached-double (cache/memo slow-double "slow-double"))
user=> (cached-double 10) ;; wait 5 seconds

20

user=> (cached-double 10)

20

www.it-ebooks.info

http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 7. Immutant ® 242

© First, we define slow-double, which sleeps for five seconds before it produces
an answer.

© Calling slow-double is indeed slow. Every answer takes a long time.

© We use memo to memoize the function. memo returns a new function that
wraps the slow function and takes care of checking and populating the
cache. memo takes the function to memoize, a cache name, and the same
parameters as create. Here we just use the default cache parameters.

O The first call to cached-double takes five seconds since the input is not yet
in the cache. However, calling it again with the same input returns
immediately.

Memoization is a great way to speed up your apps. Combining memoization
with TTL specifications allows you to control how long the answers are good
for when the functions aren’t fully referentially transparent as well. For
example, it might be fine for computed statistics to be slightly out-of-date on
highly trafficked pages, and caching them for even a few minutes might make
a significant difference to server load.

Memoizing Web Pages

Fetching web pages is a slow operation since it involves traversing networks.
Since most web pages don’t change that often and since Overwatch is con-
cerned with basic health, not content, we can easily memoize fetching web
pages to speed up our app.

The nice thing about this is that the rest of the application does not need to
know that any optimizations have been done, nor does it need to know any
of the caching details. The other pieces of the app can just call a function to
fetch a web page, and most of the time it will be lightning fast.

Let’s create an overwatch.link namespace and create our fetch function:

immutant/overwatch/src/overwatch/link.clj
(ns overwatch.link
(:require [immutant.cache :as cache]
[clj-http.client :as httpl))
(defn fetch-slow [url]
(http/get url))
(def fetch (cache/memo fetch-slow "fetch" :ttl 1 :units :days))

The web pages will be cached for a single day. All calls beyond the first to fetch
during that day will return immediately with the cached results. We'll be
using this fast fetch function as a building block for the rest of Overwatch
tomorrow.

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/immutant/overwatch/src/overwatch/link.clj
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 1: Beyond the Web Basics ® 243

Scheduled Jobs

Some work needs to happen at specific times. A cleanup task may need to
run every night, a reminder might need to be sent to a user after a few days,
or reports might need to be generated every week. Our app, Overwatch, will
need to monitor URLs at regular intervals, not just in response to user
requests.

Scheduled jobs are integrated into the rest of the system. Your app can create
jobs at any time, and when your app is undeployed, its jobs will be
unscheduled. If you are running jobs in a cluster, Immutant will make sure
only one instance of the job runs in the cluster.

To create a scheduled job, Immutant provides the schedule function found in
the immutant.jobs namespace. Let’s see a few examples:

user=> (require '[immutant.jobs :as jobs])
user=> (jobs/schedule "say.hello" #(println "Hello!") :in 3000)

user=> (jobs/schedule "repeat.hello" #(println "Hello!")
#_=> :in 5000 :every 2000 :repeat 4)

user=> (jobs/schedule "weekly.hello" #(println "Hello!") "0 15 8 ? * 2")

© schedule takes the name of the job, a function to run whenever the job
executes, and keyword arguments describing when the job should run.
Here we print “Hello!” once after three seconds have elapsed.

© Here’s a slightly more complicated set of arguments. This runs the job
every two seconds, repeating it four times. The first run will begin in five
seconds. You can check the results in the Immutant app server console.

© Instead of passing a variety of arguments, you can also use cron specifi-
cations.’ This job is run every Monday (the second day of the week, which
is provided in the sixth field) at 8:15:00 a.m.

Unscheduling jobs can be done by passing the name of the job supplied to
schedule to unschedule. For example, to remove the last job in the previous
example, just call (jobs/unschedule "weekly.hello").

There’s not much else to say about jobs. They are extremely simple but quite
indispensable. Once you have scheduling functionality in your app server, it's
hard to live without. Sure you can use cron and other similar tools, but it's much
more convenient to let Inmutant handle the grunt work of synchronizing multiple

5. http://en.wikipedia.org/wiki/Cron

www.it-ebooks.info

http://en.wikipedia.org/wiki/Cron
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 7. Immutant ® 244

machines’ cron configurations and the hairy edge cases around making sure the
right code is always running and not running more than once.

What We Learned on Day 1

Today we got Immutant up and running. We installed and launched an
Immutant app server and deployed several apps to it as we explored Immu-
tant’s capabilities.

First, we built a basic “Hello, World” app to see how to use Immutant’s web
services. Since Immutant uses Ring to power its web services, all the tools
and tricks from Chapter 4, Ring, on page 115, can be used to build powerful

apps.

Next, we looked at Immutant’s distributed caching features, which are one
of the many enterprise features that Immutant integrates for use by your
apps. Caching is widely used by most production web apps these days, but
the tight integration with the app server makes it a joy to use.

Finally, we learned how to create jobs that run at specific times or repeat
indefinitely.

By now you're probably noticing that Immutant is full of these extra services
that most web apps eventually need but few frameworks provide out of the
box. With Immutant, you need far fewer external services to make your app
work so that you can concentrate on business logic instead of service glue.

Day 1 Self-Study
Find:

e The Immutant tutorials for caching and jobs

e The Immutant documentation for caching and jobs
Do:

e Play with the other caching parameters you find in the documentation.
Use the REPL to explore :idle and :persist.

e Scheduling is quite dynamic; you can even schedule new jobs from within
jobs. Create a job that runs after one day, one week, and one month.
Such a job might be useful to send reminders at increasing intervals.

e Immutant can run any Ring app. Port Zap from the Ring chapter to
Immutant. Think about where you could tie in the services Immutant
offers.

www.it-ebooks.info

http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 2: Building Data Pipelines ® 245

Day 2: Building Data Pipelines

Modern web apps often use third-party message queue services to handle
asynchronous and horizontally scalable processing of data. Whether sending
images off to be resized and transformed or just sending email, queues have
all sorts of uses and are very useful for decoupling components of your
application from each other.

Immutant has messaging built right in to the app server. There’s no separate
system to maintain, and data doesn’t need to be transformed to other protocols
and back. Because the toolchain is integrated and able to process most Clojure
data, using it couldn’t be easier.

Today we’ll learn about Immutant’s message queues and the abstractions
built on top of them.

Message Queues

Message queues are simple things with an enormous number of uses in
modern apps. They are often employed to schedule work asynchronously or
to tackle processing jobs in parallel. For example, sending email from a web
app generally involves putting the message in a queue; if you are sending a
large amount of mail you might have multiple machines grabbing work from
the queue and dispatching the messages to their remote destinations.

Normally items added to a queue are removed by some worker function or process.
Only one worker will get any particular item. There is another common mode of
operation called publish-subscribe, where items put in a queue are received by
every worker watching the queue. In Immutant, these are called topics.

Create a new app called messaging with lein new messaging, and edit the project.clj
to add REPL support:

immutant/messaging/project.clj
(defproject messaging "0.1.0-SNAPSHOT"
:dependencies [[org.clojure/clojure "1.5.1"]
[compojure "1.1.5"]]
:immutant {:nrepl-port 0})

Alternatively you could add the :immutant {:nrepl-port 0} map entry to your user
profile in ~/ lein/profiles.clj, which would add nREPL support to all your Immutant
projects and prevent you from inadvertently deploying to production with a
REPL enabled, assuming you don’t deploy with the :user profile. The following
is a sample profiles.clj you could use:

{:user {:immutant {:nprel-port 0}}}

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/immutant/messaging/project.clj
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 7. Immutant ® 246

Deploy the app with lein immutant deploy, and use lein repl :connect "cat .nrepl-port” to
connect to the REPL.

Queues

Let’s create our first queue:

user=> (require '[immutant.messaging :as msg])
O user=> (msg/start "queue.test")
® user=> (msg/start "queue.test")

@ The start function declares a queue or a topic. If the name contains “queue,”
it is a queue; if it contains “topic,” it’s a topic.

@ Calls to start are idempotent. Declaring the queue a second time does
nothing if it already exists. Every app on the Immutant server can declare
the queues it uses and doesn’t have to worry whether some other app
already did so.

Publishing and receiving messages is done with publish and receive. We can
pass any Clojure data to publish and get it back on the other side:

O user=> (msg/publish "queue.test" "http://pragprog.com/")
user=> (msg/publish "queue.test" ["http://immutant.org" "http://clojure.org"])

©® user=> (msg/receive "queue.test")
"http://pragprog.com"

user=> (msg/receive "queue.test")
["http://immutant.org" "http://clojure.org"]

© user=> (msg/receive "queue.test" :timeout 5000)
nit
© publish takes the name of the queue and the message and adds it to the
queue. Most Clojure data can be published as a message; here we publish

a string and a vector of strings. Another common choice is to publish
maps.

® You can receive a message, waiting until one arrives if none are in the
queue, by calling receive and passing the queue name. We get back exactly
what we put in, in the same order.

© We pass the :timeout option to receive, which will return nil if no message
arrives before the timeout expires. Here we wait five seconds for a message.

Our examples have published and then immediately received messages. In
real apps there would be multiple receivers all waiting for messages from the
queue, and the queue would act as a distribution mechanism for the work.

www.it-ebooks.info

http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 2: Building Data Pipelines ® 247

Immutant also provides a convenient function for handling all messages from
a queue called listen. It takes a function that will process the message and can
process messages in parallel:

user=> (msg/start "queue.listen")

user=> (msg/listen "queue.listen" #(println "i heard:" %))
user=> (msg/publish "queue.listen" [1 2 3])

user=> (msg/publish "queue.listen" #{:a :b :c})

We create a new queue and set up a listener that prints whatever it hears.
After publishing two messages, you can inspect the running Immutant server’s
console output to see the results. It should look something like the following:

22:13:26,581 INFO [stdout] (Thread-16 (HornetQ-client-...)) i heard: [1 2 3]
22:16:48,023 INFO [stdout] (Thread-16 (HornetQ-client-...)) i heard: #{:a :c

Queues are quite simple: some group of tasks publishes messages to the
queue, and another group of tasks receives those messages and does some
work. Any message is only ever received by a single task. The message pub-
lishers don’t need to know anything about the receivers, not who they are or
how many there are or even whether they come and go. Everybody just needs
to know the queue name and be able to understand the messages. It creates
a very loose coupling between components.

Topics are a little different, and we’ll look at those next.

Topics

Topics are a broadcast mechanism. Messages are sent to the topic, and every
listener receives a copy of the message. If you have a few dozen tasks handling
work and you need to coordinate some action among them, like setting a new
configuration or shutting down, then topics are perfect.

In Immutant, topics and queues have exactly the same API; the difference is
that all parties receiving or listening for a message to a topic will receive it,
not just one of them. We can easily see the difference by creating both a topic
and a queue, attaching several listeners, and then publishing several messages
to them. Let’s start with the queue:

user=> (msg/start "queue.multi")
user=> (defn worker [m]
=> (let [id (.getId (Thread/currentThread))]

=> (println "worker" id ":" m)

= (Thread/sleep 5000)))

user=> (msg/listen "queue.multi" worker :concurrency 5)

user=> (dotimes [i 3] (msg/publish "queue.multi" (str "hello " i)))

www.it-ebooks.info

:b}

http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 7. Immutant ® 248

@ First, we create a new queue.

©® We create a simple worker that prints out the message along with its
thread ID and then sleeps for a while, simulating doing some lengthy
task.

© We attach a listener to the queue with a concurrency of 5, which allows
up to five threads to process the messages.

O Three distinct messages are published to the queue.

You can check the Immutant server console for the results of this test. It
should look similar to the following:

23:14:59,247 INFO [stdout] (Thread-25 (HornetQ-client-...)) worker 241 : hello 0
23:14:59,252 INFO [stdout] (Thread-20 (HornetQ-client-...)) worker 225 : hello 1
23:14:59,260 INFO [stdout] (Thread-26 (HornetQ-client-...)) worker 242 : hello 2

Three different threads handled messages, but each message was only handled
once. Let’s try the same experiment with a topic:

user=> (msg/start "topic.multi")
user=> (msg/listen "topic.multi" worker :concurrency 5)
user=> (dotimes [i 3] (msg/publish "topic.multi" (str "hello " i)))

Looking at the output now, you should see something quite different:

. worker 250 : hello 0
. workerworker worker 254249 :251: : workerhello Ohello 0

248 hello 0: hello 0
. worker 249worker :254 : hello lhello 1

. worker worker251 worker250: thello 1 248
hello 1
.. : hello 1
.. worker 249 : hello 2
.. worker 250 : hello 2
. workerworker 254 248: hello 2:
.. workerhello 2
. 251 : hello 2

The output is interleaved from all the threads, but you can see that each
message was processed five times, once per concurrent listener.

With queues and topics, many interesting architectures are possible, and
these architectures can often be scaled to very large workloads, all while
reducing coupling between different components.

www.it-ebooks.info

http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 2: Building Data Pipelines * 249

Pipelines

Some tasks involve multiple steps, each stage taking some input, performing
a computation, and then generating some results for the next stage. Many
computations may need to run in parallel to keep up with the rate of input.

To solve these kinds of problems, you might have each stage read its input
from a queue, do its computation, and publish its results to a new queue.
Since this is a common pattern, Immutant provides pipelines, which wrap
this architecture into a more convenient form.

Pipelines make these kinds of distributed and parallelized data flows look
much like data flow in Clojure itself. Consider this normal Clojure code that
handles sending an email:

immutant/messaging/src/messaging/email.clj
(def send-email [username]
(-> username
get-email
make-msg
send-msg))

This code fetches the user’s email address from somewhere, perhaps a
database, creates an email message, and then sends it, assuming that the
functions get-email, make-msg, and send-msg already exist.

It is often the case that functions that need to access other systems, like
get-email and send-msg, take a nontrivial amount of time to complete. The rest
of the web page your app is generating probably doesn’t depend on the out-
come of this task, and so you’d like to do this work asynchronously.

With Immutant, you can turn this same code into a pipeline with the pipeline
function:

immutant/messaging/src/messaging/email.clj
(require '[immutant.pipeline :as pl])

(def send-email-pipe
(pl/pipeline "email"
get-email
make-msg
send-msg
:concurrency 5))

©® The pipeline function takes the name of the pipeline, the steps, and
optional parameters. It returns a function that places data on the first
step of the pipeline, which we’'ve assigned to send-email-pipe.

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/immutant/messaging/src/messaging/email.clj
http://media.pragprog.com/titles/7web/code/immutant/messaging/src/messaging/email.clj
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 7. Immutant ® 250

©® The same functions are listed here as in the normal Clojure example with
->. For each function, pipeline will create a step in the pipeline. Many copies
of each step will run simultaneously depending on the setting of the
:concurrency parameter.

Remember, between each of the steps, the result of the step is being
published as a message to a queue, and a pool of workers waiting to
execute the next step is listening for those messages.

© The parameters supplied at the end of pipeline apply to all steps in the
pipeline. Here we set the concurrency to 5, which means that each step
will have five concurrent workers processing messages at that step.

Sending data to a pipeline is as easy as invoking the pipeline function. For
example, (send-email-pipe "someone") will get everything going. Pipelines return a
delay, which is a reference to a future value. You can get the actual value,
potentially blocking until it is available, by calling deref on it or prefixing it
with @. For this particular pipeline, the return value is not particularly useful,
and you can pass a :result-ttl parameter value of -1 to disable storing the return
values. By default, they are stored for an hour.

We can change parameters on a per-step basis as well with the step function:

immutant/messaging/src/messaging/email.clj
(def send-email-pipe2
(pl/pipeline "email2"
(pl/step get-email :concurrency 10)
make-msg
send-msg
:concurrency 5))

©® The step function allows us to override the :concurrency parameter at this
particular step. Perhaps get-email is particularly slow and needs more
workers to keep up with demand.

That covers pipeline basics. Pipelines can call other pipelines, and input can
be sent to any step of a pipeline. We’'ll see some of these more advanced uses
as we build a pipeline for processing URLs for Overwatch.

Overwatch’s Pipeline

Let’s imagine how Overwatch might process URLs for monitoring. We can
publish the URL to a queue. A set of parallel workers can listen to this queue
and fetch the content of the URL, publishing the result to a new queue.
Another set of workers can take the content and parse the URLSs it contains.
These new URLs can be fed to another set of workers to fetch the contents,

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/immutant/messaging/src/messaging/email.clj
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 2: Building Data Pipelines ¢ 251

and then a final set of workers can store the results in a database. This
pipeline is shown in the following figure.

Input queue

Fetch URL Fetch URL Fetch URL

Step 2 queue

Parse links Parse links Parse links
Step 3 queue
Fetch URL Fetch URL Fetch URL

Step 4 queue

Record result Record result Record result

Figure 25—Overwatch pipeline

At each step of the pipeline, results are collected and placed on a queue for
the next step. You might notice that the link-parsing step looks a little differ-

www.it-ebooks.info

http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

e

Chapter 7. Immutant ® 252

ent. Web pages contain many links, and each of the links here gets placed
on the next queue as its own job. This fanning out of the result distributes
the workload more evenly.

It's easy to create such a pipeline with Immutant. Here’s the start of the
overwatch.check namespace where we’ll build our pipeline:

immutant/overwatch/src/overwatch/check.clj
(ns overwatch.check
(:require [immutant.pipeline :as pl]
[immutant.cache :as cache]
[clj-http.client :as http]
[net.cgrand.enlive-html :as html]
[clojure.tools.logging :as log])
(:import [java.io StringReader]
[java.net URL]))

(def check-url

(pl/pipeline :check-url
fetch-url
parse-links
fetch-url
record-result
:concurrency 5
rresult-ttl -1))

©® We'll need these imports later on when we implement the steps of the
pipeline.

© Each step in the pipeline tries to do one simple thing. By stringing them
together and using Immutant to parallelize each step, this pipeline will
be able to do a large volume of work.

© fetch-url appears a second time in the pipeline because after parsing a page
for links, we want to fetch all the new links we found.

Let’s implement the first function of the pipeline, fetch-url, which appears in
the first and third steps. This code, as well as the rest of the example code
here, should go after the ns block and before the check-url definition in check.clj:
immutant/overwatch/src/overwatch/check.clj

(defn fetch-url [url]

{:url url
:response (http/get url {:throw-exceptions false})})

fetch-url simply returns a dictionary storing the URL and the content retrieved.
Normally clj-http throws exceptions for 400- and 500-level status codes, but
we have turned that feature off and get the normal response map instead.

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/immutant/overwatch/src/overwatch/check.clj
http://media.pragprog.com/titles/7web/code/immutant/overwatch/src/overwatch/check.clj
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 2: Building Data Pipelines ® 253

The next step is parse-links, which must take the body of the response and pull
out any <a> tags and send those along to be fetched. This step is the most
complicated, as we must normalize the links since they will appear in the
page in a number of different forms, such as http://example.com/foo, /foo, and ../bar:

immutant/overwatch/src/overwatch/check.clj

@ (defn normalize-url [base-url url]

(cond

(.startsWith url "http") url

(.startsWith url "/")

(let [base-url (URL. base-url)

new-url (URL. (.getProtocol base-url)

(.getHost base-url)
(.getPort base-url)
url)]

]~

(str new-url))

(4] relse
(let [base (re-find #".*/?" base-url)
base (if (.endsWith "/" base) base (str base "/"))]
(str base url))))

O normalize-url takes the base URL and the value of the href attribute of some
<a> tag. There are three cases to handle: full URLs with a protocol,
absolute paths, and relative paths.

© If the URL starts with http, then we assume it’s a full URL and no transfor-
mation is necessary.

© For absolute paths, we construct a new URL using the protocol, host, and
port of the base URL and the new path.

O Relative paths are slightly harder. We chop off everything after the last
slash in the base URL with a regular expression and then concatenate
the given path.

Now that we can normalize all the href attributes, we can build parse-links:

immutant/overwatch/src/overwatch/check.clj
@ (def fetch-cache
(cache/cache "fetch" :ttl 1 :units :days))
® (def link-cache
(cache/cache "links" :ttl 2 :units :days))

(defn parse-links [data]
(Let [url (:url data)
response (:response data)
nodes (html/html-resource (StringReader. (:body response)))
links (->> (html/select nodes [[:a (html/attr? :href)]])
(map (comp #(normalize-url url %) :href :attrs))
(apply hash-set url))]

0000

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/immutant/overwatch/src/overwatch/check.clj
http://media.pragprog.com/titles/7web/code/immutant/overwatch/src/overwatch/check.clj
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 7. Immutant ® 254

(log/info "URL:" url links)
(cache/put fetch-cache url response)
(cache/put link-cache url links)
(pl/fanout links)))

© The fetch-cache will store the responses from fetching URLs. You may have
noticed it has the same name as the memoized fetch function from yester-
day; this means it uses the same cache. Responses we store here will be
available to fetch.

© The link-cache will store a URL together with all the links we discover for it.
This sets up a relation between a URL and the pages it links to.

© To parse the links, we use Enlive (see Enlive, on page 145, for more details).

First, we turn the body of the response into a list of nodes we can
manipulate. Remember that ->>, the thread-last operator in Clojure, takes
the result of each step and inserts it as the last argument to the function
in the next step.

O Within the nodes, we select those that are <a> tags and have an href
attribute.

© This is a concise bit of functional programming that normalizes all the
links we just selected. For each node, map uses the function created by
comp to transform the node. This function is the composition of selecting
the attributes (:attrs), returning the href attribute (:href), and then normalizing
the value.

0O Running hash-set on all the links will turn the list of possibly duplicate
links into a set with no duplicates.

©® With our task done, we store the response for the main URL in the fetch-
cache and the list of links in the link-cache for other pieces of code to use
later.

O fanout takes each item of a list and sends it to the queue for the next step
in our pipeline. This means each input URL will generate potentially many
outputs for the next step. Note that if we put these links into the first step
of the pipeline, we would create a web crawler.

The last step in our pipeline is to record the results:

immutant/overwatch/src/overwatch/check.clj
(defn record-result [data]
(Let [url (:url data)
response (:response data)]l
(Log/info "Link:" url (:status response))
(cache/put fetch-cache url response)))

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/immutant/overwatch/src/overwatch/check.clj
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 2: Building Data Pipelines ® 255

This function just writes the responses into the fetch-cache for other code to
use.

Now that we've built our pipeline, we can deploy our app with lein immutant
deploy and connect to it via the REPL to test it out. It should print something
like the output below:

user=> (require '[overwatch.check :as check])

nil

user=> (check/check-url "https://pragprog.com/")

#<Delay@574b02: :pending>

user=> URL: https://pragprog.com/ #{...}

Link: https://pragprog.com/terms-of-use 200

Link: https://pragprog.com/about 200

Link: http://www.defectivebydesign.org/drm-free 200

Link: http://pragprog.com/news/test-ios-apps-with-ui-auto... 200
Link: https://forums.pragprog.com 200

Link: https://pragprog.com/frequently-asked-questions/returns 200
Link: http://pragprog.com/news/no-batteries-required-book-sale... 200
Link: https://pragprog.com/resources/credits 200

Link: https://pragprog.com/my profile 200

Link: http://pragmaticstudio.com 200

Komitted output>

With just a few small functions and Immutant’s pipelines, we've created a
highly parallel data flow that can scale horizontally across many machines
and cores in a cluster. Not only did we leverage Immutant’s built-in message
queues, but it took care of all the plumbing for us.

What We Learned on Day 2

Messaging is a very important piece of many modern apps, so much so that
many startups exist just to provide easier messaging capabilities for develop-
ers. Today we spent the whole day exploring Immutant’s built-in messaging
support.

We began by looking at queues. Data is published to a queue and then received
by only one of potentially many receivers. These are great for farming out
work to a large number of workers or for decoupling to parts of your app that
don’t really need to know about each other.

We also looked at topics, which are like queues in that you can publish
messages to them, but unlike queues because the messages are received by
all subscribers, not just one. Topics are great for publishing systemwide state
or for building things shaped like chat systems. Topics are an example of a
publish-subscribe system, and these are enormously useful tools to build
with.

www.it-ebooks.info

http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 7. Immutant ® 256

Finally, we built the basis of Overwatch’s link checker with Immutant’s
pipelines. Pipelines are a convenient abstraction over queues, which create
data flows organized into steps with queues between each step. Each step
processes its input from one queue and sends its result automatically to
another queue, and each step can be parallelized easily to create pipelines
that can handle massive amounts of data.

Day 2 Self-Study
Find:
e The Immutant tutorials for messaging

e Documentation for messaging configuration parameters such as :priority
and :error-handler

Do:

e Topics are a really good abstraction for building chat-like things. Think
about how you’d design something like Twitter using topics. Can you
build a simple chat system at the REPL?

* You can insert data at any step in a pipeline, even from within another
step in the same pipeline. Try experimenting with inserting URLs directly
into the second fetch-url stage from the REPL.

Day 3: Polyglot Apps

Different tools have different strengths and weaknesses, and everyone would
prefer to use the right tool for every job. Many developers build applications
with a mixture of languages—polyglot development. The Java Virtual Machine
has made polyglot programming easier than ever, and Immutant supports
this development style with overlays. For example, you could write your main
web app in Ruby, which submits data for processing and receives results
from Immutant pipelines. Or perhaps your web app needs to use a rule engine;
there are several in the Java ecosystem, just a function call away.

Overlays

Immutant overlays allow you to mix different languages on the same app
server. Currently, Immutant supports overlaying TorqueBox on top of
Immutant, which allows you to mix and match Clojure and Ruby applications.®

6. http://torquebox.org/

www.it-ebooks.info

http://torquebox.org/
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 3: Polyglot Apps ® 257

TorqueBox and Immutant apps share the same access to and capabilities of
the underlying JBoss platform, including caching, messaging, and jobs.
Immutant apps can publish messages to queues that TorqueBox apps listen
to, and TorqueBox can cache data that is then available to Immutant.

Creating an Overlay

In order to set up a TorqueBox overlay, you need to run lein immutant overlay,
which will download and install TorqueBox alongside our Immutant server.
Once that is finished, you need to shut down the running app server, if it's
still running, by pressing Ctrl-C and then starting it again:

When Immutant starts up, it will print the versions of Immutant and
TorqueBox that it is running. You should see something similar to the following
output if everything is working:

$ lein immutant overlay

No feature set provided, assuming 'torquebox’

Downloading http://downloads.immutant.org/.../torquebox-dist-bin.zip
Komitted output>

$ lein immutant run

Starting Immutant: /Users/jack/.immutant/current/jboss/bin/standalone.sh

Komitted output”

22:07:30,922 INFO ... Welcome to TorqueBox AS - http://torquebox.org/
22:07:30,922 INFO ... version. 3.x.incremental.1728
Komitted output>

22:07:30,923 INFO ... Welcome to Immutant AS - http://immutant.org/
22:07:30,923 INFO ... version. 1.0.1 (PuntoBueno)

Komitted output»

Now that you have both a Ruby- and a Clojure-capable app server, let’s see
what it can do.

Sinatra in a TorqueBox

First, we’ll create a TorqueBox app using Sinatra, which is covered in detail
in Chapter 1, Sinatra, on page 1. Create a new project directory called rubypoly:

$ mkdir rubypoly
$ cd rubypoly

Next, we’ll create a “Hello, World” app by creating config.ru, hello.rb, Gemfile, and
the TorqueBox configuration file, config/torquebox.rb:

immutant/rubypoly/config.ru
require 'torquebox'
require './hello’

run Sinatra::Application

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/immutant/rubypoly/config.ru
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 7. Immutant ® 258

immutant/rubypoly/hello.rb
require 'sinatra'

get '/' do
"Hello, world!"
end

immutant/rubypoly/Gemfile

source 'https://rubygems.org'
gem 'torquebox'

gem 'sinatra'’

immutant/rubypoly/config/torquebox.rb
© TorqueBox.configure do
® web do
context "/rubypoly"
end
end

© The TorqueBox.configure block configures various TorqueBox services in our
application. It is equivalent to an Immutant app’s immutant/init.clj.

@® For the web service configuration, we set the context to our app name.
TorqueBox sets this to “/” by default, unlike Immutant.

With our app created, we need to set up the environment, install our depen-
dencies, and deploy it. While Immutant apps get deployed with Leiningen,
TorqueBox apps get deployed with the torquebox command:

$ export TORQUEBOX_HOME=$HOME/.immutant/current

$ export PATH=$TORQUEBOX_HOME/jruby/bin:$PATH
® $ bundle install

Using rake (10.0.3)

Using blankslate (2.1.2.4)

Using parslet (1.4.0)

Using edn (1.0.0)

Komitted output>
(2 3 torquebox deploy

Deployed: rubypoly-knob.yml

into: /Users/jack/.immutant/current/jboss/standalone/deployments

©® We use the JRuby bundle command to install our dependencies that are
listed in the Gemfile. This will download and install any missing Ruby gems.

® torquebox deploy will deploy the app to the TorqueBox app server overlaid
on Immutant. This is equivalent to lein immutant deploy for Clojure apps.

With the app deployed, you should see a familiar “Hello, World” message at
http://localhost:8080/rubypoly/.

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/immutant/rubypoly/hello.rb
http://media.pragprog.com/titles/7web/code/immutant/rubypoly/Gemfile
http://media.pragprog.com/titles/7web/code/immutant/rubypoly/config/torquebox.rb
http://localhost:8080/rubypoly/
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

o0 ©

Day 3: Polyglot Apps * 259

Polyglot Messaging

Message queues and topics are resources available to all apps running in the
app server. We can easily consume messages in a TorqueBox app that are
published from an Immutant app. Not only do the messaging services
decouple one piece of our app code from another, but the implementations
of each piece of code can be in different apps and even in different languages.

Let’s add a message handler to rubypoly to see how this works. First, add the
following to config/torquebox.rb after the web section inside the configure block:

immutant/rubypoly/config/torquebox.rb
options for :messaging, :default message encoding => :edn

topic "topic.poly" do
processor PrintProcessor
end

©® By default, TorqueBox expects messages to be serialized Ruby objects,
but Immutant uses extensible data notation (EDN). This sets our
TorqueBox app to use EDN as well. You could also configure both the
Immutant app and the TorqueBox app using a queue or a topic to use
JSON instead, but as we’ll see a bit later, EDN provides some unique
advantages.

@ This configures a topic and is roughly equivalent to Immutant’s immutant.mes-
saging/start function. Any configuration for the topic will go in this block.

© Instead of listeners being simple functions, in TorqueBox listeners are
instances of a MessageProcessor subclass. The processor directive tells
TorqueBox which subclass to use.

We'll also need to implement the PrintProcessor class:

immutant/rubypoly/print_processor.rb

class PrintProcessor < TorqueBox::Messaging::MessageProcessor
def on_message(msg)
puts "ruby says: " + msg.to s
end
end

© Processors subclass MessageProcessor. The work gets done in on_message.

@ on_message receives the message and can do any processing required. When
using EDN encoding, the incoming message will be transformed into an
appropriate Ruby object. Our handler just prints out the message as a
string, with a note mentioning that it’s from the Ruby app.

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/immutant/rubypoly/config/torquebox.rb
http://media.pragprog.com/titles/7web/code/immutant/rubypoly/print_processor.rb
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 7. Immutant ® 260

Our rubypoly app is ready to be redeployed. Run torquebox deploy, and let’s create
a Clojure app to interact with.

Run lein new clojurepoly to create a new Immutant project for testing, and edit
the project.clj to match the following:

immutant/clojurepoly/project.clj

(defproject clojurepoly "0.1.0-SNAPSHOT"
:dependencies [[org.clojure/clojure "1.5.1"]]
:immutant {:nrepl-port 0})

Use lein immutant deploy to deploy the app, and check the app server’s output
for the nREPL port number. Use lein repl :connect “cat .nrepl-port™ to connect a REPL
to the clojurepoly app.

Create a topic and attach a simple listener to it:

user=> (require '[immutant.messaging :as msg])
user=> (msg/start "topic.poly")
user=> (msg/listen "topic.poly" #(println "clojure says: " %))

Both the Ruby and Clojure apps are now listening to the same topic, topic.poly.
Watch the app server output as we publish a message to the topic:

user=> (msg/publish "topic.poly" "polyhello")

23:37:51,375 INFO [stdout] (...) clojure says: polyhello
23:37:51,390 INFO [stdout] (...) ruby says: polyhello

Since we used a topic instead of a queue, all listeners received and processed
the message and both the Ruby and Clojure apps printed to the log.

Since the EDN encoding is used on both sides, we can pass maps, arrays,
and even dates in messages, and both sides will see them as native objects:

user=> (msg/publish "topic.poly" [:a 1 "foo0"])

23:42:41,443 INFO [stdout] (...) clojure says: [:a 1 foo]
23:42:41,470 INFO [stdout] (...) ruby says: [:a, 1, "foo"]

user=> (msg/publish "topic.poly" {:a 1 :b 2})

23:44:29,321 INFO [stdout] (...) clojure says: {:a 1, :b 2}
23:44:29,345 INFO [stdout] (...) ruby says: {:a=>1, :b=>2}

user=> (msg/publish "topic.poly" (java.util.Date.))

23:45:37,183 INFO ... clojure says: #inst "2013-09-23T05:45:37.166-00:00"
23:45:37,207 INFO ... ruby says: 2013-09-23T05:45:37+00:00

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/immutant/clojurepoly/project.clj
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 3: Polyglot Apps * 261

The EDN encoding makes sending data between Clojure and Ruby very con-
venient; all the serialization and deserialization is taken care of for you, and
the inputs and outputs are just native objects on each side.

This polyglot cooperation doesn’t stop here either. The distributed caches are
also accessible from different apps in different languages too. A Ruby app
running in an overlaid TorqueBox could easily access the results of our
Overwatch pipeline from the cache, or make modifications of its own.

Clustering

Multiple Immutant nodes can be connected together to form a cluster,
expanding the amount of resources available to the deployed applications.
Caches, jobs, messaging, and the other Immutant services are available across
the cluster.

You can start Immutant as part of a cluster by running leinimmutant run --clustered.
However, simulating a real cluster on a single machine for demonstration
purposes is a little bit more work.

First, shut down your app server (if it’s running) by pressing Ctrl-C. Then, copy
the Immutant app server to a second location and launch a cluster. In one
shell window, execute the following commands:

$ cp -R ~/.immutant/current/ /tmp/immutant-node2
$ lein immutant run --clustered

This will start up the first node in the cluster. Now we can use a second shell
window to start the second node:

$ rm -rf /tmp/immutant-node2/jboss/standalone/data
$ IMMUTANT_HOME=/tmp/immutant-node2 \
lein immutant run --clustered \
-Djboss.node.name=two \
-Djboss.socket.binding.port-offset=100

The extra arguments set a manual node name and tell Immutant to use dif-
ferent ports so they don’t conflict with the first node.

Now that we have a small cluster running, let’s create a new project with
REPL support and deploy it to both nodes in the cluster. Run lein new cluster
and edit the project.clj to look like the following:

immutant/cluster/project.clj

(defproject cluster "0.1.0-SNAPSHOT"
:dependencies [[org.clojure/clojure "1.5.1"]]
:immutant {:nrepl-port 0})

www.it-ebooks.info

http://media.pragprog.com/titles/7web/code/immutant/cluster/project.clj
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 7. Immutant ® 262

Deploy the app to both nodes:

$ lein immutant deploy

Komitted output>

$ IMMUTANT_HOME=/tmp/immutant-node2 lein immutant deploy
Komitted output>

The last step of preparing our cluster is to connect a pair of REPLs to it, one
to each node. Find the nREPL port numbers for each node in their log output
and start a REPL session with each in its own terminal.

Clustered Caches

Immutant supports several modes for clustering the caches, but the default
is to have them distributed. In this mode, each entry is copied to two nodes
in the cluster. Because of this replication, the loss of a single node means
the cache entries on that node will survive the failure.

When you ask for a cache entry, it doesn’t matter whether that data is local
or remote; if it’s found in the cluster it will be returned to you. You can easily
play with it in the REPL. In the first node’s REPL, run the following:

user=> (require '[immutant.cache :as cache])
user=> (def c (cache/cache "cluster" :ttl [1 :day]))

user=> (cache/put c :immutant "http://immutant.org")

Now in the second REPL, do this:

user=> (require '[immutant.cache :as cache])
user=> (def c (cache/cache "cluster" :ttl [1 :day]))

user=> (:immutant c)
"http://immutant.org"

There’s not much else to it; it just works. All the other caching functions we
saw on the first day also work across the cluster.

Clustered Messaging

Messaging also operates as you would expect on a cluster. Messages are load-
balanced across receivers in the cluster; a publish on one node might be
received on a different node or on all nodes in the case of a topic. There’s
nothing extra to configure or call because the messaging system transparently
handles things when the app server is clustered.

Let’s create a queue on both nodes and attach some listeners. Once we have
the queue and listeners set up, we can publish some messages to the queue
and see what happens.

www.it-ebooks.info

http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 3: Polyglot Apps *® 263

At the first node’s REPL, run the following:

user=> (require '[immutant.messaging :as msg])
user=> (msg/start "queue.cluster")
user=> (msg/listen "queue.cluster" #(println "one:" %) :concurrency 2)

Now run the same thing, changing the printih argument to read two, at the
second node’s REPL:

user=> (require '[immutant.messaging :as msg])
user=> (msg/start "queue.cluster")
user=> (msg/listen "queue.cluster" #(println "two:" %) :concurrency 2)

Now at either REPL, publish some messages:

user=> (msg/publish "queue.cluster" "first")
user=> (msg/publish "queue.cluster" "second")
user=> (msg/publish "queue.cluster" "third")
user=> (msg/publish "queue.cluster" "fourth")

Check the logs of your two nodes to see which nodes handled which messages.
It should look something like the following:

on node 1

Komitted output>

01:07:43,115 INFO [stdout] ... one: first

01:07:49,935 INFO [stdout] ... one: third

Komitted output>

on node 2

Komitted output”

01:07:45,934 INFO [stdout] ... two: second
01:07:53,198 INFO [stdout] ... two: fourth
Komitted output”

As you can see, the Immutant cluster distributed the messages in a round-
robin fashion, alternating between our two nodes. If you are farming out work
to a queue, it's really easy to use every core on a machine by setting the
:concurrency parameter appropriately and also to use every machine in your
cluster. It could hardly be easier to scale a workload.

Clustered Jobs

The final stop on our tour of Immutant clusters is clustered jobs. Jobs in
Immutant clusters are, by default, singletons; they run only on a single
machine in the cluster. If a cluster node fails, the job will run somewhere on
the remaining nodes.

Unlike caches and messages, jobs take a bit more setup. While the cluster
makes sure that a given job only runs on a single node, jobs must be sched-
uled to run on all nodes.

www.it-ebooks.info

http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 7. Immutant ® 264

This is not a big deal for jobs you create during initialization, as the same
initialization is run on every node where your app is deployed. However, jobs
that are scheduled at the REPL or dynamically by your application will need
some method to schedule them throughout the cluster. Luckily, we already
have the tool we need to do this: topics.

In order to show off clustered jobs, we’ll create a topic and some listeners
that can schedule jobs throughout our cluster. Then we’ll schedule some jobs
and watch how they operate on the cluster.

In both REPLs, run the following code:

user=> (require '[immutant.jobs :as jobs])
user=> (def sched [{:keys [name code intervall}]
#_=> (jobs/schedule name (eval code) :every interval))

#'user/sched
user=> (msg/start "topic.jobs")
user=> (msg/listen "topic.jobs" sched)

© The sched function is a helper that will destructure an incoming message
and then schedule a corresponding job. Note the use of eval here, which
turns data into code dynamically, allowing us to ship functions around
the cluster inside messages.

©® Here we create a topic and attach a listener, which just passes the message
directly to sched. Because we are using a topic, every listener will get a
copy of the message and will schedule the job.

Now, on one of the nodes, run the following code to schedule a new job:
user=> (msg/publish "topic.jobs"
=> {:name "the-job"

=> :code '(fn [] (println "doing a good job")
=> :interval 5000})

This will send the job description to the topic, which will be received on every
node. The listener on each node will pass the message to sched, which will
schedule the job on its own node.

Somewhere in the cluster, a node will start executing the job. You can look
at each node’s logs to figure out which one is repeating the job’s message
every five seconds:

Komitted output»
01:32:02,619 INFO [stdout] (JobScheduler$cluster.clj Worker-1) doing a job
01:32:07,620 INFO [stdout] (JobScheduler$cluster.clj Worker-2) doing a job
01:32:12,620 INFO [stdout] (JobScheduler$cluster.clj Worker-3) doing a job
Komitted output»

www.it-ebooks.info

http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Day 3: Polyglot Apps * 265

The other nodes in the cluster should not be running the job since Immutant
ensures that job execution only happens on a single node in the cluster.

We can now simulate a node failure on the node that is running the job in
order to see how the Immutant cluster reacts. Just hit Ctrl-C on the node that
is printing the job messages repeatedly to shut it down, and then watch the
log output of the remaining node. You should see the job start running and
continue chugging along. You can even restart the missing node, and the job
will keep running on the old one.

Clustering in Immutant is quite easy to do and quite powerful. All the services
you use on a single machine work nearly transparently across the entire
cluster, allowing your apps to scale to larger workloads and to more robustly
handle failures.

What We Learned on Day 3

Today we wrapped up our exploration of Immutant by looking at two pretty
remarkable features: polyglot programming with Immutant overlays and
running many nodes as a single Immutant cluster.

By overlaying the TorqueBox app server on top of Immutant, we were able to
mix and match Ruby and Clojure code that communicated over Immutant
services like caches and messaging. This is an extremely useful feature,
allowing you to use the best tool for the job or to make use of existing libraries
in another language.

Clustering allowed us to pool resources across multiple nodes. Caches get
larger because adding nodes increases the size of available memory in the
cluster. Messages are distributed so that work can be spread across many
nodes. And jobs are run on a single node but gracefully fail over to other
nodes if something goes wrong.

Best of all, this is all built into Immutant and completely integrated with the
rest of the system.

Day 3 Self-Study
Find:
e The TorqueBox tutorials and documentation

e The tutorials for the other Immutant services, such as distributed trans-
actions and daemons, that we didn’t have space to cover

www.it-ebooks.info

http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 7. Immutant ® 266

e Try to use Immutant’s other services, such as caching and jobs from
Ruby. Check the TorqueBox documentation for hints.

Create a topic and a listener to schedule Overwatch check-url jobs across
a cluster.

Complete Overwatch by adding a web front end that submits jobs to the
cluster and lets users browse a table of results.

Interview with Jim Crossley

Jim Crossley is a core contributor to Immutant and TorqueBox and is a
principle software engineer at Red Hat.

Us: How did the Immutant project start and where did the idea of making a
beautiful wrapper around JBoss come from?

Jim: The first “beautiful wrapper around JBoss” was TorqueBox, which was born
in 2008 after Bob McWhirter took a sabbatical from JBoss to study Ruby on Rails.
When he returned, he realized that JRuby enabled him to combine his newfound
love for Ruby with his employer’s flagship product, thereby not only justifying his
employment but also simplifying Ruby application deployment. In 2010, he formed
the “Project Odd” team, including myself and Toby Crawley to help him fulfill that
vision.” As TorqueBox matured, we looked for other opportunities to extend the
JBoss polyglot reach. Both Toby and I were excited by Clojure, and Toby built a
proof of concept AS7 deployer for Ring apps in September of 201 1. Immutant evolved
from there.

Us: Messaging and caching seem absolutely essential features for many modern
web applications, but Immutant is pretty unique in offering these features. What
other things does Immutant bring to the table that developers are probably missing
out on?

Jim: Immutant is an integrated stack of commodity services that most nontrivial
web applications will require as they evolve. In addition to messaging and caching,
Immutant provides built-in scheduling, daemons, transactions, and clustering,
among other things—pretty much everything modern apps need except a database,
though you could use a durable cache if your query needs are minimal. Because
it’s an integrated platform, the incidental complexity associated with the deployment
of your applications is greatly reduced. An integrated stack also enables you to
scale services uniformly; for example, automatic load balancing of your messaging,
expansion of your caching data grid, and high availability of your scheduled jobs
and daemons is achieved by merely adding more nodes to your Immutant cluster.

7. http://projectodd.org

www.it-ebooks.info

http://projectodd.org
http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Wrapping Up ® 267

Us: Is the Immutant team working on integration of other languages besides Ruby
to expand its polyglot palette?

Jim: Red Hat/JBoss is “all in” on JVM polyglot. In addition to Immutant for Clojure
and TorqueBox for Ruby, there is Escalante for Scala, and we have a few JavaScript
efforts underway as well. We have the Overlay project that enables the creation of
a single app server capable of hosting both Ruby and Clojure apps, but we thinlk
we can do even better. We're currently evaluating Vert.x as a means to unify our
“polyglot palette” into something developers might be able to embed in their apps,
similar to how many Clojure developers embed Jetty today. This would allow you
to embed any commodity service in your application regardless of its JVM-based
language.

Us: Interactive development is a big part of Lisps, and Immutant seems to embrace
this wholeheartedly. Is this changing how you and your users create web apps?

Jim: Truthfully, the thing that excites me most about Immutant is the REPL. I love
building my apps incrementally at a REPL while they’re deployed and running on
Immutant. I love interacting with the integrated services in real time, writing tests
against those services, and running them immediately, without any mocking or
packaging or deployment steps required. It's an intimate, frictionless, flow-rich
development experience. Ruby developers can get close to it with something like
Pry, but I'm not sure most Java developers appreciate it. Of course, their IDEs
compensate in ways that are difficult to implement in dynamic languages like Clojure
or Ruby, so I guess it’s a trade-off, but I wouldn’t trade the REPL for anything. :)

Wrapping Up

Immutant is a very different kind of framework compared to the others in this
book. It goes well beyond what web frameworks typically offer and is packed with
enterprise features like distributed caching, message queues, scheduled jobs,
and clustering. It also has a few unique features, such as its support for polyglot
programming with overlays and its leverage of Clojure’s dynamic interactivity.

Modern web apps often make use of caching and messaging, but they resort to
third-party services or gluing together several tools to get them. Immutant dras-
tically simplifies these features by fully integrating them and ensuring they work
seamlessly together as a whole. This will keep you focused on your application
logic instead of on the glue between services and layers.

Immutant’s Strengths

Immutant is built on JBoss, a battle-tested enterprise Java app server. It removes
the ceremony, the XML, and the headache of working with Java EE applications
and makes JBoss’s advanced features easy and convenient to use without sacri-
ficing any of its power.

www.it-ebooks.info

http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 7. Immutant ® 268

Clustering, distributed caches, and message queues are critical features to
many modern apps, and they will assist you as your app becomes popular
and needs to handle more data and serve more customers. Having these fea-
tures built right into the framework lets you concentrate on just what you
care about.

Interactive development is a breeze with built-in support for Clojure’s nREPL
clients. All of Immutant’s features are accessible from the REPL and embrace
the dynamism of Clojure development. After a few sessions at an Immutant
REPL, you'd hardly guess that there is a Java enterprise application server
behind the scenes.

Immutant’s Weaknesses

Immutant is built on Clojure, which is a functional language that will be
unfamiliar to most users. Immutable data structures and functional compo-
sition are powerful tools that take some getting used to.

Because it focuses on advanced services, Immutant doesn’t really have a lot
of built-in features for dealing with web requests aside from supporting Ring
handlers. You'll have to pick some helpful Clojure libraries to get the job done.

Final Thoughts

Building apps with Immutant feels a lot like cheating. Advanced features used
by the biggest companies are right at your fingertips, but it's as dynamic an
environment as any scripting language and has all the power of Clojure. With
a few lines of code you can build apps capable of running at large scales
without the hassle and glue it usually takes. Immutant makes things that
others brag about doing so easy that you don’t even notice you've done them.

www.it-ebooks.info

http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

CHAPTER 8

Wrap-Up

We could probably cover hundreds of other interesting web frameworks, but
we had to stop somewhere. Here at the end of our journey through the idea
space of programming web apps, we hope you learned a lot, have gotten
inspired, and are ready to put these ideas to work in your own projects.

Like many things, programming is all about trade-offs and compromis-
es—whether it be memory versus performance or type safety versus prototyp-
ing speed. There is no perfect web framework, but it is useful and rewarding
to see the trade-offs each tool makes. No two web apps are exactly the same,
so every web developer can benefit from a richer set of potential solutions to
draw from.

Before we leave you to your own adventures, let’s reflect on some of the main
ideas we've seen in the book.

Key Ideas

We saw a lot of different approaches to constructing apps in this book, but
some of the big ideas were these:

e Simplicity

e Where does code run—on the client, a server, or a large cluster?

e Composition—building up things from small pieces

¢ Declaration over instruction—describing what to do, not how to do it
¢ Type systems

e State machines

¢ Interactivity

Let’s recap these key ideas and the frameworks that most embodied them.

www.it-ebooks.info

http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 8. Wrap-Up * 270

Simplicity

Simplicity is a desirable attribute because the human capacity for reasoning
about software seems both finite and remarkably limited. Simplicity is often
achieved by minimizing or transforming a problem or by focusing on specific
parts of a solution. We saw both strategies in this book.

Sinatra tries to make things as simple as possible by adopting a radical
minimalism. It uses Ruby’s expressive syntax to create a nice DSL for
expressing web apps, and it focuses on a small set of features that are quite
commonly used. It doesn’t contain a lot of features by itself, but because it
is simple, it combines well with other tools.

Ring transforms HTTP requests and responses directly into simple data
structures. This transformation puts the web under control of Clojure’s rich
tools for data manipulation and abstraction. It is not unlike the graphics
programming technique of transforming models into different coordinate
systems; what seems like a complex operation is just a composition of simple
and well-chosen transformations.

Contrast these frameworks with Webmachine, which attempts to embrace
the complexity of HTTP, refusing to hide its power and glory.

Where Does Code Run?

Modern web apps have a lot of flexibility of where to execute their logic.
Browsers have gotten powerful enough that much of the work can be done
on the clients. Web apps have gotten popular enough that single servers are
no longer enough. We looked at frameworks that ran on clients and ones that
scaled to many servers.

CandJS and AngularJS are frameworks that run completely in the user’s browser.
HTML templating, URL routing, and logic all happen on the client, and data per-
sistence is handled by communicating via an API with a back-end server. This
split is often an effective means of separating concerns and allows front-end and
back-end teams to iterate quickly around a shared interface.

Yesod is a more traditional framework that runs on a single machine, although
it optimizes the speed of execution as much as possible, assisted by Haskell’'s
amazing native code compiler.

Immutant can run your app across a cluster, expanding the amount of
resources available with each added machine. Running on multiple systems
also helps increase resistance to machine failure; cache data is replicated
throughout the cluster, and jobs run as long as at least one machine lives.

www.it-ebooks.info

http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Key Ideas * 271

Composition

Constructing solutions by combining small pieces is a common pattern in
software, but functional languages like Clojure and Haskell place a lot of
emphasis on it and provide comprehensive support for it. Both Ring and
Immutant use composition in interesting ways.

In Ring, simple transformations of the request or response data are composed
together to form a processing pipeline for an HTTP request. This makes it
easy to mix and match middleware for constructing precisely the pipeline you
want. The request and response maps are also compositions of various bits
of data that Ring and its middleware need to do their jobs.

Immutant’s pipelines are another nice example of combining simple functions
into a greater whole. Each step of the pipeline has a simple job, and many
steps can be strung together to build a scalable workflow for processing data
across many cores and machines.

Declaration over Instruction

URL routing in many frameworks is done declaratively. Instead of writing a
bunch of conditional statements testing the path and dispatching requests
to the right pieces of the code, you instead write a table that associates pat-
terns with controllers. The framework figures out how to do the dispatch from
the list of rules.

This idea of specifying the what instead of the how is applicable to many
problems. This approach is used alongside composition in Immutant and
Ring, but the framework that really takes this the farthest in this book is
AngularJsS.

AngularJS extends the HTML to include a declarative syntax for embedding
information, and it allows the vocabulary to be extended by the developer.
This keeps you focused on what you are doing and lets the framework con-
centrate on how to do it. Even if the developer must care about both the what
and the how, these pieces can be dealt with independently.

Dynamic and Static Types

Type systems are the subject of one of the oldest debates in the industry, but
they are also commonly misunderstood. Web frameworks are most often built
in dynamically typed languages like Ruby, Python, and Clojure. While
frameworks exist in statically typed languages like Java, we looked at Yesod,
which is written in Haskell and has one of the most interesting and powerful
static type systems around.

www.it-ebooks.info

http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Chapter 8. Wrap-Up ® 272

Dynamic languages allow effortless construction of heterogeneous data
structures, and Ring takes advantage of this at its core by turning HTTP
requests into a simple map. Statically typed languages make similar transfor-
mations, but they must create specialized data structures to do so.

Yesod uses Haskell’s type system to enforce safety and security constraints.
For example, string injection-based attacks are prevented because user-
generated strings and strings that the database sees are distinct types that
cannot be easily mixed. As we saw in the Yesod chapter, types can also be
used to prevent using the wrong IDs in database queries and for encoding
business logic requirements.

State Machines

State machines are an abstraction from computer science, and they are useful
in lots of situations. All the decisions that one makes while handling an HTTP
request can be nicely modeled as a state machine. Webmachine’s creators
had this insight and exposed the decisions that the state machine must make
as callbacks, allowing developers to easily harness the full power of the HTTP
protocol without being buried in its complexity.

Webmachine apps answer simple questions, the answers to which determine
the path through the state machine. Often the answers are as simple as yes
or no, but they can also be more complex, like lists of supported content
types. Because Webmachine handles the complexity of HTTP and exposes
only these simple decisions, developers never have to remember status codes
or other protocol arcana and can instead focus on domain functionality and
the answers to Webmachine’s questions.

Interactivity

Natively compiled apps have a workflow that goes edit, compile, run, and
repeat. Web apps have a similar workflow—edit, refresh, repeat. Dynamic
languages like Lisp have shortened this to the absolute minimum by allowing
the programmer to work at a REPL and interact with the code directly while
the system is running. Yesod and Immutant both try to extend this kind of
interactivity to web development.

Yesod, even though it is a natively compiled language, has a mode that watches
for changes you make and immediately recompiles the app. This brings the
familiar edit and refresh development cycle to a statically typed language.

Immutant embraces its Lisp roots and can put an nREPL server directly in
your web app. You can connect directly from a REPL and make changes live

www.it-ebooks.info

http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

Happy Exploring * 273

on the app server, inspect running state, and even add new functionality
while it’s running. This is a powerful feature that can radically change your
workflow.

Another kind of interactivity happens on the client side. More traditional web
frameworks live on the server, and the user interacts with them either by
submitting forms and loading new pages or by making clever use of AJAX
requests. CanJS and AngularJS instead move much of the app directly onto
the client machines, giving an unparalleled level of dynamic response to users.
The resulting apps often approach the responsiveness of native apps but have
all the normal web app advantages.

Happy Exploring

We hope that you've learned much on this adventure and that we've whetted
your appetite for new ideas in web development. You can find lots of frame-
works with unique ideas and many interesting directions to set off in to find
better ways of developing apps.

Our industry is rapidly changing every day; over the last fifteen years we've
gone from static pages and perhaps some simple CGI scripts to word proces-
sors, top-quality video games, and entire operating systems using web
technology. This trend of the Web “eating the world” shows no signs of stopping
any time soon, and developers will need to keep pace to continue pushing
the boundaries and making users and themselves happy. Exploring the
frontiers of development prepares you for the future.

Keep searching for the perfect framework. You may never find it, but there
are plenty of rewards for those unafraid of the adventure.

www.it-ebooks.info

http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

[Arm13]

[CTO9]

[RW12]

[Tatl0]

APPENDIX 1

Bibliography

Joe Armstrong. Programming Erlang: Software for a Concurrent World. The
Pragmatic Bookshelf, Raleigh, NC and Dallas, TX, Second, 2013.

Francesco Cesarini and Simon Thompson. Erlang Programming. O'Reilly
& Associates, Inc., Sebastopol, CA, 2009.

Eric Redmond and Jim R. Wilson. Seven Databases in Seven Weeks: A
Guide to Modern Databases and the NoSQL Movement. The Pragmatic
Bookshelf, Raleigh, NC and Dallas, TX, 2012.

Bruce A. Tate. Seven Languages in Seven Weeks: A Pragmatic Guide to
Learning Programming Languages. The Pragmatic Bookshelf, Raleigh, NC
and Dallas, TX, 2010.

www.it-ebooks.info

http://pragprog.com/titles/7web/errata/add
http://forums.pragprog.com/forums/7web
http://www.it-ebooks.info/

SYMBOLS

<% %> (angle bracket, per-
cent), enclosing Ruby in
ERB template, 11-12

<%= %> (angle bracket, per-
cent, equals), enclosing
Ruby in ERB template, 11—
12

* (asterisk), following URIs, 30

@ (at-sign), preceding in-
stance variables, 12

@{ } (at-sign, braces), enclos-
ing type-safe URLs, 221,
223

{{}} (braces, double), enclos-
ing Mustache syntax, 16

enclosing AngularJS syn-
tax, 78

{{# }} (braces, double, hash
mark), enclosing Mustache
syntax, 16-17

{{>}} (braces, double, right
angle bracket), enclosing
Mustache syntax, 16-17

{{/ }} (braces, double, slash),
enclosing Mustache syntax,
16-17

{{{}}} (braces, triple), enclos-
ing Mustache syntax, 16,
18

M} (caret, braces), enclosing
Haskell expressions, 213

: (colon), preceding URI param-
eters, 24

S (dollar sign), preceding An-
gularJS objects, 77

= (equal sign), in Slim, 20

== (equal sign, double), in
Slim, 20

(hash mark), preceding
browser hash, 67

#{ } (hash mark, braces)

enclosing Haskell expres-
sions, 210
enclosing Ruby in Slim,
20

- (hyphen), preceding Ruby in
Slim, 20

< (left angle bracket), follow-
ing tags in Slim, 20

. (period), in RSpec output, 4

| (pipe character), following
tags in Slim, 20

|| (pipe characters), enclosing
block parameters, 25

> (right angle bracket), follow-
ing tags in Slim, 20

A

after method, Sinatra, 25-27

all method, DataMapper, 7

allowed_methods resource func-
tion, 173

angle bracket, percent (<%
%>), enclosing Ruby in ERB
template, 11-12

angle bracket, percent, equals
(<%= %>), enclosing Ruby in
ERB template, 11-12

angular.module function, 77

AngularJsS framework, 73-75,
see also bookmarking appli-
cation

applications, creating,
77-79

www.it-ebooks.info

Index

components of, 74-75

controllers, 75, 77-78,
90-93

declarative syntax in, 271

dependency injection, 74—
76

directives, 75

filters, 104-108

interactivity of, 273

interview with creator of,
111-112

location of application
execution, 270

modules, 74

MVC used by, 73

resource service, 75, 83—

85

route providers, 75, 108-
110

$scope object, 77, 91, 96—
97

services, 74-76, 79-82
strengths of, 111-112
testing applications, 76,
85-89, 98-100
two-way live binding, 75,
93-94
views, 75, 77, 90-93
weaknesses of, 113
aopt function, Yesod, 213
App data type, Yesod, 210
applicative forms, 212
areq function, Yesod, 213
Armstrong, Joe (Programming
Erlang), 169
asterisk (¥, following URIs, 30
at-sign (@), preceding in-
stance variables, 12

http://www.it-ebooks.info/

at-sign, braces (@{ }), enclos-
ing type-safe URLs, 221,
223
attr method, observes, 43
authentication, Yesod, 215-
218
authorization
HTTP, 182, 189-192
Yesod, 215, 218
auto_migrate! option, DataMap-
per, 6
auto_upgrade! option, DataMap-
per, 6

B
before method, Sinatra, 25-27

beforeEach function, Jasmine,
86, 99
bind method, observes, 43
block parameters, 24-25
Bookmark class, 6
bookmarking application, 5-
10
controls, handling UI
events with, 48-53
creating bookmarks, 7-
8, 84
data persistence for, 5-7
deleting bookmarks, 10,
85
filtering bookmarks, 25—
27, 62-64, 104-108
front end for, using Angu-
larJs, 82-85, 90-97
front end for, using Can-
JS, 44-47, 53-56
front end for, using Sina-
tra, 11-22
model for bookmarks,
44-46
reading bookmarks, 7-8,
84
RESTful API for, 5, 7-10
tag lists, creating, 65-66,
103-104
tagging bookmarks, 27-
32, 102-103
tags, handling, 60-61
updating bookmarks, 9,
84
validation for, 22-24, 58—
60
view templates for, with
ERB, 11-16

view templates for, with
Mustache, 16-18, 46—
47
view templates for, with
Slim, 18-22
books and publications
Erlang Programming (Ce-
sarini; Thompson), 169
Programming Erlang
(Armstrong), 169
braces, double ({{ }}), enclosing
AngularJS syntax, 78
braces, double ({{ }}), enclos-
ing Mustache syntax, 16
braces, double, hash mark
({{#}}), enclosing Mustache
syntax, 16-17
braces, double, right angle
bracket ({{> }}), enclosing
Mustache syntax, 16-17
braces, double, slash ({{/}}),
enclosing Mustache syntax,
16-17
braces, triple ({{{ }}}), enclos-
ing Mustache syntax, 16,
18
broadcasting messages,
see topics, Immutant
browser, managing location
of, 66-69
bug tracking application, 116
data models for, 120-126
Korma library for, 122-
126
RESTful API for, 133-138
SQLite database for, 121-
122
validation for, 135-138
views for, 126-130

C
Cabal build tool, 199
Cache-Control headers, 187-188

caching, HTTP, see HTTP
caching

caching, distributed, see dis-
tributed caching, Immutant

can.Construct function, 36-37,
39-41

can.Control function, 37
can.Model function, 37, 44-46
can.Observe function, 36, 41-43
can.route function, 37, 67-69
can.trigger function, 51

can.view function, 37, 46-47

www.it-ebooks.info

Index * 278

CandJS framework, 35-37, see
also bookmarking applica-
tion

components of, 36-37

controls, communicating
between, 51-53

controls, handling Ul
events with, 48-53

filters, 62-64

form controls, creating,
53-56

Hello, World example,
37-39

interactivity of, 273

interview with creator of,
70-71

libraries required for, 36

listening for UI events, 49

live binding, 47

location of application
execution, 270

model lists, 46

models, creating, 44-46

models, retrieving, 50-51

MVC used by, 35

objects, constructing, 39—
41

objects, extending, 39-41

observe lists, 43

observes, creating, 41-43

observes, listening on, 43

routing, 66-69

setting up with jQuery,
37-39

strengths of, 70-71

validation using, 58-60

views, with Mustache,
46-47

weaknesses of, 72

caret, braces ({ }), enclosing
Haskell expressions, 213

Cesarini, Francesco (Erlang
Programming), 169

Clojars, 118

Clojure

Immutant using, 234
interview with creator of
libraries for, 150-151
JSON output, handling,

134-135
naming conventions, 119
RESTful API using, 133-
138
Ring requiring, 117
strengths of, 151-152
testing applications, 148
validation using, 135-138

http://www.it-ebooks.info/

clustering, Immutant, 261-
265
clustered caches, 262
clustered jobs, 263-265
clustered messaging,
262-263
starting a cluster, 261-
262
code examples, see examples
colon (), preceding URI param-
eters, 24
community forum for this
book, xiv
Compojure, 120, 129-132,
139-141
composition of applications,
271
content_types_provided resource
function, 161-162, 173
context keyword, Compojure,
139-141
controllers, AngularJsS, 75,
77-78, 90-93
controls, CanJS, 48-53
attaching to elements on
page, 48
communicating between,
51-53
form controls, 53-56
listening for Ul events, 49
create function, Immutant,
238
Crossley, Jim, interview with,
266-267

curl command, 162

D
data models, see models

data persistence
DataMapper for, 5-7
Persistent library for,
201, 204-206

data() function, jQuery, 50-51
data_mapper gem, 6
DataMapper, 5-7
declarative syntax, 271

defaultLayout function, Yesod,
220

defdb keyword, Korma, 122-
123

defentity keyword, Korma, 122-
123

defn keyword, Clojure, 124

defroutes keyword, Compojure,
120, 139-141

delete function
Immutant, 240
Persistent, 207

deleteBy function, Persistent,
207

deleteWhere function, Persis-
tent, 207

:dependencies keyword, Clojure,
118

dependency injection, Angu-
lards, 74-76

describe block, RSpec, 4

describe function, Jasmine,
86, 99

destroy method, DataMapper,
10

directives, AngularJS, 75
dispatch rules, Webmachine,
159, 164
distributed caching, Immu-
tant, 237-242
clustering, 262
creating a cache, 238
deleting data from a
cache, 240-241
memoization with, 241-
242
reading data from a
cache, 239
writing data to a cache,
239-240
dm-serializer gem, 7
dm-sglite-adapter gem, 6
dollar sign (8), preceding An-
gularJS objects, 77
domain-specific language,
see DSL
dot (.), in RSpec output, 4
DSL (domain-specific lan-
guage), Sinatra using, 1
dynamic type systems, 271-
272

E
element function, AngularJdsS,
100

embedded Ruby, see ERB

Enlive, 145-148

enter function, AngularJS, 100

equal sign (=), in Slim, 20

equal sign, double (==), in
Slim, 20

www.it-ebooks.info

Index ® 279

ERB (embedded Ruby), 11-16
erb method, Sinatra, 12

Erlang Programming (Cesarini;
Thompson), 169
Erlang, installing, 158
ETags, 184-186
examples, see alsobookmark-
ing application; bug track-
ing application; link-moni-
toring application; link-
shortening application; so-
cial news aggregator
Hello World, with CanJS,
37-39
Hello World, with Immu-
tant, 236-237
Hello World, with Ring,
118-120
Hello World, with Sinatra,
1,3
Hello World, with Webma-
chine, 158-161
Hello World, with Yesod,
199-201
website for, xiv
expect(...).toBe(...) function, Angu-
lardS, 100

Expires headers, 186
expires resource function, 186

F

F, in RSpec output, 5

factory function, AngularJs,

81-82

filters
AngularJsS, 104-108
CandS, 62-64
Sinatra, 25-27

finalize method, DataMapper,
6

$forall statement, Hamlet, 213
form controls, CanJdS, 53-56

forms, Yesod, 212-215, 223-
225

forum for this book, xiv

foundation module, Yesod,
210

functional programming,
143-145

G

gen_server resource module,
169-171

generateFormPost, 214
get function, Persistent, 204

http://www.it-ebooks.info/

getAuthld function, Yesod, 216
getBy function, Persistent, 204

Google authentication plugin,
216-217

H

Hamlet templating language,
209-212

Hash class, slice method, 8

hash mark (#), preceding
browser hash, 67

hash mark, braces (#{})
enclosing Haskell expres-
sions, 210
enclosing Ruby in Slim,
20
Haskell, 197
installing, 199
static type system, 197
Template Haskell, 210
Hello, World example
CandS, 37-39
Immutant, 236-237
Ring, 118-120
Sinatra, 1, 3
Webmachine, 158-161
Yesod, 199-201

helpers method, Sinatra, 13

Hevery, Misko, interview with,
111-112
Hiccup, 126-129
html function, jQuery, 47
HTML templates
Enlive for, 145-148
ERB for, 11-16
Hamlet for, 209-212
Hiccup for, 126-129
Lucius for, 211
Mustache for, 16-18,
175-180
security of, 208
Slim for, 18-22
Yesod, 219-223
HTTP authorization, 182,
189-192
HTTP caching, 182-188
HTTP requests
with AngularJS, 83
with CandS, 45-46
filters for, 25-27
with Ring, 115, 129-134,
143-145
with Sinatra, 1, 5, 7-10

URI parameters for, 24—
25, 30
with Webmachine, 155-
157, 161-167
HTTP responses
with CandS, 45
with Ring, 115, 120, 131-
132, 143-145
with Sinatra, 1, 7-10, 23
with Webmachine, 155-
157, 161-167
$httpBackend service, 87
hyphen (-), preceding Ruby
code in Slim, 20

|
$if statement, Hamlet, 213

Immutant app server, in-
stalling, 236
Immutant framework, 233-
235, see also link-monitor-
ing application
clustering, 261-265
composition of applica-
tions, 271
creating applications,
236-237
distributed caching, 237-
242
Hello, World example,
236-237
interactivity of, 272
interview with contributor
to, 266-267
location of application
execution, 270
message queues, 245-
247
overlays, 256-261
pipelines, 249-255
scheduled jobs, 243-244
strengths of, 266-267
tools required for, 235
topics, 247-248
weaknesses of, 268
web services, starting,
237
in-ns function, Clojure, 123
index1, 73
index2, 73
init function
Erlang, 160
JavaScript, 39, 48
input function, AngularJsS, 100

input validation, see valida-
tion

www.it-ebooks.info

Index * 280

insert function, Persistent, 204

insert keyword, Korma, 124

interactivity of applications,
272-273

isAuthorized function, Yesod,
218

is_authorized resource function,
189-192

it block, RSpec, 4

it function, Jasmine, 87, 99

J
jQuery library, setting up
with CandJS, 37-39
Jasmine testing tool, 85-89
JavaScriptMVC, 70
JBoss AS7, 234
jobs, scheduling, see sched-
uled jobs, Immutant
JSON output
in Ring with Clojure,
134-135
in Sinatra with DataMap-
per, 7
in Sinatra with ERB tem-
plates, 13-14
in Webmachine, 180-181
JVM, installing, 117

K
Keradon, 148-149
Korma library, 122-126

L
Last-Modified headers, 183-184

last_modified resource function,
184

left angle bracket (<), follow-
ing tags in Slim, 20
lein-immutant plugin, 235
Leiningen build tool, 117-
118, 235
link-monitoring application,
235
creating application, 238
memoizing web pages for,
242
parsing URLs, 253-254
pipeline for, 250-255
returning URLs for, 252
scheduling jobs for, 243
link-shortening application,
157
dispatching requests,
164-167

http://www.it-ebooks.info/

HTML templates for, 175-
180
JSON output for, 180-
181
resource functions for,
162-164
resource modules for,
169-171
shortening links, 168-
175
text output for, 180-181
listen function, Immutant,
247-248
live binding
AngularJs, 75, 93-94
Cands, 47
location of application execu-
tion, 270
Lucius templating language,
211

M

Maven Central Repository,
118
memo function, Immutant, 241
mermoization, 241-242
message queues, Immutant,
245-247
clustering, 262-263
creating a queue, 246
listening for messages,
247
publishing messages, 246
receiving messages, 246
with TorqueBox, 259-261
Meyer, Justin B., interview
with, 70-71
middleware, Ring, 130-132,
143-145
MochiWeb library, 174
mochiweb_util:parse_gs function,
174
model lists, CanJ$S, 46, 65-66
models, AngularJdS, 78, 94
models, CandS
creating, 44-46
retrieving, 50-51
models, Yesod
constructing, 203
defining, 201-203
deleting data in, 206
querying data in, 205
retrieving data from, 204
updating data in, 206
modules, AngularJS, 74

moved_permanently resource
function, 164
moved_temporarily resource
function, 164
Mustache, 16-18, 46-47,
175-180
mustache command, 16
mustache gem, 16
MVC (model-view-controller)
architecture
AngularJS using, 73
CandJS using, 35
Yesod using, 198

N

nREPL, see REPL

ng-app directive, AngularJS, 78

ng-autotest directive, Angular-
JS, 98

ng-click directive, AngularJdS,
92, 94

ng-controller directive, Angular-
JS, 78, 91

ng-include directive, AngularJS,
91

ng-model directive, AngularJs,
78, 94

ng-repeat directive, AngularJsS,
92

ng-submit directive, AngularJs,
94

(@)

object relational mapping,
see ORM
observe lists, 43
observes, CandS
communicating between
controls, 51-53
creating, 41-43
listening for attribute
changes, 43
live binding of, 47
online resources
Clojars, 118
code examples for this
book, xiv
community forum for this
book, xiv
JVM, 117
Leiningen build tool, 117
Maven Central Reposito-
ry, 118
Ruby installation, 2
Sinatra configuration, 3

www.it-ebooks.info

Index ® 281

ORM (object relational map-
ping), 5
overlays, Immutant, 256-261
creating, 257
message queues and top-
ics with, 259-261
Sinatra with TorqueBox,
257-258
TorqueBox for, 256
Overwatch example, see link-
monitoring application

P
parameters, URI, 24-25, 30
partial templates
ERB, 14-16
Mustache, 17
Slim, 20
period (.), in RSpec output, 4
persistence, see data persis-
tence
Persistent library, 201
deleting data, 206
inserting data, 204
querying data, 205
retrieving data, 204
updating data, 206
Persona authentication plug-
in, 216-217
Petite example, see link-
shortening application
pipe character (), following
tags in Slim, 20
pipe characters (| |), enclosing
block parameters, 25
pipeline function, Immutant,
249
pipelines, Immutant, 249-255
creating, 249, 252-255
deploying, 255
sending data to, 250
:plugins keyword, Clojure, 119
polyglot programming, 256
postForm function, Yesod, 224
previously_existed resource func-
tion, 163
process_post resource function,
173
Programming Erlang (Arm-
strong), 169
:public_folder option, Sinatra, 16
publish function, Immutant,
246
put function, Immutant, 239

http://www.it-ebooks.info/

put-all function, Immutant, 239

put-if-absent function, Immu-
tant, 239

put-if-present function, Immu-
tant, 239

put-if-replace function, Immu-
tant, 239

R
rack-test gem, 3

receive function, Immutant,
246

Reeves, James, interview
with, 150-151

-refer-clojure keyword, Clojure,
123

referential transparency, 241

regular expressions, 31

renderDivs function, Yesod, 212

REPL
with Clojure, 238
with Korma, 123
resource functions, Webma-
chine, 160-164
resource modules, Webma-
chine, 160, 169-171
resource service, AngularJs,
75, 83-85
resource_exists resource func-
tion, 162-164
resources, see books and
publications; online re-
sources
RESTful API, see also HTTP
requests; HTTP responses
with Clojure, 133-138
with Sinatra, 5, 7-10
right angle bracket (>), follow-
ing tags in Slim, 20
Ring framework, 115-116,
see alsobug tracking appli-
cation
composition of applica-
tions, 271
dependencies for, 118
dynamic type system
used by, 272
Hello, World example,
118-120
Hiccup with, 126-129
Immutant using, 234
Korma library with, 122-
126
middleware, 130-132,
143-145

plugins for, 119
routing, 120, 129-132,
139-141
simplicity of, 270
SQ@Lite database with,
121-122
strengths of, 150-152
testing applications, 148-
149
tools required for, 117
weaknesses of, 152
:ring keyword, Clojure, 119
routing
AngularJsS, 75, 108-110
CandS, 66-69
Compojure, 120, 129-
132, 139-141
Sinatra, 31
rspec command, 4
rspec gem, 3
RSpec testing tool, 3-5, 8-10
Ruby, installation of, 2
Rumble, see social news ag-
gregator
runDB function, Yesod, 214
runFormPost function, Yesod,
214
runSqlite function, Yesod, 204

S

schedule function, Immutant,
243
scheduled jobs, Immutant,
243-244
clustering, 263-265
$scope object, AngularJs, 77,
91, 96-97
select keyword, Korma, 124-
125
selectList function, Persistent,
205
service function, AngulardsS,
79, 81-82
services, AngulardS, 74-76
creating, 79-82
naming, 80-81
resource service, 83-85
setup method, DataMapper, 6

simplicity of web frameworks,
270
Sinatra framework, 1-2, 5,
see also bookmarking appli-
cation
block parameters, 24-25
configuration of, 3

www.it-ebooks.info

Index ® 282

data persistence with, 5-
7
DSL for, 1
filters, 25-27
Hello, World example, 1,
3
route matching, 31
Ruby required for, 2
simplicity of, 270
strengths of, 33
testing applications, 3-5,
8-10
TorqueBox with, 257-258
validation using, 22-24
view templates, with
ERB, 11-16
view templates, with
Mustache, 16-18
view templates, with
Slim, 18-22
weaknesses of, 33
sinatra gem, 2
sinatra-mustache gem, 16
slice method, Hash, 8
Slim, 18-22
slim gem, 18
slim method, Sinatra, 19
Snoyman, Michael, interview
with, 229-231
social news aggregator, 198
comments handler for,
225-228
data model for, 201-208
forms for, 212-215
front page for, 219-223
post form for, 223-225
splat (¥, following URIs, 30
SQLite database
for bookmarking applica-
tion, 5-7
for bug tracking applica-
tion, 121-122
sqlite3 gem, 6
start function, Immutant, 246,
248

state machines, 272
static type systems, 271-272
step function, Immutant, 250

T

TDD (test-driven develop-
ment), 23, 85

Template Haskell, 210

test-driven development,
see TDD

http://www.it-ebooks.info/

testing
AngularJsS library for, 98-
100
dependency injection
with, 76
Jasmine tool for, 85-89
Keradon for, 148-149
RSpec tool for, 3-5, 8-10
TDD for, 23, 85
text output, in Webmachine,
180-181
Thompson, Simon (Erlang
Programming), 169
to_html resource function, 161-
162
to_json resource function, 180-
181
to_text resource function, 161-
162, 180-181
topics, Immutant, 247-248,
259-261

TorqueBox, 256
message queues and top-
ics with, 259-261
Sinatra with, 257-258
two-way live binding, Angular-
JS, 75, 93-94
type systems, 271-272

U

unschedule function, Immutant,
243
update function, Persistent,
207
updateWhere function, Persis-
tent, 207
URI, see also HTTP requests
arbitrary number of pa-
rameters for, 30
block parameters for, 24—
25
routing handling changes
in, 66-69
:use keyword, Clojure, 119

\Y
validate method, CanJS, 58

validatelnclusionOf method, Can-
JS, 58

validateLengthOf method, CanJsS,
58

validatePresenceOf method, Can-
Js, 58

validateRangeOf method, CanJsS,
58

validation
CandsS, 58-60
Clojure, 135-138
Sinatra, 22-24
Valip, 136-137
view templates
in AngulardJs, 75, 77, 90—
93
ERB for, 11-16
Mustache for, 16-18, 46—
47
Slim for, 18-22

w
web frameworks, characteris-
tics of, 269-273, see al-
so specific web frameworks
web pages, memoizing, 242
Webmachine framework, 155—
157, see also link-shorten-
ing application
dispatch rules, 159, 164
dispatching requests,
164-167
Erlang used by, 158
Hello, World example,
158-161
HTTP authorization, 182,
189-192
HTTP caching, 182-188
installing, 158
resource functions, 160-
164
resource modules, 160,
169-171
state machine used by,
272

website resources, see online
resources

wrq:get_req_header resource
function, 174

wrg:path resource function, 165

www.it-ebooks.info

Index ® 283

wrg:path_info resource function,
167

wrq:set_resp_body resource func-
tion, 174

Y

yesod add-handler command,
200-201

yesod devel command, 200

Yesod framework, 197-198,
210, see also social news
aggregator

authentication, 215-218

authorization, 215, 218

components of, 198

creating applications,
199-201

data models, 201-208

forms, 212-215, 223-225

handlers, adding, 200-
201

Haskell used with, 197,
199

Hello, World example,
199-201

HTML templates, with
Hamlet, 209-212, 219~
223

HTML templates, with
Lucius, 211

installing, 199

interactivity of, 272

interview with creator of,
229-231

location of application
execution, 270

Persistent library with,
201

static type system used
by, 272

strengths of, 231

weaknesses of, 232

yesod init command, 199
yield method, Sinatra, 21
yield statement, Ruby, 15

Z

Zap application, see bug
tracking application

http://www.it-ebooks.info/

Seven Databases, Seven Languages

There’s so much new to learn with the latest crop of NoSQL databases. And instead of

learning a language a year, how about seven?

Seven Databases in Seven Weeks

Data is getting bigger and more complex by the day,
and so are your choices in handling it. From traditional
RDBMS to newer NoSQL approaches, Seven Databases
in Seven Weeks takes you on a tour of some of the
hottest open source databases today. In the tradition
of Bruce A. Tate’s Seven Languages in Seven Weeks,
this book goes beyond your basic tutorial to explore
the essential concepts at the core of each technology.

Eric Redmond and Jim R. Wilson
(354 pages) ISBN: 9781934356920. $35
http://pragprog.com/book/rwdata

Seven Languages in Seven Weeks

m
Piegi
Smers

Seven Databases
in Seven Weeks

A Guide to Modern Databases
and the NoSQL Movement

Eric Redmond
and Jim R. Wilson

Serles editer: Bruce A. Tate.
Development editor: Jacquelyn Carter.

You should learn a programming language every year,
as recommended by The Pragmatic Programmer. But
if one per year is good, how about Seven Languages in
Seven Weeks? In this book you'll get a hands-on tour
of Clojure, Haskell, Io, Prolog, Scala, Erlang, and Ruby.
Whether or not your favorite language is on that list,
you'll broaden your perspective of programming by
examining these languages side-by-side. You'll learn
something new from each, and best of all, you'll learn
how to learn a language quickly.

Bruce A. Tate
(330 pages) ISBN: 9781934356593. $34.95
http://pragprog.com/book/btlang

www.it-ebooks.info

o
Prodmatic
fogrammers

Seven Languages
in Seven Weeks

A Pragmatic 2 g
Guide to <
Learning
Programming
Languages

Bruce A.Tate

Bdted ty Jaoquelyn Carter

http://pragprog.com/book/rwdata
http://pragprog.com/book/btlang
http://www.it-ebooks.info/

The Modern Web

Get up to speed on the latest HTML, CSS, and JavaScript techniques.

HTML5 and C5S3 (2nd edition)

HTML5 and CSS3 are more than just buzzwords—
they're the foundation for today’s web applications.
This book gets you up to speed on the HTML5 elements
and CSS3 features you can use right now in your cur-
rent projects, with backwards compatible solutions
that ensure that you don’t leave users of older browsers
behind. This new edition covers even more new fea-
tures, including CSS animations, IndexedDB, and
client-side validations.

Brian P. Hogan
(300 pages) ISBN: 9781937785598. $38
http://pragprog.com/book/bhh52e

HTML5 and CSS3

Second Edition

Level Up with Today’s A

‘Web Technologies ¢
f Y
y

Brlan P. Hogan

[Edite by Susannah Davédson Pfalzer

Async JavaScript

With the advent of HTML5, front-end MVC, and
Node.js, JavaScript is ubiquitous—and still messy.
This book will give you a solid foundation for managing
async tasks without losing your sanity in a tangle of
callbacks. It’s a fast-paced guide to the most essential
techniques for dealing with async behavior, including
PubSub, evented models, and Promises. With these
tricks up your sleeve, you'll be better prepared to
manage the complexity of large web apps and deliver
responsive code.

Trevor Burnham
(104 pages) ISBN: 9781937785277. $17
http://pragprog.com/book/tbajs

www.it-ebooks.info

A
=

As

avaScn t

Build More Re: spormue Apps
with Less Code

Trevor Burnham
edited by Jacquelyn Carter

http://pragprog.com/book/bhh52e
http://pragprog.com/book/tbajs
http://www.it-ebooks.info/

The Joy of Math and Healthy Programming

Rediscover the joy and fascinating weirdness of pure mathematics, and learn how to take

a healthier approach to programming.

Good Math

Mathematics is beautiful—and it can be fun and excit-
ing as well as practical. Good Math is your guide to
some of the most intriguing topics from two thousand
years of mathematics: from Egyptian fractions to Tur-
ing machines; from the real meaning of numbers to
proof trees, group symmetry, and mechanical compu-
tation. If you've ever wondered what lay beyond the
proofs you struggled to complete in high school geom-
etry, or what limits the capabilities of the computer on
your desk, this is the book for you.

Mark C. Chu-Carroll
(282 pages) ISBN: 9781937785338. $34
http://pragprog.com/book/mcmath

The Healthy Programmer

Good Math

A Geek's Guide to the Beauty of
Numbers, Logic. and Computation

é B:vy/”

Mark C. Chu-Carroll
Edited by John Osborn

- 4

To keep doing what you love, you need to maintain
your own systems, not just the ones you write code
for. Regular exercise and proper nutrition help you
learn, remember, concentrate, and be creative—skills
critical to doing your job well. Learn how to change
your work habits, master exercises that make working
at a computer more comfortable, and develop a plan
to keep fit, healthy, and sharp for years to come.

This book is intended only as an informative guide for
those wishing to know more about health issues. In no
way is this book intended to replace, countermand, or
conflict with the advice given to you by your own
healthcare provider including Physician, Nurse Practi-
tioner, Physician Assistant, Registered Dietician, and
other licensed professionals.

Joe Kutner
(254 pages) ISBN: 9781937785314. $36
http://pragprog.com/book/jkthp

www.it-ebooks.info

Sl

The
Healthy
Programmer

Get Fit, Feel Better,
and Keep Coding

Joe Kutner
Foreword by Dr. Ed Wallitt,
physician and software developer

Edited by Brian P. Hogan

http://pragprog.com/book/mcmath
http://pragprog.com/book/jkthp
http://www.it-ebooks.info/

Put the “Fun” in Functional

Elixir puts the “fun” back into functional programming, on top of the robust, battle-tested,

industrial-strength environment of Erlang.

Programming Elixir

You want to explore functional programming, but are
put off by the academic feel (tell me about monads just
one more time). You know you need concurrent appli-
cations, but also know these are almost impossible to
get right. Meet Elixir, a functional, concurrent language
built on the rock-solid Erlang VM. Elixir’s pragmatic
syntax and built-in support for metaprogramming will
make you productive and keep you interested for the
long haul. This book is the introduction to Elixir for
experienced programmers.

Dave Thomas
(240 pages) ISBN: 9781937785581. $36
http://pragprog.com/book/elixir

Programming Erlang (2nd edition)

e
P mers

Programming

Functional
|> Concurrent
|> Pragmatic

T
> Fun l E ﬁr '

\ v
Dave Thomas &i! B
2

Forewore d by)
José Valim,
Creator of Elixir N

edited by Lynn Beighley

A multi-user game, web site, cloud application, or
networked database can have thousands of users all
interacting at the same time. You need a powerful, in-
dustrial-strength tool to handle the really hard prob-
lems inherent in parallel, concurrent environments.
You need Erlang. In this second edition of the best-
selling Programming Erlang, you’ll learn how to write
parallel programs that scale effortlessly on multicore
systems.

Joe Armstrong
(548 pages) ISBN: 9781937785536. $42
http.//pragprog.com/book/jaerlang2

www.it-ebooks.info

The
.
e

Programmin
Er%ang .

Software for a Concurrent World

Second Edition '

-

Joe Armslrog
Edtted by Susannah Davtdson Pfal

© 8

http://pragprog.com/book/elixir
http://pragprog.com/book/jaerlang2
http://www.it-ebooks.info/

The Pragmatic Bookshelf

The Pragmatic Bookshelf features books written by developers for developers. The titles
continue the well-known Pragmatic Programmer style and continue to garner awards and
rave reviews. As development gets more and more difficult, the Pragmatic Programmers will
be there with more titles and products to help you stay on top of your game.

Visit Us Online

This Book’s Home Page
http://pragprog.com/book/7web
Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates
http.//pragprog.com/updates
Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact with
our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy
http://pragprog.com/news
Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book

If you liked this eBook, perhaps you'd like to have a paper copy of the book. It's available
for purchase at our store: http://pragprog.com/book/7web

Contact Us

Online Orders: http://pragprog.com/catalog
Customer Service: support@pragprog.com

International Rights: translations@pragprog.com

Academic Use: academic@pragprog.com
Write for Us: http://pragprog.com/write-for-us
Or Call: +1 800-699-7764

www.it-ebooks.info

http://pragprog.com/book/7web
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
http://pragprog.com/book/7web
http://pragprog.com/catalog
support@pragprog.com
translations@pragprog.com
academic@pragprog.com
http://pragprog.com/write-for-us
http://www.it-ebooks.info/

	Cover
	Table of Contents
	Foreword
	Acknowledgments
	Preface
	Why Seven Web Frameworks?
	About This Book
	What This Book Is Not
	Code Examples and Conventions
	Online Resources

	1. Sinatra
	A Simple Domain-Specific Language
	Day 1: Building a Bookmarking Application
	Day 2: Creating Views
	Day 3: Adding Features
	Wrapping Up

	2. CanJS
	What Makes CanJS Unique?
	Day 1: Building Objects and Synchronizing Changes
	Day 2: Creating Controllers
	Day 3: Working with Models
	Wrapping Up

	3. AngularJS
	The Big Picture
	Day 1: Using Dependency Injection
	Day 2: Creating Controllers and Views
	Day 3: Building Filters and Routes
	Wrapping Up

	4. Ring
	Introducing Ring
	Day 1: Basic Towers
	Day 2: Patterns of Bricks
	Day 3: Other Ways to Build
	Wrapping Up

	5. Webmachine
	Introducing Webmachine
	Day 1: HTTP Request as State Machine
	Day 2: Building Apps
	Day 3: Illuminating HTTP's Dark Corners
	Wrapping Up

	6. Yesod
	Introducing Yesod
	Day 1: Data You Can't Get Wrong
	Day 2: Views, Forms, and Auth
	Day 3: Rumbling Along
	Wrapping Up

	7. Immutant
	Introducing Immutant
	Day 1: Beyond the Web Basics
	Day 2: Building Data Pipelines
	Day 3: Polyglot Apps
	Wrapping Up

	8. Wrap-Up
	Key Ideas
	Happy Exploring

	A1. Bibliography
	Index
	– SYMBOLS –
	– A –
	– B –
	– C –
	– D –
	– E –
	– F –
	– G –
	– H –
	– I –
	– J –
	– K –
	– L –
	– M –
	– N –
	– O –
	– P –
	– R –
	– S –
	– T –
	– U –
	– V –
	– W –
	– Y –
	– Z –

